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Abstract. A weak pseudorandom function (WPRF) is a keyed function
fk : {0, 1}n → {0, 1} such that, for a random key k, a collection of
samples (x, fk(x)), for uniformly random inputs x, cannot be efficiently
distinguished from totally random input-output pairs (x, y). We study
WPRFs in AC0[MOD2], the class of functions computable by AC0 circuits
with parity gates, making the following contributions.

– WPRF by sparse polynomials. We propose the first WPRF can-
didate that can be computed by sparse multivariate polynomials over
F2. We prove that it has subexponential security against linear and
algebraic attacks.

– WPRF in AC0◦MOD2. We study the existence of WPRFs computed
by AC0 circuits over parity gates. We propose a modified version of a
previous WPRF candidate of Akavia et al. (ITCS 2014), and prove
that it resists the algebraic attacks that were used by Bogdanov and
Rosen (ECCC 2017) to break the original candidate in quasipolyno-
mial time. We give evidence against the possibility of using public
parity gates and relate this question to other conjectures.

– Between Lapland and Cryptomania. We show that WPRFs in
AC0[MOD2] imply a variant of the Learning Parity with Noise (LPN)
assumption. We further show that WPRFs in a subclass of AC0[MOD2]
that includes a recent candidate by Boyle et al. (FOCS 2020) imply,
under a seemingly weak additional conjecture, public-key encryption.

1 Introduction

This work explores the minimal achievable complexity ofweak pseudorandom func-
tions. Roughly speaking, a pseudorandom function (PRF) family [31] is a collec-
tion of efficiently computable functions fk(x), such that a random function from
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the collection induced by a uniform choice of the key k cannot be efficiently dis-
tinguished from a truly random function. The existence (or nonexistence) of PRFs
in low complexity classes is closely related to questions in computational learn-
ing theory [38,58]: Indeed, any complexity class rich enough to contain PRFs is
inherently unlearnable, even when membership queries are allowed. In this light,
understanding the feasibility of low-complexity PRFs corresponds to exploring
the border between the learnable and the unlearnable. More broadly, the study
of low-complexity PRFs has proven to be a rich and fruitful research direction,
motivated by many connections with circuit lower bounds [43,54,56], derandom-
ization [49,61], and “high-end” cryptographic applications [2,8,14,15,17,42].

We focus on the existence of weak pseudorandom functions (WPRFs) in
AC0[MOD2], the class of polynomial-size, constant-depth circuits over AND, OR,
XOR gates and negations.1

Informally, a WPRF relaxes a PRF by restricting the distinguisher to only get
input-output pairs for uniformly random inputs x, as opposed to chosen inputs
x. WPRFs imply hardness results for learning (without membership queries)
under the uniform distribution, and can serve as useful building blocks for most
“symmetric” cryptographic primitives, such as private-key encryption and mes-
sage authentication [46]. As a result, minimizing their complexity can lead to
improving the complexity of these primitives.

Levels of security. We say that a WPRF has quasipolynomial, subexponential,
or exponential security when the distinguisher’s circuit size is bounded by a
corresponding function of the key length. Concretely, there exists c > 0 such
that every circuit of size T = nlogc n, T = 2nc

, or T = 2cn (respectively) has at
most 1/T distinguishing advantage between fk and a random function, for all
sufficiently large key lengths n, given unlimited access to examples on uniformly
random inputs. In the case of quasipolynomial and subexponential security, we
can equivalently let n be the input length, since the key length and input length
are polynomially related. In this work we consider subexponential security by
default. This is typically the best level of security achieved by constructions from
standard cryptographic assumptions.

WPRFs in low complexity classes. We return to the question of WPRFs in
AC0[MOD2]. At the lower end, much is known about the power and limitations of
AC0. This includes unconditional circuit lower bounds (e.g. AC0 cannot compute
parity [28,32]), derandomization (e.g. AC0 cannot distinguish any polylog-wise
independent distribution from the uniform distribution [16]), and learning algo-
rithms (e.g. AC0 can be learned from quasipolynomially many samples under
the uniform distribution [41]). The latter imply, in particular, that AC0 can-
not contain a WPRF with better than quasipolynomial security. Slightly above

1 More precisely, AND/OR/XOR gates can have an unbounded fan-in, and depth
is defined to be the length of the longest path from an input to the output, not
counting negations. As is common in the study of constant-depth PRFs, we consider
the complexity of mapping the input to the output when the key is fixed.
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AC0[MOD2], the picture is also relatively clear: strong PRFs with subexponential
security exist in the class TC0 (of polynomial-size constant-depth circuits with
threshold gates) under standard cryptographic assumptions [9,47,48]. In con-
trast, despite some partial results [1,6,14,15,60], the space in between AC0 and
TC0 remains a relatively uncharted territory.
Sparse F2-polynomials. Sparse polynomials are a natural object of study in
several areas, including computational learning theory. We will be interested
in sparse n-variate polynomials over F2, namely sums of poly(n) monomials.
Sparse F2-polynomials can be viewed as the subclass of AC0[MOD2] corresponding
to depth-2 circuits that take the XOR of ANDs of inputs. A WPRF in this class
would show the hardness of learning sparse F2-polynomials under the uniform
distribution. We briefly survey some relevant known results.

A result of Hellerstein and Servedio [34] implies an 2Õ(
√

n)-time PAC learn-
ing algorithm (applying to any input distribution) for learning sparse F2-
polynomials. In the converse direction, a recent work of Daniely and Vardi [24]
shows that sparse F2-polynomials are hard to learn in better than quasipolyno-
mial time, albeit only under a specific non-uniform input distribution (a highly
biased Bernoulli distribution), under the conjectured existence of polynomial-
stretch local pseudorandom generators [4,30,35]. Finally, Boneh et al. [14] put
forward a WPRF candidate in ACC0 that implies 2Ω(n)-hardness of learning
sparse F3-polynomials, again under a special input distribution (uniform over
{−1, 1}n). To our knowledge, no result is currently known that supports the
hardness of learning sparse F2-polynomials in any hardness regime under the
uniform distribution, or in the subexponential hardness regime under any dis-
tribution.

The class AC0◦MOD2. The class AC0◦MOD2 of AC0 on top of parities can be seen
as a minimal extension of AC0. Despite its apparent simplicity, it is quite poorly
understood. In particular, it is open whether the mod-2 inner-product function
is in this class [56]. Akavia et al. [1] put forward the question of WPRFs in
AC0◦MOD2 as a second-best alternative to WPRFs in AC0. They presented a can-
didate construction where fk(x) applies a specific DNF formula (the “TRIBES”
function) to a secret linear mapping Ak · x of the input x, and proved resistance
against several classes of attacks. However, this candidate was later broken by
a quasipolynomial-time algebraic attack [13] exploiting the low rational degree
of functions fk in the family. Namely, there exists a low-degree g for which
fk · g = 0 or (fk ⊕1) · g = 0. This kind of attacks further rules out the possibility
of any WPRF with better than quasipolynomial security that can be computed
by depth-2 AC0 circuits over XOR.

1.1 Our Contribution

Candidate WPRF by sparse F2-polynomials. We present a candidate
WPRF in the class of sparse F2-polynomials that can be conjectured to have
subexponential security. More concretely, we conjecture our candidate to be
secure against distinguishers of size T = 2nε

for a constant ε ≥ 1/8, where
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n is the input size. To our knowledge, this is the first proposal for a candidate
WPRF in this class. We give several kinds of evidence for the security of our
candidate. First, building on previous works, we show that it has high ratio-
nal degree. This implies that it cannot be broken by a subexponential algebraic
attack (the same attack that breaks the candidate of [1] in quasipolynomial
time). Second, we reduce its security to a variable-density variant of the Learn-
ing Parity with Noise (LPN) [12] assumption. This assumption is similar to (but
essentially incomparable) to the variable-density LPN assumption used in the
recent work of Boyle et al. [15] to build a WPRF in the class of XNF formulas
(sparse F2-polynomials in the inputs and their negations). Finally, we prove that
it cannot be broken by any attack that fits into the framework of linear attacks,
a general framework that captures in particular all known attacks against the
LPN assumption and its variants. Our analysis builds upon the analysis of [15];
however, our setting involves additional challenges that require to significantly
refine their proof techniques.

Our candidate WPRF provides an explicit distribution D over sparse n-
variate F2-polynomials such that the following plausibly holds: no circuit of size
2n1/8

, given the values of a secret polynomial p ∈R D on uniformly random
inputs, can predict the value of p on a fresh random input with better than
2−n1/8

advantage.
As noted above, the recent work of Daniely and Vardi [24] shows hardness of

learning sparse F2-polynomials, assuming the existence of local pseudorandom
generators. Our results are incomparable (and complementary) to their result:

– The result of [24] only shows the hardness of learning sparse F2-polynomials
for inputs sampled from a very specific distribution D over strings {0, 1}n,
which outputs n independent samples from a highly biased Bernoulli distri-
bution. In contrast, our results hold with respect to the uniform distribution.

