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1 Introduction

The purpose of this chapter is to discuss an intelligent control technique based on
fuzzy logic to improve the performance of motor drives in electric vehicle (EV)
applications. The fundamental and the most distinguish feature of an EV compared
to an internal combustion engine (ICE) car resides in the use of electric motor as
“horse power,” which has clear advantages over its counterpart [1]:

• The torque response of the electric motor is very accurate and quick, approxi-
mately 10-100 times faster than that of an ICE.

• As the electromagnetic torque is proportional to the motor current, the developed
torque can be calculated easily for the control purpose.

• The use of electric motor allows eliminating many mechanical parts and enables
various configurations, including attaching motor to each wheel, which allow
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flexible and advanced control algorithms to make car operation safer, more
comfortable, and more intelligent.

Although several kinds of electric motors can be utilized, the recent battery
electric vehicles (EVs) and hybrid electric vehicles (HEVs) primarily employ two
types of motors: induction motors (IMs) and interior permanent magnet (IPM)
synchronous motors. The control of these two motors will be addressed in this
chapter.

Actually, motor drive is placed between the power electronic control layer
(inner) and motion control (outer) in the traction architecture. Motor drive control
consists of current control, flux control, and motor angular speed control. In the
regular driving, the “speed controller” is the driver himself/herself, when he/she
presses/releases the acceleration pedal to give the torque command signal to motor
drive to attain the desired speed/travel trajectory. In the advanced EV control
configuration, speed control is the inner loop of the motion control, for example,
in the slip ratio control in [2], which enhances the safety and comfort of the
driver and passengers. In other applications, the speed controller produces a close
representation of how a human behaves during real-world driving exercises leading
to a closer representation of how the final version of the vehicle will perform [3].

The design of the speed controller requires a special care, given the fact that there
is an interaction of the environment to the vehicle body, such as road characteristics
(surface adhesion, road slope), wind, etc. Besides, there are uncertainties in the
system model caused by unknown or imprecise parameters during operation. All
these disturbances and plant uncertainties have a direct affect to the performance of
speed controller, especially when it was designed by model-based approach, such
as proportional-integral-differential (PID) control.

Fuzzy logic (FL), which was first introduced by Zadeh on 1965 [4] as one class
of artificial intelligence (AI), has been shown to be successfully applied to the
motor drives in the industrial applications, transportation systems, aerospace, house
appliances, etc. Fuzzy logic controller (FLC) for the speed control loop has been
shown to have superior dynamic performance over PID speed controllers. FLC is a
kind of nonlinear controller in its nature and has flexible control gains that can deal
with ill-known model and disturbances [5]. In this chapter, the application of FLC
in an EV will be extended by showing how it can control an IM or an IPM of any
size and any configuration, with only minimal fine-tuning between different vehicle
models.

After a review on recent applications of FLC to electric motor drives and EVs in
Sect. 2, the modeling of an EV will be presented in Sect. 3, following by dynamic
models of IM and IPM, as well as the vector control of the drives in Sect. 4. General
procedure in the design of FLC is given in Sect. 5. The approach is applied in Sect. 6
to design an FL speed controller for an off-road EV. A comparative study with PI
control is also provided. The EV has been adapted as an on-road laboratory platform
for advanced electric and hybrid vehicle research at e-TESC Lab. of the University
of Sherbrooke in Canada. The controlled system is tested by simulation in Sect. 7
with various scenarios for a performance analysis and evaluation. The flexibility
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of FLC is also demonstrated by employing the same FLC in other platform, the i-
MiEV of Mitsubishi at CTI Laboratory for EVs, Hanoi University of Science and
Technology in Vietnam. The summary of FLC design and its prospective will be
given in the conclusion of this chapter.

2 Review on Recent Applications of FL to Motor Drives and
EV Systems

Since its first engineering application was reported in 1975, fuzzy logic has
been successfully used in numerous fields such as control systems engineering,
image processing, power engineering, industrial automation, robotics, consumer
electronics, and optimization. In electric motor drive areas in particular, extensive
researches have been recognized since the 1990s. Applications include speed control
of DC and AC drives, parameter estimation, diagnostics, and so on, for use in
industrial processes, robotics, railway systems, photovoltaic (PV) renewable energy
systems, etc. In the EVs/HEV domain, as the vehicle powertrain is electric motor
drive, the experience on FLC design for industrial applications can be directly
exploited. The fuzzy logic approach is especially suitable for EVs, considering high
level of uncertainties and disturbance, such as road condition (tire-road friction,
slope, slip/skid phenomena), wind, payload variation, etc.

In this section, a brief review on recent literature is carried out for FL in motor
drives and EV applications.

FLC and adaptive FLC were used to improve the performance of induction motor
drive [6, 7]. Experiment results with large variation of moment of inertia (as much
as five times) showed that the robustness of the speed control system was greatly
improved, compared to that of conventional PI control. The principle of FL was
also utilized to estimate the rotor resistance, the parameter that has big influence on
the accuracy of indirect vector control. FL utilization is found in a stator resistance
observer of an IM in [8]. The current error is the input of the FLC process to decide
the stator resistance increment. The estimated stator resistance is accepted in both
simulated and experimental results.

FL can be used in the direct torque control configuration [9, 10]. Lai and Lin
[9] presented a direct torque control based on a hybrid FLC for IM drive. The
proposed technique alternates between PI controller and FLC controller by a simple
switching mechanism, which is based on speed error as the threshold value. The
PI controller works in steady state, while the FLC is selected in transient state to
provide fast response and low overshoot. In comparison with other approaches,
the hybrid fuzzy logic controller shows more robust performance and lowest root-
mean-squared value of the speed error. In [10], a conventional PI or PID controller
is replaced by a direct fuzzy logic for the torque regulation of an IM. The FLC
requires the torque error and the torque error change as two inputs to calculate the
incremental current command. It can be seen by the experimental results that this
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advanced method provides more accurate estimation of the torque and the flux than
other techniques.

Sensorless speed vector control of an IM using model reference adaptive systems
(MRAS) based on rotor flux is discussed in [11]. The conventional MRAS-PI
speed estimator is replaced by two proposed controllers. The sliding mode control
is employed to improve the stability performance and fast dynamic response;
meanwhile, the speed error signal is minimized by the FL technique. In open-loop
and closed-loop operation modes, the best performance is proved by MRAS-FLC in
the transient and removed load torque disturbance conditions.

