
Chapter 8
Numerical Methods for Modelling
and Simulation of Porous Materials

An Introduction Based on Finite Elements

Peter Goransson and Olivier Dazel

Abstract We introduce methods for modelling and simulation of anisotropic poroe-
lastic materials in the frequency domain. Starting from the equations formulated
by Biot, in their anisotropic form, we derive two different symmetric weak forms
together with the boundary conditions that has to be satisfied. We employ a mixed
displacement-pressure formulation and solutions are obtained by applying the finite
element method to the proposed weak forms. In order to illustrate the use of the
finite element method, we highlight some particular aspects related to simulations
where poroelastic materials are involved. These include convergence of the discre-
tised solution and boundary conditions at interfaces between poroelastic materials
and solids/fluids. Results are given for some selected application examples of foam
and plate combinations as well as a poroelastic foam with embedded inclusions.

8.1 Introduction

In flexible porous materials with open cells, the vibroacoustic energy is carried both
through an airborne path, i.e. the sound pressure waves propagating through the fluid
in the pores, and through an structure borne path, i.e. the elastic stress waves car-
ried through the solid frame of the material. These waves are strongly coupled, i.e.
they simultaneously propagate in both the fluid and the solid frame but with differ-
ent strengths and relative phase. A characteristic of this coupled wave propagation,
is that the vibroacoustic energy is dissipated and converted into heat as the wave
travels through the material. To model such a dynamic behaviour, we use the elas-
tic properties (i.e. stiffness controlled by material, topology, geometry, interfaces),
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the viscoelastic properties (i.e. solid damping controlled by material, geometry), the
acoustic properties (which are governed by the fluid medium) and the viscoacoustic
properties (i.e. fluid damping controlled by geometry, topology, interfaces).

All these dissipation mechanisms are in general functions of frequency and fur-
thermore, vary with frequency in strength and character. For a given situation, the
balance between energy dissipated through vibration of the solid frame and changes
in the acoustic pressure varies with the topological arrangement, choice of material
properties, geometrical dimensions, interfacial conditions, etc. Traditionally, and also
in the present work, the dynamic behaviour of porous materials is described in terms
of macroscopic, space averaged quantities, such as acoustic pressure, elastic stress,
solid and fluid displacements. In the current work parts of the modelling paradigm
of porous foams, known in the literature as Biot’s theory, will be briefly reviewed
from an acoustics and vibrations perspective.

Traditional modelling and simulation of poroelastic materials (PEM) in vibroa-
coustic applications have for a long time been based on the assumption of isotropic
elastic and acoustic properties, i.e. the materials possess a high degree of symmetry
in their constitutive properties. However, it is well known that, due to the manufac-
turing processes involved, real PEMs are anisotropic to a certain degree. Examples
where this holds are foamed polymers, fibrous wools etc. We will not review the
large number of different methods that are available to solve problems involving
isotropic PEM, for this we point to the recent review in [1]. Here we will instead
start from Biot’s equations in their anisotropic form, from which we derive and solve
two different symmetric weak forms together with the boundary conditions that have
to be satisfied in different configurations. Although there are a number of different
choices of variables that can be made, the weak forms are here set up in terms of
a mixed displacement-pressure formulation. The solutions are obtained by applying
the finite element (FE) method.

To illustrate different aspects of modelling in applications where PEMs are
involved, we solve some problems and results are given for selected application
examples of a foam and plate combination. We highlight particular aspects related to
convergence of the discretised solutions, boundary conditions at interfaces between
poroelastic materials and solids/fluids, as well as solutions involving periodic bound-
ary conditions and Bloch waves.

Our objective is to give a general introduction to the modelling of anisotropic
PEM, however, without going into too much detail of the FE method as such, as this
is beyond the scope of the present work. We will illustrate the effects of anisotropy
with examples from the literature and we will show some intricate aspects of solving
problems using simpler material models but still complex configurations. Our hope
is that this will serve as a point of entry to the world of numerical modelling of these
materials and an inspiration to go deeper into the subject.
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8.2 Biot’s Equations

The modelling considered here, is based on continuum mechanics at a mesoscopic
scale, i.e. on homogenised fields of the porousmaterials. This is only possible if there
exists a Representative Volume Element (RVE) whose size is sufficiently small in
comparison with the wavelengths but also sufficiently large compared to the charac-
teristic size of the heterogeneities to be representative. The motion of the solid (resp.
fluid) part is averaged over the RVE and the homogenised media are called the solid
and the fluid phase respectively.

The partial differential equations (PDEs) governing an anisotropic PEM involve
(analogously to an isotropic material) coupling between the solid phase and the
fluid phase in several different ways and the equation terms used to represent these
interactions will be introduced below. The derivations take as a starting point the
works by Biot [2–6]. Note that here but a brief introduction will be given, for more
details see the literature cited throughout the text and the references provided therein.
We define the necessary symbols as they are introduced in the derivation.

We start with some definitions and useful relations, in the form of the constitutive
and the momentum equations. Recalling that the constitutive relations describe how
the stresses relate to the deformation gradients, in both the solid and the fluid, there
are coupling terms between the two phases related to the dilatation (compression)
and deviation (shear). Similarly, the momentum equations which express the balance
between internal forces, relate the gradients in the stress fields to the corresponding
accelerations. These will be referred to as first order equations. We will identify
frequency dependent quantities with a tilde symbol.

The expressions presented in this section originate from the theoretical framework
proposed by Biot, [2, 5]. We will not recall the original equations stated by Biot as
there are a large number of publications where they may be studied in close detail,
see e.g. [7]. Instead most of the derivations that follow are inspired by [8], where the
focus was on weak forms and FE, here presented in a slightly modified form.

In the original Biot theory, the modelling is based on the fluid homogenised
displacements of the solid phase usi and of the fluid phase u

f
i . The two corresponding

stress tensors are σ s and σ f , which respectively represent the stress tensors of the
solid and fluid phases, together forming the total stress σ t = σ s + σ f . A few years
after the original formulation, Biot proposed a modification to the original theory
which was required to handle the case of inhomogeneous materials, in particular
when the porosity is a function depending on space. The key was to replace the fluid
displacement u f

i by the relative flowwi = φ(u f
i − usi ), where φ is the open porosity.

From the basic relations proposed by Biot, a number of different representations
may be proposed. For numerical modelling and solutions based on the FE method,
where the computational effort required is strongly dependent on the number of dof ,
most of them keep the solid displacement and introduce the pressure as dependent
field variables. This is directly related to one of the key properties of σ f , i.e. that it is
scalar and proportional to the acoustic pressure, through the relation σ

f
i j = −φpδi j .
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As will be shown below, using this, the fluid displacement and the fluid stress tensor
may then be eliminated. This then leads to a new set of slightly modified solid
displacements and stresses.

8.2.1 Constitutive Laws

In the followingwewill discuss the constitutive laws, here written in Cartesian tensor
component notation, with Einstein’s summation convention implied for repeated
indices. Thus, with i, j the component ordinal numbers in Cartesian co-ordinate
system, xi with i = 1, 2, 3, (.),i = ∂(.)

