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1 Introduction

Energy management strategy (EMS) is mandatory for hybrid energy storage system
(HESS) of electric vehicles (EVs), except the passive topology [1–3]. Among
various topologies of HESS, the semi-active configuration using battery and super-
capacitor (SC) is studied due to its good trade-off between cost and performance
[4]. The strategy plays the role of sharing the instantaneous power between the
sources to achieve the goal of energy management. The EMS can be conventionally
developed by using mono-objective approaches [5–11]. In a battery/SC system, the
single objective is often to extend the battery lifetime while handling SC state of
charge (SoC) and current kept into their operation boundaries [5, 7–11].

Recently, several efforts are dedicated to develop multi-objective EMS, e.g., [12–
14]. Decomposition methodologies are used in [14] to deal with multi-objective
problems by using mono-objective methods. This paper uses the approach to study
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the energy management of series HEVs using battery/SC HESS. Fuel consumption
and electric cost are addressed in a scalar objective function with equal priorities.
In [13], a global objective function is obtained by summation of three single costs
without any weighting factor. The negotiations between the conflicting objectives
are therefore not fully considered. Generally, these above works obtain unique
solutions for multi-objective problems.

A contribution as a framework of multi-objective optimization for hybrid electric
vehicles (HEVs) is presented in [12] which is a complete work on multi-objective
EMS with Pareto optimality. This framework is rigorous but complicated with
numerous mathematical developments. In addition, the author of [12] used dynamic
programming (DP) to evaluate the performance of the Pareto-based real-time
strategy. However, this is not a Pareto set of global optimal solutions but only
a particular one. Recent work presented in [15] has proposed a multi-objective
optimal EMS for battery/SC EVs by employing an alternative approach of using
Pontryagin’s minimum principle (called alt-PMP) which has been introduced in
[16]. That study obtains a quasi-analytical solution which is efficient in terms of
computation resource and therefore faster than DP.

On the other hand, the benchmarking role of offline optimal strategies should
be emphasized. Despite that real-time EMS can be developed based on optimiza-
tion techniques such as model predictive control (MPC) [17, 18], stochastic DP
[19], adaptive PMP [20, 21], and meta-heuristic methods [22], they are all sub-
optimal strategies. Hence, there is a necessity for a benchmark to examine their
effectiveness, in which the benchmark should be a global optimal solution of the
energy management problem. To do so, the whole driving condition, which is the
disturbance of the optimal control system, must be assumed to be known in advance.
As a consequence, the optimal benchmark should be an offline strategy obtained by
numerical simulation.

The aim of this chapter is to introduce a multi-objective offline optimal EMS
for the battery/SC HESS to generate a Pareto front benchmark for performance
evaluation and/or EMS tuning. The multi-objective optimization problems are
treated by using a hierarchical structure proposed in [23]. This approach is to
decompose the EMS into strategic and tactical levels that are in accordance with
the multi-objective scalarization and the optimization problem-solving layers, in
which weighted sum method is traditionally used for scalarization of multiple
objective functions [24–26]. Using this method, each objective is associated with
a weighting factor that reflects the priority given to it. The weighted objective
functions are then combined in a summation to form a scalar single objective
function to be solved using an appropriate optimization method. At the tactical
layer, global optimal solutions for the benchmark are deduced by using DP. This is
a backward computation dynamic optimization method which is well-known for the
ability of deducing global optimal solution for a wide range of complex nonlinear
systems [27, 28]. On the other hand, comparing to a DP-based optimal benchmark
for evaluating the performance of real-time EMS is a common practice in energy
management studies such as [29]. To give an example on the evaluation using the
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Pareto front benchmark, the well-known filtering strategy is used with a range of
cutoff frequencies.

In the following, Sect. 2 states the multi-objective energy management problem
for battery/SC EVs and addresses the general methodology of the chapter. In Sect. 3,
the studied system is modeled and controlled with a well-known rule-based EMS
which is the filtering strategy. Section 4 then presents multi-objective optimal EMS
with the weighted sum scalarization method using DP. Numerical results obtained
via simulation carried out based on a real EV reference model are given and
discussed in Sect. 5. Conclusion and perspectives are then drawn in Sect. 6.

2 Problem Statement and General Methodology

In this section, firstly, the studied system is described with the engineering problem
statement. Secondly, the necessity of multi-objective approach to deal with this
problem is figured out. The role of a Pareto front benchmark is also discussed. Next,
the general formulation of the energy management problems is given. Finally, the
general methodology for multi-objective optimal EMS development is developed.

