
Chapter 5
Categorical Commutator Theory

Sandra Mantovani and Andrea Montoli

Abstract In these notes, we introduce the reader to the categorical commutator the-
ory (of subobjects), following the formal approach given by Mantovani and Metere
in 2010. Such an approach is developed along the lines provided byHiggins, based on
the notion of commutator word, introduced by the author in the context of varieties of
�-groups (groups equipped with additional algebraic operations of signature�). An
internal interpretation of the commutator words is described, providing an intrinsic
notion of Higgins commutator, which reveals to have good properties in the context
of ideal determined categories. Furthermore, we will illustrate some applications of
commutator theory in categorical algebra, such as a useful way to test the normality
of subobjects on one side, and the construction of the abelianization functor on the
other.
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Introduction

The theory of commutators [9] can be considered as an extension of the classical
commutator theory for groups to more general varieties of algebras. A description
of commutator of congruences in Mal’tsev varieties was developed by Smith [20],
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and then extended to a categorical context by Pedicchio [19], while a first categorical
notion of commutator of subobjects was given by Huq in [13].

In these notes, following [18], we first recall the Higgins commutator, based on
the notion of commutator word, introduced byHiggins [12] in the context of varieties
of �-groups (groups equipped with additional algebraic operations of signature �).
We will describe also the internal interpretation of these commutator words given
in [12] by means of the so-called formal commutator, which allows us to provide
an intrinsic notion of Higgins commutator [H, K ] of two subobjects H, K of A
in any regular and unital category with finite colimits (see Definition 3.2). Such a
commutator [H, K ] is not in general a normal subobject of A (see Example 2.6), but
if we move into the context of ideal determined categories [15], we easily see that
such a commutator is always normal in the join H ∨ K of H and K in A.

In Sect. 4, we revisit also Huq commutator [13], showing that in a unital and
normal category [16], Huq commutator is nothing but the normal closure of Higgins
commutator. The two commutators are different in general, even in the category of
groups, if H and K are not normal in A, as Example 1.2 shows. But they coincide
when one of the two subobjects is the whole A.

The case with H = A is special also for another reason. In the category of groups,
the commutator [A, K ] can be used to test whether the subgroup K of A is normal
in A. Actually K is normal in A if, and only if, [A, K ] is a subgroup of K . A natural
question is to ask if the internal formulation of this connection is still valid in a
categorical setting. In Proposition 3.7 we recall from [18] that, in an ideal determined
and unital categoryC , any normal subobject K of A contains the commutator [A, K ].
In order to get the converse,we need tomove into theworld of semi-abelian categories
[14], where the full characterization of normality via commutators holds.

Furthermore, in Sect. 5, we recall from [2] the categorical notions of commutative
and abelian object and how they are related to the previous notion of commutator.
Referring to [6], we show in Theorem5.8 that, in the realm of pointed Mal’tsev
categories, the two notions coincide. We conclude by describing how to obtain the
abelianization functor (left adjoint to the inclusion of the subcategory of abelian
objects), by means of the cokernel of the commutator [X, X ] over X , in any pointed
normal Mal’tsev category.

1 Commutators of Groups

We begin by recalling the notion of commutator of two elements in a group and of
two subgroups. All the material of this section can be found in any textbook about
group theory. Let G be a group, and let g, h ∈ G. The commutator of g and h is the
element

[g, h] = ghg−1h−1.

If H and K are subgroups of G, the commutator of H and K is the subgroup of G
generated by all the elements of the form [h, k] with h ∈ H and k ∈ K :
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[H, K ] = 〈[h, k] | h ∈ H, k ∈ K 〉.

In particular, the subgroup [G,G] is called the derived subgroup of G. It is clear that
G is an abelian group if and only if [G,G] = 0, where 0 denotes the trivial group.
More generally, given h, k ∈ G, one has [h, k] = 1 if and only if h and k permute:
hk = kh.

Remark 1.1 Given two subgroups H and K of a group G, if we denote by H ∨ K
the smallest subgroup of G containing both H and K (namely the supremum of H
and K in the lattice of subgroups of G), then we have that the commutator [H, K ]
is a normal subgroup of H ∨ K .

Proof If hkh−1k−1 is a generator of [H, K ] and h̄ ∈ H , then

h̄(hkh−1k−1)h̄−1 = h̄hkh−1h̄−1h̄k−1h̄−1

= h̄hkh−1h̄−1k−1kh̄k−1h̄−1 = ((h̄h)k(h̄h)−1k−1)(kh̄k−1h̄−1) ∈ [H, K ],

since both (h̄h)k(h̄h)−1k−1 and kh̄k−1h̄−1 belong to [H, K ]. Similarly, if k̄ ∈ K ,
then k̄(hkh−1k−1)k̄−1 ∈ [H, K ], and this is enough to conclude. ��

However, if H and K are not normal subgroups of G, [H, K ] is not normal in
general. The following example is borrowed from Alan Cigoli’s Ph.D. thesis [7]:

Example 1.2 Let G be the alternating group A5 and let H and K be the following
subgroups of G:

H = 〈(12)(34)〉, K = 〈(12)(45)〉.

These subgroups are not normal in A5 (actually A5 is a simple group, i.e. it has no
non-trivial subgroups). Let us put h = (12)(34) and k = (12)(45). Then h = h−1

and k = k−1 and so

[h, k] = hkhk = (12)(34)(12)(45)(12)(34)(12)(45)

= (34)(45)(34)(45) = (354)(354) = (345).

So, [H, K ] = 〈(345)〉 is not normal in A5.