∂xi
is the partial derivative with respect to co-

ordinate xi . δi j is the Kronecker’s delta.
We begin with the constitutive laws for the solid,

σ s
i j =

(
Ĉi jkl + Q̃i j Q̃kl

φ2 K̃eq

)
εskl + Q̃i j u

f
k,k, (8.1)

and for the fluid,
σ

f
i j =

(
Q̃klε

s
kl + φ2 K̃equ

f
k,k

)
δi j , (8.2)

where εskl is the solid frame Cauchy strain tensor and Ĉi jkl corresponds to the in-
vacuoHooke tensor of the solid phase. As shown in [8], Keq is the scalar fluid
compressibility modulus:

K̃eq = Ks

1 − φ − KsC̃i jkldi j dkl + φKs/K f

, di j = −εsi j

p
(8.3)

where di j is the unjacketed frame compressibility compliance tensor. Furthermore,
Q̃i j is the dilatational coupling tensor:

Q̃i j =
[
(1 − φ) δi j − C̃i jkldkl

]
φKs

1 − φ − KsC̃i jkldi j dkl + φKs/K f

. (8.4)

Two other stress tensors may also be considered. The total stress tensor σ t and
the in-vacuo stress tensor of the solid phase, which corresponds to the stress in the
absence of fluid: σ̂ s

i j = Ĉi jklε
s
kl . These are linked by the following relations:

σ t
i j = σ s

i j + σ
f
i j = σ̂i j − γ̃ ′

i j p, , (8.5)

where γ̃ ′
i j is an elastic coupling coefficient,
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γ̃ ′
i j = φ

(
δi j + Q̃i j

φ2 K̃eq

)
, (8.6)

which may be used to express the link between the solid and in-vacuo stress tensors:

σ s
i j = σ̂ s

i j − (
γ̃ ′
i j − φδi j

)
p. (8.7)

The pressure p is related to the divergence of the fluid displacement uW ,

p = −K̃equ
W
j, j , (8.8)

where uW is a combination of the solid and fluid displacement defined as,

uW
j = φ

(
u f
j + Q̃ jl

φ2 K̃eq

usl ,

)
(8.9)

which is equivalent to,

u f
j = uW

j

φ
− Q̃ jl

φ2 K̃eq

usl . (8.10)

Thus, using (8.10), we may replace the fluid displacement by a combination of uW

and the gradient of the pressure.

8.2.2 Momentum Equations

The momentum equations were given in [8] as:

σ s
i j, j = −ω2ρ̃11

i j u
s
j − ω2ρ̃12

i j u
f
j , (8.11)

and
σ

f
i j, j = −ω2ρ̃12

i j u
s
j − ω2ρ̃22

i j u
f
j . (8.12)

As in the original Biot’s formulation, these equations involve three complex densities.
In order to simplify the expressions, especially as now we have tensors (as opposed
to scalars for an isotropic material) that will be inverted and multiplied, we choose
to express all of them through the dynamic tortuosity, α̃i j ,

ρ̃22
i j = φρ0α̃i j , ρ̃12

i j = φρ0
(
δi j − α̃i j

)
, ρ̃11

i j = ρ1 + φρ0
(
α̃∞
i j − δi j

)
, (8.13)

with

α̃i j = α∞
i j − j

b̃i j
ω

, (8.14)
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and α∞
i j being the geometric tortuosity tensor and b̃i j the viscous drag tensor. One

may now take advantage of the scalar property of the fluid stress tensor, to express
the fluid displacement u f as a function of the solid displacement and the pressure.
This leads to a second relation which allows us to replace the fluid displacement:

u f
j = α̂ jk p,k

φρ0ω2
+ (δ jk − α̂ jk)u

s
k, (8.15)

where α̂ jk is the inverse of the dynamic tortuosity tensor (α̂ik α̃k j = δi j ).
From this, we may rewrite the solid momentum equation as:

σ̂ s
i j, j + γ̃i j p, j = −ω2ρ̃i j u

s
j , (8.16)

with
γ̃i j = φα̂i j − γ̃ ′

i j , (8.17)

ρ̃i j = ρ1 + φρ0(δi j − α̂i j ), (8.18)

where γ̃i j is a coupling factor which involves dynamic effects through the dynamic
tortuosity and elastic coupling through γ̃ ′

i j . Note that ρ̃i j is the solid apparent density.
In a similar way the fluid displacement may be eliminated from the fluid momen-

tum equation using the displacement uW
i :

− φ2 p,i = −ω2φρ0

(
δi j − α̃i j + α̃ik Q̃k j

φ2 K̃eq

)
usj − ω2ρ0α̃i j u

W
j , (8.19)

We may condense this relation through rewriting it as,

− φ2

ρ0ω2
α̂i j p, j = −γ̃i j u

s
j − uW

i , (8.20)

The advantage of considering uW
i is that it may now be eliminated by taking the

divergence and introducing (8.8),

− φ2

ρ0ω2
α̂i j p, j i = −γ̃i j u

s
j,i + p

K̃eq

. (8.21)

We have with these relations completed the transformation from fluid stress tensor
and displacements, to pressure and solid displacements for the anisotropic PEM
modelling.
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8.3 Weak Forms

There are a number of different ways of setting up the weak forms for an anisotropic
PEM. Although in principle equal, slightly different choices may be made in the
derivations. These choices introduce boundary terms that may lead to natural, homo-
geneous coupling conditions that may be of interest in certain applications. Fre-
quently we face modelling situations where a PEM is placed next to a solid panel, or
when it is in direct contact to an air domain, but there are of course other configura-
tions that could be considered as well. Here, two mixed displacement formulations
will be presented, one which naturally couples with an acoustic air domain, see [9]
for the isotropic PEM modelling, (here referred to as the air formulation or PEM1)
and one which naturally couples with a solid in the case where the solid displace-
ments are continuous and the normal relative flow is zero, see [10] for the isotropic
PEM modelling, (here referred to as the bonded solid formulation or PEM2).

8.3.1 PEM1 Weak Formulation

To state the weak forms, we introduce the test functions vs
i and q. We start with

the solid momentum equations, (8.16), and multiply by vs
i , integrate over the porous

domainΩ of boundaryΓp and perform a partial integration of the solid stress gradient
term. This gives,

∫
Ω

vs
i, j Ĉi jklu

s
k,l − ω2vs

i ρ̃i j u
s
j + vs

i γ̃i j p, j dΩ =
∫

Γ

vs
i σ̂

s
i j n j dΓ. (8.22)

Similarly we multiply equation (8.21) by q, integrate over the porous domain Ωp

and perform a partial integration of the term involving the second order gradient of
the pressure,

∫
Ω

φ2

ρ0ω2
α̂i j p, j q,i − pq

K̃eq

+ γ̃i j u
s
j,i q dΩ =

∫
Γ

φ2

ρ0ω2
α̂i j p, j niq dΓ. (8.23)

As will be shown later, these two equations naturally couples with a weak form
representing air through the boundary integral on their respective RHS. It will in the
following be referred to as PEM1.

8.3.2 PEM2 Weak Formulation

The objective of the second formulation is to modify the weak form in order to
introduce slightly different boundary integral terms that naturally couples with a
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solid attached panel. We start by rewriting the third term on the LHS of (8.22), using
(8.18) and performing a partial integration, as

∫
Ω

vs
i γ̃i j p, j dΩ =

∫
Ω

φvs
i α̂i j p, j dΩ + γ̃ ′

i j

(∫
Ω

vs
i, j p dΩ −

∫
Γ

vs
i δi j n j p dΓ

)
.

This allows us to rewrite the weak form of the solid part as,

∫
Ω

vs
i, j Ĉi jklu

s
k,l − ω2vs

i ρ̃i j u
s
j + φvs

i α̂i j p, j + γ̃ ′
i jv

s
i, j p dΩ =

∫
Γ

vs
i σ̂

t
i j n j dΓ, (8.24)

Similarly, for the third term of the LHS of (8.23), we may write,

∫
Ω

γ̃i j u
s
j,i q dΩ =

∫
Ω

φα̂i j u
s
j,i q dΩ +

(∫
Ω

γ̃ ′
i j u

s
i q, j dΩ −

∫
Γ

pδi jv
s
i n j dΓ

)
dΓ,

and the weak form of the fluid is then,

∫
Ω

φ2

ρ0ω2
α̂i j p,i q, j − pq

K̃eq

+ γ̃ ′
i j u

s
j,i q + φα̂i j u

s
j,i q dΩ =

∫
Γ

qw j n jq dΓ. (8.25)

In these forms, the above two equations naturally coupleswith aweak form represent-
ing a solid through the boundary integral on their respective RHS. This formulation
will in the following be referred to as PEM2.

