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Ring Epimorphisms, Gabriel Topologies
and Contramodules

Silvana Bazzoni

Abstract During the 1960s considerable work was done in order to understand the
meaning of “epimorphism”. The notion plays an important role in categories of rings
where the abstract category-theoretic meaning is now of common use.

The notion of ring epimorphism has relations with torsion theory and localisation
theory. In particular, perfect right Gabriel topologies (in Stenström’s terminology)
correspond bijectively to left flat ring epimorphisms.

In these notes we will consider two classes of modules defined in terms of a
ring epimorphism: the comodules and the contramodules as introduced by Leonid
Positselski. Addingmild conditions on the ring epimorphismwewill extend classical
results proved by Matlis for commutative rings by showing an equivalence between
suitable subcategories of the two classes of comodules and contramodules.
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Introduction

During the 1960s considerable effort was done in order to understand the meaning of
epimorphisms in various concrete categories. The notion plays an important role in
categories of rings. Localisations of commutative rings with respect to multiplicative
subsets are important examples of ring epimorphisms which are moreover, flat ring
epimorphisms. A generalisation to noncommutative rings is accomplished by local-
isations with respect to Gabriel topologies, and flat ring epimorphisms correspond
bijectively to a particular class of Gabriel topologies.

S. Bazzoni (B)
Dipartimento di Matematica “Tullio Levi -Civita”, Università di Padova, Via Trieste 63,
35121 Padova, Italy
e-mail: bazzoni@math.unipd.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. M. Clementino et al. (eds.), New Perspectives in Algebra, Topology
and Categories, Coimbra Mathematical Texts 1,
https://doi.org/10.1007/978-3-030-84319-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84319-9_1&domain=pdf
mailto:bazzoni@math.unipd.it
https://doi.org/10.1007/978-3-030-84319-9_1


2 S. Bazzoni

In Sect. 2 we will present a characterisation of ring epimorphisms by means of
five equivalent conditions. Afterward in Sect. 3 we will introduce Gabriel topologies
and their bijective correspondence with hereditary torsion pairs. Furthermore wewill
define rings and modules of quotients with respect to a Gabriel topology and outline
some of their properties.

The purpose of our investigation is to generalise classical equivalences between
subcategories of modules over rings to the case of subcategories of modules arising
from a ring epimorphism between associative rings.

An important example of such equivalences is provided by the famous Brenner
and Butler’s Theorem: A finitely generated tilting module T over an artin algebra �

gives rise to a torsion pair (T ,F ), where T is the class of modules generated by T .
If D denotes the standard duality and � is the endomorphism ring of T , then D(T )

is a cotilting �-module with an associated torsion pair (X,Y) where Y is the class
of modules cogenerated by D(T ). The Brenner and Butler’s Theorem states that
the functor Hom�(T,−) induces an equivalence between the categories T and Y
with inverse the functor− ⊗� T , and the functor Ext1�(T,−) induces an equivalence
between F and X with inverse the functor Tor�1 (−, T ).

For infinitely generated modules a first example of equivalences was provided by
Harrison [6] in the category of abelian groups. One equivalence is provided by the
tensor product functor Q/Z ⊗Z −, with the functor HomZ(Q/Z,−) as inverse. In
Matlis’ memoir [8, Sect. 3], the setting was generalised to the case of a commutative
domain R and its quotient field Q establishing two kinds of equivalences between
certain full additive subcategories of the category of R-modules. The first equiva-
lence is provided by the functor of tensor product with the R-module Q/R with
inverse the functor HomR(Q/R,−). The second equivalence is given by the pair of
functors TorR1 (Q/R,−) and Ext1R(Q/R,−), which are mutually inverse if restricted
to suitable subcategories. Moreover, in the book [9] Matlis extended the first one of
his two category equivalences to the setting of an arbitrary commutative ring R and
its total ring of quotients Q.

Two further generalisations of the Matlis category equivalences appeared in the
two recent papers [4, 12]. In the paper [12], Matlis category equivalences were
constructed for a localisation R[S−1] of a commutative ring R with respect to a
multiplicative subset S ⊂ R. Injectivity of the map R −→ R[S−1]was not assumed,
but it was assumed that the projective dimension of the R-module R[S−1]was atmost
one. In the paper [4],Matlis category equivalencewas constructed for certain injective
epimorphisms of noncommutative rings R −→ Q, where Q is the localisation of R
with respect to a one-sided Ore subset of regular elements.

In the paper [3] the first Matlis additive category equivalence is constructed
for any ring epimorphism f : R −→ U such that TorR1 (U,U ) = 0, and the sec-
ond Matlis category equivalence is constructed under the assumption TorR1 (U,U ) =
0 = TorR2 (U,U ). Let us emphasize that neither injectivity of f , nor any condition
on the projective or flat dimension of the R-module U is required for these results.
Commutativity of the rings R and U is not assumed, either.
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In these notes we present only some of the results proved in [3]. More precisely,
in Sect. 5 we give details for the construction of the first Matlis additive category
equivalence (Theorem 5.6).

Our key tools are the notions of comodules and contramodules. In Sect. 4 we intro-
duce and discuss the subcategories of comodules and contramodules associated to a
ring epimorphism. In Subsect.4.1 we justify the terminology starting with classical
definitions of coalgebras and comodules over coalgebras and show a natural way to
introduce the notion of contramodules over coalgebras.

1 Preliminaries

Wewill assume familiaritywith basic notions on category theory like functors, natural
transformations, equivalences of categories (see e.g. [15, Ch.1] or [7, Ch.1]).

We will mostly consider categories of modules over associative rings R with
unit and we denote by R-Mod, or Mod-R the categories of left, respectively right
R-modules.

For every right, or left R-modules M and N , HomR(M, N ) denotes the abelian
group of all R-linear maps from M to N .

For every right R-module M and a left R-module N , M ⊗R N denotes the tensor
product between M and N .

We will assume that the properties of the functor HomR(−,−) and of the tensor
product functor − ⊗R − are well known.

A left (right) R-module P is projective if HomR(P,−) is an exact functor and a
module M has projective dimension (p. dim) at most one if it is an epimorphic image
of a projective module with kernel a projective module.

A left (right) R-module E is injective if HomR(−, E) is an exact functor.
A right (left) R-module F is said to be flat if the functor F ⊗R − (− ⊗R F) is

exact and a module M has flat dimension (f. dim) at most one if it is an epimorphic
image of a flat module with kernel a flat module.

Moreover we will use the adjunction between the tensor product functor and the
Hom functor. More specifically, if R and S are rings, S ER is an S-R-bimodule, the
pair of functors (E ⊗R −,HomS(E,−)) is an adjoint pair, that is:

E ⊗R −: R-Mod −→ S-Mod; HomS(E,−) : S-Mod −→ R-Mod,

and for every left R-module M and left S-module N there is an isomorphism of
abelian groups, called the adjunction isomorphism

HomS(E ⊗R M, N )
φ(M,N )

HomR(M,HomS(E, N )) ,

natural in M and N .
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We recall the definition of the unit and the counit of this adjoint pair.
The unit is the natural transformation

η : idR-Mod → HomS(E,−) ◦ E ⊗R − ,

where for every M ∈ R-Mod the morphism ηM is given by:

HomS(E ⊗R M, E ⊗R M)
φ(M,E⊗RM)

HomR(M,HomS(E, E ⊗R M)) ,

1E⊗RM
φ(M,E⊗RM)

ηM .

