
Chapter 4
The Transfer Matrix Method in
Acoustics

Modelling One-Dimensional Acoustic Systems,
Phononic Crystals and Acoustic Metamaterials

Noé Jiménez, Jean-Philippe Groby, and Vicent Romero-García

Abstract The transfer matrix method is a simple but powerful analytical tool used
to model acoustic wave propagation in a wide range of one-dimensional problems. In
this chapter, we present themethod and summarize themost common building blocks
encountered in one-dimensional acoustic systems. These include layers of fluids and
porous media, ducts and waveguides of different geometries where thermoviscous
losses can be accounted for, locally reacting elements such as Helmholtz or quarter-
wavelength resonators, viscoelastic plates and membranes, micro-perforated panels
or vibrating walls. Several examples are provided, including a multi-layered porous
structure for roomacoustics, the transmission problemof a double-leafwall for build-
ing acoustics, and the analysis of the dispersion relations of acousticwaves in periodic
media and metamaterials using locally resonant elements. Various one-dimensional
wave-motion phenomena can be studied using the generalized framework provided
by the transfer matrix method such as reflection, transmission, absorption, attenua-
tion and dispersion, as illustrated in the examples.

4.1 Introduction

Many acoustic problems of practical interest can be reduced to one-dimensional
ones under the hypothesis of plane-wave propagation. Analytical solutions can thus
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be obtained under this hypothesis even for complex problems. Among the different
analytical techniques such as modal expansions [1], plane wave expansion methods
(PWE) (See Chap.1) or multiple scattering theory (MST) (See Chap.2), the transfer
matrix method (TMM) [2] has been widely applied to study wave propagation in
one-dimensional systems such as porous materials [3, 4], duct acoustics andmufflers
with [5] and without flow [6], stratified solids [7] and multilayer elastic and acoustic
materials for noise control [8–13], fluid mechanics [14], piezoelectric transducers
[15] or acoustic holograms [16], among others. TMM is also at the heart of standard
procedures to measure the properties and performance of acoustic materials [17].
The method is also widely applied in electromagnetics [18], e.g., to study multilayer
optical structures [19, 20]. It can be applied in Cartesian and in other coordinate
system, such as cylindrical coordinates for radially-symmetric multilayer structures
[21].

The transfer matrix method has recently been used to described wave propagation
in periodic structures and phononic crystals as well as to study acoustic metamate-
rials. Wave dispersion and acoustic properties such as reflection and transmission
in multilayer phononic crystals can effectively be described by a transfer matrix
approach [22]. The method can be used to derive the effective parameters of reso-
nant structures [23] and even of hyperbolic metamaterials [24]. Thermoviscous and
viscoelastic losses can also be easily included. In this way, this method has been
applied to design and analyse efficient or perfect metamaterial absorbers based on
quarter-wavelength resonators [25], Helmholtz resonators [26–28] or membranes
and plates [29, 30].

The transfer matrix method results in fast calculations to describe complex acous-
tic structures, in fact, it is one of its most important advantages. It can thus be easily
combined with optimization techniques that would be prohibitive using other simu-
lation methods such as finite-difference in time-domain (FDTD) or Finite Element
Methods (FEM) due to extreme computational resources and simulation times they
would require.

In this chapter, we present the method and summarize the most common building
blocks. We will describe the modelling of layers of fluids and porous media, ducts
of different geometries possibly accounting for thermoviscous losses, locally res-
onant elements such as Helmholtz and quarter-wavelength resonators, viscoelastic
membranes and plates, micro-perforated plates and vibrating walls. The last section,
several examples will be given comprising a multilayer porous structure for room
acoustics, a double-leaf wall for building acoustics, the dispersion of acoustic waves
in periodicmultilayermedia, and the design of acousticmetamaterials using different
kinds of resonators.

4.2 The Transfer Matrix Method

We start deriving the basic relations between the acoustic magnitudes evaluated at
the boundaries of a layer of homogeneous acoustic material, as shown in Fig. 4.1.

http://dx.doi.org/10.1007/978-3-030-84300-7_1
http://dx.doi.org/10.1007/978-3-030-84300-7_2
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Fig. 4.1 Scheme of the acoustic material layer characterized by a transfer matrix T. Propagation
inside the layer is modeled by counter propagating waves

Assuming that only longitudinal plane waves propagate in the layer and a temporal
harmonic dependence of the type eiωt , the total field inside the material is written as
the superposition of two waves propagating in opposite directions as

p(x) = PAe
−ikx + PBe

ikx , (4.1)

vx (x) = PA

Z
e−ikx − PB

Z
eikx , (4.2)

where Z = ρc is the characteristic acoustic impedance, k = ω/c is the wavenumber
at the angular frequency ω = 2π f , with ρ the density and c the sound speed of the
material, and the amplitudes of the two waves are given by PA and PB .

To evaluate these amplitudes we define the pressure and velocity at both sides of
the slab. First, at x = 0 we obtain

p(x)
∣
∣
x=0 = PA + PB, (4.3)

Zvx (x)
∣
∣
x=0 = PA − PB, (4.4)

while at x = L we get

p(x)
∣
∣
x=L = (PA + PB) cos(kL) − i(PA − PB) sin(kL), (4.5)

vx (x)
∣
∣
x=L = PA − PB

Z
cos(kL) − i

PA − PB

Z
sin(kL). (4.6)
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Then, we can relate the acoustic magnitudes at both boundaries by combining (4.3)–
(4.4) with (4.5)–(4.6) via

p(x)
∣
∣
x=L = cos(kL)p(x)

∣
∣
x=0 − i Z sin(kL)vx (x)

∣
∣
x=0, (4.7)

vx (x)
∣
∣
x=L

= cos(kL)vx (x)
∣
∣
x=0 − i

1

Z
sin(kL)p(x)

∣
∣
x=0. (4.8)

Equations (4.7)–(4.8) can be expressed in a matrix form as

⎡

⎣
p

vx

⎤

⎦

x=L

=
⎡

⎣
cos(kL) −i Z sin(kL)

cos(kL) −i
1

Z
sin(kL)

⎤

⎦

⎡

⎣
p

vx

⎤

⎦

x=0

. (4.9)

After inversion,we retrieve the basic transfermatrix formulation of a layer of acoustic
material, given by

⎡

⎣
p

vx

⎤

⎦

x=0

=
⎡

⎣
cos(kL) i Z sin(kL)

i
1

Z
sin(kL) cos(kL)

⎤

⎦

⎡

⎣
p

vx

⎤

⎦

x=L

. (4.10)

In this way, the acoustic magnitudes at both sides of the 1D fluid layer are related
by a 2 × 2 matrix which only depends on the impedance and wavenumber in the
material. It is interesting to note that additional elements can be introduced into the
system in a simple and modular way. This allows to model complex materials and
structures using a simple theoretical framework, as we will see below.

4.2.1 Total Transfer Matrix

For a given material, we can define a total transfer matrix, T, that relates the sound
pressure, p, and normal acoustic particle velocity, vx , at the beginning, x = 0, and
at the end of a structure, x = L as

⎡

⎣
p

vx

⎤

⎦

x=0

= T

⎡

⎣
p

vx

⎤

⎦

x=L

, (4.11)

therefore, the total transfer matrix T is a 2 × 2 matrix as

⎡

⎣
p

vx

⎤

⎦

x=0

=
⎡

⎣
T11 T12

T21 T22

⎤

⎦

⎡

⎣
p

vx

⎤

⎦

x=L

. (4.12)
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Fig. 4.2 Scheme of an acoustic structure composed by several layers of effective properties. The
system is characterized by a total transfer matrix, T, equal to the matrix product of the elements,
i.e., T = T1T2T3 in this example

When dealing with a complex structure, e.g., an arrangement of several elements as
depicted in Fig. 4.2, the total transfer matrix T is given by the product of the transfer
matrices of the N layers or elements of the system as

T =
N
∏

n=1

Tn . (4.13)

The continuity of pressure and normal particle velocity at each interface of the
system are intrinsically satisfied. The transfer matrix of each layer or element, Tn , is
calculated according to its nature. Several basic examples will be given in Sect. 4.3
including thermoviscous fluids, fluid-saturated rigid-frame porous layers, or locally
resonant elements such as elastic membranes or Helmholtz resonators.

The total transfer matrix T offers abundant information about the system such as:

1. The effective parameters: The effective impedance and wavenumber, in addition
to the effective density and bulk modulus of the system in the long wavelength
regime.
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2. The scattering of the system: The reflection and transmission coefficients and, if
looses are considered, the absorption coefficient.

4.2.2 Effective Parameters

In the case of a symmetric structure, the total transfer matrix T is symmetric and the
system can be modelled as an equivalent on-dimensional fluid-like layer with com-
plex and frequency-dependent effective parameters in the long wavelength regime.
Thus, the total transfer matrix of the structure, given by (4.11), can be identified to
the propagation matrix an effective material of length L , given by (4.10), as

T =
⎡

⎣
T11 T12

T21 T22

⎤

⎦ =
⎡

⎢
⎣

cos(keffL) i Zeff sin(keffL)

i
1

Zeff
sin(keffL) cos(keffL)

⎤

⎥
⎦ , (4.14)

where keff(ω) is the effective wavenumber and Zeff(ω) is the effective characteristic
impedance of the whole structure. Both effective parameters are usually complex
and frequency dependent.

4.2.2.1 Effective Wavenumber

By relating the elements of (4.12) with those in (4.14) we can obtain the expression
for the effective wavenumber as a function of the coefficients of the total transfer
matrix

keff = 1

L
cos−1

(
T11 + T22

2

)

+ nπ

L
, n ∈ Z. (4.15)

It is important to note that due to the trigonometric inversion the wavenumber is
warped around −π < keffL < π. This is very useful for periodic structures as we
will see in the examples in Sect. 4.4: obtaining the wavenumber keff(ω) of a unit cell
provides the dispersion relation in the irreducible Brillouin zone. It is effectively
important to note that keff(ω) matches the solution of the eigenvalue problem solved
for recovering the dispersion relation of any symmetric system and thus is valid
whatever the frequency range considered.

4.2.2.2 Effective Characteristic Impedance

In the same way, the characteristic acoustic impedance is identified from the total
transfer matrix coefficients as
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Zeff =
√

T12
T21

. (4.16)

In this case, no trigonometric inversion is used and the retrieved impedance values are
measured in [Rayls] units. Nevertheless, this identification is only valid in the long
wavelength regime contrary to the recovery of keff(ω) and special attention should
thus be paid on the frequency validity regime.

4.2.2.3 Effective Density and Bulk Modulus

The dynamic mass-density, ρeff , and bulk modulus, Keff , of the slab of effective
material can be obtained using

Keff = Zeff
ω

keff
, and ρeff = Zeff

keff
ω

, (4.17)

where Zeff is given by (4.16) and keff by (4.15) with proper unwrap of the wavenum-
ber.

4.2.3 The Scattering Matrix

The scattering matrix, S, relates the amplitudes of the incoming waves to those of
the outgoing waves. The total pressure at both sides of the structure, at x = 0 and
x = L , is given by

p(x) =
{

Ae−ikx + Beikx for x < 0,

Ce−ikx + Deikx for x > L ,
(4.18)

as shown in Fig. 4.3 for a structure of length L . Thus, the relation between the
amplitudes of both waves is given by the S-matrix as

[

C
B

]

= S
[

A
D

]

=
[

T− R+
R− T+

] [

A
D

]

, (4.19)

where the elements of the S-matrix give directly the transmission (T− and T+)
and reflection (R− and R+) coefficients for a system excited from each side of the
structure, i.e., the superscripts (+,−) denote the direction of incidence: the positive
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Fig. 4.3 Incoming and
outgoing waves that define
the scattering of the
structure. The scattering
matrix, S-matrix, completely
describe the transmitted and
reflected waves

and negative x-axis respectively. The S-matrix is widely used in wave physics to
characterize and interpret the wave scattering. In the case of acoustics, the scattering
matrix completely describe the transmitted and reflected waves, and when looses are
included, the absorption of the system.

4.2.4 Reflection, Transmission and Absorption Coefficients

The system is usually geometrically bounded and therefore its scattering properties
can be evaluated. Depending on the boundary conditions at x = 0 and x = L , we
can distinguish between:

(i) Reflection problem: the material is located against an impervious wall. The
acoustic impedance is that of the surrounding medium Z0 = ρ0c0 at the begin-
ning (x = 0), while the rigid boundary condition is applied, i.e., vx = 0, at the
end of the material (x = L),

(ii) Transmission problem: the material is surrounded by a fluid on both sides. Then,
the acoustic impedance is that of the surrounding media Z0 = ρ0c0 at x = 0 and
ZL = ρLcL at x = L .