8.3.3 Elastic Solid

In order to prepare for the discussion of the coupling between different types of
domains in more detail, we introduce the weak form for the elastic structure as∫

Ωp

ve
i, jC

e
i jklu

e
k,l − ρeω

2ve
i u

e
j dΩ =

∫
Γ

vs
i σ̂

e
i j n

e
j dΓ, (8.26)

where ue and ve are respectively the unknown elastic solid displacements and the
corresponding test fields. Furthermore, σ̂ e

i j = Ce
i jklu

e
k,l is the stress tensor of the elastic

structure, ρe is its density and ne is the outgoing normal of the elastic domain.
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8.3.4 Air

Finally, to conclude this part discussing weak forms, the air cavity weak form is,

∫
Ωi

pa, j q
a
, j

ρaω2
− paqa

Ka
dΩ =

∫
Γi

1

ρaω2
qa pa, j n

a
j dΓ, (8.27)

where pa is the acoustic pressure in the air domain, Ka is the bulk modulus of air,
ρa the ambient density of air, na is the outgoing normal of the acoustic domain and
qa the test field.

8.4 Discrete Linear System

To obtain a FE based solution of a problem involving, among others PEMs, we start
from theweak forms presented in (8.3). The steps required to obtain the discretisation
are the same as for elastic structures and acoustic domains etc., andwewill only recall
the PEM case here.

First we divide the domain into a finite number of, non-overlapping domains,
commonly referred to as elements, denoted by Ωe with e = 1...Ne. These elements
form a mesh and in each of them the PDEs are transformed into algebraic equations,
which are approximations to the exact solution. The elements are preferably simple
in shape, thus requiring a finite set of polynomial shape functions to sufficiently
accurate describe the variation of the field variables in the sub-domain. Typical
functions used are nodal or bubble shape functions along edges, faces and in the
interior. Some examples (Lobatto shape functions) are given in the following.

With simple polynomial shape functions, the element equations may be numeri-
cally integrated, resulting in elementary matrices that approximate the spatial vari-
ation, and then assembled into a larger system of algebraic equations, which then
may be solved numerically and the solution obtained may be used to obtain relevant
results such as pressures, displacements, etc.

8.4.1 Elementary Matrices

Assuming that we have Nd shape functions in an element e, a physical field f (e) may
be approximated by:

f (e)(x) ≈
Nd∑
k=1

ϕk(x) f
(e)
k = [ϕ(x)]f (e). (8.28)
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The shape functions ϕk(x) approximate the spatial dependence of the fields, and
usually the test fields, vs

i and q, are approximated in a similar manner. Each shape
function is associated to a degree of freedom f ek which will be an unknown of the
global FE problem. The shape functions and degrees of freedom of one element can
be respectively gathered in a matrix [ϕ(x)] and a vector fe.

The key characteristic of a poroelastic material is that four fields should be dis-
cretised (three displacement fields and one pressure fields). We then have, for the
pressure:

p(e)(x) ≈ [ϕ(x)]p(e), (8.29)

and for the displacements, where each direction is discretised independently,

⎧⎨
⎩
u(e)
1 (x)

u(e)
2 (x)

u(e)
3 (x)

⎫⎬
⎭ =

⎡
⎣[ϕ(x)] 0 0

0 [ϕ(x)] 0
0 0 [ϕ(x)]

⎤
⎦

︸ ︷︷ ︸
[ϕu(x)]

u(e), u(e) =
⎧⎨
⎩
u(e)
1

u(e)
2

u(e)
3

⎫⎬
⎭ . (8.30)

The dynamics of the response of the PEM in one element is then approximated in
terms of elementary vectors u(e) and p(e). Note that here we have chosen to use the
same shape functions for the pressure and the three displacements fields. However,
this is not a requirement as different shape functions (or different orders) can be
considered for each unknown.

8.4.2 Discretisation of the Weak Forms in One Element

The discretisation of the 8 volume integral terms (4 for the solid and four for the
pressure), that appear for both the PEM1 and the PEM2 formulations, is assumed
to be the same. Most of the integrals involved are standard for any FE problem and
will not be detailed here. Instead, we will present the discretisation for the terms
which are typical for PEM modelling, i.e. the corresponding volumetric coupling
between the solid and fluid phases. Note that in this section, we mix the summation
convention and matrix forms and it should be clear from the context when one or the
other is used. We start with the discretisation of the third term of the LHS of (8.24):∫

Ω(e)

vs
i α̂i j p, j dΩ ≈

∫
Ω(e)

v(e)
i

T [ϕu(x)]T α̂i j [ϕ, j (x)]p(e) dΩ. (8.31)

Note that the term corresponding to the test field has been transposed, this allows us
to separate the vectors v(e) and p(e) from the integral. This leads to the definition of
a volume coupling matrix [C(e)] which is a (3Nd × Nd) matrix as:
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[C1
(e)] =

∫
Ω(e)

[ϕu(x)]T α̂i j [ϕ, j (x)] dΩ. (8.32)

The superscript 1 is introduced to distinguish this particular form of the coupling
matrix from other coupling terms, that will be discussed below. The discretisation of
the coupling term over an element will then lead to:

∫
Ω(e)

vs
i α̂i j p, j dΩ ≈ v(e)T [C1

(e)]p(e). (8.33)

Similarly for the fourth term of the LHS of (8.24), another (3Nd × Nd)matrix [C2
(e)]

is introduced as: ∫
Ω(e)

γ̃ ′
i jv

s
i, j p dΩ ≈ v(e)T [C2

(e)]p(e), (8.34)

Finally there is yet one more coupling term, i.e. the third one in the LHS of (8.22),
which is discretised as: ∫

Ω(e)

vs
i γ̂i j p, j dΩ ≈ v(e)T [C3

(e)]p(e). (8.35)

Without going into further details of the derivations, we apply the same method-
ology to the other terms which are common between the two different formulations:

∫
Ω(e)

vs
i, j Ĉi jklu

s
k,l dΩ ≈ v(e)T [K(e)]u(e),

∫
Ω(e)

vs
i ρ̃i j u

s
j dΩ ≈ v(e)T [M(e)]u(e),

[K(e)] and [M(e)] are the elementary stiffness and mass matrices. For terms relative
to the fluid, one has:

∫
Ω(e)

φ2

ρ0
α̂i j p, j q, j dΩ ≈ q(e)T [H(e)]p(e),

∫
Ω(e)

pq

K̃eq

dΩ ≈ q(e)T [q(e)]p(e),

[H(e)] and [Q(e)] are the elementary kinetic and compression energy matrices which
are also common to the two weak forms. Note that all integrals above are in practice
computed for a standard reference element, and scaled to the actual element geometry.

