
Chapter 4
An Introduction to Regular Categories

Marino Gran

Abstract This paper provides a short introduction to the notion of regular category
and its use in categorical algebra. We first prove some of its basic properties, and
consider some fundamental algebraic examples. We then analyse the algebraic prop-
erties of the categories satisfying the additional Mal’tsev axiom, and then the weaker
Goursat axiom. These latter contexts can be seen as the categorical counterparts of
the properties of 2-permutability and of 3-permutability of congruences in universal
algebra. Mal’tsev and Goursat categories have been intensively studied in the last
years: we present here some of their basic properties, which are useful to read more
advanced texts in categorical algebra.
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algebras · Mal’tsev conditions
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Introduction

In categorical algebra some structural properties of varieties of universal algebras are
investigated by replacing the arguments involving elements of an algebraic structure
and its operations with other ones using relations and commutative diagrams. A
typical example is provided by the study of Mal’tsev categories [11], which can
be seen as the categorical counterpart of Mal’tsev varieties (in the sense of [37]),
also called 2-permutable varieties in the literature. Instead of requiring the existence,
in the algebraic theory of the variety, of a ternary term p(x, y, z) verifying the
identities p(x, y, y) = x and p(x, x, y) = y, one asks that any internal reflexive
relation in the category is an equivalence relation. This categorical property, with its
many equivalent formulations, has turned out to be strong enough to establish, in the
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regular context, many of the well known properties of Mal’tsev varieties (see [8] for
a recent survey on the subject, and the references therein).

This survey article can be seen as a first introduction to the basic categorical
notions which are useful to express the exactness properties of various kinds of
algebraic varieties in the sense of universal algebra. The main goal of this text is
to introduce the reader to the notion of regular category, which is fundamental
in category theory, since abelian categories, elementary toposes and varieties of
universal algebras are all regular categories. Special attention will be paid to the
so-called calculus of relations, which provides a powerful method to prove results in
regular categories, possibly satisfying some additional exactness conditions. A good
knowledge of the fundamentals of regular categories is useful to understand many
of the recent developments in categorical algebra. The Mal’tsev axiom gives the
opportunity to illustrate this method: in a regular category this axiom is equivalent to
the permutability of the composition of equivalence relations, in the sense that any
pair R and S of equivalence relations on a given object are such that R ◦ S = S ◦ R.
Some recent results concerning the more general Goursat categories [10, 21] will
then be explained in the last section. These aspects are useful to illustrate many of
the links between exactness properties in categorical algebra, the so-called Mal’tsev
conditions in universal algebra, and the validity of suitable homological lemmas [18,
19, 32].

1 Regular Categories

The notion of regular category plays an important role in the categorical understand-
ing of algebraic structures. Regular categories capture some fundamental exactness
properties shared by the categories Set of sets,Grp of groups, Ab of abelian groups,
R-Mod of modules on a commutative ring R and, more generally, by any varietyV
of universal algebras. Topological models of “good” algebraic theories, such as the
categories Grp(Top) of topological groups and Grp(Comp) of compact Hausdorff
groups are also regular. Other examples will be considered later on in Sects. 1.3 and
3.1. The basic idea is that any arrow in a regular category can be factorized through an
(essentially unique) image, and that these factorizations are stable under pullbacks.

Regular categories also have a prominent role in categorical logic (see [30], for
instance, and the references therein). However, in this introductory course we shall
only focus on the algebraic examples, with the goal of illustrating the importance of
regular categories in categorical algebra.

In order to understand the notion of regular category it is useful to compare a few
types of epimorphisms: this will be the subject of the following section (see [7] for
further details).
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1.1 Strong and Regular Epimorphisms

Definition 1.1 An arrow f : A → B in a category C is a strong epimorphism if,
given any commutative square

A
f

g

B

h
t

C m D

inC, where m : C → D is a monomorphism, there exists a unique arrow t : B → C
such that m ◦ t = h and t ◦ f = g.

Remark 1.2 If the category C has binary products, then every strong epimor-
phism is an epimorphism. Indeed, if f : A → B is a strong epimorphism, and
u, v : B → C are two arrows such that u ◦ f = v ◦ f , one can then consider the
diagonal (1C , 1C ) = � : C → C × C and the commutative square

A
f

u◦ f =v◦ f

B

(u,v)

C
�

C × C.

Since � is a monomorphism, there is a unique t : B → C such that � ◦ t = (u, v)

and t ◦ f = u ◦ f = v ◦ f . It follows that

u = p1 ◦ (u, v) = p1 ◦ � ◦ t = t = p2 ◦ � ◦ t = p2 ◦ (u, v) = v,

where p1 : C × C → C and p2 : C × C → C are the product projections.

Lemma 1.3 An arrow f : A → B is an isomorphism if and only if f : A → B is a
monomorphism and a strong epimorphism.

Proof If f is both a strong epimorphism and a monomorphism, one considers the
commutative square

A
f

1A

B

1B
t

A
f

B.

The unique (dotted) arrow t : B → A such that f ◦ t = 1B and t ◦ f = 1A is the
inverse of f . The converse implication is obvious. ��
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Exercise 1.4 Prove that strong epimorphisms are closed under composition, and
that, if the composite g ◦ f of two composable arrows is a strong epimorphism, then
g is a strong epimorphism. Show that if g ◦ f is a strong epimorphism, with g a
monomorphism, then g is an isomorphism.

Definition 1.5 An arrow f : A → B is a regular epimorphism if it is the coequalizer
of two arrows in C.

Exercise 1.6 Prove that any regular epimorphism is an epimorphism.

Definition 1.7 A split epimorphism is an arrow f : A → B such that there is an
arrow i : B → A with f ◦ i = 1B .

Observe that the axiom of choice in the category Set says precisely that any epimor-
phism is a split epimorphism. This is not the case in the categoriesGrp of groups or
Ab of abelian groups, for instance. We are now going to prove the following chain
of implications:

Proposition 1.8 Let C be a category with binary products. One then has the impli-
cations
split epimorphism ⇒ regular epimorphism ⇒ strong epimorphism ⇒ epimorphism

Proof If f : A → B is split by an arrow i : B → A, then f is the coequalizer of 1A

and i ◦ f . Indeed, one sees that f ◦ (i ◦ f ) = f = f ◦ 1A. Moreover, if g : A → X
is such that g ◦ (i ◦ f ) = g ◦ 1A, then φ = g ◦ i is the only arrow with the property
that φ ◦ f = g.

Assume then that f : A → B is a regular epimorphism. It is then the coequalizer
of two arrows, say u : T → A and v : T → A: consider the commutative diagram

A
f

g

B

h

C m D

with m a monomorphism. The equalities

m ◦ g ◦ u = h ◦ f ◦ u = h ◦ f ◦ v = m ◦ g ◦ v

imply that g ◦ u = g ◦ v. The universal property of the coequalizer f implies that
there is a unique t : B → C such that t ◦ f = g. This arrow t is also such that
m ◦ t = h, so that f is a strong epimorphism.

The fact that any strong epimorphism is an epimorphism when C has binary
products has been shown in Remark 1.2. ��
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1.2 Quotients in Algebraic Categories

Let us then consider some examples of quotients in the categories of sets, of groups
and of topological groups, which will be useful to explain the general construction
in regular categories.

Let f : A → B be a map in Set, and

Eq( f ) = {(x, y) ∈ A × A | f (x) = f (y)}

its kernel pair, i.e. the equivalence relation on A identifying the elements of A
having the same image by f . This equivalence relation can be obtained by building
the pullback of f along f :

Eq( f )
p2

p1

A

f

A
f

B.

(4.1.i)

Exercise 1.9 Show that any regular epimorphism f in a category with kernel pairs
is the coequalizer of its kernel pair (Eq( f ), p1, p2).

