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Preface

The 41st International Cryptology Conference (Crypto 2021), sponsored by the
International Association of Cryptologic Research (IACR), was held during August
16–20, 2021. Due to the ongoing COVID-19 pandemic, and for the second consecutive
year, Crypto was held as an online-only virtual conference, instead of at its usual venue
of the University of California, Santa Barbara. In addition, six affiliated workshop
events took place during the days immediately prior to the conference.

The Crypto conference continues its substantial growth pattern: this year’s offering
received a record-high 430 submissions for consideration, of which 103 (also a record)
were accepted to appear in the program. The two program chairs were not allowed to
submit a paper, and Program Committee (PC) members were limited to two submis-
sions each. Review and extensive discussion occurred from late February through
mid-May, in a double-blind, two-stage process that included an author rebuttal phase
(following the initial reviews) and extensive discussion by reviewers. We thank the
58-person PC and the 390 external reviewers for their efforts to ensure that, during the
continuing COVID-19 pandemic and unusual work and life circumstances, we nev-
ertheless were able to perform a high-quality review process.

The PC selected four papers to receive recognition via awards, along with invita-
tions to the Journal of Cryptology, via a voting-based process that took into account
conflicts of interest (the program chairs did not vote).

– The Best Paper Award went to “On the Possibility of Basing Cryptography on EXP
≠ BPP” by Yanyi Liu and Rafael Pass.

– The Best Paper by Early Career Researchers Award, along with an Honorable
Mention for Best Paper, went to “Linear Cryptanalysis of FF3-1 and FEA” by Tim
Beyne.

– Honorable Mentions for Best Paper also went to “Efficient Key Recovery for all
HFE Signature Variants” by Chengdong Tao, Albrecht Petzoldt, and Jintai Ding;
and “Three Halves Make a Whole? Beating the Half-Gates Lower Bound for
Garbled Circuits” by Mike Rosulek and Lawrence Roy.

In addition to the regular program, Crypto 2021 included two invited talks, by
Vanessa Teague on “Which e-voting problems do we need to solve?” and Jens Groth
on “A world of SNARKs.” The conference also carried forward the long-standing
tradition of having a rump session, organized in a virtual format.

The chairs would also like to thank the many other people whose hard work helped
ensure that Crypto 2021 was a success:

– Vladimir Kolesnikov (Georgia Institute of Technology)—Crypto 2021 general
chair.

– Daniele Micciancio (University of California, San Diego), Thomas Ristenpart
(Cornell Tech), Yevgeniy Dodis (New York University), and Thomas Shrimpton
(University of Florida)—Crypto 2021 Advisory Committee.



– Carmit Hazay (Bar Ilan University)—Crypto 2021 workshop chair.
– Bertram Poettering and Antigoni Polychroniadou—Crypto 2021 rump session

chairs.
– Kevin McCurley, for his critical assistance in setting up and managing the HotCRP

paper submission and review system, conference website, and other technology.
– Kevin McCurley, Kay McKelly, and members of the IACR’s emergency pandemic

team for their work in designing and running the virtual format.
– Anna Kramer and her colleagues at Springer.

July 2021 Tal Malkin
Chris Peikert
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Witness Authenticating NIZKs
and Applications

Hanwen Feng1 and Qiang Tang2(B)

1 Beihang University, Beijing, China
feng hanwen@buaa.edu.cn

2 The University of Sydney, Sydney, Australia
qiang.tang@sydney.edu.au

Abstract. We initiate the study of witness authenticating NIZK proof
systems (waNIZKs), in which one can use a witness w of a statement x
to identify whether a valid proof for x is indeed generated using w. Such
a new identification functionality enables more diverse applications, and
it also puts new requirements on soundness that: (1) no adversary can
generate a valid proof that will not be identified by any witness; (2) or
forge a proof using her valid witness to frame others. To work around
the obvious obstacle towards conventional zero-knowledgeness, we define
entropic zero-knowledgeness that requires the proof to leak no partial
information, if the witness has sufficient computational entropy.

We give a formal treatment of this new primitive. The modeling turns
out to be quite involved and multiple subtle points arise and particu-
lar cares are required. We present general constructions from standard
assumptions. We also demonstrate three applications in non-malleable
(perfectly one-way) hash, group signatures with verifier-local revocations
and plaintext-checkable public-key encryption. Our waNIZK provides a
new tool to advance the state of the art in all these applications.

1 Introduction

Non-interactive zero-knowledge (NIZK) proof systems [8,26] allow one to prove
a statement by sending a single message to a verifier without revealing anything
beyond the validity of the statement. NIZKs have been a ubiquitous tool in
modern cryptography and play an essential role in constructing many impor-
tant primitives such as chosen-ciphertext secure encryptions [35,38], anonymous
authentication tools such as group and ring signatures [20,21], and many more.

While privacy is essential, some interesting functionalities become unattain-
able when considering the strong privacy definition where all partial information
is protected. For example, doing a binary search for a plaintext in ciphertext is
elusive when using a semantically secure encryption. How to construct secure
schemes enabling certain functionalities, while maintaining the best possible pri-
vacy, is one of the central questions in modern cryptography and has been studied
in a large amount of works in different contexts [5,11,14,17,32].

Part of the work was done while both authors were at New Jersey Institute of Tech-
nology.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12828, pp. 3–33, 2021.
https://doi.org/10.1007/978-3-030-84259-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84259-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-84259-8_1
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In this paper, we turn our attention to NIZK proofs and consider to add
an “identification” functionality: a witness w of a statement x (which poten-
tially has many valid witnesses) in an NP language L can be used check
whether a valid proof π showing x ∈ L was generated by the witness w, i.e.,
Identify(x,w, π) ?= 1. It means that each witness w is “committed” to the proof
π generated using w. Other than that, the proof will remain “zero-knowledge”.
Such an exclusive checking capability immediately enables many interesting
applications. For instance, one could easily realize a private/covert communi-
cation channel between administrators of an anonymous token system [31] as
follows: administrators may consider using shared two witnesses w1, w2 to indi-
cate whether a valid “anonymous certificate” falls into a certain blacklist (or
whitelist) by using w1; in this way, only the administrators obtain this extra
information which remains hidden to everyone else in the system. As pointed
out in the recent work of [31], such a tool is important to enable CDN providers
to distinguish potentially malicious requests without breaching anonymity.

Adding this simple identification functionality also naturally posts new
requirements on soundness: (1) if an attacker who knows a set of witnesses of a
statement x generates a proof π for x, this proof must be identified by one of
these witnesses; and (2) if a witness w is not known to an attacker (who may
have other witnesses), any of the proofs generated by the attacker will not be
identified by w, i.e., Identify(x,w, π) = 0.

We put forth a new notion called witness-authenticating NIZKs to capture all
those requirements. Essentially, we add a way of distinguishing between different
witnesses in NIZKs. As we will demonstrate soon in the applications, our new
notion provides a new tool to advance the state of the art in multiple different
domains: non-malleable (perfectly one-way) hash, group signature with verifier-
local revocation, and plaintext-checkable public-key encryption.

1.1 Our Contributions

We overview our contributions in more detail below.

Definitional contributions. Adding a single identification functionality and
defining the witness-authenticating NIZK proof system turn out to be highly
involved; we have to revisit essentially every single property of the conventional
NIZK proof system, and multiple subtleties exist.

Syntax and identifier witness. The basic idea is to augment a non-interactive
proof system with an Identify(·) algorithm to check whether the witness he is
possessing was used to generate the proof. However, often in practice, only a part
of the witness (such as a secret key) is bound to a user; while other parts, such as
random coins, may not be always available. To avoid unnecessary restrictions on
the application, we introduce a generalization that we only require the Identify
algorithm to take into a part of the witness. A bit more formally, we introduce
a notion called identifier witness, which splits each witness w into an identifier
witness wI and a non-identifier witness wNI . Using an identifier witness wI of
x, one can check whether a proof for x was generated using a witness in the
form of (wI , �). If Identify(x, π, wI) = 1, we say π is authenticated by wI . When
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privacy is not considered in the context, we call such a proof system a witness-
authenticating non-interactive proof system (waNIPS).

Entropic zero-knowledgeness. As a witness-authenticating proof has to convey at
least a bit about the identifier witness that makes the identification functionality
possible, the conventional zero-knowledgeness that hides all partial information
of witness becomes out of reach. Therefore, we study the best possible privacy
definition that we call the entropic zero-knowledgeness (entropic ZK), and call
a waNIPS with this property a waNIZK.

– Defining unpredictable sampler. Similar to that semantic security is impossible
for deterministic encryption, if an identifier witness can be guessed easily
by the adversary, the Identify algorithm enables the adversary to trivially
distinguish a real proof from a simulated proof. It follows that the privacy
definition should be defined for languages with “unpredictable” (identifier)
witnesses. To model that, we introduce an unpredictable sampler G which
ensures that for a random sample (x,wI , wNI) ← G(1λ), given x, finding the
associated identifier witness wI is hard.
Several subtle issues appear. (1) In applications, if the whole statement is
generated by the sampler, it may cause a trivial impossibility; for example, if
a waNIZK is applied in a larger system, which requires an honestly generated
public parameter pp (and the witness could be leaked completely if pp is mali-
cious). We handle it by introducing a parameter generation algorithm that is
not under the control of the adversary or sampler G. (2) In an adaptive set-
ting, the sampler G could be generated by the attacker after seeing the CRS.
But now, the sampled statement could simply contain one proof for which the
corresponding witness is never output. This will enable a malicious prover to
generate a proof without using any witness, which clearly violates the knowl-
edge soundness. We get around this by requiring the unpredictability of the
identifier witness to hold for every CRS value (instead of a randomly chosen
one). Please see Sect. 2.1 for details.

– Defining entropic ZK. We define the entropic ZK, somewhat analogous to
entropic security in encryptions [5], by capturing that adversaries still cannot
learn anything more about wI from π if wI is sampled from the unpredictable
sampler G (specified by the adversary). In conventional ZK, the whole wit-
ness is provided by the adversary; now adversary provides only a sampler.
Directly integrating the unpredictable sampler to the conventional adaptive
zero-knowledge definition would restrict adversary from learning side informa-
tion about the witness via other or directly related proofs. We define another
proof oracle to enable an adversary to obtain proofs on related statements.
See Sect. 2.2 for details.

Soundness definitions. As very briefly mentioned above, soundness definitions
also require a major upgrade because of the new identification functionality.
Besides the conventional (knowledge) soundness, we require two new properties
to show that the identifier witness to be “committed” to the proof, in the sense
that 1) a proof must be identifiable by one of the identifier witnesses used in
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the proof generation; 2) a malicious prover cannot “forge” a proof that will be
identified by some identifier witness she does not know. Concretely,

– For the former property, we formalize it by augmenting the knowledge sound-
ness (named authenticating knowledge soundness), saying that a witness
extracted by a knowledge extractor from a valid proof not only validates
the statement being proven, but also authenticates the proof.

– The latter property, which we call unforgeability, also relies on the unpre-
dictable sampler; it is analogous to “unforgeability” in MAC. Namely, for a
target witness generated from the unpredictable sampler, the adversary who
can obtain multiple proofs generated from it still cannot produce a new proof
that will be authenticated by this identifier witness.
Note that unforgeability defends against a malicious prover trying to “frame”
a witness. In some applications, a malicious prover may generate a proof that
links to a string which is not even a witness. We thus also introduce a notion
called identifier uniqueness, which ensures that it is infeasible to generate a
valid proof that could be authenticated by two different strings.

We remark that unforgeability and identifier uniqueness are incomparable: an
attacker that cannot forge a proof being authenticated by an unknown witness
may be able to produce one being authenticated by two witnesses he possesses; on
the other hand, for technical reasons in the definitions, the identifier uniqueness
is not strictly stronger either. But each could be useful in various applications
when working together with other properties from the context.

There are several versions of weakening, e.g., in the CRS-independent setting;
and strengthening. We refer detailed discussion in Sect. 2.3.1

Constructions of witness-authenticating NIZK proofs. With the defini-
tions and models settled, we are now ready to discuss the constructions.

Basic ideas. A natural idea of our waNIZK construction is to attach an authen-
tication tag to the NIZK proof, and augment it with a proof of the validity of
the tag. Verification could be easy, while security posts several challenges. Since
we want to remain “zero-knowledge” when the witness is unpredictable, the tag
should not leak any other partial information. I.e., it should be “simulatable”,
even if the same witness is used to generate multiple proofs; further dealing with
“unforgeability” incur extra difficulties in following different cases.

Warm-up constructions. Let us start with a special case where the identifier
witness is uniform (or pseudorandom). For example, in group/ring signatures,
the identifier witness is each user’s secret key. We notice that simulatability can

1 We note that in the group signature of [2], a related notion called testable weak zero-
knowledge (TwZK) was introduced as an attempt to add identification functionality.
However, TwZK was only against uniform adversaries. Thus it can only be applied to
more restricted languages (where the restrictions were informally described) and was
impossible for non-uniform adversaries. Besides, soundness definition and provable
constructions were not discussed.
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be realized by pseudorandomness, and we could simply use the witness as the
key to generate the tag using a PRF. Namely,

TagPRF(w
I) = (t,PRF(wI , t)), for a random t.

The “simulatability” and unforgeability of this tag simply follow the pseudoran-
domness, which in turn ensures the entropic zero-knowledgeness and unforge-
ability (the underlying NIZK should satisfy certain “non-malleability” to pre-
vent from modifying a valid proof). If the identifier uniqueness is in need, we
can further require the collision-resistance of the PRF [19]. We remark that this
solution that enables very efficient instantiations, could already be useful.

A more general solution needs to deal with a general unpredictable sampler.
We may apply a strong extractor [29] to the identifier witness to pump out
a uniform key, then apply PRF to generate the tag. Some subtle issues arise
immediately: (1) the same witness as a source may be used to generate multiple
proofs (choosing different seeds). Thus, the extractor has to be re-usable thus
requiring much more entropy (or the outer layer PRF needs to be related-key
secure, which is only known for special relations); (2) a malicious prover might
choose a “bad” seed to break the unforgeability, as the security of randomness
extractor requires a uniform and independent seed. We resolve it by simply
leveraging the common reference string, namely, using a part of CRS as the
fixed seed. However, as a consequence, this technique can only be applied to the
setting that the statements are from a CRS-independent sampler.

