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Learning Objectives

• Grasp the basic properties of big data and how they relate to smart grids
• Understand the different facets of business analytics in the context of the
power industry

• Obtain a working knowledge of machine learning tasks and algorithms
• Apply analytics knowledge to smart grid use cases

The rapid digitization of the electricity sector has lead to a massive increase of data
availability. Smart grids produce large volumes of data, thanks to IoT devices like
smart meters. This necessitates appropriate Data Analytics capabilities to tap into
the envisioned opportunities (Zhang et al. 2018). Against the backdrop of ubiqui-
tous computing, companies are building up capabilities for data analysis as well as
automatic decision-making. Such analytics platforms can analyze data to generate
findings that lead to several benefits, like cost reduction and operational efficiency.
Varaiya et al. (2011) note that sensors and smart meters will provide system opera-
tors with more detailed information on the power system state. This may even lead
to several other improvements in grid optimization and customer engagement. With
respect to the consumption data, electricity providers can use the revealed informa-
tion patterns to improve their business processes.
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The idea of “business analytics” generating business value from data has emerged
in the last decade. Depending on the specific focus and impact of the application, one
can distinguish descriptive, predictive, and prescriptive analytics (Lustig et al. 2010).
Following this classification, descriptive analytics encompasses business intelli-
gence tools and processes that use data to understand and analyze past business
performance. It focuses on reporting and visualization of historical data and is thus
decoupled from future decisions. In contrast to this backward-oriented application,
predictive analytics aims at uncovering explanatory structures in the data to draw
inferences about future instances. The most encompassing application is prescrip-
tive analytics which integrates insights from descriptive and predictive analytics to
determine appropriate actions or decisions by means of optimization.

Given the increasing adaption of smart grid technologies it is hardly surprising
that researchers are underlining the central importance of data mining and analytics
techniques for the transformation of the electricity system (Keshav and Rosenberg
2011; Ramos and Liu 2011).

1 Big Data in Smart Grids

Solvingproblems and answeringquestions throughdata analysis has emerged as stan-
dard practice across many industries undergoing the digitization trend. The energy
industry is no exception to this general trend (Gust et al. 2017). There are numerous
rapidly evolving technologies for analyzing data and building models. This section
serves to establish fundamental concepts and relate them to the energy industry.

1.1 Properties of Big Data

While the attribute “big” is a very subjective characterization of a data source. How-
ever, there is a general consensus that there are four central attributes that characterize
big data analytics. Frequently, these are referred to as the four Vs: volume, variety,
velocity, and veracity (Demchenko et al. 2014; Dong and Srivastava 2013; Kaisler
et al. 2013; Sagiroglu and Sinanc 2013).

The main characteristic that renders a dataset “big” is its size, i.e., Volume. It is
important to stress that size cannot be referred to in absolute quantities since the
information and the capability to process it is growing exponentially every year.
Ultimately, the definition of big data depends on whether the data can be ingested,
processed, and timely examined to meet an organization’s requirements. In smart
grids IoT devices are placed in different areas like the substations and consumer
devices. These devices collectively produce petabytes of data across various time-
scales and aggregation levels. In turn, it is not possible to make sense of the data
without smart grid analytics capabilities.
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Variety is one the most interesting developments in technology as more and more
information is digitized. Traditional data types (structured data) include things on
a bank statement like date, amount, and time. These are things that fit neatly in
a relational database. To put it generally, structured data is well-defined, featuring
a set of rules which facilitate queries and reasoning on the data. (e.g., a database
schema). This stands in stark contrast to unstructured data, which includes any data
sources that cannot be described by such a meta model. Typical examples include
text, audio, and visual information (images or video). This lack of structure of these
data assets prevents straightforward analysis and in turn necessitates major pre-
processing efforts. Handling unstructured data assets is a fundamental challenge
in big data analytics. One of the goals of big data analytics is to use technology
to take this unstructured data and make sense of it. In smart grids we encounter
both structured and unstructured data. Structured data will typically include various
forms of time series data (e.g., consumption, generation, prices) while unstructured
data may emerge in the form of textual data (e.g., maintenance reports or customer
requests), graph data (e.g., grid topologies or building plans), images (e.g., satellite
images). Consequently, comprehensive smart grid analytics capabilities necessitate
various forms of big data analysis (Zhang et al. 2018).

