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Learning Objectives

• Be able to describe elements of smart grids that can be represented in models.
• Be able to classify and identify dimensions in energy system models.
• Be able to mathematically formulate smart energy system models.
• Be able to explain how the main drivers of smart grids impact model-based
representations.

1 Introduction

This chapter is motivated by the transformation of the energy system toward a smart
grid economy which also necessitates new solutions in the field of decision support
tools that are used by system operators and market stakeholders. Trends that can
be observed in the management of smart grids are an increasing orientation toward
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digital and intelligent solutions and a stronger coupling between different energy
sectors as well as a growing interaction between different stakeholders. Examples
include the electrification of district heating via heat pumps, mobility applications,
e.g., electric vehicles, or consumers who provide energy from rooftop photovoltaic
systems to grid operators to ensure grid stability enabled by smart grid devices.
These developments also have implications for the model-based representation of
smart grid systems.

Classic energy system models have a long history and are widely used since
the two oil crises in the 1970s. Energy system models support decision-makers in
questions regarding energy regulation and policies for infrastructure planning of
energy generation, conversion, and transportation. Literature in the field of energy
system modeling is vast and the reader of this book might ask how the modeling
of smart grids differs from traditional modeling techniques. This chapter perceives
a gap in the subject on model requirements that result in particular from smart grid
economics and management. It provides an overview of different design aspects,
challenges, and current trends associated with the model-based representation of
smart grid systems, and additionally provides a detailed literature review of various
modeling approaches in this research field.

The chapter is structured as follows: Sect. 2 gives an introduction to general mod-
eling aspects of smart energy systems. For this purpose, a systematic taxonomy of
smart grid systems is developed and different concepts are classified according to
application scopes. Modeling of smart grid systems can be done at different scales
and from various perspectives, thus different modeling approaches are introduced
based on brief mathematical descriptions are presented in Sect. 3. These comprise
small-, medium- and large-scale applications, bottom-up demand sidemodels as well
as bi-level approaches. Based on the structure of Sect. 3, Sect. 4 provides a compre-
hensive overview about literature with regard to smart grid modeling. Current trends
in the modeling of smart grid systems are discussed in Sect. 5. In the final Sect. 6, a
conclusion, an outlook and some exercises are presented.

2 Taxonomy and Classification of Smart Grid Systems

Modeling of energy systems has a long tradition and got a strong push with the
two oil crises in the 1970s. In general, the purpose of energy system modeling and
analysis is to improve and support the decision-making process in the energy sector
with regard to technology choices, policies, and infrastructures for energy supply
and energy conversion. Therefore, models try to consider “reality” in a systematic
and knowledge-based manner. Depending on the question, a wide variety of factors
and framework conditions must be considered. Developments in energy and key
technologies, the limited nature of fossil resources and climate change, demographic
change, the political, social, and economic framework conditions, the pursuit of
sustainability—all these factors are only examples to be taken into account when
analyzing and modeling an energy system. In general, energy system models can be
classified in three main dimensions (see also Möst et al. 2009):
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Fig. 1 Categorization of smart grid modeling approaches

• What is the energy system under consideration? The examined energy system can
be the global one, the European, a national, that of a district, an industrial location,
or a house. As a global energy system is not analyzed on the same level of detail
as, e.g., a system on household level, system boundaries, and level of detail have
to be defined.

• What time horizon and correspondingly what time resolution is addressed? The
time horizon can range from a short time horizon and a high time resolution (e.g.,
analyzing the frequency behavior in a grid) to several decades and a lower time
resolution (e.g., analyzing the development of the energy system until 2050).

• Andfinally,what is themodel perspective?The perspective can be supply-oriented,
grid-oriented, demand-oriented or even an integrated model approach.

Figure1 depicts these three dimensions of energy system models: (1) The time hori-
zon, describing the short-, medium- or long-term analysis, (2) the scope, which
encompasses the level of detail and geographical range, (3) the model perspective,
referring to a supply-oriented, demand-oriented, or integrated model approaches.
This classification is also used in the course of this chapter.

It can also be applied to classic energy system models. Accordingly, the question
arises what the difference to the modeling of smart grid systems is. “Smart” can
refer to the system under consideration. Additionally, the other chapters of this book
provide a good overview on what a smart energy system can entail. Modeling smart
grids and the involved consumers or prosumers can be done on vastly different scales
and from different perspectives. In the following, the differences in the aforemen-
tioned scope of smart grid systems are discussed by delimitingmodeling approaches,
although there is a fluent transition between the system and modeling boundaries.

In general, it can be stated that the main drivers of smart grid systems are the three
Ds—Decarbonization, Digitalization, Decentralization—which are often considered
to be the pillars of creating the green energy economy of the future. While these
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drivers were already introduced in chapter “Energy Systems Today and Tomorrow”.
However, this section explains how the three “Ds” stimulate and affect modeling.

Decarbonization
Decarbonization means that carbon-based fuels, such as oil, gas, coal, and lignite
should no longer to be used for electricity generation. Renewable energy sources in
particular are expected to replace these fuels and contribute to a more sustainable
energy system. However, technologies with high potentials—such as wind energy
and photovoltaic—are dependent on weather conditions. This creates challenges
concerning the balance of electricity supply and demand. In addition, the potentials
of these renewable energy sources are not necessarily close to demand, leading to
longer transportation distances and hence the need for infrastructure adaptation.

Accordingly, the temporal and spatial resolution in energy system models must
take into account the challenges posed by the higher share of renewable energy:

• Time component: Demand and supply have to be balanced and thus challenges in
connection with the fluctuation of electricity generation (RES) and its balancing
have to be addressed by smart grid modeling. In general, an hourly resolution
or even a quarter-hourly resolution is state-of-the-art when modeling smart grid
systems.

• Spatial component: As renewable sites are not necessarily located in close prox-
imity to demand, transport and distribution of electricity pose new challenges for
today’s infrastructure. But also distribution grids are affected by new suppliers
(e.g., photovoltaic) and demand technologies (e.g., electric mobility). The spatial
component in high-resolution models is usually accounted for using at a NUTS3
level.1

In combination with new technologies on the supply and demand side, such as
photovoltaic, electric mobility, heat pumps, etc., a further trend is decentralization.

Decentralization
Decentralization comes hand in handwith new technologies, providing decentralized
feed-in of electricity and are intended to replace a “few” large generation plants
in the long term. In consequence, electricity generation is dispersed across many
smaller plants.2 Furthermore, decentralization also refers to the increasing amount
of embedded generation, for example, combined heat and power plants on industrial
sites or solar panels on residential properties. As (larger) conventional power plants
reach the end of their lifetimes, they are being replaced by wind farms, solar fields,

1 Nomenclature des unités territoriales statistiques (NUTS) is a geo-code standard for referencing
the subdivisions of countries for statistical purposes. NUTS3 refers to the district or municipalities
level.
2 However, this does not necessarily mean that energy based on renewable sources is always decen-
tralized. While the power of single offshore wind energy plants is still small in comparison to
large-scale fossil-fuel or nuclear-fuel based power plants, these single offshore plants are often
grouped together to an entire farm resulting in connection points with large power injections (sim-
ilar to the magnitude of large-scale plants).

http://dx.doi.org/10.1007/978-3-030-84286-4_1
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hydropower, marine generation, and biomass, and thus decentralization is becoming
more prevalent. Furthermore, sector coupling is also contributing to decentralization
by providing additional electricity demand with high flexibility in general. This can
help to balance supply and demand as decentralized as possible. Sector coupling is
driven by so-called power-to-X (PtX) technologies, which means that electricity is
used to provide energy services substituting common fossil energy carriers. Among
others this is especially power-to-heat (e.g., district heating provided by heat pumps),
power-to-vehicle (e.g., electric mobility) as well as power-to-chemicals, in particular
power-to-gas (e.g., green hydrogen). This has given rise to so-called cellular concepts
that directly address the topic of decentralization.

Decentralization poses a number of challenges, which also have to be analyzed
with the modeling of smart grid systems:

• With decentralization, regional autarky and self-sufficiency are gaining in impor-
tance. Several questions in this context with regard to the level of decentralization
are addressed by modeling smart grid systems.

• As renewable site potentials (e.g., wind offshore) are often far distanced from
demand centers, there is still the duality of a centralized and decentralized supply
of energy, resulting in several challenges for the infrastructure.

• Furthermore, interaction and participation of consumers are gaining in importance.
Especially the possibility of generating electricity decentrally and controlling one’s
own consumption (smart demand) has led to so-called prosumers as new market
participants. While, techno-economic modeling of energy systems was sufficient
a few years ago, today behavioral and societal aspects pose additional challenges
and barriers when it comes to making such a socio-technical transformation a
reality. This requires further analysis techniques that also take behavioral and
societal aspects into account. An example for considering behavior of agents is
agent-based modeling, which has grown in importance.

Resulting from these developments, smart grid modeling is more specific and
addresses topics at the level of households or industry site level and additionally
considers societal concepts.

Finally, the last trend is digitalization.

Digitalization
With digitalization, several new possibilities and applications arise. Real-time infor-
mation and control is just one example which provides new opportunities. Con-
sequently, effective management and monitoring is essential and achievable with
state-of-the-art digital technology when implemented across all areas of the elec-
tricity system, from generation to transmission, distribution, supply, and demand.
The core infrastructure of the grid is still using similar switches to those used in the
1950s, and therefore requires some further upgrades in order to realize the full poten-
tial of digitalization. However, this process will steadily take place and provide new
opportunities in the next years and decades. With digitalization, new technologies
enter the market, which affect the energy system and thus have to be considered in
modeling. Two selected examples are
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• Smart metering: A smart meter is an electronic device that records consumption
of electric energy and communicates the information to the electricity supplier
for monitoring and billing. New concepts for controlling demand and appropriate
incentive mechanisms are under development and the development is supported
by analysis based on smart grid modeling.