Liu et al. [12] introduce an expert controller based on fuzzy logic to improve
the performance of the current controllers for IMs in field-weakening region. In
high-speed flux-weakening of an IM, the expert controller treats the reference
d-axis current i∗ds from the flux-weakening (FW) strategy and the reference q-
axis current i∗qs from the speed regulator to handle the current change following
two requirements: reasonable current tuning and limited current margin in FW.
Compared with traditional current controllers, the command current pre-treated by
the fuzzy inference expert controller has found an admissible trajectory for the
current regulators.

A review of the different switching techniques and switching pattern of voltage
space vectors, along with artificial intelligence controllers such as an artificial neural
network, adaptive neural fuzzy inference system, and fuzzy logic control, has been
made in [13].

Beside motor drives and power electronic control, FL has found many other
energy-related applications in EV and HEV systems. Trovao et al. proposed an
FLC as an energy management algorithm for multisource energy storage systems
(MESSs) containing batteries and supercapacitors (SCs). One input of the FLC is
the ratio between the power demanded by the powertrain and the rated power that
the batteries can offer to the DC link; the other input is state of charge (SoC) of
supercapacitors. The proposed FLC outputted the gain to decide the distribution
ratio of the supercapacitor current in the MESSs [14, 15]. The coupled energy
management algorithm based on FLC and filtering technique in the inner control
layer can enhance the battery lifetime by reducing the battery current root mean
square value by 12% in comparison with a battery-only architecture. The proposed
energy management system (EMS), which is equivalent to an energy- and power-
split management strategy, could enhance the stability of motor drive DC voltage
[15] and has been tested on several EV configurations, including the three-wheel
electric vehicle powered by battery-capacitor energy storage system [16].

In [17], by adopting the decision-making property of fuzzy logic, the driving
map for an HEV is made according to driving conditions. An HEV, a city bus for
shuttle service, with the proposed fuzzy logic-based driving strategy was built and
tested at a real service route. It reveals the reduced NOx emission and better charge
balance without an extra battery charger over the conventional deterministic table-
based strategy.

Regarding the antilock braking systems of the electric vehicles, a wheel slip
controller based on the fuzzy logic technique is proposed by Khatun in [18]. The
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torque demand is computed from the slip ratio, and the load torque. Over 5s of the
examined period, the proposed fuzzy logic controller demonstrates a longitudinal
performance enhancement even in the icy road condition. Power optimization can
be achieved by using FLC [19]. The paper proposes an algorithm that reduces core
losses of the induction motor, thus improving the efficiency of the driving system
for electric vehicles.

Beside the applications to the energy management and traction system, FL
approach has found in many topics of the automotive aspects such as driver
assistance system, vehicle dynamic control and ride comfort, estimation of battery
performance and battery changing, and so on. A good list of reference can be found
in [20].

3 Vehicle Modeling

There exist various types of EV prototypes, such as the three-wheel EV [16],
six-wheel EV [21], and eight-wheel EV driven by in-wheel motors [22]. As
illustrated in Fig. 1, this chapter investigates one of the most popular four-wheel
EV prototypes with front wheel drive. The AC motor M (IM or IPM motor in
this chapter) converses electric power received from the storage system into the
mechanical power in the form of electromagnetic torque Tm in the motor shaft and
rotor (mechanical) rotation speed Ωm. Gearbox GB is used to increase the torque
generated by the motor by the gear ratio kgear . The torque is transmitted to the axle
of the two front wheels, while the two rear wheels rotate freely under the effect of
road friction. The rotational motions of the motor and the wheels are expressed as

Jm

dΩm

dt
= Tm − Td,1

kgear

− Td,2

kgear

(1)

Jw

dΩw,i

dt
= Td,i − RwhFd,i , i = 1, 2 (2)

where Jm and Jw are motor inertia and wheel inertia, respectively. The wheel has
the radius Rwh, the rotational speed Ωw,i and the driving force Fd,i . The interaction
between the motor and the wheel is represented by the drive shaft torque Td,i . Let
Kd be the torsional stiffness of the drive shaft, Td,i is expressed as follows

Td,i = Kd

∫ (
Ωm

kgear

− Ωw,i

)
dt, i = 1, 2 (3)

Let vveh be the longitudinal speed of the vehicle. The difference between the
vehicle speed and the wheel speed is specified by the slip ratio

λi = RwhΩw,i − vveh

max
{
RwhΩw,i, vveh, ε

} (4)
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Fig. 1 Electric vehicle and its traction system

where ε is a small positive number to avoid division by zero. As can be seen from
Fig. 1, there exists a nonlinear relationship between the driving force and the slip
ratio. This relationship is commonly described by the “magic formula” [23]

Fd,i =
{

fi(λi) if λi ≥ 0

−fi(λi) if λi < 0
(5)

where

fi(λi) = Ai sin
{
Bi tan−1

[
Ciλi − Di

(
Ciλi − tan−1 (Ciλi)

)]}
(6)

where Ai = μiFz,i , Fz,i is the vertical load of the wheel i, μi is the friction
coefficient, and Bi , Ci , and Di are the shape factors. Summing all driving forces
and resistance forces to the vehicle body of mass Mveh, the longitudinal motion of
the vehicle is given by the following equation:

Mveh

dvveh

dt
=

(
4∑

i=1

Fd,i

)
− Fres (7)
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The resistance forces act on the vehicle include air resistance, rolling resistance,
and gravity component in the direction of travel when the vehicle is in climbing
mode:

Fres = frollMvehg cos (α) + 1

2
ρCdAf (vveh + vwind)2 + Mvehg sin (α) (8)

where froll is the rolling resistance coefficient, g is the acceleration of gravity, α is
the incline angle of the road, ρ is the mass density of the air, Cd is the aerodynamic
drag coefficient, Af is the equivalent frontal area of the vehicle, and vwind is the
wind speed, which has the positive sign if the wind is resisting the forward motion
of the vehicle and the negative sign if the wind pushes the vehicle forward.

To conclude this section, readers should notice that the set of Eqs. (1)–(8)
describes a nonlinear complex system with several uncertainties. The common
uncertainties are introduced by vehicle mass, wind force, and road incline angle.
Moreover, the road condition might change frequently during the operation of the
vehicle. Therefore, road friction coefficient and the shape factors of the magic
formula are actually time-varying parameters. Also, the torsional characteristics of
the shaft might introduce shaking vibration to the traction system [24]. Due to the
above reasons, the complexity and burden of system design would be increased
by several approaches such as pole placement, H-infinity-based robust control,
and linear quadratic regulator (LQR). To extend the application of EV, automotive
engineers should pay attention to the design approach which is practically simple
but effective. This motivates us to think about the application of fuzzy logic control.