With so much data available, ensuring its relevance and quality differentiates
between success and failure in big data analytics. This is reflected in the Veracity
dimension which reflects the reliability of data assets. Can decision-makers trust
the data to guide their course of action? In complex systems, various discrepan-
cies may emerge—typical examples include duplicates, outliers, inconsistencies, or
volatility. Smart grid nodes like smart meter are numerous and decentral and will in
individually be exposed to service interruptions leading to unreliable aggregate data.
Consequently, smart grid consumption data is likely to suffer from inconsistencies
and missing data which necessitates appropriate detection and mitigation strategies
(Chen et al. 2017).

Velocity is the frequency of incoming data that needs to be processed. Considering
the sheer number of messages, file uploads, or website interactions taking place
on a particular social network site offers a good appreciation of the importance
of velocity. In the context of energy markets data velocity behaves in lock-step
with the velocity of the underlying market transactions. Day-ahead trading means
daily updates while real-time markets will necessitate continuous data exchange.
The same reasoning applies to metering infrastructure where decision-makers are
striking a balance between the investment cost burden, coordination capabilities,
and privacy challenges of different smart metering time resolutions (Eibl and Engel
2014; Feuerriegel et al. 2016; Flath 2013).

1.2 Data Sources in the Smart Grid

Prior to dwelling on analytics applications, it is of central importance to assess
the available data assets. This includes the systems involved (data sources) and the
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properties of the data streams. A natural approach to structure these data assets
is to align them with the electricity value chain (Zhang et al. 2018): Generation →
Transmission and Distribution → Consumers. Thereby we highlight both data
sources as well as potential data analytics use cases.

Generation Data

In the narrowest sense power generation data can be distinguished into output time
series and capacity state information (location, technology, ramping characteristics)
with varying aggregation level (ranging fromgeneration unit to transmission system).
Such information is key for any system-related analysis concerning, e.g., market
prices, emissions, or availability. Notably, generation data pertains to all dimen-
sions of the energy trilemma cost-sustainability-reliability (Heffron et al. 2015). In
particular, the increased adoption of RES has resulted in previously unknown lev-
els of short-term output fluctuations and volatility. Consequently, short-term power
generation forecasts have become much more important. These play a key role in
operational decisions of conventional power plants, inform trading decisions, as well
as triggering demand response preparations. Given the strong correlation between
RES output and the corresponding weather phenomena the relevant metrics can also
be considered important generation data (e.g., solar irradiance, wind speed, water
levels). More recently, researchers have even started to consider building orientation,
shading conditions or roof surfaces to assess generation potentials (Fitriaty and Shen
2018).

Grid Data

Building upon a collaboration with a Swiss utility company Gust et al. (2016) high-
light the different sources and forms of electricity grid data. On the one hand there is
topographic and spatial data which is typically accessed through a geographic Infor-
mation System (GIS). On the other hand there is investment and equipment infor-
mation recorded in corporate asset databases embedded enterprise resource planning
(ERP) systems. GIS data typically includes component locations of grid assets as
well as information on the service area (e.g., infrastructure such as buildings and
roads). Asset databases provide detailed information on asset types, their electrical
specifications and thereby serve as a master data provider. Furthermore, investment
cost and depreciation schedules are provided by ERP systems.

Consumption Data

With annual meter readings for many consumers electricity consumption data has
traditionally been the blind spot of electricity systems. To compensate the absence
of live data, planners and operators have relied on statistical models and static load
profiles. These are primarily based on contracting data and the customers’ historic
consumption quantities (per billing period). Yet, in the last decade the idea of smart
metering has increasingly challenged this myopic aggregation of (annual) consump-
tion values. This new addition to the energy policy toolbox can have a marked effect
on household energy management in turn creating change agents for the challenge of
reducing (peak) demand and the integration of renewable generation (Darby 2010).
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1.3 From Descriptive to Prescriptive Analytics

Analytics is defined by INFORMS as “the scientific process of transforming data
into insight for making better decisions” (INFORMS 2020).With the rise of big data,
analytics has received more attention. The most common categorization in the field
is the distinction between descriptive, predictive, and prescriptive analytics (Lustig
et al. 2010):

• Descriptive analytics relies on large amounts of historical data to identify patterns
and to illustrate past behavior (den Hertog and Postek 2016). Here, a data set SN

containing information on quantities of interest (e.g., demand) Y N = {y1, . . . , yN }
as well as auxiliary data on associated covariates (features) XN = {x1, . . . , xN }
where xt is concurrently observed with yt are aggregated and analyzed. These
observations are used for reporting, dashboards, and data visualizations. These
applications are summarized in the umbrella term Business Intelligence (Watson
2014; Delen and Ram 2018). Business Intelligence systems automatically retrieve
and process data from various data sources to support decision-making.