The full elementary dynamic matrix [A(e)] for the PEM1 formulation, is then

[A(e)] =

⎡
⎢⎢⎣ [K(e)] − ω2[Me] [C3

(e)]

[C3
(e)]T

[H(e)]
ω2

− [Q(e)]

⎤
⎥⎥⎦ . (8.36)
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For the PEM2 formulation where {u,p} naturally couples to a solid, we have

[A′
(e)] =

⎡
⎢⎢⎣ [K(e)] − ω2[Me] [C1

(e)] + [C2
(e)]

[C1
(e)]T + [C2

(e)]T
[H(e)]
ω2

− [Q(e)]

⎤
⎥⎥⎦ . (8.37)

We see that the two formulations differ by the coupling terms between the solid and
the fluid, but otherwise have the same structure. Thus, in the following parts of the
procedure, as most of the steps are common between the two formulations, we have
decided not to overload the notation and instead to use a generic form as,

[A(e)] =
[[Auu

(e)] [Aup
(e)]

[Apu
(e)] [App

(e)]
]

. (8.38)

8.4.3 Assembly

The global system matrices, required to complete the modelling for a complex prob-
lem consisting of many elements, are obtained by summation of elementary matrices
and the method is the same for the two formulations. This is in principle not different
from any other FE solution, but some extra attention needs to be paid to the matching
between different degrees of freedom to their proper neighbours. As the vector of
degrees of freedom for a particular element {u(e),p(e)} is a sub-vector of the global
vector of degrees of freedom {u,p}, we need to establish a correspondence. There are
several ways of doing this, one is to introduce a boolean matrix [L(e)] of dimension
(4Nd × 4Ng) where 4Ng corresponds to the total number of degrees of freedom. We
then have: {

u(e)

p(e)

}
= [Le]

{
u
p

}
. (8.39)

The global dynamic matrix then reads:

[A] =
N∑

e=1

[L(e)]T [A(e)][L(e)] =
[[Auu] [Aup]
[Apu] [App]

]
. (8.40)

Note that this way of approaching the assembly is purely formal and just used to
explain the principles involved. Indeed, it can be shown that the multiplication
[L(e)]T [A(e)][L(e)] is a matrix of size (4Ng × 4Ng) with a submatrix correspond-
ing to [A(e)] at the position corresponding to the dof of the element. The global
matrix is then composed of four blocks which are the assembly of the elementary
ones.
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8.5 Coupling Between Domains

We will in the following discuss how a FE-PEM domain is assembled into a more
complex arrangement of different media, such as a solid and a fluid. As part of this
we will also illustrate the difference between the two weak formulations derived.

8.5.1 Coupling with an Air Domain

First we consider the problem of coupling between an acoustic domain and a poroe-
lastic one, see Fig. 8.1 where the two domains are artificially separated to clearly
illustrate the coupling between the two. The degrees of the acoustic domain corre-
spond to the pressure. At the boundary Γ between the two domains, a compatible
mesh is considered and the common pressure degrees of freedom are denoted pΓ ,
hence the dof of the two media can be partitioned as {u,pi ,pΓ } for the PEM where
pi correspond to the vector of pressure in the interior of the domain. For the fluid
domain, the dof are similarly {pΓ ,pai }.

We now partition the generic global dynamic PEMmatrix (8.40) into three blocks
in order to introduce the partitioning between the boundary and interior dof. Applying
the same partitioning to the test fields, the weak form is then approximated by:

[
vT qi T qΓ

T
]⎡⎣[Auu] [Aup

i ] [Aup
Γ ]

[Apu
i ] [App

ii ] [App
iΓ ]

[Apu
Γ ] [App

Γ i ] [App
Γ Γ ]

⎤
⎦
⎧⎨
⎩

u
pi
pΓ

⎫⎬
⎭ . (8.41)

The weak form for the air cavity is given in (8.27). Note that the outgoing normal na

is in the opposite direction of np. The volume integrals, for the air domain may then
be discretised as discussed above and a dynamic acoustic matrix, which may also be
partitioned between boundary and interior dof , is then:

[
qΓ

Tqa
i
T
] [[Aa

Γ Γ ] [Aa
Γ i ][Aa

iΓ ] [Aa
ii ]
]{

pΓ

pai

}
. (8.42)

Fig. 8.1 Coupling of
acoustic and poroelastic FE
models
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Adding the two discretised weak forms, air and PEM, leads to:

[
vT qi T qΓ

T qa
i
T
]
⎡
⎢⎢⎣

[Auu] [Aup
i ] [Aup

Γ ] [0]
[Apu

i ] [App
ii ] [App

iΓ ] [0]
[Apu

Γ ] [App
Γ i ] [App

Γ Γ ] + [Aa
Γ Γ ] [Aa

Γ i ][0] [0] [Aa
iΓ ] [Aa

ii ]

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

u
pi
pΓ

pai

⎫⎪⎪⎬
⎪⎪⎭ . (8.43)

We can deduce from this expression that, as for the assembly of elements, the global
matrix which is the assembly of the two domains may be done by summing the
overlapping parts of the dynamic matrices.

So far we have treated the volumetric terms in the weak forms and, as pointed
out before, there is no difference between the two up to now. What remains is to
derive the interface terms, and how they should be discretised. Here we have to
distinguish between the two formulations, PEM1 and PEM2, as we will show below.
However, let us first consider the interface relations between the different physical
fields at the common boundary. Along Γ the pressure has to be continuous, the
normal displacement of air has to be equal to the normal total displacement of the
porous medium and, finally, as the solid frame of the PEM is free, the in-vacuo solid
frame stress of the PEM has to vanish:

pa = p, σ̂ s
i j n j = 0,

pa, j n j

ρaω2
= uan = utn = φ2α̂i j p, j ni

ρ0ω2
. (8.44)

If we now consider the case of the PEM1 formulation, that naturally should couple
with air, the sum of the boundary terms associated to the PEM are,

∫
Γi

vs
i σ̂

s
i j n j + φ2

ρ0ω2
α̂i j p, j ni dΓ. (8.45)

The first term is zero as the in-vacuo stress is null at the interface. Concerning the
second one, let us combine the terms relative to the cavity and the PEM in one integral
expression. We then have:

∫
Γ

(
φ2

ρ0ω2
α̂i j p, j niq − 1

ρaω2
qa pa, j n j

)
dΓ, (8.46)

where the minus sign for the air term is due to the orientation of the normals. As
we are only dealing with the case of compatible meshes, qa and q are identical and
we can deduce the nullity of this integral by the continuity of normal displacements,
(8.44). Hence, for this {u,p} formulation, the coupling with an acoustic domain is
natural (which means that there is no surface term). The degrees of freedom of the
global problem correspond to the merging of the acoustic pressures in the air domain
pa and the displacement u and pressure p of the PEM.We see that the porousmaterial
and the acoustic air have common degrees of freedom.
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For the PEM2 formulation, the boundary terms are

∫
Γ

(
vs
i σ̂

t
i j n j + qw j n j − 1

ρaω2
qa pa, j n j

)
dΓ. (8.47)

However, as the in-vacuo stress tensor is zero, one has that σ̂ t
i j = −pδi j and due to

the continuity of pressure along Γ , we can replace the total stress by the pressure of
air. In addition

qw j n j − 1

ρaω2
qa pa, j n j = qa

(
utj − usj − uaj

)
n j = −qausj n j . (8.48)

The combined boundary terms are then:

−
∫

Γ

pavs
j n j + qausj n j dΓ. (8.49)

This term is a standard fluid structure interaction couple and its discretisation leads
to a couplingmatrix [Γ f s] between the solid displacement of the porous material and
the pressure in air which should be added to the global matrix. The system matrix
will then be: ⎡

⎢⎢⎣
[Auu] [Aup

i ] [Aup
Γ ] − [Γ f s] [0]

[Apu
i ] [App

ii ] [App
iΓ ] [0]

[Apu
Γ ] − [Γ f s]T [App

Γ i ] [App
Γ Γ ] + [Aa

Γ Γ ] [Aa
Γ i ][0] [0] [Aa

iΓ ] [Aa
ii ]

⎤
⎥⎥⎦ . (8.50)

The coupling between an air domain and this form of the {u,p} formulation is
thus not natural as we need the additional term [Γ f s].