In the category Set of sets one sees that the canonical quotient π : A → A/Eq( f )

defined by π(a) = a is the coequalizer of p1 and p2. This yields a unique arrow
i : A/Eq( f ) → B such that i ◦ π = f :

Eq( f )
p1

p2
A

π

f
B

A/Eq( f )

i

Themap i is defined by i(a) = f (a) for any a ∈ A/Eq( f ). This gives a factorization
i ◦ π of the arrow f , where π is a regular epimorphism (= a surjective map) and i is
a monomorphism (= an injective map) in the category Set.

The same construction is possible in the category Grp of groups. Indeed, given a
group homomorphism f : G → G ′, one can consider the kernel pair Eq( f )which is
again obtained by the pullback (4.1.i) above, but this time computed in the category
Grp. The equivalence relation Eq( f ) is a group, as a subgroup of the product G × G
of the group G with itself. The canonical quotient π : G → G/Eq( f ) is a group
homomorphism, and this allows one to build the following commutative diagram in
Grp
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Eq( f )
p1

p2
G

π

f
G ′

G/Eq( f ),

i

where π is a regular epimorphism and i is a monomorphism, exactly as in Set.
In the category Grp(Top) of topological groups, where the arrows are contin-

uous homomorphisms, it is again possible to obtain the same kind of factoriza-
tion regular epimorphism-monomorphism for any arrow. We write (G, ·, τG) for
a topological group, where τG is the topology making both the multiplication ·
and the inversion of the group continuous. Given a continuous homomorphism
f : (G, ·, τG) → (G ′, ·, τG ′) in Grp(Top), the kernel pair (Eq( f ), ·, τi ) is a topo-
logical group for the topology τi induced by the product topology τG×G of the topo-
logical group (G × G, ·, τG×G). At the algebraic level the quotients inGrp(Top) are
actually computed as in Grp, and then equipped with the quotient topology τq . In
this way one gets the following commutative diagram

(Eq( f ), ·, τi )
p1

p2
(G, ·, τG)

π

f
(G ′, ·, τG ′)

(G/Eq( f ), ·, τq)

i

where π is the canonical quotient. It turns out that π is the coequalizer of the pro-
jections p1 and p2 in Grp(Top), and the induced arrow

i : (G/Eq( f ), ·, τq) → (G ′, ·, τG ′)

is a monomorphism (since it is injective). Note that this factorization is not the one
where the direct image f (G) of the continuous homomorphism is equipped with the
subspace topology induced by the topology of (G ′, ·, τG ′).

There are many other categories where the same construction as in Set,Grp and
Grp(Top) is possible, for instance in the category Rng of rings, Mon of monoids,
Ab of abelian groups and, more generally, in any variety V of universal algebras.

All these are examples of regular categories in the following sense:

Definition 1.10 [2] A finitely complete category C is regular if

• coequalizers of kernel pairs exist in C;
• regular epimorphisms are pullback stable in C.
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1.3 Examples of Regular Categories

• The categorySet is regular.We have observed that the coequalizers of kernel pairs
exist inSet, and it remains to check the pullback stability of regular epimorphisms.
Consider a pullback

E ×B A
π2

π1

A

f

E p B

inSetwhere p is a surjectivemap (i.e. a regular epimorphism), and let us show that
π2 is also surjective. Let a be an element in A; there exists then an e ∈ E such that
p(e) = f (a). This shows that there is an (e, a) ∈ E ×B A such that π2(e, a) = a,
and π2 is surjective. The same argument still works in the categoryGrp of groups,
by taking into account the fact that regular epimorphisms therein are precisely the
surjective homomorphisms, and that pullbacks are computed in Grp as in Set.
For essentially the same reason the categoriesRng of rings,Mon of monoids, and
R-Mod of modules on a ring R are also regular categories. More generally, any
variety V of universal algebras is a regular category, any quasivariety—such as
the category Abt.f. of torsion-free abelian groups—and also any category monadic
over the category of sets, as for instance the categoryCHaus of compactHausdorff
spaces, and the category Frm of frames.

• The categoryGrp(Top) of topological groups is regular [10]. The main point here
is that the canonical quotient π : (H, ·, τH ) → (H/Eq( f ), ·, τq) of a topological
group (H, ·, τH ) by the equivalence relation (Eq( f ), ·, τi ) which is the kernel
pair of an arrow f : (H, ·, τH ) → (G, ·, τG) in Grp(Top) is an open surjective
homomorphism. To check this latter fact, let us write K = ker(π) for the kernel
of π , and let us then show that

π−1(π(V )) = V · K

for any open V ∈ τH . On the one hand if z = v · k, where v ∈ V and k ∈ K , one
has

π(z) = π(v · k) = π(v) · π(k) = π(v) ∈ π(V ),

so that z ∈ π−1(π(V )). Conversely, if z ∈ π−1(π(V )), then π(z) = π(v1), for a
v1 ∈ V , so that v−1

1 · z ∈ K , and z = v1 · k, for a k ∈ K .
This implies that

π−1(π(V )) = (
⋃

k∈K

V · k) ∈ τH .

Indeed, the functionmk : G → G defined bymk(x) = x · k for any x ∈ G (with fixed
k ∈ K ) is a homeomorphism, hence V · k = mk(V ) ∈ τH , since V ∈ τH . We have
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then shown that π(V ) is open for any V ∈ τH , and the map π is open. It follows
that inGrp(Top) the regular epimorphisms are the open surjective homomorphisms.
To conclude that Grp(Top) is a regular category it suffices to recall that the open
surjective homomorphisms are pullback stable (a well known fact which can be
easily checked). More generally, the models of any Mal’tsev theory in the category
of topological spaces, i.e. any category of topological Mal’tsev algebras, is a regular
category [31]. Notice that also the category Grp(Haus) of Hausdorff groups, or
Grp(Comp) of compact Hausdorff groups are regular [4] (see also [13] for the
categorical properties of topological semi-abelian algebras).

• As mentioned in the Introduction any abelian category [9] is a regular category, as
is any elementary topos [30].

• The category Top of topological spaces, unlike Grp(Top), is not regular. The main
reason is that in Top regular epimorphisms are quotient maps, and these are not
pullback stable (see [3] for a counter-example, for instance).

1.4 Canonical Factorization

We are now going to show that any arrow in a regular category has a canonical
factorization as a regular epimorphism followed by a monomorphism, exactly as in
the examples of the categories Set,Grp and Grp(Top) recalled here above.

Theorem 1.11 Let C be a regular category. Then

1. any arrow f : A → B in C has a factorization f = m ◦ q, with q a regular
epimorphism and m a monomorphism;

2. this factorization is unique (up to isomorphism).

Proof 1. Let f : A → B be an arrow in C. Consider the diagram here below where
(Eq( f ), f1, f2) is the kernel pair of f , q is the coequalizer of ( f1, f2), and m
the unique arrow such that m ◦ q = f .

Eq( f )
f1

f2
.

A
q

f

I

m

B

(4.1.ii)

We need to show that m is a monomorphism or, equivalently, that the projec-
tions p1 : Eq(m) → I and p2 : Eq(m) → I of the kernel pair of m are equal.
For this, consider the diagram
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Eq( f )
b

a

Eq(m) ×I A
π2

π1

A

q

A ×I Eq(m)
φ2

φ1

Eq(m) p2

p1

I

m

A q I m B

where all the squares are pullbacks. We know that the whole square is then
a pullback, so that one can assume that f1 = φ1 ◦ a and f2 = π2 ◦ b. The
arrowφ2 ◦ a = π1 ◦ b is then an epimorphism, as a composite of epimorphisms
(we have used the pullback stability of regular epimorphisms). The fact that
φ1 ◦ a = f1 and π2 ◦ b = f2 implies that

p1 ◦ (φ2 ◦ a) = q ◦ φ1 ◦ a = q ◦ f1 = q ◦ f2 = q ◦ π2 ◦ b = p2 ◦ π1 ◦ b = p2 ◦ (φ2 ◦ a).

Since φ2 ◦ a is an epimorphism, it follows that p1 = p2, as desired.
2. To prove the uniqueness of the factorization one can use the fact that any

regular epimorphism is a strong epimorphism.