– The result of [24] fundamentally cannot apply to the subexponential regime.
The core reason is the following: from the existence of a learner for s-sparse
polynomials given N examples, [24] only derives a contradiction to the exis-
tence of (log s)-local PRGs which stretch N bits from their input. However,
it is known [44] that logarithmic-locality pseudorandom generators cannot
possibly achieve stretch beyond quasipolynomial. Therefore, their result does
not apply to the setting where s is polynomial and N is subexponential. In
contrast, our result applies even to subexponential-time learning algorithms,
in the setting where s is polynomial.

– On the other hand, the result of [24] relies on the existence of local PRGs,
which is a relatively well-established assumption. In contrast, our result relies
on a new variant of LPN, which we support by proving that it resists a large
class of attacks (including in particular all standard attacks against LPN).

Candidate weak PRF in AC0 ◦ MOD2. We revisit the question of Akavia
et al. [1]:

Can weak pseudorandom functions exist in the class AC0 ◦ MOD2?
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We present a new candidate WPRF in AC0 ◦ MOD2 which follows the high-level
template of Akavia et al. [1], but with an alternative choice of AC0 circuit struc-
ture. The WPRF candidate of Akavia et al. [1] (hereafter referred to as the
“ABGKR” candidate) is of the form

fs,K(x) = 〈x, s〉 ⊕ g(K · x mod 2)

for s ∈ {0, 1}n, K ∈ {0, 1}(n−1)×n, where g(x) =
∨λ

i=1

∧log λ
j=1 xij is a DNF (the

so-called TRIBES function). Since fs,K(x) can be written as (¬〈x, s〉∧g(K ·x))∨
(〈x, s〉 ∧ ¬g(K · x)), it indeed belongs to AC0 ◦ MOD2. Notice that this candidate
is an instance of the learning parity with simple deterministic noise framework,
where g(·) is the noise function. Since the noise function is biased, XORing it
with 〈x, s〉 makes the final function balanced.

Unfortunately, this candidate was broken in [13] by an algebraic attack. In
our candidate, we address this issue by simply adding a layer of OR gates after
the parity layer, replacing the noise function with:

g(x) =
λ∨

i=1

λ∧

j=1

w∨

k=1

xijk.

We conjecture that our candidate is a subexponentially secure WPRF. We
observe that our candidate resists the same classes of attacks as addressed for
the ABGKR candidate. However, we are further able to prove that our candidate
construction has high rational degree, thus circumventing the algebraic attacks
under which the ABGKR candidate was insecure.2

We also study the resistance of our candidate against linear attacks, a large
class of attacks that includes most state-of-the-art attacks on learning parity
problems (such as the learning parity with noise assumption), whose structure
bears connections to our candidate. We put forth a conjecture which, if true,
implies that our candidate (as well as the WPRF candidates of [1,14]) cannot
be broken by linear attacks.

We view our results as providing a strong indication that AC0◦MOD2 may not
be learnable under the uniform distribution. We compare our results to known
results regarding low-complexity PRFs on Table 1. As shown in the Table, our
work fills gaps in our understanding of the complexity of weak PRFs.

On WRPFs in AC0 on top of public parities. The conjectured security of
our candidate above relies on the MOD2 portion of the AC0◦MOD2 circuit remaining
secret, dictated by the secret WPRF key. We further revisit the question:

Can WPRF exist in the class formed by AC0atop public parities?

2 Formally, high rational degree does not prove resistance to the attack from [13],
which only requires proximity to low rational degree. However, we view this as strong
evidence that the attack does not apply to our candidate.
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Table 1. Comparison of positive and negative results for low-depth PRFs. We consider
the complexity of computing the output for any fixed key, where security level is with
respect to the key length (see Definition 4). We write AC0[MOD2] to denote the class AC0
with XOR gates at all levels, and ACC0 to denote the class AC0 with MODm gates for a
fixed integer m (m = 6 suffices). RLF refers to the conjectured one-wayness of random
local functions [30] and Factor to the intractability of factoring.

Circuit Class Reference Flavor Security Assumption

AC0 [12] Weak PRF Quasipolynomial Heuristic
[6,39] Weak PRF Quasipolynomial Factor, RLF
[41] No WPRF with better than quasipolynomial sec.

AC0 + O(1) XOR,MAJ [60] No Strong PRF

Sparse F2-polynomials This work Weak PRF Subexponential Heuristic
[34] No WPRF with input length n and better than 2Õ(

√
n) sec.

XNF formulas [15] Weak PRF Subexponential Heuristic

AC0 ◦ MOD2 [1,13] Weak PRF Quasipolynomial Heuristic
This work Weak PRF Subexponential Heuristic

AC0[MOD2] [39,47,60] Strong PRF Quasipolynomial DDH, Factor
[15] Weak PRF Subexponential Heuristic

[18,40,54] No strong PRF with better than quasipolynomial sec.

ACC0 [14] Weak & Strong Exponential Heuristic
almost-AC0[MOD2] [62] Strong PRF Subexponential Low-noise LPN
quasilinear-TC0 [43] Strong PRF Exponential Heuristic
TC0 [9,47,48] Strong PRF Subexponential LWE, DDH, Fact

That is, we study the (in)existence of WPRFs of the form fk(x) = gk(G·x), where
gk ∈ AC0 and G is a public matrix. The existence of such a candidate would imply
AC0 is not weakly learnable on all linear distributions (i.e. uniform distributions
over linear subspaces of F

n
2 ). Note, however, that it does not directly imply

strong learnability, as boosting techniques would require the learner to modify
the input distribution, an option that is not available for WPRFs.

We put forth a conjecture regarding the heavy Fourier coefficients of func-
tions of this form, which implies that no WPRF can exist in AC0 on top of
public parities. This is a direct strengthening of a conjecture of [1], which asserts
the existence of a heavy Fourier coefficient for any function in this class. We
conjecture further about the form of a heavy Fourier coefficient: namely, its
expressibility as GT · b for a low-weight vector b ∈ {0, 1}n. This conjectured
form implies that a heavy Fourier coefficient can be found within quasipolyno-
mial time, and leveraged to obtain nontritival advantage in distinguishing the
function from random.

We demonstrate that both pieces of evidence supporting the (more conser-
vative) conjecture of Akavia et al. [1] apply as well to our strengthened variant.
Namely, the conjecture provably holds for the case of:
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– Arbitrary gk ∈ AC0 and “typical” public matrices G, including random matri-
ces with high probability. More concretely, any G for which G · x for uniform
inputs x fools AC0.

– Arbitrary public G, and gk of polynomial size and depth 2 (i.e., CNF/DNF).

We observe that Akavia et al.’s proof for the former immediately applies to our
setting as well; namely, the heavy Fourier coefficient they demonstrate already
is of the desired form. The latter claim holds via a more subtle extension of the
argument of Jackson [36], beyond the treatment within [1].

Relation between conjectures. We map the relation between the various
conjectures posed within this work and beyond (depicted in Sect. 4.3, Fig. 1).

In particular, we draw a connection between our results and the linear IPPP
conjecture of Servedio and Viola [56]: we observe that the nonexistence of WPRF
in AC0 over public parities (which follows from our conjecture above), together
with the existence of a WPRF in AC0 ◦ MOD2 (for which we provide a candidate)
implies the Linear IPPP conjecture.

A related but technically incomparable observation was recently made in [27],
which proves under a standard cryptographic assumption (namely, the learn-
ing with rounding assumption [9]) that either (1) the known quasipolynomial
time learning algorithm for AC0 under the uniform distribution [41] cannot be
extended to all F2-linear distributions, even with subexponential time, or (2)
an IPPP-style hardness conjecture is true, in the sense that AC0 ◦ MOD2 cannot
compute inner-products over the integers (as opposed to inner product modulo
2). The paper also achieves related results under the assumption underlying the
WPRF candidate of [14]. Our result is incomparable: it relies on new assumptions
regarding the security of WPRF candidates in AC0 ◦ MOD2 instead of standard
cryptographic assumptions, but applies to the “true” Linear IPPP conjecture
instead of a variant over the integers.

Between Lapland and Cryptomania. Finally, we put forth the study of
a new family of LPN-style assumptions, called LPN with simple determinis-
tic noise. Roughly, these assumptions assert that one cannot distinguish pairs
(x, 〈x, s〉 ⊕ gk(x)) with random x from random pairs (x, y), where s is a secret
vector, and gk is a simple secret function sampled at random from a family.
By simple, we mean that gk should belong to a low complexity class (such as
AC0[MOD2]).