8.5.2 Coupling with an Elastic Solid

The coupling of a PEM domain and an elastic structural domain can be done in a
similar way. The weak form for the elastic solid structure is given by (8.26). Note
that, ne in each point along the interface is in a direction opposite to the one of the
poroelastic material. The interface relations at such an interface are:

σ e
i j = σ̂i j − pδi j , uej = usj . (8.51)

Let us first consider the PEM2 formulation, which we have previously claimed to
naturally couple with a solid. The boundary terms are

∫
Γ

(
vs
i σ

t
i j n j + qw j n j − ve

i σ̂
e
i j n j

)
dΓ. (8.52)
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Similarly to the previous case compatible meshes are considered, and we then have
ve
i = vs

i . In addition w j n j = (utj − usj )n j = 0. Hence the boundary integral is zero
meaning that the coupling between an elastic structure and this PEM2 formulation
is natural. Similarly to the coupling between PEM1 and an air domain, the dynamic
equation system is obtained by summing the matrix terms corresponding to common
dof along Γ .

For the PEM1 formulation in Sect. 8.3.1, the surface term is given as:

∫
Γ

(
vs
i

(
σ̂i j − σ̂ e

i j

)
n j + q

φ2

ρaω2
α̂i j p, j ni

)
dΓ. (8.53)

The interface conditions of interest are

σ̂i j − σ e
i j = pδi j , uei ni = φ2

ρaω2
α̂i j p, j ni . (8.54)

The boundary integral is then finally:

−
∫

Γ

(
pvs

j n j + qusj n j
)
dΓ, (8.55)

which is similar to (8.49), and the assembled equation system is obtained by adding
the dof corresponding to the Γ and adding the coupling terms in a way similar to
what is shown in (8.50).

8.5.3 Coupling Through a Thin Airgap Interface

Quite often, the interface between a PEM and a solid is such that the two are not
in full (elastic) contact but are still close to each other, i.e. they may be thought
of as separated by a thin airgap. This is a case which either may be modelled as
described in Sect. 8.5.1, in case the airgap must be meshed as a separate domain, or
in cases where this could be complicated (due to e.g. geometry) it may be modelled
through an approximate boundary condition as presented below (Fig. 8.2). We use
the superscript o to distinguish between the acoustic air domain previously discussed,
Sect. 8.5.1, and the present domain which will only be used in an intermediate step.

Fig. 8.2 Zoom on the region
with a thin airgap separating
the PEM domain from the
elastic domain

x

Ωe Ω0 Ωp

Γ− Γ+

ε0
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At the boundary where the PEM and the airgap domain meet, here identified as Γ −,
the total stress in the PEM must equal the acoustic pressure in the airgap because of
a zero in-vacuo stress,

σ tot
i j n p

j = −po; xi ∈ Γ −, (8.56)

and the pressure and the displacements have to be continuous,

p = po; xi ∈ Γ −, (8.57)

uoi n
o
i = (1 − φ) usi n

p
i + φu f

i n
p
i ; xi ∈ Γ −. (8.58)

At the opposite side of the airgap domain, Γ +, the elastic solid displacements has
be equal to the acoustic displacements,

uei n
e
i = uoi n

e
i ; xi ∈ Γ +, (8.59)

and the solid stress has to be equal to the acoustic pressure in the airgap,

σ e
i j n

e
j = −po; xi ∈ Γ +. (8.60)

If we now assume that thewidth εo of the airgap is very small, we can also assume that
the fluid in the airgap is incompressible and the pressure thus constant in the direction
normal to the boundary, po = p. Noting that np

j = −noj and assuming that εo goes to
zero, the surface integrals pertaining to the PEM2 formulation that naturally couples
to a solid, together results in,

∫
Γ+

(
pnp

i vs
i + usi n

p
i q
)
dΓ −

∫
Γ−

(
pnp

i ve
i + uei n

p
i q
)
dΓ . (8.61)

The boundary integrals appearing in (8.61), are also in this case standard fluid-
structure interaction area integrals, here denoted by Γ f s , and the assembled equation
system may be written as,

⎡
⎣ [Ae] [0] −[Γ −

f s]
[0] [Auu] [Aup] + [Γ +

f s]
−[Γ −

f s]T [Apu] + [Γ +
f s]T [App]

⎤
⎦ , (8.62)

where we have omitted the partitioning into interior and boundary dof for clarity
(Fig. 8.3).
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Fig. 8.3 Coupling of elastic and poroelastic FE models using an approximate representation of a
thin airgap. Arrows symbolically indicate the pressure loading on the elastic solid nodes and the
porous solid dof at the boundary

8.5.4 Coupling with Bloch Waves

Wenow proceed to the case where a PEMdomain is coupledwith a Blochwave. Here
a 2D problem is considered for a unit cell of period D and with periodic boundary
conditions. In the present case, this problem is composed of two domains, an acoustic
air and the second one is PEM. The PEM boundary is excited by an incident plane
wave in the air domain. The components of the wave vector are kx = k0 sin(θ) and
kz = k0 sin(θ), with k0 the wave number in air and θ the angle of the incident wave.
In the air domain, the physical fields can be represented as a superposition of the
incident wave and reflected Bloch waves. The pressure pa may then be expressed as:

pa(x, z) = e j (kx x+kz z) +
+∞∑

l=−∞
e j (kx (l)x−kz(l)z)Rl , (8.63)

where Rl are the amplitudes of the reflected Bloch waves, kx (l) and kz(l) are the x
and z components, respectively in the wave vector. They are given by

kz( j) =
√
k20 − kx (l)2, kx (l) = kx + 2πl

D
. (8.64)

From Euler’s equation, we can deduce the displacement of air in the z direction:

u−
a = j

ρaω2

(
kze

j (kx x+kz z) +
+∞∑

l=−∞
kz(l)e

j (kx (l)x−kz(l)z)Rl

)
. (8.65)

The porous material in the FE domain is modelled by the PEM1 formulation. We
recall, the boundary integral on the interface:

IFE =
∫

Γb

vs
i (x)σ̂

s
i j (x)n j + φ2

ρ0ω2
α̂i j p, j (x)niq(x) dΓ = 0. (8.66)
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In order to couple the two domains, one should consider the interface relations on
Γb, the continuity of the pressure, of the fluid displacement and the vanishing in-
vacuo stress:

pa(x) = p(x), σ̂ s
i z(x) = 0, uaz (x) = utz(x) = φ2

ρ0ω2
α̂z j p, j (x). (8.67)

Using these relations, the integral IFE in (8.66) may be rewritten. First, the solid
term of the integral is zero due to the nullity of the in-vacuo stress. Concerning the
pressure, it may be rewritten using the continuity of the normal displacement and the
expression (8.65). We then have:

IFE = j

ρaω2

∫
Γb

(
−kze

− jkx x −
+∞∑

l=−∞
kz(l)e

− jkx (l)x Rl

)
q(x) dΓ. (8.68)

We may then deduce from this expression that the boundary term of the weak form
can be expressed as a function of the amplitudes of the Blochwaves. Themethod then
consists in considering these amplitudes as unknowns and then to add them to the
degrees of freedom of the FE problem. It is first necessary to truncate the infinite sum
in (8.68). The infinite sum is then approximated by considering that l = −Nb.. + Nb,
where Nb is determined by considering classical criteria to truncate Bloch waves.
The integral can be rewritten in a more condensed form:

IFE = − jkz
ρaω2

I (0) +
N∑

l=−N

jkz(l)

ρaω2
I (l)Rl, (8.69)

with

I (l) =
∫

Γb

e− jkx (l)xq(x) dΓ, (8.70)

and I (l) is the integral of the shape function weighted by an exponential term associ-
ated with the Bloch wave. It may be discretised in a way similar to the one presented
above. As it is the product of an exponential and a polynomial, its value may be
computed analytically by successive integration by parts. The first term in the right
hand side of (8.69) will then lead to the excitation vector. The second one will lead to
a block [B] that will be associated to variational dof q and to the vector of unknown
reflection coefficients B.