2.1 Studied System and Engineering Problem Statement

A semi-active configuration of HESS is studied as presented in Fig. 1. Battery
directly maintains the DC voltage supplied to the traction subsystem. SCs are
connected to the DC bus through a bidirectional DC/DC converter composed of
a power inductor and a chopper. Since this work focuses on the energy management
of the HESS, the traction subsystem can be simplified as a dynamic current source.
This current source imposes the demanded traction current itrac, which reflect the
traction subsystem dynamics, to the HESS.

2.2 Multi-Objective Approach with Pareto Front for
Benchmarking

The above engineering problem statement figures out the necessity of considering
SC losses in addition to the battery degradation. That means the energy management
problem should be treated by using a multi-objective approach instead of the mono-
objective one. A more general discussion is given here to address the advantages of
the multi-objective approach over its counterpart. Since this work is to deduce an
optimal benchmark, it is limited to addressing the advantages of the multi-objective
benchmark approach.
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Fig. 1 Studied system: an EV supplied by a battery/SC HESS

To be general, the battery and the SCs can be considered as main and auxiliary
sources associated with the objective functions Jmain and Jaux, respectively. Here,
Jmain and Jaux are generally defined as the main and the auxiliary objectives of the
energy management problem for illustration purpose. Their specific meanings will
be assigned regarding the battery power and the SC losses in Sect. 4. Let us assume
that there are three strategies denoted by 1, 2, and 3 to be evaluated and improved
(Fig. 2). By using mono-objective approach (see Fig. 2a), that is, the comparison
with only one criterion Jmain, it is easy to select Strategy 3 as the best one. However,
as seen in Fig. 2b, the picture can change with a multi-objective viewpoint when
Jaux is considered. Even though Strategy 2 has slightly higher value of Jmain, it takes
much less cost Jaux than Strategy 3 does. It can be therefore considered as a better
choice than Strategy 3. This illustration shows why a multi-objective approach can
bring a global picture that covers necessary points of view for a correct performance
evaluation.

Next, the role of a multi-objective benchmark, which is a Pareto front, is
illustrated in Fig. 2c. Pareto front is a set of non-dominated solutions of a multi-
objective optimization problem. If these solutions are global optimal for given
trade-offs, the Pareto front can serve as a multi-objective benchmark. Utopia point
is the unrealistic ideal solution which optimizes all the conflicting objectives.
Strategies can be evaluated by comparisons with the benchmark.

One may argue the disadvantage of the multi-objective approach that it is
somehow subjective and requires expertise for compromises. However, that is the
essences of real-world engineering, especially for the hybrid systems which are
the combinations of different characteristics. Furthermore, once a multi-objective
strategy is developed, it is easy to be reduced to mono-objective as a typical case.
By contrast, if only the mono-objective one is developed, there can be a lack of a
global viewpoint. Consequently, some better solutions may be missed to be taken
into account.

A common question is often raised; that is, how to select “the best of the best”
solution on the Pareto front which is a set of the non-dominated solutions? That
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Fig. 2 Illustration of multi-objective approach for performance evaluation of EMS: (a) mono-
objective evaluation, (b) multi-objective evaluation, (c) Pareto front as an optimal benchmark

selection can be done by two approaches as explained in [24]: (i) ideal method
where the full Pareto front is carried out first and then the solution is chosen based
on higher-level technical information and (ii) preference-based method where the
trade-off is done first and then the optimization problem is solved to obtain only a
single solution regarding the preferred choice. Both approaches are often heuristic
that relies on the developer’s expertise. On the other hand, the aim of this study is
to achieve a benchmark for evaluating the performance of the other EMS. For that
purpose, the whole Pareto front should serve as the benchmark instead of a single
point, and the chosen α granularity is enough to have a graphical representation at
this stage.

2.3 General Formulation of Energy Management Problems

An energy management problem can be formulated by adopting the form of optimal
control [27, 30] as follows:

Find the optimal control laws u∗(t) for the system:

d

dt
x(t) = f

[
x(t), u(t), w(t), t

] ; (1)

in which x(t) is the state variables and w(t) the disturbances, which minimize the
objective functions [J1 · · · Jn] given as:

J = [J1 · · · Jn]T (2)

with the constraints
{

p
[
x(t), u(t), t

] ≤ 0
q
[
x(t), u(t), t

] = 0; (3)
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where p and q are sets of functions expressing the inequality and equality
constraints of the system, respectively. The objective functions (2) are expressed
by:

Ji = hi

[
x(tf ), tf

]

︸ ︷︷ ︸
Cost of the final state

+
∫ tf

t0

gi

[
x(t), u(t), t

]
dt

︸ ︷︷ ︸
Cost of the whole procedure

with i ∈ {1, 2, · · · , n} ;
(4)

where g and h denote arbitrary functions and t0 and tf are the initial and the final
time, respectively.

