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Preface

Noise, especially at low frequencies, is a major environmental problem across
Europe. Increasingly more information is becoming available about the health
impacts of noise. The latest publication of the World Health Organization (WHO)
and the Joint Research Center of the European Commission shows that traffic-related
noise may account for over 1 million healthy years of life lost annually in the Euro-
pean Union (EU) Member States and other Western European countries. In addition,
the Guidelines for EU Noise acknowledge effects of environmental noise, including
annoyance, as a serious health problem. According to the European Environment
Agency, more than 30% of the EU population may be exposed to excessive noise
levels causing annoyance, fatigue, and sleep disturbance.

Urbanization, growing demand for motorized transport, and inefficient urban
planning are the main driving forces for environmental noise exposure. There is
a pressing need for lighter, thinner, and more efficient structures for the absorption
of low frequency sound. Until now, porous materials have been the common choice
for noise and vibration control due to their ability to dissipate vibro-acoustic energy
through thermal and viscous losses. However, bulky and heavy porous material treat-
ments are required to absorb low frequency sound and mitigate low frequency elastic
energy. In addition, in many engineered systems (such as aircraft) the multifunction-
ality of the noise reducing components, which need to carry mechanical loads and
provide thermal or electromagnetic insulation, is essential. This cannot be achieved
using conventional porous materials.

For many years the development of noise reducing treatments has been the subject
purely of acoustics research. However, recent scientific advances provide a unique
and timely opportunity to bring about significant improvements in the design of
noise treatments. Phononic and sonic crystals, acoustic metamaterials, and metasur-
faces can revolutionize noise and vibration control and in many cases replace tradi-
tional porous material. The major breakthroughs are expected in the areas where
the traditional acoustics overlaps with new branches of physics and mechanics.
Moreover, it is expected that not just attenuation, but also manipulation of sound
and vibration by compact devices and structures will be an important next step in
addressing this issue. It is therefore necessary to unite the efforts of all the scientific
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communities involved. The first action is to provide a common theoretical back-
ground to the different communities, researchers and engineers, working on acoustic
metamaterials, metasurfaces, and sonic crystals as well as conventional acoustic
materials.

The Training School Sound waves in metamaterials and porous media has been
organized by theDENORMSCOSTAction (CA15125) in order to facilitate this. The
Trainers decided to write the present book with the aim of providing the theoretical
background on acoustic materials for the researchers from different communities. It
is thus organized into three parts. Each part comprises a theoretical part illustrated
by examples. The Part I (Chaps. 1–4) focuses on the wave propagation in periodic
media and describes the commonly used modeling techniques such as Plane Wave
Expansion, Multiple Scattering theory, and Transfer Matrix Method. The illustrating
example considers their application to the analysis of the sonic crystal performance.
The subject of the Part II (Chaps. 5–8) is the acoustic wave propagation in meta-
material and porous absorbers with viscothermal losses. The recent advances in the
design of acoustic metamaterials are first reviewed. The acoustic wave propagation
in viscothermal effective fluids, i.e., porous media, and the extension of this theory
to non-local models for fluid saturated metamaterials are then considered. Numer-
ical methods, relevant to this problem, are described in detail. Finally, the Part III
(Chaps. 9–12) offers a review of industrial applications targeted at building, auto-
motive, and aeronautic industry. This part is thought as a white book for these three
industries.

In this book, we have tried to cover theoretical background of the subject, related
solution methods, and applications, in order to equip the reader with the skills essen-
tial for a successful researcher. The Editors would like to thank the participants, both
the Trainers and the Trainees, of the Training School Sound waves in metamaterials
and porous media and the authors of each chapter. This book is the result of a huge
collective effort over years and we hope it will be useful for the current and future
generations of researchers in the field of acoustic materials.

Le Mans, France
Salford, UK
Valencia, Spain
November 2019

Jean-Philippe Groby
Olga Umnova
Noé Jiménez
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Chapter 1
Periodic Structures, Irreducible Brillouin
Zone, Dispersion Relations and the Plane
Wave Expansion Method

Jérôme O. Vasseur

Abstract The Plane Wave Expansion (PWE) method allows the calculation of dis-
persion curves, i.e., the relation linking the frequency to the wave number for any
propagating mode of periodic structures made of elastic materials such as phononic
crystals. The method is relatively easy to implement numerically but presents some
limitations. After recalling some fundamental aspects of crystallography that are nec-
essary to the study of periodic structures, the PWEmethod described in detail for the
case of bulk phononic crystals, i.e., structures of infinite extent, and its advantages
and drawbacks are discussed. It is also shown that the method can be used for cal-
culating the band structure of phononic crystals of finite thickness and for analysing
the evanescent waves within the phononic band gaps.

1.1 Preamble

Propagation of elastic waves in composite materials exhibiting a periodic structure
constitutes a very old topic in physics. One can mention the work, among others,
of Lord Rayleigh in 1887 where has been demonstrated the existence of band gaps
in periodically stratified media [1]. However since the beginning of the 1990s and
the pioneering works of Sigalas et al. [2] and Kushwaha et al. [3] on phononic
crystals, this topic received a renewed interest. These artificial material composites
whose physical characteristics (density, elastic moduli, …) are periodic functions
of the position have been proven to exhibit very peculiar propagation properties
such as frequency band gaps, negative refraction or self-collimation phenomena [4].
Studies of the propagation of elastic waves in periodic structures necessitate using
theoretical tools that were initially developed in the frame of solid state physics such
as the unit cell, the direct lattice, the reciprocal lattice, the irreducible Brillouin zone
or dispersion relations.Moreover, these studies also require solving, with a high level
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of accuracy, the equations of elastic waves propagation. Different theoretical tools
were proposed for this. One can mention the Plane Wave Expansion (PWE) method,
the Finite Difference Time Domain (FDTD) method, the Multiple Scattering (MS)
method, the Finite Element (FE) method, and many others [4].

With the aim of introducing in a pedagogical way most of the solid state physics
concepts listed above, very simple periodic structures such as onedimensional infinite
atomic chains are considered first. In the second part of this Chapter, we recall in a
more formal way, the elements of crystallography that are necessary for the study of
periodic structures. The third part of the Chapter focuses on the PWE method. Basic
principles of the method are first presented and its application to two-dimensional
periodic structures is reported with many details. Limitations of the PWE method
are discussed. Finally, it is also shown that the method can be used for calculating
the band structure of phononic crystals of finite thickness and for analysing the
evanescence of waves inside the phononic band gaps.

1.2 One-Dimensional Atomic Chains

1.2.1 One Dimensional Atomic Chain With One Atom by
Unit Cell

Weconsider first a very simple periodic structure, namely an infinite one-dimensional
linear chain of identical atoms with mass m, connected by springs with constant
stiffness β and oriented along the x direction. The equilibrium position of atom n
is xn,eq = na, where a is the distance between two adjacent atoms in equilibrium.
Atoms are assumed free tomove slightly around their respective equilibrium position
and their position, at any time t , is given as xn(t) = na + un(t)with |un(t)| � |xn(t)|
andun = xn − xn,eq is the displacement of thenth atom from the equilibriumposition.
In that case, the unit cell, shown in Fig. 1.1, that can be repeated along direction x with
periodicity a, contains only one atom and the lattice spacing a defines the periodicity
of the chain along the x axis. Newton’s second law applied to atom n considering
interaction between nearest neighbours leads to

m
∂2un
∂t2

= −β (un − un−1) + β (un+1 − un) = β (un+1 + un−1 − 2un) . (1.1)

Seeking solutions of Eq. (1.1) in the form of sinusoidal propagating waves of ampli-
tudeU0 such as un(t) = U0ei(kna−ωt) where k is the wave number and ω the circular
frequency, Eq. (1.1) becomes

− mω2 = β
(
eika + e−ika − 2

) = 2β (cos (ka) − 1) = −4β sin2
(
ka

2

)
. (1.2)



1 Periodic Structures, Irreducible Brillouin Zone, Dispersion Relations … 5

Fig. 1.1 Schematic illustration of the infinite atomic chain made of identical atoms of massm with
a lattice parameter a. β is the stiffness of the spring linking atoms

Fig. 1.2 a Dispersion relation of the infinite atomic chain made of identical atoms. The red and
shaded boxes represent the first Brillouin zone and the irreducible Brillouin zone, respectively; b
Dispersion relation plotted in the irreducible Brillouin zone

One deduces from Eq. (1.2), the dispersion relation of the atomic chain, i.e., the
relation linking the circular frequency ω to the wave number k in the form

ω(k) =
√
4β

m

∣∣∣∣sin
(
ka

2

)∣∣∣∣ . (1.3)

Figure1.2a shows the dispersion relation ω(k). Note that | sin (ka/2)| is a π-periodic
function, ∣∣∣∣sin

(
ka

2

)∣∣∣∣ =
∣∣∣∣sin

(
ka

2
+ π

)∣∣∣∣ =
∣∣∣∣sin

(
a

2

[
k + 2π

a

])∣∣∣∣ . (1.4)

Then, ω(k) is a periodic function of k with periodicity G = 2π/a and ω(k + nG) =
ω(k) where n is an integer. One deduces that a propagation mode of wave number k
and a mode with wave number (k + G) are exactly the same modes. The periodicity
G = 2π/a in the wave number space is associated with the reciprocal lattice of the
chain while the lattice parameter a characterizes its direct lattice.

Due to the periodicity of the dispersion relation in the reciprocal space, the useful
information concerning the vibration modes that can propagate in the chain, is con-
tained in the waves with wave numbers lying between the limits −π/a and +π/a.
This range of wave numbers centred at k = 0 is named the first Brillouin zone of the
reciprocal lattice. Therefore, the dispersion relation is also symmetric with respect
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of the plane k = 0, and one may restrict the study to the irreducible Brillouin zone,
i.e., the domain of wave numbers ranging from 0 to +π/a, as shown in Fig. 1.2b.

1.2.2 One Dimensional Atomic Chain With Two Atoms Per
Unit Cell

Wecannow turn to a little bitmore complicated structure: an infinite one-dimensional
linear chain with two atoms of different masses in the unit cell, as shown in Fig. 1.3.
The lattice parameter is 2a and all the springs are supposed to have the same stiffness
β. Atoms of mass m1 and m2 are named even and odd atoms and are labelled with
integers 2n and 2n + 1 respectively.

With the same assumptions as that of Sect. 1.2.1, we can write the equations of
motion for even and odd atoms in the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m1
∂2u2n
∂t2

= −β (u2n − u2n−1) + β (u2n+1 − u2n)

= β (u2n+1 + u2n−1 − 2u2n) ,

m2
∂2u2n+1

∂t2
= −β (u2n+1 − u2n) + β (u2n+2 − u2n+1)

= β (u2n+2 + u2n − 2u2n+1) .

(1.5)

Seeking solutions of Eq. (1.5) in the form

{
u2n(t) = Aei(k(2n)a−ωt),

u2n+1(t) = Bei(k(2n+1)a−ωt),
(1.6)

where A and B are amplitude terms, one obtains a set of two equations that can be
recast in the following matrix form

⎡

⎣ (2β − m1ω
2) −2β cos(ka)

2β cos(ka) −(2β − m2ω
2)

⎤

⎦

⎡

⎣ A

B

⎤

⎦ =
⎡

⎣ 0

0

⎤

⎦ . (1.7)

Fig. 1.3 Schematic illustration of the infinite atomic chain made of two atoms of masses m1 and
m2 in the unit cell with a lattice parameter 2a. β is the stiffness of the spring linking atoms
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Equations (1.7) admit non-trivial solutions if the determinant of the matrix vanishes.
This leads to

ω4 − 2β

(
m1 + m2

m1m2

)
+ 4β2 sin2 (ka)

m1m2
= 0, (1.8)

and one deduces

ω(k) =

√√√√
√β

m1 + m2

m1m2

⎛

⎝1 ±
√

1 − 4
m1m2 sin2(ka)

(m1 + m2)2

⎞

⎠. (1.9)

Consequently, Eq. (1.8) admits two real solutions ω−(k) and ω+(k) that are periodic
in wave number, k, with a period of +π/a and the first Brillouin zone corresponds
to the wave numbers varying between −π/2a and +π/2a. One notes that because
the unit cell in the direct lattice of the chain is two times larger than that of the
monoatomic chain, the first Brillouin zone is two times smaller. Figure1.4 shows
the dispersion relations plotted in the irreducible Brillouin zone (k between 0 and
+π/2a) as a function of the ratiom2/m1 greater than or equal to 1. One observes that
form2 = m1, the dispersion relation of the infinitemonoatomic chain is recovered but
the band is folded in a smaller irreducible Brillouin zone. Moreover, for increasing
mass ratio, a band gap appears at the edge of the irreducible Brillouin zone and higher
is the mass ratio, the larger is the band gap.

In this Section, considering very simple one dimensional periodic structures, we
have introduced the notions that are of fundamental importance in the study of
periodic structures namely the unit cell, the direct and reciprocal lattices and the
irreducible Brillouin zone. We will see in Sect. 1.3.1 of this Chapter, how these con-
cepts can be generalized of much more complicated periodic structures such as the
phononic crystals.

Fig. 1.4 Dispersion relations of the infinite atomic chain made of two atoms of masses m1 and
m2 in the unit cell with a lattice parameter 2a plotted in the irreducible Brillouin zone for a
m2 = m1, b m2 = 2m1, c m2 = 10m1. Circular frequencies ω1, ω2 and ω3 are equal to

√
2β/m2,√

2β/m1,
√
2β(m1 + m2)/m1m2, respectively
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1.3 Elements of Crystallography

In this Section, we recall the elements of crystallography that are necessary for the
study of periodic structures. We limit ourselves to some simple structures. Complete
reports on solid state physics are available in text books such as Refs. [5, 6]. These
references are strongly recommended to the reader of the present Chapter.

1.3.1 Bravais Lattice, Primitive Vectors, Wigner-Seitz Cell

In solid state physics, solids possessing a crystalline structure are periodic arrays of
atoms that are modelled by a combination of a basis and a Bravais lattice. In Ref. [6],
a Bravais lattice is defined as: an infinite array of discrete points with an arrangement
and orientation that appear exactly the same, from whichever of the points the array
is viewed (all the points have the same environment).

In three dimensions (3D), there exist a total of fourteen different Bravais lattices
[5, 6], five in 2D and one in 1D. The symmetry of any physical crystal is described by
one of the Bravais lattices plus a basis. The basis consists of identical units, usually
made by group of atoms, which are attached to every point of the underlying Bravais
lattice. A crystal, whose basis consists of a single atom or ion, is said to have a
monatomic Bravais lattice.

In 3D, from the mathematical point of view, a Bravais lattice is defined as a
collection of points with position vectors �R of the form �R = ��a1 + m�a2 + n�a3 where
�a1, �a2 and �a3 are three vectors (named the primitive vectors of the Bravais lattice)
not in the same plane and �,m and n are three integers. For the sake of simplicity, the
notion of Bravais lattice is illustrated in 2D on Fig. 1.5. In this figure, one observes
that from a point chosen at the origin of the array, any other point can be obtained
by a translation equals to a linear combination of the primitive vectors. Moreover
for any given Bravais lattice, the set of primitive vectors is not unique, as shown in
Fig. 1.5. Characterization of an array of points requires also to define a volume of
space that contains precisely one lattice point and can be translated through all the
vectors of a Bravais lattice to fill all the space without overlapping itself or leaving
voids. This space is named a primitive cell and is depicted also in Fig. 1.5. There is
no unique way of choosing a primitive cell but the most common choice, however, is
the Wigner-Seitz cell, which has the full symmetry of the underlying Bravais lattice.
The Wigner-Seitz cell about a lattice point also has a property of being closer to that
point than to any other lattice point. It can be constructed by drawing lines connecting
a given point to nearby lying points, bisecting each line with a plane and taking the
smallest polyhedron bounded by these planes. The Bravais lattice, which is defined
in real space, is sometimes referred to as a direct lattice.
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Fig. 1.5 A2DBravais lattice. Two possible choices of the primitive vectors �a1 and �a2 are indicated.
Black and blue parallelograms represent the primitive unit cells associated with each set of primitive
vectors. Red parallelogram is the Wigner-Seitz cell of the Bravais lattice. It has been constructed
by drawing red lines connecting a given point to nearby lying points, drawing black lines bisecting
each red line and considering the area bounded by red dashed lines

1.3.2 Reciprocal Lattice, Irreducible Brillouin Zone

With the direct lattice being defined in the real space, there exists a dual space
named the reciprocal lattice. This concept is very important when studying wave
propagation, diffraction and other wave phenomena in crystals. We know that in the
direct lattice, a periodic function in space f (�r) satisfies f (�r) = f (�r + �R) where
�R = ��a1 + m�a2 + n�a3, see Sect. 1.3.1. For example, the function f (�r) in phononic
crystals can be the mass density or the elastic moduli. This function being �R-periodic
can be developed in Fourier series such as

f (�r) =
∑

�G
f
( �G

)
ei

�G·�r , (1.10)

where �G are named the reciprocal lattice vectors and f ( �G) are the Fourier coeffi-
cients of f (�r). Then one can write

f
(
�r + �R

)
=

∑

�G
f
( �G

)
ei

�G·(�r+ �R) = f (�r) =
∑

�G
f
( �G

)
ei

�G·�r , (1.11)

and one deduces that ei �G· �R = 1 and �G · �R = 2π · N where N is an integer. Conse-
quently, one can define the reciprocal lattice as a set of points whose positions are
given by a set of vectors �G satisfying the condition

�G · �R = 2π · N ; N ∈ Z, (1.12)
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for all �R in theBravais lattice. Searching for amathematical form for the �G vectors,we
assume that because �R is a linear combination of the primitive vectors �ai , i = 1, 2, 3,
�G may bewritten also as a linear combination of some basis vectors �bi , i = 1, 2, 3 as
�G = �′ �b1 + m ′ �b2 + n′ �b3 where �′, m ′, n′ and the �bi are initially undefined. Equation
(1.12) leads to

�′��b1 · �a1 + m ′��b2 · �a1 + n′��b3 · �a1+
+ �′m �b1 · �a2 + m ′m �b2 · �a2 + m ′n�b2 · �a3+

+ n′��b3 · �a1 + n′m �b3 · �a2 + n′n�b3 · �a3 = 2πN . (1.13)

One may impose the basis {�bi } to be orthonormal to the basis {�ai } and write �bi · �a j =
2πδi j where δi j is the Kronecker’s symbol and the multiplicative factor 2π has been
introduced for simplification. Then Eq. (1.13) reduces to

�′� + m ′m + n′n = N . (1.14)

The left-hand side of Eq. (1.14) must be an integer as the right-hand side and con-
sequently �′, m ′ and n′ must be also integers. This implies that a reciprocal lattice
of a direct lattice is also a Bravais lattice. We can now define vectors �bi . Con-
sider first �b1. Because �b1⊥�a2 and �b1⊥�a3, one may write �b1 = λ · �a2 × �a3 where λ
is a constant to be determined. Moreover, �a1 · �b1 = 2π = λ�a1 · (�a2 × �a3) and one
deduces λ = 2π/[�a1 · (�a2 × �a3)]. The same can be done for vectors �b2 and �b3 and
one obtains �b2 = 2π�a3 × �a1/[�a2 · (�a3 × �a1)] and �b3 = 2π�a1 × �a2/[�a3 · (�a1 × �a2)].
One notes that �a1 · (�a2 × �a3) = �a2 · (�a3 × �a1) = �a3 · (�a1 × �a2) and the basis vectors
of the reciprocal lattice depend on the basis vectors of the direct lattice as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�b1 = 2π
�a2 × �a3

�a1 · (�a2 × �a3) , (1.15a)

�b2 = 2π
�a3 × �a1

�a1 · (�a2 × �a3) , (1.15b)

�b3 = 2π
�a1 × �a2

�a1 · (�a2 × �a3) . (1.15c)

In Eqs. (1.15), the scalar quantity �a1 · (�a2 × �a3) corresponds to the volume of the
parallelepiped constructed from the three primitive vectors {�ai } of the original direct
(Bravais) lattice, i.e., the volume of the unit cell [7]. Moreover one observes that the
length of the reciprocal lattice vectors is proportional to the reciprocal of the length
of the direct lattice vectors and this is the origin of the term reciprocal lattice.

As an example, Fig. 1.6 shows a simple-cubicBravais latticewith a lattice constant
a as well as its reciprocal lattice, which is also a simple-cubic one with a lattice
constant 2π/a, as follows from relations (1.15). Since the reciprocal lattice is a
Bravais lattice, one can also find its Wigner-Seitz cell. The Wigner-Seitz cell of a
reciprocal lattice is conventionally called a first Brillouin zone. Planes in reciprocal
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Fig. 1.6 Simple-cubic direct lattice and its reciprocal lattice. The primitive vectors of both lattices
are also indicated

space, which bisect the lines joining a particular point of a reciprocal lattice with all
other points, are known as Bragg planes. Therefore, the first Brillouin zone can also
be defined as the set of all points in the reciprocal space that can be reached from the
origin without crossing any Bragg plane. Symmetry properties may allow to reduce
the dimensions of the first Brillouin zone and to define the smallest Brillouin zone
also named the irreducible Brillouin zone.

In what follows we will consider, for the sake of simplicity, two examples of
Bravais lattices in two dimensions, the square and the hexagonal one, and we will
illustrate the concepts previously introduced.

1.3.3 Examples

1.3.3.1 The Square Bravais Lattice

We first consider the case of the square Bravais lattice with lattice parameter a. The
points (the “atoms”) are located at the vertices of a square as depicted in Fig. 1.7. The
space is refereed to an orthonormal basis (0, �e1, �e2, �e3) with Cartesian coordinates
(x1, x2, x3) and O is a point chosen as origin. The array being two-dimensional in
the plane (x1, O, x2), the primitive vectors of the direct lattice have components only
in this plane and are �a1 = a�e1 and �a2 = a�e2 and vectors �R write �R = a (��e1 + m�e2).
In Fig. 1.7, the red lines correspond to lines connecting the origin to its nearest
neighbours and blue lines bisect the red dashed ones. One deduces easily from this
drawing that the Wigner-Seitz cell is the grey square.

One may define now the basis vectors of the reciprocal lattice applying relations
(1.15). One obtains



12 J. O. Vasseur

Fig. 1.7 The square direct
lattice of lattice parameter a
and its Wigner-Seitz cell

⎧
⎪⎪⎨

⎪⎪⎩

�b1 = 2π
a�e2 × �e3

a�e1 · (a�e2 × �e3) = 2π

a
�e1, (1.16a)

�b2 = 2π
�e3 × a�e1

a�e1 · (a�e2 × �e3) = 2π

a
�e2, (1.16b)

where �e3 is introduced only for constructing the different cross products.
In Fig. 1.8a, the dots represent points whose positions are given by

two-dimensional vectors �G = �′ �b1 + m ′ �b2. One chooses point � as the origin of the
reciprocal lattice and draws red dashed lines connecting � to its nearest neighbours.
With the help of the blue lines bisecting the red ones, the grey square is defined as

Fig. 1.8 a The reciprocal lattice of the square Bravais lattice and the first Brillouin zone (grey
square), b the first Brillouin zone and the irreducible Brillouin zone (�XM) with � : 2π

a (0, 0),
X : 2π

a ( 12 , 0) and M : 2π
a ( 12 , 1

2 ). �, X , and M are the points of highest symmetry in the irreducible

Brillouin zone. In terms of wave propagation, vectors ��X , �XM and ��M represent the principal
directions of propagation
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the first Brillouin zone. Due to the symmetries of the grey square, shown in Fig. 1.8b,
one reduces the study to the triangle (�XM)where the components of point � in the
basis (�e1, �e2) are 2π

a (0, 0). Because ��X = �b1/2 and ��M = (�b1 + �b2)/2, the com-
ponents of points X and M are ( 2πa )( 12 , 0) and

2π
a ( 12 ,

1
2 ), respectively. The triangle

(�XM) is the irreducible Brillouin zone of the square Bravais lattice.
When considering propagation of waves in two-dimensional phononic crystals,

any wave vector �k (which belongs to the reciprocal space), can be written as �k =
�G + �KIBZ where �KIBZ belongs to the irreducible Brillouin zone. Consequently study
of the propagation of waves can be limited to waves with wave vectors belonging to
the irreducible Brillouin zone (see Sect. 1.2).

1.3.3.2 The Hexagonal Bravais Lattice

As depicted in Fig. 1.9, in the case of the hexagonal Bravais lattice, the “atoms” are
located on the vertices and at the centre of a regular hexagon of side length a. One can
construct the Wigner-Seitz cell following the same processes than that used for the
square array. Around point O ′ the Wigner-Seitz cell has exactly the same symmetry
as the direct lattice and is represented by the red hexagon. Nevertheless, due to the
rather complicated geometry of the array, one may choose a simpler primitive unit
cell such as the blue parallelogramconstructed from the set of primitive lattice vectors

Fig. 1.9 The hexagonal direct lattice with lattice parameter a and its Wigner- Seitz cell around
point O ′ (red hexagon). It is convenient to choose as primitive unit cell the blue parallelogram

constructed from the primitive vectors �a1 = a�e1 and �a2 = a
2 �e1 + a

√
3

2 �e2
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Fig. 1.10 a The reciprocal lattice of the hexagonal Bravais lattice and the first Brillouin zone (grey
square), b the first Brillouin zone and the irreducible Brillouin zone (� J X) with � : 2π

a (0, 0),
J : 2π

a ( 23 , 0) and X : 2π
a ( 12 , 1

2
√
3
). Points �, J , and X are the points of highest symmetry in the

irreducible Brillouin zone

{�a1 = a�e1, �a2 = a
2 �e1 + a

√
3

2 �e2}. The basis vectors of the reciprocal lattice are then
obtained using relations (1.15) as

⎧
⎪⎪⎨

⎪⎪⎩

�b1 = 2π
�a2 × �e3

�a1 · (�a2 × �e3) = 2π

a

(
�e1 − 1√

3
�e2
)

, (1.17a)

�b2 = 2π
�e3 × �a1

�a1 · (�a2 × �e3) = 2π

a

(
2√
3

)
�e2, (1.17b)

and the reciprocal lattice vectors are given in the basis (O, �e1, �e2) as �G = �′ �b1 +
m ′ �b2 = 2π

a [�′ �e1 + 1√
3
(−�′ + 2m ′)�e2].

The reciprocal lattice of the hexagonal array together with its first Brillouin zone
are depicted in Fig. 1.10a. Due to the symmetries of the grey hexagon, shown in
Fig. 1.10b, one reduces the study to the triangle (� J X) where the components of
point� in the basis (�e1, �e2) are 2π

a (0, 0). Because ��X = (�b1 + �b2)/2, the components
of point X are 2π

a ( 12 ,
1

2
√
3
). Finally, triangle (� J X) being right-angled on X , one may

write �X2 + X J 2 = � J 2 and one deduces that point J has components 2π
a ( 23 , 0).

The area of the triangle (� J X) is the irreducible Brillouin zone of the hexagonal
Bravais lattice.
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1.4 The Plane Wave Expansion Method

1.4.1 Plane Wave Expansion Method for Bulk Phononic
Crystals

1.4.1.1 Equations of Propagation of Elastic Waves in Heterogeneous
Media

One considers an heterogeneous elastic medium of infinite extent along the 3 spatial
directions (x1, x2, x3), made of constituent materials of specific crystallographic
symmetry (isotropic, cubic, . . .). The Cartesian coordinates system is referred to an
orthonormal basis (O, �e1, �e2, �e3). At every point, �r , the medium is characterized by
thematerial parameters namely themass density ρ(�r) and the elastic moduliCi jk�(�r).
The elements of the stress tensor Ti j and those of the strain tensor Sk� are related
through the Hooke’s law [8]

Ti j (�r) =
∑

kl

Ci jk�(�r)Sk�(�r), (1.18)

where each index, i , j , k, � varies between 1 and 3. One notes that in this relation the
stress and the strain tensors are of rank 2 with 32 = 9 elements while the tensor of
elastic moduli is of rank 4 with 34 = 81 elements. Constituent materials are assumed
to be linear materials (limit of small strains) and the elements of the strain tensor are
expressed as Sk�(�r) = 1

2 (∂uk(�r)/∂x� + ∂u�(�r)/∂xk)whereui (�r), i = 1, 2, 3 refer to
the components of the displacement vector �u in the (x1, x2, x3)Cartesian coordinates
system. The elements of the elastic moduli tensor Ci jk� must satisfy Ci jk� = C jik�

because Ti j = Tji and Ci jk� = Ci j�k because Sk� = S�k and thermodynamic laws
impose Ci jk� = Ck�i j [8]. Then, in terms of displacements, Hooke’s law writes

Ti j (�r) = 1

2

∑

kl

Ci jk�(�r)∂uk(�r)
∂x�

+ 1

2

∑

kl

Ci jk�
∂u�(�r)
∂xk

,

= 1

2

∑

kl

Ci jk�(�r)∂uk(�r)
∂x�

+ 1

2

∑

kl

Ci j�k
∂u�(�r)
∂xk

, (1.19)

and since Ci jk� = Ci j�k , the two summations on the right are equal so that

Ti j (�r) =
∑

k�

Ci jk�(�r)∂uk(�r)
∂x�

. (1.20)

In absence of external forces, Newton’s second law leads to the equations of motion
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ρ(�r)∂
2ui (�r)
∂t2

=
∑

j

∂Ti j (�r)
∂x j

=
∑

j

∂

∂x j

[∑

k�

Ci jk�(�r)∂uk(�r)
∂x�

]
. (1.21)

The tensor of elastic moduli contains, a priori, 81 elements but due to the symmetries
of this tensor (Ci jk� = C jik�, Ci jk� = Ci j�k , Ci jk� = Ck�i j ), this number reduces to
21 and the Hooke’s law can be rewritten in the following matrix form

⎡

⎢⎢
⎢⎢⎢⎢
⎣

T11
T22
T33
T23
T31
T12

⎤

⎥⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢⎢
⎣

C1111 C1122 C1133 C1123 C1131 C1112

C1122 C2222 C2233 C2223 C2231 C2212

C1133 C2233 C3333 C3323 C3331 C3312

C1123 C2223 C3323 C2323 C2331 C2312

C1131 C2231 C3331 C2331 C3131 C3112

C1112 C2212 C3312 C2312 C3112 C1212

⎤

⎥⎥
⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢⎢
⎣

S11
S22
S33
2S23
2S31
2S12

⎤

⎥⎥
⎥⎥⎥⎥
⎦

. (1.22)

This equation can be rewritten using the Voigt notation: a pair of indices i j is
replaced by a single index m as follows

(11) ↔ 1,

(22) ↔ 2,

(33) ↔ 3,

(23) or (32) ↔ 4,

(31) or (13) ↔ 5,

(12) or (21) ↔ 6,

(1.23)

and Eq. (1.22) becomes

⎡

⎢
⎢⎢⎢⎢⎢
⎣

T1
T2
T3
T4
T5
T6

⎤

⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢
⎢⎢⎢⎢⎢
⎣

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

⎤

⎥
⎥⎥⎥⎥⎥
⎦

⎡

⎢
⎢⎢⎢⎢⎢
⎣

S1
S2
S3
2S4
2S5
2S6

⎤

⎥
⎥⎥⎥⎥⎥
⎦

. (1.24)

In the particular case of constituent materials of cubic crystallographic symmetry,
only three independent elastic moduli C11, C12 and C44 are involved and Hooke’s
law writes in the matrix form

⎡

⎢⎢
⎢⎢⎢⎢
⎣

T1
T2
T3
T4
T5
T6

⎤

⎥⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢⎢
⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤

⎥⎥
⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢⎢
⎣

S1
S2
S3
2S4
2S5
2S6

⎤

⎥⎥
⎥⎥⎥⎥
⎦

. (1.25)
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The isotropic material can be considered as a particular case of cubic material impos-
ing C12 = C11 − 2C44 and only two independent elastic moduli, C11 and C44 are
necessary to describe the elastic behaviour of the material. In what follows, we will
limit ourself to constituent materials of cubic crystallographic symmetry and com-
bining Eqs. (1.21) and (1.25), we can write the equation of motion in this case as
follows

ρ
∂2u1
∂t2

= ∂T11
∂x1

+ ∂T12
∂x2

+ ∂T13
∂x3

,

= ∂

∂x1
[C11S1 + C12(S2 + S3)] + ∂

∂x2
(C442S6) + ∂

∂x3
(C442S5),

= ∂

∂x1

[
C11

∂u1
∂x1

+ C12

(
∂u2
∂x2

+ ∂u3
∂x3

)]
+ · · ·

+ ∂

∂x2

[
C44

(
∂u1
∂x2

+ ∂u2
∂x1

)]
+ ∂

∂x3

[
C44

(
∂u1
∂x3

+ ∂u3
∂x1

)]
, (1.26)

ρ
∂2u2
∂t2

= ∂T21
∂x1

+ ∂T22
∂x2

+ ∂T23
∂x3

,

= ∂

∂x1

[
C44

(
∂u1
∂x2

+ ∂u2
∂x1

)]
+ ∂

∂x2

[
C11

∂u2
∂x2

+ C12

(
∂u1
∂x1

+ ∂u3
∂x3

)]
+

+ ∂

∂x3

[
C44

(
∂u2
∂x3

+ ∂u3
∂x2

)]
, (1.27)

and

ρ
∂2u3
∂t2

= ∂T31
∂x1

+ ∂T32
∂x2

+ ∂T33
∂x3

,

= ∂

∂x1

[
C44

(
∂u1
∂x3

+ ∂u3
∂x1

)]
+ ∂

∂x2

[
C44

(
∂u2
∂x3

+ ∂u3
∂x2

)]
+ · · ·

+ ∂

∂x3

[
C11

∂u3
∂x3

+ C12

(
∂u1
∂x1

+ ∂u2
∂x2

)]
. (1.28)

In Eqs. (1.26), (1.27) and (1.28), for the sake of simplicity, dependence of ρ, ui and
Cmn on �r has been omitted. Elastic wave propagation in a heterogeneous material of
infinite extent is governed by three coupled second order partial differential equations
(1.26–1.28). When the inhomogeneities are distributed periodically in space, e.g.
phononic crystals, these three coupled equations can be solved using the plane wave
expansion (PWE) method.
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1.4.1.2 Basic Principles of the PWEMethod for Bulk Phononic Crystals

One considers a periodic structure with the direct lattice (DL), of specific geom-
etry, characterized by its unit cell (UC). The reciprocal lattice (RL) vectors are
�G(G1,G2,G3)with respect to the orthonormal basis (O, �e1, �e2, �e3). The solutions of
the equations of motion are assumed to be pure tones in the form �u(�r , t) = �u(�r)e−iωt

where ω is the circular frequency. Due to the periodicity of the structure, the Bloch-
Floquet theorem states that �u(�r) can be written in the form

�u(�r) = ei
�K ·�r �U �K (�r), (1.29)

where �K (K1, K2, K3) is the Bloch wave vector and �U �K (�r) has the periodicity of the
direct lattice. Then �U �K (�r) can be developed in Fourier series as

�U �K (�r) =
∑

�G ′

�U �K
( �G ′

)
ei

�G ′ ·�r , where �G ′ ∈ (RL) (1.30)

and
�u(�r , t) = e−iωt

∑

�G ′

�U �K ( �G ′)ei( �G ′+ �K )·�r . (1.31)

The material parameters, mass density ρ(�r) and elastic moduli Cmn are periodic

functions of the position, i.e., ρ
(
�r + �R

)
= ρ(�r) and Cmn(�r + �R) = Cmn(�r) where

�R ∈ (DL) and can be expanded in Fourier series such as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(�r) =
∑

�G ′′

ρ( �G ′′)ei �G ′′ ·�r (1.32a)

Cmn(�r) =
∑

�G f ′′

Cmn( �G ′′)ei �G ′′ ·�r (1.32b)

where �G ′′ ∈ (RL).Note that theFourier coefficientsρ( �G ′′) andCmn( �G ′′) inEqs. (1.32)
are defined as

⎧
⎪⎪⎨

⎪⎪⎩

ρ( �G ′′) = 1

V(U.C.)

∫∫∫

(U.C.)

ρ(�r)e−i �G ′′ ·�r d3�r , (1.33a)

Cmn( �G ′′) = 1

V(U.C.)

∫∫∫

(U.C.)

Cmn(�r)e−i �G ′′ ·�r d3�r , (1.33b)

where the integration is performed over the volume V(U.C.) of the UC of the direct
lattice.

Inserting Eqs. (1.31, 1.32) in Eqs. (1.26–1.28) results in the Fourier transform
of the equations of motion. For example, performing these substitutions on the left
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hand side of Eq. (1.26), one obtains

ρ(�r)∂
2u1(�r)
∂t2

= −ω2ei(
�K ·�r−ωt)

∑

�G ′, �G ′′

ρ( �G ′′)U1, �K ( �G ′)ei( �G ′+ �G ′′)·�r (1.34)

where U1, �K is the component of vector �U �K along �e1. Subsequently, the first term of
the right hand side of Eq. (1.26) is transformed as

∂

∂x1

[
C11(�r)∂u1(�r)

∂x1

]
=

= e−iωt ∂

∂x1

⎡

⎣
∑

�G ′, �G ′′

C11( �G ′′)ei �G ′′ ·�r [i(K1 + G ′
1)]ei( �K+ �G ′)·�rU1, �K ( �G ′)

⎤

⎦

= e−iωt ∂

∂x1

⎡

⎣
∑

�G ′, �G ′′

C11( �G ′′)[i(K1 + G ′
1)]ei( �K+ �G ′+ �G ′′)·�rU1, �K ( �G ′)

⎤

⎦

= −ei(
�K ·�r−ωt)

⎡

⎣
∑

�G ′, �G ′′

C11( �G ′′)[(K1 + G ′
1)(K1 + G ′

1 + G ′′
1)]ei( �G ′+ �G ′′)�r × · · ·

U1, �K ( �G ′)
]
, (1.35)

similarly to the other terms of the right-hand side of Eq. (1.26). Finally, the Fourier
transform of Eq. (1.26) writes as

−ω2ei(
�K ·�r−ωt)

∑

�G ′, �G ′′
ρ( �G′′)U1, �K ( �G′)ei( �G ′+ �G ′′)·�r = · · ·

= −ei(
�K ·�r−ωt) ·

∑

�G ′, �G ′′
ei(

�G ′+ �G ′′)·�r
{[

C11( �G′′)(K1 + G′
1)(K1 + G′

1 + G′′
1) + · · ·

+ C44( �G′′)
[
(K2 + G′

2)(K2 + G′
2 + G′′

2) + (K3 + G′
3)(K3 + G′

3 + G′′
3)
]]
U1, �K ( �G′) + · · ·

+
[
C12( �G′′)(K2 + G′

2)(K1 + G′
1 + G′′

1) + · · ·

+ C44( �G′′)(K1 + G′
1)(K2 + G′

2 + G′′
2)

]
U2, �K ( �G′) + · · ·

+
[
C12( �G′′)(K3 + G′

3)(K1 + G′
1 + G′′

1) + · · ·

+C44( �G′′)(K1 + G′
1)(K3 + G′

3 + G′′
3)

]
U3, �K ( �G′)

}
. (1.36)
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Eliminating−ei( �K ·�r−ωt) in both parts of Eq. (1.36) and then multiplying both parts by
e−i �G·�r where �G ∈ (RL) allows representation of the terms in the form ei( �G ′+ �G ′′− �G)·�r .
Because

1

V(U.C.)

∫∫∫

(U.C.)

ei(
�G ′+ �G ′′− �G)·�r d3�r = · · ·

= δ( �G ′+ �G ′′− �G),�0 =
{
1, if �G ′ + �G ′′ − �G = �O
0, if �G ′ + �G ′′ − �G 	= �O (1.37)

integration over V(U.C.) of Eq. (1.36) leads to

ω2 ∑ �G ′ ρ( �G − �G ′)U1, �K ( �G ′) = ∑
�G ′

{[
C11( �G − �G ′)(K1 + G ′

1).(K1 + G1) + · · ·

+C44( �G − �G ′)
[
(K2 + G ′

2)(K2 + G2) + (K3 + G ′
3)(K3 + G3)

]]
·U1, �K ( �G ′) + · · ·

+
[
C12( �G − �G ′)(K2 + G ′

2)(K1 + G1) + · · ·

+C44( �G − �G ′)(K1 + G ′
1)(K2 + G2)

]
·U2, �K ( �G ′) + · · ·

+
[
C12( �G − �G ′)(K3 + G ′

3)(K1 + G1) + · · ·

+C44( �G − �G ′)(K1 + G ′
1)(K3 + G3)

]
·U3, �K ( �G ′)

}
. (1.38)

Applying the same algebra for Eqs. (1.27) and (1.28), the Fourier transforms of the
equations of motion are derived in the form of 3 coupled equations given as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2
∑

�G ′

B(11)
�G, �G ′U1, �K ( �G ′) =

=
∑

�G ′

{
A(11)

�G, �G ′U1, �K ( �G ′) + A(12)
�G, �G ′U2, �K ( �G ′) + A(13)

�G, �G ′U3, �K ( �G ′)
}
, (1.39a)

ω2
∑

�G ′

B(22)
�G, �G ′U2, �K ( �G ′) =

=
∑

�G ′

{
A(21)

�G, �G ′U1, �K ( �G ′) + A(22)
�G, �G ′U2, �K ( �G ′) + A(23)

�G, �G ′U3, �K ( �G ′)
}
, (1.39b)

ω2
∑

�G ′

B(33)
�G, �G ′U3, �K ( �G ′) =

=
∑

�G ′

{
A(31)

�G, �G ′U1, �K ( �G ′) + A(32)
�G, �G ′U2, �K ( �G ′) + A(33)

�G, �G ′U3, �K ( �G ′)
}
, (1.39c)
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where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B(11)
�G, �G ′ = B(22)

�G, �G ′ = B(33)
�G, �G ′ = ρ( �G − �G ′), (1.40a)

A(11)
�G, �G ′ = C11( �G − �G ′)(G1 + K1)(G

′
1 + K1) + · · ·

+C44( �G − �G ′)
[
(G2 + K2)(G

′
2 + K2) + (G3 + K3)(G

′
3 + K3)

]
, (1.40b)

A(12)
�G, �G ′ = C12( �G − �G ′)(G1 + K1)(G

′
2 + K2) + · · ·

+C44( �G − �G ′)(G ′
1 + K1)(G2 + K2), (1.40c)

A(13)
�G, �G ′ = C12( �G − �G ′)(G1 + K1)(G

′
3 + K3) + · · ·

+C44( �G − �G ′)(G ′
1 + K1)(G3 + K3),(1.40d)

A(21)
�G, �G ′ = C12( �G − �G ′)(G ′

1 + K1)(G2 + K2) + · · ·
+C44( �G − �G ′)(G ′

2 + K2)(G1 + K1), (1.40e)

A(22)
�G, �G ′ = C11( �G − �G ′)(G2 + K2)(G

′
2 + K2) + · · ·

+C44( �G − �G ′)
[
(G1 + K1)(G

′
1 + K1) + (G3 + K3)(G

′
3 + K3)

]
, (1.40f)

A(23)
�G, �G ′ = C12( �G − �G ′)(G2 + K2)(G

′
3 + K3) + · · ·

+C44( �G − �G ′)(G ′
2 + K2)(G3 + K3), (1.40g)

A(31)
�G, �G ′ = C12( �G − �G ′)(G ′

1 + K1)(G3 + K3) + · · ·
+C44( �G − �G ′)(G1 + K1)(G

′
3 + K3), (1.40h)

A(32)
�G, �G ′ = C12( �G − �G ′)(G ′

2 + K2)(G3 + K3) + · · ·
+C44( �G − �G ′)(G2 + K2)(G

′
3 + K3), (1.40i)

A(33)
�G, �G ′ = C11( �G − �G ′)(G3 + K3)(G

′
3 + K3) + · · ·

+C44( �G − �G ′)
[
(G1 + K1)(G

′
1 + K1) + (G2 + K2)(G

′
2 + K2)

]
. (1.40j)

Equation (1.39) can be recast in the following matrix form

ω2

⎡

⎢⎢⎢
⎣

B(11)
�G, �G ′ 0 0

0 B(22)
�G, �G ′ 0

0 0 B(33)
�G, �G ′

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

U1, �K ( �G ′)

U2, �K ( �G ′)

U3, �K ( �G ′)

⎤

⎥⎥⎥
⎦

=

=

⎡

⎢⎢⎢
⎣

A(11)
�G, �G ′ A

(12)
�G, �G ′ A

(13)
�G, �G ′

A(21)
�G, �G ′ A

(22)
�G, �G ′ A

(23)
�G, �G ′

A(31)
�G, �G ′ A

(32)
�G, �G ′ A

(33)
�G, �G ′

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

U1, �K ( �G ′)

U2, �K ( �G ′)

U3, �K ( �G ′)

⎤

⎥⎥⎥
⎦

, (1.41)
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or
ω2←→B �U = ←→

A �U, (1.42)

where
←→
A and

←→
B are square matrices and �U is a vector whose sizes depend on

the number of reciprocal lattice vectors taken into account in the Fourier series. The
numerical resolution of this generalized eigenvalue problem is performed for a fixed
value of the wave vector �K = (K1, K2, K3) describing the contour of the irreducible
Brillouin zone of the array of inclusions. Then one obtains a set of eigenfrequencies
ω( �K ).

Equation (1.41) is general and constitutes the basis equation for applying the PWE
method to the calculation of the dispersion curves of a three-dimensional periodic
structure with a specific geometry. For lower dimensions, thismaster equation can be
simplified by cancelling some components of the wave vectors and of the reciprocal
lattice vectors. This is the object of the next part in which we will consider the
particular case of bulk two-dimensional phononic crystals.

1.4.1.3 PWE Method for Bulk Two-Dimensional Phononic Crystals

A bulk two-dimensional phononic crystal consists of an array of infinitely long par-
allel cylinders, of specific cross-section, e.g., circular, square, elliptical, hexagonal,
made of an elastic material A embedded in an elastic matrix B, as shown in Fig. 1.11.
Materials A and B are supposed to be of cubic crystallographic symmetry.

Due to the infinite length of the cylinders along the x3 axis, there exists an invari-
ance by translation along x3 and the material parameters (density and elastic moduli)
and hence the displacement field does not depend on x3. This means that G3 and G ′

3
vanish in Eq. (1.39). Moreover, one can limit the propagation of waves to the trans-
verse plane (x1Ox2) and hence assume K3 = O . Due to this, in Eq. (1.40), terms

Fig. 1.11 Left panel: Two-dimensional phononic crystal made of a square array (lattice parameter
a) of circular cylinders A of radius R embedded in a matrix B. The cylinders are oriented along
the x3 axis and are assumed infinite along this direction. The structure is periodic along x1 and x2;
Right panel: Cross section in the transverse (x1, 0, x2) plane of the 2D phononic crystal
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A(13)
�G, �G ′ , A

(23)
�G, �G ′ , A

(31)
�G, �G ′ and A(32)

�G, �G ′ vanish and Eq. (1.41) becomes

ω2

⎡

⎢
⎢⎢
⎣

B(11)
�G, �G ′ 0 0

0 B(22)
�G, �G ′ 0

0 0 B(33)
�G, �G ′

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

U1, �K ( �G ′)

U2, �K ( �G ′)

U3, �K ( �G ′)

⎤

⎥
⎥⎥
⎦

=

=

⎡

⎢
⎢⎢
⎣

A(11)
�G, �G ′ A

(12)
�G, �G ′ 0

A(21)
�G, �G ′ A

(22)
�G, �G ′ 0

0 0 A(33)
�G, �G ′

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

U1, �K ( �G ′)

U2, �K ( �G ′)

U3, �K ( �G ′)

⎤

⎥
⎥⎥
⎦

, (1.43)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B(11)
�G, �G ′ = B(22)

�G, �G ′ = B(33)
�G, �G ′ = ρ( �G − �G ′), (1.44a)

A(11)
�G, �G ′ = C11( �G − �G ′)(G1 + K1)(G

′
1 + K1) + · · ·

+C44( �G − �G ′)(G2 + K2)(G
′
2 + K2), (1.44b)

A(12)
�G, �G ′ = C12( �G − �G ′)(G1 + K1)(G

′
2 + K2) + · · ·

+C44( �G − �G ′)(G ′
1 + K1)(G2 + K2), (1.44c)

A(21)
�G, �G ′ = C12( �G − �G ′)(G ′

1 + K1)(G2 + K2) + · · ·
+C44( �G − �G ′)(G ′

2 + K2)(G1 + K1), (1.44d)

A(22)
�G, �G ′ = C11( �G − �G ′)(G2 + K2)(G

′
2 + K2) + · · ·

+C44( �G − �G ′)(G1 + K1)(G
′
1 + K1), (1.44e)

A(33)
�G, �G ′ = C44( �G − �G ′)

[
(G1 + K1)(G

′
1 + K1) + · · ·

+(G2 + K2)(G
′
2 + K2)

]
. (1.44f)

Equation (1.43) involves super-diagonal matrices and can be split into two inde-
pendent matrix equations

ω2

⎡

⎣
B(11)

�G, �G ′ 0

0 B(22)
�G, �G ′

⎤

⎦

⎡

⎣U1, �K ( �G ′)

U2, �K ( �G ′)

⎤

⎦ =
⎡

⎣
A(11)

�G, �G ′ A
(12)
�G, �G ′

A(21)
�G, �G ′ A

(22)
�G, �G ′

⎤

⎦

⎡

⎣U1, �K ( �G ′)

U2, �K ( �G ′)

⎤

⎦ , (1.45)

and
ω2

∑

�G ′

B(33)
�G, �G ′U3, �K ( �G ′) =

∑

�G ′

A(33)
�G, �G ′U3, �K ( �G ′). (1.46)
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Equations (1.45, 1.46) show that propagation modes in the 2D bulk phononic crystal
decouple. Equation (1.45) corresponds to modes polarized in the transverse plane
(x1Ox2) (often named XY modes) while Eq. (1.46) characterizes modes (often
named Z modes) with a displacement vector oriented along the x3 direction.

Equations (1.44) contain the Fourier coefficients ρ( �G − �G ′) and Cmn( �G − �G ′),
with (mn) ≡ (11), (44) and (12) defined by Eqs. (1.33). For two-dimensional
phononic crystals, Eqs. (1.33) must be rewritten as

η( �G − �G ′) = 1

�(U.C.)

∫∫

(U.C.)

η(�r)e−i( �G− �G ′)·�r d2�r , η ≡ ρ or Cmn, (1.47)

where �(U.C.) is the area of the two-dimensional unit cell in the (x1Ox2) plane and

η( �G − �G ′) = 1

�(U.C.)

∫∫

(A(UC))

ηA · e−i( �G− �G ′)·�r d2�r + · · ·

+ 1

�(U.C.)

∫∫

(B(UC))

ηB · e−i( �G− �G ′)·�r d2�r , (1.48)

where the integrals are performed over the areas filled by materials A and B inside
the UC and ηA (resp. ηB) denotes the value of parameter η for material A (resp. B).

Equation (1.48) can be rewritten as

η( �G − �G ′) = 1

�(U.C.)

∫∫

(A(UC))

ηA · e−i( �G− �G ′)·�r d2�r + · · ·

− 1

�(U.C.)

∫∫

(A(UC))

ηB · e−i( �G− �G ′)·�r d2�r + · · ·

+ 1

�(U.C.)

∫∫

(A(UC))

ηB · e−i( �G− �G ′)·�r d2�r + · · ·

+ 1

�(U.C.)

∫∫

(B(UC))

ηB · e−i( �G− �G ′)·�r d2�r

=(ηA − ηB)

[
1

�(U.C.)

∫∫

(A(UC))

e−i( �G− �G ′)·�r d2�r
]

+ · · ·

+ ηB

[
1

�(U.C.)

∫∫

(UC)

e−i( �G− �G ′)·�r d2�r
]
. (1.49)

Because

1

�(U.C.)

∫∫

(UC)

e−i( �G− �G ′)·�r d2�r = δ( �G− �G ′),�0 =
{
1 if ( �G − �G ′) = �O,

0 if ( �G − �G ′) 	= �O,
(1.50)

and defining the quantity F( �G − �G ′) as
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Fig. 1.12 Unit cell in the
transverse plane (x10x2) of
the two-dimensional
phononic crystal made of a
square array of cylinders
with circular cross-section.
The area of the unit cell is a2

F( �G − �G ′) = 1

�(U.C.)

∫∫

(A(UC))

e−i( �G− �G ′)·�r d2�r , (1.51)

equation (1.48) becomes

η( �G − �G ′) = (ηA − ηB) · F( �G − �G ′) + ηB · δ( �G− �G ′),�0. (1.52)

where F( �G − �G ′) is the structure factor which depends on the cross section shape
of the cylindrical inclusion.

For example if one considers inclusions of circular cross-section, see Fig. 1.12,
the structure factor can be calculated using polar coordinates (r, θ) as

F( �G − �G ′) = 1

�(U.C.)

∫∫

(A(UC))

e−i( �G− �G ′)·�r d2�r

= 1

a2

∫ R

0

∫ 2π

0
e−i | �G− �G ′|r cos θrdrdθ = 1

a2

∫ R

0
2πrdr J0(| �G − �G ′|r)

= 2π

(a2| �G − �G ′|2)
∫ | �G− �G ′|R

0
(| �G − �G ′|r)J0(| �G − �G ′|r)d(| �G − �G ′|r)

= 2π

(a2| �G − �G ′|2) (|
�G − �G ′|R)J1(| �G − �G ′|R) = f

2J1(| �G − �G ′|R)

| �G − �G ′|R , (1.53)

where f = πR2

a2 (0 ≤ f ≤ π
4 ) is thefilling fraction of inclusions, i.e., the ratio between

the area of the cross-section of the cylinder and that of the unit cell, and J0 and J1
are the Bessel’s functions of the first kind of orders 0 and 1, respectively. When
( �G − �G ′) = �0,

F(�0) = 1

�(U.C.)

∫∫

(A(UC))

d2�r = πR2

a2
= f, (1.54)

and one can rewrite Eq. (1.52) as
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η( �G − �G ′) =
{
f ηA + (1 − f )ηB = η if ( �G − �G ′) = �O,

(ηA − ηB)F( �G − �G ′) if ( �G − �G ′) 	= �O,
(1.55)

where η is an average value on the unit cell of parameter η.
The structure factor depends on the reciprocal lattice vectors and on the geometry

of the inclusions. One may consider cross-section section of other geometries and
for cylinders of square cross-section with side �, for example,

F( �G − �G ′) = 1

�(U.C.)

∫∫

(A(UC))

e−i( �G− �G ′)·�r d2�r , (1.56)

= 1

a2

∫ + �
2

− �
2

e−i(G1−G ′
1)·x1dx1

∫ + �
2

− �
2

e−i(G2−G ′
2)·x2dx2, (1.57)

= f

⎡

⎢⎢
⎣

sin

[
(G1 − G ′

1)
�

2

]

(G1 − G ′
1)

�

2

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

sin

[
(G2 − G ′

2)
�

2

]

(G2 − G ′
2)

�

2

⎤

⎥⎥
⎦ . (1.58)

Other authors have considered elliptical or hexagonal [9] cross-sections and analyt-
ical expressions of the structure factor can be derived in these cases. For much more
complicated geometries, the calculation of the structure factor can be performed
numerically by a numerical resolution of the surface integral involved in Eq. (1.51).
However, computational time could be an issue. On the other hand, some compli-
cated geometries could still be treated analytically. This applies to concentrically
layered circular cylinders. Their treatment requires rewriting Eq. (1.49).

Equation (1.46) governs the Z modes propagating in the bulk 2D phononic crystal
and can be rewritten as

ω2
∑

�G ′

ρ( �G − �G ′)U3, �K ( �G ′) = (1.59)

=
∑

�G ′

C44( �G − �G ′)
[
(G1 + K1)(G

′
1 + K1) + (G2 + K2)(G

′
2 + K2)

]
U3, �K ( �G ′).

If in Eq. (1.59), we single out the term �G = �G ′ in the summation, then this equation
can be recast as

ω2
{
ρ(�0)U3, �K ( �G) +

∑

�G ′ 	= �G
ρ( �G − �G′)U3, �K ( �G′)

}
=

= C44(�0)
[
(G1 + K1)(G1 + K1) + (G2 + K2)(G2 + K2)

]
U3, �K ( �G) + · · ·

∑

�G ′ 	= �G
C44( �G − �G′)

[
(G1 + K1)(G

′
1 + K1) + (G2 + K2)(G

′
2 + K2)

]
U3, �K ( �G′), (1.60)
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and

ω2
[
ρU3, �K ( �G) + (ρA − ρB)

∑

�G ′ 	= �G
F( �G − �G ′)U3, �K ( �G ′)

]
=

= C44( �G + �K )2U3, �K ( �G) + · · ·
+ (C44A − C44B)

∑

�G ′ 	= �G
F( �G − �G ′)

[
(G1 + K1)(G

′
1 + K1) + · · ·

+ (G2 + K2)(G
′
2 + K2)

]
U3, �K ( �G ′). (1.61)

Introducing the dimensionless vectors �g = a
2π

�G, �g′ = a
2π

�G ′ and �k = a
2π

�K , Eq. (1.61)
is transformed as

ω2ρ

⎡

⎣U3,�k(�g) + (ρA − ρB)

ρ

∑

�g′ 	=�g
F(�g − �g′)U3,�k(�g′)

⎤

⎦ =

= C44

(
2π

a

)2 [
(�g + �k)2U3,�k(�g) + · · ·

+ (C44A − C44B)

C44

∑

�g′ 	=�g
F(�g − �g′)(�g + �k)(�g′ + �k)U3,�k(�g′)

]
, (1.62)

and, eventually, can be rewritten as

�2

⎡

⎣U3,�k(�g) + �ρ
∑

�g′ 	=�g
F(�g − �g′)U3,�k(�g′)

⎤

⎦ =

= (�g + �k)2U3,�k(�g) + �C44

∑

�g′ 	=�g
F(�g − �g′)(�g + �k)(�g′ + �k)U3,�k(�g′), (1.63)

where

� = ω

2π

a

√
C44

ρ̄

, �C44 = C44A − C44B

C44
, and �ρ = ρA − ρB

ρ

are dimensionless quantities. The same transformations can be performed for
Eq. (1.45) governing the XY modes of propagation. Equation (1.63) shows that
it is convenient to compute the dimensionless frequency � as a function of the
dimensionless Bloch wave vector �k. For example, in the case of a square array of
cylindrical inclusions, the 2D dimensionless vectors �g (resp. �g′) are �g = ��e1 + m�e2
(resp. �g′ = �′ �e1 + m ′�e2) where � and m (resp. �′ and m ′) are integers, see Sect.
1.3.3.1. In the course of the numerical resolution of Eqs. (1.45, 1.46), we consider
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−MT ≤ (�, �′) ≤ +MT and −MT ≤ (m,m ′) ≤ +MT where MT is a positive
integer, i.e., (2MT + 1)2 �g or �g′ vectors are taken into account in the truncated
Fourier series. This gives (2MT + 1)2 (resp. 2(2MT + 1)2) real eigenfrequencies
for the Z modes (resp. the XY modes) for a given reduced wave vector �k describing
the principal directions of propagation in the irreducible Brillouin zone (at points
�, X and M of the irreducible Brillouin zone of the square array, �k is �k� = (0, 0),
�kX = ( 12 , 0) and

�kM = ( 12 ,
1
2 ), respectively). Solving for Eq. (1.63) requires to resolve

a generalized eigenvalues problem for each value of �k. The size of the matrices
involved in this problem and then the choice of the values of the integer MT is
of crucial importance for insuring the convergence of the Fourier series and conse-
quently optimizing the precision of the numerical solutions for the eigenfrequencies
�. This will be discussed in the next subsection.

1.4.2 Limitations of the PWE Method

The PWEmethod is a useful tool for calculating band structures of phononic crystals.
It is relatively easy to implement numerically while the main difficulty is the correct
representation of the matrices involved in the generalized eigenvalues problem to
solve. There exists many numerical codes (e.g., in Fortran and C languages, or in
Matlab software) of band structure calculations based on the PWE method that are
freely available online. Many of themwere developed for photonic crystals but could
be easily adapted to phononic crystals. Themethod is general in the sense that it can be
applied for 1D, 2D and 3D structures, with inclusions of different shapes distributed
in arrays of various geometries. Inclusions and matrix can be made of materials of
much more complicated crystallographic symmetry than the isotropic or the cubic
ones [10]. Moreover, not only passive elastic constituent materials but also active
ones such as piezoelectric [11] or magneto-elastic [12] materials may be considered.
However, the method presents some limitations linked to convergence problems of
the truncated Fourier series and the choice of constitutive materials.

1.4.2.1 Convergence of the Truncated Fourier Series

As alreadymentioned at the end of Sect. 1.4.1.3, while the Fourier series are assumed
infinite theoretically, a finite number of reciprocal lattice vectors must be taken into
account in the course of the numerical calculations. We analyse here the effect of
this truncation of the series on the calculated eigenvalues. For that we consider a
particular case of a phononic crystal made of highly contrasted constituent materials
namely a square array of steel cylinders embedded in an epoxy matrix with a filling
factor of inclusions f = 0.55. The study is limited to the Z modes of propagation
defined by Eq. (1.63). Figures1.13 present the first 10 bands of these band structures
calculated along the principal directions of propagation of the irreducible Brillouin
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Fig. 1.13 Z modes band structure for a square array of steel cylinders embedded in an epoxy
matrix for MT = 6 (a), MT = 8 (b), MT = 10 (c), MT = 12 (d). ρA = 7780 kg.m−3, CA

44 =
8.1.1010 N .m−2, ρB = 1142 kg.m−3, CB

44 = 0.148.1010 N .m−2 and f = 0.55

zone for different values of the integer MT namely for MT = 6, 8, 10 and 12.While
the overall shape of the band structure remains almost the same, one observes that the
location in frequency of some bands (for � around 0.2, 0.45 and 1.0 for examples)
is strongly influenced by the value of MT , this effect being stronger for larger �.
This slow convergence results mainly from the difficulty to reproduce accurately a
discontinuous function such as the density or an elastic modulus by the sum of a
finite number of sinusoidal continuous functions [13]. This is often referred to the
Gibbs phenomenon and can be clearly viewed in Fig. 1.14 where the function

ρtruncated(�r) =
∑

| �G|≤Gmax

ρ( �G)ei
�G·�r (1.64)

(with Gmax = 2π
a

√
MT 2 + MT 2 = 2π

a MT
√
2) has been plotted for different num-

bers of reciprocal lattice vectors, i.e., for MT = 6, 8, 10 and 12). One observes that
whatever is the value of MT , the function ρtruncated is rather different from ρ(�r).
Then when using the PWE method, it is necessary to fix the value of MT allowing
a good compromise between convergence and calculation time. Convergence of the
truncated Fourier series is the main concern when considering very different con-
stituent materials such as steel and epoxy. In this case a value of MT equal or larger
than 10 is necessary for obtaining the values of the eigenfrequencies with reasonable
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Fig. 1.14 Density, ρ(�r)
(red) and ρ(�r)truncated with
MT = 6 (black), MT = 8
(dark grey), MT = 10,
MT = 12 (clear grey) for a
square array of steel
cylinders embedded in an
epoxy matrix along the path
r = x1 = x2 in the unit cell,
see Fig. 1.12, using f = 0.55

precision. Some authors have proposed alternative scheme aiming at speeding up the
convergence of the PWE algorithm [4, Chap. 11] [14].

1.4.2.2 Choice of the Materials

In the preceding sections, it was assumed that all the constituent materials are purely
elastic solids. However, one may consider phononic crystals made of materials of
different nature for example a fluid (liquid or gas) and a solid. The reliability of
the PWE method in this case could be questioned. Let us consider a 2D phononic
crystal made of hollow cylindrical voids drilled in a solid matrix and filled with
a liquid. Intuitively, the fluid could be thought as an isotropic solid material with
C44 = 0 because of the absence of transverse displacements. However, the PWE
method still assumes a finite non-vanishing displacement amplitude of the transverse
mode in the cylinders and considering C44 = 0 in the fluid will introduce numerical
instabilities in the PWE code. As an example, Fig. 1.15 shows the XY modes band
structure of a square array of mercury filled cylindrical voids in an aluminiummatrix.
Liquid mercury was modelled as a solid isotropic material with C44 = 0, values of
ρ and C11 being those of real mercury. PWE calculations reveal the existence of
flat bands, whose number increases when the number of reciprocal lattice vectors
taken into account in the Fourier series increases, alongside with the bands without
clear physical meaning. The absence of these modes in the band structure using other
methods (for example, the finite element method via the COMSOL™ software which
models solid material and fluid constituents with their real elastic characteristics, i.e.,
two elastic moduli for the solid and the compressibility modulus for the fluid) shows
unambiguously that the PWE additional modes are fictitious [15]. Hou et al. [16]
argued that these fictitious modes result from an incorrect use of the Bloch theorem
in the application of the PWE method in such mixed solid/fluid phononic crystals.
Notes that the boundary conditions at the interface between the solid and the liquid
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Fig. 1.15 XY band structure along the �X direction of the irreducible Brillouin zone of a square
array of hollow cylinders drilled in anAluminiummatrix and filledwith liquidmercury for f = 0.4;
black dots: PWE calculations wheremercury has been considered as an isotropic solid withC44 = 0
andMT = 8, red dots: finite element resultswheremercury has been considered has a real fluid. The
PWE method leads to unphysical modes in this case and fails to predict accurately the propagating
modes in the mixed fluid/solid 2D structure. ρA = 13600 kg · m−3, CA

11 = 2.86 1010 N · m−2,
ρB = 2700 kg · m−3, CB

44 = 2.61 1010 N · m−2, CB
11 = 11.09 1010 N · m−2

are strictly satisfied in the finite element calculations while the PWE method does
not take into account these conditions.

Moreover, phononic crystals made of voids in a solid matrix present many advan-
tages due to the ease in manufacturing. For the reasons reported previously, if one
models air inside the voids as a solid material with vanishing C44, the fictitious flat
bands in the band structure are obtained. This is demonstrated in Fig. 1.16a where
the XY band structure for a square array of holes drilled in an Aluminium matrix
is plotted. However, it was shown [17] that for an accurate use of the PWE method
in this case, it is preferable to replace air inside the cylinders by vacuum and to
model vacuum as a pseudo-solid material with very low elastic moduli and density.
Indeed, modelling vacuum by a material with vanishing density and elastic moduli
leads to unphysical solutions of the eigenvalue problem. For the sake of simplic-
ity, this low impedance medium (LIM) was supposed elastically isotropic and was
characterized by a longitudinal speed of sound C�, and a transversal speed of sound
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Fig. 1.16 XY band structure along the �X direction of the irreducible Brillouin zone of a square
array of hollow cylinders drilled in an Aluminium matrix for f = 0.4; a PWE calculations where
the medium inside the cylinders is air withC44 = 0,C11 = 1.49 105N · m−2, ρ = 1.3 kg · m−3 and
MT = 6; b PWE calculations where the medium inside the cylinders is the LIMwithC11 = C44 =
106 N · m−2, ρ = 10−4 kg · m−3 and MT = 6; c Finite elements method (see text for details)

Ct or equivalently by two elastic moduli, C11 = ρ.C�
2 and C44 = ρCt

2. The choice
of the values for these parameters is governed by the boundary condition between
any solid material and vacuum. Indeed, this interface must be free of stress and this
requires thatC11 = 0 andC44 = 0 in vacuum. Then, using the LIM tomodel vacuum
in the PWE computations, the non vanishing values of these parameters must be as
small as possible and the ratio between the elastic moduli of the LIM and those of
any other solid material constituting the phononic crystal must approach zero. We
imposedC� andCt to bemuch larger than the speeds of sound in usual solidmaterials
in order to limit propagation of acoustic waves to the solid. Large speeds of sound
and small elastic moduli impose a choice of a very low mass density for the LIM.
More specifically, we choose ρ = 10−4 kg · m−3 andC� = Ct = 105m · s−1, i.e., the
acoustic impedances of the LIM are equal to 10 kg · m−2 · s−1. With these values
C11 = C44 = 106 N · m−2 and the elastic constants of the LIM are approximately 104

times lower than those of any usual solid material that are typically on the order of
1010 N · m−2. The valueswe have chosen forC11 andC44 are a compromise to achieve
satisfactory convergence of the PWE method and still satisfy boundary conditions.
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C11 andC44 were assumed the same for convenience. Figure1.16b presents the same
band structure as that of Fig. 1.16a but the medium inside the hollow cylinders is
modelled with the LIM. One observes that the flat bands that appeared in Fig. 1.16a
are removed. Results obtained with the finite element method where only the space
occupied by the Aluminiummatrix has been discretized, reported in Fig. 1.16c, show
a very good agreement with those of Fig. 1.16b. This shows that the PWE method is
suitable for calculating the band structure of phononic crystals made of holes drilled
inside a solid matrix provided the medium inside the holes is replaced by the LIM.

Many experimental studies are dealing with phononic crystals, often named as
sonic crystals, where solid inclusions are surrounded by air. Again considering air
as a solid with C44 = 0 leads to unphysical results. Nevertheless, due to the huge
contrast between the physical characteristics of the solid and those of air, the solid
inclusions can be assumed infinitely hard with a high density and high elastic mod-
uli. This implies that the sound does not penetrate such inclusions, and hence the
propagation of acoustic waves is predominant in air where only longitudinal waves
exist. The periodic structure made of rigid inclusions in air can then be considered
as an inhomogeneous fluid and the equation of propagation of longitudinal acoustic
waves in such medium [18] is

− 1

C11(�r)
∂2 p(�r , t)

∂t2
= − ω2

C11(�r) p(�r) = �∇ ·
(

1

ρ(�r) �∇ p(�r , t)
)

, (1.65)

where p(�r , t) = eiωt p(�r) is the acoustic pressure field inside the heterogeneous fluid.
In a periodic fluid medium, Eq. (1.65) can be Fourier transformed to give

ω2
∑

�G ′

C−1
11 ( �G − �G ′)p �K ( �G ′) =

∑

�G ′

ρ−1( �G − �G ′)
[
(G1 + K1)(G

′
1 + K1) + · · ·

+ (G2 + K2)(G
′
2 + K2) + (G3 + K3)(G

′
3 + K3)

]
p �K ( �G ′). (1.66)

Note that in the case of a 2D array of rigid cylindrical inclusions surrounded with
air, i.e., for G3 = G ′

3 = K3 = 0, Eq. (1.66) becomes

ω2
∑

�G ′

C−1
11 ( �G − �G ′)p �K ( �G ′) =

∑

�G ′

ρ−1( �G − �G ′)
[
(G1 + K1)(G

′
1 + K1) + · · ·

+ (G2 + K2)(G
′
2 + K2)

]
p �K ( �G ′), (1.67)

and it coincides with the equation of propagation of Z modes in an elastic solid 2D
phononic crystal (provided ρ, C44 and U3, �K in Eq. (1.59) play the roles of C−1

11 , ρ
−1

and p�k in Eq. (1.67)). Considering these analogies and using a numerical codewritten
for the Z modes, it is very easy to calculate the band structure shown in Fig. 1.17 for
a square array of steel cylinders in air.
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Fig. 1.17 PWE band
structure of a square array of
circular steel cylinders
placed in air with a = 2.7 cm
and R = 1.29 cm. PWE
calculations were performed
considering the assumption
of infinitely rigid solid
inclusions and with
MT = 10. Notes the
existence of a large absolute
stop band in the audible
frequency range

Due to the existence of a large acoustic stop band in the audible frequency range,
application of these sonic crystals as sound barriers was largely investigated bymany
authors [19, 20].

The reliability of the assumption of infinitely rigid inclusions when the matrix
of the phononic crystal is made of air was validated (see Fig. (2) of Ref. [21]). One
may note that this assumption leads to unreliable results in most of the cases (array
of inclusions, filling factor of inclusions, …) when considering a fluid matrix with
the density and elastic moduli values higher than those of air, such as water. One can
also remark that Eq. (1.66) can be used for calculating band structures of phononic
crystals composed of fluid constituents only such as periodic arrays of air inclusions
in water [18, 22].

1.4.3 Modified PWE Method for Complex Band Structures

In classical PWE expansion methods (see Sect. 1.4.1.2), one calculates a set of
real eigenfrequencies ω( �K ) for a specific wave vector �K . That means that only
propagating modes with a real wave vector can be deduced from the ω( �K ) PWE
method. Then a modified PWE method has been proposed that allows the cal-
culation of not only the propagating modes but also the evanescent modes. The
wave vector for evanescent waves has a non-vanishing imaginary part. We have
seen previously that the Fourier transform of the equation of propagation of elas-
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tic waves in a phononic crystal leads to the resolution of a generalized eigenvalue
equation in the form ω2←→B �U = ←→

A �U . The matrix elements of
←→
A and

←→
B involve

terms dependent on the components of the wave vector �K . It is always possible
to rewrite matrix

←→
A as

←→
A = Kα

2←→A1 + Kα
←→
A2 + ←→

A3 , where Kα is one of the
components of the wave vector, and

←→
A1 ,

←→
A2 and

←→
A3 are matrices of the same

size as
←→
A . The generalized eigenvalue equation ω2←→B �U = ←→

A �U may be recast as
Kα

2←→A1 �U = (ω2←→B − Kα
←→
A2 − ←→

A3 ). �U and one can write

Kα

⎡

⎣
←→
I

←→
0

←→
0

←→
A1

⎤

⎦

⎡

⎣
�U

Kα
�U

⎤

⎦ =
⎡

⎣ 0
←→
I

ω2←→B − ←→
A3 − ←→

A2

⎤

⎦

⎡

⎣
�U

Kα
�U

⎤

⎦ , (1.68)

where
←→
I is the identity matrix. Equation (1.68) is nothing else but a generalized

eigenvalue equation where the eigenvalues are the component Kα of the wave vector.
For a specific value of the circular frequency ω, one calculates a set of complex
eigenvalues Kα. The size of the matrices present on the left and right-hand sides of
Eq. (1.68) is twice that of matrices

←→
A and

←→
B . One may illustrate these general

ideas by considering the peculiar case of the Z elastic modes propagating in a bulk
2D phononic crystal made of a square array of lattice parameter a, of cylindrical
inclusions embedded in a solid matrix. If one assumes K3 = 0, then these modes
are given by Eq. (1.63), where ω depends on the two variables K1 and K2. Consider
the propagation of elastic waves along the �X direction of the irreducible Brillouin
zone for which K2 = 0 and 0 ≤ Re(K1) ≤ π

a . Equation (1.63) leads to

ω2
∑

�G ′

ρ( �G − �G ′)U3, �K ( �G ′) =

=
∑

�G ′

C44( �G − �G ′)
[
(G1 + K1)(G

′
1 + K1) + G2G

′
2

]
U3, �K ( �G ′), (1.69)

and this can be rewritten as

K1
2
∑

�G ′

C44( �G − �G ′)U3, �K ( �G ′) =
∑

�G ′

[
ω2ρ( �G − �G ′) − (G1G

′
1 + G2G

′
2)C44( �G − �G ′)

]
U3, �K ( �G ′) + · · ·

− K1

∑

�G ′

(G1 + G ′
1)C44( �G − �G ′)U3, �K ( �G ′), (1.70)

or in matrix form
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Fig. 1.18 Z modes band structures along the �X direction of the irreducible Brillouin zone for a
square array of holes drilled in a Silicon matrix: Red dots: ω( �K ) method; Black dots: �K (ω) method

K1

⎡

⎣
←→
I

←→
0

←→
0

←→
A1

⎤

⎦

⎡

⎣
�U

K1 �U

⎤

⎦ =
⎡

⎣ 0
←→
I

ω2←→B − ←→
A3 − ←→

A2

⎤

⎦

⎡

⎣
�U

K1 �U

⎤

⎦ , (1.71)

where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B �G, �G ′ = ρ( �G − �G ′), (1.72a)

A1 �G, �G ′ = C44( �G − �G ′), (1.72b)

A2 �G, �G ′ = C44( �G − �G ′)(G1 + G ′
1), (1.72c)

A3 �G, �G ′ = C44( �G − �G ′)(G1G
′
1 + G2G

′
2). (1.72d)

Numerical resolution of Eq. (1.71) leads to 2N (if N × N is the size of matrices←→
A and

←→
B ) complex values of K1 = Re{K1} − iIm{K1} for any value ofω. Eigen-

values belonging to the irreducible Brillouin zone and corresponding to waves with a
vanishing amplitudewhen x1 → ∞maybe taken into account, i.e., 0 ≤ Re{K1} ≤ π

a
and Im{K1} ≥ 0. Figure1.18 demonstrates the band structures calculated by both
ω( �K ) and �K (ω)methods. This figure shows the ability of the �K (ω)method to calcu-
late the evanescent modes. Of particular interest is the existence of additional bands
(see right panel of Fig. 1.18 for� ≈ 1.1) not predicted by the classical ω( �K )method
(red dots). These vibrational modes are characterized by a non-vanishing Im{K1}.�K (ω) method requires considering only one component of the wave vector �K as
eigenvalue. The other components need to be fixed or a linear relation between them
assumed. For example, along the �M direction in the irreducible Brillouin zone of
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the square array, one can write K1 = K2 and consider K1 as the eigenvalue. In the
same way, one can deal with any direction of propagation and not only with the
high-symmetry directions. Plotting all the values of K1 and K2 corresponding to a
specific frequency leads to the equi-frequency contour (EFC) of the phononic crystal.
Knowing precisely the shape of these EFC’s is of fundamental interest for study of
focusing or self-collimating of elasticwaves by phononic crystals [23].Moreover, the
�K (ω) PWE method allows consideration of the frequency dependent elastic moduli
and should be applied for calculating the band structures of phononic crystals made
of viscoelastic materials [24].

1.4.4 PWE Method for 2D Phononic Crystal Plates

The PWEmethod, presented in Sect. 1.4.1.2, can be applied for calculating the elastic
band structure of phononic crystal plates, i.e., phononic crystals of finite extent along
one specific direction of theCartesian coordinates system (O, x1, x2, x3). For the sake
of clarity, we consider two-dimensional phononic crystals with a finite thickness h2
along the x3 direction and of infinite extent along x1 and x2. We limit ourselves
to the case of a phononic crystal made of a square array (lattice parameter a) of
cylindrical inclusions A embedded in a matrix B as in Sect. 1.4.1.3 but the method
can be generalized to other geometries of the array of inclusions. It is assumed that
the plate is sandwiched between two slabs of thickness h1 and h2, made of elastic
homogeneous materials C and D, as shown in Fig. 1.19a. Materials A, B, C and
D are supposed to be of cubic symmetry. Then, one may define a super-cell in the
form of a parallelepiped whose basis in the (x1, O, x2) plane includes that of the
two-dimensional primitive unit cell of the square array of inclusions and its height
along the x3 direction is � = h1 + h2 + h3, see Fig. 1.19b.

This super-cell is repeated periodically along the 3 spatial directions and the
overall structure is �-periodic along x3 and has the periodicity of the square array of

Fig. 1.19 a 2D phononic crystal plate sandwiched between two slabs of homogeneous materials,
and b three-dimensional supercell considered in the course of the supercell-PWE computation



38 J. O. Vasseur

inclusions in the (x1, O, x2) plane. In this way, solving for the eigenfrequencies of the
plate using the PWEmethod is a full three-dimensional problem and Eqs. (1.41) and
(1.42) apply. In these equations, the reciprocal lattice vectors �G = (G1,G2,G3)may
be written as �G = �G// + �G3 where �G// = G1�e1 + G2�e2 and �G3 = G3�e3. Similarly,
thewave vector �K = (K1, K2, K3) associatedwith a propagatingmode is �K = �K// +
�K3 where �K// describes the periphery of the two-dimensional irreducible Brillouin
zone of the square array of inclusions and �K3 = K3�e3 where K3 takes a fixed value
between 0 and π/�. Fourier coefficients in Eqs. (1.39) and (1.40) are now given as:

η( �G − �G ′) = 1

Vu

∫∫∫

(Super Cell)

η(�r)e−i( �G− �G ′)·�r d3�r , (1.73)

where Vu = �(U.C.) · � is the volume of the super-cell, and �(U.C.) is the area of the
two-dimensional unit cell in the (x1Ox2) plane. For a square array of inclusions, the
Fourier coefficients become

η( �G− �G ′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f ηA
( h2

�

) + (1 − f )ηB
( h2

�

) + · · ·
+ηC

( h1
�

) + ηD
( h3

�

)
, if �G− �G ′ = �0,

(ηA − ηB)Fs
I ( �G − �G ′) + (ηC − ηB)Fs

II (
�G − �G ′) + · · ·

+(ηD − ηB)Fs
III (

�G − �G ′), if �G− �G ′ 	= �0,
(1.74)

with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fs
I (

�G − �G ′) = 1

Vu

∫∫∫

(A)

e−i( �G− �G ′)·�r d3�r =

= F( �G// − �G ′
//)

(
sin[(G3 − G ′

3)
h2
2 ]

(G3 − G ′
3)

h2
2

)
h2
�

, (1.75a)

Fs
I I (

�G − �G ′) = 1

Vu

∫∫∫

(C)

e−i( �G− �G ′)·�r d3�r =

=
(
sin[(G1 − G ′

1)
a
2 ]

(G1 − G ′
1)

a
2

)(
sin[(G2 − G ′

2)
a
2 ]

(G2 − G ′
2)

a
2

)
× · · ·

(
sin[(G3 − G ′

3)
h1
2 ]

(G3 − G ′
3)

h1
2

)
h1
�
e−i(G3−G ′

3)
h1+h2

2 , (1.75b)

Fs
I I I (

�G − �G ′) = 1

Vu

∫∫∫

(D)

e−i( �G− �G ′)·�r d3�r =

=
(
sin[(G1 − G ′

1)
a
2 ]

(G1 − G ′
1)

a
2 )

)(
sin[(G2 − G ′

2)
a
2 ]

(G2 − G ′
2)

a
2

)
× · · ·

(
sin[(G3 − G ′

3)
h3
2 ]

(G3 − G ′
3)

h3
2

)
h3
�
e+ı(G3−G ′

3)
h2+h3

2 . (1.75c)
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In Eqs. (1.75), (1.75b), (1.75c), the integration is performed over the volume
occupied by each material A, C , or D inside the super cell. In Eq. (1.75a), F( �G// −
�G ′
//) is the structure factor defined by Eq. (1.53) for cylindrical inclusions.

The two-dimensional �G// (resp. �G ′
//) vectors are �G// = 2π

a (m�e1 + n�e2) (resp.
�G ′
// = 2π

a (m ′ �e1 + n′ �e2)) where m and n (resp. m ′ and n′) are integers. The third
component of the reciprocal lattice vectors G3 and G ′

3 are defined as G3 = p 2π
�

and G3 = p′ 2π
�

where p and p′ are integers. In the course of the numerical reso-
lution of Eqs. (1.41), we consider −M1 ≤ (m,m ′) ≤ +M1, −M2 ≤ (n, n′) ≤ +M2

and −M3 ≤ (p, p′) ≤ +M3 (M1, M2, M3 are three positive integers). This leads to
3(2M1 + 1)(2M2 + 1)(2M3 + 1) eigenfrequenciesω( �K ) for a given wave vector �K .

The super-cell method requires the weak interaction between the vibrational
modes of neighbouring periodically repeated, along the x3 direction, phononic crys-
tal plates. Then, in order to allow the top surface of the plate to be free of stress,
mediumC should behave, similar to vacuum [25]. For alleviating numerical instabil-
ities, vacuum is modelled with the low impedance medium defined in Sect. 1.4.2.2.
On the other hand, medium D can be either vacuum or a homogeneous material
depending on whether one wants to model a phononic crystal plate or a structure
made of a phononic crystal plate deposited on a substrate of finite thickness. Com-
putations of dispersion curves of phononic crystal plates with K3 = 0 and with any
other non-vanishing value of K3, lower than π

�
, lead to nearly the same result. Indeed,

the eigenvalues computed with K3 = 0 and K3 	= 0 differ only in their third deci-
mal. This indicates that the homogeneous slabsC and D made of the LIMmodelling
vacuum are adequate to provide appropriate decoupling of the plate modes of vibra-
tion in the x3 direction. Then, the value of K3 may be fixed to zero. Due to this
three-dimensional nature, the numerical convergence of the super-cell PWE method
is relatively slow and it has been shown that this method is suitable for voids/solid
matrix plates but is not reliable for constituent materials with very different phys-
ical properties [17]. The super-cell PWE method does not to require formulating
and explicitly satisfying the boundary conditions at the free surfaces. Nevertheless,
other authors have proposed PWE schemes for phononic crystals plates where these
boundary conditions are satisfied but these methods also suffer from convergence
difficulties [26].

Figure1.20 shows the elastic band structure of square arrays of cylindrical holes
in steel for three different thickness of the phononic crystal plate. In PWE numerical
calculations, the material inside the holes, i.e., air was modelled by the LIM depicted
in Sect. 1.4.2.2. We consider a high filling factor of inclusion f = 0.7. Calculations
have been performed with M1 = M2 = 4 and M3 = 2 and a good convergence of
the super-cell PWE method was obtained. One observes that the bulk band structure
exhibits a complete band gap centred on � ≈ 0.5 and a complete band gap only
appears for a thickness of the plate approaching the value of the lattice parameter,
namely h2/a = 1.0, see Fig. 1.20b.

The super-cell PWEmethod is an interesting tool for calculating the band structure
of free-standing or deposited on a substrate, 2D phononic crystal plate especially
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Fig. 1.20 PWE elastic band structures for the bulk 2D phononic crystal (red squares) and the
phononic crystal plate of thickness h2 (black filled circles) made of a square array of circular holes
drilled in a steel matrix with f = 0.7. a h2 = 0.1a; b h2 = 0.7a; c h2 = 4a

when the periodic structure is made of holes drilled in a matrix. For other structures,
it is preferable to choose an alternate method of calculation such as for example the
finite element method.

1.5 Conclusions

Wehave presented a detailed explanation of PWEmethodwhich is considered to be a
useful tool for computing dispersion curves of the periodic structures. The method is
quite easy to implement but presents some limitations regarding the convergence of
the Fourier series and the choice of the constituent materials. The method is reliable
in the case of phononic crystals made of solid or fluid components but is less so
for most of the mixed structures where a fluid component is associated with a solid
one. In these cases other methods of calculation such as the finite difference time
domain method or the finite element method may be preferred. Nevertheless, the tips
presented here might help to increase the accuracy of PWE method when applied to
structures made of holes drilled in a solid matrix or constituted of solid inclusions
surrounded with air. The classical PWEmethod can also be extended for considering
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phononic crystals of finite extent, for analysing the evanescence of waves inside the
band gaps and for calculating the equi-frequency surfaces of any periodic structure.

Acknowledgements I would like to thank C. Croënne (IEMN, Villeneuve d’Ascq, France) for his
help with some numerical calculations.
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Chapter 2
Introduction to Multiple Scattering
Theory for Scalar Waves

Dani Torrent

Abstract In this chapter some fundamentals of the theory of multiple scattering
between objects is presented. The chapter is focused on the scalar case and in two
dimensions, so that essentially two fields are considered: the acoustic field and flexu-
ral waves in thin plates. The scattering by one single circular object is first presented
and then the theory is generalized to multiple objects. For flexural waves an expres-
sion is derived for the effective scattering matrix of a given cluster, as well as the
expression for the scattering of point-like objects. Some numerical examples are
given at the end of the chapter.

2.1 Introduction

Multiple scattering theory [1–4] is a very efficient method, from the numerical point
of view, to compute the interaction of a set of N objects with a given incident field.
The theory has been applied to electromagnetic andmechanical waves, and it offers a
complementary tool for more numerical methods. Although commercially available
software packages can treat more or less accurately the interaction of waves with
arbitrarily shaped scatterers, analytical methods continue being a reliable tool for
research, since they allow us to obtain a deeper knowledge of the different physical
processes involved in the interaction. However, it has to be pointed out that multiple
scattering can be numericallymore efficient than purely numericalmethods, although
our objective here is not to discusswhenmultiple scattering theory is better than other
methods. The aim of this chapter is to present multiple scattering as a theoretical tool
to other methods, and we do not pretend to present a more efficient theory but only a
theory whose analytical manipulation is easy and which can be useful to understand
the nature of the interaction of waves with a cluster of objects. Given the pedagogical
nature of this chapter, we will focus on scalar problems in two dimensions, since
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once this situation is properly understood it is just a mater of technical work to learn
the three-dimensional and vectorial situation.

Before going to a detailed explanation, let us see a pedagogical introduction to
the problem of multiple scattering. Let us assume that some incident field ψ0, e.g. a
plane wave or something similar, arrives to a region of space where there is an object
which scatters waves. The total field ψT in space now will be

ψT = ψ0 + ψsc, (2.1)

where ψsc is the scattered field by the object. This scattered field depends on the
incident field, and it is proportional to it, with the constant of proportionality called
the T matrix, thus we can write

ψsc = Tψ0, (2.2)

and the total field is therefore given by (we will see later that this is just a symbolic
solution)

ψT = (1 + T )ψ0. (2.3)

Now, let us assume that we have instead a cluster of N objects located in positions
Rα , for α = 1, 2, . . . , N , each one scatters a field ψα

sc, thus

ψT = ψ0 +
N∑

α=1

ψα
sc. (2.4)

We know the T matrix of each scatterer, labeled Tα , however the T matrix relates the
response of the scatterer to the incident field, but now this incident field is not only
ψ0, since the field that arrives to the scatterer α, labeled ψ0α , is the incident field ψ0

plus the scattered field by all the other scatterers β �= α. Then we can write

ψα
sc = Tαψ0α = Tα

⎛

⎝ψ0 +
∑

β �=α

ψβ
sc

⎞

⎠ , (2.5)

which is equivalent to
ψα

sc − Tα

∑

β �=α

ψβ
sc = Tαψ0. (2.6)

The above equation is actually a set of N equations from which we can obtain the
N unknowns ψα

sc. Let us assume for instance that we have only two scatterers, then
α = 1, 2 and we have the two equations

ψ1
sc − T1ψ

2
sc = T1ψ0 (2.7)
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and
ψ2

sc − T2ψ
1
sc = T2ψ0, (2.8)

from which we solve the scattered fields as

ψ1
sc = T1

1 + T2
1 − T1T2

ψ0 (2.9)

and a similar solution is found for ψ2
sc. We see then the formal mechanism of mul-

tiple scattering, and how the interaction between scatterers appears by means of the
crossing products T1T2. The strength of the interaction between the different scatter-
ers will depend in general on this product, among other variables like the distance
between them or the cluster configuration in the case of large clusters. Within the
next sections we will derive a more formal theory to study this complex process.

2.2 Multiple Scattering of Acoustic Waves

When an external acoustic field reaches a closed region defined by someboundary ∂�

having acoustic parameters different to that of the surrounding medium a scattered
field is excited. In two dimensions the external field can always be expressed in terms
of regular Bessel functions Jq(·) in polar coordinates r = (r, θ) and the field wave
number k,

P0(r) =
∞∑

q=−∞
A0
q Jq(kr)e

iqθ . (2.10)

The scattered field cannot be constructedwith regular Bessel functions only, but an
irregular part must be added. This irregular part is formed with the Bessel functions
of the second kind Yq(·), and the resulting functions are called Hankel functions
Hq(·) = Jq(·) + iYq(·). In terms of Hankel functions the scattered field is expressed
as

P sc(r) =
∞∑

q=−∞
AqHq(kr)e

iqθ . (2.11)

In a general problem, the coefficients A0
q of the incident field are the inputs and

the scattered field coefficients Aq are the output. The coefficients Aq depend on both
the physical nature of the scatterer and the incident field. The dependence of the
physical nature of the scatterer is obtained mathematically by means of the boundary
conditions, which are different for each type of cylinders, as will be shown later, but
finally a linear relationship is found by means of the T matrix [5],

Aq =
∑

s

Tqs(k, ηi )A
0
s , (2.12)
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where the argument ηi indicates that the matrix elements Tqs are dependent on some
set of physical constants ηi . Nevertheless, in the present work this notation is sim-
plified and only the wavenumber dependence will be explicitly indicated in some
special cases. The expression of this T matrix depends not only on the physical nature
of the cylinders but also on the external shape of them.

In this section, after showing the expressions for themost commonly used incident
fields, the T matrix of a fluid cylinder (circular and with arbitrary cross-section) and
of an elastic cylinder (only circular) will be computed.

2.2.1 Incident Fields

Here, only two types of 2D incident fields are used: the plane wave and the point
source. Both are basic fields and can be used to understand the response of a given
system to more complicated sources. Independently of the functional form of the
incident fields, when working in a multiple scattering environment these fields have
to be expanded in terms of regular Bessel functions in translated reference frames.
The goal of this section is not only introduce the fields, but also show how they can
be expanded in Bessel functions.

2.2.1.1 The Plane Wave

The plane wave is a field distribution defined by some wavenumber k0 = k0x x̂ +
k0y ŷ = k(cos θ0, sin θ0) and some complex amplitude C0, and has a functional form

P0(r) = C0e
ik0·r , (2.13)

the integral definition of the Bessel functions [6] allow us to express this field as

P0(r) = C0e
ik0·r = C0

∑

q

iqe−iqθ0 Jq(kr)e
iqθ . (2.14)

The coefficients A0
q in (2.10) are

A0
q = C0i

qe−iqθ0 . (2.15)

Now let us assume that the same field has to be expressed in another reference
frame r ′ such that, as shown in Fig. 2.1

r ′ = r − R′, (2.16)
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Fig. 2.1 Coordinate
definitions for the incident
fields

where R′ is a vector which goes from the origin in the frame r to that of the frame
r ′. The expression needed could be obtained by Graf’s addition theorem [6]. For the
case of plane waves a simpler approach can be used,

P0(r) = C0e
ik0·r = C0e

ik0·R′
eik0·r

′

= C0e
ik0·R′ ∑

q

iqe−iqθ0 Jq(kr
′)eiqθ ′

, (2.17)

thus,
A

′0
q = C0e

ik0·R′
iqe−iqθ0 = C0e

ik0·R′
A0
q . (2.18)

In multiple scattering theory this operation moves the origin of coordinates to the
center of new cylindrical system where the vector R′ is the origin.

Any incident field can be expanded in a sum (discrete or continuous) of plane
waves, the resulting field being the sum of the response to all these plane waves. In
general, the incident field will be

P0(r) =
∑

θ0

Cθ0e
ik0·r . (2.19)

2.2.1.2 The Point Source

The point source of order s is defined by a Hankel function of the same order. For a
source located in Rs

P0(r) = CsHs(krs)e
isθs , (2.20)

where rs = r − Rs and Cs is a complex constant (see Fig. 2.1).



48 D. Torrent

This field can be expressed in the frame r ′ of the previous section by means of
the Graf’s addition theorem,

P0(r) = Cs

∑

q

Hs−q(kR
′
s)e

i(s−q)	′
s Jq(kr

′)eiqθ ′
, (2.21)

where the vector R′
s = (R′

s,	
′
s) is the position vector of the source in the primed

frame, and is given by
R′
s = Rs − R′. (2.22)

When working with multiple scattering the primed refers to some cylinder, so that
R′ is the position vector of this cylinder.

If a more general source is needed, it can be modelled with a linear combination
of all the s-sources

P0(r) =
∑

s

Cs Hs(krs)e
isθs , (2.23)

and the response of the systemwill be the addition of the responses to all the individual
sources.

2.2.2 T-Matrix of a Fluid Cylinder

Let us consider a fluid cylinder of radius Ra , and a density and sound speed given by
va and ρa , respectively. Let us also assume that some external field, defined by the
coefficients A0

q , impinges the cylinder. In the region outside the cylinder, as shown
previously, the total acoustic field is

P+(r) =
∑

q

A0
q Jq(kr)e

iqθ +
∑

q

Aq Hq(kr)e
iqθ . (2.24)

Inside the cylinder there are no sources, and the total field can be expressed in terms
of regular Bessel functions with associated wavenumber ka

P−(r) =
∑

q

B in
q Jq(kar)e

iqθ . (2.25)

Boundary conditions are applied at the circular surface, which are the continuity of
the pressure field and the normal component of the velocity field [7], thus,

P+(Ra) = P+(Rb), (2.26)

1

ρb

∂P+(r)
∂r

∣∣∣∣
r=Ra

= 1

ρa

∂P+(r)
∂r

∣∣∣∣
r=Ra

. (2.27)
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Substituting (2.24) and (2.25) into these boundary conditions we obtain

∑

q

A0
q Jq(kRa)e

iqθ +
∑

q

Aq Hq(kRa)e
iqθ =

∑

q

B in
q Jq(ka Ra)e

iqθ , (2.28)

and

k

ρb

∑

q

A0
q J

′
q(kRa)e

iqθ + k

ρb

∑

q

Aq H
′
q(kRa)e

iqθ = ka
ρa

∑

q

B in
q J ′

q(ka Ra)e
iqθ ,

(2.29)

where the ′ implies derivatives respect to the argument.
The sums in q can be eliminated by multiplying the equations by eisθ and inte-

grating from 0 to 2π . In this case only those terms such that s = q are different from
zero and the final form of the equations

A0
q Jq(kRa)e

iqθ + AqHq(kRa)e
iqθ = B in

q Jq(ka Ra)e
iqθ , (2.30)

k

ρb
A0
q J

′
q(kRa)e

iqθ + k

ρb
Aq H

′
q(kRa)e

iqθ = ka
ρa

B in
q J ′

q(ka Ra)e
iqθ . (2.31)

Now it is easy to obtain the relations between the coefficients Aq and A0
q , which

defines the T matrix.Note that in the obtained relation the coefficient Aq only depends
on the coefficient A0

q ; i.e., the T matrix is diagonal, Tsq = Tqδsq , with Tq given by

Tq = − ρq J ′
q(kRa) − Jq(kRa)

ρq H ′
q(kRa) − Hq(kRa)

, (2.32)

where

ρq = ρava

ρbvb

Jq(ka Ra)

J ′
q(ka Ra)

. (2.33)

The T matrix of two special cases can now be derived. The first one is the rigid
cylinder, where the density of the cylinder ρa , in relation to the background ρb,
approaches to infinity. In this situation also the quantity ρq approaches to infinity, so
that the T matrix for the rigid cylinder is

Tq = − J ′
q(kRa)

H ′
q(kRa)

. (2.34)

The second case is the void cylinder, which corresponds to the opposite situation:
now the density of the cylinder, in relation to the background, approaches to zero,
then the T matrix for the void is
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Tq = − Jq(kRa)

Hq(kRa)
. (2.35)

The T matrix allows one to obtain the field outside the cylinder. When the field
inside the cylinder is needed, it can be computed with the help of (2.30), which
solving for B in

q gives

B in
q = Jq(kRa) + Tq Hq(kRa)

Jq(ka Ra)
A0
q , (2.36)

for both the rigid and the void cylinders there is no field inside them.