To our knowledge, this flavor of the learning parity with noise problem has
never been studied; it bears some resemblance but is incomparable to the learning
parity with structured noise framework of Arora and Ge [7], which consider noise
patterns which are not deterministic, but satisfy some structure (typically, being
roots of a low degree polynomial). This LPN with simple noise formulation
captures the candidate weak PRF of [1], our candidate weak PRF in AC0 ◦MOD2,
and a recent candidate WPRF from [14] that can be viewed as being based on
Learning with Rounding (LWR) [9] modulo 6. In the full version of this paper we
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formulate a list of simple combinatorial properties of the noise function that we
conjecture to be sufficient for the resulting candidate to defeat all linear attacks.

Further, we show that any candidate weak PRF in AC0[MOD2] implies the
existence of a hard instance of learning parity with simple noise. Weak PRFs in
AC0[MOD2] therefore necessarily live in “Lapland”, where there exist some codes
(and deterministic noise distributions) for which the learning parity with noise
assumption is hard. [1] describe a natural conjecture which implies that LPN
is necessary for WPRFs in AC0 ◦ MOD2. Our result strengthens this, since it is
unconditional and applies to the whole of AC0[MOD2]; on the other hand, we only
show hardness of a specific instance of learning parity with simple noise, rather
than standard LPN. It is an interesting open question to obtain a more natural
LPN implication from candidate weak PRFs in AC0[MOD2].

Our approach uses a result of Razborov and Smolensky [53,57], who show
that any AC0[MOD2] function can be approximated by a low-degree polynomial; we
show that the approximation noise itself can be used to define a learning parity
with noise instance that fits our framework. On the other hand, we observe that
the Razborov-Smolensky approximation could also be leveraged in a positive
sense, for improving efficiency when evaluating the PRF homomorphically on
ciphtertexts or as part of a secure computation. For more details we refer to [10].

Note that the seeming contradiction of the Razborov-Smolensky approxima-
tion being sufficiently noisy to avoid decoding attacks (as far as we know), but
precise enough to be useful for replacing the weak PRF by its approximation in
applications, can be explained by the different number of input-output pairs con-
sidered in both contexts. An attacker attempting to break the security requires
at least a quasipolynomial number of samples (because the low-degree multi-
variate polynomial potentially consists of a quasipolynomial number of terms),
thus noise will occur almost certainly, whereas in an honest setting, when only
computing a polynomial number of samples, likely the approximation will be
perfect on all samples considered.

Since Lapland only has partial overlap with Cryptomania (that is, presently
only LPN with low noise rate is known to imply public-key encryption with
more than quasi-polynomial security3), one can further ask where in the regime
between Lapland and Cryptomania weak PRFs in AC0[MOD2] fall.

We put forward a second framework for “variable-density learning parity with
noise (VDLPN) assumptions” into which the recent candidate weak PRF of [15]
(who coined the term variable-density learning parity with noise for a specific
instance of this broader framework) and our weak PRF candidate computed by
sparse polynomials fall into. We further observe that any weak PRF candidate
within this framework implies an instance of learning parity with simple deter-
ministic noise with noise rate below the bound of [3]. This still does not imply
public-key encryption, because the framework of [3] requires the code distribu-
tion to be dense, which is not the case for variable density learning parity with

3 More precisely, by a result of [3], random LPN implies public-key encryption if the
noise rate is in o(

√
M), where M is the length of the secret.
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noise. We still view this as an indication that weak PRFs within this framework
“morally” live in Cryptomania.

To formalize this intuition, we put forward a conjecture, stating that with
respect to some fixed noise rate, either all codes are efficiently decodable, or
almost all codes are hard to decode. This is backed-up by the common under-
standing that LPN is in fact hard for random codes when choosing reasonably
dense noise. Based on this conjecture we can indeed prove that candidate weak
PRFs within the VDLPN framework imply public-key encryption following the
strategy of [3]. We are not aware of any such implication for general functions
in AC0[MOD2] such as our candidate weak PRF in AC0 ◦ MOD2, even if willing to
assume this conjecture, because the flavor of learning parity with noise implied
by Razborov-Smolensky does not give low enough noise rate.

This is particularly interesting in light of recent developments on construct-
ing pseudorandom correlation functions [15], since candidate constructions of
expressive correlations so far all rely on either the VDLPN assumption [15],
factoring-based assumptions [51], or extremely low-noise LPN [23], which with
our result in mind, all imply public-key encryption.

2 Preliminaries

We start by recalling some basic properties of Boolean functions. We mostly
follow standard notations and terminology (see, e.g., [41,50]), except that we
identify parity functions with vectors in {0, 1}n instead of subsets S ⊆ {1, . . . , n}.

Boolean functions. A Boolean function is a function f : {0, 1}n → {0, 1}.
When considering the Fourier coefficients of a function f we will consider it as
a function f : {0, 1}n → {1,−1} by identifying an output b ∈ {0, 1} with (−1)b.

The set of all real-valued functions on the cube {0, 1}n is a 2n-dimensional real
vector space with an inner product defined by 〈g, f〉 = 2−n ·∑x∈{0,1}n f(x)·g(x).
The norm of f is defined as ‖f‖ =

√〈f, f〉.
Definition 1 (Characters). For y ∈ {0, 1}n, the character χy is defined as
χy(x) = (−1)〈x,y〉.

Note that {χy}y∈{0,1}n forms an orthonormal basis of the space of all real-valued
functions on {0, 1}n. Further, for all y, z ∈ {0, 1}n it holds that χyχz = χy⊕z.

Definition 2 (Fourier coefficients). As {χy}y∈{0,1}n forms a basis, we can
write every real-valued function f on the cube as f =

∑
y∈{0,1}n f̂(y) · χy, for

real-valued coefficients f̂(y), called Fourier coefficients.

Note that this is well-defined, as {χy} forms a basis for all functions f : {0, 1} →
R. Further, as {χy} forms a orthonormal basis, the Fourier coefficient corre-
sponding to y ∈ {0, 1}n can be computed as f̂(y) = 〈f, χy〉. For every Boolean
function f we have 1 = ‖f‖2 = 〈f, f〉 = ∑

y∈{0,1}n f̂(y)2.
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Definition 3 (Degree). The degree deg(f) of a Boolean function f is defined
as the maximal Hamming weight of a vector y ∈ {0, 1}n for which f̂(y) = 0.

It can be shown that the above notion of degree coincides with standard algebraic
degree.

Circuit classes. The class AC0 is the class of functions computed by a family of
constant-depth, polynomial-size circuits of over AND/OR gates of unbounded
fan-in along with negations. The class AC0◦MOD2 is defined similarly, except that
one also allows parity (XOR) gates only at the bottom. This can be viewed as
applying an AC0 function to an F2-linear encoding of the input. We define the
circuit depth to be the length of the longest path from an input to an output, not
counting negations. For instance, a DNF formula has depth 2. For AC0 ◦ MOD2
circuits we will consider by default only the depth of the AC0 part, namely
ignoring parities. See, e.g., [1,19,56] for known facts about AC0 and AC0 ◦ MOD2.

In the context of cryptographic primitives, we will consider AC0 or AC0◦MOD2
circuit families {Cλ}, parameterized by a security parameter λ, where the input
length n = n(λ) is assumed to be a monotonically-increasing, polynomially-
bounded function of λ. We assume by default that such a circuit family is
polynomial-time uniform, namely there is a polynomial-time algorithm whose
output on input 1λ is a description of Cλ; however, we drop the uniformity
requirement in the context of negative results.

2.1 Pseudorandom Functions

We consider here weak PRFs, which relax standard PRFs by only considering dis-
tinguishers that get the outputs of the function on uniformly random inputs. We
require subexponential security by default, namely security against distinguishers
of size 2nε

for some ε > 0. This is the typical level of security achieved by con-
structions based on the strongest plausible versions of standard cryptographic
assumptions. We formally define this notion below.

Definition 4 ((Weak) pseudorandom function [31,46]). Let λ ∈ N denote
a security parameter and n = n(λ), κ = κ(λ) be monotonically-increasing and
polynomially-bounded input length and key length functions, respectively.

A (weak) pseudorandom function is syntactically defined by a function family
F = {fλ : {0, 1}κ ×{0, 1}n → {0, 1}}, where the output fλ(k, x) can be computed
from (k, x) in polynomial time. Since λ and κ are determined by the input length
n, we will sometimes write fk(x) instead of fλ(k, x).