Full-fledged solution for CRS-dependent samplers. In many applications (e.g., in
all three applications we will show), the unpredictable sampler may be gener-
ated after the adversary sees the CRS; thus, it depends on the CRS. But the
construction now cannot simply obtain a string (e.g., the seed) from the CRS.
Instead, we need to somehow “force” the honest behavior.

Let us examine the two soundness issues above: it is not clear how to force
the same random seed to be used for every prover (if we do not want to get into
the difficulty of reusable extractor or related-key secure PRF); moreover, proving
a seed is generated uniformly already seems elusive. These obstacles motivate us
to deviate from the Extract-then-PRF path. We first note that there are alterna-
tives for “simulatability”. Also, to ensure the honest generation of randomness
(such as seed) used in generating the tag, we may explore a parameter with
structure or certain functionality so that we can prove and further bind the wit-
ness to the tag. Since we still need the identification function, those observations
together lead us to the choice of deterministic public-key encryption (DPKE).

More precisely, let DEnc be the encryption algorithm of a DPKE scheme. We
first generate a fresh public key pk, encrypt wI to c under pk, and set (pk, c)
as the tag. One can easily check whether w′ is the encrypted message (identify
here) w.r.t c by checking DEnc(pk,w′) ?= c.

Now for entropic ZK, we note that the DPKE can provide simulation secu-
rity if the message is unpredictable. More importantly, this needs to hold even
facing multiple proofs on potentially related statements. Viewing the statements
as auxiliary input on the identifier witness, we can obtain those from DPKE
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with multi-user security with auxiliary inputs, which can be based on d-linear
assumption [13]. Next, for soundness, and particularly unforgeability, we first
need to ensure the well-formedness of pk. We can leverage the correctness of
encryption and just prove a well-formedness of the ciphertext. Furthermore,
“unforgeability” can be obtained by using a simulation-extractable NIZK proof.

We remark that our construction offers a framework that can have a hierarchy
of instantiations. If we want the resulting waNIZK systems to have stronger (or
weaker) property, we can instantiate the underlying NIZK correspondingly. For
details, we refer to Sect. 3.2.

Applications. Our new abstraction of waNIZK can provide a tool for many
interesting applications. Here we will showcase three non-trivial applications in
hash functions, anonymous authentication revocation, and encryption in more
detail. Each of them advances the state of the art in the corresponding topic. We
believe there are many more applications which we leave for future exploration.

Non-malleable (perfectly one-way) hash from standard assumptions. Many
works have been around trying to realize partial properties of random oracles,
ideally, via standard assumptions. Perfectly one-way hash and non-malleable
hash are two important primitives for this purpose, in settings that include
Bellare-Rogaway encryption scheme [6], HMAC [27], and OAEP [10].

Perfectly one-way hash requires its (randomized) evaluation algorithm to
hide all partial information of the pre-image, even with some auxiliary inputs,
while providing a verification algorithm to check the correctness of evaluation.
Non-malleable hash requires that one cannot “maul” a hash value into a related
one even with some auxiliary information about the pre-image. Both of them
also require collision resistance. Currently, perfectly one-way hash w.r.t general
auxiliary inputs is only known to exist under a not-efficiently-falsifiable assump-
tion [18], which contradicts the existence of iO [16]; while non-malleable hash
are either from perfectly one-way hash [9] or in the random oracle model [3].
Given the recent progress [30] on iO, the mere existence of non-malleable hash
or perfectly one way hash (with general auxiliary inputs) is still open.

We confirm the feasibility by presenting a new framework for non-malleable
(perfectly one-way) hash functions from waNIZKs that can be based on the
standard assumptions like the d-linear assumption. The starting point is to view
the hash as a commitment that allows others to verify the committed value:
it computationally determines an input and hides all partial information. This
view inspires us to obtain a non-malleable (and perfectly one-way) hash by
adding a proof of well-formedness of the commitment via waNIZKs where the
input is set as the identifier witness. Perfect one-wayness comes from entropic
ZK, collision resistance from identifier uniqueness, while non-malleability comes
from (related-witness) unforgeability. For details, we refer to Sect. 4.1.

Auxiliary-input group signatures with verifier-local revocation. Group signatures
[21] allow a user to sign a message on behalf of a group while hiding the signer’s
identity. A major issue is the revocation of users whose membership should
be cancelled without influencing others. In group signatures with verifier-local
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revocation (VLR) [12], the signing procedure and the group public key will be
independent of the revocation list, making this primitive appealing for systems
providing attestation capabilities. Indeed, some instantiations of VLR group
signatures such as the direct anonymous attestation scheme [14] have been already
widely deployed in trusted platform modules (TPM) including Intel’s SGX.

Many works have shown these TPMs are vulnerable to “side channel” attacks
by which attackers could learn partial information about the secret key. One app-
roach to mitigate the threat is to employ leakage-resilient cryptograohic schemes.
However, existing VLR group signature schemes [11,12,14,15,32] do not provide
any security guarantee when auxiliary information about secret key is leaked.
We therefore study the problem of constructing leakage-resilient VLR group sig-
nature scheme, particularly, in the auxiliary-input model, the strongest model
capturing one-time memory leakage.

Interestingly, a VLR group signature scheme necessarily relies on a secret-
key-based tag generation which is identifiable (for revocation), unforgeable, and
does not leak any partial information about the identity of the signer (for secu-
rity). Existing constructions leverage either algebraic approaches [12,14,15,32]
or generic approaches such as PRFs [11] to realize the mechanism via “pseudo-
randomness”, which will not hold anymore facing auxiliary-input leakage.

We solve this dilemma by using waNIZKs. Our idea is to simply replace
the simulation sound NIZK in the folklore construction of group signatures (for
proving knowledge of a group membership certificate) with our waNIZK.

Plaintext-checkable encryption in the standard model. Plaintext-checkable enc-
ryption (PCE) is a public-key encryption [17], allowing one to search encrypted
data with plaintext. Compared with DPKE [5], a PCE could still be randomized
and provides a stronger security ensuring two ciphertexts encrypting the same
message are unlinkable. Besides a more fine-grained security notion, PCE has
also been shown useful for constructing other primitives such as group signatures
with verifier-local verification.

Existing constructions [17,34] are mostly secure in the random oracle model.
However, in several scenarios, including the application to VLR group signa-
tures [17] and achieving CCA-security via Naor-Yung [35], we need to prove
properties about the plaintext of a PCE ciphertext via NIZKs. Random oracles
clearly become unfavorable. Attempts exist [17,33,34] for standard-model PCE,
but unfortunately they only work for uniform message distributions. In most
scenarios plaintext messages are unlikely uniformly distributed. It follows that
designing a standard-model plaintext-checkable encryption scheme for biased
message distributions is a natural question.

We also answer this question and present a general framework for plaintext-
checkable encryption, from any standard-model IND-CPA secure PKE and
waNIZKs. Our idea is simple: we first encrypt m with the PKE and then prove
the ciphertext is well-formed by using waNIZKs and setting m as the identifier
witness. This framework naturally gives standard-model instantiations. More-
over, the identifier witness in our full-fledged construction is only required to be
unpredictable, which allows to remove the restriction on uniform messages.
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Notations. Throughout the paper, we use λ for security parameter. For an NP
language L, we let RL denote its membership verification relation; (x,w) ∈ RL

or w ∈ RL(x) denote that RL(x,w) = 1, RL(x) denote the set of all witnesses
of x, and Ln denote Ln = L

⋂{0, 1}n. We illustrate other notations and recall
definitions of NIZKs and computational entropy in the full version.

2 Syntax and Security Models

As explained in the introduction, we consider a non-interactive proof system
working for an NP language L, where a statement may have multiple wit-
nesses. There is an extra mechanism Identify, such that anyone having a witness
w ∈ RL(x) can efficiently check whether a proof π for x ∈ L was generated using
w. On the other hand, we require such mechanism to be robust, i.e., anyone who
does not know w cannot produce a valid proof for x ∈ L that will be identified
as generated from w. We call such a proof system a witness-authenticating non-
interactive proof system (waNIPS), since now every proof essentially is authen-
ticated by the corresponding witness. Though intuitive, formulating the new
properties while adapting existing properties turns out to be involved.

Identifier witness. We first notice that the straightforward formulation of
waNIPS, in which the extra identification algorithm Identify takes the whole wit-
ness, sometimes, limits the applications – somepart ofwitness, such as the random-
ness (or other information) used for generating the proof, may not be functionally
important or even be available, but are still required for the identification.

Consider a class of applications (including the non-malleable hash and
plaintext-checkable PKE applications that we will present soon), in which we
may just use the proof to carry a bit covertly that can be extracted by Identify.
Now other users who may know the actual secret cannot figure out the random-
ness freshly generated; thus, they will not be able to run Identify. It is easy to see
that the actual secret is necessary and sufficient for the identification purpose.

We thus consider the notion of identifier witness. Formally, for a statement
x ∈ L, its witness w = (wI , wNI) consists of an identifier part wI and a non-
identifier part wNI , where wI will be explicitly specified by a relation RI

L (called
an identifier relation of L), RI

L((x,wNI), wI) = 1, or wI ∈ RI
L(x) for short. Now

we only need the identifier witness for the identification algorithm.2 Formally,

Definition 1 (waNIPS). Let L be an NP language, and RI
L be an identifier

relation of L. A waNIPS on (L,RI
L) is defined by four efficient algorithms:

– σ ← Setup(1λ). The setup algorithm outputs a CRS σ.
– π ← Prove(σ, x, w). The prover algorithm takes as inputs σ, an instance x ∈ L

with its witness w ∈ RL(x), and outputs a string π called a proof.
– b ← Verify(σ, x, π). The verifier algorithm takes as inputs σ, an instance x

and a proof π, and outputs either 1 accepting it or 0 rejecting it.
– d ← Identify(σ, x, π, wI). This algorithm takes as input a valid proof π for

some x ∈ L and a string wI . It returns either 1 indicating π was generated
by a witness in the form of (wI , �), or 0 otherwise.

2 We stress that the notion of identifier witness does not put any restriction on the
languages that can be proved, as the non-identifier part can be empty. In this case,
the identifier part is simply the whole witness.
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The first three describe a non-interactive proof system for L. We say π is authen-
ticated by wI if Identify(σ, x, π, wI) = 1.

Completeness of waNIPS could be easily defined by describing the identifica-
tion functionality and the proving functionality over honestly generated proofs,
which covers the standard completeness of non-interactive proof systems.

Definition 2 (Completeness of waNIPS). We say a waNIPS for (L,RI
L)

is complete, if for every x ∈ Lλ, (wI , wNI) ∈ RL(x), for σ ← Setup(1λ), π ←
Prove(σ, x, (wI , wNI)), the following holds:

Pr[Verify(σ, x, π) = 1 ∧ Identify(σ, x, π, wI) = 1] = 1.

2.1 Defining Unpredictable Sampler

Incompatibility between identification and zero-knowledgeness. Before
introducing the formal security definitions, we first clarify a basic question: when
is a waNIZK meaningful? The question arises given that the identification func-
tionality is clearly incompatible with the standard zero-knowledgeness.

As a concrete example, consider the range proof system where we use a
NIZK to prove a committed integer value m w.r.t. a commitment com belongs
to the range, say (1, 20). Seeing such a proof, the adversary learns nothing about
m except its range. However, if we use a waNIZK to support identification,
then everyone can simply check all values in (1, 20) and completely recover the
value of m! This simple example hints a trivial impossibility for conventional
zero-knowledgeness of waNIZK, for the languages whose identifier witness can
be easily guessed. Similar situation appears in other settings, e.g., encryption
schemes equipped with a plaintext-search functionality [5].

It follows that we should focus on “hard” statements that one cannot guess
the identifier witnesses easily. The notion that a statement is “hard” clearly can-
not stand in the worst case if we are considering a non-uniform adversary, since
its advice string may encode the witness already. We thus consider a distribu-
tion over a language such that for any efficient adversary, a random sample from
this distribution is “hard”, and a waNIZK proof system is expected to work for
languages admitting such “hard” distributions.

A natural way to describe a distribution is to specify an (adversarial) sampler
G which is a non-uniform PPT algorithm and on input a security parameter
outputs an element x ∈ Lλ and its witness (wI , wNI) ∈ RL(x)3. The unpre-
dictability of this sampler can then be quantified by unpredictability entropy
[29] of the identifier witness wI . More precisely, G is k-unpredictable when
Hunp(W I |X) ≥ k(λ), where (X,W I ,WNI) is a joint random variable output
by G(1λ). While such a formulation is simple, we find it unnecessarily restrictive
in certain situations. We present a more general formulation below.

3 Note that in general, it is unclear how to generate a witness from a statement, so
we let the sampler to output x, wNI together with wI , but we put no restrictions on
them. In principle, x, wNI could even be fixed by the attacker and hardcoded into
G as long as an unpredictable wI can be generated.
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Modeling a more general unpredictable sampler. When applying our
waNIZKs in a larger cryptosystem, the statement may involve system parame-
ters that are not under the control of the adversary. This seemingly minor point
is actually essential. A subtle issue is that letting the adversarial sampler to
generate the whole statement sometimes makes it hard to enforce the unpre-
dictability of witness. For example, consider a public-key encryption scheme and
a simple language LEnc := {(pk, c); (m, r) : c = Enc(pk,m; r)} where m is the
identifier witness. Let Gpk be the following sampler:

pk = pk∗,m ← Mλ, r ←$ {0, 1}λ
, c = Enc(pk∗,m; r) :
return (x = (pk∗, c), wI = m,wNI = r),

where Mλ is a high-entropy message distribution. Is Gpk an unpredictable dis-
tribution? In general, the answer is no since the adversary might have the secret
key sk of pk∗. However, simply excluding such a sampler is not the right choice.
In typical applications (for example, in our application of plaintext checkable
encryption, cf. Sect. 4.3), the public key is generated honestly and not under
the control of the adversary. And the message distribution is specified by the
adversary after seeing the public key.