The situation improves when H and K are normal subgroups of G. Indeed, the
following property holds:

Proposition 1.3 If H and K are normal subgroups of G, then [H, K ] is normal in
G as well.

Proof Ifh ∈ H , k ∈ K and g ∈ G, then ghg−1 = h̄ ∈ H and gkg−1 = k̄ ∈ K .Hence

g(hkh−1k−1)g−1 = (ghg−1)(gk−1g−1)(gh−1g−1)(gk−1g−1) = h̄k̄h̄−1k̄−1 ∈ [H, K ].

��
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We will come back later, in a more general framework, to this last property, which
will be called normality of the Higgins commutator. For the moment, we observe
that this property allows one to get two important chains of normal subgroups of G,
namely the derived series:

G � [G,G] � [[G,G], [G,G]] � [[[G,G], [G,G]], [[G,G], [G,G]]] � . . .

and the lower central series:

G � [G,G] � [[G,G],G] � [[[G,G],G],G] � . . .

The derived series allows one to define solvable groups: a group is solvable if its
derived series reaches the trivial group after a finite number of steps. Similarly, the
lower central series allows one to define nilpotent groups: a group is nilpotent if its
lower central series reaches the trivial group after a finite number of steps.

Before moving to a more general context than the one of groups, we list some
important properties of the commutator of subgroups. Their proofs are left to the
reader.

Proposition 1.4 1. Given a subgroup K of G, K is normal in G if and only if
[K ,G] ⊆ K.

2. If H, K , H ′, K ′ are subgroups of G, with H ⊆ H ′ and K ⊆ K ′, then [H, K ] ⊆
[H ′, K ′].

3. f : G → G ′ is a surjective group homomorphism, and H and K are subgroups
of G, then f ([H, K ]) = [ f (H), f (K )].

2 The Case of �-groups

In order to extend, in a unified way, the notions of ideal and commutator to a wide
range of algebraic structures, Higgins introduced in [12] the notion of �-group. An
�-group G is a group (G,+,−, 0) (written in additive notation, although it is not
necessarily abelian) equipped with a set � of additional operations, of finite arity
n ≥ 1, such that, for all ω ∈ �:

ω(0, 0, . . . 0) = 0.

For any fixed �, we get a variety in the sense of universal algebra. We will denote
by �-Grp the category whose objects are the �-groups (for the fixed �) and whose
morphisms are the group homomorphisms that preserve any ω ∈ �. Every such cat-
egory is pointed, with the initial and terminal object given by 0 = {0}.
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Let X be a set of indeterminates and let x denote a finite sequence (x1, x2, ..., xn)
of elements of X . A word in X is an expression obtained by formally applying the
operations ω ∈ �,+,− to elements of X and to 0 a finite number of times. As it
usually happens for varieties of universal algebras, considering words is the first step
in order to build the free �-group on the set X (some identifications, according to
the equations of the corresponding variety, will be needed). Now we can consider
two special families of words:

Definition 2.1 Let f (x, y) be a word in two disjoint sets of indeterminates X and
Y . We shall say that

1. f (x, y) is an ideal word of X w.r.t.Y if f (x, y) satisfies the equation f (0, y) = 0,
where f (0, y) is the word obtained from f (x, y) by replacing every xi in x by 0.

2. f (x, y) is a commutator word in X and Y if f (0, y) = f (x, 0) = 0.

We will denote by XY the set of ideal words of X w.r.t. Y , and by [X,Y ] the set
of commutator words in X and Y . It is clear that [X,Y ] = XY ∩ Y X .

Example 2.2 In the variety Grp of groups (and, more generally, in every variety of
�-groups), the word y + x − y is an ideal word of {x} w.r.t. {y}, and x + y − x − y
is a commutator word in {x} and {y}. In the variety Rng of (non-unitary) rings, the
word xy is both an ideal and a commutator word in {x} and {y}.

The reason for the name idealword is that, given an�-groupG and an�-subgroup
H of G, H is an ideal (i.e. the kernel of a morphism) if and only if, for any ideal
word f (h, g) in H and G, one has that f (h, g) ∈ H (where, now, we do not see
f (h, g) as a formal combination of elements, but we compose the symbols using
the operations in G). Following the same spirit, given two �-subgroups H and K of
G, we will denote by [H, K ] the set of the realizations in G of all the commutator
words f (h, k) in H and K . In the variety of groups, it is not difficult to see that

[H, K ] = 〈[h, k] | h ∈ H, k ∈ K 〉,

while, in the variety CRng of commutative rings

[H, K ] = HK .

In general, we have the following:

Lemma 2.3 [12, Lemma 4.1] [H, K ] is an �-subgroup of G. Moreover, it is an
ideal in the join H ∨ K of H and K in G.

In the particular case of distributive �-groups, namely those �-groups in which
every ω ∈ � is distributive w.r.t. +:

∀a1, . . . an, b ω(a1, . . . ai + b, . . . an) = ω(a1, . . . ai , . . . an) + ω(a1, . . . b, . . . an),

there is an easy description of ideals:
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Theorem 2.4 [12, Theorem 4a] If G is a distributive �-group and H is an �-
subgroup of G, H is an ideal of G if and only if it is a normal subgroup of G and,
for all g1, . . . gn ∈ G, h ∈ H and ω ∈ �, ω(g1, . . . gi−1, h, gi+1, . . . gn) ∈ H.

If, moreover, we suppose that the group operation + is commutative, then there
is also an easy description of the commutator of two subobjects:

Theorem 2.5 [12, Theorem 4c] If G is a distributive�-group, with+ commutative,
and H and K are �-subgroups of G, then [H, K ] consists of all polynomials in
elements of H and K each term of which contains both a factor from H and a factor
from K .