• Smart grids3: The emergence of smart grids stimulated electric utilities, scientists,
and vendors to develop comprehensive and sustainable solutions for the different
elements of smart grids.

In general, digitalization allows for newbusinessmodels behind the infrastructure,
especially behind the metering devices. While traditional business models in the
energy sector depend on infrastructure (large generators and power grids), which can
be described by the principle of “produce big and sell small,” many smart business
models in the energy sector act behind the meter (e.g., smart communities, pooling
of demand flexibility, electric vehicles, etc.) and use aggregation according to the
principle: “buy small and sell big”.

Along with digitalization, hard and software steadily improved and new software
tools came up. Transparency and traceability is a must in modeling today. Open
source modeling is already state-of-the-art and will displace black-boxmodeling and
thinking (see Sect. 5.2). In consequence, new software tools as well as newmodeling
approaches (such as, e.g., bi-level programming for real-world applications—see
Sect. 3.4) can also be applied to the field of modeling smart grid systems.

To further break down the term smart grid system and to derive a systematic
taxonomy, smart grid systems can be divided into three sub-groups of application
scopes: Small-scale, medium-scale, and large-scale applications. Table1 classifies
a variety of different concepts that are related to smart grid systems in accordance
with the scope of application.

Smart home usually denotes residences equipped with smart technologies that
enable to provide customers, i.e., residents, with tailored solutions that aim at enhanc-
ing the quality of living. Technical devices range from small household devices (e.g.,
refrigerator, washing machine), sensors, and domestic appliances that monitor and
control lightning and heating all the way to integrate decentralized generation and
storage applications that optimize the generation and utilization of energy within the
smart home. Another strain of smart home solutions deals with energy efficiency and
renewable generation integration, where household electricity consumption is opti-
mized to provide electricity grid operators with flexibility in grid management and to
avoid congestions in the transportation of electricity in the distribution grid. This can
be achieved by direct (real-time) access of grid operators to household information on
electricity consumption utilizing smart metering technologies and control of certain
devices (e.g., charging of electric vehicles) but can be also controlled via incentive
mechanisms. Time-of-use tariffs or dynamic retail tariff structures could provide
end-users with real-time electricity price information that incentivize customers to
adapt their consumption behavior in an electricity system beneficial way.

3 A complete listing of all components of smart grids or a definition is out of the scope of this
section.
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Table 1 Classification of smart grid concepts

Smart grid systems

Small-scale Medium-scale Large-scale

• Smart customer
• Smart home
• Smart technologies
• Smart building
• Smart meter

• Quarter solutions
• Aggregators
• Micro grids

• Smart demand
• Renewable integration
• Transmission monitoring

Another groupof smart grid systemsdealswith smart applications on a community
level. Here, several households in a street of a district or a compound of apartments
of a multi-family house (sometimes denoted as quarter) are connected to a network
with communication and information systems and optimized as a whole. So-called
aggregators represent the group of households which manage the electricity sales
and procurement of the entire quarter. The aggregator quite often is usually a service
provided by a third-party energy utility. Since it accumulates the energy flows of all
quarter members, larger total energy volumes are reached which allows to directly
participate atwholesalemarkets.Again, a necessary prerequisite is that the aggregator
is able to gather real-time information of the quarter members’ energy consumption
and decentralized generation which can be achieved by the installed smart metering
systems. Sometimes smart grid systems at a communal level also relate tomicro grids.
In this context, smart grid systems are understood as an independent subsection of a
distribution grid, that can be managed autonomously without being connected to the
higher voltage level distribution grid either temporarily in case of fault events or even
permanently due to the typology of the supply area, e.g., in very remote areas where
geographic restrictions apply. Either way, it supports the grid operator with a higher
degree of flexibility for increased integration of decentralized electricity generation
and consumption appliances.

Smart grid systems also appear in large-scale applications of energy supply. In
various analyses, demand sidemanagement (DSM) activities are a predominant char-
acteristic of smart grid systems. DSM also referred to as demand side flexibility or
demand response can be defined as the planning, monitoring, and management of
activities that stimulate large-scale consumers, such as industrial utilities in changing
their consumption behavior which essentially yields into optimized load profiles for
system integration of variable generation sources. Again this can be achieved via
incentive mechanisms or automated procedures through intelligent technical devices
that initiate changes in the electricity consumption, e.g., an adjustment of the produc-
tion plan. Apart from the generation and demand, smart grid systems can also be part
of the transmission of electricity. In this context high-voltage power line monitoring
enables optimized utilization of transportation lines. In this way, real-time informa-
tion on the technical state of the power line (e.g., temperature and power flow) is
delivered to the transmission system operator, which can then adjust transportation
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limits to avoid congestions in the electricity transport. As outlined in the introduction,
digitalization is one driver of such emerging power line monitoring systems.

In the following, general model notations of large- and small- to medium-scale,
bottom-up demand sidemodeling aswell as bi-level programmingwill be introduced.

3 Mathematical Notations of Selected Smart Grid Problems

3.1 Large-Scale Models

Against the background of decarbonization as energy-policy target, the expansion
of less carbon-intensive technologies related to the conversion, supply, and demand
of energy requires the analysis of techno-economic uncertainties. Additionally, to
capital-intensive rather central technologies with long lifetime (e.g., power plants
or electricity grids), the trend of decentralized energy supply and flexible energy
demand at distribution grid level increases the need for assessing positive and neg-
ative effects of the system transformation. Large-scale model analyses aim for the
evaluation of these complex interactions between different available and future tech-
nologies. Besides equilibrium models, which represent the energy sector as part of
the whole economy, simulation and optimization models are the main categories
for large-scale energy and electricity system modeling. For both methodologies, it
is crucial that impact assessment focus on insights from the interrelations between
the modeling framework and the techno-economic implementation of the technolo-
gies, since models always simplify the real world. Taken this into account, energy
and electricity system models enable the evaluation of system configurations to esti-
mate optimal long-term investments and short-term dispatch decisions (optimization
models) as well as efficient performances (simulation models) of different energy
system components. As mentioned in the introduction, the digitalization and cor-
responding information and communication technology (ICT) are crucial elements
for the decentralized interaction of the relevant components in a smart energy sys-
tem. However, the modeling of these ICT in large-scale energy models is rather an
implicit precondition than explicitly modeled. After giving an overview of central
characteristics of large-scale energy system models, further aspects of the inclusion
of smart grid technologies in these models will be discussed.

Both modeling methodologies usually apply a techno-economic bottom-up
approach. In general, in optimizations models the objective function is formulated as
cost minimization to identify least-cost solutions for electricity provision or welfare
maximization. For a simplified dispatch model applied for a single node or market
(in large-scale models usually an entire country) as illustrated in the following, the
objective function minimizes total costs TC as the product of power plant dispatch
Gi,t and corresponding operational costs oci for each technology i and time step t ,
as shown in Eq.1. Typically, the time-specific electricity generation costs are com-
posed of plant-specific fuel costs, carbon allowance costs, ramping costs, and further
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variable costs. These operating costs take technology-specific efficiencies, emission
factors, ramp rates as well as availabilities into account. While unit commitment and
dispatchmodelsminimize the time-specific electricity generation costs (composed of
plant-specific fuel costs, carbon allowance costs, ramping costs, and further variable
costs), system planning or investment decision models additionally include invest-
ments in relevant generation and storage technologies. Besides operational costs and
fixed costs, technology-specific economic parameters like annualized investments
are further included in this case.

min
Gi,t

TC =
∑

i

∑

t

Gi,t · oci (1)

The objective function is furthermore subjected to a range of restrictions. Thereby,
the energy balance represents a key element of dispatch models. As an important
constraint (see Eq.2) in electricity system models, it ensures the balance between
electricity generation and electricity demand dt . Usually, in basic dispatch models
the electricity demand is assumed to be inelastic to electricity prices, thus dt is
included asmodel-exogenous input parameter. For optimization problems, the energy
balance as central equation of energy system models implies the variable costs of
the dispatch of relevant technologies (including smart grid technologies) to meet the
time-dependent electricity demand. Based on this energy balance equation electricity
prices can be derived fundamentally. As a basic assumption, the marginal cost and
thus, electricity price-driven dispatch of different components of the power system
requires direct price signals and respective smart grid infrastructure (in particular
information and communication technology (ICT)) for all participants. This is not
only true for technologies on the supply side, but also when the demand side becomes
more flexible.

dt =
∑

i∈I
Gi,t ∀ t (2)

For power plants, minimum restrictions forces the generation to be non-negative,
while maximum capacities ensure that electricity generation is not exceeding the
installed capacity pci . For weather-dependent RES wind and PV, generation time
series (usually in hourly resolution) are included as parameters reflecting the weather
dependency and the applied feed-in priority.