2.2.3 Multiple Scattering

Consider a cluster of N parallel cylinders with arbitrary cross-section shape located
at Rα , with α = 1, 2, . . . , N . If an incident field P0(r, θ) impinges the cluster, the
total scattered field will be given by the sum of the scattered fields by each individual
cylinder, that is

P sc(r, θ) =
∑

α

∞∑

q=−∞
(Aα)q Hq(krα)eiqθα , (2.37)

where Hq(·) is the q-Th order Hankel function of first kind and (rα, θα) are the polar
coordinateswith the origin translated to the center of theα-cylinder, i.e, rα = r − Rα ,
as shown in Fig. 2.2. Here, k = ω/cb and (Aα)q are the coefficients to be determined.

Fig. 2.2 Definition of
variables employed in the
multiple scattering theory
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The total field incident on the α-cylinder can be expressed as a linear combination
of Bessel functions

P0
α (rα, θα) =

∑

s

(Bα)s Js(krα)eisθα . (2.38)

These coefficients are related to the (Aα)q by means of the T matrix

(Aα)q =
∑

s

(Tα)qs(Bα)s, (2.39)

with Tα the T matrix of the α-cylinder.
The total field (2.38) incident upon the α-cylinder is the sum of the external field

P0(r, θ) and the field scattered by all the cylinders except α. The external field can be
expressed in the α frame. The scattered field can also be expressed in the α reference
frame by means of the Graft’s addition theorem. Thus,

P0
α (rα, θα) =

∑

q

(A0
α)q Jq(krα)eiqθα+
∑

q,s

∑

β �=α

(Aβ)s Hq−s(krαβ)ei(s−q)θαβ Jq(krα)eiqθα , (2.40)

where the coefficients (A0
α)q are those of the external field in theα frame of reference.

Details of the variables employed are given in Fig. 2.2. From (2.40) and (2.38), the
relation between (Bα)q and (Aβ)s coefficients is

(Bα)q = (A0
α)q +

∑

β �=α

(Aβ)s Hq−s(krαβ)ei(s−q)θαβ . (2.41)

Multiplying this equation by (Tα)qr and performing summation over q we get

(Aα)r −
∑

s

∑

β

(Gαβ)rs(Aβ)s =
∑

q

(Tα)qr (A
0
α)q , (2.42)

where
(Gαβ)rs =

∑

q

(1 − δαβ)(Tα)qr Hq−s(krαβ)ei(s−q)θαβ . (2.43)

Equation (2.43) has been derived for a cylinder of arbitrary cross-section with a
non-diagonal T matrix. However, in the present work, the multiple scattering the-
ory has been mainly applied to circular cylinders, where the T matrix is diagonal,
(Tα)qr = (Tα)qδqr . Thus (2.42) and (2.43) become, respectively,
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(Aα)q −
∑

s

∑

β

(Gαβ)qs(Aβ)s = (Tα)q(A
0
α)q , (2.44)

(Gαβ)qs = (1 − δαβ)(Tα)q Hq−s(krαβ)ei(s−q)θαβ . (2.45)

Returning to the general expression (2.42), in principle, themulti-polar expansions
are infinite, but the angular momentum index is truncated to a maximum value smax

such that |s| <= smax. In this case, the set of equations (2.42) defines a system of
N (2smax + 1) linear equations. The inversion of the matrix M defined by

(Mαβ)rs = δrsδαβ − (Gαβ)rs, (2.46)

gives the solution of the problem

(Aα)q =
∑

β

∑

r

∑

s

(M−1
αβ )qr (Tα)rs(A

0
α)s . (2.47)

This solution is obtained in terms of the position and properties of each cylinder and
of the external field.

Note that, for the case of a plane wave of amplitude C0 and propagation angle θ0,
the coefficients (A0

α)q are

(A0
α)q = C0e

ik0·Rα iqe−iqθ0 , (2.48)

and for the point source of order s and amplitude Cs

(A0
α)q = CsHs−q(kr

′
s)e

i(s−q)	′
s . (2.49)

Finally, the total pressure at any point of the plane is the addition of the incident field
and the total scattered field,

P(r, θ) = P0(r, θ) +
∑

α

∞∑

q=−∞
(Aα)q Hq(krα)eiqθα . (2.50)

The scattered far field is a very useful quantity to characterize a cluster of cylinders.
This scattered far field is computed for kr � 1, then

Psc(r, θ) =
∑

α

∞∑

q=−∞
(Aα)q Hq(krα)eiqθα ≈

√
2

πkr
e−iπ/4eikr

∑

α

∞∑

q=−∞
(−i)q(Aα)qe

−ikrαeiqθα . (2.51)
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Thus the scattered far field is

σsc(k, θ) =
∣∣∣∣∣

√
2

πk

∑

α

∞∑

q=−∞
(−i)q(Aα)qe

−ikrαeiqθα

∣∣∣∣∣ , (2.52)

and the scattering form factor is

F(k) ≡
∫ 2π

0
σ 2
sc(k, θ)dθ = 4

k

∑

α

∞∑

q=−∞
|(Aα)q |2. (2.53)

2.3 Multiple Scattering of Flexural Waves

Flexural waves are a special case of elastic waves propagating in thin elastic plates. In
the long wavelength limit, it can be shown that these waves propagate as a scalar field
which satisfies a two-dimensional wave theory. From the pedagogical point of view
this fact is interesting since it is a scalar field in two dimensions which, additionally,
describes a true physical situation, so that it is a very instructive example to learn
about the multiple scattering of waves. We will follow the theoretical introduction
for these waves given in [8–11].

The equations describing flexural waves can be found in many textbooks (see for
instance [12, 13]). If the wavelength of the field is larger than the thickness of the
plate, the wave equation is the fourth order differential equation

− ∂2

∂x2

(
Db

[
∂2W

∂x2
+ νb

∂2W

∂y2

])

− ∂2

∂y2

(
Db

[
∂2W

∂y2
+ νb

∂2W

∂x2

])

− 2
∂2

∂x∂y

(
Db(1 − νb)

∂2W

∂x∂y

)
= ρh

∂2W

∂t2
, (2.54)

being ρb, hb and Db = Ebh3b/12(1 − ν2
b ) the mass density, thickness and bending

stiffness of the plate, respectively, with Eb the Young’s modulus and νb and Poisson’s
ratio.When the background’s parameters are constant, andwe assume harmonic time
dependence of the field W , the above equation reduces to

(Db∇4 − ρbhbω
2)W (x, y) = 0, (2.55)

whose solution in polar coordinates is given by a linear combination of Bessel and
modified Bessel functions [14] of argument kb, such that

k4b = ρbhb
Db

ω2. (2.56)
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We limit here the study to the scattering by circular inclusions in the low frequency
limit, defined for wavelengths such that λ > 4a, being a the typical distance between
scatterers. Thus, as long as the thickness of the plate be smaller than a, the above
equation is a good approximation.

For a scattering problem, the incident field is expressed as

W0 =
∑

q

[
AJ
q Jq(kbr) + AI

q Iq(kbr)
]
eiqθ , (2.57)

while the scattered field is given by

Wsc =
∑

q

[
BH
q Hq(kbr) + BK

q Kq(kbr)
]
eiqθ . (2.58)

If the scatterer is a circular inhomogeneity of radius Ra , inside the scatterer (r <

Ra), since there are no sources, the field is expressed as

Wi =
∑

q

[
C J
q Jq(kar) + C I

q Iq(kar)
]
eiqθ . (2.59)

Boundary conditions are explained for instance in [14], and they provide a system
of four equations which solves for the four unknowns: two scattering coefficients
BH
q , BK

q and the two internal coefficients C J
q ,C I

q . The system of equations can be
expressed as

X0
q Aq + X sc

q Bq = Xa
qCq , (2.60)

Y 0
q Aq + Y sc

q Bq = Y a
qCq , (2.61)

where the matrices X i
q and Y i

q , with i = 0, sc, a, are 2 × 2 matrices and the coef-
ficient vectors are Aq = (AJ

q , AI
q), Bq = (BH

q , BK
q ) and Cq = (C J

q ,C I
q ). Solving

(2.60) for Ci
q , and inserting the result into (2.61) gives

Y 0
q Aq + Y sc

q Bq = Y a
q(X

a
q)

−1(X0
q Aq + X sc

q Bq), (2.62)

from which Bq can be found as a function of Aq

Bq = − (
Y sc

q − Y a
q(X

a
q)

−1X sc
q

)−1 × (
Y 0

q − Y a
q(X

a
q)

−1X0
q

)
Aq . (2.63)

The above equation defines the T matrix of the scatterer, and it gives the scattering
coefficients Bq in terms of Aq . It is a 2 × 2 matrix and each element of the matrix is
related to the excitation of a different mode, that is, in full matrix form we have
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⎡

⎣ BH
q

BK
q

⎤

⎦ =
⎡

⎣ T H J
q T H I

q

T K J
q T K I

q

⎤

⎦

⎡

⎣ AJ
q

AI
q

⎤

⎦ . (2.64)

If the scatterer is a hole, the clamped free boundary conditions gives simply

Bq = −(Y sc
q )−1Y 0

q Aq . (2.65)

Let us assume now that we have a cluster of scatterers located at positions Rα ,
for α = 1, 2, . . . , N , the total scattered field by the cluster is now given by

�sc =
∑

α

∑

q

[
BH
qαHq(kbrα) + BK

qαKq(kbrα)
]
eiqθα (2.66)

where the Bα coefficients are related with the incident field on the α scatterer by the
T matrix

BH
qα = T H J

qα AJ
qα + T H I

qα AI
qα, (2.67)

BK
qα = T K J

qα AJ
qα + T K I

qα AI
qα. (2.68)

However, the coefficients Aq have now two contributions: one due to the external
incident field and the other given by the scattered field by the other scatterers, thus,
after applying the addition theorem we have

AJ
qα =

∑

s

(G0
αO)Jqs A

J
s +

∑

β �=α

∑

s

(Gsc
αβ)Hqs B

H
sβ, (2.69)

AI
qα =

∑

s

(G0
αO)Iqs A

I
s +

∑

β �=α

∑

s

(Gsc
αβ)Kqs B

K
sβ (2.70)

where

(Gsc
αβ)Hqs = Hq−s(kbRαβ)ei(s−q)θαβ , (2.71)

(Gsc
αβ)Kqs = (−1)s Kq−s(kbRαβ)ei(q−s)θαβ . (2.72)

Then, we can obtain the equation for the Bα coefficients

BH
qα =T H J

qα

∑

s

(G0
αO)Jqs A

J
s + T H I

qα

∑

s

(G0
αO)Iqs A

I
s+

T H J
qα

∑

β �=α

∑

s

(Gsc
αβ)Hqs B

H
sβ + T H I

qα

∑

β �=α

∑

s

(Gsc
αβ)Kqs B

K
sβ (2.73)
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and

BK
qα = T K J

qα

∑

s

(G0
αO)Jqs A

J
s + T K I

qα

∑

s

(G0
αO)Iqs A

I
s+

T K J
qα

∑

β �=α

∑

s

(Gsc
αβ)Hqs B

H
sβ + T K I

qα

∑

β �=α

∑

s

(Gsc
αβ)Kqs B

K
sβ. (2.74)

The above two equations give us the coefficients Bq as functions of the Aq , after
solution of the system of equations

MB = TG0A, (2.75)

where the matrix M is given by

(Mαβ)qs = Iδαβδqs − Tαq(Gsc
αβ)qs, (2.76)

being I the 2 × 2 identity matrix, Tαq the T matrix of the α-scatterer and

(Gαβ)qs =
⎡

⎣ (Gsc
αβ)Hqs 0

0 (Gsc
αβ)Kqs

⎤

⎦ . (2.77)

2.3.1 Effective T-Matrix

There is a very useful tool to describe the scattering of a cluster of objects, which
is called the effective T-matrix. This effective T matrix has been properly computed
for electromagnetic and acoustic scatterers [15–17], however for flexural waves an
explicit expression is not found in the literature. The idea is to describe the scattering
of one cluster of objects by means of a single T-matrix, as if it were just one complex
objects. This method is specially useful for homogenization problems.

Let us expand the scattered fields given by (2.66) around a coordinate system
located at the origin. By means of the addition theorem we get

�sc =
∑

α

∑

q

[
BH
qα

∑

s

(GO
αO)Jqs Hs(kbr) + BK

qα

∑

s

(GO
αO)Iqs Ks(kbr)

]
eisθ ,

(2.78)
which can be expressed as (as long as r > Rα for all α)

�sc =
∑

s

Bs Hs(kbr)e
isθ (2.79)

with
Bs =

∑

α

∑

q

[
(GO

Oα)Jsq B
H
qα + (GO

Oα)Isq B
K
qα

]
(2.80)
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or in matrix notation
B0 = G0Bα (2.81)

given that
Bα = M−1TG0A0 (2.82)

we get
B0 = G0M−1TG0A0 (2.83)

which defines the effective T -matrix of the cluster as

T = G0M−1TG0 (2.84)

or, more specifically,

Tqs =
∑

α,β

∑

n,m

(GO
Oα)qn(M

−1
αβ )nmTβm(GO

Oβ)ms . (2.85)

Then, the cluster of scatterers behaves as a single object with a non-diagonal matrix
given by the above expression. The ideas of homogenization developed in [17–19]
can now be applied here, although approximated expressions have been found in
[11].

2.3.2 Scattering by a Cluster of Mass-Spring Resonators

A particular case is the scattering of flexural waves by a point-like scatterer, which
is typically modelled as a spring-mass attachment to the plate (see [9, 20] for further
details). The solution for the scattering of a point resonator can be obtained directly
from the wave equation,

(D∇4 − ω2ρh)W (r) = f δ(r). (2.86)

The force term is related with the movement of the mass-spring resonator as

f = −k0(W0 − W ), (2.87)

being W0 the displacement of the mass. Also, assuming time harmonic dependence
of W0, Newton’s law reads

− ω2m0W0 = f. (2.88)

From these two equations we can obtain, by solving forW0, the relationship between
f and W ,being
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f = ω2
0m0

1 − ω2
0/ω

2
W, (2.89)

where ω2
0 = k0/m0 is the resonant frequency of the resonator. Thus, the wave equa-

tion is

(D∇4 − ω2ρh)W (r) = ω2ω2
0m0

ω2 − ω2
0

W (r)δ(r). (2.90)

To solve the above equation we need Green’s function, defined as

(∇4 − k4b
)
G0(r) = δ(r), (2.91)

being

G0(r) = i

8k2b

[
H0(kbr) + 2i

π
K0(kbr)

]
(2.92)

and k4b = ω2ρh/D. Then we propose a self-consistent solution for W

W (r) = ψ0(r) + T0ψ0(0)G0(r), (2.93)

where the incident field ψ0 satisfies

(
D∇4 − k4b

)
ψ0(r) = 0. (2.94)

Inserting W into the wave equation we get

T0ψ0(0)δ(r) = ω2ω2
0

ω2 − ω2
0

m0

D
δ(r)(ψ0(0) + T0ψ0(0)G0(0)), (2.95)

from which we can obtain the T matrix of the resonator.
Once we know the response of one single scatterer, we can solve the multiple

scattering of waves by a cluster of N resonators located at positions Rα , with α =
1, 2, . . . N , as was shown in [9], thus we know that

ψ(r) = ψ0(r) +
∑

α

Tαψe(Rα)G0(r − Rα). (2.96)

The quantity Tα can be defined as the T matrix of a resonator, an it is given by

Tα = tα
1 − i tα/(8k2b)

(2.97)

with

tα = mRα

Db

ω2
Rαω2

ω2
Rα − ω2

. (2.98)
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The coefficients ψe(Rα) are obtained from the multiple scattering equation

ψe(Rα) =
∑

β

M−1
αβ ψ0(Rβ), (2.99)

being the matrix M given by

Mαβ = δαβ − (1 − δαβ)TβG0(Rα − Rβ), (2.100)

which solves the multiple scattering problem.
It is interesting to connect the above solution with the multiple scattering of

flexural waves by finite scatterers. For this purpose, we can compute the T matrix of
a cluster of point-like scatterers. First, the Green’s function must be expanded in a
set of Hankel functions and modified Bessel functions of second kind,

G0(r − Rα) =
∑

q

[
GH

αq Hq(kbr) + GK
αq Kq(kbr)

]
eiqθ , (2.101)

being

GH
αq = i

8k2b
Jq(kbRα)e−iqθα , (2.102)

GK
αq = − 1

4πk2b
Iq(kbRα)e−iqθα , (2.103)

which allow us to express the total field as

ψ(r) = ψ0(r) +
∑

q

[
BH
q Hq(kbr) + BK

q Kq(kbr)
]
eiqθ (2.104)

being

BH
q =

∑

α

GH
qαTαψe(Rα), (2.105)

BK
q =

∑

α

GK
qαTαψe(Rα). (2.106)

Given the solution for ψe, we find that

BH
q =

∑

αβ

GH
qαTαM

−1
αβ ψ0(Rβ), (2.107)

BK
q =

∑

αβ

GK
qαTαM

−1
αβ ψ0(Rβ). (2.108)

Also, we know that the incident field can be expanded in terms of Bessel and
modified Bessel functions of first kind,
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ψ0(Rα) =
∑

s

[
AJ
s Js(kbr) + AI

s Is(kbr)
]
eisθ , (2.109)

thus, we get

BH
q =

∑

s

AJ
s

∑

αβ

GH
qαTαM

−1
αβ Js(kbRβ)eisθβ +

∑

s

AI
s

∑

αβ

GH
qαTαM

−1
αβ Is(kbRβ)eisθβ (2.110)

and

BK
q =

∑

s

AJ
s

∑

αβ

GK
qαTαM

−1
αβ Js(kbRβ)eisθβ +

∑

s

AI
s

∑

αβ

GK
qαTαM

−1
αβ Is(kbRβ)eisθβ . (2.111)

Therefore the above equations define the (non-diagonal) T matrix elements as

T H J
qs = i

8k2b

∑

αβ

Jq(kbRα)e−iqθαTαM
−1
αβ Js(kbRβ)eisθβ , (2.112)

T H I
qs = i

8k2b

∑

αβ

Jq(kbRα)e−iqθαTαM
−1
αβ Is(kbRβ)eisθβ , (2.113)

T K J
qs = −1

4πk2b

∑

αβ

Iq(kbRα)e−iqθαTαM
−1
αβ Js(kbRβ)eisθβ , (2.114)

T K I
qs = −1

4πk2b

∑

αβ

Iq(kbRα)e−iqθαTαM
−1
αβ Is(kbRβ)eisθβ , (2.115)

so that the cluster of resonators can be described as a finite-sized non-circular object.

2.4 Numerical Examples

Although numerous multiple scattering simulations can be found in the bibliogra-
phy, we provide here some examples of simulations to illustrate the behaviour of
waves. We will focus the examples in the domain of homogenization, in which the
wavelength of the incident field is larger than the typical distance between scatterers
and the cluster behaves as an effective material.

Figure2.3a shows the interaction of a planewave arriving from the left with a large
slab of scatterers (in blue in the picture). As we see, there is a strong reflection at the
surface of the slab, but diffraction effects occurs only at the borders of it, therefore
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Fig. 2.3 Multiple scattering of waves by a a rectangular, b lenticular slabs. Due to the effective
medium approximation, the material behaves as a refractive material, as shown in the “lens” formed
in (b). c Gradient index lens. d Transparent gradient index lens designed with a mixture of soft and
hard scatterers
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the slab behaves as a homogeneous material. This can be seen from Fig. 2.3b, since
if we “cut” the slab with a lenticular shape refraction occurs and a focusing point
appears at the other side. We have built an acoustic lens [21].

The application of multiple scattering to the design of acoustic lenses is very
interesting and a great amount of work has been devoted to it. There is however a
disadvantage of this approach in terms of geometry. Since the slab is made of a small
number of scattering units, the lenticular shape of the slab will have some abrupt
surface effects: a continuous curved surface is not possible for these sizes. We can
however build a gradient index lens, which is a slab in which the refractive index
varies along the vertical direction. This can be done in Fig. 2.3c, where we show a
slab in which the radius of the cylinders varies as a function of the distance to the
center, following a well described lens to tailor the refractive index. The focusing
point is of a better quality here due to the high contrast that can be achieved with the
flat lens, and also the control of the focusing point is found to be in general easier
with this approach.

However, a major drawback in the design of refractive lenses for acoustics is that
the impedance mismatch is very high, so that a strong reflected field appears at the
left-hand side of the device.We can solve this problem bymatching the impedance of
the lens with that of the background, so that we simultaneously change the refractive
index but keep the impedance equal to that of the background. This can be done by
mixing soft and hard scatterers, as explained in [22], and the result can be seen in
Fig. 2.3d.

Finally, Fig. 2.4 shows a similar example but for flexural waves. In this case the
gradient in the properties of the scatterers is along the radial direction, so that we
have anomnidirectional refractive device calledLuneburg lens. Aplanewave arriving

Fig. 2.4 Luneburg lens for
flexural waves
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from any direction will be focused at the surface of the device (see [23–26] for more
devices and details). The refractive effect is more evident here, where we can see
clearly the bending of the wavefront.

The above examples illustrate clearly the nature of the multiple scattering of
waves: a large combination of scattering between objects gives a coherent field
which travels at single wavelength which is different than that of the wavelength
of the background, resulting in an effective medium which can be even position-
dependent, to give different types of refractive devices.
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Chapter 3
Sound Wave Propagation in Sonic
Crystals

From Long Wavelength Approximation to the
Diffraction Regime

Vicent Romero-García

Abstract Motivated by the analogous photonic crystals acting on electromagnetic
waves, periodic distribution of solid materials, i.e., phononic crystals, have been
exploited during the last decades to control elastic and acoustic waves. This Chapter
reviews phononic crystals in which the background medium is a fluid and the scatter-
ers are rigid solids, i.e., sonic crystals. Following a bottom up approach, this Chapter
presents the fundamentals of these periodic media for acoustic waves. First, by using
the transfer matrix method we show the physical origin of most interesting properties
of sonic crystals in one-dimensional structures. Then, we introduce the plane wave
expansion method to obtain the dispersion relation of sonic crystals and the multiple
scattering theory to deal with finite 2D distributions of N scatterers. Through an
intense bibliographic review, we will show the different ways to control acoustic
waves by using sonic crystals and locally resonant acoustic sonic materials, known
as acoustic metamaterials. Finally, we show a technological application of sonic
crystals for the broadband transmission loss of sound waves.

3.1 Introduction: Origins of Sonic Crystals

Wave propagation in periodic structured media has a long history [1]. The phe-
nomenon of dispersion in amediumwas described byLordKelvin by using a periodic
spring-mass model [2], as it was illustrated in Chap.1. Lord Rayleigh’s early work
studied the interaction of light with periodic layered media showing the presence of
bandgaps in the frequency spectrum [3]. Later, the Brillouin’s book [4] on periodic
structures, first published in 1946, gave a detailed discussion of the early development
in this field. In the late 80’s Yablonovitch [5] and John [6] simultaneously triggered
the primary emphasis in periodic systems due to their interesting propagation prop-
erties for the electromagnetic waves. Their proposal consisted of using a periodic
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Fig. 3.1 Example of simple sonic/phononic crystals. a 1D configuration: layered media with alter-
nating acoustic properties.b 2Dconfiguration: periodic distribution of cylindrical scatters embedded
in a fluid/solid matrix. c 3D configuration: period distribution of spherical scatters embedded in a
fluid/solid matrix. Corresponding unit cells also are shown

distribution of dielectric scatterers embedded in a host mediumwith different dielec-
tric properties. These periodic systems exhibit ranges of frequencies related to the
periodicity of the structure where there is no wave propagation. By analogy with
the electronic bandgap in semiconductor crystals, these ranges of frequencies were
called bandgaps (BG) and these periodic structures were called photonic crystals.
For an extended review of photonic band structures see reference [7].

At the beginning of the late 90’s, an increasing interest in the comparable process
of acoustic wave propagation in periodic arrays appeared. Motivated by the results
of the photonic crystals, several theoretical works started the analysis of the periodic
arrays made of isotropic solids embedded in an elastic background which was also
isotropic [8–13]. By analogy with the photonic case, these periodic arrangements
presentedBG, defined here as frequency rangeswhere vibrations, sound and phonons
were forbidden. Analogously, theses systems were called phononic crystals (PC).

Depending on the distribution of scatterers, one can obtain one-dimensional (1D),
as shown in Fig. 3.1a, two-dimensional (2D), as shown in Fig. 3.1b, or three-
dimensional (3D) PC, as shown in Fig. 3.1c. In each of these PC one can observe
different combinations of transverse, longitudinal or mixed waves [14]. However,
a drastic simplification arises in the case of fluids, which permits only longitudinal
waves. It is said that if one of the elastic materials in the PC is a fluid, then PCs are
called sonic crystals (SCs). Several studies discuss the similarities and differences
between these periodic systems [13, 15].

The measurements of the sound attenuation by a sculpture, by Eusebio Sempere,
exhibited at the Juan March Foundation in Madrid, constituted the first experimen-
tal evidence of the presence of BG in a SC [16]. The work of Martínez-Sala et al.
[16] experimentally showed that the distribution of cylinder rods with a strong peri-
odic modulation (2D), inhibited the sound transmission for certain frequency ranges
related to this modulation, just as photonic crystals do with light. Immediate theo-
retical predictions [17–19] and experimental results [20] were motivated by these
experimental results in order to explain the propagation properties of this sculpture
that could filter noise.
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Since these acoustical properties were measured in that minimalist sculpture, a
large body of research, both experimental and theoretical, emphasized the existence
of complete elastic/acousticBG, opening possibilities to interesting applications such
as elastic/acoustic filters [21–23] or noise control [24], as well as for the study of
fundamental physics phenomena such as localization of waves [25–27]. The study
of acoustic wave propagation in periodic binary composites shows that BG can exist
under specific conditions concerned mainly the density and velocity contrast of the
components of the composite, the volume fraction of one of the two components,
the lattice structures and the topology [15]. The presence of BG in SC is due to
Bragg’s scattering, which in these systems is produced by an interplay between the
sound speed and density of materials forming the composite as well as their spatial
distribution. The emphasis in the acoustical properties of SC for frequencies high
enough to distinguish the inner structure of the array marks the initial steps in the
research on SC. A great research interest in the existence of spectral gaps in the PC
made of several materials, shapes and distribution of scatterers were witnessed at the
end of the 90s.

In this Chapter, using an extended review of the state of the art in the control of
sound by SCs,we showboth the fundamentals aswell as the physical interpretation of
the most relevant properties of SCs. In Sect. 3.2 the physical origin of the dispersion
relation for sound waves in periodic structures is described by using the transfer
matrix method applied to an academic case of a 1D periodic multilayer system.
Sections3.3 and 3.4 briefly demonstrate the modelling of the dispersion relation by
using the plane wave expansion and the multiple scattering theory. We will focus on
the particular features of each method to provide a deep understanding of each tool.
Section3.5 contains a bibliographic review of the main results obtained during the
last years. Finally, Sect. 3.6 focuses on technological application of SCs as acoustic
barriers.

3.2 The Physical Origin of Bandgaps

One of the most interesting properties of the periodic structures is the presence of
bandgaps, i.e. ranges of frequencies inwhichwaves cannot propagate. In this Section,
the physical origin of the bandgaps for sound waves is described by using the transfer
matrix method applied to an academic case. The analysed system consists of a 1D
periodic array which unit cell is made of two fluid layers, A and B as shown in
Fig. 3.2a. We note here that the general principles discussed in this Section will
apply also to more complex periodic systems made of two- and three-dimensional
structures.
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3.2.1 Transfer Matrix Method

The transfer matrix between the two faces of the homogeneous and isotropic 1D
material, extending from x = 0 to x = l, is used to relate the sound pressure, p, and
normal acoustic particle velocity, v, at the two faces

[
p
v

]
x=0

=
[

cos(kl) ı Z sin(kl)
ı sin(kl)/Z cos(kl)

] [
p
v

]
x=l

, (3.1)

where the wave vector of the material is defined as k = ω/c = ω
√

ρ/K , ω is the
angular frequency, c is the sound speed, ρ is the density and K is the bulk modulus,
the acoustic impedance is defined as Z = √

ρK , and ı = √−1 is the imaginary
unity. A Fourier time convention eıωt is assumed.

The transfer matrix, T, of the unit cell made of two sublayers A and B, as shown
in Fig. 3.2a, reads as

T = TATB, (3.2)

where

TA =
[

cos(kAlA) ı Z A sin(kAlA)
ı sin(kAlA)/ZA cos(kAlA)

]
, (3.3)

TB =
[

cos(kBlB) ı ZB sin(kBlB)

ı sin(kBlB)/ZB cos(kBlB)

]
. (3.4)

Considering the periodic conditions at the boundaries of the unit cell, the Bloch
parameters can then be obtained as follows,

q = 1

a
cos−1

(
T11 + T22

2

)
= Tr (T) , (3.5)

Zq =
√
T12
T21

, (3.6)

where q is the wavenumber and Zq is the impedance, with a = lA + lB being the
periodicity of the system.

3.2.2 Discussion

In order to start the discussion we consider a plane wave eıωt−ıkx propagating in
a 1D medium, A, in which a fictitious periodicity with lattice constant a, defined
as the distance between the fictitious scatterers in the periodic medium is imposed.
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Fig. 3.2 Description of the dispersion relation in a 1D periodic system. a Scheme of the unit cell.
b Dispersion relation in the extended Brillouin zone of a homogeneous material with artificial
1D periodicity with lattice constant a. c1 and d1 represent the complex dispersion relation of an
homogeneous material, i.e., f f = 0, of a 1D periodic structure with f f = 1/10, c2 and d2, and of
a 1D periodic structure with f f = 1/5, c3 and d3. In all cases, ρB = 3ρA and cB = 3cA. e and f
represent the pressure distribution in the unit cell for the lower and upper edges of the first bandgap
for the case f f = 1/10 respectively

Therefore, the acoustic pressure should also follow this artificial periodicity, i.e.,
p(x + na) = p(x). This condition implies that the wavenumber in the medium
should also be periodic, following the relation qn = q + 2πn/awith n an integer. For
free propagation in a fluid the dispersion relation is q = ω/c. Figure 3.2b represents
the dispersion relation in a homogeneous fluid mediumwith the artificial periodicity,
therefore considering the n dispersion relations. In this case, qn is periodic and the
dispersion relation folds back into the well known Brillouin zone, white region in
Fig. 3.2b, when it reaches an edge (qa = π ).

We introduce now a second material in the unit cell, B. In this case, we consider
that ρb = 3ρA and cB = 2cA. We define here the filling fraction f f , as the volume
occupied by the scatterer with respect to the total volume of the unit cell, in this case,
f f = lB/a. We start by a low filling fraction medium, f f = 1/10. Figures 3.2c1–
c3 and Figs. 3.2d1–d3 represent the complex dispersion relation obtained form the
transfermatrixmethod, (3.5).When small scatters are introduced, i.e., Figs. 3.2c2, d2
for f f = 1/10, the dispersion relations look like those for a homogeneous medium,
however, presenting bands of frequencies where the wave number is complex, i.e.,
regions inwhichwaves are evanescent. These bands correspond to the sonic bandgaps
of the structure and are characterized by a strong dispersion around them. Moreover,



70 V. Romero-García

in the bandgap, the wave amplitude decays exponentially through the crystal, i.e., the
modes are evanescent. This results from the fact that the modes have a complex wave
vector of the form k = π/a + iκ . Figure 3.2c3, d3, show the complex dispersion
relation when the filling fraction increases to f f = 1/5. We notice that the width of
the bandgaps increases as well as the imaginary part of the wavenumber.

In order to understand the physical origin of the sonic bandgap, we consider the
pressure profiles in the band edges of the first bandgap, i.e., the eigenvectors of the
eigenvalue problem for the case qa = π . For this case, the modes have a wavelength
of 2a, twice the lattice constant. There are two ways to center a mode of this type in
the unit cell without violating the symmetry of the unit cell: positioning the nodes
in each low impedance layer, or in each high impedance layer. In the case of the
homogeneous material, at point qa = π , there is double degeneracy as shown in
Fig. 3.2b. Once the second material is periodically placed, then this degeneracy
is broken and the two modes appear as described before. Figure 3.2e, f show the
pressure profile for the case f f = 1/10. The two different modes with nodes in the
two different regions are shown.

At this stage, it is worth noting that the low frequency modes concentrate their
energy in the high density regions, and the high frequency modes have a larger
fraction of the energy in the low density regions [7]. Figures 3.2e, f show the node
of the pressure profile in the high and, respectively, low density region. With this in
mind, it is understandable why there is a frequency difference between the two cases
and why the degeneracy is broken, i.e., why the bandgap is opened.

In the perturbative case of weak filling fraction and low contrast of impedances we
can derive a simple formula from (3.5), for the size of the bandgap. We consider that
the twomaterials have the same sound speed and densities differ as ρB = ρA + �ρA.
If either the density contrast is weak (�ρA/ρA � 1) or the filling fraction lB/a is
small, then the bandwidth of the bandgap, �ω reads as

�ω

ωm
≈ �ρA

ρA

sin (πlB/a)

π
, (3.7)

where ωm is the frequency of the middle of the gap.
As we have seen from the solutions given by the transfer matrix method, no purely

real wave vector exists for any mode in the bandgap. The imaginary component of
the wave vector causes the decay on a length scale of 1/κ . But, what is the origin of
this imaginary part? This can be understood by examining the bands in the immediate
vicinity of the gap.At this stagewemust have inmind that the time reversal symmetry
should be preserved, i.e., the band structure should be even symmetric with respect
to the limits of the Brillouin zone. Therefore, if we expand the upper band edge, ω2

in powers of q around the edge q = π/a, the expansion cannot contain odd powers
of q, and thus

�ω = ω2 (q) − ω2

(π

a

)
∝

(
q − π

a

)2 = (�q)2. (3.8)
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For frequencies slightly higher than the topof the gap,�ω > 0, then�q is purely real,
and thewavepropagates in the secondpropagating band.However, for�ω < 0,�q is
purely imaginary, and the wave is within the bandgap. The states decay exponentially
since �q = ıκ . As we traverse the gap, the decay constant κ grows as the frequency
reaches the gaps centre, then disappears again at the lower gap edge. This behaviour
corresponds to the one shown in Fig. 3.2d. In this sense, larger gaps usually result in
a larger κ at the middle of the bandgap, and thus less penetration of the wave into the
crystal. It is worth noting here, that there is no physical way to excite the evanescent
wave within an idealized crystal of infinite extent. However, a defect or an edge state
in an otherwise perfect crystal can terminate this exponential decrease and thereby
sustain an evanescent mode.

3.3 Dispersion Relation of Sonic Crystals

The periodicity of the system and the Bloch’s theorem are exploited in this Section
to solve the wave equation, obtaining a simple eigenvalue problem relating the wave
vector and the frequency of the incident wave, ω(k) [12, 28]. This procedure is
known as the Plane Wave Expansion (PWE) method. This model only allows the
analysis of the propagative part of the dispersion relation, i.e. the real wave numbers
of the dispersion relation. To obtain the complex wave numbers, that is to obtain
the attenuation properties of the dispersion relation, the equations can be modified
to solve the k(ω) problem instead of the ω(k) one. In this case obtaining both the
real and the imaginary parts of the wave vector, k. This model is known as Extended
Plane Wave Expansion (EPWE) [29–31]. In this Section we show the details of each
expansion to obtain the band structures of a sonic crystal. Particular examples for
2D cases are shown.

3.3.1 Plane Wave Expansion

Propagation of sound is described by the equation

1

ρc20

∂2 p

∂t2
= ∇

(
1

ρ
∇ p

)
, (3.9)

where c0 is the sound speed, ρ is the density of the medium and p is the pressure.
In this Section a system made of a periodic distribution of an isotropic solid A,
embedded in an acoustic isotropic background B is considered. Due to periodicity,
it is possible to expand the physical properties of the medium in Fourier series,
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σ = 1

ρ(r)
=

∑
G

σk(G)eıGr, (3.10)

η = 1

K (r)
=

∑
G

ηk(G)eıGr, (3.11)

where K (r) = ρ(r)c(r)2 is the spatially varying bulk modulus. G = nibi (with ni
an integer) is a vector in the reciprocal space made of a linear combination of the
primitive reciprocal lattice vectors defined as follows: if the primitive lattice vectors
are ai (with i = 1, 2, 3), the primitive lattice vectors are then

bi = 2π
εi jka j × ak
a1 · (a2 × a3)

, (3.12)

where εi jk is the three-dimensional Levi-Civita completely anti-symmetric symbol.
For the pressure p we use the Bloch theorem and harmonic temporal dependence,

p(r, t) = eı(kr−ωt)
∑
G

pk(G)eıGr. (3.13)

Then, it is easy to show that [12]

β(G) =
{

βA f f + βB(1 − f f ) if G = 0,
(βA − βB) F(G) if G �= 0,

(3.14)

where β = (σ, η), and F(G) is the structure factor, described in the Section 3.3.3.
Using Equations (3.10, 3.11), (3.13) and (3.9) we obtain [12]

∑
G′

(
(k + G)σk(G − G′)(k + G′) − ω2ηk(G − G′)

)
pk(G′) = 0. (3.15)

For G taking all the possible values, (3.15) constitutes a set of linear, homogeneous
equations for the eigenvectors pk(G) and the eigenfrequencies ω(k). We obtain the
band structures letting k scan the area of the irreducible region of the first Brillouin
zone.

Equation (3.15) can be expressed by the following matrix formulation

3∑
i=1

ΓiΣΓi P = ω2ΩP, (3.16)

where i = 1, 2, 3. Considering

(Γi )mn = δmn(ki + Gm
i ), (3.17)
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the matrices Γi , Σ and Ω are defined as

Γi =

⎡
⎢⎢⎢⎣
ki + Gi 0 . . . 0

0 ki + Gi . . . 0
...

...
. . .

...

0 . . . . . . ki + Gi

⎤
⎥⎥⎥⎦ , (3.18)

Σ =
⎡
⎢⎣

σ(G1 − G1) . . . σ (G1 − GN×N )
...

. . .
...

σ (GN×N − G1) . . . σ (GN×N − GN×N )

⎤
⎥⎦ , (3.19)

Ω =
⎡
⎢⎣

η(G1 − G1) . . . η(G1 − GN×N )
...

. . .
...

η(GN×N − G1) . . . η(GN×N − GN×N )

⎤
⎥⎦ , (3.20)

P =
⎡
⎢⎣

P(G1)
...

P(GN×N )

⎤
⎥⎦ . (3.21)

By truncating the system of equations with N components, we can solve the system
given in (3.16) for each Bloch vector in the irreducible area of the first Brillouin
zone.

3.3.2 Extended Plane Wave Expansion

From (3.16) we define the following vector, [29, 30]

Φi = ΣΓi P. (3.22)

With this definition it is possible to reformulate the eigenvalue problem (3.16) as the
system of equations

Φi = ΣΓi P, (3.23)

ω2ΩP =
3∑

i=1

ΓiΦi . (3.24)

In order to obtain an eigenvalue problem for k(ω), we write k = kα, where α is a
unit vector. Then (3.18) can be written as

Γi = Γ 0
i + kαi I, (3.25)

where I is the identity matrix, and
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Γ 0
i =

⎡
⎢⎢⎢⎣
Gi 0 . . . 0
0 Gi . . . 0
...

...
. . .

...

0 . . . . . . Gi

⎤
⎥⎥⎥⎦ , αi =

⎡
⎢⎢⎢⎣

αi 0 . . . 0
0 αi . . . 0
...

...
. . .

...

0 . . . . . . αi

⎤
⎥⎥⎥⎦ . (3.26)

Then, (3.16) can be written as

⎡
⎢⎢⎣

ω2Ω −
3∑

i=1
Γ 0
i ΣΓ 0

i 0

−
3∑

i=1
ΣΓ 0

i I

⎤
⎥⎥⎦

[
P
Φ ′

]
= k

⎡
⎢⎢⎣

3∑
i=1

Γ 0
i Σαi I

3∑
i=1

Σαi 0

⎤
⎥⎥⎦

[
P
Φ ′

]
, (3.27)

where Φ ′ = ∑3
i=1 αiΦi .

Equation (3.27) represents a generalized eigenvalue problem with eigenvalues
k, possibly complex numbers, for each frequency. Complex band structures on the
incidence directionα can be obtained by solving the eigenvalue equation for a discrete
number of frequencies and then sorting them by looking for the continuity of k. In
contrast with the ω(k) method, in this formulation the periodicity is not relevant and
k(ω) does not belong to the first Brillouin zone, therefore, in addition to the solutions
in the irreducible Brillouin zone, other solutions can be obtained out of it.

Figure 3.3 shows the results obtained by using both the PWE and the EPWE for
a 2D SC made of rigid cylinders embedded in air arranged in a square array with
lattice constant a and filling fraction f f = 50%. (a) and (b) show the band structures
for the ΓX and ΓM directions respectively. The left panel in both Fig. 3.3a, b shows
the real part of the complex dispersion relation, obtained by using both PWE and
EPWE. The right panel shows the imaginary part of the dispersion relation obtained
by using the EPWE. We observe that modes inside the BG present complex wave
vectors. In Fig. 3.3 one can observe that the imaginary part of the wave number for
the frequencies inside the BG grows with values of frequency closer to the centre
of the BG and disappears at the edges of the BG in the ΓX as well as in the ΓM
directions, i.e., the rate of decay is larger for frequencies closer to the centre of the
BG, as it was predicted in Sec. 3.2. We notice here that imaginary part of the wave
vector connects propagating bands conserving the overall number of modes for a
given frequency.

3.3.3 Structure Factor

For some particular scatterers, the structure factor can be calculated analytically.
For example, for cylindrical scatterers with circular cross-sections of radius r , the
structure factor is [12]
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Fig. 3.3 Band Structure for a SC made of rigid cylinders arranged in a square array with lattice
constant a and filling fraction f f = 50%. a Left panel: Band structures calculated using PWE.
Right panel: Complex band structures for the ΓX direction calculated using EPWE. b Left panel:
Complex band structures for theΓMdirection calculated using EPWE.Right panel: Band structures
calculated using PWE

F(G) = 1

Auc

∫
Acyl

e−ıGrdr = 2 f f

Gr
J1(Gr), (3.28)

where Auc is the area of the unit cell, Acyl is the area of the considered cylinder and
J1 is the Bessel function of the first kind of order 1.

For example, for the case of square-rod scatterers of side l and angle of rotation
θ , the structure factor is [32, 33]

F(G, θ) = 1

Auc

∫
Acyl

e−ıGrdr = f sinc

(Gx l

2

)
sinc

(Gyl

2

)
, (3.29)

where,

[Gx

Gy

]
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

] [
Gx

Gy

]
. (3.30)

Other analytical expressions for the structure factor can be found in the literature
[34]. In the cases where the geometry of the scatterer is too complicated, numerical
tools can be used to calculate it [35].
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3.3.4 Supercell Approximation

One particularly interesting aspect of SC is the possibility of creating point defects
to confine acoustic waves by exciting localized modes [36, 37]. Because of the
locally breaking periodicity of the structure, defect modes can be created within
the BG. To analyse the propagation of waves inside periodic structures with defects,
traditionally the PWEwith the supercell approximation is used. The supercellmethod
requires as low an interaction as possible between defects. This results in a periodic
arrangement of supercells that contain the point defect. With this method we can
explain the physics of wave guides [26–28] or wave traps [38, 39].

Consider a SC with primitive lattice vectors ai (i = 1, 2, 3). The supercell is a
cluster of n1 × n2 × n3 scatterers periodically positioned in space. Then, the prim-
itive lattice vectors in the supercell approximation are a′

i = niai , and the complete
set of lattices in the supercell approximation is {R′|R′ = lia′

i }, where ni and li are
integers.

The primitive reciprocal vectors are then

b′
i = 2π

εi jka′
j × a′

k

a′
1 · (a′

2 × a′
3)

, (3.31)

where εi jk is the three-dimensional Levi-Civita completely anti-symmetric symbol.
The complete set of reciprocal lattice vectors in the supercell is {G|Gi = Nib′

i }where
Ni are integers.

If the supercell contains Np point defects at the sites labelled by (ls,ms) in the
periodic system, with s = 1, ..., Np , then the Fourier coefficients of the expansion
of the physical parameters involved in the problem satisfy the following equation

β( 	G) =
{

βA(N − Np) f f + βB(1 − (N − Np) f f ) if 	G = −→
0 ,

(βA − βB) F( 	G) if 	G �= −→
0 .

(3.32)

The structure factor of such a supercell with Np point defects is

F(G) =
⎡
⎣ (n1−1)/2∑

i=−(n1−1)/2

(n2−1)/2∑
j=−(n2−1)/2

eı(ia|G1|+ ja|G2|) + ...

... −
Np∑
s=1

eı(lsa|G1|+msa|G2|)
⎤
⎦ P(G),

(3.33)

where P(G) is the structure factor of one of the elements of the supercell as described
previously.
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3.4 Multiple Scattering Theory

Multiple Scattering Theory (MST) has a long history. In 1913, Závis̃ka [40] described
the method for the scattering of finite arrays in 2D acoustic fields, that was applied
in 1914 to the case of normal incidence on an infinite row of cylinders by von
Ignatowsky [41]. After that, extensions of the work to the oblique incidence have
been done [42, 43].

Multiple scattering can be understood as an interaction of waves with two or more
obstacles [44, 45]. The classical multiple scattering problem of sound waves by rigid
cylinders is presented briefly in this Section. MST solves the problem considering
that the field scattered from one obstacle induces further scattered fields from all the
other obstacles, which induces further scatterers fields from all the other obstacles,
and so on. This characterizes the MST as a self-consistent method that is valid for
situations where the scatterers have been placed either randomly or periodically.

In this Section we will show the formalism of MST for the case of cylindrical
waves radiating N cylindrical scatterers, then restricting our study to the 2D case.
More details about 3D multiple scattering, or other kind of radiating waves, can be
found in the literature [46, 47].

3.4.1 Cylindrical Waves

In this case, an acoustic source transmitting monochromatic waves is placed at point
	rs , some distance from the system of scatterers. For simplicity without compromising
generality, the acoustic source can be approximated as a line source located at origin,
i.e., 	rs = 	0. The Helmholtz equation with such a source is

( 	∇2 + k2
)
p(	r) = −4πδ2(	r), (3.34)

where k = ω/c and δ2 is the 2-dimensional delta-function. In cylindrical coordinates,
the solution is

p(	r) = ıπH0(kr), (3.35)

where H0 is the zero−th order Hankel function of the first kind. The solution repre-
sents a line source located at origin.

We consider N straight cylinders located at 	ri = (ri , θi ) of radius ai with
i = 1, 2, . . . , N to form either a regular lattice or a random array perpendicular
to the x − y plane. The cylinders are parallel to the z−axis, then since the boundary
conditions and the geometry do not change with z, the problem can be reduced to
two uncoupled problems for the scalar Helmholtz equation. The final wave reaches
a receiver located at 	rr and it is formed by the sum of the direct wave from the source
and the scattered waves from all the cylinders. The problem consist of solving the
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previous self-consistent method, satisfying some boundary conditions on the sur-
faces of the cylinders and a radiation condition at infinity. Such a scattering problem
can be exactly formulated in cylindrical coordinates.

Solutions for the scattering of waves by cylindrical objects can be expressed in
terms of two important functions: Hn(kr)einθ and Jn(kr)einθ , Hankel and Bessel
function of n-order and first kind respectively. Both are solutions of the Helmholtz
equation for the planar problem. The first one satisfies the radiation condition at
infinity and is singular at the origin. The second one is regular at the origin. Thus the
first one could be used to represent outgoing cylindrical waves whereas the second
one could express regular cylindrical waves.

Considering the presence of the N cylinders placed at 	ri , the scattered wave from
the j-th cylinder can be expressed as

p j
sc =

∞∑
n=−∞

ıπ A jnHn(kr j )e
ınθ j , (3.36)

where Hn is the n-th order Hankel function of the first kind, A jn are the coefficients
to be determined, and θ j is the azimuthal angle of the vector r j .

In order to separate the governing equations into modes, we can express the total
incident wave as:

piinc =
∞∑

n=−∞
Bin Jn(kri )e

ınθi . (3.37)

For determining the matrix relation (T-matrix) between Bin and A jn , we need to
write down the relation between p j

sc and pinc, for each j �= i , in the coordinate system
centered at the i-th scatterer.We use theGraf’s addition theorem for Hm(kr)eımθ [48],
for representing the p j

sc in the form

P j
sc =

∞∑
n=−∞

C jin Jn(kri )e
ınθi , (3.38)

where

C jin =
∞∑

l=−∞
ıπ A jl Hl−n(kri j )e

ı(l−n)θi j . (3.39)

On the other hand, using again the Graf’s theorem, the incident pressure can be
expressed as,

Pinc =
∞∑

l=−∞
Sil Jl(kri )e

ılθi , (3.40)
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where

Sil = ıπH−l(kri )e
−ilθi . (3.41)

At this stage, the Sil is known, but both Bin and A jl are unknown. Boundary
conditionswill provide another equation relating themwith eachother. In the previous
Section we used the Neumann’s boundary conditions as we were interested in rigid
scatterers. Now, in this Section we will consider the general boundary condition,
this means the continuity of both the pressure and the normal velocity across the
interface between a scatterer and the surrounding medium (later, in Sect. 3.4.2, we
will describe different boundary conditions).

Thus, the boundary conditions for the j-th cylinder are [46]

pext
∣∣∣
∂Ω j

= pint
∣∣∣
∂Ω j

, (3.42)

1

ρ

∂pext
∂n

∣∣∣∣
∂Ω j

= 1

ρ j

∂pint
∂n

∣∣∣∣
∂Ω j

, (3.43)

where ∂Ω j is the boundary of the j-th scatterer, ρ is the density of the surrounding
medium and ρ j is the density of the j-th scatterer.

In order to apply the previous boundary conditions, we represent the pressure
inside the i-th cylinder in the form of the Fourier series as follows

Pi
int =

∞∑
n=−∞

Din Jn(k1i ri )e
ınθi , (3.44)

where k1i is the wave number inside the i-th cylinder. Using the boundary conditions
and the expressions for the incident, scattered and interior wave we can obtain the
following relation,

Bin = ıπΓin Ain, (3.45)

where

Γin = Hn(kai )J ′
n(kai/hi ) − gihi H ′

n(kai )Jn(kai/h)

gihi J ′
n(kai )Jn(kai/hi ) − Jn(kai )J ′

n(kai/hi )
. (3.46)

Here, gi = ρi
1/ρ is the density ratio, hi = k/ki1 = ci1/c0 is the sound speed ratio for

the i-th cylinder, and the primes indicate the derivatives of the Bessel and Hankel
functions. Then, with the previous expression, it is possible to relate the coefficients
Bin to the Ain . To do this, it is necessary to define the following values
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Tin =Sin/ ıπ, (3.47)

Gi jln =Hl−n(kri j )e
ı(l−n)θri j ; i �= j . (3.48)

Then,

Γin Ain −
N∑

j=1, j �=i

∞∑
l=−∞

Gi jln A jl = Tin, (3.49)

is an infinite system of equations that can be used to determine Ain if it is properly
truncated. Then, if the indexes n and l take values from −M to M , both systems are
reduced to 2M + 1 equations that can be expressed in matrix formulation as follows:

(Γ − G)A = T, (3.50)

then the vector of coefficients A can be obtained as

A = (Γ − G)−1T, (3.51)

where the index −1 indicates the inverse of the matrix. The matrices Γ , G and the
vectors A and T are represented by:

Γ =

⎡
⎢⎢⎢⎣

Γ1 0 . . . 0
0 Γ2 . . . 0
...

...
. . .

...

0 . . . . . . ΓN

⎤
⎥⎥⎥⎦ , and Γi =

⎡
⎢⎢⎢⎣

Γi,−M 0 . . . 0
0 Γi,−M+1 . . . 0
...

...
. . .

...

0 . . . . . . Γi,M

⎤
⎥⎥⎥⎦ , (3.52)

where N is the number of cylinders of the structure,

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 G1,2
−M,−M . . . G1,2

M,−M . . . . . . G1,N
−M,−M . . . G1,N

M,−M
...

. . . . . .
...

. . .
... . . . . . . G1,N

−M,−M

. . . G1,N
M,−M

0 . . . 0 G1,2
−M,M . . . G1,2

M,M . . . . . . G1,N
−M,M . . . G1,N

M,M

G2,1
−M,−M . . . G2,1

M,−M 0 . . . 0 . . . . . . G2,N
−M,−M . . . G2,N

M,−M
...

. . .
...

...
. . . . . . . . . . . . G2,N

−M,−M

. . . G2,N
M,−M

G2,1
−M,M . . . G2,1

M,M 0 . . . 0 . . . . . . G2,N
−M,M . . . G2,N

M,M
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

GN ,1
−M,−M . . . GN ,1

M,−M . . . . . . . . . . . . . . . 0 . . . 0
...

. . .
... . . . . . . . . . . . . . . .

...
. . .

...

GN ,1
−M,M . . . GN ,1

M,M . . . . . . . . . . . . . . . 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,



3 Sound Wave Propagation in Sonic Crystals 81

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,−M
...

A1,M

A2,−M
...

A2,M
...
...

AN ,−M
...

AN ,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1,−M
...

T1,M
T2,−M

...

T2,M
...
...

TN ,−M
...

TN ,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.53)

where the values of the components of the previous matrices are given by Eqs. (3.46–
3.48). We note that the size of the matrices Γ and G is N (2M + 1) × N (2M + 1)
while the vectors T and A present a length equal to N (2M + 1).Agood estimation for
this truncation is l = n = M = floor

(
kRmax + 4.05(kRmax)

1/3
) + 10, with Rmax =

max(ai ). Some works also propose the limit l = M = n = floor (2.5kRmax).
Once the infinite system of equations to obtain the coefficients Ain is solved, the

total wave at any point is

p(	r) = ıπH0(kr) +
N∑
i=1

∞∑
n=−∞

ıπ AinHn(kri )e
ınθi . (3.54)

We note that the above derivation is valid for any finite configuration of the cylinders.
Figure 3.4a, b show the pressure distribution, |p|, produced by the acoustic scat-

tering by a square array of cylinders for the two main directions of symmetry (0
and 45 degrees), with size 5a × 5a and filling fraction f f = 50%. Figure 3.4c also
represents the acoustic spectra for the two main directions of symmetry measured
at point (x, y) = (11a, 0a) from the source location. We can observe the ranges of
inhibition in both directions (pseudogaps shown in Fig. 3.3). The transmission out-
side these ranges can vary significantly as the number of scatterers or the shape of the
array changes. The oscillatory behaviour for frequencies below ka = 3 is caused by
external shape of the crystal. They may appear or not, depending on the arrangement
of the array. But the inhibition behaviour remains quantitatively the same for both
directions. Such a stable inhibition range is a clear indicator for the stop band.
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Fig. 3.4 Pressure maps and spectra calculated using MST for a cylindrical wave impinging a
5a × 5a square array of rigid cylinders with a filling fraction f f = 50%. a map for a frequency
ka = π inside the pseudogap atΓXdirection. bmap for a frequency ka = 4 inside the pseudogap at
ΓM direction. c Blue line (Red line) represents the spectrum for the ΓX (ΓM) direction measured
at the point (x/a, y/a) = (11, 0) from the source location

3.4.2 Boundary Conditions

3.4.2.1 Boundary Conditions for Rigid Scatterers

Equation (3.46) represents the results for the continuity of pressure and velocity in
the boundaries of the scatterer. Considering the limiting case, gi → ∞ and hi → ∞,
that means, considering large contrast between both the density and the sound speed
of the host and the scatterer media, we can obtain the boundary condition for the
case of rigid scatterers [46, 49]:

Bin = ıπΓin Ain, (3.55)
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where

Γin = −H ′
n(kai )

J ′
n(kai )

. (3.56)

3.4.2.2 Viscous and Thermal Layers

The viscous and thermal dissipation phenomena occurring in the vicinity of the
cylinders can be taken into account by introducing an equivalent surface admittance
[50, 51]. This can be done by following the approach proposed by Tournat et al.
[52] in the framework of the study of random cylinder networks. The expression of
the admittance β in the case of a plane wave incident on a plane surface is, in the
Cartesian coordinate system

β(δv, δh, ω) = 1 − ı

2
k

[(
1 − k2N

k2

)
δv + (γ − 1)δh

]
. (3.57)

The viscous and the thermal boundary layers, defined respectively as

δv =
√
2νv

ω
and δh =

√
2νh
ω

, (3.58)

depend on the coefficients of the cinematic viscosity νv and thermal diffusivity νhof
the fluid surrounding the cylinders, as well as on the pulsation ω. The wave number
kN represents the normal component of the wave vector k. A two-dimensional plane
wave incident on a cylindrical scatterer can be represented as a series involvingBessel
functions in polar coordinates (r ,θ ), as it was previously done. In this case, for each
cylindrical component n of the pressure field pi,n , the corresponding equivalent
surface admittance is written as

βn(δv, δh, ω) = 1 − ı

2
k

[(
1 − n2

k2ai

)
δv + (γ − 1)δh

]
, (3.59)

where ai is the radius of the i-th cylinder. Modifying the boundary condition at the
boundary of the cylinders by a new condition involving the cylindrical components
βn of the equivalent surface admittance, we obtain

− ıβnkpin = ∂pin
∂r

, (3.60)

and, as a consequence, we can obtain the relation

Γin = −H ′
n(kai ) + ıβnHn(kai )

J ′
n(kai ) + ıβn Jn(kai )

(3.61)

between the incident and the scattered wave amplitudes.
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3.4.2.3 Porous or Micro-Perforated Layers

Some times it is interesting to analyse the case of a rigid core covered with absorbent
material, as it has been done in several works in the literature [53–56]. A MST
procedure can be developed to study the scattering problem of scalar waves by
periodic arrays of absorbent scatterers, if the boundary conditions are well defined.
In this case, the scatterer presents two different kinds of boundary conditions. The
core surface could be treated as rigid, i.e., a Neumann Boundary condition in applied.
However, on the absorbing material-host medium interface, one should consider the
continuity of the pressure and the velocity. Thus, the boundary conditions on the
rigid wall, Γ , inside i-th scatterer is:

∂piint
∂n

∣∣∣∣
Γi

= 0, (3.62)

and the boundary conditions in the exterior interface of the scatterer are

piext

∣∣∣
∂Ω j

= piint

∣∣∣
∂Ω j

, (3.63)

Zc(ω)kc(ω)

k0

∂pext
∂n

∣∣∣∣
∂Ωi

= ∂pint
∂n

∣∣∣∣
∂Ω j

, (3.64)

where ∂Ω j is the boundary of the i-th scatterer, k0 is the wave number in the host
medium, kc(ω) and Zc(ω) are the propagation constant and the impedance of the
absorbing material of the scatterer i .

The wave on the interior of the absorbing material of i-th cylinder is

piint(	r , 	ri ) =
∞∑

n=−∞
Ai
n

(
Xi
nH

(1)
n

[
kc(ω)|	r − 	ri |

] + · · ·

+ Y i
n Jn

[
kc(ω)|	r − 	ri |

] )
eınφ	r− 	ri . (3.65)

By applying the boundary condition given by (3.62), we can obtain a simple relation
between coefficients Xi

n and Y i
n :

Y i
n =Xi

nT
i
n , (3.66)

T i
n = − H ′

n(kc(ω)r iin)

J ′
n(kc(ω)r iin)

. (3.67)

where the prime superscript represents the derivative with respect to the normal of
the surface and r iin represents the radius of the rigid core of the i-th cylinder.

Then, the exterior wave outside the i-th cylinder is written as
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[
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+
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ıπ Ai

nH
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n

[
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]
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Therefore, applying the boundary conditions at the ∂Ω interfaces, we get:

Bi
n = ıπ Zi

n A
i
n, (3.69)

where,

Zi
n = − f (ω)H ′

n(kr
i
out) − Hn(kr iout)

f (ω)J ′
n(kr

i
out) − Jn(kr iout)

, (3.70)

f (ω) = Z(ω)k(ω)

k

Hnkc(ωr iout) + Tn Jn(kc(ω)r iout)

H ′
nkc(ωr

i
out) + T i

n J
′
n(kc(ω)r iout)

, (3.71)

where r iout represents the radius of the outer porous core of the i-th cylinder. It
is worth noting here, that Z(ω) represents the frequency dependent and possibly
complex impedance of the layer around the rigid core.

3.5 Research on Sonic Crystals

Depending on the ratio between the wavelength of the incident wave, λ, and the
lattice constant of the crystals, a, the basic mechanisms describing the effect of
the crystal on the wave can be best interpreted in terms of two main regimes: the
refraction [57] and the diffraction regimes [19]. In the long wavelength regime,
i.e., λ/a � 1, crystals can be considered as homogeneous materials with effective
properties [58, 59] therefore one can design refractive [57] or gradient index (GRIN)
[60] lenses to control waves. In this direction, metamaterial acoustic GRIN lenses
have recently been designed by using unit cells based on cross-shape scatterers [61]
or coiling-up space, [62] providing a high transmission efficiency and small size.
On the other hand, the case λ  a corresponds to the diffractive regime, where the
crystal is strongly dispersive. Yang et al. [63] reported the first three dimension (3D)
phononic crystal showing the focusing of ultrasonic waves in this regime. Since then,
several phononic lenses have been designed by using the curvature properties of the
isofrequency contours, making use of the all angle negative refraction [64].

In this Sectionwepresent a brief reviewof the research on sonic crystals developed
in the last years. Instead of using chronological order, we will organize the presenta-
tion in terms of the frequency, i.e., λ/a ratio; starting by the long wavelength regime
and proceeding to the diffraction regime where the bandgaps are found.
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3.5.1 Long Wavelength Regime

3.5.1.1 Effective Parameters

Compact formulas for the effective density, ρef f , and sound speed, cef f , that take
into account the inner structure of the periodic medium have been obtained [65,
66]. In the limit case of low filling fractions, the homogenized parameters can be
analytically obtained, and they are

ρef f = ρ0
1 + f f

1 − f f
, (3.72)

cef f = c0
1√

1 + f f
, (3.73)

where ρ0 and c0 are the density and the sound speed of the surrounding fluid. These
expressions recover the formula derived by Berryman [67] for the effective mass
density as well as the effective sound speed reported in [57]. Both results have been
recently corroborated by using a multiple scattering approach applied to an infinite
system [59]. Expressions similar to that in (3.73) were also obtained for the case of
cylinders of finite density and sound velocity. Also note that relationships in (3.73)
have appeared in studying water waves, where homogenization was performed in
the framework of the coherent-potential-approximation [46]. Another issue of great
interest is to determine the cluster’s minimum size in which the refractive effects
dominate over the diffractive. It has been shown that the homogenization approach
is valid at wavelength λc as low as a fourth of the cluster’s diameter. Finally, the
homogenization is valid, as shown in [65], up to a frequency equivalent to λ ≈ 4a.

3.5.1.2 Gradient Refractive Index (GRIN) Systems

The properties of sonic crystals in the low-frequency limit have been studied by
several groups [57, 60, 68–72] for its possible use as refractive devices. In the
homogenization limit each layer of the GRIN lens can be treated as an effective
medium. Then, previous Eqs. (3.73), or those shown in [66], can be used to calculate
each layer’s effective properties in order to create an index profile, as for example a
hyperbolic secant profile that has been proved to reduce the aberration of the focal
spot. One interesting result is that the symmetry matching between the source and
the lens results in fundamental interest for lensing applications [72]. Axisymmetric
gradient index (GRIN) lenses, as those shown in Fig. 3.5, made of rigid toroidal
scatterers embedded in air consider this symmetry matching with radially symmetric
sources. The sound amplification obtained in the focal spot of the reported lens (8.24
dB experimentally) shows the efficiency of the axisymmetric lenses with respect to
the previous Cartesian acoustic GRIN lenses.
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Fig. 3.5 Axisymmetric GRIN lens made of rigid toroidal scatterers used in [72]

3.5.1.3 Locally Resonant Sonic Crystals: Acoustic Metamaterials

The works of Liu et al. [73] and Fang et al. [74] described periodic arrays of locally
resonant building blocks that exhibited attenuation bands with wavelength much
larger than the periodicity of the structure. The origin of this phenomenon has been
explained by means of the localized resonances associated with each scatterer: the
hybridization of the flat resonance band and the propagating band of the periodic
medium produces the stop band. Thus, the frequency and the width of the stop band
can be tuned by varying the size and geometry of the resonators. These results were
found before in the field of acoustics by the pioneering works of Bradley [75] and
Sugimoto [76], however the breakthrough achieved by Liu et al. and Fang et al.
was to define such structured systems as homogeneous materials, showing that, they
can have negative effective properties, giving rise to acoustic materials not found in
nature, i.e., the acoustic metamaterials.

In acoustic metamaterials, the sound speed is proportional to
√

κef f /ρef f , where
κef f and ρef f are the effective bulk modulus and the mass density of the system,
respectively. Sonic crystals made of rigid scatterers can be considered as an acoustic
metamaterial showing real and positive effective properties, as we have previously
seen in the previous Section. However, some interesting differences can appear in
locally resonant sonic crystals with negative values of the effective parameters [73].
Depending on the values of these effective parameters several effects can be observed
[77, 78]. If κef f and ρef f are both positive, the Poynting vector, 	S, has the same
direction as 	k and Snell’s law is normally accomplished.

However, if κef f and ρef f are both negative, 	S and 	k have opposite directions.
Physically, the negativity of both κef f and ρef f means that the medium displays
an anomalous response at some frequencies such that it expands upon compression
(negative bulkmodulus) andmoves to the leftwhenbeingpushed to the right (negative
density) at the same time. These double negative materials present unique properties,
such as negative refractive index and subwavelength focusing [79].

However, if only one of these quantities is negative, the effective sound speed is
complex valued, as is the wavenumber. Thus, when the real part of the expression
for the Poynting vector is negative and sufficiently large, a frequency range where
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Re(	k 	S) < 0 is observed. A direct consequence of such behaviour is the exponential
wave attenuation at these frequencies. It has been previously shown that low fre-
quency attenuation bands can be induced by an effective bulk modulus that becomes
negative near the resonance frequencies, giving rise to exponential decay of modes
[74]. This properties has been exploited in the literature to create tunable acoustic
filters by using locally resonant sonic crystals [54, 80–84].

This combination of material properties, not found before, have dramatically
changed the conception of the acoustic materials. At this stage it is fair to say that
metamaterials have recently revolutionized the field of wave control, particularly in
acoustics showing extraordinary functionalities giving rise to innovations in material
design. In many cases they can replace traditional treatments in practical situations
because of their better performances in targeted and tunable frequency ranges with
strongly reduced dimensions. Acoustic metamaterials themselves represent a scien-
tific breakthrough with respect to the conventional treatments for noise and vibration
problems.

3.5.2 Diffraction Regime

3.5.2.1 Band Gap

The periodicity of sonic crystals is introduced in the solution of the wave equation
by means of Bloch’s theorem. This solution leads to the phenomenon of bandgaps,
frequency ranges where waves do not propagate through the crystal [16, 29]. Tradi-
tionally, wave propagation inside such systems was analysed by means of the band
structures. Plane wave expansion transforms the wave equation into an eigenvalue
problem that can be solved for each Bloch vector, k, in the irreducible first Brillouin
zone; and so obtaining the eigenfrequencies ω(	k) that constitute the band structures
[12]. In the case of SCs, it has been proven that eigenfrequencies for an arbitrary
crystal structure and an arbitrary filling fraction are real values for the propagating
bands. Inside the bandgaps, the eigenvalue are complex [30, 31] and this allows
us to defined the bandgap as ranges of frequencies where all Bloch waves must be
evanescent [29]. A great number of applications based on SCs are explained by the
existence of BGs: acoustic filters, acoustic barriers or waveguides.

Several works have been published, exploring the optimal unit cell designs that
produce the widest bandgaps in terms of frequency. The problem has been treated
in a variety of settings and using several techniques. For example, unit cells have
been optimized in one-dimension [85] and in two-dimensions (2D) using gradient-
based [86–88] as well as non-gradient-based [89, 90] techniques. The attempts to
achieve as wide the bandgap as possible has also been performed outside the scope
of the unit cell dispersion problem [91]. In all these optimization studies the focus
has been primarily on crystals of infinite extends and consisting of two or more solid
(or solid and fluid) phases with the exception of a few investigations that considered
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thin-plate single-phase models [87, 88]. For combined out-of-plane and in-plane
waves in 2D infinite-thickness phononic crystals formed from silicon and a square
lattice of circular voids, it has been shown that the bandgap size normalized with
respect to the mid-gap frequency cannot exceed 40% [92]. Specialized optimization
algorithms have been used in pursuit of the best unit cell solid-void distribution for
the 2D plain-strain problem considering high-symmetry square lattices. The cases
of (1) out-of-plane, (2) in-plane and (3) combined out-of- plane and in-plane elastic
wave propagation have been analysed [35].

3.5.2.2 Point Defects

One of the most important properties of the periodic structures is the emergence of
localized modes within the BG when a point defect is introduced [39]. The localized
modes of a single point defect are characterized by evanescent behaviour [29, 30,
93]. Localized modes of N -point defects are mainly characterized by three proper-
ties: splitting of frequencies, the symmetry of the vibrational patterns and evanescent
behaviour inside the crystal. EPWE in addition to PWE both with supercell approx-
imation has been used to analyse the whole properties of the localized modes in a
SC with a double-point defect [93]. Within the imaginary complex band structure,
the localized modes present different values for the imaginary part of k meaning
that each mode has a different decay rate inside the crystal. This property has been
observed experimentally by fitting the exponential decay for each localized mode
inside the crystal. The symmetry of the pressure profile in a double-point defect has
also been analysed by means of multiple scattering calculations and experimental
data [93].

3.5.2.3 Waveguiding

Linear point defects in sonic crystals have been used to create waveguides at frequen-
cies inside the bandgap, where the walls of these linear point defects act as mirrors,
creating the waveguide. It has been previously shown [94] that waveguiding effects
due to periodicity go beyond rigid-wall waveguides. Due to the linear defect in the
sonic-crystal waveguide, interesting physics appear in the bandgap. Different kinds
of waveguides have been analysed in the literature. Interestingly, the properties of
the guided modes in a linear waveguide, have been analysed by using the complex
band structures [95, 96], showing that the attenuation is governed by a decay rate
related to the imaginary part of the complex band structures obtained using EPWE.
These results have raised more understanding of the deaf-modes [97]: modes with
the real part of the complex band structure represented by antisymmetric modes,
and imaginary parts represented by excitable symmetries. Therefore, in contrast to
the classical interpretation of the attenuation in a deaf band, and based on geomet-
ric arguments, in [97] it was found that the attenuation is governed by a decay rate
related to the imaginary part of the complex band structures.
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Fig. 3.6 a Waveguide used in [95, 96] to analyse the stubbed waveguides. b Waveguide used in
[33] for bending, splitting and spatial filtering waves

Fig. 3.7 Chirped crystal used in [101]. a and b holding structure. c Chirped sonic crystal

The simplicity of the SC inwhich only the longitudinal polarization can be excited
has been used to observe without loss of generality the level repulsion between
symmetric and antisymmetric bands in an stubbed waveguide. The level repulsion
between symmetric and antisymmetric bands in antisymmetric sonic crystal stubbed
waveguides have been interpreted as the presence of an evanescent mode connecting
both bands [95]. These evanescent modes explain both the attenuation produced in
this range of frequencies and the transfer of symmetry from one band to the other.
Mode conversion in phononics have been also analysed in the literature by using
similar systems [98–100].

Extensive simulations and experimental results have been performed in the liter-
ature in order to show tunable waveguides made of arrays made of rigid square-rod
scatterers embedded in air. By rotating some of the square-rod scatterers of an array
one can easily produce a point defect, and even multiple point or line defects [33].
Examples of the several properties of such a waveguides are the bending and splitting
or the spatial filtering [33].
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Fig. 3.8 a–c Different views of the sonic crystal acoustic barrier prototype

Fig. 3.9 The transverse
view of the multi-physical
phenomena scatterer. rint and
rext are the inner and exterior
radii respectively, L the
aperture, �r the rigid wall
thickness and �a the
thickness of the absorbing
cover

3.5.2.4 Chirped Structures

Chirped (sometimes called graded or adiabatic tapered) crystals have been introduced
in optics [102] and acoustics [103–105] for different purposes, such as opening wide
full bandgaps in tandem structures [103] orwaveguiding of beams. Chirped or graded
materials are widely used in the wave physics community due to the opportunities
they offer tomanipulate thewave propagation. These artificialmaterials are emerging
as promising tools for potential applications in several branches of research and
technology. Several applications for focusing, trapping, bending waves, opening of
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Fig. 3.10 Characterization of the several parts of the multi-physical phenomena scatterer. a Picture
of each part of the scatterer: Perforated cover, absorbing cover and inner resonator. ILmeasurements
of the b inner resonator, c absorbing cover and d perforated plate. The measurements were done at
25cm from the scatterer at several points all along the symmetry axis (y-axis)

wide full bandgaps and controlling the spatial dispersion beams in reflection have
been developed. Another interesting effect reported recently is the so-called rainbow
trapping effect, the dependence of the turningpoint position on the colour of radiation.
It has been predicted for one-dimensionally modulated chirped photonic structures
[106] and tapered optical and plasmonic waveguides [107, 108]. Rainbow trapping
and wave enhancement are two different physical effects (the latter occurs even
for monochromatic radiation), although they may occur simultaneously in chirped
structures when the incident radiation is broadband (Figs. 3.6 and 3.7).

Sonic crystals have been used to show that chirped structures can be used to
enhance the acoustic amplitude due to the progressive decrease of the group veloc-
ity along the propagation direction [101, 109]. Wave reflection from a bandgap in
a chirped structure is peculiar. The dispersion curves ω(	k) close to the band-edges
develop nearly horizontal segments, which corresponds to small or zero group veloc-
ity of the wave, since vg = ∂ω/∂k. The occurrence of the controlled sound enhance-
ment requires that the crystal at the entrance plane be within the transparency range
for the incoming wave, whose frequency is above the first bandgap. The wave enter-
ing into the crystal is gradually slowing down, as the local bandgaps are approaching
the wave frequency in the course of propagation. Finally, at a particular depth cor-
responding to the band-edge, the wave, literally speaking, stops, turns around, and
starts propagating back. In other words, it experiences a soft reflection.
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3.5.2.5 Beamforming and Focusing

The influence of the spatial periodicity on the spectral properties of such systems
is represented by the dispersion relation, however it has come out that the spatial
periodicity can affect not only this temporal dispersion, but also the spatial one mak-
ing possible the control of the diffraction inside the periodic structures. Due to that,
one can observe different types of behaviour depending on the spatial dispersion
relation, i.e., on the curvature of the iso-frequency contours[110]. The so-called self-
collimation effect, due to flat iso-frequency contours, consists in the propagation
of a beam in the periodic system without apparent diffraction keeping its original
width. This phenomenon has been experimentally demonstrated to date at different
frequency ranges for both, electromagnetic waves [111, 112] and acoustic waves
[113, 114] in photonic and sonic crystals, respectively. Conversely, when the cur-
vature of the iso-frequency contour is negative, one can observe focusing due to
the all-angle negative refraction phenomenon, which has been also observed in both
electromagnetics [64, 115] and acoustics [63, 116, 117].

The previous spatial effects, the self-collimation and all-angle negative refrac-
tion, occur for connected (continuous) iso-frequency contours, however, there are
frequencies in which the iso-frequency lines are discontinuous in the Brillouin zone,
making it possible the existence of angles in which no iso-lines exist and, as a conse-
quence, there is not propagation of waves. These ranges of angles are called angular
bandgaps [110, 113].

3.6 Technological Application: Sonic Crystal Acoustic
Barrier

In the last years, the possibility to manipulate the sound by means of SCs motivated
the idea of using these periodic acousticmedia as attenuation devices as, for example,
an alternative to acoustic barriers[24, 54, 56, 81–84, 118–121] However, from the
acoustical point of view, the mere existence of the BGs is not sufficient to use SCs
as acoustic barriers because both the size and position of these BGs depend on
several factors such as the angle of incidence of the wave or the arrangement of the
scatterers. To avoid these problems, some strategies have been developed in the last
few years. First, some authors have studied new and more efficient arrangements of
scatterers out of the classical crystalline ones, such as quasi-crystals, [122] quasi-
ordered structures [123, 124] or quasi-fractal [119] arrangements. Another strategy
is the use of scatterers with additional properties motivated by the work of Liu et al.
[73]. The use of local properties or scatterers can reduce the angular dependence of the
attenuation achieved by the periodic arrangement and increases both the magnitude
of the attenuation and the range of the attenuated frequencies. In this sense, recent
works have shown the possibility to design this kind of structures withmulti-physical
phenomena scatterers to be applied in the audible ranges of frequencies as efficient
acoustic barriers [54].
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In this Section we show the realization and the acoustical and structural char-
acterization of a prototype of sonic crystal acoustic barrier. As shown in Fig. 3.8.
We have acoustically characterized this sonic crystal acoustic barrier in a laboratory
approved for this purpose for its use as traffic noise reducing devices. To do that,
we have followed the European Standards EN 1793:1997 relative to the intrinsic
characteristics of sound absorption (Part 1) and to the intrinsic characteristics of
airborne sound insulation (Part 2). The structural characterization has been done in
a wind tunnel evaluating the loads produced by wind in these structures comparing
the results with the ones obtained for a traditional acoustic barrier. In the following
we briefly describe the acoustic standardization and the mechanical characterization
of the prototype.

3.6.1 Design Process

The design and the experimental characterization of the building blocks of the proto-
type are discussed here. Three different mechanisms have been considered to attenu-
ate sound in the desired range of frequencies: resonances, absorption and scattering.
Resonances in the low frequency range, absorption in the medium-high frequency
range and scattering, making use of the periodicity of the structure, i.e., using the
Bragg interference, in the medium to high frequency range.

3.6.1.1 Design of the Scatterers

The scatterer used in the prototype is based on the concept of split-ring resonator
(SRR) which is well-known in optics [125, 126]. Figure 3.9 shows the transversal
view of the scatterer, that is basically a two dimensional split ring resonator covered
by an absorbing material. One can observe three parts. The inner one, which is a
resonant cavity, the rigid wall and the absorbing cover. The rigid wall is made of iron
and plays acoustical and structural roles. The absorbing cover is a sheet of porous
material (mineral-wool) with density 100kg/m3.

The resonant behaviour of the scatterer is influenced by the aperture L of the
scatterer, the interior radius rint and the thickness of the aperture, �a + �r . [54] Two
kinds of scatterers with different cross-section areas of the resonant cavity have been
designed in order to cover a wide band in the low range of frequencies (210 Hz
300Hz). The cover of porous material has a thickness�a = 4 cm and it is selected in
order to attenuate both the medium and the high ranges frequencies. Finally, taking
into account the outdoor application of the prototype, we have used a perforated plate
to protect the mineral-wool from the environment.

Prior to acoustic standardization process we have characterized the acoustical
response of a scatterer in our anechoic chamber. We used the Insertion Loss (IL),
defined as the difference between the sound level recorded without and with the
sample at the same point. In order to observe that the scatterer has the same acoustic
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response all along its symmetry axis (defined in this work in the vertical direction
along the y axis), we measure the IL in several heights. IL measurements give the
dependence of the attenuation properties of the scatterer on the frequency. The three
parts of the scatterers used in the prototype, the perforated plate, the absorbent cover
and the inner resonator, can be seen in Fig. 3.10a. We have analysed the acoustical
response of each part of the scatterer separately in order to observe the range of
frequencies in which they are effective.

3.6.1.2 Resonators

The iron cylinders are slotted along its entire lengthwith an aperture, L , equal to 2cm.
This forms the inner resonator. Figure 3.10b shows the IL for the inner resonator. The
analysed scatterer has an external diameter of 0.247m, which produces a resonant
peak 210Hz. One can observe that the resonance frequency is practically constant all
along the scatterer.Notice that each scatterer attenuates around 6 dBdue to resonance.

3.6.1.3 Absorbent

The absorbent cover consists of a sheet of rock-wool with a thickness of 4cm. Porous
materials work in the range of medium to high frequencies. Figure 3.11c shows IL
measurements for the absorbent cover. One can observe that the IL increases with the
frequency and that the attenuation starts 900Hz. The average attenuation is similar for
different heights all along the scatterer. Notice the difference of the IL values between
the measurements of the absorbent covering and the resonators, see Fig. 3.10b.

3.6.1.4 Perforated Cover

The exterior cover of the scatterer is a perforated plate of 1mm thickness and per-
forations of 5mm of diameter. The role of the perforated cover is to protect the
absorbent from the elements. Thus, it should be transparent to acoustic waves. One
can see that it is transparent for the range of frequencies between 100 5000Hz, which
corresponds to traffic noise.

3.6.1.5 Periodic Structure

The prototype consists of a two dimensional periodic array ofmulti-physics phenom-
ena scatterers arranged following a triangular periodicity. The SCs are characterized
by twoparameters: the lattice constanta, separation between scatterers, and the filling
fraction, f f , the volume occupied by the scatterers with respect to the total volume
occupied by the SC. For this periodicity, the main directions of symmetry are ΓX
(0◦) and Γ J (30◦). In this system, the inner part of the scatterer has a triple function.
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On one hand, it serves as structural support for the scatterers. On the other hand, the
inner part acts as a resonator producing attenuation peaks in the low frequency range,
as we have seen in the previous Section. However, the exterior part of the inner core
(rigid resonator) contributes to the increase of the scattering inside the structure that
leads to the phenomenon of the BG. The prototype has a lattice constant a = 0.28
m. For this lattice constant, the central frequency of the BG (Bragg’s frequency) at
ΓX direction is fBG = 600 Hz.

3.6.2 Acoustic Standardization

3.6.2.1 Sound Absorption: EN-1793-1:1997

According to the standard EN 1793-1:1997, we have evaluated the sound absorp-
tion coefficient αs in order to calculate the evaluation index of acoustic absorption
DLα . The value of this index is used to classify the barrier with regard to its acous-
tic absorption characteristics. In our case, DLα = 8 dB, that correspond to the A3
category. This result shows that a non-continuous acoustic barrier formed by multi-
physics phenomena cylinders can compete, from the acoustical point of view, with
traditional acoustic barriers formed by continuous systems.

3.6.2.2 Airborne Sound Insulation: EN 1793-2:1997

The test corresponding to the intrinsic characteristics of the barrier relative to the air-
borne sound insulation has been done following the recommendation of the Standard
EN 1793-2:1998. To do that, the evaluation index of the airborne sound insulation
DLR (dB) is calculated according to the standard EN-ISO10140:2011. Themeasure-
ments take into account the sound level for each third octave band of the normalized
traffic noise spectrum, given by the standard EN-1793-3 1997. The value of this
index allows classifying the capability of airborne sound insulation of the checked
barrier. In this case, DLR = 20 dB that correspond to the category B2.

3.6.3 Wind Tunnel Analysis: Structural Load

Traditional acoustic barriers basically consist of a solid system positioned between
the sound source and the receiver. Apart from the acoustical isolation, one of the
main problems of these systems is the high transmission of the mechanical stresses
produced by several systems of loads supported by the structure to the ground. For
example, the transmitted loads due to the wind are important, increasing with the
height of the barrier, and as a consequence the volume of foundations and the product
becomes technically and economically expensive. The prototype presented in this
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Fig. 3.11 Wind tunnel characterization. a Scheme of the wind tunnel. b Picture of the scaled sonic
crystal acoustic barrier inside the tunnel. c and d show the dependence of the drag efforts an the
overtunning momentum on the wind speed respectively

work is a sonic crystal acoustic barrier which is formed by separated inclusions, and
this fact allows the wind to pass through, decreasing the load that is transmitted to
the ground. To estimate the values of these loads in our barrier and to compare with
those corresponding to a classical one, we have carried out some experiments in a
wind tunnel with dimensions 2.14m high, 1.8mwidth and 12m long (see Fig. 3.11a).
As a consequence two models in a scale 1:5 for both a classical barrier and a sonic
crystal acoustic barrier have been designed. Figure3.11b shows the scaled sonic
crystal acoustic barrier inside the wind tunnel.

The results obtained in the laboratory are shown in Fig. 3.11c–d. We have mea-
sured the drag load and the overtunningmomentum. Taking into account these results
one can conclude that the sonic crystal acoustic barrier produces loads considerably
smaller than the classical barrier, with this reduction on average around 42% in the
case of the drag loads in the wind direction and 37% in the case of the overturning
momentum.
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Chapter 4
The Transfer Matrix Method in
Acoustics

Modelling One-Dimensional Acoustic Systems,
Phononic Crystals and Acoustic Metamaterials

Noé Jiménez, Jean-Philippe Groby, and Vicent Romero-García

Abstract The transfer matrix method is a simple but powerful analytical tool used
to model acoustic wave propagation in a wide range of one-dimensional problems. In
this chapter, we present themethod and summarize themost common building blocks
encountered in one-dimensional acoustic systems. These include layers of fluids and
porous media, ducts and waveguides of different geometries where thermoviscous
losses can be accounted for, locally reacting elements such as Helmholtz or quarter-
wavelength resonators, viscoelastic plates and membranes, micro-perforated panels
or vibrating walls. Several examples are provided, including a multi-layered porous
structure for roomacoustics, the transmission problemof a double-leafwall for build-
ing acoustics, and the analysis of the dispersion relations of acousticwaves in periodic
media and metamaterials using locally resonant elements. Various one-dimensional
wave-motion phenomena can be studied using the generalized framework provided
by the transfer matrix method such as reflection, transmission, absorption, attenua-
tion and dispersion, as illustrated in the examples.

4.1 Introduction

Many acoustic problems of practical interest can be reduced to one-dimensional
ones under the hypothesis of plane-wave propagation. Analytical solutions can thus
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be obtained under this hypothesis even for complex problems. Among the different
analytical techniques such as modal expansions [1], plane wave expansion methods
(PWE) (See Chap.1) or multiple scattering theory (MST) (See Chap.2), the transfer
matrix method (TMM) [2] has been widely applied to study wave propagation in
one-dimensional systems such as porous materials [3, 4], duct acoustics andmufflers
with [5] and without flow [6], stratified solids [7] and multilayer elastic and acoustic
materials for noise control [8–13], fluid mechanics [14], piezoelectric transducers
[15] or acoustic holograms [16], among others. TMM is also at the heart of standard
procedures to measure the properties and performance of acoustic materials [17].
The method is also widely applied in electromagnetics [18], e.g., to study multilayer
optical structures [19, 20]. It can be applied in Cartesian and in other coordinate
system, such as cylindrical coordinates for radially-symmetric multilayer structures
[21].

The transfer matrix method has recently been used to described wave propagation
in periodic structures and phononic crystals as well as to study acoustic metamate-
rials. Wave dispersion and acoustic properties such as reflection and transmission
in multilayer phononic crystals can effectively be described by a transfer matrix
approach [22]. The method can be used to derive the effective parameters of reso-
nant structures [23] and even of hyperbolic metamaterials [24]. Thermoviscous and
viscoelastic losses can also be easily included. In this way, this method has been
applied to design and analyse efficient or perfect metamaterial absorbers based on
quarter-wavelength resonators [25], Helmholtz resonators [26–28] or membranes
and plates [29, 30].

The transfer matrix method results in fast calculations to describe complex acous-
tic structures, in fact, it is one of its most important advantages. It can thus be easily
combined with optimization techniques that would be prohibitive using other simu-
lation methods such as finite-difference in time-domain (FDTD) or Finite Element
Methods (FEM) due to extreme computational resources and simulation times they
would require.

In this chapter, we present the method and summarize the most common building
blocks. We will describe the modelling of layers of fluids and porous media, ducts
of different geometries possibly accounting for thermoviscous losses, locally res-
onant elements such as Helmholtz and quarter-wavelength resonators, viscoelastic
membranes and plates, micro-perforated plates and vibrating walls. The last section,
several examples will be given comprising a multilayer porous structure for room
acoustics, a double-leaf wall for building acoustics, the dispersion of acoustic waves
in periodicmultilayermedia, and the design of acousticmetamaterials using different
kinds of resonators.

4.2 The Transfer Matrix Method

We start deriving the basic relations between the acoustic magnitudes evaluated at
the boundaries of a layer of homogeneous acoustic material, as shown in Fig. 4.1.

http://dx.doi.org/10.1007/978-3-030-84300-7_1
http://dx.doi.org/10.1007/978-3-030-84300-7_2
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Fig. 4.1 Scheme of the acoustic material layer characterized by a transfer matrix T. Propagation
inside the layer is modeled by counter propagating waves

Assuming that only longitudinal plane waves propagate in the layer and a temporal
harmonic dependence of the type eiωt , the total field inside the material is written as
the superposition of two waves propagating in opposite directions as

p(x) = PAe
−ikx + PBe

ikx , (4.1)

vx (x) = PA

Z
e−ikx − PB

Z
eikx , (4.2)

where Z = ρc is the characteristic acoustic impedance, k = ω/c is the wavenumber
at the angular frequency ω = 2π f , with ρ the density and c the sound speed of the
material, and the amplitudes of the two waves are given by PA and PB .

To evaluate these amplitudes we define the pressure and velocity at both sides of
the slab. First, at x = 0 we obtain

p(x)
∣
∣
x=0 = PA + PB, (4.3)

Zvx (x)
∣
∣
x=0 = PA − PB, (4.4)

while at x = L we get

p(x)
∣
∣
x=L = (PA + PB) cos(kL) − i(PA − PB) sin(kL), (4.5)

vx (x)
∣
∣
x=L = PA − PB

Z
cos(kL) − i

PA − PB

Z
sin(kL). (4.6)
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Then, we can relate the acoustic magnitudes at both boundaries by combining (4.3)–
(4.4) with (4.5)–(4.6) via

p(x)
∣
∣
x=L = cos(kL)p(x)

∣
∣
x=0 − i Z sin(kL)vx (x)

∣
∣
x=0, (4.7)

vx (x)
∣
∣
x=L

= cos(kL)vx (x)
∣
∣
x=0 − i

1

Z
sin(kL)p(x)

∣
∣
x=0. (4.8)

Equations (4.7)–(4.8) can be expressed in a matrix form as

⎡

⎣
p

vx

⎤

⎦

x=L

=
⎡

⎣
cos(kL) −i Z sin(kL)

cos(kL) −i
1

Z
sin(kL)

⎤

⎦

⎡

⎣
p

vx

⎤

⎦

x=0

. (4.9)

After inversion,we retrieve the basic transfermatrix formulation of a layer of acoustic
material, given by

⎡

⎣
p

vx

⎤

⎦

x=0

=
⎡

⎣
cos(kL) i Z sin(kL)

i
1

Z
sin(kL) cos(kL)

⎤

⎦

⎡

⎣
p

vx

⎤

⎦

x=L

. (4.10)

In this way, the acoustic magnitudes at both sides of the 1D fluid layer are related
by a 2 × 2 matrix which only depends on the impedance and wavenumber in the
material. It is interesting to note that additional elements can be introduced into the
system in a simple and modular way. This allows to model complex materials and
structures using a simple theoretical framework, as we will see below.

4.2.1 Total Transfer Matrix

For a given material, we can define a total transfer matrix, T, that relates the sound
pressure, p, and normal acoustic particle velocity, vx , at the beginning, x = 0, and
at the end of a structure, x = L as

⎡

⎣
p

vx

⎤

⎦

x=0

= T

⎡

⎣
p

vx

⎤

⎦

x=L

, (4.11)

therefore, the total transfer matrix T is a 2 × 2 matrix as

⎡

⎣
p

vx

⎤

⎦

x=0

=
⎡

⎣
T11 T12

T21 T22

⎤

⎦

⎡

⎣
p

vx

⎤

⎦

x=L

. (4.12)



4 The Transfer Matrix Method in Acoustics 107

Fig. 4.2 Scheme of an acoustic structure composed by several layers of effective properties. The
system is characterized by a total transfer matrix, T, equal to the matrix product of the elements,
i.e., T = T1T2T3 in this example

When dealing with a complex structure, e.g., an arrangement of several elements as
depicted in Fig. 4.2, the total transfer matrix T is given by the product of the transfer
matrices of the N layers or elements of the system as

T =
N
∏

n=1

Tn . (4.13)

The continuity of pressure and normal particle velocity at each interface of the
system are intrinsically satisfied. The transfer matrix of each layer or element, Tn , is
calculated according to its nature. Several basic examples will be given in Sect. 4.3
including thermoviscous fluids, fluid-saturated rigid-frame porous layers, or locally
resonant elements such as elastic membranes or Helmholtz resonators.

The total transfer matrix T offers abundant information about the system such as:

1. The effective parameters: The effective impedance and wavenumber, in addition
to the effective density and bulk modulus of the system in the long wavelength
regime.
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2. The scattering of the system: The reflection and transmission coefficients and, if
looses are considered, the absorption coefficient.

4.2.2 Effective Parameters

In the case of a symmetric structure, the total transfer matrix T is symmetric and the
system can be modelled as an equivalent on-dimensional fluid-like layer with com-
plex and frequency-dependent effective parameters in the long wavelength regime.
Thus, the total transfer matrix of the structure, given by (4.11), can be identified to
the propagation matrix an effective material of length L , given by (4.10), as

T =
⎡

⎣
T11 T12

T21 T22

⎤

⎦ =
⎡

⎢
⎣

cos(keffL) i Zeff sin(keffL)

i
1

Zeff
sin(keffL) cos(keffL)

⎤

⎥
⎦ , (4.14)

where keff(ω) is the effective wavenumber and Zeff(ω) is the effective characteristic
impedance of the whole structure. Both effective parameters are usually complex
and frequency dependent.

4.2.2.1 Effective Wavenumber

By relating the elements of (4.12) with those in (4.14) we can obtain the expression
for the effective wavenumber as a function of the coefficients of the total transfer
matrix

keff = 1

L
cos−1

(
T11 + T22

2

)

+ nπ

L
, n ∈ Z. (4.15)

It is important to note that due to the trigonometric inversion the wavenumber is
warped around −π < keffL < π. This is very useful for periodic structures as we
will see in the examples in Sect. 4.4: obtaining the wavenumber keff(ω) of a unit cell
provides the dispersion relation in the irreducible Brillouin zone. It is effectively
important to note that keff(ω) matches the solution of the eigenvalue problem solved
for recovering the dispersion relation of any symmetric system and thus is valid
whatever the frequency range considered.

4.2.2.2 Effective Characteristic Impedance

In the same way, the characteristic acoustic impedance is identified from the total
transfer matrix coefficients as
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Zeff =
√

T12
T21

. (4.16)

In this case, no trigonometric inversion is used and the retrieved impedance values are
measured in [Rayls] units. Nevertheless, this identification is only valid in the long
wavelength regime contrary to the recovery of keff(ω) and special attention should
thus be paid on the frequency validity regime.

4.2.2.3 Effective Density and Bulk Modulus

The dynamic mass-density, ρeff , and bulk modulus, Keff , of the slab of effective
material can be obtained using

Keff = Zeff
ω

keff
, and ρeff = Zeff

keff
ω

, (4.17)

where Zeff is given by (4.16) and keff by (4.15) with proper unwrap of the wavenum-
ber.

4.2.3 The Scattering Matrix

The scattering matrix, S, relates the amplitudes of the incoming waves to those of
the outgoing waves. The total pressure at both sides of the structure, at x = 0 and
x = L , is given by

p(x) =
{

Ae−ikx + Beikx for x < 0,

Ce−ikx + Deikx for x > L ,
(4.18)

as shown in Fig. 4.3 for a structure of length L . Thus, the relation between the
amplitudes of both waves is given by the S-matrix as

[

C
B

]

= S
[

A
D

]

=
[

T− R+
R− T+

] [

A
D

]

, (4.19)

where the elements of the S-matrix give directly the transmission (T− and T+)
and reflection (R− and R+) coefficients for a system excited from each side of the
structure, i.e., the superscripts (+,−) denote the direction of incidence: the positive
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Fig. 4.3 Incoming and
outgoing waves that define
the scattering of the
structure. The scattering
matrix, S-matrix, completely
describe the transmitted and
reflected waves

and negative x-axis respectively. The S-matrix is widely used in wave physics to
characterize and interpret the wave scattering. In the case of acoustics, the scattering
matrix completely describe the transmitted and reflected waves, and when looses are
included, the absorption of the system.

4.2.4 Reflection, Transmission and Absorption Coefficients

The system is usually geometrically bounded and therefore its scattering properties
can be evaluated. Depending on the boundary conditions at x = 0 and x = L , we
can distinguish between:

(i) Reflection problem: the material is located against an impervious wall. The
acoustic impedance is that of the surrounding medium Z0 = ρ0c0 at the begin-
ning (x = 0), while the rigid boundary condition is applied, i.e., vx = 0, at the
end of the material (x = L),

(ii) Transmission problem: the material is surrounded by a fluid on both sides. Then,
the acoustic impedance is that of the surrounding media Z0 = ρ0c0 at x = 0 and
ZL = ρLcL at x = L .

For example, a layer of porous material obviously presents different reflection (and
absorption) coefficient if it is located against a rigid-impervious wall (reflection
problem) or if it is surrounded by air on both sides (transmission problem).

4.2.4.1 Transmission Problem

The transmission problem implies the waves impinging the structure on one side can
propagate through it and be transmitted to the other side. First, (4.11) are written as

p(x)
∣
∣
x=0 = T11 p(x)

∣
∣
x=L + T12 vx (x)

∣
∣
x=L , (4.20)

vx (x)
∣
∣
x=0 = T21 p(x)

∣
∣
x=L + T22 vx (x)

∣
∣
x=L . (4.21)
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Then, assuming an incident pressure wave whose amplitude is the unity, the pressure
and velocity at both sides of the structure can be defined as a function of the reflection
coefficients R+ and R−, and the corresponding transmission coefficients, T+ and
T−, as

p(x)
∣
∣
x=0 = 1 + R−, p(x)

∣
∣
x=L = T−eikL , (4.22)

vx (x)
∣
∣
x=0 = 1 − R−

Z0
, vx (x)

∣
∣
x=L = T−eikL

ZL
, (4.23)

for an incident plane wave coming from −∞ and propagating in the +x direction,
and

p(x)
∣
∣
x=0 = T+eikL , p(x)

∣
∣
x=L

= R+ + 1, (4.24)

vx (x)
∣
∣
x=0 = −T+eikL

Z0
, vx (x)

∣
∣
x=L = R+ − 1

ZL
, (4.25)

for an incident plane wave coming from +∞ and propagating in the −x direction,
where Z0 = ρ0c0 and ZL = ρLcL are the impedances of the media on either side of
the structure, i.e., x < 0 and x > L , respectively.