For T = T (κ) and ε = ε(κ), we say that F is a (T, ε)-secure strong pseudo-
random function (PRF), if for every λ ∈ N and every oracle circuit A of size
T (κ), it holds

Pr
k
[Afk(·) = 1] − Pr

R
[AR(·) = 1] ≤ ε(κ),

where κ = κ(λ), k
$← {0, 1}κ is chosen at random, and R : {0, 1}n → {0, 1} is a

truly random function. A T -secure PRF is a (T, 1/T )-secure PRF.
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We say that F is a (T, ε)-secure weak PRF (WPRF) or T -secure WPRF if the
above holds when A only gets access to samples (xi, fk(xi)), where xi

$← {0, 1}n

are chosen uniformly and independently. We say that F is a (Q,T, ε)-secure
(strong/ weak) PRF if A only gets access to at most Q (chosen/ random) sam-
ples. Finally, we say that a (W)PRF F has polynomial security if it is T -secure
for every polynomial T , and that it has subexponential (resp., quasipolynomial,
exponential) security if there exists c > 0 such that it is T -secure for T = 2κc

(resp., T = κlogc κ, T = 2κc).

Our choice of subexponential security as the default level of security is moti-
vated both from a cryptographic perspective and from an algorithmic perspec-
tive. From a cryptographic perspective, candidate PRFs with quasipolynomial
security are relatively easy to obtain even in very low complexity classes and
are considered “borderline insecure.” Subexponential (rather than exponential)
security is typically the best level of security one can get from standard assump-
tions. From an algorithmic perspective, quasipolynomial-time algorithms (such
as the LMN learning algorithm [41]) are considered “borderline efficient” and
hence ruling out such algorithms requires PRFs with better than quasipolyno-
mial security.

Finally, when referring to a (W)PRF F in a circuit complexity class such as
AC0 or AC0 ◦ MOD2, the default convention is that for each key sequence k(λ), the
induced function family fk is in the class. We note that even when considered as
a function of both the input and the key, our candidate constructions remain in
AC0[MOD2]. On the other hand, our negative results and conjectures are stronger
in that they apply to the fixed-key case and do not assume polynomial-time
uniformity.

2.2 Preliminaries on Probability

Given t distributions (D1, · · · ,Dt) over F
n
2 , we denote by

⊕
i≤t Di the distribu-

tion obtained by independently sampling vi
$← Di for i = 1 to t and outputting

v ← v1 ⊕ · · · ⊕ vt.

Definition 5 (Bias of a Distribution). Given a distribution D over F
n
2 and

a vector u ∈ F
n
2 , the bias of D with respect to u, denoted biasu(D), is equal to

biasu(D) =
∣
∣
∣ 12 − Pr

v
$←D [uᵀ · v = 1]

∣
∣
∣. Then, the bias of D, denoted bias(D), is

defined as bias(D) = maxu �=0n biasu(D).

2.3 Algebraic Attacks and Rational Degree

Algebraic attacks have been introduced in [52] and were extended and abstracted
in [20–22]. In its most basic form, an algebraic attack proceeds as follows: given
a function F : {0, 1}n �→ {0, 1}, it finds low degree multivariate polynomials
(g, h) such that F · g = h. If polynomials (g, h) of degree at most d are found,
then the function F can be inverted given nÕ(d) random samples (x, F (x)). The
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hardness of inverting a function with an algebraic attack is measured by its
rational degree:

Definition 6 (Rational Degree). The rational degree of a boolean function F
is defined as the following quantity:

RD(F ) = min
g �=0

{deg(g) | Fg = 0 ∨ (F ⊕ 1)g = 0}.

Observe that the smallest d such that there exist polynomials (g, h) of degree at
most d satisfying F · g = h necessarily satisfies d ≥ RD(F ).

3 WPRFs by Sparse Multivariate Polynomials

In this section, we put forth a new candidate WPRF in a very low subclass of
AC0[MOD2]: the class of sparse multivariate polynomials over F2. That is, the key
defines a sum of poly(n) monomials in the inputs x1, . . . , xn. We conjecture that
our candidate achieves subexponential security. To our knowledge, this is the
first proposal for a WPRF in this class with plausible subexponential security.

In more detail, our candidate is inspired by a WPRF candidate from [15],
which belongs to the class of XNF formulas, i.e., sparse polynomials in the inputs
and their negations. Multivariate polynomials are an important object of study
in learning theory. Our candidate WPRF provides an explicit distribution D over
sparse n-variate F2-polynomials such that the following plausibly holds: there is a
constant ε > 0 such that no 2nε

-time algorithm, given the values of a polynomial
p sampled from D on uniformly random inputs, can predict the value of p on a
fresh random input with better than 2−nε

advantage. In contrast, the candidate
of [15] only implies hardness of learning sparse polynomials under a somewhat
artificial input distribution: the distribution over vector pairs (x,y) where y is
the bitwise negation of x. To our knowledge, the only previous results in this
setting are limited to showing quasi-polynomial hardness of learning sparse F2-
polynomials under the uniform distribution [24]. Our candidate complements
the results of [34], which imply a 2Õ(

√
n)-time learning algorithms for sparse

F2-polynomials.
To support the conjectured subexponential security of our new candidate,

we first observe that known results imply that it cannot be broken by algebraic
attacks, as defined in Sect. 2. Furthermore, we show that its security can be
formulated as an LPN-style assumption, which closely resembles (but is techni-
cally incomparable to) the variable-density learning parity with noise assumption
of [15]. We provide support for the security of the candidate by proving that it
cannot be broken in subexponential time by any linear attack, a large class of
attacks which captures essentially all known attacks against LPN and its vari-
ants. Our analysis builds upon, but does not follow from, the analysis of [15]. In
the full version we elaborate on the specific challenges that arise when trying to
extend the analysis of [15] to our candidate.
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3.1 Our Candidate

Our candidate builds upon the candidate of [15], which was carefully crafted
as a XOR of variable-size terms (products of variables and negated variables),
where the purpose of terms of size i is to defeat all linear attacks that depend on
(approximately) 2i samples. In [15], the set of input variables in each term is fixed
in advance; the WPRF key simply tells, for each variable in each term, whether
to use the input or its negation. To confine our candidate to the subclass of sparse
F2-polynomials, we must refrain from using negations of inputs. This suggests
a very natural variant: instead of selecting between bits x and 1 − x, the key
is used to randomly select one out of b random bits x1 · · · xb for each variable
of each monomial. When b is large enough, since the fraction of zeroes and
ones in random b-bit strings is tightly concentrated around 1/2, this intuitively
provides security guarantees comparable to that of [15]. We formally introduce
the candidate below.

– Input domain: x ∈ {0, 1}n with n = w · D · (D − 1) · b/2. We view x as
a concatenation of D blocks (xi)i≤D, where block xi contains w sub-blocks
xi,1, · · · , xi,w, and each sub-block xi,j is composed of i b-bit strings (xi,j,�)�≤i.
Given a string xi,j,�, we write xi,j,�[k] to denote its k-th bit.

– Key domain: K = (Ki,j,�)i≤D,j≤w,�≤i ∈ [b]s with s = w · ∑D
i=1 i.

– Candidate:

FK(x) =
D⊕

i=1

w⊕

j=1

i∧

�=1

xi,j,�[Ki,j,�]

Security against algebraic attacks. The security of our candidate against
algebraic attacks [22] follows directly from a known bound on the rational degree
of triangular functions.

Lemma 7. For any K ∈ [b]s, an algebraic attack in the sense of [22] requires
(time and) number of samples lower bounded by nΩ(D) = 2Ω(D log(D+w+b)).

Lemma 7 follows readily from the fact that our candidate weak PRF has
high rational degree: for any K ∈ {0, 1}s, it holds that RD(FK) ≥ D. The proof
follows immediately from [42]: for any fixed choice of key K, FK is a direct sum
of w independent triangular functions of degree D, each evaluated on distinct
portions of the input, where (denoting D′ = D(D−1)/2) the triangular function
of degree D is the function TD(x1, · · · , xD′) = x1 ⊕x2x3 ⊕· · ·⊕∧D′

�=D′−D x�. By
Lemma 3 of [42], the rational degree of a direct sum of functions is at least the
largest rational degree of its components, and by Lemma 6 of [42], the rational
degree of TD is exactly D.