0 ≤ Gi,t ≤ pci ∀ i, t (3)

Based on this basic dispatch model, the equations can be extended, particularly
when including additional technologies for smart applications and flexibility pro-
vision in energy system modeling. Storage provide temporal shifting flexibility to
compensate for fluctuations in electricity demand and supply. Regarding a model
implementation, storage charging and discharging has to be included in the energy
balance, as displayed in Eq.4. Thereby the set s is a subset of electricity genera-
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tion technologies (s ∈ S ⊆ I ). This allows for restricting the discharging of storages
Gs,t (s ∈ S) similarly to power plants. In addition, the charging of storages Ps,t has
to be restricted to be non-negative as well as to not exceed maximum charging power
spi as in Eq.5. Furthermore, the storage energy balance (see Eq.6) describes the
storage inflows and outflows (including a storage efficiency ηs) between two time
steps. Thereby, in Eq.7 the storage level SLs,t is restricted by maximum storage
energy capacity sci .

dt =
∑

i∈I
Gi,t −

∑

s∈S
Ps,t ∀ t (4)

0 ≤ Ps,t ≤ sps ∀ s ∈ S, t (5)

SLs,t = SLs,t−1 − Gs,t + Ps,t · ηs ∀ s ∈ S, t (6)

0 ≤ SLs,t ≤ sci ∀ s ∈ S, t (7)

By increasing the system boundaries of the dispatch model to multiple nodes,
the potential to exchange electricity between regions or countries can be included.
In large-scale electricity systems the nodes typically represent countries reflecting
the import/export of electricity as cross-border flows. This spatial shifting can be
seen as crucial flexibility option, particularly in interconnected electricity systems
like the European one. When considering numerous countries in dispatch models, an
additional set has to be introduced (here c). Furthermore, the flow from one country
c to another one is formulated by introducing an alias cc. With export and import,
the energy balance of Eq.2, has to be formulated for each node/country c (see Eq.8).
Additionally, the energy balance between electricity demand, electricity generation
as well as storage charging and discharging is extended by imports EXt,cc,c and
exports EXt,c,cc. Available interconnections between countries are introduced by an
adjacent matrix and restricted by existing hourly transfer capacities ect,c,cc (Eq. 9).

dt,c =
∑

i∈I
Gi,t,c −

∑

s∈S
Ps,t,c

+
∑

cc∈map(c)

(EXt,cc,c − EXt,c,cc) ∀ t, c
(8)

EXt,c,cc ≤ ect,c,cc ∀c, t (9)

The flexibilization of the demand side by demand response (DR) is of high impor-
tance in smart grid energy systemanalysis. To implement demand responsemeasures,
Eq. 8 can be further extended by both applications to increase (L It,c,a) and reduce
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(LRt,c,a) electricity load with a ∈ A as set of demand response (DR) applications,
as shown in Eq.10. The potential of each DR process has to be restricted considering
several parameter and characteristics. First, the temporal availability has to be taken
into account. While for load reduction the actual electricity demand drt,c,a of the
application forms the upper bound, for load increase the difference between maxi-
mum application capacity drmaxc,a and current load restricts the availability (see
Eqs. 11 and 12). In general, load shifting represents a subcategory of DR, character-
ized by a balance between the overall load increase and load reduction within a given
time frame without influencing the total electricity demand. This is why DR shifting
measures can be modeled as storage systems, as in Eq.13 with DRLt,c,a as virtual
storage level. However, since most of the DR processes and appliances have primary
purposes (e.g., aluminum production for industry or dish washing for households),
the shifting time tbala has to be restricted by parameters combining the duration of
activation as well as the time in which load reductions and increases must be bal-
anced (Eq.14). Further restrictions may be included to improve the representation of
technical aspect of DR applications. Examples are the limitation of number of acti-
vations per day or year (if single processes are implemented). Subsets can be defined
to assign applications for load shedding only (load reduction without compensating
the load at a later time step), as well as for solely increasing electricity demand.
The latter ones are typically introduced as sector coupling technologies (power-to-x)
into existing dispatch models, increasing the load due to the electrification of further
energy demand sector.

dt,c =
∑

i∈I
Gi,t,c −

∑

s∈S
Ps,t,c

+
∑

cc∈map(c)

(EXt,cc,c − EXt,c,cc)

+
∑

a∈A

(LRt,c,a − L It,c,a) ∀ t, c

(10)

LRt,c,a ≤ drt,c,a ∀t, c, a (11)

L It,c,a ≤ drmaxc,a − drt,c,a ∀t, c, a (12)

DRLt,c,a = DRLt−1,c,a − LRt,c,a + L It,c,a ∀ t, c, a (13)

t+tbala∑

t

(
LRt,c,a − L It,c,a

) = 0 ∀ t, c, a (14)
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With the implementation of power-to-X (PtX) technologies, intersections with
other energy demand sectors are applied with direct impacts on the energy balance
(Eq.10) in the power system. Larger system boundaries and new actors potentially
increase the need for smart communication between the technologies involved. In
this sense, a multi-coupled energy system and the corresponding communication
of the different sectors can be seen as smart energy system (Ringkjøb et al. 2018).
In the model (variations) presented in Eqs. 1–14, particularly the implementation of
demand side flexibility represents a simplified application of sector coupling, when
flexibility is exploited with PtX technologies like heat pumps, electric vehicles or
electrolyzer. These dispatch models still focus on the electricity market but include
several options for the electrification of further energy sectors with a respective
increase in (time-dependent) electricity demand without a detailed representation of
additional energy sectors. Particularly, energy system models enable the comparison
of electricity-based energy carriers and the complements of the respective energy
sectors. With the expansion of the model system boundaries, further energy end-
use sectors, like buildings, industry, and transport have to be included. Accordingly,
further mathematical restrictions reflecting additional energy balances and techno-
economic constraints have to be considered similarly to the electricitymarketmodels.

However, due to computational limitations, the level of detail is generally lower
compared to sector-specific models. In general, the bottom-up modeling or simula-
tion implies detailed data input. Therefore, the trade-off between techno-economic
detail and computation time is of high relevance regarding large-scale models. Sim-
plifications (i.e., aggregate technologies, countries, time steps) are often necessary to
keep the models tractable. However, particularly due to the expansion of fluctuating
renewable energies in smart energy system, the temporal resolution is of high impor-
tance to represent the increasing variability of the electricity feed-in. Besides the
large-scale systemperspective, the long-termplanning horizon additionally increases
the uncertainty of future developments. Especially in optimization models, compro-
mises regarding the technical details are often addressed by applying scenarios and
sensitivity analyses.

3.2 Small- to Medium-Scale Models

Models on a smaller spatial scale take on the perspective of a district, quarter, or
individual houses. Fundamentally, these models are similar to large-scale models
but with important distinctions, explained in the following.

The objective of such a model can be manifold (cf. Mohsenian-Rad and Leon-
Garcia 2010; Yu et al. 2013 and Arabali et al. 2012 in Sect. 4.2). For instance, the
objective can be the minimization of net costs. A quarter can aim for achieving
the most inexpensive way of meeting its electricity demand. Here, ct is the cost of
procuring power, imported via the grid. rt is remuneration for produced electricity,
sold via the grid (Eq. 15). The objective function takes on the perspective of an
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aggregator which manages the selling and procurement of electricity for an entire
quarter.

min NC =
∑

t

(GRI DI Mt · ct − GRI DEXt · rt ) (15)

The objective incorporates the goal of avoiding expensive power purchases and
can therefore support the grid by reducing peak demand (cf. Mohsenian-Rad and
Leon-Garcia 2010; Kahrobaee et al. 2012).

An important distinction to large-scale models is that the energy balance needs
to hold for entities, not for market zones or countries. Entities can take on various
forms, e.g., individual households. The trade in large-scale models now becomes an
exchange with other entities, e.g., with neighbors (Eqs. 16, 17).

dt,e =
∑

i

(Gt,i,e + LRt,i,e − L It,i,e) +
∑

ee∈map(e)

(EXee,e − EXe,ee) ∀t, e
(16)

Overall, an energy balance needs to be abided by, for the entire quarter. If there is a
shortage, including all demand response activities, imports are needed; if generation
plus load reduction exceeds the demand, electricity can be exported.

dt =
∑

i,e

(Gt,i,e + LRt,i,e − L It,i,e) + GRI DI Mt − GRI DEXt ∀t (17)

T = {1, . . . , 24} , I = {1, 2, 3} , E = {1, . . . , 300}

Noticeably, also the variables for load reduction and increases take on the index
t , i and e. This attests to the much higher granularity of small- and medium-scale
model. Possibly, for each entity, different technologies can serve as flexible demand
(cf. Gottwalt et al. 2016). These models then increase in size, by considering many
entities, i.e., generally |E | > |C |. Also, the time resolutionmay increase from hourly
to, e.g., quarter-hourly, considering T = {1, . . . , 96} instead (compare Sect. 4.2).

Importantly, generation capacity, demand response, and storage restrictions still
apply, along the lines of the large-scale model.

With increasing regionalization the uncertainty in forecasts becomes greater and
its consideration gains in importance. This pertains to predicted parameters espe-
cially, for instance, demand and availability of renewable energy. For renewable
energy it becomes more difficult to accurately predict the availability in a small
region. For entire countries, load can often be aggregated by standard load profiles.
On a small- or medium scale, the load profiles of smaller entities have to be pre-
dicted which is generally more challenging. One method to handle this uncertainty
is stochastic optimization (see also Yu et al. 2013).
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Consider a quarter which has generation capacities based on renewable energy as
well as some flexibility option. The objective of this quarter is the minimization of
net costs, comprised of costs for grid imports and negative costs (revenues) for the
export to the grid (Eq. 18).

min NC =
∑

t

(
GRI DI MDA

t · cDAt − GRI DEXDA
t · rDAt

) +
∑

t,s

ps · (
GRI DI M ID

t,s · cIDt,s − GRI DEX ID
t,s · r IDt,s

) (18)

The forecasts for demand dt,s and generation availability capt,i,s are uncertain,
i.e., there are a number of possible scenarios s for these parameters. In a first stage, the
quarter purchases energy from and sells it to the day-ahead market (GRI DI MDA

t
and GRI DEXDA

t ), taking into account the various scenarios. Depending on the
realization of scenarios, intraday adjustments have to be made in a second stage
(GRI DI M ID

t,s and GRI DEXDA
t,s ) which, importantly, are scenario-dependent. The

scenarios can be weighted by means of ps , depending on how probable these sce-
narios are considered to be.