Combining (4.22)–(4.25) with (4.20)–(4.21), we obtain the following relations:

T− = 1 + R−

T11 + T12/ZL
, (4.26)

T− = 1 − R−

T21Z0 + T22Z0/ZL
, (4.27)

T+ = T11
(

1 + R+)+ T12
ZL

(

R+ − 1
)

, (4.28)

T+ = −T21Z0
(

1 + R+)− T22
Z0

ZL

(

R+ − 1
)

. (4.29)

In the following, we will obtain the relation between the elements of the S-matrix
and those of the T-matrix in specific configurations:

(i) Non-reciprocal systems
Structures in which the condition T− �= T+ is fulfilled.

(ii) Reciprocal systems
Structures in which the condition T− = T+ is fulfilled.

(iii) Reciprocal and symmetric systems
Structures in which the conditions T+ = T− and R− = R+ are fulfilled.
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4.2.4.2 Non-reciprocal Systems

In a general case, we can combine (4.26)–(4.29) and get

T− = 2eikL

T11 + T12/ZL + T21Z0 + T22Z0/ZL
, (4.30)

R− = T11 + T12/ZL − T21Z0 − T22Z0/ZL

T11 + T12/ZL + T21Z0 + T22Z0/ZL
, (4.31)

T+ = Z0

ZL

2eikL (T11T22 − T12T21)

T11 + T12/ZL + T21Z0 + T22Z0/ZL
, (4.32)

R+ = −T11 + T12/ZL − T21Z0 + T22Z0/ZL

T11 + T12/ZL + T21Z0 + T22Z0/ZL
. (4.33)

Equations (4.30)–(4.33) give the relation between the T-matrix and the S-matrix in
the general form. However, some simplifications can be done.

4.2.4.3 Reciprocal Systems

The reciprocal behaviour of the system implies that the determinant of transfermatrix
is the unity, i.e., T11T22 − T12T21 = 1. This property is satisfied by linear and time-
invariant systemswhere the transmission does not depend on the direction of incident
wave. These conditions are satisfied by most of the acoustic materials. Note this
term appears in (4.32) and directly implies the transmission coefficients are identical
whatever the direction of excitation. Therefore, in reciprocal systems

T− = T+ = T . (4.34)

All the systems considered in this chapter are reciprocal. Note that in this case, the
S-matrix, (4.19), possesses two eigenvalues given by

λ1,2 = T ± √
R+R−, (4.35)

while the eigenvectors corresponding to λ1 and λ2 are

�v1 =
[√

R+R−, R+
]

, �v2 =
[

R−,−√
R+R−

]

, (4.36)

respectively. The poles and zeros of the eigenvalues as well as the eigenvectors of
the S-matrix in the complex-frequency plane provide rich information, as they are
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identified with the resonances of the system. A further description of the eigenval-
ues of the scattering matrix and its implications for perfect absorption are given in
Chap.5.

In addition, in most cases in acoustics the structure is surrounded by the same
media Z0 = ZL , as occurs in metamaterials surrounded by air. Under this additional
condition, the reflection and transmission coefficients given by (4.30)–(4.33) can be
simplified to

T = 2eikL

T11 + T12/Z0 + T21Z0 + T22
, (4.37)

R− = T11 + T12/Z0 − T21Z0 − T22
T11 + T12/Z0 + T21Z0 + T22

, (4.38)

R+ = −T11 + T12/Z0 − T21Z0 + T22
T11 + T12/Z0 + T21Z0 + T22

. (4.39)

When the materials that constitute the acoustic structure present intrinsic losses,
e.g., thermoviscous or viscoelastic ones, a portion of the energy is neither reflected
nor transmitted: it is absorbed by the structure and irreversibly transformed into heat.
The amount of absorbed energy, dissipated by intrinsic losses, with respect to the total
energy is characterized by the absorption coefficient, α(ω). For asymmetric systems
R+ �= R− and, therefore, the absorption depends on the direction of propagation.
For the positive x-axis incident wave, the absorption is given by

α− = 1 − ∣∣R−∣∣2 − |T |2 , (4.40)

while for the negative x-axis incident waves,

α+ = 1 − ∣∣R+∣∣2 − |T |2 . (4.41)

4.2.4.4 Symmetric Systems

For symmetric systems such as structures presenting a mirror symmetry with respect
to x = L/2, the transfer matrix coefficients fulfil

T11 = T22. (4.42)

As a consequence, the reflection coefficients from both sides are the same, i.e.,
R+ = R− = R. The absorption coefficients from both sides of the system are thus
identical and correspond to

α+ = α− = α = 1 − |R|2 − |T |2 . (4.43)

http://dx.doi.org/10.1007/978-3-030-84300-7_5
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4.2.4.5 Reflection Problems

When the system is rigidly backed, a rigid boundary condition vx |x=L = 0 is applied
in (4.11) and, obviously, no waves are transmitted through the system, i.e. T = 0 in
(4.19). Therefore, we obtain the following relations

p(x)
∣
∣
x=0 = T11 p(x)

∣
∣
x=L , (4.44)

vx (x)
∣
∣
x=0 = T21 p(x)

∣
∣
x=L . (4.45)

The reflection coefficient is related to the pressure and velocity at x = 0 as

p(x)
∣
∣
x=0 = 1 + R−, (4.46)

vx (x)
∣
∣
x=0 = 1 − R−

Z0
. (4.47)

Combining (4.44)–(4.45) with (4.46)–(4.47), the reflection coefficient for a rigidly-
backed system becomes:

R = T11 − T21Z0

T11 + T21Z0
. (4.48)

The absorption coefficient of the rigidly-backed system is

α = 1 − |R|2 . (4.49)

Finally, note that, if a rigid boundary condition is set at the beginning of the
structure, x = 0, as vx |x=0 = 0, and a wave impinges the structure from the opposite
direction, i.e., a wave travelling in the−x direction, the reflection coefficient is given
by R = (T22 − T21ZL)/(T22 + T21ZL).

4.2.4.6 Specific Acoustic Impedance

Note that the characteristic acoustic impedance, Zeff = ρeffceff , is generally different
from the specific acoustic impedance, Z = p/vx . The characteristic impedance is
a property of the material itself and does not depend on the boundary conditions
at x = 0 and x = L . In the opposite, the effects of the boundary conditions are
implicit for the acoustic impedance.1 One importantmagnitude is the specific acoustic
impedance of the system at the input of the system, or normal acoustic specific
impedance, given by,

1Note that Z = Zeff , i.e., p/vx = ρeffceff , only stands for plane waves travelling in an infinite
medium.
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Z in = p

vx

∣
∣
∣
∣
x=0

. (4.50)

For transmission problems, it can be calculated directly from the reflection and
transmission coefficients as

Z in = Z0

(
1 + R

1 − R

)(
1 + T

1 − T

)

. (4.51)

For rigidly-backed problems this expression reduces to

Z in = Z0

(
1 + R

1 − R

)

. (4.52)

This quantity is very useful to analyse the impedance matching of a given structure
with the surrounding media.

4.3 Review of the Usual Transfer Matrices

A given system can be subdivided in N elements of respective transfer matrices Tn ,
n = 1, ..., N to evaluate its full transfer matrix T. Depending on the nature of each
element, its individual transfer matrix is calculated in different way. In the following,
we review the most usual transfer matrices used to solve 1D problems in acoustics.

4.3.1 Particle Velocity Verses Flow Formulation

First of all, we shall differentiate the problem of wave propagation through layers of
fluids or fluid-like materials of undefined section, with the problem of wave prop-
agation through fluids confined in ducts of finite cross-sectional area, as shown in
Fig. 4.4.

4.3.1.1 Particle Velocity Formulation

For layers of undefined section, Fig. 4.4a, the problem can be described by using the
particle-velocity formulation, as given in the previous section. For example, this is
the case when considering multilayer porous material absorbers.
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Fig. 4.4 a Formulation of the problem for layers of fluid-like materials of undefined section, i.e.,
particle-velocity formulation. b Formulation of the problem for waveguides of different cross-
sectional areas, i.e., flow formulation

4.3.1.2 Flow Formulation

However, when considering waveguides of different cross-section, Fig. 4.4b, as it is
usual when describing mufflers, metamaterials or similar structures, it is convenient
to formulate the problem using the flow.

4.3.2 Fluid Layers: Particle Velocity Formulation

The transmission matrix Tf of a fluid layer of length L takes the form

Tf =

⎡

⎢
⎢
⎣

cos(kf L) i Z f sin(kf L)

i
1

Zf
sin(kf L) cos(kf L)

⎤

⎥
⎥
⎦

, (4.53)

where kf = ω/
√

Kf /ρf and Zf = √Kf ρf are wavenumber and the characteristic
impedance in the fluid, respectively, where Kf and ρf are the effective bulk modulus
and mass density of the fluid. Note that, in general, when losses are accounted for,
Kf and ρf , and thus kf and Zf are complex and frequency dependent variables.

The intrinsic losses can be neglected in the case of sound confined in a cavity,
e.g., an air cavity between two walls, if the size of the latter is much larger than the
thicknesses of the viscous and thermal boundary layers of the fluid. The wavenumber
in the fluid thus reduces to kf = ω/c0, and the acoustic impedance becomes Zf =
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ρ0c0, where the sound speed is c0 = √
K0/ρ0, with ρ0 and K0 respectively the density

and bulk modulus of the lossless fluid.
However, the intrinsic losses of the fluid should be accounted for in highly viscous

fluids, when sound wave is propagating over a long path, i.e., when the attenuation
along the propagation path L is not negligible, and at high frequencies.

4.3.2.1 Thermoviscous Fluid Layers

Before considering confined sound propagation, note that, even in the absence of
boundaries, the propagation of acoustic waves in fluid with a high viscosity is char-
acterized by a complex wavenumber and impedance, which take the form [31]

kf (ω) = ω

c0
+ i

bω2

2ρ0c30
, Zf (ω) = ρ0

ω

kf
, (4.54)

where b = η + (4/3)μ + κ
(

C−1
V − C−1

P

)

is the diffusion coefficient, η and μ are the
shear and bulk viscosities, κ the thermal conductivity of the thermoviscous fluid and
CV and CP are the heat capacity at constant volume and pressure, respectively. Note
the losses in the thermoviscous fluid show a quadratic dependence on frequency.
Thus, the imaginary part of the complex wavenumber can be neglected for relatively
low frequencies.

4.3.3 Ducts: Flow Formulation

When the fluid is confined in ducts or cavities, i.e., waveguides of different cross-
sectional area, reflections are produced at the discontinuities. In this case, it is con-
venient to formulate the transfer matrix considering the flux,

Vx = Svx , (4.55)

across a cross-sectional area S instead of using the particle velocity, vx . The transfer
matrix for the flow formulation, T′

f , relates the pressure and flow at the inlet and at
the outlet of the waveguide of length L as

⎡

⎣
p

Vx

⎤

⎦

x=0

= T′
f

⎡

⎣
p

Vx

⎤

⎦

x=L

. (4.56)

By substituting (4.55) in (4.7)–(4.8) we can obtain the transfer matrix of a waveguide
or duct for the flow formulation as
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T′
f =

⎡

⎢
⎣

cos(kf L) i Z ′
f sin(kf L)

i
1

Z ′
f

sin(kf L) cos(kf L)

⎤

⎥
⎦ , (4.57)

where Z ′
f = Zf /S is the normalized impedance. Note this matrix is equivalent to the

one given by (4.53): the impedances appearing in the transfer matrix are divided by
S, while the wavenumbers are not modified. In addition, transfer matrices of varying
cross-section waveguides, e.g., conical, are also available in the literature [32–34].

On the one hand, to calculate the effective wavenumber for the flow problem
(4.15) holds. However, to calculate the effective impedance for a flow formulation,
instead of (4.16), the following equation must be used

Zeff = S

√

T12
T21

. (4.58)

On the other hand, the transmission and reflection coefficients for the flow for-
mulation can be obtained in a straightforward manner: one might use normalized
impedances instead of impedances. For example, the scattering for the flow formu-
lation corresponding to the non-reciprocal case can be obtained by changing Z by
Z/S in (4.30)–(4.33).

In addition, if the fluid is confined in a narrow duct or cavity, strong losses are
observed when the transversal dimension of the cavity is of the same order of the
thermal and/or viscous boundary layers. The thermal and viscous layers are given
by

δthermal =
√

2κ

ωCP
, δviscous =

√

2η

ωρ0
, (4.59)

therefore, δviscous = √
Pr δthermal, where Pr = CPη/κ is the Prandtl number. One

approach to include the thermoviscous loses in the TMM is to model the fluid inside
the duct as an equivalent fluidwith effective parameters, therefore ρf (ω), Kf (ω) ∈ C,
and they depend on the geometry and dimensions of the duct.

4.3.3.1 Slits

When considering the propagation of acoustic waves in narrow slits, as shown in
Fig. 4.5, the thermoviscous losses should be accounted for if the length of the thermal
and/or viscous boundary layers are of the same order of the slit height. Instead
of solving the full Navier-Stokes equations with non-slip boundary conditions, the
thermoviscous losses can be modelled by using effective complex and frequency
dependent parameters accounting for both attenuation and dispersion.

Thus, assuming that only planewaves propagate inside a slit, the complex effective
parameters expressed as [35]:
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Fig. 4.5 Slit of height h. The system is modelled as a fluid-like medium with effective properties:
complex and frequency dependent effective parameters

ρf (ω) = ρ0

[

1 − tanh h
2Gρ(ω)

h
2Gρ(ω)

]−1

, (4.60)

Kf (ω) = K0

[

1 + (γ − 1)
tanh h

2GK (ω)

h
2GK (ω)

]−1

, (4.61)

where h is the width of the slit.
The functions Gρ(ω) and GK (ω) are

Gρ(ω) =
√

iωρ0

η
, (4.62)

GK (ω) =
√

iωPrρ0
η

, (4.63)

and γ = CP/CV is the ratio of specific heats of the fluid, K0 = γP0 is the adiabatic
bulk modulus with P0 the static pressure, η the dynamic viscosity and ρ0 the density.
The normalized acoustic impedance, for a 2D problem, is given by Z ′

f = √Kf ρf /ah,
where a is the width of the slit that must fulfil a � h, as shown in Fig. 4.5. In the
case of slits of small a, its effective parameters must be calculated as a rectangular
waveguide (see Sect. 4.3.3.3 below).

4.3.3.2 Cylindrical Cross-Section Ducts

In the same way, the propagation of acoustic waves in a narrow cylindrical duct, as
shown in Fig. 4.6, can be described via a complex and frequency dependent density
and bulk modulus given by [35].
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Fig. 4.6 Cylindrical
cross-sectional duct of
radius r

Fig. 4.7 Rectangular
cross-section duct of sides a
and b

ρf (ω) = ρ0

[

1 − 2

rGρ(ω)

J1(rGρ(ω))

J0(rGρ(ω))

]−1

, (4.64)

Kf (ω) = K0

[

1 + 2(γ − 1)

rGK (ω)

J1(rGK (ω))

J0(rGK (ω))

]−1

, (4.65)

where r is the radius of the cylindrical duct, Jn is the Bessel function of the first kind
and order n, and the functions Gρ(ω) and GK (ω) are given by (4.62)–(4.63). In this
case, the normalized acoustic impedance is given by Z ′

f = √Kf ρf /πr2.
It is important to note that TMM calculations should be restricted for frequencies

lower that the cut-off frequency of the cylindrical duct, i.e., in the range given by
ω < 1.84c0/r . For higher frequencies the duct can exhibit high-order modes and the
plane-wave approximation does not hold.

4.3.3.3 Rectangular Cross-Section Ducts

Finally, again assuming that only plane waves propagate inside a rectangular cross-
sectional duct, as depicted Fig. 4.7, the propagation can be modelled with effective
density and bulk modulus given by [35].

ρf (ω) = ρ0
(a/2)2(b/2)2

4G2
ρ(ω)

∑

m∈N

∑

n∈N

[

α2
mβ2

n

(

α2
m + β2

n − G2
ρ(ω)

)]−1 , (4.66)

Kf (ω) = K0
1

γ + 4(γ−1)G2
K (ω)

(a/2)2(b/2)2
∑

m∈N

∑

n∈N

[

α2
mβ2

n

(

α2
m + β2

n − G2
K (ω)

)]−1
, (4.67)

where a and b are the dimensions of the rectangular duct, αm = (2m + 1)π/a and
βn = (2n + 1)π/b. The acoustic impedance is Z ′

f = √Kf ρf /ab.
The frequency range where the plane-wave assumption is valid for a rectangular

duct is given by ω < πc0/max(a, b). As occur in the cylindrical duct, at higher
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frequencies the waveguide can exhibit high-order modes and TMM calculations will
be inaccurate.

4.3.4 Porous Media Layers

Porous materials are biphasic materials composed of a solid frame filled with a
fluid, generally air. Typically, the pore size of foams or fibrous materials is much
smaller than the characteristic wavelength of the sound waves. Thus, the complex
processes occurring during the propagation of acoustic waves at the micro-scale can
be modelled at the macro-scale via an effective medium with effective properties.
Although elastic waves can propagate in the solid frame, the solid skeleton can
be considered motionless in most practical cases in acoustics because of its high
impedance contrast with the light saturating fluid, e.g. the air. In this way, the waves
emerging from the interaction of elastic waves in the solid matrix and acoustic waves
in the saturating fluid, i.e., the Biot waves, can be neglected. Under this assumption, a
layer of porous material can be modelled as an equivalent fluid with effective density
and bulk modulus. This is generally accurate for thick porous layers because flexural
modes appear at very high frequencies and are then strongly attenuated.

The transfer matrix of a porous layer, Tp, is thus written as

Tp =
⎡

⎢
⎣

cos(kpL p) i Z p sin(kpL p)

i
1

Z p
sin(kpL p) cos(kpL p)

⎤

⎥
⎦ , (4.68)

where Z p and kp are the characteristic effective impedance and wavenumber of the
porousmaterial. These effective properties are complex and frequency dependent and
several models have been developed providing comprehensive expressions. These
models usually consider parameters of the structural properties of the porous frame,
in addition to the thermoviscous properties of the saturating fluid (Fig. 4.8).

Accurate models with many input parameters are required to account for most
of the physics concerning the thermoviscous processes. However, simpler models
relying on a reduced number of input parameters are available, also providing a
lower accuracy and possessing a thinner frequency range of validity. Models with a
reduced number of parameters are generally sufficient (and practical in most cases),
because the input parameters are usually difficult to estimate and the samples are not
exactly identical due to the random nature of the porous structure. In the following,
we will review several models relying on one, five and six input parameters.
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Fig. 4.8 The complex structure of a porous material in the micro-scale can be described by several
input parameters. Then, complex and frequency dependent expressions for the effective parameters
can be obtained

4.3.4.1 Empirical Models

One of the simplest models of porous materials is the one-parameter model proposed
by Delany-Bazley (D&B) [36]. This unique parameter is the flow resistivity σ. This
modelwas derived by fitting themeasured characteristic impedance andwavenumber
of awide variety of porousmaterialswith porosity close to the unit andflow resistivity
covering the range 1 < σ < 50 kNs/m4 with a power law of ρ0 f /σ. The model
validity is thus 0.01 < ρ0 f /σ < 1.

The complex and frequency dependent effective wavenumber and characteristic
impedance are given by

Z p(ω) = Z0

[

1 + az1

( ρ0ω

2πσ

)bz1 − iaz2

( ρ0ω

2πσ

)bz2
]

, (4.69)

kp(ω) = k0

[

1 + ak1
( ρ0ω

2πσ

)bk1 − iak2
( ρ0ω

2πσ

)bk2
]

, (4.70)

where the coefficients az1, a
z
2, b

z
1, b

z
2, a

k
1 , a

k
2 , b

k
1, b

k
2 are given in Table4.1. It is worth

noticing here that the behaviour of some porous materials does not exactly follow
this model.

This approach has been extended by several authors. Table4.1 summarizes alter-
native empirical models where the coefficients were fitted for specific types of
porous and fibrous materials: Dunn and Davern [38] obtained the coefficients for
polyurethane foams of low flow resistivity, Qunli [39] for porous plastic open-cell
foams, Kirby and Cummings[42] for fibrous materials A glass, E glass, basalt wool
and steel wool, Muehleisen et al. [41] for highly porous, rigid and open cell carbon
foams, (reticulated vitreous carbon), and finally Garai and Pompoli [43] for polyester
fibrous materials.
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In particular, a further refinement of the D&B model was carried out by Miki
[40], using same data as those used to derive the D&Bmodel, to correct non-physical
behaviour of the effective properties in the low frequency regime. The equations for
this model are

Z p(ω) = Z0

[

1 + az1

( ω

2πσ

)bz1 − iaz2

( ω

2πσ

)bz2
]

, (4.71)

kp(ω) = k0

[

1 + ak1
( ω

2πσ

)bk1 − iak2
( ω

2πσ

)bk2
]

, (4.72)

and the range of validity is then enlarged to 0.01 < f/σ < 1. The model proposed
by Miki should be used instead of the original proposed by Delany and Bazley.

4.3.4.2 Semi-empirical Models

Another widely used class of equivalent models for porous materials is the semi-
empirical one. These models attempt to link high and low frequency asymptotic
exact behaviours of porous material by simple functions and rely on the separation
of viscous (in the density) and thermal (in the bulk modulus) losses. Among several,
the Johnson-Champoux-Allard and the Johnson-Champoux-Allard-Lafarge models
are the most commonly encountered.

4.3.4.3 The Johnson-Champoux-Allard Model

The Johnson-Champoux-Allard (JCA) model [44, 45] involves 5-parameters and
provides the expressions of the dynamic effective density and bulk modulus of a
porous material saturated by a fluid of density ρ0 and bulk modulus K0 considering
a rigid frame. The porous material is characterized by its porosity, φ, its tortuosity,
α∞, its flow resistivity, σ, and the thermal and viscous characteristic lengths, Λ′ and
Λ respectively.

The dynamic effective density and bulk modulus given by the JCA model are

ρp(ω) = ρ0
α∞
φ

[

1 − iG1(ω)
√

1 + iG2(ω)
]

, (4.73)

Kp(ω) = K0
φ−1

γ − (γ − 1)

[

1 − iG ′
1(ω)

√

1 + iG ′
2(ω)

]−1 , (4.74)

where the adiabatic bulkmodulus is given by K0 = γP0. A description of the physical
meaning and the measurement procedure for the input parameters can be found in
the literature [2, 46].
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The functions G1(ω), G2(ω), G ′
1(ω), G ′

2(ω) are given by

G1(ω) = σφ

α∞ρ0ω
, (4.75)

G2(ω) = 4α2∞ρ0ηω

σ2φ2Λ2
, (4.76)

G ′
1(ω) = 8η

ρ0PrΛ′2ω
, (4.77)

G ′
2(ω) = ρ0PrΛ′2ω

16η
. (4.78)

Using these expressions, both the effective wavenumber and the characteristic acous-
tic impedance of the porous material can be obtained by using

kp = ω

cp
= ω

√
ρp

K p
, (4.79)

where cp is the effective sound speed in the porous material and

Z p = √ρpK p. (4.80)

4.3.4.4 The Johnson-Champoux-Allard-Lafarge Model

The JCA model was further be extended by Lafarge [47] to accurately describe
the thermal effects in the low frequency regime. The extended model, namely the
Johnson-Champoux-Allard-Lafarge (JCAL) model, involves a new parameter, the
static thermal permeability, k ′

0. Only the bulk modulus is modified when compared
to the JCA model and G ′

1(ω) and G ′
2(ω) read as

G ′
1(ω) = φη

ρ0Prk ′
0ω

, (4.81)

G ′
2(ω) = 4Prρ0k ′2

0 ω

ηφ2Λ′2 . (4.82)

Please note that the JCAL model is usually written in terms of the static viscous
permeability k0 = η/σ which is an intrinsic parameter of the material. In this case
G1(ω) and G2(ω) become
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G1(ω) = φη

α∞ρ0k0ω
, (4.83)

G2(ω) = 4α2∞ρ0k20ω

ηφ2Λ2
. (4.84)

4.3.5 Locally Resonant Elements

The previously described elements only considered continuity of pressure and flux
along the main propagation direction. However, some elements can be added to the
transmission line that rely on pressure drop or flux continuity in other directions and
are usually locally resonant elements.

Let us assume an element of lateral dimension Δx much smaller than the wave-
length along the main waveguide. This element can be considered as a punctual
resonator. The upstream and downstream pressure, pu and pd , and flux, Vd and Vu ,
are first introduced allowing to define the transfermatrix of this infinitesimal element.

⎡

⎣
pd

Vd

⎤

⎦

x

= T′
⎡

⎣
pu

Vu

⎤

⎦

x+Δx

, (4.85)

The pressure drop
Δp = pd − pu, (4.86)

and flux continuity
ΔV = Vd − Vu, (4.87)

can subsequently be defined as a function of the resonator.

4.3.5.1 Side-Branch (Parallel) Elements

On the one hand, locally resonant elements can load themain waveguide, as shown in
Fig. 4.9. This loading element can be an open or closed duct, aHelmholtz resonator, or
a dead-end cavity of any complex shape. In this case, the pressure is constant along the
element, i.e.,Δp = 0 or pd = pu ,while theflux continuity impliesΔV = Vd − Vu =
pu/Z ′

r , where Z ′
r is the resonator impedance. Please note that the continuity of

pressure has already been accounted for in the last expression.
The equations relating pressures and velocities at both sides of the infinitesimal

element are then

pd = pu, (4.88)

vd = vu + pu/Zr , (4.89)
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Fig. 4.9 Parallel configurationwith a locally resonant element loaded in awaveguide. The resonator
introduces a flow drop while pressure is continuous

which can be re-written in matrix form to give the transmission matrix for “parallel”
connected elements, T′, as

T′ =
⎡

⎣

1 0
1

Z ′
r

1

⎤

⎦ . (4.90)

4.3.5.2 In-Line (Series) Elements

On the other hand, locally resonant elements can be in series in a main waveguide,
as shown in Fig. 4.10. For example, this series elements can be membranes or elastic
plates located in a waveguide.

This time the flux is continuous across the infinitesimal element, i.e., ΔV = 0 or
Vd = Vu , but the punctual resonator induces a pressure dropΔp = pd − pu = Z ′

rVu ,
where Z ′

r is the resonator impedance. Please note that the flux continuity has already
been applied. The equations relating pressures and velocities at both sides are

pd = pu + Z ′
rvu, (4.91)

Vd = Vu, (4.92)

Fig. 4.10 Series configuration with a locally resonant element located in-line in a waveguide. The
resonator introduces a pressure drop while flow is continuous
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an can then bewritten inmatrix form to obtain the transfermatrix of “series” elements
T′ as

T′ =
[

1 Z ′
r

0 1

]

. (4.93)

In the following subsections we will review particular impedance expressions of
different resonators that are commonly arranged in-series or in-parallel to waveg-
uides.

4.3.6 Side Resonating Ducts

When a waveguide is loaded by a secondary duct of length l, as shown for example
in Fig. 4.11 for a sealed secondary duct, the pressure and flux at z = 0 and z = l can
be related by a transfer matrix of the form

⎡

⎣
p

Vz

⎤

⎦

z=0

=
⎡

⎢
⎣

cos(k f l) i Z ′
f sin(k f l)

i
1

Z ′
f

sin(k f l) cos(k f l)

⎤

⎥
⎦

⎡

⎣
p

Vz

⎤

⎦

z=l

. (4.94)

where Z ′
f = Z f /S f and k f are the characteristic impedance and wavenumber, and

S f the cross-section area of the secondary duct. Note that thermoviscous losses in this
duct can be accounted for using an appropriate complex and frequency dependent
wavenumber and impedance, that can be calculated accordingly to (4.60)–(4.67) as
a function of the cross-sectional geometry. Depending on the boundary condition at
z = l, the input resonator impedance at z = 0 can be evaluated via Z ′

r = p(0)/Vz(0).

Fig. 4.11 Quarter-
wavelength resonator
(QWR), of length l, loaded
on a main waveguide.
Resonator is modelled using
the complex and frequency
dependent wavenumber and
impedance that depend on
the resonator geometry



4 The Transfer Matrix Method in Acoustics 129

4.3.6.1 Closed Secondary Duct: The Quarter-Wavelength Resonator
(QWR)

When the secondary duct is sealed, i.e., a rigid boundary condition is applied at z = l,
i.e., Vz(l) = 0, the system of equations given by (4.94) reduces to

p(0) = cos(k f l) p(l) and Vz(0) = i
1

Z f
sin(k f l) p(l). (4.95)

The input impedance is then

Z ′
r = −i Z ′

f cot
(

k f l
) = −i

Z f

S f
cot
(

k f l
)

, (4.96)

where l is the QWR length. The first resonance is observed when Z ′
r = 0, implying

cot(k f l) = 0, i.e., l ≈ λ/4 where λ is the wavelength (note k f can be complex).

4.3.6.2 “End” Correction

Note that the well-known “end” correction must be incorporated to this impedance
to account for the radiation of the resonator in the main waveguide. This radiation is
modelled by adding a subwavelength, i.e. k0Δl << 1, fluid transfer matrix of length
Δl, i.e., the end correction, with wavenumber and impedance k0 and Z ′

0 = Z0/S of
the main waveguide of section S to (4.94):

⎡

⎣
p

Vz

⎤

⎦

0

=
⎡

⎢
⎣

cos(k0Δl) i Z ′
0 sin(k0Δl)

i
1

Z ′
0

sin(k0Δl) cos(k0Δl)

⎤

⎥
⎦

⎡

⎢
⎣

cos(k f l) i Z ′
f sin(k f l)

i
1

Z ′
f

sin(k f l) cos(k f l)

⎤

⎥
⎦

⎡

⎣
p

Vz

⎤

⎦

l

.

Taylor expanding the first matrix and applying the rigid boundary condition at z = l,
(4.96) becomes

Z ′
r = −i

Z f

S f
cot
(

k f l
)− iωρ0

Δl

S
, (4.97)

which is the input impedance of aQWRwith “end” correction. The “end” corrections
Δl are given in the Appendix 4.6.2.

4.3.6.3 Open Secondary Duct: The Half-Wavelength Resonator (HWR)

When the secondary duct is open, pressure-release boundary condition can be applied
in (4.94) at z = l, i.e., p(l) = 0. This leads to the system of equations
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p(0) = i Z f sin(k f l) p(l), (4.98)

Vz(0) = cos(k f l) p(l). (4.99)

The input impedance is then

Z ′
r = i Z ′

f tan
(

k f l
) = i

Z f

S f
tan
(

k f l
)

, (4.100)

where l is the resonator length. The resonance is no longer achieved when the length
of the duct is a quarter of the wavelength, but rather half of it, i.e. the system is
a half-wavelength resonator (HWR). However, the present model for HWR is less
accurate than the one for QWR because the radiation to the outer domain must be
inaccurate, i.e., the system can no longer be one-dimensional.

4.3.7 Helmholtz Resonators

Another type of commonly used side-branch resonator is the Helmholtz one that
comprises a neck coupled to a cavity, as sketched in Fig. 4.12. The input impedance
of the Helmholtz resonator (HR) can also be derived by relating the pressure and
flux at the beginning, z = 0, and at the end, z = l = ln + lc, of the system. The ducts
corresponding to the neck and the cavity are characterized by their length ln and lc
and their sections Sn and Sc, respectively. The transfer matrix problem is written as

⎡

⎣
p

Vz

⎤

⎦

0

=
⎡

⎢
⎣

cos(knln) i Z ′
n sin(knln)

i
1

Z ′
n

sin(knln) cos(knln)

⎤

⎥
⎦

⎡

⎢
⎣

cos(kclc) i Z ′
c sin(kclc)

i
1

Z ′
c

sin(kclc) cos(kclc)

⎤

⎥
⎦

⎡

⎣
p

Vz

⎤

⎦

l

.

Note that specific complex and frequency dependent effective parameters must be
used for each element if thermoviscous losses are accounted for because the neck and
the cavity are of different cross-sections: kn and Z ′

n = Zn/Sn for the neck, and kc and

Fig. 4.12 Helmholtz
resonator loaded on a main
waveguide. The resonator is
modelled using the complex
and frequency dependent
parameters that depend on its
geometry
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Z ′
c = Zc/Sc for the cavity. Theses effective parameters are calculated accordingly to

(4.60)–(4.67) as a function on the geometry of the ducts.
Applying rigid boundary condition at z = l = ln + lc, and manipulating the pre-

vious transfer matrix, the impedance of the HR can be written as Z ′
r = p(0)/Vz(0)

Z ′
r = −i Z ′

n

Z ′
c/Z

′
n − tan knln tan kclc

Z ′
c/Z

′
n tan knln + tan kclc

. (4.101)

Taylor expanding the latter expression at low frequencies, i.e., knln � 1 and
kclc � 1, leads to

Z ′
r = −i Z ′

n

Z ′
c/Z

′
n − knlnkclc

Z ′
c/Z

′
nknln + kclc

. (4.102)

If losses are not considered, kn = kc = k0 and Zn = Zc = Z0, where k0 = ω/c0 and
Z0 = ρ0c0. The first resonance of the HR is then observed when Im(Z ′

r ) = 0, leading
to

ωR = c0

√

Sn
lnlcSc

= c0

√

Sn
lnVc

, (4.103)

which is the usual expression for the resonance frequency of a HR, where Vc = Sclc
is the volume of the cavity.

However, when thermoviscous losses are included such a compact expression
cannot be derived. In this case the resonant frequency can be estimated numerically
by looking for the frequency at which Im(Z ′

r ) = 0 with the corresponding complex
kn, kc, Zn and Zc. Usually, the so-calculated HR resonance frequency is moderately
reduced as compared with (4.103).

It is worth noting here that (4.101) is not exact because corrections due to the
radiation at the discontinuities must be included. Using a transfer matrix approach,
see e.g., [48, Suppl. mat.], we can model the pressure radiation between the different
elements. Thus, we can express the system as

⎡

⎣
p

Vz

⎤

⎦

0

=
⎡

⎢
⎣

cos(knΔl2) i Z ′
n sin(knΔl2)

i
1

Z ′
n

sin(knΔl2) cos(knΔl2)

⎤

⎥
⎦

⎡

⎢
⎣

cos(knln) i Z ′
n sin(knln)

i
1

Z ′
n

sin(knln) cos(knln)

⎤

⎥
⎦×...

⎡

⎢
⎣

cos(knΔl1) i Z ′
n sin(knΔl1)

i
1

Z ′
n

sin(knΔl1) cos(knΔl1)

⎤

⎥
⎦

⎡

⎢
⎣

cos(kclc) i Z ′
c sin(kclc)

i
1

Z ′
c

sin(kclc) cos(kclc)

⎤

⎥
⎦

⎡

⎣
p

Vz

⎤

⎦

l

.

The first length correction, Δl1, is due to pressure radiation at the discontinuity from
the cavity to the neck of the HR [49], while the second length correction,Δl2, comes
from the radiation at the discontinuity from the neck to the principal waveguide [50].
Please note that rigorously, this second correction matrix should be written in terms



132 N. Jiménez et al.

of the principalwaveguide parameters, k0 and Z ′
0. However, replacing this parameters

by those of the neck provides more accurate results. After application of the rigid
boundary condition at x = l, Taylor expansion (knΔl1 � 1 and knΔl2 � 1) of the
length correction matrices, and rearrangement, the impedance of the HR accounting
for the “end” corrections becomes

Z ′
r = −i Z ′

n

cos knln cos kclc − knΔl Z ′
n

Z ′
c

cos knln sin kclc − Z ′
n

Z ′
c

sin knln sin kclc

sin knln cos kclc − knΔl Z ′
n

Z ′
c

sin knln sin kclc + Z ′
n

Z ′
c

cos knln sin kclc

,

where the correction length Δl = Δl1 + Δl2 is the addition of the two correction
lengths. The specific values for the correction lengths are given in the Appendix
4.6.1.

4.3.8 Rigid Micro-perforated Plates

When a rigid thin panel is densely perforated with holes whose dimensions are much
smaller than the wavelength, it can be modelled as a local impedance that accounts
for the wave propagation in the small ducts including the thermoviscous effects.
Maa’s model [51] consider a local impedance as

Zr = − iωρ0h

φ

⎡

⎣1 − 2

σ
√
i

J1
(

σ
√
i
)

J0
(

σ
√
i
)

⎤

⎦

−1

− i0.85ω
ρ0d

φ
+ h

√
2ση

dφ
, (4.104)

where σ = d
√

ωρ0/4η, d is the perforation diameter, h is the thickness of the plate,
and φ = πd2/4a2 is the surface porosity in case of circular perforation arranged in
a square lattice of side a, as depicted in Fig. 4.13. The first term on right-hand-
side of (4.104) accounts for the hole impedance, the second term models the reactive
radiation at both appendicular parts of the perforation, while the purely resistive term
models the friction at these appendicular parts. Note that the provided impedance
is Zr and not Z ′

r and holds for a perforated plate of infinite lateral extends. An
approximation of this model is given by

Zr = − iωρ0h

φ
σi + 32ηh

φd2
στ , (4.105)

where the coefficients σi and στ are given by

σi = 1 +
[

1 + σ2

2

]− 1
2

+ 0.85
d

h
, στ =

√

1 + σ2

32
+ 4

√
2

32
σ
d

h
. (4.106)
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Fig. 4.13 Micro-perforated
panel and the geometrical
parameters used

This approximation is valid for 1 < σ < 10. Further details, extended and alternative
models can be found in [52].

4.3.9 Elastic Plates

Another type of often encountered locally resonant elements are elastic plates. The
acoustic impedance of the plate relies on the pressure drop and flux continuity across
the plate. Thus, different plate geometries and boundary conditions leads to different
expressions for the acoustic impedance.

4.3.9.1 Circular Elastic Plate

Let us first consider a clamped circular plate of radius r and section S = πr2, as
the one depicted Fig. 4.14a. Note the clamped condition implies that the transverse
displacement and its first normal derivative vanish at the plate boundary. Assuming
that only the axisymmetric modes can be excited, the associated acoustic impedance
can be derived analytically and reads as [53]

Z ′
r = − iωρh

S

J0(kmr)I1(kmr) + J1(kmr)I0(kmr)

J2(kmr)I1(kmr) − J1(kmr)I2(kmr)
, (4.107)

where In is themodifiedBessel’s function of the first kind of order n, h is the thickness
of the plate, and km and ρ are respectively the wavenumber and density of the plate,
given by

k2m = ω

√

ρh

D
, and D = Eh3

12(1 − ν2)
, (4.108)
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Fig. 4.14 Elastic plate resonators and the geometrical parameters used. (a) Circular elastic and (b)
square clamped plates

with D is the bending stiffness (or flexural rigidity), and E and ν, the Young’s
modulus and Poisson’s ratio of the material plate, respectively.

4.3.9.2 Approximation

Taylor expanding (4.107) at low frequencies, i.e., kmr � 1, provides a lumped
impedance model, which reads as

Z ′
r = 1

iωCp
+ iωMp, (4.109)

where the compliance and the acoustic mass are [54] respectively:

Cp = πr6

196.51D
, Mp = 1.8830

ρh

πr2
. (4.110)

The first resonance frequency is then given by the following formulae

f0 = 0.4694
h

r2

√

E

ρ(1 − ν2)
. (4.111)

Note that this model only accounts for the first resonance and, therefore, (4.109) is
only valid for f � f0.

4.3.9.3 Squared Elastic Plate

The impedance of a squared clamped elastic plate, as shown in Fig. 4.14b, can be
obtained assuming the system obeys the flexural wave equationwhich is valid for thin
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elastic plates. Using separation of variables, the full expression for the impedance of
a square cross-sectional elastic plate of side a is given by [55]

Z ′
r =

⎡

⎢
⎢
⎣
iω

a∫

0

a∫

0

⎛

⎜
⎜
⎝

∞
∑

m=1

∞
∑

n=1

∫ a

0

∫ a

0
XmYndxdy

D(I1 I2 + 2I3 I4 + I5 I6) − ρhω2 I2 I6
XmYn

⎞

⎟
⎟
⎠
dxdy

⎤

⎥
⎥
⎦

−1

(4.112)
where Xm(x) and Yn(y) are the eigenfunctions describing the shape of the n-th and
m-th eigenmode of the clamped plate. They both have the same form and are given
by

Xm(x) = G

(
λmx

a

)

− G(λm)

H(λm)
H

(
λmx

a

)

, (4.113)

Yn(y) = G

(
λn y

a

)

− G(λn)

H(λn)
H

(
λn y

a

)

. (4.114)

The functionsG(u) and H(u) satisfy the clamped boundary conditions and are given
by

G(u) = cosh(u) − cos(u), H(u) = sinh(u) − sin(u), (4.115)

while λm and λn satisfy

cosh(λ) cos(λ) = 1. (4.116)

In practice, λm and λn can be found using a root-finding algorithm such as Muller’s
method [56].

Finally, the integrals, Ii , are given by

I1 =
∫ a

0
Xm(x)

∂4Xm(x)

∂x4
dx, I2 =

∫ a

0
Yn(y)

2dy, (4.117)

I3 =
∫ a

0
Xm(x)

∂2Xm(y)

∂x2
dx, I4 =

∫ a

0
Yn(y)

∂2Yn(y)

∂x2
dy, (4.118)

I5 =
∫ a

0
Yn(y)

∂4Yn(y)

∂x4
dy, I6 =

∫ a

0
Xm(x)2dx . (4.119)

While the derivatives can be calculated analytically, the integrals must be calculated
numerically, e.g., using Simpson’s method.

The resonance frequencies of the n-th and m-th modes of the square clamped
plate are given by

ωm,n =
√

D(I1 I2 + 2I3 I4 + I5 I6)

ρhI2 I6
. (4.120)
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Finally, note that in (4.112) the term
∫ a
0

∫ a
0 XmYndxdy vanish for m, n = 2, 4, . . .,

so that the even modes do not contribute to impedance: for these modes, the pressure
drop at both sides of the plate is zero.

4.3.9.4 Approximation

The impedance of a square clamped plate given by (4.112) can be approximated for
frequencies around and below the first resonance frequency of the plate. The lumped
impedance model for the square clamped plate can be written as

Z ′
r = 1

iωCp
+ iωMp, (4.121)

where the compliance and the acoustic mass are [57], respectively

Cp = 3.73 × 10−4 a
6

D
, Mp = 2.06

ρh

a2
, (4.122)

with D = Eh3/12(1 − ν2) the bending stiffness, and E , ν, ρ and h the Young’s
modulus, Poisson’s ratio, density and thickness of the square plate, respectively. The
first resonance frequency ω0 of the clamped elastic square plate satisfies Im(Z ′

r ) = 0
and is thus given by ω0 = √1/MpCp.

4.3.10 Membranes

A clamped membrane is a thin elastic plate clamped at the boundaries under a large
pre-stretch tension. As shown in Fig. 4.15a, b, the membrane behaviour arises when
the tension T is much higher than the bending stiffness of the elastic plate, i.e.,
T � D, which is easily achieved by thin elastic plates, h � 3

√

12(1 − ν2)T/E , of
soft materials, ν → 0.5. As in elastic plates, different geometries led to different
expressions for the acoustic impedance of membranes.

4.3.10.1 Circular Membrane

Considering only the axisymmetric modes of a circular membrane of radius r and
area S = πr2, and thickness h, as depicted in Fig. 4.15a, an analytical expression can
be obtained for the acoustic impedance of the clamped circular clamped membrane
as

Z ′
r = − iωρh

S

J0(kmr)

J2(kmr)
, (4.123)
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Fig. 4.15 Elastic membrane resonators and the geometrical parameters used. a Circular and b
square membranes

where ρ is the material density and km = ω
√

ρ/T is the wavenumber in the mem-
brane, with T the tension applied to the membrane.

4.3.10.2 Approximation

The Taylor expansion of (4.123) at the low frequencies (kmr � 1) provides the
lumped impedance model, which takes the form

Z ′
r = iωρh

S

[

1 − f0
f

]

, (4.124)

where the first resonance of the plate f0 is given by the following approximation

f0 = 0.38274
1

r

√

T

ρ
. (4.125)

Note this model only accounts for the first resonance and, therefore, is only valid for
0 ≤ f � f0.

4.3.10.3 Squared Membrane

In the case of a square clamped membrane of side a and thickness h, as shown in
Fig. 4.15b, the acoustic impedance can be written as [57]:

Z ′
r =

[

iωa2
∞
∑

m=1

∞
∑

n=1

4 [1 − (−1)m]2 [1 − (−1)n]2

ρh
(

ω2
m,n − ω2

)

m2n2π4

]−1

, (4.126)
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where ρ is the material density, m and n are the indices of the normal modes of the
membrane and their corresponding resonance frequency ωm,n is given by

ωm,n = π

a

√

T

ρ

(

m2 + n2
)

, (4.127)

with the tension T . Note that the even modes do not contribute to the impedance
because the term [1 − (−1)m]2 [1 − (−1)n]2 in (4.126) vanish for n,m = 2, 4, . . .,
i.e., for these modes the pressure drop is zero.

4.3.10.4 Approximation

The impedance of a square clampedmembrane given by (4.126) can be approximated
for frequencies around or below the first resonance by

Z ′
r = 1

iωCm
+ iωMm, (4.128)

where the acoustic compliance and acoustic mass are given by

Cm = 0.035
a6

T
, Mm = 1.44

ρh

a2
. (4.129)

These coefficients are calculated from the full analytic model. Note the impedance
of the membrane is independent of the material elasticity. These formulae are valid
for thin clamped square membranes where the pre-stretched tension dominates over
the bending stiffness, i.e., T � Eh3/12(1 − ν2). The first resonance frequency of
the clamped square membrane, ω0, again satisfies Im(Z ′

r ) = 0 and is thus given by
ω0 = √1/MpCp.

4.3.11 Infinite Elastic Vibrating Wall

A thin and unbounded elastic material of thickness h can be included in a TMM
formulation as a series element given by (4.93), under the assumption that klh � 1,
where kl is the wavenumber associated with the longitudinal waves in the elastic
material. The acoustic impedance of this thin, unbounded and elastic plate as shown
in Fig. 4.16, can be written as

Zr = Zw = D

iω

(

k40 sin
4 θ − k4w

)

, (4.130)



4 The Transfer Matrix Method in Acoustics 139

Fig. 4.16 (Left) Geometry of the unbounded elastic wall and geometrical parameters used. (Right)
Scheme of the induced flexural waves at the coincidence frequency for a given angle of incidence

where θ is the incidence angle and the dispersion relation kw = ω/cw gives the
wavenumber in thewall. The phase speed of the bendingwaves is cw = (ω2D/m ′)1/4,
k0 = ω/c0 is the wavenumber of the surrounding medium with sound speed c0,
m ′ = ρh is the surfacemass density, i.e., themass per unit area, D = Eh3/12(1 − ν2)

is the bending stiffness of thewall and E , ν, and ρ are theYoung’smodulus, Poisson’s
ratio and density of the elastic material, respectively. Please note that the provided
impedance corresponds to Zr and not to Z ′

r and holds for a thin elastic plate of infinite
lateral extents.

Equation (4.130) exhibits a resonance at k40 sin
4 θ = k4w, i.e., when the wavenum-

ber of the bending waves in the wall matches the transverse component of the
wavenumber in the surrounding medium, as shown in Fig. 4.16. This occurs when
λ0/ sin θ = λw, i.e., at the coincidence frequency given by

f ′
c = c20

2π sin θ

√

m ′

D
. (4.131)

The lowest coincidence frequency occurs at grazing angles when θ = π/2. We can
thus define this frequency as the critical frequency as

fc = c20
2π

√

m ′

D
= f ′

c sin θ. (4.132)

This critical frequency only depends on the properties of thewall and the surrounding
fluid. The acoustic impedance of the thin wall can then be written as a function of
this critical frequency as
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Fig. 4.17 (Left) Imaginary part of the impedance of the elastic wall as a function of the frequency
normalized to the critical frequency. (Right) Corresponding real part

Zw = im ′ω

[

1 −
(

f

fc

)2

(1 + iηw) sin4 θ

]

. (4.133)

Note that a complex bending stiffness has been introduced to account for the vis-
coelasticity of the solid material with D′ = D(1 + iωηw), where ηw is the loss
factor. For normal incidence or for frequencies f � fc, the impedance reduces to
Zw ≈ im ′ω, i.e., only the mass of the wall contributes to the acoustic impedance.

As an example, the impedance of a h = 1.5-cm thick vibrating gypsum wall with
ρ = 850 kg/m3, E = 4.1 GPa, ν = 0.3 and ηw = 0.1 Pa/s, is given in Fig. 4.17. First,
we can observe that the imaginary part of the impedance under normal incidence,
θ = 0 does not cross at zero. However, the imaginary part of the impedance vanishes
for oblique incidence at some specific frequencies, i.e., at the coincidence frequencies
of the wall, and thus the wall resonates. The real part of the impedance accounts
for the losses of the element. At normal incidence, no loss is noticed, (4.133). At
oblique incidence, the losses are activated, and they present a quadratic dependence
on frequency.

4.4 Examples of Application

4.4.1 Absorption of Multilayered Porous Structure

One of the simplest configurations where the TMM has been widely used is in the
modelling of absorption properties of multilayer rigidly-backed porous materials.
These structures are widely used in room acoustics, as well as in automotive and
aerospace applications. In most of these situations, the goal is to produce structures
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Fig. 4.18 Geometry of the configuration, composed of a porous layer with a rigidly-backed air
cavity (plenum)

with high absorption coefficients. In this case, we consider that the porous material
is rigidly backed, i.e., there is no transmission.

In this example we present a simple multilayer structure composed of a layer of
porous material and a layer of air, i.e., an air plenum, as Fig. 4.18 shows. Note the
extension of the proposed example to a higher number of layers is straightforward
[12, 13].

The total transfer matrix of the system is composed of two transfer matrices, each
one corresponding to the propagation in one media, that is written as

T = TpT f , (4.134)

where Tp is the transfer matrix of the porous layer of length L p, given by (4.68), and
T f is the transfermatrix of the air gap of length L0 given by (4.53). In this example,we
consider a JCAmodel for the layer of porousmaterial, with parameters corresponding
to a mineral wool material: σ = 20.6 × 103 Ns/m4, α∞ = 1.01, φp = 0.98 Λ = 85
µm, Λ′ = 2Λ, while for the gap and the exterior media air at room temperature is
consideredwith parameters P0 = 101325Pa,γ0 = 1.4,ρ0 = 1.213kg/m3, Pr = 0.71
η0 = 1.839 × 10−5 Pa·s, K0 = γ0P0 Pa.

4.4.1.1 Normal Incidence

Once the full transfer matrix,T, is obtained, the reflection and absorption coefficients
are calculated using (4.48), (4.49). The total length of the multilayer structure was
L = 6 cm. Two configurations are shown, with and without the air cavity. First,
Fig. 4.19 shows the absorption of a structure calculated using a porous layer of length
L p = 6 cm (blue curve). In this case, the cavity of air was not included (L0 = 0).
Second, we show the absorption of a layer of porous material of L p = 3 cm and
an air cavity of L0 = 3 cm (red curve). The absorbing features of the multilayer
structure can be easily modelled by the TMM using a compact and fast calculation,
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Fig. 4.19 Absorption at
normal incidence angle of
the rigidly-backed porous
layer (black) and layer of
porous material with a
rigidly-backed air cavity
(red)

allowing the fast optimization of the layer properties to, i.e., maximize the absorption
[13]. Addingmore layers with different parameters is straightforward by adding their
corresponding transfer matrix terms.

4.4.1.2 Oblique Incidence

In a real situation, acoustic waves impinge the structure in more than one incidence
angle. Thus, normal incidence absorption canbemisleading as, in general, the absorp-
tion properties depend on the angle of incidence. We consider a plane wave with an
angle of incidence θ defined with respect to the outward normal to the structure, see
Fig. 4.20. Due to continuity of the transversal component of the wavevector along
the interfaces, the wavenumber in the transverse direction x is the same in all media,
leading to

k0,x = k0 sin(θ), k0,z =
√

k20 − k20 sin
2(θ), (4.135)

kp,x = k0 sin(θ), kp,z =
√

k2p − k2p sin
2(θ), (4.136)

where k0,x and kp,x are the transversal components (along x direction), and k0,z
and kp,z are the normal component (along z) of the wavenumbers in the air and
in the porous layer respectively, as shown in Fig. 4.20. Note that, due to symmetry
considerations it is sufficient to consider only 2 components (kz and kz) to describe
the problem: in the case of an oblique incidence with a component in the direction
y, a simple rotation of the reference system can be applied to reduce the transversal
wavenumber to one component.

The transfer matrix of the porous layer, Tp, under oblique incidence is given by
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Fig. 4.20 a Geometry of the configuration, composed of a porous layer with rigidly-backed air
cavity, b scheme of the transfer matrices used. c Absorption at of the rigidly-backed porous layer
at several incidence angles (grey) and random incidence absorption (blue). d Absorption of layer
of porous material with a air plenum and its corresponding random incidence absorption (red)

Tp =

⎡

⎢
⎢
⎣

cos(kp,z L p) i Z p
kp
kp,z

sin(kp,z L p)

i

Z p

kp,z
kp

sin(kp,z L p) cos(kp,z L p)

⎤

⎥
⎥
⎦

, (4.137)

while the transfer matrix of the air layer, T0, is written as

T0 =
⎡

⎢
⎣

cos(k0,z L0) i Z0
k0
k0,z

sin(k0,z L0)

i

Z0

k0,z
k0

sin(k0,z L0) cos(k0,z L0)

⎤

⎥
⎦ . (4.138)

Finally, the reflection coefficient of the rigidly-backed structure under oblique inci-
dence is obtained by setting vz|z=L = 0. After some algebra, it can be written as a
function of the elements of the total transfer matrix given in (4.13) as
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R(ω, θ) = T11(ω) cos(θ) − Z0T21(ω)

T11(ω) cos(θ) + Z0T21(ω)
. (4.139)

Then, the absorption is calculated as usual as α(ω, θ) = 1 − |R(ω, θ)|2. In addition,
the specific impedance at the first interface can be calculated from the reflection
coefficient as

Zs(ω, θ) = Z0

cos(θ)

(1 + R(ω, θ))

(1 − R(ω, θ))
. (4.140)

The specific impedance at the first interface is useful to study the impedancematching
of the structure with the exterior medium.

A common approach to quantify the performance of the structures under oblique
incidence is to integrate the absorption for all the angles of incidence to obtain the
absorption coefficient in diffuse field, αdiff , as [46]

αdiff(ω) =

∫ θm

θ=0
α(ω, θ) sin(θ) cos(θ)dθ

∫ θm

θ=0
cos(θ) sin(θ)dθ

. (4.141)

Note that for a hemispherical integration, θm = π/2, this reduces to

αdiff(ω) =
∫ π/2

θ=0
α(ω, θ) sin(2θ)dθ, (4.142)

known as the Paris’ formula. This coefficient is closely related to the measurement
of sound absorption under random incidence in a reverberant chamber following
the standardized acoustic test ISO 354:2003 [58]. Note the experimental test should
differ from the calculations due to many factors, including a non-diffuse field in
the reverberant chamber or the absorption at the boundaries of the finite-dimension
material [59]. Figure4.20c–d show the predicted absorption for various angles of
incidence for both configurations. The absorption coefficient in diffuse field is also
shown, where it can be observed that under random incidence the absorption curve
is smoothed.

4.4.2 Noise Transmission Through a Double Wall

Other interesting problem that has beenwidely solved using theTMMin the literature
is the transmission of acoustic waves travelling through multiple elastic walls. This
concerns the classical problem of noise transmission in building acoustics for sound-
proofing, as well as sound transmission in automotive and aerospace applications
[60]. In the following, we present the solution of a classical example of a double-
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Fig. 4.21 Geometry of the configuration, composed of a double elastic wall separated by a cavity
and scheme of the transfer matrices used

wall sound proofing system composed of two layers of gypsum board separated a
distance L , with an air cavity between the walls, as shown in Fig. 4.21.

In this case, the total transfer matrix is given by

T = T[1]
w T f T[2]

w , (4.143)

where T[1,2]
w are the transfer matrices of the gypsum boards given by (4.133), and

T f is the transfer matrix of the air cavity given by (4.53). The total transfer matrix
under oblique incidence then

T =
⎡

⎢
⎣

1 Z1

0 1

⎤

⎥
⎦

⎡

⎢
⎣

cos(k0,z L) i Z0
k0
k0,z

sin(k0,z L)

i

Z0

k0,z
k0

sin(k0,z L) cos(k0,z L)

⎤

⎥
⎦

⎡

⎢
⎣

1 Z2

0 1

⎤

⎥
⎦ , (4.144)

where the perpendicular and transverse wavenumbers are given by

k0,z =
√

k20 − k20 sin
2(θ) and k0,x = k0 sin(θ), (4.145)

and Z1 and Z2 are the impedances of the infinite elastic walls given by (4.133). Once
the total transfer matrix is calculated, we can obtain the transmission coefficient T
using (4.37). Then, we can represent the transmission loss in logarithmic scale as

TL = −10 log10 |T |2, (4.146)

which is useful to quantify the soundproofing performance of structures.
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4.4.2.1 Normal Incidence

For normal incidence, θ = 0, then k0,z = k0.We can calculate the total transfermatrix
from (4.144), and then the transmission coefficient using (4.37) to obtain

T = 1
(

1 + Z1 + Z2

2Z0

)

cos(k0L) + i

(

1 + Z1 + Z2

2Z0
+ Z1Z2

2Z2
0

)

sin(k0L)

. (4.147)

For normal incidence (4.133) leads to Z1 ≈ iωm ′
1 and Z2 ≈ iωm ′

2, i.e., only themass
of each wall contributes to their impedance.

We show an example for normal incidence using a double-wall composed of two
identical gypsum panels of h = 1.5 cm thickness, separated by a distance L = 5 cm
with a density of ρ = 850 kg/m3, Young modulus of E = 4.1 GPa, Poison ratio of
ν = 0.3 and lossesmodelled by η = 0.05.Air is assumed to fill the cavity. Figure4.22
shows that (4.147) gives the same solution as the numerical evaluation of the transfer
matrix (4.144). Moreover, approximate expressions for each regime (dashed lines),
can be obtained, as well as the transition frequencies.

Fig. 4.22 Transmission loss (TL) at normal incidence angle using an air cavity (black) and using
(4.147). Approximate solution are marked in dashed lines
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4.4.2.2 Low Frequency Approximation

For low frequencies, k0L � 1, we can approximate sin(k0L) ≈ k0L and cos(k0L) ≈
1 − k20L

2/2. Then, neglecting high order terms we obtain

TL ≈ 20 log10

(
ω(m1 + m2)

2Z0

)

, for f < f0. (4.148)

This frequency regime corresponds to thewell-knownmass law: the double-wall sys-
tem behaves as a single wall with total surface mass (m ′

1 + m ′
2). Thus, the transmis-

sion decreases with the square of the frequency, i.e., the transmission loss increases
6 dB/octave.

This expression is valid for frequencies up to the double-wall resonance frequency,
f0, given by

f0 = 1

2π

√

K0

L

(
1

m ′
1

+ 1

m ′
2

)

. (4.149)

At this particular frequency the double-wall resonates as a mass-spring-mass system,
where walls contribute to both masses (m ′

1 and m ′
2) and the bulk modulus of the

inner cavity (K0 = ρ0c20) contributes to the stiffness of the equivalent spring. At this
resonance frequency a peak of transmission is observed, producing a deep dip in the
transmission loss.

4.4.2.3 Medium Frequency Approximation

For intermediate frequencies up to k0L ≈ 1, the transmission loss of the system can
be simplified to

TL ≈ 20 log10

(
ω3m ′

1m
′
2L

2ρ20c
3
0

)

, for f0 < f < fd . (4.150)

In this regime the transmission increases with the sixth power of the frequency,
i.e., the transmission loss increases with 18 dB/octave. Here, the transmission loss
depends on the product of the masses and the separation of the panels, i.e., the
transmission loss is the addition of the insulation of both walls plus an additional
term as TL ≈ TL1 + TL2 + 20 log10(2k0L), where TL1 = 20 log10(ωm

′
1/2Z0) and

TL2 = 20 log10(ωm
′
2/2Z0) are the transmission losses of both independent walls,

respectively. Note the soundproofing performance of the double-wall in this regime
is greatly improved if compared with the performance of a panel with equivalent
mass.

This expression is valid for frequencies up to k0L ≈ 1, leading to a cut-off fre-
quency of
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fd = c0
2πL

. (4.151)

Above this frequency the resonances of the inner air cavity start to dominate.

4.4.2.4 High Frequency Regime

Above fd , the cavity between the two walls shows several resonances given by
k0L = nπ, where n = 1, 2, 3, .... Thus, the resonance frequencies are

fn = n
c0
2L

. (4.152)

At each resonance frequency a peak of transmission is produced, leading to a dip in
the transmission loss. The overall TL in this regime, neglecting the dips given by the
resonances, can be approximated by

TL ≈ 20 log10

(
ω2m ′

1m
′
2

2Z2
0

)

, for fd < f. (4.153)

In this regime the transmission decreases with the fourth power of the frequency,
i.e., the transmission loss increases with a slope of 12 dB/octave. This is roughly
equivalent to TL ≈ TL1 + TL2 + 6 dB.

4.4.2.5 Oblique Incidence

As occurs with the reflection problem, the transmission at normal incidence does
not describe a real situation where acoustic waves will impinge the walls at more
than one incidence angle. In addition, for each oblique incidence angle there exist
a frequency at which the corresponding wavelength of air matches the wavelength
of the bending waves travelling trough the infinite wall. Then, the impedance of
each wall should introduce a contribution modelling these phenomena, as shown in
(4.133).

Under oblique incidence, the transmission coefficient is calculated as

T (ω, θ) = 2

T11 + T12 cos(θ)/Z0 + T22 + T21Z0/ cos(θ)
. (4.154)

In addition, manipulating the total transfer matrix we can obtain the characteristic
frequencies under oblique incidence as
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Fig. 4.23 (left) Transmission loss as a function of the frequency and the angle of incidence. The
white dips mark the existence of resonance modes that led to transmitted energy. (right-bottom)
Transmission loss near the normal, at θ = 35◦. The effect of the coincidence mode is visible at
frequency f ′

c . Cavity resonances are also clearly visible at f1 and f2. (Right-center) Transmission
loss at θ = 60◦. The effect of the coincidence mode is visible at frequency f ′

c , cavity resonances
have increased their frequency. (Right-top) Transmission loss near the grazing angle, at θ = 75◦.
The effect of the coincidencemode dominates and its frequency almost match the critical frequency.
The effect of cavity resonances in the transmission loss is negligible

Mass-spring-mass resonance: f0(θ) = 1

2π cos(θ)

√

K0

L

(
1

m ′
1

+ 1

m ′
2

)

,

Coincidence frequency: f ′
c(θ) = fc

sin2(θ)
,

Cavity resonances: fn(θ) = n
c0

2L cos(θ)
with n = 1, 2, 3, . . .

where fc is the critical frequency given by (4.132), i.e., the coincidence frequency
for an incidence angle of θ = π/2.

Figure4.23 shows the transmission loss as a function of the incidence angle and
frequency. We can observe that the overall transmission loss is reduced when the
incident wavefront is tilted, mainly caused by the existence of a resonant transmis-
sion due to the coincidence effect. The mass-spring-mass resonance also shifts in
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frequency causing a reduction of the transmission loss in the low frequency regime.
The cavity modes are shifted-up in frequency.

To quantify the overall transmission loss in realistic situation including random
incidence, it is useful to integrate the angle-dependent transmission of the single to
obtain the diffuse-field transmission loss as

TLdiff(ω) = −10 log10

∫ θm

θ=0
T (ω, θ) cos(θ) sin(θ)dθ

∫ θm

θ=0
cos(θ) sin(θ)dθ

. (4.155)

where θm is usually in the range from 80◦ to 90◦.
This coefficient is related (but not equivalent) to the standardized test defined in

the ASTM E90-09 [61] to experimentally evaluate the insertion loss of a panel in a
transmission chamber. Note that, if θm = π/2, then

TLdiff(ω) = −10 log10

∫ π/2

θ=0
T (ω, θ) sin(2θ)dθ, (4.156)

in analogy with the Paris’ formula for the diffuse-field absorption given by (4.142).

4.4.2.6 Porous Layer in the Cavity

A common solution to increase the transmission loss at the cavity resonances is to
add a layer of porous material in the cavity. Thus, we can modify the total transfer
matrix as

T = T[1]
w T f TpT f T[2]

w , (4.157)

where Tp is the transfer matrix of the porous material given by (4.68) and T f is the
transfer matrix of the air gap between the porous material and the walls, given by
(4.53). We consider a cavity of 5cm, with a layer of porous material of thickness
L p = 4 cm, modelled using the JCA model and using a static air flow resistivity
of σ = 9958 Ns/m4, a high frequency limit of the tortuosity α∞ = 1.03, and open
porosity of φp = 0.982 a viscous characteristic length ofΛ = 203µm and a thermal
characteristic length ofΛ′ = 2Λµm. Therefore, the air gap at each side of the porous
layer is L0 = 0.5 cm.

The transmission loss of the system is shown in Fig. 4.24. Note that, in this case,
instead of obtaining an explicit analytical form like (4.147), it is more straightfor-
ward to directly evaluate numerically the transfer matrix of each element in (4.157).
First, for normal incidence we can see that at the cavity resonances ( f1, f2, . . .)
the transmission loss is greatly increased due to the damping of the purely acous-
tic modes propagating in the air between the layers. This is the principal benefit of
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Fig. 4.24 Transmission loss of the double-wall system without (continuous) and with (dashed) the
porous absorber. (Blue) normal incidence, (red) diffuse field

using a porous material inside the cavity. At the mass-spring-mass resonance ( f0)
the transmission is not longer perfect but the value of the TL remains low.

On the other hand, for diffuse field calculations, we can see that the transmission
loss is greatly reduced as compared with the normal incidence. This is mainly caused
by the coincidence effect that sweeps an almost perfectly transmitted mode all over
the spectra down to the critical frequency, as shown previously in Fig. 4.23.When the
layer of porous material is introduced, its effect is clearly visible at high frequencies
as it mainly attenuates the modes in the cavity. However, the contribution of the
porous material to reduce the transmission of the coincidence effect is very low, and,
therefore, the TL value at the critical frequency ( fc) remains low.

Note that, using the TMM the inclusion of more elements and layers to the sys-
tem is straightforward. However, in a realistic situation in building acoustics other
important phenomena should be considered: the transmission by the flanks, stubs and
supporting systems, the finite size of the elastic walls and many other vibro-acoustic
effects [60].

4.4.3 Phononic Crystals

We present the analysis of 1D periodic structures and metamaterials using the TMM.
An acoustic periodic media is an arrangement of acoustic elements, unit cells, whose
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Fig. 4.25 a Geometry of a phononic crystal made of alternating layers of two materials. b–c
Dispersion relations obtained for the phononic crystal, real and imaginary part of the wavenumber,
respectively. Bandgap regions are shaded

structure is repeated in space. A simple example of such media is a periodic-
multilayer structure composed of two fluid layers with alternating properties, as
shown in Fig. 4.25a, also named a phononic crystal in analogy with photonic crystals
in optics.

The total transfer matrix of the unit cell considered in this problem, Tu.c., is given
by the product of the transfer matrices of each layer as

Tu.c. = T[1]
f T[2]

f , (4.158)

where T[1]
f is the transfer matrix of the first fluid and T[2]

f is the transfer matrix of
the second fluid, both given by (4.53). Here, we consider a unit cell of total length
a, where the length of each layer is a1 and a2 respectively. Due to the periodicity
of the structure, it is sufficient to analyse a single unit cell to obtain the dispersion
relations, as well as the transmission and reflection properties.

When analysing period structures it is important to note that their dispersion
relations are defined for infinite period structures, while to obtain their reflection and
transmission properties these structures must be bounded in space, i.e., the scattering
properties depend on the number of unit cells considered.
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4.4.3.1 Derivation of the Dispersion Relation of a 1D Multilayer System

We consider two fluids with different wavenumbers and impedances, given by k1 =
ω/c1, k2 = ω/c2 and Z1 = ρ1c1 and Z2 = ρ2c2, where ρ1 and ρ2 are the density and
c1 and c2 the sound speed of each fluid. The periodicity of the system is a = a1 + a2.
Then, the transfer matrices of both fluids are given by (4.53), respectively

T[1]
f =

⎡

⎣
T [1]
11 T [1]

12

T [1]
21 T [1]

22

⎤

⎦ =
⎡

⎢
⎣

cos(k1a1) i Z1 sin(k1a1)

i
1

Z1
sin(k1a1) cos(k1a1)

⎤

⎥
⎦ (4.159)

and

T[2]
f =

⎡

⎣
T [2]
11 T [2]

12

T [2]
21 T [2]

22

⎤

⎦ =
⎡

⎢
⎣

cos(k2a2) i Z2 sin(k2a2)

i
1

Z2
sin(k2a2) cos(k2a2)

⎤

⎥
⎦ . (4.160)

In acoustics, for these periodic systems, the pressure and velocities accomplish
the Bloch-Floquet theorem providing the following relation between the boundaries
of the unit cell

[

p
vx

]

x=0

= Tu.c.

[

p
vx

]

x=a

=
[

T11 T12
T21 T22

] [

e−ika p
e−ikavx

]

x=0

. (4.161)

Rearranging this equation we obtain

([

T11 T12
T21 T22

]

−
[

eika 0
0 eika

])[

p
vx

]

x=a

= 0. (4.162)

Defining Λ = eika , this system only has solution if

∣
∣
∣
∣

[

T11 − Λ T12
T21 T22 − Λ

]∣
∣
∣
∣
= 0. (4.163)

By using the condition of reciprocity: T11T22 − T12T21 = 1, we obtain the following
dispersion relation

cos (kea) = T11 + T22
2

= Tr (Tu.c.)

2
. (4.164)

Thus, by solving the matrix product between (4.159) and (4.160) we obtain the
coefficients of the total transfer matrix as
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T11 = cos(k1a1) cos(k2a2) − Z1

Z2
sin(k1a1) sin(k2a2), (4.165)

T12 = i Z1 cos(k2a2) sin(k1a1) + i Z2 cos(k1a1) sin(k2a2), (4.166)

T21 = i

Z1
sin(k1a1) cos(k2a2) + i

Z2
cos(k1a1) sin(k2a2), (4.167)

T22 = cos(k1a1) cos(k2a2) − Z2

Z1
sin(k1a1) sin(k2a2). (4.168)

On the one hand, the effective wavenumber can be calculated by the terms T11 and
T22 using (4.15). Then, the effective wavenumber is given by

ke = 1

L
cos−1

[

cos(k1a1) cos(k2a2) − Z2
1 + Z2

2

2Z1Z2
sin(k1a1) sin(k2a2)

]

. (4.169)

On the other hand, the effective impedance, given by (4.16), can be obtained as
Ze = √

T12/T21. Then we obtain

Ze =
√

Z2
1 Z2 cos(k2a2) sin(k1a1) + Z2

2 Z1 cos(k1a1) sin(k2a2)

Z2 cos(k2a2) sin(k1a1) + Z1 cos(k1a1) sin(k2a2)
. (4.170)

Using these expressions the effective mass density, ρe, and bulk modulus, Ke, of the
multilayer system are

ρe = Zeke
ω

and Ke = Zeω

ke
. (4.171)

Note that, due to periodicity, the wavenumber is obtained only in the first Brillouin
zone. However, for the calculations of the effective parameters ρe, Ke, a proper
unwrap of the wavenumber is required.

Figure4.25b–c show the dispersion relation of the system. First, we can see that
the system is highly dispersive and the wavenumber does not depend linearly on
frequency: the phase and group speeds strongly depend on frequency. Second, we can
see that for certain frequency bands the wavenumber becomes imaginary. The waves
that propagate in these frequency bands are evanescent, therefore, these frequency
bands are called bandgaps, as explained in detail in Chaps. 1–3.

4.4.3.2 Transmission and Reflection of Bounded Phononic Crystals

The fact thatwaves propagating in bandgap frequencies are evanescent does not imply
that energy cannot propagate in a phononic crystal. In fact, for bounded (finite) struc-
tures some amount of energy penetrates and, therefore, some acoustic transmission
is expected.

For a finite phononic crystal of N unit cells the total transfer matrix is

http://dx.doi.org/10.1007/978-3-030-84300-7_1
http://dx.doi.org/10.1007/978-3-030-84300-7_3
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Fig. 4.26 a, c, e Reflection and b, d, f transmission coefficients of a phononic crystal of N = 3, 5
and 10 unit cells

T = TN
u.c., (4.172)

where Tu.c. is the total transfer matrix given by (4.158).
Figure4.26 shows the reflection and transmission coefficients of thefinite phononic

crystal using N = 3, 5 and10unit cells.Wecan see that, first, in the propagatingbands
there exist some peaks of transmission. In particular for frequencies ωa/πc0 < 1
there exist N − 1 peaks (neglecting the peak 0Hz) of transmission corresponding
to the Fabry-Pérot resonances of the bounded system. Obviously, at each peak of
transmission the reflection vanishes as the considered system here is conservative.
However, at the frequency bands corresponding to bandgap regions, the transmis-
sion drops. The energy is then strongly reflected by the structure by the constructive
interference in the backward direction corresponding to the Bragg resonance.

Asmore unit cells are considered, the number of resonances increases accordingly:
the filtering effect of the band-gap is more evident and the value of the transmission
inside it decreases.However, in a finite structurewithout intrinsic looses someportion
of the energy will always be transmitted.
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Fig. 4.27 Geometry of the negative bulk-modulus metamaterial composed of a waveguide loaded
with an array of HR. Dispersion relations of the system, real and imaginary part of the wavenumber,
respectively. Bandgaps are marked in shaded areas

4.4.4 Metamaterial Modelling Using TMM

The transfer matrix method has been applied to model acoustic waves propagating in
locally resonant structures. Here, we show two examples, a negative bulk-modulus
metamaterial made of a waveguide loaded with HR, and a negative mass-density
metamaterial made of a waveguide with embedded elastic plates.

4.4.4.1 Negative Bulk Modulus Metamaterial: Waveguide Loaded with
HRs

First,we show themodel of a locally-resonantmetamaterial composedof awaveguide
loaded with HR, as shown in Fig. 4.27. The total transfer matrix of the unit cell is
given by

Tu.c. = T f THRT f , (4.173)

where T f is the transfer matrix of the waveguide of length a/2 given by (4.53), and
THR is the transfer matrix of the HR loaded in parallel, given by (4.90). Therefore,
the transfer matrix of the unit cell is

Tu.c.=
⎡

⎣

cos(k f a′) i Z ′
f sin(k f a′)

i
1

Z ′
f

sin(k f a
′) cos(k f a′)

⎤

⎦

⎡

⎣

1 0
1

Z ′
r

1

⎤

⎦

⎡

⎣

cos(k f a′) i Z ′
f sin(k f a′)

i
1

Z ′
f

sin(k f a
′) cos(k f a′)

⎤

⎦,
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Fig. 4.28 Scattering of a negative bulk-modulus metamaterial composed of (left column) N = 3
unit cells and (right column) N = 10 unit cells. (Top row) transmission, (center row) reflection and
(bottom row) absorption

where a′ = a/2. For this example, we use a squared cross-section waveguide loaded
by an array of HR, where the neck and cavity of the HR are also rectangular. Sub-
stituting (4.3.7) in (4.90), and evaluating (4.173), we can obtain the elements Ti, j of
the transfer matrix. Then, we can calculate the dispersion relations of the system by
using (4.15).

Figure4.27 shows the real and imaginary part of the wavenumber. We can see that
strong dispersion is generated when the HRs are loaded in the waveguide. Bandgaps
are also observed. In the example shown here, the first bandgap appears just above
the resonance frequency of the HR. We can see that just in the limits of the bandgap
strong dispersion is produced. Moreover, at ωa/πc0 = 1 a second bandgap is gen-
erated. This bandgap corresponds to the Bragg’s resonance and is produced by the
multiple scattering of the waves due to periodicity. Interestingly, by using the effec-
tive parameters of the duct we can include the thermoviscous losses. Obtaining an
expression for the wavenumber including thermoviscous losses is straightforward
but the expressions will be too much complex. Instead, in practice we simply eval-
uate the total transfer matrix numerically, as shown in Fig. 4.27. Note that, when
introducing thermoviscous losses the dispersion relations are modified: in general,
the wavenumber becomes complex in propagating bands and the strongly-dispersive
flat propagating bands are smoothed.

Once the metamaterial is bounded we can obtain the reflection, transmission and
absorption properties. To calculate the transmission, the reflection and the absorption
of a structure with N unit cells we first evaluate the total transfer matrix as
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Fig. 4.29 (left) Scheme of the negative mass-density metamaterial with thin circular elastic plates.
Dispersion relation of the system, (center) real and (right) imaginary part of the wavenumber.
Bandgaps are marked in shaded areas

T = TN
u.c., (4.174)

where Tu.c. is the total transfer matrix given by (4.173). Then, (4.37)–(4.43) are
used. Figure4.28 shows the scattering properties of the metamaterial using N = 3
and N = 10 unit cells. We can see that waves with frequencies in the range of the
bandgap cannot easily propagate through the material. In the rest of the cases the
structure is almost transparent to sound, specially at the Fabry-Pérot resonances of
the structure. Note that the bandgap generated by the resonance introduces far more
attenuation than the one caused by Bragg scattering. In addition, by adding more
unit cells to the structure this effect becomes more evident. Finally, when losses are
taken into account, absorption is produced mainly at the resonances of the structure.
Absorption will be studied in detail in Chap.5.

Finally, note that TMM also allows the calculation of non-periodic metamaterials
based on this topology e.g., waveguides loaded by resonators of different geometry.
In this case, the T-matrix of each unit must be calculated and, using (4.13), the total
transfer matrix is obtained as the product of all matrices [28].

4.4.4.2 Negative Mass-Density Metamaterial: Waveguide with Thin
Plates

In the same way, we can design a metamaterial composed of a waveguide with an
embedded array of thin elastic clamped plates, as shown in Fig. 4.29. These materials
present negative mass-density effective parameters.

The total transfer matrix of the unit cell is given by

http://dx.doi.org/10.1007/978-3-030-84300-7_5
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Fig. 4.30 Scattering of a negative mass-density metamaterial composed of (left column) N = 3
unit cells and (right column) N = 7 unit cells. (Top row) transmission, (center row) reflection and
(bottom row) absorption

Tu.c. = T f TPRT f , (4.175)

where T f is the transfer matrix of the waveguide of length a/2 given by (4.53), and
TPR is the transfer matrix of the plate resonator embedded in series, given by (4.93).
Therefore, the transfer matrix of the unit cell is

Tu.c.=
⎡

⎣

cos(k f a′) i Z ′
f sin(k f a′)

i
1

Z ′
f

sin(k f a
′) cos(k f a′)

⎤

⎦

⎡

⎣
1 Z ′

r

0 1

⎤

⎦

⎡

⎣

cos(k f a′) i Z ′
f sin(k f a′)

i
1

Z ′
f

sin(k f a
′) cos(k f a′)

⎤

⎦,

where a′ = a/2. For this example, we use a squared cross-section waveguide loaded
by an array of circular thin plates. Substituting (4.123) in (4.93), and evaluating
(4.175), we can obtain the elements Ti, j of the transfer matrix. Then, we can calculate
the dispersion relations of the system by using (4.15).

The typical dispersion relation of this kind of system is shown in Fig. 4.29. We
can see that, contrary to the previous case, waves in the low-frequency regime cannot
propagate. However, above the resonance of the plates we observe that the wavenum-
ber becomes real. In addition, a secondary bandgap is observed below Bragg fre-
quency. Note when looses are introduced waves are damped in the propagation band
and bandgap limits smooth.

The scattering properties of a system using N = 3 and N = 7 membranes are
shown in Fig. 4.30. First, we can see that even for a system with few resonating
elements the transmission of waves for frequencies below the resonance frequency
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of the membrane is very low, as shown in Fig. 4.30 (top). Only waves corresponding
to the collective modes of the set of membranes can propagate. We can see that
there exist M = N modes in the first propagating band, while we found M = N − 1
modes for the second propagating band. When looses are introduced in the system
the transmission is reduced. The absorption, as shown in Fig. 4.30 (bottom), results
in peaks located at each resonance mode of the system. As the number of resonat-
ing elements is increased the absorption coefficient becomes higher and broad in
frequency, but only propagating modes can be efficiently absorbed.

4.5 Conclusions

The transfer matrix method is a simple but powerful analytical method for the predic-
tion of the propagation of acoustic waves that can be used to model a broad range of
one-dimensional problems. In this chapter, we have presented themethod in a general
way, and summarized the most common building blocks to solve one-dimensional
systems in Acoustics. We have included layers of fluid and porous media, ducts and
waveguides of different geometries including thermoviscous losses, locally react-
ing elements as Helmholtz or quarter-wavelength resonators, viscoelastic plates and
membranes, or micro-perforated panels.

Through the presented examples, we have reviewed the basic applications of
the method to evaluate the scattering properties of acoustic structures of particu-
lar interest. These include multi-layered porous absorbers for room acoustics, the
transmission problem in double-leaf wall for building acoustics, and the analysis of
the dispersion of acoustic waves in periodic media and metamaterials using locally
resonant elements. Using the generalized framework provided by the transfer matrix
method,many one-dimensional wave-motion phenomena as reflection, transmission,
absorption, attenuation and dispersion can be studied, as illustrated in the examples
of this chapter. One of the most interesting features of the TMM is that it provides
fast calculations of one-dimensional structures, allowing fast and robust optimization
procedures. In summary, the TMM allows the modelling of complex materials and
structures using a simple theoretical framework.
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4.6 Appendix—End Corrections

Radiation corrections must be applied when there exist discontinuities in the waveg-
uides due to a change of section. The radiation correction of a waveguide segment
due to cross-section changes, MΔl , is modelled by a in-series transfer matrix as
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MΔl =
[

1 ZΔl

0 1

]

, (4.176)

where ZΔl = −iωρΔl is the characteristic radiation impedance and Δl is the end-
correction length that depends on the geometry of the discontinuity. Below we sum-
marize some examples.

4.6.1 Change of Section in a Waveguide

When a discontinuity is caused by a change of section in a waveguide, as those
produced between the ducts that conform the neck and the cavity of a Helmholtz
resonator, the length correction, Δl, is approximated by [49],

Δl =0.82

[

1 − 1.35
rn
rc

+ 0.31

(
rn
rc

)3
]

rn. (4.177)

where rn is the radius of the narrower waveguide, e.g., the neck, and rc is the radius
of the wider waveguide, e.g., the cavity of a cylindrical Helmholtz resonator.

4.6.2 Side Branch

Another kind of discontinuity arises when a duct is loaded in parallel to a principal
waveguide, e.g., as the one shown in Fig. 4.11. The length of the end correction Δl
is given by [50]

Δl = 0.82

[

1 − 0.235
rn
rs

− 1.32

(
rn
rt

)2

+ 1.54

(
rn
rt

)3

− 0.86

(
rn
rt

)4
]

rn,

(4.178)

where rn is the radius of the loaded waveguide and rt is the radius of the main
waveguide. This correction only depends on the radius of the waveguides, so it
becomes important when the length of the duct is comparable to its radius.

4.6.3 Periodic Array of Slits

Another kind of end correction comes from the radiation from a series of slits to
the free media, as occurs in slotted panels. The radiation correction for a periodic
distribution of slits can be expressed as [62].
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Δl = hφt

∞
∑

n=1

sin2 (nπφt )

(nπφt)3
. (4.179)

where h is the height of the slit, φt = h/d and d is the distance between slits. For
0.1 ≤ φt ≤ 0.7 this expression reduces to

Δlslit ≈ −√
2 ln [sin (πφt/2)] /π. (4.180)

Note that, while these end corrections are good approximations, to accurately model
the radiation allBlochwavesmust be calculated, e.g., usingmodal expansionmethods
[27].
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Chapter 5
Acoustic Metamaterial Absorbers

Jean-Philippe Groby, Noé Jiménez, and Vicent Romero-García

Abstract Porous and fibrous materials provide effective and broadband acoustic
absorption at mid/high audible frequencies. However, these traditional treatments
result in thick and heavy layers when designed for low frequency audible sound. To
overcome these limitations, in the recent years metamaterials have been proposed
as an alternative to design sub-wavelength and efficient absorbing structures. In the
current chapter, we review the recent advances in metamaterial absorbers and their
underlying physics based on the analysis of the scattering matrix. Particularly, we
exploit the physical interpretation of the eigenvalues and eigenvectors of the scat-
tering matrix in the complex frequency plane to design efficient absorbers. We start
by the discussion of the reflection problem, where these eigenvalues and eigenvec-
tors collapse to the reflection coefficient. We state the conditions to design efficient
and perfect metamaterial absorbers. Then, we increase the complexity of the scatter-
ing considering the transmission problem, where additional conditions are needed
for designing perfect absorbers. Through this chapter we discuss different acoustic
metamaterials based on metaporous absorbers, arrays of Helmholtz resonators and
air cavities, as well as membrane and elastic-plate resonators.
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5.1 Introduction

When acoustic waves encounter in their path a physical material, a scattering event is
produced: part of the energy of the initial wave is scattered-back creating a reflected
wave, and some portion of the energy is transmitted through the structure. In lossless
systems, energy conservation grants that the energy of the incident wave is equal
to the sum of the energies of the reflected and transmitted waves, i.e. the scattered
energy. However, real materials present intrinsic losses and some fraction of the total
energy is irreversibly transformed into heat. Thus, a part of the incident wave energy
is absorbed by the material and, as a consequence, the scattering can be strongly
controlled if the intrinsic losses are properly adjusted. This can be done by tuning
either the structure of the material or its acoustic properties.

The sources of acoustic dissipation can be mainly divided in viscous losses and
thermal conduction. These viscothermal losses are at the basis of the absorbingmech-
anisms of traditional porous and fibrous absorbers providing effective and broadband
acoustic absorption in the mid/high audible frequencies [1, 2]. For a rigidly backed
material, as observed in practical situations when a layer of porous material is placed
in front of an impervious wall, the resonance frequencies of the material match the
quarter-wavelength resonance frequencies given by

fn = (2n − 1)cp
4L

, (5.1)

where cp is the sound speed inside the porous material, L the total thickness of
the material and n = 1, 2, 3 . . .. In this way, traditional absorbing materials become
thick and heavy for low frequency sound [3], which is not desirable for practical
applications such as sound-proofingor, in general, for building acoustics applications.

To overcome these limitations, the existing solutions rely on the use of other
mechanisms to shift this kind of resonance to the deep sub-wavelength regime, i.e.,
the wavelength associated to the new resonance frequency is much larger than the
characteristic size of the material. Arrangements of locally-resonant building blocks,
including Helmholtz resonators (HRs) when using air cavities, or the use of mem-
branes and elastic plates, have been used to design acoustic metamaterials. Using
sub-wavelength resonators, the density of states at low frequencies can be increased.
These artificial structures have been manufactured providing exotic dynamical fea-
tures around their resonance [4, 5]. These include negative mass density [6], negative
bulk modulus [7] or simultaneous negative mass density and bulk modulus [8] mate-
rials.

In the recent years, metamaterials have been also exploited to design efficient
acoustic absorbers in the sub-wavelength regime [9].Once the problemof the increas-
ing the density of states at low frequencies is solved by using locally resonant building
blocks, the second problem to be solved is the impedancematching to the surrounding
medium. The resonant building blocks, basically based on air cavities, membranes
or elastic plates, present a huge degree of freedom to modify their structure and, in
addition, to control the amount of losses in an unprecedented way. This allows to
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design systems with sub-wavelength resonances being impedance matched to the
surrounding medium, i.e., the realization of perfect and sub-wavelength absorbing
structures. In the present chapter, we will review the recent advances in metamaterial
absorbers and their underlying absorbing mechanisms.

5.1.1 The Scattering Matrix

When a physical system finds itself in the propagation path of an acoustic wave, part
of the waves is deflected from its original course leading to scattered acoustic waves
as depicted Fig. 5.1 for a 1D example.

The scattering matrix, S, relates the amplitudes of the incoming waves to those of
the outgoing waves of any physical system. For one-dimensional or planar problems,
the scattered waves take the form of reflected waves, i.e. backward-propagating
waves, and transmitted waves, i.e. forward-propagating waves. The total pressures
at both sides of a structure, considering a harmonic temporal dependence of the type
e−iωt , are then given by

p(x) = Ae−ikx + Beikx , for x < 0, (5.2)

p(x) = Ce−ikx + Deikx , for x > L , (5.3)

as described in Fig. 5.1. Thus, the relation between the amplitudes of both waves is
given by the S-matrix as

[
A
D

]
= S

[
C
B

]
=

[
T− R+
R− T+

] [
C
B

]
, (5.4)

where the elements of the S-matrix are directly the transmission (T+ and T−) and
reflection coefficients (R− and R+) from each side of the structure. The asymmetry
of the structure translates into the fact that R+ and R− are different, while its possible
non-reciprocity translates into the fact that T+ and T− are different. All along the
present chapter, only reciprocal systems will be considered, whose fact implies the

Fig. 5.1 Definition of incoming and outgoing waves for 1D reflection and transmission problems
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transmitted fields are identical when the system is excited from one or the other side,
i.e. T = T+ = T−. In this latter case, the S-matrix reduces to

S =
[

T R+
R− T

]
. (5.5)

The S-matrix is widely used in wave physics to characterize and interpret the
wave scattering. In particular, the scattering matrix (5.5) possesses two eigenvalues
given by

λ1 = T + √
R−R+, λ2 = T − √

R−R+, (5.6)

while the eigenvectors corresponding to λ1 and λ2 are

�v1 =
[√

R−R+, R−
]
, �v2 =

[
R+,−√

R−R+
]
, (5.7)

respectively.
We can study some particular cases:

Symmetric systems
In case of symmetric physical systems both eigenvalues λ1 and λ2 reduce to the
reflection coefficients of the associated symmetric and asymmetric problems:

λ1 = Rsym = T + R and λ2 = Rasym = T − R. (5.8)

Reflection problems
For purely reflecting problems, where T = 0, both eigenvalues collapse into the
reflection coefficient:

λ1 = λ2 = R. (5.9)

In the lossless case, the scattering matrix is unitary, i.e. S†S = SS† = I, where
S† is the complex conjugate transpose of S and I is the identity matrix. In particu-
lar, this unitary property reflects the energy conservation relations, |R+|2 + |T |2 = 1
and |R−|2 + |T |2 = 1. The time-reversal symmetry leads in addition to the condition
S�S = SS� = I, where S� is the complex conjugate of S. Together with the unitary
property, time-reversal symmetry induce the fact that λ�

i = 1/λi , i = 1, 2. This last
property is the central point of the design of perfect absorbers by the complex fre-
quency analysis.
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5.1.2 Complex Frequency Plane Analysis

The poles and zeros of the eigenvalues as well as the eigenvectors of the S-matrix in
the complex-frequency plane provide rich information, as they are identified with the
resonances of the system. In this section, a lossless reflection problem, i.e., T = 0,
will be considered for the clarity of the presentation and without loss of generality.
The structure is subjected to leakage, because it is open to the surrounding medium.
In addition, specular reflection is assumed. Therefore, the scattering matrix as well
as the eigenvalue reduce to R. In the absence of losses, the unitary property provides
|R(ω)|2 = 1, i.e., the structure is perfectly reflecting. The time-reversal symmetry
provides

R�(ω) = 1

R(ω)
. (5.10)

Introducing a complex frequency Ω = ω + iζ, this last property also implies

|R(Ω�)| = 1

|R(Ω)| (5.11)

and translates the fact that if the reflection coefficient possesses a pole associated to
a resonance in the complex frequency plane at frequencyΩp, it also possesses a zero
at Ωz such that

Ωp = Ω�
z . (5.12)

The location of the pole in the complex frequency plane Ωp provides the quality
factor of the associated resonance, which reflects the leakage of the structure

Qleak = ωp

2ζ
. (5.13)

In this way perfect absorption is associated with the zeros of the reflection coeffi-
cient of a resonant system. Therefore, the analysis of this coefficient in the complex
frequency plane also provides useful insights for the design of absorbers [10, 11].

5.1.3 Perfect Absorption and Critical Coupling

The viscothermal losses induces a deformation of the complex frequency represen-
tation of the reflection coefficient. In case of very large quality factor, the reflection
coefficient may be rewritten in the form
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|R(ω)|2 ≈
(
Q−1

leak − Q−1
diss

)2
(
Q−1

leak + Q−1
diss

)2 , (5.14)

where Qdiss represents the dissipation induced by the losses. It immediately follows
that if

Qdiss = Qleak, (5.15)

the structure perfectly absorb the incoming energy.The losses induce adeformationof
the complex frequency plane that enable to locate the zero of the reflection coefficient
on the real frequency axis. In other words, when the losses exactly compensate
the leakage of the structure, perfect absorption is reached. When this condition is
fulfilled, the structure is critically coupled to the incoming wave. Therefore, tracking
the poles and the zeros of the eigenvalues of the scattering matrix when modifying
the amount of losses is a very powerful tool to design perfect absorbers in acoustics
or electromagnetism [10–13].

5.2 Reflection Problems

The ability to perfectly absorb an incoming wave field by a sub-wavelength structure
is advantageous for several applications in wave physics as energy conversion [14],
time reversal technology [15], coherent perfect absorbers [16], or sound-proofing [17]
among others. The solution to this challenge requires to solve a complex problem:
reducing the geometric dimensions of the structure while increasing the density of
states at low frequencies and finding the good conditions to match the impedance
with the background medium.

Until now, efficient sound absorption has been mostly achieved by using porous
materials or microperforated materials [2]. These materials attenuate sound waves
through viscothermal losses arising from the interaction of the sound wave with the
usually motionless skeleton. In these open and lossy systems, when the impedance
matching condition is fulfilled, perfect absorption is achieved. Throughout this
chapter, porous materials will refer to motionless skeleton materials, while poroe-
lastic materials will refer to porous structures with deformable frames.

The present section is organized as follows. We start by describing the limits of
absorption of regular acoustic porous materials. Then, metaporous and metaporoe-
lastic materials, consisting on porous our poroelastic materials embedding rigid or
resonant inclusions respectively, will be presented. These materials represent an effi-
cient alternative to purely porous/poroelastic materials in the inertial regime, in the
sense that they provide broadband perfect absorption of incident waves, the wave-
lengths of which are smaller than 10 times the thickness of thematerials.We continue
the discussion on the recent advances using metamaterials made of resonant air cav-
ities as well as elastic plates or membranes for sub-wavelength perfect absorption.
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5.2.1 Rigidly-Backed Porous Materials

Acoustic wave propagation in rigid-frame porous materials is usually modelled
through semi-phenomenological fluid models [18, 19]. These equivalent-fluid mod-
els, presented inChap.4, rely on complex and frequencydependent equivalent density
and compressibility, which respectively accounts for the viscous and thermal losses.
Different regimes might be considered, but the viscous and inertial regimes are of
particular interest because they are only related to the viscous losses. The Biot’s fre-
quency represents the transition frequency between these two regimes and is given
by

fBiot = σφ

2πρ0α∞
, (5.16)

where σ is the flow resistivity, φ is the porosity, α∞ is the tortuosity, and ρ0 is
the density of the saturating fluid. Below this frequency, the effective density of
the porous material is mainly imaginary and the pressure field satisfies a diffusion
equation, while above this frequency, the density is mainly real and the pressure field
satisfies a Helmholtz equation with losses.

The lowest frequency absorption peak of a rigidly-backed porous layer corre-
sponds to the so-called quarter-wavelength resonance. By using a first-order Taylor
expansion around this frequency of the numerator of the reflection coefficient of a
rigidly-backed layer of porous material, we end up with an optimal length which
reads as [20]

Lopt = i Z0

ωρef f
+ πcef f

2ω
, (5.17)

where Z0 is the characteristic impedance of the air medium, and ρef f and cef f are
respectively the effective density and sound speed of the rigid-frame porous material.
This relation imposes a purely complex value of the effective density and a purely
real value of the effective sound speed. In other words, this can only be achieved for
a frequency which is slightly above the viscous/inertial regime transition frequency.
This results in two main limitations:

(i) Rigidly-backed porous materials can only efficiently absorb sound for wave-
lengths smaller than about 4 times their thickness,

(ii) Rigidly-backed porousmaterials can only perfectly absorb sound for frequencies
higher than the so-called quarterwavelength resonance frequencywhen the latter
corresponds to the viscous/inertial regime transition frequency [20]. Below this
frequency, attenuation is too large, while above this frequency, attenuation is too
poor.

Figure5.2 illustrates this by using the Delaney–Blazley–Miki (DBM) model for
the effective parameters of the porous material, given in Chap. 4. The absorption for
a layer of porous material of different thicknesses is shown in Fig. 5.2b. As expected,

http://dx.doi.org/10.1007/978-3-030-84300-7_4
http://dx.doi.org/10.1007/978-3-030-84300-7_4
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Fig. 5.2 a Scheme of a rigidly-backed layer of porous material. b Absorption for layer thickness
L = λ0/8,λ0/4.6,λ0/4,λ0/2. c Map of the absorption showing perfect absorption peaks. d–e
Complex frequency plane representation of the reflection coefficient where the location of the zeros
and poles have been tracked as the thickness of the panel was varied. Adapted with permission from
[20]

when the thickness of the layer is increased the material becomes more efficient in
the low frequency regime as shown in Fig. 5.2c. This is due to the down-shift of the
quarter wavelength resonance when the thickness of the layer is increased.