• Predictive analytics aims at informing decision-makers by predicting future sce-
narios (Corea 2016). To this end, we seek to use statistical learning to find a
function h∗(x) ∈ H that minimizes a given (typically symmetric) loss function
L . In predictive analytics this loss is broadly speaking a measure of the predictive
power (the smaller the loss the better the predictiveness). The set of permissible
functions H is governed by the selected learning algorithm:

h∗(x) = argmin
h(x)∈H

L (h(x), y) . (1)

Decision-makers use predictive analytics to generate forecasts on future scenarios
s = h∗(x) that allow them to take informed decisions even in uncertain situations.

• Prescriptive analytics aims at providing decision support or decision automation.
In many applications the way to derive optimal policies from forecasts is not
straightforward.Here, prescriptive analytics has the potential to build on operations
management techniques such as mathematical optimization and decision rules to
determine optimized policies. To achieve this, one no longer chooses the loss
function � such that it tracks predictive power but rather it emerges from the
business problem (e.g., lost profit or additional cost) underlying a decision q. One
way to establish such a loss function is by comparing the outcome of a prescribed
action in a given scenario to the theoretically optimal profit �∗(q ∗, y):

� (q, y) = Π∗(q ∗, y) − Π(q, y). (2)

One can than use the forecasts obtained from predictive analytics as input param-
eters for optimization models to find optimal policies sequentially. Alternatively,
ML algorithms can be used to find a function q∗(x) that maps directly from data
to decisions by minimizing the expected lost profit (Eq. 2):
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q∗(x) = argmin
q(x)∈H

1

N

∑

(x,y)∈S
� (q(x), y) . (3)

In summary, predictive analytics applications deal with forecasting future scenar-
ios whereas prescriptive analytics prescribes a decision in anticipation of the future
(Bertsimas and Kallus 2020).

2 Machine Learning Fundamentals

Many algorithms and methods for big data analytics (predictive as well as prescrip-
tive) originate from the field of machine learning. Such algorithms do not rely on
hard-coded rules but instead learn the underlying patterns and regularities in a data-
driven fashion from provided training data. By and large this “learning activity”
corresponds to an optimization of the underlying loss function.

In this context one typically distinguishes two distinct learning tasks: unsuper-
vised learning and supervised learning (Fig. 1). As the name suggests, unsupervised
learning is machine learning tasks in which humans do not need to supervise the
model. With respect to the training data unsupervised learning deals with unlabeled
data, i.e., there are no annotations of a possible target variable. Instead, the model
works independently to discover information and patterns that were previously unde-
tected. In contrast, supervised learning is the task of inferring a function from labeled
training data. Here, each training example is a pair consisting of an input object (in
most cases a vector) and a output value. Problems with a continuous output space are
further categorized under the term regression problems while classification describes
problems with a discrete output space. In between these archetypes there are some
further learning paradigms such as semi-supervised learning or reinforcement learn-
ing.1 However, in the context of this book we focus on the two basic cases.

2.1 Unsupervised Learning

Unsupervised learning summarizesmachine learning algorithms that aim at revealing
hidden structures in unlabeled data (Hastie et al. 2009). The main goal of these
algorithms is either dimensionality reduction or cluster analysis.

Dimensionality Reduction

Working in high-dimensional spaces can be undesirable for different reasons—in
particular processing time and storage space requirements, multi-collinearity issues,

1 Semi-supervised learning uses a small amount of labeled data bolstering a larger set of unlabeled
data. In a reinforcement learning setting the system is not trained on labels but instead on rewards
resulting from interaction with the environment.
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Task

Supervised
Learning

Regression

Classification

Unsupervised
Learning

Cluster
Analysis

Dimensionality
Reduction

Fig. 1 Taxonomy of machine learning tasks

difficulty of visualizing and communicating data beyond two or three dimensions,
and avoiding the curse of dimensionality. For these reasons dimensionality reduc-
tion is a standard step in data pre-processing. It is a transformation of data from a
high-dimensional space into a lower dimensional space where the reduced repre-
sentation retains the key properties of the original data. The principle component
analysis (PCA) is a popular and well-studied method to transform high-dimensional
datasets into low-dimensional datasets. PCA converts a set of observations of pos-
sibly correlated variables into a set of values of linearly uncorrelated variables. To
this end, it finds the n principal axes in the original m-dimensional space where the
variance between the points is the highest. By selecting the axes that explain most
of the variance, the number of variables is reduced fromm to n. Thereby, the bulk of
information is preserved as the new variables are combinations of the old variables
(Hotelling 1933). However, PCA reaches its limitations if the relationships between
the variables are non-linear. This shortcoming is tackled by more recent approaches
(Maaten and Hinton 2008).