As in the example above, the capacity constraint has to be abided by in each
scenario. Also, the energy balance will differ in each scenario with constant ele-
ments, such as the day-ahead decisions (from the first stage), as well as scenario-
dependent elements like demand, intraday imports/export and load flexibility
decisions (Eqs. 19, 20).

Gt,i,e,s ≤ capt,i,e,s ∀t, i, e, s (19)

dt,s =
∑

i,e

(Gt,i,e,s + LRt,i,e,s − L It,i,e,s)+

GRI DI MDA
t − GRI DEXDA

t +
GRI DI M ID

t,s − GRI DEX ID
t,s ∀t, s

(20)

I = {1, 2, 3} , T = {1, . . . , 24} , E = {1, . . . , 300} , S = {1, . . . , 10}

A key element of stochastic optimization is the consideration of scenarios to
account for uncertainties. Questions emerge regarding which and how many sce-
narios to consider. For instance, scenarios can follow from observed time series or
simulated ones, taking into account the key distribution characteristics. To main-
tain the feasibility of model computations, often scenario reduction techniques are
applied (e.g., see Heitsch and Römisch 2003). This becomes especially important
with a growing amount of considered entities and a higher time resolution, increasing
model complexity. Stochastic programming can, of course, be applied to any model
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scale. For instance, the effects of intermittent renewable energy feed-in on electricity
market are of great interest (Abrell and Kunz 2015).

3.3 Bottom-Up Demand Side Models

The modeling of the future energy demand is of crucial importance for investment
and dispatch planning, in particular due to its rising influence on the success for a
sustainable energy transition, integration of renewable energy, and smart energy sys-
tems. Influencing factors of the energy demand are multiple—for instance, weather
and climate conditions, the economic development, technology change as well as
changes in policy and consumption behavior. However, several models take only
few of these factors into consideration, ensuing incomplete information. Usually in
projection models the final energy demand can be carried out for individual energy
carriers such as gas, heating oil, district heating, biomass, solar thermal, or electricity
(Herbst et al. 2017), whereby in this section the focus is on modeling and projecting
electricity demand of individual sectors in a smart grid energy system.

Bottom-up energy demand models derive long-term projections for the future
annual energy demand of individual countries based on assumptions on socio-
economic data (e.g., gross domestic product, population, evolution of energy carrier
prices) and techno-economic data (such as specific consumption, equipment rate,
operation time, life time, investment costs). In most bottom-up demand side models
the projected annual electricity demand can be further distinguished by year, country,
sector, application, and technology (Boßmann et al. 2013). Compared to other sec-
tors, the industrial sector reflects the highest degree of heterogeneity with regard to
technologies and energy end-uses. For instance, the industrial sector can be catego-
rized by several sub-sectors such as the iron and steel, non-ferrous metal, paper and
printing, chemical, food and drink, tobacco, or engineering industry, to name few.
Moreover, a variety of industrial process technologies exist for instance the primary
aluminum production, paper production, cement production, electric arc furnace
steel, and blast furnace steel production (Herbst et al. 2017). A further distinction
can be carried out by defining cross-cutting technologies like lightening or electric
motors etc. In contrast, the tertiary sector can be categorized into sub-sectors like
trade, hotels, and restaurants, traffic and data transmission, finance, public adminis-
tration, or health. Those sub-sectors include different energy end-uses such as light-
ening, electric heating, ventilation, refrigeration and cooling, cooking, data centers,
etc. (Herbst et al. 2017). In the residential sector different energy demand groups are
distinguished between lightening, sanitary hot water, space heating, among others.
Those residential energy demand groups are further categorized in energy end-uses
like air conditioning, dish washers, washing machines, dryers, lightening, stoves,
computer screens, or television. The energy end-uses can further be classified into
technologies and their different efficiency classes (Herbst et al. 2017).

The particularities of each sector such as the granularity, technology structure, and
actor heterogeneity as well as the data availability emphasize how complex future
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energy demand forecasts are. For instance, drivers of the projected energy demand
for the tertiary and residential sector are more population-related by, e.g., number of
employees and households (Herbst et al. 2017). Whereby, the electricity demand for
the sub-sector space cooling in the tertiary sector can be calculated by considering the
specific energy demand per m2 floor area to be cooled and the quantity of the energy
service driver, which is the share of cooled floor area per employee. Therefore, the
employment in the tertiary sub-sector is an influencing factor which further depends
on the development of the gross value added in the sector, demographic trends, and
the gross domestic product per capita (Herbst et al. 2017).

Next to the annual electricity demand of a sector, also the hourly electricity load
curve is of high importance for designing the future smart grid energy systemsince the
electricity demand and supply needs to be balanced at any time step of the year. The
most common and simplified approach in long-term projections is scaling a historical
load curve by assuming the future annual electricity demand. This approach implies
specific errors as changes in the future electricity load curve are not considered and
therefore, the load curve correlates precisely with the historical hourly electricity
demand (Boßmann et al. 2013). An alternative approach is the decomposition of the
historical load curve by means of sector and application specific electricity loads (cf.
Elsland et al. 2013). In this case, the individual load curves are scaled corresponding to
the sector and application-discrete annual electricity demand forecast and aggregated
to a total sector and/or system load curve.

In the following the disaggregation of the annual electricity demand to the hourly
electricity demand for a (smart) energy system is described (based on IAEA 2006):
The electricity demand is derived for a given hour (t) of a certain day (d), and period
( j , e.g., week, month, etc.) for a specified year by considering the following factors:

1. The average growth rate of the electricity demand over the year (trend).
2. The seasonal variation of electricity demand (e.g., semesters, quarters, months,

etc.).
3. The impact of day types (k) in the electricity consumption (i.e., consideration of

working days, weekend days).
4. The daily variation of electricity consumption due to certain periods (i.e., morning

hours, lunchtime, evening hours, etc.).

These influencing factors are considered by different coefficients which represent
the variation of electricity consumption in a sector by referring to the standard load
of the sector that is usually calculated for an equivalent working day (IAEA 2006).
Before starting to model the annual and hourly electricity demand, the variations
in the electricity consumption pattern need to be identified by defining different
seasons (seas) and day types (k). Therefore, the starting and ending dates of each
season during a year need to be defined, similar to the dates of special holiday periods.
Further, the sequence of weekdays and representative days (e.g., working days and
weekend days) for hourly load variations are to specified.
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The coefficient Tj is a correction factor of general trends for the electricity con-
sumption growth during a year. The growth trend coefficient of the gross electricity
consumption is calculated on a weekly (j) basis with 52 values for a year (Eq. 21).
GROWTH is defined as the absolute difference of the annual electricity demand
between the current and the reference (past) year related to the total annual electric-
ity demand of the current year.

Tj = [1 + GROWT H ](
j−26
52 ) ∀ j ∈ J = {1, . . . , 52} (21)

The seasonal coefficient K j considers the impact of different seasons on the
electricity consumption pattern in a sector for a certain time period (j) which can be
a semester, a quarter, a month or a week. Assuming weeks as specified time period,
K j can be defined as the averageweeklyweight of the yearly electricity consumption.
The sum of the coefficients of a year equals the value of the total number of periods
into which the year is divided (e.g., 52 weeks).

The daily ponderation coefficient Pj,d considers the fluctuations within the elec-
tricity consumption pattern of different day types, i.e., working days, Saturdays and
Sundays. Therefore, the electricity demand of every time step of the reference (past)
year is compared to the electricity demand of an equivalent working day, which has
the relative weight of 1. At first, the yearly average electricity demand of each work-
ing day needs to be calculated. The value which is nearest to the mean of all working
days can be considered as equivalent working day. The other day types are weighted
to their relative electricity demand compared to the equivalent working day (e.g.,
Saturday might achieve a 0.8 of a working day, etc.). The coefficient Pj,d varies over
the year depending on the defined seasonal periods ( j) and the day types.

Subsequently, the average electricity demand of an equivalent working day can
be calculated dividing the total annual electricity demand of the current year by
the total number of equivalent working days, which is the sum product of the trend
coefficient Tj , the seasonal coefficient K j and the daily ponderation coefficient Pj,d

over all calendar days cd of a year (Eq.22).

Dcd = D /
∑

j,d∈map(cd)

(
Tj · K j

∗Pj,d
)
, (22)

∀cd ∈ CD = {1, . . . , 365}, j ∈ J = {1, . . . , 52}, d ∈ D = {1, . . . , 7}.

To disaggregate the average electricity demand of an equivalent working day
Dwd , the hourly load coefficient LCt,d is needed. LCt,d reflects the weighted hourly
electricity demand over 24h of a day. The coefficient is calculated by the hourly elec-
tricity demand related to the daily electricity demand of the reference year multiplied
by 24h. The sum of all coefficients of a day is equal to 24. Consequently, the hourly
electricity demand can be calculated by multiplying the average electricity demand
of an equivalent working day with the hourly coefficient divided by 24h (Eq.23).
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Dt = Dcd · LCt,d/24 ∀t ∈ T = {1, . . . , 8760}, d ∈ D = {1, . . . , 7}. (23)

In context of modeling smart grids, the electricity demand side needs to be flexible
to balance the electricity supply at any time (e.g., facilitating the integration of high
shares of intermittent). As described in Sects. 3.1 and 3.2, the flexibilization of the
electricity demand side can be achieved by integrating demand response applications
(a ∈ A) which can increase (LIt,a) and reduce (LRt,a) electricity load in certain time
periods when needed. The potentials of DR applications are constrained by several
parameters and characteristics as described before in Sect. 3.1 and in Eqs. 11–14.