A complete picture of the absorption process can be observed using the complex
frequency plane representation of the reflection coefficient. Note the reflection coeffi-
cient is the eigenvalue of the scattering matrix for the reflection problem. Figure5.2d
shows the complex frequency plane of the reflection coefficient for layer thinner that
the optimal, L = λ0/8, where λ0 = c0/ fBiot. Here, the zeros of the reflection coeffi-
cient (blueish dots) are located far from the real frequency axis, therefore, absorption
is not efficient. Moreover, the zeros of the reflection coefficient are located in the
opposite half-plane than their corresponding poles (reddish dots), therefore, the struc-
ture lacks of losses to produce efficient absorption at the resonances. We notice that
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each zero-pole pair is associated with a resonance, in this case each pair corresponds
with the quarter-wavelength resonances given by (5.1).

When the thickness of the layer is increased, the resonance is shifted-down in
frequency and, consequently, the location of the zeros of the reflection coefficient
in the complex frequency plane changes. The trajectories of the zeros have been
tracked, and, eventually, they cross the real frequency axis, as shown in Fig. 5.2e. This
occurs, using the DBM model, for a layer of L = λ0/4.64 = Lopt . Note using other
equivalent-fluid models for the porous material this value can be slightly different
[20]. Finally, if the layer is bigger than Lopt the zeros associated to the resonances
of the layer are located into the same half-complex plane of their corresponding
poles. In this case, the whole structure presents an excess of intrinsic losses and,
even while the lowest absorption peak appears at lower frequency, the magnitude of
the absorption is decreased and it becomes far from optimal.

Therefore, bulky and heavy structures are required to absorb sound at low fre-
quency and very low frequency cannot be absorbed by homogeneous porous mate-
rials.

5.2.2 Metaporous Absorbers

An efficient way of designing broadband and thin sound absorbing materials is to
combine porous materials with locally resonant elements in the same composite.
Therefore, the viscothermal losses arising from porous materials will be used to
attenuate sound, while the role of the locally resonant elements is twofold: on the
one hand trapping the sound energy inside the composite at frequencies much lower
than the quarter-wavelength resonance and, on the other hand, modifying/tuning
the system attenuation. Figure5.3 shows three possible topologies of metaporous
absorbers: a sonic-crystal metaporous,1 i.e., periodic array of rigid cylindrical inclu-
sions embedded in a layer of porous material (Fig. 5.3a), a split-ring metaporous
absorber, i.e., split ring resonators embedded in a layer of porous material (Fig. 5.3b)
and aHRporous absorber, i.e., HR embedded in a layer of porousmaterial (Fig. 5.3c).

Figure5.4a shows the absorption coefficient of a porous layer without and with
rigid inclusions. We notice that the first absorption peak for the case without inclu-
sions is not unity due to the fact that this frequency lies in the inertial regime.However,
once the array of rigid inclusions are included, an enhancement of the absorption of
the structure at low frequency is clearly shown. This enhancement is due to the exci-
tation of a trapped mode, which localize the acoustic energy between the inclusion
set and the rigid backing, Fig. 5.4b. For a given filling fraction and position of the
inclusions, the energy leakage of the structure can be exactly compensated by the
intrinsic losses and a perfect absorption peak is reached for a frequency much lower
than the so-called quarter wavelength frequency of the homogeneous porous layer
[21, 22]. The Bragg interference arising from the interaction of the inclusions with

1 Using only one layer of scatters it becomes a grating metaporous absorber.
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Fig. 5.3 Three topologies of metaporous absorbers. a Sonic-crystal metaporous: periodic rigid-
cylindrical inclusions embedded in a layer of porous material. b Split ring resonators embedded in
a layer of porous material. c HRs embedded in a layer of porous material

their image with respect to the rigid backing unfortunately leads to a large reflection
of the structure and therefore a lower absorption, as depicted Fig. 5.4a. At higher
frequencies, the absorption might be enhanced at the resonance frequencies of the
porous plate, which are discretely excited thanks to the periodicity. These modi-
fied modes of the plate correspond to the Wood’s anomaly in the presence of the
porous plate, Fig. 5.4a. Note that the required filling fraction for perfect absorption is
larger for three-dimensional inclusions than for two-dimensional ones. This implies
that perfect absorption might be impossible to achieve for some porous materials
by employing some three-dimensional inclusion shapes, typically sphere inclusions
arranged on a cubic lattice.

The absorption can be further enhanced at low frequencies by embedding resonant
inclusions, like split-ring resonators [23], HRs [24] or coiled structures [25]. At their
resonance frequency, the acoustic energy is trapped in the resonant inclusions and
attenuated by viscothermal losses. The resonant inclusions can be coupled with the
rigid backing. Therefore, broadband absorption can be achieved by considering a
supercell composed of various resonators with different orientations. It is worth
noting here, that perfect absorption can only be achieved when the resonance of the
inclusion lies in the inertial regime of the porous matrix, Fig. 5.4c–d. When it lies in
the viscous regime, absorption peaks are usually noticed but cannot be unity either
because the acoustic energy cannot travel to the resonators, as depicted Fig. 5.4e–f in
the case of completely embedded HRs, or because the resonator can hardly resonate
when filled with a porous material in the viscous regime. When a metaporous layer
is flush-mounted in a partially lined duct, both the eigenvalues and the eigenvectors
of the lower two Bloch modes coalesce at an exceptional point leading to a maximal
sound attenuation because of a localized mode in the liner [26].

Whilst the effect of the Bragg’s frequency may be erased by adjusting the reso-
nance of resonant inclusions at this frequency, it can be more efficient to structure the
rigid backing by adding quarter wavelength resonators or HRs [27, 28]. Therefore,
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Fig. 5.4 a Absorption coefficient of a 2 cm-thick porous layer of Fireflex without inclusion (blue
curve) and with 2 cm periodic rigid circular inclusions of radius 7.5mm embedded in (red curve); b
snapshot of the pressure field at the perfect absorption frequency (see arrows in (a)); c Absorption
coefficient of a 2 cm-thick melamine layer without inclusion (blue curve), with 4.2 cm periodic
supercell composed of two split-ring resonators the opening of which being in opposite directions
embedded in (red curve), and experimental validation (o);dSample picture; eAbsorption coefficient
of a 2 cm-thick melamine layer without inclusion (blue curve), with 2.1 cm periodic HRs embedded
in (red curve), and experimental validation (o); f Sample picture

the embedded resonant inclusions leads to perfect absorption at low frequencieswhile
the structured rigid backing avoids the Bragg interference associated to an absorp-
tion loss at higher frequencies in optimised structures. Such metaporous materials
possess enhanced acoustic properties to drastically reduce treatment thickness.

Accounting for the possible motion of the skeleton paves the way to remove the
limitation of the metaporous materials to the inertial regime. Beyond the apparent
increasing of the stiffness of the poroelastic structure by the presence of the purely
elastic inclusions, elastic resonators usually resonate at lower frequencies than acous-



178 J.-P. Groby et al.

tic ones and can therefore be efficiently designed for low frequency absorption pur-
pose. For example, a preliminary study [29] has shown that the periodic embedment
of viscoelastic shells in a poroelastic layer enables the enhancement of the poroelas-
tic plate absorption coefficient thanks to the excitation of trapped modes, the volume
mode of the shell, but also the higher order modes of the shell which occur at much
lower frequency than the Biot’s frequency. If optimally excited, elastic resonances
may offer new possibilities for the design of sub-wavelength metaporoelastic mate-
rials, both for the acoustic and elastic energy mitigation.

5.2.3 Metamaterials Based on Resonant Air Cavities

As in the case of metaporous structures, the design of efficient sub-wavelength
absorbers based on resonant cavities also requires avoiding the viscous regime. Using
sub-wavelength resonators, with their associated viscothermal losses, allows increas-
ing the density of states at low frequencies while down-shifting the viscous/inertial
transition frequency of the constitutive elements. Once the resonators are made of air
cavities with simple geometries, the viscothermal losses can be effectively accounted
for in these constitutive elements by making use of the appropriate complex and fre-
quency dependent effective density and compressibility, as described in Chap. 4.
Usual designs are made of structured walls (also known as metasurfaces) compris-
ing a periodic arrangement of quarter-wavelength resonators derived from diffraction
gratings [3, 30] possibly making use of theWood’s anomaly [31–33], or of HRs [34–
36]. The quarter-wavelength resonators or the neck of the HRs can be coiled in order
to make them deep sub-wavelength [34, 37–40]. The coiling enhances the effective
length of the element in a similar way as the tortuosity for porous materials therefore
down-shifting the resonance frequency of the resonators, while keeping the resistiv-
ity of the structure relatively low in order to fulfil the impedance matching condition.
Nevertheless, the effect of coiling on the losses is usually not accounted for in the
models [34] but can be relevant if this coiling results in narrow channels.

Because of the sub-wavelength nature of these types of metasurface when the
Wood’s anomaly is not used, resonant surfaces made by periodically arranging HRs
upon or slightly above an impervious substrate can be homogenized [41]. Themethod
relies on the existence of a locally periodic boundary layer developed in the vicinity of
themetasurface where strong near-field interactions of the resonators with each other
and with the substrate take place. Effective boundary conditions which account for
both the surface corrugation and the low-frequency resonances are derived allowing
to critically couple the structure.

Another way of decreasing the resonance frequency of such a metasurfaces con-
sists of exploiting the strongdispersion introduced by the resonators in order to induce
slow sound regimes in the structure. Slow sound propagation is currently a grow-
ing topic in acoustics because of the direct analogy with electromagnetic induced
transparency. This phenomenon appears when an opaque medium exhibits enhanced
transmission in a narrow frequency window along with strong dispersion. This rapid

http://dx.doi.org/10.1007/978-3-030-84300-7_4
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Fig. 5.5 a Sketch of the perfect absorber for reflection problem; b Picture of the perfect absorber
sample; c Map of log|R|2 in the complex frequency plane; d Absorption coefficient calculated with
different methods and measured. Adapted with permission from [36]

change in transmission leads to strong dispersion giving rise to slow phase or group
velocity waves whose frequency is centred on a narrow transmission band [42]. In
acoustics, most of the theoretical and experimental evidences of slow sound have
been achieved by considering sound propagation in pipes with a series of detuned
resonators (mostly HRs) separated by a sub-wavelength distance [43, 44], tuned or
detuned resonators separated by half of the wavelength giving rise to a coupling
between the resonators and the Bragg bandgap [45], in a sonic-crystal waveguide
[46], in lined ducts [47], among others.

Only a few studies have been focusing on the dissipation (dispersion and atten-
uation) of slow sound propagation [48, 49], even if it has sometimes been noticed
or discussed. Dissipation was considered as a side effect of an unexpected adverse
reaction. The key point is to make use of slow sound propagation, which appears
for a broadband frequency range below the bandgap associated with the local reso-
nances, or in a narrow frequency band between the bandgaps associated with detuned
resonator resonance (induced transparency band), together with the associated dis-
sipation (attenuation and dispersion) to design a sound absorbing metamaterial.

The dispersion relation in a duct loaded by identical [50], detuned [12] or different
[51] quarter-wavelength or Helmholtz [36] resonators was studied. From a descrip-
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tion based on the locally reacting impedance condition mimicking the loading by the
resonators, the effective parameters are derived. The analysis shows that the sound
wave propagating in the loaded duct possesses the specific features of slow sound,
in the induced transparency band, but also at low frequency. While the sound speed
is necessarily dispersive in the induced transparency band, it possesses a plateau at
low frequency with lower sound velocity than air. As expected from [52], the real
part of the effective bulk modulus becomes negative inside the band gap due to the
resonance of the loading resonators. Note that the presence of the losses induces a
small amount of propagation in the band gap [49]. Therefore, the use of the term
band gap might be abusive. We note here that the decreasing of sound speed is as
well associated with an increase of the attenuation. Thus, very low sound speed wave
cannot propagate over a large distance in acoustics due to the presence of losses. This
specific type of propagation allows designing sub-wavelength resonators.

In case of rigidly-backed structures, these resonators canbe slits loadedbyother air
cavities, e.g., quarter wavelength resonators [51] or HRs [36] as shown in Fig. 5.5a–b.
When periodically arranged, they form a metasurface similar to dead-end porosity
ones [53], the resonance of which appears for wavelength much larger than the
impinging wave one. Note that the sub-wavelength resonance of these slits is only
due to a drastic reduction of the sound speed inside the loaded ducts and not to coiling
effect [34, 37]. These structures can be critically coupled to the exterior medium by
tuning their geometry. When this condition is fulfilled, the perfect absorption is
obtained because the attenuation of the structure exactly compensate its leakage and
the zero of the scattering matrix (R in this case) exactly lies on the real frequency
axis, see Fig. 5.5c. Several structures were designed by using this technique, the
absorption band of some being broaden by using detuned sub-wavelength resonators
in the unit cell and the absorption of others being deeply sub-wavelength [36], i.e.
L = λ/88, see Fig. 5.5a–d. All these structures were validated experimentally. It was
found in practice that the limiting parameters in low frequency is the manufacturing
of the sample by stereo-lithography, the structure being not acoustically rigid any
more when the walls become very thin.

It is also important to note that these structures are locally reacting ones and
therefore can only be critically coupled for a single angle of incidence [54]. Effec-
tively, increasing the number of resonant elements per unit cell will result in a single
impedance value for each frequency.

Concerning broadband metasurfaces based on air cavities two basic phenomena
must be included by the structure. The first is a mechanism to produce a large amount
of resonance, while the second concerns a physical mechanism to control the losses
for each resonance. The common approach is to design a structure with different set
of resonators, each one producing a resonance at a particular frequency. To obtain
broadband absorption the structure must be impedance matched with the exterior not
only around the resonance frequency, but over a broad frequency range. This was
achieved first by Wu et al. [3] using a set of QWRs with different lengths as those
used in phase-grating sound diffusers. While each resonator presented a different
resonance and they were efficiently coupled to the air, a porous screen placed in top
of the structure provided viscothermal losses to produce broadband and quasi-perfect
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sound absorption. This structure was then improved by coiling the QWRs [30] to
obtain optimal absorbing structures and it was demonstrated that the resonancesmust
be distributed logarithmically in frequency to obtain optimal absorption. In addition,
it was proved that causality imposes a physical limit between the thickness of an
absorber and the frequency range of the absorbed spectrum [30] for any real acoustic
structure. This important relation should be considered prior to any optimization
procedure during the design of broadband absorbers of any kind.

Recent advances include the combination of slow-sound propagation due to
QWRs and porous materials [55], QWRs and perforated sheets in honeycomb struc-
tures [56], split ring resonators [57], labyrinthine metasurfaces [58], coupled micro-
slits [59], acoustic black-hole absorbers [60, 61] or bio-inspired metamaterials [62].

Finally, it is worth noting here that perfect absorbers based on metamaterials
have been used to design sub-wavelength-thickness sound diffusers based on slow-
sound [63, 64]. In this case, some of the unit cells corresponding to ideal absorbers
are replaced by absorbing metamaterials leading to high-accuracy sound diffusers
designed using number-theory sequences. For example, perfect sound absorption
can be used to generate ternary-sequence sound diffusers using thin panels, and
to contribute in the generation of uniform scattering patterns for broadband sound
metadiffusers.

5.2.4 Metamaterials Based in Resonant Elastic Plates and
Membranes

Other mechanism to produce sub-wavelength resonances is the use of elastic plates
and membranes. Thin elastic plates and prestressed membranes present low bend-
ing stiffness that allows flexural waves to travel through their surface with a rela-
tively slow phase speed.2 Thus, when these materials are bounded, and they vibrate
constrained by some boundary conditions, usually clamped ones, their resonance
frequency can appear in the low frequency regime. In addition, at the resonance
frequency, the impedance of the membrane can be efficiently coupled with the
impedance of the air, giving rise to a broad range of efficient and sub-wavelength
absorbers based on these resonating elements.

One of the first metamaterials using membranes for sound absorption was pre-
sented by Mei et al. [17] in 2012, where it was reported efficient absorption using
membranes decorated with asymmetric rigid platelets. Decorated membranes were
previously proposed in the past to design negative mass-density metamaterials [68].
At the resonance, the energy density in the membrane is increased several orders of
magnitude with respect to the incident wave energy density. However, the platelets
and the membrane develop flapping oscillations that are weakly coupled with radia-
tion modes. Therefore, energy remains trapped in the structure and it is transformed
into heat efficiently due to the intrinsic viscoelastic losses of the membranes. This

2 See Chap.4 for details about the modelling.

http://dx.doi.org/10.1007/978-3-030-84300-7_4
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Fig. 5.6 a Decorated membrane metamaterial using a membrane with a rigid attached mass. The
intrinsic losses of the system are fixed by the viscoelasticity of themembrane and the cavity, themass
and the tension of the membrane allow tunning the resonance frequency. Adapted with permission
from [65]. b Poroelastic-plate metamaterial using a poroelastic plate backed by a tuned air cavity.
The intrinsic losses of the system are fixed by the porous material, while the cavity is tuned to
critically-couple the structure producing perfect absorption. Adapted with permission from [13].
c Screened-membrane metamaterial using a membrane with a rigid attached mass backed by a
cavity. A resistive sheet is placed in front. The resonance frequency is fixed by the resonance of the
decorated-membrane and the cavity, while the resistive screen allows the accurate control of the
intrinsic losses of the system. This enables the critical-coupling and a peak of perfect absorption is
observed. Adapted with permission from [66]. d Aerogel-plate metamaterial using an viscoelastic
plate of aerogel material in a slow-sound configuration. The resonance frequency of the system is
tuned using the cavity and the Aerogel properties, while the intrinsic losses of the system can be
controlled by tuning the viscothermal processes in the narrow slit. Adapted with permission from
[67]
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approach was studied inmore detail later by Yang et al. [69], while the vibro-acoustic
behaviour of these resonators including attached masses of several geometries has
also been studied for membranes [70] and for thin elastic plates [71].

Later, Ma et al. [65] reported efficient absorption by using decorated membranes
using a similar set-up than the one shown in Fig. 5.6a. It consists, essentially, in an
elastic membrane where a rigid platelet was glued to its surface. The added mass by
the platelet contributed, first, to downshift the resonance frequency of the membrane.
Then, when a cavity is placed behind the decorated membrane, a hybrid mode was
observed [65, 69]. At this resonance, the system becomes impedance-matched to
airborne sound at low frequencies and, therefore, a peak of absorption is observed.

Other approaches are the use of thin poroelastic plates to increase the intrinsic
losses of the material and enhance the impedance-coupling of the clamped elastic
plate with the air, as illustrated in Fig. 5.6b. Using poroelastic plates, Romero-García
et al. [13] proposed efficient and broadband absorbers where the absorption of energy
was demonstrated to be perfect. In this configuration, the intrinsic losses of the system
are fixed by the viscothermal and viscoelastic processes in the poroelastic plate, while
the resonance frequency was tuned controlling the length of the cavity. A similar
approach has been also reported by Aurégan [66], where a deep-subwavelength
metamaterial was designed using a decorated membrane and a cavity to fix the
resonance frequency of the system (mainly controlling the imaginary part of the
impedance of the system), and a resistive layer consisting in a thin metal-wire mesh
was placed at the front to control the intrinsic losses of the system (the real part of
the impedance of the system). Using this set-up, as shown in Fig. 5.6c, nearly perfect
absorption was reported for a structure 200 times thinner than the wavelength at
around 100 Hz.

Recently, exoticmaterials such as aerogelswere used as resonating plates to design
absorbing metamaterials [67], as illustrated in Fig. 5.6d. In this case, the structure
included a narrowslit. In thisway, the resonance frequencyof the systemcanbe tuned,
mainly, by the resonance frequency of the resonant plate together with the length
backing cavity. The use of the aerogel material introduced some viscoelastic losses.
In addition, the introduction of the narrow slit adds an extra degree of freedom for
the accurate tuning of the intrinsic losses of the system by introducing viscothermal
losses. Then, by modifying the geometry both, resonance frequency and intrinsic
losses can be adjusted to produce perfect sound absorption [67].

Finally, broadband absorption have been proposed using combination of
decorated-membrane metamaterials [72]. Moreover, membrane metamaterials can
also be used to design efficient absorbers for transmission problems, as those using
degenerate resonators [73], but this will be explained in the next section.

5.3 Transmission Problems

In the previous section, we have reviewed the case of rigidly-backed materials. In
a reflection problem both eigenvalues collapse to one single value, the reflection
coefficient. Thus, to obtain perfect sound absorption, the control of single scattering
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event is sufficient, i.e., efficient absorbers can be produced using a single resonator.
However, when transmission is allowed, the scattering matrix presents two different
eigenvalues. To produce perfect absorption both eigenvalues must vanish, i.e., the
structure must be critically coupled simultaneously for the two eigenvalues of the
scattering matrix.

5.3.1 Absorption and Fabry–Pérot Modes: Limits of
Absorption by Single Resonators in the Transmission
Problem

Let us start considering a slab of homogeneous material of length L , with effec-
tive properties under normal incidence, as sketched in Fig. 5.7a. The reflection and
transmission coefficients are linked to the effective parameters, i.e., the complex and
frequency dependent effective bulk modulus, κef f , and effective density, ρef f as

R = i(Z̄2 − 1) sin(kef f L)

2Z̄ cos(kef f L) − i(Z̄2 + 1) sin(kef f L)
, (5.18)

T = 2Z̄

2Z̄ cos(kef f L) − i(Z̄2 + 1) sin(kef f L)
, (5.19)

with normalized effective impedance and effective wavenumber as

Z̄ = ρef f κef f

ρ0κ0
, kef f = ω

√
ρef f

κef f
, (5.20)

where ρ0 and κ0 are the density and bulk modulus of the surrounding medium,
typically air for sound absorbing materials.

Finally, the absorption of the system is given by

α = 1 − |T |2 − |R|2. (5.21)

This material can be, e.g., a slotted rigid material, being the separation between
slits much smaller than the wavelength of the impinging wave. Thus, when the slits
are thick in comparison with the viscous and thermal boundary layers, the effective
parameters of the material are the same as the surrounding medium and the intrinsic
losses are almost negligible. A homogeneous structure like this presents symmetrical
and anti-symmetrical resonance modes, as shown in Fig. 5.7b. These modes are in
fact the Fabry–Pérot (FP) resonances of the slab of material. Each resonance, is
associated with a zero and a pole which are visible in the complex-frequency plane
representation of the eigenvalues of the scattering matrix shown in Fig. 5.7e–f. Note
symmetrical resonances (marked in blue) appear in the λ1 complex-frequency plane
and anti-symmetrical resonances (marked in red) are represented by a zero-pole pair
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Fig. 5.7 a Example of a simple absorbing panel: a slotted rigid panel of length L . b Corresponding
FP modes. c Reflection and Transmission and d absorption up to the third FP resonance frequency.
e–f Eigenvalues of the scattering matrix represented in the complex frequency plane, corresponding
to the anti-symmetric and symmetric problems

in the complex-frequency plane corresponding to the eigenvalue λ2. At the resonance
frequency associated with each FP mode, a peak of transmission is produced and
reflection is reduced, as shown in Fig. 5.7c.

However, when losses are introduced in the system and, in this particular example,
the slits have a thickness comparable with the viscous and thermal boundary layers,
sound absorption is produced. In general, each peak of sound absorption corresponds
to a different resonance of the material. However, symmetric and antisymmetric
resonances appear at different frequencies in a homogeneous and symmetric material
such as this slotted panel or in a layer of porous material. The position of the zeros
in the complex frequency plane can be modified by tuning the intrinsic losses of the
system. In the present example, the losses can be adjusted by tuning the thickness
of the slits. Eventually, a zero of one eigenvalue associated with one resonance can
be placed at the real frequency axis. In this situation, we obtain the higher possible
absorption. In the present example we see that the maximum possible absorption is
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α ≤ 0.5 because the resonances show a very high quality factor.3 In this way, peaks of
α ≈ 0.5 appear at each FP resonance, each peak being associated with a symmetric
and antisymmetric mode. However, note that only one eigenvalue can vanish at
the same frequency because symmetric and antisymmetric resonances appears at
different and frequencies. In a single scattering event, as those obtained using a bubble
immersed in a liquid, orwhen the quality factor of a resonance is very sharp, only 50%
of the energy can be absorbed [74, 75].However, inmost practical situations the effect
of overlapping between resonances is present. Thus, and in general, the maximum
absorption of a slab of homogeneous and symmetric materials is 0.5 ≤ αmax < 1
[76, 77].

5.3.2 Monopolar and Dipolar Resonances

The preceding example used the FP resonances of a slotted panel, but the conclusions
apply to any homogeneous and symmetric material. In this example, symmetric and
antisymmetric resonances correspond to the FP resonances. However, when using
metamaterials, sub-wavelength resonators are embedded in the structure. In this
case, symmetric and antisymmetric modes arise in a different manner, and become
dependent on the type of the resonator. Thus, it is interesting to distinguish between
monopolar and dipolar resonances. Figure5.8 shows examples of both types. On the
one hand, when considering a single scattering event, monopolar resonances appear
as a symmetric mode, as produced by a single resonator in parallel with a waveguide
(Fig. 5.8a–c). On the other hand, when considering a single scattering event, dipolar
resonances produce an antisymmetric mode, as those produced by a single resonator
in series with a waveguide (Fig. 5.8d–e).

Finally, note that when considering a multiple scattering event, as those produced
in a metamaterial with a high number of resonators, as shown in Fig. 5.9, some res-
onances will correspond to asymmetric modes (Fig. 5.9a–c), and other to symmetric
ones (Fig. 5.9d–e). Those modes are in fact the collective resonance modes of the
resonators that compose the metamaterial. On the one hand, in a structure composed
of only identical monopolar resonators, as in Fig. 5.9a–c, the first resonance is a
symmetric mode (not shown in the figure), the second resonance corresponds to an
antisymmetric mode (shown in the figure), and so on. On the other hand, in a material
using only dipolar resonators, as those in Fig. 5.9d–e, the first resonance corresponds
to an antisymmetric mode (not shown in the figure), the second to a symmetric mode
(shown in the figure), and so on. In general, there will exist, at least, the same number
of collective resonances as the number of resonators existing in the structure.

3The quality factor of the resonances is associated to the impedance mismatch between the slit
and the exterior medium due to the change of section. In the case of broadband resonances the
absorption can reach α > 0.5 due to overlapping between symmetric and antisymmetric modes.
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Fig. 5.8 Examples of single monopolar and dipolar resonances using simple resonators

Fig. 5.9 Examples of single monopolar and dipolar resonances using multiple resonators
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In this way, by using monopolar resonators one can obtain dipolar resonances,
and, conversely, using only dipolar resonators one can obtainmonopolar resonances.
This fact is important to design sub-wavelength efficient absorbers for transmission
problems because, as we will describe later, the overlapping between symmetrical
modes (monopolar resonances) and anti-symmetrical modes (dipolar resonances) is
critical.

In particular, to produce perfect sound absorption in a transmission problem,
both eigenvalues of the scattering matrix must vanish at the same frequency. This
implies that a symmetrical mode (a monopolar resonance) should appear at the same
frequency as an anti-symmetrical one (a dipolar resonance). In homogeneous and
weakly dispersive materials, e.g., porous materials or those structures presenting FP
modes as in Fig. 5.7, the symmetrical and anti-symmetrical modes appear at different
and alternating frequencies. Thus, it is not possible to efficiently overlap them.

To overcome this problem and design efficient or perfect absorbers in transmission
several strategies can be followed, including:

(i) Overlapping of resonances in low impedance materials [78].
(ii) Accumulation of resonances using strong dispersion [38].
(iii) Symmetry breaking metamaterials [75, 79, 80].
(iv) Combination of monopolar and dipolar resonators [73, 81].

5.3.3 Overlapping of Resonances in Porous Layers

The micro-structure of porous media presents a representative scale much smaller
than the characteristic wavelength of sound in air, the pore scale being of the order
of the viscous and thermal boundary layers [1]. These materials allow sound waves
to propagate through the structure with a slightly reduced sound speed than in air,
mainly due to both the tortuosity and the strong attenuation produced by the thermal
and viscous losses. The complex processes that experience the acoustic waves at
the micro-scale in porous materials can be described at the macro-scale, in a good
approximation, considering the porous media as a homogeneous fluid with effective
complex and frequency dependent properties.

To observe acoustic absorption the material must be geometrically bounded. In
a transmission problem, a porous layer cannot absorb efficiently the waves because
(a) the symmetric and antisymmetric modes appear at staggered frequencies, as we
have presented previously for the slotted panel, and (2) the bounded structure lacks
of resonances at low frequency, being the first peak of absorption corresponding to
the first FP resonance of the structure given by f1 = cef f /2L .

In addition, below its Biot’s frequency, given by fBiot = σφ/2πα∞ρ0, a bulk
porous material is not impedance matched with the surrounding air. This important
parameter indicates the transition between the inertial and the viscous regime of the
porous material, and only depends on the material parameters. Absorption cannot be
achieved efficiently below this frequency [20]. However, the resonances provided by
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Fig. 5.10 a Chirped multilayer porous material, b absorption produced by the multilayer structure
from both sides (blue and red) and absorption of a bulk structure using the same porous material
(black). c Intensity as a function of the distance for the chirped multilayer structure and for a homo-
geneous porous layer. d Complex frequency plane of the sum of the eigenvalues of the scattering
matrix. Adapted from [78] with permission

a porous layer present a very low quality factor because the characteristic effective
parameters of porous materials are close to those of the air, and this fact can be
exploited to design effective sound absorbers.

One way to modify these constraints is the use of materials with graded prop-
erties. An example of this mechanism is a chirped multilayer porous material [78],
composed of alternating air cavities and porous layers, as shown in Fig. 5.10a. This
structure, as occurs with a homogeneous porous material, behaves as a resonant FP
cavity.

The smooth variation of the physical properties inside the structure allows char-
acterizing the system using local effective parameters, that could be used to design
the properties of the structured medium. In particular, using the chirped structure
the effective parameters can be graded throughout the structure as a function of the
depth. First, this allows obtaining an efficient impedance matching below the Biot’s
frequency of the material at the surface of the material, i.e., it provides efficient
absorption at low frequencies. Second, it also allows progressively controlling the
intrinsic losses of system by adding thicker porous layers.

Moreover, representing the eigenvalues of the scattering matrix in the complex
frequency plane gives a clear picture of the existing low-quality-factor resonances,
where each resonance is associated with a zero-pole pair. The complex frequency
plane helps to fulfil the perfect absorption conditions: by tuning the intrinsic losseswe
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can compensate the leakage of the systemat the FP resonances.As a result, the control
of the impedance matching condition and the control of the intrinsic losses of the
porous layers allows designing broadband unidirectional quasi-perfect absorbers. In
addition, as the resonances present a very low quality factor they overlap in frequency
allowing the design of broadband unidirectional perfect absorbers. However, the
first resonance of the structure corresponds to the first FP mode. Thus, the material
thickness is only about two times smaller than the wavelength associated with the
first resonance. To produce a sub-wavelength and efficient sound absorber, a sub-
wavelength resonance mechanism must be included.

5.3.4 Accumulation of Resonances Due to Dispersion

In the case of a transmission problem, a bounded metamaterial composed of a finite
number of resonators can be studied by using its effective parameters. In this way,
the resonance modes of the structure corresponding to the collective modes of the
different resonators [49], can be identified with the FP modes of the slab [7, 38].
Examples of such systems include arrays of monopolar resonators, e.g. as in arrays
of QWRs [82], arrays of HRs [7, 38], arrays of HRs producing Bragg interference
in addition to local resonances [83] or arrays of two concentrically placed QWRs
producing Fano resonances [84].

When the system presents intrinsic losses, absorption is produced at the resonance
frequencies. For symmetric systems, the scattering problem can be subdivided in its
corresponding symmetric and antisymmetric problems, as sketched in Fig. 5.11b.
Thus, by setting rigid, ∂ p/∂x = 0 (symmetric), and soft, p = 0 (anti-symmetric),
boundary conditions at the symmetry plane of the system, the reflection coefficients
of each sub-problem can be obtained as a combination of the original reflection and
transmission coefficients of the global scattering problems as follows

Rsym = T + R = Z̄ sin
(
kef f L/2

) − i cos
(
kef f L/2

)
Z̄ sin

(
kef f L/2

) + i cos
(
kef f L/2

) , (5.22)

Rasym = T − R = Z̄ cos
(
kef f L/2

) + i sin
(
kef f L/2

)
i sin

(
kef f L/2

) − Z̄ cos
(
kef f L/2

) , (5.23)

for the symmetric and antisymmetric problems respectively. Then, the absorption
coefficient of the full problem can be obtained from the absorption of each sub-
problem as

α = αsym + αasym

2
, where αsym(asym) = 1 − |Rsym(asym)|2. (5.24)

It is worth noting that the reflection coefficient of each sub-problem in reflection
represents the eigenvalues of the scattering matrix. Therefore, as perfect absorption
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Fig. 5.11 a Example of a panel composed of only identical monopolar resonators (HRs). b Problem
decomposition in symmetric and antisymmetric problems. cDispersion relation of a strongly disper-
sive metamaterial showing the symmetric and antisymmetric modes. d–e Reflection and absorption
of the symmetric problem (blue), antisymmetric problem (red) and total problem (black). f–g com-
plex frequency plane representation of the eigenvalues of the scattering matrix corresponding to the
symmetric and antisymmetric problems. Adapted from [38] with permission
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requires both zeros of the eigenvalue of the scattering matrix must vanish at the same
frequency, it means that both symmetric and antisymmetric sub-problems must be
simultaneously critically coupled. In the absence of embedded resonators, the zero
and pole structure of these two problems is staggered in frequency, corresponding
each zero-pole pair to one FP resonance mode. Therefore, perfect absorption cannot
be achieved.

When a periodic array of identical monopolar or dipolar resonators is included,
the symmetric and antisymmetric resonances of the system still exist at staggered
frequencies and, therefore, simultaneous critical coupling of the symmetric and anti-
symmetric modes is not possible. However, when a periodic array of resonators is
loaded in the material as shown in Fig. 5.11a, strong dispersion can be generated and
quasi perfect absorption can be obtained. Figure5.11c shows the dispersion relation
of a metamaterial composed of a periodic array of HRs [38]. The presence of the
resonators induces a band gap around the resonance frequency of the HRs and strong
dispersion in the medium (grey area in Fig. 5.11c). Figure5.11c also shows the dif-
ferences between the dispersion relation of free field (dashed line) and the dispersion
relation once the resonators are loaded (red continuous line). The strong dispersion
in the case of the loaded resonators induces slow-sound propagation conditions. In
this way, once the material is bounded, as in Fig. 5.11a, two main effects are pro-
duced due to the slow-sound: first, the FPmodes of the slab of effective material, i.e.,
the collective modes of the resonators, are shifted-down in frequency as compared
with the first FP mode of the panel without resonators. Second, for frequencies close
to the bandgap, the symmetric modes appear almost at the same frequencies as the
antisymmetric resonance modes. This is clearly visible in the complex frequency
plane representation of the eigenvalues of the scattering matrix where the zeros and
poles are accumulated as shown in Fig. 5.11f–g.

In this way, the zeros of the eigenvalues are accumulated below the band gap due
to the strong dispersion. Around this accumulation, symmetric and antisymmetric
modes exist at very close frequencies. While perfect absorption can theoretically
be achieved using an infinite number of resonances, in practice it cannot be reached
because the number of resonators is necessarilyfinite. In otherwords, the total number
of zeros and poles in the complex frequency domain equals the number of resonators
and the accumulation point could not exist any more. This constitutes one of the
main drawbacks of the description using effective parameters and therefore of bulk
material description in practice. In this way, special attention should be paid to the
physical modelling strategy that should account for the finite number of resonances.
This can be done by the Transfer Matrix Method (see Chap. 4).

Accounting for the finite number of resonators, this problem was tacked and,
while perfect absorption cannot be achieved, a quasi-perfect absorber structure can
be designed using a slotted panel loaded by an array of HRs [38]. Due to the loading
HRs, strong dispersion is observed in the interior of each slit and the cavity reso-
nances accumulate below the band-gap frequency, being the symmetrical and anti-
symmetrical modes staggered but very close in frequency. In this frequency range,
and by tuning the geometry, the system can be quasi-critically coupled with the exte-
rior medium and therefore quasi-perfect absorption can be obtained. Using a finite

http://dx.doi.org/10.1007/978-3-030-84300-7_4
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number of resonators, it was demonstrated experimentally quasi-perfect absorption
of α = 0.9 for a sub-wavelength panel ten times thinner than the wavelength of the
absorbed wavefront, L = λ/10. In this way, the absorption can exceed 50% even
using only monopolar resonators due to this accumulation of resonances.

These results underline the necessity of breaking the symmetry of the system to
achieve perfect absorption in transmission or the use of degenerate resonators with
simultaneous symmetric (monopolar) and antisymmetric (dipolar) resonances, as we
will see in the following sections.

5.3.5 Symmetry Breaking Materials

One approach to overcome the limitations of homogeneous absorbers in transmission
problems consists in breaking the symmetry of the structure. This mechanism was
first proposed by Merkel et al. [75] in waveguides and then extended to realistic
metamaterial panels by Jiménez et al. [79].

5.3.5.1 Asymmetric Absorbers

The symmetry of the system can be broken by using detuned resonators as shown in
Fig. 5.12a using HRs of different geometry.

Using such asymmetric system, amultiple scattering process occurs between both
resonators. First, the inner resonator creates a drop of the transmission for frequencies
just above its resonance frequency, f1, acting it as a reflecting wall. Then, when
loading a second resonator with slightly higher resonance frequency, f2, and tuning
its geometry to introduce the correct amount of losses, the system can be critically
coupled to the exterior medium and perfect absorption is produced, as shown in
Fig. 5.12b–c. This allows the impedance matching to the surrounding medium at
this frequency. Therefore, both the reflection and the transmission vanish for waves
impinging the structure in this direction and the structure becomes critically coupled.

The representation of the eigenvalues in the complex frequency plane, given by
(5.6), is shown in Fig. 5.12e–f. Using detuned double-interacting resonators a zero
for both eigenvalues can be located at the real axis at same frequency, producing per-
fect unidirectional sound absorption once the incident wave corresponds to the good
eigenvector. In fact, as the system is asymmetric, the analysis of the scattering matrix
eigenvalues is not sufficient to completely describes the acoustic behaviour of the
designed structure. The eigenvectors of the system, given by (5.7), can also be repre-
sented in the complex frequency plane. The eigenvectors give us information about
the direction in which the waves are absorbed: in this case only the waves imping-
ing the panel in the +x2 are perfectly absorbed: these panels present unidirectional
absorption at a single frequency. In the case of a sub-wavelength asymmetric panel,
perfect absorption at 300 Hz for a structure whose thickness is 40 times smaller than
the working wavelength was reported [63].
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Fig. 5.12 Asymmetric metamaterial absorber based on double-interacting resonators. a Sketch of
the sub-wavelength asymmetric panel. b–c Absorption, reflection and transmission calculated using
experimental, numerical and analytical methods. e–f Complex frequency plane representation of
the eigenvalues of scattering matrix. Corresponding eigenvectors to the first (g–h), and second (i–j)
eigenvalue. Adapted from [79] with permission

5.3.5.2 Rainbow-Trapping Absorbers

The system discussed in the previous section can be used to create a cascade of
critically-coupled resonators in order to obtain a perfect broadband unidirectional
absorption. One can note that the second resonator also reduces the transmission for
frequencies just above its resonance, f2. Thus, we can repeat the process in cascade,
by adding additional HRs to the waveguide, each of them with a higher resonance
frequency than the preceding one. As illustrated in Fig. 5.13a, the panels are now
composed of a periodic array of varying cross-section waveguides, each of them
being loaded by HRs with graded dimensions. The low cut-off frequency of the
absorption band is fixed by the resonance frequency of the deepest HR. Thus, by
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Fig. 5.13 Broadband metamaterial absorber based on rainbow-trapping phenomenon. a Sketch of
the rainbow-trapping absorber. b Pressure distribution for different frequencies. c Absorption and d
corresponding reflection and transmission calculated using experimental, numerical and analytical
methods. e–f Complex frequency plane representation of the eigenvalues of of scattering matrix.
Adapted from [79] with permission

progressively tuning their geometry, each resonator impedance-matches the system
at a frequency slightly higher than the resonance frequency of the preceding one.

The varying cross-sectionwaveguide introduces a progressive change in the open-
ing surface that contributes to produce the impedance matching, leading low quality
factor resonances. As a result, broadband absorption can be obtained as shown in
Fig. 5.13c–d.

For each resonance frequency of the system, the zeros of both eigenvalues of the
scattering matrix, λ1 and λ2, now lie on the real frequency axis and at the same fre-
quency, see Fig. 5.13e–f, ensuring that perfect absorption is produced and the system
is critically coupled. Using this frequency-cascade effect, perfect sound absorption
over almost two frequency octaves ranging from 300 to 1000Hz for a transpar-
ent panel composed of 9 resonators with a total thickness of 11cm, i.e., 10 times
smaller than thewavelength at 300Hzwas reported.Note, each frequency component
becomes localised at a different location inside the structure as shown in Fig. 5.13b.
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Because of this behaviour these structures have been denominatedRainbow-trapping
absorbers [79].

In summary, to obtain broadband, perfect and unidirectional absorption in the
transmission problem, three conditions must be simultaneously fulfilled:

(i) The zeros of both eigenvalues, λ1,2, must be at same frequencies,
(ii) The zeros of the eigenvalues of the scattering matrix must be located on the

real frequency axis,
(iii) The quality factor of the resonances must be low to overlap in frequency.

We notice that the perfect absorption will be only obtained at the frequencies where
the zeros are in the real frequency axis. For the frequencies in between, the absorption
will be very high but rigorously will not be perfect. The above three conditions
are mandatory to obtain broadband, perfect and unidirectional sound absorption by
panels in transmission.

5.3.6 Combinations of Monopolar and Dipolar Resonances

Now we will discuss the problem of perfect absorption in symmetric systems, i.e.,
the reflection coefficient is the same on both sizes of the point resonator. This implies
that the solution of that problem will introduce perfect absorption from both sides
of the structure. A possible approach to obtain perfect absorption in a symmetric
transmission problem is to employ degenerate resonators as proposed by Yang et al.
[73] using membrane resonators and, later, by Romero et al. [81] using Helmholtz
resonators.

For membranes, two different structures were reported, both based in a resonator
made of a combination of a monopolar and a dipolar resonance with identical reso-
nance frequency, i.e., a degenerate resonator. In the first structure, a small decorated
membrane with a coupled membrane resonator composed of two decorated mem-
branes is located inside the waveguide as shown in Fig. 5.14a. The simple decorated-
membrane resonator produces a dipolar resonance, while the coupled membrane
system can develop a monopolar resonance when both membranes oscillate with
opposite phases. This is in fact the second collective mode of the system, as shown
previously in Fig. 5.9f. If the system is accurately tuned, both monopolar and dipo-
lar resonances can be produced at the same frequency. Therefore, the monopolar
resonance introduces a zero-pole pair in the corresponding eigenvalues of the scat-
tering matrix, i.e., λ1 = R + T , a symmetric mode; while the dipolar resonance
does the same for the corresponding anti-symmetric mode, i.e., λ2 = R − T . In
these conditions, the intrinsic viscoelastic losses of the membranes are enough to
critically-couple the system at this particular frequency, i.e., at the degenerate mode.

In the second structure, using the configuration shown in Fig. 5.14b an analo-
gous situation can be obtained. Here, the dipolar resonance is obtained using a single
membranewhile themonopolar resonance is produced using aHelmholtz-membrane
resonator, i.e., a membrane backed by a cavity located at the wall of the waveguide.
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Fig. 5.14 Absorption by combination ofmonopolar and dipolar resonances. aDegenerate resonator
based on coupled decorated membranes. The double membrane produces a monopolar resonance
while the single membrane produces a dipolar resonance at the same frequency. b Degenerate
resonator based on monopolar and dipolar membrane resonators. The HR produces a monopolar
resonance while the single membrane produces a dipolar resonance at the same frequency. Adapted
with permission from [73]

Therefore, a degenerate mode can be obtained if both, monopolar and dipolar res-
onances appear at the same frequency. Each mode introduces a zero-pole pair in
the corresponding eigenvalues of the scattering matrix. Then, by the proper tun-
ing of the intrinsic viscoelastic losses of the membranes the whole system can be
critically-coupled with the exterior medium.

The second configuration offers a broader bandwidth absorption, but it is worth
to mention that in this last configuration the Helmholtz-membrane resonator was
located outside the waveguide. Therefore, to produce a metamaterial absorber panel
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Fig. 5.15 Absorption by combination of monopolar and dipolar resonances in a panel. a Panel
composed of degenerate resonators using the collective modes of several Helmholtz resonators.
b–d Absorption, reflection and transmission. (circles) Experiment, (dots) simulation (continuous
lines) theoretical absorption. Adapted with permission from [81]

using this unit cell a change of section must be considered. This change of section
will decrease the impedance coupling and, therefore, will reduce the bandwidth of
the absorbed spectrum.

Absorption in a transmission problem using degenerate resonators can also be
obtained avoiding membrane resonators [81], as e.g. in mirror-symmetric metama-
terials using Helmholtz resonators. Two slits were drilled into a panel, and each one
was loaded by a different number of resonators with different geometries. A show-
case material was manufactured, loading the first slit with one resonator, and the
second slit with two resonators, as shown in Fig. 5.15a. A monopolar resonance was
generated by the first slit as a result of the first resonance of the single resonator,
while a dipolar resonance was produced by the second slit as a result of the second
collective mode of the pair of resonators, i.e., the second Fabry–Pérot mode of the slit
(see Fig. 5.9 previously). By tuning the geometrical parameters, perfect absorption
can be observed, see Fig. 5.15b–d. Note that resonators were embedded in the panel
to account for the impedance mismatching produced by the change of section.

Remark that the resonant scattering produced by this metascreen was analytically
studied byusing a hybridmodelmixing the transfer-matrix andmodal-decomposition
methods to account for the Bloch waves. This was performed in order to consider the
possible coupling between the slits, effect that was found to be particularly important
for these absorbers. If no higher-order Bloch waves are accounted for, i.e., if only
a plane wave is included outside the metascreen, the analytical model will not be
in agreement with either the full-wave numerical simulation or the experimental
results. The absorber was made of acoustically rigid materials, without any vibrating
elements. Therefore, the life duration of this metascreen is thus expected to be longer
than that of absorbers composed of viscoelastic membranes or plates. In addition,
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the heights of the slits of the proposed absorber are large enough for the system to be
used in ventilation problems where air flow is of importance. Finally, note that the
bandwidth can also be extended using a cascade of resonances as done in rainbow
trapping absorbers, but in this case combining monopolar and dipolar resonances of
two different slits.

5.4 Summary and Conclusions

In this chapter we have reviewed the vast literature of metamaterial absorbers trying
to identify the key advances and to present the basic physical mechanisms to design
efficient and sub-wavelength sound absorbers.

To obtain efficient absorption, i.e, perfect, all the eigenvalues of the scattering
matrixmust vanish at the single frequency.When this condition is fulfilled the system
is critically coupled with the exterior medium and the structure does not produce any
scattered wave, i.e., all energy is absorbed by it at this particular frequency.

To do that, we must pay attention to two aspects. First, the system must present a
resonance to introduce its associated zero-pole pair into the eigenvalues of the scatter-
ingmatrix. The nature of the resonance is, in principle, not relevant, butmetamaterials
allow deep-sub-wavelength resonances which are interesting to obtain absorbers of
reduced dimensions. Second, once the resonance is introduced, the system must
present the exact losses to compensate the energy leakage of the structure. In this
sense, metamaterials present a huge degree of freedom to tune their intrinsic losses
as commonly the geometry of the material for a given topology can be modified. For
example, a metamaterial based on air cavities allows modifying its intrinsic losses
by tuning the viscothermal process by narrowing or expanding the section of the air
channels.

Another important aspect is to distinguish between reflection and transmission
problems, being the former much easier to tackle than the later.

In reflection problems, both eigenvalues of the scattering matrix collapse to the
reflection coefficient. Therefore, the critical-coupling condition reduces to the well-
known impedance matching condition, which is easily fulfilled around a resonance,
specially if the system allows tuning its intrinsic losses. For reflection problems effi-
cient, and in some cases perfect, sound absorbers based on metamaterials have been
reported. These included metaporous absorbers, i.e., porous materials with embed-
ded resonating elements; metamaterials based on air cavities, i.e., those composed of
QWRs, HRs, coiled and labyrinthine structures; and metamaterials based on mem-
branes and thin elastic plates as those composed of decorated-membrane resonators,
platelets or poroelastic membranes.

In transmission problems the scattering matrix presents two different eigenvalues.
We have identified that perfect absorption is not possible in homogeneous and sym-
metric structures, as those presenting FP modes and weak dispersion. This is caused
because the zeros of the eigenvalues of the scattering matrix, associated with their
corresponding symmetric and antisymmetric modes, appear staggered in frequency.
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One approach is to introduce strong dispersion in the system by using an array of
monopolar or dipolar resonators. The strong dispersion accumulate the collective
modes of the resonators around the same frequency. As the zeros of both eigenvalues
of the scattering matrix overlap, efficient absorption is produced. Other approach is
to break this symmetry using detuned resonators, allowing broadband perfect and
unidirectional sound absorption as occurs in rainbow-trapping absorbers. Finally,
a last approach is to design a metamaterial exhibiting degenerate resonances, i.e., a
system able to produce a dipolar and a monopolar resonance at the same frequency.
This is typically obtained by combining monopolar and dipolar resonators. In this
situation the monopolar resonator introduces a resonance into the symmetric eigen-
value of the scattering matrix, while the dipolar resonator does the same into the
antisymmetric one. As both resonances appear at the same frequency, by tuning the
losses, perfect absorption can be obtained in transmission.

It is important to remark that causality imposes limits to the optimal absorption
for any structure, metamaterial or not. In this sense, it has been demonstrated that
there exist a constraint between the total thickness of the material and the range
of frequencies being absorbed [30]. In essence, there is always a trade off between
the bandwidth of the absorbed spectrum and the sub-wavelength dimension of a
given structure. Remark that these limitations apply to the bandwidth, but not to the
central frequency of the absorption. Causality-imposed limits explainwhy absorption
becomes narrow when designing very thin structures for extremely-low frequency.

Finally, there are many other research lines, not detailed here, as nonlinear meta-
material absorbers, active metamaterials absorbers [85], sound diffusers [63, 64],
multifunctional and reconfigurable absorbers. In selected industrial applications, as
in automotive or aerospace industries, absorbing metamaterials interacting with flow
is an active research line. The inclusion of additional physical mechanisms into the
acoustic metamaterials as adsorption and desorption of air molecules in multi-scale
porous materials [86], strong local nonlinearities, or efficient energy harvesting by
critical-coupling will open new doors to go beyond traditional sound absorbers using
thin, broadband and effective metamaterial absorbers.
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Chapter 6
Acoustic Wave Propagation in
Viscothermal Fluids

An Electromagnetic Analogy

Denis Lafarge

Abstract First, we recall the Navier-Stokes-Fourier model linearized equations,
which govern the propagation of small amplitude, long wavelength waves in vis-
cothermal fluids; we specify how these equations are derived from several thermo-
dynamic simplifications, and examine some of their solutions. Then, we analyze the
general pattern of macroscopic nonlocal equations of propagation of small ampli-
tude electromagnetic waves in effective homogeneous media, taking into account
both the temporal and spatial dispersion. We argue that we lack a whole thermody-
namics to fully precise all intervening quantities; proceeding by analogy, we then
suggest that for the general acoustics of a homogeneous fluid, an analogous gen-
eral pattern of nonlocal equations of propagation would arise, if we had sufficient
thermodynamics. These ideas are finally implemented to obtain, within the available
Navier-Stokes-Fourier’s model, a nonlocal description of compressional waves.

6.1 Introduction

In the many works carried out on acoustic phononic crystals and metamaterials,
viscous and thermal losses are usually neglected. This is often unrealistic. In this
chapter, we first recall the classical theory of small amplitude wave propagation in a
viscothermal fluid, and next reexamine it in a new light: that of a deep electromagnetic
analogy. Indeed, we show that to some extent it can be put in the form of “nonlocal
acoustic” equations allowing for both temporal and spatial dispersion. This is closely
similar to the general nonlocalMaxwell equations that describe electromagneticwave
propagation in dispersive materials with temporal and spatial dispersion. Working
within the usual (Navier-Stokes-Fourier) near–equilibrium thermodynamic frame-
work, only a reduced version of this analogy, concerned with compressional motions
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only, will be accessible here. As outlined in the Appendix, we believe that the anal-
ogy would undertake its more complete nondegenerate form, (including Frenkel’s
solid-type of shearing at short times, see Sect. 6.6.2), if the thermodynamic frame-
work could be sufficiently extended. This extension, however, is at present time a
distant perspective.

In the next chapter the reduced analogy describing compressional waves in the
homogeneous fluid, then is generalized to describe macroscopic compressional
waves along a symmetry axis in macroscopically homogeneous unbounded meta-
materials constituted of the viscothermal fluid permeating a rigid1 porous structure
having arbitrary microgeometry. It expresses in a nonlocal dynamic homogenization
attributing to the medium, from microstructure, an equivalent nonlocal density and
bulk modulus, playing the role of nonlocal electric and (inverse) magnetic suscepti-
bilities. The developed nonlocal homogenization description is new and, we believe,
will predict the right metamaterial properties when generalized further to describe
inhomogeneous materials, and in particular, materials having finite dimensions.2

Finally, inAppendix of next chapterwe recall how the developed nonlocal descrip-
tion simplifies in a classic local one, in some simple microgeometries. It is more
convenient not to derive this simplified local description from the general nonlocal
one, but to calculate afresh the relevant quantities.

Usually, this limit is deduced from a long-wavelength condition by blindly apply-
ing the method of two-scale asymptotic homogenization3; in reality, this “deduction”
is not only illusory, (in it, is tacitly introduced a prerequisite of the local theory,
namely, that the microgeometry is “simple” i.e. does not involve very different char-
acteristic pore sizes), it is also fundamentally faulty. Here, we deduce the same
limit in a better physical way by explicitly granting as a simplification of the real
problem, the total absence of spatial dispersion.4 As this total absence is the exact,
(but unphysical), expression of the leading order terms of the method of two-scale
asymptotic homogenization, (considered here,in the case of rigid porous structure)
it should be clear, a priori, that the latter method cannot be an entirely consistent
method of homogenization, (despite its large literature, practical usefulness, and
original introduction by mathematicians).5

1 If deformable, the macroscopic description is expected to manifest the full nonlocal pattern of
equations expressed in Appendix: see the concluding considerations.
2 In the context of a macroscopic nonlocal description any material having finite dimensions is to
be viewed as an inhomogeneous material.
3 And retaining only the leading order, see e.g. [3] (Appendix A) and [2] and [4] in next chapter.
4 To take an image, this simplification transforms the full Kirchhoff’s theory of the propagation
of sound waves in cylindrical circular tubes, in Zwikker and Kosten’s, classical but incomplete
treatment, only slightly inexact at long wavelengths.
5 In particular, we can anticipate that the addition of all higher order terms appearing in sequence
in this abstract homogenization process, will always prove to yield results departing significantly
from the exact ones.
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Fig. 6.1 Typical pair-interaction potential

6.2 Molecular Constitution of Fluids

We start by recalling basic facts about the molecular constitution of fluids. Virtually
everything we are sensitive to, on earth and in the sky, is made up of countless
molecules that respond to electromagnetic interactions. Molecules are usually small
electrical dipoles, (either permanent or induced): a small separation of negative and
positive charges is present, which produces a dipole moment equal to the amount
of separated charges times the distance. The dipole averaged pair-interaction energy
potentials V̄ (d), have a simple Boscovich form, shown in Fig. 6.1, in function of the
distance d between two of them.6

A fluid, liquid or gas, comprises an incredibly large number of molecules in any
“physically infinitesimal” volume. A number so large (recall Avogadro’s number:
NA

∼= 6.1023) that it corresponds to a so-called “thermodynamic limit”.
In a liquid (solid) such as water (ice), the molecules are bound at distances d on

the order of a few Ångström. Typically, d0 ∼ 3.1 · 10−10 m, for the distance where
the pair-interaction potential V̄ (d) is close to its minimum. In a gas such as air,

6 In the averaging over the relative orientations of two dipoles, a thermalization is performed, so that
a configuration having pair-interaction energy V is considered to have a probability proportional to
e−V/kT to occur.
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the molecules are widely distanced on the order of, say, mean distances d ∼ 10 d0.
The molecules then are mostly non-interacting, in uniform inertial motion except for
binary collisions. Themean free path, (meandistance travelled by amolecule between
two collisions), is on the order of the microscopic distance � = η/ρ0c0, (as can be
estimated by elementary kinetic theory considerations), where η is first viscosity, ρ0
ambient density, and c0 is (adiabatic) speed of sound. This distance is very small,
(∼ 4.5 · 10−8 m in air), only one order of magnitude higher than the mean distance
d between molecules, (� ∼ 10d ∼ 100d0). In a liquid, as the molecules are bound,
a mean free path distance is not well-defined, but can be considered on the order of
the mean distance (d ∼ d0) between molecules, (in water we find 5.9 · 10−10 m for
the above microscopic distance �, which is roughly two-times d0).

The thermal expansion coefficient β0 of a fluid, (liquid or gas), in thermodynamic
equilibrium at temperature T and pressure P , is defined as

β0 = 1

υ

(
∂υ

∂T

)
P

= −1

ρ

(
∂ρ

∂T

)
P

, (6.1)

where υ = 1/ρ is the specific volume, (volume per unit of mass). The ideal gas is
the limit where the molecules are considered point mass, possessing mass but no
significant volume. Simple kinetic theory considerations lead to the ideal gas law

PV = NkT,

where V is the volume, N is the number of particles in it, and k is Boltzmann’s
constant. From this law and the definition (6.1), we see that the thermal expansion
coefficient of an ideal gas is given by

β0 = 1/T0, (6.2)

with T0 the ambient temperature. In a real gas, there are deviations from (6.2) to
account for the nonzero tail of the actual potential at large distances; but as the
potential goes to zero very rapidly, (see the exponent −6 in Fig. 6.1), the above is
only slightly modified:

β0
∼= 1/T0. (6.3)

A physical expression of these molecular characteristics is that a gas is easily com-
pressible and also significantly expands when heated.

In a liquid, because the molecules are bound, trapped at the minimum distance d0
allowed by intermolecular forces, but not occupying fixed mean positions, (on the
contrary, undergoing permanent diffusive wandering from one location to the other),
the coefficient of thermal expansion is drastically lower, in order of magnitude:

β0 ≪ 1/T0. (6.4)
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Indeed, when some heat quantity is given to the fluid so that the equilibrium tem-
perature increases, the molecules augment their characteristic diffusive velocities,
wandering more rapidly from one location to the other. In so doing, however, they
almost remain trapped at the minimum distance d0. The thermal expansion coeffi-
cient is non zero, β0 �= 0, because there always subsists a small thermal expansion
on the order of that found in solids.

In what follows, we limit ourselves to considering simple liquids and gases whose
composition is invariable, i.e. so-called trivariate fluids whose thermodynamic state
is specified by two independent thermodynamic variables, (such as pressure, temper-
ature, density, etc.). A brief recap on the thermodynamics of trivariate fluids is given
in Sect. 6.5. There is the following important thermodynamic identity, between fluid
parameters, (see below (6.20.1)):

γ − 1 = T0β2
0c

2
0

cP
, (6.5)

with γ and cP , the heat capacity ratio (or adiabatic exponent) and specific heat
coefficient at constant pressure. In view of this general identity, the above molec-
ular characteristics of the liquid and gas phases, can be seen to have the following
important consequences.

For a liquid, as β0 is very small, the deviation (6.5) is almost zero, (it is a quadratic
effect on β0), and γ turns out to be nearly indistinguishable from 1. Therefore, the
isothermal bulk modulus K0, is nearly indistinguishable from the adiabatic bulk
modulus7 Ka = γK0, i.e.: Ka

∼= K0. At variance, in a gas, β0 is not to be considered
a small quantity, and it turns out that the factor γ − 1 is generally of order 1. Simple
kinetic theory considerations give: γ − 1 = 2/nd , where nd is the number of excited
degrees of freedom of a typical molecule. For example, for air, 99% composed of
diatomic molecules (N2 and O2) whose vibrational movements are only slightly
excited, nd ∼= 5, as there are 3 translational and only 2 rotational degrees of freedom
to consider. This gives γ − 1 ∼= 0.4, and in normal conditions the adiabatic bulk
modulus of air, Ka = γP0, is 40% greater than the isothermal bulk modulus, K0 =
P0, where P0 is atmospheric pressure.

To finish, we recall that a special notationχ0 is used for the inverse of the adiabatic
bulk modulus, the adiabatic compressibility:

1/Ka ≡ χ0. (6.6)

For the case of propagation in thefluidwith losses disregarded, noheat enters or leaves
an element of fluid during its alternate cooling and warming due to the passage of
soundwaves, so that the pressure-density cycle is adiabatic, and the following relation
occurs between the fluid ambient density ρ0, the fluid adiabatic compressibility χ0,
and the (adiabatic) speed of sound c0

7 See below (6.19.1) and (6.19.3) for the general definition of the adiabatic and isothermal bulk
moduli Ka and K0.



210 D. Lafarge

ρ0χ0c
2
0 = 1. (6.7)

This relation reminds us that observed for the propagation of electromagnetic waves
in a lossless non-dispersive medium equivalent to vacuum:

ε0μ0c
2 = 1. (6.8)

In the presence of losses, we will see that the density and compressibility eventually
become operators ρ̂ and χ̂. They will play the role assigned in electromagnetism to
the electrical susceptibility ε̂ and magnetic susceptibility μ̂ operators, respectively.8

6.3 Wave Propagation in a Viscothermal Fluid: Use of
Near-Equilibrium Thermodynamics Because of Scale
Separation

Let us now precise notions such as, “fluid particle”, “macroscopic level” and “scale
separation”. A “fluid particle” refers to the macroscopic collection of molecules con-
tained in a “physically infinitesimal” volume. Despite its small size, it is a “macro-
scopic” object in the sense that it contains an enormous number – “thermodynamic”
– of molecules. To have an order of magnitude in mind, we typically have 109

molecules in the smallest experimentally resolvable volumes [3]. A given volume
�3 = dV containing a “thermodynamic” number of molecules will be considered an
infinitesimal macroscopic volume, or “microscopic” volume, when its size � is very
much smaller than any macroscopic characteristic distance L , such as sample size,
characteristic structure size, or wavelength λ.

As an example of a microscopic size � in a homogeneous fluid, we may think of
the mean free path, � ∼ η/ρ0c0. We do not aim at a description of the underlying
motion of interacting molecules in such volumes. With numbers N > 109 this would
be not only impossible but also useless. Instead, we aim at a macroscopic description
statistical in nature, feasible because of there being a “thermodynamic-limit”, very
large number of particles. In fact, through the statistical Law of Large Numbers, the
physical state of each infinitesimal “fluid particle” is specified by remarkably few
macroscopic variables.

This is related to the very large “scale separation” between the typicalmacroscopic
and microscopic scales, as shown in Fig. 6.2.

Because of the assumed “scale separation”, the fluid in the infinitesimal volume
�3 = dV is very nearly in a state of local thermodynamic equilibrium. Instead of

8 More precisely and as discussed in the text and in Appendix, this affinity will be fully expressed
only when the thermodynamic framework is sufficiently extended, with density and compressibility
kernels becoming second order and fourth order tensors. In the main text they will remain scalars
because we will restrict to long-wavelengths compressional waves only described within classical
near-equilibrium framework.
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Fig. 6.2 Scale separation

doing a microscopic description, we can make a macroscopic description in which
the state of “macroscopic motion” of each fluid particle is summed up in terms of
only five numbers: the mean or macroscopic velocity, and two equilibrium, (for a
trivariate fluid), thermodynamic variables.

Indeed, our wide “scale separation” condition implies in particular that any typ-
ical relaxation time associated with irreversible processes in the fluid, will be very
short compared to the typical periods of the acoustic vibrations. As a result, we
will be justified in discarding the effects of the so-called molecular relaxation. Con-
sider for example the case of air. It is principally made of polyatomic – diatomic
– molecules. Their energy will be distributed between the translational (external)
degrees of freedom and the rotational and vibrational (internal) degrees of freedom.
Obviously the sound wave disturbs to some extent the equilibrium distribution of
energy between external and internal degrees of freedom. The concomitant depar-
tures from local thermodynamic equilibrium have tendency to return to equilibrium
after certain relaxation times. Here, assuming that the typical periods of motion are
sufficiently large compared to the molecular relaxation times, we have that the dis-
tribution of energy between external and internal degrees of freedom always remains
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that of thermodynamic equilibrium. In practice, this limit is well-satisfied for audible
sounds.

Pressure and temperature is a possible convenient choice for the two thermody-
namic variables. These thermodynamic variables – as is apparent from the fact that
they become meaningless for the case of a system having only a few degrees of free-
dom – are macroscopic statistical variables having more than a purely “mechanical”
meaning. Their averaged nature can be conceived using the conception of volume
average, referred here to H.A. Lorentz who used it in his landmark program of the
“theory of electrons” [4], (see Sect. 6.11.2), or, better, the conception of ensemble
average, referred to J.W. Gibbs, who introduced it in his fundamental studies of the
theory of gases and the statistical mechanics foundations of thermodynamics [1]:
the average is performed over the ensemble of all systems that are “macroscopically
identical”. This notion of macroscopically identical systems can be clarified in the
case of thermodynamic equilibrium. In this case, we have to think as equiprobable,
all configurations that a set of molecules can take in a given volume and which share
a given total energy. We will imagine that the notion of Gibbs ensemble could also
in principle be generalized in an appropriate way in the case of deviations from the
thermodynamic equilibrium, which would enable us to describe in a generalized
Gibbs sense the propagation of waves of arbitrarily short wavelengths or arbitrarily
high frequencies,9 not respecting any scale-separation condition.

As for the macroscopic mean velocity v, we have the same two conceptions.
With volume averaging, we can define v as the velocity of the center of mass of the
collection ofmolecules present in thefluid particle volume.With ensemble averaging,
we will assume possible to define a collection of different molecular realizations
of the same fluid medium and wave propagation phenomenon, that are equivalent
from a macroscopic point of view. We can define v at a given position, as, say, the
velocity of the closest molecule, averaged over all realizations. (Of course, these
naive definitions would have to be refined as they are, both, not consistent quantum
mechanically, but this is not our focus here). At long wavelengths, we will assume
that ergodicity properties will ensure the equivalence of the two points of view.

6.4 Governing Navier-Stokes-Fourier Equations for Small
Amplitude Wave Propagation

We are interested here in the first place in describing, at the macroscopic thermody-
namic level, small amplitude long-wavelength wave propagation in a homogeneous
fluid, (see e.g. the situation depicted on (Fig. 6.3) with λ � �, � the mean free path).
At each spatial position x and instant of time t , the state of the fluid, nearly in equilib-
rium, is for the essential described by the velocity v = v(t, x), pressure P(t, x) and
temperature T (t, x). But as the fluid is not, exactly, in a local state of pure thermo-

9 We will later need thinking in this strongly out-of-equilibrium, hypothetical Gibbs averaging
sense, when discussing hypothetical Frenkel-type of motions in gases.
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Fig. 6.3 Wave propagation example: two intersecting Gaussian beams

dynamic equilibrium, this description is not complete. To account for the dissipative
processes induced by the nonequilibrium, there are additional variables, such as the
dissipative viscous stresses σ′

vi j and heat flux q, that will be necessary to introduce,
and relate, by constitutive laws, to the variations of the former variables. All variables
are “total variables”, I , sum of an equilibrium variable, I0, representing the value
of this variable in the ambient thermodynamic state, (zero for the velocity and addi-
tional variables), and a wave variable, Iw, representing an excess value associated to
the wave:

I

(
total

variable

)
= I0

(
equilibrium
variable

)
+ Iw

(
wave

variable

)
. (6.9)

We now recall how are derived the basic Navier-Stokes-Fourier viscothermal lin-
earized model equations of motion, governing the small “wave variables”, v, p, τ
and b, namely: v = part “w” of velocity, its equilibrium part being zero, p = part
“w” of pressure, or “excess pressure”, the equilibrium part being P0, τ = part “w” of
temperature, or “excess temperature”, the equilibrium part being T0, and b = ρ′/ρ0,
the condensation, equal to excess density ρ′ – part “w” of density – over ambient
density ρ0

10

10 This variable b, as we already have p and τ in the set of variables, is redundant thermodynam-
ically, see (6.12). It is introduced here mainly because it will later facilitate the discussion of the
electromagnetic analogy. In the context of the electromagnetic analogy, however, b will in fact
not be viewed as the quantity b = ρ′/ρ0. It will either be viewed as the purely kinematic quantity
directly defined with (6.10), (see Sect. 6.12.1 and the definitions (6.98.1) and (6.98.2), equivalent to
(6.10)); more precisely, in the full analogy we introduce a symmetric tensor bi j playing the role of
antisymmetric magnetic tensor field, obeying ∂bi j/∂t = −(∂iv j + ∂ jvi )/2, and representing the
opposite strain, with b ≡ ∑

i bii , (more details are in Appendix).
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∂b

∂t
+ ∂ · v = 0, (6.10)

ρ0
∂v

∂t
= −∂ p − η∂ × ∂ × v +

(
4η

3
+ ζ

)
∂ (∂ · v) ,

= −∂ p + η∂2v −
(η

3
+ ζ

)
∂

(
∂b

∂t

)
, (6.11)

γχ0 p = b + β0τ , (6.12)

ρ0cP
∂τ

∂t
= β0T0

∂ p

∂t
+ κ∂2τ . (6.13)

The parameters η and ζ, first and second viscosities, and κ, thermal conduction
coefficient, are constitutive constants of the fluid. Their appearance is the expres-
sion of the mentioned additional irreversible-thermodynamic variables, (σ′

vi j and q),
related by constitutive laws to the former variables, (here v and τ , resp.). To arrive
at these linearized model equations (6.10)–(6.13), first, we recall some basic facts
and definitions about equilibrium thermodynamics of trivariate fluids, and next, we
introduce the additional variables associated to near-equilibrium deviations, and state
the conservation and constitutive laws.

6.5 Equilibrium Thermodynamics: Brief Recap on
Trivariate Fluids

Classical equilibrium thermodynamics of a trivariate fluid asserts that all thermody-
namic quantities – thermodynamic variables and thermodynamic constants – can be
deduced when we know a single relationship that links three independent additive
quantities: entropy, internal energy and volume. It is the so-called fundamental rela-
tion.11 It can be written either in the original form of entropy S in function of internal
energy E and volume V , or in the form of internal energy E in function of entropy
S and volume V :

S = S(E, V ),

E = E(S, V ).
(6.14)

Indeed, as the entropy S is postulated to be a single valued continuous and differen-
tiable function of E and V , and moreover a monotonic increasing function of E , the
fundamental relation (6.14.1) can be inverted with respect to energy, giving (6.14.2)
with a function E that is also single valued, continuous and differentiable.

Knowing the fundamental relation, the pressure and temperature can be written
by the formulae:

11 See [2, 3, 5]; nice discussions of several topics of interest here, e.g., thermodynamics, equations
of motion in a fluid, and averaging operations in a material, are given by Marle [5].
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P ≡ −
(

∂E

∂V

)
S

, T ≡
(

∂E

∂S

)
V

, (6.15)

and likewise, all other quantities can be expressed as well in terms of S, V and the
partial derivatives of E .

Equation (6.15) derive immediately from the thermodynamic identity TdS =
dE + PdV . And the latter identity is a consequence of the First Law, d̄ Q = dE +
PdV , stating that the internal energy can change (by dE) only by receiving work
(−PdV ) and/or heat (d̄ Q), joined to the additional condition that the latter is always
the form d̄ Q = TdS, (the notation d̄ Q reminds that the infinitesimal heat quantity is
not an exact differential). Note that, as all quantities S, E and V in (6.14) are additive,
the fundamental relation is homogeneous of order 1. Hence writing (6.14.2) for a
unit mass fluid particle which can be in translational motion, we have the so-called
caloric equation:

ε = ε(s, υ). (6.16)

It gives the specific internal energy ε in the fluid, (i.e. internal energy per unit mass,
which includes all forms of energy except the specific kinetic energy v2/2 associated
with the global mass translation movement), as a function of the specific entropy s,
(entropy per unit mass), and the specific volume υ = 1/ρ. Pressure and temperature
are then functions P = P(s, υ) and T = T (s, υ) given by:

P ≡ −
(

∂ε

∂υ

)
s

, T ≡
(

∂ε

∂s

)
υ

. (6.17)

As all thermodynamic variables can be expressed in terms of s, υ, and the partial
derivatives of ε, there are only two independent thermodynamic variables. Any vari-
able, e.g. temperature, can be expressed as a function of two any other independent
variables, bymeans of equations of state characteristic of the fluid, e.g. T = T (P, υ),
T = T (P, ε), etc. Contrary to the fundamental relation, the equations of state do not
constitute complete knowledge of the thermodynamic properties of the fluid. Knowl-
edge of all equations of state, however, is complete, and equivalent to the knowledge
of the fundamental relation or caloric equation.

The specific heat coefficients cP and cV , (amount of heat needed to rise a tem-
perature of the unit of mass by 1 Kelvin under constant pressure, or under constant
volume), adiabatic exponent, and thermal expansion coefficient, are:

cP ≡ T

(
∂s

∂T

)
P

, cV ≡ T

(
∂s

∂T

)
υ

, γ ≡ cP
cV

, β ≡ 1

υ

(
∂υ

∂T

)
P

. (6.18)

For a trivariate fluid β is not completely negligible, (β �= 0), or γ is not strictly
equal to one. There follows that the caloric (6.16) cannot be written in the form ε =
Y (s) + Z(υ) and none of the equations of state degenerate into relations connecting
only two thermodynamic variables.
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Other useful thermodynamic definitions are those of the reference adiabatic and
isothermal, bulk moduli Ka and Ki (or K0), and velocities ca (or c0) and ci (or c′

0,
later on), in the fluid:

Ka ≡ ρ

(
∂P

∂ρ

)
s

, c2a ≡
(

∂P

∂ρ

)
s

, Ki ≡ ρ

(
∂P

∂ρ

)
T

, c2i ≡
(

∂P

∂ρ

)
T

. (6.19)

By purely thermodynamic arguments, the various constitutive constants introduced
so far (6.18)–(6.19) are not independent. One can show the following general ther-
modynamic identities:

γ − 1 = Tβ2c2a
cP

, c2a = γc2i . (6.20)

These are consequences of the First Law and the fact that d̄ Q = TdS. Indeed the
fundamental thermodynamic requirement that d̄ Q/T is actually an exact differential,
meaning that the entropy is a function of state, imposes a restriction on the analytical
form of the internal energy, also implying that the caloric equation ε = ε(s, υ) is not
independent of the thermal equation of state P = P(T, υ). In the proof of (6.20),
will be involved:

(i) Maxwell’s thermodynamic relations such as −(∂P/∂s)υ = (∂T /∂υ)s express-
ing the fact that energy ε or other potentials such as enthalpy H (whose differen-
tial is dH = Tds + υdP) and the Helmholtz free energy F (whose differential
is dF = −sdT − Pdυ) are functions of state; the process of obtaining this
kind of relations is as follows: let ε = ε(s, υ), then writing dε = Tds − Pdυ
and ∂2ε/∂s∂υ = ∂2ε/∂υ∂s, we get, −(∂P/∂s)υ = (∂T /∂υ)s , and similarly
for the other thermodynamic potentials, e.g. with the enthalpy one finds,
(∂υ/∂s)P = (∂T /∂P)s .

(ii) General relations of the type (∂υ/∂s)P = −(∂υ/∂P)s(∂P/∂s)υ satisfied by
any three quantities υ, P , s, satisfying a single functional relationship, which
again expresses the existence of equations of state; the process of obtain-
ing these relations is as follows: let P = P(s, υ), then dP = (∂P/∂s)υds +
(∂P/∂υ)sdυ, and if dP = 0, then (∂P/∂υ)s(dυ/ds) = −(∂P/∂s)υ , which
also writes (∂υ/∂s)P = −(∂υ/∂P)s(∂P/∂s)υ.

The detailed proof of (6.20) is classically found in textbooks (a derivation is also
available at https://www.astro.princeton.edu/~gk/A403/termo.pdf). We will always
have to use the identity (6.20.1) for quantities taken in the ambient state, denoted
by index 0. For simplicity, however, we do not put the index 0 on all the quantities
involved. In what follows we write c2a ≡ c20 and (6.20.1) in the form of (6.5).

https://www.astro.princeton.edu/~gk/A403/termo.pdf
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6.6 Derivation of the Equations of Motion

Let us now turn to the derivation of the Navier-Stokes-Fourier model equations
(6.10)–(6.13) that govern the small deviations from the equilibrium state. Consider
the thermodynamic total variables pressure, temperature, entropy, specific volume,
density, and specific internal energy. Removing for simplicity the index “w”, we
write them in the form:

Pressure: P = P0 + p,
Temperature: T = T0 + τ ,

Specific entropy: s = s0 + s′,
Specific volume: υ = υ0 + υ′,

Density: ρ = ρ0 + ρ′,
Specific internal energy: ε = ε0 + ε′.

Because of scale separation, the fluid in the infinitesimal volumes dV used to
define these quantities is very nearly in equilibrium state. Therefore, both the ambi-
ent quantities and the total variable quantities, are related by equations of state. For
example, writing the caloric equation for ambient state and actual state, we have,
ε0 = ε(s0, υ0) and ε0 + ε′ = ε(s0 + s ′, υ0 + υ) = ε(s0, υ0) + s ′ (∂ε/∂s) (s0, υ0) +
υ′ (∂ε/∂υ) (s0, υ0) + . . ., whence in the linear approximation, ε′ =
s ′ (∂ε/∂s) (s0, υ0) + υ′ (∂ε/∂υ) (s0, υ0). In that way, starting with the different state
equations, and within linear approximation valid for small amplitude perturbations,
many linear relations can be obtained, relating any three of the above deviatoric (“w”)
quantities, and making apparent some of the ambient quantities, and also, the fluid
thermodynamic constants such as β0, cP and cV . Examples of such relationships will
appear below.

The general equations governing the spatiotemporal evolution of all total vari-
ables quantities – the velocity v(t, x) and the thermodynamic fields P(t, x), T (t, x),
ρ(t, x), etc. – will be derived from:

(i) General conservation laws,
(ii) Equilibrium thermodynamics,
(iii) Constitutive equations, outside the realm of equilibrium thermodynamics.

The reason why the evolution of the fields cannot be derived solely from (i) general
conservation laws and (ii) equilibrium thermodynamics (despite the long-wavelength
scale-separation condition λ ≫ � ensuring the existence of local equilibrium states,
where � is a microscopic length such as mean free path), is because the fields and,
thus, the thermodynamic state of the fluid vary to some extent in space and time,
meaning that the system is, slightly, out-of-equilibrium. As later discussed with the
electromagnetic analogy, taking into account the effect of these variationswill already
consist in taking spatial dispersion and temporal dispersion effects into account.

Due to spatial and temporal variations, irreversible transient currents are gener-
ated, aimed at bringing the system back to equilibrium. Indeed, consider two neigh-
bouring infinitesimal particles. At each instant of time they are in slightly different
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Fig. 6.4 Generation of
irreversible currents

equilibrium thermodynamic states of motion (where by “thermodynamic state of
motion” here we also include the information of the mean velocity), say state 1 and
state 2, as sketched in Fig. 6.4.

During any physically infinitesimal period, many molecules (a thermodynamic
number) pass through the boundary surface between particles 1 and 2. Particles
passing in either direction carry information on the state 1 or 2, which are different;
therefore, their passage is necessarily associated with an irreversible exchange of
momentum and energy, aimed at suppressing the difference of state. The appearance
of these transient irreversible currents is described in practice by the introduction
of additional variables, related to the former by empirical constitutive laws. These
laws lie outside the realm of equilibrium thermodynamics. Essentially, they must
precise how much momentum and heat energy are irreversibly transferred, (resp. by
so-called viscous effects and thermal conduction effects), per unit of time across the
surface.

6.6.1 Conservation Laws and Equation of State

We first state the general conservation or balance laws.

Mass Conservation
It is classically found and derived in any textbook:

∂ρ

∂t
+ ∂ · (ρv) = 0.

After linearization, it reads
∂b

∂t
+ ∂ · v = 0, (6.21)

where b = ρ′/ρ0 is the condensation.
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Momentum Balance
This balance law is best written using the convective derivative, d

dt = ∂
∂t + v · ∂:

ρ
d

dt
(vi ) = ∂ jσi j ,

where σi j is the excess stress tensor in the fluid, which incorporates the mentioned
momentum irreversibly transferred. By integration over an infinitesimal volume dV
in motion, it reads, dm d

dt (vi ) = d
dt (vi dm) = ∮

σi j n̂ j dS (dm = ρdV ). This is New-
ton’s law, stating that the time rate of change of momentum is the result of the excess
stress contact forces exerted at the particle bounding surface, (with n̂ the unit outward
normal).

If there were present an external bulk force acting at a distance, pulling the volume
dV with force d f , it would be necessary to rewrite the above, as, dm d

dt (vi ) =
d
dt (vi dm) = ∮

σi j n̂ j dS + d fi . It would correspond, writing the starting equation
with a bulk-source term of force, [d fi/dV ], added in the right-hand side. Obviously,
d fi/dV = ρd fi/dm, and if we count the force per unit mass, we write:

ρ
d

dt
(vi ) = ∂ jσi j + [ρ fi ] .

Onusing the expression of the convective derivative and insertingmassConservation,
it also reads

∂

∂t
(ρvi ) + ∂ j (ρviv j ) = ∂ jσi j + [ρ fi ] ,

and after linearization

ρ0
∂

∂t
vi = ∂ jσi j + [ρ0 fi ] . (6.22)

Energy Balance
This balance law is also stated in the most simple and explicit form using the con-
vective derivative:

ρ
d

dt

(
1

2
v2 + ε

)
= −∂i

(−Σi jv j + qi
)
,

where q is the heat flux density due to thermal conduction, that determines the
above-mentioned heat energy irreversibly transferred, and Σi j = −P0δi j + σi j is
the total variables stress tensor. By integration over an infinitesimal volume dV
in motion, (and such that ρdV = dm), it reads d

dt

(
dm 1

2v
2 + dmε

) = ∮
(−Σi jv j +

qi )(−n̂i ) dS, where the surface integrals are over the bounding surface of element
dV . This is the basic thermodynamic principle, stating that the time rate of change of
the energy of a given fluid volume, (kinetic energy plus internal energy), is equal to
the work done on it, (by the total stress contact forces exerted at the particle bounding
surface), plus the heat it receives, (through this bounding surface), per unit of time.
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If there were present a bulk-source of heat, directly acting in the fluid, and giving
a quantity of heat d̄ Q in the volume dV during time dt , it would be necessary to
rewrite the above, as, d

dt

(
dm 1

2v
2 + dmε

) = ∮
(−Σi jv j )(−n̂i ) dS + ∮

qi (−n̂i ) dS +
d̄ Q/dt . It would correspondwriting the above starting balance lawwith a bulk-source
term [ d̄ Q/dVdt] added in the right-hand side. But, d̄ Q/dVdt = ρd̄ Q/dmdt , and
choosing to count the heat per unit of mass, i.e. noting the present d̄ Q/dm as d̄ Q,
we have

ρ
d

dt

(
1

2
v2 + ε

)
= −∂i

(−Σi jv j + qi
)+

[
ρ
d̄ Q

dt

]
.

After linearization the energy balance equation is, (omitting the prime on ε)

ρ0
∂ε

∂t
= −P0∂ivi − ∂i qi +

[
ρ0
d̄ Q

dt

]
. (6.23)

We next introduce the equation of state, which expresses the condition of local
thermodynamic equilibrium, to obtain another form of this energy balance equation.

Starting with the thermodynamic equilibrium relation, dε = Tds − Pdυ =
Tds + Pdρ/ρ2, substituting in (6.23), and taking into account (6.21), we find

ρ0T0
∂s

∂t
= −∂i qi +

[
ρ0
d̄ Q

dt

]
. (6.24)

Finally, to complete these equations and make apparent only the excess thermo-
dynamic pressure and temperature, we write the equilibrium equations of state,
ρ = ρ(P, T ) and T = T (P, s), whose linearized versions give, resp.

ρ′ =
(

∂ρ

∂P

)
T

p +
(

∂ρ

∂T

)
P

τ , τ =
(

∂T

∂P

)
s

p +
(

∂T

∂s

)
P

s, (6.25)

that is, using (6.19.3) and (6.18.4) and noting that 1/K0 = γχ0,

b = ρ′/ρ0 = γχ0 p − β0τ , and τ = β0T0
ρ0cP

p + T0
cP

s. (6.26)

In the last equation, (6.18.1) has been used to evaluate (∂T /∂s)P = (T0/cP), and
the remaining coefficient has been expressed using the thermodynamic identity
(∂T /∂P)s = (β0T0)/(ρ0cP), given in Pierce [18] Sect. ( 6.10). Substituting (6.26.2)
in (6.24), we obtain finally the following useful form of the energy balance equation:

ρ0cP
∂τ

∂t
= β0T0

∂ p

∂t
− ∂i qi +

[
ρ0
d̄ Q

dt

]
. (6.27)

To summarize, after consideration of the general conservation laws and equilib-
rium thermodynamic relations, we have obtained the following set, (6.28)–(6.31), of
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linearized equations:

Mass:
∂b

∂t
+ ∂ · v = 0, (6.28)

Momentum: ρ0
∂vi

∂t
= ∂ jσi j + [ρ0 fi ] , (6.29)

Equation of state: γχ0 p = b + β0τ , (6.30)

Energy: ρ0cP
∂τ

∂t
= β0T0

∂ p

∂t
− ∂i qi +

[
ρ0
d̄ Q

dt

]
, (6.31)

with fi , a possible external body force per unit mass, and d̄ Q/dt , a possible external
rate of heat supply per unit mass, acting on the fluid.

6.6.2 Constitutive Laws: Stokes and Fourier

Finally, we state irreversible-thermodynamic constitutive laws, for the evaluation of
the heat flux qi , and an additional lossy part σ′

i j present in the excess stresses σi j :

σi j = −paδi j + σ′
i j , pa = χ−1

0 b, (6.32)

with pa , the fictitious excess pressure in adiabatic relationwith the condensation. The
additional stress σ′

i j owes its presence to the losses processes generated in response
to the temporal and spatial variations in the fields. Using terminology inspired by
the electromagnetic analogy that will later be discussed, (Sects. 6.10–6.12), the first
adiabatic term would give the right result in the absence of intrinsically irreversible
“polarization processes” induced by temporal and spatial variations in the fields; the
additional term σ′

i j , is there to take into account the presence of such processes. A
priori it would decompose in two parts:

σ′
i j = σ′

τ i j + σ′
v i j , (6.33)

one, σ′
τ i j , caused by the irreversible processes generated by the temperature vari-

ations, and the other, σ′
v i j , caused by the irreversible processes generated by the

velocity variations.
Indeed, in an inhomogeneous temperature field such as found in a wavefield, the

condensation-rarefaction do not occur in exact adiabatic manner due to the small
temperature exchanges which appear mainly by thermal conduction between neigh-
bouring particles, (having slightly different instantaneous temperatures). For this rea-
son, the natural excess pressure variable will not be the adiabatic one, pa = χ−1

0 b.
It will be the thermodynamic excess pressure, p(b, τ ), by definition related to b and
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Fig. 6.5 Momentum
transfer between two fluid
particles 1 and 2 in contact

τ by the equation of state, (6.30).12 This is because, as said, scale-separation here,
means that the local thermodynamic equilibrium tends to be reached. Actually, as
the effect of temperature spatial variations must express in σ′

τ i j , we guess that this
thermal stress term, once added to the adiabatic first term in (6.32), leads to the excess
thermodynamic pressure, hydrostatic term:

− paδi j + σ′
τ i j = −χ−1

0 bδi j + σ′
τ i j = −pδi j . (6.34)

Then the total excess stress tensor also simply writes:

σi j = −pδi j + σ′
v i j . (6.35)

This last form (6.35) in place of (6.32), is the way the stresses are usually directly
written in literature, without mentioning (6.32), (6.33), and (6.34), see e.g. Landau
and Lifshitz [6]. We will soon see, in the analysis of the Fourier constitutive law
which specifies the additional variable qi , that the thermal stress tensor σ′

τ i j which
allows (6.32)–(6.34) to be satisfied is:

σ′
τ i j = −κ

γ − 1

β0T0

∫ t

−∞
dt ′∂2τδi j , (6.36)

where κ is the coefficient of thermal conduction in Fourier’s law.
The remaining σ′

v i j in (6.33) or (6.35), is the viscous contribution, separately
identified in Stokes’s law. It must determine the rate of momentum transfer between
two fluid particles 1 and 2 in contact, that do not have the same average velocity, as
sketched in Fig. 6.5.

Indeed, over a physically infinitesimal time period, many molecules (a thermo-
dynamic number) pass through the boundary surface between particles 1 and 2. But

12 It will be shown that p is related to b only, by an operational nonlocal bulk modulus. The operator
in the relation p = χ̂b will be derived in Sect. 6.12.3
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as the mean velocity in 2 is, say, greater than that in 1, this exchange is not sym-
metrical and particle 1 receives more momentum than does particle 2. Therefore, an
irreversible exchange of momentum between the two particles is generated across
the surface. This exchange creates the viscous stress tensor σ′

v i j . It has two indices as
one is defined by the direction of the normal to the considered surface, and the other
is the direction defining the considered momentum component. The simplest ansatz
is that at a given time t and position, it depends only on the first derivatives, ∂vi/∂x j ,
evaluated at the same time and position, with other dependencies, (higher order spa-
tial derivatives and time-memory effects), leading to negligible corrections.13 With
the additional observation that it should vanish if the fluid is rotating uniformly as a
whole, one deduces that only the symmetric combinations ∂vi/∂x j + ∂v j/∂xi , can
be involved. As a result, σ′

v i j must be constructed with these combinations and the
unit tensor δi j , the only other tensor at our disposal with isotropy assumed. There fol-
lows that the viscous irreversible current density of momentum is principally given
in the form:

σ′
v i j = η

(
∂iv j + ∂ jvi − 2

3
δi j∂lvl

)
+ ζδi j∂lvl , (6.37)

with η and ζ, two constitutive constants of the fluid, which are named the first and
second viscosity. Equation (6.37) is Stokes’s constitutive law.

It remains to state Fourier’s constitutive law, indicating howmuch thermal energy
is irreversibly transferred by thermal conduction. To state this law, we assume that the
fluid particles 1 and2 in contact do not have the same temperature.As before, particles
1 and 2 exchange a thermodynamic number of molecules, across their common
boundary surface, over a physically infinitesimal period of time. But as the mean
temperature in 2 is, say, greater than that in 1, particle 1 receives molecules having
higher thermal speed than does particle 2. Therefore, a heat exchange is generated
across the surface, that is described in terms of a thermal-conduction vector heat flux
qi . The simplest ansatz is that at a given time t and position, this vector depends
only on the first derivatives ∂τ/∂xi evaluated at the same time and position, with
other dependencies leading to negligible corrections.14 With isotropy assumed there
follows that the irreversible current density of heat transfer is principally:

qi = −κ∂iτ , (6.38)

with κ a constitutive constant of the fluid, which is named the thermal conduction
coefficient. Equation (6.38) is Fourier’s constitutive law. Note that with these laws
the density of entropy production can be shown to be

13 In fact, these corrections should imperatively be taken into account, (which raises deep
irreversible-thermodynamic questions), in such a way that the description, once reviewed in the
light of the nonlocal electromagnetic analogy, remains physical and mathematically well condi-
tioned: see end of Sect. 6.12.3.
14 Again, the electromagnetic analogy suggests that these corrections should also be taken into
account to ensure that the description remains entirely physical: see end of Sect. 6.12.3.
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σs = −T−2
0 qi∂iτ + T−1

0 σ′
v i j∂iv j , (6.39)

and by the second principle of thermodynamics which imposes σs > 0, we have that
the introduced viscosities and thermal conduction coefficients are all positive.

Substituting Stokes’s and Fourier’s constitutive laws in the set (6.28)–(6.31) com-
pleted by (6.35), we finally obtain the governing linearized equations stated in (6.10)–
(6.13).

We can now check our previous identifications (6.34) and (6.36). The combination
of (6.12) and (6.13) gives, ρ0cP∂t (γχ0 p − b) /β0 = β0T0∂t p + κ∂2τ , and using the
first thermodynamic identity (6.20), we derive after straightforward calculation:

p = χ−1
0 b + κ

γ − 1

β0T0

∫ t

−∞
dt ′∂2τ . (6.40)

This expression of the thermodynamic excess pressure is coherent with (6.34), if
only, we have the expression (6.36) of the thermal stresses.

Wenote that, in the sameway as it is logical towrite themomentumequation (6.29)
as, ρ0∂tvi = ∂ j (−χ−1

0 bδi j + σ′
i j ), (using (6.32)), but it is, actually, more convenient

to use the thermodynamic pressure and write it, ρ0∂tvi = ∂ j (−pδi j + σ′
v i j ), (using

instead (6.35)), it would be logical to write, for the energy equation, ρ0cP∂tτ =
β0T0χ

−1
0 ∂t b − ∂i q ′

i , with some irreversible q ′
i flux, but it is, again, more convenient

to make appear the thermodynamic pressure, and use (6.31). The irreversible flux
q ′
i would be: q ′

i = −γκ∂iτ = γqi , and it is preferable to deal with qi , which is the
thermal energy flux.

There is still one important point to be made here. The laws we have considered
are special in that they have explicitly assumed scale separation, or sufficiently slow
times variations. In reality, at very short times or very short wavelengths, the used
near-equilibrium thermodynamic framework becomes unadapted and the appropri-
ate description is expected to become much more subtle. In particular, solid-like
behaviours should systematically appear in any fluid, to some extent, at very short
times. This hypothesis was put forward long ago, in 1925, by the self-taught Russian
theoretical physicist Yakov Il’ich Frenkel [7].

Frenkel’s ideaswhich have longbeenoverlooked, have recently been substantiated
in liquids [8]. This suggests that, if the thermodynamic framework in which we work
were broad enough, we would have to write, instead of (6.32):

σi j = −(χ−1
0 )i jklbkl + σ′

i j , bi j ≡ −1

2

(
∂i a j + ∂ j ai

)
, v ≡ ∂a/∂t, (6.41)

(χ−1
0 )i jkl = χ−1

0 δi jδkl + μ0

(
δikδ jl + δilδ jk − 2

3
δi jδkl

)
. (6.42)

In the last equation,μ0 would be a new constant, whichwe could denote the “Frenkel-
Lamé” adiabatic shear modulus of the fluid. Its nonzero value would allow for the
propagation of undamped shear waves in a very-short-times limit (times so short
that the dissipative reactions expressed in the lossy σ′

i j , have no time to be built).
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In Appendix we see how the electromagnetic-acoustic analogy is automatically, by
construction, coherent with these physical views.

In a gas, the large separation between the molecules will make the modulus μ0 a
priori extraordinarily small; nevertheless, from the strict point of view of questions
of principle, it should be considered nonzero, which would imply the presence of
additional terms in the dissipative part σ′

i j of the stresses, in turn determining at least
in Gibbs’ sense,15 the dynamics of propagation and attenuation of Frenkel’s “elastic”
waves, of extraordinarily low amplitudes. Of course, well before considering these
effects in a thermodynamic extension, it would have been necessary, in the first place,
to account for the molecular relaxation, and go beyond the too simplistic Stokes and
Fourier’s laws. A complete thermodynamic extension, we believe, would reveal the
full nonlocal pattern of equations andquantities conjectured in theAppendix, inspired
by the electromagnetic analogy.

6.6.3 Inherent Thermodynamic Simplifications in
Navier-Stokes-Fourier’s Framework

Let us now summarize and comment the above development, which has justified the
Navier-Stokes-Fourier linearized-motion model equations (6.10)–(6.13). It rests on
simplifications well-verified in practice: the assumption of local equilibrium allow-
ing to use classical equilibrium thermodynamic relations and to neglect molecular
relaxation phenomena, the Stokes and Fourier constitutive laws which are the sim-
plest ones to be considered in this framework, and finally, the neglect of Frenkel’s
shear motions. Nevertheless, as we have just suggested, these are important simplifi-
cations from a general physical point of view. As such they can have some unwanted
consequences. The motion equations obtained have an elliptic nature through the
absence of Frenkel’s terms and the Stokes law in the momentum equations, and a
parabolic nature through Fourier’s law in the energy equation. Their solutions then
manifest unphysical features such as the totally diffusive nature of shear waves mode
solutions,16 and instant propagation of an initial temperature disturbance.17

In short, when thesemodel equations (6.10)–(6.13) will be reexamined in the light
of a general nonlocal electromagnetic analogy, (see Sects. 6.10–6.12 and Appendix),
the simplifications they convey will cause defects, particularly visible in the degener-
ate description they will give of the shearing movements. These degeneracies could

15 As in this context the wavelengths could be reduced to the point of becoming comparable to the
mean free path, the separation of scale would not be ensured and macroscopic means would have
to be taken in the Gibbs sense.
16 See (6.66) below, this unphysical feature being related to the absence, in purely viscous shearing
motions, of associated nonzero “acoustic stress field Hi j ” – see in Appendix, after (6.205).
17 See (6.145) below, this unphysical feature being related to the nonvanishing of the kernelχb(t, x),
whatever the values, however large, of |x |, contradicting the finite velocity of propagation of physical
influences.
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only be totally overcome by working within an extended framework of the thermo-
dynamics of irreversible processes, if necessary with the Gibbs mean, abandoning
local equilibrium, going beyond Stokes and Fourier’s laws, and introducing Frenkel’s
shearingmotions. Nevertheless, by limiting our considerations to longitudinal move-
ments as described by current laws, (see Sects. 6.10 and 6.12), we will deliberately
avoid entering into this difficult subject, which belongs to the unclarified field of
Extended Irreversible Thermodynamics far from equilibrium.

6.7 The Different Normal Modes at Fixed Real Wavevector

Wedetail here the different type of solutions of themodel equations ofmotion (6.10)–
(6.13). Eliminating the condensation, we have a system of five first-order-in-time
differential equations for the five fields v(t, x), p(t, x) and τ (t, x). Therefore, given
a fixed wavevector k, the solutions can be analyzed in terms of five “hydrodynamic
modes” or “normal modes” solutions varying like18:

v(t, x) = v0e
−iωt+ik·x, p(t, x) = p0e

−iωt+ik·x, τ (t, x) = τ0e
−iωt+ik·x .

