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Abstract. Multi-class tissue classification from histological images is a complex
challenge. The gold standard still relies on manual assessment by a trained pathol-
ogist, but it is a time-expensive taskwith issues about intra- and inter-operator vari-
ability. The rise of computational models in Digital Pathology has the potential
to revolutionize the field. Historically, image classifiers relied on handcrafted fea-
ture extraction, combined with statistical classifiers, as Support Vector Machines
(SVMs) or Artificial Neural Networks (ANNs). In recent years, there has been a
tremendous growth in Deep Learning (DL), for all the image recognition tasks,
including, of course, those concerning medical images. Thanks to DL, it is now
possible to also learn the process of capturing the most relevant features from the
image, easing the design of specialized classification algorithms and improving
the performance. An important problem of DL is that it requires tons of train-
ing data, which is not easy to obtain in medical domain, since images have to
be annotated by expert physicians. In this work, we extensively compared three
classes of approaches for the multi-class tissue classification task: (1) extraction
of handcrafted features with the adoption of a statistical classifier; (2) extraction
of deep features using the transfer learning paradigm, then exploiting SVM or
ANN classifiers; (3) fine-tuning of deep classifiers. After a cross-validation on a
publicly available dataset, we validated our results on two independent test sets,
obtaining an accuracy of 97% and of 77%, respectively. The second test set has
been provided by the Pathology Department of IRCCS Istituto Tumori Giovanni
Paolo II and has been made publicly available (http://doi.org/10.5281/zenodo.478
5131).
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1 Introduction

Colorectal cancer (CRC) is the second cause of death for cancer with mortality ranging
almost 35% over the CRC patients [1]. In the last years, new therapeutic approaches have
been introduced in the clinical practice but, due to the high mortality, genomic-driven
drugs are under evaluation. In particular, the advent of immunotherapy has represented a
promising approach for many tumours (e.g., melanoma, non-small cell lung cancer) but
results of clinical trials related to CRC have revealed that patients do not benefit from
such therapeutical approaches. The chance to molecularly classify this tumour could
lead to a better assessment of the regimen to be administered. Many research groups
are focusing on these aspects and a multilayer approach could lead in a substantial
improvement of the clinical outcomes.

The advent of different computational models allows to perform multilayer analyses
including deep study of histological images. Such an approach relies on the automatic
assessment of tissue types.

The classical pipeline for building an image classifier involves handcrafted feature
extraction and statistical classification. A typical choice was Support Vector Machines
(SVMs), or Artificial Neural Networks (ANNs), plus eventual stages of preprocessing
and dimensionality reduction.

Linder et al. addressed the problem of classification between epithelium and stroma
in digitized tumour tissue microarrays (TMAs) [2]. The authors exploited Local Binary
Patterns (LBP), together with a contrast measure C (they referred to their union as
LBP/C) as input for their classifier, an SVM. In the end, they compared LBP/C classifier
with those based on Haralick texture features and Gabor filtered images, and the LBP/C
classifier resulted the best model (area under the Receiver Operating Characteristic
– ROC – curve was 0.995).

In the context of colorectal cancer histology, it is worth of note the multi-class
texture analysis work of Kather et al. [3], which combined different features (con-
sidering the original RGB images as grey-scale ones), namely: lower-order and higher-
order histogram features, Local Binary Patterns (LBP), Grey-level co-occurrence matrix
(GLCM), Gabor filters and Perception-like features. As statistical classifiers, they con-
sidered: 1-nearest neighbour, linear SVM, radial-basis function SVM and decision trees.
Even though they get good performances, by repeating the experiment with the same
features, we noted that adopting the red channel leads to better results than using grey-
scale images (data not shown). This consideration does not hold after that staining
normalization techniques are applied.

Later works exploited the power of Deep Learning (DL), in particular of Convolu-
tional Neural Networks (CNNs), for classifying histopathological images.

Kather et al. employed CNN for performing automating tissue segmentation of
Hematoxylin-Eosin (HE) images from 862 whole slide images (WSIs) of The Cancer
Genome Atlas (TCGA) cohort. Then, they exploit the output neuron activation in the
CNNfor calculating a "deep stroma score",whichproved to be an independent prognostic
factor for overall survival (OS) in a multivariable Cox proportional hazard model [4].

Kassani et al. proposed a Computer-Aided Diagnosis (CAD) system, composed of
an ensemble of three pre-trained CNNs: VGG-19 [5], MobileNet [6] and DenseNet [7],
for binary classification of HE stained histological breast cancer images [8]. They came
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to the conclusion that their ensemble performed better than single models and widely
adopted machine learning algorithms.