This oddity arises due to that the larger system where a waNIZK is employed
already requires some honestly generated parameter. To capture this intuition,
we define a separate parameter generation as a PPT algorithm PG. We let the
sampler algorithm to take as input the parameter pp generated by PG, asking the
distribution conditioned on PG = pp to be unpredictable. Note that PG is not
a part of our waNIZK syntax, usually specified by the applications. We remark
that this is optional (which could be empty if there is no PG in the application).

Modeling CRS-dependent unpredictability. As a waNIZK assumes a CRS,
which is publicly available and usually generated once for all, in some scenarios,
adversaries might be able to specify an unpredictable sampler after seeing the
CRS. In this most general case, we allow the adversary and the sampler algorithm
G to take CRS as an input.

One tricky issue exists when measuring the unpredictability of the output
(particularly the identifier witness) of this CRS-dependent sampler: the state-
ment itself could be containing auxiliary input of the identifier witness. An
extreme example of this auxiliary input could be a valid proof; though the wit-
ness is still unpredictable to the adversary, such kind of auxiliary input destroys
knowledge soundness. If a malicious prover simply outputs such a hardcoded
proof, she generates a proof without knowing any witness!

More serious issues will occur at a new “unforgeability” property we will
introduce. We will give a more detailed discussion when we present the soundness
definitions (see Remark 4). To rule out those trivial “attacks”, we require the
sampler to be unpredictable for every CRS. In this way, the hardcoded proof
would be automatically ruled out, as there always exists one particular CRS such
that an extractor knowing the corresponding trapdoor can recover the witness
from the proof, which violates the unpredictability requirement.

Taking all above discussions into consideration, we present the formal defi-
nition of unpredictable samplers.
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Definition 3 (Unpredictable sampler). Let G be a sampler for (L,RI
L).

We say G is k-unpredictable w.r.t. a trusted parameter generation procedure PG,
if for every CRS σ in the range of Setup(1λ), it holds that

Hunp(W I
σ |Xσ, PP ) ≥ k(λ),

where PP = PG(1λ) and (Xσ,W I
σ ,WNI

σ ) ← G(PP, σ).

Clearly, the basic requirement is k = ω(log λ).4 If we are considering CRS-
independent samplers, G simply does not take as input the CRS σ.

2.2 Entropic Zero-Knowledgeness

We present a new definition of entropic zero-knowledgeness, ensuring that noth-
ing else is leaked except the identification bit to attackers who know the exact
identifier witness (to attackers who do not know the exact witness, actually
the zero-knowledgeness remains). Or, to put it another way, to rule out the
“trivial attacks” caused by the added identification functionality, we consider
zero-knowledge property w.r.t unpredictable samplers. Since now the attacker
does not know the witness, we need to give the attacker the capability to learn
extra side information from other related proofs using the same witness, and
this again should exclude the trivial impossibilities. Formally defining this new
property requires care. We illustrate the intuition and the definition below.

Integrating the unpredictable sampler. Let us first recall the conventional
zero-knowledge property: for any statement x along with its witness w, the
procedure that generates a CRS σ and a valid proof π using (x,w, σ), can be
emulated by a simulator without using the witness. The adaptive counterpart
allows the attacker to specify a statement after seeing the CRS.

Now the identifier witness wI (along with (x,wNI)) is produced by an unpre-
dictable sampler G, which is specified by the attacker. The prover (denoted as
a prover oracle OP1) takes the tuple (x,wI , wNI) from G and the CRS as input
and generates a proof. We want that this proof can be simulated via a simulator
(denoted as OS1)) without using the witness (wI , wNI).

Allowing attackers to learn side information from related proofs. In
the conventional zero-knowledge definition, since the attacker (distinguisher) is
given the witness, just asking the simulator to emulate the proof is sufficient.
While in our new definition, since the distinguisher does not have the exact
witness, directly plugging in the unpredictable sampler to the zero-knowledge
definition is too weak, in the sense that the prover only proves once. But in
practical applications, this is not the case. For example, in group signatures,
adversaries are allowed to obtain multiple signatures, possibly for different mes-
sages, from one user. To lift this restriction, we will allow the distinguisher to
4 We can also measure the unpredictability by HILL entropy [29]. On the one hand,

it brings more restrictions on the languages to be proved; On the other hand, for
samplers with sufficient HILL entropy we can give more efficient constructions which
we explain in details in the full paper.
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adaptively obtain multiple proofs, which could be generated from independently
sampled statements. Also, seeing a statement x (whose identifier witness is wI),
the adversary can ask the prover to prove another related statement x̄, which
has the same identifier witness wI .

Formally, we let the prover oracle OP1 (or OS1) be stateful, and augment a
pair of new oracles OP2 and OS2, which, with access to the states of OP1 and
OS1, take as inputs an index (that specifies a previously sampled tuple) and an
extended sampler EG. EG generates an extended statement x̄ (and corresponding
non-identifier witness) seeing x, which is associated with the same wI . However,
an arbitrarily extended statement may leak the entire wI although the original
statement hides it. To rule out the trivial impossibility, we put a restriction on
the extended statement w.r.t a wI that it will not leak more information than
the original statement, and thus wI is still unpredictable.

Definition 4. We say EG is an admissible extended sampler w.r.t. G and PG,
if there exists a PPT algorithm ẼG, such that for every σ, and any non-
uniform PPT A, the following holds that pp ← PG, (x,wI , wNI) ← G(σ, pp),
(x̄, w̄NI) ← EG(pp, σ, x, wI , wNI), x̃ ← ẼG(pp, x), Pr[(wI , w̄NI) ∈ RL(x̄)] = 1
and |Pr[A(σ, pp, x̄, wI) = 1] − Pr[A(σ, pp, x̃, wI) = 1]| ≤ negl(λ) , where the
probability is taken over the coin tosses of PG, G, EG, ẼG and A.

We are now ready to present the formal definition of entropic ZK.

Definition 5 (Entropic ZK). A waNIPS Π for (L,RI
L) satisfies the (multi-

theorem) entropic zero-knowledgeness w.r.t. a parameter generation procedure
PG and a class of unpredictable samplers G, if there is a PPT simulator
{SimSetup,SimProve}, such that for every non-uniform PPT adversary A, it
holds that

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

σ ← Setup(1λ)

pp ← PG(1λ);G ← A(pp, σ ) :

1 ← AOP1,OP2 (σ, pp)

⎤

⎥
⎥
⎦

− Pr

⎡

⎢
⎢
⎣

(σ, τ) ← SimSetup(1λ)

pp ← PG(1λ);G ← A(pp, σ ) :

1 ← AOS1,OS2 (σ, pp)

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
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≤ negl(λ) ,

where the real prover oracles OP1,OP2 and the simulator oracles OS1,OS2 are
defined in Fig. 1. The sampler G should belong to G. EG shall be an admissible
extended sampler w.r.t. PG and G (cf. Definition 4).

Remark 1. Entropic ZK for CRS-independent samplers can be easily obtained
by removing the CRS (the boxed σ in Fig. 1) from the input of A and G; it also
suffices in interesting applications and admits more efficient constructions. For
detailed elaborations, we defer to the full version.

2.3 Soundness Definitions

The conventional (knowledge) soundness of non-interactive proof systems
ensures that a prover that can generate a valid proof must possess a witness.
In our setting with an extra identification functionality, we essentially require
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OP1(σ, pp)

i ++;

(xi, (wI
i , wNI

i )) ← G( σ , pp);

st ← st ∪ (i, xi, (wI
i , wNI

i ));

πi ← Prove(σ, xi, w
I
i , wNI

i )

return (xi, πi)

OP2(σ, pp, xi,EG, st)

Find(i, xi, (wI
i , wNI

i )) ∈ st

(x̄, w̄NI) ← EG(pp, σ, xi, (wI
i , wNI

i ))

π̄ ← Prove(σ, x̄, wI
i , w̄NI)

return (x̄, π̄)

OS1(σ, τ, pp)

i ++;

(xi, (wI
i , wNI

i )) ← G( σ , pp);

st ← st ∪ (i, xi, (wI
i , wNI

i ));

πi ← SimProve(σ, τ, xi)

return (xi, πi)

OS2(σ, τ, pp, xi,EG; st)

Find(i, xi, (wI
i , wNI

i )) ∈ st

(x̄, w̄NI) ← EG(pp, σ, xi, (wI
i , wNI

i ))

π̄ ← SimProve(σ, τ, x̄)

return (x̄, π̄)

Fig. 1. The oracles. OP1 (resp. OS1)and OP2 (resp. OS2) share the state st which is
initialized to be ∅. The counter i is initialized to be 0.

the identifier witness to be “committed” to the proof. Naturally, the soundness
property also needs to be upgraded. In particular, we would need to ensure that
a used witness must be identifiable; and a malicious prover could not “forge” a
proof that points to a witness that is not known to her. (1) The former property
can be realized augmenting the conventional knowledge soundness such that:
from a valid proof, a witness not only can be extracted but also is bound to the
proof. (2) The latter mimics the binding property and models that an attacker
has access to multiple witnesses for a statement but still cannot frame any oth-
ers that hold another witness unknown to the attacker. We call it unforgeability.
Formulating those notions turns out to be highly involved, especially when con-
sidering slightly more advanced notions. Formally,

Definition 6 (Authenticating knowledge soundness). We say a waNIPS
Π for (L,RI

L) satisfies the authenticating knowledge soundness, if there exists a
PPT extactor (Ext0,Ext1), s.t., for any non-uniform PPT adversary A, (1) the
output of Ext0 is computationally indistinguishable with the real CRS:

|Pr[(σ, ξ) ← Ext0(1λ) : 1 ← A(σ)] − Pr[σ ← Setup(1λ) : 1 ← A(σ)]| ≤ negl(λ) ,

and (2) any valid proof must be authenticated by the extracted witness:

Pr

⎡

⎣

(σ, ξ) ← Ext0(1
λ), (x, π) ← A(σ), (wI , wNI) ← Ext1(σ, ξ, x, π) :

Verify(σ, x, π) = 1 ∧
[

(wI , wNI) /∈ RL(x) ∨ Identify(σ, x, π, wI) �= 1
]

⎤

⎦ ≤ negl(λ) .

Remark 2. A weaker definition, which we call authenticating soundness, only
requires the existence of such (wI , wNI) instead of that A must know the witness.
In some concrete applications of NIZKs such as signatures of knowledge [20],



16 H. Feng and Q. Tang

the knowledge extraction procedure can be done by external primitives such as
PKE. Thus, the NIZK does not have to be knowledge sound. The authenticating
soundness will suffice for replacing authenticating knowledge soundness in similar
cases. This notions will be formalized in the full paper.

Unforgeability. This property captures the “authenticity” that an adversary
cannot forge a proof that will be authenticated by an identifier witness that the
adversary does not know. Like our entropic ZK definition, we will leverage the
unpredictable sampler for (L,RI

L) to capture an unpredictable target witness.
More importantly, we would like this to hold even if the adversary can adaptively
obtain many proofs from witnesses unknown to her (the “forgery” thus should
be a new proof) as she wishes. Note that this property indeed ensures that an
adversary cannot simply “maul” a proof, and thus it (along with authenticating
knowledge soundness) will suffice for many applications (such as non-malleable
hash and VLR group signatures) which originally need a simulation-extractable
NIZK for realizing non-malleability.5

Definition 7 (Unforgeability). Let Π be a waNIPS for (L,RI
L). We say Π

satisfies unforgeability w.r.t. PG and a collection of unpredictable samplers G (cf.
Definition 3), if for any non-uniform PPT adversary A, it holds that

Pr

⎡

⎢
⎣

pp ← PG(1λ);σ ← Setup(1λ);G ← A(pp, σ );

(x∗, π∗) ← AOP1,OP2(σ, pp) : (x∗, π∗) /∈ Hist

∧ Verify(σ, x∗, π∗) = 1 ∧ ∃wI ∈ st, Identify(σ, x∗, π∗, wI) = 1

⎤

⎥
⎦ ≤ negl(λ) ,

where G ∈ G, and OP1, OP2 are prover oracles specified in Fig. 1. Hist denotes
the query-response history of OP1 and OP2, and st denotes the set of identifier
witnesses generated by all calls (made by A) to OP1.

Remark 3. The unforgeability could be weakened and is still useful; for example,
for CRS-independent statements can be obtained by removing all boxed items
above. On the other hand, in certain applications, we also need to strengthen
the unforgeability: it is required that an adversary can neither frame the target
identifier witness nor any identifier witness related to it. We term the strength-
ened definition by related-witness unforgeability, and show its application to non-
malleable hash functions. Details will be given in the full version.

Remark 4. Recall that in the CRS-dependent sampler definition, we insist that
the unpredictability holds for every CRS. One reason is that the unforgeability
may not be achievable when unpredictability only holds for a randomly sampled
CRS. Now we can give a concrete example. Assume L is an NP language and
admits an unpredictable sampler GL. We define an extended language L′ that
x′ = (x, y) ∈ L′ iff x ∈ L, and a sampler GL′ which on input a CRS σ, directly
outputs (x, π), where (x,wI , wNI) ← GL(1λ) and π ← Prove(σ, x, wI , wNI).
Given the entropic ZK of π, the identifier witness output by GL′ is unpredictable.
However, A can directly output π to break the unforgeability.
5 Different from the conventional simulation soundness, where the adversary is given

simulated proofs, here we provide real proofs, which will be needed in applications.
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Identifier uniqueness. Next, we discuss a special property of identifier unique-
ness, (like unique signatures), which is useful when handling a case that the
attacker may output a proof that will be identified by a string that is not even
a witness. In certain applications (e.g., in our application of plaintext-checkable
encryption), the attacker may try to fool the identify algorithm used by others.
Note that unforgeability does not address such an attack. The identifier unique-
ness of a waNIPS says it is infeasible to produce a valid proof and two different
identifier witnesses such that the proof is authenticated by both of them.