Consider first the case where the wavevector k = kx x̂ + ky ŷ + kz ẑ has real compo-
nents. It is the form k = kn̂, specified by a unit vector direction n̂ and modulus k. We
must find five hydrodynamic modes solutions having this real wavevector, and com-
plex frequencies, (to account for the damping brought by irreversible processes). To
clarify these five solutions, we introduce three independent polarization directions,
the longitudinal (1) direction (‖ n̂), and transversal (2, 3) directions (⊥n̂), in which
the velocity amplitude vector v0 can point, as shown in Fig. 6.6.

Wewrite the complex frequencies as,ω = ω′ − iω′′. Hence the exponential factor
will have the form e−ω′′t e−iω′t+ikn̂·x . Physically, here, as the imaginary parts owe
their existence to the losses terms, they are to be taken negative, i.e. ω′′ positive,
to ensure that the solutions fade away over time. The real parts will be either zero,
corresponding to diffusive purely damped solutions, or nonzero, with the two signs
possible, corresponding to right-going or left-going waves.
The five modes solutions, therefore, are as follows19:

Polarization 1:

ω′ = c0k − O(k3), ω′′ = Γ k2 + O(k4),

18 When using this complex notation, we understand that v(t, x) = 
 (v0e−iωt+ik·x), etc., system-
atically omitting here and elsewhere the real part symbol 
 ( ).
19 The results for polarization 1 are the complex solutions, ω = ω′ − iω′′, of Kirchhoff-Langevin’s
dispersion equation (6.52). The results for polarization 2, 3, are the complex solutions of the vortical
diffusion equation, first (6.61).
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Fig. 6.6 Polarization

damped longitudinal wave propagating in the direction of vector k = kn̂ (a so-
called “acoustic wave”; it has pressure and temperature variations but almost no
entropy variations),
Polarization 1:

ω′ = −c0k + O(k3), ω′′ = Γ k2 + O(k4),

damped longitudinal wave of the same type (acoustic wave) propagating in the
reverse direction,

Polarization 1:

ω′ = 0, ω′′ = κ

ρ0cP
k2 − O(k4),

purely damped longitudinal wave (a so-called “entropic wave”; it has entropy and
temperature variations but almost no pressure variation),

Polarization 2:

ω′ = 0, ω′′ = η

ρ0
k2,

purely damped shear wave (transversal, also called vortical; it has no pressure,
temperature, or entropy variations),

Polarization 3:

ω′ = 0, ω′′ = η

ρ0
k2,

purely damped shear wave of the same type but other polarization,

and where,
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Γ ≡ 1

2ρ0

[
4η

3
+ ζ + κ

(
1

cV
− 1

cP

)]
, (6.43)

is a small constitutive constant called the classical sound damping constant. Its order
of magnitude is that of the kinematic viscosity

ν ≡ η

ρ0
, (6.44)

respectively 10−5 m2s−1 and 10−6 m2s−1 for air and water.
Consider next the case with real frequency and complex wavevectors. The above

three kinds of waves, shear, “entropic” and “acoustic”, will correspond to three
different sorts of complexwavenumbers. In the following,we showhow the equations
of motion (6.10)–(6.13), are used to derive the characteristics of the “acoustic” and
“entropic” harmonicmodes; this calculation is classical and can be found in Rayleigh
[9].

6.8 Some Explicit Calculations for the Longitudinal Modes

Insert (6.12) in (6.13) and use the first thermodynamic identity (6.20) and third
definition (6.18) to obtain an alternative form of (6.13):

∂tτ = γ − 1

β0
∂t b + κ

ρ0cV
∂2τ .

It simplifies the equations to introduce τ ′ = β0τ/(γ − 1). Using this temperature
variable and denoting c0 and c′

0 the adiabatic and isothermal reference sound veloc-
ities (ca and ci see (6.19)),20 the (6.12) and (6.13) take the following form:

p

ρ0
= c′2

0 b + (c20 − c′2
0 )τ ′, (6.45)

and
∂tτ

′ = ∂t b + κ

ρ0cV
∂2τ ′. (6.46)

Let us work in harmonic regime e−iωt . Substituting (6.45) inside the last form of
(6.11) gives an equation having the form, ∂tv − ν∂2v = −∂X , with

X =
[
c′2
0 − iω

ζ + η
3

ρ0

]
b + (c20 − c′2

0 )τ ′,

20 Which verify ρ0χ0c20 = 1, ρ0γχ0c′2
0 = 1, c20 = γc′2

0 , γ − 1 = c20−c′2
0

c′
0
2 and γ−1

γ = c20−c′2
0

c20
.
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Equation (6.46) gives

b = τ ′ + κ

ρ0cV iω
∂2τ ′. (6.47)

Finally, with (6.10) giving ∂ · v − iωb = 0, we obtain the following velocity-
temperature equations:

− iωv − ν∂2v = −∂X, X =
[
c′2
0 − iω

ζ + η
3

ρ0

]
b + (c20 − c′2

0 )τ ′, (6.48)

∂ · v − iωτ ′ − κ

ρ0cV
∂2τ ′ = 0. (6.49)

By taking the divergence of (6.48.1), and eliminating the velocity-divergence terms
using (6.49), there results the following equation on temperature:

− ω2τ ′ −
[
c20 − iω

(
κ

ρ0cV
+ ν + ζ + η

3

ρ0

)]
∂2τ ′ + . . .

− κ

ρ0cV iω

[
c′2
0 − iω

(
ν + ζ + η

3

ρ0

)]
∂4τ ′ = 0.

(6.50)

Looking for a solution having the form e−iωt+ik·x and setting by definition

− k2 ≡ λ, (6.51)

the constant λ must be the solution of the following Kirchhoff-Langevin’s21 charac-
teristic equation:

− ω2 −
[
c20 − iω

(
κ

ρ0cV
+ ν + ζ + η

3

ρ0

)]
λ + . . .

− κ

ρ0cV iω

[
c′
0
2 − iω

(
ν + ζ + η

3

ρ0

)]
λ2 = 0.

(6.52)
For small real k (k(� ∼ ν/c0) ≪ 1, long wavelengths), the complex frequencies
ω, solutions to this equation, expand in powers of k. Writing such expansions and
substituting them in (6.52), along with λ = −k2, one obtains the three “polarization
1” solutions, (two acoustic, one entropic), given in Sect. 6.7. For real frequency, the
dispersion equation (6.52) has two complex roots λ1,2:

− λ1 = k21 = 1

2A
[−B +

√
B2 − 4AC], −λ2 = k22 = 1

2A
[−B −

√
B2 − 4AC],

(6.53)
with

21 See [2] for an explanation of this denomination.
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A = − κ

ρ0cV iω

[
c′
0
2 − iω

(
ν + ζ + η

3

ρ0

)]
, C = −ω2,

B = c20 − iω

(
κ

ρ0cV
+ ν + ζ + η

3

ρ0

)
.

(6.54)

Using by convention, square-root determinations 

(√ )

> 0, λ1 represents the

smallest solution, mainly real, that describes acoustic waves having very small
absorption, and λ2 represents the other much larger solution,22 mainly purely imag-
inary, that describes the highly damped diffusive entropic waves. The associated
acoustic and entropic wavenumbers, such that the dependencies e−iωt+ik1,2x repre-
sent acoustic and entropic waves propagating in the direction +x , are

k1 =
√

1

2A
[−B +

√
B2 − 4AC], k2 =

√
1

2A
[−B −

√
B2 − 4AC], (6.55)

(with this choice, � (k1,2) > 0, so that the waves attenuate along +x).
After straightforward calculations we find expansions having the form:

−λ1 = ω2

c20

[
1 + iω

2Γ

c20
+ . . .

]
, −λ2 = i

ρ0cPω

κ

[
1 + iω

2Γ ′

c20
+ . . .

]
, (6.56)

k1 = ω

c0

[
1 + iω

Γ

c20
+ . . .

]
, k2 = (1 + i)

√
ρ0cPω

2κ

[
1 + iω

Γ ′

c20
+ . . .

]
,

(6.57)

with Γ the expression previously given in (6.43) and Γ ′ the expression

Γ ′ = γ − 1

2ρ0

(
4η

3
+ ζ − κ

cP

)
. (6.58)

The solution for the wavenumber k1 describes a pressure wave propagating with
a soundspeed velocity always slightly less than the reference adiabatic value c0,
and which is slightly attenuated because of the small factor Γ . The solution for the
wavenumber k2 describes a mainly purely diffusive (
(k) = �(k)), highly attenuat-
ing entropic (or thermal) wave. The characteristic penetration length of this wave is,
as seen on the exponential exp(ik2x) ∼= exp(i x

√
ρ0cPω/2κ) exp(−x

√
ρ0cPω/2κ),

determined by the characteristic entropic, or thermal boundary layer, length δτ =
(2κ/ρ0cPω)1/2.

It can be checked that, for these two types of waves (respectively T = 1, 2) there
are the following relations:

22 But still small in the sense |k2�| ≪ 1 (longwavelengths), ensuring the scale separation discussed
in Sect. 6.3.
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vi = ω

k2T
kT ib, (i = x, y, z), p = 1

γχ0

⎛
⎜⎜⎝1 + γ − 1

1 + γ
κ

ρ0cP

1

−iω
k2T

⎞
⎟⎟⎠ b, (6.59)

τ = 1

β0

γ − 1

1 + γ
κ

ρ0cP

1

−iω
k2T

b, s = γ − 1

γ

cP
β0T0

⎛
⎜⎜⎝−1 + 1

1 + γ
κ

ρ0cP

1

−iω
k2T

⎞
⎟⎟⎠ b

For the type 1, the “acoustic wave”, the entropy variations are almost zero, s ∼= 0.
In effect, (γκ/−iωρ0cP)k21 is usually close to zero because of the small κ/ρ0cP
value (as long as frequencies are not too high, or wavelengths, not too small). Hence
the parenthesis in the expression of s almost vanishes. In the expression of p, the
parenthesis almost takes the value 1 + (γ − 1)/1 = γ, leading to pressure-density
relation p ∼= χ−1

0 b, close to the adiabatic. The temperature also, is almost in adiabatic
relation to the condensation, τ ∼= b(γ − 1)/β0.

For the type 2, the “entropic wave”, on the contrary, (γκ/−iωρ0cP)k22 ∼= −γ.
Then the entropy variations are significant:

⎛
⎜⎜⎝−1 + 1

1 + γ
κ

ρ0cP

1

−iω
k22

⎞
⎟⎟⎠ ∼=

(
−1 + 1

1 − γ

)
= γ

1 − γ
⇒ s ∼= − cP

β0T0
b.

The temperature variations are also non-negligible τ ∼= b(γ − 1)/β0(1 − γ)
∼= −b/β0. The pressure variations are practically zero,

⎛
⎜⎜⎝1 + γ − 1

1 + γ
κ

ρ0cP

1

−iω
k22

⎞
⎟⎟⎠ ∼= 1 + γ − 1

1 − γ
= 0 ⇒ p ∼= 0.

Indeed, using (6.57.2) we find, for this entropic pressure, p ∼= 1

χ0

2iωΓ ′

(γ − 1)c20
b, which

is very small compared to the adiabatic pressure b/χ0. This iswhy the first and second
type of longitudinal waves are often termed pressure waves and entropy waves, in
spite of the fact that pressure and entropyvariations are always simultaneously present
in these two waves.

6.9 General Representation of the Fields in Harmonic
Regime Without Source

Introducing acoustic and entropic potentials, φ1 and φ2, such as
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∂2φ1,2 = λ1,2φ1,2, (6.60)

the general field τ ′, solution to the temperature equation (6.50), will be

τ ′ = A1φ1 + A2φ2,

with A1,2 two constants. The general velocity field v will be

v = v′ + B1∂φ1 + B2∂φ2,

with the vortical part v′ obeying the equations

∂2v′ = −iω

ν
v′, ∂ · v′ = 0. (6.61)

One expresses the coefficients B from the coefficients A by using the fact that the
(6.49) is independently satisfied by terms 1 and 2. This yields

B1,2 =
(

κ

ρ0cV
− −iω

λ1,2

)
A1,2.

From the temperature field, the condensation field can be written using (6.47). The
pressure field then derives using (6.45). In summary, the general form of the fields
in harmonic regime and without source, is:

v = v′ +
(

κ

ρ0cV
+ iω

λ1

)
A1∂φ1 +

(
κ

ρ0cV
+ iω

λ2

)
A2∂φ2, (6.62)

τ ′ = A1φ1 + A2φ2, (6.63)

b =
(
1 + κ

ρ0cV iω
λ1

)
A1φ1 +

(
1 + κ

ρ0cV iω
λ2

)
A1φ2, (6.64)

p

ρ0
=
(
c20 + c′

0
2 κ

ρ0cV iω
λ1

)
A1φ1 +

(
c20 + c′

0
2 κ

ρ0cV iω
λ2

)
A1φ2. (6.65)

The wavenumber for the vortical motions (shear motions described in the part v′),
is purely diffusive, highly attenuated. Indeed, putting the form, v′ = v′

0e
−iωt+ikv ·x ,

in (6.61.1), gives, k2v = iω/ν, or:

kv = 1 + i√
2

(ω

ν

)1/2
. (6.66)

The characteristic penetration length of this wave is seen on the exponen-
tial exp (ikvx) = exp (i x/δv) exp (−x/δv). It is the characteristic shear, or viscous
boundary layer, length δv = (2ν/ω)1/2. Because the Prandtl number, Pr ≡ ηcP/κ, is
generally of order one, (e.g. 0.71 for air), the viscous and thermal penetration lengths,
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δτ = δv/Pr1/2, are of a comparable order. This order is very small: for example for
air at audible frequencies, typical viscous and thermal attenuation lengths are in
the order of 10−4 m, (still very “long-wavelength” compared to the mean free path
� ∼ η/ρ0c0 = 4.5 10−8 m).

6.10 Revisiting the Longitudinal Acoustic Equations Using
an Electromagnetic Analogy

We now want to make clear, that the propagation of waves in the fluid, in the pres-
ence of viscous and thermal losses, can be considered in exactly the same way
as the nonlocal macroscopic propagation of electromagnetic waves in a medium.
We believe that this electromagnetic analogy would assume its full beautiful form,
sketched in Appendix, if it were possible to extend sufficiently the thermodynamic
framework, so as to model also Frenkel’s shearing movements; if we work within
Navier-Stokes-Fourier model, however, the absence of Frenkel’s shearing, among
other shortcomings, makes the description degenerate. We mentioned previously in
Sect. 6.6.3 these insufficiencies of the description. As the completion of the analogy
is until now a distant perspective, in what follows, to avoid degeneration, we limit
ourselves to considering theNavier-Stokes-Fouriermodelwhen shearingmovements
are not excited.

Recall that the momentum equation can be written, ρ0∂tv = −∂ p − η∂ × (∂ ×
v) + (4η/3 + ζ) ∂(∂ · v). Focusing on longitudinal motions only, the term −η∂ ×
(∂ × v) is not excited, and the set of equations to be revisited is

∂t b + ∂ · v = 0, (6.67)

ρ0∂tv = −∂ p −
(
4η

3
+ ζ

)
∂∂t b + [

f = −∂P] , (6.68)

γχ0 p = b + β0τ , (6.69)

ρ0cP∂tτ = β0T0∂t p + κ∂2τ . (6.70)

In (6.68) we have included the possibility that an external density of longitudinal
bulk force f , that is thus given as a gradient, is acting on the fluid. We will see
that these (6.67)–(6.70) can be transformed into a general pattern inspired by that
of macroscopic electromagnetic equations in a homogeneous material medium, with
a source [J], density of external electrical current, playing the role of source

[
f
]
,

density of external longitudinal body force. To prepare this way of looking at the
acoustic equations of motion, we now go to macroscopic electromagnetic theory and
study its formal pattern.
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6.11 Macroscopic Electromagnetics

Due to the lack, to date, of a precise relationship between macroscopic electromag-
netics and thermodynamics in the broad sense, (out of equilibrium), it is still not
possible to perform a precise specification of some of the macroscopic quantities
involved in the macroscopic equations that describe the propagation of electromag-
netic waves in, say, a neutral material medium given in an ambient rest state. This
point is generally not sufficiently well recognized in textbooks and literature. For
example in Jackson [10, Chap.6], there is written, about the macroscopic electro-
magnetic equations: “Although these equations are familiar and totally acceptable,
we have yet to present a serious derivation of them fromamicroscopic starting point”;
there follows a “microscopic derivation” of the stated equations, which is apparently
intended to clarify the question, but which, in fact, remains superficial and does not
address a number of difficult and embarrassing questions. This is not surprising: one
could hardly expect deriving results belonging to the field of macroscopic physics
proper, from scratch microscopics, (and even less so, when the microscopic level is
that of semiclassical models). We try here to bring out some of the irritating pend-
ing questions, in a formal discussion. The subject will not come out of it clarified,
quite the contrary, but the simple recognition of the presence of difficulties of a
macroscopic thermodynamic nature in the broad sense, will be useful to us later in
acoustics. Moreover, the forthcoming acoustic implementation of our discussion –
in this chapter and the next – will particularly retrospectively highlight the thermo-
dynamic nature of these difficulties, which will be circumvented in acoustics, only
because of an existing (even if imperfect) thermodynamic framework, that of the
Navier-Stokes-Fourier model.

6.11.1 Nonlocal Maxwellian Pattern of the Macroscopic
Equations

Here, we are interested in the description of time variable and space variable phenom-
ena such as occurring in macroscopic wave propagation, either corresponding to free
motion (no external source), or forced motion (with external source). Although, as
we have said, no complete derivations of the required macroscopic electromagnetic
wave equations have ever been made from the microstructure, we will argue that,
what is known at the microscopic level, suggests that, at the macroscopic level can
be written a system of two field equations and two nonlocal constitutive equations:

∂B
∂t

= −∂ × E,
∂D
∂t

= ∂ × H − [J] , D = ε̂E, H = μ̂−1B. (6.71)

The impressed term [J] is a current density source termwhichwe put inside brackets,
as it may, or may not be applied. The quantities ε̂ and μ̂ are operators intrinsic to the
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medium, establishing action-response relations between fields, and having the same
following general nonlocal form, whatever the source term is present, or not23:

D(t, x) =
∫

ε(t − t ′, x, x′)E(t ′, x′)dt ′dx′, (6.72)

H(t, x) =
∫

μ−1(t − t ′, x, x′)B(t ′, x′)dt ′dx′. (6.73)

Of the four electromagnetic macroscopic fields E, B, D, H , two of them, E
and B, will be called Lorentz’s fields and directly interpreted in the next subsection
as the macroscopic means of the microscopic electric and magnetic fields e and b:
E ≡ 〈e〉 and B ≡ 〈b〉. The other two, D and H , will be called Maxwell’s fields
and seen to reflect the response of the medium to the preceding fields, and thus,
the nature of the microstructures. They are not to be viewed as the macroscopic
averages of correspondingmicroscopic fields. They are, in fact, problematic to define
in principle, in a material environment. By the way, not apparent in the above Gibbs-
Heaviside’s standard vector notations, Lorentz’s and Maxwell’s fields have different
tensor nature, (see Appendix24). Whereas E and B express in terms of true tensors,
D and H express in terms of tensor densities of weight −1. The impressed densities
of charges and current ρ and J25 also are tensor densities of weight −1. Like the
Maxwell fields they are problematic to define in principle, in a material environment,
and this is also generally obscured in literature.

The nonlocal form of the relationships (6.72) and (6.73) is essential to assure that
the description is general; as it is rarely considered in the literature, it is worthwhile
opening a parenthesis to comment on it in some detail.

The integration over time t ′, i.e. temporal nonlocality, gives rise to what is called
“temporal dispersion”; the integration over space x ′, i.e. spatial nonlocality, gives rise
towhat is called “spatial dispersion”. Because both integrations are accounted for, we
are directly assured of the general validity of the relation (6.72) for a time-invariant
medium: it would be useless to add in (6.72) an integral term built on the values
B(t ′, x′). Indeed, as analyzed in Landau and Lifshitz [13], because the fields E and
B are not totally independent but related by (6.71.1), it would be possible to view this
term as an effect of spatial dispersion, already described in the first term. Concerning

23 The dependencies are over t − t ′, x and x′, because the medium is assumed time-invariant
but not translational invariant. When considering an homogeneous unbounded medium, the spatial
dependency will be over differences x − x′. Note that the indefinite integrals become definite
when considering that the kernels factors must vanish at some point – if only when the event
(t ′, x′) lies outside the relativistic cone of causality whose tip is the event (t, x):

∫
dt ′
∫
dx′ ↔∫ t

−∞ dt ′
∫
|x−x′|<c(t−t ′) dx

′.
24 These aspects are often overlooked in electromagnetic literature – see however Fournet [11].
See Weinberg [12] for general notions on Gauss coordinates, tensors, tensor densities, covariance,
contravariance.
25 ρ appears in another general equation, ∂ · D = ρ, which we need not explicitly consider here,
because, in the time variable, space variable regimes, it automatically follows from taking the
divergence of (6.71.2), and using the conservation equation, ∂ρ/∂t + ∂ · J = 0.
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the other nonlocal relationship (6.73), a similar justification of its generality, can be
made, based on the relation established between D and H through (6.71.2), and the
generality of (6.72). In brief, because they allow for spatial dispersion in addition
to temporal dispersion, the relationships (6.72) and (6.73) between Lorentz’s and
Maxwell’s fields are the most general possible ones, (including, in particular, the
so-called bianisotropic constitutive relations). Often, in literature, by a convention,
the temporal and spatial dispersion is introduced only in (6.72), not in (6.73), which
is replaced by a direct definition-relation, H = μ−1

0 B. We will comment in more
detail on this convention in Sect. 6.11.3, and a similar problematics, in the acoustic
analogy, will later shed useful light on it, illustrating its simple nature as an expedient.

As long as we use Cartesian coordinates and work with Gibbs-Heaviside’s nota-
tion, the kernel functions ε(t − t ′, x, x′) and μ−1(t − t ′, x, x′) retain the nature of
second-rank tensor quantities.26 As a rule, they are independent of the fields and
only determined by the microstructure. Nevertheless, different distributions of the
Lorentz fields must produce different resulting distributions of Maxwell fields D
and H . Precisely because the created D and H will depend on the variations of E
and B, all effective properties meaningful for wave propagation, such as impedances
and wavenumbers, will reflect associated temporal and spatial variations of Lorentz
fields.

Therefore in this sense, one may think of “temporal dispersion” as something that
tells us that the effective properties of the medium depend on the time variations
of the macroscopic fields; likewise, “spatial dispersion” is something that tells us
that the effective properties of the medium depend on the spatial variations of the
macroscopic fields.

In wave propagation problems, there are both time and space variations, therefore,
temporal dispersion and spatial dispersion, should always be simultaneously present.
Nevertheless, often, spatial dispersion effects are very weak: they are neglected in
almost all textbooks; or else, once introduced, they are assumed to be small correc-
tions meaningful to consider only when the wavelengths reduce sufficiently [13].
It is only very recently understood [14], that, spatial dispersion effects can be very
strong effects at long wavelengths. This occurs in presence of localized resonating
structures.

The same generalities will apply to acoustics. Often, spatial dispersion effects are
necessary to consider only as corrections to the conventional (local) homogenization,
(see next chapter), when the wavelengths reduce sufficiently to become commensu-
rable with the microstructure characteristic lengths. But in some other instances, this
time completely failing the conventional views, they can be strong effects at long
wavelengths. This occurs in presence of resonances. People often speak of “local
resonances” as these resonances are generally those of finite structures, localized in
space. But this wording is, in-part, unfortunate: when “local resonances” are present,

26 In general Gauss coordinates, ε remains second-rank but μ−1 becomes fourth-rank tensor; the
first and last (one or two) indices, transform respectively with coefficients associated to the different
points x and x′.
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the wave propagation physics becomes strongly nonlocal (spatially).27 A nonlocal
homogenization description will be developed in next chapter, for rigid-framed fluid-
saturated materials. In this chapter, as we consider a simple fluid with no structure,
the spatial dispersion effects will be weak, (but essential to allow for the propagation
of other waves than the so-called acoustic one).

We close our parenthesis here. We now want to examine why it is not so evident
to fix the meaning of the Maxwell fields D, H , and impressed source term [J]. To
do this, we try to sketch in the next section how these fields appear, in a material
environment, and lead to the formal pattern of the above equations.

6.11.2 Passage from Microscopics to Macroscopics

To evoke the difficult nature of the questions raised by the specification of the fields
D, H , and [J], let’s start with the equations that hold true at the microscopic level. In
a semi-classic description these are the well-known electromagnetic equations first
written at the turn of the 20th century by Lorentz in his celebrated series of papers,
and monograph, on “The theory of electrons”. They comprise first, the so-called
“microscopic Maxwell-Lorentz equations”:

∂ · b = 0,
∂b
∂t

+ ∂ × e = 0, ∂ · e = ρ

ε0
, ε0

∂e
∂t

= 1

μ0
∂ × b − j . (6.74)

We can be assured of their profound physical significance because there is a route,
from Quantum Electro-Dynamics describing the photonic field, to these equations,
describing electric andmagnetic fields. They comprise next, the following inherently
semi-classic expressions for the microscopic densities of charge ρ and current j :

ρ =
∑

α

qαδ [x − xα(t)] , j =
∑

α

qαvα(t)δ [x − xα(t)] , (vα ≡ dxα/dt),

(6.75)
where δ is the Dirac delta, and the symbolic summation28

∑
α, α = 1, 2, . . ., is over

electrons and nuclei. They comprise finally, the following, also inherently semi-
classic and symbolic equations of motion, separately obeyed by the charges moving
under the action of the microscopic electric and magnetic fields:

d

dt

(
m0αvα/

√
1 − v2

α

c2

)
= qα (e + vα × b) , α = 1, 2, . . . (6.76)

27 In this connection, see the discussion around Fig. 7.4, next Chap.7, Sect. 7.2.
28 The labelling α of all charged particles is here symbolic as it makes abstraction of counting
subtleties related to quantum indiscernibility of identical particles.

http://dx.doi.org/10.1007/978-3-030-84300-7_7
http://dx.doi.org/10.1007/978-3-030-84300-7_7
http://dx.doi.org/10.1007/978-3-030-84300-7_7
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The justification for using delta functions in (6.75) is that electrons have no per-
ceptible dimensions, while those of nuclei are still astonishingly small, ∼ 10−14 m.
Interested in what happens at scales much larger than this, everything is supposed to
happen as if charged particles were pointlike, and Maxwell-Lorentz’s microscopic
equations (6.74) applied everywhere in space. We take with reservation this semi-
classical expression of things, which is not a complete reflection of the microscopic
quantum world, and among other shortcomings, does not consider the collective
aspect of electron behaviour.29 We note that the conservation relation

∂ρ

∂t
+ ∂ · j = 0, (6.77)

can be obtained from the conservation of individual charges, qα = Cst , and the
semi-classic picture, but more deeply, it is also a consequence of Maxwell-Lorentz’s
microscopic equations themselves.

Now, we observe that we are not directly concerned by microscopic equations
and quantities. The fields will have rapid variations at the Ångström scale of molec-
ular dimensions and less (Å = 10−10 m), and we have to fix our attention not on
all these irregularities but only on certain mean values that vary at a much larger
(“macroscopic”) scale. As Gibbs’ conception of ensemble average is delicate to be
made explicit here, in literature these mean values 〈·〉 are generally conceived using
Lorentz’s conception of volume average. The idea is to smooth-out irregularities by
integrating in averaging spheres or “homogenization” volumes, neither too small nor
too large. The sphere radius must be sufficient to be representative of the structure
of the material. Since the purpose is to get rid of the irregularities, the sphere must
contain a very large number of particles. The averaging on the other hand must not
obliterate the changes from point to point that can really be observed. Molecular
dimensions (∼ Å) are so much smaller than ordinary electromagnetic wavelengths
that both conditions can be met at the same time. In homogeneous substances, a
suitable macroscopic homogenization length Lh , will be on the order of 100Å, typ-
ically. In a Lorentz averaging sphere having this size, there is still on the order
of 106 nuclei and electrons. The average can be best performed using Russakoff’s
signal-theory-type refinement of a convolution with an isotropic test function w(x),
of characteristic extent Lh , and normalized to unity,

∫
dxw(x) = 1, (see [15] and

the discussion in Jackson [10], Chap. 6). The macroscopic volume-averaged electric
field E, for example, will be

E(t, x) = 〈e(t, x)〉 = 〈e〉(t, x) =
∫

dx′w(x′)e(t, x − x′). (6.78)

If we put a derivative symbol in front of the above integral, we can move it inside:
∂xi

∫
dx′w(x′)e(t, x − x′) = ∫

dx′w(x′)∂xi e(t, x − x′). Therefore the operations
of space differentiation and averaging commute by construction:

29 In this respect, see in next chapter, Appendix, the discussion about Curie-von Schweidler’s law.
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∂xi E(t, x) = ∂xi 〈e(t, x)〉 = 〈∂xi e〉(t, x). (6.79)

The commutation with time differentiation is also evident. Thus, by averaging, the
microscopic Maxwell-Lorentz equations (6.74) become the following macroscopic
ones

∂ · B = 0,
∂B
∂t

+ ∂ × E = 0, ∂ · E = 〈ρ〉
ε0

, ε0
∂E
∂t

= 1

μ0
∂ × B − 〈 j〉.

(6.80)
and the conservation relation (6.77) becomes

∂〈ρ〉
∂t

+ ∂ · 〈 j〉 = 0. (6.81)

Equation (6.80.1) is, for (time-variable) wave phenomena, a consequence of
(6.80.2), whereas, (6.80.3) is a consequence of (6.80.4) and the conservation of
charges (6.81). Thus, in what follows, we limit our attention to (6.80.2) and
(6.80.4). Comparison of these two equations with (6.71.1) and (6.71.2), suggests
that Maxwell’s fields D and H , are introduced by the extraction from 〈 j〉 of cer-
tain contributions, that can be identified either, with “intrinsic polarization current”
determined by bulk properties of the medium, or with “extrinsic” to the medium,
external contribution imposed fromwithout. That is, 〈 j〉will have to be decomposed
in a (intrinsic) polarization response current J pol , expressing the rearrangements of
all charges (bound or free) and internal currents (circulation currents responsible for
magnetism) in the medium, in relation to the presence of the macroscopic Lorentz
fields,30 and an additional (extrinsic) impressed charge current [J], imposed from
the outside:

〈 j〉 = J pol + [J] . (6.82)

Moreover the (intrinsic) polarization current J pol , characteristic response of the
medium to the presence of macroscopic fields E and B, is supposed to decompose
in two parts electric and magnetic:

J pol = ∂P
∂t

+ ∂ × M, (6.83)

what we call Lorentz-splitting,31 with nonlocal operators χ̂E and χ̂B , or kernels
χE (t, x, x′), χB(t, x, x′), establishing how the “electric” and “magnetic” polariza-
tion fields P and M are determined by the electric and magnetic macroscopic fields:

30 Say, whatever this will precisely mean, some “electric” and “magnetic” polarization rearrange-
ments of charges and currents.
31 The idea can be attributed to Lorentz, though we have not found a clear expression of it in original
papers. Through it, the polarization current is formally decomposed in time derivative and spatial
derivative terms; the part ∂ × M actually represents a contracted expression Mi j

; j , see Appendix,
with Mi j an antisymmetric tensor density.
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P(t, x) =
∫

dt ′dx′χE (t − t ′, x, x′)E(t ′, x′), (6.84)

M(t, x) =
∫

dt ′dx′χB(t − t ′, x, x′)B(t ′, x′). (6.85)

Indeed, in (6.84) it is useless to add a similar term with the magnetic field, because,
as E and B are related by (6.80.2), such a term could also be rewritten in the
nonlocal integral form (6.84). Likewise, in (6.85), because of the complete nonlocal
form of the relation, there is no need to add a similar term with the electric field.
Therefore, when (6.82)–(6.83) are substituted in (6.80.4), the addition of the electric
polarization current term∂P/∂t to ε0∂E/∂t will produce the term∂D/∂t in (6.71.2),
and the subtraction of the magnetic polarization current term ∂ × M to ∂ × B/μ0

will produce the term ∂ × H , provided D and H are interpreted as:

D = ε0E + P, H = 1

μ0
B − M. (6.86)

Then, (6.72) and (6.73) will apply, with

ε(t − t ′, x, x′) = ε0δ(t − t ′)δ(x − x′) + χE (t − t ′, x, x′), (6.87)

μ−1(t − t ′, x, x′) = μ−1
0 δ(t − t ′)δ(x − x′) − χB(t − t ′, x, x′). (6.88)

In this way, the formal pattern of the electromagnetic macroscopic equations set out
in Sect. 6.11.1 has been reconstructed and justified; it appears to be entirely general
as soon as a macroscopic descrption is possible.

6.11.3 Ambiguities and a Suggested Way to Resolve Them

In this “formal derivation” of (6.71)–(6.73) we have left open two difficult questions.
We have not explained, how are to be performed the successive separations (6.82)
and (6.83). The first separation is clearly elusive: how do we precisely distinguish
between the “intrinsic” J pol and “extrinsic” [J] currents? The second separation
is in itself ambiguous: the rotational ∂ × Φ of an arbitrary vector potential Φ, can
always be added to P , provided simultaneously, a corresponding term ∂Φ/∂t , be
subtracted to M. This is not like Helmholtz’s decomposition, F = −∂Φ + ∂ × A,
of a vector field F, into a gradient of a scalar potential and a rotational of a vector
potential, which is unambiguous when requiring the vanishing of the fields at infinity
and the divergence-free nature of the vector potential.

Due to these shortcomings, we are not able to explain unambiguously, what are
the electric and magnetic polarizations P and M, the Maxwell fields D and H , the
polarization current J pol , the impressed current [J], and how to compute them in
principle.
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We will argue by comparison with a forthcoming acoustic implementation of a
similar problematic, that we can have no answers to the above questions, in absence
of thermodynamic considerations and laws for the motion of, say, the “fluid” of
electronic charges in the material lattice of nuclei, considerations and laws which
are however so far absent in the present state of macroscopic electromagnetics and
thermodynamics.

Here we say that, if we disposed of the suitable thermodynamic knowledge, a
solution to the indetermination in (6.83) would be to require that the Heaviside-
Poynting vector

S = E × H, (6.89)

possesses the thermodynamic meaning of the current density of energy transported
in electromagnetic form. We will denote this, the “Heaviside-Poynting”, thermody-
namic identification. “In electromagnetic form” means the part of the energy current
density, origin of the subsequent propagation and attenuation of the electromagnetic
disturbance, and not the part, “lost” for the propagation, which is right-on converted
in thermal degraded form.

Ifwe knewwhat this current S is, in the sense thatwewould have a thermodynamic
framework (so farmissing) to express it, we could, byworkingwithin this framework,
define H by applying (6.89), thenM by applying (6.86.2). Assuming that themissing
knowledge would also determine what the “impressed part” [J] is, we could then
use (6.82)–(6.83) to define P , and finally, by (6.86.1), define D. These specifications
being performed whatever the chosen source term, [J], all nonlocal operators would
then be uniquely defined.

Basically, this is what we will try to do further on, in acoustics, with substituted
quantities and corresponding changes. But the concrete exploitation of these ideas
in electromagnetics is not feasible now, as long as a whole slice of thermodynam-
ics, concerned with the response of electrons in matter, is missing. For the motion
of a viscothermal fluid permeating a solid structure (see next chapter), or not (no
solid structure, see this chapter), we dispose of the thermodynamic Navier-Stokes-
Fourier equations we have stated, and this will suffice to us to progress significantly
in the direction of a satisfactory nonlocal description.32 But for the response of an
“electronic fluid” (partially bounded and free) in the material nuclei lattice, we have
so far nothing comparable. It is therefore not surprising that in the electromagnetic
literature, the problem is not defined in the above general terms, which remain with-
out content for the moment. Shortcuts and simplifications, which we now try to
summarize, are used instead.

32 Note that in expressing ourselves in this manner we assume that the properties of the fluid will be
unaffected by its proximity to the walls of the solid; for the “electronic fluid”, on the contrary, one
can expect such complications to occur, and the development of an appropriate description seems
to be a distant prospect.
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6.11.4 Ambiguities and the Customary Way

A priori, there is in the polarization current (6.83), J pol = Jbound + J cond , two dif-
ferent parts: a part Jbound , coming from the motion of bound electrons, and a part
J cond , coming from the motion of free electrons. The first Jbound , includes a first
contribution related to the global displacement of bound charges, to be incorporated
in the term ∂P/∂t , and a second contribution not related to this but to the modifi-
cations of underlying magnetic circulation currents (e.g. in the molecules or other
greater structures), to be incorporated in the ∂ × M term in (6.83). The remaining,
J cond , will be an induced conduction current, coming from the motion of electrons
not bounded to one individual molecule, and that will complete the above first contri-
bution to produce the term ∂P/∂t in (6.83), but also, for some structured materials,
the ∂ × M term itself. Thus writing (6.82), we have

〈 j〉 = Jbound + J cond + [J] . (6.90)

In the literature, often, by a tacite redefinition, J cond + [J] = J , of the current J
which appears in the macroscopic equations, one writes (6.90) as

〈 j〉 = Jbound + J . (6.91)

Finally, in presence of spatial dispersion and as explained in Landau and Lifshitz
[13] or Agranovich and Ginzburg [16] or Melrose and McPhedran [17], one decides
to put all different effects coming from the bound charges, in an abstract new P
obeying the definition:

Jbound = ∂P
∂t

. (6.92)

Then, macroscopic equations are obtained, which have the form:

∂B
∂t

= −∂ × E,
∂D
∂t

= 1

μ0
∂ × B − J, D = ε̂E, (6.93)

with J , a current, that is either taken equal to J cond and obeying Ohm’s law in
absence of source,33 or taken as an imposed term in presence of source,34 and ε̂ an
operator establishing a relation having the same following general nonlocal form
whatever the J term is present or not:

D(t, x) =
∫

ε(t − t ′, x, x′)E(t ′, x′)dt ′dx′. (6.94)

33 In the most general case this will be a nonlocal Ohm’s law J(t, x) = ∫
dt ′dx′σ(t −

t ′, x, x′)E(t ′, x′).
34 It also obeys the above Ohm’s law, with E containing two parts, respectively associated to the
forced and free motion.
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In this conception, the magnetization M is, by force, defined to be zero, and the H
field, is, simply, viewed as:

H = 1

μ0
B. (6.95)

Contrary to the interpretation made of the term J in the set of (6.71)–(6.73), here, in
the above (6.93)–(6.95), because of the presence of J cond in it, the term J is not truly
an external source-term. It becomes so, however, if we reincorporate the induced
conduction current J cond in the definition of D, i.e. decide to write J pol = ∂P/∂t ,
instead of (6.83) or (6.92), now artificially putting all effects coming from bound and
free charges, in the abstract P . Anyway, whatever ones uses or not the redefinition
J cond + [J] = J , certainly by setting (6.95), some artificiality is introduced in the
definitions. We confirm this later in the acoustic case, where in this respect, similar
problematics will arise.

6.11.5 Discussion of Our Proposal

Our idea is that there should exist a dynamical field P , having thermodynamic
status, and such that S = E × P has the interpretation of current density of energy
transported in electromagnetic form. Then setting H = P would allow identifying
the field H , removing the ambiguity in the Lorentz decomposition, and fixing the
meaning of all fields and operators.

To precise this, we observe that, as discussed in textbooks, the polarization P ,
verifies, ∂ · P = ρpol , where ∂ρpol/∂t + ∂ · J pol = 0. If we were to add the equa-
tion, ∂ × P = 0, no ambiguity would arise for P , once given the ρpol . But we are
guessing here, that, in general, what should be called the electric polarization will
have, ∂ × P �= 0. Let us thus denote P ′, the field satisfying, ∂ · P ′ = ρpol , and,
∂ × P ′ = 0. The actual P , will be, P = P ′ + ∂ × Φ, (with some Φ), with the addi-
tional term, compensated by a corresponding additional one,−∂Φ/∂t , in M. We are
guessing that the requirement, E × (B/μ0 − M) = E × P , would then be capable
to fix the appropriate term,−∂Φ/∂t , resolving the ambiguity of the Lorentz splitting.

For later reference, we name this process of hypothetical identification of what
should be the Maxwell field H , based on (6.89), Heaviside-Poynting’s thermody-
namic identification of the field H , or in short, Heaviside-Poynting’s conception of
the field H .

We hope that these comments will help clarify the difference between how
Maxwell’s fields are generally defined in the electromagnetic literature, and how
they should be better defined, following (6.89), but unfortunately, in a way that is
not feasible at this time, due to the absence of irreversible thermodynamic descrip-
tions of the movement of an “electronic-fluid”, in part bound and free, in material
media. We note that many recent theoretical studies and experimental observations
are now pointing in this direction. Electrons flowing like liquid have been reported
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in graphene, and notions resembling viscosity have appeared, to describe newly
observed “fluidic” aspects of their collective behaviour.

In the next section we observe that a similar nonlocal pattern of relations applies
to the case of the propagation of acoustic small-amplitude perturbations in our vis-
cothermal homogeneous and unbounded fluid. In this case, however, we will not
have to resort to stopgap measures of the type (6.95) expounded just above. Because
in acoustics, we will have an existing irreversible thermodynamic framework – that
of Navier-Stokes-Fourier equations – it will be possible to make definite use of a
similarly imposed energetic condition of the type (6.89), allowing us to identify an
“acoustic H−field” and then to determine also the other acoustic quantities. For the
reasons mentioned above (Sect. 6.6.3, and comments above (6.67) in Sect. 6.10),
however, we will limit ourselves to considering the case of longitudinal movements
only, (corresponding, without source, to the “acoustic” and “entropic” modes in the
fluid).

Finally, we insist that the acoustic example will help us, perceive the fundamen-
tal physical insufficiencies of present-day definitions of electromagnetic Maxwell’s
fields H = B/μ0 and D. It is to be hoped that in the future, a thermodynamics of the
behaviour of electrons in material media will be developed, that will be capable to
precise the notions of electric andmagnetic polarizations P and M, and polarization-
and impressed-currents J pol and [J], but this, again, seems to be a distant perspec-
tive.

6.12 Nonlocal Maxwellian Pattern of Longitudinal
Acoustics

We now can come back to the “acoustic” longitudinal equations in a viscothermal
fluid (6.67)–(6.70), and explain the formal pattern, that makes them comparable to
the macroscopic electromagnetic equations discussed in the previous Sects. 6.11.1
and 6.11.2. Consider, on one hand, the two longitudinal acoustic equations (6.67)–
(6.68), written with a source term f = −∂P , density of external longitudinal body
force:

∂t b + ∂ · v = 0, ρ0∂tv = −∂ p −
(
4η

3
+ ζ

)
∂∂t b + [

f = −∂P] , (6.96)

and completed by the additional thermodynamic ones (6.69)–(6.70), that tell us what
the variable p is. Consider, on the other hand, the two macroscopic electromagnetic
equations (6.80.2) and (6.80.4) with (6.82) inserted:

∂B
∂t

+ ∂ × E = 0, ε0
∂E
∂t

= 1

μ0
∂ × B − J pol − [J] , (6.97)
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and supposedly completed by additional ones, that should tell us, in the end, what
the polarization current J pol is. The brackets [ ] recall that the source terms may
not be present. We say that the two sets can quite be seen in the same way. To dis-
cuss this affinity we have to avoid entering in too much details: (6.96) are directly
macroscopic35 equations involving thermodynamic results, while (6.97) are also
macroscopic equations, but here we completely lack the necessary thermodynamics
to understand the currents. Indeed, already because it would need giving a pro-
hibitively large amount of information to specify the system, we cannot start at the
microscopic non-thermodynamic quantum level, give the configuration, state in full
the equations and find and average their solution to define J and J pol , (see also
footnote 45 in Appendix); and we cannot, either, work directly at a thermodynamic
level as it would be desirable and as is done in the acoustic case, because so far, we
completely lack any irreversible-thermodynamic description of the motion of “elec-
tronic fluid” flowing in matter. Nevertheless, with this in mind, we can make appear
as follows the strong affinity between the two wave-propagation problems.

6.12.1 Electromagnetic Analogy

First, to see that the philosophy of (6.96.1) can bemade comparable to that of (6.97.1),
we note that the macroscopic basic fields involved, v, b (acoustic) and E, B (electro-
magnetic), are “derived” fields, obtained in comparable manner from an underlying
macroscopic three-vector “potential” field, which we denote a in acoustics, and A in
electromagnetics.36 In acoustics, working in the reference-frame in which the fluid is
globally at rest, a(t, x) is the macroscopic displacement of fluid particles. In electro-
magnetics, working in the reference-frame in which the medium is globally at rest,
A(t, x) is the macroscopic mean potential in Weyl’s temporal gauge.37

The relations between the acoustic (displacement) and electromagnetic (potential)
fields a and A and the derived acoustic and electromagnetic basic fields v, b and E, B
are as follows:

Acoustics: Electromagnetics:

b ≡ −∂ · a, v ≡ ∂a
∂t

, B ≡ ∂ × A, E ≡ −∂A
∂t

.
(6.98)

35 The acoustic variables are from the beginning macroscopic variables, see Sect. 6.3.
36 We have A = 〈a〉 with a the microscopic potential associated to the fields e, b. The acoustic a,
in spite of his lowercase notation, is macroscopic and the correspondent of A. There’s no point in
looking for an acoustic match for the electromagnetic a.
37 The electromagnetic potential is a relativistic object Aμ = 〈aμ〉 with four temporal and spatial
covariant indices μ = 0, 1, 2, 3; general gauge invariance of electromagnetic equations describing
fields in interaction with charges, expresses in the fact that the covariant vector Aμ is determined
only up to a four-gradient ϕ;μ; then working in the fixed reference-frame where the medium is
at rest, it is possible to choose the four-gradient in such a way that the temporal component A0
vanishes. This isWeyl’s temporal gauge, in which Aμ = (A0 ≡ 0, A). The electromagnetic fields E
and B, then derive in this gauge from a three-vector A with the written relations (6.98.3), (6.98.4).
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The relations (6.96.1) and (6.97.1) are then seen to be, both, the tautological conse-
quences of the way the fields b, v, or B, E, are derived from a or A in (6.98).

The properties of the medium are not expressed in these first field equations
(6.96.1) and (6.97.1); they come from the other relations, which are to be writ-
ten as second field equations, constitutive relations, and other energetic (Heaviside-
Poynting’s) condition. If wewant to see the acoustic relation (6.96.2) as a counterpart
to the electromagnetic relation (6.97.2), we have an interest in putting it in the form
of

ρ0
∂v

∂t
= − 1

χ0
∂b + f pol + [

f
]
. (6.99)

The term −∂b/χ0 compares to the term ∂ × B/μ0. It comes from the diagonal adia-
batic part −paδi j in the stresses (6.32), that is, from a medium response part making
abstraction of losses, and the rest, denoted f pol here to comply with electromagnetic
notations in (6.97.2), describes an “induced” viscous and thermal “polarization”
force density which is the expression of the previously mentioned, unavoidable and
accompanying, irreversible exchanges of momentum and energy. Here, as themotion
is assumed longitudinal, this induced “polarization” force density is simply given by,
(compare (6.99) and (6.68))

f pol = 1

χ0
∂b − ∂ p −

(
4η

3
+ ζ

)
∂

∂b

∂t
. (6.100)

The interpretation of the acoustic (6.99) and electromagnetic (6.97.2) equations
is now made along similar physical lines of reasoning. In absence of “polarization”
reactions of the media, the set of equations would be, ∂b/∂t = −∂ · v, ρ0∂v/∂t =
−χ−1

0 ∂b + [
f
]
, in acoustics, and ∂B/∂t = −∂ × E, ε0∂E/∂t = μ−1

0 ∂ × B − [J],
in macroscopic electromagnetics, leading to nondispersive wave propagation with
soundspeed c0 and lightspeed c, such that, ρ0χ0c20 = 1, ε0μ0c2 = 1. But as soon as
the wavefields b, v, or B, E, are present and variable in time and space, progres-
sive “polarization” processes inevitably arise in response, resulting in an induced
polarization force f pol , or an induced polarization current J pol , affecting in turn the
variations of the fields and causing the wave dispersion.

This analogy then suggests introducing, for the polarization force f pol , a general
representation in terms of a time-derived and space-derived term:

f pol = −∂ p
∂t

+ ∂m. (6.101)

This will be the acoustic counterpart of the Lorentz splitting (6.83) of the macro-
scopic polarization current, (the “acoustic polarization” fields m and p are written
in lowercase here but they have macroscopic nature). As in electromagnetics, there
is an ambiguity in writing (6.101). Given some p and m satisfying (6.101), new p
and m given by p′ = p + ∂ϕ and m ′ = m + ∂ϕ/∂t also satisfy (6.101), where ϕ is
a scalar field. Nevertheless, if some criterium can be found to fix the scalar unknown
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ϕ, so that unique polarizations p and m exist, we have the following consequences.
Substituting (6.101) in (6.99) we arrive at

∂d
∂t

= ∂h + [
f
]
, (6.102)

with

d = ρ0v + p, h = − 1

χ0
b + m. (6.103)

Finally, in the same way as it has been suggested previously that macroscopic elec-
tromagnetic equations should ultimately be written in the form of (6.71)–(6.73),
with the Maxwell field H to be fixed according to the Heaviside-Poynting condition
that (6.89) should represent “the electromagnetic part” of the energy current density,
here, it is suggested that the acoustic equations for longitudinal motions in the fluid,
should ultimately be written in the following general form38

∂b

∂t
+ ∂ · v = 0,

∂d
∂t

= ∂h + [
f = −∂P] , (6.104)

d(t, x) = ρ̂v(t, x) =
∫

ρ(t − t ′, x − x′)v(t ′, x′)dt ′dx′, (6.105)

h(t, x) = −χ̂−1b(t, x) = −
∫

χ−1(t − t ′, x − x′)b(t ′, x′)dt ′dx′, (6.106)

with the “Maxwell field h” to be fixed according to the condition that

s = −vh (6.107)

should represent “the acoustic part” of the energy current density, or else, the current
density of energy transported in acoustic form. Like before in the electromagnetic
case, we mean by it the part of the energy current density, origin of the subsequent
propagation and attenuation of a disturbance, and not the part, “lost” for the propaga-
tion, which is right-on converted in thermal degraded form. We will denote this, the
“acoustic Heaviside-Poynting” thermodynamic identification of the h−field. With
it, the h−field will represent an acoustic stress field, and the d−field an acous-
tic momentum field, different from the ideal fluid expressions, h = −χ−1

0 b, and
d = ρ0v, because of the “acoustic polarization” processes.

Although the hypothesized Heaviside-Poynting thermodynamic identification
(6.89) could not be performed, because of its current disconnection from available
thermodynamics, its acoustic version (6.107) will prove to be feasible, and to remove
the ambiguity inherent in Lorentz’s acoustic splitting (6.101). Nevertheless, in the
same way as, in electromagnetics in presence of spatial dispersion it is customary
to set, M ≡ 0, or, (6.95), by definition, here in acoustics it could be considered that,

38 In (6.105), the kernels are written to depend on the difference x − x′, because we work with
Cartesian coordinates and the fluid, unbounded, defines an homogeneous medium.
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m ≡ 0, or, h ≡ −χ−1
0 b, by definition. In what follows, after considering making the

acoustic Heaviside-Poynting’s thermodynamic identification (6.107), we will also
have a look, for edification, at the different acoustic description resulting from this
last definition, counterpart of the electromagnetic customary one.

6.12.2 Acoustic Maxwell Fields

We now consider specifying the Maxwell acoustic field h, the acoustic polarizations
m and p, the other Maxwell field d, and thus the acoustic nonlocal operators ρ̂
and χ̂−1, by effecting the acoustic Heaviside-Poynting fundamental thermodynamic
identification (6.107).

First, we write down an Energy Conservation-Dissipation Corollary [18], which
applies to the Navier-Stokes-Fourier linearized equations:

∂w

∂t
+ ∂ · I = −D, (6.108)

where

w = 1

2
ρ0v

2 + 1

2

p2

ρ0c20
+ 1

2

ρ0T0
cP

s2, (6.109)

Ii = pvi − σ′
v i jv j − κ

T0
τ∂iτ , (6.110)

D = σ′
v i j∂ jvi + κ

T0
(∂τ )2 . (6.111)

Here w represents the density of disturbance energy, that is, the first term in (6.108),
integrated in a control volume, represents the time rate of change of disturbance
energy, whether this energy is accumulated in acoustic organised from, or other,
degraded from. Vector I represents the energy-flux vector, whether the energy is
transported in usable acoustic form or other degraded form. Its surface integral on
the boundary of the control volume represents the rate at which disturbance energy
is flowing out, in acoustic or other form. Finally, D represents the density of energy
dissipated per unit volume and time, or in other terms, its integral in the control
volume is the energy “unaccountably” lost in this volume and transformed in heat
energy per unit of time. We see that D = T0σs , where σs is the density of entropy
production (6.39), in accordance with the general thermodynamic relation, d̄ Q =
TdS.

In covariant notations, (see Appendix), I is a contravariant vector I i . From
its Cartesian-coordinates expression (6.110) we see that I i doesn’t write in the
“Heaviside-Poynting” form −Hi

j (t, x)v
j (t, x). Indeed, the last thermal term in I i

will be proportional to −τ (t, x)τ ;i (t, x), and this cannot be put in the form of a
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tensor at (t, x) contracted with the velocity at (t, x). It means that we cannot count
the thermal term in (6.110) in what we call the energy-flux vector “in acoustic form”
s: this term will correspond to an energy transported in a “degraded form”. As
regards the viscous term in I , it has the right form of a tensor at (t, x) contracted
with the velocity at (t, x), however we cannot count it in s because it again corre-
sponds to energy transported in degraded form. Indeed, we observe that these two
thermal and viscous contributions to the energy flux I , are transformed in similar
manner, (− κ

T0
τ∂iτ → κ

T0
∂iτ∂iτ , −σ′

v i jv j → σ′
v i j∂iv j ), in the two thermal conduc-

tion and viscosity contributions to the dissipated energy density D. If the thermal
term − κ

T0
τ∂iτ carries only degraded energy, then it is in order also to assume that

the viscous term −σ′
v i jv j corresponds to the transport of degraded energy only. The

remaining term pv, to which corresponds no contribution in D, must be that associ-
ated to the energy transported in usable, acoustic form. Thus, finally, we set

s = pv. (6.112)

Given the two expressions (6.107) and (6.112) for the same s, it follows that we
must identify the h−field with the (opposite) thermodynamic excess pressure:

h = −p. (6.113)

This, turns out to be the translation of acoustic Heaviside-Poynting’s identification
of the h−field. It completely determines all quantities: it sets the m−field through
using (6.103.2) and the operator χ̂−1 through (6.106); afterm is determined, it sets the
p−field through using (6.100), (6.101), then the d−field through using (6.103.1), and
then ρ̂ throughusing (6.105). Let us nowproceed explicitlywith these determinations.
Putting the acoustic Heaviside-Poynting identification (6.113) in (6.103.2) yields the
following expression of the “polarization m”

m = −p + 1

χ0
b. (6.114)

Eliminating b from using the state equation (6.69) we get

m = −β0

χ0

[
τ − (γ − 1)χ0

β0
p

]
. (6.115)

Inserting the thermodynamic identity (6.5), taking the time derivative, and applying
the (6.70), this is rewritten ∂m/∂t = −[(γ − 1)/β0T0]κ∂2τ , or

m = −γ − 1

β0T0
κ

∫ t

−∞
dt ′∂2τ . (6.116)

This equation joined to (6.114) allows us to see “polarization m” as a thermal con-
duction part of the h−field or opposite pressure, which builds up due to the thermal
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conduction processes created in spatially variable (divergent) temperature gradients.
The diagonal thermal part, σ′

τ i j , in the additional lossy stress tensor (6.33), is now
interpreted as being, mδi j , and the h−field as being

h = − 1

χ0
b − γ − 1

β0T0
κ

∫ t

−∞
dt ′∂2τ . (6.117)

We find back in this way (6.40), seen to express the fact that “acoustic” pressure p
is not exactly in adiabatic relation with condensation, by the appearance of “polar-
ization” processes related to thermal conduction. Putting the expression (6.114) in
(6.100), (6.101) we next obtain that

p =
(
4η

3
+ ζ

)
∂b = −

(
4η

3
+ ζ

)
∂(∂ · a), (6.118)

or

p = −
(
4η

3
+ ζ

)∫ t

−∞
dt ′∂(∂ · v). (6.119)

This last equation compares with (6.116) and allows us to see “polarization p” as an
additional viscous momentum, which builds up in response to the spatial variations
of the velocity divergence. The sign before the ∂ p/∂t term in (6.101) was chosen so
that (6.119), for p, has the same sign convention as (6.116), for m. Equation (6.119)
also expresses as, −∂ pi/∂t = ∂ jσ

′
vi j , where σ′

vi j is the viscous part in the stress
tensor (6.32).39 And d, which finally is identified as

d = ρ0v −
(
4η

3
+ ζ

)∫ t

−∞
dt ′∂(∂ · v), (6.120)

appears as an “acoustic momentum” that is augmented by the viscous polarization
part p. It represents only the part of the momentum that is transferred in reversible
manner. Thus we see that, interestingly, Heaviside-Poynting’s thermodynamic iden-
tification of the h−field, leads to a natural separation of viscous effects and thermal
conduction effects, the former being expressed in “viscous polarization p” (6.119),
and the latter in “thermal polarization m” (6.116).

The laws and identifications obtained above have a somewhat unsatisfactory phys-
ical character, however, when viewed from the general nonlocal point of view. For
example, looking at (6.116) or (6.119), it is obviously not reasonable in nonlocal
physics, to treat on an equal footing the values of ∂2τ or ∂(∂ · v) at different instants.
As we see in next subsection, these identifications do not lead to an existing density

39 For the case of longitudinal motions v = ∂φ considered here, we have ∂i∂ jv j = ∂2vi = ∂i (∂ ·
v), so that ∂ jσ

′
vi j coincides with

(
4η
3 + ζ

)
∂i (∂ · v).
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kernel in original space40; but in the Fourier space, they do correspond to definite
kernels, whose expressions we will give. In Appendix we have given the more com-
plete and general pattern of macroscopic quantities and equations, expected to hold
true in presence of shear motions and when going far beyond the near-equilibrium
simplifications made here. But in the best-case scenario, an attempt to construct
corresponding quantities will await considerable advances in nonequilibrium ther-
modynamics.

6.12.3 Acoustic Nonlocal Operators

The acoustic kernels can be written in a Fourier decomposition as:

ρ(t − t ′, x − x′) =
∫

dω

2π

∫
dk

(2π)3
ρ(ω, k)e−iω(t−t ′)+ik·(x−x′),

χ−1(t − t ′, x − x′) =
∫

dω

2π

∫
dk

(2π)3
χ−1(ω, k)e−iω(t−t ′)+ik·(x−x′).

(6.121)

In what followswe show how to compute the Fourier kernels coefficients ρ(ω, k) and
χ−1(ω, k), even if the orginal space density kernel function ρ(t, x) turns out to be
not well-defined mathematically by the Stokes law, (which, interestingly, is not the
case for the inverse operator ρ̂−1). In accordance with the electromagnetic analogy,
the obtained expressions will be the same with and without source.

Let us first consider a calculation without source. Passing over to the Fourier
transform of the equations describing longitudinal motion (6.67)–(6.70), without
source ( f = 0), we get, on using the acoustic Heaviside-Poynting’s identification
(6.113)

−iωb(ω, k) = −ik · v(ω, k), (6.122)

−ρ0iωv(ω, k) = ikh(ω, k) − (4η/3 + ζ)ωkb(ω, k), (6.123)

−γχ0h(ω, k) = b(ω, k) + β0τ (ω, k), (6.124)

−ρ0cPiωτ (ω, k) = β0T0iωh(ω, k) − κk2τ (ω, k). (6.125)

As shown by (6.123), the velocity is collinear to k, and we may write v(ω, k) =
v(ω, k)n̂, k = kn̂. Equation (6.122) then is rewritten, −iωb(ω, k) = −ikv(ω, k),
and, inserting this in (6.123), we get

[
−ρ0iω +

(
4η

3
+ ζ

)
k2
]

v(ω, k) = ikh(ω, k).

40 A non-convergent integral is obtained. We do not see the mathematical difficulties encountered
as an indication that our nonlocal recasting of equations is not physical, but as an expression of
the fact that the thermodynamic framework used is unsatisfactory, (see Sect. 6.6.3), and should be
extended.
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This compares directly to the equation,−iωρ(ω, k)v(ω, k) = ikh(ω, k), obtained by
combining, −iωd(ω, k) = ikh(ω, k), with the function d(ω, k) = ρ(ω, k)v(ω, k),
which are respectively, the Fourier transform of (6.104.2) without source, and that
of (6.105.1). The comparison yields the following expression of the density Fourier
kernel:

ρ(ω, k) = ρ0 +
(
4η

3
+ ζ

)
k2

−iω
. (6.126)

Next eliminating the excess temperature between (6.124) and (6.125), we find

−ρ0cPiω

(
−γχ0

β0
h(ω, k) − 1

β0
b(ω, k

)
= . . .

+β0T0iωh(ω, k) − κk2
(

−γχ0

β0
h(ω, k) − 1

β0
b(ω, k)

)
,

and after straightforward calculation using the thermodynamic identity (6.5) and
definition (6.18.3) we get

h(ω, k) = −χ−1
0

⎡
⎢⎣1 − γ − 1

γ

⎛
⎜⎝1 + iω

−iω + κ

ρ0cV
k2

⎞
⎟⎠
⎤
⎥⎦ b(ω, k).

This compares directly to the Fourier transform of (6.106), which is given by
h(ω, k) = −χ−1(ω, k)b(ω, k), showing that, for the bulk-modulus Fourier kernel:

χ−1(ω, k) = χ−1
0

⎡
⎢⎣1 − γ − 1

γ

κ

ρ0cV
k2

−iω + κ

ρ0cV
k2

⎤
⎥⎦ . (6.127)

From (6.119) and (6.114), the operators in the relations

p(t, x) =
∫

χv(t − t ′, x − x′)v(t ′, x′)dt ′dx′, (6.128)

m(t, x) =
∫

χb(t − t ′, x − x′)b(t ′, x′)dt ′dx′, (6.129)

inspired by (6.84) and (6.85), are found to be such that:

χv(ω, k) =
(
4η

3
+ ζ

)
k2

−iω
, χb(ω, k) = χ−1

0

γ − 1

γ

κ

ρ0cV
k2

−iω + κ

ρ0cV
k2

. (6.130)
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These expressions are simple and illustrate the mentioned separation of viscous
and thermal “polarization” effects, automatically performed by using the acoustic
Heaviside-Poynting identification (6.113).

The consistency of the obtained expressions (6.126) and (6.127) of the kernels
ρ(ω, k) and χ−1(ω, k), can be checked as follows. Passing over to the Fourier trans-
form of (6.104)–(6.106) without source, we have

−iωb = −ikv, −iωd = ikh, (6.131)

d = ρ(ω, k)v, h = −χ−1(ω, k)b, (6.132)

from which we derive the dispersion relation

ρ(ω, k)χ(ω, k)ω2 = k2. (6.133)

Putting in (6.133) the expressions (6.126) and (6.127), we can check that the result-
ing dispersion relation is nothing but Kirchhoff-Langevin’s characteristic equation
(6.52), rewritten in a nice factorized form.

In the above Fourier-transform calculations no source term was introduced. Now,
if our electromagnetic analogy is fruitful, we should find that the same expressions
(6.126) and (6.127) of the density and bulk-modulus Fourier kernels, are obtained in
presence of an arbitrary external density of bulk longitudinal force. Basically, what
we have to check is that, in presence of an external density of bulk longitudinal force
f varying like e−iωt+ik·x , with ω and the components of k all independently chosen
with values taken in the complex plane, the response of the fluid is still described
in terms of the functions ρ(ω, k) and χ−1(ω, k) given by (6.126) and (6.127). Since
ω and the components of k are now arbitrarily chosen in the complex plane, these
functions actually are the analytic continuation of the preceding.

To check this, let us apply the external longitudinal body force f = −∂P ,
P = P̃e−iωt+ik·x , with ω and k, independent and possibly complex, (ω in the upper
complex plane to ensure physical excitation). With this source inserted in the equa-
tions (6.67)–(6.70), the response fields have the form f (t, x) = f (ω, k)e−iωt+ik·x ,
and we find

−iωb(ω, k) = −ik · v(ω, k), (6.134)

−ρ0iωv(ω, k) = ikh(ω, k) − (4η/3 + ζ) ωkb(ω, k) − ikP̃, (6.135)

−γχ0h(ω, k) = b(ω, k) + β0τ (ω, k), (6.136)

−ρ0cPiωτ (ω, k) = β0T0iωh(ω, k) − κk2τ (ω, k), (6.137)

which leads, after straightforward calculations, to the equations:

− iω

[
ρ0 +

(
4η

3
+ ζ

)
k2

−iω

]
v(ω, k) = ikh(ω, k) − ikP̃, (6.138)
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and

h(ω, k) = −χ−1
0

⎡
⎢⎣1 − γ − 1

γ

κ

ρ0cV
k2

−iω + κ

ρ0cV
k2

⎤
⎥⎦ b(ω, k). (6.139)

At the same time, setting in (6.104), (6.105), f = −∂{P = P̃e−iωt+ik·x}, and taking
fields having the form, a(t, x) = a(ω, k)e−iωt+ik·x , we find:

−iωb(ω, k) = −ik · v(ω, k), −iωd(ω, k) = ikh(ω, k) − ikP̃, (6.140)

d(ω, k) = ρ(ω, k)v(ω, k), h(ω, k) = −χ−1(ω, k)b(ω, k), (6.141)

where we have set, (in fact, because of convergence problem to define ρ(t, x) this
calculation for the density should be done with the inverse operator and kernels)

ρ(ω, k) =
∫

ρ(t, x)e−iωt+ik·xdtdx,

χ−1(ω, k) =
∫

χ−1(t, x)e−iωt+ik·xdtdx.

(6.142)

By comparison of (6.140.2, 6.141.1) with (6.138), and (6.141.2) with (6.139), we see
that, as intended, the expressions of the kernels (6.126) and (6.127) obtained without
source still apply in the sameway, in the presenceof source.This justifies the analogue
way of reasoning which made us directly postulate the nonlocal pattern (6.104)–
(6.106) of longitudinal acoustic equations, from the nonlocal pattern of macroscopic
electromagnetic equations.

To conclude, it is interesting to complete our discussion in relation to the physical-
mathematical deficiencies of our thermodynamic framework that have been left in
the background. We can first explicitly show that the result (6.130.2) determines a
definite, but physically unsatisfactory, original-space kernel function χb(t, x). For
the purpose of simplifying the discussion, we will make the calculation for the 1D
casewhere the propagation is along a single direction x . In that case the dependencies
over k and x are replaced by dependencies over k and x , and in (6.121), the integral∫
dk/(2π)3 and variations eik·x are replaced by

∫
dk/(2π) and eikx . In original-space

the bulk modulus kernel is written as

χ−1(t, x) = χ−1
0 δ(t)δ(x) − χb(t, x), (6.143)

where, according to (6.130.2)

χb(t, x) = χ−1
0 α

∫
dω

2π

∫
dk

2π

βk2

−iω + βk2
e−iωt+ikx , (6.144)

with, α = (γ − 1)/γ, and β = κ/(ρ0cV ). Because of the exponentials, the double
integral converges. Simple use of online integral calculatorWolframAlpha yields the
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following result in closed form:

χb(t, x) = χ−1
0

α

8
√

πβ3/2t5/2
(
2βt − x2

)
exp

[
− x2

4βt

]
. (6.145)

It looks nice but is not completely physical: with finite propagation speeds, a truly
physical kernel in original space would have to vanish exactly at sufficiently large
values of x , (here, |x | > c0t); the above kernel doesn’t respect this condition in a way
characteristic of diffusive, not propagative, processes. This reveals the unsatisfactory
nature of our local-thermodynamic-equilibrum framework, just extended in the most
basic manner, out of equilibrium, to include Stokes’ and Fourier’s constitutive laws.
In the same framework, if we now try to compute in similar manner the density
kernel, ρ(t, x) = ρ0δ(t)δ(x) + χv(t, x), where according to (6.130.1)

χv(t, x) =
(
4η

3
+ ζ

)∫
dω

2π

∫
dk

2π

k2

−iω
e−iωt+ikx , (6.146)

we have an even more severe problem: the integral over k is not convergent. That
over ω is defined and convergent, but only in the sense of Cauchy’s Principal Value.
Therefore, while Fourier’s law, through (6.130.2), leads to defined but partially
unsatisfactory original-space kernels, Stokes’ law, through (6.130.1), is unable to
produce an existing original-space density kernel. (As mentioned before this prob-
lem does not occur for the inverse density operator). Direct comparison between
(6.146) and (6.144), however, shows that the integral over k would become con-
vergent, and that over ω would become simply defined, if we extend the Stokes
law in such a way to substitute, in place of the denominator −iω, the denomina-
tor −iω + β′k2, with β′ a new and supposedly small physical constant of same

dimensions as β, i.e. β′ = ε
(
4η
3 + ζ

)
/ρ0, with ε � 1 a small numerical constant.

By inspection it can be seen that this substitution would correspond replacing, in

the motion equation, the term
(
4η
3 + ζ

)
∂2
xv leading to −

(
4η
3 + ζ

)
k2v, by a term

−
(
4η
3 + ζ

)
k2v/

(
1 + β′k2

−iω

)
, i.e. by an expansion

−
(
4η

3
+ ζ

)
k2v

(
1 + −β′k2

−iω
+
(−β′k2

−iω

)2

+
(−β′k2

−iω

)3

+ . . .

)
.

That is, in Stokes law it would correspond replacing the term
(
4η
3 + ζ

)
∂xv by a

more complex term with “more space and time memory”

(
4η

3
+ ζ

)(
∂xv + β′∂3

x

∫ t

−∞
dt ′v(t ′, x) + β′2∂5

x

∫ t

−∞
dt ′
∫ t ′

−∞
dt ′′v(t ′′, x) + . . .

)
.

This modification of Stokes law would give a definite kernel in original space
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χv(t, x) = ρ0

ε

1

8
√

πβ′3/2t5/2
(
2β′t − x2

)
exp

[
− x2

4β′t

]
,

but of course it is not intended to be an accurate modification. It only indicates the
direction of the revisions to be made: extend the description by introducing more
spatial and temporal memory effects in the constitutive laws.

6.12.4 Summary: Action-Response Problem to Determine the
Acoustic Kernels ρ(ω, k) and χ−1(ω, k)

For later use and generalization in the next chapter, it is useful to reformulate here,
what we have seen in the calculations with source in the preceding subsection. We
have seen that, for arbitrary values of ω and k and when fixed by the Acoustic
Heaviside- Poynting’s condition (6.113), the effective nonlocal density ρ(ω, k), and
the effective nonlocal bulk modulus χ−1(ω, k), can be determined by means of a
simple action-response problem, in which work is performed on the system, in the
form of external longitudinal bulk force f acting on it:

Action-response problem to determine ρ(ω, k) and χ−1(ω, k):

(i) Let us subject the fluid to the action of a longitudinal body force f = −∂P
per unit fluid volume, deriving from a potential P varying as:

P = P̃e−iωt+ik·x, P̃ = Cst. (6.147)

(ii) Let us find the response of the fluid to this action. We seek fields in the
form v = v(ω, k) kk e

−iωt+ik·x , b = b(ω, k)e−iωt+ik·x , p = p(ω, k)e−iωt+ik·x ,
τ = τ (ω, k)e−iωt+ik·x , satisfying the longitudinal motion equations

∂t b + ∂ · v = 0, (6.148)

ρ0∂tv = −∂ p − (4η/3 + ζ) ∂∂t b + f , (6.149)

γχ0 p = b + β0τ , (6.150)

ρ0cP∂tτ = β0T0∂t p + κ∂2τ , (6.151)

and whose amplitudes in (ω, k) are proportional to P̃ .
(iii) There is unique solution v(ω, k), b(ω, k), p(ω, k) and τ (ω, k), to this action-

response problem, and we can easily write it by straightforward calculations.
Then, the effective density ρ(ω, k) of (6.126) is obtained through the definition

− iωρ(ω, k)v(ω, k) = −ik
(
p(ω, k) + P̃

)
, (6.152)
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and the effective compressibility χ(ω, k) of (6.127) is obtained through the
definition

p(ω, k) = χ−1(ω, k)b(ω, k). (6.153)

Note that we do not put f into bracket in (6.149), as it is here necessarily present
as the forcing term creating the observed response motion. The physical content
of the above procedure is just equivalent to stating that the acoustic equations can
be put in the form (6.104)–(6.105), which expresses the electromagnetic analogy,
with in addition, the h−field taken according to the acoustic Heaviside-Poynting’s
thermodynamic identification (6.113).

Finally, we note that the usewemade here, in acoustics, of theHeaviside-Poynting
thermodynamic identification, can be seen as an indirect confirmation of our analysis
of macroscopic electromagnetic equations, even if we do not currently have the
thermodynamics necessary to specify the corresponding notion of “energy current
density carried out in electromagnetic form”. Nevertheless, to finish and conclude
we now examine what would have been obtained if we had transposed here, the
expedients traditionally used in electromagnetic literature, (Sect. 6.11.3).

6.12.5 Acoustics Translation of the Customary Viewpoint

Using the same approach as used in conventional nonlocal electromagnetics, we
would have considered, that, by definition, m = 0:

∂b

∂t
+ ∂ · v = 0,

∂d
∂t

= ∂h + [
f
]
, (6.154)

d(t, x) = ρ̂v(t, x) =
∫

ρ(t − t ′, x − x′)v(t ′, x′)dt ′dx′, (6.155)

h(t, x) = −χ−1
0 b(t, x). (6.156)

The set of these formal equations (6.154)–(6.156), joined to the detailed longitudinal
equations (6.67)–(6.70), allow determining the density operator in unique manner.
Straightforward calculations show that the kernel coefficients

ρ(ω, k) =
∫

ρ(t, x)e−iωt+ik·xdtdx,

are given by

ρ(ω, k) = ρ(ω, k) + k2

ω2

[
χ−1
0 − χ−1(ω, k)

]
, (6.157)

where in the right, the quantities ρ(ω, k) and χ−1(ω, k) are those previously deter-
mined, given by (6.126) and (6.127). As before, the calculation can be done directly
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by passing over to the Fourier transform, without source; it can also be done with
source by means of the following action-response problem.

Action-response problem to determine ρ(ω, k):

(i) Let us subject the fluid to the action of a longitudinal bulk force f = −∂P per
unit fluid volume, deriving from a potential P varying as:

P = P̃e−iωt+ik·x, P̃ = Cst. (6.158)

(ii) Let us find the response of the fluid to this action. We seek fields v =
v(ω, k) kk e

−iωt+ik·x , b = b(ω, k)e−iωt+ik·x , p = p(ω, k)e−iωt+ik·x , τ = τ (ω, k)
e−iωt+ik·x , satisfying the longitudinal motion equations

∂t b + ∂ · v = 0, (6.159)

ρ0∂tv = −∂ p − (4η/3 + ζ) ∂∂t b + f , (6.160)

γχ0 p = b + β0τ , (6.161)

ρ0cP∂tτ = β0T0∂t p + κ∂2τ , (6.162)

and whose amplitudes in (ω, k) are proportional to P̃ .
(iii) There is unique solution v(ω, k), b(ω, k), p(ω, k) and τ (ω, k), to this action-

response problem, and we can easily write it by straightforward calculations.
Then, the effective density ρ(ω, k) in (6.154)–(6.156), is obtained through the
definition

− iωρ(ω, k)v(ω, k) = −ik
(

1

χ0
b(ω, k) + P̃

)
. (6.163)

The reader can easily check that this gives (6.157). The physical content of the
above procedure is just equivalent to stating that the acoustic equations can be put
in the form (6.104)–(6.106), which expresses the electromagnetic-acoustic analogy,
with in addition, the h−field taken according to the definition

h = −b/χ0, (6.164)

that is in fact artificial in presence of thermal conduction. Obviously, the dispersion
equation that is obtained in this conception

[
ρ(ω, k) + k2

ω2

(
χ−1
0 − χ−1(ω, k)

)]
χ0ω

2 = k2, (6.165)

is yet another way to rewrite the same Kirchhoff-Langevin’s characteristic equation
(6.133).
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Therefore, this conception leads to exactly the same characteristic wavenumbers,
but not the same characteristic impedances. Indeed this view, that mixes the different
effects, (viscous, inertial, thermal, and elastic), into one abstract nonlocal density
ρ(ω, k), with adiabatic compressibility, is not physical like the previous one, that
places separately, inertial and viscous effects in the effective nonlocal densityρ(ω, k),
and elastic and thermal effects in the effective nonlocal bulk modulus χ−1(ω, k). It
provides a deep thermo-acoustic illustration of the unsatisfactory character of the
current definitions in macroscopic nonlocal electromagnetics. We believe that, when
generalized in acoustics to materials having finite dimensions, (as done in the next
chapter as a first step, for rigid-framed and unbounded materials), the Heaviside-
Poynting conception will allow us to overcome the so-called problem of “additional
boundary conditions” in nonlocal media, encountered in electromagnetics [16].

Appendix: Electromagnetic-Acoustic Analogy

We present here the general form of our electromagnetic-acoustic analogy.
In electromagnetics we consider a distribution of electrons and nuclei, which can

be structured at different levels, but appears homogeneous at some outermacroscopic
level. Regarding the macroscopic averaging operation, we assume that we can con-
ceive it in Lorentz’s form [4], operating a spatial convolution of the considered field
with a test function of suitable finite spatial extent [10, 15], or, with some advantages,
in the Gibbs form of expectation values, obtained using a suitable ensemble of real-
izations of the environment: we imagine that the configuration of the microscopic
charges, currents, as well as the structuring up to the outer macroscopic level, are
appropriately varied to define a relevant average, over all the realizations.

In acoustics, we consider here (this is the subject of this chapter) a homogeneous
fluid.41 For the Lorentz conception we imagine that we have one sample, defined
by one configuration of molecules, and that macroscopic averages are performed
using a test function of spatial extent sufficiently large compared to mean distances
between molecules and small compared to wavelengths; for the Gibbs conception
we imagine that we have a suitable ensemble of configuration of molecules, and look
at the expectations values over the configurations.

We consider, wave propagation of infinitesimal-amplitude electromagnetic or
acoustic perturbations, either in the situation of free motion (no external source),
or forced motion (an external current density or force density, is imposed, with same
forcing in the different realizations when using Gibbs’ conception). We work in the
inertial, rest, reference-frame attached to the ambient medium. Moreover, we work
here with arbitrary 3-space Gauss coordinates xi , i = 1, 2, 3. Working with Gauss
coordinates, and expressing the different equations and quantities in an invariant

41 As just mentioned, however, the analogy extends to a medium that can be structured at dif-
ferent levels and becomes homogeneous at some outer macroscopic level; the next chapter (fluid
permeating a rigid solid) will illustrate this.
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form under a general change of these coordinates, (general covariant notations), is a
valuable heuristic tool, which will help us to detect both the affinities and differences
appearing between the electromagnetic and acoustic equations and quantities.

For the acoustics of a viscothermal fluid, the electromagnetic-acoustic analogy
will highlight thermodynamic deficiencies in our current acoustic laws, which pre-
vent quantities and equations from appearing entirely in a well-formed manner; for
macroscopic electromagnetics, it will highlight the absence of thermodynamic foun-
dation of the notions of electric and magnetic polarizations and Maxwell’s H and
D fields, also preventing the concrete expression of the complete form of quanti-
ties and equations. These insufficient aspects of the current descriptions can only be
overcome when substantial progress has been made in the corresponding fields of
irreversible thermodynamics. Nevertheless, in acoustics we expect that the formal
pattern of quantities and equations hypothesized here for a simple fluid, will find
concrate application when considering structured fluid-solid materials, that become
homogeneous at an outer macroscopic scale, with nonlocalities coming principally
from the structuration. For such structured materials the missing thermodynamics
should not impede making, in forthcoming work, successful illustrations of the full
pattern of quantities and equations postulated here, (see discussion around (6.210)).

Macroscopic Electromagnetics in Covariant Notations

Because we work in the rest reference-frame attached to the ambient medium, we are
not concerned with the fact that, according to relativity theory, the electromagnetic
potential is a four-vector. By using Weyl’s gauge, (see footnote 37), we can set
to zero its time component and thus associate, to the microscopic electromagnetic
field, a covariant 3-vector potential field ai (t, x). From this 3-vector, the electric and
magnetic fields, ei (t, x) and bi j (t, x), are derived as follows, where the semicolon ;
denotes the covariant derivative in the Gauss coordinates:

ei = −∂ai
∂t

, bi j = 1

2

(
a j;i − ai; j

)
. (6.166)

The usual pseudovector, b = ∂ × a, of the standard Gibbs-Heaviside vector nota-
tions, is obtained by working with Cartesian direct-system coordinates and setting,
bk = 2bi j , where i jk is a circular permutation of 123; the factor of two in (6.166.2)
and previous relation, is introduced for later convenience. By averaging, using a
Gibbs’ or Lorentz’s conception, we will define corresponding macroscopic fields,
Ai = 〈ai 〉, Ei = 〈ei 〉, Bi j = 〈bi j 〉. They will automatically satisfy

Ei = 〈ei 〉 = −∂Ai

∂t
, Bi j = 〈bi j 〉 = 1

2

(
A j;i − Ai; j

)
, (6.167)
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as there is direct switching (commutation) between the averaging operation 〈 〉 and
the time or spatial derivative ∂/∂t or ; i :

∂/∂t〈.〉 = 〈∂/∂t.〉, 〈.〉; i = 〈.; i〉. (6.168)

The first switching is obvious. The last is also evident with Gibbs’ conception: the
covariant derivative of the expectation values of the field and the expectation values
of its covariant derivative are involved at the same spatial point, thus, the order of
the operations can be interchanged, (with Lorentz’s conception the justification is a
little longer).

Toobtain themacroscopic electromagnetic equations appropriate to describe time-
variable space-variable phenomena, we first start with the following microscopic
equations,where gi j is themetric tensor of coordinates xi , g = |gi j | is the determinant
of the metric tensor, gi j is the inverse matrix of the metric tensor, (gi j g jk = δki , δki
is the Kronecker symbol, which is a true mixed tensor), and ε0 and μ0, two scalar
constants, are the electric and magnetic permittivities, (here and in the following we
use Einstein’s summation convention on repeated indices – one contravariant one
covariant):

∂bi j
∂t

= 1

2

(
ei; j − e j;i

)
,

∂di

∂t
= hi j; j − j i , (6.169)

di = ε
i j
0 e j , hi j = μ

−1 i jkl
0 bkl , (6.170)

ε
i j
0 = ε0g

1/2gi j , μ
−1 i jkl
0 = μ−1

0 g1/22
(
gikg jl − gil g jk

)
. (6.171)

The usual pseudovector, h = b/μ0, is obtained by working in Cartesian coordinates
and defining, this time, 2hk = hi j , in order that (6.169.2) assumes the known form,
∂d/∂t = ∂ × h − j , in Gibbs-Heaviside notations. The factor of two in the rela-
tion between hk and hi j is chosen so that (6.169.2), like the above known relation,
looks simple. We note that, in order for (6.169.2) to be consistent with the additional
known field equation, di

;i = ρ, and the conservation of charge, ∂ρ/∂t + j i;i = 0, the
introduced field hi j must be taken antisymmetric: hi j = −h ji . We next complete
these first equations by giving additional equations, specifying how the electromag-
netic current j i is related to the motion of punctual charges qα (electrons and nuclei)
located at xα (δ is the Dirac delta function):

j i =
∑

α

qα
dxiα
dt

δ [x − xα(t)] , (6.172)

and how their dynamics is related to the EM fields e and b:
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d

dt

[
mα i j

[
dx j

dt

]
α

]
= qα

[
ei + bik

[
dxk

dt

]
α

]
,mα i j = gi jm0α√

1 − gkl
c2

[
dxk
dt

dxl
dt

]
α

.

(6.173)

where m0α are the rest masses of the particles labelled by the index α = 1, 2, . . .,
and c is the lightspeed constant. Finally, given the above microscopic equations, we
have to average them up to the final outer macroscopic level.

Before proceeding we note that the additional equations (6.172)–(6.173) carry the
non-quantum notion of “particles trajectories”; also, the summation over α is sym-
bolic as the electrons are indistinguishable in the quantum vision. These equations
are therefore written within a semi-classic, incomplete vision, which do not describe,
in particular, spin and the quantum collective behaviour of electrons and nuclei. Here
they only superficially play the role of additional fundamental quantum equations,
which should be written to complete (6.169)–(6.171).

Aside from its flaws, the expression (6.172) allows us to see that the variance of
j i is that of a contravariant vector density of weight −1. Its contravariant variance
comes from the differentials dxiα; its weight comes from the δ and the true scalar
nature of charges qα.42 From (6.169.2) and (6.170) it then follows that di , hi j , ε

i j
0 ,

μ
−1 i jkl
0 , are contravariant tensor densities of weight −1.
From then on, to write the (6.170)–(6.171), we only have to assume that the den-

sity fields, di (t, x) and antisymmetric hi j (t, x), are, resp., directly related to the true
tensor fields, ei (t, x) and bi j (t, x), expressed at the same time and space position, i.e.
there is no temporal or spatial dispersion in void space. The only available tensors to
construct the contravariant tensor densities of weight −1, εi j0 and μ

−1 i jkl
0 , in the rela-

tions (6.170), are introduced in the problem by the arbitrary choice of coordinates.
This immediately gives the expressions (6.171),43 since we must have antisymmetry
of the coefficients μ

−1 i jkl
0 , not only over kl but also over i j . We note that the result-

ing ε
i j
0 is automatically symmetric, ε

i j
0 = ε

j i
0 , and likewise, the resulting μ

−1 i jkl
0 is

automatically symmetric under the exchange of the first and second pair of indices,
μ

−1 i jkl
0 = μ

−1 kli j
0 .

We now consider taking the Gibbs’ or Lorentz’s averages 〈 〉 of the microscopic
quantities and equations. For simplicity, it is advantageous to work with Gibbs’
averages, however, the results will also be valid (but at long wavelengths only) and
look the same, with Lorentz’s averaging.

Because of the switching (6.168) it is immediate to average the equations (6.169)–
(6.170) to write44:

42 Since
∫

δ [x − xα] d3x = 1, and the differential element of volume d3x is a scalar density of
weight 1, the δ has the nature of a scalar density of weight −1.
43 The numerical constants in (6.171) are chosen so that these relations reduce, in Cartesian coor-
dinates and in Gibbs-Heaviside’s notation, to proportionality relations, d = ε0e, and h = b/μ0.
44 We obviously have 〈εi j0 e j 〉 = ε

i j
0 〈e j 〉, etc., as we use identical Gauss coordinates in the different

realizations.
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∂Bi j

∂t
= 1

2

(
Ei; j − E j;i

)
,

∂Di
0

∂t
= Hi j

0 ; j − 〈 j i 〉, (6.174)

Di
0 = ε

i j
0 E j , Hi j

0 = μ
−1 i jkl
0 Bkl, (6.175)

where we have set

Ei = 〈ei 〉, Bi j = 〈bi j 〉, Di
0 = 〈di 〉, Hi j

0 = 〈hi j 〉. (6.176)

In (6.175), the index 0 over D and H , is put to reserve notations D and H for the
final macroscopic fields that will appear below, (and that are not the direct averages
of underlying d and h fields). For the macroscopic current 〈 j i 〉, we view it as the
sum of an external impressed macroscopic current denoted

[
J i
]
, (by defination the

same in the different realizations), and an intrinsic macroscopic polarization current
denoted J ipol :

〈 j i 〉 = J ipol + [
J i
]
. (6.177)

This macroscopic polarization current reflects the initiation of irreversible thermody-
namic processes, trigged by the presence of the disturbancemacroscopic fields E and
B, zero in the equilibrium state, and nonzero in the disturbed state. It is present even if
the forcing

[
J i
]
is absent.We certainly cannot truly express it from the semi-classical

simplistic vision of the additional equations (6.172)–(6.173) that we have posed. We
can also hardly express it by direct averaging from a complete microscopic quantum
vision, because the laws that would link the macroscopic mean magnitudes together,
being thermodynamic in nature, (in the sense of a macroscopic out-of-equilibrium
statistics), would be difficult to obtain from the basic laws of QED.45 Finally, as the
corresponding thermodynamics of the motion of an “electronic fluid” in the lattice
of nuclei, remains to be developed, a thermodynamic analysis and expression of J ipol
is at present not feasible. Nevertheless, according to a division that we call Lorentz-
splitting, we can always try to write this current as a spatial derivative, and a temporal
derivative term:

J ipol = ∂Pi

∂t
+ Mi j

; j , (6.178)

with Pi , and antisymmetric Mi j , two unknown fields conventionally named the
electric and magnetic polarization fields. The antisymmetry of Mi j is guessed on
the basis of the characteristic antisymmetry observed in electromagnetic quantities
and equations. Inserting (6.177)–(6.178) in (6.174.2) will provide a macroscopic
equation having the form

∂Di

∂t
= Hi j

; j − [
J i
]
, (6.179)

45 By the way, fully explaining how the transition from a quantum microscopic level to a classical
macroscopic level takes place, should be a difficult task, already because of the special physical
position of quantum physics which requires the classical limit for its own formulation [19].
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with
Di = ε

i j
0 E j + Pi , Hi j = μ

−1 i jkl
0 Bkl − Mi j . (6.180)

The antisymmetry of M implies antisymmetry of the introduced H field. Because
we consider infinitesimal perturbations, the macroscopic polarizations P and M
appear as linear responses to the macroscopic electromagnetic field represented by E
and B. Theremust be as a consequence, through (6.180), constitutive thermodynamic
relations having, in the most general manner, the following linear form, (for small
perturbations)

Di (t, x) =
∫ t

−∞
dt ′
∫

d3x ′εi j (t − t ′, x, x ′)E j (t
′, x ′) + . . .

∫ t

−∞
dt ′
∫

d3x ′κi jk(t − t ′, x, x ′)Bjk(t
′, x ′),

(6.181)

Hi j (t, x) =
∫ t

−∞
dt ′
∫

d3x ′μ−1 i jkl(t − t ′, x, x ′)Bkl(t
′, x ′) + . . .

∫ t

−∞
dt ′
∫

d3x ′λi jk(t − t ′, x, x ′)Ek(t
′, x ′).

(6.182)

The integrations over time will describe temporal dispersion effects, and those over
space, spatial dispersion effects. But under the first field equation (6.174.1), which
in harmonic regime implies −iωBjk = (

E j;k − Ek; j
)
/2, it is always possible, by

virtue of the presence of spatial dispersion, to incorporate in (6.181), the effect of the
second integral term into the first, by appropriately redefining the nonlocal kernel
function εi j (t, x, x ′). We can therefore generally simply rewrite

Di (t, x) = ε̂i j Ei (t, x) =
∫ t

−∞
dt ′
∫

d3x ′εi j (t − t ′, x, x ′)E j (t
′, x ′). (6.183)

Concerning (6.182), the second integral term is similarly useless, so that

Hi j (t, x) = μ̂−1 i jkl Bkl(t, x) =
∫ t

−∞
dt ′
∫

d3x ′μ−1 i jkl(t − t ′, x, x ′)Bkl(t
′, x ′).

(6.184)
It corresponds to expressing Pi as a nonlocal linear response to the electric field, and
Mi j as a nonlocal linear response to the magnetic field; it justifies the denomination
“electric” for P and “magnetic” for M .

There is still to be observed that the introduction of polarizations P and M ,
through the Lorentz-splitting (6.178), carries an essential ambiguity: an arbitrary
response term Φ

i j
; j , with Φ i j an antisymmetric tensor of weight −1, can always be

added to Pi , if, simultaneously, a term ∂Φ i j/∂t be subtracted to Mi j . Because of
this indetermination, the fields D and H , and thus also the operators ε̂ and μ̂−1, are
ambiguous and still need to be resolved. I assert that this inherent ambiguity would
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be removed, i.e. all quantities above would become uniquely defined in principle, if
one were able to give a precise thermodynamic content to the notion of the current
density of energy transported in usable electromagnetic form, (by opposition to
energy transported in degraded form). Given this notion, one then could require that,
by definition of Hi j , this current density of energy be given by a Poynting-Heaviside
vector S, such that

Si (t, x) = −H ji (t, x)E j (t, x) = Hi j (t, x)E j (t, x). (6.185)

In the context of general nonlocal response of the media, the form of (6.185) is
remarkable, in that, the current density of energy transported in electromagnetic form,
at a given time and position, is expressed as the contraction of two fields evaluated at
the same time and position. In fact, the corresponding remarkable choice of the field
Hi j will determine, how is to be made the precise separation of the global effects,
into the actual “time dispersion effects” per se, and “spatial dispersion effects” per
se.

In electromagnetics of material media, we do not dispose of the necessary ther-
modynamic laws of motion of the system, comprising the electrons and solid nuclei
structured lattice, to precise these notions and arrive at a definition of the electric
polarization, magnetic polarization, field Hi j , field Di , and operators ε̂ and μ̂−1. By
thermodynamic arguments of a general nature, however, it can be shown that ε̂ and
μ̂−1 are “generalized susceptibilities” that satisfy the general symmetry relations [13,
20]:

εi j (t, x, x ′) = ε j i (t, x ′, x), μ−1 i jkl(t, x, x ′) = μ−1 kli j (t, x ′, x). (6.186)

Finally, in presence of spatial dispersion, it is customary in electromagnetic liter-
ature to consider that, Mi j = 0, i.e. Hi j = μ

−1 i jkl
0 Bkl . This leads to the definition of

conventional D field and ε kernel, certainly slightly different from the true physical
ones.

We believe that, future developments crossing the boundaries of present thermo-
dynamics, could allow the introduction of the necessary thermodynamic variables,
associated to the motion of “electronic fluid” interacting with the nuclei structured
lattice, from which, in particular, the electromagnetic current density of energy, Si ,
could be explicitly constructed. In a sequence of successive determinations of the
type illustrated in acoustics in Sects. (6.12.2-3) it would then imply, precise, and
unambiguous, definition of Hi j field, Mi j field, Di field, Pi field, operator ε̂, and
operator μ̂−1.We summarize our discussion.Macroscopic electromagnetic equations
have the following covariant (invariant) pattern in all coordinate systems fixed to the
ambient medium:

∂Bi j

∂t
= 1

2

(
Ei; j − E j;i

)
,

∂Di

∂t
= Hi j

; j − [
J i
]
, (6.187)

Di (t, x) = ε̂i j Ei (t, x) =
∫ t

−∞
dt ′
∫

d3x ′εi j (t − t ′, x, x ′)E j (t
′, x ′), (6.188)
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Hi j (t, x) = μ̂−1 i jkl Bkl(t, x) =
∫ t

−∞
dt ′
∫

d3x ′μ−1 i jkl(t − t ′, x, x ′)Bkl(t
′, x ′),

(6.189)
Si (t, x) = Hi j (t, x)E j (t, x) = −H ji (t, x)E j (t, x), (6.190)

where a thermodynamic knowledge is assumed, (though currently missing), that
could be used to construct the Heaviside-Poynting vector Si , specifying the current
density of energy transported in electromagnetic form.We name “Lorentz fields” the
true tensor fields Bi j = 〈bi j 〉 and Ei = 〈ei 〉, and “Maxwell fields” the tensor density
fields Hi j and Di . The first are the direct averages of the corresponding microscopic
fields. The second are not. They include an additional polarization part.

Let us now consider the acoustic wave propagation in our simple homogeneous
fluid, (directly a macroscopic wave propagation phenomenon), and let us try to write,
by analogy, the most general pattern of macroscopic equations, that would manifest
both temporal dispersion and spatial dispersion.

Acoustics in Covariant Notations

In electromagnetics, working in the rest frame of the medium, we have introduced
a 3-vector covariant macroscopic field Ai (t, x) = 〈ai 〉(t, x), allowing to build the
macroscopic electric and magnetic fields, E , B, according to (6.167). Here in acous-
tics, by analogy, we want to test the idea that, working in the rest frame of the fluid,
we also have, at the macroscopic level, at least in Cartesian coordinates, an obvi-
ous 3-vector field existing at any point and time and associated with an acoustic
disturbance: the macroscopic displacement a of the fluid particles.

An immediate objection to the possibility of such an analogy is that a finite
displacement is not a vector when using Gauss’ general coordinates. However, as
we restrict here to considering infinitesimal perturbations, we can consider that the
associated displacement fields ai will behave as coordinates differentials dxi , that
is, as true contravariant vectors. We can thus try to pursue a deep electromagnetic-
acoustic analogy, where the macroscopic electromagnetic covariant potential field
Ai , will be replaced by a contravariant displacement field ai . From this basic acoustic
contravariant 3-vector ai , we derive the velocity and (opposite and linearized) strain
fields46 vi and bi j :

vi = ∂ai

∂t
, bi j = −1

2

(
ai; j + a j;i) . (6.191)

46 In spite of the macroscopic nature of our quantities v and b here, we use small letters for them,
because in the next chapter the medium will be structured, (with solid parts), and these quantities
will have to be averaged up to some outer macroscopic level, then becoming the outer macroscopic
quantities V = 〈v〉 and B = 〈b〉.
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In these definitions, the characteristic electromagnetic antisymmetry, Bi j = −Bji ,
becomes a characteristic acoustic symmetry, bi j = b ji : therefore, there is no sense
to try to compare the choice of overall signs in (6.167) and (6.191). Here, we have
introduced for convenience positive sign in (6.191.1) and negative sign in (6.191.2)
in order that bii = b, the condensation.47

We see by construction that, from (6.191), the following equation is satisfied

∂bi j

∂t
= −1

2

(
vi; j + v j;i) . (6.192)

It will play the role of the first electromagnetic equation (6.187).
Now,by analogywith the electromagneticmacroscopic equations (6.174), (6.175),

and (6.177), we can guess that, when the fluid is forced by an arbitrary external force
density

[
Fi
]
(t, x), its motion will be governed by equations having the form:

∂bi j

∂t
= −1

2

(
vi; j + v j;i) , ∂Di

0

∂t
= Hi j

0 ; j + Fi , (6.193)

D0 i = ρ0 i jv
j , H0 i j = −χ−1

0 i jklb
kl , (6.194)

Fi = Fi
pol + [

Fi
]
, (6.195)

with, this time, we assume, a symmetric Hi j
0 . Again, because of the interchange of

symmetry there is no sense to compare signs in electromagnetic and acoustic equa-
tions. The signs appearing are chosen for later convenience.