3.4 Bi-level Programs

The above formulated large-, medium- and small-scale models represent typical
decision problems of individual energy stakeholders in a smart grid environment
that can be modeled as a single linear or non-linear optimization problem. While
these models are useful approaches to investigate the various interactions in smart
grid systems, they sometimes fall short of representing the heterogeneity in the
preferences ofmultiple stakeholders and the potentially involved interaction between
them. Forms of interactions between sub-systems of a smart grid can create a stronger
coupling between the demand- and supply side. For example the participation of end-
userswhich owndistributed flexible energy applications, e.g., electric vehicles or heat
pumps, in corresponding electricity markets. Whenever sub-systems of a smart grid
are managed by individual stakeholders, the model-based representation entails the
inclusion of different objectives in the optimization problem, which requires other
modeling techniques than those discussed above.

Let us assume the following example: Consider an aggregator, which buys energy
at the wholesale markets to serve a given load of a residential quarter. The aggre-
gator can decide on a dynamic tariff scheme offered to the customers representing
the members of the quarter. Since wholesale prices vary over the course of a day the
aggregator tries to design a tariff scheme that incentivizes the customers to shift their
energy consumption into times with low wholesale prices. Aggregators usually try
to maximize their profits, which can be calculated by subtracting the energy procure-
ment cost at the wholesale market from the revenues from electricity consumption
of the quarter. An intelligent communication infrastructure allows the aggregator to
have full information on the customer’s demand profile.

Furthermore,members of the quarter adjust their electricity consumption behavior
in a way that minimizes their total expenses for electricity supply, which is strongly
affected by the provided electricity tariff. However, usually only a fraction of the
quarter’s electricity demand can be considered flexible as specific technical limita-
tions of the household devices prevent a full flexible operation.

As we can see here, the optimal decision on the design of the tariff scheme in the
optimization problem of the aggregator is constrained to be optimal solutions to the
optimization problem of the members of the living quarter. Such a framework refers
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to the class of bi-level optimization programs, in which one optimization problem
is nested into another. In the outlined example the lower level optimization problem
of the quarter members is included in the upper level optimization problem of the
aggregator. Since the upper level variables are considered as fixed parameters and not
decision variables in the lower level problem, i.e., the provided dynamic electricity
tariff cannot be actively controlled by the quarter members, the optimization problem
follows a hierarchical structure as in the well-known Stackelberg leader/follower
game.

It is important to understand that the raised example is just one possible application
of a bi-level program in the smart grid context. More generally, the upper level
can be considered as a strategic decision-maker, who anticipates a feed-back from
the lower level problem. Strategic decisions could be manifold, e.g., investment
decisions, tariff-design or other regulatory questions. The lower level problem could
be a response from the energy management of a single household, an integrated
residential quarter, or an entire electricity market. As a smart grid typically exhibits
a strong interaction between different sub-systems of an energy system, bi-level
programming can be seen as a powerful tool for its model-based investigation.

In the generalized mathematical form we can write a bi-level program as follows
(Bylling 2018):

min f1(x, y
∗) (24)

s.t. g1(x, y
∗) ≤ 0 (25)

h1(x, y
∗) = 0 (26)

y∗ ∈ argmin {f2(x, y) (27)

s.t. g2(x, y) ≤ 0 (28)

h2(x, y) = 0}. (29)

In this formulation, f1 represents the objective function of the upper-level with
the decision vector x (Eq. 24) and f2 the objective of the lower level with the deci-
sion vector y (Eq. 27). Likewise, we have two sets of constraints represented by g1
and h1 (Eqs. 25, 26) as well as g2 and h2 (Eqs. 28, 29). The upper level decides
on the values of x which minimize the objective f1 anticipating the response of the
lower level summarized in the values of the decision vector y, which minimizes the
objective f2. Due to the nested structure, solving bi-level programs is sometimes
a challenge. Existing solution methods involve the replacement of the lower level
problem by their necessary and sufficient Karush-Kuhn-Tucker (KKT) system fol-
lowing complementarity theory. The KKT system represents optimality conditions
that must hold in the optimal solution of the lower level problem and which again
can be reformulated as a set of additional inequality constraints. The newly derived
set of constraints can then be taken together with the upper-level problem, recasting
a single optimization problem that can be solved with commercial solvers for linear
and non-linear programs.
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4 Overview of Existing Modeling Approaches of Smart
Grid Systems

The following subsections provide an overview of existing modeling approaches
addressing smart grid components in large-scale energy models with a system per-
spective. Secondly, an overviewof existing small- tomedium-scalemodels narrowing
down the scope on consumers’ perspective is provided. Thirdly, to further increase
the detail of the energy demand side modeling, bottom-up demand side models are
examined. In general, the distinction between “traditional” energy models and smart
energy models is fluid, and a strict differentiation is not possible.

4.1 Literature on Large-Scale Models

Among others, model descriptions for large-scale energy system models can be
found in Panos and Lehtilä (2016) or Hidalgo Gonzalez et al. (2014). Examples for
investment models can be found in Gils et al. (2017) or Zerrahn and Schill (2015). In
addition to operational costs and fixed costs as well as technology-specific economic
and technological parameter, relevant energy policies such as feed-in priorities of
(weather-dependent) renewable energies are usually employed with country-specific
time-dependent feed-in time series (e.g., in Child et al. 2019; Nitsch et al. 2012). The
EU emissions trading scheme (ETS) can be represented by explicitly implementing
a carbon cap or budget constraining the total amount of emissions allowed, as in
Hobbie et al. (2019), Capros et al. (2016), Möst and Keles (2010) or by implicitly
specifying prices for emission allowances, as for example in Zöphel et al. (2019) and
Oei et al. (2014).

Generally, in a smart grid system with different levels of (de-) decentralization
in supply and demand balancing, combinations of flexibility options are object of
large-scale energy system analysis. Various technologies for supplying electricity
(e.g., power plants), shifting energy (e.g., storages or transmission grids) or increas-
ing electricity load (i.e., power-to-X (PtX), such as heat pumps, electrolyzer for
hydrogen production or battery electric vehicles) are analyzed with different scopes.
While for example Cebulla and Fichter (2017) analyze the influence of different
renewable energy sources (RES) shares on investments in power plants and storages
in a regional case study, Brijs et al. (2017) apply their analysis in a similar set-up for
Belgium. In contrast, examples for an increase in system boundaries can be found
in Connolly et al. (2016) or Koch et al. (2015), where additionally investments in
transmission grid expansions, demand side management (DSM) and PtX technolo-
gies are analyzed for Europe and different shares of RES. These models still focus
on the electricity market but include several options for the electrification of fur-
ther energy sectors (sector coupling) with a respective increase in (time-dependent)
electricity demand without a detailed representation of additional energy sectors. As
an example, Lund and Kempton (2008) simulate the interaction between different
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electric vehicle charging strategies and levels of wind expansion on the amount of
RES-based excess generation on national level. In general, the majority of optimiza-
tion problems for electricity markets and energy system is a linear or mixed integer
program. Nevertheless, non-linear formulations exist as well (e.g., when optimiz-
ing the number of power plants or including price elastic demand). An overview is
given for example in Fernández-Blanco Carramolino et al. (2017) or Möst and Keles
(2010). Further examples for smart grid applications are methods on the electricity
supply side like real-time RES generation (as in Bottaccioli et al. 2017) or real-time
pricing to balance electricity demand (as in Tao and Gao 2020). Furthermore, an
emerging research field and application for simulations models is the estimation of
time of arrival for vehicle-to-grid measures as in Luo et al. (2016). A combination
of optimization and simulation models is often applied to derive optimal scenarios
also for mid-term and long-term time horizons as well as to evaluate the efficiency
of these scenarios in simulations with higher temporal resolution on shorter time
scale. An example can be found in Rosen (2007), where optimization and simulation
approaches are used to capture both, long-term changes and variability of renewable
integration.

In a large-scale electricity market perspectives, the aspect of decentralization,
introduced in Sect. 1, is often assessed by comparing scenario frameworks includ-
ing technologies generally assessed as decentral, as for example photovoltaics (PV)
rooftop system and decentral heat pumps, with more central systems characterized
by a higher share of for example wind offshore farms and combined heat and power
(CHP) plants. These kinds of modeling approaches are described for example in
Zöphel et al. (2019) with a European system perspective. Furthermore, with large-
scale energy systemmodels selected decentral or central approaches can be analyzed.
On the one side, both simulation and optimization models are applied in the litera-
ture to evaluate possible system effects of scaling-up small-scale smart applications
and examine the large-scale impacts of an expansion of decentral smart technolo-
gies. While, as already mentioned, the application of optimization models tends to
assume the presence of smart grid technology, simulations often focus on the effi-
ciency of suitable algorithms and control strategies for the communications between
the components involved. In Bazan et al. (2015), a smart grid simulation includ-
ing an explicitly simulated controller for single houses is up-scaled and applied for
200,000 households to evaluate the influence of battery and PV size on the average
electricity costs in different system configurations. Similarly, in Schill et al. (2017)
an optimization model is used to analyze the interactions between different pro-
sumage strategies for PV-battery systems with varying levels of self-consumption
and optimal storage investments in Germany. Thereby, the optimal coverage of the
prosumer electricity demand is modeled as minimum restriction, while the realiza-
tion of the self-consumption is a result of the optimization. On the other side, rather
central smart grid applications address the optimization of grid operation, usage, and
infrastructure as well as integrating large-scale intermittent generation. As an exam-
ple, Hinz (2017) discusses the impact of decentralization and RES expansion in the
German electricity system on the provision of voltage stability and reactive power

http://dx.doi.org/10.1007/978-3-030-84286-4_1
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management in a combination of non-linear and a linearized techno-economic grid
models.