Clustering and Segmentation

Cluster Analysis is used to group and identify data-inherent structures. These algo-
rithms assign data points to limited number of clusters to group similar data points.
The basic premise of the clustering optimization task can be summarized as follows:
data points assigned to the same cluster should be as similar as possible (within-
cluster homogeneity) while data points from different clusters should not be similar
(across-cluster heterogeneity). From this requirement it becomes obvious that one
needs two components to formulate the underlying optimization problem:

• A suitable distance function that allows tomeasure the similarity of two data points
(greater similarity corresponds to a shorter distance).

• A loss function that aggregates the distance measurements to evaluate the quality
of the cluster configuration as a whole.

Any suitable metric can be used as a distance function. Typical candidates include
Euclidean distance or cosine similarity. A straightforward measure for within-cluster
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homogeneity hw is given by the following expression:

hw =
N∑

n=1

K∑

k=1

rnk ||xn − μk || . (4)

Here, N is the number of data points, K is the number of clusters, ||·|| is the
chosen metric, and μk is the central point of cluster k (centroid). The binary variable
rnk indicates whether or not n is in cluster k. Between cluster heterogeneity hb is
easily measured by adjusting the hw formula which measures the total distance of
the cluster members to the centroid.

hb =
N∑

i=1

K∑

k=1

(1 − rnk) ||xi − μk || (5)

.
Overall clustering quality CQ can then quantified by the ratio of the two aggre-

gates:

CQ = hw

hb
. (6)

Note that a lower CQ score indicates a better clustering result in the sense of a
low hw value (high within-cluster homogeneity) and a high hb value (high between-
cluster heterogeneity).

There aremany different algorithms available inmodern software packages to exe-
cute cluster analysis task. Depending on the clustering process, we can distinguish
between hierarchical algorithms (Ward Jr 1963; Murtagh and Contreras 2012) and
partitioning algorithms (MacQueen et al. 1967; Kaufman and Rousseeuw 2009). In
the case of hierarchical clustering the various clusters form a nested hierarchy (indi-
vidual clusters are subsets of their super-ordinate clusters). Conversely, partitioning
algorithms yield non-overlapping clusters.

2.2 Supervised Learning

Supervised learning is the machine learning task of inferring a function from labeled
training data (Mohri et al. 2012). In the typical supervised learning setting we have to
predict unknown future variables (e.g., energy load, renewable generation) based on
past observations to make informed decisions. While experienced decision-makers
may have a good intuition on some factors (e.g., weather, holidays) influencing the
unknown variable, it is hard for humans to quantify the impact of all possible factors.
Supervised learning approaches provide a methodological way of quantifying such
influences. Depending on the underlying quantity we distinguish between regression
and classification:
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Table 1 Confusion matrix for the evaluation of binary classifier

R
ea
liz
at
io
n

Prediction
true false

true
true pos.
TP

false neg.
FN

false
false pos.
FP

true neg.
TN

Regression

These problems aim to learn a mathematical relation f : Rn �→ R explaining a con-
tinuous dependent output variable y in terms of n independent variables x. The
function f allows us to obtain an estimate for the dependent variable from its asso-
ciated independent variables ŷi = f (xi ). In the supervised learning context the loss
function in the training data is obtained from comparing estimates ŷi with the true
values yi . Typical candidates include the mean squared error (MSE)

∑
i

(
ŷi − yi

)2

or the mean absolute deviation (MAD)
∑

i

∣∣ŷi − yi
∣∣. Typical regression use cases

include forecasting of loads, RES generation, and power exchange prices.