4 Modeling and Vector Control of AC Motor Drives

Using the vector control principle, an AC motor can be analyzed and controlled like
a separately excited DC motor for high-performance applications. The fundamental
principle of the vector control (VC) is to model the motor in d-q synchronously
rotating frame and to control the torque generating component of the stator current
in the q-axis while maintaining or adjusting the flux-related component of the stator
current in the d-axis. Firstly introduced by Hasse (in 1969) [25] and Blaschke
(in 1972) [26], thanks to the development of power switches and sophisticated
microprocessors, vector control has become the standard in industry and other
application fields since several decades.

The vector control principle was initially developed for IM. The method was then
utilized directly for synchronous motors (SM), including PM synchronous motors.
In the following, the VC will be presented for IM and then used for IPM motor.
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4.1 Referential Transformation

The transformation between three-phase stationary reference frame a-b-c and the
synchronous frame d-q is realized by Park transformation:

⎡
⎣d

q

0

⎤
⎦ = 2

3

⎡
⎢⎢⎢⎢⎣

cos θe cos

(
θe − 2π

3

)
cos

(
θe + 2π

3

)

− sin θe − sin

(
θe − 2π

3

)
− sin

(
θe + 2π

3

)

1/2 1/2 1/2

⎤
⎥⎥⎥⎥⎦

⎡
⎣a

b

c

⎤
⎦ (9)

In the above equation d, q, and 0 represent the components in the d-axis, q-axis,
and zero sequence, respectively; a, b, and c represent the components in three-phase
stationary reference frame, θe is the rotor electrical position; and θe = ωet with ωe,
is the synchronous (electrical) angular speed.

When the zero-sequence element is zero, the matrix of direct Park transformation
is simplified as

KPark = 2

3

⎡
⎢⎢⎣

cos θe cos

(
θe − 2π

3

)
cos

(
θe + 2π

3

)

− sin θe − sin

(
θe − 2π

3

)
− sin

(
θe + 2π

3

)
⎤
⎥⎥⎦ (10)

And the inverse Park transformation matrix K−1
Park has the form

K−1
Park =

⎡
⎢⎢⎢⎢⎣

cos θe − sin θe

cos

(
θe − 2π

3

)
− sin

(
θe − 2π

3

)

cos

(
θe + 2π

3

)
− sin

(
θe + 2π

3

)

⎤
⎥⎥⎥⎥⎦ (11)

4.2 Modeling of IM in d-q Frame

The electrical dynamic model of the IM can be expressed in the d-q frame as shown
in (12)

⎧⎪⎪⎨
⎪⎪⎩

uds = Rsids + σLs

d

dt
ids − ωeσLsiqs

uqs = Rsiqs + σLs

d

dt
iqs + ωe

(
Lm

Lr

ψdr + σLsids

) (12)



Fuzzy Logic Control for Motor Drive in EVs 403

where uds , uqs , ids , and iqs denote the voltage and current in the d-q frame trans-
formed from a-b-c frame; Ls , Lr , and Lm are the stator, rotor, and magnetization
inductance, respectively; Rs and Rr are the stator and rotor resistance; ψdr is the
d-axis rotor flux; and σ is the total linkage factor

σ = 1 − L2
m

LsLr

(13)

Denote ed and eq the coupling terms

⎧⎪⎨
⎪⎩

ed = −ωeσLsiqs

eq = ωeσLsids + ωe

Lm

Lr

ψdr

(14)

we can have compact form

⎧⎪⎪⎨
⎪⎪⎩

uds = Rsids + σLs

d

dt
ids + ed

uqs = Rsiqs + σLs

d

dt
iqs + eq

(15)

The relation of synchronously rotating speed ωe and rotor electrical speed ωm is

ωe = ωm + ωsl

ωsl = iqs

τr ids

(16)

where ωsl is the slip frequency and τr is electrical time constant of rotor (τr =
Lr/Rr ).

The rotor position θe needed in the Park transformation can be deduced from ωe

as

θe =
∫ t

0
ωedt (17)

The electromagnetic torque is generated by cross product of rotor flux and stator
current and can be expressed in d-q frame:

Tm = 3

2
p

Lm

Lr

(
ψdr iqs − ψqr ids

)
(18)

To complete model of IM, we should include the dynamic equation of the rotating
part:

Tm − Tl = Jeq

dΩm

dt
= Jeq

1

p

dωm

dt
(19)
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where p is the number of pole pairs, Ωm is mechanical rotor speed (i.e., ωm =
Ωmp), Jeq is the equivalent moment of inertia, and Tl is the equivalent load torque
of the vehicle on the motor shaft. Tl can be calculated from the vehicle model in
Sec. 3, using (1)–(3) and (7), (8).

4.3 Vector Control of IM

If we orient the d-axis of the d-q frame to be coincided with the rotor flux vector,
the flux component on the q-axis ψqr is zero (where the name field-oriented control
(FOC) method is originated), and (18) becomes

Tm = 3

2
p

Lm

Lr

ψdr iqs (20)

The torque developed by motor in (20) is proportional to the q-axis current iqs if
the flux ψdr is controlled to be constant. This important feature—the basic principle
of vector control—shows the analogy of IM with DC motor with independent
excitation.

The rotor flux can be dynamically estimated by Eq. (21):

Lmids = ψdr + Lr

Rr

dψdr

dt
(21)

In steady state, the flux is constant and becomes hence linear relation with current
component ids ; therefore, (20) gives

Tm = 3

2
p

L2
m

Lr

idsiqs (22)

4.4 Modeling of IPM Motors in d-q Frame

The modeling of IPM motors can be obtained in a similar way as for IMs. The
electrical part model of the IPM motor is represented on the d-q coordinate system
as follows:

[
ud

uq

]
=

[
R + Lds 0

0 R + Lqs

] [
id

iq

]
+

[ −ωmLqiq

ωm

(
Ldid + ψp

)
]

(23)

where

R is the winding resistance
Ld and Lq the stator winding inductance in d and q axis, respectively
ψp is the flux generated by the permanent magnet
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abc

dq

ua

ub

uc

ud

uq

id

iq

ed

eq

Coupling

Tm

Fig. 2 Block diagram of the structure of the IPM motor model on the d-q coordinate system

The IPM motor model on the d-q frame is illustrated in Fig. 2. The interaction
between the d and q axes in the electric part model (of the motor) is shown through
the components

ed = −ωmLqiq

eq = ωm

(
Ldid + ψp

) (24)

Equation (24) is equivalent to (14) in the case of IM. Eliminating coupling
between the two d-q axes is one of the important problems in designing the motor
controller in order to achieve good response of the motor torque to the torque
demand.