For example, a layer of porous material obviously presents different reflection (and
absorption) coefficient if it is located against a rigid-impervious wall (reflection
problem) or if it is surrounded by air on both sides (transmission problem).

4.2.4.1 Transmission Problem

The transmission problem implies the waves impinging the structure on one side can
propagate through it and be transmitted to the other side. First, (4.11) are written as

p(x)
∣
∣
x=0 = T11 p(x)

∣
∣
x=L + T12 vx (x)

∣
∣
x=L , (4.20)

vx (x)
∣
∣
x=0 = T21 p(x)

∣
∣
x=L + T22 vx (x)

∣
∣
x=L . (4.21)
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Then, assuming an incident pressure wave whose amplitude is the unity, the pressure
and velocity at both sides of the structure can be defined as a function of the reflection
coefficients R+ and R−, and the corresponding transmission coefficients, T+ and
T−, as

p(x)
∣
∣
x=0 = 1 + R−, p(x)

∣
∣
x=L = T−eikL , (4.22)

vx (x)
∣
∣
x=0 = 1 − R−

Z0
, vx (x)

∣
∣
x=L = T−eikL

ZL
, (4.23)

for an incident plane wave coming from −∞ and propagating in the +x direction,
and

p(x)
∣
∣
x=0 = T+eikL , p(x)

∣
∣
x=L

= R+ + 1, (4.24)

vx (x)
∣
∣
x=0 = −T+eikL

Z0
, vx (x)

∣
∣
x=L = R+ − 1

ZL
, (4.25)

for an incident plane wave coming from +∞ and propagating in the −x direction,
where Z0 = ρ0c0 and ZL = ρLcL are the impedances of the media on either side of
the structure, i.e., x < 0 and x > L , respectively.

Combining (4.22)–(4.25) with (4.20)–(4.21), we obtain the following relations:

T− = 1 + R−

T11 + T12/ZL
, (4.26)

T− = 1 − R−

T21Z0 + T22Z0/ZL
, (4.27)

T+ = T11
(

1 + R+)+ T12
ZL

(

R+ − 1
)

, (4.28)

T+ = −T21Z0
(

1 + R+)− T22
Z0

ZL

(

R+ − 1
)

. (4.29)

In the following, we will obtain the relation between the elements of the S-matrix
and those of the T-matrix in specific configurations:

(i) Non-reciprocal systems
Structures in which the condition T− �= T+ is fulfilled.

(ii) Reciprocal systems
Structures in which the condition T− = T+ is fulfilled.

(iii) Reciprocal and symmetric systems
Structures in which the conditions T+ = T− and R− = R+ are fulfilled.
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4.2.4.2 Non-reciprocal Systems

In a general case, we can combine (4.26)–(4.29) and get

T− = 2eikL

T11 + T12/ZL + T21Z0 + T22Z0/ZL
, (4.30)

R− = T11 + T12/ZL − T21Z0 − T22Z0/ZL

T11 + T12/ZL + T21Z0 + T22Z0/ZL
, (4.31)

T+ = Z0

ZL

2eikL (T11T22 − T12T21)

T11 + T12/ZL + T21Z0 + T22Z0/ZL
, (4.32)

R+ = −T11 + T12/ZL − T21Z0 + T22Z0/ZL

T11 + T12/ZL + T21Z0 + T22Z0/ZL
. (4.33)

Equations (4.30)–(4.33) give the relation between the T-matrix and the S-matrix in
the general form. However, some simplifications can be done.

4.2.4.3 Reciprocal Systems

The reciprocal behaviour of the system implies that the determinant of transfermatrix
is the unity, i.e., T11T22 − T12T21 = 1. This property is satisfied by linear and time-
invariant systemswhere the transmission does not depend on the direction of incident
wave. These conditions are satisfied by most of the acoustic materials. Note this
term appears in (4.32) and directly implies the transmission coefficients are identical
whatever the direction of excitation. Therefore, in reciprocal systems

T− = T+ = T . (4.34)

All the systems considered in this chapter are reciprocal. Note that in this case, the
S-matrix, (4.19), possesses two eigenvalues given by

λ1,2 = T ± √
R+R−, (4.35)

while the eigenvectors corresponding to λ1 and λ2 are

�v1 =
[√

R+R−, R+
]

, �v2 =
[

R−,−√
R+R−

]

, (4.36)

respectively. The poles and zeros of the eigenvalues as well as the eigenvectors of
the S-matrix in the complex-frequency plane provide rich information, as they are
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identified with the resonances of the system. A further description of the eigenval-
ues of the scattering matrix and its implications for perfect absorption are given in
Chap.5.

In addition, in most cases in acoustics the structure is surrounded by the same
media Z0 = ZL , as occurs in metamaterials surrounded by air. Under this additional
condition, the reflection and transmission coefficients given by (4.30)–(4.33) can be
simplified to

T = 2eikL

T11 + T12/Z0 + T21Z0 + T22
, (4.37)

R− = T11 + T12/Z0 − T21Z0 − T22
T11 + T12/Z0 + T21Z0 + T22

, (4.38)

R+ = −T11 + T12/Z0 − T21Z0 + T22
T11 + T12/Z0 + T21Z0 + T22

. (4.39)

When the materials that constitute the acoustic structure present intrinsic losses,
e.g., thermoviscous or viscoelastic ones, a portion of the energy is neither reflected
nor transmitted: it is absorbed by the structure and irreversibly transformed into heat.
The amount of absorbed energy, dissipated by intrinsic losses, with respect to the total
energy is characterized by the absorption coefficient, α(ω). For asymmetric systems
R+ �= R− and, therefore, the absorption depends on the direction of propagation.
For the positive x-axis incident wave, the absorption is given by

α− = 1 − ∣∣R−∣∣2 − |T |2 , (4.40)

while for the negative x-axis incident waves,

α+ = 1 − ∣∣R+∣∣2 − |T |2 . (4.41)

4.2.4.4 Symmetric Systems

For symmetric systems such as structures presenting a mirror symmetry with respect
to x = L/2, the transfer matrix coefficients fulfil

T11 = T22. (4.42)

As a consequence, the reflection coefficients from both sides are the same, i.e.,
R+ = R− = R. The absorption coefficients from both sides of the system are thus
identical and correspond to

α+ = α− = α = 1 − |R|2 − |T |2 . (4.43)

http://dx.doi.org/10.1007/978-3-030-84300-7_5
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4.2.4.5 Reflection Problems

When the system is rigidly backed, a rigid boundary condition vx |x=L = 0 is applied
in (4.11) and, obviously, no waves are transmitted through the system, i.e. T = 0 in
(4.19). Therefore, we obtain the following relations

p(x)
∣
∣
x=0 = T11 p(x)

∣
∣
x=L , (4.44)

vx (x)
∣
∣
x=0 = T21 p(x)

∣
∣
x=L . (4.45)

The reflection coefficient is related to the pressure and velocity at x = 0 as

p(x)
∣
∣
x=0 = 1 + R−, (4.46)

vx (x)
∣
∣
x=0 = 1 − R−

Z0
. (4.47)

Combining (4.44)–(4.45) with (4.46)–(4.47), the reflection coefficient for a rigidly-
backed system becomes:

R = T11 − T21Z0

T11 + T21Z0
. (4.48)

The absorption coefficient of the rigidly-backed system is

α = 1 − |R|2 . (4.49)

Finally, note that, if a rigid boundary condition is set at the beginning of the
structure, x = 0, as vx |x=0 = 0, and a wave impinges the structure from the opposite
direction, i.e., a wave travelling in the−x direction, the reflection coefficient is given
by R = (T22 − T21ZL)/(T22 + T21ZL).

4.2.4.6 Specific Acoustic Impedance

Note that the characteristic acoustic impedance, Zeff = ρeffceff , is generally different
from the specific acoustic impedance, Z = p/vx . The characteristic impedance is
a property of the material itself and does not depend on the boundary conditions
at x = 0 and x = L . In the opposite, the effects of the boundary conditions are
implicit for the acoustic impedance.1 One importantmagnitude is the specific acoustic
impedance of the system at the input of the system, or normal acoustic specific
impedance, given by,

1Note that Z = Zeff , i.e., p/vx = ρeffceff , only stands for plane waves travelling in an infinite
medium.
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Z in = p

vx

∣
∣
∣
∣
x=0

. (4.50)

For transmission problems, it can be calculated directly from the reflection and
transmission coefficients as

Z in = Z0

(
1 + R

1 − R

)(
1 + T

1 − T

)

. (4.51)

For rigidly-backed problems this expression reduces to

Z in = Z0

(
1 + R

1 − R

)

. (4.52)

This quantity is very useful to analyse the impedance matching of a given structure
with the surrounding media.

4.3 Review of the Usual Transfer Matrices

A given system can be subdivided in N elements of respective transfer matrices Tn ,
n = 1, ..., N to evaluate its full transfer matrix T. Depending on the nature of each
element, its individual transfer matrix is calculated in different way. In the following,
we review the most usual transfer matrices used to solve 1D problems in acoustics.

4.3.1 Particle Velocity Verses Flow Formulation

First of all, we shall differentiate the problem of wave propagation through layers of
fluids or fluid-like materials of undefined section, with the problem of wave prop-
agation through fluids confined in ducts of finite cross-sectional area, as shown in
Fig. 4.4.

4.3.1.1 Particle Velocity Formulation

For layers of undefined section, Fig. 4.4a, the problem can be described by using the
particle-velocity formulation, as given in the previous section. For example, this is
the case when considering multilayer porous material absorbers.
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Fig. 4.4 a Formulation of the problem for layers of fluid-like materials of undefined section, i.e.,
particle-velocity formulation. b Formulation of the problem for waveguides of different cross-
sectional areas, i.e., flow formulation

4.3.1.2 Flow Formulation

However, when considering waveguides of different cross-section, Fig. 4.4b, as it is
usual when describing mufflers, metamaterials or similar structures, it is convenient
to formulate the problem using the flow.

4.3.2 Fluid Layers: Particle Velocity Formulation

The transmission matrix Tf of a fluid layer of length L takes the form

Tf =

⎡

⎢
⎢
⎣

cos(kf L) i Z f sin(kf L)

i
1

Zf
sin(kf L) cos(kf L)

⎤

⎥
⎥
⎦

, (4.53)

where kf = ω/
√

Kf /ρf and Zf = √Kf ρf are wavenumber and the characteristic
impedance in the fluid, respectively, where Kf and ρf are the effective bulk modulus
and mass density of the fluid. Note that, in general, when losses are accounted for,
Kf and ρf , and thus kf and Zf are complex and frequency dependent variables.

The intrinsic losses can be neglected in the case of sound confined in a cavity,
e.g., an air cavity between two walls, if the size of the latter is much larger than the
thicknesses of the viscous and thermal boundary layers of the fluid. The wavenumber
in the fluid thus reduces to kf = ω/c0, and the acoustic impedance becomes Zf =
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ρ0c0, where the sound speed is c0 = √
K0/ρ0, with ρ0 and K0 respectively the density

and bulk modulus of the lossless fluid.
However, the intrinsic losses of the fluid should be accounted for in highly viscous

fluids, when sound wave is propagating over a long path, i.e., when the attenuation
along the propagation path L is not negligible, and at high frequencies.

4.3.2.1 Thermoviscous Fluid Layers

Before considering confined sound propagation, note that, even in the absence of
boundaries, the propagation of acoustic waves in fluid with a high viscosity is char-
acterized by a complex wavenumber and impedance, which take the form [31]

kf (ω) = ω

c0
+ i

bω2

2ρ0c30
, Zf (ω) = ρ0

ω

kf
, (4.54)

where b = η + (4/3)μ + κ
(

C−1
V − C−1

P

)

is the diffusion coefficient, η and μ are the
shear and bulk viscosities, κ the thermal conductivity of the thermoviscous fluid and
CV and CP are the heat capacity at constant volume and pressure, respectively. Note
the losses in the thermoviscous fluid show a quadratic dependence on frequency.
Thus, the imaginary part of the complex wavenumber can be neglected for relatively
low frequencies.