Definition 8 (Identifier uniqueness). We say a waNIPS Π for (L,RI
L)

satisfies the identifier uniqueness, if any non-uniform PPT A, it holds that

Pr

[
σ ← Setup(1λ); (x, π, wI

1 , wI
2) ← A(σ) : Verify(σ, x, π) = 1∧

Identify(σ, x, π, wI
1) = 1 ∧ Identify(σ, x, (π,wI

2)) = 1

]

≤ negl(λ) .

2.4 Definitions with Auxiliary Inputs

All definitions built upon samplers can be further strengthened by allowing adver-
saries to obtain other auxiliary information (beyond the statements) about the
identifier witness. This strengthening will be useful when applying waNIZKs to
applications with auxiliary inputs (e.g., in our applications of non-malleable hash
and group signatures with verifier-local revocation). We formalize those by con-
sidering an enhanced sampler G, which outputs an auxiliary information z about
wI as well. Accordingly, the output of an admissible extended sampler EG shall
be computationally indistinguishable with that of the associated ẼG, even when
the auxiliary information z is given to the distinguisher. In the strengthened def-
initions, the prover oracle OP1 and the simulation oracle OS1 will also return the
auxiliary input z for the sampled wI . Formal definitions appear in the full version.

On the one hand, the auxiliary-input entropic ZK and unforgeability clearly
subsume the original definitions. On the other hand, considering auxiliary inputs
does not seem to introduce any additional difficulty in constructing waNIZKs,
since the statement itself is already an auxiliary information about the identifier
witness. Thereafter, when we refer to entropic ZK and unforgeability, we mean
the auxiliary-input counterparts.

3 Constructing Witness-Authenticating NIZKs

In this section, we present our general constructions for waNIZKs.

Basic challenges. A folklore approach for adding a new property to NIZKs is
to add some “tag” and extend the statement being proved. For example, when
transforming a NIZK to a knowledge-sound NIZK [38], one attaches the encryp-
tion of the witness to the proof, which enables the “extractability” by decrypting
the ciphertext. Like this folklore, the main idea behind our constructions is also
to attach an “identifiable” tag (and proof of validity) to a NIZK proof, s.t. it
can be identified with the corresponding identifier witness. The challenge is that
the tag has to satisfy several seemingly conflicting constraints.
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• For “zero-knowledgeness”. The tag should not leak any information about
the identifier witness except the bit to a verifier knowing the corresponding
identifier witness. Particularly, a tag generated from an unpredictable wI

should be “simulatable” (without using wI), even conditioned on the potential
auxiliary information about wI . Moreover, as the identifier witness may be
used to prove multiple times, the “simulatability” shall be ensured across
multiple tags from wI .

• For soundness. First, we note that just for unforgeability, the tag generation
should have a form of unforgeability. Namely, without the identifier witness
wI , a malicious prover cannot produce a tag that can be identified by wI

(even when it knows the statement). If we want the identifier uniqueness, it
should be infeasible to find two identifier witnesses identifying one tag, which
essentially requires a form of collision resistance. While for authenticating
(knowledge) soundness, we will have to make sure the extracted witness is
exactly the one used to generate the proof (comparing to the standard knowl-
edge soundness, which only requires extracting one witness).

3.1 Warm-up Constructions

First, as a warm-up, we show how to easily build waNIZKs for distributions
where the identifier witness is pseudorandom (conditioned on statements). This
construction can be already useful in, e.g., group-oriented (accountable) authen-
tications where users’secret keys can be pseudorandom. We present a very simple
construction from a NIZK and a PRF. We then show how to easily lift this con-
struction to be secure for unpredictable distributions that are independent of the
CRS by using randomness extractors.

PRF-based tag: a construction for pseudorandom identifier witnesses.
In many applications such as group-oriented anonymous authentication (e.g.,
group signatures, ring signatures), the witness is usually a secret key. In this
case, the identifier witness could be pseudorandom conditioned on all public
information (e.g., a public key can be a commitment to the identifier). As a
natural idea to generate a simulatable tag is to create a tag that is also pseudo-
random, we use the witness as a key to generate the tag using a PRF, i.e.,

TagPRF(w
I) → (t,PRF(wI , t)), for a random t.

It is easy to verify that, when wI is pseudorandom (with sufficient length and
conditioned on all side information available to adversaries), PRF(wI , t) is pseu-
dorandom for any t. Thus the tag (t,PRF(wI , t)) is “simulatable” (for a random
t) and unforgeable (for every t). Using such a tag generation mechanism, we
can construct a simple waNIZK for a language L that admits a pseudorandom
witness distribution. To identify whether the proof was generated by (wI

∗, �),
one just checks PRF(wI

∗, t) ?= PRF(wI , t). Moreover, by further requiring the
PRF function to be collision-resistant, we can also achieve identifier uniqueness.
Formal construction and analysis will be presented in the full version.
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Lifting via randomness extraction: a construction for general CRS-
independent distributions. The above approach cannot be applied to general
unpredictable witness distributions. A natural idea is to transform an identifier
witness into a uniform string. Randomness extractors [4,29] are such a tool for
generating a nearly uniform string from a random variable with enough entropy
(called source), with the help of a short uniformly random string called seed.
A computational extractor [29] would also be applicable even if the witness
distribution is only computationally unpredictable.

Several tricky issues remain: (1) For “zero-knowledgeness”, the attacker may
obtain multiple proofs generated using wI . Since the seed is randomly chosen,
the attacker essentially forces the same witness to be re-used with multiple differ-
ent seeds and then the resulting outputs are used as the PRF keys; Thus we will
require a reusable extractor [23,24] (or related-key secure PRF [1]). Unfortu-
nately, there are only a few reusable (computational) extractor constructions,
which either have entropy requirements on the source [23], or rely on non-
standard assumptions [24]. In our setting, the witness distribution sometimes
is only computationally unpredictable. The status of related-key secure PRF is
neither promising as existing constructions only allow simple correlations. (2)
For soundness, a malicious prover may not generate the seed honestly. In this
case, we won’t have the properties of extractors, which could be devastating for
unforgeability. To see this, let us view the inner product as the special Goldreich-
Levin extractor, but the malicious prover will simply use all-0 string as the seed.
Now every witness can be used to identify such proof!

Luckily, since we are working in the CRS model, we could simply let the CRS
include one single piece of uniform seed. The tag can be generated as follows:

TagExt−PRF(w
I) = (r, t,PRF(Ext(wI , r), t)), for r in CRS and a random t.

Leveraging this tag generation mechanism, we can have a construction for a lan-
guage L that is secure w.r.t. k-unpredictable distributions. Formal construction
and analysis will be presented in the full version.

Unfortunately, once we do not have the luxury that the sampler is indepen-
dent of the CRS, we will need new ideas for the challenges.

3.2 The Full-Fledged Construction for CRS-dependent
Distributions

It is known that in general, a randomness extractor is secure only when the
source is independent of the seed (otherwise, seeing the seed, there will always
exist a source distribution that makes the first bit of the extractor output to
be 1). Thus, the unpredictable statement distribution must be independent of
the CRS in the above approach. However, in many applications, the statement
(and the corresponding witness distribution) might depend on the CRS, e.g., all
three applications we will present soon. It follows that we need a more general
solution that can handle a CRS-dependent witness distribution.

A more flexible tag generation. It is not hard to see that for any tag gen-
eration function f(params, w) = τ , if params is from CRS, the adversary can
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always find a witness distribution that depends on params such that the output
τ can be recognizable. However, in the above approach using extract-then-PRF,
moving the seed out of CRS and letting prover generate it will put us back facing
the challenges of malicious seed and reusability, as described above.

To circumvent such a dilemma, we first note that realizing simulatability
and unforgeability does not have to be via pseudorandomness. For simulatabil-
ity, another alternative is encryption primitives. For the ease of checking, we
consider using deterministic public-key encryptions (DPKE) to generate a tag.6

Regarding the unforgeability, we note it can be realized by adding a simulation-
extractable NIZK proof to the tag. As the NIZK is already a component of our
waNIZK construction, we can make the tag unforgeable by enforcing the “colli-
sion resistance”. Let DEnc be the encryption algorithm of a DPKE scheme, and
we illustrate the tag generation mechanism below.

TagDPKE(w
I) → (pk,DEnc(pk,wI)), for a random public key pk. (1)

Next, we examine the previous challenges more closely.

– For “zero-knowledge”, simulatability via pseudorandomness requires each out-
put to be “independently” pseudorandom, thus requiring “reusability” in
strong extractors. The latter is highly non-trivial as there is only a fixed
amount of entropy available in the witness. While for ciphertext as output,
however, we do not have to insist on a pseudorandom ciphertext distribution.
Actually, “reusability” is trivial in standard public-key encryption schemes
as each ciphertext is like an independent sample. Of course, in the setting of
DPKE (when considering the multi-user security), things get more compli-
cated as no private randomness is used for encryption; we also need to con-
sider the auxiliary input of the witness. Fortunately, Brakerski and Segev’s
d-linear based construction [13] can satisfy the auxiliary-input security and
the multi-user security simultaneously.

– For soundness, it was difficult to deal with malicious (prover-generated) seeds
in the extractor setting, as there is no way to prove a seed is sampled uni-
formly. Nevertheless, if the parameters have some algebraic structure or func-
tional properties, we may be able to enforce those features (for unforgeabil-
ity) instead of proving distributional properties. For example, the decrypt-
ability condition (correctness) is such a property, when using encryption. In
more detail, a malicious prover may still want to choose a malformed pk,
but now we can ask the prover to attach a proof of “goodness” of pk, sim-
ply attesting there exists a secret key. The perfect correctness of encryp-
tion requires that for every valid key pair pk, sk, and every message m,
Dec(sk,DEnc(pk,m)) = m. This automatically implies that the encryption

6 Another potential tool could be perfectly one-way hash with auxiliary inputs [18].
Those are probabilistic functions that satisfy collision-resistance and hide all partial
information about its input even under with auxiliary input. Unfortunately, such a
strong primitive is only known to exist under a not-efficiently-falsifiable assumption
[24]; thus, its existence is elusive. In fact, it even contradicts with a form of obfusca-
tion [16]. We would like to have a construction that relies on standard assumptions.
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function DEnc for each valid pk defines an injective function, i.e., for any
w1 	= w2,DEnc(pk,w1) 	= DEnc(pk,w2). Moreover, it is indeed the case for
the DPKE instantiation we chose in [13]. In this way, a malicious prover
cannot evade the checking or frame other witness holders!

The construction. Let us firstly specify the building blocks we will use.

– A deterministic public-key encryption (DPKE) scheme Σde = {Kde,Ede,Dde}
(whose formal definition is recalled in the full paper). We assume w.l.o.g.
that the plaintext space contains all identifier witnesses of L. Particularly,
we require the DPKE to be perfectly correct and PRIV-IND-MU-secure with
respect to 2−k-hard-to-invert auxiliary inputs which captures the security
when one message is encrypted under multiple keys and the auxiliary input
about the message are available to adversaries. We assume w.l.o.g. that there
is a relation RLde

s.t. a key pair (pk, sk) is valid iff RLde
(pk, sk) = 1.

– A NIZK proof system Πzk = {Szk,Pzk,Vzk} for an NP language

LCD := {(x, pk, c); (wI , wNI , sk) :

(wI , wNI) ∈ RL(x) ∧ wI ∈ RI
L(x) ∧ c = Ede(pk,wI) ∧ RLde

(pk, sk) = 1};
(2)

The full-fledged construction ΠCD = {Setup,Prove,Verify, Identify} for an NP
language L with identifier relation RI

L is presented in Fig. 2.

Security analysis. The completeness directly follows the completeness of the
underlying NIZK proof system Πzk and of the DKPE scheme Σde. Particularly,
under an honest pk, c = Ede(pk,wI) uniquely determines wI and thus the proof
will not be mis-identified by another identifier witness.

We claim the security of ΠCD in the following theorem and present here
only a security sketch: the statement being proved by Πzk is formed by (x, pk, c).
(1) the knowledge soundness of Πzk ensures one can extract a wI and c =
Ede(pk,wI). By the description of Identify, these together imply the authenticat-
ing knowledge soundness. (2) When Πzk is sound, the public key pk contained in
a valid proof should be a valid public key, and thus (pk, c) determines a unique
plaintext (as the identifier), which ensures the identifier uniqueness. (3) More-
over, as the DPKE is PRIV-IND-MU-secure with respect to 2−k-hard-to-invert
auxiliary inputs, the proof can achieve the entropic ZK.

Regarding the unforgeability, at a high level, we show a contradication that a
successful adversary A against this property will give rise to a successful adver-
sary B that could recover messages from DPKE ciphertexts. Specifically, since
Πzk is a simulation-extractable NIZK, B can answer all prover oracle queries
via a “hybrid” prover algorithm which returns a “proof” formed by (pk, c, πzk)
where (pk, c) is an honest encryption of the identifier witness while πzk is a
simulated proof. Note that A cannot distinguish the real prover oracle and the
hybrid prover oracle. Next, A will issue a challenge proof (pk∗, c∗, π∗

zk), for a
challenge statement x∗, satisfying c∗ = Ede(pk∗, wI), and B can further leverage
the knowledge extractor of Πzk to extract wI , which is the plaintext of these
deterministic encryptions, from πzk.
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Setup(1λ)

σzk ← Szk(1λ) // generate a CRS of the underlying NIZK

return σ = σzk

Prove(σ, x, (wI , wNI))

(pk, sk) ← Kde(1λ) // generate the public key and the secret key

c ← Ede(pk,wI) // encrypt the identifier witness under pk

πzk ← Pzk(σzk, (x, pk, c), (wI , wNI , sk))

// prove x ∈ L ∧ (pk, c) are well-formed

return π = (pk, c, πzk)

Verify(σ, x, π)

b ← Vzk(σzk, (x, pk, c), πzk) // check the validity of the proof πzk

return b

Identify(σ, x, π,wI)

c ← Ede(pk, wI) // encrypt the identifier witness under the public key

if (c = c ) then return 1 else return 0

Fig. 2. The full-fledged construction.