��
Remark 1.12 The uniqueness of the factorization of any arrow f in Theorem 1.11
allows one to call the subobject m : I → B in diagram (4.1.ii) the (regular) image
of f .

Proposition 1.13 In a regular category C the following properties are satisfied:

1. regular epimorphisms coincide with strong epimorphisms;
2. if g ◦ f is a regular epimorphism, then g is a regular epimorphism;
3. if g and f are regular epimorphisms, then g ◦ f is a regular epimorphism;
4. if f : X → Y and g : X ′ → Y ′ are regular epimorphisms, then the induced arrow

f × g : X × X ′ → Y × Y ′ is also a regular epimorphism.

Proof 1. One needs to check that any strong epimorphism f : A → B is a regular
epimorphism. Consider the factorization f = m ◦ q of a strong epimorphism,
with m a monomorphism and q a regular epimorphism (Theorem 1.11). The
commutativity of the diagram

A
f

q

B

1B
d

I m B
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yields a unique arrow d : B → I such that d ◦ f = q and m ◦ d = 1B . This
arrow d is the inverse of m, and f is then a regular epimorphism.

2. Follows from 1. and the properties of strong epimorphisms (Exercises 1.4).
3. Same argument as for 2.
4. If f : X → Y is a regular epimorphism, consider the commutative diagram

X × X ′ f ×1X ′

π1

Y × X ′

π1

X
f

Y

which is easily seen to be a pullback. The arrow f × 1X ′ is then a regular
epimorphism and, similarly, one checks that 1Y × g is a regular epimorphism.
Since f × g = (1Y × g) ◦ ( f × 1X ′), this arrow is a regular epimorphismby3.

��
We are now going to give an equivalent formulation of the notion of regular

category:

Theorem 1.14 Let C be a finitely complete category. Then C is a regular category
if and only if

1. any arrow in C factorizes as a regular epimorphism followed by a monomor-
phism;

2. these factorizations are pullback stable: if m ◦ q is the factorization of an arrow
p : E → B, f : A → B any arrow, and the squares

E ×B A
q ′

π1

E ′ ×B A
m ′

A

f

E q E ′
m B

are pullbacks, then m ′ ◦ q ′ is the factorization of the pullback projection
π2 : E ×B A → A.

Proof When C is regular, 1. and 2. follow from Theorem 1.11.
For the converse, it is clear that 2. implies that regular epimorphisms are pullback
stable. It remains to show that any kernel pair

Eq( f )
f1

f2

X (4.1.iii)

of an arrow f : X → Y has a coequalizer. For this consider the regular epimorphism-
monomorphism factorization m ◦ q of f (which exists by 1.), and observe that
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(4.1.iii) is also the kernel pair of the regular epimorphism q, since m is a monomor-
phism. The arrow q is then the coequalizer of its kernel pair (4.1.iii) (see Exercise
1.9). ��

1.5 The Barr-Kock Theorem

The following result will be useful to prove the so-called Barr-Kock Theorem:

Lemma 1.15 Consider a commutative diagram

A
k

a

B

b

l
C

c

A′
k ′ B ′

l ′
C ′

in a regular category C, where the left-hand square and the external rectangle are
pullbacks. If k ′ is a regular epimorphism, then the right-hand square is a pullback.

Proof Consider the commutative diagram

A
k

a

α

B

b

l

β
C

c
1C

A′ ×C ′ C

π1

π2
B ′ ×C ′ C

π ′
2

π ′
1

C

c

A′
k ′ B ′

l ′
C ′

where (B ′ ×C ′ C, π ′
1, π

′
2) is the pullback of l ′ and c, and (A′ ×C ′ C, π1, π2) is the

pullback of k ′ and π ′
1, with α and β the naturally induced arrows. The fact that the

external rectangle is a pullback implies that the arrow α is an isomorphism. The
arrow π2 is a regular epimorphism (because k ′ is one), so that π2 ◦ α = β ◦ k is a
regular epimorphism, and then β is a regular epimorphism (see Proposition 1.13).
The arrow β is a monomorphism: this follows from the fact that the square

A

α

k
B

β

A′ ×C ′ C
π2

B ′ ×C ′ C

is a pullback, so that both the induced commutative squares



124 M. Gran

Eq(α)

p1 p2

Eq(β)

p1 p2

A
k

B

are pullbacks, where the (unique) dotted arrowmaking them commute is then a (regu-
lar) epimorphism. The arrows p1 : Eq(α) → A and p2 : Eq(α) → A are equal (since
α is a monomorphism), so that the projections p1 : Eq(β) → B and p2 : Eq(β) → B
are also equal, and then β is a monomorphism. ��

We are now ready to prove the following interesting result, often referred to as
the Barr-Kock Theorem [1], although it was first observed by A. Grothendieck [24]
in a different context (see also [7]):

Theorem 1.16 Let C be a regular category, and

Eq( f )
p1

v

p2
A

u

f
X

w

Eq(g)
p1

p2
B g Y

a commutative diagram with f a regular epimorphism. If either of the left-hand
commutative squares are pullbacks, then the right-hand square is a pullback.

Proof Consider the following commutative diagram

Eq( f )
p2

v

p1

A

u

f

A
f

u

X

wEq(g)
p2

p1

B

g

B g Y

The assumptions guarantee that the left-hand face and the bottom face of the cube
are pullbacks. By commutativity it follows that the rectangle
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Eq( f )
p2

p1

A

f

u
B

g

A
f

X
w

Y

is also a pullback, as well as its left-hand square. Since f is a regular epimorphism,
by Lemma 1.15 it follows that the right-hand square is a pullback. ��

2 Relations in Regular Categories

Definition 2.1 An internal relation from X to Y in a category C is a graph

R
r2r1

X Y

such that the pair (r1, r2) is jointlymonomorphic.When the product X × Y exists, this
is equivalent to the fact that the factorization (r1, r2) : R → X × Y is a monomor-
phism.

As usual, we identify two (internal) relations R → X × Y and S → X × Y when
they determine the same subobject of X × Y , i.e. the same equivalence class of
monomorphisms with codomain X × Y . If X = Y , one says that R is a relation
on X .

• A relation R on X is reflexive when there is an arrow δ : X → R such that r1 ◦ δ =
1X = r2 ◦ δ.

• R is symmetric if there is an arrow σ : R → R such that r1 ◦ σ = r2 and r2 ◦ σ =
r1.

• Consider the pullback

R ×X R
p2

p1

R

r1

R r2
X.

The relation R is transitive if there is an arrow τ : R ×X R → R such that r1 ◦ τ =
r1 ◦ p1 and r2 ◦ τ = r2 ◦ p2.

A relation R on X is an equivalence relation if R is reflexive, symmetric and transitive.
Of course, this abstract notion of equivalence relation gives in particular the usual
one when C is the category of sets.
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When C = Grp, an equivalence relation R ⊂ X × X in Grp is an equivalence
relation on the underlying set of X which is also a subgroup of the group X × X . In
universal algebra, an internal equivalence relation in a variety is called a congruence.

Lemma 2.2 In a category with pullbacks the kernel pair Eq( f )
p1

p2
X of an

arrow f : X → Y is an equivalence relation on X in C.

Proof The arrows p1 : Eq( f ) → X and p2 : Eq( f ) → X are jointly monomorphic,
since they are projections of a pullback. The universal property of the kernel pair
(Eq( f ), p1, p2) implies that there is a unique δ : X → Eq( f ) such that p1 ◦ δ =
1X = p2 ◦ δ

X

1X

1X

δ

Eq( f )

p1

p2
X

f

X
f

Y,

and Eq( f ) is then reflexive. Similarly, the commutativity of the external part of the
diagram

Eq( f )

p2

p1

σ

Eq( f )

p1

p2
X

f

X
f

Y

implies that there is a unique arrow σ : Eq( f ) → Eq( f ) such that p1 ◦ σ = p2 and
p2 ◦ σ = p1, hence Eq( f ) is symmetric. For the transitivity of Eq( f ) one considers
the following commutative diagram

Eq( f ) ×X Eq( f )
π2

π1

τ

Eq( f )

p1

p2

Eq( f ) p2

p1

X

fEq( f )
p2

p1

X

f

X
f

Y
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where the back face is a pullback. The universal property of the kernel pair
(Eq( f ), p1, p2) shows that there is a unique τ such that p1 ◦ τ = p1 ◦ π1 and
p2 ◦ τ = p2 ◦ π2. ��

An important aspect of regular categories is that in these categories one can define
a composition of relations, which has some nice properties.