Within this range of model applications and system boundaries, the flexibilization
of the energy demand side in general (see for example inMüller andMöst (2018) and
Ladwig (2018)) and sector coupling in particular with corresponding ICT and the
resulting bi-directional power flows, as in Mathiesen et al. (2015), are in the focus
of smart grid model analyses.

4.2 Literature on Small- to Medium-Scale Models

Conejo et al. (2010) state that most existing literature assumes a “consumer suffi-
ciently large to participate in the electricity market to minimize its energy procure-
ment costs.” Due to the small and distributed nature of end consumers, individual
households are often considered in an aggregatedway. Nevertheless, this necessitates
the consideration of consumers’ or prosumers’ involvement and behavior as active
participants in energy systems and markets, coming along with smart grids and new
contractual agreements, such as real-time pricing, resulting in new decision-making
models. This brings forth new challenges as described in Sect. 1.

Optimization in smart grids froma consumer perspective often involves the formu-
lation of a cost minimization or utility maximization problem. The objective function
typically is the reduction of the end-users’ electricity payments. For this, residential
load control schemes are designed and deployed, deciding on energy consumption
in the household. Because of the manifold objectives of end consumers, optimiza-
tion tasks can deviate from purely technical and cost-minimizing perspectives and
involve factors regarding customers’ satisfaction and comfort. Further objectives can
include, for instance, a trade-off between electricity bill and waiting time for opera-
tion, as in Mohsenian-Rad and Leon-Garcia (2010) or similarly a trade-off between
costs and quality of services in Yu et al. (2013), with a minimization in consumer dis-
satisfaction, measured by temperature deviations. From a system perspective, more
technical objectives can be accounted for, such asArabali et al. (2012),who evaluate a
compromise between risk of failure to meet demand and generation cost for different
levels of wind and PV. Lastly, with growing shares of decentralized energy gener-
ation, individual consumers or energy communities can pursue targets for certain
levels of autarky or also complete self-sufficiency. As described in the introduction,
this presents new challenges and model objectives beside cost-minimizing consider-
ations.

While most load management approaches take on the grid’s perspective, with
smart grids, “bi-directional data flow and interoperability between homes and the
grid” (Kahrobaee et al. 2012) cause the possibility to optimize individual consump-
tion. Existing literature repeatedly indicates that these cost-reducing schemes on
an individual basis often simultaneously create benefits for utility companies and
the operation of the grid due to the reduction of peak-to-average load ratios, e.g.,
Mohsenian-Rad and Leon-Garcia (2010), Kahrobaee et al. (2012). Themaximization
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of individual utilities through cost-saving incentives, brought forth by pricing signals
and technical possibilities for flexible demand, usually also leads to overall welfare
benefits. This goes along with the grid infrastructure-related questions mentioned
in Sect. 1, which arise with a growing expansion of smart grids, namely adequate
transmission capacities to properly integrate consumers and steering their behavior
to be beneficial for the grid.

As mentioned before, demand has to become increasingly flexible with grow-
ing utilization of renewable energy sources. Thus, cost-reducing decisions not only
involve demand response, as e.g., modeled in Conejo et al. (2010), but additionally
the generation and storage of electricity. Kahrobaee et al. (2012) mention that mod-
els in earlier literature have not fully utilized smart home features, they mention the
oversimplification and overly restricted model in Pipattanasomporn et al. (2009), the
inability to generate power in Ramchurn et al. (2011) or the lack of demand response
in Vytelingum et al. (2010). When all possible consumer decisions are taken into
account in the modeling of smart grids and their separate entities, passive load curves
do not suffice due to the active participation of end-users or smart homes. Beside these
modeling aspects, questions emerge regarding the “proper” storage technologies to
balance renewable energy feed-in, which are characterized by technical considera-
tions, e.g., storage capacity and discharge time, and feasibility requirements.

Often, linear optimization is used, as in Conejo et al. (2010) and Mohsenian-Rad
andLeon-Garcia (2010).Yu et al. (2013) use amixed integermulti-time scale stochas-
tic optimization to model a home energy management that controls energy consump-
tion in response to dynamic pricing. Studies have increasingly used multiagent-
system-based approaches, e.g., Kahrobaee et al. (2012), in which smart homes are
agents in a smart grid environment that can consume, generate and store electricity,
making autonomous decisions to manage these components while interacting with
the grid. The objective is to minimize the cost of electricity. As pointed out in Sect. 1,
agent-based models will likely gain in importance. Kahrobaee et al. (2012) describe
that multiagent systems are advantageous due to their versatility and scalability. Fur-
thermore, they are able to model stochastic and dynamic interactions among agents,
i.e., end-users or homes, and between homes and the grid. With multiagent models,
transition periods in the simulation result in an equilibrium “as an emergent behavior
of the agents”.

The time resolution of smart grid models is often hourly (e.g., Mohsenian-Rad
and Leon-Garcia 2010; Gottwalt et al. 2016). Case studies range from covering
one day up to several months. The geographical scope is similarly diverse, ranging
from single households to an accumulation of hundreds or thousands of consumers.
This attests to the vastly different perspectives of smart grid modeling, ranging from
micro/household to macro/community perspectives.

One strand of literature considers single households or consumers, e.g., Conejo
et al. (2010),Mohsenian-Rad andLeon-Garcia (2010), Yu et al. (2013) andAdika and
Wang (2013). More comprehensive approaches consider numerous households with
different household devices, which directly respond to different load and renew-
able energy generation. Stadler et al. (2009), electric vehicles in Schuller et al.
(2015), heating/cooling systems in Hakimi and Moghaddas-Tafreshi (2014) or con-
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trol approaches for stationary batteries in van de Ven et al. (2013). Considering
numerous devices necessitates a categorization regarding the technical possibilities
for demand flexibility. For instance, Gottwalt et al. (2016) differentiate between
automatically controlled devices, such as refrigerators and storages for water heaters
as well as semi-automatic devices like dishwashers and washing machines, which
require previous user interactions.

When numerous households are considered, their participation can be modeled
as aggregators, e.g., Ottesen et al. (2016) and Iria et al. (2018). The aggregator can
control the prosumers’ flexible energy units. Ottesen et al. (2016) model a two-stage
stochastic mixed integer linear program with bidding decisions in the first stage and
scheduling in the second. The case study with a diverse portfolio of prosumers attests
to the heterogeneity of consumers and behavior. Iria et al. (2018)model an aggregator
of small prosumers in the energy and tertiary reservemarkets bymeans of a two-stage
scenario-based stochastic optimization model. It becomes evident that a multitude of
uncertainties have to be considered, such as renewable power generation, electricity
demand, outdoor temperature, end-users’ behavior, and preferences. Results include
that system flexibility increases with an aggregator (Ottesen et al. 2016) and the
reduction of bidding net costs under the consideration of flexible strategies (Iria
et al. 2018).

A further example for the modeling of aggregators includes Gottwalt et al. (2016),
who investigate the interactions between different shares of renewable energy and the
utilization of demand side flexibility. For this, the authors provide a comprehensive
centralized schedulingmodel tomake use of demandflexibility in a residentialmicro-
grid. An aggregator with full information dispatches controllable devices with the
objective of cost minimization, considering power system balances and device con-
straints. The problem is formulated as a mixed integer linear program. The analysis
derives cost reduction potentials of flexible loads and recommendations for elec-
tric utilities to structure their renewable portfolio. Recommendations include that
aggregators should incentivize customers to own the according appliances depend-
ing on the renewable mix. This attests to the importance of interactions between the
aggregated level and individual consumer behavior.

Besides the challenge of modeling smart grids and their participants, existing
studies also point out the lack of opportunities and incentives for small consumers
to participate in the market, e.g., Zepter et al. (2019). This suggests that beside the
consideration of technical constraints and cost-minimizing approaches, consumer
involvement poses another challenge. For instance,Mohsenian-Rad andLeon-Garcia
(2010) argue that the two major barriers for the full potential utilization of real-time
pricing are the lacking knowledge of consumers regarding the response to time-
varying prices and effective building automation systems.

Zepter et al. (2019) highlight that the challenge of integrating local markets into
thewholesalemarket has not been sufficiently addressed. They propose a framework,
the Smart elecTricity Exchange Platform (STEP), which involves the coordination of
operation of supply-demand decisions and provides an interface between wholesale
electricity markets and prosumer communities. Rather than considering aggregated
distributed energy generation, as is the case in most existing literature, Zepter et al.
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(2019) take into account the local distribution and peer-to-peer trading,which enables
households to balance out deviations from the community’s day-ahead market com-
mitment in the intradaymarket. This addresses the above-mentioned question regard-
ing the interlinkage of markets to contribute to the integration of renewable energy
sources. The authors state that approaches like their proposed one bear great cost
reduction potentials. The study attests to multitude of modeling aspects, which need
to be addressed to adequately map the different options that end-users can utilize in
(future) smart grids.