[
Fi
]
is the external

force density (force per unit volume) impressed on the fluid, and Fi
pol is an induced

polarization force density, which reflects the initiation of irreversible thermodynamic
processes of any kind, coming in response to the presence of the disturbance macro-
scopic fields v and b, zero in the equilibrium state, and nonzero in the disturbed
state.

With regard to force densities
[
Fi
]
, Fi

pol , we view them as contravariant vectors
with a weight density of −1, (identical to that of electromagnetic current densities),
and this variance comes, for example, from a comparison with a Newton’s law term,
ρ∂vi/∂t , where ρ is an expression of type, ρ = 〈∑α mαδ [x − xα(t)]〉, the sum is
on the molecules, and the masses mα are true scalars.

Therefore, D0i , H0i j , ρ0 i j and χ−1
0 i jkl , are also tensor densities of weight −1. The

equations (6.194) state that the “Maxwell” densities D0i and H0i j are, respectively,
directly related to the “ Loventz” true fields vi and bi j , expressed at the same time
and space position. This is because all temporal and spatial dispersion effects, (all
irreversible thermodynamic processes coming in response to the presence of the
disturbance macroscopic fields), express, by definition, via the induced polarization
force density Fi

pol . As the fluid is time invariant, homogeneous, isotropic, and invari-

47 We recall that the lowering or raising of indices is done by contraction with the metric tensor or
its inverse, (here, bii = gi j bi j = gi j bi j ).
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ant in spatial reflections, the only available tensors to construct the coefficients ρ0 i j
and χ−1

0 i jkl , are the metric tensor gi j or its inverse gi j , and the associated density of
weight −1, g1/2. Moreover, as bkl is symmetric, and we assume that H0i j is also
symmetric, μ−1

0 i jkl must be symmetric, not antisymmetric, on indices i j and kl. With
this exchange of symmetry, the only possible expressions are:

ρ0 i j = ρ0g
1/2gi j ,χ

−1
0 i jkl = χ−1

0 g1/2gi j gkl + μ0g
1/2

(
gikg jl + gil g jk − 2

3
gi j gkl

)
.

(6.196)

Note that we could have written

D i
0 = ρ i

0 jv
j , H i j

0 = −χ
−1 i j
0 kl b

kl ,

in place of (6.194), and

ρ i
0 j = ρ0g

1/2δij ,χ
−1 i j
0 kl = χ−1

0 g1/2gi j gkl + μ0g
1/2

(
δki δ

l
j + δliδ

k
j − 2

3
gi j gkl

)
,

in place of (6.196). In Cartesian coordinates the above expressions of the χ−1
0 tensor

yield Frenkel’s conjectured tensor (6.42).
The true scalar constants, ρ0, χ

−1
0 and μ0, interpret as the ambient density, the adi-

abatic bulk modulus, and the adiabatic Frenkel-Lamé shear coefficient: remarkably,
the addition of the latter coefficient is a direct result of the transformation of anti-
symmetry to symmetry, when we pass from electromagnetic equations to acoustic
equations.

Next, in the same manner as, in electromagnetics, we assumed Lorentz’s splitting
of the induced polarization current, here, we assume a similar splitting of the induced
polarization force:

Fi
pol = −∂Pi

∂t
+ Mi j

; j , (6.197)

with Pi , and symmetric Mi j , some “acoustic polarization” fields, (again, because
of the interchange of symmetry there is no sense to try to compare signs in (6.178)
and (6.197), and the sign − is introduced as inspired by (6.101)). Inserting (6.195,
6.197) in (6.193.2) will provide an equation

∂Di

∂t
= Hi j

; j + [
Fi
]
, (6.198)

where
Di = ρ0 i jv

j + Pi , Hi j = −χ−1
0 i jklb

kl + Mi j . (6.199)
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The field Di will be an “effective acoustic momentum” field, and the field Hi j

an “effective acoustic stress” field. As the polarizations appear in linear response
to the infinitesimal acoustic field represented by v and b, there must be constitutive
thermodynamic linear relations having, in the most general manner, the form

Di (t, x) =
∫ t

−∞
dt ′
∫

d3x ′ρi j (t − t ′, x, x ′)v j (t ′, x ′) + . . .

∫ t

−∞
dt ′
∫

d3x ′κi jk(t − t ′, x, x ′)b jk(t ′, x ′),
(6.200)

Hi j (t, x) = −
∫ t

−∞
dt ′
∫

d3x ′χ−1
i jkl(t − t ′, x, x ′)bkl(t ′, x ′) + . . .

∫ t

−∞
dt ′
∫

d3x ′λi jk(t − t ′, x, x ′)vk(t ′, x ′).
(6.201)

But under the first field equation (6.193.1), which in harmonic regime implies
iωb jk = (

v j;k + vk; j) /2, it is always possible, by virtue of the presence of spa-
tial dispersion, to incorporate in (6.200) the effect of the second integral into the
first, by appropriately redefining the kernel ρi j . We can therefore generally simply
rewrite

Di (t, x) = ρ̂i jv
j (t, x) =

∫ t

−∞
dt ′
∫

d3x ′ρi j (t − t ′, x, x ′)v j (t ′, x ′). (6.202)

Concerning (6.201), the second integral is similarly useless, so that we can also
simply rewrite

Hi j (t, x) = −χ̂−1
i jklb

kl(t, x) = −
∫ t

−∞
dt ′
∫

d3x ′χ−1
i jkl(t − t ′, x, x ′)bkl(t ′, x ′).

(6.203)
It amounts to say that Pi is nonlocal response to the velocity field, andMi j is nonlocal
response to the strain field.

Finally and again, the introduction of polarizations Pi and Mi j through the split-
ting (6.197), carries an essential ambiguity: an arbitrary response term Φ

i j
; j , with Φ i j

a symmetric tensor of weight −1, can always be added to Pi , if, simultaneously, a
term ∂Φ i j/∂t be added to Mi j . Because of this indetermination, the fields D and H ,
and thus also the operators ρ̂ and χ̂−1, are ambiguous and still need to be resolved.
I assert that the ambiguity would be removed, i.e. all quantities above would become
uniquely defined in principle, if one were able to give a precise thermodynamic con-
tent to the notion of the current density of energy transported in usable acoustic form,
(by opposition to energy transported in degraded form). Given this notion, one then
could require that, by definition of Hi j , this current density of energy be given by a
“Poynting-Heaviside”, or here, “Umov” vector, such that
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Si (t, x) = −H i
j (t, x)v

j (t, x), (Hi
j = g jk H

ik = gik Hkj ). (6.204)

At present time,we do not dispose of the necessary thermodynamic laws ofmotion, to
fully precise this notion and arrive at a wholly satisfactory construction of the acous-
tic polarizations, acoustic fields Hi j and Di , and acoustic kernels ρi j (t, x, x ′) and
χ−1
i jkl(t, x, x

′). By thermodynamic arguments of a general nature, however, we know
that ρ̂ and χ̂−1 are “generalized susceptibilities” that satisfy the general symmetry
relations [13, 20]:

ρi j (t, x, x
′) = ρ j i (t, x

′, x), χ−1
i jkl(t, x, x

′) = χ−1
kli j (t, x

′, x). (6.205)

Within the usual near-equilibrium Navier-Stokes-Fourier thermodynamic frame-
work, what is obtained is that we must identify the effective acoustic stress field
Hi j with −pg1/2gi j , (to respect Heaviside-Poynting’s identification (6.112), and the
covariant writing of the (6.113), namely, Si = g1/2 pvi , where p interprets here as a
scalar equal to the thermodynamic pressure), but this leads to degeneracies partic-
ularly apparent in the description of shear motions: for these motions, no pressure
arises and the corresponding Maxwell stress field Hi j is then identically equal to
zero. It highlights clearly the thermodynamic insufficiencies of this framework.

We summarize our discussion. Acoustic equations have the following covariant
pattern in all coordinate systems fixed to the ambient medium:

∂bi j

∂t
= −1

2
(vi; j + v j;i ),

∂Di

∂t
= Hi j

; j + [
Fi
]
, (6.206)

Di (t, x) = ρ̂i jv
j (t, x) =

∫ t

−∞
dt ′
∫

d3x ′ρi j (t − t ′, x, x ′)v j (t ′, x ′), (6.207)

Hi j (t, x) = −χ̂−1
i jklb

kl(t, x) = −
∫ t

−∞
dt ′
∫

d3x ′χ−1
i jkl(t − t ′, x, x ′)bkl(t ′, x ′),

(6.208)
Si (t, x) = −Hi

j (t, x)v
j (t, x), (6.209)

where a thermodynamic knowledge is assumed, (though currently missing), that
could be used to construct the “Heaviside-Poynting” or else “Umov” vector Si .

When the medium is structured, the analogy suggests to replace v and b by aver-
ages V = 〈v〉 and B = 〈b〉 that will be named the acoustic Lorentz fields. New
acoustic Maxwell fields D and H , “Umov” vector S, and operators ρ̂ and χ̂−1, will
appear, respecting the same equation pattern as above. The mentioned deficiencies
of the thermodynamic framework will not hinder the construction of a viable non-
local description. Indeed, the nonlocal effects resulting from the structuring of the
environment will be the ones that will be important to consider first. They will be
sufficiently well described in the available imperfect thermodynamic framework. An
highlighting, reduced exemplification of this, will be considered in the next chapter.
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The full (nonreduced) nonlocal pattern of quantities and equations will arise for
structured media, e.g. media having connected fluid and solid phases. For example,
consider the case where the stress-strain relations in the solid are idealized as the
following lossless relations, σi j = −χ−1

si jklb
kl , with χ−1

si jkl given by (6.196), and χ−1
0

and μ0 replaced by χ−1
s and μs , (the constants in the solid phase). Then, the full

above nonlocal pattern of equations will appear, replacing vi and bi j by V i = 〈vi 〉
and Bi j = 〈bi j 〉, and defining the Hi j field through the generalized energetic “Umov”
or “Heaviside-Poynting” relation, (making it a continuous field):

Si (t, x) = 〈−σi
jv

j 〉(t, x) = −Hi
j (t, x)V

j (t, x), (6.210)

with σi j , equal to −pg1/2gi j in the fluid, where p is the thermodynamic excess
pressure. In short, it should be possible to describe any fluid-saturated poroelastic
material as a suitable nonlocal elastic solid.48 We expect that this principled position
of the problems will be verified in future detailed studies.
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Chapter 7
Nonlocal Dynamic Homogenization
of Fluid-Saturated Metamaterials

Denis Lafarge

Abstract The electromagnetic analogy introduced in the previous chapter is used
here to construct an original macroscopic theory of sound propagation, allowing
for both temporal and spatial dispersion, in fluid-saturated homogeneous porous
media having arbitrary microstructure—including “metamaterials”. The theory can
be formulated for stationary random materials, periodic materials, and using dif-
ferent conceptions of the averaging operation (ensemble-average, volume-average).
For simplicity, we have assumed that the structure is rigid and motionless, and the
propagation occurs along a symmetry axis. The theory will have to be generalized
to account for anisotropy, finite dimensions and frame deformations. In Appendix,
we show that the preceding macroscopic descriptions in use in literature, leave aside
spatial dispersion: this is a warning that the asymptotic two-scale homogenization
method, often used to infer them, cannot be fully consistent.

7.1 Sound Propagation in Fluid-Saturated Rigid-Framed
Porous Media

In the previous Chap.6, we have studied sound propagation in a viscothermal fluid,
and shown that it can be put in the form of Maxwellian nonlocal equations. More-
over, we have suggested that this Maxwellian nonlocal form of the equations should
apply quite generally to media that can be described in macroscopic averaged sense.
“Maxwellian nonlocal” here, means that the corresponding nonlocal pattern of the
equations is similar to that which describes, (with only symmetry and variances
interchanges, in the most general version detailed in the Appendix), macroscopic
electromagnetic wave propagation in a medium in the presence of temporal and spa-
tial dispersion. We now fix our attention to the propagation of sound waves when the
fluid is permeating a porous structure, as illustrated in Fig. 7.1. We will show that at
a suitable macroscopic level it can again be put in the form of Maxwellian nonlocal
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Fig. 7.1 Acoustic wave propagation in fluid-saturated rigid-framed porous media: a viscous-
dominated low-frequency regime, b inertial-dominated high-frequency regime [Adapted with per-
mission from calculations by N. Martys and E. J. Garboczi at the National Institute of Standards
and Technology]

equations, and will indicate how to compute in principle the nonlocal operators. For
the sake of simplicity here, we limit ourselves to materials with a, (connected or
not), rigid structure, which do not move or deform during the propagation of sound
in the saturating fluid. The geometry of the structure, which will determine that of the
connected fluid domain, is left arbitrary except that it will appear homogeneous, (in
the sense of ensemble- or volume-average), at some outer macroscopic level. In that
case, and for the description of macroscopic compressional waves along a symmetry
axis, we expect ending up with the same pattern of nonlocal macroscopic equations
as seen in the text of Chap.6, for the longitudinal waves in the fluid.1

What is well known in the literature [1], is the situation where the microstructure
is simple enough to ensure that, because the macroscopic wavelengths are large
relative to the dimensions of a representative volume, (scale separation), the fluid
moveswithout divergence at the pore scale [2, 3]. This situation is generally described
by applying the two-scale asymptotic method of homogenization [3, 4]. It leads to an
asymptotic “local theory” description, very useful in practice. The type of geometries
associated to this description is typically that represented above,2 when the sizes of

1 For materials with deformable structure, the expected pattern of nonlocal macroscopic equations
will be the more general one seen in the Appendix of Chap.6, but this is left for further studies.
2 These figures are taken with permission from the electronic monograph https://concrete.nist.gov/
monograph, Part III,GeneralRandomPorousMaterials, Length scales relating thefluid permeability
and electrical conductivity in random two-dimensional porous media, alinea: Comparison between
electrical and fluid-flow problems. They represent the fluid flow, resp. in low-frequency (viscous
Darcy) regime (see the velocity pattern v0 (7.189)–(7.192) in Appendix), and high-frequency
(inviscid) regime (see the velocity pattern v∞ (7.198)–(7.201) or E (7.202)–(7.205) in Appendix).
The fluid flow is modelled as incompressible because long-wavelengths are assumed, and the
microgeometry is “simple” (it does not involve widely different pore-scale lengths).

http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
https://concrete.nist.gov/monograph
https://concrete.nist.gov/monograph
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Fig. 7.2 Helmholtz resonators

grains and separations are very small compared to wavelengths. To be complete,
and because of its interest in practice, we study this local theory in Appendix. We
show that it is a simplification of the complete propagation problem, that makes
abstraction of the spatial dispersion. For this reason, it fails, as soon as the geometry
is complicated enough, (so-called metamaterials in which very different pore-scale
lengths are simultaneously present), to permit that compressible movements can
occur at the small-scale, in spite of scale separation. This is particularly the casewhen
the solid includesHelmholtz resonators, as shown in Fig. 7.2, (necks and cavities have
very different dimensions).

Indeed, as we will see, there is a direct link between resonances and spatial
dispersion.

In what follows, by pursuing the ideas established in the Chap.6, we develop
explicitly the general principles of nonlocal theory, that will remain valid regardless
of microgeometry. In comparison to the local description in Appendix, it is much
more difficult to draw all the consequences from the nonlocal description. Much of
this remains to be done: metamaterials will have much richer possible macroscopic
behaviours than allowed by the conventional local description.

7.2 Statement of the Problem

To simplify the treatment, ourmedium ismacroscopically homogeneous, thus bound-
less (see footnotes 2 and 23 in Chap. 6), and either, macroscopically isotropic, or the
considered plane wave propagation occurs along a macroscopic symmetry axis x . To
arrive at a precise definition of the macroscopic level, we assume that the geometric
configuration is stationary random in some respects, however we will also consider
the important but ambiguous case of periodic geometry. The material extends in
the same stationary random way, or else periodic way, throughout all space, and
is made of a solid part Vs , shown in red colour in Fig. 7.1, (not necessarily con-
nected), and a simply connected complementary fluid part V f fully saturated with
the viscothermal fluid, shown in bench of white and grey shades. The pore surface
between solid and fluid is denoted ∂V . The solid, mechanically and thermally inert,
is supposed to remain perfectly still, either because it is heavy or rigid or both, or
attached to external unmoving parts. Its thermal inertia also is assumed large, so
that it remains at room temperature. Therefore, only the saturating fluid, which is
compressible and can move, carries a disturbance. This disturbance is either due to
longitudinal pressure waves coming from without, (no source in the medium), or
directly created by a source-term of the type considered in the Chap. 6, (longitudinal

http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
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bulk force per unit fluid volume, f = −∂P , P = P̃e−iωt+ikx , where ω and k are
independently chosen3), and acting on the fluid. At the solid-fluid contact surfaces
∂V , the following boundary conditions apply: the mechanical inertia of the solid and
the viscous nature of the fluid, (nonzero shear viscosity), result in a no-slip cancel-
lation condition, v = 0, for the velocity; likewise, the thermal inertia of the solid
and the thermal nature of the fluid, (nonzero thermal conduction coefficient), result
in the cancellation, τ = 0, of the excess temperature. In general, in response to the
field coming from without, or in response to the direct source action, it will appear in
the fluid, complex and phase-lagged distributions of velocities, excess temperature,
excess pressure, etc.

For small-amplitude motions, their governing equations will be those of the
Navier–Stokes–Fourier model discussed in Chap.6, completed by the mentioned
boundary conditions, where we put in bracket the source term, as it may, or not, be
present:

∂ · v + ∂b

∂t
= 0, in V f , (7.1)

ρ0
∂v

∂t
= −∂p + η∂2v +

(η

3
+ ζ

)
∂(∂ · v) + [

f
]
, in V f , (7.2)

γχ0 p = b + β0τ, in V f , (7.3)

ρ0cP
∂τ

∂t
= β0T0

∂p

∂t
+ κ∂2τ, in V f , (7.4)

and
v = 0, on ∂V, (7.5)

τ = 0, on ∂V. (7.6)

Note that in (7.2), while it is ultimately a matter of describing the propagation of
macroscopic dilatation-compression waves in the material, we have kept the vortical
viscous term −η∂ × ∂ × v. Indeed, whether the fluid motion is due to longitudinal
pressure waves from the outside or created by a longitudinal bulk-force source term,
viscous shearing movements must be taken into account, as they are automatically
generated at the pore walls as a result of the application of boundary conditions (7.5).

In the Fig. 7.1, a low-frequency viscous-flow regime is represented on the left,
(viscous term η∂2v much greater than inertial term ρ0∂v/∂t , i.e. viscous skin depth
greater than pore sizes), and a high-frequency inertial-flow regime is on the right,
(inertial term ρ0∂v/∂t much greater than viscous term η∂2v, i.e. viscous skin depth
very small compared to pore sizes). In the represented domain V f , white colour
corresponds to higher velocities, and grey colour to lower velocities. In general,
the patterned, complex, and phase-lagged distributions of “high” and “low” values,
will depend on both the time and the spatial variations of the macroscopic fields.
The first dependence will be associated to temporal dispersion, the second to spatial

3 Using this complex notation, we understand that P = � (P̃e−iωt+ik·x), omitting the real part
symbol � ( ).

http://dx.doi.org/10.1007/978-3-030-84300-7_6
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Fig. 7.3 Long-wavelength sound-field in a line of Helmholtz resonators

dispersion. Here on the two Figures 1, only the first dependence is present; the
second, very feeble, is not even considered: the sound propagation is assumed to
be described by the conventional approach, (local homogenization, see Appendix),
which assumes divergence-free fluid motion at the pore scale. Wementioned that this
local homogenization description falls in error in presence of Helmholtz resonators
in the medium, and that this failure is linked to the failure to take spatial dispersion
into account. As we saw in the Chap.6, spatial dispersion means that the medium
properties depend on the spatial variations of the external fields and it should be
obvious that this dependence cannot be described by making the simplification of
locally incompressible fluid motion.

The close relationship between the presence of resonances and the presence of
spatial dispersion can be immediately understood graphically as follows. Consider
a geometry with Helmholtz’ resonators in succession and in which, we assume,
waves having long wavelengths are established, as shown in Fig. 7.3. A Helmholtz
resonance cannot occur, i.e. a significant flow cannot go to and fro an Helmholtz
cavity, (red arrow in Fig. 7.4), without simultaneously being associated with signif-
icantly different flows in and out the unit cell, (black and blue arrows in Fig. 7.4),
that is, without a concomitant spatial variation of the macroscopic fields. Therefore,
as we cannot separate the occurrence of resonances from the occurrence of asso-
ciated macroscopic spatial variations, a consistent complete treatment necessitates
introducing the spatial dispersion.

The conventional description also falls in error when the wavelengths reduce and
become comparable to the characteristic averaging lengths allowing to homogenize

Fig. 7.4 Link between
resonances and spatial
dispersion

http://dx.doi.org/10.1007/978-3-030-84300-7_6
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the medium. In this case also, the cornerstone simplification of the local theory,
(incompressibility at the microstructure scale), is faulty, and taking spatial dispersion
into account will have to be done to arrive at a consistent macroscopic theory capable
to describe, in ensemble-averaged sense, the averaged fields, (“coherent fields” in
multiple-scattering theory language).4

In short, we need a general nonlocal theory, as the local theory is insufficient at
long wavelengths in resonant geometries, and in all geometries when wavelengths
reduce. The generalization will have to be done outside the partly inconsistent frame-
work of conventional two-scale homogenization. In what follows we detail how the
Maxwellian nonlocal description we have introduced in the Chap. 6 in the fluid in
absence of solid, and applied to longitudinal wave propagation, precisely furnishes
the appropriate basis for such a generalization. This was anticipated in Appendix
of Chap.6. Here, we will explicitly show, for the case of compressional motions in
fluid-saturated rigid framed materials, that the general macroscopic nonlocal the-
ory can be put in the suggested Maxwellian nonlocal form. It will lead us to the
formulation of a general Maxwellian description valid whatever microgeometries,
frequencies, and wavelengths. First, in the next section and subsections, we must
develop the concepts of macroscopic averages and establish their properties. While
the theory is most clearly formulated for stationary random materials, in practice,
however, the case of the periodical media is of interest. We will consider the two
cases successively.

7.3 The Operations of Macroscopic Averaging

Remember that for the fluid we were not interested in the detailed behaviour of each
molecule, but in an averagemacroscopic behaviour.Here,wemust introduce a similar
notion: we are not interested by what happens in the fluid at one particular pore-scale
location, we are interested in the overall statistical macroscopic behaviour. To define
it, we can use one of the two different conceptions of an average we have mentioned,
Lorentz or Gibbs. The first is volume average when we are given one sample and
there is scale separation between the outer scale of inhomogeneities in the medium,
and the scale of considered wavelengths. The second is ensemble average when we
are given an ensemble of samples, considered equivalent from a macroscopic point
of view. In this case the wavelengths are not required to respect a scale separation
condition, however, what is described is not what happens at a “macroscopic level”
in a sample, but what happens on average in all samples, under the same conditions
of excitation.

4 It could be thought that when the wavelengths reduce, spatial dispersion is automatically mod-
elled in simple microgeometries by means of the higher-order terms of the two-scale asymptotic
homogenization method. But this expectation is illusory. Partially inconsequent, this method will
not give meaningful higher-order terms.

http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
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Let us start with the case of materials which are in some respect stationary ran-
dom and examine in more details the concept of calculating a Lorentz or Gibbs
macroscopic mean.

7.3.1 The Well-Defined Case of Stationary-Random Media

The fields a(t, x) we want to average concern what happens in the fluid phase; in
the inert, immobile solid phase domain, these fields are extended to be zero. To
automatically ensure it, we introduce the fluid domain indicator function I (x) that
takes the value 1 in the fluid and the value 0 in the solid. It will be an inherent part
of all fields a(t, x) ≡ I (x)a(t, x) we consider.

7.3.1.1 The Definitions of Lorentz’s and Gibbs’ Averages

In Lorentz’s averaging conception we are dealing with one sample; we view its indi-
cator function I as a stationary random function of position. For I , we may think of
some function devoid of a preferred origin in space, that may repeat itself but without
true periodicity and with some inherent randomness. In Gibbs’ averaging concep-
tion, we are given infinitely many such stationary random samples, or realizations
� of the medium, taken from a probability space Ω , the ensemble of which defines
the homogeneous macroscopic medium in question. As an example, we can imagine
that, viewing the Lorentz sample from infinitely many different origins in space,
would produce a suitable Gibbs’ ensemble. The fluid domain indicator function I is
noted, respectively:

Lorentz Gibbs

I0(x) =
{
1 x ∈ V f ,

0 x ∈ Vs,
∀� ∈ Ω, I (x,�) =

{
1 x ∈ V f (�),

0 x ∈ Vs(�),
(7.7)

(we put index 0 in Lorentz’s case to insist that we have only one configuration). We
first discuss Lorentz’s average.

Lorentz’s Average

The Lorentz volume-average 〈a〉(t, x) of a given field a(t, x) such as a fluid veloc-
ity component, the condensation, the pressure, etc., is best defined in Russakoff’s
manner [5] by convolution with a smooth and finite-width test function wLh (x) of
characteristic extent Lh , (an homogenization length, giving the size of a representa-
tive elementary volume or REV), such as e.g. wLh (x) = (πL2

h)
−3/2e−x2/L2

h , centred
at the considered location, (x = 0 in the given function), and normalized to one upon
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Fig. 7.5 Homogenization length for Lorentz’s average

integrating over whole space. The shape of the test function is not essential, and a
natural choice is that of a plateau function as discussed and plotted in Jackson [6].

The average is then defined as the following convolution product:

A(t, x) = 〈a〉(t, x) = (
wLh ∗ a

)
(t, x) =

∫
dx′wLh (x − x′)a(t, x′),

∫
dx′wLh (x − x′) = 1.

(7.8)

Recall that the indicator function I0(x) is present in the field a(t, x). When conve-
nient, (see e.g. the calculation in (7.16)), it can be explicitly noted as an additional
factor I0(x′), in the integral (7.8.1), with no change on the result of the integration.

If we take wL with arbitrary L for the test function, the way the average varies in
function of the size L of the averaging window, is schematized in Fig. 7.5.

The mean 〈a〉(t, x) first presents fluctuations when L is on the order of typical
small-scale distances � over which the fields vary. It then smooths out and reaches
a plateau when L ∼ Lh , with � � Lh � λ, where λ is an estimate of macroscopic
wavelengths. Finally, because of the macroscopic variations, it starts to again vary
when L is further increased to become comparable to λ. The length Lh defines the
suitable “homogenization” length or appropriate size of a REV. As it is assumed
sufficiently large compared to �, so that the average tends to a definite limit, and
sufficiently small compared to typical wavelengths λ, so that the macroscopic varia-
tions of the fields are not polluting the result, the introduction of this homogenization
length Lh supposes a wide scale separation � ≪ λ.

As we use the total volume normalization (7.8.2), the mean of the characteristic
function I is just the porosity φ, (fluid volume per unit total—fluid plus solid—
volume):

〈I0〉 =
∫

dx′wLh (x − x′)I0(x′) = φ. (7.9)
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Because of this normalization, the definition (7.8) of the averaging symbol 〈 〉 inter-
prets as a “total volume” average: porosity times the mean value in the fluid phase.
The mean value in the fluid phase will be denoted by an index f putted on the mean
symbol, so that for example, we will have

〈v〉 = φ〈v〉 f . (7.10)

The mean operation in the fluid phase 〈 〉 f can be defined by a convolution as noted
in (7.8.1), but with the following different normalization of the test function:

∫
dx′wLh (x − x′) = 1/φ, (7.11)

i.e. an extra factor 1/φ is put on the test function, so that as wanted

〈I0〉 f = 1. (7.12)

Gibbs’ Average

Let us now consider the Gibbs-average 〈a〉(t, x) of a given field a(t, x;�) such as a
fluid velocity component, the condensation, the pressure, etc., which is a function of
t, x in each realization � , and is extended to zero in Vs(�). This average is simply
the expectation value a(t, x;�) of the given field a, at time t , position x, over all
realizations � in Ω:

A(t, x) = 〈a〉(t, x) = a(t, x;�). (7.13)

Because the field a(t, x;�) is extended to zero in the solid, this average over real-
izations (7.13) can be seen as a “total volume” average. As an example, looking at
the values of the field I (x;�) at a given position x, and taking the realization � at
random, we have a probability φ to be in the fluid, and thus find the value 1, and a
probability 1 − φ to be in the solid, and thus find the value 0. Therefore

〈I 〉 = I (x;�) = φ. (7.14)

Also note that, to compute the Gibbs expectation values (7.13), only the fields
a(t, x;�) at a single (pointlike) position x in the different realizations � are
involved. When performing the average (7.13), we a priori deal with discontinu-
ous functions as the functions I (x,�) are discontinuous over x, (for example the
functions associated to the condensation or the excess pressure, extended to zero
in the solid, are discontinuous at the pore-wall surfaces; velocity and excess tem-
perature are not discontinuous because they vanish on ∂V(�)). This discontinu-
ous nature of the fields brings unessential mathematical difficulties when willing
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to see how their Gibbs’ averages vary in space. To avoid this, it is convenient to
replace single points by infinitesimal volumes, or more precisely, replace the pos-
sibly discontinuous set of values a(t, x;�) by the set of continuous mean values,∫
dx′wdL(x − x′)a(t, x′;�), performed in a “physically infinitesimal” neighbour-

hood of x, and where I (x′;�) is inherent part of the field a(t, x′;�). We consider
dL as a much smaller length than all the lengths involved in defining geometry
such as the radii of curvatures associated with pore wall surface ∂V , and use the
normalization

∫
dx′wdL(x − x′) = 1, (at dL = 0, wdL will be the delta-function).

Following this purely technical refinement, we redefine more conveniently the Gibbs
expectation value 〈a〉(t, x) (7.13) as:

A(t, x) = 〈a〉(t, x) =
∫

dx′wdL(x − x′)a(t, x′;�). (7.15)

Finally, also willing, with Gibbs’ conception, to dispose of a mean operation 〈 .〉 f

having “fluid volume” instead of “total volume” normalization, we define Gibbs’
fluid volume average such that 〈a〉 f (t, x) is given by (7.15), but with normalization∫
dx′wdL(x − x′) = 1/φ of the test function wdL , (at dL = 0, it gives for the test

function the delta-function × 1/φ).

7.3.1.2 Commutation Relations

We now precise how the above Lorentz’s and Gibbs’ averaging symbols 〈·〉(x), (7.8)
and (7.13) refined in the form (7.15), behave with respect to the spatial derivative
symbol ∂ = ∂/∂x. We show that, in general, for fields nonzero on the pore walls,
the averaging do not commute with the spatial derivative.

Lorentz’s Average

With Lorentz’s average, the spatial derivative symbol refers to the variation of the
central position x of the test function. Previously in electromagnetic theory, because
the fields extended all over space, therewas direct commutation between the Lorentz-
Russakoff average and the spatial derivative symbol, (see the Chap.6, Sect. 11.2,
(79)). Here, because the fields are set to zero in the solid, it is convenient to substitute
them explicitly, in the definition (7.8), in the form of, a(t, x′) = I0(x′)a(t, x′). As
detailed below an extra surface term then generally appears in the commutation
relation between average and derivative symbol:

http://dx.doi.org/10.1007/978-3-030-84300-7_6
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∂A(t, x) = ∂

∂x
〈a〉(t, x) =

∫
dx′ ∂

∂x
wLh (x − x′)I0(x′)a(t, x′),

= −
∫

dx′ ∂

∂x′
[
wLh (x − x′)

]
I0(x′)a(t, x′),

= −
∫

dx′ ∂

∂x′
[
wLh (x − x′)I0(x′)a(t, x′)

]

+
∫

dx′wLh (x − x′)
∂

∂x′
[
I0(x′)

]
a(t, x′)

+
∫

dx′wLh (x − x′)I0(x′)
∂

∂x′ a(t, x′).

(7.16)

The integral of the total derivative term vanishes because the quantity inside brack-
ets contains the test function which quickly tends to zero at infinity. The gradient
∂

[
I0(x′] /∂x′ is a Dirac delta distribution, supported by the pore surface ∂V , and

directed along −n̂(x′), where n̂(x′) is the outward normal to the fluid region at posi-
tion x′ on this pore surface. The integral containing it, expresses as a pore-surface
integral. The last integral is the definition of the Lorentz mean of the derived field,
(which is extended to zero in the solid). Therefore we find:

∂A(t, x) =∂〈a〉(t, x) = 〈∂a〉(t, x) + 〈a∂ I0〉(t, x),

=
∫

dx′wLh (x − x′)∂x′a(t, x′) −
∫

∂V
dx′a(t, x′)n̂(x′)wLh (x − x′).

(7.17)
This relation is sometimes called the “averaging theorem”. Note that, as the material
is assumed macroscopically homogeneous, we have ∂φ = 0, that is

∫

∂V
dx′n̂(x′)wL(x − x′) = 0. (7.18)

This identity (7.18) will be useful later on. It can be obtained either by applying
the averaging theorem (7.17) for a = 1 in the fluid, or else, by directly taking the
derivative of (7.9):

∂

∂x
φ =

∫
dx′ ∂

∂x
wLh (x − x′)I0(x′) = −

∫
dx′ ∂

∂x′
[
wLh (x − x′)

]
I0(x′),

= −
∫

dx′ ∂

∂x′
[
wLh (x − x′)I0(x′)

] +
∫

dx′wLh (x − x′)
∂

∂x′ I0(x
′),

= −
∫

∂V
dx′n̂(x′)wL(x − x′) = 0.
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Gibbs’ Average

With Gibbs’ average (7.13) refined in the form (7.15), the calculation of the spatial
derivative of macroscopic averages is performed in same manner. Starting with

∂A(t, x) = ∂〈a〉(t, x) =
∫

dx′ ∂

∂x
wdL(x − x′)I (x′;�)a(t, x′;�),

(the I -function factor is made apparent for convenience in the calculation), using
∂wdL(x − x′)/∂x = −∂wdL(x − x′)/∂x′, and integrating by parts, we obtain:

∂A(t, x) =∂〈a〉(t, x) = 〈∂a〉(t, x) + 〈a∂ I 〉(t, x),

=
∫

dx′wdL(x − x′)∂a(t, x′;�)

−
∫

∂V(�)

dx′a(t, x′;�)n̂(x′;�)wdL(x − x′).

(7.19)

Discussion

As in Lorentz’s or Gibbs’ conceptions the symbols 〈·〉 and ∂ obey the relations (7.17)
or (7.19), they do not commute except if the surface integral terms vanish. To take
different examples, the gradient of a mean field such as B ≡ 〈b〉 or 〈p〉, is, in general,
not equal to the mean of the gradient, i.e.

∂B ≡ ∂〈b〉 = 〈∂b〉, or ∂〈p〉 = 〈∂p〉. (7.20)

Because, however, the velocity vanishes on the solid-fluid interface, (boundary con-
dition (7.5)), the divergence of the mean velocity is always automatically the same
as the mean of the velocity divergence:

∂ · 〈v〉 = 〈∂ · v〉. (7.21)

This remains true for an inviscid fluid: the normal component of the velocity van-
ishes on the fluid-solid interface as long as the solid is impenetrable, which ensures
cancellation of the surface term.

In addition, there is a generic class of fields a, for which, as the surface terms hap-
pen to vanish, (while a is nonzero on the interface), the average operation commute
with the derivative operation:

〈∂a〉 = ∂〈a〉. (7.22)

This class is that of fields that would vary, (except for their systematic extension
to zero in the solid), like “macroscopic fields” or “external fields”. For example,
the source-term field f in (7.2), or its associated potential P , or any field a that is
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the macroscopic mean, a ≡ 〈b〉, of some response field b in the pore space, (and is
extended to zero in the solid), are this same type of fields, verifying (7.22). Let us
show it, successively using Lorentz’s or Gibbs’ averaging conception.

WithLorentz’s average, scale separation needs to be assumed. Therefore, the fields
which, (apart from their extension to zero in the solid), vary only at the macroscopic
scale, present almost linear variations in the fluid within an averaging volume. In
first approximation, they write, (in the fluid): a(t, x′) = a0 + a1n̂0 · x′, with n̂0 the
unit direction of the gradient, and a0,1 two constants. As the medium is stationary
random, it can then be shown that such linear variations automatically cancel the
surface term:

∫

∂V
dx′a(t, x′)n̂(x′)wLh (x − x′) =

=
∫

∂V
dx′ [a0 + a1n̂0 · x′] n̂(x′)wLh (x − x′) = 0,

and thus, (7.22) is satisfied. Indeed by (7.18) the first integral identically vanishes
and it remains to show the additional identity

∫

∂V
dx′ [n̂0 · x′] n̂(x′)wLh (x − x′) = 0. (7.23)

By symmetry reasons, the mean of a purely linear variation should be a linear vari-
ation, modified by the porosity factor to account for the total volume normalization:

〈a0 + a1n̂0 · x′〉(x) = φ
(
a0 + a1n̂0 · x)

.

Taking the spatial derivative this gives

∂〈n̂0 · x′〉(x) = φn̂0.

But we also evidently have, by averaging the identity ∂x′(n0 · x′) = n0,

〈∂x′(n0 · x′)〉(x) = 〈n0〉 = φn0.

Therefore, the averaging theorem (7.17) applied to the field a = n0 · x, yields the
identity (7.23). This completes the proof and justifies (7.22) in Lorentz’s averag-
ing conception, for an arbitrary “external” field a, i.e. a field having only “long-
wavelength” variations, (except for its extension to zero in solid).

With Gibbs’ average, saying that the field a varies like “macroscopic” fields,
means that, a(t, x;�) ≡ I (x;�)a(t, x). In all realizations this field in the fluid
is given by a single a(t, x), and the latter writes as a superposition of expo-
nentials eik·x with associated Fourier coefficients independent of � . The Gibbs
surface terms

∫
∂V(�)

dx′a(t, x′;�)n̂(x′;�)wdL(x − x′) will have contributions
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∫
∂V(�)

dx′eik·x′ n̂(x′;�)wdL(x − x′) in front of the Fourier coefficients and these
vanish whatever the value of k. To see this, we note that, realization after realiza-
tion, the exponential variations eik·x′

automatically become slow variations in the
limit dL → 0. They thus factor out as the central value eik·x in front of an integral∫
∂V(�)

dx′n̂(x′;�)wdL(x − x′)which is identically zero. Indeed, at any given fixed
value dL , it cancels out when making the ensemble averaging, because, as small as
can be dL , the mean of the integral over realizations becomes, (when the number
of realizations increases indefinitely), representative of the integral performed in the
full medium, (that is, made in one sample with a value of L equal to homogenization
length Lh); but this integral is the null integral (7.18), hence the cancellation ofGibbs’
surface terms. It justifies (7.22) in Gibbs’ conception, for an arbitrary “macroscopic”
or “external” field a.

Now that the notions of Lorentz’s andGibbs’ averages and some of their properties
have been precised, let us return to the problem (7.1)–(7.6), alternatively stated,
solved, and averaged, using Lorentz’s and Gibbs’ conceptions.

7.3.1.3 Ergodic Equivalences

Wefirst argue that, at longwavelengths, the two conceptions can be used interchange-
ably, manifesting a property of ergodicity.

By the principle of superposition it suffices to consider and solve the problem
of the response of the fluid to a longitudinal force, f = −∂P , given in the form of
a single plane wave variation, P = P̃e−iωt+ik·x , with arbitrary ω, and k, respecting
long-wavelength condition, �(ki Lh),�(ki Lh) � 1, (i = 1, 2, 3), a prerequisite to
the definition of Lorentz’s average.

In the Lorentz formulation, we are given a single sample, stationary random. We
call it the reference sample�0 and denote its indicator function I (x;�0) = I0(x); it
determines thefluid domainV f , the solid-fluid interface ∂V , and the response solution
v(t, x;�0) = v(ω, k, x;�0)e−iωt+ik·x , b(t, x;�0) = b(ω, k, x;�0)e−iωt+ik·x ,
etc., of the motion equations (7.1)–(7.6), taken with the above source term. An
important point is that the amplitudes in front of the exponentials, proportional to
the source amplitude constant P̃ , are uniquely determined, bounded functions of x.
These bounded functions are also stationary random functions.

In the Gibbs formulation, we are given an ensemble of stationary random sam-
ples � ∈ Ω , defined by their indicator functions I (x;�). These determine a col-
lection of fluid domains V f (�), solid-fluid interfaces ∂V(�), and response solu-
tions v(t, x;�) = v(ω, k, x;�)e−iωt+ik·x , b(t, x;�) = b(ω, k, x;�)e−iωt+ik·x ,
etc., of the motion equations (7.1)–(7.6), with source term as above. The amplitudes
in front of the exponentials, proportional to P̃ , are unique stationary random and
bounded functions of x.

In the macroscopic theory we are concerned with macroscopic averages of the
fields or product of fields, such as 〈v〉, 〈b〉 or 〈pv〉. As an example of the general
principle we consider the mean 〈v〉.
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First consider Lorentz’s formulation. We have

V (t, x) = 〈v〉(t, x) =
∫

dx′wLh (x − x′)v(t, x′;�0),

=
∫

dx′wLh (x − x′)v(ω, k, x′;�0)e
−iωt+ik·x′

.

Now, as a scale separation (long-wavelength limit) is imposed, the exponential eik·x′
,

which varies slowly in the averaging x′ region defined by the test function wLh (x −
x′), can be nearly replaced by its central value eik·x and extracted from the integral.
Hence we will have, nearly

V (t, x) =e−iωt+ik·x
∫

dx′wLh (x − x′)v(ω, k, x′;�0),

=e−iωt+ik·x〈v〉Lor ,

where the index Lor on the average 〈v〉 indicates that it is Lorentz’s average.
Next consider Gibbs’ formulation. The mean 〈v〉 writes

V (t, x) = 〈v〉(t, x) =
∫

dx′wdL(x − x′)v(t, x′;�),

=
∫

dx′wdL(x − x′)v(ω, k, x′;�)e−iωt+ik·x′
.

In the limit dL → 0, the exponential automatically factors out as the central value
e−iωt+ik·x whatever k (long or short wavelengths) and we find, this time without
approximation

V (t, x) = e−iωt+ik·x
∫

dx′wdL(x − x′)v(ω, k, x′;�),

= e−iωt+ik·x〈v〉Gib,

where the index Gib on the average 〈v〉 reminds that it is Gibbs’ average.
Now, invoking the stationary random character of the geometries, it should be

the same thing to perform the ensemble-average 〈v〉Gib or to perform the volume-
average 〈v〉Lor , because, as small as can be dL , the mean of the integral over realiza-
tions becomes representative of the full-medium Lorentz integral, when the number
of realizations increases indefinitely. It means that, at long-wavelengths, the Gibbs
ensemble average will be equivalent to the Lorentz average in one realization; the
two will be used interchangeably.

We can go a step further. While Lorentz’s method of averaging loses its physi-
cal meaning when the wavelengths reduce sufficiently, the Gibbs method remains
feasible. As mentioned, in this case the macroscopic theory will not describe what
happens in one sample, but what happens on average in the ensemble of realizations.
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Fig. 7.6 Periodic sample �0

Now, whatever k is long- or short-wavelengths, for the fields created by the potential
P = P̃e−iωt+ik·x , we always have the right to write Gibbs’ average as

V (t, x) = 〈v〉(t, x) = e−iωt+ik·x〈v〉Gib = e−iωt+ik·x〈v〉Lor . (7.24)

because the ergodicity property 〈v〉Gib = 〈v〉Lor seen above is not linked to the size
of wavelengths but to the stationary random nature of the geometry. Therefore, in
general,whenmakingGibbs’ average,we can always choose to useLorentz’s average
to perform the average of the tilde part of the fields.5

7.3.2 The Ambiguous Case of Periodic Media

We now consider the case of periodic materials as well. Obviously, the idea of a
periodicity clashes with the preceding idea of a macroscopic homogeneity obtained
throughunderlyinguniform randomness. In this context, similar averagingoperations
and properties as mentioned in the previous section, can now only be obtained cum
grano salis. Because of the periodicity, ambiguities will appear in the definitions,
which will complicate the presentation (Fig. 7.6).6

5 By “tilde part”, we mean, to take the example of the velocity field which writes v(t, x; �) =
v(ω, k, x; �)e−iωt+ik·x , the amplitude in the right-hand side, in front of the exponential; usually
it is denoted with a tilde which we suppress here for the simplicity of the notation. In the equality
〈v〉Gib = 〈v〉Lor , the v are the tilde parts. At short wavelengths 〈v〉Gib(t, x) and 〈v〉Lor (t, x), with
v the original space velocities, are not the same; the last average 〈v〉Lor (t, x) in general will have
no precise utility or significance.
6 Ultimately, however, the theory will have to deal with media having finite dimensions. In this case,
true periodicity will be lost, which will hopefully help mitigate the mentioned ambiguities.
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7.3.2.1 The Definitions of Lorentz’s and Gibbs’ Averages

In Lorentz’s averaging conception, we are, (as we make abstraction of finite dimen-
sions), dealing with one indefinite sample �0 of the medium, which is now assumed
periodic. Thus its indicator function I (x,�0) = I0(x) verifies:

I0

(
x +

3∑
i=1

mi ai

)
= I0(x), ∀x, ∀m1,2,3 ∈ Z,

with a1,2,3, one of the possible equivalent choices of three primitive translation vec-
tors, leaving unchanged the sample. Also willing to introduce a Gibbs’ averaging
conception,wewould like to have infinitelymany periodic samples, or realizations�

of the “same macroscopic medium”, taken from a probability spaceΩ , the ensemble
of which defines the homogeneous macroscopic medium in question. A natural idea
that comes to mind is that at the macroscopic level we will not pay attention to the
underlying positioning in space of the crystal, so that the “different realizations �

of the same macroscopic medium” can be defined here as produced by the infinitely
many random translations of the original realization �0. To characterize them we
introduce a random translation vector X

X =
3∑

i=1

ξi ai ,

with each of the ξi , a random variable uniformly distributed in
[− 1

2 ,
1
2

]
. Accordingly,

the fluid domain periodic indicator function will be:

Lorentz Gibbs (7.25)

I0(x) =
{
1 x ∈ V f

0 x ∈ Vs
∀� ∈ Ω, I (x,�) =

{
1 x ∈ V f (�)

0 x ∈ Vs(�)
(7.26)

I0(x) = I0(x +
3∑

i=1

mi ai ) I (x,�) = I0(x − X), X =
3∑

i=1

ξi ai (7.27)

m1,2,3 ∈ Z ξ1,2,3 ∈
[
−1

2
,
1

2

]
(7.28)

Lorentz’s Average

Because the underlying geometry is periodic, we can define it by giving I0(x) in
restricted regions, and next, complete the rest by duplication: we can give I0(x) in
the irreducible region



290 D. Lafarge

Δ111 =
{
x | x =

3∑
i=1

ξi ai , ξ1,2,3 ∈
[
−1

2
,
1

2

]}
, (7.29)

and complete the rest by requiring the periodicity, I0(x) = I0(x + ∑3
i=1 mi ai ),

m1,2,3 ∈ Z.We can also define it by giving I0(x) in themore extended non-irreducible
region

ΔM1M2M3 =
{
x | x =

3∑
i=1

ξi Mi ai , ξi ∈
[
−1

2
,
1

2

]}
, M1,2,3 ∈ N=0, (7.30)

and complete the rest by requiring the lower periodicity, I0(x) = I0(x + ∑3
i=1

miMi ai ), m1,2,3 ∈ Z. This is a first instance of the ambiguities that will appear
below.

Proceeding as before, it is convenient to perform the average of a given field,
a(t, x) ≡ I0(x)a(t, x), by convolution with a finite-width test function. To play the
role of the test function, the periodic nature of the geometry suggests taking a slot
functionwM1M2M3(x) centred at x = 0, equal to the inverse cell volume1/VM1M2M3 =
1/M1a1 · (M2a2 × M3a3), if x ∈ ΔM1M2M3 , and equal to zero, if x /∈ ΔM1M2M3 , as
shown in Fig. 7.7.

With this test function, Lorentz’s average is thus defined as:

A(t, x) = 〈a〉(t, x) =
∫

dx′wM1M2M3(x − x′)a(t, x′),
∫

dx′wM1M2M3(x − x′) = 1.
(7.31)

where as before we can, if we wish, make apparent the function I0(x′) in the inte-
grand (7.31.1). We dispense from noting the choice of M1M2M3 on A and 〈.〉 to
lighten the notation.

We later clarify the reason for multivocity, (i.e. why we might be interested
in taking M1M2M3 = 111). We note that, as we use the total volume normaliza-
tion (7.31.2), the mean of the characteristic function I is the porosity:

Fig. 7.7 Test function
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〈I0〉 =
∫

dx′wM1M2M3(x − x′)I0(x′) = φ. (7.32)

Because of this normalization, the averaging symbol 〈·〉 in (7.31) interprets as one
(“M1M2M3”) “total volume” average, i.e., porosity times the (“M1M2M3”) mean
value in the fluid phase: 〈·〉 = φ〈·〉 f .

Gibbs’ Average

Just as the definition of the Lorentz mean given above is multiple, so is the Gibbs
mean that we are defining now. At first, not considering multivocity, we would define
Gibbs’ average as:

A(t, x) = 〈a〉(t, x) = a(t, x;�),

where we extend the field to zero in the solid and the overline is average over the
random realizations � . These are defined by applying the random translations X =∑3

i=1 ξi ai to the reference configuration �0, so that I (x;�) = I (x − X;�0) =
I0(x − X). Introducingmultivocity, however,we consider insteadwriting the random
translations in the form of, XM1M2M3 = ∑3

i=1 ξi Mi ai , with some choice for integers
Mi . It means that the realization � will have for indicator function, I (x,�) =
I0(x − XM1M2M3). To remember this and make appear the choice of integers Mi in
the definition, (we again dispense from noting it on A and 〈.〉), we denote finally the
corresponding Gibbs average:

A(t, x) = 〈a〉(t, x) = a(t, x;�)M1M2M3
. (7.33)

As before, it is convenient to rewrite the definition in a form that allows easy
expression of the spatial derivative of themean. To effect this refinementwe introduce
Δ, a region centred at x = 0:

Δ =
{
x | x =

3∑
i=1

ξiεai , ξi ∈
[
−1

2
,
1

2

]}
. (7.34)

and that is considered in the limit ε → 0 where it is vanishingly small.
We introduce also the corresponding test function wε , which equals the inverse

volume 1/VΔ = 1/εa1 · (εa2 × εa3) of this region if x ∈ Δ, and is zero if x /∈ Δ.
Then using the form of (7.15) we have the following definition of Gibbs’ average:

A(t, x) = 〈a〉(t, x) =
∫

dx′wε(x − x′)a(t, x′;�)
M1M2M3

. (7.35)

It has total volume normalization because of
∫
dx′wε(x − x′) = 1.
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In case we need an average 〈a〉 f with fluid volume normalization, we just multiply
by 1/φ the test functions, (wM1M2M3 for Lorentz, wε for Gibbs), so that, again, 〈.〉 =
φ〈.〉 f . We now clarify the reason of the multivocity.

Reason of the Multivocity

The averaging operations are destined to be used to perform averages of fields, (or
product of fields), solutions to one problem of type (7.1)–(7.6) stated for one periodic
sample and at longwavelengths (Lorentz), or solutions to an ensemble of problems of
type (7.1)–(7.6) for the collection of translated samples and at arbitrary wavelengths
(Gibbs). For the present discussion we will assume that an impressed source term,
f = −∂(P̃e−iωt+ik·x), is present.7 In response to the source term, fields varying
like v(t, x) = v(ω, k, x)e−iωt+ik·x , b(t, x) = b(ω, k, x)e−iωt+ik·x , etc., will appear
in the fluid, (omitting the realization argument �0 or � ). In the stationary random
case, the response-amplitudes in front of the exponentials were uniquely fixed by
the condition to be bounded fields. Now in the periodic case, this condition becomes
insufficient to uniquely fix them: we can have different choices for the periodicities.
Along the direction of vector a1 for example, we can require that the solutions
amplitudes verify v(ω, k, x + a1) = v(ω, k, x), etc. We can instead require that
they do not verify this, but verify v(ω, k, x + 2a1) = v(ω, k, x), etc., and so on, with
increasing value of periodicity. Thus, to unambiguously fix the response solutions,
we have to precise what are the minimal periodicities of the (tilde-)amplitudes we
are selecting among the different possible ones, i.e. specify the minimal integers,
M1M2M3 ∈ (N=0)

3, that will be such that, ∀x, v(ω, k, x + Mi ai ) = v(ω, k, x), for
i = 1, 2, 3, and as soon as Ni < Mi , ∃x, v(ω, k, x + Ni ai ) = v(ω, k, x). Evidently,
to perform macroscopic averages on a solution determined by such a choice, the
corresponding “M1M2M3” Lorentz or Gibbs average will have to be employed. This
is the reason of the previous multivoked definitions. It is intrinsically connected with
the unbounded nature of the periodic geometries considered. Havingmade this point,
the discussion of commutation relations and ergodic equivalences, follows without
difficulty.

7.3.2.2 Commutation Relations

Using the definitions of Lorentz’s and Gibbs’ averages, (7.31) and (7.33)–(7.35), it
is easy to rewrite what has been stated in the stationary random case.

7 In its absence, the same problematics also arises for the specification of the possible normal
waves, with however additional technicalities as k then interprets as a Bloch wave-vector, and
is thus determined only up to the addition of a reciprocal lattice vector, K = ∑3

i=1 mi bi , (with
bi · a j = 2πδi j ), which induces a corresponding ambiguity in the definition of (tilde-)amplitudes.
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Lorentz’s Average

Rewriting (7.17) we have the following commutation relation or averaging theorem:

∂A(t, x) = ∂〈a〉(t, x) = 〈∂a〉(t, x) + 〈a∂ I0〉(t, x),

=
∫

dx′wM1M2M3(x − x′)∂a(t, x′) −
∫

∂V
dx′a(t, x′)n̂(x′)wM1M2M3(x − x′).

(7.36)
The relation (7.18), that expressed macroscopic homogeneity, can be written here

∫

∂V
dx′n̂(x′)wM1M2M3(x − x′) = 0. (7.37)

Gibbs’ Average

For Gibbs’ average the previous commutation relation (7.19) now writes

∂A(t, x) =∂〈a〉(t, x) = 〈∂a〉(t, x) + 〈a∂ I 〉(t, x),

=
∫

dx′wε(x − x′)∂a(t, x′;�)
M1M2M3

−
∫

∂V(�)

dx′a(t, x′;�)n̂(x′;�)wε(x − x′)
M1M2M3

.

(7.38)

Discussion

The discussion to be done here is the same as before, mutatis mutandis. Therefore
we will not repeat it.

7.3.2.3 Ergodic Equivalences

Herewecan explicitly check the ergodic equivalences, ensuring that theGibbs ensem-
ble average can always be done in terms of a Lorentz volume average.

The periodic Lorentz medium is defined by the indicator periodic function
I0(x) of reference configuration �0, and, a choice of the integers M1, M2, M3.
When subjected to the action of the external force f = −∂P specified by a
potential, P = P̃e−iωt+ik·x , the response fields, v = v(ω, k, x;�0)e−iωt+ik·x , b =
b(ω, k, x;�0)e−iωt+ik·x , etc., are set, uniquely, by the condition that the tilde ampli-
tudes8 are proportional to the source tilde amplitude P̃ , and are periodic functions,

8 Meaning the amplitudes in front of the exponentials; as always we omit the tilde symbol to lighten
the writing.
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f (x + Mi ai ) = f (x), ∀x, i = 1, 2, 3, with the minimal periodicities specified by
the integers M1, M2, M3.

An associatedGibbsmediumwill be the ensemble of randomly translated samples
� ∈ Ω , each defined by the indicator periodic function

I0(x − XM1M2M3), with XM1M2M3 =
3∑

i=1

ξi Mi ai , and ξi ∈ [−1/2, 1/2] .

As fixed by M1M2M3, the random translations are over several periods because they
will serve to average fields having tilde-amplitudes varying with corresponding peri-
odicities. Indeed, when subjected to the action of the same external force as above,
the response fields we consider, v = v(ω, k, x;�)e−iωt+ik·x , b = b(ω, k, x;�)

e−iωt+ik·x , etc., will be set as before, uniquely, by the condition that the tilde ampli-
tudes are proportional to source tilde amplitude P̃ , and are periodic functions,
f (x + Mi ai ) = f (x), having the minimal periodicities specified by M1, M2, M3.
Consider then Gibbs’ average

V (t, x) = 〈v〉(t, x) = e−iωt+ik·xv(ω, k, x;�)M1M2M3
. (7.39)

In evaluating it, there is the following relation that can be used between v(ω, k, x;�)

and v(ω, k, x;�0):

v(ω, k, x;�) = v(ω, k, x − XM1M2M3;�0). (7.40)

To see it, let us apply the translation XM1M2M3 to the reference configuration
�0, then obtaining the translated configuration � whose indicator function is
I (x,�) = I0(x − XM1M2M3). In translated coordinate axes y related to the x by
x = y + XM1M2M3 , this translated configuration � is the same as �0 in the axes
x, that is, I ( y + XM1M2M3;�) = I0( y;�0). The response fields would then be
the same, that is, v(t, x;�) = v(ω, k, y;�0)e−iωt+ik· y, if the source potential
P̃e−iωt+ik·x had also been “displaced”, so as to write P̃e−iωt+ik· y and have ampli-
tude P̃ at y = 0, (new position, in the present Gibbs realization � , of the mate-
rial that was in x = 0 in the reference configuration �0). But the source term,
independent of realization, is not displaced. It possesses now a multiplicative fac-
tor eik·XM1M2M3 , giving it the value P̃eik·XM1M2M3 at the new origin y = 0. Hence
correcting for this factor, we conclude that in the translated configuration, with
source unchanged, we have v(t, x;�) = v(ω, k, y;�0)e−iωt+ik· yeik·XM1M2M3 , that
is, v(t, x;�) = v(ω, k, x − XM1M2M3;�0)e−iωt+ik·x , which is the indicated rela-
tion (7.40).

Inserting (7.40) in (7.39) we then have

V (t, x) = 〈v〉(t, x) = e−iωt+ik·xv(ω, k, x − X;�0)M1M2M3
. (7.41)

The overline, average over realizations, amounts here in distributing the random
displacement XM1M2M3 uniformly in a “unit cell” region ΔM1M2M3 given by
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ΔM1M2M3 =
{
x | x =

3∑
i=1

ξi Mi ai , ξi ∈
[
−1

2
,
1

2

]}
. (7.42)

As the field is extended to zero in the solid, we have

v(ω, k, x − XM1M2M3;�0) = 1

VΔM1M2M3

∫

ΔM1M2M3

dX × · · ·

· · · v(ω, k, x − X;�0). (7.43)

By inspection, we can see that this is the same as the Lorentz mean

〈v(ω, k, x;�0)〉Lor =
∫

dx′wM1M2M3(x − x′)v(ω, k, x′;�0), (7.44)

with wM1M2M3(x) the slot function represented in Fig. 7.7. Finally, it shows us that
the Gibbs mean, is, whatever the chosen k:

V (t, x) =〈v〉(t, x) = e−iωt+ik·xv(ω, k, x;�),

=e−iωt+ik·xv(ω, k, x − X;�0) = e−iωt+ik·x〈v(ω, k, x;�0)〉Lor ,

where we suppressed mention of the retained choice M1M2M3. Therefore, apart
from an undesirable multiplicity, we have demonstrated in the periodic case, for our
macroscopic averaging operations, the same properties as we asserted before in the
stationary random case. Whatever the wavelengths, the Gibbs mean can always be
performed in terms of Lorentz mean directly made on the tilde amplitudes. At long
wavelengths, both averages are interchangeable.

7.4 Macroscopic Equations and Definition of the Acoustic
H-Field from Electromagnetic Analogy

We now address the question of formulating the general macroscopic equations
describing the compressional-dilatational wave propagation in a macroscopically
homogeneous rigid-framed porous medium saturated with a viscothermal fluid.

InLorentz’s conceptionweare givenone sample and the theoryweare to formulate
is intended to describe long-wavelength sound propagation in this sample. In the
Gibbs’ conception we are given an ensemble of samples and the theory is intended
to describe ensemble-averaged fields, whatever the frequencies and wavelengths.

In what follows, to simplify the discussion, we limit ourselves to considering
wave propagation or excitation along a single axis x , which is also assumed to be
a macroscopic symmetry axis. Precisely, because the external actions f in (7.2) are
directed along x , a symmetry axis, we can assume that :
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f = −∂P, P =
∫

dω

2π

dk

2π
P̃(ω, k)e−iωt+ikx , 〈v〉 ‖ x̂, 〈pv〉 ‖ x̂. (7.45)

The most general fields we consider here will have a “forced” part coming in
response to the impressed excitation f , and a “free” part that superposes, (solution
to the homogeneous equations (7.1)–(7.6)with f suppressed), and that can be viewed
as the result of the presence of an “external” incident field, coming from without, in
the directions ±x .

We recall first, the results we have obtained in Chap.6. We recall in Sect. (7.4.1),
the pattern of nonlocal equations in the homogeneous viscothermal fluid itself, with-
out solid, and written for compressional motions along axis x to comply with the
above-mentioned restrictions;with no ambiguity,we do not indicate the indice x on v,
d, and f . We recall next, in Sect. (7.4.2), the pattern of the equations in macroscopic
nonlocal electromagnetics, written for propagation/excitation along a principal axis
x of a general homogeneous structured material. Finally, in Sect. (7.4.3), we pass
to the pattern of the macroscopic equations we would like to write, by analogy, for
the propagation/excitation of compressional waves along macroscopic axis x in our
homogeneous, structured fluid/solid medium.

7.4.1 Unbounded Fluid (Longitudinal Motions)

In the unbounded fluid, the corresponding pattern of nonlocal acoustic equations
found in Chap.6, was as follows:

Field equations

∂b

∂t
+ ∂xv = 0,

∂d

∂t
= ∂xh + [ f ] , (7.46)

where f = −∂xP, P =
∫

dω

2π

dk

2π
P̃(ω, k)e−iωt+ikx . (7.47)

Constitutive relations

d(t, x) = ρ̂v(t, x) =
∫

ρ(t − t ′, x − x ′)v(t ′, x ′)dt ′dx ′, (7.48)

h(t, x) = −χ̂−1b(t, x) = −
∫

χ−1(t − t ′, x − x ′)b(t ′, x ′)dt ′dx ′. (7.49)

Definition of the h-field
h = −p. (7.50)

The last “acoustic Heaviside-Poynting” identification is obtained as a result of
setting, at the same time

http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
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s = −vh, (7.51)

s = vp. (7.52)

The first equation, where s is the “energy current density transported in acoustic
form”, is to be viewed as satisfied by principle, by definition of what will be the
h-field. The second, which specifies s, is obtained by using the irreversible thermo-
dynamics of the Navier–Stokes–Fourier model.

7.4.2 Macroscopic Electromagnetics

In the structured homogeneous electromagnetic medium, the corresponding pattern
of nonlocal electromagnetic equations found in Chap.6, was as follows:

Field equations

∂B
∂t

+ ∂ × E = 0,
∂D
∂t

= ∂ × H − [J] , (7.53)

where E = 〈e〉, B = 〈b〉, (7.54)

J = J x̂, J =
∫

dω

2π

dk

2π
J̃ (ω, k)e−iωt+ikx . (7.55)

Constitutive relations

D(t, x) = ε̂E(t, x) =
∫

ε(t − t ′, x − x ′)E(t ′, x ′)dt ′dx ′, (7.56)

H(t, x) = μ̂−1B(t, x) =
∫

μ−1(t − t ′, x − x ′)B(t ′, x ′)dt ′dx ′. (7.57)

Definition of the H-field

H = thermodynamic field P . (7.58)

The last would result from setting, at the same time:

S = E × H, (7.59)

S = E × P . (7.60)

The first equation, where S is the “energy current density transported in electromag-
netic form”, is to be viewed as satisfied by principle, by definition of what will be the
H-field. To be written, the second, which specifies S, would require an irreversible
thermodynamic description of the behaviour of charges and currents in material

http://dx.doi.org/10.1007/978-3-030-84300-7_6
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media. Currently, we cannot properly define the field H , because, we do not have
this irreversible thermodynamic description.

7.4.3 Macroscopic Acoustics (Fluid-Saturated Rigid-Framed
Porous Medium)

Byanalogy and extension,wenowwrite the pattern of required equations for the prop-
agation of macroscopic compressional waves in our structured fluid/solid medium,
along a macroscopic symmetry axis. Since it is only in the fluid part that the move-
ment is not null, new technicalities intervene in the presentation where one can for
example choose to make φ factors appear or not. We will therefore start with some
preliminary points regarding our definitions.

There is assumed to be an external longitudinal bulk force, f (x) = f (x)x̂, act-
ing in the fluid, such that, f (x) = −∂xP(x), f (x) = −∂xP(x), P(x) = ∫

dω
2π

dk
2π

P̃(ω, k)e−iωt+ikx , if x is in the fluid, and f (x) = 0, P(x) = 0, if x is in the solid.
We note that the fields f (x), f (x) and P(x), have the nature of the “macro-
scopic impressed fields” or “external fields” discussed in Sect. 7.3.1: they vary inde-
pendently of the geometry except for their conventional extension to zero in the
solid. Therefore in particular we will have, using the commutation relation (7.22),
〈 f 〉 = 〈−∂xP〉 = −∂x 〈P〉. Now, for later convenience, we introduce different nota-
tions for the macroscopic means 〈 f 〉 and 〈P〉. For the first, we chose to denote it
〈 f 〉 ≡ φF , then adopting for F = 〈 f 〉 f a fluid-volume-average normalization. For
〈P〉 we chose to write, by language abuse

〈P〉 = φP, (7.61)

denoting with same letterP the field, macroscopic proper, given byP(x) = P(x) =∫
dω
2π

dk
2π P̃(ω, k)e−iωt+ikx , (with same coefficients P̃ as above), whatever the values

x, x , (including x in the solid). In fact, this language abuse is made possible by
the “external field” nature of the P field. Owing to this nature of the P field, this
interpretation of the letter P in the right side of (7.61) is evident to see with Gibbs’
averaging conception. The same writing (7.61) can also easily be obtained with
Lorentz’s averaging, with reasonings of the type previously seen in Sect. 7.3.1.2 to
justify the cancellation (7.23). We do not use it for 〈 f 〉 = φF , (that could in same
manner be denoted 〈 f 〉 = φ f ), just to have a capital letter for the external force in
our macroscpic equations. In this way we have the following notation, whose form
is simple:

F ≡ 〈 f 〉
φ

= 〈−∂xP〉
φ

= −∂x 〈P〉
φ

= −∂xP. (7.62)

With these preliminaries made, the juxtaposition of the two sets of equations,
acoustic (7.46)–(7.51) in the unbounded fluid, and electromagnetic (7.53)–(7.60) in
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the material, suggests that for compressional macroscopic motions along symmetry
axis x in the fluid-saturated porous medium, we should have macroscopic nonlocal
equations taking the following form:

Field equations

∂B

∂t
+ ∂x V =0,

∂D

∂t
= ∂x H + [F] , (7.63)

where V =〈v〉, B = 〈b〉, (7.64)

F = − ∂xP, P =
∫

dω

2π

dk

2π
P̃(ω, k)e−iωt+ikx . (7.65)

Constitutive relations

D(t, x) = ρ̂V (t, x) =
∫

ρ(t − t ′, x − x ′)V (t ′, x ′)dt ′dx ′, (7.66)

H(t, x) = −χ̂−1B(t, x) = −
∫

χ−1(t − t ′, x − x ′)B(t ′, x ′)dt ′dx ′. (7.67)

Definition of the H -field
− H〈v〉 = 〈pv〉. (7.68)

The last is obtained as a result of setting, at the same time, for the “macroscopic
acoustic part of the energy current density”:

S = − 〈v〉H, (7.69)

S =〈s〉 = 〈vp〉. (7.70)

Equation (7.70) is an interpretation, made possible by the existence of thermo-
dynamic concepts, of what is the macroscopic acoustic part of the energy current
density S = S x̂: it is the mean of pore-scale acoustic part of the energy current den-
sity, S = 〈s〉, and this gives a usable definition, because we have a thermodynamic
background to identify s: s = pv, where p is the thermodynamic pressure. Equation
(7.69), written as an “acoustic Heaviside-Poynting” relation that must be satisfied by
definition of what will be the acoustic H -field, then gives the identification (7.68)
which is a usable definition of this acoustic H -field. It is in fact nothing but the
customary definition of lumped acoustic pressure discussed in Pierce [7], Sect. 7.2
Lumped-Parameters Models. In Sect. 7.7, after entering in the detail of the micro-
macro passage, we will see how the above definition (7.68) of macroscopic H -field,
is a powerful statement capable to fix the macroscopic properties of the medium,
i.e. the operators ρ̂ and χ̂−1. Before this, however, we want to examine what other
definitions we could make, if we were to proceed like in conventional electromag-
netics, or if we were to use, as is done in local theory, (see Appendix), a macroscopic
pressure defined by direct volume averaging.
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7.5 Macroscopic Equations: Other Points of View

First recall that the customary point of view in electromagnetics of spatially dispersive
media, found e.g. in Landau and Lifshitz [8], Agranovich and Ginzburg [9], Melrose
and McPhedran [10], and which we view as a stopgap measure, consists in setting
M = 0, in the presence of spatial dispersion, i.e. write by definition:

H = B
μ0

, (7.71)

and put all effects in an effective electric susceptibility ε̂. It leads to write the nonlocal
equations in a form seen in Chap.6 and recalled in next subsection.

7.5.1 Macroscopic Electromagnetics—Customary Point of
View

Following the customary point of view, the pattern of nonlocal electromagnetic equa-
tions is set as follows:

Field equations

∂B
∂t

+ ∂ × E =0,
∂D
∂t

= 1

μ0
∂ × B − [J] , (7.72)

where E =〈e〉, B = 〈b〉, (7.73)

J =J x̂, J =
∫

dω

2π

dk

2π
J̃ (ω, k)e−iωt+ikx . (7.74)

Constitutive relation

D(t, x) = ε̂E(t, x) =
∫

ε(t − t ′, x − x ′)E(t ′, x ′)dt ′dx ′. (7.75)

In a similar manner, it would perfectly be possible here, to formulate the acoustic
nonlocal equations by introducing a conventional H -field, different from that of
(7.68). Let us take two examples.

http://dx.doi.org/10.1007/978-3-030-84300-7_6
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7.5.2 Acoustics Translation of the Customary Point of View
in Electromagnetics

The formulation that would be the exact counterpart of the above customary electro-
magnetic point of view, would consist in setting M = 0, i.e. write by definition, (the
occurrence of porosity factor here, is as in (7.62), see also Sect. 7.6):

H = − B

χ0φ
. (7.76)

This would lead to write the nonlocal acoustic equations in the form:

Field equations

∂B

∂t
+ ∂x V = 0,

∂D

∂t
= − 1

χ0φ
∂x B + [F] , (7.77)

where V = 〈v〉, B = 〈b〉, (7.78)

F = −∂xP, P =
∫

dω

2π

dk

2π
P̃(ω, k)e−iωt+ikx . (7.79)

Constitutive relation

D(t, x) = ρ̂V (t, x) =
∫

ρ(t − t ′, x − x ′)V (t ′, x ′)dt ′dx ′. (7.80)

This point of view sets the bulk modulus operator χ̂−1 to a constant 1/φχ0, deter-
mined by the adiabatic value. It is clearly an artificial replacement.

7.5.3 Acoustics Formulation in Terms of Volume-Averaged
Pressure

Still another definition, inspired this time by what is done within the local homog-
enization, would be to use in the macroscopic equations the ordinary macroscopic
pressure, P = 〈p〉 f , defined by a fluid-volume-average. Using this variable as the
opposite H -field, we would have the following formulation:

Field equations

∂B

∂t
+ ∂x V = 0,

∂D

∂t
= −∂x P + [F] , (7.81)

where V = 〈v〉, B = 〈b〉, (7.82)
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F = ∂xP, P =
∫

dω

2π

dk

2π
P̃(ω, k)e−iωt+ikx . (7.83)

Constitutive relations

D(t, x) = ρ̂V (t, x) =
∫

ρ(t − t ′, x − x ′)V (t ′, x ′)dt ′dx ′, (7.84)

P(t, x) = χ̂−1B(t, x) =
∫

χ−1(t − t ′, x − x ′)B(t ′, x ′)dt ′dx ′. (7.85)

Definition of the macroscopic stress field H and pressure field P

H = −P = −〈p〉/φ = −〈p〉 f . (7.86)

This point of view, however, sets undue importance to the direct volume-average
of the pressure 〈p〉 f . As soon as the pressure is significantly distributed at the pore-
scale, this average is not a very meaningful macroscopic variable. A distributed
pore-scale pressure occurs principally in two instances: long wavelengths with com-
plex geometry producing local resonances, and short wavelengths, (described within
a Gibbs conception). In further work, the interest of using, preferentially the defini-
tion (7.68) in these cases should be studied, in particular, when the finite dimensions
of the media are taken into account. The conception (7.68) would have to generalize
smoothly and we should see that it is advantageous to use, compared to others.

Indeed, consider a slab of material and compare how the H -variables of the
different conceptions will behave at a boundary, x = Cst , between the material and
the fluid, and in its vicinity.

Consider first the artificial definition H = −B/χ0φ. There is no reason thatχ0φ be
a meaningful compressibility in the material, especially in presence of resonances.
Therefore, we expect that this variable H can quickly vary in the vicinity of the
boundary, and be discontinuous at it. Likewise, consider the definition H = −〈p〉 f .
In presence of local Helmholtz resonances in thematerial, the pressurewill be rapidly
variable on the small scale, and there is no reason that its directmean shouldn’t exhibit
rapid variation at the boundary, and be discontinuous at it. This is at variance with
the indirect mean or “lumped” variable H , in the “acoustic Heaviside-Poynting”
definition (7.68), S = 〈pv〉 = −H〈v〉. Indeed, as we have continuity of normal flow
〈v〉, and we can also expect continuity of normal acoustic power flow S, this defi-
nition (7.68) generates a H -field continuous at the material boundary, and that will
not vary rapidly in its vicinity. That is why it should lead to natural determination of
the density and compressibility operators, when the finite dimensions are taken into
account. In particular, not only appropriate to describe characteristic wavenumbers,
it would give also appropriate characteristic impedances (see Sect. 7.9).
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With these remarks in mind, the deficiencies of the acoustic conceptions, H =
−B/χ0φ , and H = −〈p〉 f , cast a harsh light on the present day definitions of elec-
tromagnetic Maxwell fields H and D, generally effected in presence of spatial dis-
persion through setting H = B/μ0.

7.6 Derivation of the Macroscopic Equations by a
Micro-Macro Passage

In preceding Sects. 7.4 and 7.5, by following an electromagnetic analogy, we pro-
posed different specific patterns for the macroscopic acoustic equations. Referring to
conventional ideas in electromagneticswewere led to the pattern (7.76)–(7.80); refer-
ring to other conventional ideas in acoustics we were led to the pattern (7.81)–(7.86).
Finally, by deepening the analogy itself, with new perspectives that we defended and
that concerned as much electromagnetics, irreversible-thermodynamics, and acous-
tics, we were brought to the pattern (7.63)–(7.68), that we consider is the preferable
one, physically.

We now scrutinize how microscopic equations (7.1)–(7.6) applied for longitu-
dinal motions along x , supposed to be a macroscopic symmetry axis, indeed lead,
after averaging, to macroscopic equations that can be put in the given various pat-
terns (7.63)–(7.68) or (7.76)–(7.80) or (7.81)–(7.86). It will also lead us clarify, next,
how the respective operators can be in principle derived, from microstructure.

The “micro-macro” passage, from microscopic to macroscopic equations is as
follows.9

Using Lorentz’s conception, we write the equations (7.1)–(7.6) in one single
realization of our stationary-random or periodic medium, say �0, we solve them,
and then we make a “micro-macro” transition by taking a Lorentz volume average.
Using Gibbs’ conception, we write the equations in an arbitrary realization � , we
solve them, and make a “micro-macro” transition by taking the Gibbs ensemble
average over realizations.

In this process, when we take the average of the (7.1) and apply the general
commutation relation (7.21), we directly obtain the first macroscopic field equation:

0 = ∂〈b〉
∂t

+ 〈∂ · v〉 = ∂〈b〉
∂t

+ ∂ · 〈v〉 → ∂B

∂t
+ ∂ · V = 0.

9 “Micro” do not refer here to any level comparable to that of molecules and electrons in elec-
tromagnetics. It refers to the inner macroscopic level where equations of fluid mechanics apply
and the material appears inhomogeneous, by opposition to the outer macroscopic level, defined in
Lorentz’s or Gibbs’ sense. Note also that, in the general reasonings made here, as well as in the
two preceding sections, we work in the stationary-random case to make the discussion definite and
avoid the ambiguities encountered in the periodic case.
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Here, as we restrict to considering free wave propagation along symmetry axis x , or
else, source-driven problem with external density of force directed along this axis,
the velocity has only nonzero component x noted V :

∂B

∂t
+ ∂x V = 0. (7.87)

The second macroscopic field equation, which will be either (7.63.2) with (7.68),
or, (7.77.2), or, (7.81.2) with (7.86), is not at all obtained in the same direct manner,
by averaging. It involves an additional crucial step, playing the role of the Lorentz
splitting seen in electromagnetics, and which is related to the choice of definition of
the H -field. Let us detail it now.

Based on the rewrite in the unbounded fluid, (6.99), Sect. 6.12.1 of the Chap.6,
we begin here by rewriting (7.2) as follows

ρ0
∂v

∂t
= − 1

φχ0
∂〈b〉 + f pol − [∂P] , (7.88)

with

f pol = 1

φχ0
∂〈b〉 − ∂p + η∂2v +

(η

3
+ ζ

)
∂ (∂ · v) . (7.89)

This induced force is the expression of processes provoked by the presence of the
macroscopic perturbation, the existence of viscous and thermal losses, and the solid
interface on which the boundary conditions (7.5)–(7.6) apply. Its precise value f pol
is fixed by the expression (7.89), and the considered solution of the complete sys-
tem of equations (7.1)–(7.6).10 In the right-hand side of (7.88), the first term is
chosen so that, after averaging, (〈 1

φχ0
∂〈b〉〉 = 1

χ0
∂〈b〉), this Equation compares well

with the electromagnetic equation obtained by combining the (6.80.4) and (6.82) of
Sect. 6.11.2 of the Chap.6:

ε0
∂E
∂t

= 1

μ0
∂ × B − J pol − [J] . (7.90)

Indeed, by taking the macroscopic mean (Lorentz or Gibbs) of (7.88), and noting
that the direct switching relationship (7.22) applies to the fields a = 〈b〉 and a = ∂P ,
which only vary at the macroscopic scale, we find

ρ0
∂〈v〉
∂t

= − 1

φχ0
∂〈〈b〉〉 + 〈 f pol〉 − [∂〈P〉] .

As we extend the fields to zero in the solid, we have 〈〈b〉〉 = φ〈b〉, and 〈P〉 = φP ,
and thus

10 This solution is not unique because it is made of a unique forced response proportional to the
excitation, and a nonunique source-free solution which depends on a possible incident field, coming
from without: see comment after (7.45).

http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
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ρ0
∂〈v〉
∂t

= − 1

χ0
∂〈b〉 + 〈 f pol〉 − [φ∂P] .

Finally, by setting

φF pol ≡ 〈 f pol〉 = 1

χ0
∂〈b〉 − 〈∂p〉 + 〈η∂2v +

(η

3
+ ζ

)
∂ (∂ · v)〉, (7.91)

the averaged equation reads

ρ0
∂〈v〉
∂t

= − 1

χ0
∂〈b〉 + φF pol − [φ∂P] . (7.92)

Now we proceed by considering that this (7.92) is a meaningful acoustic coun-
terpart of the electromagnetic equation (7.90). In electromagnetics we have for-
mally decomposed, in the Lorentz splitting—see the Chap. 6, Sect. 6.11.2, (6.83),
the macroscopic polarization current density J pol in (7.90) in two macroscopic
terms, one given by temporal derivatives, the other by spatial derivatives. Here,
as we have previously done with success in the unbounded fluid—see the Chap.6,
Sect. 6.12.1, (6.101), we consider that the polarization force density φF pol in (7.92),
given by (7.91), is formally decomposed in two macroscopic terms, one given by
temporal derivatives, the other by spatial derivatives11:

φF pol = −φ
∂ P
∂t

+ φ∂M, (7.93)

what we call an acoustic Lorentz splitting. As we restrict to a macroscopic motion
along x , we have F pol = Fpol x̂, P = P x̂, (with “polarization” P not to be confused
with the mean pressure), and the above decomposition writes

Fpol = −∂P

∂t
+ ∂x M. (7.94)

There are nonlocal operators χ̂V and χ̂B , or kernels χV (t, x) and χB(t, x), estab-
lishing how the “polarization fields P and M” are determined by the velocity and
condensation macroscopic fields12:

11 Note that if we were not to assume isotropy or propagation along a symmetry axis, we would
define symmetric tensors H -field and M-field, through writing

(
Fpol

)
i = −∂Pi

∂t + ∂ j M ji , and Si =
−Hi j Vj = 〈pvi 〉; in the electromagnetic case we have Si = −Hji E j for the Poynting vector (not
paying attention to the variances), and,

(
Jpol

)
i = ∂Pi

∂t − ∂ j M ji , which looks the same,with however
the important difference that Hi j and Mi j are antisymmetric instead of symmetric tensors.
12 Recall that we limit ourselves here for simplicity to macroscopically homogeneous media
(unboundedmedia), so that we have difference-kernels, i.e. kernels which depend on the (Cartesian-
coordinates) difference x − x ′.

http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
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P(t, x) =
∫

dt ′dx ′χV (t − t ′, x − x ′)V (t ′, x ′), (7.95)

M(t, x) =
∫

dt ′dx ′χB(t − t ′, x − x ′)B(t ′, x ′). (7.96)

In (7.95) there is no need to add a similar term with the condensation field, because,
as V and B are related by (7.87), such a term could also be rewritten in the integral
form (7.95). Likewise, in (7.96), because of the complete form of the dispersion,
there is no need to add a similar term with the velocity field. Substituting (7.94)
in (7.92) we get

ρ0
∂〈v〉
∂t

+ φ
∂P

∂t
= − 1

χ0
∂x 〈b〉 + φ∂x M − [φ∂xP] , (7.97)

which, by setting

D = ρ0

φ
〈v〉 + P = ρ0

φ
V + P, H = − 1

χ0φ
〈b〉 + M = − 1

χ0φ
B + M, (7.98)

takes the form

∂D

∂t
= ∂x H + [F] ,

F = −∂xP P =
∫

dω

2π

dk

2π
P̃(ω, k)e−iωt+ikx .

(7.99)

And finally, saying that we necessarily have nonlocal relations of type (7.95)
and (7.96), is the same as saying that we have nonlocal relations of type:

D(t, x) = ρ̂V (t, x) =
∫

ρ(t − t ′, x − x ′)V (t ′, x ′)dt ′dx ′, (7.100)

H(t, x) = −χ̂−1B(t, x) = −
∫

χ−1(t − t ′, x − x ′)B(t ′, x ′)dt ′dx ′, (7.101)

with the connection

ρ(t − t ′, x − x ′) = ρ0

φ
δ(t − t ′)δ(x − x ′) + χV (t − t ′, x − x ′), (7.102)

χ−1(t − t ′, x − x ′) = 1

χ0φ
δ(t − t ′)δ(x − x ′) − χB(t − t ′, x − x ′). (7.103)

In this way, the formal pattern (7.63)–(7.67) of the macroscopic acoustics equations
is now evidenced.

Nevertheless, as the decomposition (7.93) is not unique, (we can add an arbitrary
term ∂Φ to the polarization P , if we simultaneously add a term ∂Φ

∂t to polarization
M), the description is not unique. It remains to be shown that by using an additional
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condition of definition of the H -field, which will be either (7.68), or (7.76), or
else (7.86), to take up the various possibilities successively considered previously,
we arrive at unique definitions of the relationships between the “Maxwell” fields M
or H and the “Lorentz” field B, on one hand, and the “Maxwell” fields P or D and
the “Lorentz” field V , on the other hand, so that the associated nonlocal operators,
respectively, χ̂B or χ̂−1, and χ̂V or ρ̂, are determined in a unique way from the
microstructure.

Of the various determinations, the one obtained with the “acoustic Heaviside-
Poynting” identification (7.68), we believe, will be the most advantageous. We start
with it.

7.7 Action-Response Problem to Determine the Nonlocal
Dynamic Operators from Microstructure

We show here how the definition (7.68) uniquely determines in principle the oper-
ators, (χ̂B, χ̂−1), and (χ̂V , ρ̂), in a direct generalization of the previous “action-
response problem” 6.12.4 in the unbounded fluid.

Weconsider the saturatingfluid response to anharmonic excitationdensity of force
along x , f = −∂xP ,P = P̃e−iωt+ikx , in thefluid, payingour attention, either directly
at themacroscopic level, or initially at themicroscopic level, and then at macroscopic
level after taking an average. For consistency, both considerations will have to lead
to the same macroscopic response. This, in conjunction with the definition (7.68),
will fix the Fourier coefficients of the kernels, ρ(ω, k) and χ−1(ω, k), in a unique
way.

In thefirst, directlymacroscopic consideration,wewrite by principle the following
macroscopic equations:

∂B

∂t
+ ∂x V = 0,

∂D

∂t
= ∂x H − ∂xP, (7.104)

D(t, x) = ρ̂V (t, x) =
∫

ρ(t − t ′, x − x ′)V (t ′, x ′)dt ′dx ′, (7.105)

H(t, x) = −χ̂−1B(t, x) = −
∫

χ−1(t − t ′, x − x ′)B(t ′, x ′)dt ′dx ′, (7.106)

where the H -field is set so that the “Heaviside-Poynting” definition (7.68)

〈pv〉(t, x) = −〈v〉(t, x)H(t, x), (7.107)

will be satisfied.
The kernels can be represented in Fourier-transforms as

http://dx.doi.org/10.1007/978-3-030-84300-7_6
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ρ(t − t ′, x − x ′) =
∫

dω

2π

dk

2π
ρ(ω, k)e−iω(t−t ′)+ik(x−x ′),

χ−1(t − t ′, x − x ′) =
∫

dω

2π

dk

2π
χ−1(ω, k)e−iω(t−t ′)+ik(x−x ′).

(7.108)

As the excitation source term is here taken as a single Fourier-component

F = −∂xP = −ikP̃e−iωt+ikx , (7.109)

the macroscopic response-fields are sought in the form, (as usual, by language abuse,
we dispense noting the tilde on the fields)

V = Ve−iωt+ikx , etc. (7.110)

The above equations then directly express as

−iωB = −ikV, −iωD = ikH − ikP̃, (7.111)

D = ρ(ω, k)V, H = −χ−1(ω, k)B, (7.112)

and we find that

ρ(ω, k) =
ik

(
H − P̃

)

−iωV
, χ−1(ω, k) = −H

B
. (7.113)

In the second consideration, starting at the microscopic level, we write the
microscopic action-response problem to be solved, (7.1)–(7.6), with the excitation
f = −∂xP x̂, −∂xP given by (7.109) in the fluid, and we look for its solution with
fields varying like

v = v(ω, k, x)e−iωt+ikx , etc. (7.114)

If the geometry is stationary random, the solution amplitudes v(ω, k, x), etc., are
uniquely fixed by the condition to be stationary random, (and proportional to the
excitation amplitude); if it is periodic, they are fixed by the condition to be periodic,
(and proportional to the excitation amplitude), with an arbitrary choice to be made,
on the minimal periodicities of the tilde-fields.13

If we are to use Lorentz’s averaging conception we solve the above in one single
realization; if we are to use Gibbs’ average, we solve it in the different realizations,
and for short, above and in what follows, we do not mention the presence of the
realization argument � in the amplitudes: v(ω, k, x) → v(ω, k, x;�), etc., and in
the fluid and pore-surface domains: V f , ∂V → V f (�), ∂V(�).

The macroscopic velocity V = Ve−iωt+ikx , and macroscopic condensation, B =
Be−iωt+ikx , in the first consideration, are the macroscopic averages of the (x com-

13 In that case, here, we only have to precise the integer M1, fixing the retained period along x .
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ponent of) velocity and condensation in the second consideration, i.e.

V = Ve−iωt+ikx =〈v(ω, k, x)e−iωt+ikx 〉 · x̂
=〈v(ω, k, x)〉 · x̂e−iωt+ikx = 〈v(ω, k, x)〉e−iωt+ikx , (7.115)

B = Be−iωt+ikx = 〈b(ω, k, x)e−iωt+ikx 〉 = 〈b(ω, k, x)〉e−iωt+ikx , (7.116)

(these equalities are exactly obtained with Gibbs’ averaging, with no restriction on k;
with Lorentz’s averaging, it is assumed that the macroscopic wavelength λ = 2π/k
is large compared to the homogenization length). Applying the definition (7.107) in
which we substitute, (the notation +c.c. adds the complex conjugate)

p = 1

2

(
p(ω, k, x)e−iωt+ikx + c.c.

)
,

v = 1

2

(
v(ω, k, x)e−iωt+ikx + c.c.

)
,

H = 1

2

(
H(ω, k)e−iωt+ikx + c.c.

)
,

(7.117)

and noting that the exponentials can be extracted from the averaging symbols
in (7.107), (for Lorentz’s average, long-wavelength regime is assumed in extract-
ing the exponentials; for Gibbs’ average, the extraction is general), we derive, after
identification of the terms having same exponentials:

〈p(ω, k, x)v(ω, k, x)〉 = −〈v(ω, k, x)〉H(ω, k). (7.118)

Requiring then the compatibility of the above two considerations—directly
macroscopic, and microscopically averaged—there follows that the kernels oper-
ators, by definition, can be computed after solving the microscopic action-response
problem (7.1)–(7.6), averaging, and plugging in the definitions (7.113) the following
values:

V = 〈v(ω, k, x)〉, B = 〈b(ω, k, x)〉, H = −〈p(ω, k, x)v(ω, k, x)〉
〈v(ω, k, x)〉 .

(7.119)
In brief, an “action-response problem” to determine the nonlocal ρ(ω, k) and

χ−1(ω, k) is obtained, that can be summarized as follows, (we do not mention the
presence of the realization argument, fixed argument �0 for Lorentz’s conception,
variable argument � for Gibbs’ conception, in the amplitudes and in the fluid and
pore-surface domains).
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Action-response problem to determine ρ(ω, k) and χ−1(ω, k):

(i) Let us subject the permeating fluid to the action of a longitudinal bulk force f
per unit fluid volume, deriving from a potential P , and varying as follows in
the fluid:

f = f x̂ = −∂xP x̂, P = P̃e−iωt+ikx , P̃ = Cst. (7.120)

(ii) Let us find the response of the permeating fluid to this action.
We seek fields v = v(ω, k, x)e−iωt+ikx , b = b(ω, k, x)e−iωt+ikx ,
p = p(ω, k, x)e−iωt+ikx , τ = τ(ω, k, x)e−iωt+ikx , satisfying the motion equa-
tions

∂ · v + ∂b

∂t
= 0, in V f , (7.121)

ρ0
∂v

∂t
= −∂p + η∂2v +

(η

3
+ ζ

)
∂(∂ · v) + f , in V f , (7.122)

γχ0 p = b + β0τ, in V f , (7.123)

ρ0cP
∂τ

∂t
= β0T0

∂p

∂t
+ κ∂2τ, in V f , (7.124)

and

v = 0, on ∂V, (7.125)

τ = 0, on ∂V, (7.126)

and whose tilde-amplitudes in (ω, k, x) are proportional to P̃ .
(iii) There is unique solution v(ω, k, x), b(ω, k, x), p(ω, k, x) and τ(ω, k, x),

to this action-response problem. We denote v(ω, k, x) = v(ω, k, x) · x̂. Then
according to (7.113), the effective density ρ(ω, k) and effective bulk modulus
χ−1(ω, k) are obtained through the definitions

ρ(ω, k) =
ik

(
H − P̃

)

−iωV
, χ−1(ω, k) = −H

B
, (7.127)

where we plug the values (7.119) of V , B, and H :

V = 〈v(ω, k, x)〉, B = 〈b(ω, k, x)〉, H = −〈p(ω, k, x)v(ω, k, x)〉
〈v(ω, k, x)〉 .

(7.128)

According to (7.102) and (7.103), the operators χ̂V , ρ̂, and χ̂B , ˆχ−1, have Fourier
kernels which verify the relations

ρ(ω, k) = ρ0

φ
+ χV (ω, k), (7.129)
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and
χ−1(ω, k) = 1

χ0φ
− χB(ω, k). (7.130)

Therefore, the above determination of ρ̂ and χ̂−1 is also a determination of χ̂V and
χ̂B .

Finally, we note that the physical content of the above procedure is just equivalent
to stating that the acoustic equations can be put in the form (7.63)–(7.67) which
expresses the electromagnetic-acoustic analogy, with in addition, the H -field, taken
according to the “acoustic Heaviside-Poynting” identification, (7.68). We view this
identification as a final deepening of the electromagnetic analogy, even if, at present,
in macroscopic electromagnetics, we have no clue on the corresponding notion of
“energy current density carried out in electromagnetic form”.

7.8 Other Points of View

If we were to use the other points of view, sketched in Sect. 7.5, we would write the
following.

7.8.1 Acoustics Translation of the Customary Point of View
in Electromagnetics

Considering that the (7.76)–(7.80) obtained by settingM ≡ 0would apply, wewould
write, instead of (7.111)–(7.112):

−iωB = −ikV, −iωD = ikH − ikP̃, (7.131)

D = ρ(ω, k)V, H = −χ−1(ω, k)B = − B

χ0φ
, (7.132)

and it would give

ρ(ω, k) =
−ik

(
B

χ0φ
+ P̃

)

−iωV
, χ−1(ω, k) = 1

χ0φ
. (7.133)

The action-response problem to determine ρ(ω, k) would be as follows.

Action-response problem to determine ρ(ω, k):

(i) Let us subject the permeating fluid to the action of a longitudinal bulk force f
per unit fluid volume, deriving from a potential P , and varying as follows in
the fluid:
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f = f x̂ = −∂xP x̂, P = P̃e−iωt+ikx , P̃ = Cst. (7.134)

(ii) Let us find the response of the permeating fluid to this action.
We seek fields v = v(ω, k, x)e−iωt+ikx , b = b(ω, k, x)e−iωt+ikx ,
p = p(ω, k, x)e−iωt+ikx , τ = τ(ω, k, x)e−iωt+ikx , satisfying the motion equa-
tions

∂ · v + ∂b

∂t
= 0, in V f , (7.135)

ρ0
∂v

∂t
= −∂p + η∂2v +

(η

3
+ ζ

)
∂(∂ · v) + f , in V f , (7.136)

γχ0 p = b + β0τ, in V f , (7.137)

ρ0cP
∂τ

∂t
= β0T0

∂p

∂t
+ κ∂2τ, in V f , (7.138)

and

v = 0, on ∂V, (7.139)

τ = 0, on ∂V, (7.140)

and whose amplitudes in (ω, k, x) are proportional to P̃ .
(iii) There is unique solution v(ω, k, x), b(ω, k, x), p(ω, k, x) and τ(ω, k, x), to

this action-response problem. We denote v(ω, k, x) = v(ω, k, x) · x̂. Then
according to (7.133.1), the effective density ρ(ω, k) is obtained through the
definition

ρ(ω, k) =
−ik

(
B

χ0φ
+ P̃

)

−iωV
, (7.141)

where we plug the following values of V and B

V = 〈v(ω, k, x)〉, B = 〈b(ω, k, x)〉. (7.142)

This formulation—whose electromagnetic counterpart is just that ordinarily used in
literature on spatial dispersion [8–10]—fixes the bulk modulus of the material to an
artificial constant value (7.133.2) determined by the adiabatic bulk modulus of the
fluid, independently of ω and k. But this constant does not appear quite meaningful,
in the present acoustic context, where the pressure can be distributed at the pore scale,
(with its direct mean, not necessarily being the meaningful macroscopic variable, see
below), and thermal exchanges can occur. It suggests that in electromagnetics, the
counterpart setting H = B/μ0, common in the presence of spatial dispersion, will
also be found to be an unappropriate definition, in some respect and some cases.
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Finally, let us conclude with the case where, as is done in local theory, we identify
the H -field with the volume-averaged opposite pressure (7.86).

7.8.2 Acoustics Formulation in Terms of Volume-Averaged
Pressure

Considering that the (7.81)–(7.86)would apply,wewould have no change in (7.111)–
(7.112), and obtain as before the relations (7.113). The difference would be that, for
H , we would have to use the artificial definition, H = −〈p〉 f . Therefore, the action-
response problem to determine ρ(ω, k) and χ−1(ω, k) would be as follows.

Action-response problem to determine ρ(ω, k) and χ−1(ω, k):

(i) Let us subject the permeating fluid to the action of a longitudinal bulk force f
per unit fluid volume, deriving from a potential P , and varying as follows in
the fluid:

f = f x̂ = −∂P, P = P̃e−iωt+ikx , P̃ = Cst. (7.143)

(ii) Let us find the response of the permeating fluid to this action.
We seek fields v = v(ω, k, x)e−iωt+ikx , b = b(ω, k, x)e−iωt+ikx ,
p = p(ω, k, x)e−iωt+ikx , τ = τ(ω, k, x)e−iωt+ikx , satisfying the motion equa-
tions

∂ · v + ∂b

∂t
= 0, in V f , (7.144)

ρ0
∂v

∂t
= −∂p + η∂2v +

(η

3
+ ζ

)
∂(∂ · v) + f , in V f , (7.145)

γχ0 p = b + β0τ, in V f , (7.146)

ρ0cP
∂τ

∂t
= β0T0

∂p

∂t
+ κ∂2τ, in V f , (7.147)

and

v =0, on ∂V, (7.148)

τ =0, on ∂V, (7.149)

and whose amplitudes in (ω, k, x) are proportional to P̃ .
(iii) There is unique solution v(ω, k, x), b(ω, k, x), p(ω, k, x) and τ(ω, k, x), to

this action-response problem.We denote v(ω, k, x) = v(ω, k, x) · x̂. Then, the
effective density ρ(ω, k) and effective bulk modulus χ−1(ω, k) are obtained
through the definitions
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ρ(ω, k) =
ik

(
H − P̃

)

−iωV
, χ−1(ω, k) = −H

B
, (7.150)

where we plug the following values of V , B, and H

V = 〈v(ω, k, x)〉, B = 〈b(ω, k, x)〉, H = −〈p(ω, k, x)〉
φ

. (7.151)

This determination has no counterpart in electromagnetics in the absence of
the hypothesized thermodynamic laws associated to the behaviour of polarization
charges and currents in matter. When the pressure is distributed at the pore scale
because of long-wavelengths local resonances, or short wavelengths, there is no rea-
son that its direct volume average would be the meaningful variable to define an
effective bulk modulus, (see again end of Sect. 7.5.3). To repeat ourselves, we expect
that the two preceding formulations, contrary to the first (7.104)–(7.107), will not
lead to natural generalization when the finite dimensions of materials will be taken
into account.