When the problem is properly formulated, one can use various types of methods
to solve it depending upon the study purpose. They can be either rule-based or
optimization-based as well as either real-time or offline methods [1].

2.4 General Methodology

Problem formulation is to translate the engineering problem stated in Sect. 2.1 to
the mathematical formulation in the form aforementioned in Sect. 2.3. Besides,
an optimal benchmark requires the global optimal solutions of the optimization
problems. DP is known to be suitable for deducing such kind of solutions [27].

Moreover, dealing with multiple objective functions is the discipline of multi-
objective optimization [24, 26]. There are two main groups of multi-objective
optimization methods: vectorization and scalarization [24, 31]. The vectorization
techniques are to iteratively generate populations of the feasible solutions in
the searching space. The populations would converge to a set of non-dominated
solutions which is the Pareto front. Alternatively, the scalarization methods are
to form a single (scalar) objective function from the original multiple objectives
by assigning them weighting factors. Optimization techniques are then applied to
solve the problem of this scalar function regarding the variation of the weights
that deduce the Pareto front. It is pointed out that the vectorization is not always
suitable for optimal control, while the latter group has advantages [31]. It is because
the vectorization techniques require to solve a lot of optimization subproblem for
the populations of solution candidates that would be very time-consuming. The
vectorization approach is more appropriate for optimal design/sizing of the energy
storage systems, e.g., a well-investigated design is presented in [32]. Hence, the
scalarization technique is employed in this study of multi-objective optimal control
for energy management problem.
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Fig. 3 General methodology: (a) model reduction and strategy decomposition for EMS develop-
ment, (b) structure of multi-objective global optimal EMS using DP

Structure of Optimal Multi-Objective Energy Management

An energy system can be dealt with in three levels: system model, control, and
strategy (see Fig. 3a). As EMS is at the higher level than the local control, it has
slower dynamics than the lower layer. It is therefore not necessary and not effective
to consider the full dynamical model for EMS development and study [23]. Thus,
model reduction should be done in order to effectively develop the EMS. At this
step, a reduced model is carried out from the full dynamical system and the local
control. The energy management problem is then formulated based on this reduced
model.

According to the formulated problem and the study objective, different structures
of EMS could be used. In this study, the hierarchical structure of two management
layers proposed in [23] is adapted. The strategy is decomposed into strategic and
tactical layers. The philosophy is that the strategic layer gives the global directions
and then the tactical one handles the system by following these guidelines. In [23],
the structure is realized in the real-time EMS by a rule-based strategy at the higher
layer; it restricts the searching space of the optimization-based strategy at the lower
layer.

This study adapts the above hierarchical structure to deal with the multi-objective
optimal energy management problem (see Fig. 3b comparing with the right part
of Fig. 3a). The multi-objective scalarization plays the role of the strategic layer.
It gives the scalarized objective function as a guideline for the lower layer. The
tactic is realized by DP which globally minimize each given scalarized objective
function. Since DP is a backward calculation technique, a backward model must
be deduced from the reduced model. It is presented in details in Sect. 4.2. It is also
worth to note that DP is a closed-loop optimal control method [27] and, thus, state
feedback is mandatory. Meanwhile, multi-objective scalarization handles its duty in
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an open-loop scheme. The measure going from the tactical layer to the strategic one
is therefore eliminated.

Pareto Front Benchmark Generation

The steps for generating the Pareto front benchmark are illustrated in Fig. 4. There
are several techniques to scalarize the multiple objective functions, in which the
most used is the weighted sum method [24, 25]. Weighting factors ki are given
to each objective function and then summed to create a single multi-objective
function. Moreover, it is necessary to make the objective functions dimensionless
due to the different units of the performance measurements. Normalization factors
are therefore introduced. The choices of these factors depend upon the detailed
applications. The weighted sum objective function Jws is therefore expressed as
follows:

Jws = k1
J1

J1_nom
+ (1 − k1)

×
(

k2
J2

J2_nom
+ · · · +

(
kn−1

Jn−1

Jn−1_nom
+ (1 − kn−1)

Jn

Jn_nom

))
(5)

where 0 ≤ ki ≤ 1 and Ji_nom is the normalization factor with i ∈ {1, . . . , n − 1}.
Since the studied battery/SC HESS can be considered as the combination of a

main source and an auxiliary source (see Sect. 2.2), the weighted sum objective
function is depicted by:

Jws = α
Jmain

Jmain_nom
+ (1 − α)

Jaux

Jaux_nom
; (6)

in which α ∈ {0, 1} is the weighting factor.
By the given weighting factors, the multi-objective problem is scalarized to a

series of single objective problems. Thereafter, each single problem is solved by
using DP to produce the optimal solution for the given weighting factor. The set of
these optimal solutions is the Pareto front benchmark as illustrated in Fig. 4.