3.2 Variable-Density LPN Formulation

We now show that the security of our weak PRF candidate follows from a
VDLPN-style assumption, in the spirit of [15]. We note, however, that the con-
crete assumption is not directly comparable to that of [15]: while the corre-
sponding noise distributions are similar, the variable-density matrix distribution
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in our work is very different. In the following, for each (i, j) ∈ [D] × [w], it is
convenient to view Ki,j = (Ki,j,�)�≤i as a single integer from the set [bi], via the
natural embedding. Then, let u(Ki,j) denote the unit length-bi vector with a 1
at position Ki,j and 0’s elsewhere. We can rewrite FK as

FK(x) =
D⊕

i=1

w⊕

j=1

〈
i⊗

�=1

xi,j,� , u(Ki,j)

〉

=

〈

x1,1,�|| · · · ||
D⊗

�=1

xD,w,� , u(K1,1)|| · · · ||u(KD,w)

〉

= 〈h(x) , e(K)〉

where h : x → (x1,1,1|| · · · ||
⊗D

�=1 xD,w,�) and e : K → (u(K1,1)|| · · · ||u(KD,w)).
Now, given a bound N on the number of samples, we let H = H(D,w, b, N)

denote the distribution over matrices H in F
N×(w·∑D

i=1 bi)
2 whose N rows are

sampled as h(x) for independent samples x
$← {0, 1}n. Furthermore, we let

N = N (D,w, b) denote the distribution over vectors e in F
w·∑D

i=1 bi

2 induced
by sampling K

$← [b]s and outputting e(K). Clearly, breaking the security of
our candidate given N samples is equivalent to breaking the (H,N )-dualLPN
assumption. This variant of the dual LPN assumption is very close in spirit to
the regular VDLPN assumption from [15]: the noise distribution is the same up to
setting b = 2. The matrix distribution, on the other hand, is quite different, but
satisfies the same sparsity condition: the matrix H is divided into D submatrices
Hi, and the average sparsity of the rows of Hi is (w · (b/2)i)/(w · bi) = 1/2i.
The matrix distribution in [15] satisfies the same variable density structure,
which motivated the name “variable-density LPN”. Therefore, we view our new
candidate as belonging to the same family of LPN variants.

3.3 Security Against Linear Attacks

We turn to consider the class of linear attacks, which in the context of pseu-
dorandom generators captures the notion of small-bias generators [45]. Linear
attacks capture, intuitively, every attack where the distinguisher is restricted
to compute a linear function of the LPN samples, the identity of which can be
arbitrarily determined from the public LPN matrix and inputs. This captures
essentially all known attacks against standard variants of LPN, such as those
based on Gaussian elimination, statistical decoding, information set decoding,
and BKW-style attacks. The work of [15] provided support for their VDLPN
conjecture by proving subexponential security against such linear attacks.

In the context of a WPRF, a linear distinguisher is first given N random
inputs x1, . . . , xN , and then must choose a subset of indices S ⊂ {1, . . . , N} such
that the distribution

⊕
i∈S fk(xi), for a random choice of k, is biased towards 0 or

1. More formally, we use the following notion of an (ε, δ,N)-biased WPRF, which
naturally extends the standard notion of an ε-biased pseudorandom generator.
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Definition 8 ((ε, δ,N)x-biased weak PRF family, [15]). A function family
{FK : Fn(λ)

2 �→ F2}K∈F
s(λ)
2

is (ε, δ,N)-biased if for every large enough λ ∈ N,

letting Dλ,N (x) (for some x ∈ (Fn(λ)
2 )N ) biased with inputs of length samples

K
$← F

s(λ)
2 and outputs y = (FK(x(1)), · · · , FK(x(N))), it holds that

Pr
x(1),··· ,x(N(λ)) $←F

n(λ)
2

[bias(Dλ,N (x)) > ε(λ)] ≤ δ(λ).

Notation and theorem statement. We first introduce some notation. Recall
that a sample H from H is a concatenation of D matrices Hi, where each matrix
Hi is itself a concatenation of w submatrices Hi,j ∈ F

N×bi

2 whose rows are of the
form

⊗i
�=1 xi,j,�, where the (xi,j,�)�≤i are i uniformly random independent b-bit

strings. For any fixed matrix H in the support of H, we let Dout(H) denote the
distribution induced by sampling e ← N and outputting H · e.

Theorem 9 (Low bias). Fix a security parameter λ. There exist constants
0 < β, ν, μ < 1 such that for any parameters (D,w, b, N) satisfying w = poly(λ),
b = poly(λ), D2 ≤ β · w, D ≤

√
b

2λ + 1, and N ≤ 2D, letting H = H(D,w, b, N),
it holds that

Pr
H←H

[bias(Dout(H)) > μw] ≤ νD + νλ2
.

For example, using the choice of parameters (D,w, b, N) = (λ, λ2/β, 4λ4, 2λ),
our candidate is (2−Ω(λ2), 2−Ω(λ), 2λ)-biased with inputs of length O(λ8), and
keys of length Õ(λ4).

To facilitate comparison with the analysis of [15], we let H′ and N ′ denote
respectively the matrix and noise distributions for the VDLPN variant of [15],
where a sample H ← H′ can also be broken into D matrices Hi = Hi,1|| · · · ||Hi,w

where the Hi,j are independent matrices; we denote by H′
i the distribution over

Hi induced by H ← H′ for any i ≤ D.

High level overview. At a high level, the security analysis follows the same
approach as the analysis in [15] (which should come as no surprise due to the
similarities between the candidates); however, the analysis is significantly more
involved due to the more complex structure of the matrix distribution for our
candidate. Fix i ≤ D. The analysis of [15] proceeds roughly as follows.

1. Using a strong concentration bound (McDiarmid’s bounded difference
inequality), it shows that for any fixed attack vector v ∈ F

N
2 whose Hamming

weight is between 2i−1 and 2i, except with probability at most exp(−Ω(w·2i)),
a random matrix Hi ← H′

i satisfies HW(vᵀ·Hi,j)/ |vᵀ · Hi,j | ∈ [ε, 1−ε], where
ε is some constant (that is, vᵀ · Hi,j has a fraction of ones bounded by a con-
stant, and bounded away from 1 by a constant), for a fraction at least w/2
of the w submatrices Hi,j of Hj . Such a matrix Hi is called good with respect
to v.
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2. From a union bound over all vectors v of weight between 2i−1 and 2i, it
follows that, except with probability at most exp(−Ω((logN − w) · 2i)), a
random matrix Hi ← H′

i will be good with respect to all vectors v in this
weight range. When w is sufficiently larger than logN , this probability is
bounded by exp(−Ω(w)) for any i ≤ D.

3. By a union bound over all i ≤ D, with probability at least 1 − D ·
exp(−Ω(w)) = 1 − exp(−Ω(w)), a random matrix H ← H′ satisfies the
following: for every nonzero vector v, there is an i∗ ≤ D such that Hi∗ is
good with respect to v. Then, for any such matrix H, H · e for e ← N ′

is the vector obtained by sampling a uniformly random column from each
(Hi,j)i≤D,j≤w and XORing them all. Since Hi∗ is good with respect to v,
H · e will include at least w/2 terms sampled randomly and independently
from bitstrings v · Hi∗,j with a fraction of ones in [ε, 1 − ε]. It follows that,
with probability at least 1− exp(−Ω(w)) over the random choice of H ← H′,
the distribution of H · e for e ← N ′ has bias with respect to v at most
(1 − ε)w/2/2 = 2−Ω(w), for any possible nonzero vector v.

Looking ahead, our security analysis will follow the same three steps as above,
and the steps 2 and 3 will be the same as in [15]. However, while the first step
also consists in proving a similar bound, the actual analysis turns out to be much
more involved due to the different matrix structure. Due to space limitations,
the proof of Theorem 9 is deferred to the full version.

4 WPRFs in AC0 ◦ MOD2

In this section we present a candidate construction of a weak PRF in AC0 ◦ MOD2
(recall, unlike AC0[MOD2], here the parity gates must lie at the input layer of the
circuit). We follow the high-level template of Akavia et al. [1]. Their construction,
referred to as ABGKR, is of the form

fs,K(x) = 〈x, s〉 ⊕ g(K · x mod 2)

for s ∈ {0, 1}n, K ∈ {0, 1}(n−1)×n, where g(x) =
∨λ

i=1

∧log λ
j=1 xij is a DNF (the

so-called TRIBES function). Since fs,K(x) can be written as (¬〈x, s〉 ∧ g(K ·
x)) ∨ (〈x, s〉 ∧ ¬g(K · x)), it indeed belongs to AC0 ◦ MOD2.

The rationale behind the design of Akavia et al. is the following: even when
picking a very simple function g (in their case, a DNF), the function gK(x) =
g(K · x) can already not be distinguished from a random c-unbalanced function
(i.e. a random function f with Prx[f(x) = 1] = c for some constant c = 1/2)
for various natural attacks (e.g. correlations with small function families and
closeness to low-degree polynomial). Then, this function gk is XORed with 〈x, s〉
to make the final function balanced.

From unbalanced WPRFs to standard WPRFs. We observe that this
transformation does actually provably turn an unbalanced WPRF into a “stan-
dard” WPRF, under the LPN assumption. The proof of this observation is
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straightforward; for details we refer to the full version. In spite of its simplicity,
this observation had to our knowledge never been made.