7.9 Characteristic Wavenumbers and Impedances

A characteristic feature of a nonlocal effective medium theory is that it allows for
the propagation of several normal waves at a given angular frequency ω. Here, as
we focus on the macroscopic propagation along a symmetry axis x , we can have a
series of normal waves varying like e−iωt+ikx , with ω and k related by the dispersion
equation:

ρ(ω, k)χ(ω, k)ω2 = k2. (7.152)

At given real ω, as our medium is lossy, the imaginary parts of the wavenumbers
k(ω) solutions to (7.152), will be positive, � [k(ω)] > 0, for the waves propagating
in the direction+x , (that can be created by a source in the direction−x). This ensures
that these waves are damped. Depending on the case, the waves propagating in the
direction+x can have positive or negative sign of� [k(ω)], corresponding to positive
or negative phase velocity, cϕ(ω) = ω/� [k(ω)].

In the well-defined stationary-random case, assuming that these solutions k(ω)

are nondegenerate, they can be labelled

k = kn(ω), (7.153)

with a discrete labeln = 1, 2, . . . ,which orders them from the least-attenuatedmode,
to the highly attenuated ones, giving, 0 < � [k1(ω)] < � [k2(ω)] < · · · .

The normal-mode fields will have the form, (we do not indicate the realization
argument, fixed argument �0 for Lorentz’s conception, variable argument � for
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Gibbs’ conception), v(t, x)=ṽn(ω, x)e−iωt+ikn(ω)x , b(t, x) = b̃n(ω, x)e−iωt+ikn(ω)x ,
p(t, x) = p̃n(ω, x)e−iωt+ikn(ω)x , etc.,with unique stationary-randomamplitude func-
tions, ṽn(ω, x), b̃n(ω, x), p̃n(ω, x), etc., presentingwhen n increases,more andmore
rapid variations at the small scale.

To the nth normal-mode solution is associated an H -field varying like H(t, x) =
H̃n(ω)e−iωt+ikn(ω)x , and having, resp., characteristic amplitudes, H̃n(ω)= − 〈 p̃n
(ω, x)ṽn(ω, x)〉 · x̂/〈ṽn(ω, x)〉 · x̂, in the acoustic Heaviside-Poynting conception
(7.63)–(7.68), or H̃n(ω) = −χ−1

0 〈b̃n(ω, x)〉, in the acoustic conception (7.76)–
(7.80) counterpart of conventional electromagnetics, or H̃n(ω) = −〈 p̃n(ω, x)〉, in
the acoustic conception (7.81)–(7.86) inspired by the local-theory usual definition of
macroscopic pressure as a volumic mean. These conceptions, in turn, lead to define
frequency-dependent, characteristic macroscopic modal impedances (Zc)n(ω), all
given by, in the different cases

(Zc)n(ω) = −H̃n(ω)

〈ṽn(ω, x)〉 · x̂ , (7.154)

as well as associated frequency-dependent characteristic modal density and bulk-
modulus functions, all given by

ρn(ω) = kn(ω)

ω
(Zc)n(ω), χ−1

n (ω) = ω

kn(ω)
(Zc)n(ω). (7.155)

In the presence of resonances, these modal functions may have much more gen-
eral and complicated behaviours than the simple relaxational-ones, described in the
Appendix for the ρ(ω) and χ−1(ω) functions of local theory.

The different formulations we have given of the nonlocal equations and operators,
namely based on (7.63)–(7.68) or (7.76)–(7.80) or (7.81)–(7.86), lead to the same
wavenumbers but different impedances, densities and compressibilities. Subsequent
work, we believe, will show, (in particular when considering inhomogeneous mate-
rials), that the latter quantities are best defined in the formulation (7.63)–(7.68) using
Heaviside-Poynting’s identification (7.68).

In the periodic case we will obtain comparable results, with however ambigu-
ities. There will be direct relation between the normal modes in the considered
macroscopic homogeneous medium, and the so-called Bloch modes in one periodic
realization. General properties will have to be closely examined in further work. We
anticipate that the normalmodewavenumbers defined by themacroscopicGibbs non-
local homogeneous medium will allow attributing unambiguously and successively,
definite Brillouin zones to a given Bloch-wave, when frequency increases.

7.10 Conclusions

By following an electromagnetic analogy introduced in the Chap.6, we have shown
that the general equations governing sound propagation in a direction x of symmetry,

http://dx.doi.org/10.1007/978-3-030-84300-7_6
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inmacroscopically homogeneous rigid-framed fluid-saturated porousmetamaterials,
assume the nonlocal Maxwellian pattern of (7.63)–(7.67).

In these equations, V and B are the mean (volume- or ensemble-averaged) x-
velocity and condensation, and D and H , related to the former fields by nonlocal
constitutive operator relations, can be defined in different manners, leading to dif-
ferent definitions of the operators.

We suggested that there is a physically preferred choice, which will be to choose
the H -field according to the “acoustic Heaviside-Poynting” identification (7.68).
In future work, this statement will have to be supported by explicitly showing the
advantages of this identification (7.68).

In this connection we should mention an imprecision made in preliminary works
on the present nonlocal theory [11–14]. The fact that the electromagnetic analogy
led directly to the simultaneous definition of the two operators density ρ̂ and bulk-
modulus χ̂−1, by solving a single action-response problem, (7.120)–(7.128), where
the medium is subjected to an external longitudinal force, was missed in these works.
Instead of being deduced from the analogy, the action-response procedures for cal-
culating density and bulk-modulus operators were independently postulated, based
on what was observed to be true in the unbounded fluid. For density, it led to the cor-
rect action-response procedure. But for bulk-modulus, it turns out that the proposed
procedure, [11], (71), is a slightly faulty one, which is working correctly only when
k is a characteristic wavenumber of the medium. This error could not be detected
in the verifications that were made in subsequent work [12–14], because the latter
were restricted to considering only the Bloch modes, for which k was, by force,
one of the characteristic wavenumbers. When the forcing is made at ω and k equal
to a characteristic wavenumber solution kn(ω) to the dispersion equation (7.152), a
resonance occurs, meaning that a finite response is produced by a vanishingly small
forcing. In that case, the faulty procedure [11], (71), gives back the present (7.127.2),
because the forcing amplitudes disapppear.

In future work, we will have to clarify if and how the same operators can also be
obtained by giving heat instead of doing work.

Finally, we recall that, much remains to be done to generalize the description in
the case where the medium has finite dimensions, is anisotropic and poroelastic, and
to express all the consequences of nonlocalities.

Appendix: Local Dynamic Homogenization of Rigid-Framed
Fluid-Saturated Porous Materials

In some geometries and at long wavelengths, rather than trying to solve the very
complex system of coupled (7.1)–(7.6), we can break it down and solve it into
independent and simplified pieces, encapsulating the main effects. In the density
operator will be put inertial and viscous effects, in the compressibility operator,
elastic and thermal effects, evaluated in a corresponding special local limit. At the
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macroscopic level where one writes, for macroscopic motion along principal axis
x14:

∂〈b〉
∂t

+ ∂x 〈v〉 = 0,
∂D

∂t
= ∂x H + [F], (7.156)

this will mean using a simplified conception of the fields D and H , that will corre-
spond to introducing the approximations:

− H〈v〉 = 〈pv〉 ∼= 〈p〉 f 〈v〉, (7.157)

(note that, as the wavelengths are large, the mean operation 〈 〉 can be conceived in
Lorentz’s manner), and simultaneously, discarding spatial dispersion:

D(t, x) = ρ̂〈v〉(t, x) ∼=
∫ t

−∞
ρ(t − t ′)〈v〉(t ′, x)dt ′, (7.158)

H(t, x) = −χ̂−1〈b〉(t, x) ∼= −
∫ t

−∞
χ−1(t − t ′)〈b〉(t ′, x)dt ′. (7.159)

This simplified conception will be justified when the geometries are simple, char-
acterized by one typical pore size, meaning that the fluid motion is practically
divergence-free at the pore scale. Usually, it is obtained at first order by applying the
two-scale asymptotic homogenization method [3, 4], however, the corresponding
process does not appear to be truly consistent. Here we will get the same results
“with our hands”, from the simplification that the spatial dispersion phenomena are
absent, and its corollary here, the divergence-free nature of fluid motion at the pore
scale.

Dynamic Viscous and Thermal Tortuosities and Permeabilities,
and Definition of the Local Density ρ(ω) and Compressibility
χ(ω)

Here, we reason for convenience with external, long-wavelength force present. Anal-
ogous considerations will hold without it, still assuming long-wavelengths.

For the external force F , it suffices to consider a single exponential form,
F = F x̂ = −∂xP x̂, with P = 1

2 (P̃e−iωt+ikx + c.c.), and P̃ a complex constant.
Whenever convenient and without notice, we work in complex representation, e.g.
P = P̃e−iωt+ikx , omitting the real part symbol � ( ). A long-wavelength limit will
be considered, i.e. kLh → 0, where Lh is a homogenization length.15

14 Generalization to anisotropic materials presents no difficulty.
15 k is set as 2π/λ, with λ taken to be on the same order as the macroscopic wavelength in the
medium, (which is unique within local theory).
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Wewill first observe that, as there are no local resonances in the simple geometries
considered, the pressure in the fluid must be everywhere, very close to its average
value, 〈p〉 f , where 〈 〉 f is the Lorentz average in the fluid at the given point. Let
us indeed write the pressure in terms of its mean and deviatoric part, at the given
position:

p = 〈p〉 f + δp, 〈δp〉 f = 0. (7.160)

Considering that the gradient of the two terms are comparable, and since 〈p〉 f ∼ eikx

varies over macroscopic distances λ = 2π/k, whereas δp varies over small-scale
distances �, (an estimate of the pore size16), we write 〈p〉 f /λ ∼ δp/�. Consequently,
the order ofmagnitude of the deviatoric part δp is that of themean part 〈p〉 f , times the
very small ratio �/λ. In porousmaterials used for noise control at audible frequencies,
this ratio is typically very small, on order of 10−4, coherent with considering a limit
�/λ → 0. Hence, because of the huge scale separation, we have that

p ∼= 〈p〉 f , 〈pv〉 ∼= 〈p〉 f 〈v〉, H ∼= −〈p〉 f . (7.161)

In particular, for the distribution of excess temperature in a representative ele-
mentary volume (REV) around a given position x0, we can consider, instead of the
profile of the exact solution of the (7.1)–(7.6), the approximate profile, generated in
the following simplified problem, where the pressure field is, in the REV, assimilated
to its average part or (−H)-part ∼= 〈p〉 f , calculated at the central position:

ρ0cP
∂τ

∂t
= β0T0

∂〈p〉 f
∂t

+ κ∂2τ, in V f , (7.162)

〈p〉 f = spatial constant, in V f , (7.163)

τ = 0, on ∂V. (7.164)

With 〈p〉 f = −[H̃eikx0 ]e−iωt , the field τ in the REV is uniquely fixed by the constant
−[H̃eikx0 ] and the frequency. The field τ solution to the above problem, can be used
to define a response function α′(ω), known as “dynamic thermal tortuosity” [15],
determined by the microgeometry, and such that, by definition

ρ0cPα′(ω)
∂〈τ 〉 f

∂t
= β0T0

∂〈p〉 f
∂t

. (7.165)

Equivalently, one defines a “dynamic thermal permeability” k ′(ω) by setting [3]

φ〈τ 〉 f = k ′(ω)

κ
β0T0

∂〈p〉 f
∂t

. (7.166)

16 Note that the idealization that there ismainly “one” pore-size, excludes the presence of Helmholtz
resonators: resonators involve widely different sizes in their necks and cavities.
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The denominations of “tortuosity” and “permeability” are not quite appropriate here,
but they come from an analogy with corresponding viscous functions, seen below.
Obviously, both functions are related by

k ′(ω)α′(ω) = ν ′φ
−iω

, (7.167)

where
ν ′ ≡ κ

ρ0cP
= ν/Pr, ν ≡ η

ρ0
. (7.168)

Taking the fluid-average of the equation of state, and its time derivative, we write

γχ0
∂〈p〉 f

∂t
= ∂〈b〉 f

∂t
+ β0

∂〈τ 〉 f
∂t

. (7.169)

Inserting (7.165) in (7.169) and using the thermodynamic identity seen in theChap. 6,
Sect. 6.2, (6.5), this gives the relation, (after removal of the time derivatives)

χ0

[
γ − γ − 1

α′(ω)

]
〈p〉 f = 〈b〉 f . (7.170)

Therefore in accordance with (7.161) and (7.159), we find a relation having the form,
in harmonic regime

H = −χ−1(ω)〈b〉, (7.171)

with

χ(ω) = φχ0

[
γ − γ − 1

α′(ω)

]
= φχ0

[
γ − (γ − 1)

−iω

ν ′φ
k ′(ω)

]
. (7.172)

This gives the Fourier coefficients of the kernel function χ(t) in (7.159). It represents
a dynamic compressibility, function of frequency because of the thermal exchanges
between fluid and solid. This is often written as a relation

χ0β(ω)
∂〈p〉 f

∂t
= −∂ · 〈v〉 f , (7.173)

with the function β(ω)

β(ω) = χ(ω)

φχ0
= γ − γ − 1

α′(ω)
= γ − (γ − 1)

−iω

v′(φ)
k′(ω) (7.174)

a normalized dynamic compressibility, modifying the adiabatic value [3, 15].
In defining the above excess temperature pattern τ , whose average served us to

compute the wanted response functions, wemade abstraction of the spatial variations
of 〈p〉 f in the representative volume. Exactly the same average 〈τ 〉 f and hence

http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
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response functions, would have been obtained, however, if we had also taken into
account, to first order, the variation of 〈p〉 f in the representative volume: to first order
the quantity possesses a linear variation, which doesn’t contribute, by symmetry, to
the mean excess temperature.

To obtain the Fourier coefficients of the kernel functionρ(t), we proceed in similar
manner. To compute the velocity pattern in a REV around a given position x0, we
consider that the fluid is subjected to a spatially-constant macroscopic force

∂H + F ∼= −∂〈p〉 f + F =
[
−ik

(
P̃ + 〈 p̃〉 f

)
eikx0

]
e−iωt x̂, (7.175)

equal to the sum of external force F and macroscopic pressure-gradient force. That
is, instead of the exact solution of (7.1)–(7.6), we consider the approximated velocity
profile generated in the following simplified problem where ∂H + F is introduced
as the constant (7.175):

ρ0
∂v

∂t
= −∂(δp) + η∂2v + ∂H + F, in V f , (7.176)

δp = bounded, stationary random field, in V f , (7.177)

∂ · v = 0, in V f , (7.178)

v = 0, on ∂V. (7.179)

The condition that δp is a stationary random field, applies to stationary random
geometries; in periodic geometries it is to be replaced by the condition that δp is
a periodic field. Unambiguously here, because of the incompressibility condition
and related spatial constancy of the excitation, the periodicity can be taken as the
smallest possible. The solutionfieldv is uniquelyfixedby the amplitude in brackets [·]
in (7.175), the condition set on δp (boundedfield), the frequency, and themacroscopic
direction x̂. There is however an arbitrary constant in the field δp, and it can be noted
that it is fixed to the same value by requiring either 〈δp〉 = 0 or 〈vδp〉 = 0.17 The
solution field v to the above problem, can be used to define a response function α(ω),
known as “dynamic viscous tortuosity”, determined by the microgeometry, and such
that, by definition [2]

ρ0α(ω)
∂〈v〉 f

∂t
= −∂〈p〉 f + F x̂. (7.180)

Equivalently, one defines a “dynamic viscous permeability” k(ω) by setting

φ〈v〉 f = k(ω)

η

[−∂〈p〉 f + F x̂
]
. (7.181)

Both functions are related by

17 Actually it means that within local theory, and as also expressed in (7.161), we do not see the
difference between the two definitions H = −〈p〉 f and H = −〈pv〉/〈v〉 of the H -field.
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k(ω)α(ω) = νφ

−iω
. (7.182)

This can now be compared with the equation obtained by combining (7.156.2)
and (7.158):

ρ(ω)
∂〈v〉
∂t

= ∂x H + F. (7.183)

Recalling (7.10) and (7.161) we see that

ρ(ω) = ρ0α(ω)

φ
= η

−iωk(ω)
. (7.184)

It represents a dynamic density, function of frequency because of the viscous effects.
For later use, we observe that the dynamic tortuosities α(ω) and α′(ω) are related
as follows, to the velocity and excess temperature patterns v and τ , (where the star
denotes complex conjugate):

α(ω)

φ
= 〈v · v∗〉

〈v〉 · 〈v∗〉 + ν

−iω

〈−v · ∂2v∗〉
〈v〉 · 〈v∗〉 , (7.185)

and
α′(ω)

φ
= 〈ττ ∗〉

〈τ 〉〈τ ∗〉 + ν ′

−iω

〈−τ∂2τ ∗〉
〈τ 〉〈τ ∗〉 . (7.186)

To see this, we take the dot product of (7.176.1) with v, and perform volume average:

−iωρ0〈v · v〉 = −〈v · ∂(δp)〉 + η〈v · ∂2v〉 + 〈v · (∂x H + F)x̂〉.

The term 〈v · ∂(δp)〉 vanishes after integration by part, owing to incompressibility,
no-slip condition, and the stationary random nature of the fields (periodic nature,
in periodic geometries). The term 〈v · (∂x H + F)x̂〉 factorizes as (∂x H + F)〈v〉 · x̂
since (∂H + F) is treated as a spatial constant, (in so doing, spatial dispersion effects
are discarded). This gives, dividing by 〈v〉 · x̂,

−iωρ0
〈v · v〉
〈v〉 · x̂ = η〈v · ∂2v〉

〈v〉 · x̂ + (∂x H + F),

from which we obtain the representation:

α(ω)

φ
= 〈v · v〉

〈v〉2 + ν

−iω

〈−v · ∂2v〉
〈v〉2 . (7.187)

The given form (7.185) is then obtained with the same reasoning, if we work with the
complex conjugate of the starting equations, and account for the fact that the fields
are stationary. The calculation leading to (7.186) is made in analogous manner, by
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multiplying the complex conjugate of (7.162) by τ , averaging, and taking into account
the stationary random nature of the field.

Finally, knowing α(ω) or k(ω), and α′(ω) or k ′(ω), the effective density and
compressibility, are given by (7.184) and (7.172).

Low-Frequency Parameters: k0, α0, k′
0, α

′
0

In the low-frequency limit, ω → 0, where viscous effects are “relaxed”, viscous
shearing motions have time to fully develop in the fluid. It corresponds to a limit of
large viscous skin depths δv = (2η/ρ0ω)1/2 with respect to characteristic pore sizes
�, i.e. ω � �2ρ0/2η. The dynamic permeability tends to Darcy’s permeability k0,
and the dynamic tortuosity is mainly purely positive imaginary:

α(ω) → νφ

−iωk0
+ α0, (7.188)

with a correction α0 which is Norris’ inertial factor T0 [16]. We can denote v0 the
fluid velocity pattern which appears in d.c. permanent flow (ω = 0):

0 = −∂δp0 + η∂2v0 + [−∂x 〈p〉 f + F
]
x̂, in V f (7.189)

∂ · v0 = 0, in V f (7.190)

p0 = stationary random, in V f (7.191)

v0 = 0, on ∂V (7.192)

A comparison of (7.188) with (7.185) taken in the limit ω → 0 shows that

φ

k0
= 〈−v0 · ∂2v0〉 f

〈v0〉2f
, α0 = 〈v2

0〉 f
〈v0〉2f

, (7.193)

where we have suppressed complex conjugates as in this “Poiseuille” limit the veloc-
ities at different positions in the pores are all in phase. Parameters k0 and α0, resp.
dimension of surface and dimensionless, are named static or d.c. permeability and
tortuosity.

Likewise, in the low-frequency limit,ω → 0, where thermal effects are “relaxed”,
thermal exchanges between solid and fluid have time to occur completely. It corre-
sponds to a limit of large thermal skin depths δτ = (2η/ρ0 Pr ω)1/2 with respect
to characteristic pore sizes �, i.e. ω � �2ρ0 Pr /2η. The solid, which generally
has large thermal inertia, imposes its steady ambient temperature to the fluid. The
condensation-rarefactions occur in isothermal regime and the fluid “effective bulk
modulus” is equal to the isothermal modulus K0, equal to P0 the ambient pressure,
meaning that β(ω) → γ , the adiabatic constant of the saturating fluid. In this limit,
corrections to the leading isothermal behaviour are easily obtained by using (7.174)
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and by noting that the dynamic thermal permeability k ′(ω) tends to Lafarge’s d.c.
thermal permeability k ′

0, (equal to the inverse trapping constant, see [3, 17]), and the
dynamic thermal tortuosity is mainly purely positive imaginary:

α′(ω) → ν ′φ
−iωk ′

0

+ α′
0. (7.194)

We can denote τ0 the fluid excess temperature pattern which appears in d.c. regime,
(where d.c. is here only in the sense ω → 0, and not ω = 0):

0 = κ∂2τ0 + β0T0∂〈p〉 f /∂t, in V f , (7.195)

τ0 = 0, on ∂V. (7.196)

A comparison of (7.194) with (7.186) shows that

φ

k ′
0

= 〈−τ0∂
2τ0〉 f

〈τ0〉2f
, α′

0 = 〈τ 2
0 〉 f

〈τ0〉2f
, (7.197)

wherewehave as before suppressed complex conjugates as the temperature variations
in the pores are all in phase in this d.c. limit.

High-Frequency Parameters: α∞, Λ, Λ′

In the opposite high-frequency limit,ω → ∞, where the viscous effects are “frozen”,
viscous shearing motions only have time to develop in an immediate vicinity of the
pore walls. It corresponds to a limit of small viscous skin depths, ω � �2ρ0/2η. The
fluid velocity tends to the ideal-fluid flow pattern v∞, such that:

ρ0
∂v∞
∂t

= −∂δp∞ + [−∂x 〈p〉 f + F
]
x̂, in V f , (7.198)

∂ · v∞ = 0, in V f , (7.199)

δp∞ = stationary random, in V f , (7.200)

v∞ · n̂ = 0, in ∂V. (7.201)

excepted for a vanishingly small viscous boundary layer region at the pore walls, and
for an additional potential-flowperturbation in the bulk, of comparatively vanishingly
small amplitude.

The above leading order ideal-fluid flow pattern can be described in terms of the
scaled electric field E that appears in the pores, when the fluid is conducting, the
solid is insulating, and a unit macroscopic electric field 1x̂ is imposed, (see [17]):
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E = −∂Φ + x̂, in V f , (7.202)

∂ · E = 0, in V f , (7.203)

Φ = stationary random, in V f , (7.204)

E · n̂ = 0, on ∂V. (7.205)

Obviously,

v∞ =
[−∂x 〈p〉 f + F

]

−iωρ0
E, δp∞ = [−∂x 〈p〉 f + F

]
Φ. (7.206)

The actual fluid velocity in the high-frequency limit, will be

v = v∞ + δv, (7.207)

withv∞ ∝ E the above ideal-fluidprofile, and δv = δv p + δvv madeof twoparts: the
vortical boundary-layer part, δvv , such that η∂2v = η∂2δvv = 0, rapidly decreasing
away from the pore-walls, and the additional small-amplitude bulk potential-flow
perturbation, δv p, η∂2v p = 0, with no contribution to the Laplacian viscous term
η∂2v.

As regards the fluid excess-temperature pattern in the high-frequency limit,
ω → ∞, where thermal exchanges are “frozen”, (small thermal skin depths, ω �
�2ρ0cP/2κ), and again because we make the important simplification that the fluid
motion is that of an incompressible fluid at the pore scale, it tends to the adiabatic
constant profile τ∞, such that:

ρ0cP
∂τ∞
∂t

= β0T0
∂〈p〉 f

∂t
, in V f , (7.208)

or

τ∞ = β0T0
ρ0cP

〈p〉 f , in V f , (7.209)

excepted for a vanishingly small thermal boundary layer region at the pore walls.
The actual excess-temperature in the high-frequency limit, will be:

τ = τ∞ + δτ, (7.210)

with δτ , a diffusive part near the pore-walls, associated with κ∂2τ = κ∂2δτ = 0,
and rapidly decreasing away from the pore-walls.

As shown below, in the present simplification a consistent boundary-layer calcu-
lation gives

α(ω) = α∞
[
1 +

(
ν

−iω

)1/2 2

Λ
+ · · ·

]
, α′(ω) = α′∞

[
1 +

(
ν′

−iω

)1/2 2

Λ′ + · · ·
]

,

(7.211)
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when the pore-walls ∂V are assumed locally plane, where:

α∞ = 〈v2∞〉 f
〈v∞〉2f

, α′
∞ = 1, (7.212)

2

Λ
=

∫
∂V v2∞dS∫
V f

v2∞dV
,

2

Λ′ =
∫
∂V dS∫
V f

dV
, (7.213)

where
∫
∂V dS denotes integral on the pore-walls, and

∫
V f

dV integral in the fluid
volume. Here, α∞ is the ideal-fluid or electrical tortuosity (〈E〉 f · e = 1/α∞), Λ is
Johnson’s viscous characteristic length [2] and Λ′ is Allard’s thermal characteristic
length [18].

To show (7.211)–(7.213),we rectify, in the presence of thermal effects, a reasoning
given in [2], (see [19] for a different, more involved but direct calculation). It consists
in requiring the compatibility of two sound attenuation calculations, one directly
macroscopic and the other starting at the microscopic level. Looking for plane-
wave solutions varying as e−iωt+iq(ω)x , of themacroscopicmotion equations (7.156)–
(7.159), (without the source term), we find a dispersion equation

ρ0α(ω)χ0β(ω)ω2 = q(ω)2. (7.214)

On a macroscopic scale, the intensity will decay like e−2q ′′x , with q ′′ = �q(ω). With
asymptotics (7.211), the attenuation constant q ′′ is found to be:

q ′′ = ω

c0

√
α∞

[
1

Λ

√
ν

2ω
+ (γ − 1)

1

Λ′

√
ν ′

2ω

]
+ · · · (7.215)

On the other hand, starting at the microscopic scale, with a classical reasoning given
in Landau and Lifshitz [20], p. 299, q ′′ can be related to the velocity and excess-
temperature fields v(x) and τ(x):

q ′′ = |Ėmech |
2S0

, (7.216)

where S0 is the time-averaged acoustic energy flux calculated by making abstraction

of the effect of losses,18 and Ėmech is the time-averaged rate of energy dissipation
per unit total volume V = V f /φ. The mean acoustic energy flux S0 is estimated as
cE where c is the speed of sound without losses, c = c0/

√
α∞, and E is the mean

acoustic energy per unit total volume, equal to twice the mean kinetic or potential
energy per unit total volume:

18 Equation (7.216) is a first order calculation, which will give the leading term in (7.215). The
losses determine the numerator so they need not be taken into account in the denominator.
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S0 = c0√
α∞

2
1

V

∫

V f

1

2
ρ0v2∞(t, x)dV = c0√

α∞
1

V

∫

V f

1

2
ρ0|v∞(x)|2dV

= c0√
α∞

2
1

V

∫

V f

1

2
χ0〈p∞〉2f (t, x)dV = c0√

α∞
1

V

∫

V f

1

2
χ0|〈p∞(x)〉 f |2dV,

(7.217)
where in the right are complex amplitudes, and we have added index ∞ to recall
high-frequency asymptotic limit.

The rate of energy dissipation per unit volume Ėmech is [20]:

Ėmech = − κ

T0

1

V

∫
(∂τ )2 dV + · · ·

− 1

2
η
1

V

∫ (
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik

∂vl

∂vl

)2

dV − ζ
1

V

∫
(∂ · v)2 dV,

(this is the volume integral of the dissipation rate −D, see the Chap.6, (6.111)), and
after average over a cycle and replacement of the real quantities by their complex
amplitudes, it reads

Ėmech = − κ

T0

1

2

1

V

∫
|∂τ |2dV − 1

4
η
1

V

∫
| ∂vi

∂xk
+ ∂vk

∂xi
|2dV, (7.218)

where the incompressibility of the fluid on the size scale of the pores has been
accounted for. By integrations by parts, we have:

∫
|∂τ |2 dV =

∫
∂

∂xk

(
τ

∂τ ∗

∂xk

)
dV −

∫
τ∂2τ ∗dV,

∫ ∣∣∣∣
∂vi

∂xk
+ ∂vk

∂xi

∣∣∣∣
2

dV =2
∫

∂

∂xk

(
vi

∂v∗
i

∂xk

)
dV + 2

∫
∂

∂xk

(
vi

∂v∗
k

∂xi

)
dV + · · ·

− 2
∫ (

vi
∂

∂xi

∂v∗
k

∂xk

)
dV − 2

∫
vi∂

2v∗
i dV .

In the two expressions, only the last integrals subsist: for the total derivative integrals,
their vanishing comes from the stationary nature of the fields and the vanishing of
velocity and excess temperature on ∂V; for the above third integral, its vanishing
comes from incompressibility. The remaining two integrals come from the viscous
and thermal boundary layers where ∂2v∗

i and ∂2τ ∗, nonzero, are rapidly decreas-
ing. To evaluate these integrals, a high-frequency limit is considered, in which the
pore-surface interface ∂V is assumed to be locally plane at the scale of the rel-
evant boundary-layer thicknesses, resp. δ = (2ν/ω)1/2 for the velocity field, and
δ′ = (

2ν ′/ω
)1/2

for the excess temperature field. In this case, we find by a classic

http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
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calculation, (boundary-layer profile near a flat surface [20], p. 91), that the excess-
temperature and velocity fields have the following form, where xw denotes a position
on ∂V , and ξ is a coordinate along the normal, (−n̂ξ = x − xw, with n̂, the outward
normal to the fluid region at xw):

v(x) = v∞(xw)
[
1 − eikvξ

]
, τ (x) = τ∞(xw)

[
1 − eikτ ξ

]
, (7.219)

and kv = (1 + i)/δ and kτ = (1 + i)/δ′ are the shear and entropic wavenumbers,
(6.66) and (6.57.2), of the Chap.6. Substituting (7.219) in the integrals and making
the integrations

∫
dV in the form of

∫
∂V dS

∫ ∞
0 dξ , we find

Ėmech = − 1

T02V

(
1

2
ωκρ0cP

)1/2 ∫

∂V
|τ∞|2dS + · · ·

− 1

2V

(
1

2
ωηρ0

)1/2 ∫

∂V
|v∞(xw)|2dS.

(7.220)

Then dividing the two terms by the appropriate (kinetic-energy or potential-energy)
form of (7.217), we get, by (7.216), the following expression of q ′′:

q ′′ = 1

T02V

(
1

2
ωκρ0cP

)1/2 ∫
∂V |τ∞(xw)|2dS

2
c0√
α∞

1

V

∫ 1

2
χ0|〈p∞(x)〉 f |2dV

+ · · ·

+ 1

2V

(
1

2
ωηρ0

)1/2 ∫
∂V |v∞(xw)|2dS

2
c0√
α∞

1

V

∫ 1

2
ρ0|v∞(x)|2dV

+ · · ·

(7.221)
According to (7.209), |〈p∞〉 f |2 can be replaced by |τ∞|2 (β0T0/ρ0cP)2, so that, after
using the general thermodynamic relation Equation (5) of the Chap.6, we obtain

q ′′ = ω

c0

√
α∞

[ ∫
∂V |v∞|2dS

2
∫
V f

|v∞|2dV
√

ν

2ω
+ (γ − 1)

∫
∂V |τ∞|2dS

2
∫
V f

|τ∞|2dV
√

ν ′

2ω

]
+ · · ·
(7.222)

Comparison with (7.215) shows that this expression of q ′′ justifies the asymp-
totics (7.211), with expressions (7.212) and (7.213) of the parameters. The |.| are
useless and can be removed, as the different velocities and temperatures are in phase
in a REV. The factor of τ 2∞ do not appear in the characteristic thermal length, because,
as it is a pore-scale constant, it can be removed from numerator and denominator.19

19 In nonlocal theory, there will be a generalization to be made, and when the pressure is distributed
at the pore scale, the factors |τ∞|2 should be maintained since they are not constant.

http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
http://dx.doi.org/10.1007/978-3-030-84300-7_6
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Intermediate Frequencies: Constraints, and Simple
Model-Functions

At intermediate frequencies, the functions α(ω) and α′(ω) will interpolate smoothly
between the low-frequencies and high-frequencies behaviours (7.188), (7.194) and
(7.211). Indeed, if we write these functions in the form:

α(ω) = ηφ

−iωρ0kapp(ω)
+ αapp(ω), α′(ω) = κφ

−iωρ0cPk ′
app(ω)

+ α′
app(ω),

(7.223)
the introduced new functions kapp(ω), αapp(ω), k ′

app(ω), α′
app(ω), are apparent tortu-

osities and permeabilities in intermediate regime, given by (see (7.185) and (7.186)):

φ

kapp
= 〈−v · ∂2v�〉 f

〈v〉 f · 〈v�〉 f , αapp = 〈v · v�〉 f
〈v〉 f · 〈v�〉 f , (7.224)

φ

k ′
app

= 〈−τ∂2τ �〉 f
〈τ 〉 f 〈τ �〉 f , α′

app = 〈ττ �〉 f
〈τ 〉 f 〈τ �〉 f , (7.225)

where v and τ are the complex patterns of the velocity and excess temperature
fields appearing at frequency ω, and we can show that, because of the divergence-
free nature of the pore-scale motion, these new functions are monotonic strictly
decreasing functions of frequency [21]:

dkapp
dω

< 0,
dαapp

dω
< 0,

dk ′
app

dω
< 0,

dα′
app

dω
< 0. (7.226)

These behaviours are related to the condition, (expressing the divergence-free
motion), that the singularities, poles, and zeros, of the functions α(ω), k(ω), and
α′(ω), k ′(ω), of complex ω, are located on the negative imaginary ω axis, (see [2,
3, 17]). This is a much more severe condition than that imposed solely by causal-
ity. It excludes resonant behaviours because the effect of spatial nonlocalities is not
accounted for, in the modeling. There follows that there are relatively simple analyt-
ical models of the frequency dependence of functions α(ω) and α′(ω), which allow
them to be represented at any real frequency, with reasonable precision, in terms
of the physical constants of the fluid and the preceding low- and high-frequency
geometric parameters.

To express the characteristic relaxation these functions present, it is appropriate
to consider their inverses 1/α(ω) and 1/α′(ω). These inverses pass from the val-
ues [α−1]0 = [α′−1]0 = 0 at ω = 0, to the values [α−1]∞ = 1/α∞ and [α′−1]∞ = 1
at ω = ∞. Thus we write them in terms of relaxation functions χ(ω) and χ ′(ω),
relaxing from 1, at ω = 0, in relaxed state, to 0, at ω = ∞, in frozen state:
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1

α(ω)
= [α−1]∞ + ([α−1]0 − [α−1]∞

)
χ(ω) = 1

α∞
(1 − χ(ω)) ,

1

α′(ω)
= [α′−1]∞ + ([α′−1]0 − [α′−1]∞

)
χ ′(ω) = 1 − χ ′(ω).

(7.227)

Based on the property that the poles and zeros are on the negative imaginary
axis, and the limiting behaviours (7.188), (7.194), and (7.211), must be satisfied, it
can be anticipated that the following simple expressions of the relaxation functions
χ(ω) and χ ′(ω), will provide a very satisfactory full-frequency description, (with
discrepancies in the transition region, less than a few per cent):

1

χ(ω)
= 1 − i x

S(x)
,

1

χ ′(ω)
= 1 − i x ′

S′(x ′)
, (7.228)

S(x) = 1 − P+ P

√
1 − i xM

2P2
, S′(x ′) = 1 − P′ + P′

√
1 − i x ′M ′

2P′2 , (7.229)

x = ω

ωv

, x ′ = ω

ωτ

, (7.230)

ωv = ν

Fk0
,

(
F = α∞

φ

)
, ωτ = ν ′

F ′k ′
0

,

(
F ′ = 1

φ

)
, (7.231)

M = 8Fk0
Λ2

, M ′ = 8F ′k ′
0

Λ′2 , (7.232)

P = M

4

(
α0

α∞
− 1

) , P′ = M ′

4 (α0 − 1)
. (7.233)

The quantitiesωv andωτ , are characteristic viscous and thermal, pulsation rollover
frequencies, between low and high frequency regimes. The purely geometrical quan-
tities M , P, M ′ and P′, are dimensionless, viscous and thermal, form factors of order
one, that will determine the precise shape of the viscous and thermal relaxation. The
notation M is borrowed from [2]. The notation P (P for Pride), refers to the paper
[22] rectified in [15]. When P is set to the value 1, one obtains the model of α(ω)

proposed by Johnson et al. [2]. When M ′ and P′ are set to the value 1, one obtains
the model of β(ω) proposed by Allard and Champoux [18]; when only P′ = 1, the
model proposed by Lafarge et al. [3].

The behaviours described by these functions closely remind behaviours observed
in electromagnetics of dielectric and ionic conductors. With forms factors taken
around 1, the above relaxation forms of the functions χ(ω) and χ ′(ω), best rep-
resented using Cole-Cole (also named Argand) plots (�χ(ω) versus �χ(ω)), are
roughly comparable to a Davidson-Cole relaxation with exponent 1/2: χ, χ ′ ≈
1/(1 − iωΘ)1/2, 1/(1 − iωΘ ′)1/2. When the M M ′ are small, the relaxation tends
to Debye’s relaxation χ, χ ′ ≈ 1/(1 − iωΘ), 1/(1 − iωΘ ′), excepted at sufficiently
high frequencies. Notably, also, it can be observed that the characteristic high-
frequency limits (7.211) imply, for the relaxation functions, the limiting behaviours,
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ω → ∞,χ, χ ′ ≈ (Mωv/−2iωP2)1/2, (M ′ωτ/−2iωP′2)1/2. For the associated time-
domain functions χ(t) and χ ′(t), this give laws of the empirical “Curie-von Schwei-
dler” power-law type [23, 24]: χ(t) and χ ′(t) ∝ t−1/2, for the typical decrease of
any field, at small times, just after an excitation. This fractional power-law type
of behaviour has caused interrogations in electromagnetics; it has been interpreted
as indicative of a many-body problem, revealing collective behaviour of electrons.
Here, it is interpreted in terms of the existence of lossy boundary layers; following
[17] we could show that it expresses in terms of fractal accumulation of viscous
or thermal relaxation times, near zero, with dimension 1/2 (see [17], Appendix C).
With pore-walls taken cusped with some fractality, instead of being locally plane,
we would expect obtaining a similar relaxational behaviour, but with different values
for the exponent (because of the different fractal dimension of the accumulation),
leading in particular to the more general form of the Curie-von Schweidler law: χ(t),
χ ′(t) ∝ t−n, t−n′

, 0 < n and n′ < 1.
Finally, let us recall the situation in electromagnetics of non-ferromagnetic mate-

rials, when one considers that the dispersion effects on the magnetic susceptibility
μ(ω) are small relativistic effects, of second order on the small parameter β = v/c,
(with v an estimate of electronic velocities in molecules, and c the speed of light).
In this case, because of the smallness of β and quadratic (β2) nature of relativistic
effects, the low-frequency and high-frequency values of μ(ω) coincide, μ(ω) ∼= μ0,
and no dispersion intervenes. There is a similar situation here when the permeat-
ing fluid is a liquid. In a simple fluid there is the general thermodynamic identity
(Chap. 6, (6.5)):

β2
0T0c

2
0

cP
= γ − 1, (7.234)

where β0 is the thermal expansion coefficient of the fluid, T0 is ambient temperature,
c0 is the adiabatic velocity of sound and cP is the heat coefficient at constant pres-
sure. It turns out that in a liquid, γ ∼= 1, because the deviation γ − 1 is a quadratic
effect on the thermal expansion coefficient β0, which is very small. Therefore, for a
liquid-saturated material described by the present local theory, (i.e. when the mate-
rial has a sufficiently simple microstructure), the low-frequency and high-frequency
bulk-moduli values coincide, β(ω) ∼= 1, and no dispersion intervenes on the com-
pressibility.
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Chapter 8
Numerical Methods for Modelling
and Simulation of Porous Materials

An Introduction Based on Finite Elements

Peter Goransson and Olivier Dazel

Abstract We introduce methods for modelling and simulation of anisotropic poroe-
lastic materials in the frequency domain. Starting from the equations formulated
by Biot, in their anisotropic form, we derive two different symmetric weak forms
together with the boundary conditions that has to be satisfied. We employ a mixed
displacement-pressure formulation and solutions are obtained by applying the finite
element method to the proposed weak forms. In order to illustrate the use of the
finite element method, we highlight some particular aspects related to simulations
where poroelastic materials are involved. These include convergence of the discre-
tised solution and boundary conditions at interfaces between poroelastic materials
and solids/fluids. Results are given for some selected application examples of foam
and plate combinations as well as a poroelastic foam with embedded inclusions.

8.1 Introduction

In flexible porous materials with open cells, the vibroacoustic energy is carried both
through an airborne path, i.e. the sound pressure waves propagating through the fluid
in the pores, and through an structure borne path, i.e. the elastic stress waves car-
ried through the solid frame of the material. These waves are strongly coupled, i.e.
they simultaneously propagate in both the fluid and the solid frame but with differ-
ent strengths and relative phase. A characteristic of this coupled wave propagation,
is that the vibroacoustic energy is dissipated and converted into heat as the wave
travels through the material. To model such a dynamic behaviour, we use the elas-
tic properties (i.e. stiffness controlled by material, topology, geometry, interfaces),
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the viscoelastic properties (i.e. solid damping controlled by material, geometry), the
acoustic properties (which are governed by the fluid medium) and the viscoacoustic
properties (i.e. fluid damping controlled by geometry, topology, interfaces).

All these dissipation mechanisms are in general functions of frequency and fur-
thermore, vary with frequency in strength and character. For a given situation, the
balance between energy dissipated through vibration of the solid frame and changes
in the acoustic pressure varies with the topological arrangement, choice of material
properties, geometrical dimensions, interfacial conditions, etc. Traditionally, and also
in the present work, the dynamic behaviour of porous materials is described in terms
of macroscopic, space averaged quantities, such as acoustic pressure, elastic stress,
solid and fluid displacements. In the current work parts of the modelling paradigm
of porous foams, known in the literature as Biot’s theory, will be briefly reviewed
from an acoustics and vibrations perspective.

Traditional modelling and simulation of poroelastic materials (PEM) in vibroa-
coustic applications have for a long time been based on the assumption of isotropic
elastic and acoustic properties, i.e. the materials possess a high degree of symmetry
in their constitutive properties. However, it is well known that, due to the manufac-
turing processes involved, real PEMs are anisotropic to a certain degree. Examples
where this holds are foamed polymers, fibrous wools etc. We will not review the
large number of different methods that are available to solve problems involving
isotropic PEM, for this we point to the recent review in [1]. Here we will instead
start from Biot’s equations in their anisotropic form, from which we derive and solve
two different symmetric weak forms together with the boundary conditions that have
to be satisfied in different configurations. Although there are a number of different
choices of variables that can be made, the weak forms are here set up in terms of
a mixed displacement-pressure formulation. The solutions are obtained by applying
the finite element (FE) method.

To illustrate different aspects of modelling in applications where PEMs are
involved, we solve some problems and results are given for selected application
examples of a foam and plate combination. We highlight particular aspects related to
convergence of the discretised solutions, boundary conditions at interfaces between
poroelastic materials and solids/fluids, as well as solutions involving periodic bound-
ary conditions and Bloch waves.

Our objective is to give a general introduction to the modelling of anisotropic
PEM, however, without going into too much detail of the FE method as such, as this
is beyond the scope of the present work. We will illustrate the effects of anisotropy
with examples from the literature and we will show some intricate aspects of solving
problems using simpler material models but still complex configurations. Our hope
is that this will serve as a point of entry to the world of numerical modelling of these
materials and an inspiration to go deeper into the subject.
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8.2 Biot’s Equations

The modelling considered here, is based on continuum mechanics at a mesoscopic
scale, i.e. on homogenised fields of the porousmaterials. This is only possible if there
exists a Representative Volume Element (RVE) whose size is sufficiently small in
comparison with the wavelengths but also sufficiently large compared to the charac-
teristic size of the heterogeneities to be representative. The motion of the solid (resp.
fluid) part is averaged over the RVE and the homogenised media are called the solid
and the fluid phase respectively.

The partial differential equations (PDEs) governing an anisotropic PEM involve
(analogously to an isotropic material) coupling between the solid phase and the
fluid phase in several different ways and the equation terms used to represent these
interactions will be introduced below. The derivations take as a starting point the
works by Biot [2–6]. Note that here but a brief introduction will be given, for more
details see the literature cited throughout the text and the references provided therein.
We define the necessary symbols as they are introduced in the derivation.

We start with some definitions and useful relations, in the form of the constitutive
and the momentum equations. Recalling that the constitutive relations describe how
the stresses relate to the deformation gradients, in both the solid and the fluid, there
are coupling terms between the two phases related to the dilatation (compression)
and deviation (shear). Similarly, the momentum equations which express the balance
between internal forces, relate the gradients in the stress fields to the corresponding
accelerations. These will be referred to as first order equations. We will identify
frequency dependent quantities with a tilde symbol.

The expressions presented in this section originate from the theoretical framework
proposed by Biot, [2, 5]. We will not recall the original equations stated by Biot as
there are a large number of publications where they may be studied in close detail,
see e.g. [7]. Instead most of the derivations that follow are inspired by [8], where the
focus was on weak forms and FE, here presented in a slightly modified form.

In the original Biot theory, the modelling is based on the fluid homogenised
displacements of the solid phase usi and of the fluid phase u

f
i . The two corresponding

stress tensors are σ s and σ f , which respectively represent the stress tensors of the
solid and fluid phases, together forming the total stress σ t = σ s + σ f . A few years
after the original formulation, Biot proposed a modification to the original theory
which was required to handle the case of inhomogeneous materials, in particular
when the porosity is a function depending on space. The key was to replace the fluid
displacement u f

i by the relative flowwi = φ(u f
i − usi ), where φ is the open porosity.

From the basic relations proposed by Biot, a number of different representations
may be proposed. For numerical modelling and solutions based on the FE method,
where the computational effort required is strongly dependent on the number of dof ,
most of them keep the solid displacement and introduce the pressure as dependent
field variables. This is directly related to one of the key properties of σ f , i.e. that it is
scalar and proportional to the acoustic pressure, through the relation σ

f
i j = −φpδi j .
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As will be shown below, using this, the fluid displacement and the fluid stress tensor
may then be eliminated. This then leads to a new set of slightly modified solid
displacements and stresses.

8.2.1 Constitutive Laws

In the followingwewill discuss the constitutive laws, here written in Cartesian tensor
component notation, with Einstein’s summation convention implied for repeated
indices. Thus, with i, j the component ordinal numbers in Cartesian co-ordinate
system, xi with i = 1, 2, 3, (.),i = ∂(.)

∂xi
is the partial derivative with respect to co-

ordinate xi . δi j is the Kronecker’s delta.
We begin with the constitutive laws for the solid,

σ s
i j =

(
Ĉi jkl + Q̃i j Q̃kl

φ2 K̃eq

)
εskl + Q̃i j u

f
k,k, (8.1)

and for the fluid,
σ

f
i j =

(
Q̃klε

s
kl + φ2 K̃equ

f
k,k

)
δi j , (8.2)

where εskl is the solid frame Cauchy strain tensor and Ĉi jkl corresponds to the in-
vacuoHooke tensor of the solid phase. As shown in [8], Keq is the scalar fluid
compressibility modulus:

K̃eq = Ks

1 − φ − KsC̃i jkldi j dkl + φKs/K f

, di j = −εsi j

p
(8.3)

where di j is the unjacketed frame compressibility compliance tensor. Furthermore,
Q̃i j is the dilatational coupling tensor:

Q̃i j =
[
(1 − φ) δi j − C̃i jkldkl

]
φKs

1 − φ − KsC̃i jkldi j dkl + φKs/K f

. (8.4)

Two other stress tensors may also be considered. The total stress tensor σ t and
the in-vacuo stress tensor of the solid phase, which corresponds to the stress in the
absence of fluid: σ̂ s

i j = Ĉi jklε
s
kl . These are linked by the following relations:

σ t
i j = σ s

i j + σ
f
i j = σ̂i j − γ̃ ′

i j p, , (8.5)

where γ̃ ′
i j is an elastic coupling coefficient,
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γ̃ ′
i j = φ

(
δi j + Q̃i j

φ2 K̃eq

)
, (8.6)

which may be used to express the link between the solid and in-vacuo stress tensors:

σ s
i j = σ̂ s

i j − (
γ̃ ′
i j − φδi j

)
p. (8.7)

The pressure p is related to the divergence of the fluid displacement uW ,

p = −K̃equ
W
j, j , (8.8)

where uW is a combination of the solid and fluid displacement defined as,

uW
j = φ

(
u f
j + Q̃ jl

φ2 K̃eq

usl ,

)
(8.9)

which is equivalent to,

u f
j = uW

j

φ
− Q̃ jl

φ2 K̃eq

usl . (8.10)

Thus, using (8.10), we may replace the fluid displacement by a combination of uW

and the gradient of the pressure.

8.2.2 Momentum Equations

The momentum equations were given in [8] as:

σ s
i j, j = −ω2ρ̃11

i j u
s
j − ω2ρ̃12

i j u
f
j , (8.11)

and
σ

f
i j, j = −ω2ρ̃12

i j u
s
j − ω2ρ̃22

i j u
f
j . (8.12)

As in the original Biot’s formulation, these equations involve three complex densities.
In order to simplify the expressions, especially as now we have tensors (as opposed
to scalars for an isotropic material) that will be inverted and multiplied, we choose
to express all of them through the dynamic tortuosity, α̃i j ,

ρ̃22
i j = φρ0α̃i j , ρ̃12

i j = φρ0
(
δi j − α̃i j

)
, ρ̃11

i j = ρ1 + φρ0
(
α̃∞
i j − δi j

)
, (8.13)

with

α̃i j = α∞
i j − j

b̃i j
ω

, (8.14)
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and α∞
i j being the geometric tortuosity tensor and b̃i j the viscous drag tensor. One

may now take advantage of the scalar property of the fluid stress tensor, to express
the fluid displacement u f as a function of the solid displacement and the pressure.
This leads to a second relation which allows us to replace the fluid displacement:

u f
j = α̂ jk p,k

φρ0ω2
+ (δ jk − α̂ jk)u

s
k, (8.15)

where α̂ jk is the inverse of the dynamic tortuosity tensor (α̂ik α̃k j = δi j ).
From this, we may rewrite the solid momentum equation as:

σ̂ s
i j, j + γ̃i j p, j = −ω2ρ̃i j u

s
j , (8.16)

with
γ̃i j = φα̂i j − γ̃ ′

i j , (8.17)

ρ̃i j = ρ1 + φρ0(δi j − α̂i j ), (8.18)

where γ̃i j is a coupling factor which involves dynamic effects through the dynamic
tortuosity and elastic coupling through γ̃ ′

i j . Note that ρ̃i j is the solid apparent density.
In a similar way the fluid displacement may be eliminated from the fluid momen-

tum equation using the displacement uW
i :

− φ2 p,i = −ω2φρ0

(
δi j − α̃i j + α̃ik Q̃k j

φ2 K̃eq

)
usj − ω2ρ0α̃i j u

W
j , (8.19)

We may condense this relation through rewriting it as,

− φ2

ρ0ω2
α̂i j p, j = −γ̃i j u

s
j − uW

i , (8.20)

The advantage of considering uW
i is that it may now be eliminated by taking the

divergence and introducing (8.8),

− φ2

ρ0ω2
α̂i j p, j i = −γ̃i j u

s
j,i + p

K̃eq

. (8.21)

We have with these relations completed the transformation from fluid stress tensor
and displacements, to pressure and solid displacements for the anisotropic PEM
modelling.



8 Numerical Methods for Modelling … 339

8.3 Weak Forms

There are a number of different ways of setting up the weak forms for an anisotropic
PEM. Although in principle equal, slightly different choices may be made in the
derivations. These choices introduce boundary terms that may lead to natural, homo-
geneous coupling conditions that may be of interest in certain applications. Fre-
quently we face modelling situations where a PEM is placed next to a solid panel, or
when it is in direct contact to an air domain, but there are of course other configura-
tions that could be considered as well. Here, two mixed displacement formulations
will be presented, one which naturally couples with an acoustic air domain, see [9]
for the isotropic PEM modelling, (here referred to as the air formulation or PEM1)
and one which naturally couples with a solid in the case where the solid displace-
ments are continuous and the normal relative flow is zero, see [10] for the isotropic
PEM modelling, (here referred to as the bonded solid formulation or PEM2).

8.3.1 PEM1 Weak Formulation

To state the weak forms, we introduce the test functions vs
i and q. We start with

the solid momentum equations, (8.16), and multiply by vs
i , integrate over the porous

domainΩ of boundaryΓp and perform a partial integration of the solid stress gradient
term. This gives,

∫
Ω

vs
i, j Ĉi jklu

s
k,l − ω2vs

i ρ̃i j u
s
j + vs

i γ̃i j p, j dΩ =
∫

Γ

vs
i σ̂

s
i j n j dΓ. (8.22)

Similarly we multiply equation (8.21) by q, integrate over the porous domain Ωp

and perform a partial integration of the term involving the second order gradient of
the pressure,

∫
Ω

φ2

ρ0ω2
α̂i j p, j q,i − pq

K̃eq

+ γ̃i j u
s
j,i q dΩ =

∫
Γ

φ2

ρ0ω2
α̂i j p, j niq dΓ. (8.23)

As will be shown later, these two equations naturally couples with a weak form
representing air through the boundary integral on their respective RHS. It will in the
following be referred to as PEM1.

8.3.2 PEM2 Weak Formulation

The objective of the second formulation is to modify the weak form in order to
introduce slightly different boundary integral terms that naturally couples with a
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solid attached panel. We start by rewriting the third term on the LHS of (8.22), using
(8.18) and performing a partial integration, as

∫
Ω

vs
i γ̃i j p, j dΩ =

∫
Ω

φvs
i α̂i j p, j dΩ + γ̃ ′

i j

(∫
Ω

vs
i, j p dΩ −

∫
Γ

vs
i δi j n j p dΓ

)
.

This allows us to rewrite the weak form of the solid part as,

∫
Ω

vs
i, j Ĉi jklu

s
k,l − ω2vs

i ρ̃i j u
s
j + φvs

i α̂i j p, j + γ̃ ′
i jv

s
i, j p dΩ =

∫
Γ

vs
i σ̂

t
i j n j dΓ, (8.24)

Similarly, for the third term of the LHS of (8.23), we may write,

∫
Ω

γ̃i j u
s
j,i q dΩ =

∫
Ω

φα̂i j u
s
j,i q dΩ +

(∫
Ω

γ̃ ′
i j u

s
i q, j dΩ −

∫
Γ

pδi jv
s
i n j dΓ

)
dΓ,

and the weak form of the fluid is then,

∫
Ω

φ2

ρ0ω2
α̂i j p,i q, j − pq

K̃eq

+ γ̃ ′
i j u

s
j,i q + φα̂i j u

s
j,i q dΩ =

∫
Γ

qw j n jq dΓ. (8.25)

In these forms, the above two equations naturally coupleswith aweak form represent-
ing a solid through the boundary integral on their respective RHS. This formulation
will in the following be referred to as PEM2.

8.3.3 Elastic Solid

In order to prepare for the discussion of the coupling between different types of
domains in more detail, we introduce the weak form for the elastic structure as∫

Ωp

ve
i, jC

e
i jklu

e
k,l − ρeω

2ve
i u

e
j dΩ =

∫
Γ

vs
i σ̂

e
i j n

e
j dΓ, (8.26)

where ue and ve are respectively the unknown elastic solid displacements and the
corresponding test fields. Furthermore, σ̂ e

i j = Ce
i jklu

e
k,l is the stress tensor of the elastic

structure, ρe is its density and ne is the outgoing normal of the elastic domain.
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8.3.4 Air

Finally, to conclude this part discussing weak forms, the air cavity weak form is,

∫
Ωi

pa, j q
a
, j

ρaω2
− paqa

Ka
dΩ =

∫
Γi

1

ρaω2
qa pa, j n

a
j dΓ, (8.27)

where pa is the acoustic pressure in the air domain, Ka is the bulk modulus of air,
ρa the ambient density of air, na is the outgoing normal of the acoustic domain and
qa the test field.

8.4 Discrete Linear System

To obtain a FE based solution of a problem involving, among others PEMs, we start
from theweak forms presented in (8.3). The steps required to obtain the discretisation
are the same as for elastic structures and acoustic domains etc., andwewill only recall
the PEM case here.

First we divide the domain into a finite number of, non-overlapping domains,
commonly referred to as elements, denoted by Ωe with e = 1...Ne. These elements
form a mesh and in each of them the PDEs are transformed into algebraic equations,
which are approximations to the exact solution. The elements are preferably simple
in shape, thus requiring a finite set of polynomial shape functions to sufficiently
accurate describe the variation of the field variables in the sub-domain. Typical
functions used are nodal or bubble shape functions along edges, faces and in the
interior. Some examples (Lobatto shape functions) are given in the following.

With simple polynomial shape functions, the element equations may be numeri-
cally integrated, resulting in elementary matrices that approximate the spatial vari-
ation, and then assembled into a larger system of algebraic equations, which then
may be solved numerically and the solution obtained may be used to obtain relevant
results such as pressures, displacements, etc.

8.4.1 Elementary Matrices

Assuming that we have Nd shape functions in an element e, a physical field f (e) may
be approximated by:

f (e)(x) ≈
Nd∑
k=1

ϕk(x) f
(e)
k = [ϕ(x)]f (e). (8.28)
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The shape functions ϕk(x) approximate the spatial dependence of the fields, and
usually the test fields, vs

i and q, are approximated in a similar manner. Each shape
function is associated to a degree of freedom f ek which will be an unknown of the
global FE problem. The shape functions and degrees of freedom of one element can
be respectively gathered in a matrix [ϕ(x)] and a vector fe.

The key characteristic of a poroelastic material is that four fields should be dis-
cretised (three displacement fields and one pressure fields). We then have, for the
pressure:

p(e)(x) ≈ [ϕ(x)]p(e), (8.29)

and for the displacements, where each direction is discretised independently,

⎧⎨
⎩
u(e)
1 (x)

u(e)
2 (x)

u(e)
3 (x)

⎫⎬
⎭ =

⎡
⎣[ϕ(x)] 0 0

0 [ϕ(x)] 0
0 0 [ϕ(x)]

⎤
⎦

︸ ︷︷ ︸
[ϕu(x)]

u(e), u(e) =
⎧⎨
⎩
u(e)
1

u(e)
2

u(e)
3

⎫⎬
⎭ . (8.30)

The dynamics of the response of the PEM in one element is then approximated in
terms of elementary vectors u(e) and p(e). Note that here we have chosen to use the
same shape functions for the pressure and the three displacements fields. However,
this is not a requirement as different shape functions (or different orders) can be
considered for each unknown.

8.4.2 Discretisation of the Weak Forms in One Element

The discretisation of the 8 volume integral terms (4 for the solid and four for the
pressure), that appear for both the PEM1 and the PEM2 formulations, is assumed
to be the same. Most of the integrals involved are standard for any FE problem and
will not be detailed here. Instead, we will present the discretisation for the terms
which are typical for PEM modelling, i.e. the corresponding volumetric coupling
between the solid and fluid phases. Note that in this section, we mix the summation
convention and matrix forms and it should be clear from the context when one or the
other is used. We start with the discretisation of the third term of the LHS of (8.24):∫

Ω(e)

vs
i α̂i j p, j dΩ ≈

∫
Ω(e)

v(e)
i

T [ϕu(x)]T α̂i j [ϕ, j (x)]p(e) dΩ. (8.31)

Note that the term corresponding to the test field has been transposed, this allows us
to separate the vectors v(e) and p(e) from the integral. This leads to the definition of
a volume coupling matrix [C(e)] which is a (3Nd × Nd) matrix as:
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[C1
(e)] =

∫
Ω(e)

[ϕu(x)]T α̂i j [ϕ, j (x)] dΩ. (8.32)

The superscript 1 is introduced to distinguish this particular form of the coupling
matrix from other coupling terms, that will be discussed below. The discretisation of
the coupling term over an element will then lead to:

∫
Ω(e)

vs
i α̂i j p, j dΩ ≈ v(e)T [C1

(e)]p(e). (8.33)

Similarly for the fourth term of the LHS of (8.24), another (3Nd × Nd)matrix [C2
(e)]

is introduced as: ∫
Ω(e)

γ̃ ′
i jv

s
i, j p dΩ ≈ v(e)T [C2

(e)]p(e), (8.34)

Finally there is yet one more coupling term, i.e. the third one in the LHS of (8.22),
which is discretised as: ∫

Ω(e)

vs
i γ̂i j p, j dΩ ≈ v(e)T [C3

(e)]p(e). (8.35)

Without going into further details of the derivations, we apply the same method-
ology to the other terms which are common between the two different formulations:

∫
Ω(e)

vs
i, j Ĉi jklu

s
k,l dΩ ≈ v(e)T [K(e)]u(e),

∫
Ω(e)

vs
i ρ̃i j u

s
j dΩ ≈ v(e)T [M(e)]u(e),

[K(e)] and [M(e)] are the elementary stiffness and mass matrices. For terms relative
to the fluid, one has:

∫
Ω(e)

φ2

ρ0
α̂i j p, j q, j dΩ ≈ q(e)T [H(e)]p(e),

∫
Ω(e)

pq

K̃eq

dΩ ≈ q(e)T [q(e)]p(e),

[H(e)] and [Q(e)] are the elementary kinetic and compression energy matrices which
are also common to the two weak forms. Note that all integrals above are in practice
computed for a standard reference element, and scaled to the actual element geometry.

The full elementary dynamic matrix [A(e)] for the PEM1 formulation, is then

[A(e)] =

⎡
⎢⎢⎣ [K(e)] − ω2[Me] [C3

(e)]

[C3
(e)]T

[H(e)]
ω2

− [Q(e)]

⎤
⎥⎥⎦ . (8.36)
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For the PEM2 formulation where {u,p} naturally couples to a solid, we have

[A′
(e)] =

⎡
⎢⎢⎣ [K(e)] − ω2[Me] [C1

(e)] + [C2
(e)]

[C1
(e)]T + [C2

(e)]T
[H(e)]
ω2

− [Q(e)]

⎤
⎥⎥⎦ . (8.37)

We see that the two formulations differ by the coupling terms between the solid and
the fluid, but otherwise have the same structure. Thus, in the following parts of the
procedure, as most of the steps are common between the two formulations, we have
decided not to overload the notation and instead to use a generic form as,

[A(e)] =
[[Auu

(e)] [Aup
(e)]

[Apu
(e)] [App

(e)]
]

. (8.38)

8.4.3 Assembly

The global system matrices, required to complete the modelling for a complex prob-
lem consisting of many elements, are obtained by summation of elementary matrices
and the method is the same for the two formulations. This is in principle not different
from any other FE solution, but some extra attention needs to be paid to the matching
between different degrees of freedom to their proper neighbours. As the vector of
degrees of freedom for a particular element {u(e),p(e)} is a sub-vector of the global
vector of degrees of freedom {u,p}, we need to establish a correspondence. There are
several ways of doing this, one is to introduce a boolean matrix [L(e)] of dimension
(4Nd × 4Ng) where 4Ng corresponds to the total number of degrees of freedom. We
then have: {

u(e)

p(e)

}
= [Le]

{
u
p

}
. (8.39)

The global dynamic matrix then reads:

[A] =
N∑

e=1

[L(e)]T [A(e)][L(e)] =
[[Auu] [Aup]
[Apu] [App]

]
. (8.40)

Note that this way of approaching the assembly is purely formal and just used to
explain the principles involved. Indeed, it can be shown that the multiplication
[L(e)]T [A(e)][L(e)] is a matrix of size (4Ng × 4Ng) with a submatrix correspond-
ing to [A(e)] at the position corresponding to the dof of the element. The global
matrix is then composed of four blocks which are the assembly of the elementary
ones.
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8.5 Coupling Between Domains

We will in the following discuss how a FE-PEM domain is assembled into a more
complex arrangement of different media, such as a solid and a fluid. As part of this
we will also illustrate the difference between the two weak formulations derived.

8.5.1 Coupling with an Air Domain

First we consider the problem of coupling between an acoustic domain and a poroe-
lastic one, see Fig. 8.1 where the two domains are artificially separated to clearly
illustrate the coupling between the two. The degrees of the acoustic domain corre-
spond to the pressure. At the boundary Γ between the two domains, a compatible
mesh is considered and the common pressure degrees of freedom are denoted pΓ ,
hence the dof of the two media can be partitioned as {u,pi ,pΓ } for the PEM where
pi correspond to the vector of pressure in the interior of the domain. For the fluid
domain, the dof are similarly {pΓ ,pai }.

We now partition the generic global dynamic PEMmatrix (8.40) into three blocks
in order to introduce the partitioning between the boundary and interior dof. Applying
the same partitioning to the test fields, the weak form is then approximated by:

[
vT qi T qΓ

T
]⎡⎣[Auu] [Aup

i ] [Aup
Γ ]

[Apu
i ] [App

ii ] [App
iΓ ]

[Apu
Γ ] [App

Γ i ] [App
Γ Γ ]

⎤
⎦
⎧⎨
⎩

u
pi
pΓ

⎫⎬
⎭ . (8.41)

The weak form for the air cavity is given in (8.27). Note that the outgoing normal na

is in the opposite direction of np. The volume integrals, for the air domain may then
be discretised as discussed above and a dynamic acoustic matrix, which may also be
partitioned between boundary and interior dof , is then:

[
qΓ

Tqa
i
T
] [[Aa

Γ Γ ] [Aa
Γ i ][Aa

iΓ ] [Aa
ii ]
]{

pΓ

pai

}
. (8.42)

Fig. 8.1 Coupling of
acoustic and poroelastic FE
models
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Adding the two discretised weak forms, air and PEM, leads to:

[
vT qi T qΓ

T qa
i
T
]
⎡
⎢⎢⎣

[Auu] [Aup
i ] [Aup

Γ ] [0]
[Apu

i ] [App
ii ] [App

iΓ ] [0]
[Apu

Γ ] [App
Γ i ] [App

Γ Γ ] + [Aa
Γ Γ ] [Aa

Γ i ][0] [0] [Aa
iΓ ] [Aa

ii ]

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

u
pi
pΓ

pai

⎫⎪⎪⎬
⎪⎪⎭ . (8.43)

We can deduce from this expression that, as for the assembly of elements, the global
matrix which is the assembly of the two domains may be done by summing the
overlapping parts of the dynamic matrices.

So far we have treated the volumetric terms in the weak forms and, as pointed
out before, there is no difference between the two up to now. What remains is to
derive the interface terms, and how they should be discretised. Here we have to
distinguish between the two formulations, PEM1 and PEM2, as we will show below.
However, let us first consider the interface relations between the different physical
fields at the common boundary. Along Γ the pressure has to be continuous, the
normal displacement of air has to be equal to the normal total displacement of the
porous medium and, finally, as the solid frame of the PEM is free, the in-vacuo solid
frame stress of the PEM has to vanish:

pa = p, σ̂ s
i j n j = 0,

pa, j n j

ρaω2
= uan = utn = φ2α̂i j p, j ni

ρ0ω2
. (8.44)

If we now consider the case of the PEM1 formulation, that naturally should couple
with air, the sum of the boundary terms associated to the PEM are,

∫
Γi

vs
i σ̂

s
i j n j + φ2

ρ0ω2
α̂i j p, j ni dΓ. (8.45)

The first term is zero as the in-vacuo stress is null at the interface. Concerning the
second one, let us combine the terms relative to the cavity and the PEM in one integral
expression. We then have:

∫
Γ

(
φ2

ρ0ω2
α̂i j p, j niq − 1

ρaω2
qa pa, j n j

)
dΓ, (8.46)

where the minus sign for the air term is due to the orientation of the normals. As
we are only dealing with the case of compatible meshes, qa and q are identical and
we can deduce the nullity of this integral by the continuity of normal displacements,
(8.44). Hence, for this {u,p} formulation, the coupling with an acoustic domain is
natural (which means that there is no surface term). The degrees of freedom of the
global problem correspond to the merging of the acoustic pressures in the air domain
pa and the displacement u and pressure p of the PEM.We see that the porousmaterial
and the acoustic air have common degrees of freedom.
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For the PEM2 formulation, the boundary terms are

∫
Γ

(
vs
i σ̂

t
i j n j + qw j n j − 1

ρaω2
qa pa, j n j

)
dΓ. (8.47)

However, as the in-vacuo stress tensor is zero, one has that σ̂ t
i j = −pδi j and due to

the continuity of pressure along Γ , we can replace the total stress by the pressure of
air. In addition

qw j n j − 1

ρaω2
qa pa, j n j = qa

(
utj − usj − uaj

)
n j = −qausj n j . (8.48)

The combined boundary terms are then:

−
∫

Γ

pavs
j n j + qausj n j dΓ. (8.49)

This term is a standard fluid structure interaction couple and its discretisation leads
to a couplingmatrix [Γ f s] between the solid displacement of the porous material and
the pressure in air which should be added to the global matrix. The system matrix
will then be: ⎡

⎢⎢⎣
[Auu] [Aup

i ] [Aup
Γ ] − [Γ f s] [0]

[Apu
i ] [App

ii ] [App
iΓ ] [0]

[Apu
Γ ] − [Γ f s]T [App

Γ i ] [App
Γ Γ ] + [Aa

Γ Γ ] [Aa
Γ i ][0] [0] [Aa

iΓ ] [Aa
ii ]

⎤
⎥⎥⎦ . (8.50)

The coupling between an air domain and this form of the {u,p} formulation is
thus not natural as we need the additional term [Γ f s].

8.5.2 Coupling with an Elastic Solid

The coupling of a PEM domain and an elastic structural domain can be done in a
similar way. The weak form for the elastic solid structure is given by (8.26). Note
that, ne in each point along the interface is in a direction opposite to the one of the
poroelastic material. The interface relations at such an interface are:

σ e
i j = σ̂i j − pδi j , uej = usj . (8.51)

Let us first consider the PEM2 formulation, which we have previously claimed to
naturally couple with a solid. The boundary terms are

∫
Γ

(
vs
i σ

t
i j n j + qw j n j − ve

i σ̂
e
i j n j

)
dΓ. (8.52)
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Similarly to the previous case compatible meshes are considered, and we then have
ve
i = vs

i . In addition w j n j = (utj − usj )n j = 0. Hence the boundary integral is zero
meaning that the coupling between an elastic structure and this PEM2 formulation
is natural. Similarly to the coupling between PEM1 and an air domain, the dynamic
equation system is obtained by summing the matrix terms corresponding to common
dof along Γ .

For the PEM1 formulation in Sect. 8.3.1, the surface term is given as:

∫
Γ

(
vs
i

(
σ̂i j − σ̂ e

i j

)
n j + q

φ2

ρaω2
α̂i j p, j ni

)
dΓ. (8.53)

The interface conditions of interest are

σ̂i j − σ e
i j = pδi j , uei ni = φ2

ρaω2
α̂i j p, j ni . (8.54)

The boundary integral is then finally:

−
∫

Γ

(
pvs

j n j + qusj n j
)
dΓ, (8.55)

which is similar to (8.49), and the assembled equation system is obtained by adding
the dof corresponding to the Γ and adding the coupling terms in a way similar to
what is shown in (8.50).

8.5.3 Coupling Through a Thin Airgap Interface

Quite often, the interface between a PEM and a solid is such that the two are not
in full (elastic) contact but are still close to each other, i.e. they may be thought
of as separated by a thin airgap. This is a case which either may be modelled as
described in Sect. 8.5.1, in case the airgap must be meshed as a separate domain, or
in cases where this could be complicated (due to e.g. geometry) it may be modelled
through an approximate boundary condition as presented below (Fig. 8.2). We use
the superscript o to distinguish between the acoustic air domain previously discussed,
Sect. 8.5.1, and the present domain which will only be used in an intermediate step.

Fig. 8.2 Zoom on the region
with a thin airgap separating
the PEM domain from the
elastic domain

x

Ωe Ω0 Ωp

Γ− Γ+

ε0



8 Numerical Methods for Modelling … 349

At the boundary where the PEM and the airgap domain meet, here identified as Γ −,
the total stress in the PEM must equal the acoustic pressure in the airgap because of
a zero in-vacuo stress,

σ tot
i j n p

j = −po; xi ∈ Γ −, (8.56)

and the pressure and the displacements have to be continuous,

p = po; xi ∈ Γ −, (8.57)

uoi n
o
i = (1 − φ) usi n

p
i + φu f

i n
p
i ; xi ∈ Γ −. (8.58)

At the opposite side of the airgap domain, Γ +, the elastic solid displacements has
be equal to the acoustic displacements,

uei n
e
i = uoi n

e
i ; xi ∈ Γ +, (8.59)

and the solid stress has to be equal to the acoustic pressure in the airgap,

σ e
i j n

e
j = −po; xi ∈ Γ +. (8.60)

If we now assume that thewidth εo of the airgap is very small, we can also assume that
the fluid in the airgap is incompressible and the pressure thus constant in the direction
normal to the boundary, po = p. Noting that np

j = −noj and assuming that εo goes to
zero, the surface integrals pertaining to the PEM2 formulation that naturally couples
to a solid, together results in,

∫
Γ+

(
pnp

i vs
i + usi n

p
i q
)
dΓ −

∫
Γ−

(
pnp

i ve
i + uei n

p
i q
)
dΓ . (8.61)

The boundary integrals appearing in (8.61), are also in this case standard fluid-
structure interaction area integrals, here denoted by Γ f s , and the assembled equation
system may be written as,

⎡
⎣ [Ae] [0] −[Γ −

f s]
[0] [Auu] [Aup] + [Γ +

f s]
−[Γ −

f s]T [Apu] + [Γ +
f s]T [App]

⎤
⎦ , (8.62)

where we have omitted the partitioning into interior and boundary dof for clarity
(Fig. 8.3).
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Fig. 8.3 Coupling of elastic and poroelastic FE models using an approximate representation of a
thin airgap. Arrows symbolically indicate the pressure loading on the elastic solid nodes and the
porous solid dof at the boundary

8.5.4 Coupling with Bloch Waves

Wenow proceed to the case where a PEMdomain is coupledwith a Blochwave. Here
a 2D problem is considered for a unit cell of period D and with periodic boundary
conditions. In the present case, this problem is composed of two domains, an acoustic
air and the second one is PEM. The PEM boundary is excited by an incident plane
wave in the air domain. The components of the wave vector are kx = k0 sin(θ) and
kz = k0 sin(θ), with k0 the wave number in air and θ the angle of the incident wave.
In the air domain, the physical fields can be represented as a superposition of the
incident wave and reflected Bloch waves. The pressure pa may then be expressed as:

pa(x, z) = e j (kx x+kz z) +
+∞∑

l=−∞
e j (kx (l)x−kz(l)z)Rl , (8.63)

where Rl are the amplitudes of the reflected Bloch waves, kx (l) and kz(l) are the x
and z components, respectively in the wave vector. They are given by

kz( j) =
√
k20 − kx (l)2, kx (l) = kx + 2πl

D
. (8.64)

From Euler’s equation, we can deduce the displacement of air in the z direction:

u−
a = j

ρaω2

(
kze

j (kx x+kz z) +
+∞∑

l=−∞
kz(l)e

j (kx (l)x−kz(l)z)Rl

)
. (8.65)

The porous material in the FE domain is modelled by the PEM1 formulation. We
recall, the boundary integral on the interface:

IFE =
∫

Γb

vs
i (x)σ̂

s
i j (x)n j + φ2

ρ0ω2
α̂i j p, j (x)niq(x) dΓ = 0. (8.66)



8 Numerical Methods for Modelling … 351

In order to couple the two domains, one should consider the interface relations on
Γb, the continuity of the pressure, of the fluid displacement and the vanishing in-
vacuo stress:

pa(x) = p(x), σ̂ s
i z(x) = 0, uaz (x) = utz(x) = φ2

ρ0ω2
α̂z j p, j (x). (8.67)

Using these relations, the integral IFE in (8.66) may be rewritten. First, the solid
term of the integral is zero due to the nullity of the in-vacuo stress. Concerning the
pressure, it may be rewritten using the continuity of the normal displacement and the
expression (8.65). We then have:

IFE = j

ρaω2

∫
Γb

(
−kze

− jkx x −
+∞∑

l=−∞
kz(l)e

− jkx (l)x Rl

)
q(x) dΓ. (8.68)

We may then deduce from this expression that the boundary term of the weak form
can be expressed as a function of the amplitudes of the Blochwaves. Themethod then
consists in considering these amplitudes as unknowns and then to add them to the
degrees of freedom of the FE problem. It is first necessary to truncate the infinite sum
in (8.68). The infinite sum is then approximated by considering that l = −Nb.. + Nb,
where Nb is determined by considering classical criteria to truncate Bloch waves.
The integral can be rewritten in a more condensed form:

IFE = − jkz
ρaω2

I (0) +
N∑

l=−N

jkz(l)

ρaω2
I (l)Rl, (8.69)

with

I (l) =
∫

Γb

e− jkx (l)xq(x) dΓ, (8.70)

and I (l) is the integral of the shape function weighted by an exponential term associ-
ated with the Bloch wave. It may be discretised in a way similar to the one presented
above. As it is the product of an exponential and a polynomial, its value may be
computed analytically by successive integration by parts. The first term in the right
hand side of (8.69) will then lead to the excitation vector. The second one will lead to
a block [B] that will be associated to variational dof q and to the vector of unknown
reflection coefficients B.

As 2Nb + 1 new unknowns have been introduced, it is necessary to combine
them with new constraints. This can be easily done by considering the continuity of
pressure (which is the only relation in (8.66) which was not considered up to now in
the derivation). First, we consider an index m ∈ R, the projection of the pressure on
e jkx (m)x then leads to:
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Γb

pa(x)e jkx (m)x dΓ = Dδm0 + DRm . (8.71)

We can then discretise this relation by replacing the pressure in air by the degrees of
freedom on the boundary. The discretisation of the first term in the right hand side
will then lead to an excitation term and the other ones leads to a block [B′] to be
inserted in the global matrix. The final linear system is then

⎡
⎣[Auu] [Aup] [0]

[Apu] [App] [B]
[0] [B′] D[I2Nb+1]

⎤
⎦
⎧⎨
⎩
u
p
R

⎫⎬
⎭ =

⎧⎨
⎩
0
F
10

⎫⎬
⎭ . (8.72)

[I2Nb+1] is the identity matrix and 10 is the vector of R2Nb+1 whose first component
is one and all the others are zero.

8.6 Application Examples

One of the characteristic properties ofmodelling of PEMs, is the intricate interactions
both throughout the domain as well as at the boundary to other porous and non-
porous domains. These interactions quite often tend to control the discretisation and
the meshing, thus driving the size of the resulting algebraic systems to be solved.
There are several reasons for this, e.g.:

• Wavelengths of the Biot waves are generally shorter than those of the acoustic
or the solid waves, see [11–13]. To meet adequate mesh criteria, usually a larger
mesh density or number of dof are required in the porous domain, as compared to
the fluid or solid domains.

• The poroelastic domain is meshed by volume elements, requiring a discretisation
in the 3 spatial directions (for 3D problems), unlike the elements of thin structures,
such as plates or shells, which in many cases of practical interest may be meshed
in 2 directions.

• The number of degrees of freedom per node of the poroelastic elements is at least
4, which together with the volume modelling required, tend to increase the model
size as well as the bandwidth of the problem, [14].

From the above points we realise that the mixed-pressure formulation, having
only 4 degrees of freedom per node, is interesting for many applications and we will
in the following show some examples of varying complexity of its use in different
modelling situations. These examples are chosen in order to illustrate the effects of
boundary conditions between an PEM and a solid, as well as the effects of anisotropy,
in the behaviour of different multi-layered configurations.
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8.6.1 Convergence Aspects

In this section, some aspects related to the convergence of the FEmodel are presented.
These are illustrated through a simple case, see Fig. 8.4, which consists of a 1D
problem of a foam layer. The thickness of the layer is equal to 10cm. On the left
boundary, the foam is excited by plane wave of amplitude 1. On the right boundary,
the porous layer is fixed and the solid displacement as well as the normal gradient
of the pressure are both zero. A reflected wave with an amplitude R is then created.
As R is not known, it is added to the degrees of freedom of the FE model by the
way of the technique presented in Sect. 8.5.4. For this simple problem an analytical
expression of the surface impedance can be derived [7, 15] from which the reflection
coefficient Rt can be deduced. This analytical solution will be considered as the
reference when the convergence is discussed in the following. The layer is modelled
by the PEM1 formulation and the mesh consists of n elementΩn of equal dimension.
On each reference element (corresponding to ξ ∈] − 1, 1[ ), the solid displacement
and the pressure are discretised with Lobatto shape functions. The first two orders
correspond to linear shape functions:

ϕ0(ξ) = 1 − ξ

2
, ϕ1(ξ) = 1 + ξ

2
. (8.73)

For the higher orders k > 1 the shape functions are the Lobatto shape functions

ϕk(ξ) =
√
k − 1

2

∫ xi

1
Lk−1(s) ds, k > 2p (8.74)

where Lk(ξ) are the Legendre polynomials and p is the order of the approximation.
In each element, we then have p degrees of freedom for both the solid displacement
and pressure.

We present the convergence at a single frequency, here 946Hz, which corresponds
to the resonance frequency of the solid frame. The results shown are representative
also for other frequencies and the conclusions are thus frequency independent. The
analysis is done by fixing the order p and refining the mesh by increasing the number

• • • • • • • • • • •

n elements

Ω1 ΩnΩi

1

R

Fig. 8.4 Configuration used for the convergence analysis
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Fig. 8.5 Convergence curves for several orders

of element n of the mesh. The error ε is simply defined as the difference between the
analytically and numerically computed reflection coefficients:

ε = |R − Rt |. (8.75)

The result are presented in Fig. 8.5 for each order p between 1 and 5. The error is
plotted as a function of the number of degrees of freedom and the results are displayed
in logarithmic scale. The results obtained for a PEM follows the same trends as can be
observed for other kinds of media. Starting with the case p = 1 i.e. linear elements,
we can see that the error decreases with the number of elements but the convergence
is rather slow. For p = 2, i.e. quadratic elements, the convergence rate is higher in
the sense that the slope of the error is larger. As a more general observation, the slope
is increasing with increasing order p, indicating a considerable potential for using
higher order elements. However, it is not straightforward to deduce which are the
optimal orders of the elements as the sparseness of the matrix system is reduced for
high p. For more details, the reader can consult [8].

8.6.2 FE Cases in 1D

For the 1D example, the objectives are to illustrate and study some characteristic
behaviours of the solutions to the discretised weak forms. Here wewill use the PEM2
formulation to investigate the influence of contact between a PEM and an interfacing
solid, which is a well-known and critical integration effect in industrial applications.
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Ωe Ωp Ω′
e Ωa

Le Lp L′
e La

Fe Γb Zn = ρ0c0

•Pa

Fig. 8.6 Multilayer setup, studied as 1D example. Excitation applied to solid at the leftmost bound-
ary and reflection free termination of acoustic domain at rightmost boundary. Along Γ b/ub, either
full contact or complete separation is assumed, along Γ b full contact

The background is the difficulty in ensuring a well-defined contact between the PEM
and e.g. a panel surface, as a multi-layered sound package component is manufac-
tured. It also poses a challenging aspect in building a simulation model of such
components. In addition, we emphasise that the purpose here is not to show realistic
configurations and their performance, but to give the reader a deeper understand-
ing into certain modelling aspects that should be kept in mind when building more
complex and elaborate models. Thus, the physical dimensions (here thicknesses) are
slightly exaggerated to allow for the visualisation to be more clear.

We take as the starting point the multilayer setup shown in Fig. 8.6, where an
arrangement with two solid domains with a PEM in between, and an acoustic domain
with an reflection-free termination is presented. For this example, the properties
of the solid and the PEM, are given in Table8.1. Note that we are using second
order polynomials for the shape functions, see also Fig. 8.4 for a discussion of this
aspect. We assume that in one case the solids are in full contact to the PEM at both
boundaries, Γ b/ub and Γ b, and in the other case that one of the solid boundaries,
Γ b/ub, is separated from the PEM through an airgap.
In the following we will focus on:

• Themodelling as such,wewill showhow the airgap can bemodelled either through
meshing the thin acoustic domain separating the solid and the PEM, or through
the approximate modelling principle taken from [16] and presented in Sect. 8.5.3.

• The effects of the airgap, illustrated through the transmission performance as well
as the actual resulting fields computed at a particular frequency,

Whenmodelling of a combination of a PEM and a solid is concerned, two extreme
cases for handling of the boundary conditions may be considered. Either we choose
to have full contact, or full separation with a more or less well-defined distance
between the boundaries. In the case of full contact, we need to introduce the bound-
ary conditions specified in Sect. 8.5.2. For the PEM2 formulation, this amounts to
vanishing boundary integrals on both sides of the PEM, and we thus solve a problem
that is equivalent in form to Sect. 8.5.2.

If we now instead assume that there is an airgap, separating the PEM from the
solid, with a finite thickness, of e.g. 0.1mm, and that we as a first choice mesh it with
acoustic FE. In this case we need to introduce the conditions stated in Sect. 8.5.1 at
the Γ b/ub boundary to the PEM, thus solving a problem that is equivalent in form to
(8.55).
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Table 8.1 Parameters of the materials used for the application examples. Note isotropic equivalent
values are also given for the anisotropic properties of the foam in Sect. 8.6.4

Elastic materials

Parameter Units Solid (Sect. 8.6.2) Panel
(Sect. 8.6.4)
Inclusion
(Sect. 8.6.3)

Density kg.m−3 2700 7800

Young’s modulus GPa 72 200

Loss factor – 0.001 0.001

Poisson ratio – 0.3 0.3

Isotropic foams

Parameter Units Sect. 8.6.2 Sect. 8.6.3 Sect. 8.6.4
Iso equi.

Thickness mm 100 20 42

Viscous charac.
length

µm 21 214 110

Thermal charac.
length

µm 50 214 740

Porosity – 0.992 0.989 0.98

Density of frame kg.m−3 50 6.1 22.1

Loss factor – 0.1 0.21 0.

Young’s modulus kPa 120 56.4 100

Poisson ratio – 0.4 0.21 0.4

Flow resistivity kPa.s.m−2 26.5 8.6 60

Tortuosity – 1.2 1.0 1.3

Anisotropic foam used in Sect. 8.6.4

Parameter Units Value

Elastic moduli,
xx

kPa 40

”, yy kPa 89KPa

”, zz kPa 300KPa

”, xy kPa 33KPa

”, xz kPa 37KPa

”, yz kPa 131KPa

Shear moduli, xz kPa 26KPa

Shear moduli, xz kPa 21KPa

Shear moduli, xz kPa 26KPa

Tortuosity in
x, y, z

– 1.2, 1.2, 1.5

Flow resistivity in
x, y, z

kPa.s.m−2 37.5, 37.5, 67.5
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We could as well decide to use the approximate boundary condition, Sect. 8.5.3,
in case we need to introduce area integral terms. These introduces the forcing of the
acoustic pressure in the PEM on the solid displacements of the PEM as well as to
the solid displacements of the solid. In this case we solve a problem equivalent in
principle to (8.62).

8.6.2.1 Effects of Bonding 1D

It is well-known that the presence of an airgap could have a strong influence on the
transmission, depending on the properties of the actual PEM. With a 0.1mm airgap
we get the results in the left part of Fig. 8.7 which are compared to the fully bonded
results in the same figure. The differences between the two are clear and increases
over the frequency range shown. There are several reasons for the two solutions
to be different from each other, see e.g. [7, 16], one quite obvious is the change
in total stiffness as the solid and the PEM are joined together. This can be observed
through the slight shift of the first resonance in (8.7) (a). As the PEM is quite soft
in comparison to the solid, this effect is not very large. However, for the resonance
at 1850Hz, the effect of the airgap is more significant as it tends to reduce the
transmission through the panel in comparison to the bonded case. Clearly, presence
of an airgap is affecting the vibroacoustic behaviour in a quite complex way which
is difficult to predict a priori.

To illustrate this further, we show the effects of varying the airgap thickness in the
right part of Fig. 8.7. We measure the effect in terms of the relative difference to a
very thin gap of 0.01mm thickness. Clearly, for thinner airgaps the dependence upon
the airgap thickness of the transmission characteristics is reduced. For airgaps less
than 1mm, the difference in the transmitted pressure at Pa is small. For larger airgaps
the transmission characteristics have a strong dependence on the actual thickness as
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Fig. 8.7 Left: Effect of coupling conditions, bonded or unbonded, on transmitted pressure at point
Pa , see Fig. 8.6, through the multilayered arrangement. Right: Relative difference in transmitted
pressure at point Pa , for different airgap sizes, with 10−5 m used as reference gap thickness
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Fig. 8.8 Illustration of effects of bonding/unbonding, close-up of displacement fields inside PEM
in a multilayer arrangement, real parts (top) and imaginary parts (bottom) evaluated at resonance
1850Hz. Left: Bonded. Right: Unbonded and using approximate boundary condition

could have been expected. From Fig. 8.7, we also see that the approximate modelling
represents the very thin airgap coupling well.

Let us now investigate what the effects of the airgap are in terms of the displace-
ment fields for the solid frame and for the acoustic fluid in the PEM, see Fig. 8.8.
Note that the acoustic displacements are calculated using (8.15). The different dis-
placements are shown for the two cases considered above, i.e. bonded and unbonded.
The real parts are shown in the two top sub-figures and the imaginary parts in the two
bottom, with the computed displacements for the bonded to the left and unbonded
to the right.

For the bonded solution, the solid frame and the acoustic fluid displacementsmove
in phase and are identical at both boundaries, as indeed prescribed by the boundary
conditions for bonding. For the unbonded solution, it is quite the opposite as the fluid
displacement, at the unbonded boundary, is significantly higher than the solid frame
displacement, in particular for the imaginary part. Furthermore, they are not in phase
and the solid displacement is lower than the acoustic displacement at Γ b/ub. Indeed,
from Fig. 8.9, we see that the relative displacement wi = φ(u f

i − usi ), is higher for
the unbonded case which implies a higher level of dissipation as compared to the
bonded case, see (8.11)–(8.14).
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Fig. 8.9 Illustration of effects of bonding/unbonding, close-up of relative displacement fields inside
PEM in a multilayer arrangement, Left: real part, right: imaginary part evaluated at resonance
1850Hz

To conclude on this example, the approximate unbonded boundary condition
represents a thin airgap well, and is an interesting alternative for complex 3Dmodels,
where the thin airgap modelling may lead to numerical problems related to elements
having unacceptable aspect ratios, and where the approximation eliminates the need
for meshing of the airgap through the use of boundary coupling terms instead.

8.6.3 Simulation of a Metaporous Material

A more complicated problem to solve could be a porous matrix with an inclusion.
This kind of arrangement, which may involve all the different kinds of boundary
conditions introduced here, is sometimes called metaporous and a 2D example is
presented in Fig. 8.10. The current example is composed of a porous material Ωp

in a rectangular domain with a circular inclusion Ωi in the center of the domain.
Along Γt the porous medium is bonded to a rigid surface and it is excited by a plane
wave on the opposite boundary, Γb. As this inclusion is supposed to be a part of an
array of such inclusions, periodic boundary conditions are assigned along Γr and Γl

boundaries, i.e. the arrangement is in fact of infinite extent in the horizontal direction.
These kinds of composite structures have been the subject of extensive research in
the last decade. For more details, the reader can refer to [17–22] and from these
appreciate the huge variety of configurations that may be considered.

Due to the plane-wave excitation and the periodic boundary conditions, the fields
in the semi-infinite lower domain are the superposition of the incident field and
reflected Bloch waves. Periodic boundary conditions can be taken into account by
applying the method presented in Sect. 8.6.4 and the amplitudes of the Bloch waves
can be added to the FE dof with the method presented in Sect. 8.5.4. As the condition
on Γt corresponds to a rigid boundary, it leads to natural boundary conditions for
both PEM1 and PEM2.
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Fig. 8.10 Case of a
metaporous material
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Let us consider an example presented in [22]. The porous matrix is composed of
foam II and has dimensions 2cm by 2cm. The inclusion is made of a steel material
with a radius r , that will be varied in the results shown below. In this example we then
have three different media: poroelastic, elastic and fluid (incident medium which is
modelled by the Bloch wave superposition). Regardless of the choice of the porous
formulation (PEM1 or PEM2) one of the couplings is not natural. In the results
that are presented, we have chosen to use the PEM1 formulation but the results are
similar for PEM2. As we have discussed previously, we then need to include a fluid-
structure coupling term at the boundary Γi between the porous structure and the
elastic inclusion. The global problem is then composed of 5 × 5 blocks as:

⎡
⎢⎢⎢⎢⎣

[Aee] [AeΓ ] [Aeu] −[Γ up] [0]
[AΓ e] [AΓ Γ ] [AΓ u] [AΓ p] [0]
[Aue] [AuΓ ] [Auu] [Aup] [0]

−[Γ pu] [ApΓ ] [Apu] [App] [B]
[0] [0] [0] [B′] D[I2Nb+1]

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ue
uΓ

u
p
R

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
0
0
0
10

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (8.76)

The porous matrix and the inclusion share displacement degrees of freedom uΓ and
ue and u respectively denotes the interior degrees of freedom of the inclusion and the
porous material. The upper left 3 × 3 corresponds to the dynamic matrix associated
to the displacements. [AΓ Γ ] is assembled as the sum of a contribution from the
inclusion and one of the porous material. As the PEM1 formulation does not lead
to a natural coupling between fluid structure terms [Γ up] and [Γ pu] are introduced
which are applied on the displacement of the elastic inclusion and the pressure of
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Fig. 8.11 Absorption for several different sizes of the inclusion

the porous material. Finally, the excitation introduces coupling terms [B] and [B′]
between the pressure of the porous material and the reflexion coefficients. In the case
of PEM1, there is no coupling term with the solid displacement.

In Fig. 8.11 the absorption coefficient for a selection of three values of the radius
of the inclusion, is presented. They can be compared to the case without inclusion
which is also presented. The effect of elasticity of the frame can by a localised
decrease of the absorption which can be observed for example 1400Hz in the case of
an homogeneous layer 2050Hz for r = 3 mm. The effect of the inclusion is to create
lower frequency resonances which can increase the absorption for low frequencies.
This subject is the topic of intensive researches in the last 5 years and the reader can
have more details in [17, 21, 22].

The key point is that all these configurations can be modelled by the FE method.
For this configuration it is also possible to derive a model based on the multiple
scattering theory [22]. It is then possible to deduce an error between the twomethods
which is presented in Fig. 8.12. This error is mainly governed by the the mesh. In the
present simulation, the mesh corresponds to 6 quadratic elements by wavelength for
the shear wave. We can see that the error is mostly lower than 1%, the maximum of
this error being at the resonance frequencies of the structure. The quality of the FE
simulation is thus very good.
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8.6.4 3D Anisotropic Modelling

The effects of anisotropy of a PEMwill be illustrated for a 3Dexample, employing the
same different types of boundary conditions as discussed in the 1D case, Sect. 8.6.2.
Here we use a model representing a multilayered panel, two face sheets and a PEM
in between, see Fig. 8.13. Along one interface the PEM is fully bonded and along
the opposite an airgap is introduced. In order to highlight the effects of anisotropy in
the resulting deformations, results for an isotropic equivalent foam are also shown.

Let us first focus on the difference between the isotropic and the anisotropic
PEM deformations. A significant shear deformation of the PEM is taking place in
the latter, see Fig. 8.14a–b, and c–d, respectively. This is not seen in the isotropic
equivalent PEMmodel, as there are only small Poisson’s ratio effects inducing lateral
deformations, and the deformation of the PEM core is almost uniaxial. This is in
contrast to the anisotropic PEMmodel,wherewe see complicated shear deformations
with short spatial wave lengths, in particular for the bonded case in Fig. 8.14a.

The lateral deformations are also noticeable in the presence of an airgap, see
Fig. 8.14c, d. However, the difference between the isotropic and the anisotropic PEM
models is slightly less. This is partially related to the release of the solid displacements
at the upper panel interface, as now the coupling between the panel and the PEM
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Fig. 8.13 Model problem used in 3D example of simulation of anisotropic foam formulation,
parameters used in the simulationsmay be found in Table8.1. For comparison, an airgap of thickness
0.001m is introduced at the upper interface between the PEM core and the face plate. Reprinted
from [23] with permission

Fig. 8.14 Deformations 400Hz. Light grey is foam core, dark is solid panel. Left: anisotropic,
Right isotropic. a and b Bonded configuration, c and d Unbonded configuration. Reprinted from
[23] with permission

is via the pore pressure, see Sect. 8.5.3. However, also for the airgap case, there are
short wave length shear deformations in the PEM core, which are not present in the
isotropic model.