3 Modeling, Control, and Rule-Based Strategy

Before dealing with the strategy level, the system should be properly controlled.
Moreover, in this study, the EMS is not independently developed, but by following
a systematic procedure. It is based on the model organization and control scheme
of the system using a unified formalism. Therefore, it is necessary to carry out the
modeling and the control of the system.
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Fig. 4 Illustration of
multi-objective benchmark
generation

3.1 Modeling and Control

For control and energy management, it is sufficient to use simple models of the
battery and the SCs [21, 29] as follows:

⎧
⎨

⎩

ubat = ubat_OC(SoCbat) − rbat(SoCbat)ibat

SoCbat = SoCbat(0) − 1

3600Cbat

∫ t

0 ibatdt
; (7)

uSC = uSC(0) − 1

CSC

∫ t

0
iSCdt − rSCiSC; (8)

where ubat is the battery voltage, ubat_OC the battery open-circuit voltage which is
a function of battery state of charge SoCbat, rbat the battery series resistance, ibat
the battery current, Cbat the battery capacity, uSC the SC voltage, rSC the SC series
resistance, CSC the SC capacitance, and iSC the SC current.

The inductor of the converter is given by its linear dynamic model as:

uSC = L
d

dt
iSC + rLiSC + uch; (9)

in which L is the inductor inductance, rL is the inductor series resistance, and uch is
the chopper voltage.

The average linear model of the chopper is utilized:
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{
uch = mchubat

ich = mchη
k
chiSC

with k =
{

1 if ubatich ≥ 0

−1 if ubatich < 0
; (10)

where ich is the chopper current, mch the duty cycles of pulse width modulation, and
ηch the chopper average efficiency.

The parallel connection model is the Kirchhoff’s current law:

{
ubat = common
itrac = ibat + ich

(11)

where itrac is the traction current.
The traction part is simplified as an equivalent dynamic current source which

generates the traction current as a function of the traction power and the battery
voltage:

itrac = Ptrac

ubat
. (12)

Tuning path goes from the control variable mch to the objective variable ibat.
Then, the control path is carried out by inversion of the tuning path.

Based on the control path, the control scheme is deduced by step-by-step
inversions of the element models. There are two main kinds which are direct and
indirect inversions. The elements which do not store energy are directly inverted
from their modeling equations. For example, from (11), the direct inversion of the
parallel connection is given as:

ich_ref = itrac_mea − ibat_ref. (13)

By contrast, the elements containing dynamic models cannot be directly inverted
because that leads to derivative terms which unrespect the physical causality
conditions [33]. Hence, indirect inversions must be used for them. This kind of
inversion is realized by closed-loop control. In this case, the SC current control is
derived from (9) as follows:

uch_ref = uSC_mea −
(

kP + kI
1

s

)
(iSC_ref − iSC_mea) (14)

where kP and kI are the factors of the well-known proportional-integral (PI)
controller.
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3.2 Rule-Based Filtering Strategy

The filtering-based strategy is used as an example for performance evaluation with
a low-pass filter (LPF) [5, 6]:

ibat_ref = 1

τLPFs + 1
itrac_ref; (15)

where τLPF is the time constant of the LPF. The cutoff frequency of the filter is
calculated by:

fc = 1

2πτLPF
. (16)

The SC voltage is constrained in its upper and lower limitations [34]. Besides, in
the intervals that there is no power request from the traction subsystem, the battery
charges the SCs if the SC voltage is lower than uSC_max.

4 Multi-Objective Optimal Energy Management System

4.1 Problem Formulation

System Dynamical Model

Formulating an optimal control problem is the step to determine the system
dynamical model, the objective function, and the constraints which are generally
addressed in (1), (2), and (3). The model can be obtained by combining the
component models given in (7)–(12) as in [35]. By that, one can eventually get a
nonlinear model of current and voltage relationships [21]. However, we can deduce
a more general linear model considering the power and energy relationships of the
HESS inherited from [15] as illustrated in Fig. 5.

By defining the positive direction of the source powers as discharging to supply
the traction subsystem, the power coupling node is given by:

Pbat + PSC = Ptrac. (17)

From the SC subsystem power PSC, the SC subsystem losses can be calculated by:

PSC_loss = PSC

(
kSCη

−kSC
SC − kSC

)
with kSC =

{
1 if PSC ≥ 0

−1 if PSC < 0
; (18)
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in which ηSC is the SC subsystem efficiency considering the DC/DC converter losses
and the Joule’s losses caused by the SC series resistance rSC.