Actually, our construction can satisfy the stronger related-witness unforge-
ability. Specifically, in the definition, a successful adversary will output
(x∗, π∗, φ∗) such that π∗ = (pk∗, c∗, π∗

zk) is authenticated by φ∗(wI), where φ∗ is
a transformation where all preimages can be efficiently found (the class of such
transformations is formalized by Chen et al.[22] and will be recalled in the full
paper). Note that the adversary B can still leverage the attacker to recover mes-
sages from DPKE encryptions: all queries to the prover oracle can be simulated
as before; after extracting φ(wI) from the challenge proof π∗, B just outputs one
preimage of φ∗(wI) which will equal to wI with a non-negligible probability.

Due to the lack of space, we defer detailed proofs in the full version.

Theorem 1. Let ΠCD be the construction in Fig. 2, and the following results
hold:

– ΠCD satisfies the authenticating (knowledge) soundness, if Πzk satisfies the
(knowledge) soundness;

– ΠCD satisfies the identifier uniqueness, if Πzk is sound, and the DPKE sat-
isfies perfect correctness;

– ΠCD satisfies the entropic ZK w.r.t. all k-unpredictable samplers, if Πzk is
zero-knowledge, and Σde is PRIV- IND-MU-secure with respect to 2−k-hard-
to-invert auxiliary inputs.7

7 A basic requirement is k = ω(log λ) s.t. it is possible to have such a DPKE scheme.
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– ΠCD satisfies the (related-witness) unforgeability w.r.t. all k-unpredictable
samplers, if Πzk is a simulation-extractable NIZK, and Σde is PRIV- IND-
MU-secure with respect to 2−k-hard-to-invert auxiliary inputs.

Sketch of instantiation. Since the underlying DPKE scheme Σde shall satisfy
the perfect correctness and the PRIV-IND-MU-security with respect to hard-to-
invert auxiliary inputs, the only candidate so far is Brakerski and Segev’s d-linear
based construction [13]. Particularly, this construction allows 2−k-hard-to-invert
auxiliary inputs where 2−k ≤ ν(λ)

q2d . Here, ν is a negligible function in λ, d can be
1 when considering the DDH assumption, and q is the order of the DDH group
which is usually 2Θ(λ). Accordingly, if we set ν(λ) = 2−ω(log λ), the admissible
samplers of our waNIZK construction ΠCD should be k-unpredictable for some
k ≥ 2 log q + ω(log λ).8 Regarding the underlying simulation-extractable NIZK
Πzk for LCD, we note it could be realized via simulation-extractable NIZKs for
general NP languages. Particularly, adaptive NIZKs for general NP languages are
known to exist under the RSA assumption [26] or the LWE assumption [37], and
we can add simulation extractability to them using standard tools including one-
way functions and public-key encryptions as noted in [38]. In addition, since the
tag generation procedure is algebraic (and Groth-Sahai-friendly), we can leverage
the (simulation-extractable) Groth-Sahai proof system [28] to instantiate Πzk, if
the statement x ∈ L that we wish to prove is also Groth-Sahai-friendly.

4 Applications

We will present three different applications in (non-malleable) hash, (group)
signature, and (plaintext-checkable) public key encryption respectively, and we
will show how to advance the state of the art in each domain.

4.1 Non-malleable (Perfectly One-Way) Hash Functions from
Standard Assumptions

Many efforts have been made formalizing meaningful cryptographic properties
to realize random oracles. Perfectly one-way hash [18] and non-malleable hash
functions [9] are notable examples. They are used to instantiate random oracles
in e.g., Bellare-Rogaway encryption [6], HMAC [27], and OAEP [10] respectively.
In particular, a perfectly one-way hash is a probabilistic function that requires
the output to hide all partial information about the input (even with auxiliary
information about the input), while still enabling the check of the validity of
an evaluation. And non-malleable hash requires that one cannot “maul” a hash
value into a related one even with some auxiliary information about the pre-
image. Moreover, collision resistance is also required in both as it is necessary
8 In certain applications, we may be interested in the relation between n = |wI | and k

of admissible samplers. Note that for any constant 0 < μ ≤ 1, there exists a sufficient
large polynomial n such that nμ ≥ 2 log q + ω(log λ). Namely, k can be sublinear in
n, and in this case given (X, Z, PP ) finding W I is sub-exponentially hard.
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for many of their interesting applications, such as instantiating random oracles
in Bellare-Rogaway encryption [6,9].

Unfortunately, both perfectly one-way hash and non-malleable hash (with
general auxiliary inputs) have no construction from any efficiently falsifiable
assumption [3,9,18,24].9 In particular, Boldyreva et al. [9] presented construc-
tions of non-malleable hash from perfectly one-way hash functions [18] and
simulation-extractable NIZKs [38], thus directly inherits the non-efficiently fal-
sifiable assumption from [18]; Baecher et al. [3] showed another construction
for non-malleable hash, but it requires a random oracle. Recall that the main
motivation of non-malleable hash was to instantiate random oracles.

Note that the drawbacks the non-standard assumptions made by [18] have
become much more serious: the assumption is known to contradict the existence
of iO [16], while recent progress [30] demonstrated the feasibility of iO from some
well-studied assumptions. The mere existence of such a non-malleable hash or
perfectly one-way hash becomes unclear, and a basic question remains:

Does there exist a non-malleable (or perfectly one-way) hash function w.r.t.
general auxiliary information from standard assumptions?

We solve both problems by using waNIZKs. Our framework could give con-
crete constructions for non-malleable and perfectly one-way hash functions with
any sub-exponentially hard-to-invert auxiliary inputs, assuming only the stan-
dard assumptions like d-linear assumption. We directly construct a hash func-
tion that satisfies perfect one-wayness, non-malleability and collision resistance
simultaneously. We simply name it non-malleable (perfectly one-way) hash.

Definition. A hash function H is defined by a triple of PPT algorithms:

– HK(1λ). Generate a key hk of the hash function.
– H(hk, s). On inputs a key hk and an input s output a hash value y.
– HVf(hk, s, y). On inputs hk, s and y return a decision bit.

The correctness requires for any hk, s, it holds that HVf(hk, s,H(hk, s)) = 1.
For security, the hash function H is required to first satisfy:

– Perfect one-wayness w.r.t. ε-hard-to-invert auxiliary inputs. I.e., for any dis-
tribution S = {Sλ}λ∈N and any hint function hint such that hint is ε-hard-to-
invert w.r.t. S, and for any non-uniform PPT adversary A, it holds that

Pr

[
hk ←HK(1λ), s0 ← Sλ, s1 ← {0, 1}|s0|, b ←$ {0, 1},

y ← H(hk, sb), b′ ← A(hk, y, hint(hk, s0)) : b = b′

]

≤ negl(λ) .

– Collision resistance. I.e., for any non-uniform PPT adversary A,

Pr

[
hk ← HK(1λ),(s, s′, y) ← A(hk) :

s 	= s′ ∧ HVf(hk, s, y) = HVf(hk, s′, y) = 1

]

≤ negl(λ) .

9 Under standard assumptions, the only existing perfectly one-way functions with
auxiliary inputs [7] does not enjoy the collision resistance; and the only non-malleable
hash (also given in [9]) is only secure against a very special class of auxiliary input.
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For definition of non-malleability, we adopt it from [3] as this game-based
definition is easier to use (than the simulation definition from [9]), and sufficient
for all major applications including Bellare-Rogaway encryption [6], HMAC [27],
and OAEP [10]. Informally, non-malleability requires that an adversary, seeing a
hash value y = H(hk, s) and an auxiliary input hint(hk, s), cannot find another
y∗ whose pre-image is meaningfully related to s. The formal definition appears
in the full paper. We note the “relation” between the pre-images is described a
transformation set Φ, namely, s′ is Φ-related to s if s′ = φ(s) for some φ ∈ Φ. The
non-malleability is defined w.r.t. a transformation set Φ rather than any trans-
formation φ, since there exists some relation such as constant transformations,
for which this definition is hopeless. In this work, we will adopt on transfor-
mations that have the so-called bounded root space (BRS) and samplable root
space (SRS) (denoted by Φsrs

brs) developed in [22], which are the currently most
general yet achievable class (see the full paper).

Construction. Observe that non-malleable (perfectly one-way) hash has three
security requirements and a verifier algorithm on each input-output pair. If we
start just with perfect one-wayness (without the verifier algorithm) which hides
all partial information, there are plenty of candidates; for example, a commitment
scheme. For the remaining challenges of collision resistance and validity checking
(while maintaining best possible privacy), our waNIZK becomes an immediate
choice. For non-malleability, it can come from related-witness unforgeability. We
define the evaluation as first committing to its input and then attaching a proof
of the well-formedness of the commitment using our waNIZK proof!

More precisely, let COM = {Kcom,Ccom} be a commitment scheme, and
let Πwa = {Swa,Pwa,Vwa, Iwa} be a WA-NIZK for an NP language Lnm :=
{(c, kcom); (s, r) : c = Ccom(kcom, s; r)}, in which s is the identifier witness. Here
we require Πwa to satisfy the identifier uniqueness, the entropic ZK and the
related-witness unforgeability w.r.t. all (− log ε)-unpredictable samplers and the
transformation set Φsrs

brs. We present the detailed description in Fig. 3.

HK(1λ)

σwa ← Swa(1λ) and kcom ← Kcom(1λ); return hk = (σwa, kcom)

H(hk, s)

ccom ← Ccom(kcom, s; r);πwa ← Πwa(σwa, (ccom, kcom), (s, r)); return y = (ccom, πwa)

HVf(hk, s, y)

return 1 if Vwa(σwa, (ccom, kcom), πwa) = 1 ∧ Iwa(σwa, (ccom, kcom), πwa, s) = 1

Fig. 3. Non-malleable Hash from commitment+ waNIZKs

Security analysis. The correctness follows the correctness of underlying prim-
itives. Regarding collision resistance, if two distinct inputs (s1, s2) (which are
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identifier witnesses) authenticate the sample proof, it immediately breaks iden-
tifier uniqueness. Notice that the hash value y consists of a hiding commitment
and a WA-NIZK proof, both of which won’t leak partial information about an
unpredictable input. Thus, the perfect one-wayness follows easily. Regarding
the non-malleability, notice that a mauled hash value must contain a mauled
waNIZK proof, which is prevented by the related-witness unforgeability of the
waNIZK. For detailed proofs, we defer them to the full version.

Theorem 2. H satisfies the perfect one-wayness w.r.t. ε-hard-to-invert auxil-
iary inputs, collision resistance, and non-malleability w.r.t. the transformation
set Φsrs

brs and ε-hard-to-invert auxiliary inputs, if the commitment scheme COM
satisfies computationally hiding, and Πwa satisfies the identifier uniqueness, the
entropic ZK and the related-witness unforgeability w.r.t. the transformation set
Φsrs
brs and all (− log ε)-unpredictable samplers.

4.2 Group Signatures with Verifier-Local Revocation with Auxiliary
Input

In group signatures with verifier local revocation (VLR) [12], we insist that the
verifier can check by himself whether a signature is generated by a revoked group
member, so that the group public key and the signing complexity are independent
of revocation list which could be potentially long. In this section, we show how
waNIZKs give rise to a simple VLR group signature scheme. Particularly, our
construction enjoys auxiliary-input security, which is against a “side-channel”
attacker who is allowed to see some computationally hard-to-invert function of
the user’s secret key. To the best of our knowledge, known VLR group signatures
cannot guarantee auxiliary-input security.

Why we consider the auxiliary-input security. Besides that “side-channel
attacks” are a threat for every cryptographic primitive, and that the auxiliary-
input model is currently the strongest model capturing memory leakage (more
details about the model are referred to [25]), we find the auxiliary-input security
for VLR group signatures is interesting both practice-wise and technical-wise.

Practice-wise, some instantiation of VLR group signatures, such as the direct
anonymous attestation (DAA) [14] (along with its improved version, the EPID
signature [15]), is adopted by the Trusted Computing Group as the standard for
remote authentication, and implemented in several trusted platform modules
(TPM) including Intel’s SGX. These TPMs are essential for computer security
but are shown, by numerous works, vulnerable to side-channel attacks [36]. The
study of auxiliary-input secure VLR group signature could enhance the security
of TPMs against side-channel attacks.

Technique-wise, constructing auxiliary-input secure VLR group signatures
turns out to be a non-trivial task. First, it is unclear how to easily “lift” exist-
ing constructions. Most of existing VLR group signature schemes (such as [12,
14,15,32]) leverage certain “pseudorandom functions” on a secret to preserve the
anonymity while enable verifier-local checking. Such “pseudorandomness” either
comes from underlying algebraic assumptions or directly from a PRF (e.g., a recent
construction from Boneh et al. [11]). Unfortunately, with the auxiliary input on
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the secret, “pseudorandomness” collapses. Essentially, in a VLR group signature,
it will need an auxiliary-input secure secret-key-based tag generation mechanism
that is identifiable (for realizing the revocation functionality), unforgeable, and
does not leak any partial information about the signer identity (for anonymity).
Our waNIZK provides a perfect tool.

The definitions. A VLR group signature scheme Σgs is defined by a tuple of
three PPT algorithms.

– GS.KeyGen(1λ, n). It outputs a group public key gpk, and for each user i ∈ [n],
outputs the secret key gsk[i] along with the revocation token grk[i].

– GS.Sign(gpk,gsk[i],m). It outputs a valid signature ϑ for m under gpk.
– GS.Verify(gpk,RL, ϑ,m). It returns either 1 indicating that ϑ is a valid sig-

nature for m and was not signed by a revoked user whose token is in RL, or
0 otherwise. Here RL is a set of revocation tokens.