The motor torque is given by

Tm = 3

2
p

[
ψpiq + (

Ld − Lq

)
id iq

]
(25)

Equation (25) shows that the motor torque comprises of two parts: the mutual
torque (as the result of interaction between the PM field and the stator current iq )
and the reluctance torque.

The existence of the reluctance torque component is due to the difference
between inductance Ld and Lq . It is the basis of the algorithm for optimal torque
per current control, called maximum torque per ampere (MTPA) control, in order to
exploit the saliency of the IPM motor.
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4.5 General Layout of Vector Control of AC Motors

The modeling of IM and IPM motor, especially the torque expressions (20) and (25),
leads to the similarity in the construction of control schema for both motors.

The general layout of vector control of AC motor is given in Fig. 3, in which
we can see two control loops in the d-q frame: the inner loop for controlling the
currents, the outer one for speed control in the q-axis and flux control in the d-axis.
For the sake of simplicity in illustration of vector control, the decoupling networks
based on (14) and (24) and the flux control loop are omitted in Fig. 3.

If the bandwidth of the current control loops is high enough, the transfer function
of the closed-loop current-controlled part is equivalent to a first-order function with
a small time constant. We can then design the speed controller independent of
current inner loops. The most popular control law is PI control, of which the gains
are calculated using the motor parameters and equivalent parameters of the traction
system.

Figure 4 presents the simplified block diagram of vector-controlled induction
motor drives, in which the block “current-controlled part” includes the electrical

Current 

Controller

Speed 

Controller

Current 

Controller d-q 

to 

a-b-c

PWM

a-b-c

to

d-q

Inverter

Load

Measured 

currents

Rotor position from 

Position sensor or 

Estimator

Fig. 3 Principle schema of vector control of AC motor

e

Current-
Controlled 

part

FW
FW: Flux Weakening Jeq: Equivalent Moment of Inertia

Fig. 4 Simplified block diagram of vector-controlled induction motor drives
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e

MTPA
& FW Current-

Controlled 
part

MTPA: Maximum Torque Per Ampere

Fig. 5 Simplified block diagram of vector-controlled IPM motor drives

part of the motor (Eqs. (14) and (15)) associated with two current controllers in
Fig. 3. The (mechanical) rotational part of the motor is presented by the transfer
function 1/(Jeq .s), which is directly deduced from (19). The motor speed controller
is denoted Cω(s), and FW is the “flux-weakening” block.

The vector control of IPM motor can be described by the same manner, which
results in the simplified block diagram as illustrated in Fig. 5.

It is worth to note the particularity in the generation of current i∗ds in d-axis
path:

• In IM drive, the reference value of the flux generating current component i∗ds is
kept constant under base speed and reduced inversely proportional with the speed
in high-speed region. It can be realized by the FW block in Fig. 4.

• In IPM drive, the MTPA algorithm is employed to maximize the torque/current
ratio, by exploiting the saliency of the motor. The MTPA algorithm is activated
in whole region of base speed. In the high-speed range, when the flux weakening
is needed to avoid the voltage saturation, the MTPA algorithm is compared with
the FW condition to yield the optimal value of current i∗ds [27]. This operation is
carried out in the block “MTPA-FW” in Fig. 5.

In the next part of the chapter, the design of a speed controller Cω(s) in Figs. 4
and 5 using fuzzy logic is addressed.

5 Fuzzy Logic Control: Principles and Design Procedure

5.1 FLC vs. Conventional Control

The design of a conventional control system is normally based on the mathematical
model of a plant. Figure 6 illustrates the basic feedback configuration of a control
system, in which P(s) represents the transfer function (or the model, in general) of
the plant, C(s) denotes the controller, and u, y, w, and e are the control signal, output
signal, input signal, and error signal, respectively. If an accurate mathematical model
P(s) is available with known parameters, a controller C(s) can be designed for
the specified performance. Unfortunately, for complex processes and systems, such



408 M. C. Ta et al.

Fig. 6 Basic feedback
configuration of a control
system

C(s) P(s)
ew u y

Fig. 7 Basic configuration of
a system using fuzzy logic:
FLC in place of general
conventional controller C(s)

FLC P(s)
ew

u y
ce

as cement plants, electrical power delivery systems, EVs, etc., a reasonably good
mathematical model is difficult to find. On the other hand, the plant operator may
have good experience for controlling the process.

For most practical systems, models are often ill-defined. Even if a plant model
is well-known, there may be parameter variation problems. Very often, the model is
multivariable and nonlinear, such as the dynamic model of an AC motor. Vector
control in d-q frame presented in previous section can overcome this problem,
but the accurate vector control is nearly impossible [5]. In indirect vector control,
for instance, motor parameters may vary considerably that affect the perfect field
orientation, conditioned by calculation synchronously rotating speed ωe and rotor
position θe in (16) and (17) for direct and inverse coordinate transformation.

To overcome such problems, various adaptive control techniques and online
parameter identification algorithms have been investigated. Better control perfor-
mances are obtained, in expense of control complexity and larger execution time.
Fuzzy logic control, on the other hand, does not strictly need any mathematical
model of the plant. It is based on plant operator experience. FLC is basically an
adaptive and nonlinear control, which gives robust performance for a linear and
nonlinear plant with parameter variation [5].

If the mathematical model is known, the FLC design becomes more convenient.
We can take this advantage for preliminary calculation and simulation stage to
shorten the control design procedure.