The counit is the natural transformation

ξ : E ⊗R − ◦ HomS(E,−) → idS-Mod

where for every N ∈ S-Mod the morphism ξN is given by

HomS(E ⊗R HomS(E, N ), N )
φ(HomS(E,N ),N )

HomR(HomS(E, N ),HomS(E, N ))

ξN
φ(HomS(E,N ),N )

1HomS(E,N ).

The morphism ηM and ξN will be used in Sect. 5.
For more details on all these notions see e.g. [15, Ch.1] or [1, Ch.1 and 5] or [14,

Ch. 2 and 3].
We will make use of some tools in homological algebra, namely the derived

functors. In particular, we will deal with the left derived functors TorRi of the tensor
product functor, and the right derived functors ExtiR of the HomR functor.

For their construction and their properties see e.g. [16, Ch. 2 and 3].
In particular, for a right (left) R-module M , we have p. dim M ≤ 1 if and

only if Ext2(M,−) = 0 and f. dim M ≤ 1 if and only if TorR2 (M,−) = 0
(TorR2 (−, M) = 0).

2 Ring Epimorphisms

Definition 2.1 Let C be a category and f : A −→ B be a morphism between two
objects of C.

f is an epimorphism if for every object C ∈ C and morphisms g, h : B −→ C ,
g ◦ f = h ◦ f implies g = h.

A categoryC is concrete if there is a faithful functor F fromC to the category of
sets. The functor F makes it possible to think of the objects of the category as sets,
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possiblywith additional structure, and of itsmorphisms as structure-preservingmaps.
Examples of concrete categories include trivially the category of sets, the category
of topological spaces, the category of groups, the category of rings and the category
of modules over a ring R. Every morphism in a concrete category whose underlying
map is surjective is an epimorphism. In many concrete categories of interest the
converse is also true.

Example 2.2 For instance if f : X −→ Y is an epimorphism in the category of sets,
consider g : Y −→ {0, 1} the characteristic function of f (X) ( i.e. g( f (x)) = 1, for
every x ∈ X and g(y) = 0 for every y ∈ Y \ f (X)) and let h : Y −→ {0, 1} be the
constant function such that h(y) = 1 for every y ∈ Y . Then g ◦ f = h ◦ f , hence
g = h and f (X) = Y.

There are examples of concrete categories for which epimorphisms are not neces-
sarily surjective maps as we are going to show.

Denote by Rng the category of associative unital rings. A ring homomorphism
f : R −→ U between two rings R,U is a ring epimorphism if it is an epimorphism
in the category Rng. That is, for every ring V and every ring homomorphisms
v,w : U −→ V , v ◦ f = w ◦ f implies v = w.

Example 2.3 (1) If I is a two sided ideal of a ring R, then the natural quotient
morphism q : R −→ R/I is a surjective map, hence a ring epimorphism.

(2) If R is a commutative ring, S a multiplicative subset of R, consider the ring
of fractions RS = R[S−1].

Recall that RS = {[ rs
] | r ∈ R, s ∈ S} where [

r
s

]
is the equivalence class of the

fraction r
s under the equivalence relation defined by r

s ∼ r ′
s ′ if and only if there is

t ∈ S such that t (rs ′ − sr ′) = 0. The ring of fractions RS becomes a ring with the
obvious ring operations (see [2, Ch 3]).
The natural localisation map ψ : R −→ RS, ψ(r) = [

r
1

]
, is a ring epimorphism.

Indeed, if U is a ring and g, h : RS −→ U are two ring homomorphisms such that
g ◦ ψ = h ◦ ψ , then for every element r ∈ R and every s ∈ S, we have g(

[
r
s

]
) =

g(
[
r
1

]
)g(

[
s
1

]−1
), where g(

[
s
1

]−1
) is the inverse in U of g(

[
s
1

]
) = h(

[
s
1

]
), hence

g(
[
s
1

]−1
) = h(

[
s
1

]−1
). Thus g(

[
r
s

]
) = h(

[
r
1

]
)h(

[
s
1

]−1
) = h(

[
r
s

]
). That is g = h.

(3) The above example shows that there are many ring epimorphisms which are
not surjective. In fact, if S is a multiplicative subset of a commutative ring R such that
the elements of S are not all invertible in R, then the localisation map R −→ RS is a
non-surjective ring epimorphism. This applies in particular to the inclusion Z ↪→ Q.

What do epimorphisms of rings look like? There is a list of equivalent condi-
tions for a ring homomorphism to be an epimorphism which allow to have a better
understanding of the notion.

We first note the following. Let f : R −→ U be a ring homomorphism and let
M be a left U -module. Then M is also a left R-module via the scalar multiplication
r x = f (r)x for every x ∈ M and every r ∈ R. Similarly, a right U -module inherits
the structure of right R-module via f .
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In this way we can define a functor

f∗ : U -Mod −→ R-Mod; UM �→ f∗(UM)

where f∗(UM) is M viewed as a left R-module via f . The functor f∗ is called the
restriction functor. Similarly, for right U -modules and right R-modules.

In particular, the ring U is a left and right R-module and even an R-R-bimodule.
Consider the tensor product U ⊗R U which becomes an R-R bimodule and the

morphisms
i1 : U −→ U ⊗R U, u �→ u ⊗ 1,

i2 : U −→ U ⊗R U, u �→ 1 ⊗ u,

p : U ⊗R U −→ U, u ⊗ v �→ uv,

for every u, v ∈ U .

Proposition 2.4 Let f : R −→ U be a ring homomorphism. The following condi-
tions are equivalent:

1. f is a ring epimorphism.
2. For every U-U-bimodule M,

{x ∈ M | xr = r x,∀r ∈ R} = {x ∈ M | xu = ux,∀u ∈ U }.

3. i1 = i2.
4. The restriction functor f∗ is fully faithful.
5. p : U ⊗R U −→ U is an isomorphism as U-U-bimodules.

Proof (1) ⇒ (2) Let M be anU -U -bimodule. Consider the trivial extension ofU by
M , i.e. the ring

U ∝ M =
{(

u x
0 u

)
| u ∈ U, x ∈ M

}
,

with matrix operations. Fix x ∈ M such that xr = r x , for every r ∈ R and define
two ring homomorphisms g, h : U −→ U ∝ M by

g(u) =
(
u 0
0 u

)
, h(u) =

(
u xu − ux
0 u

)
, for every u ∈ U.