Bychkov et al. introduced aDL-basedmethod for directly predicting patient outcome
in CRC, without intermediate tissue classification. Their model consists in extracting
features from tiles with a pretrained model (VGG-16 [5]), and then applying a LSTM
[9] to these features [10].

In this work, we extensively compare three classes of approaches for the multi-class
tissue classification task: (1) extraction of handcrafted features with the adoption of a
statistical classifier; (2) extraction of deep features using the transfer learning paradigm,
then exploiting ANN or SVM classifiers; (3) fine-tuning of deep classifiers. We also
proposed a feature combination methodology in which we concatenate the features of
different pretrained deep models, and we investigate the effect of dimensionality reduc-
tion techniques. We identified the best feature set and classifier to perform inferences on
external datasets. We investigated the explainability of the considered models, by look-
ing at t-distributed Stochastic Neighbour Embedding (t-SNE) plots and saliency maps
generated by Gradient-weighted Class Activation Mapping (Grad-CAM).

2 Materials

The effort of Kather et al. resulted in the development and diffusion of different datasets
suitable for multi-class tissue classification [3, 4, 11, 12].

[3, 11] describe the collection of N = 5.000 histological images, with size of 150 ×
150 pixels (corresponding to 74 × 74 µm).

[4, 12] introduce a dataset ofN=100.000 imagepatches fromHEstainedhistological
images of human colorectal cancer (CRC) and normal tissue. Images have size of 224
× 224 pixels, corresponding to 112× 112 µm. This dataset is the designated train set in
their experiments, whereas a dataset of N = 7.180 has been used as validation set. We
denote the first one with T and the latter one with V1. For the train set, they provide both
the original version and a normalized version exploiting the Macenko’s method [13].

In order to harmonize some differences between the class names of the two
collections, we considered the following classes:

• TUM, which represents tumour epithelium.
• MUSC_STROMA, which represents the union of SIMPLE_STROMA, as tumour
stroma, extra-tumour stroma and smooth muscle, and COMPLEX_STROMA, as
single tumour cells and/or few immune cells.

• LYM, which represents immune-cell conglomerates and sub-mucosal lymphoid
follicles.

• DEBRIS_MUCUS, which represents necrosis, hemorrhage and mucus.
• NORM, which represents normal mucosal glands.
• ADI, which represents adipose tissue.
• BACK, which represents background.

Starting from the Dataset of [11], SIMPLE_STROMA and COMPLEX_STROMA
have been merged, resulting into aMUSC_STROMA class. For the dataset of [12], DEB
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and MUC classes have been merged, resulting in a DEBRIS_MUCUS class, and MUS
and STR classes have been merged, resulting in a MUSC_STROMA class. Of note, the
merging procedure has been performed according to class definition of the T training
dataset. At the end of the merge, our training dataset is reduced obtaining N = 77.805
images, keeping half of the images of each of the two combined classes, and maintaining
the balance across classes. After the same merge, the external validation set V1 resulted
to have N = 5.988 images.

An additional dataset of N = 5.984 HE histological image patches, provided by
IRCCS Istituto Tumori Giovanni Paolo II, has been used as another independent test set.
The institutional Ethic Committee approved the study (Prot n. 780/CE). This dataset,
hereinafter denoted with V2, has been made publicly available [14]. The class subdi-
vision has been done according to the list mentioned above and classified by an expert
pathologist, in order to gain the ground truth of the V2 dataset. We made our dataset
publicly available, in order to ease the development and comparison of computational
techniques for CRC histological image analysis.

Some test images from both the V1 and V2 datasets can be seen in Fig. 1.

Fig. 1. Test dataset example patches for each class. Left:V1 dataset; right:V2 dataset. All images
have been pre-processed with Macenko’s method.

3 Methods

3.1 Image Features

Different features can be extracted from single channel histogram of an image. In [3],
the authors only considered the grey-scale version of the image, but also other color
channels may be considered. For HE images, red channel can be more informative.

According to the convention used in [3], we can consider two sets of features from
the histogram: a histogram-lower, which contains mean, variance, skewness and kurtosis
index, and a histogram-higher, composed of the image moments from 5th to 11th.

Another set of features used was Local Binary Patterns (LBP). An LBP operator
considers the probability of occurrence of all the possible binary patterns that can arise
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from a neighbourhood of predefined shape and size. A neighbourhood of eight equally
spaced points arranged along a circle of radius 1 pixel has been considered. The resulting
histogramwas reduced to the 38 rotationally-invariant Fourier features proposed by [15];
these are frequently used for histological texture analysis. To extract this set of features it
is possible to use theMATLAB tool fromCenter forMachineVision and Signal Analysis
(CMVS) available at the link http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab [16,
17].