Classification

Many quantities of interest (e.g., fault occurrence in smart grid systems, identification
of household loads) cannot be represented by continuous output variables. In such
classification problems, we want to predict an observation’s class y based on the
feature variables x. Here, we try to find a function f : Rn �→ {1, . . . , k} where n
describes the number of features and k the number of different classes. The evaluation
of classification performance is best illustrated using a confusion matrix for binary
classification (Table1). This matrix compares the predictions of a classifier against
the known realizations. Depending on the prediction and the realization there are four
possible outcomes—true positive (TP, the classifier correctly predicts a true), true
negative (TN, the classifier correctly predicts a false), false positive (FP, the classifier
incorrectly predicts a true), and false negative (FN, the classifier incorrectly predicts
a false).2

Based on the confusion matrix we can derive some standard quality metrics of
the classifier:

2 For non-binary classification the confusion matrix generalizes in a straightforward manner to a
n · n square where n is the number of cases.
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• Accuracy—the percentage of correct predictions ACC = T P+T N
T P+FP+T N+FN• True positive rate (sensitivity)—the proportion of positive cases that are correctly

identified T PR = T P
T P+FN• True negative rate (specificity)—the proportion of negatives cases that are correctly

identified T N R = T N
T N+FP• Balanced Accuracy—the average of sensitivity and specificity which provides a

better overall assessment of classifier quality in settings with unbalanced data
T PR+T N R

2• Matthews Correlation Coefficient—As suggested this coefficient is indeed a cor-
relation coefficient between the observed and predicted binary classifications. It
is generally regarded as a balanced measure which can be used even if the classes
are of very different sizes. MCC = TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.

Given the discreteness of the confusion matrix these quality metrics are typically
non-differentiable which makes them unsuitable for serving as a machine learning
loss. Instead, one typically leverages probability space and uses appropriate trans-
formations like logistic or hinge loss.

Classification tasks in the power sector include asset reliability monitoring and
prediction, customer churn analysis, or identification of appliances from meter read-
ings.

Algorithms

We can distinguish between parametric and non-parametric machine learning algo-
rithms to perform classification and regression tasks. Parametric algorithms are effi-
cient to train and easy to interpret as they make strong assumptions on the form of
the function. Therefore, this class of models is also referred to as white-box mod-
els. For regression tasks, multiple linear regression is the most prominent white-box
algorithms. This method was established by Galton (1886) over 200 years ago and is
probably the best studied form of statistical learning (Hastie et al. 2009). It rests on
the assumption of a linear relationship between a set of input variables and a single
output variable. The linearity assumption is simultaneously the major strength and
weakness of this method. On the one hand, it renders the model very simple to under-
stand and efficient to learn aswell as robust to outliers. On the other hand, it constrains
the predictive power of the model as many statistical relations are non-linear.

In contrast, non-parametric models do not make strong assumptions about the
relationship between independent and dependent variables. Therefore, they are free
to learn any functional form from the training data. While this flexibility oftentimes
allows non-parametric algorithms to achieve a higher performance, more histori-
cal training data is required to avoid over-fitting. Non-parametric machine learning
algorithms are also referred to as black-box models as the potentially higher per-
formance comes at the cost of interpretability. The SVM is a prominent example of
non-parametric algorithms. Here, each observation is viewed as a vector of all input
variables. During the model training the hyper-plane that best separates the differ-
ent output variables depending on the input vectors is determined. To incorporate
non-linear relationships, the dimensionality of the input vector is augmented using
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the kernel-trick if no hyper-plane separating all different output variables exists.
A major benefit of support vector machines is their good generalization ability and
therefore the low susceptibility to over-fitting even for small training data sets (Smola
and Schölkopf 2004). In recent years, deep neural networks have shown remarkable
performance across different tasks and therefore attracted attention in research and
practice. This class of models is inspired by the distributed communication and infor-
mation processing in biological systems. These models consist of several layers of
artificial neurons. Each neuron is connected with many other neurons and processes
incoming information and propagates the results to other neurons. In the third class
of black-boxmodel we introduce gradient boostingmachines. This model class com-
bines many weak learners to a strong predictive model in a sequential fashion. This
way it is able to alleviate some of the shortcomings of the weakmodels while increas-
ing the predictive power. On the downside, gradient boosting is prone to over-fitting
(Hastie et al. 2009).

3 Application Examples

3.1 Load and Generation Forecasting

Hong and Fan (2016) from the very beginning of the electric power industry the
problem of load forecasting has been central to the business. This is of course due to
the fundamental balancing requirements of the power system. Hence, power output
from conventional power plants was planned in accordance with forecast load. With
increasing levels of generation from fluctuating RES an additional challenge in the
energy mix is the stochasticity of the supply side. This results in the novel challenge
of net load forecasting, that is the difference between intermittent renewable gener-
ation and fluctuating load (Wang et al. 2017). This quantity ultimately determines
whether measures aimed at decreasing net load are needed (additional generation
capacities have to be ramped, shifting of flexible loads) or alternatively measures
to increase net load are to be performed (charging of storage facilities, expanding
flexible consumption, ramping down generators).