Then g f (r) = h( f (r)) for every r ∈ R.
By (1) g = h, that is xu = ux for every u ∈ U .
Conversely, fixing x ∈ M , if xu = ux for every u ∈ U , then xr = r x for every

r ∈ R by the way in which the R-module structure of M is defined via f .
(2) ⇒ (3) Let 1 ⊗R 1 = x ∈ U ⊗R U . Then, for every r ∈ R, xr = 1 ⊗R r =

r ⊗R 1 = r x . Applying (2) to theU -U -bimoduleU ⊗R U we conclude that xu = ux
for every u ∈ U , hence (1 ⊗R 1)u = 1 ⊗R u = u(1 ⊗R 1) = u ⊗R 1.
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(3) ⇒ (4) f∗ fully faithful means that for every leftU -modules M and N there is
an isomorphism of abelian groups

HomU (M, N )
φ−→ HomR( f∗(M), f∗(M)).

The morphism φ is easily seen to be injective and φ is surjective if every R-linear
morphism between left U -modules is also U -linear. Let M , N be left U -modules
and let α : M −→ N be an R-linear morphism. Fix x ∈ M , u, v ∈ U and define
β : U ⊗R U −→ N byβ(u ⊗R v) = uα(vx). It is easy to check thatβ iswell defined
since α is R-linear. By condition (3), β(1 ⊗R u) = β(u ⊗R 1)which yields α(ux) =
uα(x), hence α is U -linear.

(4) ⇒ (1) Let V be a ring and g, h : U −→ V be ring homomorphisms such
that g ◦ f = h ◦ f . Then V can be viewed as a left U -module via h, that is for
every v ∈ V and u ∈ U one has uv = h(u)v; but V can also be viewed as a left
R-module via g ◦ f , that is rv = g( f (r))v, for every v ∈ V and every r ∈ R. Then
g is R-linear; indeed g(ru) = g( f (r)u) = g( f (r))g(u) = rg(u). By condition (4)
g is also U -linear, hence g(u) = ug(1) = uh(1) and by the left U -module structure
on V via h we have uh(1) = h(u)h(1) = h(u). We conclude that g = h.

(4) ⇒ (5) The morphism i2 is R-linear. Indeed, i2(ru) = 1 ⊗R ru = r ⊗R u =
r(1 ⊗R u). By assumption f∗ is fully faithful, thus i2 is alsoU -linear, that is i2(uv) =
1 ⊗R uv = ui2(v) = u(1 ⊗R v) = u ⊗R v. We conclude that i2 is the inverse of p.

(5) ⇒ (3) By definition p(u ⊗R 1) = u = p(1 ⊗R u). Thus u ⊗R 1 = 1 ⊗R u. ��
Remark 2.5 Clearly, the equivalent conditions in Proposition 2.4 can be stated and
proved for right R-modules and right U -modules.

Definition 2.6 A ring epimorphism f : R −→ U between associative rings R,U is
said to be a homological ring epimorphism if TorRi (U,U ) = 0 for every i ≥ 1 and
it is called a left (right) flat ring epimorphism if U is flat as a left (right) R-module.

Example 2.7 Let R be a commutative ring and RS = R[S−1] be the localisation of
R at a multiplicative subset S of R. Then the localisation map ψ : R −→ RS is a flat
ring epimorphism (see [2, Proposition 3.3]).

In particular, if p is a prime ideal of R and Rp = R[(R \ p)−1] the localisation
map R −→ Rp is a flat ring epimorphism.

Thus flat ring epimorphisms can be viewed as generalisations of localisations of
commutative rings at multiplicative sets. As mentioned in the Introduction, Gabriel
topologies allow to generalise to the non-commutative setting the notion of localisa-
tion andflat ring epimorphisms correspond to localisationswith respect to a particular
type of Gabriel topologies as we will explain next.
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3 Gabriel Topologies, Torsion Pairs and the Ring of
Quotients

A topological ring is a ring with a topology for which the ring operations are con-
tinuous functions. A topological ring is right linearly topological if it has a basis of
neighbourhoods of zero consisting of right ideals.

A set F of right ideals of a ring R is the collection of open right ideals of the
linearly topological ring R if and only if it satisfies the following conditions:

• (T1) If I ∈ F and I ⊆ J , then J ∈ F .
• (T2) If I, J ∈ F , then I ∩ J ∈ F .
• (T3) If I ∈ F and r ∈ R then I : r = {s ∈ R | rs ∈ I } belongs to F .

The first two conditions just say that F is a filter of right ideals of R and if R is
commutative I : r contains I , thus condition (T3) follows by (T1).

Definition 3.1 A (right) Gabriel topology on R, denoted by G, is a filter of open
right ideals of a linearly topological ring R (thus satisfying (T1), (T2), (T3) ) such
that the following additional condition holds.

• (T4) If I is a right ideal of R and there exists J ∈ G such that I : r ∈ G for every
r ∈ J , then I ∈ G.

Example 3.2 (1) If R is a commutative ring and S is a multiplicative subset of R,
then G = {J ≤ R | S ∩ J �= ∅} is a Gabriel topology.

Indeed, (T1) is obvious and (T2) follows since for s, t ∈ S, st ∈ S. As for (T4),
if J ∈ G and I is an ideal of R such that I : r ∈ G for every r ∈ J , let s ∈ J ∩ S.
Then there exist an element t ∈ S such that t ∈ I : s, so st ∈ I and thus I ∈ G.

(2) If R is a commutative ring and I is a finitely generated ideal of R, then
G = {J ≤ R | J ⊇ I n, ∃n ∈ N} is a Gabriel topology.

Indeed, (T1), (T2) and (T3) are obvious. Let J ∈ G and let L ≤ R be such that
L : r ∈ G for every r ∈ J . There is n0 ∈ N such that J ≥ I n0 . Let (a1, a2, , . . . , ak)
be a set of generators of I n0 . For every i = 1, 2, . . . , k there is ni ∈ N such that
L : ai ≥ I ni . Then there is m ∈ N such that L ≥ I m (take e.g. m = n0n where n is
the supremum of the ni ’s).

Definition 3.3 A right R-module over a topological ring R is called discrete if the
scalarmultiplicationM × R → M is continuouswith respect to the discrete topology
on M and the topology on R, that is M is a topological R-module in the discrete
topology. If R is a right linearly topological ring and F is the filter of open right
ideals, a discrete right R-module M is called F -discrete. This amounts to have that
for every x ∈ M the annihilator ideal of x , AnnRx = {r ∈ R | xr = 0}, belongs to
F .

Recall that a class C of R-modules is closed under extensions if for every short
exact sequence 0 → A → B → C → 0 with A,C ∈ C, also B is in C.
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Proposition 3.4 Let F be a set of right ideals of R satisfying (T1), (T2) and (T3).
Then F satisfies (T4) if and only if the class of F -discrete modules is closed under
extensions.

Proof Assume that F satisfies (T4).
Let 0 → A → B → C → 0 be a short exact sequence of R-modules with A and
C F -discrete modules. W.l.o.g. we may assume that A ≤ B and C = B/A. Let
x ∈ B and let I = AnnRx . If x ∈ A, then I ∈ F . If x /∈ A consider the element
x + A ∈ C . The annihilator AnnR(x + A) = J is in F and x J ⊆ A. Thus, for every
r ∈ J , xr ∈ A and the annihilator AnnRxr = Jr of the element xr is in F . We have
I : r ⊇ Jr , so I ∈ F by (T4), hence B is F -discrete.