Kather et al. also considered the Grey-level co-occurrence matrix (GLCM); in par-
ticular, they considered four directions (0°, 45°, 90° and 135°) and five displacement
vectors (from 1 to 5 pixels). To make this texture descriptor invariant with respect to
rotation, the GLCMs obtained from all four directions were averaged for each displace-
ment vector. From each of the resulting co-occurrence matrices the following four global
statistics were extracted: contrast, correlation, energy and homogeneity, as described by
Haralick et al. in [18], thereby obtaining 20 features for each input image.

As the latest set of features, Kather et al. considered Perception-like features, that
included features based on image perception. Tamura et al. in [19] showed that the
human visual system discriminates texture through several specific attributes that were
later on refined and tested by Bianconi et al.; the features considered in [3] were the
following five: coarseness, contrast, directionality, line-likeness and roughness [20].

This procedure leads to the extraction of a feature vector with 74 elements.

Fig. 2. Stain normalization with Macenko’s method [13] and tiling, analogously to Kather et al.
[4, 12]. This procedure has been followed to generate the test patch images for our dataset.

http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
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3.2 Stain Normalization

Stain Normalization is necessary due to the pre-analytical bias specific to different lab-
oratories; it can lead to miscalculation of images by ANN or CNN. Techniques for
handling stain color variation can be grouped into two categories: stain color augmen-
tation, which mimics a vast assortment of realistic stain variations during training and
stain color normalization, which intends to match training and test color distributions
for the sake of reducing stain variation [21].

In order to normalize the images coming from different datasets, we exploited the
Macenko’s normalization method [13], as reported by Kather et al. [4, 12], allowing
comparability across different datasets.

The procedure adopted for the stain normalization is depicted in Fig. 2.

3.3 Deep Learning Models

Deep Learning refers to the adoption of hierarchical models to process data, extracting
representations with multiple levels of abstraction [22]. Convolutional Neural Network
(CNN) have a prominent role in image recognition problems.A huge amount of literature
data regarding the construction of DL-based classifiers for images [5, 23–29]. Some
example of application in histological images include classification of breast biopsy HE
images [30], semantic segmentation, detection and instance segmentation of glomeruli
from kidney biopsies [31, 32].

An important concern about CNN is that training a network from scratch requires
tons of data. One interesting possibility is that offered by transfer learning, which is a
methodology for training models by using data which is more easily collected compared
to the data of the problem under consideration. Refer to [33] for a comprehensive survey
of the transfer learning paradigm, here we will consider models pre-trained on ImageNet
as feature extractors for histological images, as done also in [10, 34–38]. The paradigm
of DL-based transfer learning has led to the term Deep Transfer Learning [39]. It has
been noted that, although histopathological images are different from RGB images of
everyday life, they share common basic structures as edges and arcs [40]. Earlier layers
of CNN capture this kind of elementary patterns, so transfer learning may be useful also
for digital pathology images.

One potential drawback of deep feature extractor is the high dimensionality. Cas-
cianelli et al. attempted to solve this problem by considering different technique
of dimensionality reduction [38]. We investigated the combinations of deep features
extracted by pretrained models, also considering different levels of compression, after
having applied Principal Component Analysis (PCA). In particular, we concatenated
the features coming from the ResNet18, GoogleNet and ResNet50 models, obtaining
a feature set of 3584 elements. Then, different numbers of features, ranging from 128
to 3584, have been considered for training our classifiers. To ensure that deep features
are relevant for the problem under consideration, we compared them to smaller sets of
handcrafted features. In particular, we checked: (1) that they tend to represent similar
tissue types into defined regions of the feature space, by considering a 2D scatter plot
after having applied t-SNE [41] on the deep and handcrafted features; (2) that they
lead to the training of an accurate model, without overfitting problems; (3) the saliency
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maps highlighted by Grad-CAM [42]. t-SNE can both capture the local structure of
high dimensional data and reveal global structure at several scales (e.g. the presence of
clusters), as image features in this case. Grad-CAM is a class-discriminative localization
technique for CNN-based models to make them more transparent by producing a visual
explanation.

We considered three different topologies of deep networks: ResNet18,ResNet50 [28]
and GoogLeNet [25]. For each architecture, we compared the ImageNet [43] pretrained
version (the network is working only as feature extractor in this case) with the fine-tuned
version on our data.