The modeling of smart grids on a small- to medium-scale encompasses a wide
array of approaches and perspectives. When individual households are considered,
pure cost-oriented objectives do not capture all facets of consumer behavior. While
demand response as well as the decentralized generation and storage of energy are
subject to technical constraints, consumers likely have expectations regarding their
comfort and convenience level. Aggregators can help to bundle, coordinate and mar-
ket the potential of communities. Utilizing the full potential of prosumers and smart
grids necessitates the technical implementation as well as the provision of informa-
tion to end consumers.

4.3 Literature on Bottom-Up Demand Side Models

With the crucial role of energy end-users in smart grid systems, energy demand
models are of high importance as forecasting energy demand and supply is essential
for ensuring a reliable and secure energy system. Furthermore, demand side models
allow analyses in the context of decarbonization, decentralization, and digitalization
(cf. Sect. 2).

In a system perspective, the annual energy demand is strongly related to energy
prices, the gross domestic product (GDP), and population growth (Suganthi and
Samuel 2012). The electricity demand is influenced by technological and socio-
economic drivers, such as economic growth, energy efficiency, urbanization, per
capita income, support schemes for renewable energy sources and other low-carbon
energy carriers, as well as by electrification and technological progress in electricity
generation technologies. To measure the impact of intermittent RES and to esti-
mate operational flexibility of the future power system, the need arises to model and
forecast electricity demand in high resolution (Adeoye and Spataru 2019). National
hourly electricity demand pursue a periodic and predictable daily pattern. Changes
in the pattern of electricity demand depend mainly on energy efficiency improve-
ments, de-industrialization, and the increasing electrification of the industry, heat,
and transport sector (Boßmann and Staffell 2015).

However, most recent studies forecast the future electricity demand by neglecting
the further development of the electricity consumption pattern. The studies assume
simplified that the hourly electricity load curve maintains its shape by scaling up
equally in all hours. Consequently, capacity requirements for flexibility options and
peak load technologies increase, and full load hours as well as the profitability of
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conventional base-load and mid-load power plants decrease (Boßmann and Staffell
2015). Hence, significant transformations of the electricity load curve can evolve
in future with the diffusion of new and the phase-out of existing technologies. The
changes can have substantial effects, which are crucial to integrate in the modeling
of smart grid systems. For instance, the need to cover greater residual load peaks
could arisewhich canbebalancedwith storages,DSMapplications, interconnections,
and peak load capacities or the need to flatten hours with negative residual load by
curtailing the excess of renewable energy sources (Boßmann and Staffell 2015).

Several studies have modeled and projected the hourly electricity demand and the
annual electricity demand by aggregating the individual sectors on country, regional,
and sector level. Typical sectors are the industrial, tertiary, residential, and transport
sector. Different methodologies to forecast electricity demand on annual or hourly
consumption exist. Suganthi and Samuel (2012) have conducted a literature review
that provides a comprehensive overview of energy demand forecasting techniques.

The following section focus on bottom-up energy demandmodels as thesemodels
are common for modeling smart grid energy systems. Bottom-up energy demand
models are characterized by their high degree of technological detail, which allows
to model several, and clearly defined technologies to assess future energy demand
and supply (Fleiter et al. 2011). As already mentioned, due to its technological
accuracy and explicitness, bottom-up models are applied to model effects of sector-
or technology-oriented policies (Gillingham et al. 2008).

Different mathematical formulations of bottom-up models have been developed
that can be categorized in partial equilibrium models, optimization models, simula-
tion models, and multiagent models (Herbst et al. 2012). The development of energy
end-uses and their respective energy efficiencies estimates the future energy demand.
Within all bottom-up energy demandmodels the demand forecasts are directly linked
with the technological structure of the energy system (Fleiter et al. 2011). In the fol-
lowing, bottom-up energy demand models are classified in annual energy demand
(Sect. 4.3.1) and in hourly electricity demand projection models (Sect. 4.3.2).

4.3.1 Bottom-Up Modeling of Annual Energy Demand

New challenges have to be faced by policymakers, therefore annual energy forecast-
ing models are applied to assess the potential impact of new policies and to support
the decision-making process (Worrell et al. 2004). In general, though optimization
and partial equilibrium models are applied as well, the majority of the approaches
are simulations. There exist various scopes for both, the geographical coverage rang-
ing from national to international level as well as to system boundaries. Regarding
the latter one, analyses can focus on a single sectors, like the industry sector, or on
multi-coupled sectors including different energy end-use sectors.

Bottom-up energy demand models are applied to support scenario designs and
analyses for the long-term evolution of energy demand and GHG emissions in differ-
ent sectoral and geographical scales. Annual energy demand models aim to integrate
policies and changes in the socio-economic framework including the consideration
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of a broad range of greenhouse gases (GHG) mitigation options with high degree of
technological detail. Usually the three sectors—industrial, tertiary, and residential
sector—are depicted by those models and characterized by different specific data
requirements, e.g., the production in the industry sector, number of employees in the
tertiary sector or number of households in the residential sector. Further input param-
eters are the main drivers as gross domestic product, populations growth, energy
prices by energy carrier, temperature (heating and cooling degree days), and busi-
ness cycles. Furthermore, price-based policies are considered as taxes, CO2 prices,
market-based instruments (e.g., the EU emissions trading scheme (ETS)), subsi-
dies as well as operational expenditures. Additionally, structural information as the
energy balance, CO2 balance, and the technology distribution as well as technology
parameters including behavioral assumptions are reflected (Herbst et al. 2017). The
outcome of annual energy demand models can be disaggregated in high resolution
from sectors (e.g., residential) and sub-sectors (e.g., industrial combined heat and
power (CHP)), as well as energy end-uses (e.g., space heating), technologies like
industrial CHP and energy carriers (e.g., natural gas). The diffusion of technologies
is the result of individual investment decisions over a specific time period to cover
the energy demand in different sectors. Therefore, the investment decisions are com-
monly modeled as discrete choice process, where companies and households have
miscellaneous technology choices to satisfy a specific energy demand (Herbst et al.
2017). This is typically implemented as logit approach considering the total cost
of ownership (TCO). Thus, the simulation algorithm considers market heterogeneity
and non-rational behavior that leads to price sensitive technology and energy demand
developments (Herbst et al. 2017).

In the recent past, especially due to decarbonization targets for all sectors, the
importance for building parkmodels has increased. Building parkmodels are bottom-
up demand side models that simulate the development of energy-related equipment
and the resulting energy demand in the building sector. For this purpose, building
technology, construction engineering, energy-specific, and economic parameters,
such as investments and life cycle costs as well as influencing factors as energy
end-user prices, interest rates, energy and emissions taxes as well as subsidies, are
considered. Building park models show future costs and technology developments
in the field of energy efficiency and for the use and provision of decentralized heat-
ing, cooling, and electricity (TEP 2020). Furthermore, demand side models for the
building sector are used to define energy and climate targets, for impact analyses and
evaluations of energy climate and policy measures (ex-ante and ex-post), strategic
and operational energy planning, urban planning, network expansion planning, and
evaluation of network renewal projects (electricity, gas, heating, cooling, etc.). Addi-
tionally, the models support the creation of emission and energy statistics, material
flow analyses as well as the management of building portfolios or the conduction
of market studies. Therefore, past and future changes in national, regional, urban or
municipal building parks are simulated over several decades to receive evaluation
indicators such as the electricity and energy demand for energy sources, maximum
load (electricity, heat), primary energy consumption, carbon and GHG or material
flows (new buildings, existing buildings, dismantling). Moreover, the building spe-
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cific modeling provides insights concerning the optimal choice of heating systems
for new buildings and renovations, or of repairing vs. energy-efficient renovation.
Furthermore, results as the efficiency level of renovations, devices, and building
technology components can be gained.

4.3.2 Bottom-Up Modeling of Hourly Electricity Demand

As stated before, most studies apply a simplified scaling approach of a historical
load curve corresponding to an annual demand forecast to assess the future load
curve. Within the scope of long-term energy system modeling more sophisticated
approaches are required as the diffusion of new technologies and the phase-out of
existing technologies may lead to significant changes within the pattern of the hourly
future load curve (Boßmann and Staffell 2015). The majority of the studies assess
load curve projections for single sectors or consumers (Voulis et al. 2017; Hayn et al.
2018; Lee et al. 2019). Other studies focus on regional load curve projections in a
specific country (Riva et al. 2019; Boßmann and Staffell 2015). Further literature
analyzes specific characteristics of the hourly future load curve as the hourly peak
electricity demand (Hainoun 2009) or the load duration curve (Poulin et al. 2008).

Most bottom-up models assess the hourly electricity demand in the residential
sector for an entire year. Hourly electricity load curves for households have been
modeled for the United States (Capasso et al. 1994), India (Riva et al. 2019), United
Kingdom (Richardson et al. 2010), and Finland (Paatero and Lund 2006) to name
few. These models integrate behavioral, social, technical, and economic data, as well
as weather data to model the electricity demand for representative households and
its consumers (Adeoye and Spataru 2019). Typically, these are simulation models
taking for instance the increasing diffusion of e-mobility and further decentralized
electricity generation appliances into account. Commonly, electricity load curves
for specific household appliances (e.g., heating technologies) or the electricity con-
sumption by electric vehicles in households are estimated. For instance, the hourly
load curve of e-mobility in the residential sector can be derived from the number
of battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV), the
electric driving share of plug-in hybrid electric vehicle (PHEV), the traveled kilome-
ters per year, the energy consumption of battery electric vehicle (BEV) and PHEV,
multiplied by the share of charged electricity (Elsland et al. 2013). The future res-
idential electricity demand is characterized by increasing volatility due to demand
shifts from night-time to day-time hours caused by a growing number of information
and communication technologies, while electro-mobility increases evening demand
peaks. Electricity generation by photovoltaic can compensate the additional demand
due to electric vehicles, if the decentralized electricity generation can encounter the
electricity demand of demand side management applications and storage systems.