Figure 7 shows the analogy between the FLC and the conventional controller
in Fig. 6. The FLC takes the same place as of traditional controller C(s) in this
feedback configuration. One input is error e between the reference (desired) signal
and system output response; the other one is the change in error ce. Studies have
shown that for most control problems, these two inputs’ configuration is good
enough to give high performance. FLC in Fig. 7 is equivalent to a PI controller,
of which the proportional and integral gains are automatically adjusted according
to the working conditions. That explains why an FLC yields superior performance
to conventional PI control. Other variances, equivalent to P-type FLC or PID-type
FLC, are also possible [5]; however, the mentioned PI-type FLC is by far the most
popular.
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5.2 General Design Procedure of an FLC

Fuzzy control is basically a process that is based on a fuzzy inference system (FIS).
The FIS is essentially a formulation of the mapping from a given input set to an
output set using FL. An FIS consists of following steps [5]:

• Fuzzification of input variables
• Applications of fuzzy operators (AND, OR) in the IF (antecedent) part of the rule

and implication from the antecedent to the consequent (THEN part of the rule)
• Aggregation of the consequents across the rules
• Defuzzification

By placing the FIS in the general configuration of the feedback control as
illustrated in Fig. 7, we can deduce the structure of an FLC in the control system.
The FLC in Fig. 8 contains three main blocks, F (fuzzification), I (inference), and
D (defuzzification), along with other two functional blocks, integral and knowledge
base, which are described in the following:

1. Fuzzification
A fuzzy variable has value that is expressed by natural language. The role of
this stage is to converse the deterministic values (non-fuzzy or crisp) into fuzzy
values:

• Identify the input and output variables and range of (crisp) values.
• Define the universe of discourse of input and output fuzzy variables.
• Introduce the fuzzy sets of the fuzzy variables corresponding to input(s) and

output(s).
• Choose the form of membership functions.

The first input to FLC is the error e(k) between the reference w(k) (desired value
of output) and the system output y(k) (actual value), and the second input is the
change of error ce(k) between two instants k and (k − 1). The following relation
can be extracted in a discrete system at instant k:

e(k) = w(k) − y(k) (26)

ce(k) = e(k) − e(k − 1) (27)

Fig. 8 Structure of FLC
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A membership function (MF) can have different shapes, such as triangular,
trapezoidal, Gaussian curve, bell, sigmoid, etc. MFs can be represented by math-
ematical functions, segmented straight lines, and look-up tables. The simplest
and most commonly used MF is the triangular-type, because it can be realized
by straight lines or by a linear function in programming. It can be symmetrical
or asymmetrical in shape.

2. Inference
Inference is the heart of an FLC that contains the capability of simulating the
human decisions and deduces (infers) the action of fuzzy control by utilizing the
fuzzy implication and the inference rules in the FL:

• Formulate the rules of type IF . . . THEN . . . by utilizing fuzzy operators
(AND, OR, NOT) in the IF (antecedent) part of the rule and implicating from
the antecedent to the consequent (THEN part of the rule).

• Establish the rule table (matrix).
• Aggregation of the consequents across the rules.

There are a number of implication methods in the literature, of which the
Mamdani type and Sugeno type are the most frequent. In the Mamdani method,
each rule is evaluated by Minimum operator, and the total fuzzy output is the
union (OR) of all the component MFs (Maximum operator). In the Sugeno (or
Takagi-Sugeno-Kang) method of implication, output MFs are only constants or
have linear relations with the inputs. With a constant output MF, it is defined
as the zero-order Sugeno method, whereas with a linear relation, it is known
as the first-order Sugeno method. It can be shown that if the Mamdani and
Sugeno methods are applied to the same problem, the output is nearly the same.
In practice, the Mamdani (or Max-Min method) is the most commonly used
implication (aggregation) method.

3. Defuzzification
The result of the implication and aggregation steps is the fuzzy output, which is
the union of all the output of individual rules that are validated. Conversion of
this fuzzy output to the crisp output is performed in this stage of defuzzification.

There are three methods of defuzzification: center of gravity method (COG),
height method, and mean of maxima method.

In the center of gravity method of defuzzification, the crisp output YO of the
output fuzzy variable Y is taken to be the geometric center of the output fuzzy
value μ(Y ) area, which is formed by taking the union of all the contributions of
rules.

Mathematically, the COG can be expressed as follows

YO =
∫

Y.μ(Y ).dY∫
μ(Y ).dY

(28a)

∫
μ(Y ).dY denotes the area of the region bounded by the curve μ(Y ).
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If the μ(Y ) is defined with a discrete membership function, the YO can be
calculated by following formula which uses summations instead of integrations.

YO =
∑n

i=1 Yi.μ(Yi)∑n
i=1 μ(Yi)

(28b)

Here Yi is a sample element and n represents the number of contributed samples
in the given fuzzy set.

In the height method of defuzzification, the COG method is simplified to
consider only the height of each contributing MF and the midpoint of the base.

The height method of defuzzification is further simplified in the mean
of maxima method, where only the highest MF component in the output is
considered.

The COG method of defuzzification gives the most precise output value, with
nearly similar calculation effort as other two methods. It is therefore the most
utilized in literature.

4. Integral
The output of FLC is the change (increment/decrement) of control variable. This
signal is summed or integrated to generate the actual signal u to controlled plant.

In a discrete system, the updated control variable is calculated at instant k as

u(k) = u(k − 1) + cu(k) (29)

That means the discrete integration is the sum of the change in control variable
and its immediately past value.

5. Knowledge base
The knowledge base block contains the database for the blocks F, I, and D and
rule base for the I. In this meaning, the knowledge base block plays the role of
supervision, which has a relation with the human intelligence (such as knowledge
on the system and/or operation experience).

In the general structure of a fuzzy feedback control system in Fig. 8, the scale
factors are introduced. The loop error e and the change in error ce signals are
converted to the respective per unit signals by multiplying by the respective scale
factors ke and kce. Similarly, the output signal u is derived by multiplying the per
unit (pu) output by the scale factor kce and then summed to generate the u signal:

ke = E

e
; kce = CE

ce
; kcu = cu

CU
(30)

Working with pu values presents a great advantage that the “normalized FLC”
can be applied to all the plants of the same family. For other different plant, we
only need to change the scale factors to conform to specific database. Besides,
it becomes convenient to design the FLC. The scale factors can be constant or
programmable. Programmable scale factors can control the operation sensitivity
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in different regions of control or the same strategy can be applied in similar
response loops.

The above general design procedure will be illustrated by the design of an
FLC for an off-road electric vehicle, driven by an IM.

6 Fuzzy Logic Speed Control for EV Applications

6.1 System Description

The design of FLC is demonstrated in the case study using eCommander off-road
EV available at our laboratory at the University of Sherbrooke (Fig. 9). The EV has
been adapted as an on-road laboratory platform for advanced electric and hybrid
vehicle research in our Lab [28, 29].

The vehicle is driven by a three-phase induction motor with the DC bus power
supplied by a battery pack. The main parameters of the vehicle, the motor are given
in Table 1.