4.3.3 Ducts: Flow Formulation

When the fluid is confined in ducts or cavities, i.e., waveguides of different cross-
sectional area, reflections are produced at the discontinuities. In this case, it is con-
venient to formulate the transfer matrix considering the flux,

Vx = Svx , (4.55)

across a cross-sectional area S instead of using the particle velocity, vx . The transfer
matrix for the flow formulation, T′

f , relates the pressure and flow at the inlet and at
the outlet of the waveguide of length L as

⎡

⎣
p

Vx

⎤

⎦

x=0

= T′
f

⎡

⎣
p

Vx

⎤

⎦

x=L

. (4.56)

By substituting (4.55) in (4.7)–(4.8) we can obtain the transfer matrix of a waveguide
or duct for the flow formulation as
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T′
f =

⎡

⎢
⎣

cos(kf L) i Z ′
f sin(kf L)

i
1

Z ′
f

sin(kf L) cos(kf L)

⎤

⎥
⎦ , (4.57)

where Z ′
f = Zf /S is the normalized impedance. Note this matrix is equivalent to the

one given by (4.53): the impedances appearing in the transfer matrix are divided by
S, while the wavenumbers are not modified. In addition, transfer matrices of varying
cross-section waveguides, e.g., conical, are also available in the literature [32–34].

On the one hand, to calculate the effective wavenumber for the flow problem
(4.15) holds. However, to calculate the effective impedance for a flow formulation,
instead of (4.16), the following equation must be used

Zeff = S

√

T12
T21

. (4.58)

On the other hand, the transmission and reflection coefficients for the flow for-
mulation can be obtained in a straightforward manner: one might use normalized
impedances instead of impedances. For example, the scattering for the flow formu-
lation corresponding to the non-reciprocal case can be obtained by changing Z by
Z/S in (4.30)–(4.33).

In addition, if the fluid is confined in a narrow duct or cavity, strong losses are
observed when the transversal dimension of the cavity is of the same order of the
thermal and/or viscous boundary layers. The thermal and viscous layers are given
by

δthermal =
√

2κ

ωCP
, δviscous =

√

2η

ωρ0
, (4.59)

therefore, δviscous = √
Pr δthermal, where Pr = CPη/κ is the Prandtl number. One

approach to include the thermoviscous loses in the TMM is to model the fluid inside
the duct as an equivalent fluidwith effective parameters, therefore ρf (ω), Kf (ω) ∈ C,
and they depend on the geometry and dimensions of the duct.

4.3.3.1 Slits

When considering the propagation of acoustic waves in narrow slits, as shown in
Fig. 4.5, the thermoviscous losses should be accounted for if the length of the thermal
and/or viscous boundary layers are of the same order of the slit height. Instead
of solving the full Navier-Stokes equations with non-slip boundary conditions, the
thermoviscous losses can be modelled by using effective complex and frequency
dependent parameters accounting for both attenuation and dispersion.

Thus, assuming that only planewaves propagate inside a slit, the complex effective
parameters expressed as [35]:
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Fig. 4.5 Slit of height h. The system is modelled as a fluid-like medium with effective properties:
complex and frequency dependent effective parameters

ρf (ω) = ρ0

[

1 − tanh h
2Gρ(ω)

h
2Gρ(ω)

]−1

, (4.60)

Kf (ω) = K0

[

1 + (γ − 1)
tanh h

2GK (ω)

h
2GK (ω)

]−1

, (4.61)

where h is the width of the slit.
The functions Gρ(ω) and GK (ω) are

Gρ(ω) =
√

iωρ0

η
, (4.62)

GK (ω) =
√

iωPrρ0
η

, (4.63)

and γ = CP/CV is the ratio of specific heats of the fluid, K0 = γP0 is the adiabatic
bulk modulus with P0 the static pressure, η the dynamic viscosity and ρ0 the density.
The normalized acoustic impedance, for a 2D problem, is given by Z ′

f = √Kf ρf /ah,
where a is the width of the slit that must fulfil a � h, as shown in Fig. 4.5. In the
case of slits of small a, its effective parameters must be calculated as a rectangular
waveguide (see Sect. 4.3.3.3 below).

4.3.3.2 Cylindrical Cross-Section Ducts

In the same way, the propagation of acoustic waves in a narrow cylindrical duct, as
shown in Fig. 4.6, can be described via a complex and frequency dependent density
and bulk modulus given by [35].
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Fig. 4.6 Cylindrical
cross-sectional duct of
radius r

Fig. 4.7 Rectangular
cross-section duct of sides a
and b

ρf (ω) = ρ0

[

1 − 2

rGρ(ω)

J1(rGρ(ω))

J0(rGρ(ω))

]−1

, (4.64)

Kf (ω) = K0

[

1 + 2(γ − 1)

rGK (ω)

J1(rGK (ω))

J0(rGK (ω))

]−1

, (4.65)

where r is the radius of the cylindrical duct, Jn is the Bessel function of the first kind
and order n, and the functions Gρ(ω) and GK (ω) are given by (4.62)–(4.63). In this
case, the normalized acoustic impedance is given by Z ′

f = √Kf ρf /πr2.
It is important to note that TMM calculations should be restricted for frequencies

lower that the cut-off frequency of the cylindrical duct, i.e., in the range given by
ω < 1.84c0/r . For higher frequencies the duct can exhibit high-order modes and the
plane-wave approximation does not hold.

4.3.3.3 Rectangular Cross-Section Ducts

Finally, again assuming that only plane waves propagate inside a rectangular cross-
sectional duct, as depicted Fig. 4.7, the propagation can be modelled with effective
density and bulk modulus given by [35].

ρf (ω) = ρ0
(a/2)2(b/2)2

4G2
ρ(ω)

∑

m∈N

∑

n∈N

[

α2
mβ2

n

(

α2
m + β2

n − G2
ρ(ω)

)]−1 , (4.66)

Kf (ω) = K0
1

γ + 4(γ−1)G2
K (ω)

(a/2)2(b/2)2
∑

m∈N

∑

n∈N

[

α2
mβ2

n

(

α2
m + β2

n − G2
K (ω)

)]−1
, (4.67)

where a and b are the dimensions of the rectangular duct, αm = (2m + 1)π/a and
βn = (2n + 1)π/b. The acoustic impedance is Z ′

f = √Kf ρf /ab.
The frequency range where the plane-wave assumption is valid for a rectangular

duct is given by ω < πc0/max(a, b). As occur in the cylindrical duct, at higher
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frequencies the waveguide can exhibit high-order modes and TMM calculations will
be inaccurate.

4.3.4 Porous Media Layers

Porous materials are biphasic materials composed of a solid frame filled with a
fluid, generally air. Typically, the pore size of foams or fibrous materials is much
smaller than the characteristic wavelength of the sound waves. Thus, the complex
processes occurring during the propagation of acoustic waves at the micro-scale can
be modelled at the macro-scale via an effective medium with effective properties.
Although elastic waves can propagate in the solid frame, the solid skeleton can
be considered motionless in most practical cases in acoustics because of its high
impedance contrast with the light saturating fluid, e.g. the air. In this way, the waves
emerging from the interaction of elastic waves in the solid matrix and acoustic waves
in the saturating fluid, i.e., the Biot waves, can be neglected. Under this assumption, a
layer of porous material can be modelled as an equivalent fluid with effective density
and bulk modulus. This is generally accurate for thick porous layers because flexural
modes appear at very high frequencies and are then strongly attenuated.

The transfer matrix of a porous layer, Tp, is thus written as

Tp =
⎡

⎢
⎣

cos(kpL p) i Z p sin(kpL p)

i
1

Z p
sin(kpL p) cos(kpL p)

⎤

⎥
⎦ , (4.68)

where Z p and kp are the characteristic effective impedance and wavenumber of the
porousmaterial. These effective properties are complex and frequency dependent and
several models have been developed providing comprehensive expressions. These
models usually consider parameters of the structural properties of the porous frame,
in addition to the thermoviscous properties of the saturating fluid (Fig. 4.8).

Accurate models with many input parameters are required to account for most
of the physics concerning the thermoviscous processes. However, simpler models
relying on a reduced number of input parameters are available, also providing a
lower accuracy and possessing a thinner frequency range of validity. Models with a
reduced number of parameters are generally sufficient (and practical in most cases),
because the input parameters are usually difficult to estimate and the samples are not
exactly identical due to the random nature of the porous structure. In the following,
we will review several models relying on one, five and six input parameters.
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Fig. 4.8 The complex structure of a porous material in the micro-scale can be described by several
input parameters. Then, complex and frequency dependent expressions for the effective parameters
can be obtained

4.3.4.1 Empirical Models

One of the simplest models of porous materials is the one-parameter model proposed
by Delany-Bazley (D&B) [36]. This unique parameter is the flow resistivity σ. This
modelwas derived by fitting themeasured characteristic impedance andwavenumber
of awide variety of porousmaterialswith porosity close to the unit andflow resistivity
covering the range 1 < σ < 50 kNs/m4 with a power law of ρ0 f /σ. The model
validity is thus 0.01 < ρ0 f /σ < 1.

The complex and frequency dependent effective wavenumber and characteristic
impedance are given by

Z p(ω) = Z0

[

1 + az1

( ρ0ω

2πσ

)bz1 − iaz2

( ρ0ω

2πσ

)bz2
]

, (4.69)

kp(ω) = k0

[

1 + ak1
( ρ0ω

2πσ

)bk1 − iak2
( ρ0ω

2πσ

)bk2
]

, (4.70)

where the coefficients az1, a
z
2, b

z
1, b

z
2, a

k
1 , a

k
2 , b

k
1, b

k
2 are given in Table4.1. It is worth

noticing here that the behaviour of some porous materials does not exactly follow
this model.

This approach has been extended by several authors. Table4.1 summarizes alter-
native empirical models where the coefficients were fitted for specific types of
porous and fibrous materials: Dunn and Davern [38] obtained the coefficients for
polyurethane foams of low flow resistivity, Qunli [39] for porous plastic open-cell
foams, Kirby and Cummings[42] for fibrous materials A glass, E glass, basalt wool
and steel wool, Muehleisen et al. [41] for highly porous, rigid and open cell carbon
foams, (reticulated vitreous carbon), and finally Garai and Pompoli [43] for polyester
fibrous materials.
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In particular, a further refinement of the D&B model was carried out by Miki
[40], using same data as those used to derive the D&Bmodel, to correct non-physical
behaviour of the effective properties in the low frequency regime. The equations for
this model are

Z p(ω) = Z0

[

1 + az1

( ω

2πσ

)bz1 − iaz2

( ω

2πσ

)bz2
]

, (4.71)

kp(ω) = k0

[

1 + ak1
( ω

2πσ

)bk1 − iak2
( ω

2πσ

)bk2
]

, (4.72)

and the range of validity is then enlarged to 0.01 < f/σ < 1. The model proposed
by Miki should be used instead of the original proposed by Delany and Bazley.

4.3.4.2 Semi-empirical Models

Another widely used class of equivalent models for porous materials is the semi-
empirical one. These models attempt to link high and low frequency asymptotic
exact behaviours of porous material by simple functions and rely on the separation
of viscous (in the density) and thermal (in the bulk modulus) losses. Among several,
the Johnson-Champoux-Allard and the Johnson-Champoux-Allard-Lafarge models
are the most commonly encountered.

4.3.4.3 The Johnson-Champoux-Allard Model

The Johnson-Champoux-Allard (JCA) model [44, 45] involves 5-parameters and
provides the expressions of the dynamic effective density and bulk modulus of a
porous material saturated by a fluid of density ρ0 and bulk modulus K0 considering
a rigid frame. The porous material is characterized by its porosity, φ, its tortuosity,
α∞, its flow resistivity, σ, and the thermal and viscous characteristic lengths, Λ′ and
Λ respectively.