In the previous section, we observed that the commutator subgroup [H, K ], of
two normal subgroups H and K of a group G, is always normal in G. It is a natural
question whether the same property holds for �-groups. Unfortunately, the answer
is negative, even for distributive �-groups, as the following example shows:

Example 2.6 Consider the variety of abelian groups endowed with an additional
binary operation ∗ which is distributive w.r.t. the group operation +. Consider the
free abelian group on three elements A = Zx + Zy + Zt with the operation ∗ defined
in the following way on the generators:

* x y t
x x 0 y
y 0 0 x
t y x t

Then the free abelian subgroup K = Zx + Zy is an ideal of A, since any product
which involves elements of K still belongs to K , but the commutator [K , K ] = Zx

is not an ideal of A, because, for instance, x ∗ t does not belong to Zx .

3 The Categorical Higgins Commutator

In this section we extend the commutator defined by Higgins for �-groups to a
categorical context. For this purpose, we will consider a pointed category C with
finite limits and finite colimits. In this context, for any pair of objects H and K of
C , we get canonical inclusions

H
〈1,0〉

H × K K
〈0,1〉

determined by the universal property of the product. Similarly, we have canonical
morphisms

H H + K
(1,0) (0,1)

K
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determined by the universal property of the coproduct. Combining them, we get a
canonical morphism

� : H + K → H × K .

If C is the category Grp of groups, H + K is the free product of H and K , while
H × K is the usual direct product. Then � is defined as follows:

�(h1, k1, h2, k2, . . . hn, kn) = (h1h2 . . . hn, k1k2 . . . kn),

where hi ∈ H , ki ∈ K and the chain h1, k1, h2, k2, . . . hn, kn is a word in the alphabet
H ∪ K , which represents an element of H + K . InGrp such amorphism� is always
surjective. In Grp, for a morphism being surjective is equivalent to being a regular
epimorphism (i.e. the coequalizer of a pair of morphisms) and to being a normal
epimorphism (i.e. the cokernel of a morphism). Moreover, a morphism of groups f
is surjective if and only if it is an extremal epimorphism: this means that, if f = mg,
with m a monomorphism, then m is an isomorphism. Let us give a name to those
categories for which the canonical morphism � is always an extremal epimorphism:

Definition 3.1 [3] Let C be a pointed category with finite limits and finite colimits.
C is unital if, for every pair of objects H and K , the canonical morphism � is an
extremal epimorphism.

Actually, the definition of a unital category can be given even in absence of
finite coproducts. Indeed, it suffices to ask that, for every pair of objects H and K ,
the canonical morphisms 〈1, 0〉 : H → H × K and 〈0, 1〉 : K → H × K are jointly
extremal epimorphic: if they factor through a common monomorphism m, then m is
an isomorphism.

Let us now consider the kernel of � : H + K → H × K . We will denote it by
H � K (it was introduced in [5] under the name cosmash product of H and K ). It
is not difficult to show that, in Grp, H � K is given by commutator words in H and
K . To see this, one can consider what is the image under � of words of the form
h1, k1, h2, k2: they are sent to the neutral element of H × K if and only if h1h2 = 1
and k1k2 = 1, i.e. h2 = h−1

1 and k2 = k−1
1 . Actually the same fact holds in every

category of �-groups. For this reason, we can call H � K the formal commutator of
H and K .

Let us now assume that the categoryC is not only unital, but also regular [1]. This
means that every morphism f in C admits a pullback-stable factorization f = me,
where e is a regular epimorphism andm is a monomorphism (for further information
about regular categories, the reader is addressed to the chapter An introduction to
regular categories of this book). In this setting, consider two subobjects h : H �
A and k : K � A of the same object A. These two arrows induce a morphism
(h, k) : H + K → A, which we call the realization map. The name comes from the
fact that, in the case of varieties of universal algebra, this arrow turns a formal word
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belonging to H + K into the element in A obtained by realizing such word w.r.t. the
operations in A. Consider then the following commutative square:

H � K

ker(�)

e [H, K ]
m

H + K
(h,k)

A,

where (e,m) is the (regular epi, mono) factorization of the restriction of (h, k) to
H � K , i.e. of the composite (h, k)ker(�).

Definition 3.2 The object [H, K ] defines the categorical Higgins commutator of H
and K in A.

Once the categorical version of the Higgins commutator is defined, our goal
becomes to check which of the properties the classical commutator in Grp has, still
hold in this setting. First of all, we ask ourselves whether the commutator [H, K ] of
two subobjects in A is a normal subobject of the join H ∨ K (by “normal subobject”
we simply mean a kernel of a morphism. This notion should not be confused with
the one of subobject normal to an internal equivalence relation in the sense of Bourn
(see [2])). In order to answer this question, we first need to recall how the join can
be constructed in our categorical setting. It is obtained as the monomorphic part of
the (regular epi, mono) factorization of (h, k) : H + K → A given by:

H + K
(h,k)

A

H ∨ K .

Clearly H is a subobject of H ∨ K , because we have the following commutative
diagram:

H

h

H + K

(h,k)H ∨ K

A,

and the same holds for K . Moreover, if Z is a subobject of A having both H and K
as subobjects, as in the following diagram:
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H

h

a
Z

z

K
b

k

A,

then we get the commutative diagram

H + K

(h,k)

(a,b)
Z

z

H ∨ K A.