Time Series Analysis Forecasting

The classic forecasting approach in power systems management is time series analy-
sis (Amjady 2001; Espinoza et al. 2005). Time series analysis leverages past observa-
tions of a variable to predict its future values.A time series in this context is a sequence
of values over time (daily, monthly,...) of a quantitative variable, 〈yt , yt−1, yt−2, ...〉.
Future realizations of the quantity of interest are assumed to be a function of the past
realizations and somewhite noise random error term. Consequently future values can
be predicted is ŷt = f (yt−1, yt−2, yt−3 . . .). The functional mapping should capture
typical underlying patterns such as trends (growth or decline) and seasonalities. The
classic Holt-Winters triple exponential smoothing approach provides a powerful yet
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tractable framework for such problems (Chatfield 1978). The underlying logic of
this procedure is decomposition of the time series into three distinct exponentially
smoothed units, the level term Et , the trend term Tt and the seasonality term St :

ŷt+n = (Et + nTt ) St+n−p, (7)

where

Et = α

(
Yt
St−p

)
+ (1 − α) (Et−1 + Tt−1) (8)

Tt = β (Et − Et−1) + (1 − β) Tt−1 (9)

St = γ

(
Yt
Et

)
+ (1 − γ ) St−p (10)

Using this system of variables it is straightforward to choose the three parameters
such that the training forecasting error is minimized. This approach is particularly
suited for short-term forecasting applications (Amjady 2001). Forecasting using time
series models has a long tradition in power systems management and is a robust and
interpretable approach. A key disadvantage is the lack of non-time series features
as these models rely solely on the information embedded in the historic time series
but cannot readily incorporate other data sources. Furthermore, the relationships are
restricted to the time series model and hence fairly restrictive (in particular with
respect to functional relationships or the number of seasonal terms).

Machine Learning for Forecasting

The limitations of the time series analysis lend themselves to advanced analytics
approaches. From a ML perspective forecasting tasks boil down to straightforward
regression tasks where the target variable yt corresponds to the load, generation, or
net load at time t . Independent of the concrete use case typical features xt include
weather information, lagged y values (time series features), pricing data, or customer
information. These are readily incorporated into standard algorithms. A particularly
illustrative one is decision trees where the feature space is partitioned into groups
through a sequence of (typically) binary decisions.An example in the load forecasting
context is provided in Fig. 2. This example highlights how decision trees naturally
incorporate rich relationships across Various features: the main driver of load in this
case is the weather with high temperatures leading to a high load forecast (2,800MW,
e.g., due to air conditioning) while in the case of lower temperatures other criteria
like type of day or season of the year are embedded in the tree as well leading
to differentiated forecasts (2,550MW for summer weekend, 2,300MW for other
weekends, and 2,600MW for a working day).

Constructing a decision tree rests on a very simple procedure: Divide data using
a beforehand chosen splitting rule into disjoint subsets. Repeat this algorithm recur-
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RootMax Temp. > 35 C Max Temp.  35 C

Weekend Working day

Summer Other seasons
2800 MW

2550 MW 2300 MW 2600 MW

Nodes

Leaves (terminal nodes)

Features (inputs):
• Max Temp.
• Day type
• Season

Output: Load value

Fig. 2 Regression tree for load forecasting (Lahouar and Ben Hadj Slama 2015)

sively for each subset, stop the recursion when the leaves of the given subset are
sufficiently pure.3 Despite offering high interpretability decision trees suffer from
a pronounced tendency to overfit to training data leading to subpar out of sample
performance. To avoid this regularization techniques like limiting the tree depth or
the number of leaves can be employed.

Going beyond a single tree ensemble methods which combine multiple decision
trees helps to greatly improve the predictive performance. The two main ensembling
approaches are bootstrap aggregation (bagging) and boosting:

• A bagging ensemble trains many parallel decision trees (resulting in so-called
random forests Breiman 2001). The different trees are trained on datasetswhich are
created from the original data through samplingwith replacement. This parallelism
increases the reliability of the predictions.

• A boosting ensemble trains many decision trees in sequence. Each tree is trained
to minimize the loss taking into account the combined and weighted decision of
all preceding trees. This sequence of weak learners is capable of greatly improving
the overall result of the decision tree forecast (Chen and Guestrin 2016).

Recently, these machine learning approaches have seen ready adoption in the
power systems literature (Persson et al. 2017; Su and Liu 2018; Guo et al. 2021).