A VLR group signature scheme Σgs is correct, if for (gpk,gsk,grk) ←
GS.KeyGen(1λ), every RL ⊂ grk, every message m ∈ {0, 1}∗,

GS.Verify(gpk,RL,GS.Sign(gpk,gsk[i],m),m) = 1 ⇔ grk[i] /∈ RL.

Note that this verification algorithm allows the group manager, who knows all
revocation tokens, to trace signer’s identifier for every valid signatures. Specif-
ically, if GS.Verify(gpk, ∅, ϑ,m) = 1 and GS.Verify(gpk,grk[i∗], ϑ,m) = 0, the
signer of ϑ will be traced to user i∗.

A VLR group signature scheme should satisfy the anonymity and the trace-
ability. In the following, we briefly introduce the auxiliary-input counterparts of
them, and the formal definitions are presented in the full paper. Particularly, we
consider the auxiliary inputs as a hard-to-invert function on users’ secret keys
along with the group public key, since user’s devices are much more vulnerable
than the group manager’s device that is usually supposed to be well-protected.

– Anonymity ensures that the identity of an uncorrupted signer is indistin-
guishable from all possible signers, even when the adversary is allowed to see
many signatures from all users and to corrupt some gsk[i] and grk[i]. When
considering the auxiliary-input anonymity, the adversary is further allowed
to see a hard-to-invert function on (gpk,gsk).

– Traceability captures that any non-uniform PPT adversary A can neither
produce a valid signature-message pair (ϑ,m) that won’t be traced to any
user, i.e., GS.Verify(gpk,grk, ϑ,m) = 1, nor frame an uncorrupted user i∗,
i.e., GS.Verify(gpk,grk[i∗], ϑ,m) = 0, even when the adversary are allowed to
obtain signatures from all users and to corrupt some gsk[i] and grk[i]. When
considering the auxiliary-input anonymity, the adversary is further allowed
to see a hard-to-invert function on (gpk,gsk).

The construction. Our construction is based on the following observation. On
rough terms, if a group signature scheme allows one to efficiently check whether
a group signature was generated by using (a part of) gsk[i], then a VLR group
signature can be built upon this as follows. 1) Set grk[i] to be (the specific part
of) gsk[i], and 2) the verification algorithm performs as follows.
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– Verify the group signature as the underlying verification algorithm does.
– If valid, for each gsk[i] ∈ RL, identify whether ϑ was created by gsk[i]. If ϑ

is not identified by any gsk[i], accept it; otherwise, reject it.

The remaining part is to design a group signature with this identifiability.
Note that the folklore of designing group signatures is to employ a simulation
extractable NIZK to prove the knowledge of a group membership certificate
[20] where the proof is taken as the signature. Then, our waNIZK will be an
immediate choice to add the identifiability, by replacing the NIZK in this folk-
lore. Moreover, the authenticating knowledge soundness and unforgeability of
waNIZK would be enough to replace simulation extractability.

Specifically, we consider a pair (ID,Sig), where ID is a bit string with suffi-
cient length, and Sig is a digital signature for ID under a verification key vksig
of the group manager. To sign a message m on behalf of the group, one just
uses a waNIZK to prove the knowledge of such a pair w.r.t. (vksig,m) where ID
is set to be the identifier. The auxiliary-input security follows the fact that all
security guarantee of waNIZKs are preserved when auxiliary-information about
witnesses10 is leaked to adversaries. More formally, let Σsig = {Ksig,Ssig,Vsig} be a
standard digital signature scheme. Let Πwa = {Swa,Pwa,Vwa, Iwa} be a waNIZK
for the following language: LVLR : {(vksig,m); (ID,Sig) : Vsig(vksig,Sig, ID)},
where ID is the identifier witness. The formal description of the VLR group
signature Σgs will be presented in the full paper.

The analysis. The correctness is easy to follow. Regarding the security, we
first specify the admissible leakage function family F . Assume the underly-
ing waNIZK Πwa satisfies the entropic ZK and the unforgeability w.r.t. all k-
unpredictable samplers.

Definition 9. We say F is admissible w.r.t. Σgs, if for every σwa in the range
of Swa(1λ), and every (vksig, sksig) in the range of Ksig(1λ), it holds that

Hunp(ID|gpk = (σwa, vksig), f(gpk,Ssig(vksig, sksig, ID), ID)) ≥ k(λ),

where ID is a uniformly distributed random variable over {0, 1}id(λ) and id is an
integer function polynomial in λ.

Note that the group public parameter gpk is independent of ID, and thus the
admissible leakage function family F is surely non-empty. Moreover, notice that
the class of admissible leakage functions gets larger, if k is smaller.

Theorem 3. Let Σsig be a standard-model digital signature scheme satisfying
EU-CMA security, Πwa be a waNIZK for the language LVLR that satisfies the
authenticating knowledge soundness, the entropic ZK and unforgeability w.r.t all
k-unpredictable samplers for LVLR. Σgs is a secure VLR group signature scheme
in terms of the auxiliary-input anonymity and the auxiliary-input traceability
w.r.t. all admissible functions.
10 Since in the auxiliary-input model, this leakage could depend on the public param-

eter, which requires the underlying waNIZK to work for CRS-dependent samplers.
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Proof (sketch). Recall that in the anonymity experiment, the goal of an adver-
sary A is to decide the signer’s identity for a signature that was generated by an
uncorrupted user. The main idea of our proof is to show such a signature can be
obtained by querying the prover oracles of Πwa with an unpredictable sampler
or an admissible extended sampler. By the definition of entropic ZK, a signature
by an uncorrupted secret key (which is a proof πwa) will not leak any useful
information to adversaries beyond that its validity. The anonymity follows.

Regarding the auxiliary-input traceability, we note the adversary A wins
either when (GS.Verify(gpk,grk[i∗], ϑ∗,m∗) = 0 for the target user i∗, or when
(GS.Verify(gpk,grk, ϑ∗,m∗) = 1. If A wins via the first condition, we can show
it contradicts the unforgeability of Πwa by following similar arguments in the
anonymity proof. For the second condition, the authenticating knowledge sound-
ness of Πwa ensures that for each valid proof πwa, one can extract (ID,Sig) such
that ID authenticates πwa. Given the EU-CMA security of the digital signature
scheme, the extracted ID must be one generated by GS.KeyGen and thus be
contained in grk, which contradicts the second condition. The detailed formal
proof will be presented in the full paper. 
�

4.3 Plaintext-Checkable Encryption in the Standard Model

Plaintext-checkable encryption (PCE) [17] is a public-key encryption primi-
tive that allows us to search encrypted data with plaintext messages but still
enables randomized encryption. Compared with deterministic public-key encryp-
tion (DPKE) [5], PCE aims to find a more fine-grained definition between
the search functionality while preserving best possible security, particularly, it
ensures two ciphertexts encrypting the same message are unlinkable (all partial
information is still hidden when the plaintext is not known to the attacker).
Moreover, it was also shown to be useful for group signatures with verifier-local
revocation and backward unlinkability [12].

Existing constructions [17,33,34] are either relying on random oracles or
only working for uniform message distributions.11 In most scenarios, messages
are from biased distributions. It is thus a natural question to consider PCE in
the standard-model for non-uniform message distributions.12 In this section, we
answer this question and present a generic transformation from a PKE scheme
to a PCE scheme, via a simple application of our waNIZK.

Definition. A PCE scheme enables everyone having a public key pk, a ciphertext
c and a message m, to check whether m is the plaintext of c under pk. Formally,
it consists of four algorithms: KeyGen, Enc, Dec, PCheck. While the first three
algorithms describe a standard PKE scheme, the last algorithm is as follows:

11 We note that the recent scheme [33] claimed security in the standard model for any
high-entropy message distribution. However, their proofs still implicitly assume that
the message distribution is uniform. We defer details to the full paper.

12 The plain-text equality tester, presented in [39], seems close to a PCE. However, it
can only check whether a ciphertext encrypts a pre-chosen target value m∗, while a
PCE allows us to test for any plaintext publicly.
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– PCheck(pk, c,m). Outputs 1 indicating c is an encryption of m under pk, and
0 otherwise.

Correctness requires that for every λ and m, (pk, sk) ← KeyGen(1λ), c ←
Enc(pk,m), Pr[Dec(sk, c) = 1∧PCheck(pk, c,m) = 1] = 1, where the probability
is taken over coin tosses of KeyGen and Enc. We follow the definitions from [17]:

– Checking completeness: No efficient adversary can output a ciphertext which
decrypts to a message that is refused by PCheck.

– Checking soundness: No efficient adversary can generate a ciphertext c and a
plaintext m such that c cannot be decrypted to m but PCheck(pk, c,m) = 1.

– k-unlinkability: It is infeasible to decide whether two ciphertexts encrypt the
same message, when the message is from a message distribution whose min-
entropy is larger than k and the message is not available to adversaries.

Formal definitions are recalled in the full paper.

The construction. As a PCE scheme is a special PKE scheme that supports
the plaintext-checking functionality while preserving the best-possible privacy,
the idea behind our transformation is to attach a waNIZK proof that demon-
strates the underlying PKE ciphertext is well-formed. More precisely, let Σpke =
{Kpke,Epke,Dpke} be a PKE scheme, and let Πwa = {Swa,Pwa,Vwa, Iwa} be a
waNIZK for the following language: LPCE := {(c, pk); (m, r) : c = Epke(pk,m; r)}
where the message m is the identifier witness. To encrypt a message m, our PCE
scheme first encrypts it using Σpke, and uses Πwa to prove the ciphertext is well-
formed, where the CRS for Πwa is a part of the public key. Everyone can check
whether a ciphertext (cpke, πwa) encrypts a particular message m by running the
identification algorithm Iwa on πwa and m. We defer the formal construction Σ
to the full version.

The analysis. The correctness follows the correctness of the underlying primi-
tives. Regarding the security, we establish the following result.

Theorem 4. The PCE scheme Σ satisfies checking completeness, checking
soundness, and k-unlinkability, if Σpke is an IND-CPA PKE scheme with per-
fect correctness, and the waNIZK Πwa satisfies the entropic ZK w.r.t. all k-
unpredictable samplers, the authenticating soundness, and the identifier unique-
ness.

Proof (sketch). The checking completeness follows the authentication sound-
ness of Πwa, and the checking soundness is implied by the identifier uniqueness
of Πwa. Regarding the k-unlinkability, we argue the distribution G = {(x =
(c, pk), wI = m,⊥) : m ← Mλ; c ← Enc(pk,m)} for LPCE is k-unpredictable
w.r.t. an honest key generation (pk, sk) ← KeyGen(1λ), if the min-entropy of
Mλ is greater than k. We note given (c, pk) finding wI is not necessarily 2−k-
hard. Indeed, we can define the following distribution Ḡ = {(x = (c, pk), y,⊥) :
m, y ← Mλ; c ← Enc(pk,m)}. Ensured by the IND-CPA security of the PKE
scheme, Ḡ is indistinguishable with G. As no side information about y is given,
the probability of guessing y should be not greater than 2−k. According to our
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definition k-unpredictable distributions, G is such a distribution, enabling us to
deploy a waNIZK that satisfies the entropic ZK w.r.t. k-unpredictable samplers.
The above argument helps us to avoid requiring the sub-exponential hardness of
the underlying PKE scheme. We defer the formal proof to the full version.
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Abstract. General-purpose zero-knowledge proofs for all NP languages
greatly simplify secure protocol design. However, they inherently require
the code of the underlying relation. If the relation contains black-box calls
to a cryptographic function, the code of that function must be known
to use the ZK proof, even if both the relation and the proof require
only black-box access to the function. Rosulek (Crypto’12) shows that
non-trivial proofs for even simple statements, such as membership in the
range of a one-way function, require non-black-box access.

We propose an alternative approach to bypass Rosulek’s impossibility
result. Instead of asking for a ZK proof directly for the given one-way
function f , we seek to construct a new one-way function F given only
black-box access to f , and an associated ZK protocol for proving non-
trivial statements, such as range membership, over its output. We say
that F , along with its proof system, is a proof-based one-way function.
We similarly define proof-based versions of other primitives, specifically
pseudo-random generators and collision-resistant hash functions.

We show how to construct proof-based versions of each of the primi-
tives mentioned above from their ordinary counterparts under mild but
necessary restrictions over the input. More specifically,

– We first show that if the prover entirely chooses the input, then
proof-based pseudo-random generators cannot be constructed from
ordinary ones in a black-box manner, thus establishing that some
restrictions over the input are necessary.

– We next present black-box constructions handling inputs of the form
(x, r) where r is chosen uniformly by the verifier. This is similar to
the restrictions in the widely used Goldreich-Levin theorem. The
associated ZK proofs support range membership over the output as
well as arbitrary predicates over prefixes of the input.

Our results open up the possibility that general-purpose ZK proofs for
relations that require black-box access to the primitives above may be
possible in the future without violating their black-box nature by instan-
tiating them using proof-based primitives instead of ordinary ones.
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1 Introduction

Zero-knowledge proofs (ZKPs) are a method to prove that a statement is true
without revealing any additional knowledge [16]. A major achievement in cryp-
tography has been the construction of ZKPs for NP-complete problems [15].
Since every NP relation can be efficiently reduced to any NP-complete relation
[3,29,34], this yields a ZKP for all languages in NP. Due to this reason, ZKPs for
NP-complete problems are often called general-purpose proofs. As evidenced by
numerous follow up works, general-purpose proofs have been incredibly useful
to the theory of cryptography.

Early constructions of general-purpose ZKPs required only black-box access
to any one-way function (OWF), i.e., they used the given OWF as an oracle.
A black-box construction of this kind thus depends only on the input/output
behavior of the given cryptographic primitive. In particular, it is independent of
the specific implementation or code of the primitive.

A black-box construction is often preferred over a non-black one due to its
attractive properties. For example, it remains valid even if the primitive/oracle
is based on a physical object such as a noisy-channel or tamper-proof hardware
[4,11,43]. Also, its efficiency does not depend on the implementation details of
the primitive, thus establishing that efficiency can be theoretically independent
of the primitive’s code.