As 2Nb + 1 new unknowns have been introduced, it is necessary to combine
them with new constraints. This can be easily done by considering the continuity of
pressure (which is the only relation in (8.66) which was not considered up to now in
the derivation). First, we consider an index m ∈ R, the projection of the pressure on
e jkx (m)x then leads to:
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Γb

pa(x)e jkx (m)x dΓ = Dδm0 + DRm . (8.71)

We can then discretise this relation by replacing the pressure in air by the degrees of
freedom on the boundary. The discretisation of the first term in the right hand side
will then lead to an excitation term and the other ones leads to a block [B′] to be
inserted in the global matrix. The final linear system is then

⎡
⎣[Auu] [Aup] [0]

[Apu] [App] [B]
[0] [B′] D[I2Nb+1]

⎤
⎦
⎧⎨
⎩
u
p
R

⎫⎬
⎭ =

⎧⎨
⎩
0
F
10

⎫⎬
⎭ . (8.72)

[I2Nb+1] is the identity matrix and 10 is the vector of R2Nb+1 whose first component
is one and all the others are zero.

8.6 Application Examples

One of the characteristic properties ofmodelling of PEMs, is the intricate interactions
both throughout the domain as well as at the boundary to other porous and non-
porous domains. These interactions quite often tend to control the discretisation and
the meshing, thus driving the size of the resulting algebraic systems to be solved.
There are several reasons for this, e.g.:

• Wavelengths of the Biot waves are generally shorter than those of the acoustic
or the solid waves, see [11–13]. To meet adequate mesh criteria, usually a larger
mesh density or number of dof are required in the porous domain, as compared to
the fluid or solid domains.

• The poroelastic domain is meshed by volume elements, requiring a discretisation
in the 3 spatial directions (for 3D problems), unlike the elements of thin structures,
such as plates or shells, which in many cases of practical interest may be meshed
in 2 directions.

• The number of degrees of freedom per node of the poroelastic elements is at least
4, which together with the volume modelling required, tend to increase the model
size as well as the bandwidth of the problem, [14].

From the above points we realise that the mixed-pressure formulation, having
only 4 degrees of freedom per node, is interesting for many applications and we will
in the following show some examples of varying complexity of its use in different
modelling situations. These examples are chosen in order to illustrate the effects of
boundary conditions between an PEM and a solid, as well as the effects of anisotropy,
in the behaviour of different multi-layered configurations.
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8.6.1 Convergence Aspects

In this section, some aspects related to the convergence of the FEmodel are presented.
These are illustrated through a simple case, see Fig. 8.4, which consists of a 1D
problem of a foam layer. The thickness of the layer is equal to 10cm. On the left
boundary, the foam is excited by plane wave of amplitude 1. On the right boundary,
the porous layer is fixed and the solid displacement as well as the normal gradient
of the pressure are both zero. A reflected wave with an amplitude R is then created.
As R is not known, it is added to the degrees of freedom of the FE model by the
way of the technique presented in Sect. 8.5.4. For this simple problem an analytical
expression of the surface impedance can be derived [7, 15] from which the reflection
coefficient Rt can be deduced. This analytical solution will be considered as the
reference when the convergence is discussed in the following. The layer is modelled
by the PEM1 formulation and the mesh consists of n elementΩn of equal dimension.
On each reference element (corresponding to ξ ∈] − 1, 1[ ), the solid displacement
and the pressure are discretised with Lobatto shape functions. The first two orders
correspond to linear shape functions:

ϕ0(ξ) = 1 − ξ

2
, ϕ1(ξ) = 1 + ξ

2
. (8.73)

For the higher orders k > 1 the shape functions are the Lobatto shape functions

ϕk(ξ) =
√
k − 1

2

∫ xi

1
Lk−1(s) ds, k > 2p (8.74)

where Lk(ξ) are the Legendre polynomials and p is the order of the approximation.
In each element, we then have p degrees of freedom for both the solid displacement
and pressure.

We present the convergence at a single frequency, here 946Hz, which corresponds
to the resonance frequency of the solid frame. The results shown are representative
also for other frequencies and the conclusions are thus frequency independent. The
analysis is done by fixing the order p and refining the mesh by increasing the number

• • • • • • • • • • •

n elements

Ω1 ΩnΩi

1

R

Fig. 8.4 Configuration used for the convergence analysis



354 P. Goransson and O. Dazel

Fig. 8.5 Convergence curves for several orders

of element n of the mesh. The error ε is simply defined as the difference between the
analytically and numerically computed reflection coefficients:

ε = |R − Rt |. (8.75)

The result are presented in Fig. 8.5 for each order p between 1 and 5. The error is
plotted as a function of the number of degrees of freedom and the results are displayed
in logarithmic scale. The results obtained for a PEM follows the same trends as can be
observed for other kinds of media. Starting with the case p = 1 i.e. linear elements,
we can see that the error decreases with the number of elements but the convergence
is rather slow. For p = 2, i.e. quadratic elements, the convergence rate is higher in
the sense that the slope of the error is larger. As a more general observation, the slope
is increasing with increasing order p, indicating a considerable potential for using
higher order elements. However, it is not straightforward to deduce which are the
optimal orders of the elements as the sparseness of the matrix system is reduced for
high p. For more details, the reader can consult [8].

8.6.2 FE Cases in 1D

For the 1D example, the objectives are to illustrate and study some characteristic
behaviours of the solutions to the discretised weak forms. Here wewill use the PEM2
formulation to investigate the influence of contact between a PEM and an interfacing
solid, which is a well-known and critical integration effect in industrial applications.
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Ωe Ωp Ω′
e Ωa

Le Lp L′
e La

Fe Γb Zn = ρ0c0

•Pa

Fig. 8.6 Multilayer setup, studied as 1D example. Excitation applied to solid at the leftmost bound-
ary and reflection free termination of acoustic domain at rightmost boundary. Along Γ b/ub, either
full contact or complete separation is assumed, along Γ b full contact

The background is the difficulty in ensuring a well-defined contact between the PEM
and e.g. a panel surface, as a multi-layered sound package component is manufac-
tured. It also poses a challenging aspect in building a simulation model of such
components. In addition, we emphasise that the purpose here is not to show realistic
configurations and their performance, but to give the reader a deeper understand-
ing into certain modelling aspects that should be kept in mind when building more
complex and elaborate models. Thus, the physical dimensions (here thicknesses) are
slightly exaggerated to allow for the visualisation to be more clear.

We take as the starting point the multilayer setup shown in Fig. 8.6, where an
arrangement with two solid domains with a PEM in between, and an acoustic domain
with an reflection-free termination is presented. For this example, the properties
of the solid and the PEM, are given in Table8.1. Note that we are using second
order polynomials for the shape functions, see also Fig. 8.4 for a discussion of this
aspect. We assume that in one case the solids are in full contact to the PEM at both
boundaries, Γ b/ub and Γ b, and in the other case that one of the solid boundaries,
Γ b/ub, is separated from the PEM through an airgap.
In the following we will focus on:

• Themodelling as such,wewill showhow the airgap can bemodelled either through
meshing the thin acoustic domain separating the solid and the PEM, or through
the approximate modelling principle taken from [16] and presented in Sect. 8.5.3.

• The effects of the airgap, illustrated through the transmission performance as well
as the actual resulting fields computed at a particular frequency,

Whenmodelling of a combination of a PEM and a solid is concerned, two extreme
cases for handling of the boundary conditions may be considered. Either we choose
to have full contact, or full separation with a more or less well-defined distance
between the boundaries. In the case of full contact, we need to introduce the bound-
ary conditions specified in Sect. 8.5.2. For the PEM2 formulation, this amounts to
vanishing boundary integrals on both sides of the PEM, and we thus solve a problem
that is equivalent in form to Sect. 8.5.2.