Fig. 3. Training procedure. Starting from a subset of the dataset T, we compared three kinds of
models. 10-fold Cross-validation was performed to find the best model. Validation procedure.
We externally validated the models found as best from internal cross-validation on two datasets:
V1 and V2. T refers to the Training set from Kather et al.; V1 stands for Test set from Kather
et al.; V2 refers to the Test set from IRCCS Istituto Tumori Giovanni Paolo II.

4 Experimental Results

We considered three types of experiments: (1) training of ANN and SVM classifiers
after handcrafted feature extraction; (2) training of ANN and SVM classifiers after
deep feature extraction with models pretrained on ImageNet; (3) fine-tuning of deep
classifiers. The workflow is depicted in Fig. 3. For the ANN and SVM trained after
handcrafted feature extraction or pretrained deep feature extraction, we made a 10-fold
cross validation (90% train, 10% test for each iteration) on the train dataset T, after
having pre-processed it as described in Sect. 2.

Then, we exploited the best classifier for each category for testing it on the validation
datasets V1 and V2. Performances reported in Table 1, Table 2, Table 3 and Table 4 are
assessed in terms of accuracy.
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Table 1. Results of 10-fold cross-validation on the train dataset T. Performances for SVM and
ANN are expressed as accuracy: mean ± std.

Feature set # Features SVM ANN

Handcrafted Grey 74 94.64 ± 1.69% 94.59 ± 0.92%

Handcrafted Red 74 83.23 ± 0.85% 85.24 ± 0.08%

Pretrained ResNet18 512 97.91 ± 0.14% 97.15 ± 0.03%

Pretrained GoogleNet 1024 94.41 ± 0.23% 93.92 ± 0.05%

Pretrained ResNet50 2048 97.61 ± 0.08% 98.04 ± 0.03%

Table 2. Results on the V1 dataset. Performances are reported as accuracy measure.

Feature set # Features Best SVM Best ANN

Handcrafted Grey 74 85.97% 86.84%

Handcrafted Red 74 83.76% 81.66%

Pretrained ResNet18 512 95.61% 94.56%

Pretrained GoogleNet 1024 90.36% 90.20%

Pretrained ResNet50 2048 95.11% 95.24%

Fine-tuned ResNet18 512 97.06%

Fine-tuned GoogleNet 1024 96.99%

Fine-tuned ResNet50 2048 97.26%

Table 3. Results on the V2 dataset. Performances are reported as accuracy measure.

Feature set # Features Best SVM Best ANN

Handcrafted Grey 74 36.48% 24.62%

Handcrafted Red 74 9.71% 19.72%

Pretrained ResNet18 512 77.19% 71.19%

Pretrained GoogleNet 1024 62.47% 60.80%

Pretrained ResNet50 2048 75.94% 71.59%

Fine-tuned ResNet18 512 66.34%

Fine-tuned GoogleNet 1024 68.82%

Fine-tuned ResNet50 2048 72.31%
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Table 4. Proposedmethodology. Feature set is given by the concatenation of pretrainedResNet18,
GoogleNet, ResNet50, considering different numbers of principal components after the PCA.
Results are shown on both the V1 and V2 datasets. Percentages represent accuracies.

# Features 128 256 512 1024 3584

ANN on V1 94.17% 94.47% 93.33% 94.42% 95.94%

SVM on V1 95.72% 96.34% 96.37% 95.24% 95.86%

ANN on V2 58.02% 64.43% 63.15% 67.67% 73.15%

SVM on V2 64.10% 64.15% 62.85% 61.56% 76.36%

For the best classifier of each category (handcrafted features, pretrained deep fea-
tures, finetuned deep model), we computed the confusion matrix to assess how errors
are distributed across the different classes. Confusion matrices are reported in Tables 5,
6 and 7.

Table 5. Confusion matrix on the V2 dataset for the best handcrafted model.

T
R

U
E

 C
L

A
S

S

TUM 44 25 0 32 0 0 2

MUSC-

STROMA
292 1782 0 702 1 4 94

LYM 4 15 0 48 0 1 4

DEBRIS-

MUCUS
46 82 0 329 0 1 27

NORM 1492 386 0 462 16 0 32

ADI 0 41 0 7 0 12 1

BACK 0 0 0 0 0 0 0

TUM
MUSC-

STROMA
LYM

DEBRIS-

MUCUS
NORM ADI BACK

PREDICTED CLASS

4.1 Discussion and Explainability

Looking at the confusion matrices, we observed that handcrafted features are not able
to well generalize on our dataset, whilst deep features are better suited for the task.
In particular, the model trained with handcrafted features is not able to recognize any
LYM tissue from our V2 dataset. For the proposed method which combines features
of different deep architectures, we showed that PCA could be a useful tool for reduc-
ing dimensionality without incurring in a decrease of accuracy. Among the pretrained
models on the V1 dataset, the proposed methodology slightly outperforms the best pre-
trained model alone, ResNet18, using also less features. For the SVM classifiers on
the V1 dataset, using more than 256 features after PCA does not result in measurable
improvements.
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Table 6. Confusion matrix on the V2 dataset for the best pre-trained deep features model.
T