On the other hand, the charging and discharging dynamics of the pure SC
capacitance are modeled by:

d

dt
ESC = −PSC0 (19)

where the pure charging/discharging power PSC0 is given by:

PSC0 = PSCη
−kSC
SC . (20)

Hence, considering the battery power Pbat as the control variable and the SC energy
ESC as the state variable, the dynamical model used for EMS development can be
deduced as the following:

d

dt
ESC = (Pbat − Ptrac) η

−kSC
SC (21)

where the traction power demand Ptrac is the disturbance imposed to the system.

Objective Functions

This study is to minimize the two objectives which are battery degradation and SC
losses given by:

J = [
Jbat JSC

]
. (22)

These objectives are conflicted to each other because minimizing the battery
degradation requires to use more SC power, i.e., more SC losses, to support the
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battery and vice versa. Dealing with such conflicted multiple objectives falls within
the scope of multi-objective optimization methods.

In order to reduce the battery aging factors, from the control point of view, the
battery power usage should be reduced. Moreover, in terms of optimal control, it is
convenient to have the control variable taken into account in the objective function.
Thus, the battery objective function can be given by:

Jbat =
∫ T

0
P 2

batdt (23)

where T is the final time of the driving cycle; the quadratic function is employed to
reduce the battery power in both positive and negative regions.

The objective function to be minimized from the SC side is the SC subsystem
losses PSC_loss. From (18), applying the quadratic form, the SC objective function
is addressed as:

JSC =
∫ T

0
(Pbat − Ptrac)

2
(
kSCη

−kSC
SC − kSC

)2
dt. (24)

As aforementioned in Sect. 2.4, the two objective functions should be normalized
in order to properly apply the weighted sum method for scalarization of the objective
function vector J as follows:

Jws = α
Jbat

Jbat_nom
+ (1 − α)

JSC

JSC_nom
(25)

with 0 ≤ α ≤ 1 being the weighting factor. Here, we define the scalarization factors
Jbat_nom and JSC_nom as the mean of the optimal solutions of P 2

bat and P 2
SC_loss pre-

computed individually in the case of α = 0 and α = 1, respectively, as follows:

⎧
⎪⎨

⎪⎩

Jbat_nom = mean
(
P ∗

bat
2
∣∣∣α=0

)

JSC_nom = mean
(
P ∗

SC_loss
2
∣∣∣α=1

) (26)

Applying (23), (24), and (26) to (25), the weighted sum objective function to be
implemented for computation of the studied optimal control problem is given by:

Jws =
∫ T

0

⎡

⎢
⎣α

P 2
bat

mean
(
P ∗

bat
2
∣∣∣α=0

) + (1 − α)
(Pbat − Ptrac)

2
(
kSCη

−kSC
SC − kSC

)2

mean
(
P ∗

SC_loss
2
∣∣∣α=1

)

⎤

⎥
⎦ dt.

(27)

If the higher priority is given to the objective of extending battery lifetime, i.e., α is
close to 0, the battery power will be controlled to be small that means lower aging
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stress. By contrast, if α is close to 1, Pbat will be managed to be close to Ptrac so that
the second term of the objective function Jws can be minimized.

Constraints

Constraints of the control and state variables can be imposed to an optimal control
problem. In practical applications, they are often the limitations of the variables,
which are the battery power Pbat and the SC energy ESC [15].

An upper boundary of Pbat can avoid the high peak power demand which can be
harmful for the battery. On the other hand, we should limit the maximum charging
power of the battery, which is a lower boundary because it is in the negative
direction, due to the same reason. Hence, the control variable constraints of the
studied problem are given by:

Pbat_min ≤ Pbat ≤ Pbat_max. (28)

These boundaries can be calculated from the maximum continuous load current and
the maximum charging current which are often given vis-à-vis the battery C-rate.

The second sort of constraints is for the state variable that is often among the
most critical issues of optimal control. In a battery/SC HESS, the SC energy is
indeed restricted due to the limited voltage and capacitance of the SCs as follows:

1

2
CSCu2

SC_nom ≤ ESC ≤ 1

2
CSC

(
0.5uSC_nom

)2
. (29)

Moreover, it is interesting that a final-state constraint can be enforced to an
optimal control problem. This sort of constraint is especially useful for energy
management of HESS where the auxiliary source energy should be recovered
at the end of the driving cycle. It firstly implies that the SCs only support the
battery to compensate the power fluctuation, whereas the battery mostly provides
the whole energy for range autonomy. Secondly and more important for the
benchmark purpose, the final-state constraint may ensure a fair comparison to
evaluate the effectiveness of the EMS in terms of battery power smoothing and
energy consumption. In the studied HESS, this charge-sustaining condition is given
by:

ESC(T ) = ESC(0). (30)

Consequently, the multi-objective optimal HESS energy management problem
can be formulated as the following:
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P ∗
bat = arg min

⎧
⎨

⎩

∫ T

0

⎡

⎣α
Pbat

2

mean
(
P ∗

bat
2
∣∣
∣α=0

)

+ (1 − α)
(Pbat − Ptrac)

2
(
kSCη

−kSC
SC − kSC

)2

mean
(
P ∗

SC
2
∣∣∣α=1

)

⎤

⎥
⎦ dt

⎫
⎪⎬

⎪⎭

s.t.:
d

dt
ESC − (Pbat − Ptrac) η

−kSC
SC = 0

Pbat_max − Pbat ≥ 0

Pbat − Pbat_min ≥ 0

1

2
CSC

(
0.5uSC_nom

)2 − ESC ≥ 0

ESC − 1

2
CSCu2

SC_nom ≥ 0

ESC(T ) − ESC(0) = 0.

(31)

In the next subsection, we will apply DP to solve this optimal control problem
for each value of α; then the set of optimal solutions with 0 ≤ α ≤ 1 forms the
Pareto front.

4.2 Dynamic Programming

Here, DP is used at the tactical layer to deduce the optimal solution for each
particular dynamic optimization problem given by each weighting factor value.
DP is based on the Bellman principle of optimality that leads to an effective
numerical searching technique to find the optimal control law for a dynamic system
[27]. Considering the above general system model (1) in the discrete form, DP is
expressed by Bellman equation as follows:

J ∗
k,N

[
x(k)

] = min
u(k)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

gD
[
x(k), u(k)

]

︸ ︷︷ ︸
Cost-to-go from current
stage k to next stage k+1

+ J ∗
k+1,N

[
f
(
x(k), u(k)

)]

︸ ︷︷ ︸
Optimal cost-to-go from next

stage k+1 to final stage N

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(32)

in which the subscript k,N denotes the procedure going from the stage kth to the
final stage N th, similar for k + 1, N and gD is the discrete form of the function g

mentioned in (4). Figure 6 illustrates the solving procedure for an arbitrary scalar
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Fig. 6 Illustration of dynamic programming computation procedure

component of state vector x. It is to find the optimal path from the current state xi(k)

to the final state x(N). The optimal paths from all possible next states x(k + 1) to
x(N) must be determined in advance. The operation of DP is to repeat this procedure
from x(N) to the initial state x(0). Due to computation in discrete time, the system
must be discretized and quantized. It is noteworthy that unlike real-time control,
stability is not an issue of the optimal control methods like DP. The offline optimal
control law is obtained considering a priori known disturbance and respecting the
control and state constraints which often reflect the physical limitations keeping
the system stable. Hence, it is unnecessary to analyze the stability of DP because
the proposed approach is for offline benchmark comparison but not for real-time
control.

DP is of interest because of its natural ability of dealing with the control- and
state-constrained problems applied for various sorts of nonlinear systems. Thanks
to its ability to generate global optimal solutions regarding all types of constraints
for all types of dynamical systems, DP is the most used method to deduce the
optimal benchmark for energy management problems. The drawback of DP is that it
is heavy in term of computation. Moreover, this method requires the a priori known
disturbances; thus, DP is only validated by offline simulations. In this study, we
use the dpm MATLAB function introduced in [36] to implement DP in the inner
loop (Algorithm 1), while the outer loop is the iteration of the weighting factor α as
illustrated in Fig. 4.
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Algorithm 1 System model implementation for DP computation using the dpm
function introduced in [36]

Definition
1: INP = [inp.W, inp.U, inp.X] // input structure
2: PAR = [par.η, par.α, par.mean(P ∗

bat
2), par.mean(P ∗

SC_loss
2)]

3: // user-defined parameters
4: X = inp.X{1} // state variable structure
5: C = inp.C{1} // cost matrix
6: I = I // infeasible matrix
7: out = [Pbat, ESC, PSC_loss] // user-defined output signals

Step 1: Initialization
8: Do
9: Ptrac = inp.W {1} // Disturbance w(t) = Ptrac

10: Pbat = inp.U{1} // Control input u(t) = Pbat
11: ESC = inp.X{1} // State variable x(t) = ESC
12: η = par.η // SC subsystem efficiency
13: α = par.α // Cost function weighting factor

Step 2: System model and cost function computation
14: While ∀t ∈ T do
15: if Ptrac − Pbat ≥ 0 // SC subsystem efficiency coefficient k