The dynamic effective density and bulk modulus given by the JCA model are

ρp(ω) = ρ0
α∞
φ

[

1 − iG1(ω)
√

1 + iG2(ω)
]

, (4.73)

Kp(ω) = K0
φ−1

γ − (γ − 1)

[

1 − iG ′
1(ω)

√

1 + iG ′
2(ω)

]−1 , (4.74)

where the adiabatic bulkmodulus is given by K0 = γP0. A description of the physical
meaning and the measurement procedure for the input parameters can be found in
the literature [2, 46].
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The functions G1(ω), G2(ω), G ′
1(ω), G ′

2(ω) are given by

G1(ω) = σφ

α∞ρ0ω
, (4.75)

G2(ω) = 4α2∞ρ0ηω

σ2φ2Λ2
, (4.76)

G ′
1(ω) = 8η

ρ0PrΛ′2ω
, (4.77)

G ′
2(ω) = ρ0PrΛ′2ω

16η
. (4.78)

Using these expressions, both the effective wavenumber and the characteristic acous-
tic impedance of the porous material can be obtained by using

kp = ω

cp
= ω

√
ρp

K p
, (4.79)

where cp is the effective sound speed in the porous material and

Z p = √ρpK p. (4.80)

4.3.4.4 The Johnson-Champoux-Allard-Lafarge Model

The JCA model was further be extended by Lafarge [47] to accurately describe
the thermal effects in the low frequency regime. The extended model, namely the
Johnson-Champoux-Allard-Lafarge (JCAL) model, involves a new parameter, the
static thermal permeability, k ′

0. Only the bulk modulus is modified when compared
to the JCA model and G ′

1(ω) and G ′
2(ω) read as

G ′
1(ω) = φη

ρ0Prk ′
0ω

, (4.81)

G ′
2(ω) = 4Prρ0k ′2

0 ω

ηφ2Λ′2 . (4.82)

Please note that the JCAL model is usually written in terms of the static viscous
permeability k0 = η/σ which is an intrinsic parameter of the material. In this case
G1(ω) and G2(ω) become
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G1(ω) = φη

α∞ρ0k0ω
, (4.83)

G2(ω) = 4α2∞ρ0k20ω

ηφ2Λ2
. (4.84)

4.3.5 Locally Resonant Elements

The previously described elements only considered continuity of pressure and flux
along the main propagation direction. However, some elements can be added to the
transmission line that rely on pressure drop or flux continuity in other directions and
are usually locally resonant elements.

Let us assume an element of lateral dimension Δx much smaller than the wave-
length along the main waveguide. This element can be considered as a punctual
resonator. The upstream and downstream pressure, pu and pd , and flux, Vd and Vu ,
are first introduced allowing to define the transfermatrix of this infinitesimal element.

⎡

⎣
pd

Vd

⎤

⎦

x

= T′
⎡

⎣
pu

Vu

⎤

⎦

x+Δx

, (4.85)

The pressure drop
Δp = pd − pu, (4.86)

and flux continuity
ΔV = Vd − Vu, (4.87)

can subsequently be defined as a function of the resonator.

4.3.5.1 Side-Branch (Parallel) Elements

On the one hand, locally resonant elements can load themain waveguide, as shown in
Fig. 4.9. This loading element can be an open or closed duct, aHelmholtz resonator, or
a dead-end cavity of any complex shape. In this case, the pressure is constant along the
element, i.e.,Δp = 0 or pd = pu ,while theflux continuity impliesΔV = Vd − Vu =
pu/Z ′

r , where Z ′
r is the resonator impedance. Please note that the continuity of

pressure has already been accounted for in the last expression.
The equations relating pressures and velocities at both sides of the infinitesimal

element are then

pd = pu, (4.88)

vd = vu + pu/Zr , (4.89)
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Fig. 4.9 Parallel configurationwith a locally resonant element loaded in awaveguide. The resonator
introduces a flow drop while pressure is continuous

which can be re-written in matrix form to give the transmission matrix for “parallel”
connected elements, T′, as

T′ =
⎡

⎣

1 0
1

Z ′
r

1

⎤

⎦ . (4.90)

4.3.5.2 In-Line (Series) Elements

On the other hand, locally resonant elements can be in series in a main waveguide,
as shown in Fig. 4.10. For example, this series elements can be membranes or elastic
plates located in a waveguide.

This time the flux is continuous across the infinitesimal element, i.e., ΔV = 0 or
Vd = Vu , but the punctual resonator induces a pressure dropΔp = pd − pu = Z ′

rVu ,
where Z ′

r is the resonator impedance. Please note that the flux continuity has already
been applied. The equations relating pressures and velocities at both sides are

pd = pu + Z ′
rvu, (4.91)

Vd = Vu, (4.92)

Fig. 4.10 Series configuration with a locally resonant element located in-line in a waveguide. The
resonator introduces a pressure drop while flow is continuous
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an can then bewritten inmatrix form to obtain the transfermatrix of “series” elements
T′ as

T′ =
[

1 Z ′
r

0 1

]

. (4.93)

In the following subsections we will review particular impedance expressions of
different resonators that are commonly arranged in-series or in-parallel to waveg-
uides.

4.3.6 Side Resonating Ducts

When a waveguide is loaded by a secondary duct of length l, as shown for example
in Fig. 4.11 for a sealed secondary duct, the pressure and flux at z = 0 and z = l can
be related by a transfer matrix of the form

⎡

⎣
p

Vz

⎤

⎦

z=0

=
⎡

⎢
⎣

cos(k f l) i Z ′
f sin(k f l)

i
1

Z ′
f

sin(k f l) cos(k f l)

⎤

⎥
⎦

⎡

⎣
p

Vz

⎤

⎦

z=l

. (4.94)

where Z ′
f = Z f /S f and k f are the characteristic impedance and wavenumber, and

S f the cross-section area of the secondary duct. Note that thermoviscous losses in this
duct can be accounted for using an appropriate complex and frequency dependent
wavenumber and impedance, that can be calculated accordingly to (4.60)–(4.67) as
a function of the cross-sectional geometry. Depending on the boundary condition at
z = l, the input resonator impedance at z = 0 can be evaluated via Z ′

r = p(0)/Vz(0).

Fig. 4.11 Quarter-
wavelength resonator
(QWR), of length l, loaded
on a main waveguide.
Resonator is modelled using
the complex and frequency
dependent wavenumber and
impedance that depend on
the resonator geometry
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4.3.6.1 Closed Secondary Duct: The Quarter-Wavelength Resonator
(QWR)

When the secondary duct is sealed, i.e., a rigid boundary condition is applied at z = l,
i.e., Vz(l) = 0, the system of equations given by (4.94) reduces to

p(0) = cos(k f l) p(l) and Vz(0) = i
1

Z f
sin(k f l) p(l). (4.95)

The input impedance is then

Z ′
r = −i Z ′

f cot
(

k f l
) = −i

Z f

S f
cot
(

k f l
)

, (4.96)

where l is the QWR length. The first resonance is observed when Z ′
r = 0, implying

cot(k f l) = 0, i.e., l ≈ λ/4 where λ is the wavelength (note k f can be complex).

4.3.6.2 “End” Correction

Note that the well-known “end” correction must be incorporated to this impedance
to account for the radiation of the resonator in the main waveguide. This radiation is
modelled by adding a subwavelength, i.e. k0Δl << 1, fluid transfer matrix of length
Δl, i.e., the end correction, with wavenumber and impedance k0 and Z ′

0 = Z0/S of
the main waveguide of section S to (4.94):

⎡

⎣
p

Vz

⎤

⎦

0

=
⎡

⎢
⎣

cos(k0Δl) i Z ′
0 sin(k0Δl)

i
1

Z ′
0

sin(k0Δl) cos(k0Δl)

⎤

⎥
⎦

⎡

⎢
⎣

cos(k f l) i Z ′
f sin(k f l)

i
1

Z ′
f

sin(k f l) cos(k f l)

⎤

⎥
⎦

⎡

⎣
p

Vz

⎤

⎦

l

.

Taylor expanding the first matrix and applying the rigid boundary condition at z = l,
(4.96) becomes

Z ′
r = −i

Z f

S f
cot
(

k f l
)− iωρ0

Δl

S
, (4.97)

which is the input impedance of aQWRwith “end” correction. The “end” corrections
Δl are given in the Appendix 4.6.2.

4.3.6.3 Open Secondary Duct: The Half-Wavelength Resonator (HWR)

When the secondary duct is open, pressure-release boundary condition can be applied
in (4.94) at z = l, i.e., p(l) = 0. This leads to the system of equations
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p(0) = i Z f sin(k f l) p(l), (4.98)

Vz(0) = cos(k f l) p(l). (4.99)

The input impedance is then

Z ′
r = i Z ′

f tan
(

k f l
) = i

Z f

S f
tan
(

k f l
)

, (4.100)

where l is the resonator length. The resonance is no longer achieved when the length
of the duct is a quarter of the wavelength, but rather half of it, i.e. the system is
a half-wavelength resonator (HWR). However, the present model for HWR is less
accurate than the one for QWR because the radiation to the outer domain must be
inaccurate, i.e., the system can no longer be one-dimensional.

4.3.7 Helmholtz Resonators

Another type of commonly used side-branch resonator is the Helmholtz one that
comprises a neck coupled to a cavity, as sketched in Fig. 4.12. The input impedance
of the Helmholtz resonator (HR) can also be derived by relating the pressure and
flux at the beginning, z = 0, and at the end, z = l = ln + lc, of the system. The ducts
corresponding to the neck and the cavity are characterized by their length ln and lc
and their sections Sn and Sc, respectively. The transfer matrix problem is written as

⎡

⎣
p

Vz

⎤

⎦

0

=
⎡

⎢
⎣

cos(knln) i Z ′
n sin(knln)

i
1

Z ′
n

sin(knln) cos(knln)

⎤

⎥
⎦

⎡

⎢
⎣

cos(kclc) i Z ′
c sin(kclc)

i
1

Z ′
c

sin(kclc) cos(kclc)

⎤

⎥
⎦

⎡

⎣
p

Vz

⎤

⎦

l

.

Note that specific complex and frequency dependent effective parameters must be
used for each element if thermoviscous losses are accounted for because the neck and
the cavity are of different cross-sections: kn and Z ′

n = Zn/Sn for the neck, and kc and

Fig. 4.12 Helmholtz
resonator loaded on a main
waveguide. The resonator is
modelled using the complex
and frequency dependent
parameters that depend on its
geometry
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Z ′
c = Zc/Sc for the cavity. Theses effective parameters are calculated accordingly to

(4.60)–(4.67) as a function on the geometry of the ducts.
Applying rigid boundary condition at z = l = ln + lc, and manipulating the pre-

vious transfer matrix, the impedance of the HR can be written as Z ′
r = p(0)/Vz(0)

Z ′
r = −i Z ′

n

Z ′
c/Z

′
n − tan knln tan kclc

Z ′
c/Z

′
n tan knln + tan kclc

. (4.101)

Taylor expanding the latter expression at low frequencies, i.e., knln � 1 and
kclc � 1, leads to

Z ′
r = −i Z ′

n

Z ′
c/Z

′
n − knlnkclc

Z ′
c/Z

′
nknln + kclc

. (4.102)

If losses are not considered, kn = kc = k0 and Zn = Zc = Z0, where k0 = ω/c0 and
Z0 = ρ0c0. The first resonance of the HR is then observed when Im(Z ′

r ) = 0, leading
to

ωR = c0

√

Sn
lnlcSc

= c0

√

Sn
lnVc

, (4.103)

which is the usual expression for the resonance frequency of a HR, where Vc = Sclc
is the volume of the cavity.

However, when thermoviscous losses are included such a compact expression
cannot be derived. In this case the resonant frequency can be estimated numerically
by looking for the frequency at which Im(Z ′

r ) = 0 with the corresponding complex
kn, kc, Zn and Zc. Usually, the so-calculated HR resonance frequency is moderately
reduced as compared with (4.103).

It is worth noting here that (4.101) is not exact because corrections due to the
radiation at the discontinuities must be included. Using a transfer matrix approach,
see e.g., [48, Suppl. mat.], we can model the pressure radiation between the different
elements. Thus, we can express the system as

⎡

⎣
p

Vz

⎤

⎦

0

=
⎡

⎢
⎣

cos(knΔl2) i Z ′
n sin(knΔl2)

i
1

Z ′
n

sin(knΔl2) cos(knΔl2)

⎤

⎥
⎦

⎡

⎢
⎣

cos(knln) i Z ′
n sin(knln)

i
1

Z ′
n

sin(knln) cos(knln)

⎤

⎥
⎦×...

⎡

⎢
⎣

cos(knΔl1) i Z ′
n sin(knΔl1)

i
1

Z ′
n

sin(knΔl1) cos(knΔl1)

⎤

⎥
⎦

⎡

⎢
⎣

cos(kclc) i Z ′
c sin(kclc)

i
1

Z ′
c

sin(kclc) cos(kclc)

⎤

⎥
⎦

⎡

⎣
p

Vz

⎤

⎦

l

.