Conversely, assume that the class ofF -discretemodules is closedunder extensions
and let I ≤ R, J ∈ F be such that I : r ∈ F for every r ∈ J . We must show that
I ∈ F . Consider the short exact sequence

0 → J/(I ∩ J ) ∼= (I + J )/I → R/I → R/(I + J ) → 0.

We show that J/(I ∩ J ) and R/(I + J ) are F -discrete modules.
I + J ∈ F , since (I + J ) ≥ J and J ∈ F . The annihilator of an element a + (I +
J ) ∈ R/(I + J ) is (I + J ) : awhich is inF by (T3), hence R/(I + J ) isF -discrete.
If r ∈ J , then AnnR(r + (I ∩ J )) = I : r which is assumed to be in F . By assump-
tion R/I is F -discrete, hence I = AnnR(1 + I ) is in F . ��

For a right Gabriel topology G, denote by TG the class of G-discrete modules.

Lemma 3.5 Let G be a right Gabriel topology. The class TG of G-discrete modules
is closed under submodules, direct sums, epimorphic images, and extensions.

Proof The closure under submodules follows immediately by the definition. If f :
M −→ N is an R-linear map, then AnnRx ≤ AnnR f (x) for every x ∈ M , thus the
closure under epimorphic images follows by (T1). The annihilator of an element in a
direct sum⊕i Mi of modules Mi contains the finite intersection of the annihilators of
its finitely many non-zero components, hence the closure under direct sums follows
by (T1) and (T2). The closure under extensions follows by Proposition 3.4. ��

The above lemma actually says that TG is a hereditary torsion class as we are
going to explain next. For a reference and more details on the notion of torsion pairs
in module categories see [15, Ch. VI].

Definition 3.6 A torsion pair (T ,F ) in Mod-R is a pair of classes of modules
which are mutually orthogonal with respect to the Hom-functor and maximal with
respect to this property. That is,

T = {T ∈ Mod-R | HomR(T, F) = 0 for every F ∈ F },

F = {F ∈ Mod-R | HomR(T, F) = 0 for every T ∈ T }.
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The class T is called a torsion class and F a torsion-free class.
A torsion pair (T ,F ) is called hereditary if T is also closed under submodules

(which is equivalent to F being closed under injective envelopes).

We show that a torsion class is characterised by its closure properties.

Proposition 3.7 A class T of right R-modules is a torsion class if and only if it is
closed under direct sums, epimorphic images and extensions.

Proof The necessary condition follows by the properties of the Hom-functor and the
definition of a torsion class. For the sufficiency, assume that a class T has the stated
closure properties. Let

F = T⊥0 = {F ∈ Mod-R | HomR(T, F) = 0,∀T ∈ T } and

T ′ =⊥0 F = {X ∈ Mod-R | HomR(X, F) = 0,∀F ∈ F }

we show that T ′ = T .
For every X ∈ Mod-R let H(X) = {Z ≤ X | Z ∈ T } be the class of the sub-

modules of X belonging to T . Consider the submodule t (X) of X defined as
t (X) = ∑

Z∈H(X)

Z . Then t (X) ∈ T since it is the image in X of the natural map

from the direct sum
⊕

Z∈H(X)

Z to X . Clearly t (X) is the maximal submodule of X

contained in T .
We show now that for every X ∈ T ′, the module X/t (X) belongs to F . Indeed, if

T ∈ T and f : T → X/t (X) is a nonzero morphism, let 0 �= Y/t (X) be the nonzero
image of f . Then Y/t (X) ∈ T , since it is an epimorphic image of T ∈ T and from
the short exact sequence

0 → t (X) → Y → Y/t (X) → 0

and the closure under extensions of T we conclude that Y ∈ T , that is Y = t (X)

contradicting the maximality of t (X). Thus f = 0 and X/t (X) ∈ F . The definition
of T ′ yields that X = t (X), that is X ∈ T . ��
Remark 3.8 Let (T ,F ) be a torsion pair. For every R-module M there is a short
exact sequence

0 → T → M → M/T → 0,

with T ∈ T and M/T ∈ F . T is the torsion submodule of M , that is

T = t (M) =
∑

{Z ≤ M | Z ∈ T }.

Example 3.9 (1) Let R be a commutative ring and S a multiplicative subset of R.
Let T be the class of the R-modules X such that for every x ∈ X there is an element
s ∈ S satisfying xs = 0. Note that T coincides with the class of R-modules X such
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that X ⊗R RS = 0. LetF be the class of R-modules Y such that for every 0 �= y ∈ Y ,
ys �= 0 for every s ∈ S. Then (T ,F ) is a hereditary torsion pair.

(2) If S is the set of regular elements r of R, that is the nonzero divisors (i.e. for
every a ∈ R, ra = 0 or ar = 0 implies a = 0) the localisation RS is denoted by Q
and called the total quotient ring of R. In case R is a commutative domain, then Q is
the quotient field of R. An R-module is simply called a torsion module if it belongs
to the torsion class T in the hereditary torsion pair described in example (1) above.

Theorem 3.10 Let R be a ring. There is a bijective correspondence:

{
right Gabriel topologies

on R

}
�

{
hereditary torsion
pairs in Mod-R

}

�

.

1. If G is a right Gabriel topology �(G) = (TG,FG) where TG is the class of the
G-discrete modules and

FG = {YR ∈ Mod-R | HomR(R/J,Y ) = 0,∀J ∈ G}.

2. If (T ,F ) is a hereditary torsion pair, �((T ,F )) = {JR ≤ R | R/J ∈ T }.
Proof (1) For every Gabriel topology G, the class of G-discrete modules is a hered-
itary torsion class by Lemma 3.5 and Proposition 3.7. A module T ∈ TG is an epi-
morphic image of a direct sum of copies of modules R/J , for some J ∈ G. Hence
the description of the torsion-free class follows.

(2) Let (T ,F ) be a hereditary torsion pair and G = {JR ≤ R | R/J ∈ T }. The
closure of T under epimorphic images implies that G satisfies condition (T1). If
I, J are in G, then R/I ⊕ R/J ∈ T and AnnR(1 + I, 1 + J ) = I ∩ J ; hence (T2)
is satisfied byG. As for (T3), let J ∈ G and r ∈ R. Then J : r = {s ∈ R | rs ∈ J } =
AnnR(r + J ). Since T is hereditary, the cyclic module (r + J )R belongs to T , thus
J : r ∈ G. At this point (T4) follows by Proposition 3.4 since T is closed under
extensions.

If G is a Gabriel topology, it is clear by construction that � ◦ �(G) = G, since
J ∈ G if and only if R/J ∈ TG.