16: k = 1
17: else
18: k = −1
19: end if
20: ESC = ESC + inp.Ts × (Pbat − Ptrac) × η−k // SC energy ESC
21: X{1} = ESC // Update the state variable x(t)

22: PSC_loss = (Pbat − Ptrac) × (k − k × (η−k)) // SC subsystem losses
23: I = 0 // Summarize infeasible matrix
24: C{1} = α × P 2

bat/par.mean(P ∗
bat

2) + (1 − α) × P 2
SC_loss/par.mean(P ∗

SC_loss
2)

25: // Calculate cost matrix
26: end while

Step 3: Output
27: Do
28: out.Pbat = Pbat
29: out.ESC = ESC
30: out.PSC_loss = PSC_loss

5 Results and Discussions

This section presents the numerical validation of the proposed approach. The
simulation configuration and scenario will be described and then followed by the
results of Pareto front to serve as a multi-objective optimal benchmark. Finally,
representative cases regarding the different weighting factor values will be given
and discussed to show the pros of the proposed EMS.
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Fig. 7 The eCommander EV
with the associated Valence
U24-12XP Li-ion battery and
Maxwell BMOD0058 E016
B02 SC modules of e-TESC
laboratory, University of
Sherbrooke, as the reference
model

5.1 Simulation Setup

The simulation is carried out using the parameters of eCommander EV available
at the e-TESC laboratory, University of Sherbrooke [37], as the reference vehicle
(Fig. 7). The vehicle total mass, including the HESS and the driver, is 871 kg. Nine
SC modules Maxwell BMOD0058 E016 B02 are connected as three modules in
series forming a branch and three branches in parallel. The SCs are linked to a
DC/DC converter having an average efficiency of 95%. The SC subsystem is directly
connected to a battery composed of 12 Valence U24-12XP Li-ion modules, in which
4 modules are in series and 3 branches are in parallel (4s/3p arrangement).

The full dynamical model, local control, and filtering-based strategy are simu-
lated in MATLAB/Simulink environment. A real-world driving cycle recorded in the
campus of our university is used as the vehicle speed reference (see Fig. 8)1 with the
length of 199.4 s. The discretization step, i.e., sampling time, of the problem is 0.1 s.
Hence, there are 1994 time steps to be computed. The upper and lower boundaries
of the state variable ESC are based on the SC voltage limitations of 45 V and 22.5 V,
respectively. The maximum and minimum battery power constraints are set as 6 kW
of discharging for traction and −1 kW of charging for regenerative braking. The
quantization of both ESC and Pbat is 200 steps.

Two main results are given. First, it is the Pareto front generated with the
weighting factor α varying from zero to one. Results of filtering-based strategy are
given to illustrate the benchmark role of the generated Pareto front. The second main
result is the energy and power trajectories of the studied HESS with some specific
values of α.

1 HESU Eco Drive Platform: https://www.gel.usherbrooke.ca/e-TESC/?page_id=89.

https://www.gel.usherbrooke.ca/e-TESC/?page_id=89
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Fig. 8 The real-world
driving cycle obtained in the
University of Sherbrooke
campus with the studied
eCommander vehicle
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5.2 Pareto Front as a Multi-Objective Optimal Benchmark

The Pareto front generated from multi-objective optimal EMS is given in Fig. 9.
Since DP is the global optimization method, this front can be used as a benchmark
to evaluate the performance of sub-optimal strategies. The well-distributed convex
form of the generated Pareto front verifies the validation of weighted sum scalariza-
tion.

To give an example for the benchmark role of the generated Pareto front, results
of the filtering-based strategy are used. Two typical values of the LPF cutoff
frequency fc1 = 50 mHz and fc2 = 10 mHz are studied. With the fc1, the EMS
causes low SC system losses but reduces less battery stress demands. By contrast,
with the fc2, it is better for battery lifetime (less stress) but forces the SC system
working exhaustively causing higher losses. Both are fairly far from the optimal
solutions set. For better evaluation of filtering-based strategy, a set of LPF cutoff
frequencies with 5 mHz step is examined as given in Fig. 9. This proposed set
corresponds in fact to nine different filtering-based strategies. Also, Fig. 9 shows
that the results of filtering-based strategy are distant from the Pareto front.