In the category Set, if R → X × Y is a relation from X to Y and S → Y × Z a
relation from Y to Z , one usually defines the relation S ◦ R → X × Z by setting

S ◦ R = {(x, z) ∈ X × Z such that ∃ y ∈ Y with x Ry, ySz}.

This construction is also possible in any regular category C, thanks to the existence
of regular images (Theorem 1.11). One first builds the pullback

R ×Y S

π2π1

R

r1 r2

S

s1 s2
X Y Z

and one then factorizes the arrow (r1 ◦ π1, s2 ◦ π2) : R ×Y S → X × Z as a regular
epimorphism q : R ×Y S → I followed by a monomorphism i : I → X × Z :

R ×Y S
q

I
i

X × Z

InSet, the set I consists of the element (x, z) ∈ X × Z such that there is a (u, y, v) ∈
R ×Y S with u = x and v = z: this is precisely S ◦ R.

This composition is actually associative:

Theorem 2.3 Let C be a regular category. If R → A × B, S → B × C and T →
C × D are relations in C, one has the equality

T ◦ (S ◦ R) = (T ◦ S) ◦ R.

Proof Consider the diagram obtained by building the following pullbacks:
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X
x2x1

R ×B S
p2p1

S ×C T
q2q1

R
r2r1

S
s2s1

T
t2t1

A B C D.

The proof consists in showing that the relations T ◦ (S ◦ R) and (T ◦ S) ◦ R are both
given by the regular image i : I → A × D in the factorization

X
(r1◦p1◦x1,t2◦q2◦x2)

q

A × D

I
i

as a regular epimorphism followed by a monomorphism of the arrow

(r1 ◦ p1 ◦ x1, t2 ◦ q2 ◦ x2) : X → A × D.

We leave it to the reader the verification of this fact, which uses the pullback stability
of regular epimorphisms in a crucial way. ��

This result allows one to define a new category starting from any regular category
C, the category Rel(C) of relations in C. The objects are the same as the ones in
C, an arrow from X to Y is simply a relation from X to Y , and composition is the
relational one defined above. For any relation R from X to Y the discrete relation
(also called the equality relation) on X

�X : X
1X

1X

X

is such that R ◦ �X = R, and for any relation S from Z to X one has �X ◦ S = S. It
follows that the arrow�X inRel(C) is the identity on the object X for the composition
in Rel(C).

There is a faithful functor 
 : C → Rel(C), where 
( f ) is the graph of f : X →
Y , seen as a relation:

X
1X f

X Y.

From now on we shall write 1X for the discrete relation on X , which can also be seen
as the relation 
(1X ).
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Remark 2.4 Rel(C) is not only a category, but a (locally ordered) 2-category. Indeed,
there is a natural partial ordering on its arrows, since the relations from X to Y are
the subobjects of a fixed object X × Y of C. This order is also compatible with the
composition: if R ≤ S, then R ◦ T ≤ S ◦ T whenever these composites are defined.
This is the main argument to show that Rel(C) is a 2-category, which is actually
locally-ordered: between any two arrows (or 1-cells) there is at most one 2-cell, and
the only invertible 2-cells are the identities (see [30] for more details).

3 Calculus of Relations and Mal’tsev Categories

In this section we shall always assume that the category C is regular.
Given a relation R = (R, r1, r2)

R
r1 r2

X Y

from X to Y , we write R◦ = (R, r2, r1) for the opposite relation from Y to X :

R
r2 r1

Y X.

Of course (R◦)◦ = R. It is easy to see that a relation R is symmetric if and only
if R = R◦. Additionally, a relation R is transitive when R ◦ R ≤ R. Moreover, in a
regular category, any relation (R, r1, r2) can be seen as the composite R = r2 ◦ r◦

1 .
By definition of the composition of relations, the relation (X ×Y Z , p1, p2) in a
pullback

X ×Y Z
p2

p1

Z

g

X
f

Y

can be written as g◦ ◦ f . We leave the verification of the following properties to the
reader:

Lemma 3.1 In a regular category C:

1. any kernel pair (Eq( f ), f1, f2) of an arrow f : X → Y can be written as f ◦ ◦ f ;
2. f : X → Y is a regular epimorphism if and only if f ◦ f ◦ = 1Y ;
3. f : X → Y is a monomorphism if and only if f ◦ ◦ f = 1X .



130 M. Gran

The relations that are “maps”, i.e. of the form

X
1X f

X Y,

(4.3.i)

for some arrow f in C, have the following additional property:

Lemma 3.2 Any relation of the form (4.3.i) is difunctional:

f ◦ f ◦ ◦ f = f.

Proof The relation f ◦ f ◦ ◦ f = f is obtained as the regular image of the external
graph in the following diagram,

Eq( f )
1Eq( f ) p2

Eq( f )
p1 p2

X
1X 1X

X
1X f

X
f 1X

X
f1X

X Y X Y,

which is simply the regular image of the graph

Eq( f )
p1 f ◦p2

X Y.

Since p1 : Eq( f ) → X is a split epimorphism, thus in particular a regular epimor-
phism (by Proposition 1.8), we see that the relation f ◦ f ◦ ◦ f is given by the relation
(1X , f ) in the commutative diagram

Eq( f )

p1
p1

f ◦p2

X X
1X f

Y,

as desired. ��



4 An Introduction to Regular Categories 131

In the category of sets the notion of difunctional relation was first introduced by
J. Riguet [36]. A relation R is difunctional if the fact that (x, y) ∈ R, (z, y) ∈ R and
(z, u) ∈ R implies that (x, u) ∈ R. This property can be expressed in any regular
category as follows:

Definition 3.3 A relation (R, r1, r2) from X toY in a regular category is difunctional
if

R ◦ R◦ ◦ R = R.

The following notion was introduced by A. Carboni, J. Lambek and M.C. Pedicchio
in [11], and it has been investigated in several articles in the last 30 years.

Definition 3.4 A finitely complete category C is called a Mal’tsev category if any
internal reflexive relation in C is an equivalence relation.

The following characterization of regular Mal’tsev categories can be found in [11]
(see also [34]). It is an example of a proof using the so-called calculus of relations.

Theorem 3.5 Let C be a regular category. Then the following conditions are equiv-
alent:

1. for any pair of equivalence relations R and S on any object X in C,
S ◦ R is an equivalence relation;

2. for any pair of equivalence relations R and S on any object X in C,
S ◦ R = R ◦ S;

3. for any pair of kernel pairs Eq( f ) and Eq(g) on any object X in C,
Eq(g) ◦ Eq( f ) = Eq( f ) ◦ Eq(g);

4. any relation U from X to Y in C is difunctional;
5. any reflexive relation R on an object X in C is an equivalence relation;
6. any reflexive relation R on an object X in C is symmetric;
7. any reflexive relation R on an object X in C is transitive.

Proof 1. ⇒ 2. By assumption the relation S ◦ R is an equivalence relation, thus
it is symmetric:

(S ◦ R)◦ = S ◦ R.

Since both S and R are symmetric it follows that

R ◦ S = R◦ ◦ S◦ = (S ◦ R)◦ = S ◦ R.