If we now instead assume that there is an airgap, separating the PEM from the
solid, with a finite thickness, of e.g. 0.1mm, and that we as a first choice mesh it with
acoustic FE. In this case we need to introduce the conditions stated in Sect. 8.5.1 at
the Γ b/ub boundary to the PEM, thus solving a problem that is equivalent in form to
(8.55).
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Table 8.1 Parameters of the materials used for the application examples. Note isotropic equivalent
values are also given for the anisotropic properties of the foam in Sect. 8.6.4

Elastic materials

Parameter Units Solid (Sect. 8.6.2) Panel
(Sect. 8.6.4)
Inclusion
(Sect. 8.6.3)

Density kg.m−3 2700 7800

Young’s modulus GPa 72 200

Loss factor – 0.001 0.001

Poisson ratio – 0.3 0.3

Isotropic foams

Parameter Units Sect. 8.6.2 Sect. 8.6.3 Sect. 8.6.4
Iso equi.

Thickness mm 100 20 42

Viscous charac.
length

µm 21 214 110

Thermal charac.
length

µm 50 214 740

Porosity – 0.992 0.989 0.98

Density of frame kg.m−3 50 6.1 22.1

Loss factor – 0.1 0.21 0.

Young’s modulus kPa 120 56.4 100

Poisson ratio – 0.4 0.21 0.4

Flow resistivity kPa.s.m−2 26.5 8.6 60

Tortuosity – 1.2 1.0 1.3

Anisotropic foam used in Sect. 8.6.4

Parameter Units Value

Elastic moduli,
xx

kPa 40

”, yy kPa 89KPa

”, zz kPa 300KPa

”, xy kPa 33KPa

”, xz kPa 37KPa

”, yz kPa 131KPa

Shear moduli, xz kPa 26KPa

Shear moduli, xz kPa 21KPa

Shear moduli, xz kPa 26KPa

Tortuosity in
x, y, z

– 1.2, 1.2, 1.5

Flow resistivity in
x, y, z

kPa.s.m−2 37.5, 37.5, 67.5
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We could as well decide to use the approximate boundary condition, Sect. 8.5.3,
in case we need to introduce area integral terms. These introduces the forcing of the
acoustic pressure in the PEM on the solid displacements of the PEM as well as to
the solid displacements of the solid. In this case we solve a problem equivalent in
principle to (8.62).

8.6.2.1 Effects of Bonding 1D

It is well-known that the presence of an airgap could have a strong influence on the
transmission, depending on the properties of the actual PEM. With a 0.1mm airgap
we get the results in the left part of Fig. 8.7 which are compared to the fully bonded
results in the same figure. The differences between the two are clear and increases
over the frequency range shown. There are several reasons for the two solutions
to be different from each other, see e.g. [7, 16], one quite obvious is the change
in total stiffness as the solid and the PEM are joined together. This can be observed
through the slight shift of the first resonance in (8.7) (a). As the PEM is quite soft
in comparison to the solid, this effect is not very large. However, for the resonance
at 1850Hz, the effect of the airgap is more significant as it tends to reduce the
transmission through the panel in comparison to the bonded case. Clearly, presence
of an airgap is affecting the vibroacoustic behaviour in a quite complex way which
is difficult to predict a priori.

To illustrate this further, we show the effects of varying the airgap thickness in the
right part of Fig. 8.7. We measure the effect in terms of the relative difference to a
very thin gap of 0.01mm thickness. Clearly, for thinner airgaps the dependence upon
the airgap thickness of the transmission characteristics is reduced. For airgaps less
than 1mm, the difference in the transmitted pressure at Pa is small. For larger airgaps
the transmission characteristics have a strong dependence on the actual thickness as
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Fig. 8.7 Left: Effect of coupling conditions, bonded or unbonded, on transmitted pressure at point
Pa , see Fig. 8.6, through the multilayered arrangement. Right: Relative difference in transmitted
pressure at point Pa , for different airgap sizes, with 10−5 m used as reference gap thickness
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Fig. 8.8 Illustration of effects of bonding/unbonding, close-up of displacement fields inside PEM
in a multilayer arrangement, real parts (top) and imaginary parts (bottom) evaluated at resonance
1850Hz. Left: Bonded. Right: Unbonded and using approximate boundary condition

could have been expected. From Fig. 8.7, we also see that the approximate modelling
represents the very thin airgap coupling well.

Let us now investigate what the effects of the airgap are in terms of the displace-
ment fields for the solid frame and for the acoustic fluid in the PEM, see Fig. 8.8.
Note that the acoustic displacements are calculated using (8.15). The different dis-
placements are shown for the two cases considered above, i.e. bonded and unbonded.
The real parts are shown in the two top sub-figures and the imaginary parts in the two
bottom, with the computed displacements for the bonded to the left and unbonded
to the right.

For the bonded solution, the solid frame and the acoustic fluid displacementsmove
in phase and are identical at both boundaries, as indeed prescribed by the boundary
conditions for bonding. For the unbonded solution, it is quite the opposite as the fluid
displacement, at the unbonded boundary, is significantly higher than the solid frame
displacement, in particular for the imaginary part. Furthermore, they are not in phase
and the solid displacement is lower than the acoustic displacement at Γ b/ub. Indeed,
from Fig. 8.9, we see that the relative displacement wi = φ(u f

i − usi ), is higher for
the unbonded case which implies a higher level of dissipation as compared to the
bonded case, see (8.11)–(8.14).
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Fig. 8.9 Illustration of effects of bonding/unbonding, close-up of relative displacement fields inside
PEM in a multilayer arrangement, Left: real part, right: imaginary part evaluated at resonance
1850Hz

To conclude on this example, the approximate unbonded boundary condition
represents a thin airgap well, and is an interesting alternative for complex 3Dmodels,
where the thin airgap modelling may lead to numerical problems related to elements
having unacceptable aspect ratios, and where the approximation eliminates the need
for meshing of the airgap through the use of boundary coupling terms instead.

8.6.3 Simulation of a Metaporous Material

A more complicated problem to solve could be a porous matrix with an inclusion.
This kind of arrangement, which may involve all the different kinds of boundary
conditions introduced here, is sometimes called metaporous and a 2D example is
presented in Fig. 8.10. The current example is composed of a porous material Ωp

in a rectangular domain with a circular inclusion Ωi in the center of the domain.
Along Γt the porous medium is bonded to a rigid surface and it is excited by a plane
wave on the opposite boundary, Γb. As this inclusion is supposed to be a part of an
array of such inclusions, periodic boundary conditions are assigned along Γr and Γl

boundaries, i.e. the arrangement is in fact of infinite extent in the horizontal direction.
These kinds of composite structures have been the subject of extensive research in
the last decade. For more details, the reader can refer to [17–22] and from these
appreciate the huge variety of configurations that may be considered.