6.2 Design of FL Speed Control

Consider the FL speed controller in a vector control drive system, i.e., FLC in place
of Cω(s) in Fig. 4, which correspond to Figs. 7 and 8. The controller observes the
pattern of the speed loop error signal and correspondingly updates the output cu

(ci∗qs) so that the actual speed Ωm matches the command speed Ω∗
m.

Fig. 9 The eCommander
off-road vehicle model
reference at the e-TESC
laboratory, University of
Sherbrooke
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Table 1 System parameters for numerical study

Parameters Symbols Values

Vehicle (eCommander)

Vehicle mass (net vehicle and a driver) Mveh 871 kg

Maximum goods carrying capability Mg_max 272 kg

Aerodynamic drag coefficient Cd 0.65

Equivalent frontal area Af 2 m2

Air mass density (at 20◦ C) ρ 1.223 kg/m3

Rolling resistance coefficient froll 0.02–0.08

Motor to wheel transmission ratio kgear 20.5

Efficiency of the transmission ηgear 0.91

Wheel radius Rwh 0.3175 m

Electrical motor (ABM induction motor)

Nominal DC bus voltage Udc_nom 48 V

Stator resistance Rs 1.627 m�

Rotor resistance Rr 0.415 m�

Mutual magnetization inductance Lm 320µH

Stator leakage inductance Lls 19.42µH

Rotor leakage inductance Llr 19.42µH

Nominal frequency fnom 60 Hz

Number of pole pairs p 2

The design of FLC for speed loop is carried out by following the general
procedure described in Sect. 5.2.

1. Fuzzification
There are two input signals to the FLC, the error e = Ω∗

m − Ωm and the
change in error, ce, which is related to the derivative of error de/dt . In a discrete
system, de/dt = ce/Ts where Ts is the sampling time. With constant Ts , ce is
proportional to de/dt . Figure 8 also illustrates how to calculate ce by using delay
operator z−1.

The controller output cu (minuscule) in a vector control drive is the change of
current ci∗qs (Figs. 5, 7, and 8). This signal is summed or integrated to generate
the control signal u (i∗qs in this case).

According to the data given in Table 1 for the vehicle and motor, we can
calculate the universe of discourse for the inputs (speed errors e and change in
speed error ce) and the output cu (change of current ci∗qs). We can define fuzzy
sets (linguistic values) as follows:

• Negative big (NB)
• Negative medium (NM)
• Negative small (NS)
• Nearly zero (ZE)
• Positive small (PS)
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Table 2 Distribution of fuzzy sets

Significant Symbol Level e (rad/s) ce (rad/s2) cu (A/s)

Negative big NB −3 −800 → −250 −20 → −5 −10 → −3

Negative medium NM −2 −500 → −80 −15 → −2 −7 → −1

Negative small NS −1 −250 → 0 −5 → 0 −3 → 0

Nearly zero ZE 0 −80 → 80 −2 → 2 −1 → 1

Positive small PS 1 0 → 250 0 → 5 0 → 3

Positive medium PM 2 80 → 500 2 → 15 1 → 7

Positive big PB 3 250 → 800 5 → 20 3 → 10

• Positive medium (PM)
• Positive big (PB)

For the reason of simplicity and for a better visual effect, the fuzzy sets can be
further coded by levels using numbers from −3 (for NB) to 3 (for PB).

Table 2 summarizes the universe of discourse of variables and distribution of
fuzzy sets. Note that the given values in the table are for the motor side, as all
the parameters and variables of the vehicles have been converted into the motor
shaft.

The universes of discourse of the input and output variables are converted in
pu values and expressed by MFs as shown in Fig. 10. The MFs of triangular-
type are asymmetrical because near the origin (steady state), the signals require
more precision. All the MFs are balanced for positive and negative values of the
variables.

2. Inference
The rules of type IF. . . THEN are established in this stage. Given 7 fuzzy sets for
each variable, there are 7 × 7 = 49 possible rules, which are connected by the
operator OR:

Rule 1:IF e is (NB) AND ce is (NB) THEN cu is (NB)
OR

Rule 2: IF e is (NB) AND ce is (NM) THEN cu is (NB)
. . .

OR
Rule 49: IF e is (PB) AND ce is (PB) THEN cu is (PB)

Table 3 shows the corresponding table of rules for the speed controller,
expressed in pu. The top row and left column of the matrix indicated the fuzzy
sets of the variables E and CE, respectively, and the MFs of the output variable
CU are shown in the body of the matrix. Note that the rule table is displayed by
using the levels (−3; 3) for the linguistic values.

For a given operation point, only some rules are active, which are then
implicated using Max-Min operators (Mamdani method of implication):



Fuzzy Logic Control for Motor Drive in EVs 415

Fig. 10 Membership
functions of input and output
variables. (a) Speed error
membership function. (b)
Change in speed error
membership function. (c)
Output membership function
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Table 3 Rule table for FLC
of speed control

E

CE −3 −2 −1 0 1 2 3

−3 −3 −3 −3 −3 −2 −1 0

−2 −3 −3 −3 −2 −1 0 1

−1 −3 −3 −2 −1 0 1 2

0 −3 −2 −1 0 1 2 3

1 −2 −1 0 1 2 3 3

2 −1 0 1 2 3 3 3

3 0 1 2 3 3 3 3
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Fig. 11 Fuzzy rule surface

• Calculate the degree of fulfillment (DOF) of each rule using the AND or min
operator.

• Aggregate the total fuzzy output using OR or max operator.

3. Defuzzification
The crisp output CU, the change of q-axis current (pu) Ci∗qs , is calculated by
using (28b) of the the COG method:

Ci∗qs =
∑n

i=1 Ci∗qs,i .μ(Ci∗qs,i )∑n
i=1 μ(Ci∗qs,i )

(31)

where μ(Ci∗qs,i ) is the membership function of the Ci∗qs,i , i is a sample element
and n represents the number of contributed samples in the given fuzzy set.
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Ci∗qs is then conversed by scale factor kcu to give the change of current ci∗qs .
This signal is integrated to generate the control signal u (i∗qs in this case).

Figure 11 shows the fuzzy surface of the rules from the rule table (matrix). It
can be seen that the distribution is concentrated around the origin, meaning that
high accuracy of the controlled system is expected.

The rule matrix and MF description of the variables are based on the
knowledge of the system, and their fine-tuning may be time-consuming for
optimal performance. For a simulation-based system design, controller tuning
by the C-programming or recently with the help of the MATLAB Fuzzy Logic
ToolboxTM, may be reasonably fast.