2. ⇒ 3. Obvious, since any kernel pair is an equivalence relation (Lemma 2.2).
3. ⇒ 4.Any relation (U, u1, u2) can be written asU = u2 ◦ u◦

1. The assumption
implies that the kernel pairs Eq(u1) and Eq(u2) of the projections commute in
the sense of the composition of relations (on the object U ):

(u◦
2 ◦ u2) ◦ (u◦

1 ◦ u1) = (u◦
1 ◦ u1) ◦ (u◦

2 ◦ u2).
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By keeping in mind that the relations u1 and u2 are difunctional (by Lemma 3.2)
it follows that

U = u2 ◦ u◦
1

= (u2 ◦ u◦
2 ◦ u2) ◦ (u◦

1 ◦ u1 ◦ u◦
1)

= u2 ◦ (u◦
2 ◦ u2) ◦ (u◦

1 ◦ u1) ◦ u◦
1

= u2 ◦ (u◦
1 ◦ u1) ◦ (u◦

2 ◦ u2) ◦ u◦
1

= (u2 ◦ u◦
1) ◦ (u1 ◦ u◦

2) ◦ (u2 ◦ u◦
1)

= U ◦ U ◦ ◦ U.

4. ⇒ 5. Let (U, u1, u2) be a reflexive relation on an object X , so that 1X ≤ U .
By difunctionality we have:

U ◦ = 1X ◦ U ◦ ◦ 1X ≤ U ◦ U ◦ ◦ U = U,

showing that U is symmetric. On the other hand:

U ◦ U = U ◦ 1X ◦ U ≤ U ◦ U ◦ ◦ U = U,

and U is transitive.
5. ⇒ 6. Clear.
6. ⇒ 1. First observe that S ◦ R is reflexive, since both S and R are reflexive:

1X = 1X ◦ 1X ≤ S ◦ R.

By assumption the relation S ◦ R is then symmetric, so that

R ◦ S = R◦ ◦ S◦ = (S ◦ R)◦ = S ◦ R.

The relation S ◦ R is transitive:

S ◦ R = (S ◦ S) ◦ (R ◦ R) = S ◦ (S ◦ R) ◦ R = S ◦ (R ◦ S) ◦ R = S ◦ R ◦ S ◦ R.

Observe that 5. ⇒ 7. is obvious, and let us prove that 7. ⇒ 4. Let U = u2 ◦ u◦
1

be any relation from X to Y . The relation

u◦
2 ◦ u2 ◦ u◦

1 ◦ u1

is reflexive, thus it is transitive by assumption. This gives the equality

(u◦
2 ◦ u2 ◦ u◦

1 ◦ u1) ◦ (u◦
2 ◦ u2 ◦ u◦

1 ◦ u1) = u◦
2 ◦ u2 ◦ u◦

1 ◦ u1,
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yielding

u2 ◦ u◦
2 ◦ u2 ◦ u◦

1 ◦ u1 ◦ u◦
2 ◦ u2 ◦ u◦

1 ◦ u1 ◦ u◦
1 = u2 ◦ u◦

2 ◦ u2 ◦ u◦
1 ◦ u1 ◦ u◦

1.

By difunctionality of u2 and u◦
1 we conclude that

u2 ◦ u◦
1 ◦ u1 ◦ u◦

2 ◦ u2 ◦ u◦
1 = u2 ◦ u◦

1,

and
U ◦ U ◦ ◦ U = U.

��

3.1 Examples of Mal’tsev Categories

The categoriesGrp, Ab, R-Mod,Rng andGrp(Top) are all Mal’tsev categories. By
Theorem 3.5 to see this it suffices to show that any (internal) reflexive relation R
on any object X in these categories is symmetric. Let us check this property for the
category Grp of groups: given an element (x, y) of a reflexive relation R which is
also a subgroup of X × X , we know that its inverse (x−1, y−1) is also in R and, by
reflexivity, both (x, x) and (y, y) belong to R. It follows that

(x, x) · (x−1, y−1) · (y, y) = (x · x−1 · y, x · y−1 · y) = (y, x) ∈ R

and Grp is a Mal’tsev category. An inspection of the proof for Grp shows that the
argument is still valid if the theory of an algebraic variety has a term p(x, y, z) such
that p(x, y, y) = x and p(x, x, y) = y. Varieties of algebras having such a ternary
term p are called Mal’tsev varieties [37], or 2-permutable varieties, and the term p a
Mal’tsev operation. This terminology is motivated by the famous Mal’tsev theorem
asserting that a variety V of algebras has the property that each pair R and S of
congruences on an algebra A in V permute, i.e. R ◦ S = S ◦ R if and only if its
theory has a ternary Mal’tsev operation [33].

Of course, any variety of algebras whose theory contains the operations and iden-
tities of the theory of groups is a Mal’tsev variety.

For a different example, consider the variety QGrp of quasigroups [37]: its alge-
braic theory has a multiplication ·, a left division \ and a right division / such that
x\(x · y) = y, (x · y)/y = x , x · (x\y) = y and (x/y) · y = x .
A Mal’tsev operation for the theory of quasigroups is given by the term

p(x, y, z) = (x/(y\y)) · (y\z),

since
p(x, y, y) = (x/(y\y)) · (y\y) = x,
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and

p(x, x, y) = (x/(x\x)) · (x\y) = (x · (x\x)/(x\x)) · (x\y) = x · (x\y) = y.

The category Heyt of Heyting algebras is a Mal’tsev variety [29], with a Mal’tsev
operation defined by the term

p(x, y, z) = ((x → y) → z) ∧ ((z → y) → x).

For the axioms and basic properties of Heyting algebras we refer the reader to [29], or
to the Chapter Notes on point-free topology [35] in this volume. One observes that

p(x, x, y) = ((x → x) → y) ∧ ((y → x) → x)

= (1 → y) ∧ ((y → x) → x)

= y ∧ ((y → x) → x)

= y

and

p(x, y, y) = ((x → y) → y) ∧ ((y → y) → x)

= ((x → y) → y) ∧ (1 → x)

= ((x → y) → y) ∧ x

= x .

Other examples of regular Mal’tsev categories are: any regular additive category,
therefore in particular any abelian category [9], and the dual of any elementary topos
[10]. The category of C∗-algebras and the category HopfK ,coc of cocommutative
Hopf algebras over a field K are also regular Mal’tsev categories [22, 23].

On the other hand, the categories Set of sets and Mon of monoids are regular
categories which are not Mal’tsev ones. Indeed, the usual order relation ≤ on N is
an internal reflexive relation (both in Set and inMon) which is not symmetric.

3.2 Regular Pushouts

An important property of regular Mal’tsev categories is expressed in terms of dia-
grams of the form

C
c

g

A

f

D
d

t

B

s

(4.3.ii)



4 An Introduction to Regular Categories 135

where d ◦ g = f ◦ c, c ◦ t = s ◦ d, g ◦ t = 1D , f ◦ s = 1B , c and d are regular
epimorphisms. As observed in [15] such a square is always a pushout. The following
result is due to D. Bourn (see also [10]): here we give an alternative proof using the
calculus of relations as in [19]:

Proposition 3.6 [6] A regular category C is a Mal’tsev category if and only if
any pushout of the form (4.3.ii) has the property that the canonical morphism
(g, c) : C → D ×B A to the pullback of d and f is a regular epimorphism.

Proof The relation (D ×B A, p1, p2) which is the pullback of d and f can be
expressed as the composite f ◦ ◦ d. The regular image of (g, c) : C → D ×B A is
c ◦ g◦, so that (g, c) is a regular epimorphism if and only if f ◦ ◦ d = c ◦ g◦. Now,
the regular image g(Eq(c)) of Eq(c) along g is defined as the regular image of the
arrow g × g ◦ (p1, p2) : Eq(c) → B × B, i.e. the subobject of B × B determined
by the right-hand vertical arrow in the following commutative diagram

Eq(c)

(p1,p2)

g(Eq(c))

D × D
g×g

B × B.

The commutativity conditions on the square (4.3.ii) imply that this relation is Eq(d):

g(Eq(c)) = Eq(d).

In a regular category this condition can be expressed by the equality

g ◦ c◦ ◦ c ◦ g◦ = do ◦ d.