We further note that there exists an alternative, unconditional transfor-
mation from a c-unbalanced WPRF in AC0 ◦ MOD2 into a standard WPRF in
AC0 ◦ MOD2 which relies on the Von Neumann randomness extractor: assume
w.l.o.g. that c < 1/2. Use (say) 2n parallel instances of the c-unbalanced WPRF
on independent inputs and keys, grouped into n pairs. Then, take the first pair
of distinct output bits (since c is a constant, there is one such pair with over-
whelming probability 1− 2−O(n)): if it is 01, define the output of the WPRF to
be 0; else, define it to be 1. It is relatively straightforward to prove that if gk is
a c-unbalanced WPRF, the resulting function is a WPRF. This process can be
executed in AC0, hence the resulting function is in AC0 ◦ MOD2.

Our approach. The above discussion justifies focusing on the task of building
unbalanced WPRFs in AC0◦MOD2, since the latter imply standard WPRFs in the
same class through simple transformations. The ABGKR candidate instantiates
this unbalanced WPRF with a DNF on top of parities; however, the attack
of [13] allows to distinguish any depth-2 AC0 circuit on top of parities from
unbalanced random functions, since any such function must have low rational
degree. Therefore, any unbalanced WPRF in AC0 ◦ MOD2 must have at least
three layers of AND/OR gates. With the goal of finding the simplest possible
modification of the ABGKR candidate which can retain subexponential security,
we ask:

Is there a subexponentially secure unbalanced WPRF computable by a
depth-3 AC0circuit on top of parities?

Our candidate. We put forth the following candidate unbalanced WPRF:
gk(x) = g(K · x), with

g(x) =
λ∨

i=1

λ∧

j=1

w∨

k=1

xijk, (1)

where λ is a security parameter (i.e., we will bound the complexity of various
attacks on our candidate as a function of λ) and m,w are chosen such that
w = �log λ−log log λ� and m = λ2w. That is, we simply add a single layer of ORs
after the parity layer, with parameters chosen to guarantee that Prx[g(x) = 1]
is constant. Note that choosing the fan-in of the gates more carefully, one can
actually obtain bias 1 = 2+ on(1). In this case the function g(x), which replaces
the TRIBES function in ABGKR, corresponds to the degree-3 Sipser function.
For more details, we refer to [33,55].

We conjecture that this candidate achieves subexponential security. Observe
that since the attack of [13] distinguishes any depth-2 AC0 circuit on top of
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parities from unbalanced random functions, our candidate actually enjoys opti-
mal depth.4

4.1 Provable Resistance to Algebraic Attacks

Algebraic attacks are a general class of cryptanalytic algorithms that aim to
either invert a function or distinguish it from random, by obtaining many samples
and using these to derive a system of linear equations over the secret inputs. This
class of attack was first developed by the applied cryptographic community and
used to break public-key encryption schemes and stream ciphers [20,22,52]. It
generalizes in particular the correlation attacks [37] that have been developed
for attacking LFSRs. Correlation attacks have been considered in the theory
community in the context of constructing local pseudorandom generators [44].

The resistance of a WPRF fk : {0, 1}n → {0, 1} to algebraic attacks can
be measured by its rational degree, that is, the smallest d for which there exist
non-zero polynomials p and q of algebraic degree at most d, such that

fk(x) · p(x) = q(x), ∀x ∈ {0, 1}n. (2)

Applebaum and Lovett [5] formally studied algebraic attacks of local functions,
and showed that if a predicate has large rational degree then it provably resists
a natural class of algebraic attacks.

On the other hand, if a WPRF candidate fk has low rational degree d, then
it can be distinguished from random via a simple algebraic attack, which obtains
O(nd) samples and tests whether (2) holds for each of them. This is exactly the
type of attack that Bogdanov and Rosen [13] observed breaks the candidate of
Akavia et al. [1] in quasipolynomial time, since it has rational degree O(log λ).

We, on the other hand, show that our candidate has rational degree λ. Even
though, formally, this does not rule out the attack of [13], which only requires
proximity to low rational degree, we view this as strong evidence that the attack
does not apply to our candidate.

To analyze the rational degree of our candidate, we first give a general method
for determining the exact rational degree of any function in AC0 that can be
expressed as alternating layers of AND and OR gates that each depend on dis-
joint subsets of the input. We then use this to compute the rational degree of
our noise function, and finally our candidate unbiased WPRF.

Towards understanding our techniques, we first briefly recall the attack of
Bogdanov and Rosen [13]. To that end, note that the rational degree can be
characterized as the minimal d such that there exists a polynomial p = 0 of
algebraic degree d such that f · p = 0 or (f ⊕ 1) · p = 0 (also referred to as the
algebraic immunity in the literature). The attack of Bogdanov and Rosen [13]
4 However, transforming our candidate into a standard WPRF, e.g. using the LPN-

based transformation, results in a candidate computed by a depth-4 AC0 circuit
on top of parities. It is an interesting question whether the optimal depth can be
achieved for standard WPRFs, i.e., whether there exists subexponentially-secure
standard WPRFs computable by depth-3 AC0 circuit on top of parities.
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builds on the observation that f =
∨

fi always has rational degree at most
mini deg fi, as fi(x) = 1 implies f(x) = 1 and thus (f ⊕ 1) · fi = 0. Therefore,
for any DNF either all inner conjunctions have high algebraic degree (and thus
the DNF is highly biased towards 0), or the function is susceptible to rational
degree attacks.

We observe that while a disjunction does not increase the rational degree
of a function, it does have an effect that can be leveraged. Namely, consider a
function p = 0 of minimal algebraic degree such that f · p = 0. We will prove
that if pi are the minimal annihilating functions for fi (and all functions depend
on disjoint parts of the input), p must have algebraic degree at least

∑
i pi.

Now, using that conjunctions behave in a dual way, alternating between
conjunctions and disjunctions allows to increase the rational degree while keeping
the function’s bias constant. In order to prove this, we introduce the notion of
primal and dual rational degree.

Definition 10 (Primal and dual rational degree). For f : {0, 1}n → {0, 1},
we define the primal rational degree ρ as the minimal ρ such that there exists
a polynomial p = 0 with algebraic degree ρ and f · p = 0. Further, we define
the dual rational degree ρ′ of f as the primal rational degree of its negation.
Namely, we define the dual rational degree as the minimal ρ′ such that there
exists a polynomial p = 0 with algebraic degree ρ′ and (f ⊕ 1) · p = 0. Note that
the rational degree of f is d = min(ρ, ρ′).

With the notion of primal and dual rational degree we can distill our main
observation in the following lemma, which we prove in the full version.

Lemma 11. Let f, h : {0, 1}n → {0, 1} be Boolean functions that depend on
disjoint parts of the input5, where f and h have primal rational degree ρf and
ρh and dual rational degree ρ′

f and ρ′
h, respectively. Then:

(i) The primal rational degree of f ∨ h is lower bounded by ρf + ρh.
(ii) The dual rational degree ρ′ of f ∨ h is lower bounded by min(ρ′

f , ρ′
h).

With this, it is straightforward to compute the exact rational degree of a
disjunction, where all terms depend on disjoint parts of the input. Similarly,
we can also apply this to compute the rational degree of a conjunction, since∧s

i=1 fi =
∨s

i=1(fi ⊕ 1) ⊕ 1.
Put together, and applied to our candidate, we obtain the following.

Lemma 12. Let m = m(λ) ∈ N, let g : {0, 1}m → {0, 1} be as in Eq. 1, let n =
m + 1, and let s ∈ {0, 1}n,K ∈ {0, 1}m×n be such that the map x �→ (〈x, s〉,K ·
x) mod 2 is invertible. Then, our candidate weak PRF fs,K : {0, 1}n → {0, 1}
defined via

f(x) �→ 〈x, s〉 + g(K · x mod 2)

has rational degree at least λ.

For further details and discussion, we refer the reader to the full version.
5 We say that f depends on the i-th index of the input, if xi appears with a non-zero

coefficient in some term in f .



506 E. Boyle et al.

Fig. 1. Relation between different assumptions/ conjectures. A → B means that A
implies B. By a linear distribution we mean the uniform distribution over a linear
subspace V ⊆ {0, 1}n, where dotted implications were already observed by [1].