By the uniqueness, up to isomorphisms, of the (regular epi, mono) factorization, we
obtain that (a, b) factors through H ∨ K , which is then a subobject of Z :

H + K
(a,b)

Z

zH ∨ K

∼
H ∨ K A,

and this tells us that H ∨ K is the smallest subobject of A containing both H and K .
In order to show that the commutator [H, K ] is normal in H ∨ K (i.e. it is the kernel
of a morphism with domain H ∨ K ), we need a further assumption on our category
C , namely that it is ideal determined [15]:

Definition 3.3 A pointed regular categoryC with finite colimits is ideal determined
if the following two conditions hold:

1. C is normal in the sense of [16], which means that every regular epimorphism in
C is a normal epimorphism (i.e. the cokernel of a morphism);

2. the regular image of a normal monomorphism is a normal monomorphism. This
means that, given a commutative square

A B

C D,

where the horizontal arrows are regular epimorphisms and the vertical ones are
monomorphisms, if the left vertical arrow is normal, then the right one is normal
as well.
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It is immediate to see that, in an ideal determined category, the commutator [H, K ]
is a normal subobject of the join H ∨ K ; it suffices to consider the following com-
mutative square:

H � K

ker(�)

e [H, K ]

H + K H ∨ K .

Let us now explore more in detail the second condition defining ideal determined
categories. Let h : H → X be a normal subobject, and let f : X → Y be a regular
epimorphism in an ideal determined category C . If we consider the (regular epi,
mono) factorization of f h:

H

h

f1
K

k

X
f

Y,

we know, from Condition 2, that k is a normal subobject. So it will be the kernel of
its cokernel. The cokernel of k can be built in the following way: let q : X → Q be
the cokernel of h, and consider the pushout of q along f :

H

h

f1
K

k

X

q

f
Y

q ′

Q
f ′ Q′.

Then q ′ is the cokernel of k. Indeed:

q ′k f1 = f ′qh = 0 = 0 f1,

from which we get q ′k = 0, since f1 is an epimorphism. Moreover, if t : Y → T is
such that tk = 0, then

0 = tk f1 = t f h.

Since q is the cokernel of h, there exists a unique morphism t ′ : Q → T such
that t f = t ′q. Finally, by the universal property of the pushout, we get a unique
s : Q′ → T such that sq ′ = t (and s f ′ = t ′). Hence q ′ is the cokernel of k.
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Thanks to this observation, we can give an alternative characterization of ideal
determined categories [17, Proposition 3.1]:

Proposition 3.4 Let C be a normal category with finite colimits. C is ideal deter-
mined if and only if, for any commutative diagram

H

h

f1
K

k

X

q

f
Y

q ′

Q
f ′ Q′

(5.3.i)

such that the lower square is a pushout of regular epimorphisms, h = ker(q) and
k = ker(q ′), one has that f1 is a regular epimorphism, too.

Proof Suppose C is ideal determined and the diagram (5.3.i) is given. Consider the
(regular epi, mono) factorization of f h:

H

h

g
K ′

k ′

X
f

Y.

From what we observed before, we obtain that k ′ is the kernel of its cokernel, which
is necessarily q ′. Then k and k ′ are isomorphic, and so f1 is a regular epimorphism.

Conversely, let h : H → X be the kernel of its cokernel q : X → Q, and let
f : X → Y be a regular epimorphism. Considering the pushout of f along q:

X

q

f
Y

q ′

Q
f ′ Q′

and completing the diagram with k = ker(q ′) and with the morphism f1 induced by
the universal property of the kernel (since q ′ f h = f ′qh = 0), we obtain a diagram
like (5.3.i). By assumption, f1 is a regular epimorphism. Hence the regular image
of the normal monomorphism h is the normal monomorphism k, and the category is
ideal determined. ��

Another property of the commutator we already observed for groups is the fol-
lowing: a subgroup K of A is normal if and only if the commutator [A, K ] is a
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subgroup of K . In order to see if this property still holds in our general context,
we first need to recall some facts concerning the construction of cokernels. Given a
subobject k : K → A, one way to build its cokernel in C is by means of the pushout

K
k

A

q

0 Q.

Another one (see [18]) is via the following, alternative pushout:

A + K

(1,0)

(1,k)
A

q

A p Q.

Indeed, from the equality p(1, 0) = q(1, k) we get, precomposing with the first
coproduct inclusion ιA : A → A + K :

p = p(1, 0)ιA = q(1, k)ιA = q.

Moreover, precomposing with the second coproduct inclusion ιK : K → A + K , we
obtain

0 = p(1, 0)ιK = q(1, k)ιK = qk = pk,

and, for every morphism t : A → T such that tk = 0, one has t (1, 0) = t (1, k) and
so, by the universal property of the pushout, there is a unique s : Q → T such that
the following diagram commutes:

A + K

(1,0)

(1,k)
A

q

t
A p

t

Q
s

T .

Hence p = q is the cokernel of k.

The latter construction of the cokernel as a pushout gives an easy description of
the normal closure of a subobject k : K → A (i.e. of the smallest normal subobject
k : K → A containing K ): it is the kernel of the cokernel of k. It is clear that a
subobject is normal if and only if it coincides with its normal closure.
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Let us now denote by A�K the kernel of the canonical morphism (1, 0) : A +
K → A, where k : K → A is a subobject of A. Considering the following diagram

A�K K

k

A + K

(1,0)

(1,k)
A

q

A q Q

we see that, in an ideal determined category C , the normal closure K of K is the
regular image of the kernel A�K of the canonical morphism (1, 0) : A + K → A.
Such object A�K represents the “formal conjugator” of A over K : indeed, in the
category Grp of groups, A�K is the subgroup of the free product A + K formed by
the ideal words in K and A, and it is generated by words of the form (a, k, a−1) with
a ∈ A and k ∈ K . The fact that A�K is the subalgebra of the coproduct formed by the
ideal words actually holds in every category of �-groups (see [12]). It is easy to see
that the following fact, already observed for �-groups, holds also in our categorical
context:

Remark 3.5 Given two subobjects h : H → A and k : K → A of the same object
A, one has

H � K = (H�K ) ∩ (K �H).