We conclude from this, without giving any detailed explanations, that different
waves in the anisotropic PEM are excited when the different boundary conditions
are applied. This is in agreement with the simpler model studied in Sect. 8.6.2 and
has been further discussed in [24] using a transfer matrix solution approach.
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Appendix - Periodic Boundary Conditions

Here we review a technique for introduction of periodic boundary conditions, which
is not specific to poroelasticity but included for reference as it is used in one of
the examples. Note that the steps taken in this method is thus the same for the two
{u,p} formulations discussed here. If periodicity may be assumed, then the involved
physical fields have a phase shift δ = e− jkx L between the boundaries of the unit cell,
Γl and Γr . If we consider the fields of the PEM2 formulation as an illustration, we
have:

p(Γr ) = δp(Γl) ui (Γr ) = δui (Γl) σ̂ t
i j (Γr ) = φσ̂ t

i j (Γl) p, j (Γr ) = δp, j (Γl). (8.77)

We can then deduce a relation between the surface integrals on the two boundaries:

∫
Γr

vs
i σ̂

t
i j n j + φ2

ρ0ω2
α̂i j p, j niq dΓ = −δ

∫
Γl

vs
i σ̂

t
i j n j + φ2

ρ0ω2
α̂i j p, j niq dΓ. (8.78)

Note that the minus sign in the right hand side is due to the outgoing normal which
is opposite in Γl and Γr .

Recalling that in the general case, we need to consider the discretisation of the
weak form including the volume integrals in the matrix and the integrals relative to
Γl and Γr in the left hand side. Furthermore, we will distinguish between dof on the
left and right boundaries of the unit cell as Xl and Xr and the interior degrees of
freedom asXi . The dof vector,X, will be partitioned accordingly and the discretised
system may be written as:

⎡
⎣[All] [Ali ] [Alr ]

[Ail] [Ai i ] [Air ]
[Arl] [Ari ] [Arr ]

⎤
⎦
⎡
⎣Xl

Xi

Xr

⎤
⎦ =

⎡
⎣Fl

0i
Fr

⎤
⎦ . (8.79)

We now assume that the mesh interpolations on Γl and Γr are compatible, and thus
the following relations hold:

Xr = δXl , Fr = −δFl . (8.80)

To proceed we need to eliminate Fl and this is achieved by suitable linear combi-
nations of the parts of the matrix as follows. In the last row, we substitute tbFr by
δFl and then multiply the whole row by δ∗ (which is equal to 1/δ). This gives us an
expression forFl whichmay be used to rewrite the first row. The third row is replaced
by the condition of periodicity on the dof , i.e. (Xr = δXl). The system may then be
reformulated as:⎡

⎣[All] + δ∗[Arl] [Ali ] + δ∗[Ari ] [Alr ] + δ∗[Arl]
[Ail] [Ai i ] [Air ]
δ[Irr ] [0] −[Irr ]

⎤
⎦
⎡
⎣Xl

Xi

Xr

⎤
⎦ =

⎡
⎣0l0i
0r

⎤
⎦ , (8.81)
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which only has known quantities and furthermore the set of degrees of freedom is the
same before and after the imposition of the periodicity. The latter is a key advantage
with the above approach.
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Chapter 9
Industrial Applications I

A General Perspective

Arnaud Duval and Fabien Chevillotte

Abstract The main goal of these industrial chapters is to help non-specialist engi-
neers throughout the industry to take robust noise treatments optimization decisions
without being obliged to become experts themselves. Another goal is also to help
“low hanging fruit” technology transfers between various fields of acoustic industrial
application domains, from aeronautic to automotive industry for example or from
automotive to building industry or the other way around.

9.1 Introduction

The ambition of these industrial chapters on acoustic package optimization methods
is to give insights into noise treatments key optimization levers in various industries
and foster technology transfers between industries. In the following, well-known
physical phenomena will be reminded and their applications illustrated in either
automotive, aeronautic or building industrial cases. Without going into sensitive
information or specific patents, each industry has gathered canonic optimized solu-
tions that are often not known or fully understood by other industries, or not used at
all out of a specific domain. These “low-hanging” fruits are the actual targets of the
approach aiming at bringing innovations and competitiveness to our industries.

The main goal of these industrial chapters is to help non-specialists engineers
throughout the industry to take robust noise treatments optimization decisions with-
out being obliged to become experts themselves as much as possible. Optimizing
porous treatments requires understanding the noise source characteristics and the
noise propagation path as well as identifying which dissipation mechanisms one
should foster: absorption, insulation or vibration damping? To achieve a signifi-
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cant noise reduction, a link between the ideal porous media properties and a feasi-
ble porous standard or meta-material has to be established, e.g. using micro-macro
approaches. In order to determine these feasible microstructure morphologies, it is
necessary to understand what eachmanufacturing process permits to control. Indeed,
manipulating the porous media macro-parameters of the Biot-Johnson-Champoux-
Allard (Biot-JCA) theory for material optimization, such as the porosity φ, airflow
resistivity σ, tortuosity α∞, viscous and thermal characteristic lengths � and �′, is
not an easy task for the noise, vibration and harshness (NVH) engineer, especially
when communicating with chemistry or process engineers involved in material man-
ufacturing [1–3].

Before discussing each specific industrial noise treatments problems, a general
review of standard NVH problems will be presented focusing on absorption, insu-
lation and damping optimization key levers of typical felts or foams poroelastic
materials, and/or viscoelastic materials.

9.2 Absorption Optimization

Optimizing the absorption of a porous material requires accounting from the very
beginning for the final use and installation of this material as well as the multiple
constraints it will have to cope with: thickness, temperature, fluids, flammability,
stiffness etc.

Indeed, the coupling parameters of the Biot-JCA model describing the viscother-
mal dissipation are important to optimize (rigid porous material model), but the
density (for limp material model) as well as the thickness are also essential parame-
ters, especially for insulation problem. If mechanical resonances of the frame occur
in the frequency range of interest, the structural parameters will have to be taken into
account as well (full Biot-JCA model for poroelastic material).

The full Biot-JCA model is composed of three groups of parameters [3]:

• The fluid phase acoustical parameters.
• The solid phase mechanical parameters.
• The coupling parameters between the fluid and solid phase.

The parameters of the fluid phase, usually the air, are normally well-known. The
solid frame and coupling parameters need to be obtained using characterization
methods for the full Biot-JCA model of the porous media. The required parameters
are summarized in Fig. 9.1.



9 Industrial Applications I 371

Fig. 9.1 Groups of parameters of the Biot-JCA model (4 elastic parameters, 5 parameters for the
JCA model)

9.2.1 The Coupling Parameters: Johnson-Champoux-Allard
(JCA) Model

For industrial applications, the following 5 coupling parameters of the Johnson-
Champoux-Allard model are usually sufficient:

The porosity, φ, is the ratio of the air (fluid) volume (V f ) and the total volume (Vt )
of porous material:

φ = V f

Vt
. (9.1)

The porosity should be kept high in order to get large viscothermal dissipation and,
thus, a high value of the absorption coefficient, e.g., in standard cases, φ > 0.8.

The static airflow resistivity, σ, describes the losses due to viscosity at low frequen-
cies. Below a given frequency, the viscous boundary layers are equal or progressively
thicker than the characteristic sizes of the pores. Viscous frictions dominates the
acoustic wave propagation in the fluid. The airflow resistivity is the indicator of the
strength of friction force. The airflow resistance Rs = σ · h, in Ns/m3, where h is the
thickness in (m), should be as high as possible while maintaining a good porosity,
but should be kept below Rs < 2000 Ns/m3 anyway, in order to avoid saturation in
standard cases (absorption coefficient decreases).

The tortuosity, α∞, describes the complex trajectory of the fluid particles imposed
by the frame. This inertial parameter brings a correction to the fluid effective density
at high frequencies. For all materials α∞ ≥ 1, and describes either an oblique path
or a path with varying cross-section:

• For fibrous material with thermoplastic bi-component fibers binding or in the
absence of thermoset resin binding α∞ = 1.

• For foam material with open membranes (high reticulation) after typical free
expansion 1.1 < α∞ < 1.4.
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Table 9.1 Possible variation of the coupling parameters for classical open cell porous materials

Parameter
Porosity

φ

Tortuosity

α∞

Airflow

resistivity

σ [kNsm−4]

Viscous

length

� [μm]

Thermal

length

�′ [μm]

Minimal value 0.7 1 1 5 10

Maximal
value

0.99 4.5 5000 1000 2000

• For foam material with semi-closed membranes (low reticulation) after typical
injection molding expansion or relatively closed cell free expansion 1.5 < α∞ <

2.5.

A famous exception from these rules is the melamine foam, whose microstructure
is similar to a 3D microfiber material with 4 to 6 µm diameter ligaments and with a
α∞ = 1.

The viscous characteristic length, �, describes the strength of viscoinertial forces
at high frequencies. The viscous characteristic length is about the dimension of the
radius of the smallest pores and necks (semi-closed membranes), where viscous
losses dominate thermal losses. i.e., the dimension of the pore constrictions.

The thermal characteristic length,�′, characterizes the thermal exchanges between
the two phases at high frequencies which take place near the surfaces of the pores.
The thermal characteristic length is about the dimension of the radius of the biggest
pores, where the thermal exchanges are the strongest. The thermal characteristic
length �′ depends only on the geometry of the pores, for example:

• For random oriented open cell materials �′ > � with a �′/� ratio of 3, usually.
• For horizontally aligned fibers �′ > � with a �′/� ratio of 2.
• For almost closed cell foams the �′ > � and the ratio �′/� can reach very high
values up to 4 or 5 and beyond [4].

The following table shows the possible variation of the coupling parameters for
classical open cell porous materials (Table 9.1).

Figure9.2 illustrates the dominating frequency zones of each JCA coupling
parameters of the Biot-JCA model and thus instructs which parameter should be
optimized in the frequency range of interest. As the thickness alone is shifting the
absorption coefficient towards the low frequencies, the JCA parameters, should be
optimized with a targeted thickness in mind.

The difficulty of application of the aforementioned recommendations lies in the
inter-dependency of the JCA parameters. The first task of the optimization is to
determine a feasible microstructure morphological path that can be mastered by
the manufacturing process, as well as the absorption performance target. Then, a
micro-macro model (analytical, empirical or numerical) should be applied in order
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Fig. 9.2 Dominating frequency zones of the Biot-JCA parameters [3]

to get the set of Biot-JCA parameters corresponding to each microstructure, with
which macro-performance descriptors, such as the absorption coefficient or surface
impedance can be computed. Plotting surface responses enables finding an optimal
or better a range of optimum microstructures achieving the target performance [5].

9.2.2 Optimizing Felts or Fibrous Materials for Absorption

The fibrous porous material case is the simplest one, in the sense that the cell
morphology is easy to control. This is especially true when using noble “sized
controlled” fibers and when adjusting the compression rate (throat size) for fibers
that are laid horizontally in one direction. The latter is easy to achieve with card-
ing/napping/thermofixing felt production processes, like Polyethylene terephthalate
(PET) felts. Typical fibers where one can control the diameter size are synthetic or
mineral fibers such as PET, Polypropylene (PP), acrylic, glass fibers, etc. All recycled
felts manufactured using, for example, cotton waste (also called “shoddy”), contain
randomly oriented fibres and so the statistical characteristics of the microstructure
are required (of about 2.5 dtex meaning 1g/10km = 25 µm on average, which is too
large) [6, 7].
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Fig. 9.3 Standard felt compression morphological path

9.2.2.1 Standard Felt Compression Morphological Path

Figure9.3 shows the standard felt compression morphological path, which allows
an interesting airflow resistivity increase. The size of the fibers is not changing here
and thus the density is increasing as well, which has negative implications for weight
reduction but, even worse, the porosity is decreasing! Whenever specific stiffness or
mass barrier effects (hybrid stiff concept, see after) are not required, this optimization
morphological path should be avoided.

9.2.2.2 Microfiber Felt Homothetic Reduction Morphological Path

Figure9.4 illustrates the optimization scheme for absorption properties that has been
applied for 20years using microfibers having diameters between 10 µm down to an
ideal 1 µm (approximately 1 dtex down to 0.1 dtex for PET fibers). This scheme
allows to achieve either performance improvement at the same mass per unit area
(higher compression rate even at iso-thickness, also used for resistive screens) or
weight reduction of 40–50% typically compared to “shoddy”, i.e., less compression
rate: homothetic reduction.

Fig. 9.4 Microfiber felt homothetic reduction morphological path
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9.2.3 Optimizing Foam Materials for Absorption

9.2.3.1 Open Foam Homothetic Reduction Morphological Path

It is remarkable that in slab foams morphologies with almost no membranes the
cell sizes are changing homothetically [8]. The macro-parameters evolve roughly as
summarized Fig. 9.5, with almost constant porosity and tortuosity, in a very similar
way as those of fiber felts. Most of classical open porous polyurethane (PUR) foams
have rather large cells compared to melamine foams (or microfiber felts) with tri-
angular concave cross-section shapes, while presenting low density (15kg/m3) and
high stiffness.

This stiffness is also limiting such low density open porous PUR foams appli-
cations to absorption purposes alone, while being significantly less absorptive than
melamine foams or microfiber felts (from PET or glass).

9.2.3.2 Foam Membrane Closure & Homothetic Reduction
Morphological Path

These open porous and coarse microstructure morphologies were the standard 15
to 10years ago. The introduction of membranes interconnecting the pores as well
as reducing the size of the PUR foam cells homothetically, as illustrated in Fig. 9.6,
has eliminated the expensive melamine foams from the European automotive engine
compartments as well as endangered the position of glass microfiber felts (which
have a good 6 µm fiber diameter though) thanks to a significant weight reduction.

The noise treatment density has been reduced from 30kg/m3 down to 15kg/m3 or
even 12kg/m3 [9].As reported inRef. [4] and summarized inFig. 9.6, the introduction
of membranes closing the pores has a very strong influence on the airflow resistivity
leading to an increase in tortuosity, which is excellent for absorption properties in the
middle frequency range especially. These very light slab foams remain very stiff and
thus are good self-supportive absorbers but, at the same time, are very bad poroelastic
decouplers behind heavy layers for insulation purposes.

Fig. 9.5 Open foam homothetic reduction morphological path
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Fig. 9.6 Foam membrane closure & homothetic reduction morphological path

9.2.3.3 Control of the Foam Microstructure Depending of Sample
Thickness and Excitation

A recent study has investigated the effect of the 3Dmorphology on the sound absorp-
tion of foams [5]. A body-centered cubic (BCC) arrangement is employed in order to
mimic the behaviour of a wide range of foams, from low to high porosity, as shown
in Fig. 9.7. The selected single number rating in this study is the sound absorption
average (SAA) over one-third octave bands between 125 and 4000Hz (SAA125−4000).

It has been shown that a specific throat size Rt , see Fig. 9.7, maximizing the sound
absorption can be found for each thickness and each excitation. This parameter
is known as the main influencing factor parameters since it controls the airflow
resistivity. Figure9.8 shows the influence of the throat size Rt on the sound absorption
coefficient for a 25mm-thick sample, a pore size Rp = 230µm, with a rigid backing
for normal incidence (NI) or diffuse field (DF) excitation. These specific radii are
shown in Fig. 9.9 for several sample thicknesses in the range 10–50mm. The ranges
of radii enabling to reach 95% of the maximum SAA125−4000 rating are illustrated

Fig. 9.7 Illustration of cells: a Porosity φ = 0.7 b Porosity φ = 0.96. the parameter c is the width
of the cell, Rp is the pore size, and Rt is the throat size
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Fig. 9.8 Effect of the throat size on the sound absorption coefficient (top: normal incidence; bottom:
diffuse field). Pore radius: Rp = 230 µm, sample thickness L = 25 mm, rigid backing

with vertical bars for each sample thickness. The specific throat radii are increasing
with the sample thickness.

Figure9.10 displays the relative variations of all the studied macroscopic parame-
ters with the throat radius, Rt , together with the selected rating in aDF. The variations
are expressed as a percentage of the configuration maximizing the SAA rating in a
DF. These results confirm the strong influence of the throat size on the airflow resis-
tivity and its linear correlation with the viscous characteristic length. More detailed
information can be found in Ref. [5].

A two-dimensionalmapof the SAA125−4000 can be plotted as a function of the open
porosity, φ, and the pore size, Rp, for each sample thickness and each excitation. 2D
maps and the corresponding SAA125−4000 ratings are presented in Fig. 9.11 for the NI
andDFexcitationswith a thickness of 25mm.The thick line shows themorphological
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Fig. 9.9 Specific throat radii for NI (square) and DF excitations (circle) as a function of the sample
thickness L. (Vertical bars: ranges of radii enabling to reach 95% of the maximum SAA rating for
NI and DF; dashed lines: fits of type β

√
L for NI and DF)

Fig. 9.10 Relative variations of the macroscopic parameters (X) as a function of the throat radius
Rt , where Xspe are the macroscopic parameters of the specific configuration Rt = Rspe

t

configurations maximizing the sound absorption rating (SAA125−4000). The contours
enabling 95% of the maximum performance are also shown in these maps.

Finally, practical guidelines can be given. As illustrated in Fig. 9.12 in order to find
the optimal thickness for a given microstructure or how to modify the microstructure
for a targeted thickness [5].
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Fig. 9.11 Effect of the open porosity φ and pore size Rp on the sound absorption rating (left: NI;
right: DF)—Sample (25mm thick)

Fig. 9.12 Effect of the open porosity φ and pore size Rp on the sound absorption rating for various
sample thicknesses with DF excitation (left: 3D; right: 2D)

9.2.4 Airflow Resistive Screens: Tunable Absorption

The control of the airflow resistance of microfiber non-wovens positioned on top
of classical felts or foams weighting between 15g/m2 and 150g/m2 allows tuning
the absorption coefficient towards the middle frequency range, without having a
significant detrimental effect on the performance in the high frequency range [3].

The tunable absorption lay-up consists of two porous layers having different
airflow resistances: the first one called “resistive screen” presents a much higher
airflow resistance than the second one which is a classical open porous material with
low tortuosity such as felt or melamine foam 1 < α∞ < 1.5 (cf. Fig. 9.13). The high
airflow resistance of the first layer increases the real part of the impedance in the

Fig. 9.13 Tunable absorption concept with airflow resistance non-wovens
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Fig. 9.14 Tunable absorption with airflow resistance non-wovens on thermoplastic felts: normal
incidence absorption coefficient

middle frequency range and consequently improves the absorption performance at
these frequencies: bi-permeable concept [3, 10]. Too highly tortuous semi-closed
cell foams with almost closed membranes already present excellent absorption in
the middle frequency range, the airflow resistance non-woven cannot improve such
a saturated performance. On the contrary, it decreases the high frequency absorption
coefficient, which was already affected by the high tortuosity value. In this case, the
application of airflow resistance non-wovens should be avoided.

The control of the airflow resistance of the first layer allows tuning the absorption
coefficient towards the middle frequencies, improving the absorption properties by
up to 40% (cf. normal incidence absorption coefficient measurements as shown in
Fig. 9.14). This “tunable absorption” can be realized with innovative light microfiber
non-woven technologies weighting between 15 and 150g/m2 and covering the whole
controlled airflow resistance range between 250 and 1500 Ns/m3. These treatments
remain highly porous, which makes them a real breakthrough solution for noise
reduction [10].

In fact, it is quite easy to obtain high airflow resistance screens using compressed
fiber felts, micro-perforated facings or resin bonded dense textiles. All these tech-
nologies lead to decreased porosity (φ � 0.8) and much too small and/or almost
closed pores which has a negative effect on the absorption coefficient especially in
the high frequency range and most of the time lead to heavy complexes. The appli-
cation of a “tunable absorption” concept can lead to better absorption performance
with reduced space, to weight reduction up to 40%, or to both [10].

The use of foiled and perforated double porosity foams with a resonant foil mem-
brane above the perforations, shows interesting absorption results in the middle fre-
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Fig. 9.15 Tunable absorption with airflow resistance non-wovens versus foiled double porosity
material: diffuse field absorption coefficient [11]

quency range (cf. Fig. 9.15) [11]. In addition, covered by classical absorbing felt, it
creates a broad band soundproofing system. The diffuse field absorption coefficient
measurement values above 1 shown Fig. 9.15 obtained with 1.2m2 samples are due
to the use of a “too small” reverberant room called Alpha Cabin having a 6.44m3

volume resulting in a 1.25 kHz Schroeder frequency [12].
However, it appears that a classical tunable absorber remains the bestway to design

a broadband absorbing device with thickness below 50mm (cf. Fig. 9.15) [11]. This
small thickness constraint is rather general for all transport industries because of lack
of space generally linked to energy consumption.

It has been shown that perforated plates and screens (woven or non-woven) can be
seen as thin layers of porousmaterials [13]. They aremainly controlled by the airflow
resistivity, σ, (or the perforation radius) and the perforation rate, φ. The thickness of
the screen is L and the one of the air cavity behind it is Lc. As shown in Fig. 9.16,
a specific airflow resistance, maximizing the overall sound absorption, can be found
for each perforation rate φ and thickness L independent of the cavity depth Lc [14].

This can be explained by the fact that if the airflow resistance is too low (e.g. large
perforations), the acoustic waves can easily pass through the screen without enough
dissipation. On the other hand, if the airflow resistivity is too high, the acoustic
waves are reflected and thus little dissipation is added by the screen. This can be also
explained using the sound absorption expression of a thin screen backed by an air
cavity [14].

For thin porous layer backed by a cavity, the surface impedance Zs can be approx-
imated by:

Zs ≈ σL + Zb (9.2)
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Fig. 9.16 Influence of the airflow resistance σL on the sound absorption coefficient (Normal
incidence, φ = 0.2, L = 1 mm backed by a 20mm thick-air-cavity)

with Zb = −i Z0 cot(k0Lc) the backing impedance, i.e., a purely imaginary
impedance for an air cavity.1 The sound absorption coefficient α under normal inci-
dence is expressed:

α = 1 −
∣
∣
∣
∣

Zs − Z0

Zs + Z0

∣
∣
∣
∣

2

. (9.3)

Thus, maximizing the sound absorption can be achieved by adapting the
impedance:

Zs = Z0. (9.4)

The airflow resistivity is linked to the hydraulic radius �:

σ = Dη

φ�2
, (9.5)

with D the drag coefficient (D = 8 for circular hole, D = 12 for slit) and η the
dynamic viscosity of air, then

� = Rspe =
√

DηL

φZ0
≈ 6 · 10−4

√

L

φ
. (9.6)

The specific perforation radius is slightly lower under diffuse field than the one under
normal incidence.

1 A Fourier convention of eiωt was assumed here.
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Fig. 9.17 Influence of the perforation rate (open porosity φ) on the sound on the sound absorption
coefficient (Normal incidence, L = 1 mm backed by a 20mm thick-air-cavity). The specific airflow
resistance is adapted for each perforation rate

The effect of the opening rate is also of great importance. It allows controlling
the frequency of the maximum sound absorption peak with the cavity depth (see
Fig. 9.17). For porosity higher than 0.2, the frequency can be predicted as a quarter
wave length in the double layer (screen + cavity) and from the Helmholtz resonator
frequency for a porosity lower than 0.1 [14].

9.3 Insulation Optimization

For porous materials insulation optimization purposes, a complete poroelastic Biot-
JCAmodel is necessarywith the additionalmechanical parameters:Young’smodulus
E , structural damping loss factor ηs and Poisson’s ratio ν (density ρ as well of
course). The Young’s modulus is of particular interest if the poroelastic material
is decoupling the mass barrier without any airgap. On the contrary, for double-
wall constructions where airgaps are present, so where the barrier walls are self-
supporting, the porous material will work effectively anyway whenever it is perfectly
rigid or limp (extremely soft). The porous materials are not good insulators when
used as a single layer, but they can be used to add viscothermal dissipation when
coupled to single or double wall systems. Their elastic parameters can be of primary
importance when they are bonded to the structure. More details will be given in the
Chap.10 about building applications.

http://dx.doi.org/10.1007/978-3-030-84300-7_10
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9.3.1 Insulation Optimization: Fibrous Porous Material Case

For insulator poroelastic springs applications behind heavy layers, the optimized
PET2 or PET/PP3 microfiber felts, described in Sect. 2.2.2, are too soft and decouple
badly in the middle frequency range. In order to reach the rather ideal softness of
“shoddy” materials while reducing weight (E = 8 kPa typically), one may intro-
duce spring crimped or helicoidal hollow coarser fibers mixed with microfibers for
improving the elastic properties, while keeping good viscothermal dissipation prop-
erties essential in the high frequency range [7]. On the contrary, glass fiber felts are
too rigid for insulation automotive purposes (decoupling heavy layers), due to its too
high Young’s modulus at classical densities (which can be tuned a little bit somehow
with glass composition, but in a limited way), restricting applications to absorp-
tion purposes only or integrated in self-supporting double wall air gaps without any
gluing.

9.3.2 Insulation Optimization: Foam Porous Material Case

Let us concentrate here on the macro-stiffness control of foams realized through an
adjustment of the Young’s modulus of the constituting material depending on the
targeted absorption or insulation application of the PUR4 foam. Regarding a specific
PUR foam index situation, which depends on the mixing of diols and triols and
therefore on the resulting available –OH radicals, as well as on MDI diisocyanate
molecule type with corresponding available N=C=O radicals, and while taking into
account stoechiometric mixing ratios and water H2O content, one can predict the
number of “urethane” chemical bonds, which are directly linked to the stiffness of
the foam (with “urea” secondary products bonds also) [9]. From this standpoint, it is
then possible to scan above and below this stoechiometric value and get various low
Young’s modulus values here, with a certain chemically feasible variation (collapse,
etc.).

9.3.3 The Standard Mass—Poroelastic Spring Insulator

The “old good” mass-poroelastic spring insulator is an excellent insulation technol-
ogy allowing to reach very high transmission loss (TL) values in relatively small
spaces. A 20mm soft foam with a 3.5kg/m2 heavy layer simply positioned on a
0.8mm steel plate reaches a transmission loss of 85 dB at 5 kHz, see Fig. 9.18. Dou-
bling the mass of the heavy layer or the steel improves the transmission loss by 6

2 PolyEthylene Terephthalate.
3 PolyPropylene.
4 Polyurethane.

http://dx.doi.org/10.1007/978-3-030-84300-7_10
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Fig. 9.18 Transmission loss of a standard mass-spring insulator: 3.5kg/m2–20mm soft foam
FTMM simulation vs. measurements

dB only. Thickness of the poroelastic spring and mass of the barriers are the macro-
scopic key lever and shows the limitation of this pure insulation concept for weight
reduction.

The key transmission loss micro-structural optimization levers for a PUR injected
foam used as poroelastic spring decoupler are:

• Airflow resistivity of the foam (which should be as high as possible while main-
taining the other properties).

• Tortuosity of the foam (which should be as low as possible while maintaining the
other properties [less important]).

• Young’s modulus of the foam (which should be as low as possible while maintain-
ing the other properties).

• Damping loss factor below the breathing frequency only (which should be as high
as possible while maintaining viscothermal dissipation [less important]).

9.3.4 The Hybrid Stiff Insulator Concept

This hybrid stiff “green” light septum is simply a stiff compressed textile or felt glued
on a light impervious layer, generally backed by an open porous foam or felt [15].
The light impervious layer acts as a mass in transmission loss of the stiff compressed
textile or felt as long as the Young’s modulus of the stiff upper felt is typically above
E > 1 MPa, with a resonance dip in the curve Fig. 9.19 pushed above 4 kHz.

The advantage of this construction is that one maintains the absorption properties
of the compressed textile or felt, as if they were positioned on a heavy layer and
gets the typical response of a mass-spring system, i.e., transmission loss slopes of 18
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Fig. 9.19 Hybrid stiff concept Young’s modulus dependency [15, 16]

dB/oct, up to a compressional resonance mode normal to the hard layer following
the upper felt stiffness. If the impervious layer is not glued or missing, one loses
the effect and recovers only a classical compressed textile or felt acoustic property
(absorption type with 12dB/oct) [16]. This means that the Young’s modulus and the
mass per unit area are much more important here, than the airflow resistance of the
compressed felt or textile (cf. Fig. 9.19).

9.4 Damping Optimization

9.4.1 Damping Optimization: Poroelastic Material Itself

For open cell porous materials described by the Biot-JCA theory [3], the damp-
ing should only be due to the structural losses within the solid phase. Of course,
depending on the chemistry of the polymer foam, the viscoelastic properties of the
skeleton will be observed to some extent, causing a strong or minor dependency of
the damping with temperature.

We would like to emphasize the case where the closure rate of membranes at
microstructure scale might induce additional strong viscous losses. In the dynamic
case, the latter will cause an important variation of the damping with frequency
as well. Indeed, the higher the frequency the higher the damping linked to these
additional viscous effects [17]. This way one can increase the damping loss factor of
standardPUviscoelastic foams formulationswell above 0.5 and up to 0.7. The trouble
is this almost closed cell foam does not present classical viscothermal dissipation and
thus possesses almost no absorption as well as bad decoupling spring foam properties
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Fig. 9.20 Visco-elastic foams with various mechanical properties [18]

in the middle and high frequency ranges. The challenge is therefore to develop open
cell viscoelastic foams with good structural damping above 0.33 and presenting still
open cell microstructures. The result is an insertion loss increase below the breathing
frequency of about 4 dB and classical poroelastic spring foam behaviour above (cf.
Fig. 9.20) [18].

Note that the effect of the damping loss factor may have a significantly different
effect depending on the type of the excitation. The damping loss factor has a limited
influence when dealing with an air-borne excitation whereas it will influence the
entire frequency range when dealing with structure-borne, turbulent boundary layer
or rainfall excitation. This can be explained from the wavenumber point of view [19].

For fibrous materials, structural damping as well as friction between fibers with
special slick treatments can eliminate the breathing frequency negative transmission
loss (or insertion loss) values. Generally, fibrous materials achieve lower damping
than foams, but the induced damping effect to structures in contact with them remains
interesting.

9.4.2 Damping Optimization: Poroelastic Material Boundary
Conditions

The boundary conditions at the interface between the poroelastic material and its
supporting structure are essential for maximizing the induced damping effect to the
structure. For thin air gap cases with no contact at all, the induced damping is not
present. For sliding or even better fixed boundary conditions, the induced damping
can be very significant [20], as illustrated in Fig. 9.21. Here, we show structure-borne
transfer functions between acceleration and force on a bare or trimmed plate using
poroelastic finite element simulation and measurements.
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Fig. 9.21 (left) Bare structure and (right) trimmed structure [20]

9.5 Conclusions

A lot of “low-hanging fruits” technology transfers between automotive, building and
aeronautic industries and beyond, of course, can be imagined. A first example is
the tunable absorption concept, which is applied for over 10years in the automotive
industry with airflow resistive non-wovens and which is also applied for more than
5years in the building industry using airflow resistive woven fabrics.

A second example is the hybrid stiff concept, i.e., a compressed stiff porous layer
on an impervious layer, backed by a soft porous spring layer or an air gap. This
configuration is more recent, applied presently in both automotive (dash and carpet
insulators) and building industries (absorbing/insulating ceiling or walls). It could
also be applied for aircraft interior linings with stiff compressed porous layers with
nice woven fabrics facings and backfoiled. That would be lighter as well as more
absorptive than grained plastic trims especially in the high frequency (5–7mmporous
layer absorption on a significant 2/3 of the interior passenger cavity).

A third example is the very low density glassfiber felt of 8kg/m3 or polymide
foams of 6kg/m3 of the aeronautic industry that could be transferred to the automotive
industry in particular for filling gaps between double wall constructions, etc.

In the following Chapters, we will present specific acoustic treatments and the
particular challenges to control noise in the automotive, building and aeronautic
industries.
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Chapter 10
Industrial Applications II

Acoustic Package Optimization Methods in the
Building Industry

Fabien Chevillotte

Abstract This chapter aims at presenting various building applications using porous
materials. The role of porousmaterials and the relevant phenomenawill be introduced
for four typical applications, namely the acoustical correction, air-borne insulation,
solid-borne insulation and ceiling applications. This chapter attempts to help the
reader to identify the considered acoustical application, as well as in understanding
the associated physical phenomena, in order to easily pinpoint the optimization key
levers.

10.1 Introduction

Porousmaterials arewidely used in building applications. Nevertheless, there are dif-
ferent applications and the relevant phenomena as well as their governing parameters
differ. The purpose of this chapter is to give an overview of building applications and
to attempt to explain how porous materials can help to improve the acoustical per-
formance in these applications. Porous materials such as fibrous materials or foams
are known as good “acoustical materials” but there is often a confusion between an
absorbent material and an insulating material. Porous materials generally present
good visco-thermal dissipation. This is enough to provide a good sound absorption
performance but it is not enough to have good insulation properties when they are
used alone.

Figure10.1 compares the sound absorption coefficient in diffuse field (left) and
the transmission coefficient (right) of a 46-mm thick glasswool (density 27kg·m−3)
and a 12.5-mm thick plasterboard. The single rating number Rw is also indicated
for transmission properties [1]. One can note that the porous medium (glasswool)
shows a good sound absorption improving with the frequency when compared to the
plasterboard which is impervious and has no absorption property. On the contrary,
the glasswool has a poor insulation performance compared to the plasterboard one.
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Fig. 10.1 Comparison of sound absorption coefficient (left) and transmission loss in diffuse field
(right) of a 46-mm-thick glasswool and a 12.5mm-thick-plasterboard

Nevertheless, the viscothermal dissipation of the porous medium can be useful to
improve the insulation properties when assembled with other materials. The trans-
mission loss of the glasswool added to the plasterboard is shown in the same figure.
Note that gluing the porous material on the panel can affect the behaviour of the
system and thus its transmission loss.

10.2 Acoustical Applications in the Building Industry

10.2.1 Acoustical Correction

The first building application, called “acoustical correction”, consists of controlling
the reverberation time according to the use of a room (e.g., living rooms, bedrooms,
offices, classrooms, lobby, concert halls, etc.). In this application, the source and the
receiver are placed in the same room, as shown in Fig. 10.2.

The reverberation time RT60 can be approximated by the Sabine’s formula:

Fig. 10.2 Acoustical
correction: direct
propagation and multiple
reflections of sound inside a
room

Source

Receiver
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RT60 = 24 ln10

c0

V

A
≈ 0.161

V

A
. (10.1)

The reverberation time, RT60, is defined as the required time to decrease the sound
pressure level by 60 dB from the level of the excitation. Here, c0 is the speed of
sound, V the volume of the room, and A the equivalent absorption area defined as

A =
∑

i

Si × αi , (10.2)

where Si and αi are the surface and the sound absorption coefficient of surface
element i , respectively.

For most applications, one generally tries to reduce the reverberation time. Look-
ing at Eq. (10.1), this can be done by reducing the volume V , which is often not
achievable, or by increasing the equivalent absorption area A. This latter is carried
out by increasing the surface of absorbing materials or the absorption performance
itself. The absorbing materials are always porous materials or an assembly of porous
materials, perforated plates and/or screens.

10.2.2 Air-Borne Insulation

The second building application is the air-borne insulation. It can be insulation to
interior noises (TV, radio, vacuum cleaner, etc.) as well as external noises (vehicles,
roadworks, airport, etc.). The insulation can be achieved within the same housing or
between different premises (housings, commercial surfaces, etc.).

10.2.2.1 Single Wall Partition

When dealing with air-borne insulation, we classically start with a single leaf parti-
tion. When considering a plane wave at oblique incidence θ, a drop in transmission
loss happens at the so-called coincidence frequency. This decrease is due to the
coincidence of the transverse acoustical wavenumber kt = k0 sin θ of the incident
wave and the natural bending wavenumber kb = √

ω 4
√
m ′/D, with k0 = ω/c0 the

acoustical wavenumber (Fig. 10.3).
The coincidence frequency is given by

f ′
c = 1

2π

c20
sin2θ

√
m ′

D
, (10.3)

with the surface mass density
m ′ = ρh, (10.4)
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Source

Receiver

Fig. 10.3 Typical acoustical insulation problem and transmission pathways

and the bending stiffness

D = Eh3

12(1 − ν2)
, (10.5)

with ρ the mass density (kg/m3), E the Young’s modulus (Pa), ν the Poisson’s ratio
and h the thickness of the plate.

This coincidence frequency decreases while increasing the incidence angle (see
Fig. 10.4). Under oblique plane wave, the transmission loss can be split in three zones
controlled by different parameters:

Fig. 10.4 Transmission loss
of a 140mm-thick single
wall made of concrete for
oblique plane wave
excitation
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(1) For f < f ′
c : the mass law zone for frequencies lower than the coincidence

one which is controlled by the surface mass density m ′ = ρh with a slope of
6 dB/octave.

(2) For f ≈ f ′
c : the coincidence zone which is mainly controlled by the damping

loss factor η.
(3) For f > f ′

c : a third zone for frequencies greater than the coincidence one which
is controlled by the stiffness and a slope of 18 dB/octave.

When considering a diffuse field, the transmission loss can also be split in three
zones but separated by the critical frequency fc. The critical frequency is the lower
coincidence frequency, corresponding to the greater incident angle (θ = 90◦), given
by

fc = c20
2π

√
m ′

D
. (10.6)

The typical transmission loss of a single panel (140mm of concrete) submitted to
a diffuse field is shown in Fig. 10.5. The transmission coefficient under diffuse field
is computed thanks to an integration of oblique plane waves from 0 to 90◦.

(1) For f < fc: the first zone is still controlled by the mass which is controlled by
the surfacic mass m ′ = ρh with a slope of 6 dB/octave (it is actually slightly
lower around 5.5 dB/oct).

(2) For f ≈ fc: the critical zone is still controlled by the damping loss factor η.
(3) For f > fc: a third zone which is controlled by the bending stiffness and the

damping loss factor with slope of 9 dB/octave.

The slope goes from 18 dB/octave for a single incident angle to 9 dB/octave under
diffuse field because the transmission loss in diffuse field integrates the stiffness
effect and the coincidence frequencies of all incident angles.

Fig. 10.5 Transmission loss of a 140mm-thick single wall made of concrete for diffuse field
excitation
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The first way to enhance the transmission loss is to increase the surface mass
density m ′. This can be done by increasing the thickness which also implies an
increase of the bending stiffness in power of 3 (see Eq.10.5) or by increasing the
mass density ρ. At the same time, the increase of mass density usually implies a
stronger increase in Young modulus E . This means that increasing the mass gener-
ally implies a greater increase in bending stiffness and thus a decrease in the critical
frequency. The decrease of the critical frequency strongly degrades the overall insu-
lation performance. This degradation can be more important than the gain due to the
increase of mass. Typical critical frequencies are 12 kHz for 1mm-thick-steel plate,
2.5 kHz for 12.5mm-thick-plasterboard 115Hz for a 140mm-thick-concrete slab.

10.2.2.2 Double Wall Partition

To get around this limitation, double wall partitions are usually employed (Fig. 10.6).
Each panel has is own critical frequency. But thin plates enable to let the critical
frequency relatively high. Nevertheless, another resonance appears at lower frequen-
cies. It is a mass-spring-mass resonance and its characteristic frequency is called the
breathing frequency, f0, given by

f0 =
√
Re

(
Keq

)

4π2Lc

(
1

m ′
1

+ 1

m ′
2

)
, (10.7)

with Keq the bulk modulus of the material filling the cavity, Lc the thickness of the
cavity and m ′

i the surface mass density of the i-th panel.
This resonance is a limitation, but the slope of the transmission loss is strongly

increased right above f0. The cavity can be filled with a porous material, usually a
light glasswool, to increase the sound insulation at medium and high frequencies.
The filling porous material mainly adds viscothermal dissipation which strongly
improves the transmission loss above the breathing frequency.

The bulk modulus of air is the adiabatic value γP0, with P0 the atmospheric
pressure and γ the heat capacity ratio (γ = 1.4 for air). When considering a typical

Fig. 10.6 Single leaf versus double leaf
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Fig. 10.7 Transmission loss of a double leaf partition (12.5mm-thick-plasterboards and a 48mm-
thick-cavity filledwith air or glasswool, stud-less) compared to a single leaf plasterboard of 12.5mm

porous medium filling the cavity, the real part of the bulk modulus varies between
the isothermal behaviour at low frequencies P0/φ and the adiabatic one γP0/φ, with
φ the open porosity of the filling material [2]. Classical porous materials have a high
porosity and an isothermal behaviour for frequencies around the breathing frequency.
This means that filling the cavity with a porous such as a glasswool, decreases the
stiffness of the cavity by a factor

√
1.4.

The improvement of viscothermal dissipation and the decrease of the breathing
frequency are illustrated in Fig. 10.7 for a doublewall partitionmade of two 12.5mm-
thick-plasterboards and a 48mm-thick-cavity filled with air or glasswool. Note that
additional phenomena such as double porosity [3] or adsorption/desorption can help
to lower this bulk modulus [4].

Due to the self-supporting stiff walls, the Young’s modulus of the porous material
(glasswool here) is not important in this case, only viscothermal effects and den-
sity (so-called “limp” model) have to be taken into account. This situation becomes
general whenever the porous material is decoupled from the walls with air gaps. Oth-
erwise, full poroelastic models are compulsory and stiff decoupling porous materials
have to be avoided.

10.2.2.3 Effect of Mechanical Links

To ensure the support of the partition, mechanical links have to be used between the
two panels. This mechanical links, also called mounts or studs, introduce a solid-
borne path which acts as an additional transmission path. The air-borne and the solid-
borne paths are often computed separately and then combined [5] (seeFig. 10.8).Note
that most of analytical models for solid-borne path computation are limited to two
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Fig. 10.8 Schematic
drawing of a double panel
with mechanical links

Incident waves

Solid-borne path

Air-borne path

thin plates coupled by a mechanical link. A recent work has proposed a methodology
to get around the thin plate assumption and to deal with more than one mechanical
link [6].

The air-borne, solid-borne and total transmission loss coefficient are shown in
Fig. 10.9 for the double wall partition used in the previous section (Fig. 10.7) with
a mechanical link of stiffness Ks = 106 N/m and a loss factor η = 0.08 for the
plasterboards. The solid-borne path is usually controlling the total transmission per-
formance for frequencies higher 300Hz for such a partition. The influence of the stud
stiffness on the total transmission loss is illustrated in Fig. 10.10 for a given damping
loss factor of the plasterboards (η = 0.08).

The influence of the loss factor on the total transmission loss is illustrated in
Fig. 10.11 for a given stiffness of the mechanical links (Ks = 106 N/m). One can
note that the influence of the damping loss factor of the plates is as important as the
stiffness of themechanical links. Thismeans that the optimization of the stud stiffness
has to be done for a given damping loss factor of the plates. Therefore, the loss factor
of the plates is a major parameter. This can be explained using the wavenumber

Fig. 10.9 Influence of the
mechanical link on the
transmission loss of a double
wall partition: air-borne,
solid-borne and total
contribution (12.5mm-thick-
plasterboards (η = 0.08) and
a 48mm-thick-cavity filled
with a glasswool
(27kg.m−3), stud stiffness
Ks = 1e6 N/m)
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Fig. 10.10 Influence of
stiffness of the mechanical
link on the transmission loss
of a double wall partition
(η = 0.08)

Fig. 10.11 Influence of
damping loss factor of plates
on the transmission loss of a
double wall partition
(ks = 106 N/m)

analysis [7]. The solid-borne path presents a strong effect of the damping loss factor
on the entire frequency range. This can be explained by the fact that the studs are
excited by the first plate (emission side) and act as point forces exciting the second
plate (reception side) and point forces excite a wide range of wavenumber. In this
case there is always energy around the natural bending wavenumber of the second
plate and a strong effect of the damping loss factor is observed.

This double wall partition problem is similar to the transmission problem pre-
sented in the part dealing with aeronautic applications (see Chap.12) except that
decouplers are employed to avoid the solid-borne path. Nevertheless, as a turbulent
boundary layer excitation has to be considered (exciting awide range of wavenumber
[7]), the effect of the damping loss factor of the panels is also of primary importance.

http://dx.doi.org/10.1007/978-3-030-84300-7_12
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Fig. 10.12 Impact noise
pathways in a typical
building application. The
underlay material (yellow) is
added to increase the
solid-borne insulation

Receiver

Impact 
source

10.2.3 Solid-Borne Insulation (Impact Noise)

Two floors are generally separated by a concrete slab, with a typical thickness around
140mm. Its air-borne insulation is relatively good but floors can strongly radiate
noise when submitted to impact source, e.g., falling objects, walking, etc. A spring-
mass system can be added to increase the structure-borne insulation, as shown in
Fig. 10.12. The mass is the surface floor (screed and tiles for instance) and the spring
is an underlayer (porous or not). In this case, the porous layer must be sufficiently
stiff to support the static load and at the same time sufficiently soft to shift the spring-
mass resonance to lower frequencies in order to take advantage of the spring mass
insulator. In this case, the performance is defined mainly by the elastic parameters
of the porous layer. This is indeed the case presented in Sect. 9.3.3 previously.

Moreover, compared to an air-borne source, a mechanical source excites a wide
range of wavenumbers, even at low frequencies, and the loss factor of the receiver
panel (concrete slab in this case) is of primary importance [7]. The measurement
of the impact noise is carried out thanks to a tapping machine [8, 9]. The tapping
machine is placed on the upper floor (Fig. 10.12 top-left) and the sound pressure is
measured in the lower room (e.g., at Fig. 10.12 bottom-left). First, one measures the
normalized impact sound pressure level L0n of the concrete slab and secondly the
one of the concrete slab and the covering or the spring-mass system Ln . Then the
reduction of impact sound pressure level is computed ΔL = L0n − Ln[10].

Normalized sound pressure levels are shown in Fig. 10.13 and the reduction of
impact sound pressure level is shown in Fig. 10.14. The sound pressure level is
strongly reduced at frequencies above the spring-mass resonance (≈ 150Hz in this
configuration) but a slight increase happens at this resonance frequency. As this

http://dx.doi.org/10.1007/978-3-030-84300-7_9
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Fig. 10.13 Normalized
sound pressure level with Ln
and without under layer Ln0

Fig. 10.14 Reduction of
impact sound pressure level
with under layer ΔL

resonance frequency is in the low frequency range, the single number rating ΔLw

is very sensitive to this phenomenon. When the underlayer is porous, one must be
aware of the compressibility of the air which can become predominant when the
mechanical stiffness is low.

10.2.4 Ceilings

Ceilings have a particular role since they are employed as sound absorbers but they
can also introduce a lateral air-borne path between two rooms, as shown in Fig. 10.15.
These parts have thus to be designed to control both the sound absorption in the
emission room and to insure the air-borne sound insulation between two rooms. The
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Fig. 10.15 Noise pathways in ceilings. a Noise propagating in the plenum introduces a lateral
air-borne path. b Acoustic treatment of the plenum

treatment of the plenum is thus of primary importance to avoid lateral leaks and to
attenuate the resonances of the plenum.

Acoustical treatments used in the automotive industry such as dash panels (see
Chap.11) are also designed to increase the sound absorption and the air-borne sound
insulation. In both applications, a multilayer made of porous media, screens (or
perforated plates) and/or impervious heavy layers can be employed.

10.3 New Trends in Building Acoustics

10.3.1 Thin and Aesthetic Absorbers

The new trends in building industry are varied. The first one is to use thin absorbers
using textile or thin coatings. The idea is not to reach a sound absorption coefficient
of 100% but rather to use thin treatments with lower absorption coefficient on large
surfaces, such as the entire walls of a hotel lobby.

Another trend is to use additional suspended panels on ceiling or wall to increase
the absorption area, e.g., in restaurants, offices, open-spaces, etc. Some panels can
also include lighting. Absorption panels are used more and more often as aesthetic
parts. Green materials and recycled ones are also often considered.

10.3.2 Low Frequency Performances and Non-conventional
Phenomena

Similarly to other domains, the goal is to increase the low frequency performance
of the solutions, for both absorption and insulation with a limited space, weight
and cost. Acoustic metamaterials are of course studied. These materials attempt

http://dx.doi.org/10.1007/978-3-030-84300-7_11
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Fig. 10.16 Influence of
inner resonators on the
transmission loss of a double
wall partition

to use additional physical phenomena to improve the sound absorbing or insulating
performances. Resonating (acoustical, spring-mass or membrane-type resonators) or
diffusion phenomena (pressure diffusion or multiple-scattering effects) are among
them. In addition, the effect of the periodicity (Bragg’s effect) can be used, but it is
not required to take advantage of other non-conventional phenomena such as local
resonances.

An example of porous mediumwith inner acoustical resonators (Helmholtz-type)
in a double wall partition is studied here. The double wall partition is the same as the
one studied in Sect. 10.2.2.3 with two plasterboards, mechanical links and a 48mm-
thick-cavity filled a glasswool and 20% of embedded resonators targeted around the
breathing frequency.

The transmission loss values with and without resonators are compared in
Fig. 10.16. One can note that the inner resonators enable to increase the transmission
loss at the breathing frequency, which is shifted toward higher frequencies.

This can be explained looking at the bulk moduli shown in Fig. 10.17. Without
inner resonators, the real part of the bulk modulus varies from the isothermal value
P0/φ (with φ ≈ 1 for a glasswool) at low frequencies to the adiabatic value γP0/φ at
high frequencies. The imaginary part increases around the visco-inertial frequency
(600Hz). Looking at the bulk modulus of the glasswool with inner resonators, one
can observe an increase of the imaginary part of the bulk modulus at the resonance
frequency, which results in additional dissipation. On the other hand, one can notice
a decrease of the real part of the bulk modulus below the resonance frequency and
its increase right above it.
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Fig. 10.17 Influence of inner resonators on the normalized Bulk modulus (K/P0)

As mentioned in Sect. 10.2.2.2, the breathing frequency increases with the real
part of the bulk modulus (Eq.10.7). Unfortunately, this phenomenon cancels the
benefits of the additional dissipation of the resonators and the single number rating
of the treatment with the resonators Rw is 1 dB lower that for the treatment without
resonators. Obviously, different designs can be investigated but this type of drawback
will always exist when the resonant phenomena are involved. This, however, does
not happen for treatments based on diffusion phenomena.

10.3.3 Rolling Noise

Another trend is to divide buildings into commercial and habitable areas. Commercial
shops typically occupy the ground floor, with private residencies on the upper floors.
The delivery carts generate vibrations at low frequencies (100Hz) that propagate
easily throughout the building structure and on the upper floors, disturbing the habi-
tants therein. Figure10.18 shows that the sound pressure level due to rolling noise
is far from the one generated with the tapping machine used for measuring impact
noise according ISO standards [8, 9]. Moreover, one can note that typical decoupling
spring-mass systems usually employed (see Sect. 10.2.3) are not suitable for rolling
noise and can even amplify the rolling excitation when the spring-mass resonance
coincides with the characteristic lobe of the rolling excitation. This problem is being
addressed in current research using simulations and experiments [11].
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Fig. 10.18 Comparison of the sound pressure levels of tapping noise and rolling noise of a classical
floating floor, as well as the attenuation of a typical floating floor

10.4 Conclusions

The porous media are employed to dissipate acoustical energy for absorption or
insulation purposes. In double partition, porous media allow for an additional vis-
cothermal dissipation at mid and high frequency and a decrease of the bulk mod-
ulus lowering the breathing frequency. When dealing with an acoustical problem
in the building industry, we first have to identify which application is considered
(acoustical correction, air-borne insulation, solid-borne insulation, ceiling) in order
to understand which phenomena and therefore which parameters are important for
optimization purposes.

Acknowledgements Pierre Leroy from Saint-Gobain-Isover is warmly thanked for the fruitful
discussions and the review of this part.
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Chapter 11
Industrial Applications III

Acoustic Package Optimization Methods in the
Automotive Industry

Arnaud Duval

Abstract In this chapter we review the new up-coming challenges for noise treat-
ments Research & Development in the automotive industry to improve the acoustic
comfort in vehicles. After a description of the sources and their main transfer paths,
noise treatments optimization key levers for both raw porousmaterials andmultilayer
lightweight treatments are presented and discussed ranging from basic 2D optimiza-
tion at sample level to 3D at component level. A particular attention is given to newly
emerging electric engines. Finally, the problematic of fast broadband vibroacoustic
simulations with trims is analysed.

11.1 Introduction

Theautomotive industry is currently facing important challenges.Oneof them is deal-
ing with strong environmental constraints linked to carbon dioxide (CO2), nitrogen
oxides (NO×) and other pollutants emission reduction. Another is the emergence
of connected, autonomous, shared and electric vehicles (the famous “CASE” of
Daimler’s CEO). For the emission control, beyond aerodynamic, rolling and engine
friction losses, one of the key levers is weight reduction with a simple rule of 10kg
corresponding to 1g CO2/km. The total weight of noise treatments including damp-
ing sheets exceeds 60kg in a vehicle. Therefore, improvements offered by porous
materials either through new treatments combining insulation, absorption and damp-
ing, in an innovative way, or through sole porous material or metamaterial use are of
paramount importance for achievement of CO2 emissions target.

For the electric vehicle, the distribution of principle contributing sources is chang-
ingdrasticallywith a dominant broadband rolling noise centered in themid-frequency
combined with high frequency annoying tonal and broadband electric engine noise.
Beyond typical noise, vibration and harshness (NVH) parts such as noise treatments
or engine mounts, many other parts do also have an indirect but important acoustic
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function. These parts include pumps, heating, ventilating and air conditioning sys-
tems (HVAC), generators, cooling fans etc. The list can be very long indeed and very
often combines acoustic and thermal management [1]. The electric vehicles (EV)
and plug-in hybrid vehicles (PHEV) present unusual accessories annoyance as well
as new power mode NVH transitions to manage. All this converges towards more
and more accessories and engine encapsulation treatments where tuned porous mul-
tilayer materials excel in insulating and absorbing noises, but they are also prone to
insulate heat when positioned in contact or near contact with the radiating surfaces.

11.2 Acoustic Package Optimization Methods in the
Automotive Industry

11.2.1 Automotive Vehicle Main Noise Sources and Airborne
Transfer Paths

The three main noise sources of an automotive vehicle are the engine noise (power-
train including the gearbox), rolling and aerodynamic noises. Figure11.1 illustrates
these three main noise sources as well as their major transfer paths. It demonstrates
the relevance of considering exterior and interior noise treatments globally, each one
having both an insulating (transmission loss: reflection of energy) and absorbing
(absorption coefficient: dissipation of energy) role. A non-negligible induced damp-
ing effect from the noise treatments to the supporting structure may be observed even
in the presence of damping sheets (pure bitumen dampers).

The traditional contribution of automotive sources versus speed is illustrated in
Fig. 11.2 where the powertrain (engine with gearbox) is dominant up to 40km/h,

Rolling noise

Aerodynamic noise

Powertrain noise

Fig. 11.1 Main sources and transfer paths in a vehicle
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Fig. 11.2 Vehicle noise sources contribution depending on speed [2]

then the rolling noise takes over up to 90km/h and, finally, above that speed the
aerodynamic noise dominates. This is not the case anymore for electric vehicles,
where the electric engine is so silent at low speed up to 30km/h that artificial sounds
with tonal content are necessary to alert pedestrians whether the electric vehicle is
approaching or not, accelerating or not! New regulations define the type and the level
of such sounds, also called acoustic vehicle alerting system (AVAS).

The main difference between an electric engine noise and a diesel engine noise
is the very quiet low frequency range content of the electric engine noise: it is about
25 dB lower below 200Hz. Indeed, the internal combustion engine (ICE) presents
strong engine orders up to 250Hz depending on the engine rotation speed, typically
following the number of cylinders n divided by 2 for a 4 four strokes engine. Thus,
in a 4 cylinders case, the dominating harmonics are the even orders (2, 4, 6, 8, ...). In
the range of frequencies 800Hz and 4000Hz, which corresponds to the maximum
sound pressure level (SPL), this difference is down by 10 dB compared to the diesel
engine, as shown in Fig. 11.3.

This means that the low frequency masking of the internal combustion engine is
not there anymore for the electric engine vehicle and that all automatic assistance:
pumps, small electric motors, generators, air conditioning (HVAC) will have to be
treated specifically either through additional interior noise insulation or dedicated
encapsulation. This equipment is sometimes considered as the fourth noise source
in an automotive vehicle. This dominating high frequency broadband content is
reinforcedwith strong tonal “whistling” harmonics following the number ofmagnetic
pair of poles, typical H241 and H48 for the traditional 8 pairs of poles construction.
On top, the DC to AC current pulse width modulation (PWM) is also introducing

1Harmonics, engine orders.
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Fig. 11.3 Electric engine Sound Pressure Level in dB(A) in the engine compartment at various
speed rolling conditions versus typical diesel engine SPL
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Fig. 11.4 Electric engine spectrogram in SPL (dB), RPM in function of frequency in the engine
compartment (Courtesy of Renault)

harmonics in the high frequency range within a triangular shape centered around 10
kHz (cf. Fig. 11.4).

The aforementioned noise treatments put together allow recognizing an automo-
tive vehicle (cf. Fig. 11.5). One can see engine encapsulation parts directly positioned
on the powertrain having thermal and acoustic roles, body and underbody absorbers
and shields having absorbing, insulating and aerodynamic roles, interior and trunk
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Fig. 11.5 Typical exterior and interior noise treatments (Courtesy of Trèves)
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Fig. 11.6 Ranking of various typical absorbing, hybrid insulating/absorbing and insulating multi-
layer noise treatment technologies

noise insulators having acoustical, mechanical and aspect roles. From a global acous-
tic package perspective, only damping sheets, sealing and absorbers in hollow body
or passthroughs, door sealing and the headliner are missing in Fig. 11.5.
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Fig. 11.7 Transmission loss results (dB) at 25mm, using the Finite Transfer Matrix Method
(FTMM)

11.2.2 Multilayer Noise Treatments Properties

11.2.2.1 Finite Transfer Matrix Method Comparison

The weight reduction challenge has taken a new shape in the past years due to
high pressure on CO2 emissions in the automotive industry. The new question is:
what level of acoustic performance can one get with an insulator weighting globally
less than 2500g/m2? The existing solutions at this weight being mainly dissipative
(absorption) treatments give a satisfactory performance only if the passthroughs are
poor and present critical leakages.

Respecting the less than 2500g/m2 weight target, awide range of newor optimized
concepts have been developed ranging from extremely absorbing to highly insulating
noise treatments playing with multilayered insulators (typically three to four layers),
in combination or not with tunable absorbers on the other side of the metal sheet
(in the engine compartment for example) [3]. Each system answers to a specific
passthrough quality situation, the best treatments combining broadband absorption
with good insulation slopes (Fig. 11.6). This requires very light airflow resistive non-
wovens and light airtight barriers in parallel with optimized poroelastic materials
like foams or felts with adjusted stiffness. This approach shows with efficiency that
optimizing a noise treatment without its environment may be misleading.

All aforementioned lightweight technologies have been developed at first using
simplified Statistical Energy Analysis (SEA) simulation accounting for both insu-
lation and absorption properties. When the absorption is localized in the recep-
tion cavity and when no spatial windowing is necessary, it is possible to use the
famous coupled reverberant rooms equation,2 instead of the reference SEA model
(cf. Figs. 11.7, 11.8 and11.9).

2N R = T L + 10 log10(A).
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For the equivalent absorption area of the 1m3 reception cavity, the diffuse field
absorption coefficient of the 1m2 sample is taken into account as well as the absorp-
tion coefficient due to the almost negligible viscothermal effects on the 5m2 resting
“bare” boundaries. This absorption situation is representative of what is happening
behind an instrument panel without additional absorption. Elsewhere, a full SEA
or better full coupled ray-tracing model of the fully trimmed vehicle is necessary
in order to simulate properly the absorption influence of a specific insulator on the
sound pressure level at the ear location of the passengers [4].

This noise reduction analysis shows that good absorption performance cannot
compensate for a strong lack of insulation performance. The Absorber-Barrier-
Absorber (ABA) andhybrid stiff solutions are giving the best results for the 2500g/m2

total weight (1500g/m2 upper equivalent barrier). Note that the stiff upper layer of
hybrid stiff treatments allows a full capture of the upper felt or polyfoam mass in
the transmission loss performance unlike the soft upper felts of ABA lay-ups in the
whole middle and high frequency 500Hz upwards.

Once again, the heavier the better for the 2500g/m2 upper equivalent barrier
weights like the Hybrid Ecofelt (or polyfoam) solutions. The main difficulty is to
maintain the absorption performance at a high compression, see Fig. 11.8. Anyway,
the super stiff hybrid Ecofelt does not present any high frequency dip in the trans-
mission loss curve up to 10 kHz (Fig. 11.7). Nevertheless, above 4 kHz this potential
dip would not have any influence on the global performance with leakages.

11.2.2.2 Finite Transfer Matrix Method Comparison with Leakages

Noise treatments in the automotive industry are generally very efficient as long as
there are no leakages. This is the reason why the dash panel area is considered as the
most severe one. Indeed,most of the critical passthroughs are concentrated there such
as pedals, HVAC, steering column, cables etc. Nevertheless, the great majority of the
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Fig. 11.8 Diffuse field absorption coefficients FTMM results at 25mm
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Fig. 11.9 Noise Reduction results: NR = TL + 10 log10(A) at 25mm

passthroughs radiate behind the instrument panel, which builds an intermediate half-
closed cavity having an insulation effect (masking) and where additional absorption
works actually quite well (cf. Fig. 11.10) [3].

The concept of “airtight instrument panel” used by some premium German car-
makers takes advantage of this instrument-panel insulation effect combined with
conventional insulators. But it requires expensive sealing technologies especially in
the under instrument panel driver area where the sealing must not block the move-
ments of the pedals for obvious active safety reasons! Another classical solution is
to use numerous absorption patches positioned under the instrument panel and on
the instrument-panel undercover used in parallel with insulation concepts. The latter
works quite well even if one is not profiting from the additional transmission loss
of these absorption patches, the problem which can be solved by superimposing the
absorption layer on the mass-spring insulation system (ABA or better hybrid-stiff
concepts).

The best lightweight technology is in fact “pass-through dependent”. The higher
the leakages, the more effective are the absorption concepts shown on the left side

Noise radiated
by the engine

Noise propagating
through the 
passthroughs

Noise radiated by
the instrument panel

Confined noise

Noise propagating
through the waterbox

cockpit

waterbox

window

engine
compartment

Fig. 11.10 Cockpit specific architecture with leakages and masking effects
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Fig. 11.11 Noise Reduction results: NR = TL + 10 log(A) at 25mm with 2% uncovered area

of Fig. 11.6. On the contrary, the lower leakages, the better is the performance of the
insulation treatments, shown on the right side of Fig. 11.6. The “holy grail” of the
noise treatment engineer is to maximize and broaden the working frequency range of
both insulation and absorption at the same timewhilemaintaining lowweights. Using
the TMM implementing the Biot-Allard theory, the noise reduction index, defined
by NR = TL + 10 log10(A) with A = αmat + 5αviscothermal is calculated without and
with leakages represented as trim uncovered areas [3].

The resulting noise reduction curves show the minimal differences between the
various solutions, as shown in Fig. 11.11, obtained when taking into account the
leakages. Indeed, the ranking between insulating and absorbing technologies is still
respected like in Fig. 11.9 but the differences in performance are reduced. Finally,
the technology which is the most in difficulty with leakages is the traditional foam-
heavy layer concept due to the absence of any absorption (only cavity boundaries
viscothermal effects).

11.2.2.3 Body Mounted Engine Absorbers

In the last 20years, the design of engine absorbers has been following a clear weight
reduction path, starting from 60kg/m3 for a cotton felt, down to 30kg/m3 for a glass
felt with microfibers of around 6 μm diameter, and, nowadays, down to 15kg/m3

for polyurethane (PUR) slab foams with partially closed membranes (cf. Fig. 11.12).
Globally, the absorption performance has been maintained and guaranteed by fol-
lowing the morphological paths described in Chap.9: the homothetic reduction one
for the fibrous materials and mainly the closure rate of membranes for the PUR slab
foams. The cost has been driving evolution of the latter, as melamine foams are very
close to glass felt from a morphological point of view: it is a 3D fibrous material
with a super lightweight polymer skeleton presenting nomembranes at all and having
ligaments of 4–6 µm diameter. Indeed, closing the membranes of PUR with rather
coarse cell size was cheaper than switching to a more expensive smaller cell size
melamine foam technology, interesting anyway for high temperature resistance.

http://dx.doi.org/10.1007/978-3-030-84300-7_9
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Fig. 11.12 Engine absorber ranking for a 20mm blank with fiber or ligament diameter size versus
surface weight. PU: polyurethane

As explained in the earlier chapter as well, the favorable increase of the airflow
resistivity resulting from the closure rate of membranes was also combined with a
strong increase of the tortuosity, which results in excellent absorption performance
in the middle frequency range. This frequency range remains the most critical one
for standard porous noise treatments with the double constraint of space and weight.

11.2.2.4 Automotive Insulator Optimization

In recent years, the link between the microstructure of porous media (foams,
fibrous materials, and also some granular porous samples) and its acoustical macro-
behaviour has been studied more and more starting from 2Dmodels and progressing
to 3Dmodels [5, 6]. These studies allow computing the acoustic properties of porous
materials from their microstructural characteristics. For this purpose, the method of
Hoang and Perrot has been used to define the optimal microstructure morphology
of a PUR foam, e.g. a periodic unit cell, corresponding to a targeted acoustic per-
formance, based on three direct intrinsic measurements, namely: the porosity, the
airflow resistivity and a ligament length (or cell size) [7].

Indeed, the optimization rule is to search in a morphology space where the
microstructures are feasible for manufacturing afterwards [8, 9]. The final acous-
tic descriptor to optimize in the example demonstrated here was the Insertion Loss
(IL) value in dB at 1000Hz of a mass-spring insulator comprised of a soft porous
foam covered by a heavy layer (EPDM-EVA barrier) [10].

Figure11.13 shows two main microstructure optimization parameters of the sur-
face response: the closure rate of the membranes and the dimensionless static per-
meability (normalized to the square of the cell dimension). This surface response
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Fig. 11.13 Insertion Loss 1000Hz surface response versus closure rate [10]

Insertion Loss analysis shows a potential for improvement by 1.5 dB compared
to standard optimized foams. The corresponding optimal morphology may then be
described and transferred to chemical and process engineers for the manufactur-
ing phase. Beyond product-process know-how, both simulation and the design of
experiments might be launched in order to obtain these optimal microstructures.
Such optimization methodologies allow everybody in the industry to speak the same
language and work together towards the development of the best acoustic material.

11.2.2.5 Engine Encapsulation

The new upcoming CO2 emission regulations as well as exterior noise 68 dB(A)
pass-by regulations for Europe to be adopted in 2024 in particular (70 dB(A) in
2020) lead to an increase of the engine treatments coverage need, from 15% now to
80% potentially in 2024 (for Internal Combustion Engine at least). Indeed, porous
materials block the radiated heat when located close to the engine, maintaining the
temperatures for an optimal energy consumption and, in addition, they guarantee
efficient emission control technologies such as catalytic converters or particle filters.
On top, engine encapsulation treatments are reducing the radiated noise through their
insulation, absorption and induced damping properties.

Depending on the mounting constraints or decoupled attachment possibilities
given by the various encapsulation technologies, the acoustic concepts will vary
from pure insulation systems to a hybrid insulation – absorption systems and finally
to pure absorption systems. Most of the times the hybrid solutions are the best.
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Fig. 11.14 Engine
encapsulation typical
acoustic and thermal parts
(courtesy of Trèves)

Beauty cover

Engine and
component 

insulator

Oil pan insulator

Figure11.14 illustrates these acoustic and thermal encapsulation concepts from
injected heavy layer back-foamed, to hybrid plastic GF/PP shells3 back-foamed,
to high density integral foams, micro-perforated aluminium foils on top of resin
glass felts with or without slab foams behind called dual layer, etc. The trend is
also to encapsulate the electric engines more and more, which has the consequence
of leaving many small powered functions such as pumps, electric alternators, elec-
tric turbo-compressors radiate noise with the necessity to be encapsulated as well!
Combined with the body mounted engine and underbody absorbers, these efficient
engine encapsulation technologies allow an overall weight reduction of the interior
noise treatments which, depending on the ICE or electric engine source, will be
reconfigured for optimal performance focusing then more and more on rolling noise
treatments.

11.3 Fast Broadband Highly Curved Insertion Loss
Simulation of Automotive Trims

11.3.1 Trim Modelling Curvature Issue

For more than 25years, the Transfer Matrix Method (TMM) implementation of
the Biot-Allard theory for poroelastic materials has been used on a daily basis in
the industry [11]. This multilayer simulation method is not only very fast (just a

3 Glassfibre/polypropylene.
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few seconds), but also very precise for flat samples (even for rather small sizes of
around 1m2) thanks to the spatial windowing corrections often called Finite Transfer
Matrix Method [11, 12]. The latter is valid not only for Transmission Loss coupled
reverberant room suites simulations, but also for small reverberant room diffuse
field absorption coefficient simulations [11–13]. Combined with SEA/virtual SEA
or energy-based vibroacoustic approaches, the TMM is definitely a powerful tool for
simulating noise treatments in the middle and high frequency range.

Some correlation issues appeared as early as 20years ago especially when using
3D thicknessmaps for 3D insulator representationwith SEA/TMM[14]. Early exper-
imental investigations tended to prove that high curvatures were the main driving
factor for the observed decrease of the Insertion Loss slopes and breathing frequency
disappearance [15]. Poroelastic finite elements with the efficient (u, p) 4 d.o.f for-
mulation and its commercial BEM-FEM software implementations seemed to be the
modelling answer in order to capture this new3D trim transmission loss physics in the
low andmiddle frequency ranges [16–19]. The idea emerged to hybridize BEM-FEM
with SEA using recomposed trim Insertion Losses gathered from a database of pre-
computed equivalent curvature cases. This method was carried out using poroelastic
finite elements in the middle frequency range only and to extrapolate the Insertion
Loss slopes to the high frequency [20, 21].

Indeed, one of the remaining difficulties was to perform accurate and fast broad-
band Insertion Loss simulation of any sound packages for curved surfaces. Analyt-
ical spectral approaches on cylindrical sandwiches [22–24] served as the base for
the development of typical supporting structures: steel shell/poroelastic core/heavy
layer shell model [25]. The aforementioned trimmed cylinder analytical model has
been generalized through a unified cylindrical Transfer Matrix Method approach.
This allows the construction of a vibroacoustic model for any multi-layered cylin-
drical systems of an arbitrary nature [26]. In particular, this system can be composed
of orthotropic shells, 3D viscoelastic solids or 3D poroelastic media. The spectral
nature of the approach makes it possible to rapidly cover the medium to high fre-
quency ranges for industrial size systems. The objective of this work is to validate this
recent spectral approach by application on a simplified dash insulator and comparing
all aforementioned simulation methods with each other.

11.3.2 Cylindrical Transfer Matrix Method: A Spectral
Approach

The theory of this recent fast broadband cylindrical TransferMatrixMethod approach
(cf. Fig. 11.15) can be found in [26], including some experimental pure cylindrical
validation cases as well as numerical validation cases from the literature.

Figure11.16 presents a half-cylinder BEM-FEM poroelastic model (Rayon-
VTM-TL software) which will be used as reference. It shows the lay-up from the
BEM emission, the FEM steel structure, the poroelastic component, and the air gap
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Fig. 11.15 Example of multilayered cylindrical system

Fig. 11.16 Curved Insertion Loss BEM-FEM poroelastic finite elements simulation model: hybrid
stiff standard foam-felt lay-up 25mm thick with a 32.5cm or 25cm half-cylinder radius

to the BEM reception. Whenever the mesh criteria are respected as stated in [27],
the correlation quality of such BEM-FEM poroelastic model has been proven valid
many times in the low and middle frequency ranges including highly curved dash
insulators [11, 17–21].

The Insertion Loss simulation results comparison between the proposed spectral
method, namely cylindrical Transfer Matrix Method (TMM), the classical flat TMM
and flat and curved BEM-FEM poroelastic finite elements is presented in Fig. 11.17.
They show excellent correlations above 250Hz up to 2.5 kHzwhenever the curvature
is taken into account. Indeed, flat TMM and flat BEM-FEM poroelastic finite ele-
ments Insertion Loss simulations do correlate very well as Fig. 11.17 demonstrates,
and it fits very well also with the measurements (as proven many times [11]). How-
ever, this flat method does not capture the Insertion Loss slope decrease for small
curvature radii below 50cm typically from globally 13 dB/oct down to 10 dB/oct
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Fig. 11.17 Insertion Loss
simulation comparison
between flat TMM, the
proposed cylindrical TMM
approach and BEM-FEM
poroelastic finite elements
flat & curved (65cm
diameter) on a Foam
20mm/Heavy Layer
3.5kg/m2 case [26]
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[15, 19]. This Insertion Loss intersection between flat and curved Insertion Losses
is seen to occur even earlier for hybrid stiff lay-ups than standard foam/heavy layer
insulators. This phenomenon is amplified as the curvatures become smaller [28].

11.3.3 Curvature Radius Influence on Trim Insertion Loss
Slopes

Figure11.18 illustrates that the smaller the radius, the lower the Insertion Loss slope
of a Foam20mm/Heavy layer 3.5kg/m2 trim. For a curved surfacewith radii between
40cm downwards to 17.5cm, the amplitude of the Insertion Loss increases by 8 dB
between the ranges of 200Hz and 630Hz. The mismatch with the Insertion Loss of
a flat surface is even higher and peaks at the breathing frequency of 200Hz where a
15 dB difference can be observed. In the experience of the authors, these differences
are less critical for radii above 50cm in this specific case of soft poroelastic cores.
This latter statement explains why the aeronautic industry never pointed out these
curved trim modelling difficulties with main structure radii of about 3m and above.

11.3.4 Trim Thickness Influence on Curved Insertion Loss
Breathing Frequencies

The breathing frequency is the mass-spring-mass frequency resonance occurring
when the upper mass and supporting steel structure vibrate in antiphase. This is a
typical (1,−1) eigenmode (cf. Fig. 11.19 left), where the poroelastic foam is playing
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Fig. 11.18 Influence of the
curvature radius on the
Insertion Loss of a Foam
20mm / Heavy Layer
3.5kg/m2 trim using
Cylindrical TMM and Flat
TMM
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its decoupling role in the same way as a suspension would do for a pure vibratory
problem. This is causing the dip in the Insertion Loss curve at 200Hz for a 20mm
foam, 3.5kg/m2 heavy layer flat trim (cf. Figs. 11.17 and 11.18). This dip will shift
towards higher frequencies as the foam thickness decreases.

The most remarkable aspect of curved-trim Insertion Losses is indeed the dis-
appearance of the breathing frequency, where the mismatch between the Insertion
Losses of curved and flat surfaces is at a maximum. In fact, up to 1.5 times the
ring frequency of a cylinder, the membrane stiffness (in-plane waves) is dominating
the vibroacoustic behaviour [22], thus shear coupling is dominating in the struc-
ture/porous/heavy layer or stiff felt lay-up: at this point there is no longer any breath-
ing frequency (cf. Fig. 11.19 right). Taking into account the thickness distribution,
typically every 5mm, the aforementioned mismatch is migrating from 200Hz for

+ 1

– 1

1D multilayer system Cylindrical multilayer system

Fig. 11.19 Breathing frequency mass-spring resonance for flat trims (left)/In-plane wave domi-
nating curved trimmed structure behaviour up to 1.5 times the ring frequency (right) (Foam/Heavy
Layer trim)
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Fig. 11.20 Influence of the
spring thickness on the
Insertion Loss of a
Foam/Heavy Layer
3.5kg/m2 trim using
Cylindrical TMM and Flat
TMM
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20mm spring thickness to 315Hz for 10mm, and to 500Hz for 5mm (cf. Fig. 11.20)
[20], as a result of the generalized approach of modelling trims.

11.3.5 Multi-thickness Simplified 3D Dash Insulator
Broadband Insertion Loss Simulation

Taking BEM-FEM poroelastic finite element simulation as a validated reference for
complex 3D trim modelling, Fig. 11.21 presents a simplified curved dash insulator
0.8mm thick steel validation case. As seen, it combines an upper truncated cylinder
of 20cm radius, a middle flat plate and a lower truncated cylinder of 32.5cm radius.
This kind of “S” shape simplified structure is very close to the actual shape of
an automotive steel dash firewall with the upper cross-car beam, together with the
generally flat middle area and the lower curved area overlapping with the front
footwells carpet.

The advantage of this “S” shape is that the equivalent curvature approach (singly
curved or flat here) [21], is applicable not only for the BEM-FEM poroelastic finite
element Insertion Loss simulation, but also in a puremode for both the cylindrical and
flat transfer matrix methods, the models being exact for these shapes. Figure11.22
shows the hybrid stiff localized lay-up on the “S” shape simplified dash panel and
rather low multi-thickness repartition which is required to push towards the middle
frequency range the breathing frequencies. This illustrates the modelling difficulties
of curved trims in the middle frequency range [29].

Figure11.23 shows the global Insertion Loss recomposition simulation results in
the power sense using the various approaches described above and applied in the
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x
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Fig. 11.21 Simplified dash insulator structure made of 0.8 mm thick steel: combination of a top
truncated 20 cm diameter cylinder, middle flat plate and lower truncated 32.5 cm diameter cylinder
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Fig. 11.22 Simplified S shape dash insulator trim: hybrid stiff localized lay-up and thickness
repartition
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Fig. 11.23 Trimmed
simplified dash insulator “S”
shape hybrid stiff Foam/Felt
application case following
Fig. 11.22 hybrid stiff
Foam/Felt lay-up and
comparing all Insertion Loss
simulation methods [29]
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equivalent curvature approach to each subsystem like for Statistical Energy Analysis
(SEA) sub-structuring:

• Reference full BEM-FEMporoelastic finite elements (Full VTM-TLwith clamped
surrounding boundary conditions like a real mounting in a transmission loss suite).

• Equivalent curvature BEM-FEMporoelastic finite elements (with free-free bound-
ary conditions for the truncated cylinders).

• Flat TMM.
• Combined cylindrical and flat TMM (equivalent to free-free boundary conditions
for the cylindrical TMM).

Once again, the Insertion Loss differences between simulation methods, whether
or not accounting for the curvature, are significant with a maximum of 8 dB between
500Hz and 1000Hz. The correlation between the full BEM-FEM poroelastic finite
elements and the combined cylindrical and flat TMM are excellent above 500Hz up
to 4000Hz.

Figures11.17 and 11.23 present a validation of the proposed cylindrical TMM,
which has been integrated in the SEA+ software. This allows for better computational
performance than reported in [26], with individual Insertion Losses computational
times of less than 1min., instead of a few hours with BEM-FEM poroelastic finite
element simulations. Moreover, this Cylindrical TMM enables computing Insertion
Losses with a broader frequency range from the middle frequencies above 250Hz
and up to 10 kHz in the high frequencies.

The limitation of the proposed approach lies in very complex shape supporting
structureswhere full BEM-FEMporoelastic finite elementmodels shouldwork better
in the low and middle frequency ranges. Other simplifications should be further
investigated. This includes abrupt thickness changes in insulators, where small radii
of curvature may lead to local radiation at the boundaries between constant-thickness
regions [30]. Note poroelastic finite elementmethods capture these latter effects if the
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frequency range remains low. The equivalent curvature patch approach applied here
cannot accurately predict the lateral coupling within the trim. To our knowledge and
experience, the curvature effects are of primary importance and the abrupt changes
of the trim thickness are of secondary importance.

11.3.6 Summary of Curved Insertion Loss Simulations

Integrated in a SEA/Virtual SEA framework [31, 32], the proposed cylindrical TMM
spectral approach allows more rapid computing of the Insertion Loss of any singly-
curved or flat multi-thickness noise treatment broadband. A 250Hz, the Insertion
Loss correlations are extremely promising using cylindrical TMM and, in addition,
the computational times are extremely fast, e.g. less than one minute using the cylin-
drical TMM and 5–6h using a poroelastic FEM. There is also a wider frequency
range application achieved. These investigations prove additionally that the lower
thicknesses of insulators, where late decoupling occurs (high breathing frequency
mass-spring-mass resonance), do influence the Insertion Loss on the whole middle
frequency range up 1000Hz. This is mainly due to the disappearance of the breath-
ing frequencies of curved trims versus flat trims. This cylindrical TMM simplifies
enormously the SEA or energy based synthesis methods modelling effort, enabling
easier and more accurate vibroacoustic simulations of a fully trimmed vehicle in the
middle and high frequency range, especially in pre-project phases.

11.4 Conclusions

Optimizing porous noise treatments requires understanding the noise source charac-
teristics and their transfer paths aswell as identifying the dissipationmechanisms that
should be fostered: absorption, insulation or vibration damping? The “ultimate tar-
get” of theNVHengineer remains to link chemistry, process, the resultingmicrostruc-
ture and finally the macro-acoustic parameters of porous noise treatments. The chal-
lenge consists in determining feasible and tunable microstructure morphological
paths through a deep understanding of what each manufacturing process allows con-
trolling. Simulating the processes such as foaming or thermoforming and linking the
corresponding results with the performance of the future feasible acoustic package
is now key. The computed Biot parameters, resulting from these micro-macro cal-
culations, should be integrated in broadband vibroacoustic simulation models, for
determining the best acoustic multilayer concepts and their optimal localization for
weight reduction purpose or acoustic performance boost.

In automotive industry, apart from restricted available space issues, broadening
the efficiency of noise treatments using lightweight metamaterials remains of strong
interest. For example, porous metamaterials allowing an increase of the Transmis-
sion Loss in the low and middle frequency range without requiring any additional
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space nor weight are currently investigated carefully. This is also the reason why
active noise cancellation using existing car loudspeakers is more often used as a low
frequency complement (mainly treating engine noise) to the traditional middle and
high frequency passive noise treatments using existing car loudspeakers. The real
upcoming challenge is to design cost effective active noise cancellation systems to
treat broadband rolling noise for frequencies up to 900Hz or even 1000Hz. This fre-
quency range overlaps with traditional passive noise treatments between 250Hz and
1000Hz will lead to a new trade-off to define for complementary performances for
active and passive noise reductions towards a better personalized acoustic comfort
while reducing weight even further.

Acknowledgements Guillaume Crignon from the Trèves group is warmly thanked for the fruitful
discussions as well as proofreading of this chapter.
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Chapter 12
Industrial Applications IV

Acoustic Package Optimization Methods in the
Aeronautic Industry

Israel Pereira, Sideto Futatsugi, and Maria L. V. Rodrigues

Abstract This chapter presents an overview of the challenges faced by the aero-
nautic industry on the search for a more efficient and comfortable cabin. In order
to do that, the main noise sources are presented and characterized, together with a
typical noise control treatment solution. Later, deeper focus on the porous materials
use is described, presenting the difficulties for the characterization of such materials
and consequently uncertainties on the project requirement’s definition. Finally, some
of the promising new studies on porous materials are discussed and their impact is
evaluated in a case study.

12.1 Introduction

Air transportation became very popular during the last decades, being an affordable
alternative for fast travel worldwide.With the popularization, new costumers’ expec-
tations arise and the decision on buying a flight ticket takes into account not only
price but also the experience delivered. The importance of this experience increases
on the business jet market where the expectations on the overall flight quality are
higher.

One of the main topics related to the user experience is cabin comfort, in which
noise and vibrations are two of the main factors that add to comfort perception [1, 2].
Quehl [2] showed that three of the top five attributes that compromise comfort during
flight are related to noise and vibration. The proper estimation of cabin noise and
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the design of the Noise Control Treatment (NCT) present big challenges due to the
aircraft complexity, with its various noise sources that act on a broadband spectrum.
The knowledge of the factors that act on cabin noise was significantly improved over
the past decades [3] and the results of this progress can be seen on better acoustic
comfort, mainly on business aircraft, and on the increase of the NCT efficiency, that
allowed reducing the overall treatment weight keeping noise levels low.

Despite the technology evolution, the demand for higher efficiency on noise con-
trol continues and improvements on current solutions are reaching their limit on
current form, therefore the development of innovative solutions is required. One
field that presents strong innovation potential is the design of porous materials and a
lot of efforts are seen on the topic in the past years. The main difficulties developing
and applying these new solutions are due to tight weight and space restrictions, and
also to the severe aeronautic certification requirements.

This document aims at presenting an overview of the challenges faced by the
aeronautic industry on the search for a more efficient and comfortable cabin. In order
to do that, the main noise sources are presented and characterized, together with a
typical NCT solution. Later, deeper focus on the porous materials use is described,
presenting the difficulties for the characterization of suchmaterials and consequently
uncertainties on the project requirement’s definition. Finally, some of the promising
new studies on porous materials are discussed and their impact is evaluated in a case
study.

12.2 Description of Noise Sources

Although variations will happen due to constructive characteristics of each aircraft,
typical cabin noise sources for a jet engine aircraft can be divided in noise coming
from the Turbulent Boundary Layer (TBL), from the engine and from onboard sys-
tems (Fig. 12.1). TBL noise is the main responsible source for the mid-frequency
noise, the engine for low and mid frequency and the systems will contribute mostly
for higher frequencies.

12.2.1 Engine Sources

The engine is responsible for distinct noise sources, with different generation and
transmission characteristics. Firstly, unbalance in the low and high pressure shafts
(called N1 and N2 respectively), generates vibrations that are transmitted through
the engine fixture structure into the aircraft cabin interior. The unbalance energy
is converted into noise through the interior liners, floor and monument’s (galleys,
lavatories, closets, bar units, refreshment centers, etc.) radiation. This type of source
has a low frequency spectral content and it is tonal, making this a point of attention
due to the human sensitivity for this type of excitation.
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Fig. 12.1 Typical jet engine aircraft noise sources

Another noise source originated in the engine is the fan’s Blades Passing Fre-
quency (BPF). The excitation is also tonal, however the spectral content is much
higher because it is the N1 rotational speed multiplied by the number of fan blades
(usually some dozens of blades), and its higher harmonics.

Finally, another important engine noise source is caused by the exhaust gases
turbulence. Unlike the aforementioned sources, this excitation has a broadband fre-
quency spectrum, making the acoustic treatment strategy different from other engine
sources. This kind of source may be relevant in wing mounted engines, impacting
cabin zones located in the after portion of exhaust area.

12.2.2 Turbulent Boundary Layer (TBL)

The aerodynamic noise generated by the fuselage outboard pressure fluctuations due
to the Turbulent Boundary Layer (TBL) is the main responsible for the cabin noise
levels in the mid-frequencies, and for many cases, it is the main contributor for the
overall noise level in the cabin.

In the TBL, there is a macroscopic movement of mass inside the layers of the
boundary layer, thus generating an exchange of mass, momentum and energy. This
pressure fluctuation travelling along the fuselage, dynamically excites the structure.
There is part of energy directly radiated through the fuselage skin, and other part
transmitted through the connection structures up to the interior parts, converting the
vibratory energy into noise. Due to its nature, the TBL has got a broadband frequency
content. The noise levels generated by the pressure fluctuation on the fuselage by
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Fig. 12.2 Pressure level for
different Flight Levels (FL).
Mach = 0.8
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Fig. 12.3 Pressure level for
different velocities.
FL = 410
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the TBL are directly associated with the aircraft flight altitude (Fig. 12.2), velocity
(Fig. 12.3) and the distance from leading edge, i.e. TBL origin (Fig. 12.4).

The pressure estimation presented in results from Figs. 12.2, 12.3 to 12.4 were
calculated [4] and will vary depending on other factors not listed here. But the
sensitivity to velocity, altitude and distance will be similar.

12.2.3 Systems

Aircraft systems can generate several noise sources that may affect mainly the cabin
noise perception (sound quality). The system’s noise can be broadband, as those
associated with the airflow inside the air-conditioning ducts, or tonal, as the noise
generated by hydraulic pumps and cooling fans.
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Fig. 12.4 Pressure level
varying distance from TBL
formation Mach = 0.8,
FL = 410
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Usually, the noise level generated by those systems does not impact the overall
cabin noise level; however, the sound quality is affected if the proper countermeasure
is not adopted. Furthermore, increasing the acoustic treatment performance for engine
and TBL control, the systems noise tends to become more prominent, turning into
the critical path for a more comfortable cabin.

12.3 The Use of Porous Materials

The choice of the vibroacoustic treatment strategydepends of the type of noise source,
vibroacoustic energy path and the spectrum content. For instance, vibration caused
by the engine N1 and N2 unbalance are typically attenuated using vibration isolators
that act preventing the energy to be transmitted through the fuselage. For systems, the
vibroacoustic control can be addressed in a variety of different strategies, depending
on the system’s specific characteristics. One of these strategies may be to act directly
on the noise source, another may be isolating or attenuating the main energy path
or, if those approaches are not feasible, the strategy can be the reallocation of the
system far from the cabin.

The materials used to attenuate the energy that enters through the fuselage up to
the interior liners is called Thermo-Acoustic Insulation System (TAIS). This set of
materials actuates mainly in mid to high frequency and its typical components are
presented in Fig. 12.5.

Viscoelastic material is applied in the fuselage skin in order to impose damping
into the structure, reducing the skin vibration originated from the external sources.
The Damping Loss Factor (DLF) is the key parameter for this material. Additionally,
vibration isolators are employed to decouple the attachment between the primary
structure (fuselage) and the interior liners, thus minimizing the structure-borne path.
In order to attenuate airborne energy, porousmaterials are used, like fibers and foams.
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Fig. 12.5 Typical Thermo-Acoustic Insulation System (TAIS) configuration
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Those materials are lightweight with a high acoustic absorption capability in mid to
high frequency.

The attenuation in low frequency range is limited due to thematerial thickness, and
it is directly related to the distance available between the fuselage and the interior
liners. Acoustic absorption coefficient is the key parameter. Finally an overframe
(barrier) is used to avoid airborne noise propagation.Area density is the keyparameter
in this case.

In order to minimize the TAIS thickness and weight, a proper characterization of
each material is mandatory. In this context, the use of porous materials presents a
big challenge since those materials are well known for their inherent uncertainties
and experimental characterization results dispersion [5].

Initially, the porous materials must be characterized looking for its acoustic
absorptive properties. This is traditionally made using plane waves excitation on
an impedance tube [6] but can also be made by characterizing the material’s Biot
parameters [7, 8].Alternatively hybridmethods canbeusedwhen initial experimental
data is used to estimate Biot parameters through algorithms. All these methodolo-
gies present many advantages and disadvantages, and the results can vary signif-
icantly among them, as it can be seen in Fig. 12.6, where the acoustic absorption
of a fiberglass sample is estimated using all three methodologies: Impedance tube
measurement; Biot parameters measurement; hybrid methodology.
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Differences like seen in Fig. 12.6 can lead up to 0.5 dBvariations on the cabin noise
estimation, which seems not much when looking isolated, but as the complexity of
the analysis increases, these uncertainties propagate and sumwith other uncertainties
sources resulting in lowprecisionmodels.A simplified developmentworkflow for the
noise control treatment starts with the material characterization, followed by a local
treatment design and finishing with a full cabin analysis. The degree of uncertainty of
the results increases when progressing on this workflow since the integration become
more complex.

Additionally to the uncertainties from the different available methodologies,
experimental tests to obtain acoustic parameters from porous materials also present
high dispersion, as it can be seen at the study presented in [5]. In this study acoustic
properties of three different porous materials were measured by several laboratories
and the results were significantly different among them.

After material characterization the noise control treatment composition must be
evaluated, i.e. the integration of the noise control solutions with the fuselage and
the interior panel. In this way, the Transmission Loss (TL) of the NCT package
can be estimated and the acoustic requirements can be tuned. This composition
analysis can be performed analytically, experimentally and numerically, the later
using deterministic, statistical or hybrid models.

Given the low computational costs and the theory constrains, Statistical Energy
Analysis (SEA) models are commonly used for mid to high frequency analysis of the
treatment when applied in regions with large dimensions. Deterministic and hybrid
models are applied in low frequencies or local analysis, when specific characteristics
of certain treatment regions must be evaluated, like geometry modifications or leaks.

For the experimental tests, the main challenge is to obtain good repeatability
for the TL measurements. When performed in a high quality laboratory, at similar
atmosphere conditions and by the same operator, the results tend to have lowvariation
but if any of these parameters vary, the comparison among tests become challenging
and conclusions inaccurate.

12.4 Aeronautic Requirements

Additionally to technical challenges of the TAIS design process, aeronautic certifi-
cation requirements and industry regulation significantly limit the materials that can
be used in the treatment, making optimization even more challenging.

One of the most restrictive requirements is related to flammability. The mate-
rials are submitted to tight fire self-extinguish, flame propagation, radiated panel
burn and, in some cases, flame penetration tests (FAR/EASA 25.853 and 25.856).
Another requirement that porous materials shall comply is the humidity retention,
that according to norm ASTM C1511 [9], a maximum 20g of water can be absorbed
for a 10” × 10” × 4” sample of the porous material after 15 min submerged.

A common strategy to help the porous materials to comply with the flammabil-
ity and humidity requirements is using specific chemical treatments, such as flame
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retardants or inhibitors which usually deteriorate acoustic performance. However,
additionally to the previously mentioned requirements, regulations like the Euro-
pean REACH (Registration, Evaluation, Authorization and restriction of CHemicals)
restricts the use of various chemical components, even if it is only used during an
intermediate step of the fabrication process. Therefore, both the materials that are
part of the TAIS and chemical treatments that those may be submitted are restricted.

12.5 New Developments

With the challenges presented in previous sections, the search for new developments
that could reduce technological restrictions of the aeronautic industry is fundamental.
Porous materials have been studied and developments have been made aiming the
acoustic performance improvement, mainly at low frequencies where thosematerials
perform poorly.

An easy way to increase the acoustic absorption of porous materials at low fre-
quencies is increasing the material thickness, like presented in Fig. 12.7, where the
plane wave absorption of a fiber is numerically evaluated for 1 and 3 inches.

Unfortunately, increasing the material thickness is usually not possible due to
space limitation between the fuselage and interior panel, therefore innovative solu-
tions have been studied to increase the absorptions at low frequencies avoiding thick-
ness increase. Some studies focus on optimizing the treatment layers so that the
impedance mismatch result in high absorption at desired frequencies. One example
can be seen on [10], where the author presented some variations at the layer distri-
bution of different porous materials, aiming for higher absorption values at lower
frequencies.

An evolution of that concept is the porousmaterialsmicrostructure design through
porosity optimization presented by [11] that showed significant gains at the acoustic

Fig. 12.7 Variation of the
absorption with the porous
material thickness
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absorption characteristics by controlling the porous size of a foam sample. Another
common research topic is the use of inclusions at porous materials in order to induce
Bragg’s scattering effect at the sample. These inclusions can significantly affect the
energy attenuation as it can be seen in [12].

A straightforward expansion of the inclusions concept is the use of resonators
inside the porous materials. This concept received attention for some time [13] and
a recent example is presented in [14] where the author develop a study containing
analytical, numerical and experimental analysis for resonators embedded in a porous
material. The author concluded that significant TL gains may be expected at the
resonator tuning frequency.

Recently the acoustic metamaterials concept have been explored [15] in which
internal resonances are induced at the material in order to manipulate larger wave-
lengths than the expected for the base material, allowing elastic and acoustic energy
attenuation at low frequencies. This concept has been expanded offering several dif-
ferent configurations such as membranes containing resonators [16] opening many
possibilities to improve the aircraft acoustic treatment and performance.

12.6 Case Study

This section presents a typical scenario for an aircraft application. A simplified setup
is presented in Fig. 12.8. The materials considered for this study are a 1.2mm thick
aluminium fuselage section, a 76.2mm Fiberglass material with density (ρ) equal
8kg/m3, flow resistivity (σ) of 4000N·s/m4, porosity (φ) of 0.96, tortuosity (α∞)
equal 1, viscous (�) and thermal (�′) lengths, respectively, 30 and 70 µm.

The overframe is a 0.5mm solid material, with ρ = 1000 kg/m3, tensile modulus
(E) of 0.3GPa andPoisson’s ratio (ν) of 0.49. Finally, the interior panel is a composite
material containing 2 external fiberglass plies (0.2mm thick, ρ = 1800 kg/m3, E =
10GPa, ν = 0.2) and an interior core (8mm thick,ρ = 50 kg/m3, E = 0.03GPa, ν =
0.2). Also, a thin air gap (0.01mm) is placed between the elements so no structural
connection is considered.

The TL for the configuration presented can be seen in Fig. 12.9, together with
the results for intermediate configurations. The total thickness for this case study

Interior panel
Overframe

Absorption material

Fuselage

Fig. 12.8 NCT configuration considered for the case study
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Fig. 12.9 Transmission
Loss (TL) results for the case
study configuration
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solution is 76.7mm. Note that solutions between 3 inches (76.2mm) and 3.5 inches
(89mm) are typical in the aeronautic industry. The inclusion of the interior panel
increases the TL at high frequencies, when comparing to the fuselage alone, but
reduces it at lower frequencies due to the double wall effect.

The inclusion of the absorption fiber and the overframe significantly improves the
TL at mid to high frequencies but little influence is seen at lower frequencies.

As seen in the Sect. 12.2.1 before, the aircraft engine can be responsible for low
frequency excitation at the fuselage. This is also true for the TBL excitation, mainly
at the aft part of the aircraft, i.e., the rear part, as it is shown in Fig. 12.4 where it
is clear that the low frequency content importance increases progressively with the
distance from the aircraft nose. Therefore, the results presented in Fig. 12.9 are not
optimal for these sources and the design of a NCT that can act at lower frequencies
is one of the main challenges to improve the aircraft acoustic comfort.

Even a simple addition of mass, which is far from desired in the aeronautic indus-
try, may not be sufficient. For example, if the overframe density is twice the original,
the TL in this case will only be affected above 1000Hz, like shown in Fig. 12.10.
That means that any mass to be added to the treatment must be optimized to give
results at lower frequency.

The use of tuned resonators, as suggested by some of the papers discussed in pre-
vious sections, can provide attenuation at low frequencies even with limited space.
Similar to the work presented in [14], the transmission loss for an embedded res-
onator array in the NCT was calculated and is presented in Fig. 12.11. For this anal-
ysis, 3 sizes of Helmholtz’s resonators were used (ln = 0.007 m, ln = 0.01 m, ln =
0.012 m), being ln the length of the necks of the resonator, that way a broader
frequency attenuation is achieved. The other dimensions were kept constant, with
D = 0.05 m, r = 0.0046 m, where D is the resonators cavity diameter and r the
radius of the resonators neck’s transversal section.
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Fig. 12.10 TL results varing
the density of the overframe
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Fig. 12.11 TL results for the
NCT with embedded
resonators
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It can be seen that up to 9 dB reduction can be obtained 300Hz by using resonators
but the influence of those are significant even in lower frequencies.

The use of resonators is an example of the potential that can be obtained by
changing the current status of the noise control treatment applied to the aircraft.
Variations of this concept like the use of microperforated layers, inclusions, porous
design and acoustic metamaterials are solutions that present endless possibilities and
can be a game changer for the industry, bringing a new perception of NVH comfort
inside an aircraft.
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