6.3 Comparison of PI Controller and FLC

Speed Control Using PI Controller

To control the speed of a motor, proportional-integral controller (PIC) has been
shown to be a standard method. For instance, a traditional way to design the PIC-
based speed control is as follows. We let the transfer function from motor torque to
motor speed and the transfer function of the PIC be

Pm(s) = 1

Jeqs
(32)

Cm(s) = kps + ki

s
(33)

where kp and ki are the control gains. The transfer function of the closed-loop
system Pc(s) including Pm(s) and Cm(s) is

Pc(s) = Pm(s)Cm(s)

1 + Pm(s)Cm(s)
=

1

Jeqs

kps + ki

s

1 + 1

Jeqs

kps + ki

s

=
kp

Jeq

s + ki

Jeq

s2 + kp

Jeq

s + ki

Jeq

(34)

Let λ1 and λ2 be the desired poles of Pc(s), and the PI gains can be derived as

s2 + kp

Jeq

s + ki

Jeq

≡ (s − λ1) (s − λ2) ⇒
{

kp = −Jeq (λ1 + λ2)

ki = Jeqλ1λ2
(35)

Readers should notice that the motor torque is limited by the maximum motor
current. On the other hand, the current control loop always has a certain bandwidth.
Therefore, λ1 and λ2 must not be placed too far from the origin in the left half-plane.
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Preliminary Discussion

The above design procedure works really well if we only control a separate motor
drive. However, the circumstance changes considerably when dealing with the
application of EVs with the model shown in Fig. 1. The targeted plant consists
of the EV body, the motor, and the mechanism that connects them. The EV plant
is actually nonlinear. Hence, the nominal transfer function (32) fails to describe
the true dynamics of the targeted plant. The designers also suffer from physical
uncertainties, such as the vehicle mass, the road friction coefficient, and the
torsional stiffness of the drive shaft. Considering the aforementioned issues, the
disadvantages of PIC for EV have been discussed in our recent studies [30, 31].
Although stable poles are placed to the local transfer function Pc(s), the poles of
the overall system might change their place during long-term operation of EV. If
the poles move toward the imaginary axis, the control system might suffer from
vibration. Some robust control tools can improve system performance, and the
typical tool is disturbance observer (DOB) [32]. Although DOB is simple to be
implemented, its design and analysis are nontrivial for a nonlinear system as EV.
The design of DOB requires several techniques as H-infinity norm and μ-synthesis.
From practical point of view, automotive engineers still need some approaches
which are convenient to design without using complex calculations.

Based on the above discussion, FLC turns out to be an attractive candidate for
speed control. Following the previous section, readers can see that actually the
FLC consists of two actions: the integral control action and the proportional control
action. However, unlike the traditional fixed-gain PIC, FLC can be treated as a PIC
with the gain adjusted and refined in real time by the fuzzy law.

7 Simulation and Performance Evaluation

7.1 Comparative Study of PI Controller and FLC

To compare the performance of PIC and FLC, we considered the motor speed
control problem described in Fig. 4 and assume that the reference speed is given
when the vehicle runs on the road surface with the friction coefficient μ = 0.8. The
road friction coefficient was reduced to μ = 0.3 in the short period from 12 s to
14 s.

The PIC is designed using (35) with the desired poles λ1,2 = −14 ± 6j , and the
moment of inertia Jeq is calculated using nominal mass of the vehicle. The nominal
mass is calculated under the assumption that the vehicle has two passengers. The
weight of each passenger is 70 kg.

Two test cases were performed. In Test 1, the plant is the simplified linear model
(32). Both PIC and FLC showed very good control performances as can be seen
in Fig. 12. In the Test 2, the above controllers were verified by using the nonlinear
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(a)

(b)

Fig. 12 Simulation results with simplified linear model without uncertainties. (a) Speed response.
(b) Speed zoom

vehicle model described by Eqs. (1)–(8). In this test, the vehicle has to carry four
passengers with the additional luggage of 50 kg. As can be seen from Fig. 13,
both controllers still guarantee good tracking performances. However, the PIC has
suffered from more oscillation with a higher overshoot. Motivated by the above
results, in the following section, we have verified the performance of FLC and the
overall control system in Fig. 4 by a standard driving cycle test.

7.2 Simulation of Vehicle Operation

In order to examine the performance, especially the robustness of the fuzzy logic
speed controller, the vehicle is tested over the modified ECE cycle (to be suitable
for the off-road vehicle speed range), the maximum speed of 45 km/h, and a duration
of 195 s.
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(a)

(b)

Fig. 13 Simulation results (using nonlinear EV model with parameter uncertainties). (a) Speed
response. (b) Speed zoom

The fuzzy logic speed controller is realized by using the Fuzzy Logic ToolboxTM

of MATLAB. Main results are reported in Fig. 14.
For system parameter variation, the vehicle total mass changes two times at

the two stop periods (Fig. 14c). At the beginning, there is a 70-kg person driving
the vehicle; then, at the 40th second, the vehicle is fully loaded with 272 kg of
goods and two 70-kg people; finally, at the 100th second, the goods are unloaded.
Consequently, the vehicle inertia characteristic changes during the driving cycle.
Moreover, we examine the vehicle running on different road conditions with the
rolling resistance coefficient varying from 0.02 to 0.08 as presented in Fig. 14e. The
resistant force of the road to the vehicle is therefore significantly changed.

The global response given in Fig. 14a and the relative error (in comparison to
the top speed of 40 km/h) plotted in Fig. 14h confirm the good performance of
the vehicle speed fuzzy logic controller. Thanks to the fast torque dynamics of the
electrical motor reflected in Fig. 14g, the controller can quickly respond to reference
change and robustly adapt to the parameter and disturbance variations to keep the
error always lower than 2.5%.
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Fig. 14 Vehicle speed response over the modified ECE driving cycle under system parameters and
resistance variations. (a) Vehicle speed response. (b) Speed zoom 1. (c) Vehicle mass. (d) Speed
zoom 2. (e) Rolling coefficient. (f) Speed zoom 3. (g) Motor torque. (h) Speed error
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To have a better view, three areas of the speed response are zoomed in. Zoom 1
(Fig. 14a) shows the overshoot when the speed reference is set to 12 km/h and the
speed drop when froll suddenly raises from 0.035 to 0.06 with only a person driving
the vehicle. In Zoom 2 plotted in Fig. 14b, when the vehicle is fully loaded and
one more person added, the rolling resistance coefficient reduces to 0.02 that makes
the speed raising higher than the reference. Finally, Zoom 3 presents the scenario
that the coefficient froll dramatically increases four times, from 0.02 to 0.08, which
causes a drop of vehicle speed. At this time, the vehicle carries only two people
as the goods were released at the previous stop period. In the all three scenarios, it
can be seen that the fuzzy logic controller quickly responds to the resistant force
alterations regardless of different vehicle total mass. The vehicle speed, after small
errors due to the disturbance changes, is forced to follow the reference within
about 1 s. That verifies the robustness of the developed fuzzy logic vehicle speed
controller.