The first length correction, Δl1, is due to pressure radiation at the discontinuity from
the cavity to the neck of the HR [49], while the second length correction,Δl2, comes
from the radiation at the discontinuity from the neck to the principal waveguide [50].
Please note that rigorously, this second correction matrix should be written in terms
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of the principalwaveguide parameters, k0 and Z ′
0. However, replacing this parameters

by those of the neck provides more accurate results. After application of the rigid
boundary condition at x = l, Taylor expansion (knΔl1 � 1 and knΔl2 � 1) of the
length correction matrices, and rearrangement, the impedance of the HR accounting
for the “end” corrections becomes

Z ′
r = −i Z ′

n

cos knln cos kclc − knΔl Z ′
n

Z ′
c

cos knln sin kclc − Z ′
n

Z ′
c

sin knln sin kclc

sin knln cos kclc − knΔl Z ′
n

Z ′
c

sin knln sin kclc + Z ′
n

Z ′
c

cos knln sin kclc

,

where the correction length Δl = Δl1 + Δl2 is the addition of the two correction
lengths. The specific values for the correction lengths are given in the Appendix
4.6.1.

4.3.8 Rigid Micro-perforated Plates

When a rigid thin panel is densely perforated with holes whose dimensions are much
smaller than the wavelength, it can be modelled as a local impedance that accounts
for the wave propagation in the small ducts including the thermoviscous effects.
Maa’s model [51] consider a local impedance as

Zr = − iωρ0h

φ

⎡

⎣1 − 2

σ
√
i

J1
(

σ
√
i
)

J0
(

σ
√
i
)

⎤

⎦

−1

− i0.85ω
ρ0d

φ
+ h

√
2ση

dφ
, (4.104)

where σ = d
√

ωρ0/4η, d is the perforation diameter, h is the thickness of the plate,
and φ = πd2/4a2 is the surface porosity in case of circular perforation arranged in
a square lattice of side a, as depicted in Fig. 4.13. The first term on right-hand-
side of (4.104) accounts for the hole impedance, the second term models the reactive
radiation at both appendicular parts of the perforation, while the purely resistive term
models the friction at these appendicular parts. Note that the provided impedance
is Zr and not Z ′

r and holds for a perforated plate of infinite lateral extends. An
approximation of this model is given by

Zr = − iωρ0h

φ
σi + 32ηh

φd2
στ , (4.105)

where the coefficients σi and στ are given by

σi = 1 +
[

1 + σ2

2

]− 1
2

+ 0.85
d

h
, στ =

√

1 + σ2

32
+ 4

√
2

32
σ
d

h
. (4.106)
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Fig. 4.13 Micro-perforated
panel and the geometrical
parameters used

This approximation is valid for 1 < σ < 10. Further details, extended and alternative
models can be found in [52].

4.3.9 Elastic Plates

Another type of often encountered locally resonant elements are elastic plates. The
acoustic impedance of the plate relies on the pressure drop and flux continuity across
the plate. Thus, different plate geometries and boundary conditions leads to different
expressions for the acoustic impedance.

4.3.9.1 Circular Elastic Plate

Let us first consider a clamped circular plate of radius r and section S = πr2, as
the one depicted Fig. 4.14a. Note the clamped condition implies that the transverse
displacement and its first normal derivative vanish at the plate boundary. Assuming
that only the axisymmetric modes can be excited, the associated acoustic impedance
can be derived analytically and reads as [53]

Z ′
r = − iωρh

S

J0(kmr)I1(kmr) + J1(kmr)I0(kmr)

J2(kmr)I1(kmr) − J1(kmr)I2(kmr)
, (4.107)

where In is themodifiedBessel’s function of the first kind of order n, h is the thickness
of the plate, and km and ρ are respectively the wavenumber and density of the plate,
given by

k2m = ω

√

ρh

D
, and D = Eh3

12(1 − ν2)
, (4.108)
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Fig. 4.14 Elastic plate resonators and the geometrical parameters used. (a) Circular elastic and (b)
square clamped plates

with D is the bending stiffness (or flexural rigidity), and E and ν, the Young’s
modulus and Poisson’s ratio of the material plate, respectively.

4.3.9.2 Approximation

Taylor expanding (4.107) at low frequencies, i.e., kmr � 1, provides a lumped
impedance model, which reads as

Z ′
r = 1

iωCp
+ iωMp, (4.109)

where the compliance and the acoustic mass are [54] respectively:

Cp = πr6

196.51D
, Mp = 1.8830

ρh

πr2
. (4.110)

The first resonance frequency is then given by the following formulae

f0 = 0.4694
h

r2

√

E

ρ(1 − ν2)
. (4.111)

Note that this model only accounts for the first resonance and, therefore, (4.109) is
only valid for f � f0.

4.3.9.3 Squared Elastic Plate

The impedance of a squared clamped elastic plate, as shown in Fig. 4.14b, can be
obtained assuming the system obeys the flexural wave equationwhich is valid for thin
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elastic plates. Using separation of variables, the full expression for the impedance of
a square cross-sectional elastic plate of side a is given by [55]

Z ′
r =

⎡

⎢
⎢
⎣
iω

a∫

0

a∫

0

⎛

⎜
⎜
⎝

∞
∑

m=1

∞
∑

n=1

∫ a

0

∫ a

0
XmYndxdy

D(I1 I2 + 2I3 I4 + I5 I6) − ρhω2 I2 I6
XmYn

⎞

⎟
⎟
⎠
dxdy

⎤

⎥
⎥
⎦

−1

(4.112)
where Xm(x) and Yn(y) are the eigenfunctions describing the shape of the n-th and
m-th eigenmode of the clamped plate. They both have the same form and are given
by

Xm(x) = G

(
λmx

a

)

− G(λm)

H(λm)
H

(
λmx

a

)

, (4.113)

Yn(y) = G

(
λn y

a

)

− G(λn)

H(λn)
H

(
λn y

a

)

. (4.114)

The functionsG(u) and H(u) satisfy the clamped boundary conditions and are given
by

G(u) = cosh(u) − cos(u), H(u) = sinh(u) − sin(u), (4.115)

while λm and λn satisfy

cosh(λ) cos(λ) = 1. (4.116)

In practice, λm and λn can be found using a root-finding algorithm such as Muller’s
method [56].

Finally, the integrals, Ii , are given by

I1 =
∫ a

0
Xm(x)

∂4Xm(x)

∂x4
dx, I2 =

∫ a

0
Yn(y)

2dy, (4.117)

I3 =
∫ a

0
Xm(x)

∂2Xm(y)

∂x2
dx, I4 =

∫ a

0
Yn(y)

∂2Yn(y)

∂x2
dy, (4.118)

I5 =
∫ a

0
Yn(y)

∂4Yn(y)

∂x4
dy, I6 =

∫ a

0
Xm(x)2dx . (4.119)

While the derivatives can be calculated analytically, the integrals must be calculated
numerically, e.g., using Simpson’s method.

The resonance frequencies of the n-th and m-th modes of the square clamped
plate are given by

ωm,n =
√

D(I1 I2 + 2I3 I4 + I5 I6)

ρhI2 I6
. (4.120)
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Finally, note that in (4.112) the term
∫ a
0

∫ a
0 XmYndxdy vanish for m, n = 2, 4, . . .,

so that the even modes do not contribute to impedance: for these modes, the pressure
drop at both sides of the plate is zero.

4.3.9.4 Approximation

The impedance of a square clamped plate given by (4.112) can be approximated for
frequencies around and below the first resonance frequency of the plate. The lumped
impedance model for the square clamped plate can be written as

Z ′
r = 1

iωCp
+ iωMp, (4.121)

where the compliance and the acoustic mass are [57], respectively

Cp = 3.73 × 10−4 a
6

D
, Mp = 2.06

ρh

a2
, (4.122)

with D = Eh3/12(1 − ν2) the bending stiffness, and E , ν, ρ and h the Young’s
modulus, Poisson’s ratio, density and thickness of the square plate, respectively. The
first resonance frequency ω0 of the clamped elastic square plate satisfies Im(Z ′

r ) = 0
and is thus given by ω0 = √1/MpCp.

4.3.10 Membranes

A clamped membrane is a thin elastic plate clamped at the boundaries under a large
pre-stretch tension. As shown in Fig. 4.15a, b, the membrane behaviour arises when
the tension T is much higher than the bending stiffness of the elastic plate, i.e.,
T � D, which is easily achieved by thin elastic plates, h � 3

√

12(1 − ν2)T/E , of
soft materials, ν → 0.5. As in elastic plates, different geometries led to different
expressions for the acoustic impedance of membranes.

4.3.10.1 Circular Membrane

Considering only the axisymmetric modes of a circular membrane of radius r and
area S = πr2, and thickness h, as depicted in Fig. 4.15a, an analytical expression can
be obtained for the acoustic impedance of the clamped circular clamped membrane
as

Z ′
r = − iωρh

S

J0(kmr)

J2(kmr)
, (4.123)
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Fig. 4.15 Elastic membrane resonators and the geometrical parameters used. a Circular and b
square membranes

where ρ is the material density and km = ω
√

ρ/T is the wavenumber in the mem-
brane, with T the tension applied to the membrane.

4.3.10.2 Approximation

The Taylor expansion of (4.123) at the low frequencies (kmr � 1) provides the
lumped impedance model, which takes the form

Z ′
r = iωρh

S

[

1 − f0
f

]

, (4.124)

where the first resonance of the plate f0 is given by the following approximation

f0 = 0.38274
1

r

√

T

ρ
. (4.125)

Note this model only accounts for the first resonance and, therefore, is only valid for
0 ≤ f � f0.

4.3.10.3 Squared Membrane

In the case of a square clamped membrane of side a and thickness h, as shown in
Fig. 4.15b, the acoustic impedance can be written as [57]:

Z ′
r =

[

iωa2
∞
∑

m=1

∞
∑

n=1

4 [1 − (−1)m]2 [1 − (−1)n]2

ρh
(

ω2
m,n − ω2

)

m2n2π4

]−1

, (4.126)
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where ρ is the material density, m and n are the indices of the normal modes of the
membrane and their corresponding resonance frequency ωm,n is given by

ωm,n = π

a

√

T

ρ

(

m2 + n2
)

, (4.127)

with the tension T . Note that the even modes do not contribute to the impedance
because the term [1 − (−1)m]2 [1 − (−1)n]2 in (4.126) vanish for n,m = 2, 4, . . .,
i.e., for these modes the pressure drop is zero.

4.3.10.4 Approximation

The impedance of a square clampedmembrane given by (4.126) can be approximated
for frequencies around or below the first resonance by

Z ′
r = 1

iωCm
+ iωMm, (4.128)

where the acoustic compliance and acoustic mass are given by

Cm = 0.035
a6

T
, Mm = 1.44

ρh

a2
. (4.129)

These coefficients are calculated from the full analytic model. Note the impedance
of the membrane is independent of the material elasticity. These formulae are valid
for thin clamped square membranes where the pre-stretched tension dominates over
the bending stiffness, i.e., T � Eh3/12(1 − ν2). The first resonance frequency of
the clamped square membrane, ω0, again satisfies Im(Z ′

r ) = 0 and is thus given by
ω0 = √1/MpCp.

4.3.11 Infinite Elastic Vibrating Wall

A thin and unbounded elastic material of thickness h can be included in a TMM
formulation as a series element given by (4.93), under the assumption that klh � 1,
where kl is the wavenumber associated with the longitudinal waves in the elastic
material. The acoustic impedance of this thin, unbounded and elastic plate as shown
in Fig. 4.16, can be written as

Zr = Zw = D

iω

(

k40 sin
4 θ − k4w

)

, (4.130)
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Fig. 4.16 (Left) Geometry of the unbounded elastic wall and geometrical parameters used. (Right)
Scheme of the induced flexural waves at the coincidence frequency for a given angle of incidence

where θ is the incidence angle and the dispersion relation kw = ω/cw gives the
wavenumber in thewall. The phase speed of the bendingwaves is cw = (ω2D/m ′)1/4,
k0 = ω/c0 is the wavenumber of the surrounding medium with sound speed c0,
m ′ = ρh is the surfacemass density, i.e., themass per unit area, D = Eh3/12(1 − ν2)

is the bending stiffness of thewall and E , ν, and ρ are theYoung’smodulus, Poisson’s
ratio and density of the elastic material, respectively. Please note that the provided
impedance corresponds to Zr and not to Z ′

r and holds for a thin elastic plate of infinite
lateral extents.