If (T ,F ) is a hereditary torsion pair andG = �((T ,F )), then a module N ∈ TG
is an epimorphic image of a direct sum of cyclic modules of the form R/J for
some J ∈ G, hence N ∈ T . Conversely, if M ∈ T , then every cyclic submodule
x R ∼= R/J ofM is inT , sinceT is hereditary, thus J ∈ G and consequentlyM ∈ TG.
We conclude that � ◦ �((T ,F )) = (T ,F ). ��
Remark 3.11 Note that the hereditary torsion pair defined in Examples 3.9 (1) cor-
responds under the bijection of Theorem 3.10 to the Gabriel topology defined in
Examples 3.2 (1).
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If G is a Gabriel topology with corresponding torsion pair (TG,FG), a G-discrete
module is also called G-torsion and a module in FG is called G-torsion-free.

A Gabriel topology allows to generalise localisations of commutative rings to the
case of non-commutative rings and as already mentioned, we will see that flat ring
epimorphisms are localizations of particular types of Gabriel topologies.

In this section we state some notions and results on rings andmodules of quotients
with respect to a Gabriel topology. For their proofs we refer to [15, Chapter IX].

On a Gabriel topology G consider the partial order given by inclusion and for an
arbitrary R-module N consider the direct system

{HomR(J, N ); f I J }J∈G, I≤J

where for every I ≤ J the morphism

f I J : HomR(J, N ) −→ HomR(I, N )

is the restriction map.
Given a module M , the module of quotients with respect to a Gabriel topology G

is defined by:
MG := lim−→

J∈G
HomR(J, M/tG(M))

where tG(M) is the torsion submodule of M in the torsion pair (TG,FG) correspond-
ing to G under Theorem 3.10.

Furthermore, there is a natural homomorphism

ψM : M ∼= HomR(R, M) −→ MG

For each R-module M , both the kernel and cokernel of the map ψM are G-torsion
R-modules.

If M = R, then
RG := lim−→

J∈G
HomR(J, R/tG(R))

is a ring and is called the ring of quotients of R with respect to the Gabriel topology
G and the morphism ψR : R −→ RG is a ring homomorphism. Moreover, for each
R-module M the module MG is both an R-module and an RG-module.

A right R-module is G-closed if the natural homomorphisms

M ∼= HomR(R, M) −→ HomR(J, M)

are all isomorphisms for each J ∈ G.
This amounts to saying that HomR(R/J, M) = 0 for every J ∈ G (i.e. M is
G-torsion-free) and Ext1R(R/J, M) = 0 for every J ∈ G (i.e. M is G-injective).
Moreover, if M is G-closed then M is isomorphic to its module of quotients MG
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via ψM . Conversely, every R-module of the form MG is G-closed. The G-closed
modules form a full subcategory of both Mod-R and Mod-RG. In fact, every R-
linear morphism of G-closed modules is also RG-linear.

Remark 3.12 In general the natural ring homomorphism ψR : R −→ RG is not a
ring epimorphism, but in some important cases ψR is even a flat ring epimorphism.

The following two results characterise when a ring homomorphism is a flat ring
epimorphism and describe the associated Gabriel topology.

Theorem 3.13 [15, Theorem XI.2.1] Suppose f : R −→ U is a ring homomor-
phism. Then the following are equivalent.

(i) f is an epimorphism of rings which makes U into a flat left R-module.
(ii) The family G of right ideals J such that JU = U is a Gabriel topology, and the

natural ring homomorphism ψ : R −→ RG is equivalent to f : R −→ U. That
is, there is a ring isomorphism σ : U −→ RG such that σ ◦ f : R −→ RG is the
natural homomorphism ψR : R −→ RG.

Proposition 3.14 [15, Proposition XI.3.4] Let G be a right Gabriel topology. Then
the following conditions are equivalent.

1. ψR : R −→ RG is a flat ring epimorphism and G = {J ≤ R | J RG = RG}.
2. RG is G-divisible, i.e. J RG = RG for every J ∈ G.
3. For every right R-module M,Ker(M → M ⊗R RG) is theG-torsion submodule

of M.

Definition 3.15 A right Gabriel topology satisfying the equivalent conditions of
Proposition 3.14 is called a perfect Gabriel topology.

In particular, the right Gabriel topology G associated to a flat ring epimor-
phism R

u−→ U is finitely generated and the G-torsion submodule tG(M) of a right
R-module M is the kernel of the natural homomorphism M → M ⊗R U . Addition-
ally, K = U/u(R) is G-torsion, hence HomR(K ,U ) = 0.

4 Comodules and Contramodules

Wefirst introduce the definitions of “comodules and contramodules” via ring epimor-
phisms and in the next subsection we will explain how the terminology is borrowed
from the coalgebras setting.

From now on f : R −→ U will always denote a ring epimorphism of associative
rings.

Recall from Sect. 2 that the functor of restriction of scalars

f∗ : U -Mod → R-Mod
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is fully faithful. Similar assertions hold for the categories of right modules.
We will say that a certain R-module “is a U -module” if it belongs to the image

of the functor f∗.
We will use the notation U/R for the cokernel of the map f : R −→ U , so U/R

is an R-R-bimodule.

Definition 4.1 1. A left R-module M is called a left U-comodule if

U ⊗R M = 0 = TorR1 (U, M).

Similarly, a right R-module N is said to be a right U -comodule if

N ⊗R U = 0 = TorR1 (N ,U ).

2. A left (right) R-module C is called a left (right) U-contramodule if

HomR(U,C) = 0 = Ext1R(U,C).

Proposition 4.2 [5, dual of Proposition 1.1] LetC ⊂ R-Mod be the class of all left
U-comodules. Then:

1. C is closed under direct sums, cokernels ofmorphisms, and extensions in R-Mod.
2. If f. dimR U ≤ 1 as a right R-module, then C is closed also under kernels of

morphisms.

Proof (1) The closure under direct sums and extensions of leftU -comodules follows
by the properties of the tensor product functor and Tor functor.

Let g : N → L be a morphism between left U -comodules and consider the asso-
ciated short exact sequences

(a) 0 → Ker g → N → Im g → 0; (b) 0 → Im g → L → Coker g → 0

Applying the right exact functor U ⊗R − to sequence (b) we obtain

0 = U ⊗R L → U ⊗R Coker g → 0,

so U ⊗R Coker g = 0. From sequence (a) we get

0 = U ⊗R N → U ⊗R Im g → 0,

hence U ⊗R Im g = 0. The long exact sequence associated to (b) yields

0 = TorR1 (U, L) → TorR1 (U,Coker g) → U ⊗R Im g = 0.

Thus also TorR1 (U,Coker g) = 0 and Coker g is a left U -comodule.
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(2) The assumption f. dimR U ≤ 1 is equivalent to TorR2 (U,−) = 0. Let g : N →
L be a morphism between left U -comodules and consider the exact sequences as in
part (1). From sequence (b) we get

0 = TorR2 (U,Coker g) → TorR1 (U, Im g) → TorR1 (U, L) = 0.

So TorR1 (U, Im g) = 0 and sequence (a) gives

0 = TorR1 (U, Im g) → U ⊗R Ker g → U ⊗R N = 0

and
TorR2 (U, Im g) = 0 → TorR1 (U,Ker g) → TorR1 (U, N ) = 0.