R
U

E
 C

L
A

S
S

TUM 100 0 1 0 2 0 0

MUSC-

STROMA
234 2047 32 377 118 21 46

LYM 1 3 41 9 15 0 3

DEBRIS-

MUCUS
27 14 14 401 12 0 17

NORM 129 36 57 147 2011 0 8

ADI 0 8 0 28 6 19 0

BACK 0 0 0 0 0 0 0

TUM
MUSC-

STROMA
LYM

DEBRIS-

MUCUS
NORM ADI BACK

PREDICTED CLASS

Table 7. Confusion matrix on the V2 dataset for the best deep fine-tuned model.

T
R

U
E

 C
L

A
S

S

TUM 101 1 0 1 0 0 0

MUSC-

STROMA
370 1856 37 434 41 56 81

LYM 2 13 23 13 11 0 10

DEBRIS-

MUCUS
8 14 3 423 11 1 25

NORM 226 65 56 133 1890 2 16

ADI 0 1 0 26 0 34 0

BACK 0 0 0 0 0 0 0

TUM
MUSC-

STROMA
LYM

DEBRIS-

MUCUS
NORM ADI BACK

PREDICTED CLASS

We observed that frequent misclassification errors involved NORMAL and MUSC-
STROMA patches which are predicted as TUMOUR or DEBRIS-MUCUS.

In order to assess the explainability of the obtained results, we considered different
techniques. First, we looked at the t-SNE embeddings, to understand if deep features,
also those obtained by pre-training on ImageNet, are meaningful for the problem under
consideration. Figure 4a displayed that clusters are much better defined from the V1
dataset. It is important to highlight that they considered tiles clearly belonging to only
one class, whereaswe also allowed the inclusion of patchesmore difficult to be classified.

The presence of a sub-cluster of TUM tiles can be seen within theMUSC_STROMA
cluster. As stated above, MUSC_STROMA derives from the merging of simple and
complex stroma classes, the latter including also sparse tumor cells. Thus, the TUM
sub-cluster and the misclassification could be explained by both the class definition and,
from a biological perspective, the fact that tumor tissue invades the surrounding stroma.
Moreover, it could be observed in Fig. 4b thatNORMcluster includesDEBRIS_MUCUS
sub-cluster. Such a result makes sense because in this case mucus containing exfoliated
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Fig. 4. t-SNE of the best classifier features; a) Fine-tuned ResNet50 features t-SNE of V1 dataset
b) Pretrained ResNet18 features t-SNE of V2 dataset.

epithelial cells is mainly produced by the glands of the normal tissue component at the
periphery of the tissue sample.

Then, we tried to see the activations of the fine-tuned deep models exploiting Grad-
CAM method [42]. We can see from Fig. 5a-c and Fig. 5e-g the highlighted regions
of sample images from V1 and V2 datasets. Figure 5d and Fig. 5h represent patches
which have not been included intoV2 dataset since they were not clearly classifiable. In
particular, Fig. 5d contains both MUSC_STROMA and TUM classes, whereas Fig. 5h
contains both DEBRIS_MUCUS and NORM.
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Fig. 5. Grad-CAM of Deep fine-tuned classifiers on the test set; a, c, f, from dataset V1 and b, g,
e from dataset V2; d, h are patches not belonging to only one class. Labels are those in output of
the classifier.

5 Conclusions and Future Works

In this work, three different methods have been compared formulti-class histology tissue
classification in CRC. The most promising approach resulted to be to extract pretrained
ResNet18 deep features from tiles combined with classification through SVM; in this
way the classifier is able to generalize well on external datasets with good accuracy.

We also investigated explainability of our trained deep models observing that some
misclassification issues are related to the biology of CRC. The multi-class tissue classi-
fication is a useful task in CRC histology, in particular to exploit a multi-layer approach
including genomic data (mutational and transcriptional status).

The present paper could be considered a proof-of-concept because the multi-class
tissue classification of digital histological images could, not only be extended to other
malignancies, but also be considered as the preliminary step to explore, e.g., the
relationship between the tumor, its microenvironment and genomic features.
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