Since c ◦ c◦ = 1A by Lemma 3.1 it follows that

f ◦ ◦ d = c ◦ c◦ ◦ f ◦ ◦ d

= c ◦ g◦ ◦ d◦ ◦ d

= c ◦ g◦ ◦ (g ◦ c◦ ◦ c ◦ g◦)
= c ◦ c◦ ◦ c ◦ g◦ ◦ g ◦ g◦

= c ◦ g◦,

where the fourth equality follows from the Mal’tsev assumption:

g◦ ◦ g ◦ c◦ ◦ c = Eq(g) ◦ Eq(c) = Eq(c) ◦ Eq(g) = c◦ ◦ c ◦ g◦ ◦ g.

For the converse, by Theorem 3.5 it suffices to show that any pair of equivalence
relations Eq( f ) and Eq(g) which are kernel pairs of two arrows f and g permute.
Note that there is no restriction in assuming that f and g are regular epimorphisms,
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thanks to Theorem 1.11. Consider the kernel pair (Eq( f ), f1, f2) of f : X → Y and
the kernel pair (Eq(g), g1, g2) of g : X → Z . We then consider the regular image of
Eq( f ) along g inducing the following commutative diagram

Eq( f )
γ

f1 f2

g(Eq( f ))

r1 r2

X g Z ,

(4.3.iii)

and observe that the assumption implies that f2 ◦ γ ◦ = g◦ ◦ r2 and γ ◦ f ◦
1 = r◦

1 ◦ g.
We then have the following identities:

Eq( f ) ◦ Eq(g) = f2 ◦ f ◦
1 ◦ g◦ ◦ g

= f2 ◦ γ ◦ ◦ r◦
1 ◦ g

= g◦ ◦ r2 ◦ r◦
1 ◦ g

= g◦ ◦ r2 ◦ γ ◦ f ◦
1

= g◦ ◦ g ◦ f2 ◦ f ◦
1 .

= Eq(g) ◦ Eq( f ).

��

4 Goursat Categories

In universal algebra a weaker property than the Mal’tsev axiom is the so-called 3-
permutability of congruences. Given any two congruences R and S on an algebra A
in a variety V, the following equality holds:

R ◦ S ◦ R = S ◦ R ◦ S.

Definition 4.1 [10, 11] A regular category C is a Goursat category if

R ◦ S ◦ R = S ◦ R ◦ S

for any pair of equivalence relations R and S on any object X in C.

Any regular Mal’tsev category C is a Goursat category: indeed, given any two
equivalence relations R and S on an object X in C, one has:

R ◦ (S ◦ R) = R ◦ (R ◦ S) = R ◦ S = R ◦ (S ◦ S) = (S ◦ R) ◦ S.
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An example of a Goursat category which is not a Mal’tsev one will be given at the
end of this section, where we shall prove that implication algebras form a Goursat
variety.

Among regular categories, Goursat categories are characterized by the property
that equivalence relations are stable under regular images along regular epimorphisms
[10]. Here below we give a direct proof which uses the calculus of relations:

Proposition 4.2 For a regular category C the following conditions are equivalent:

1. C is a Goursat category;
2. for any regular epimorphism f : X → Y and any equivalence relation R on X

the regular image f (R) of R along f is an equivalence relation.

Proof 1. ⇒ 2. When (R, r1, r2) is an equivalence relation it is always true that the
regular image f (R) = f ◦ R ◦ f ◦ along a regular epimorphism f : X → Y is
both reflexive and symmetric. Let us then prove that f (R) is also transitive:
one has the equalities

f (R) ◦ f (R) = f ◦ R ◦ f ◦ ◦ f ◦ R ◦ f ◦

= f ◦ ( f ◦ ◦ f ) ◦ R ◦ ( f ◦ ◦ f ) ◦ f ◦

= f ◦ R ◦ f ◦

= f (R)

where the second equality follows from the Goursat assumption, and the third
one from Lemma 3.2.
2. ⇒ 1.Conversely, consider two equivalence relations (R, r1, r2) and (S, s1, s2)
on a same object X in C, and observe that the arrow r2 : R → X is a split
epimorphism, thus in particular a regular epimorphism. Then:

R ◦ S ◦ R = (r2 ◦ r◦
1 ) ◦ (s2 ◦ s◦

1) ◦ (r2 ◦ r◦
1 )

= (r2 ◦ r◦
1 ) ◦ (s2 ◦ s◦

1) ◦ (r2 ◦ r◦
1 )

◦

= r2 ◦ (r◦
1 ◦ s2 ◦ s◦

1 ◦ r1) ◦ r◦
2

= r2(r
◦
1 ◦ s2 ◦ s◦

1 ◦ r1)

= r2(r
−1
1 (S)).

Recall that the inverse image r−1
1 (S) of the equivalence relation S along r1 is

obtained by taking the pullback

r−1
1 (S) S

(s1,s2)

R × R
r1×r1

X × X,
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and r−1
1 (S) is always an equivalence relation.By taking into account this observa-

tion and the assumption 2., one deduces that the relation r2(r
−1
1 (S)) = R ◦ S ◦ R

is transitive. It follows that

S ◦ R ◦ S ≤ R ◦ S ◦ R ◦ S ◦ R

≤ (R ◦ S ◦ R) ◦ (R ◦ S ◦ R)

≤ R ◦ S ◦ R

and, symmetrically, R ◦ S ◦ R ≤ S ◦ R ◦ S, hence S ◦ R ◦ S = R ◦ S ◦ R.

��
Exercise 4.3 Show that the regular image of an equivalence relation in Set is not
necessarily transitive.

4.1 Goursat Pushouts

In a Goursat category there is a class of pushouts that has a similar role to the one of
regular pushouts in a regular Mal’tsev category:

Definition 4.4 Consider a commutative diagram (4.3.ii), and the induced arrow ĉ
making the following diagram commute:

Eq(g)

p1 p2

ĉ
Eq( f )

p1 p2

C c A

Then the square (4.3.ii) is called aGoursat pushout [18] when the arrow ĉ is a regular
epimorphism.

The following result was proved in [18]. Here we give a different proof of one of the
two implications, based on the calculus of relations:

Proposition 4.5 [18] For a regular category C the following conditions are
equivalent:

1. C is a Goursat category;
2. any square (4.3.ii) is a Goursat pushout.

Proof 1. ⇒ 2. If C is a Goursat category then
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c(Eq(g)) = c ◦ g◦ ◦ g ◦ c◦

= c ◦ (c◦ ◦ c) ◦ (g◦ ◦ g) ◦ (c◦ ◦ c) ◦ c◦

= c ◦ (g◦ ◦ g) ◦ (c◦ ◦ c) ◦ (g◦ ◦ g) ◦ c◦

= c ◦ g◦ ◦ d◦ ◦ d ◦ g ◦ c◦

= c ◦ c◦ ◦ f ◦ ◦ f ◦ c ◦ c◦

= f ◦ ◦ f

= Eq( f )

where the third equality follows from the Goursat assumption, the fourth one
from g(Eq(c)) = Eq(d), and the sixth one from the fact that c is a regular
epimorphism (Lemma 3.1).
2. ⇒ 1. Conversely, given a commutative diagram

R
f

r1 r2

f (R) = T

t1 t2

X
f

Y

where (R, r1, r2) is an equivalence relation, f is a regular epimorphism and
(T, t1, t2) is the regular image of R along f . We are to show that the relation
f (R) = T is an equivalence relation (by Proposition 4.2). Since the regular
image of a reflexive and symmetric relation is always reflexive and symmetric,
it suffices to show that T is transitive. This follows from the computation:

T ◦ T = T ◦ T ◦

= t2 ◦ t◦
1 ◦ t1 ◦ t◦

2

= t2 ◦ ( f ◦ r◦
1 ◦ r1 ◦ f

◦
) ◦ t◦

2

= f ◦ r2 ◦ r◦
1 ◦ r1 ◦ r◦

2 ◦ f ◦

= f ◦ R ◦ R◦ ◦ f ◦

= f ◦ R ◦ f ◦

= T .