Moreover, the normal closure K of K is obtained from A�K via the realization
morphism, which, in Grp, sends the word (a, k, a−1) to the element aka−1 ∈ A.
Using this fact, one can prove the following result (whose proof is omitted, and can
be found in [18, Proposition 5.10]):

Proposition 3.6 Given a subobject k : K → A in a unital, ideal determined cate-
gory C , one has that [A, K ] = [A, K ].

Now we are ready to prove the following

Proposition 3.7 [18, Proposition 6.1] Given a unital, ideal determined category C ,
if K is a normal subobject of A, then [A, K ] is a subobject of K .

Proof Since C is ideal determined, we already know that [A, K ] is a normal subob-
ject of A ∨ K = A. Consider then the following commutative diagram:
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A � K [A, K ]
j

A + K

(1)�

(1,k)
A

q

A × K

(2)πA

Q

q ′

A P,

where the squares (1) and (2) are pushouts. Then the rectangle (1) + (2) is a pushout
as well. Moreover, πA� = (1, 0) : A + K → A, and we denote by p the composite
q ′q. Thanks to the previous observation, we have that p is the cokernel of k : K → A.
Since K is normal in A, K = K , and so k is the kernel of p. To conclude that [A, K ]
is a subobject of K , it suffices to observe that pj = 0, because already q j = 0. ��

The converse implication does not hold, in general, in a unital, ideal determined
category. In order to recover it, we need to add a third condition, usually called
Hofmannaxiom, to the twoconditions defining ideal determined categories.Hofmann
axioms says that, given a commutative square

X

x

f ′
X ′

x ′

Y
f

Y,

where thehorizontal arrows are regular epimorphisms, the vertical ones aremonomor-
phisms and x ′ is normal, if k = ker( f ) factors through x , then x is normal as well.

Definition 3.8 [14] An ideal determined category C which satisfies the Hofmann
axiom is called a semi-abelian category.

Among the many examples of semi-abelian categories there are the categoryGrp
of groups, as well as the category Rng of (not necessarily unitary) rings and every
category of �-groups. Further examples are the dual of the category of pointed
sets and every abelian category. Actually the following characterization of abelian
categories holds:

Remark 3.9 [14] A category C is abelian if and only if both C and its dual C op are
semi-abelian.

The previous remark explains the name “semi-abelian”. Semi-abelian categories
have many good properties. One of them is that they are always exact in the sense
of Barr [1]: a category is Barr-exact if it is regular and, moreover, every internal
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equivalence relation is effective (whichmeans that it is the kernel pair of amorphism).
Another interesting property of semi-abelian categories is that they are Mal’tsev
categories: we will explain this notion in the next section. Semi-abelian categories
can be characterized as follows:

Proposition 3.10 A pointed, Barr-exact category C with finite coproducts is semi-
abelian if and only if the short five lemma holds in it: given a commutative diagram

0 A

α

B

β

C

γ

0

0 A′ B ′ C ′ 0

whose rows are short exact sequences, if α and γ are isomorphisms, then β also is.

In the setting of semi-abelian categories we can state the converse of Proposition
3.7. We are not going to give a proof, which can be found in [18, Theorem 6.3].

Theorem 3.11 In a semi-abelian categoryC , a subobject K of an object A is normal
if and only if [A, K ] is a subobject of K .

Remark 3.12 Thisway to test the normality of a subobject K of A via the commutator
[A, K ] actually provides a characterization of semi-abelian categories among finitely
cocomplete homological categories, as proved in [11].

4 The Huq Commutator

The aim of this section is to introduce another notion of commutator in a categorical
context, and to compare it with the Higgins commutator we studied in the previous
section. This alternative notion of commutator was first considered by Huq in [13]
and further studied in the context of unital categories in [4]. Before going to our
general categorical context, let us start with an observation in the case of groups:

Proposition 4.1 Given two subgroups H and K of the same group A, one has that
[H, K ] = 0 if and only if there exists a (necessarily unique) morphism ϕ : H × K →
A such that the following diagram commutes:

H
〈1,0〉

H × K

ϕ

K
〈0,1〉

A.

(5.4.i)
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Proof Since every element (h, k) ∈ H × K can be decomposed as (h, k) = (h, 1) ·
(1, k), a morphism ϕ making the diagram above commute must satisfy the following
equality:

ϕ(h, k) = ϕ((h, 1) · (1, k)) = ϕ(h, 1) · ϕ(1, k) = ϕ〈1, 0〉(h) · ϕ〈0, 1〉(k) = hk.

This shows that such a morphism, when it exists, is uniquely determined. Let us now
prove that ϕ is a morphism if and only if [H, K ] = 0. Given h, h′ ∈ H and k, k ′ ∈ K ,
one has

ϕ(h, h′) · ϕ(k, k ′) = hh′kk ′, while ϕ((h, h′) · (k, k ′)) = hkh′k ′

and it is clear that the two expressions are equal for all h, h′ ∈ H and k, k ′ ∈ K if
and only if [H, K ] = 0. ��

With this property of groups in mind, we can give the following categorical defi-
nition:

Definition 4.2 [4] Let C be a unital category. Two subobjects h : H → A and
k : K → A of the same object A are said to cooperate if there exists a morphism
ϕ : H × K → A such that diagram (5.4.i) commutes.