We conclude that Ker g is a left U -comodule. ��
The dual situation is expressed by the following.

Proposition 4.3 [5, Proposition1.1]LetC ⊂ R-Mod be the class of all leftU-contramodules.
Then:

1. C is closed under products, kernels of morphisms, and extensions in R-Mod.
2. If p. dimR U ≤ 1 as a left R-module, then C is closed also under cokernels of

morphisms.

Proof (1) The closure under direct products and extensions follows by the closure
properties of the functors HomR and Ext1R .

Let g : C → D be a morphism between left U -contramodules. The proof that
Ker g ∈ C is analogous to the proof of Proposition 4.2 (1) applying the functors
HomR and Ext1R to the short exact sequences

0 → Ker g → C → Im g → 0; 0 → Im g → D → Coker g → 0

(2) p. dimR U ≤ 1 is equivalent to Ext2R(U,−) = 0. Thus the proof follows sim-
ilarly to the proof of Proposition 4.2 (2). ��

4.1 Coalgebras, Comodules, Contramodules

We follow the presentation developed in [13, Section1.1].
Let k be a field. Recall that a k-algebra A is a k-vector space with k-linear maps

A ⊗k A
m−→ A, k

e−→ A,

m is the multiplication map and e the unit satisfying associativity, i.e.:
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m ◦ (m ⊗ 1A) = m ◦ (1A ⊗ m) : A ⊗k A ⊗k A
m⊗1A

1A⊗m

A ⊗k A
m

A

and unitality, i.e.::

m ◦ (e ⊗ 1A) = 1A = m ◦ (1A ⊗ e) : A
e⊗1A

1A⊗e

A ⊗k A
m

A

A left A-module is a k-vector space with a k-linear map (scalar multiplication)

A ⊗k M
λ−→ M

satisfying associativity, i.e.:

λ ◦ (m ⊗k 1M) = λ ◦ (1A ⊗k λ), A ⊗k A ⊗k M
m⊗1M

1A⊗λ

A ⊗k M
λ

M

and unitality, i.e.:

λ ◦ (e ⊗ 1M) = 1M , k ⊗k M ∼= M
e⊗1M−→ A ⊗k M

λ→ M

Dualising the above diagrams we get the notions of coalgebras and comodules.

Definition 4.4 A coalgebra C is a k-vector space with k linear maps

C
μ−→ C ⊗k C, C

ε−→ k,

μ the comultiplication and ε the counit satisfying coassociativity, i.e.:

(1C ⊗ μ) ◦ μ = (μ ⊗ 1C) ◦ μ : C
μ

C ⊗k C
μ⊗1C

1C⊗μ

C ⊗k C ⊗k C

and counitality, i.e.:

(ε ⊗ 1C) ◦ μ = 1C = (1C ⊗ ε) ◦ μ : C
μ

C ⊗k C
ε⊗1C

1C⊗ε

C
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Definition 4.5 A left C-comodule over a coalgebra C is a k-vector space N with a
k-linear map (coaction map)

N
ν−→ C ⊗k N

satisfying coassociativity:

(1C ⊗ ν) ◦ ν = (μ ⊗ 1N ) ◦ ν : N
ν

C ⊗k N
μ⊗1N

1C⊗ν

C ⊗k C ⊗k N

and counitality:

(ε ⊗ 1N ) ◦ ν = 1N : N
ν−→ C ⊗k N

ε⊗1N−→ N ∼= k ⊗k N .

A right C-comodule is defined as a k-vector space with a k-linear map

N
ν−→ N ⊗k C

satisfying the corresponding coassociativity and counitality conditions.

Note that having a left A-module M with a scalar multiplication λ is the same as
having a k-linear map

M
p−→ Homk(A, M) x �→ ẋ : a −→ ax = λ(a ⊗R x)

which satisfies the associativity:
Homk(m, M) ◦ p = Hom(A, p) ◦ p (via the adjunction isomorphism):

M
p

Homk(A, M)
Homk (m,M)

Hom(A,p)

Homk(A ⊗k A, M)

∼=

Homk(A,Homk(A, M))

and unitality:
Hom(e, M) ◦ p = 1M :

M
p−→ Homk(A, M)

Hom(e,M)−→ M = Homk(k, M).

The notion of a leftC-contramodule over a coalgebraC is obtained by dualizing
the above description of a left A-module over a k-algebra A.

Definition 4.6 A left C-contramodule over a coalgebra C is a k-vector space B
with a k-linear map (contraaction map)
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Homk(C, B)
πB−→ B

satisfying the contraassociativity which means:
πB ◦ Homk(μ, B) = πB ◦ Homk(C, πB) (via the adjunction isomorphism):

Homk(C ⊗k C, B)
Homk (μ,B)

∼=

Homk(C, B)
πB

B

Homk(C,Homk(C, B))

Hom(C,πB )

and contraunitality meaning:
πB ◦ Homk(ε, B) = 1B :

Homk(k, B) ∼= B
Homk (ε,B)−→ Homk(C, B)

πB−→ B.

An easy way to construct a left C-contramodule is via a right C-comodule.
Let M be a right C-comodule with M

νM−→ M ⊗k C the right coaction map.
Let V be a k-vector space and let B = Homk(M, V ). Then B is a left

C-contramodule with left contraaction map πB defined by the diagram:

Homk(C,Homk(M, V ))
πB

∼=

Homk(M, V ) = B

=

Homk(C ⊗k M, V )
Hom(νM ,V )

Homk(M, V ) = B

.

Remark 4.7 ([13, Sections1.3–1.4]) The k-duality functor identifies the opposite of
the category of vector spaces with the category of linearly compact vector spaces.
Thus, up to inverting the arrows, every coalgebraC can be thought as a linearly com-
pact topological algebra C∗, called the dual topological algebra. Then the category
of left C-comodules is the full subcategory of discrete left C∗-modules.

We illustrate now a particular example of a coalgebraC, its associated dual topo-
logical algebra and describe the categories of C-comodules and C-contramodules.

Example of a coalgebra 4.8 [13, Section1.3] Let k be a field. Let C be a k-vector
space with countable basis denoted by the symbols 1∗, x∗, (x2)∗ . . . (xn)∗ . . . with
comultiplication and counit given by

C
μ−→ C ⊗k C; (xn)∗ �−→

∑

i+ j=n

(xi )∗ ⊗ (x j )∗

C
ε−→ k; 1∗ �−→ 1, (xn)∗ �−→ 0, ∀n ≥ 1.
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The dual topological algebra C∗ is isomorphic to the ring of formal power series
k[[x]].