Equation (4.130) exhibits a resonance at k40 sin
4 θ = k4w, i.e., when the wavenum-

ber of the bending waves in the wall matches the transverse component of the
wavenumber in the surrounding medium, as shown in Fig. 4.16. This occurs when
λ0/ sin θ = λw, i.e., at the coincidence frequency given by

f ′
c = c20

2π sin θ

√

m ′

D
. (4.131)

The lowest coincidence frequency occurs at grazing angles when θ = π/2. We can
thus define this frequency as the critical frequency as

fc = c20
2π

√

m ′

D
= f ′

c sin θ. (4.132)

This critical frequency only depends on the properties of thewall and the surrounding
fluid. The acoustic impedance of the thin wall can then be written as a function of
this critical frequency as
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Fig. 4.17 (Left) Imaginary part of the impedance of the elastic wall as a function of the frequency
normalized to the critical frequency. (Right) Corresponding real part

Zw = im ′ω

[

1 −
(

f

fc

)2

(1 + iηw) sin4 θ

]

. (4.133)

Note that a complex bending stiffness has been introduced to account for the vis-
coelasticity of the solid material with D′ = D(1 + iωηw), where ηw is the loss
factor. For normal incidence or for frequencies f � fc, the impedance reduces to
Zw ≈ im ′ω, i.e., only the mass of the wall contributes to the acoustic impedance.

As an example, the impedance of a h = 1.5-cm thick vibrating gypsum wall with
ρ = 850 kg/m3, E = 4.1 GPa, ν = 0.3 and ηw = 0.1 Pa/s, is given in Fig. 4.17. First,
we can observe that the imaginary part of the impedance under normal incidence,
θ = 0 does not cross at zero. However, the imaginary part of the impedance vanishes
for oblique incidence at some specific frequencies, i.e., at the coincidence frequencies
of the wall, and thus the wall resonates. The real part of the impedance accounts
for the losses of the element. At normal incidence, no loss is noticed, (4.133). At
oblique incidence, the losses are activated, and they present a quadratic dependence
on frequency.

4.4 Examples of Application

4.4.1 Absorption of Multilayered Porous Structure

One of the simplest configurations where the TMM has been widely used is in the
modelling of absorption properties of multilayer rigidly-backed porous materials.
These structures are widely used in room acoustics, as well as in automotive and
aerospace applications. In most of these situations, the goal is to produce structures
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Fig. 4.18 Geometry of the configuration, composed of a porous layer with a rigidly-backed air
cavity (plenum)

with high absorption coefficients. In this case, we consider that the porous material
is rigidly backed, i.e., there is no transmission.

In this example we present a simple multilayer structure composed of a layer of
porous material and a layer of air, i.e., an air plenum, as Fig. 4.18 shows. Note the
extension of the proposed example to a higher number of layers is straightforward
[12, 13].

The total transfer matrix of the system is composed of two transfer matrices, each
one corresponding to the propagation in one media, that is written as

T = TpT f , (4.134)

where Tp is the transfer matrix of the porous layer of length L p, given by (4.68), and
T f is the transfermatrix of the air gap of length L0 given by (4.53). In this example,we
consider a JCAmodel for the layer of porousmaterial, with parameters corresponding
to a mineral wool material: σ = 20.6 × 103 Ns/m4, α∞ = 1.01, φp = 0.98 Λ = 85
µm, Λ′ = 2Λ, while for the gap and the exterior media air at room temperature is
consideredwith parameters P0 = 101325Pa,γ0 = 1.4,ρ0 = 1.213kg/m3, Pr = 0.71
η0 = 1.839 × 10−5 Pa·s, K0 = γ0P0 Pa.

4.4.1.1 Normal Incidence

Once the full transfer matrix,T, is obtained, the reflection and absorption coefficients
are calculated using (4.48), (4.49). The total length of the multilayer structure was
L = 6 cm. Two configurations are shown, with and without the air cavity. First,
Fig. 4.19 shows the absorption of a structure calculated using a porous layer of length
L p = 6 cm (blue curve). In this case, the cavity of air was not included (L0 = 0).
Second, we show the absorption of a layer of porous material of L p = 3 cm and
an air cavity of L0 = 3 cm (red curve). The absorbing features of the multilayer
structure can be easily modelled by the TMM using a compact and fast calculation,



142 N. Jiménez et al.

Fig. 4.19 Absorption at
normal incidence angle of
the rigidly-backed porous
layer (black) and layer of
porous material with a
rigidly-backed air cavity
(red)

allowing the fast optimization of the layer properties to, i.e., maximize the absorption
[13]. Addingmore layers with different parameters is straightforward by adding their
corresponding transfer matrix terms.

4.4.1.2 Oblique Incidence

In a real situation, acoustic waves impinge the structure in more than one incidence
angle. Thus, normal incidence absorption canbemisleading as, in general, the absorp-
tion properties depend on the angle of incidence. We consider a plane wave with an
angle of incidence θ defined with respect to the outward normal to the structure, see
Fig. 4.20. Due to continuity of the transversal component of the wavevector along
the interfaces, the wavenumber in the transverse direction x is the same in all media,
leading to

k0,x = k0 sin(θ), k0,z =
√

k20 − k20 sin
2(θ), (4.135)

kp,x = k0 sin(θ), kp,z =
√

k2p − k2p sin
2(θ), (4.136)

where k0,x and kp,x are the transversal components (along x direction), and k0,z
and kp,z are the normal component (along z) of the wavenumbers in the air and
in the porous layer respectively, as shown in Fig. 4.20. Note that, due to symmetry
considerations it is sufficient to consider only 2 components (kz and kz) to describe
the problem: in the case of an oblique incidence with a component in the direction
y, a simple rotation of the reference system can be applied to reduce the transversal
wavenumber to one component.

The transfer matrix of the porous layer, Tp, under oblique incidence is given by
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Fig. 4.20 a Geometry of the configuration, composed of a porous layer with rigidly-backed air
cavity, b scheme of the transfer matrices used. c Absorption at of the rigidly-backed porous layer
at several incidence angles (grey) and random incidence absorption (blue). d Absorption of layer
of porous material with a air plenum and its corresponding random incidence absorption (red)

Tp =

⎡

⎢
⎢
⎣

cos(kp,z L p) i Z p
kp
kp,z

sin(kp,z L p)

i

Z p

kp,z
kp

sin(kp,z L p) cos(kp,z L p)

⎤

⎥
⎥
⎦

, (4.137)

while the transfer matrix of the air layer, T0, is written as

T0 =
⎡

⎢
⎣

cos(k0,z L0) i Z0
k0
k0,z

sin(k0,z L0)

i

Z0

k0,z
k0

sin(k0,z L0) cos(k0,z L0)

⎤

⎥
⎦ . (4.138)

Finally, the reflection coefficient of the rigidly-backed structure under oblique inci-
dence is obtained by setting vz|z=L = 0. After some algebra, it can be written as a
function of the elements of the total transfer matrix given in (4.13) as
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R(ω, θ) = T11(ω) cos(θ) − Z0T21(ω)

T11(ω) cos(θ) + Z0T21(ω)
. (4.139)

Then, the absorption is calculated as usual as α(ω, θ) = 1 − |R(ω, θ)|2. In addition,
the specific impedance at the first interface can be calculated from the reflection
coefficient as

Zs(ω, θ) = Z0

cos(θ)

(1 + R(ω, θ))

(1 − R(ω, θ))
. (4.140)

The specific impedance at the first interface is useful to study the impedancematching
of the structure with the exterior medium.

A common approach to quantify the performance of the structures under oblique
incidence is to integrate the absorption for all the angles of incidence to obtain the
absorption coefficient in diffuse field, αdiff , as [46]

αdiff(ω) =

∫ θm

θ=0
α(ω, θ) sin(θ) cos(θ)dθ

∫ θm

θ=0
cos(θ) sin(θ)dθ

. (4.141)

Note that for a hemispherical integration, θm = π/2, this reduces to

αdiff(ω) =
∫ π/2

θ=0
α(ω, θ) sin(2θ)dθ, (4.142)

known as the Paris’ formula. This coefficient is closely related to the measurement
of sound absorption under random incidence in a reverberant chamber following
the standardized acoustic test ISO 354:2003 [58]. Note the experimental test should
differ from the calculations due to many factors, including a non-diffuse field in
the reverberant chamber or the absorption at the boundaries of the finite-dimension
material [59]. Figure4.20c–d show the predicted absorption for various angles of
incidence for both configurations. The absorption coefficient in diffuse field is also
shown, where it can be observed that under random incidence the absorption curve
is smoothed.

4.4.2 Noise Transmission Through a Double Wall

Other interesting problem that has beenwidely solved using theTMMin the literature
is the transmission of acoustic waves travelling through multiple elastic walls. This
concerns the classical problem of noise transmission in building acoustics for sound-
proofing, as well as sound transmission in automotive and aerospace applications
[60]. In the following, we present the solution of a classical example of a double-
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Fig. 4.21 Geometry of the configuration, composed of a double elastic wall separated by a cavity
and scheme of the transfer matrices used

wall sound proofing system composed of two layers of gypsum board separated a
distance L , with an air cavity between the walls, as shown in Fig. 4.21.

In this case, the total transfer matrix is given by

T = T[1]
w T f T[2]

w , (4.143)

where T[1,2]
w are the transfer matrices of the gypsum boards given by (4.133), and

T f is the transfer matrix of the air cavity given by (4.53). The total transfer matrix
under oblique incidence then

T =
⎡

⎢
⎣

1 Z1

0 1

⎤

⎥
⎦

⎡

⎢
⎣

cos(k0,z L) i Z0
k0
k0,z

sin(k0,z L)

i

Z0

k0,z
k0

sin(k0,z L) cos(k0,z L)

⎤

⎥
⎦

⎡

⎢
⎣

1 Z2

0 1

⎤

⎥
⎦ , (4.144)

where the perpendicular and transverse wavenumbers are given by

k0,z =
√

k20 − k20 sin
2(θ) and k0,x = k0 sin(θ), (4.145)

and Z1 and Z2 are the impedances of the infinite elastic walls given by (4.133). Once
the total transfer matrix is calculated, we can obtain the transmission coefficient T
using (4.37). Then, we can represent the transmission loss in logarithmic scale as

TL = −10 log10 |T |2, (4.146)

which is useful to quantify the soundproofing performance of structures.
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4.4.2.1 Normal Incidence

For normal incidence, θ = 0, then k0,z = k0.We can calculate the total transfermatrix
from (4.144), and then the transmission coefficient using (4.37) to obtain

T = 1
(

1 + Z1 + Z2

2Z0

)

cos(k0L) + i

(

1 + Z1 + Z2

2Z0
+ Z1Z2

2Z2
0

)

sin(k0L)

. (4.147)

For normal incidence (4.133) leads to Z1 ≈ iωm ′
1 and Z2 ≈ iωm ′

2, i.e., only themass
of each wall contributes to their impedance.

We show an example for normal incidence using a double-wall composed of two
identical gypsum panels of h = 1.5 cm thickness, separated by a distance L = 5 cm
with a density of ρ = 850 kg/m3, Young modulus of E = 4.1 GPa, Poison ratio of
ν = 0.3 and lossesmodelled by η = 0.05.Air is assumed to fill the cavity. Figure4.22
shows that (4.147) gives the same solution as the numerical evaluation of the transfer
matrix (4.144). Moreover, approximate expressions for each regime (dashed lines),
can be obtained, as well as the transition frequencies.

Fig. 4.22 Transmission loss (TL) at normal incidence angle using an air cavity (black) and using
(4.147). Approximate solution are marked in dashed lines
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4.4.2.2 Low Frequency Approximation

For low frequencies, k0L � 1, we can approximate sin(k0L) ≈ k0L and cos(k0L) ≈
1 − k20L

2/2. Then, neglecting high order terms we obtain

TL ≈ 20 log10

(
ω(m1 + m2)

2Z0

)

, for f < f0. (4.148)

This frequency regime corresponds to thewell-knownmass law: the double-wall sys-
tem behaves as a single wall with total surface mass (m ′

1 + m ′
2). Thus, the transmis-

sion decreases with the square of the frequency, i.e., the transmission loss increases
6 dB/octave.

This expression is valid for frequencies up to the double-wall resonance frequency,
f0, given by

f0 = 1

2π

√

K0

L

(
1

m ′
1

+ 1

m ′
2

)

. (4.149)

At this particular frequency the double-wall resonates as a mass-spring-mass system,
where walls contribute to both masses (m ′

1 and m ′
2) and the bulk modulus of the

inner cavity (K0 = ρ0c20) contributes to the stiffness of the equivalent spring. At this
resonance frequency a peak of transmission is observed, producing a deep dip in the
transmission loss.