Advanced EMS giving results closer to the Pareto front are therefore preferred.
It is supposed that an EMS giving results between the Pareto front and the curve of
filtering strategy could be considered as better than this one. For instance, in [21],
an optimization-based real-time strategy has been developed based on an adaptation
of PMP to deduce a closed-loop control scheme of the SC voltage. Simulation and
experimental validations have been carried out to verify the superiority of that EMS
to the filtering strategy. Moreover, appropriate methods used for energy management
of HEVs could be adapted for HESS due to their analogy in terms of power flow
model. For example, the recent work [29] has proposed a linear quadratic regulator
(LQR)-based EMS for a parallel hybrid powertrain of which the performance has
been proven to be close to DP results. It could therefore be of interest to extend this
strategy to energy management of EVs supplied by HESS.
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Fig. 9 Pareto front
benchmark generated from
multi-objective optimal EMS

In this case, solutions to the multi-objective optimization problem are computed
by means of solving weighted sum with well-dispersed set of weights. In addition,
the L1 (Manhattan metric) and L∞ (Chebyshev metric) distances to reference points
can be added to the designer define which level of each objective function would like
to attain [26].

For instance, to identify more suitable Pareto optimal solutions, the L∞ metric
enables to compute unsupported solutions (i.e., non-dominated solutions which
are convexly dominated) besides supported non-dominated solutions resulting
from weighted sum scalar function and the L1 metric. Moreover, these different
computation processes will offer to the benchmarking process different insights of
the possible trade-offs regarding the tuning and evaluation of different real-time
strategies.

5.3 Typical Cases

In these scenarios, the weighting factor α is chosen as {0, 0.25, 0.75, 1} respecting
the priorities given to the purpose of battery lifetime extension. Figure 10 shows the
SC energy ESC and the HESS power profiles of the studied cases. They include the
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traction power Ptrac which is the disturbance and the battery power Pbat which is the
control variable.

In all scenarios, the state variable ESC is constrained between the maximum
and minimum limitations. The final state ESC(T ) is controlled to be equal to the
initial state ESC(0) which means SCs charge sustaining. The Pbat is kept within
its constraints as expected. In traction mode, the SCs support the battery to make
the Pbat smoother and having lower peak values. In regenerative braking mode, all
the energy is charged to the SCs as the expectation of almost EMS. More detailed
discussions on each case follow.

The case α = 1 given in Fig. 10a means that all the priority is put on battery
degradation reduction. In fact, this is the common case when the mono-objective
approach is applied to the main source. The battery current is kept very smooth
around a small average value. Most of the requested power is provided by SCs. It is
worth to note that to provide the same power, the SCs with the lower voltage, i.e.,
lower energy, must give the higher current. This may put a heavy duty on the power
electronics converter, especially on the stability issue, the magnetic saturation of the
power inductor, and the efficiency of the converter. High Joule losses are also the
consequence. The results of this case are used as the normalization factor for the
scalarization of the SC objective function.

By contrast, in the case α = 0 plotted in Fig. 10b, the only objective is to
minimize the SC system losses while receiving all regenerative energy as the
constraints of the battery current. The SCs, therefore, support the battery to reduce
only the peak power demand which is higher than its power constraint. Like the
previous case of SCs, the battery objective function is normalized by using these
results.

Between the two above extreme cases, either major or minor priority can be
given to each objective. The two scenarios where α = {0.25, 0.75} are presented
in Fig. 10c, d, respectively. They are the trade-off between battery stresses and SC
system losses. The higher the weighting factor α is, the lower and smoother the
battery power is, because in this study α is introduced as the priority given to the
objective of battery power smoothing. Meanwhile, the SC power is in the inverse
proportion. The smoothness and the reduction of battery power depend upon the
chosen value of α which could be based on the expertise of the strategy designer.

6 Conclusion

This chapter has presented a systematic approach to develop multi-objective optimal
EMS for HESS-based EVs. The SC subsystem losses are taken into account in addi-
tion to the main objective of extending battery life-span. The hierarchical structure
has been employed that the EMS is considered as decomposing into strategic and
tactical layers. At the strategic level, the multi-objective optimal control problem has
been dealt with by using the weighted sum scalarization method. Afterward DP has
been used at the tactical level for problem-solving, thanks to its ability of giving the
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Fig. 10 SC energy and HESS power trajectories with typical values of α. (a) α = 1. (b) α = 0.
(c) α = 0.75. (d) α = 0.25
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global optimal solution. Consequently, a Pareto front has been generated as a multi-
objective EMS benchmark of which the advantages are validated via numerical
evaluations with intensive analyses. We have illustrated the benchmarking role of
the Pareto front by comparing it to the well-known filtering strategy as a real-time
EMS for a real EV.

The proposed methodology is not limited to the studied battery/SC system but
can be extend for the other hybridized systems such as hybrid electric vehicles
(HEVs) or fuel cell/battery/SC HESS. The optimal EMS can also be combined with
component sizing to form a strategy/sizing bi-level optimization problem which is
of interest for future study. Furthermore, using advanced scalarization methods such
as L1 and L∞ metric may enrich the Pareto front for maximizing the benchmarking
assessment.
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