By Remark 4.7 a C-comodule is a torsion k[[x]]-module.
Indeed a C-comodule M is a k-vector space with a locally nilpotent operator i.e. a
k-linear map x : M → M such that for every z ∈ M there exists m ∈ N satisfying
xm(z) = 0 so that M becomes a C-comodule via

νM : M −→ C ⊗ M; z �−→
∑

n≥0

(xn)∗ ⊗ xn(z)

A C-contramodule B is the datum of a k-vector space with a k-linear map
Homk(C, B)

πB−→ B satisfying the contraassociativity and the contraunitality which
in our case means that for every sequence b0, b1, . . . , bn . . . of elements of B, there
is an element b ∈ B written formally as

∑

n≥0
xnbn satisfying the axiom of linearity:

∑

n≥0

xn(αbn + βcn) = α
∑

n≥0

xnbn + β
∑

n≥0

xncn; ∀α, β ∈ k, bn, cn ∈ B,

the axiom of unitality:

∑

n≥0

xnbn = b0, if b1 = b2 = · · · = 0

and the axiom of contraassociativity:

∑

i≥0

xi
∑

j≥0

x jbi j =
∑

n≥0

xn
∑

i+ j=n

bi j , ∀bi j ∈ B, i, j ∈ N.

Thus, a C-contramodule B is determined by a single linear operator x : B → B
such that x(b) = 1 · 0 + x · b + x2 · 0 + x3 · 0 . . . (see [13, Section1.6] or [11,
Section3]).

Now we justify the definitions of U -comodules and U -contramodules given
above by exhibiting an example of a ring epimorphism f : R → U such that the
U -comodules and U -contramodules correspond exactly to the C-comodules and
C-contramodules for the coalgebra described in Example 4.8.

Example 4.9 [13, Section1.3] Let R = k[x] be the ring of polynomials in one vari-
able over a field k, let U = k[x, x−1] be the ring of Laurent polynomials, and let
f : R −→ U be the natural inclusion. So U is obtained from R by inverting the
single element x .

Let C be the coalgebra constructed in Example 4.8.
Since U is a flat R-module, and theC-comodules are the torsion k[[x]]-modules,

one sees that the full subcategory of U-comodules in R-Mod is equivalent to the
category of C-comodules.
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An application of [11, Theorem 3.3] and the description of C-contramodules
illustrated in Example 4.8 yields that the full subcategory of U-contramodules in
R-Mod is equivalent to the category of C-contramodules.

5 First Matlis Category Equivalence

In this section we present some results obtained by using the notion of ring epimor-
phism as well as the notions of comodules and contramodules.

We show that these notions are useful tools allowing to achieve relevant results
like for instance, a generalisation of classical equivalences between subcategories of
the module category over commutative rings.

Indeed, by Theorem 5.6 we extend the first Matlis equivalence to a much more
general setting and under much weaker assumptions ([3]).

We borrow the terminology going back to Harrison [6] and Matlis [10].

Definition 5.1 Let f : R −→ U be a ring epimorphism.

1. A left R-module A isU-torsion-free if it is an R-submodule of a leftU -module,

or equivalently, if the morphism A
1A⊗ f−→ A ⊗R U is injective.

2. A left R-module B is U-divisible if it is a quotient module of a left U -module,

or equivalently, if the map HomR(U, B)
Hom( f,B)−→ B is surjective.

Remark 5.2 It is easy to check that the class of all U -torsion-free left R-modules is
closed under subobjects, direct sums, and products in R-Mod. Any left R-module
A has a unique maximal U -torsion-free quotient module, which is the image of the

morphism A
1A⊗ f−→ A ⊗R U .

The class of all U -divisible left R-modules is closed under quotients, direct sums,
and products. Any left R-module B has a unique maximal U -divisible submodule,

which is the image of the morphism HomR(U, B)
Hom( f,B)−→ B.

Definition 5.3 1. A left R-module A is said to be U-torsion if its maximal
U -torsion-free quotient is zero, or equivalently, if A ⊗R U = 0.

2. A left R-module B is said to beU-reduced if its maximalU -divisible submodule
is zero, or equivalently, if HomR(U, B) = 0.

We first state a useful homological result which has interest in its own and which
will be used later on.

Lemma 5.4 1. For any associative rings R and S, left R-module L, S-R-bimodule
E, and left S-module M such that TorR1 (E, L) = 0, there is a natural injective
map of abelian groups

Ext1R(L ,HomS(E, M)) ↪−→ Ext1S(E ⊗R L , M).
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2. Dually, for any associative rings R and S, right R-module B, R-S-bimodule
E, and left S-module C such that TorR1 (B, E) = 0, there is a natural surjective
map of abelian groups

TorS1 (B ⊗R E, C) � TorR1 (B, E ⊗S C).

Proof (1) Let (a) 0 −→ H −→ P −→ L −→ 0 be a short exact sequence in
R-Mod with P a projective left R-module. Apply the functor E ⊗R − to sequence
(a) obtaining

(b) 0 = TorR1 (E, L) −→ E ⊗R H −→ E ⊗R P −→ E ⊗R L −→ 0.

Apply the functor HomR(−,HomS(E, M)) to sequence (a) and the functor
HomS(−, M) to sequence (b) obtaining a diagram

HomR(P,HomS(E,M))

∼=

HomR(H,HomS(E,M))

∼=

Ext1R(L,HomS(E,M))

α

0

HomR(E ⊗R P, M) HomR(E ⊗ H, M) Ext1R(E⊗RL,M) Ext1R(E⊗RP,M)

where the left and central vertical arrows are the natural isomorphisms for the
adjoint pair (E ⊗R −,HomE (E,−)) and the morphism α exists since Ext1R(L ,

HomS(E, M)) is a cokernel.
By diagram chasing the commutativity of the diagram yields that α is injective.

The details are left to the reader.
For the dual statement (2) start with a projective presentation

(c) 0 −→ H −→ P −→ B −→ 0

of B in Mod-R with P a projective right R-module. Apply the functor − ⊗R E to
sequence (c) obtaining

(d) TorR1 (B, E) = 0 −→ H ⊗R E −→ P ⊗R E −→ B ⊗R E −→ 0.

Apply the functor − ⊗S C to sequence (d) and the functor − ⊗R (E ⊗S C) to
sequence (c) obtaining a diagram

TorR1 (B ⊗R E,C)

β

(H ⊗R E) ⊗S C

∼=

(P ⊗R E) ⊗S C

∼=

(B ⊗R E) ⊗S C

∼=

0 TorR1 (B, E ⊗S C) H ⊗R (E ⊗S C) P ⊗R (E ⊗S C) B ⊗R (E ⊗S C)

where the morphism β exists since TorR1 (B, E ⊗S C) is a kernel.
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By diagram chasing the commutativity of the diagram yields that β is
surjective. ��
Remark 5.5 In [9] Matlis considers the flat injective ring epimorphism R → Q
where Q is the total quotient ring of a commutative ring R, that is the localisa-
tion of R at the multiplicative set of all the regular elements of R (see Examples 3.9).
In [9] a module C satisfying HomR(Q,C) = 0 = Ext1R(Q,C) is called cotorsion
and a module D such that HomR(Q, D) → D is surjective is called h-divisible.

Then in [9, Corollary 2.4] the first Matlis equivalence states that the functors
Q/R ⊗R − and HomE (Q/R,−) induce the equivalence:

{
torsion-free cotorsion

R-modules

} (Q/R)⊗R− {
h-divisible torsion

R-modules

}

HomR(Q/R,−)
,

where the notion of torsion is the classical one. That is an R-module M is torsion if
for every element x ∈ M there is a regular element r ∈ R such that r x = 0.