4.4.2.3 Medium Frequency Approximation

For intermediate frequencies up to k0L ≈ 1, the transmission loss of the system can
be simplified to

TL ≈ 20 log10

(
ω3m ′

1m
′
2L

2ρ20c
3
0

)

, for f0 < f < fd . (4.150)

In this regime the transmission increases with the sixth power of the frequency,
i.e., the transmission loss increases with 18 dB/octave. Here, the transmission loss
depends on the product of the masses and the separation of the panels, i.e., the
transmission loss is the addition of the insulation of both walls plus an additional
term as TL ≈ TL1 + TL2 + 20 log10(2k0L), where TL1 = 20 log10(ωm

′
1/2Z0) and

TL2 = 20 log10(ωm
′
2/2Z0) are the transmission losses of both independent walls,

respectively. Note the soundproofing performance of the double-wall in this regime
is greatly improved if compared with the performance of a panel with equivalent
mass.

This expression is valid for frequencies up to k0L ≈ 1, leading to a cut-off fre-
quency of
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fd = c0
2πL

. (4.151)

Above this frequency the resonances of the inner air cavity start to dominate.

4.4.2.4 High Frequency Regime

Above fd , the cavity between the two walls shows several resonances given by
k0L = nπ, where n = 1, 2, 3, .... Thus, the resonance frequencies are

fn = n
c0
2L

. (4.152)

At each resonance frequency a peak of transmission is produced, leading to a dip in
the transmission loss. The overall TL in this regime, neglecting the dips given by the
resonances, can be approximated by

TL ≈ 20 log10

(
ω2m ′

1m
′
2

2Z2
0

)

, for fd < f. (4.153)

In this regime the transmission decreases with the fourth power of the frequency,
i.e., the transmission loss increases with a slope of 12 dB/octave. This is roughly
equivalent to TL ≈ TL1 + TL2 + 6 dB.

4.4.2.5 Oblique Incidence

As occurs with the reflection problem, the transmission at normal incidence does
not describe a real situation where acoustic waves will impinge the walls at more
than one incidence angle. In addition, for each oblique incidence angle there exist
a frequency at which the corresponding wavelength of air matches the wavelength
of the bending waves travelling trough the infinite wall. Then, the impedance of
each wall should introduce a contribution modelling these phenomena, as shown in
(4.133).

Under oblique incidence, the transmission coefficient is calculated as

T (ω, θ) = 2

T11 + T12 cos(θ)/Z0 + T22 + T21Z0/ cos(θ)
. (4.154)

In addition, manipulating the total transfer matrix we can obtain the characteristic
frequencies under oblique incidence as
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Fig. 4.23 (left) Transmission loss as a function of the frequency and the angle of incidence. The
white dips mark the existence of resonance modes that led to transmitted energy. (right-bottom)
Transmission loss near the normal, at θ = 35◦. The effect of the coincidence mode is visible at
frequency f ′

c . Cavity resonances are also clearly visible at f1 and f2. (Right-center) Transmission
loss at θ = 60◦. The effect of the coincidence mode is visible at frequency f ′

c , cavity resonances
have increased their frequency. (Right-top) Transmission loss near the grazing angle, at θ = 75◦.
The effect of the coincidencemode dominates and its frequency almost match the critical frequency.
The effect of cavity resonances in the transmission loss is negligible

Mass-spring-mass resonance: f0(θ) = 1

2π cos(θ)

√

K0

L

(
1

m ′
1

+ 1

m ′
2

)

,

Coincidence frequency: f ′
c(θ) = fc

sin2(θ)
,

Cavity resonances: fn(θ) = n
c0

2L cos(θ)
with n = 1, 2, 3, . . .

where fc is the critical frequency given by (4.132), i.e., the coincidence frequency
for an incidence angle of θ = π/2.

Figure4.23 shows the transmission loss as a function of the incidence angle and
frequency. We can observe that the overall transmission loss is reduced when the
incident wavefront is tilted, mainly caused by the existence of a resonant transmis-
sion due to the coincidence effect. The mass-spring-mass resonance also shifts in
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frequency causing a reduction of the transmission loss in the low frequency regime.
The cavity modes are shifted-up in frequency.

To quantify the overall transmission loss in realistic situation including random
incidence, it is useful to integrate the angle-dependent transmission of the single to
obtain the diffuse-field transmission loss as

TLdiff(ω) = −10 log10

∫ θm

θ=0
T (ω, θ) cos(θ) sin(θ)dθ

∫ θm

θ=0
cos(θ) sin(θ)dθ

. (4.155)

where θm is usually in the range from 80◦ to 90◦.
This coefficient is related (but not equivalent) to the standardized test defined in

the ASTM E90-09 [61] to experimentally evaluate the insertion loss of a panel in a
transmission chamber. Note that, if θm = π/2, then

TLdiff(ω) = −10 log10

∫ π/2

θ=0
T (ω, θ) sin(2θ)dθ, (4.156)

in analogy with the Paris’ formula for the diffuse-field absorption given by (4.142).

4.4.2.6 Porous Layer in the Cavity

A common solution to increase the transmission loss at the cavity resonances is to
add a layer of porous material in the cavity. Thus, we can modify the total transfer
matrix as

T = T[1]
w T f TpT f T[2]

w , (4.157)

where Tp is the transfer matrix of the porous material given by (4.68) and T f is the
transfer matrix of the air gap between the porous material and the walls, given by
(4.53). We consider a cavity of 5cm, with a layer of porous material of thickness
L p = 4 cm, modelled using the JCA model and using a static air flow resistivity
of σ = 9958 Ns/m4, a high frequency limit of the tortuosity α∞ = 1.03, and open
porosity of φp = 0.982 a viscous characteristic length ofΛ = 203µm and a thermal
characteristic length ofΛ′ = 2Λµm. Therefore, the air gap at each side of the porous
layer is L0 = 0.5 cm.

The transmission loss of the system is shown in Fig. 4.24. Note that, in this case,
instead of obtaining an explicit analytical form like (4.147), it is more straightfor-
ward to directly evaluate numerically the transfer matrix of each element in (4.157).
First, for normal incidence we can see that at the cavity resonances ( f1, f2, . . .)
the transmission loss is greatly increased due to the damping of the purely acous-
tic modes propagating in the air between the layers. This is the principal benefit of
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Fig. 4.24 Transmission loss of the double-wall system without (continuous) and with (dashed) the
porous absorber. (Blue) normal incidence, (red) diffuse field

using a porous material inside the cavity. At the mass-spring-mass resonance ( f0)
the transmission is not longer perfect but the value of the TL remains low.

On the other hand, for diffuse field calculations, we can see that the transmission
loss is greatly reduced as compared with the normal incidence. This is mainly caused
by the coincidence effect that sweeps an almost perfectly transmitted mode all over
the spectra down to the critical frequency, as shown previously in Fig. 4.23.When the
layer of porous material is introduced, its effect is clearly visible at high frequencies
as it mainly attenuates the modes in the cavity. However, the contribution of the
porous material to reduce the transmission of the coincidence effect is very low, and,
therefore, the TL value at the critical frequency ( fc) remains low.

Note that, using the TMM the inclusion of more elements and layers to the sys-
tem is straightforward. However, in a realistic situation in building acoustics other
important phenomena should be considered: the transmission by the flanks, stubs and
supporting systems, the finite size of the elastic walls and many other vibro-acoustic
effects [60].

4.4.3 Phononic Crystals

We present the analysis of 1D periodic structures and metamaterials using the TMM.
An acoustic periodic media is an arrangement of acoustic elements, unit cells, whose
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Fig. 4.25 a Geometry of a phononic crystal made of alternating layers of two materials. b–c
Dispersion relations obtained for the phononic crystal, real and imaginary part of the wavenumber,
respectively. Bandgap regions are shaded

structure is repeated in space. A simple example of such media is a periodic-
multilayer structure composed of two fluid layers with alternating properties, as
shown in Fig. 4.25a, also named a phononic crystal in analogy with photonic crystals
in optics.

The total transfer matrix of the unit cell considered in this problem, Tu.c., is given
by the product of the transfer matrices of each layer as

Tu.c. = T[1]
f T[2]

f , (4.158)

where T[1]
f is the transfer matrix of the first fluid and T[2]

f is the transfer matrix of
the second fluid, both given by (4.53). Here, we consider a unit cell of total length
a, where the length of each layer is a1 and a2 respectively. Due to the periodicity
of the structure, it is sufficient to analyse a single unit cell to obtain the dispersion
relations, as well as the transmission and reflection properties.

When analysing period structures it is important to note that their dispersion
relations are defined for infinite period structures, while to obtain their reflection and
transmission properties these structures must be bounded in space, i.e., the scattering
properties depend on the number of unit cells considered.
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4.4.3.1 Derivation of the Dispersion Relation of a 1D Multilayer System

We consider two fluids with different wavenumbers and impedances, given by k1 =
ω/c1, k2 = ω/c2 and Z1 = ρ1c1 and Z2 = ρ2c2, where ρ1 and ρ2 are the density and
c1 and c2 the sound speed of each fluid. The periodicity of the system is a = a1 + a2.
Then, the transfer matrices of both fluids are given by (4.53), respectively

T[1]
f =

⎡

⎣
T [1]
11 T [1]

12

T [1]
21 T [1]

22

⎤

⎦ =
⎡

⎢
⎣

cos(k1a1) i Z1 sin(k1a1)

i
1

Z1
sin(k1a1) cos(k1a1)

⎤

⎥
⎦ (4.159)

and

T[2]
f =

⎡

⎣
T [2]
11 T [2]

12

T [2]
21 T [2]

22

⎤

⎦ =
⎡

⎢
⎣

cos(k2a2) i Z2 sin(k2a2)

i
1

Z2
sin(k2a2) cos(k2a2)

⎤

⎥
⎦ . (4.160)

In acoustics, for these periodic systems, the pressure and velocities accomplish
the Bloch-Floquet theorem providing the following relation between the boundaries
of the unit cell

[

p
vx

]

x=0

= Tu.c.

[

p
vx

]

x=a

=
[

T11 T12
T21 T22

] [

e−ika p
e−ikavx

]

x=0

. (4.161)

Rearranging this equation we obtain

([

T11 T12
T21 T22

]

−
[

eika 0
0 eika

])[

p
vx

]

x=a

= 0. (4.162)

Defining Λ = eika , this system only has solution if

∣
∣
∣
∣

[

T11 − Λ T12
T21 T22 − Λ

]∣
∣
∣
∣
= 0. (4.163)

By using the condition of reciprocity: T11T22 − T12T21 = 1, we obtain the following
dispersion relation

cos (kea) = T11 + T22
2

= Tr (Tu.c.)

2
. (4.164)

Thus, by solving the matrix product between (4.159) and (4.160) we obtain the
coefficients of the total transfer matrix as
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T11 = cos(k1a1) cos(k2a2) − Z1

Z2
sin(k1a1) sin(k2a2), (4.165)

T12 = i Z1 cos(k2a2) sin(k1a1) + i Z2 cos(k1a1) sin(k2a2), (4.166)

T21 = i

Z1
sin(k1a1) cos(k2a2) + i

Z2
cos(k1a1) sin(k2a2), (4.167)

T22 = cos(k1a1) cos(k2a2) − Z2

Z1
sin(k1a1) sin(k2a2). (4.168)

On the one hand, the effective wavenumber can be calculated by the terms T11 and
T22 using (4.15). Then, the effective wavenumber is given by

ke = 1

L
cos−1

[

cos(k1a1) cos(k2a2) − Z2
1 + Z2

2

2Z1Z2
sin(k1a1) sin(k2a2)

]

. (4.169)

On the other hand, the effective impedance, given by (4.16), can be obtained as
Ze = √

T12/T21. Then we obtain

Ze =
√

Z2
1 Z2 cos(k2a2) sin(k1a1) + Z2

2 Z1 cos(k1a1) sin(k2a2)

Z2 cos(k2a2) sin(k1a1) + Z1 cos(k1a1) sin(k2a2)
. (4.170)

Using these expressions the effective mass density, ρe, and bulk modulus, Ke, of the
multilayer system are

ρe = Zeke
ω

and Ke = Zeω

ke
. (4.171)

Note that, due to periodicity, the wavenumber is obtained only in the first Brillouin
zone. However, for the calculations of the effective parameters ρe, Ke, a proper
unwrap of the wavenumber is required.