Remark that theassumption that anysquareof the form(4.3.ii) is aGoursatpushout
has been used in the third equality, where it has been applied to the diagram

R
f

r1

T

t1

X
f

Y.

��



140 M. Gran

To conclude this short introduction to Goursat categories we give a characteri-
zation of those varieties of universal algebras which are 3-permutable by using the
notion of Goursat pushout. This proof, originally discovered in [26], has a categorical
version which has first been given in [18].

WhenV is a variety of universal algebras, we shall denote by X = F(1) the free
algebra on the one-element set.

Theorem 4.6 For a variety V of universal algebras the following conditions are
equivalent:

1. V is 3-permutable: for any pair R, S of congruences on any algebra A in V one
has the equality

R ◦ S ◦ R = S ◦ R ◦ S;

2. the theory of V contains two quaternary operations p and q satisfying the iden-
tities

p(x, y, y, z) = x, q(x, y, y, z) = z, p(x, x, y, y) = q(x, x, y, y).

Proof 1. ⇒ 2. Consider the commutative diagram

X + X + X + X
1+∇2+1

∇2+∇2

X + X + X

∇3

X + X ∇2

i2+i1

X

i2

where ∇k is the codiagonal from the k-indexed copower of X to X (for k ∈
{2, 3}). The vertical arrows ∇2 + ∇2 and ∇3 are split epimorphisms, whereas
the horizontal arrows are regular epimorphisms, so that the diagram is a Goursat
pushout by Proposition 4.5. It follows that the unique morphism

1 + ∇2 + 1 : Eq(∇2 + ∇2) → Eq(∇3)

inV making the diagram

Eq(∇2 + ∇2)
1+∇2+1

p1 p2

Eq(∇3)

p1 p2

X + X + X + X
1+∇2+1

X + X + X

(4.4.i)
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commute is a regular epimorphism (here p1 and p2 are the kernel pair pro-
jections), thus it is surjective. Observe that the terms p1(x, y, z) = x and
p3(x, y, z) = z are identified by∇3, so that (p1, p3) ∈ Eq(∇3). The surjectivity
of 1 + ∇2 + 1 then implies that there are terms (p, q) ∈ Eq(∇2 + ∇2) such that
1 + ∇2 + 1(p, q) = (p1, p3). This latter property means exactly that

p(x, y, y, z) = x, q(x, y, y, z) = z,

while the fact that (p, q) ∈ Eq(∇2 + ∇2) gives the identity

p(x, x, y, y) = q(x, x, y, y).

2. ⇒ 1. For the converse implication, take R and S two congruences on an alge-
bra A inV, and let us show that R ◦ S ◦ R ≤ S ◦ R ◦ S. For (a, b) ∈ R ◦ S ◦ R,
let x and y be such that (a, x) ∈ R, (x, y) ∈ S and (y, b) ∈ R. Then the fact that
(a, a), (x, a), (y, b), (b, b) are in R implies that both (p(a, x, y, b), p(a, a, b, b))

and (q(a, x, y, b), q(a, a, b, b)) are in R. Since p(a, a, b, b) = q(a, a, b, b)we
deduce that (p(a, x, y, b), q(a, x, y, b)) ∈ R. On the other hand, the elements
(a, a), (x, x), (x, y), (b, b) are all in S so that (p(a, x, x, b), p(a, x, y, b)) ∈ S,
(q(a, x, x, b), q(a, x, y, b)) ∈ S, hence (a, p(a, x, y, b)) and (b, q(a, x, y, b))

are both in S. We then observe that

(a, p(a, x, y, b)) ∈ S

(p(a, x, y, b), q(a, x, y, b)) ∈ R

(q(a, x, y, b), b) ∈ S

we conclude that (a, b) belongs to S ◦ R ◦ S. It then follows that R ◦ S ◦ R =
S ◦ R ◦ S, as desired. ��

Remark 4.7 Note that one can give a proof of the Mal’tsev theorem characterizing
2-permutable varieties by using some categorical arguments similar to the ones in
Theorem 4.6. This was first observed in [12] and, more recently, in [8].

Remark 4.8 A wide generalization of Theorem 4.6 was obtained by P.-A. Jacqmin
and D. Rodelo in [27], where a categorical approach to n-permutability was devel-
oped. Thanks to their approach the authors have been able to characterize the property
of n-permutability in terms of some specific stability properties of regular epimor-
phisms, which extend the one considered in [20] to study Goursat categories.
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4.2 Implication Algebras

A typical example of 3-permutable variety, thus of a Goursat category, is provided by
the variety ImplAlg of implication algebras [1]. The algebraic theory of the variety
ImplAlg has a binary operation such that

(A) (xy)x = x ,
(B) (xy)y = (yx)x ,
(C) x(yz) = y(xz).

As explained in [25], to see that ImplAlg is 3-permutable, one first checks that the
term xx is a constant: indeed, the identities

xx = [(xy)x]x (by (A))

= [x(xy)](xy) (by (B))

= x[[x(xy)]y] (by (C))

= x[[((xy)x)(xy)]y] (by (A))

= x[(xy)y] (by (A))

= (xy)(xy) (by (C))

imply that
xx = [x(yy)][x(yy)] = [y(xy)][y(xy] = yy,

and one denotes such an equationally defined constant by 1. This notation is justified
by the fact that

1y = (yy)y = y.

One then verifies that the terms p(x, y, z, u) = (zy)x and q(x, y, z, u) = (yz)u are
such that

p(x, y, y, z) = (yy)x = 1x = x,

q(x, y, y, z) = (yy)z = 1z = z,

and
p(x, x, z, z) = (zx)x = (xz)z = q(x, x, z, z).

4.3 Diagram Lemmas and Goursat Categories

We conclude these notes by mentioning a connection between the validity of
some suitable diagram lemmas and the permutability conditions on a regular cat-
egory considered above. The classical 3 × 3-Lemma in abelian categories [14] has
been extended to several non-additive contexts by various authors (see [5, 28], for
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instance). An original extension to a non-pointed context was first established by
D. Bourn in the context of regular Mal’tsev categories [6]. The main point in order
to formulate the 3 × 3-Lemma in a category which does not have a 0-object is to
replace the classical notion of short exact sequence with the notion of exact fork: a
diagram of the form

R
r2

r1
X

f
Y

is an exact fork if and only if (R, r1, r2) is the kernel pair of f , and f is the coequalizer
of r1 and r2. With this notion at hand the appropriate way of expressing the 3 × 3-
Lemma is then the following, which is called the denormalized 3 × 3-Lemma: given
any commutative diagram

Eq(a)
z1

z2

a1 a2

Eq(b)

b1 b2

z
Eq(c)

c1 c2

Eq(y)

a

y2

y1
A

b

y C

c

K
k2

k1
B x D

(4.4.ii)

in C such that

• yi ◦ a j = b j ◦ zi , y ◦ bi = ci ◦ z, b ◦ yi = ki ◦ a, x ◦ b = c ◦ y (for i, j ∈ {1, 2}),
• the three columns and the middle row are exact forks,

then the upper row is an exact fork if and only if the lower row is an exact fork.
S. Lack observed in [32] that this denormalized 3 × 3-Lemma holds not only in reg-
ularMal’tsev categories (as observed byD. Bourn [6]) but also in Goursat categories.
Later on it turned out that the validity of the denormalized 3 × 3-Lemma actually
characterizes Goursat categories among regular ones:

Theorem 4.9 [18, 32] For a regular category C the following conditions are equiv-
alent:

1. C is a Goursat category;
2. if the lower row in a diagram (4.4.ii) is an exact fork then the upper row is an

exact fork;
3. if the upper row in a diagram (4.4.ii) is an exact fork then the lower row is an

exact fork;
4. the denormalized 3 × 3-Lemma holds in C: the lower row is an exact fork if and

only if the upper row is an exact fork.