The morphism ϕ as above, when it exists, is called the cooperator of h and k. It is
always unique; indeed, if two morphisms ϕ and ϕ′ make diagram (5.4.i) commute,
then

ϕ� = ϕ′�,

since � is induced by 〈1, 0〉 and 〈0, 1〉. But, in a unital category, � is an extremal
epimorphism, and this implies ϕ = ϕ′.

Let us see when two subobjects cooperate in the category Rng of rings. Using
the same argument we explained for groups, one can conclude that, if a cooperator ϕ

between subrings H and K of A exists, then it must be defined by ϕ(h, k) = h + k
for all h ∈ H, k ∈ K . But then

hk = ϕ(h, 0)ϕ(0, k) = ϕ(0, 0) = 0,

and, in the same way, kh = 0. It is not difficult to check that the converse is also true.
So, H and K cooperate if and only if hk = kh = 0 for all h ∈ H, k ∈ K .

We observe that, in order to Definition 4.2 make sense, there is no need that the
morphisms h and k are monomorphisms. So, the definition can be extended to the
one of cooperating morphisms with the same codomain, and no other restriction:

Definition 4.3 LetC be a unital category. Twomorphisms f : H → A and g : K →
A with the same codomain cooperate if there exists a morphism ϕ : H × K → A
such that the diagram
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H
〈1,0〉

f

H × K

ϕ

K
〈0,1〉

g

A

commutes.

Actually, if the categoryC is normal, this last definition is not really more general
than Definition 4.2. In fact, the following Proposition holds:

Proposition 4.4 LetC be a normal and unital category. Twomorphisms f : H → A
and g : K → A cooperate if and only if their regular images cooperate as subobjects
of A.

Proof Consider the following commutative diagram:

H

f
f

〈1,0〉
H × K K

g
g

〈0,1〉

f (H) A g(K ),

and suppose that f (H) and g(K ) cooperate as subobjects of A. Then there is a
cooperator ϕ : f (H) × g(K ) → A. It is immediate to check that, composing it with
the morphism f × g : H × K → f (H) × g(K ), one gets a cooperator for f and g
(see the diagram below).

NH

〈1,0〉

x
H

〈1,0〉

f
f (H)

〈1,0〉

NH × NK
x×y

H × K
f ×g

f (H) × g(K )
ϕ

A

NK

〈0,1〉

y K

〈0,1〉

g
g(K )

〈0,1〉

Conversely, suppose that there is a cooperator ψ : H × K → A. The morphism
f × g is a regular epimorphism, hence it is the cokernel of its kernel (because the
category is normal). It is immediate to check that its kernel is x × y : NH × NK →
H × K . Since

ψ(x × y)〈1, 0〉 = 0 = ψ(x × y)〈0, 1〉

and the category is unital, one has ψ(x × y) = 0. Then, by the universal property
of the cokernel, one gets a unique morphism ϕ : f (H) × g(K ) → A such that
ϕ( f × g) = ψ . It is easy to check that such a morphism is a cooperator for f (H)

and g(K ) as subobjects of A. ��
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Now we have everything we need to define the Huq commutator:

Definition 4.5 Let h : H → A and k : K → A be two subobjects of the same object
A in a normal and unital category C . The Huq commutator of h and k, denoted by
[H, K ]Huq, is the smallest normal subobject n : N → A of A such that, denoting by
q : A → A/N the cokernel of n, the morphisms qh and qk cooperate.

First of all, we should show that such smallest normal subobject always exists. In
order to do that, consider the following pushout:

H + K

�

(h,k)

(qh,qk)

A

q

H × K
ϕ

Q.

We want to show that [H, K ]Huq is the kernel of q. Let us complete the previous
diagram as follows:

[H, K ]Huq
α

N

n

H + K

�

(h,k)

(qh,qk)

A

q
p

H × K

ψ

ϕ
Q A/N .

First of all, we observe that ϕ is the cooperator of qh and qk, because � =
(〈1, 0〉, 〈0, 1〉), and the commutativity of the pushout square says precisely that
ϕ(〈1, 0〉, 〈0, 1〉) = (qh, qk). Moreover, if n : N → A is a normal subobject of A
such that ph and pk cooperate (where p is a cokernel of n), one has a coopera-
tor ψ : H × K → A/N , which is a morphism such that ψ� = p(h, k). The uni-
versal property of the pushout gives then a unique morphism γ : Q → A/N such
that γ q = p (and γ ϕ = ψ). From the universal property of n as a kernel of p, we
get a unique β : [H, K ]Huq → N such that nβ = α, and such a β is necessarily a
monomorphism.

Proposition 4.6 [18] Let h : H → A and k : K → A be two subobjects of the same
object A in a normal and unital category C . The Huq commutator [H, K ]Huq is the
normal closure of the Higgins commutator [H, K ] of h and k.
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Proof It suffices to consider the following commutative diagram:

H � K

ker(�)

e [H, K ]
m

[H, K ]Huq
ker(q)

H + K

�

(h,k)
A

q

H × K Q,

where the lower square is a pushout, and to observe that q is the cokernel of m. ��
So, if [H, K ] is normal in A (in particular, when A = H ∨ K ), then [H, K ] =

[H, K ]Huq. However, as we observed in the case of groups, it can be [H, K ] �=
[H, K ]Huq if H and K are not normal in A. In our general categorical context, it
can happen that [H, K ] �= [H, K ]Huq even if H and K are normal in A. We will say
that the category C satisfies the condition of normality of the Higgins commutator if
the Higgins commutator [H, K ] of two normal subobjects of an object A is normal
in A. The category Grp has this property. We refer to [8] for more examples and
counterexamples of semi-abelian categories with respect to this property.