Figure4.25b–c show the dispersion relation of the system. First, we can see that
the system is highly dispersive and the wavenumber does not depend linearly on
frequency: the phase and group speeds strongly depend on frequency. Second, we can
see that for certain frequency bands the wavenumber becomes imaginary. The waves
that propagate in these frequency bands are evanescent, therefore, these frequency
bands are called bandgaps, as explained in detail in Chaps. 1–3.

4.4.3.2 Transmission and Reflection of Bounded Phononic Crystals

The fact thatwaves propagating in bandgap frequencies are evanescent does not imply
that energy cannot propagate in a phononic crystal. In fact, for bounded (finite) struc-
tures some amount of energy penetrates and, therefore, some acoustic transmission
is expected.

For a finite phononic crystal of N unit cells the total transfer matrix is

http://dx.doi.org/10.1007/978-3-030-84300-7_1
http://dx.doi.org/10.1007/978-3-030-84300-7_3
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Fig. 4.26 a, c, e Reflection and b, d, f transmission coefficients of a phononic crystal of N = 3, 5
and 10 unit cells

T = TN
u.c., (4.172)

where Tu.c. is the total transfer matrix given by (4.158).
Figure4.26 shows the reflection and transmission coefficients of thefinite phononic

crystal using N = 3, 5 and10unit cells.Wecan see that, first, in the propagatingbands
there exist some peaks of transmission. In particular for frequencies ωa/πc0 < 1
there exist N − 1 peaks (neglecting the peak 0Hz) of transmission corresponding
to the Fabry-Pérot resonances of the bounded system. Obviously, at each peak of
transmission the reflection vanishes as the considered system here is conservative.
However, at the frequency bands corresponding to bandgap regions, the transmis-
sion drops. The energy is then strongly reflected by the structure by the constructive
interference in the backward direction corresponding to the Bragg resonance.

Asmore unit cells are considered, the number of resonances increases accordingly:
the filtering effect of the band-gap is more evident and the value of the transmission
inside it decreases.However, in a finite structurewithout intrinsic looses someportion
of the energy will always be transmitted.
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Fig. 4.27 Geometry of the negative bulk-modulus metamaterial composed of a waveguide loaded
with an array of HR. Dispersion relations of the system, real and imaginary part of the wavenumber,
respectively. Bandgaps are marked in shaded areas

4.4.4 Metamaterial Modelling Using TMM

The transfer matrix method has been applied to model acoustic waves propagating in
locally resonant structures. Here, we show two examples, a negative bulk-modulus
metamaterial made of a waveguide loaded with HR, and a negative mass-density
metamaterial made of a waveguide with embedded elastic plates.

4.4.4.1 Negative Bulk Modulus Metamaterial: Waveguide Loaded with
HRs

First,we show themodel of a locally-resonantmetamaterial composedof awaveguide
loaded with HR, as shown in Fig. 4.27. The total transfer matrix of the unit cell is
given by

Tu.c. = T f THRT f , (4.173)

where T f is the transfer matrix of the waveguide of length a/2 given by (4.53), and
THR is the transfer matrix of the HR loaded in parallel, given by (4.90). Therefore,
the transfer matrix of the unit cell is

Tu.c.=
⎡

⎣

cos(k f a′) i Z ′
f sin(k f a′)

i
1

Z ′
f

sin(k f a
′) cos(k f a′)

⎤

⎦

⎡

⎣

1 0
1

Z ′
r

1

⎤

⎦

⎡

⎣

cos(k f a′) i Z ′
f sin(k f a′)

i
1

Z ′
f

sin(k f a
′) cos(k f a′)

⎤

⎦,
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Fig. 4.28 Scattering of a negative bulk-modulus metamaterial composed of (left column) N = 3
unit cells and (right column) N = 10 unit cells. (Top row) transmission, (center row) reflection and
(bottom row) absorption

where a′ = a/2. For this example, we use a squared cross-section waveguide loaded
by an array of HR, where the neck and cavity of the HR are also rectangular. Sub-
stituting (4.3.7) in (4.90), and evaluating (4.173), we can obtain the elements Ti, j of
the transfer matrix. Then, we can calculate the dispersion relations of the system by
using (4.15).

Figure4.27 shows the real and imaginary part of the wavenumber. We can see that
strong dispersion is generated when the HRs are loaded in the waveguide. Bandgaps
are also observed. In the example shown here, the first bandgap appears just above
the resonance frequency of the HR. We can see that just in the limits of the bandgap
strong dispersion is produced. Moreover, at ωa/πc0 = 1 a second bandgap is gen-
erated. This bandgap corresponds to the Bragg’s resonance and is produced by the
multiple scattering of the waves due to periodicity. Interestingly, by using the effec-
tive parameters of the duct we can include the thermoviscous losses. Obtaining an
expression for the wavenumber including thermoviscous losses is straightforward
but the expressions will be too much complex. Instead, in practice we simply eval-
uate the total transfer matrix numerically, as shown in Fig. 4.27. Note that, when
introducing thermoviscous losses the dispersion relations are modified: in general,
the wavenumber becomes complex in propagating bands and the strongly-dispersive
flat propagating bands are smoothed.

Once the metamaterial is bounded we can obtain the reflection, transmission and
absorption properties. To calculate the transmission, the reflection and the absorption
of a structure with N unit cells we first evaluate the total transfer matrix as
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Fig. 4.29 (left) Scheme of the negative mass-density metamaterial with thin circular elastic plates.
Dispersion relation of the system, (center) real and (right) imaginary part of the wavenumber.
Bandgaps are marked in shaded areas

T = TN
u.c., (4.174)

where Tu.c. is the total transfer matrix given by (4.173). Then, (4.37)–(4.43) are
used. Figure4.28 shows the scattering properties of the metamaterial using N = 3
and N = 10 unit cells. We can see that waves with frequencies in the range of the
bandgap cannot easily propagate through the material. In the rest of the cases the
structure is almost transparent to sound, specially at the Fabry-Pérot resonances of
the structure. Note that the bandgap generated by the resonance introduces far more
attenuation than the one caused by Bragg scattering. In addition, by adding more
unit cells to the structure this effect becomes more evident. Finally, when losses are
taken into account, absorption is produced mainly at the resonances of the structure.
Absorption will be studied in detail in Chap.5.

Finally, note that TMM also allows the calculation of non-periodic metamaterials
based on this topology e.g., waveguides loaded by resonators of different geometry.
In this case, the T-matrix of each unit must be calculated and, using (4.13), the total
transfer matrix is obtained as the product of all matrices [28].

4.4.4.2 Negative Mass-Density Metamaterial: Waveguide with Thin
Plates

In the same way, we can design a metamaterial composed of a waveguide with an
embedded array of thin elastic clamped plates, as shown in Fig. 4.29. These materials
present negative mass-density effective parameters.

The total transfer matrix of the unit cell is given by

http://dx.doi.org/10.1007/978-3-030-84300-7_5
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Fig. 4.30 Scattering of a negative mass-density metamaterial composed of (left column) N = 3
unit cells and (right column) N = 7 unit cells. (Top row) transmission, (center row) reflection and
(bottom row) absorption

Tu.c. = T f TPRT f , (4.175)

where T f is the transfer matrix of the waveguide of length a/2 given by (4.53), and
TPR is the transfer matrix of the plate resonator embedded in series, given by (4.93).
Therefore, the transfer matrix of the unit cell is

Tu.c.=
⎡

⎣

cos(k f a′) i Z ′
f sin(k f a′)

i
1

Z ′
f

sin(k f a
′) cos(k f a′)

⎤

⎦

⎡

⎣
1 Z ′

r

0 1

⎤

⎦

⎡

⎣

cos(k f a′) i Z ′
f sin(k f a′)

i
1

Z ′
f

sin(k f a
′) cos(k f a′)

⎤

⎦,

where a′ = a/2. For this example, we use a squared cross-section waveguide loaded
by an array of circular thin plates. Substituting (4.123) in (4.93), and evaluating
(4.175), we can obtain the elements Ti, j of the transfer matrix. Then, we can calculate
the dispersion relations of the system by using (4.15).

The typical dispersion relation of this kind of system is shown in Fig. 4.29. We
can see that, contrary to the previous case, waves in the low-frequency regime cannot
propagate. However, above the resonance of the plates we observe that the wavenum-
ber becomes real. In addition, a secondary bandgap is observed below Bragg fre-
quency. Note when looses are introduced waves are damped in the propagation band
and bandgap limits smooth.

The scattering properties of a system using N = 3 and N = 7 membranes are
shown in Fig. 4.30. First, we can see that even for a system with few resonating
elements the transmission of waves for frequencies below the resonance frequency
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of the membrane is very low, as shown in Fig. 4.30 (top). Only waves corresponding
to the collective modes of the set of membranes can propagate. We can see that
there exist M = N modes in the first propagating band, while we found M = N − 1
modes for the second propagating band. When looses are introduced in the system
the transmission is reduced. The absorption, as shown in Fig. 4.30 (bottom), results
in peaks located at each resonance mode of the system. As the number of resonat-
ing elements is increased the absorption coefficient becomes higher and broad in
frequency, but only propagating modes can be efficiently absorbed.

4.5 Conclusions

The transfer matrix method is a simple but powerful analytical method for the predic-
tion of the propagation of acoustic waves that can be used to model a broad range of
one-dimensional problems. In this chapter, we have presented themethod in a general
way, and summarized the most common building blocks to solve one-dimensional
systems in Acoustics. We have included layers of fluid and porous media, ducts and
waveguides of different geometries including thermoviscous losses, locally react-
ing elements as Helmholtz or quarter-wavelength resonators, viscoelastic plates and
membranes, or micro-perforated panels.

Through the presented examples, we have reviewed the basic applications of
the method to evaluate the scattering properties of acoustic structures of particu-
lar interest. These include multi-layered porous absorbers for room acoustics, the
transmission problem in double-leaf wall for building acoustics, and the analysis of
the dispersion of acoustic waves in periodic media and metamaterials using locally
resonant elements. Using the generalized framework provided by the transfer matrix
method,many one-dimensional wave-motion phenomena as reflection, transmission,
absorption, attenuation and dispersion can be studied, as illustrated in the examples
of this chapter. One of the most interesting features of the TMM is that it provides
fast calculations of one-dimensional structures, allowing fast and robust optimization
procedures. In summary, the TMM allows the modelling of complex materials and
structures using a simple theoretical framework.
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4.6 Appendix—End Corrections

Radiation corrections must be applied when there exist discontinuities in the waveg-
uides due to a change of section. The radiation correction of a waveguide segment
due to cross-section changes, MΔl , is modelled by a in-series transfer matrix as
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MΔl =
[

1 ZΔl

0 1

]

, (4.176)

where ZΔl = −iωρΔl is the characteristic radiation impedance and Δl is the end-
correction length that depends on the geometry of the discontinuity. Below we sum-
marize some examples.

4.6.1 Change of Section in a Waveguide

When a discontinuity is caused by a change of section in a waveguide, as those
produced between the ducts that conform the neck and the cavity of a Helmholtz
resonator, the length correction, Δl, is approximated by [49],

Δl =0.82

[

1 − 1.35
rn
rc

+ 0.31

(
rn
rc

)3
]

rn. (4.177)

where rn is the radius of the narrower waveguide, e.g., the neck, and rc is the radius
of the wider waveguide, e.g., the cavity of a cylindrical Helmholtz resonator.

4.6.2 Side Branch

Another kind of discontinuity arises when a duct is loaded in parallel to a principal
waveguide, e.g., as the one shown in Fig. 4.11. The length of the end correction Δl
is given by [50]

Δl = 0.82

[

1 − 0.235
rn
rs

− 1.32

(
rn
rt

)2

+ 1.54

(
rn
rt

)3

− 0.86

(
rn
rt

)4
]

rn,

(4.178)

where rn is the radius of the loaded waveguide and rt is the radius of the main
waveguide. This correction only depends on the radius of the waveguides, so it
becomes important when the length of the duct is comparable to its radius.

4.6.3 Periodic Array of Slits

Another kind of end correction comes from the radiation from a series of slits to
the free media, as occurs in slotted panels. The radiation correction for a periodic
distribution of slits can be expressed as [62].
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Δl = hφt

∞
∑

n=1

sin2 (nπφt )

(nπφt)3
. (4.179)

where h is the height of the slit, φt = h/d and d is the distance between slits. For
0.1 ≤ φt ≤ 0.7 this expression reduces to

Δlslit ≈ −√
2 ln [sin (πφt/2)] /π. (4.180)

Note that, while these end corrections are good approximations, to accurately model
the radiation allBlochwavesmust be calculated, e.g., usingmodal expansionmethods
[27].
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