We would like to point out that both the calculus of relations and the notion of Gour-
sat pushout play a central role in the proof of this result. Note that a unification of
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both the classical 3 × 3-Lemma and of the denormalized one in the context of star-
regular categories is also possible [17]. Further results linking the Goursat property
to natural conditions appearing in universal algebra—in relationship to congruence
modularity—have been investigated in [21] (see also the references therein). Finally,
let us mention that also Mal’tsev categories can be characterized via a suitable dia-
grammatic condition that is stronger than the denormalized 3 × 3-Lemma, called the
Cuboid Lemma [19].

Acknowledgements A part of the material presented in this survey article is based on [7, 8, 16].
The author is grateful to Tomas Everaert for an important suggestion concerning Theorem 1.16.
Many thanks also to Maria Manuel Clementino, Diana Rodelo, Idriss Tchoffo Nguefeu, David
Broodryk and the anonymous referee for carefully proofreading a first version of the article and
suggesting some useful changes and corrections.

References

1. Abbott, J.C.: Algebras of implication and semi-lattices. Séminaire Dubreil. Algèbre et théorie
des nombres 20(2), 1–8 (1966–1967)

2. Barr, M., Grillet, P.A., van Osdol, D.H.: Exact Categories and Categories of Sheaves. Springer
Lecture Notes in Mathematics, vol. 236. Springer, Heidelberg (1971)

3. Borceux, F.: Handbook of Categorical Algebra. 2. Categories and Structures. Encyclopedia of
Mathematics and Its Applications, vol. 51. Cambridge University Press, Cambridge (1994)

4. Borceux, F., Clementino, M.M.: Topological semi-abelian algebras. Adv. Math. 190, 425–453
(2005)

5. Bourn, D.: 3 × 3 lemma and protomodularity. J. Algebra 236, 778–795 (2001)
6. Bourn, D.: The denormalized 3 × 3-lemma. J. Pure Appl. Algebra 177(2), 113–129 (2003)
7. Bourn, D., Gran, M.: Regular, protomodular and abelian categories. In: Categorical Foun-

dations - Special Topics in Order, Topology, Algebra and Sheaf Theory. Encyclopedia of
Mathematics and Its Applications, vol. 97, pp. 165–211. Cambridge University Press (2004)

8. Bourn, D., Gran, M., Jacqmin, P.-A.: On the naturalness of Mal’tsev categories. In: Casadio,
C., Scott, P. (eds.) Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics,
Outstanding Contributions to Logic, vol. 20, pp. 59–104. Springer (2021)

9. Buchsbaum, D.: Exact categories and duality. Trans. Am. Math. Soc. 80, 1–34 (1955)
10. Carboni, A., Kelly, G.M., Pedicchio,M.C.: Some remarks onMal’tsev and Goursat categories.

Appl. Categ. Struct. 4, 385–421 (1993)
11. Carboni, A., Lambek, J., Pedicchio, M.C.: Diagram chasing in Mal’cev categories. J. Pure

Appl. Algebra 69, 271–284 (1990)
12. Carboni, A., Pedicchio, M.C.: A new proof of the Mal’cev theorem. Categorical studies in

Italy (Perugia, 1977). Rend. Circ. Mat. Palermo 2(Suppl. No. 64), 13–16 (2000)
13. Clementino, M.M.: An invitation to topological semi-abelian algebras. In: Clementino, M.M.,

Facchini, A., Gran,M. (eds.) New Perspectives in Algebra, Topology and Categories, Coimbra
Mathematical Texts 1, pp. 27–66. Springer Nature and University of Coimbra (2021)

14. Freyd, P.J.: Abelian Categories. An Introduction to the Theory of Functors. Harper’s Series in
Modern Mathematics, New York (1964)

15. Gran, M.: Central extensions and internal groupoids in Maltsev categories. J. Pure Appl.
Algebra 155, 139–166 (2001)

16. Gran, M.: Notes on regular, exact and additive categories. Notes for a mini-course given at the
Summer School on Category Theory and Algebraic Topology, Ecole Polytechnique Fédérale
de Lausanne (2014)



4 An Introduction to Regular Categories 145

17. Gran, M., Janelidze, Z., Rodelo, D.: 3 × 3-lemma for star-exact sequences. Homology Homo-
topy Appl. 14(2), 1–22 (2012)

18. Gran, M., Rodelo, D.: A new characterisation of Goursat categories. Appl. Categ. Struct. 20,
229–238 (2012)

19. Gran, M., Rodelo, D.: The cuboid lemma and Mal’tsev categories. Appl. Categ. Struct. 22,
805–816 (2014)

20. Gran,M., Rodelo, D.: Beck-Chevalley condition andGoursat categories. J. Pure Appl. Algebra
221, 2445–2457 (2017)

21. Gran, M., Rodelo D., Tchoffo Nguefeu, I.: Variations of the Shifting Lemma and Goursat
categories. Algebra Univers. 80(2) (2019)

22. Gran, M., Rosický, J.: Semi-abelian monadic categories. Theory Appl. Categ. 13(6), 106–113
(2004)

23. Gran, M., Sterck, F., Vercruysse, J.: A semi-abelian extension of a theorem by Takeuchi. J.
Pure Appl. Algebra 223, 4171–4190 (2019)

24. Grothendieck, A.: Technique de construction en géométrie analytique. IV. Formalisme général
des foncteurs représentables., Sém. Henri Cartan 13(1), 1–28 (1962)

25. Gumm, H.P., Ursini, A.: Ideals in universal algebra. Algebra Univers. 19, 45–54 (1984)
26. Hagemann, J., Mitschke, A.: On n-permutable congruences. Algebra Univers. 3, 8–12 (1973)
27. Jacqmin, P.-A.,Rodelo,D.: Stability properties characterisingn-permutable categories. Theory

Appl. Categ. 32, 1563–1587 (2017)
28. Janelidze, Z.: The pointed subobject functor, 3 × 3 lemmas and subtractivity of spans. Theory

Appl. Categ. 23, 221–242 (2010)
29. Johnstone, P.T.: Stone Spaces. Cambridge Studies in Advanced Mathematics, vol. 3. Cam-

bridge University Press, Cambridge (1982)
30. Johnstone, P.T.: Sketches of anElephant: AToposTheoryCompendium.OxfordLogicGuides,

vol. 43. Oxford University Press, Oxford (2002)
31. Johnstone, P.T., Pedicchio, M.C.: Remarks on continuousMal’cev algebras. Rend. Ist. Matem.

Univ. Trieste 25, 277–287 (1995)
32. Lack, S.: The 3-by-3 lemma for regular Goursat categories. Homology Homotopy Appl. 6(1),

1–3 (2004)
33. Mal’tsev, A.I.: On the general theory of algebraic systems. Matematicheskii Sbornik N.S.

35(77), 3–20 (1954)
34. Meisen, J.: Relations in categories. Thesis, McGill University (1972)
35. Picado, J., Pultr, A.: Notes on point-free topology. In: Clementino, M.M., Facchini, A., Gran,

M. (eds.) New Perspectives in Algebra, Topology and Categories, Coimbra Mathematical
Texts 1, pp. 173–223. Springer Nature and University of Coimbra (2021)

36. Riguet, J.: Relations binaires, fermetures, correspondances de Galois. Bull. de la Société
Mathématique de France 76, 114–155 (1948)

37. Smith, J.D.H.: Mal’cev Varieties. Springer Lecture Notes in Mathematics, vol. 554. Springer,
Heidelberg (1976)


	4 An Introduction to Regular Categories
	1 Regular Categories
	1.1 Strong and Regular Epimorphisms
	1.2 Quotients in Algebraic Categories
	1.3 Examples of Regular Categories
	1.4 Canonical Factorization
	1.5 The Barr-Kock Theorem

	2 Relations in Regular Categories
	3 Calculus of Relations and Mal'tsev Categories
	3.1 Examples of Mal'tsev Categories
	3.2 Regular Pushouts

	4 Goursat Categories
	4.1 Goursat Pushouts
	4.2 Implication Algebras
	4.3 Diagram Lemmas and Goursat Categories

	References