4.2 On Resistance to Linear Attacks

We also consider the resistance of our candidate to linear attacks, as was done for
our other candidate in Sect. 3. While we have not been able to prove resistance of
linear attacks for this candidate, we formulate a combinatorial conjecture which
states, informally, that if the deterministic noise function is c-unbalanced for
some constant c and far from all low-degree polynomials, then no attack from
the linear attack framework can break the corresponding LPN with simple noise
assumption. If true, this conjecture would imply that our candidate, the ABGKR
candidate, as well as the “LWR mod 6” candidate from [14], cannot be broken
by any of the above attacks. We provide preliminary observations regarding the
plausibility of the conjecture; we view proving or disproving this conjecture as
an interesting open question. For more details we refer to the full version

4.3 On WPRFs in AC0 with Public Parities

In this work we give a candidate construction of a weak PRF in AC0 ◦ MOD2,
where the parities are secret. In particular, we conjecture that such a weak PRF
exists (this is in the following referred to as Conjecture I).
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We also consider the natural question of the existence of a simpler class of
WPRF of the form fk(x) = gk(G ·x), where G is a public matrix. Note that if G
is removed (or surjective) then fk could be learned by the algorithm of Linial,
Mansour and Nisan [41] for learning AC0 under the uniform distribution.

While Akavia et al. [1] conjectured that any function in AC0 ◦ MOD2 has a
large Fourier coefficient, we take this further by suggesting that, in the case of
a public matrix G, the heavy Fourier coefficient of fk stems from a low-order
coefficient of gk (in the following referred to as Conjecture II). This would imply
that the high-weight Fourier coefficient can be used to distinguish the function
from random in quasipolynomial time even given only access to random samples,
and therefore allows to conclude that there cannot exist a weak PRF in AC0 on
top of public parities (in the following referred to as Conjecture III).

We prove Conjecture II for the case when gk is a family of DNFs, by extending
the work of Jackson [36] to show that the coefficient is of the right form. The
idea of Jackson is that any DNF correlates with a parity of its term that is
“most likely” to be satisfied, which implies a heavy Fourier coefficient. We further
observe that this means the function is either biased, or the term can contain only
a few non-correlated variables. Since an AND clause is only satisfied for exactly
one setting of inputs, if there are too many independent terms in the DNF
then the function is biased. Otherwise, there are many dependencies between
the individual terms, which we show implies the heavy Fourier coefficient comes
from a vector of the form a = G�v for some low-weight v.

We further prove Conjecture II for arbitrary gk ∈ AC0 if the matrix G is
random (or, more generally, defines a polylog-wise independent map).

We present the formal Conjectures I, II and III as well as the proof of Con-
jecture II for the above mentioned special cases in the full version.

Linear IPPP and Relations Between Conjectures. Finally, in the full
version, we also elaborate on the relations between our conjectures, and pre-
vious conjectures in the literature including the “Linear IPPP” conjecture [56],
asserting that mod-2 inner product is not in AC0 ◦ MOD2. These connections are
illustrated in Fig. 1.

5 Between Lapland and Cryptomania

In this section we present two abstract frameworks. We first introduce the notion
of learning parity with simple deterministic noise, which captures our candidate
weak PRF in AC0 ◦ MOD2 from Sect. 4. Further, we show that every weak PRF
candidate in AC0[MOD2] implies some form of learning parity with simple deter-
ministic noise.

Next, we introduce an abstract framework that captures variable-density
learning parity with noise style assumptions such as the candidate weak PRF
of [15] and our candidate weak PRF from Sect. 3.

Further, if one believes that either no code is hard to decode or almost all
codes are hard to decode with respect to some noise level, then we show that each
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candidate that fits into the VDLPN framework lives in Cryptomania. We are not
aware of any similar implications for functions that can be cast as learning parity
with AC0[MOD2]-noise more generally.

5.1 Learning Parity with Simple Deterministic Noise

We observe that the Akavia et al. [1] candidate as well as our own candidate in
AC0 ◦ MOD2 can be cast as a form of new LPN-style assumption, that we refer to
as LPN with simple deterministic noise. This can be viewed as a generic method
to transform a biased weak PRF into a weak PRF. Formally, we define learning
parity with simple noise as follows.

Definition 13 (Learning parity with simple deterministic noise). Let
n = n(λ), κ = κ(λ) ∈ N and let G = {gk : {0, 1}n → {0, 1} | k ∈ {0, 1}κ} be
a family of keyed functions in a low-complexity class. We say a function family
F = {fs,k : {0, 1}n → {0, 1} | s ∈ {0, 1}n, k ∈ {0, 1}κ} is an instance of learning
parity with simple deterministic noise from G, if fs,k : {0, 1}n → {0, 1} is of the
form fs,k(x) = 〈x, s〉 ⊕ gk(x).

In this paper by simple we usually refer to noise functions in AC0[MOD2]. Note
that if G is in AC0[MOD2], then so is F . Further note that fs,k can be written as

fs,k(x) = (¬〈x, s〉 ∧ gk(x)) ∨ (〈x, s〉 ∧ ¬gk(x)).

This shows that for gk ∈ AC0 ◦ MOD2 we also have fs,k ∈ AC0 ◦ MOD2 (where we
consider the key as fixed). Note that this transformation from a biased weak
PRF gk to a weak PRF fs,k is not depth-preserving, however.

This framework can be extended to capture more general input distributions
as follows.

Definition 14 (Extension to general input distributions). Let n =
n(λ), κ = κ(λ),M = M(λ) ∈ N, let G = {gk : {0, 1}n → {0, 1} | k ∈ {0, 1}κ} be a
family of keyed functions in a low-complexity class, and let h : {0, 1}n → {0, 1}M

a function. We say that a function family F = {fs,k : {0, 1}n → {0, 1} | s ∈
{0, 1}M , k ∈ {0, 1}κ} is an instance of learning parity with simple determin-
istic noise from G with respect to the input distribution generated by h, if
fs,k : {0, 1}n → {0, 1} is of the form fs,k(x) = 〈h(x), s〉 ⊕ gk(x).

Of course not every class of noise functions gives rise to a candidate weak
PRF. In the full version we make progress on studying learning parity with simple
noise by presenting a combinatorial conjecture about properties that the family
of noise functions G has to satisfy (informally speaking, these are the properties
of being “balanced” and having “high-degree”), that we believe are sufficient in
order to resist all linear attacks. However, note that as the attack by Bogdanov
and Rosen [13] showed, satisfying these properties is still not sufficient to be
a weak PRF, because other classes of attacks such as algebraic attacks might
apply.
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5.2 Weak PRFs in AC0[MOD2] Live in Lapland

The results on circuit lower bounds by Razborov and Smolensky [53,57] show
that every function in AC0[MOD2] can be approximated by a polynomial of poly-
logarithmic degree. More formally, their result can be stated as follows.

Theorem 15 (Razborov-Smolensky [53,57]). Let n, d, S ∈ N. If
f : {0, 1}n → {0, 1} can be computed by depth-d, size-S circuit with MOD2 gates,
then for any integer ε > 0, there exists a polynomial p(x) ∈ F2[x1, . . . , xn] of
degree at most (log(S/ε))d such that Prx[f(x) = p(x)] ≤ ε.

The theorem implies that if there is a weak PRF in AC0[MOD2], then learning
parity with noise is hard, where the code is a “punctured” Reed-Muller code of
quasipolynomial dimension (i.e. the row corresponding to an input x consists of
the of all low-degree monomials evaluated on x), the secret corresponds to the
coefficient of the polynomial that approximates the weak PRF, and the noise
corresponds to the approximation error. In other words, the existence of a weak
PRF in AC0[MOD2] says that this kind of punctured Reed-Muller codes are hard
to decode for some nontrivial noise rate.

Corollary 16. Let n = n(λ), κ = κ(λ) ∈ N. If there exists a (Q,T, ε)-weak PRF
in AC0[MOD2], then there exists c, C ∈ N with c < C, a family of keyed functions
G = {gk : {0, 1}n → {0, 1} | k ∈ {0, 1}κ} and a function h : {0, 1}n → {0, 1}M

where M = 2log
C κ, such that the learning parity function fs,k = 〈h(x), s〉⊕gk(x)

with deterministic noise gk ∈ G respective to the input distribution generated by
h is a (Q,O(T ), ε)-weak PRF. Further, for the corresponding noise rate we have
that Prx,k[gk(x) = 1] ≤ 2− logc κ.

Note that the Razborov-Smolensky result does not make any guarantees as
to the distribution over the approximating low-degree polynomial for the func-
tions in the PRF family, corresponding to distribution over the secret s in the
LPN instance. However, the corresponding LPN instance reduces to the case of
average-case s. Namely, samples 〈x, s∗〉 ⊕ gk(s) for arbitrary s∗ can be gener-
ically converted to consistent samples for uniform secret s∗ + s′, by offsetting
each sample by 〈x, s′〉.