Future Challenges in Load Forecasting

Historically, most models focused on point load forecasting. This was because there
was sufficient slack in the system (due to controllable generation) which facilitated
reliable matching between supply and demand. Recently, though network manage-
ment has become more challenging given recent developments in the sector. Among
others, probabilistic load forecasting is better suited to serve utilities companies in
this challenging task (Hong and Fan 2016). This is another advantage of machine
learning techniques which ultimately are inherently probabilistic. Given sufficient

3 Purity can, for example, bemeasured using themisclassification error in a leaf. Alternativemetrics
include the Gini coefficient as well as the entropy.
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training data there have also been successful applications of deep neural networks,
in particular recurrent neural networks (Wang et al. 2019).

3.2 Clustering Load Profiles

Thewidespread deployment of smartmetering hasmade household energy consump-
tion data more available. This has paved the way for analyzing load characteristics
using this advancedmetering data. Such power usage data can be leveraged by system
operators or energy retailers to better understand customer behavior. This informa-
tion may help tailor different DR programs for different households in order to build
a more robust grid design system, offer more effective energy reduction recommen-
dations, and improve smart pricing models (Salah et al. 2017). These new sources of
business value are crucial as smart meters are more costly than traditional metering
equipment as they require large investments in the accompanying ICT infrastruc-
ture. Consequently, utilities companies are intensively looking for ways to recapture
these investments. Faruqui et al. (2010) remark that utilities can profit from improved
grid operations, lower costs for obtaining meter readings, or faster identification of
outages and interruptions. Smart metering data can facilitate a customer segmenta-
tion based on dynamic load patterns instead of mere load totals. Flath et al. (2012)
present a practice-oriented introduction to smart meter cluster analysis which we
want to quickly outline this user case of unsupervised learning here.

Time Series Preparation

To be able to cluster a collection of smart meter time series (load profiles) we need
to bring these data into a usable form. Traditional customer segments often focus
on the total consumption as this data has always been readily available from billing
systems. Clearly, this corresponds to a very coarse definition of similarity. A smart
meter data serieswith a typical resolution of 15min resolution provides 4 · 24 · 365 =
35, 040 data points per household. The central question is the underlying clustering
objective, i.e., what measures similarity between two load profiles. To compare two
load profiles side-by-side it is first necessary to determine the comparison scope
and then obtain corresponding representative load profiles. Flath et al. (2012) put
forward daily (differentiated by weekday and weekend days) and weekly profiles
as natural candidates. In either case the quarter-hourly raw data are aggregated at
the chosen level by means of averaging. This results in load profiles with 96 entries
for daily and 672 entries for weekly profiles—for weekly profiles it may hence be
advisable for weekly profiles to be based on coarser time resolution. To obtain scale-
free comparability across load profiles one can normalize the values by division with
the highest individual element.

The representative load profiles offer compact representation of the customer
consumption records. Pairwise comparison of profiles requires furthermore a suitable
metric. Given the time series character of the load data we can simply use a default
metric such as the Euclidean metric.
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Fig. 3 Illustration of k-means clustering approach

Clustering Procedure

Equipped with representative load profiles and a suitable metric one can proceed
to the actual clustering process. A very simple and commonly used algorithm for
cluster analysis is the k-meansmethod. This algorithm requires a pre-defined number
of clusters, k. It then proceeds by picking k representative load profiles as cluster
centers and subsequently assigns all remaining load profiles to the closest cluster.
Subsequently, the cluster centers are recalculated and the cluster assignments are
updated. This procedure is repeated until there are no more assignment changes
which then yields the final clustering. See Fig. 3 for an illustration of the first two
steps of the algorithm.

Given the random initialization and the greedy improvement procedure k-means
can sometimes end up in sub-optimal clusterings. This issue can be mitigated by
trying out multiple starting configurations. The other inherent issue of k-means is
the necessity of specifying the number of clusters ex-ante. This can be overcome
with additional ex-post metrics of cluster quality to compare across different k-
values. Note that for this comparison the number of clusters has to be included as
an additional distance penalty as the plain clustering quality is strictly increasing
in the number of clusters. Note that oftentimes determining an “optimal” number
of clusters is a somewhat theoretical question as practical considerations (cost of
marketing additional products, marketing strategy)may anyway impose a fixed value
for k.