Due to the plane-wave excitation and the periodic boundary conditions, the fields
in the semi-infinite lower domain are the superposition of the incident field and
reflected Bloch waves. Periodic boundary conditions can be taken into account by
applying the method presented in Sect. 8.6.4 and the amplitudes of the Bloch waves
can be added to the FE dof with the method presented in Sect. 8.5.4. As the condition
on Γt corresponds to a rigid boundary, it leads to natural boundary conditions for
both PEM1 and PEM2.
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Fig. 8.10 Case of a
metaporous material
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Let us consider an example presented in [22]. The porous matrix is composed of
foam II and has dimensions 2cm by 2cm. The inclusion is made of a steel material
with a radius r , that will be varied in the results shown below. In this example we then
have three different media: poroelastic, elastic and fluid (incident medium which is
modelled by the Bloch wave superposition). Regardless of the choice of the porous
formulation (PEM1 or PEM2) one of the couplings is not natural. In the results
that are presented, we have chosen to use the PEM1 formulation but the results are
similar for PEM2. As we have discussed previously, we then need to include a fluid-
structure coupling term at the boundary Γi between the porous structure and the
elastic inclusion. The global problem is then composed of 5 × 5 blocks as:

⎡
⎢⎢⎢⎢⎣

[Aee] [AeΓ ] [Aeu] −[Γ up] [0]
[AΓ e] [AΓ Γ ] [AΓ u] [AΓ p] [0]
[Aue] [AuΓ ] [Auu] [Aup] [0]

−[Γ pu] [ApΓ ] [Apu] [App] [B]
[0] [0] [0] [B′] D[I2Nb+1]

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ue
uΓ

u
p
R

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
0
0
0
10

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (8.76)

The porous matrix and the inclusion share displacement degrees of freedom uΓ and
ue and u respectively denotes the interior degrees of freedom of the inclusion and the
porous material. The upper left 3 × 3 corresponds to the dynamic matrix associated
to the displacements. [AΓ Γ ] is assembled as the sum of a contribution from the
inclusion and one of the porous material. As the PEM1 formulation does not lead
to a natural coupling between fluid structure terms [Γ up] and [Γ pu] are introduced
which are applied on the displacement of the elastic inclusion and the pressure of
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Fig. 8.11 Absorption for several different sizes of the inclusion

the porous material. Finally, the excitation introduces coupling terms [B] and [B′]
between the pressure of the porous material and the reflexion coefficients. In the case
of PEM1, there is no coupling term with the solid displacement.

In Fig. 8.11 the absorption coefficient for a selection of three values of the radius
of the inclusion, is presented. They can be compared to the case without inclusion
which is also presented. The effect of elasticity of the frame can by a localised
decrease of the absorption which can be observed for example 1400Hz in the case of
an homogeneous layer 2050Hz for r = 3 mm. The effect of the inclusion is to create
lower frequency resonances which can increase the absorption for low frequencies.
This subject is the topic of intensive researches in the last 5 years and the reader can
have more details in [17, 21, 22].

The key point is that all these configurations can be modelled by the FE method.
For this configuration it is also possible to derive a model based on the multiple
scattering theory [22]. It is then possible to deduce an error between the twomethods
which is presented in Fig. 8.12. This error is mainly governed by the the mesh. In the
present simulation, the mesh corresponds to 6 quadratic elements by wavelength for
the shear wave. We can see that the error is mostly lower than 1%, the maximum of
this error being at the resonance frequencies of the structure. The quality of the FE
simulation is thus very good.



362 P. Goransson and O. Dazel

Frequency (Hz)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
bs

ol
ut

e 
er

ro
r 

on
 a

bs
or

pt
io

n

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

r= 3 mm
r= 5 mm
r= 9 mm

Fig. 8.12 Error between the FE method and the multiple scattering technique

8.6.4 3D Anisotropic Modelling

The effects of anisotropy of a PEMwill be illustrated for a 3Dexample, employing the
same different types of boundary conditions as discussed in the 1D case, Sect. 8.6.2.
Here we use a model representing a multilayered panel, two face sheets and a PEM
in between, see Fig. 8.13. Along one interface the PEM is fully bonded and along
the opposite an airgap is introduced. In order to highlight the effects of anisotropy in
the resulting deformations, results for an isotropic equivalent foam are also shown.

Let us first focus on the difference between the isotropic and the anisotropic
PEM deformations. A significant shear deformation of the PEM is taking place in
the latter, see Fig. 8.14a–b, and c–d, respectively. This is not seen in the isotropic
equivalent PEMmodel, as there are only small Poisson’s ratio effects inducing lateral
deformations, and the deformation of the PEM core is almost uniaxial. This is in
contrast to the anisotropic PEMmodel,wherewe see complicated shear deformations
with short spatial wave lengths, in particular for the bonded case in Fig. 8.14a.

The lateral deformations are also noticeable in the presence of an airgap, see
Fig. 8.14c, d. However, the difference between the isotropic and the anisotropic PEM
models is slightly less. This is partially related to the release of the solid displacements
at the upper panel interface, as now the coupling between the panel and the PEM
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Fig. 8.13 Model problem used in 3D example of simulation of anisotropic foam formulation,
parameters used in the simulationsmay be found in Table8.1. For comparison, an airgap of thickness
0.001m is introduced at the upper interface between the PEM core and the face plate. Reprinted
from [23] with permission

Fig. 8.14 Deformations 400Hz. Light grey is foam core, dark is solid panel. Left: anisotropic,
Right isotropic. a and b Bonded configuration, c and d Unbonded configuration. Reprinted from
[23] with permission

is via the pore pressure, see Sect. 8.5.3. However, also for the airgap case, there are
short wave length shear deformations in the PEM core, which are not present in the
isotropic model.

We conclude from this, without giving any detailed explanations, that different
waves in the anisotropic PEM are excited when the different boundary conditions
are applied. This is in agreement with the simpler model studied in Sect. 8.6.2 and
has been further discussed in [24] using a transfer matrix solution approach.
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Appendix - Periodic Boundary Conditions

Here we review a technique for introduction of periodic boundary conditions, which
is not specific to poroelasticity but included for reference as it is used in one of
the examples. Note that the steps taken in this method is thus the same for the two
{u,p} formulations discussed here. If periodicity may be assumed, then the involved
physical fields have a phase shift δ = e− jkx L between the boundaries of the unit cell,
Γl and Γr . If we consider the fields of the PEM2 formulation as an illustration, we
have:

p(Γr ) = δp(Γl) ui (Γr ) = δui (Γl) σ̂ t
i j (Γr ) = φσ̂ t

i j (Γl) p, j (Γr ) = δp, j (Γl). (8.77)

We can then deduce a relation between the surface integrals on the two boundaries:

∫
Γr

vs
i σ̂

t
i j n j + φ2

ρ0ω2
α̂i j p, j niq dΓ = −δ

∫
Γl

vs
i σ̂

t
i j n j + φ2

ρ0ω2
α̂i j p, j niq dΓ. (8.78)

Note that the minus sign in the right hand side is due to the outgoing normal which
is opposite in Γl and Γr .

Recalling that in the general case, we need to consider the discretisation of the
weak form including the volume integrals in the matrix and the integrals relative to
Γl and Γr in the left hand side. Furthermore, we will distinguish between dof on the
left and right boundaries of the unit cell as Xl and Xr and the interior degrees of
freedom asXi . The dof vector,X, will be partitioned accordingly and the discretised
system may be written as:

⎡
⎣[All] [Ali ] [Alr ]

[Ail] [Ai i ] [Air ]
[Arl] [Ari ] [Arr ]

⎤
⎦
⎡
⎣Xl

Xi

Xr

⎤
⎦ =

⎡
⎣Fl

0i
Fr

⎤
⎦ . (8.79)

We now assume that the mesh interpolations on Γl and Γr are compatible, and thus
the following relations hold:

Xr = δXl , Fr = −δFl . (8.80)

To proceed we need to eliminate Fl and this is achieved by suitable linear combi-
nations of the parts of the matrix as follows. In the last row, we substitute tbFr by
δFl and then multiply the whole row by δ∗ (which is equal to 1/δ). This gives us an
expression forFl whichmay be used to rewrite the first row. The third row is replaced
by the condition of periodicity on the dof , i.e. (Xr = δXl). The system may then be
reformulated as:⎡

⎣[All] + δ∗[Arl] [Ali ] + δ∗[Ari ] [Alr ] + δ∗[Arl]
[Ail] [Ai i ] [Air ]
δ[Irr ] [0] −[Irr ]

⎤
⎦
⎡
⎣Xl

Xi

Xr

⎤
⎦ =

⎡
⎣0l0i
0r

⎤
⎦ , (8.81)
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which only has known quantities and furthermore the set of degrees of freedom is the
same before and after the imposition of the periodicity. The latter is a key advantage
with the above approach.
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