Unfortunately, general-purpose proofs are not suitable when seeking a black-
box construction for some desired cryptographic task since they inherently
require the full code of the underlying relation to perform the NP reduction.
In other words, if the relation requires black-box access to a OWF, the code
of the OWF must be known even though neither the ZKP nor the relation
needs it. In fact, this has been the main reason for the non-black-box nature of
many cryptographic constructions that are otherwise optimal. Analogous black-
box constructions often require significant effort and technical innovation, as
evidenced by the secure computation literature, e.g., [2,6,8–10,17,18,20,22,26–
28,31,32,36,39,42].

In light of the above situation, it is tempting to imagine a “dream version”
of general-purpose proofs where, if the underlying relation R requires black-box
access to a cryptographic function f , say from a specified class such as the class
of OWFs, then so should the general-purpose ZKP for proving membership in
R. We informally refer to such relations as black-box relations. Such a result, if
possible, would greatly simplify the task of future black-box constructions and
potentially unify the diverse set of techniques that exist in this area.

As one might suspect, this dream version is too good to be true. In his beau-
tiful work, Rosulek [41] rules out ZKPs for proving membership in the range
of a OWF f given as an oracle. More specifically, assuming injective OWFs,
Rosulek rules out (even honest-verifier) witness-hiding protocols [7] for the rela-
tion Rf = {(y, x) | y = f(x)} where f is chosen from the class of all OWFs and
provided as an oracle to the protocol.
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In contrast to the negative result for OWFs, a large body of literature
constructs so-called black-box commit-and-prove protocols [18,19,23,27,30,33].
Informally speaking, a commit-and-prove protocol between a committer and a
receiver ensures that at the end of the protocol, the committer is committed to
some hidden value satisfying a pre-defined property. This primitive can be con-
structed with only black-box access to an ordinary commitment scheme which
may originally not support any proofs whatsoever. In many situations, commit-
and-prove protocols serve as a good substitute for ordinary commitments; more-
over, their ability to support proofs over committed values makes them a great
tool for constructing larger black-box protocols.

In hindsight, we can view black-box commit-and-prove protocols as an alter-
native to bypass the aforementioned negative result of [41]. That is, instead of
constructing ZKP directly for every OWF, we ask the following indirect question:

Given only black-box access to a OWF f , can we construct a new OWF
F and a ZKP system ΠF for proving membership in the range of F?

Of course, we can ask for general properties instead of merely range-membership.
The idea is that F can be used as a substitute for f in any computation C(·)

that requires only black-box access to OWFs. More importantly, it gives hope
that general-purpose black-box ZKPs for proving the correctness of computation
C(·) may be possible since the correctness of responses from F can be ensured
using ΠF , all while requiring only black-box access to f . We remark that we do
not obtain such a result for general computations in this work and merely point
out that the existence of (F,ΠF ) may open a path towards it.

We call the pair (F,ΠF ) a proof-based one-way function (PB-OWF). Analo-
gously, we consider proof-based versions of other primitives, specifically pseudo-
random generators (PRGs) and collision-resistant hash functions (CRHFs).
Motivated by the aforementioned possibility of a general-purpose proof system
for black-box cryptographic computations C(·), this paper initiates a study of
black-box constructions of proof-based cryptographic primitives. We obtain a
mix of both negative and positive results as outlined below.

1.1 Our Results

Given the existence of black-box commit-and-prove protocols, it is not unreason-
able to expect that black-box proof-based versions of OWFs, PRGs, and CRHFs
might also exist. Interestingly, the fact that these primitives are deterministic
functions really separates them from commitments. The existence of their proof-
based versions seems to depend on how we view the input, as discussed below.

Negative Results via Black-Box Separation. In common applications of
non-interactive primitives such as OWFs and PRGs, the entire input is usually
controlled by the evaluator of these functions. We show that proof-based PRGs
where the input (i.e., the seed) is entirely chosen by the evaluator cannot be
constructed in a black-box manner from an (ordinary) OWF chosen from the
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class of all OWFs. Since PRGs can be constructed in a fully-black-box manner
from OWFs [14,21,24], this separates proof-based PRGs from ordinary PRGs.

More specifically, black-box construction of a proof-based PRG from (ordi-
nary) OWFs consists of a deterministic and efficient oracle algorithm G(·), along
with an efficient protocol, Π(·)

G = 〈P (·), V (·)〉, of two interactive oracle machines.1

For every OWF f , algorithm Gf should be a PRG, and protocol Πf = 〈P f , V f 〉
should be a ZKP system for the relation Rf

G = {(y, x) | s.t. y = Gf (x)}. Then, we
show that a fully-black-box reduction [25,40] from proof-based PRGs to ordinary
OWFs does not exist if the prover chooses the entire seed.

The range-membership relation Rf = {(y, x) | y = f(x)} ruled out in [41] is a
special case of the aforementioned relation Rf

G = {(y, x) | s.t. y = Gf (x)}. In our
terminology, Rosulek rules out a special type of proof-based OWF (F (·),Π(·)

F )
where F is just a “delegate” for the oracle OWF; i.e., it returns the oracle’s
response when queried on the given input. This is captured in [41] by formally
defining the notion of functionally-black-box (FBB) protocols. In contrast, the
relation we consider can make polynomially many queries to the oracle on arbi-
trary inputs and compute over the responses to produce the output. We extend
the notion of FBB protocols to formally capture these extensions.

In part due to these differences and our overall goals, our negative result is
incomparable to that of Rosulek’s. While Rosulek rules out black-box proofs for
range-membership for OWFs assuming injective OWFs, ours is only a black-box
separation, albeit without any additional assumptions. A black-box separation
is the best one can hope for in our setting since non-black-box constructions of
proof-based OWFs that use the code of the oracle trivially exist.

Positive Results. We next investigate whether mild restrictions on the inputs
can help bypass the black-box separation result. One option is to consider mod-
ifications along the lines of the Goldreich-Levin (GL) hardcore predicate [14],
where one considers a OWF F constructed from any given OWF f on inputs of
the form (x, r). This makes it possible to show that predicate hc(x, r) := ⊕i(xi·ri)
is hardcore for the modified function F (x, r) := r‖f(x) even though a hardcore
predicate for arbitrary OWFs is still unknown. These changes to the function
and the input do not seem to significantly affect the applicability of their result.

We adopt a similar approach to construct proof-based primitives. Continuing
with OWFs as example, we seek to construct a proof-based OWF F (·) which can
be instantiated with only black-box access to any OWF f , and takes inputs of
the form (x, r). As in the GL setting, x will act as the “main input” chosen
by the evaluator/prover, and r will be publicly accessible from the output of
F f (x, r). However, in a crucial difference, r will be chosen by the verifier during
the execution of ZKP Πf

F . There are no other restrictions on any of the objects.
Some remarks are in order.

1 Note that the protocol is allowed to depend on G(·) but not on the oracle which may
be arbitrarily chosen later. The same holds for the relation Rf

G introduced next.
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1. In light of our black-box separation result, it is essential to let the verifier
choose r since no other restrictions are present. This means that the compu-
tation of y = F f (x, r) must be performed during the proof. We formalize this
by modeling Πf

F as a secure two-party computation protocol for evaluating the
functionality that on inputs x and r from relevant parties, returns y. The ZK
property is captured by requiring simulation-based security against malicious
receivers; for soundness we only require that the honest verifier, with high
probability, does not output a y∗ that is not in the range. This is effectively
a black-box ZKP for the relation Rf

F (r) = {(y, x) | s.t. y = F f (x, r)}.2
2. The verifier must choose r from an unpredictable distribution such as the

uniform distribution over sufficiently long strings, since otherwise, the sound-
ness would be impossible as a cheating prover can simply guess r, bringing
us back to the setting of the separation result.

3. Since r may be maliciously chosen by the verifier to violate the one-way
property of F f , we require that for every string r, the function defined by
F f (·, r) is one-way as long as f is one-way.

We follow the same approach for formally defining proof-based versions of PRGs
and CRHFs. Having settled on a satisfactory definition, we present black-box
constructions of the proof-based versions of OWFs (for range membership), as
well as PRGs and CRHFs, directly from their ordinary counterparts.

Theorem 1 (Informal). There is a fully black-box construction of proof-
based primitive as described above for range-membership and two-party
inputs of the form (x, r), assuming that primitive exists, where primitive ∈
{OWF,PRG,CRHF}.

At first glance, one may wonder whether black-box commit-and-prove proto-
cols already yield proof-based OWFs. That is, the commit phase of such protocols
can be viewed as a one-way function over the input (x, r) where x is the value
to be committed and r is the randomness, the output y is the transcript of the
commit-phase, and the proof-phase plays the role of associated ZKP. This app-
roach does not really work since the commit-and-prove protocols merely bind
the prover to a well-defined value x. They do not guarantee that w.h.p. every
accepting transcript has a valid “preimage” (x, r) that maps to it. In contrast,
the soundness of range-membership proofs of proof-based OWFs requires that
w.h.p. a preimage must exist for the output accepted by the honest verifier. At
a technical level, the black-box commit-and-prove protocols are based on cut-
and-choose techniques that can only guarantee that the accepted value is close
to an honestly generated value, which is insufficient to guarantee a preimage.

Extensions. We show that it is possible to construct a slightly more general
proof-system than merely range-membership for each of our proof-based primi-
tives. Continuing with the OWF example, we can construct a black-box proof-
based OWF F f such that for any predicate φ, the verifier learns a value y with
2 For now, we only focus on range-membership proofs. The definitional approach is

consistent with the commit-and-prove literature, although there are important dif-
ferences since we are dealing with deterministic primitives.
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the guarantee that there exists an input (x, r) such that: (1) y = F f (x, r) where
r is chosen uniformly by the honest receiver, (2) x = α‖x′, and (3) φ(α) = 1.
That is, we can support any predicate (in fact, computation of any function)
over a prefix of the preimage of the output. The ZKP system here depends on
the code of φ but not that of f as before.

This extension is motivated by similar results for commit-and-prove which are
quite useful in constructing larger black-box protocols [18,30]. We achieve this by
presenting a new construction which combines our ideas for range-membership
with the “MPC-in-the-head” technique [27].

Due to space constraints, these extensions are formally described in the full
version [35].

2 Technical Overview

2.1 Black-Box Separation

We first present a very brief overview of our black-box separation. A detailed
overview is given in Sect. 4.2 after setting up necessary notation and definitions.

Let us first recall how Rosulek [41] rules out FBB constructions of honest-
verifier witness-hiding (HVWH) protocols for the range-membership of OWFs,
assuming injective OWFs exist.

The proof starts by assuming that such protocols exist. In particular, when
instantiated with an injective OWF f , the protocol (P f , V f ) is HVWH for Rf =
{(y, x) | s.t. y = f(x)}. Since f is injective, for a pair (x∗, y∗ = f(x∗)) remapping
f(x∗) to a value different from y∗ will give us a new OWF f ′ whose range does
not contain y∗ anymore. Moreover, the verifier accepts in 〈P f (x∗, y∗), V f ′

(y∗)〉
with roughly the same probability as in 〈P f (x∗, y∗), V f (y∗)〉. This is because
the only opportunity to distinguish these two executions is when the verifier
queries its oracle on x∗; but this happens with negligible probability because of
the HVWH property of the protocol. However, this contradicts the soundness:
V ’s oracle now becomes f ′, and �x s.t. (y∗, x) ∈ Rf ′

.
It is unclear how to reuse the above technique to rule out PB-OWFs. As

mentioned earlier, there are no restrictions on how the F (·) part behaves. In
particular, it is not guaranteed that F f is injective even if f is injective. Thus,
“carving out” a value from the range of f may not affect the range of F f .

To derive the desired contradiction, we take a fundamentally different app-
roach to construct f ′. We first define a set QEasy, which consists of only the
queries made by the receiver with “high” probability during the (honest) execu-
tion 〈Sf (x∗, y∗), Rf (y∗)〉. We then define f ′ by maintaining the same behavior
as f on QEasy, and re-sampling all the remaining points uniformly at random.
Note that the receiver will still accept with “high” probability even if we change
its oracle to f ′, because f ′ and f only differ at the points that are queried with
“low” probability (i.e., the points outside QEasy). Now, the only thing left is to
show that y∗ is not in the range of F f ′

. Unfortunately, due to the generality of
F (·), we do not know how to do that.
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However, if we switch our focus to a PB-PRG Gf (instead of PB-OWF F f ),
we can prove the following lemma which helps separate PB-PRGs from OWFs:

Lemma 1 (Informal). If we start with a y∗ in the range of Gf , y∗ is still
in the range of Gf ′

with probability 0.5 ± negl(λ), where G(·) is a PRG when
instantiated with any OWF f as its oracle.

Let us show the intuition behind Lem. 1. Assume the lemma is false. In
the pseudo-randomness game for Gf , we show how to identify the case y∗ ∈
Range(Gf ) correctly, with probability noticeably better than 0.5, thus contra-
dicting pseudo-randomness. To do that, the adversary simply estimates the prob-
ability that y∗ ∈ Range(Gf ′

). We will show that, if this probability is noticeably
far from 0.5, Pr

[
y∗ ∈ Range(Gf )

]
is also noticeably far from 0.5.

Doing this successfully requires the adversary to know QEasy, which it does
not. However, the adversary can run the HVZK simulator many times to get
an estimate Q̃Easy for the real QEasy. We will show that Q̃Easy suffices for our
proof. Note also that the adversary needs to perform exponential work when
computing the probability that y∗ ∈ Range(Gf ′

), even if it knows the set Q̃Easy.
However, it only makes polynomially many oracle queries (when executing the
HVZK simulator), which suffices for proving the fully-black-box separation.