Advanced Clustering Techniques

The above example is deliberately used the k-means approach as it is the most
common and approachable technique for cluster analysis. However, it is somewhat
limited with respect to unpacking underlying behavioral aspects of the consumers.
To this end, Albert and Rajagopal (2013) propose using a hidden Markov model
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to understand the inter-temporal consumption dynamics to appropriately segment
the user population. They infer occupancy states from consumption time series data
and characterize occupancy by magnitude, duration, and variability. Besides its non-
probabilistic nature, the k-means approach also struggles to incorporate other data
sources than the consumption time series as pointed out by Wang et al. (2018).

Putting Customer Segments to Use

More granular load profiles provide ample benefit potentials for the various stake-
holders in smart grids (Beckel et al. 2014). For example, energy companies can better
manage their assets and customer relationships. In particular, the cluster assignment
can be a powerful feature in the context of load forecasting as described above. Fur-
thermore, marketing activities can be better targeted with respect to both customers
targeting as well as product design. Customers themselves may receive better rec-
ommendations and comparisons which may improve their consumption behavior.
Finally, regulators may be able to turn richer insights into customer behavior into
more effective legislation and rules for the energy market.

3.3 Non-intrusive Load Monitoring

A central theme of smart grids is the empowerment of more local units, i.e., pushing
planning and control paradigms from the TSO to the DSO level. This coincides
with greater visibility on individual consumers. Yet, these customers remain are still
represented as a load profilewhich of course is a poor representation of the underlying
energy end use. This is where load disaggregation techniques such as Non-intrusive
load monitoring (NILM) come into play. NILM processes meter data in order to
determine exactly what appliances have used the power and how much power each
appliance has used during that time period (Hamid et al. 2017). This challenging
class of smart grid analytics problems features elements of supervised multi-class
classification (identification known appliance traces in an aggregate load profile)
as well as unsupervised discovery of previously unseen loads. Weiss et al. (2012)
highlight the particular challenge of reliably detecting inductive or capacitive loads.
Unsurprisingly, research has so far been driven by the technology and less so by the
resulting business opportunities (Welikala et al. 2017). It is also the main application
area of advanced AI techniques as the sequence-based and super positional nature of
aggregated load profiles is distinctly non-structured. Consequently, ANN approaches
such as sequence (Zhang et al. 2018) or transfer learning (D’Incecco et al. 2019) have
recently been used to tackle this problem.

If the NILM problem can be reliably solved the opportunities for future smart
grid management would be significant. On the customer end there would be a great
improvement of information transparency with regards to individual energy con-
sumption. This may help identify out-dated appliances or bad consumption habits.
Companies seeking to establish comprehensive DR programs could reliably tar-
get customers with certain appliance types or usage patterns. Similarly, customer
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response and hence the effectiveness of RTP or ToU rate offerings could greatly
benefit from knowing what customers actually do with the procured energy.

4 Summary

As discussed throughout this book the smart grid is a transformation of the power
system both from the technological as well as the organizational perspective. Smart
grid analytics assumes a similar perspective by highlighting the necessity of first
turning data sources into information assets and subsequently leveraging those to
generate new business value.

The increasing availability of smart grid data has lead to significant research activ-
ity in the smart grid analytics domain. However, so far a lot of research has focused on
descriptive and predictive modeling tasks. Going forward one could expect a closer
integration of these predictive ML models with smart grid optimization problems
(e.g., Chen et al. 2013; Gärttner et al. 2018; Gust et al. 2021) to establish a truly
data-driven prescriptive decision-making paradigm. An early pioneer in this area has
been Rudin et al. (2011) who cooperated with a New York City utility company
to schedule maintenance crews based on reliability predictions (predictive main-
tenance). The adoption of the weighted sample average approximation (Bertsimas
and Kallus 2020) may provide a promising framework for tackling the prescriptive
challenge in smart grid analytics more broadly.

NILM research has presented an avenue for deep learning applications. Another
area where these deep neural networks are of particular relevance in smart grids is
image recognition which can be used to extract information on grid assets (type, size
or condition) or customer demand from aerial or satellite imagery (Yan et al. 2007;
Malof et al. 2015; Gazzea et al. 2021).

Review Question
• Name the four Vs of big data and elaborate on each of them in the context
of smart grid analytics.

• Explain the difference between prescriptive and predictive analytics in your
own words.

• Random forests are often considered to be unpractical for large data sets
due to their high memory usage. Explain this critique by means of a stylized
example (1GB training data, 10 trees).

• Why is the CQ metric not useful for choosing the number of clusters?
• Discuss how electricity pricing and rate design can benefit from smart grid
analytics.

• What type of machine learning task do the examples for image recognition
correspond to?
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