The following theorem relaxes as much as possible the assumptions in [9, Corol-
lary 2.4] to provide what appears to be the best possible generalisation for the first of
the two classical Matlis category equivalences (going back to Harrison’s [6, Propo-
sition 2.1]).

Theorem 5.6 Let f : R −→ U be a ring epimorphism, U/R = Coker f . Assume
TorR1 (U,U ) = 0.
Then the functors (U/R) ⊗R − andHomR(U/R,−) induce mutually inverse equiv-
alences

{
left U-torsion-free
U-contramodules

} (U/R)⊗R− {
left U-divisible
U-comodules

}

HomR(U/R,−)
.

Before proving the theoremwe state a lemma showing that the functors (U/R) ⊗R

− and HomR(U/R,−) take values in the pertinent classes.

Lemma 5.7 If TorR1 (U,U ) = 0, then

1. For any left R-module M, the left R-module HomR(U/R, M) is aU-torsion-free
U-contramodule;

2. For any left R-module C, the left R-module (U/R) ⊗R C is a U-divisible
U-comodule.

Proof (1) From the surjection U −→ U/R → 0 one sees that the left R-module
HomR(U/R, M) is U -torsion-free as an R-submodule of the left U -module
HomR(U, M).
Furthermore, since U ⊗R U = U , we have (U/R) ⊗R U = 0, and therefore
HomR(U,HomR(U/R, M)) ∼= HomR((U/R) ⊗R U, M) = 0.
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To show that Ext1R(U,HomR(U/R, M)) = 0, observe that our assumptions
U ⊗R U = U and TorR1 (U,U ) = 0 imply TorR1 (U/R,U ) = 0, because the map
(R/Ker( f )) ⊗R U −→ U ⊗R U is an isomorphism.

We apply Lemma 5.4 (1) letting L =R U and E the R-R-bimodule U/R to get
that

Ext1R(U,HomR(U/R, M)) ↪−→ Ext1R((U/R) ⊗R U, M) = 0,

hence HomR(U/R, M) is a left U -contramodule.
The proof of part (2) is dual-analogous. The left R-module (U/R) ⊗R C is

U -divisible as a quotient R-module of the left U -module U ⊗R C . Since U ⊗R

(U/R) = 0, we have U ⊗R (U/R) ⊗R C = 0.
Apply Lemma 5.4 (2) letting B = UR and E the R-R-bimodule U/R to get

0 = TorR1 (U ⊗R (U/R), C) −→ TorR1 (U, (U/R) ⊗R C) → 0.

Hence (U/R) ⊗R C is a left U -comodule. ��
Proof of Theorem 5.6 By Lemma 5.7, the functor M �−→ HomR(U/R, M) takes
U -divisible left U -comodules to U -torsion-free left U -contramodules and the func-
tor (U/R) ⊗R − takes U -torsion-free left U -contramodules to U -divisible left
U -comodules (in fact, they take arbitrary left R-modules to left R-modules from
these two classes). It remains to show that the restrictions of these functors to these
two full subcategories in R-Mod are mutually inverse equivalences between them.

First we consider the case of aU -divisible leftU -comodule M and show that the
counit morphism

ξM : (U/R) ⊗R HomR(U/R, M) −→ M

is an isomorphism.
Since M isU -divisible, we have a natural short exact sequence of left R-modules

(1) 0 −→ HomR(U/R, M) −→ HomR(U, M) −→ M −→ 0.

Since the left R-module HomR(U/R, M) is U -torsion-free, applying the functor
− ⊗R HomR(U/R, M) to the sequence R → U → U/R → 0we also have a natural
short exact sequence of left R-modules

(2) 0 → HomR(U/R, M) → U ⊗R HomR(U/R, M) → (U/R) ⊗R HomR(U/R, M) → 0.

Since M is aU -comodule, applying the functorU ⊗R − to the short exact sequence
(1) produces an isomorphism

U ⊗R HomR(U/R, M) ∼= U ⊗R HomR(U, M) ∼= HomR(U, M).
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Now the commutative diagram

HomR(U/R, M)

=

U ⊗R HomR(U/R, M)

∼=

U/R ⊗R HomR(U/R, M)

U ⊗R HomR(U, M)

∼=

HomR(U/R, M) HomR(U, M) M

shows that we have a morphism from the short exact sequence (2) to the short exact
sequence (1) that is the identity on the leftmost terms, an isomorphism on the middle
terms, and the counit morphism ξM on the rightmost terms. Therefore, the counit
morphism ξM is an isomorphism.

Next we consider a U -torsion-free left U -contramodule C and show that the unit
morphism

ηC : C −→ HomR(U/R, (U/R) ⊗R C)

is an isomorphism.
Since C is U -torsion-free, we have a natural short exact sequence of left

R-modules

(3) 0 −→ C −→ U ⊗R C −→ (U/R) ⊗R C −→ 0.

Since the left R-module (U/R) ⊗R C is U -divisible, applying the functor
HomR(−, (U/R) ⊗R C) to the sequence R → U → U/R → 0 we also have a nat-
ural short exact sequence of left R-modules

(4) 0 → HomR(U/R, (U/R) ⊗R C) → HomR(U, (U/R) ⊗R C) → (U/R) ⊗R C → 0.

Since C is a U -contramodule, applying the functor HomR(U,−) to the short exact
sequence (3) produces an isomorphism

U ⊗R C = HomR(U, U ⊗R C) ∼= HomR(U, (U/R) ⊗R C).

Now the commutative diagram

C U ⊗R C

∼=

(U/R) ⊗R C

=HomR(U, U ⊗R C)

∼=

HomR(U/R, (U/R) ⊗R C) HomR(U, (U/R) ⊗R C) (U/R) ⊗R C
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shows that we have a morphism from the short exact sequence (3) to the short exact
sequence (4) that is the identity on the rightmost terms, an isomorphismon themiddle
terms, and the unit morphism ηC on the leftmost terms. Therefore, the unit morphism
ηC is an isomorphism. ��

Further developments As noticed in the Introduction, the second Matlis category
equivalence can be constructed in case f : R → U is a ring epimorphism such that
TorR1 (U,U ) = 0 = TorR2 (U,U ) (see [3, Theorem 2.3]).

Further results in the setting of derived categories are obtained in [3] in case f is
a homological ring epimorphism. Indeed, assuming thatU has projective dimension
at most 1 as a left R-module and flat dimension at most one as a right R-module,
it is shown that there is what may be called the triangulated Matlis equivalence
in [12], that is an equivalence between the (bounded or unbounded) derived category
of complexes of R-modules withU -comodule cohomology modules and the similar
derived category of complexes of R-modules with U -contramodule cohomology
modules.

Finally, under certain additional assumptions (which hold for instance when f is
injective) the exact embedding functors of the full subcategories ofU -comodules and
U -contramodules into the category R-Mod induce fully faithful functors between
the corresponding derived categories and also an equivalence between the derived
categories of the categories of U -comodules and U -contramodules.
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