5 Abelian Objects

The aim of this section is to introduce the notions of commutative and abelian object
in a categorical context, and to compare them. We start talking about commutative
objects.

Definition 5.1 An object X in a unital category C is commutative if the identity
morphism 1X cooperates with itself.

Thanks to the observations at the end of the previous section, we can conclude
that, in a normal and unital category, an object X is commutative if and only if the
Huq commutator [X, X ]Huq is the zero object. Moreover, since X ∨ X = X and X is
clearly normal in itself, we have that the Higgins commutator [X, X ] coincides with
[X, X ]Huq, and so X is commutative if and only if [X, X ] = 0. Another characteri-
zation of commutative objects, in terms of internal algebraic structures, is possible.
In order to describe it, we first need to recall the following definition:

Definition 5.2 An internal unitary magma in a category C with finite limits is a
triple (X,m, e), where X is an object of C , and m : X × X → X , e : 1 → X are
morphisms in C (by 1 we denote the terminal object of C ) such that e “behaves like
a unit for the internal operation m”, namely the following diagram commutes:
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1 × X
e×1X

∼

X × X

m

X × 1
1X×e

∼

X X X.

Proposition 5.3 An internal unitary magma structure on an object X in a unital
categoryC , when it exists, is unique. It exists if andonly if the object X is commutative.

Proof Since a unital category is pointed, the morphism e : 1 = 0 → X is uniquely
determined and, moreover, we have the following commutative triangles:

1 × X
e×1X

∼

X × X

X
〈1,0〉

X × X X × 1
1X×e

∼

X.

〈0,1〉

Hence the multiplication m of an internal unitary magma (X,m, e) must make the
following diagram commute:

X
〈1,0〉

1X

X × X

m

K
〈0,1〉

1X

X,

and som must be a cooperator for the pair (1X , 1X ). Then it is unique, when it exists.
Moreover, it exists if and only if 1X cooperates with itself, i.e. if and only if X is
commutative. ��

Actually we can say more:

Proposition 5.4 Every internal unitary magma structure (X,m, e) in a unital cate-
gory C is an internal commutative monoid structure, i.e. the internal multiplication
m is associative and commutative.

Proof In order to prove the associativity of m, we need to show that the following
square commutes:

X × X × X

m×1X

1X×m
X × X

m

X × X m X,

or, in other terms, that m(m × 1X ) = m(1X × m). To do that, we will show that
m(m × 1X ) andm(1X × m) are cooperators for the samepair ofmorphisms.Consider
the following diagram:
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X × X
〈1X×X ,0〉

m

X × X × X

1X×m

X
〈0,0,1X 〉

〈0,1X 〉

X × X

m

X.

The lower left-hand side triangle clearly commutes, the lower right-hand side one
also does, since m is a cooperator for the pair (1X , 1X ), as observed in the proof
of the previous proposition. For the same reason, the upper right-hand side triangle
commutes as well. To check whether the remaining triangle commutes, we precom-
pose with the jointly epimorphic pair of morphisms 〈1, 0〉, 〈0, 1〉 : X → X × X . We
have

(1X × m)〈1X×X , 0〉〈1, 0〉 = (1X × m)〈1, 0, 0〉 = 〈1, 0〉

and
(1X × m)〈1X×X , 0〉〈0, 1〉 = (1X × m)〈0, 1, 0〉 = 〈0, 1〉,

again using the fact that m is a cooperator for the pair (1X , 1X ). Hence the whole
diagram commutes, and this tells us that m(1X × m) is a cooperator for the pair
(m, 1X ). In a similar way, one can check that m(m × 1X ) is a cooperator for the
same pair, and so these two morphisms coincide.

In order to show thatm is commutative, we have to check thatm = m ◦ tw, where
tw = 〈π2, π1〉 : X × X → X × X is the “twisting” isomorphism (in set-theoretic
terms, it sends a pair (x, y) to the pair (y, x)). We have the following commutative
diagram:

X
〈1,0〉

〈0,1〉

1X

X × X

tw

X
〈0,1〉

〈1,0〉

1X

X × X

m

X,

which tells us that m ◦ tw is a cooperator for the pair (1X , 1X ), as well as m, hence
these two morphisms coincide. ��

Once we know that every commutative object in a unital category has a (unique)
structure of internal commutative monoid (and conversely), a natural question arises:
to understand when these internal commutative monoids are internal abelian groups.
Internal abelian groups deserve a specific name:
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Definition 5.5 An abelian object in a unital category C is an object X equipped
with a (necessarily unique) structure of internal abelian group.

The terminology is justified by the fact that, in the category Grp of groups, the
abelian objects are precisely the abelian groups. So, in Grp, commutative objects
and abelian objects coincide. Unfortunately this is not true in every unital category:
there can be commutative objects that are not abelian. In order to get the equivalence
between the two notions, we need to impose further assumptions on our category.
Before doing it, we recall some terminology.

Given two sets X and Y , a relation R from X to Y is difunctional if the following
condition holds:

∀ x, x ′ ∈ X, y, y′ ∈ Y x Ry′, x ′Ry′, x ′Ry =⇒ x Ry.