In contrast to the modeling of the residential sector, there exist only few studies
and bottom-upmodels that focus on the hourly electric load forecasting for all sectors
(industry, tertiary, residential, and transport sector). For instance, Pina et al. (2011),
Hainoun (2009), or Boßmann and Staffell (2015) assess user specific load profiles
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of representative customers to composite the future load curve within the industry,
tertiary, and residential sector, based on empirical data. Therefore, the profiles are
scaled to the annual electricity demand forecast and aggregated to estimate the entire
hourly electricity load curve. Hourly electric load forecast models are applied to
assess the future pattern of the electricity system load curve at national level for the
long-term (e.g., until 2050) by considering all demand side sectors. In general, the
projection of hourly electricity load curves can be realized by the deformation of the
load curve due to structural changes on the demand side and due to the diffusion of
new appliances (e.g., e-mobility) by applying a partial decomposition approach (cf.
Boßmann and Staffell 2015). The annual electricity demand projection is an exoge-
nous model input and is necessary to identify significant electricity consumption
increases or decreases by relevant appliances over the long-term perspective (Zöphel
et al. 2019). Appliance specific load profiles from surveys, official databases, or sim-
ulation models are used, to generate load curves for all appliances, according to the
annual demand in the base year. Consequently, the specific appliance load curves
and the remaining load curve are scaled for all projection years with regard to the
electricity demand evolution. Further, the load curve can be adjusted by the flexible
dispatch of DSM applications. The DSM appliances’ load is based on day-ahead
price signals, and scheduled from hours with high prices to hours with low prices.
With this approach the least-cost dispatch of DSM appliances from a consumer per-
spective can be estimated in order to smooth the residual load (Boßmann and Staffell
2015).

Finally, forecasting hourly electricity load curves across different sectors is of cru-
cial importance for modeling smart grid systems, since the future electricity demand
will transform significantly as the diffusion of new and the phase-out of existing
technologies have a great impact on the daily electricity consumption pattern.

5 New and Other Modeling Trends

5.1 Forecasting: High Resolution of Weather Data and Time
Series

The combination of more decentralized power generation and more active consumer
behavior, which arises from the proliferation of prosumers, also contributes to new
challenges of forecasting tasks. In a smart energy systemwith high shares of weather-
dependent renewable energies, especially weather forecasts are gaining strongly in
significance. Da Silva et al. (2013) describe that the transition toward an information-
driven smart grid as well as local electricity markets depends on accurate forecasts of
its participants’ demand and generation. Predictions for renewable energy generation
at a higher geographical resolution will become increasingly important when plan-
ning and operating local energy systems and communities. The analysis by Schönheit
and Möst (2019) describes the different distributions of day-ahead prediction errors
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for wind speeds. The authors find that the error distributions differ across Germany,
which affects the uncertainty connected with local availability of wind energy. This
highlights the necessity of accurate prediction techniques on a small-scale level.

Sobri et al. (2018) and Das et al. (2018), which both provide overviews of photo-
voltaic power forecasting techniques, point out that PV is an often-used technology,
also for “stand-alone” or “off-grid” networks. This pertains to small grid-connected
consumers as well due to the integration of PV in the buildings of prosumers. Lorenz
et al. (2012) describe that on a local level, smart grid applications result in an increased
need for PV power forecasting. The authors propose an approach for regional PV
power, specifically focusing on snow detection. Das et al. (2018) describe that PV
capacities have grown substantially on the past year, but their effect on the grid
necessitates accurate forecasting techniques to maintain stability and reliability and
aid the modeling and planning of solar photovoltaic plants. To meet the complex
task of taking into account the weather dependency when predicting solar energy
generation, often neural network-based approaches are used, as in Rodriguez et al.
(2018). Shang and Wei (2018) deploy support vector forecast solar power output.

Additionally, with rising participation of consumers in the electricity markets,
electricity price predictions may also gain in importance at household level. In gen-
eral, electricity price predictions are already at high importance since liberalization.
Wang et al. (2019) describe that day-ahead electricity price forecasting is an impor-
tant element for decision-making of market participants. This includes consumers
in a market-oriented environment as stated by Zhang et al. (2019). Neural networks
are also applied for price predictions, e.g., in Kuo and Huang (2018) or Chow et al.
(2012). Wang et al. (2019) use a weighted voting mechanism to combine numerous
predictions and achieve better performance than with unified modeling. Forecasting
combination, i.e., taking the (weighted) average of multiple forecasts, is also used
by Ziel and Weron (2018).

Finally, forecasts are not only needed for generation and prices but also demand.
When demand is considered in models on the level of households or communities,
e.g., as opposed to high-voltage grid nodes, a higher geographical resolution is nec-
essary for forecastingmodels. Yu et al. (2015) state that energy resourcemanagement
in smart grids face the challenge of fluctuations, both on the demand and the supply
side. They deploy several machine learning-based approaches and neural networks
to forecast energy usage. Goude et al. (2013) state that innovative technologies, such
as smart grids, create challenges for electric load forecasting. They propose a semi-
parametric approach based on generalized additive models theory to predict electric
load at substations. Da Silva et al. (2013) tackle the challenge of forecasting indi-
vidual demand by the creation of groups. They also show that groups can act as a
single unit on the market and use the positive effects of aggregation on forecasting
accuracy.
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5.2 Open Source, Transparency, and New Software Tools

As a general shift toward open methods can be recognized in the energy system
modeling community, this development has also influenced research in the context
of smart grid modeling. Open methods generally refer to the disclosure of associated
source codes, datasets, and documentationwith appropriate licensing for reuse,modi-
fication, and republication of modeling works. Open modeling is often accompanied
by the development and maintenance of open power system data bases that share
modeling data among researchers. As summarized in Morrison (2018) main drivers
that can explain this shift in modeling paradigms include the desire for improved
public transparency, the need for scientific reproducibility and the believe that open
methods potentially improve academic productivity and quality.

While reproducibility of research results and general research performance
strongly relates to academia, a high degree of transparency is also of great importance
in real-world smart grid applications. With a strong involvement of energy end-users
or other stakeholders into energy management activities a clear communication of
energy utilization and market prices is necessary. This can be achieved by emerging
smart home technical devices or apps for energy visualization but also be driven
by legislating institutions. One example is the German smart metering legislation
which ensures the (gradual) introduction of smart metering concepts with manda-
tory installations of smart meters in new buildings or during major renovation works.
Smart metering not only enables the communication between end-users and energy
utilities. It can also create a stronger awareness of energy consumption in society
that potentially contributes to energy efficiency and carbon emission reduction.

6 Summary

Many different concepts are used to model smart grid systems and a high variety
of approaches exists. Although the focus of the introduced model categories (large-
scale, small-to-medium scale, and bottom-up demand side models) can overlap,
differences exist regarding the dimensions time horizon, scope, and model perspec-
tive. Large-scale energy system models are rather applied to long-term analysis of
challenges in terms of RES integration and flexibility provision. From a system
perspective, the role of the energy demand side becomes more relevant in energy
systems with higher shares of weather-dependent renewables. Besides the digital-
ization, allowing for an automated flexibilization of the energy demand, one of the
main drivers of this development is sector coupling. Thus, the new additional power
demands and their impacts, both on the yearly demand and on the hourly (or quarter-
hourly) demand profile, have to be considered. The increase in number of actors with
new technologies and the role of decentralization on the supply and demand side,
emerge the importance of modeling approaches on small-to-medium scale. Since the
interaction of prosumers and the respective optimization of individual or regionally
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aggregated energy supply and demand is located on a decentral level, a narrower
geographical scope as well as time horizon is more suitable for these models. While
the demand side hasn’t played that crucial role in former years in energy system
modeling approaches, today, a detailed bottom-up consideration is often required to
address the impact of new demand technologies and its control. The corresponding
disaggregation of demand (and supply) data in these demand side models enables
the assessment of potentials of flexible demand to integrate higher shares of RES in
a short- to long-term perspective.

Further key trends of smart grid modeling can be recognized due to the increasing
role of policy and society in participating in future energy systems. To analyze the
interplay of the different players, besides common modeling approaches, also new
modeling approaches such as bi-level programming, and agent-based simulation will
allow for more applications and thus contribute to the different research activities.
Thereby, transparency and traceability are getting further in importance. In conse-
quence, open source approaches will become standard. Additionally, the weather-
dependent character of renewables necessitates on the one side a high timely resolu-
tion (as already mentioned above), but on the other side it also requires a significant
improvement of forecasts. In consequence,weather forecastingwill increasingly gain
in importance. It has to bementioned that complexity inmodeling smart grid systems
will continue to increase, also because hard- and software will further develop and
allow for solving larger and even more complex models. Finally, when modeling
smart grids, the trade-off between model complexity and additional insights with
regard to the research question at hand must be considered.

Review Question
• What are the three main drivers which necessitate smart grid modeling?
• List five elements that are often considered in model-based representations
of smart grids.

• Name and explain the three dimensions of energy system model (ESM).
How are they commonly modeled in smart energy system models (ESMs)?

• Classify smart energy supply models (ESMs) by means of a visualization,
considering the three dimensions of ESMs, and distinguish them from “tra-
ditional” ESMs.

• Why is the importance of modeling demand increasing for smart grids?
• Why and how ismodeling of energy systems affected by uncertainties result-
ing from weather forecasts?

• Explain the idea of bi-level programming in the context of smart grid mod-
eling.
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