Note that having a superpolynomial secret in Corollary 16 only “scales down”
the LPN security when expressed as a function of the secret size, and in the
subexponential regime the resulting guarantee remains meaningful. More explic-
itly, the corollary can be understood as follows: If there exists a weak PRF
in AC0[MOD2] with subexponential security 2κδ

, then there exists an instance of
deterministic LPN that has secret length M = 2log

C κ and security in the order
of 2κδ

= 22
δ·log1/C M

. Thus, the existence of weak PRF candidates in AC0[MOD2]
with subexponential security implies what can be viewed as an instance of deter-
ministic LPN with “subsubexponential hardness” in the secret length (which lies
strictly between quasipolynomial and subexponential).

Consider a hardness of decoding interpretation of Corollary 16. Observe that
the noise rate ε implied by Razborov-Smolensky is above the minimal distance



510 E. Boyle et al.

of the corresponding (punctured) Reed-Muller code of low-degree multivariate
polynomials, therefore unique decoding will in general not be possible. That is,
we expect many low-degree multivariate polynomials p(x) to agree with a given
function fk in AC0[MOD2] up to this noise rate. Identifying any such p(x) con-
stitutes an attack on the pseudorandomness of fk, as it provides a low-error
prediction of fk evaluations. Note that the number of (punctured) Reed-Muller
codewords within this distance is bounded: in particular, for Q = 2κδ

, the proba-
bility that a random word in the space {0, 1}Q will be within Hamming distance
Δ = 2κδ−logc κ of a codeword will be negligible. Thus, we can conclude that the
existence of a weak PRF in AC0[MOD2] implies that the punctured Reed-Muller
code is hard to decode in some non-unique decoding regime. We formalize this
in the following corollary.

Corollary 17. Suppose for every c, C ∈ N with c ≤ C, there is an algorithm
A running in time 2no(1)

such that, given a generating matrix G of a punctured
RM code over F2 with parameters (logC n, n) and corrupted codeword y, A finds
a codeword which is within relative distance 2− logc n from y. Then there are no
WPRFs in AC0[MOD2].

While it is known that the decoding of some linear codes and even structured
codes such as Reed-Solomon codes for certain noise rates is NP-hard [11,29],
we are not aware of similar result for (punctured) Reed-Muller codes as the
one described above. Also, to our knowledge known results on NP-hardness of
computing and approximating the minimum distance of codes [25,59] do not
apply to our example. We leave it as an interesting open question to find a more
natural implication from weak PRFs in AC0[MOD2] to the hardness of decoding
linear codes.

5.3 A Framework for VDLPN Assumptions

In [15], a candidate weak PRF in AC0[MOD2] was given, with security based on a
specific variable-density learning parity with noise assumption. In the following
we give a framework of variable-density learning parity with noise that captures
the weak PRF candidate of [15] and also our candidate based on sparse poly-
nomials presented in Sect. 3 in AC0[MOD2]. Note that the VDLPN framework is
not restricted to functions in AC0[MOD2]. And, on the other hand, not all func-
tion families in AC0[MOD2] fall within this framework. Therefore, the conditional
public-key implication that we give in the following only applies to candidates
such as the one given in [15] and our candidate based on sparse polynomials,
but not our candidate weak PRF in AC0 ◦ MOD2.

Definition 18 (A framework for VDLPN). Let n = n(λ), N = N(λ), κ =
κ(λ) ∈ N. Let h : {0, 1}n → {0, 1}N and e : {0, 1}κ → {0, 1}N . We say that (h, e)
defines an instance of variable-density learning party with noise, if fk(x) :=
〈h(x), e(k)〉 is efficiently computable, and there exist ζi = ζi(λ), ηi = ηi(λ) ∈ [0, 1]
for all i ∈ [N ], such that
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1. for all i ∈ [N ] it holds: Prx[h(x)i = 1] = ζi and Prk[e(k)i = 1] = ηi,
2. for all i ∈ [N ] it holds: ζi ≥ ζi+1 and ηi ≥ ηi+1,

3. there exist polynomials p = p(λ), q = q(λ) ∈ N such that:
∑N

i=1 ζi ≤ p and
∑N

i=1 ηi ≤ q.

We say that the variable-density learning parity with noise (VDLPN) assumption
with respect to (h, e) is (Q,T, ε)-hard, if fk(x) := 〈h(x), e(k)〉 is a (Q,T, ε)-weak
PRF.

Note that – even though not directly falling into the framework of learning
parity with simple noise – VDLPN implies an instance thereof. To see this con-
sider a VDLPN tuple (h, e). Now, let h0 : {0, 1}n → {0, 1}n and h1 : {0, 1}n →
{0, 1}N−n such that h(x) = (h0(x), h1(x)) for all x ∈ {0, 1}n, and similarly let
e0 : {0, 1}κ → {0, 1}n, e1 : {0, 1}κ → {0, 1}N−n, such that e(k) = (e0(k), e1(k))
for all k ∈ {0, 1}κ. Let G = {gk : {0, 1}n → {0, 1} | k ∈ {0, 1}κ}, where
gk(x) = 〈h1(x), e1(k)〉, and let fs,k = 〈h0(x), s〉 ⊕ gk(x). Now, if VDLPN with
respect to (h, e) is hard, then so is learning parity with simple deterministic
noise G with respect to the input distribution generated by h0, due to the same
reduction of LPN with arbitrary secret s∗ to a uniform secret s′ mentioned in a
comment following Corollary 16.

5.4 Connections of VDLPN to Cryptomania

In the following we outline why VDLPN “morally” implies LPN with low noise
and therefore public-key encryption. We cannot show a direct PKE implication,
because the Alekhnovich construction [3] does not apply directly if the matrix
is also sparse, since the dual LPN assumption (i.e. the assumption that the pair
(H, v) for a matrix H that generates the dual code and v = H · e for a sparse
noise vector e is indistinguishable from (H, r) for a uniformly random vector r)
cannot hold true in this case, as v will be biased towards 0.

What we mean by “morally” is that the noise rate itself is sufficiently low
to imply PKE, and because typically LPN is considered to be hard on average
for random codes (if the noise is sufficiently dense). In order to formalize this
observation we formulate a conjecture stating that if there exists a code that
is hard to decode with respect to some noise rate (where the noise itself can
depend on the generator matrix of the code), then “almost all” codes are hard
to decode with respect to this noise rate. In order to deal with the fact that the
noise might depend on the matrix (and therefore replacing the matrix might in
fact trivially render LPN insecure), we simultaneously replace the noise by noise
that is Bernoulli distributed at the same rate.

Conjecture 19 (Random LPN is the hardest). Let n = n(λ), Q = Q(λ), κ =
κ(λ),M = M(λ) ∈ N, let G = {gk : {0, 1}n → {0, 1} | k ∈ {0, 1}κ} be a family
of keyed functions and let h : {0, 1}n → {0, 1}M such that learning parity with
simple noise G is (Q,T, ε)-hard for the input distribution generated by h. Then,
we conjecture that the standard LPN problem with noise with rate η is (Q,T, ε)-
hard. More precisely, we conjecture that if A

$← {0, 1}Q×M , s
$← {0, 1}M are both
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sampled uniformly at random, and a noise vector e is sampled according to the
Bernoulli distribution over {0, 1}Q with rate η ≥ Pr

x
$←D,k

$←{0,1}κ
[gk(x) = 1],

then there exists a constant c > 0 such that the distribution of (A,As + f) is
(T, ε + 2−λc

)-indistinguishable from the uniform distribution.

Note that relaxing the success probability of the adversary to ε + 2−λc

is
necessary, because there obviously exist some codes that are easy to distinguish
from random for any non-trivial noise rate (e.g. A chosen as the all zero matrix).

In order to further weaken the conjecture, allowing for the possibility that
there exist some codes that are significantly harder to decode than random codes,
one can require that the input the generated by h (i.e. obtained by sampling
x

$← {0, 1}n and outputting h(x)), have min-entropy at least polylog(λ). This
weaker conjecture is still sufficient to prove the PKE implication of VDLPN.

In the full version, we prove the following.

Lemma 20. Let n = n(λ), N = N(λ), κ = κ(λ) ∈ N, h : {0, 1}n → {0, 1}N and
e : {0, 1}κ → {0, 1}N . Let T = T (λ) ∈ N and Q = Q(λ) such that Q ∈ λω(1).
Then, if Conjecture 19 holds and VDLPN is (Q, 2λc

, 2−λc

)-hard for (h, e) for
some constant c > 0, then public-key encryption with quasipolynomial running
time and subexponential security exists.

Remark 21. Note that the noise rate implied by Razborov-Smolensky does not
suffice to construct public-key encryption via Alekhnovich [3] (even under the
“random LPN is the hardest” conjecture), because the noise rate implied by the
Razborov-Smolensky approximation is ω(1/

√
M). In addition, constructions of

PKE from LPN with constant noise, e.g., [63], have quasi-polynomial running
time and security. We are therefore not aware of any public-key implications for
general weak PRFs in AC0[MOD2].
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