This notion is important because, for example, it allows an easy characterization
of equivalence relations among reflexive ones. Indeed, a reflexive relation on a set
X is an equivalence relation if and only if it is difunctional. We can actually talk
about relations internally to every category with finite limits (the reader may again
refer to the chapter An introduction to regular categories of this volume for a full
treatment of relations in regular categories). Indeed, an internal relation between
two objects X and Y in a finitely complete category C is nothing but a subobject of
X × Y , which can be represented by amonomorphism R � X × Y . All the classical
properties of relations can be easily expressed categorically. For instance, an internal
relation R on an object X is reflexive if the diagonal morphism 〈1, 1〉 : X → X × X
factors through R. An internal relation R � X × Y is difunctional if, considering
the commutative diagram

S R T

R × R
r2×r1

Y × X
tw

X × Y R × R,
r1×r2

where r1 : R → X and r2 : R → Y are the composites of the monomorphism
R � X × Y with the product projections on X and Y , respectively, tw is the twisting
isomorphism, and both squares are pullbacks, one has that the canonical inclusion
S ∩ T � S is an isomorphism. However, for our purposes, this internal descrip-
tion of difunctionality is not so important. Indeed, the notion of internal relation, as
well as the main properties of relations (like reflexivity or difunctionality), can be
expressed only by means of finite limits. Hence, if these properties of relations hold
in the category Set of sets, then they hold in every category with finite limits (we
do not enter the details of this fact; the interested reader can find a self-contained
explanation of this in Chapter 0 of [2]).

Now we have everything we need to give the following
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Definition 5.6 [6] A finitely complete category C is a Mal’tsev category if every
internal relation in C is difunctional.

In fact, one can define equivalently Mal’tsev categories as those finitely complete
categories in which every internal reflexive relation is an equivalence relation (see
[2]). The first property of Mal’tsev categories we are interested in is the following:

Proposition 5.7 Every pointed Mal’tsev category is unital.

Proof Let C be a pointed Mal’tsev category. For any pair of objects X,Y in C , we
have to show that the morphisms

X
〈1,0〉

X × Y Y
〈0,1〉

are jointly extremal epimorphic. So, suppose they both factorize through a common
monomorphism m : R � X × Y .

Such anm gives rise to an internal relation R inC , which is then difunctional. The
fact that 〈1, 0〉 and 〈0, 1〉 factor through R can be expressed in set-theoretic terms
saying that for all x ∈ X and y ∈ Y one has x R0 and 0Ry. By difunctionality we get

x R0, 0R0, 0Ry =⇒ x Ry.

Hence R coincides, up to an isomorphism, with the total relation X × Y . This means
that m is an isomorphism, proving that 〈1, 0〉 and 〈0, 1〉 are jointly extremal epimor-
phic. ��

Every semi-abelian category is a Mal’tsev category (see, for example, [2]). So,
Grp, Rng, as well as every category of �-groups in the sense of [12] are Mal’tsev
categories.

Theorem 5.8 [6] Every commutative object in a pointed Mal’tsev category is
abelian.

Proof Let X be a commutative object in a pointed Mal’tsev category C , and let
(X,m, e) be its unique internal commutative monoid structure. We have to show that
this structure is the one of an internal abelian group, i.e. there exists a morphism
i : X → X making the following diagram commute:

X
〈1,i〉

X × X
m

X

0.

e
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We use again the elementwise approach. First of all, we show that the multiplication
m satisfies the two following conditions:

(i) m(x, y) = m(x, z) =⇒ y = z;
(ii) m(y, x) = m(z, x) =⇒ y = z.

In order to do that, consider the relation R from X × X to X defined by

(y, z)Rx ⇐⇒ m(x, y) = m(x, z).

Suppose that m(x, y) = m(x, z). Denoting by 0 the neutral element of m, we have
that:

– (y, z)Rx , since m(x, y) = m(x, z);
– (0, 0)Rx , since m(x, 0) = m(x, 0) = x ;
– (0, 0)R0, since m(0, 0) = m(0, 0) = 0.

By difunctionality we get that (y, z)R0, which means that y = m(0, y) = m(0, z) =
z. This proves (i); the proof of (ii) is analogous.

Let us now define another relation S on X by putting xSy if and only if there
exists z such that m(z, y) = x . Such a z is unique because of (i) above. We have
xSx , with z = 0, sincem(0, x) = x . Moreover, xS0, with z = x , sincem(x, 0) = x ,
and finally 0S0. By difunctionality, we conclude that 0Sx , i.e. there exists a (unique)
z such that m(z, x) = 0. This element z allows us to define the morphism i we are
looking for. ��

We conclude by observing that, in a pointed, normal Mal’tsev category C , the
full subcategory Ab(C ) of abelian objects is reflective. The reflection is performed
by the so-called abelianization functor

ab : C → Ab(C ).

It is obtained as follows: given an object X ofC , ab(X) = X
[X,X ]Huq as in the following

pushout:

X + X
(1,1)

�

X

q

X × X X
[X,X ]Huq .

Indeed,we alreadyobserved that [X, X ]Huq is the smallest normal subobject of X such
that the pair (1X , 1X ), composed with the projection q, commutes in X

[X,X ]Huq . Hence,
being C Mal’tsev, the object X

[X,X ]Huq is abelian. The functoriality of this construction
is obvious. Let us check that it has the universal property of the reflection. Given a
morphism f : X → A, where A is an abelian object, we have that f cooperates with
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itself in A. Indeed, if m is the internal multiplication of A, ψ = m ◦ ( f × f ) is a
cooperator for the pair ( f, f ), because the following diagram commutes:

X

f

〈1,0〉
X × X

f × f

X
〈0,1〉

f

A
〈1,0〉

A × A

m

A
〈0,1〉

A.

Then, by the universal property of the pushout, we get a unique f : [X, X ]Huq → A
making the following diagram commute:

X + X
(1,1)

�

X

q

f
X × X

ψ

X
[X,X ]Huq

f

A.

Whence the universality of the abelianization.
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