7.3 Flexibility of Fuzzy Logic Controller

The previous section shows that, in comparison with the traditional PIC, FLC might
improve the performance of the motor actuator to a certain extent. This subsection
is to discuss another merit of FLC, the flexibility. To this end, we demonstrate the
performance of FLC using a completely different targeted plant. Figure 15 shows the
commercial car Mitsubishi i-MiEV, which is acquired to serve as research prototype
at the CTI Lab. for EVs, Hanoi University of Science and Technology, Vietnam. The
measurement of the vehicle and motor parameters has been conducted in our Lab,
and the values are reported in Table 4. In comparison with the eCommander in Fig. 9
and Table 1, the i-MiEV has heavier weight and driven by a different drivetrain with
IPM motor.

Fig. 15 Mitsubishi i-MiEV
as research prototype at CTI
Lab. for EVs, Hanoi
University of Science and
Technology
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Table 4 Specifications of the
i-MiEV model

Parameters Symbols Values

Vehicle (i-MiEV)

Vehicle mass Mveh 1080 kg

Radius of wheel Rwh 0.285 m

Wheel moment of inertia Jw 1.25 kg.m2

Equivalent frontal area Af 2.37 m2

Drag coefficient Cd 0.35

Gearbox ratio kgear 7.065

Electrical motor (IPM motor)

Rated power Prated 49 kW

Nominal voltage Unom 330 V

d-axis inductance Ld 140µH

q-axis inductance Lq 210µH

Phase winding resistance R 12 m�

Permanent magnet flux ψ 0.06 Wb

Number of pole pairs p 4

In this case study, we control the speed of the IPM motor attached to the i-MiEV
vehicle. The test condition and the reference speed are similar to the previous test
using the eCommander vehicle. In this test, we have treated the i-MiEV as if a
“black box.” This means we assume we do not know the physical parameters of
the i-MiEV. We have used the same FLC developed for the eCommander in Sect. 6
and only adjusted the gain kcu. As can be seen in Fig. 16, the tracking performance
was poor if kcu is small. On the other hand, the motor speed suffers from vibration
if we selected for kcu a really big value. This also results in the vibration to the
motor torque (Fig. 17). Such vibrations should be eliminated since they reduce
the comfort of the driver and introduce negative effects to the inner loop of the
motor drive system (current control loop, power electronics converter control). The
designer should compromise the trade-off between tracking performance and the
driver comfort when adjusting the gain of the FLC.

This simulation study clarifies the flexibility of FLC for practical applications.
After developing the fuzzy law using a given vehicle prototype (eCommander), the
controller can be readily implemented for other vehicle prototypes. Even if the i-
MiEV is a “black box,” we can quickly perform fine-tuning process to achieve a
good control performance.
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(a)

(b)

Fig. 16 Performance of fuzzy logic controller with different gains kcu. (a) Speed response.
(b) Speed zoom

8 Conclusion

Electrification becomes an indispensable trend in automotive industry. While energy
storage systems are the key components to enable EV penetration into the market,
electric motors are the soul of the whole EV system. The use of electric motors not
only does resolve the “traditional” problems of the pollution and fossil fuel shortage
but also means many other features, such as safer, more comfortable, and more
enjoyable to drive. As many latest technologies can be embedded, the vehicle can
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Fig. 17 Motor torque with different gains kcu

be autonomous and acts as an intelligent agent in the ecosystem of the Internet of
Things and smart energy.

It is expected that modern EVs in the very future will be equipped by one of
the five levels of autonomous driving. In the normal mode, the driver imposes the
demand torque to the traction part by pressing/releasing the acceleration pedal. In
the driver assistance mode (level 1), for instance, the vehicle can be monitored
through cruise control. In the last case, the reference torque is generated by the
vehicle speed control loop. This chapter devotes to designing the speed controller
and has shown how we can incorporate FLC, a class of artificial intelligence, into
the whole system.

Inspired by the advantages of an electric motor that make fundamental merits of
EVs over ICE vehicles, the chapter focuses on how to design the “best quality” of
the motor torque reference. The FLC approach has been adopted and utilized in a
direct and simple way, but very systematic in the practical design point of view.

After a thorough literature review on fuzzy control applications for motor drives
and EVs, the vehicle powertrain has been modeled focusing on the drivetrain and
the electrical motor models. Standing out in other works dealing with a specific sort
of traction drive, this chapter has figured out two commonly used AC motor drives
for EVs, which are IM and IPM motor. These two kinds of motors can utilize the
common general vector control layout. Afterward, the FLC principle and design
procedure have been addressed from philosophy to detailed guideline.

A comparative study by simulation has shown that if the plant is of a simplified
linear model, both PI controller and FLC yielded very good and similar control
outcome, in terms of overshoot, response time, tracking error, and steady-state error.
However, when considering the real model of EV with nonlinear characteristics, the
FLC showed better performance than the PI controller.
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The proposed FLC has been evaluated via numerical simulation using a practical
vehicle-based model. To verify the robustness and uncertainty-tolerant ability of the
fuzzy controller, both parameter and disturbance variations have been applied to the
system. The results show that despite of up to 39% of vehicle mass change and
300% of rolling resistance force alteration, the tracking performance of the vehicle
speed control loop is ensured with less than 2.5% of relative error.

Moreover, thanks to the normalization of the membership functions and inference
design, the proposed FLC can tolerate a wide range of practical applications. It is
tested by utilizing the same FLC for other EV platforms, the Mitsubishi i-MiEV
driven by an IPM motor. The simulation study has confirmed the flexibility of
the FLC for practical applications. A controller designed for a vehicle can be
conveniently implemented for other vehicle prototypes. Only fine-tuning process
is required to achieve a good control performance.

The principle of FLC can also be further applied in other control layers of the
EV system. More uncertainty and nonlinearity such as slippery characteristics of
tire dynamics would be also of interest for future studies based on this FLC.
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