2.2 Proof-Based One-Way Functions (and PRGs)

Let us start by considering the following basic construction for PB-OWF (F f ,Πf
F )

over inputs of the form (x, r). The construction is based on “cut-and-choose” tech-
niques where, the sender queries the oracle f on “blocks” of x, and the receiver
checks a size-t random subset (defined by r) of the responses. This method is not
sound since it can only guarantee that the sender’s response is correct on most but
not all blocks. We will handle this issue by introducing a new idea.

Basic Construction. PB-OWF (F f ,Πf
F ) handles inputs of the form (x, r). F f

computes as follows:3

1. Parse x as (x1, . . . , xn).
2. Interpret r as a size-t (t < n) subset of [n], denoted by {b1, . . . , bt}.
3. Output y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r, where yi = f(xi) for all i ∈ [n].

On input x to Sf and r to Rf , the execution 〈Sf (x), Rf (r)〉 is as follows:

1. Sf parses x as (x1, . . . , xn), and computes (y1, . . . , yn) via its oracle access to
f (i.e., yi = f(xi)). It sends (y1, . . . , yn) to the receiver.

2. Rf sends its input r to Sf . Same as in F f , the r specifies a size-t subset
{b1, . . . , bt} of [n]. Recall that the honest receiver’s input r is random. In this
case, {b1, . . . , bt} is a random subset of [n].

3. Sf sends (xb1 , . . . , xbt), i.e., the xi’s whose indices are specified by r.
4. Rf checks (via its oracle access to f) if ybi = f(xbi) for all i ∈ [t]. If all the

checks pass, Rf output y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r.
3 We use Prover/Verifier and Sender/Receiver interchangeably since our ZKP is cap-

tured by considering a secure computation style definition for two parties.
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Completeness is straightforward; furthermore F f (·, r) is trivially one-way for
every r since t < n and f is a OWF. Let us first consider the honest-verifier
zero-knowledge (HVZK) property of protocol Πf

F .
Recall that the ZK property is defined via the ideal/real paradigm for secure

computation, and requires simulation-security against malicious receivers. Thus,
to prove the HVZK property, we need to show an ideal-world simulator Sim for
the honest receiver. This is easy as the honest receiver will always use the given
input r, which is uniformly distributed. More specifically, Sim works by sampling
a uniform r by itself, sending the r to the ideal functionality, and receiving back
the output y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r. With this y, Sim can easily generate
a simulated transcript that is identically distributed to the real one.

ZK Against Malicious Receivers. The above simulation strategy does not
work for malicious receivers, because they may not use the given input r.
Therefore, the simulator needs to somehow extract the candidate input r∗ from
the malicious receiver. However, the receiver will not give out its r∗ until the
sender/simulator sends the {yi}i∈[n] values.

We point out that this issue cannot be fixed using standard methods such as
requiring the receiver to commit to r and to open it later. This is because later,
we will introduce a pre-image editing condition, and require that the sender’s
computation of F f be consistent with this editing.

We therefore use a different idea. We modify the protocol to use a black-box
commit-and-prove scheme ΠZKCnP = (BBCom,BBProve) with ZK property. This
scheme has a pair of simulators (Sim1,Sim2) that can be used to simulate the
receiver’s view in the commit phase and the prove phase respectively. Our new
Πf

F is the same as before, except for the following changes:

– In Step 1, instead of sending yi’s as before, the sender commits to them using
BBCom. Formally, the sender sets ν = (y1, . . . , yn) and executes BBCom(ν)
with the receiver.

– In Step 3, the sender sends both {xbi}i∈[n] and the value ν. It then proves
using BBProve that this ν is indeed the value committed in BBCom.

As before, the receiver needs (y1, . . . , yn) to execute Step 4. Now, these values
are contained in ν, and BBProve guarantees that the sender cannot change ν.

With these modifications, we can prove the ZK property for malicious
receivers as follows. The simulator starts by running Sim1 (the commit-phase
simulator) with the malicious receiver R∗f . In this way, the simulator can go
through Step 1 smoothly, without knowing the actual {yi}i∈[n] values. Then, it
will receive the r∗ from R∗f . The simulator sends r∗ to the ideal functionality
and receives back y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r∗. It sends ν = (y1, . . . , yn)
and (xb1 , . . . , xbt) to the receiver. Then, instead of executing BBProve, the sim-
ulator invokes Sim2 to help itself go through the BBProve stage. It is easy to see
that the ν and {xbi}i∈[t] sent by the simulator meet the consistency requirement
in Step 4. Relying on the ZK property of ΠZKCnP, one can formally prove that
the simulation is done properly.
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Soundness and Preimage Editing. As mentioned earlier, the “cut-and-
choose” structure is not sufficient to guarantee the existence of a preimage. To
see that, consider a malicious sender who picks an i∗ ∈ [n] at random, sets yi∗ to
some value not in the range of f , or behaves honestly otherwise. This malicious
sender can still make the honest receiver accept with non-negligible probability,
even if t is as large as n − 1 (the upper bound for t to achieve any non-trivial
ZK property). This is addressed by modifying the construction of F f .

We start by noting that the “cut-and-choose” trick ensures that most of the
yi’s are “good” (i.e., having preimages under f). For example, if t is a constant
fraction of n, then the protocol ensures (except for negligible probability) that at
most k of the yi’s are “bad”, where k is another constant fraction of n. Therefore,
our idea is to extend the range of F f to include all the images y that have ≤ k
bad yi’s. More specifically, our new F f works as follows. On input (x, r), it still
interprets r as {b1, . . . , bt}. But it will parse x as

x = (x1, . . . , xn)‖ (p1, y
′
p1

), . . . , (pk, y′
pk

)
︸ ︷︷ ︸

β

,

where the {p1, . . . , pk} form a size-k subset of [n]. The evaluation of F f (x, r)
consists of two cases:

– Non-Editing Case: if {b1, . . . , bt} ∩ {p1, . . . , pk} 	= ∅, then it com-
putes y as before, ignoring the β part. That is, it outputs y =
(s1, . . . , sn)‖(xb1 , . . . , xbt)‖r, where si = yi for all i ∈ [n].

– Editing Case: if {b1, . . . , bt} ∩ {p1, . . . , pk} = ∅, then at positions
specified by pi’s, it replace ypi

with y′
pi

. Namely, it outputs y =

(s1, . . . , sn)‖(xb1 , . . . , xbt)‖r, where si :=

{
y′

i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk} .

Let us explain how this editing technique resolves the soundness issue. Consider
a y∗ learned by the honest receiver with input r. As mentioned before, there
are at most k yi values (among those contained in y∗) that do not have preim-
ages under f . These values can be expressed as {y∗

p1
, . . . , y∗

pk
}, i.e., their indices

are {p1, . . . , pk}. Moreover, this set of bad indices does not overlap with the
{b1, . . . , bt} specified by r; otherwise, the receiver would abort when performing
the checks in Step 4. Therefore, by setting the β part to (p1, y

∗
p1

), . . . , (pk, y∗
pk

),
we will obtain a valid preimage for y∗ under our new F f (·, r).

One may wonder whether a malicious sender can cheat by taking advantage
of the editing case. However, since the honest receiver will use a random r,
the set {b1, . . . , bt} will always overlap with {p1, . . . , pk} (except for negligible
probability). That is, although we prove soundness by relying on the editing
case, it almost never happens in a real execution. So, this will not give malicious
senders any extra power.

We remark that the above preimage-editing idea is compatible with our tech-
nique for achieving (full) ZK. Now, the sender will append (y1, . . . , yn) and β to
the committed value ν. Upon receiving Rf ’s challenge r, the sender computes
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s = (s1, . . . , sn) according to the above definition of F f . It sends both s and
{xb1 , . . . , xbt} to the receivers. Then, it runs BBProve to prove that it does the
editing (or non-editing) honestly. Note that this statement can be expressed as
a predicate on the values s, r, β, and {yi}i∈[n], where the last two are commit-
ted in BBCom(ν). Since it does not involve the code of f , the protocol remains
black-box in f . We provide more details in Sect. 5.2.

Proof-Based PRGs. Following the above paradigm, we also obtain a proof-
based PRG by simply replacing the oracle OWF f with a PRG in the above
PB-OWF construction. We provide a formal treatment in the full version [35].

2.3 Proof-Based Collision-Resistant Hash Functions

Recall that a PB-CRHF consists of a function Hh and a protocol Πh
H such that

for any CRHF h:

– For all r, Hh(·, r) is a CRHF; and
– Πh

H = (Sh, Rh) is protocol satisfying similar completeness, soundness and ZK
properties as for our PB-OWFs, but w.r.t. Hh.

Let us first try to reuse the idea from our PB-OWFs. On input (x, r), the Hh

first parses x as (x1, . . . , xn)‖β, where the β has the same structure as before,
for the purpose of preimage editing. It then generates {yi}i∈[n] where yi = h(xi),
and outputs y = s‖(xb1 , . . . , xbt)‖r, where the value s = (s1, . . . , sn) is computed
by editing {yi} (in the same way as for our PB-OWFs).

Since h is also a OWF, the Hh is surely one-way. However, it is not collision-
resistant. To see that, recall that in the non-editing case, the β part is not used
when computing Hh(x, r). This implies the following collision-finding attack. For
a fix r, the adversary first computes y∗ = Hh(x∗, r) with an x∗ whose β part does
not trigger the editing condition. Then, it can easily find many preimages for
y∗ by using different β’s, as long as they do not trigger the editing condition.
Therefore, we need to come up with a new editing method that does not com-
promise collision resistance.

To do that, we modify Hh as follows. We sample a public string z and hard-
wire it in Hh. In this way, Hh

z can be viewed as a member of the public-coin
collision-resistant hash family indexed by z, instead of a single CRHF. Then, we
can think of x as containing additionally two strings τ and μ. When evaluating
Hh

z (x, r), we will perform the editing if {b1, . . . , bt} ∩ {p1, . . . , pk} = ∅ and α 	= z
and h(τ) = h(z). Moreover, we include the value t = h(β‖τ‖μ) in the output y.
Intuitively, this hash of β in y prevents the adversary from constructing collisions
using a different β.

We now explain how to perform editing in this setting. First, we will include
in x an additional value τ such that τ 	= z and h(τ) = h(z). This allows us
to trigger the editing condition. With z sampled randomly, it is not hard to
see that such a τ exists with overwhelming probability4. We can then set β as
4 This holds if the size of range of h is exponentially larger than its image space. It

is also worth noting that τ does not need to be efficiently computable, because our
soundness proof (or the editing technique) is only an existential argument.
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before to ensure that the (x1, . . . , xn) part is “edited” properly. However, note
that the y∗ here contains additionally a t∗ value. To handle this, we modify the
construction of Hf

z slightly—We require that, when the editing condition is
triggered, Hf

z sets t = μ in its output y. With this change, when performing
editing, we can simply let μ equal the t∗. It is not hard to verify that this editing
technique will lead to a valid preimage for y∗.

Finally, we remark that our real construction uses a Merkle tree for the prefix
(x1, . . . , xn) of x. We only put the Merkle root in y, instead of the element-wise
hash values described above. The soundness can be proved following essentially
the same idea as above, except that we now “edit” the Merkle tree, which is done
by extending the editing ideas to the tree setting. This allows us to compress a
prefix of any length to a fixed-length string, such as 256 bits if using SHA256 for
h. We refer the reader to Sect. 6 for a formal treatment of PB-CRHF.

2.4 Supporting Predicates

We discuss how to extend our constructions using “MPC-in-the-head” to addi-
tionally guarantee not only that the output learned by the receiver is in the
range of the deterministic primitives, but also that the set of preimages contains
one whose prefix satisfies some predicate φ.

Let us take a fresh look at the PB-OWF construction. It first parses the
input as x = α‖β. The β is for preimage editing; and the α = (x1, . . . , xn) can be
regarded as a form of Encoding the prefix of x, i.e. Enc(α) = (x1, . . . , xn). Then,
it computes yi = f(xi) for all i ∈ [n]. Since this is mainly to introduce hardness
(or one-wayness) to the final output, we can refer to this step as Hardness
Inducing.

To support the proof of a predicate φ, we update the construction with
new Encoding and Hardness Inducing methods. We first secret-share α to
([α]1, . . . , [α]n) using a verifiable secret sharing (VSS) scheme. This can be viewed
as a new encoding method: Enc(α) = VSS(α) = ([α]1, . . . , [α]n).

Next, we commit to these shares using Naor’s commitment [38], which can
be built in black-box from the oracle OWF f . This can be thought of as a new
Hardness Inducing method. Now, the output of F f is of the following form:

F f (x, r) = (Com([α]1), . . . ,Com([α]n))‖([α]b1 , . . . , [α]bt)‖r.

In the protocol Πf
F , we additionally ask the sender to compute the value φ(α)

using the MPC-in-the-head technique. That is, the sender imagines n virtual
parties {Pi}i∈[n], where Pi has [α]i as its input. These n parties then execute a
MPC protocol w.r.t. to the ideal functionality, which recovers α from the VSS
shares, and outputs φ(α) to each party. Let vi denote the view of party i from
the execution. The sender first commits to these views, and then opens some of
them (picked by the receiver) for the receiver to check that the MPC for φ(α)
was performed honestly. In this way, the receiver not only learns φ(α), but also
believes that the sender did not cheat.
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Finally, we make a few remarks:

– To achieve soundness, we also need to apply the preimage editing idea to the
above construction.

– Both the VSS and Com require randomness, which can come from x. That is,
we require that the x is long enough such that it also contains an η part (in
addition to α and β). This η will provide the randomness for VSS and Com.

– The above approach applies directly to the PB-PRG and PB-CRHF construc-
tions to make them support predicates on the α part of the preimage.

3 Preliminaries

Familiarity with basic cryptographic concepts such as ensembles, indistinguisha-
bility, and interactive Turing machines, etc. are assumed; we refer to [12,13] for
formal treatments of these. We also provide additional preliminaries in the full
version [35].

Notations. We use “\” to denote set difference. That is, for any two sets A and
B, A \ B := {x : (x ∈ A) ∧ (x /∈ B)}. The security parameter is denoted by λ.
Symbols

c≈,
s≈ and i.d.== are used to denote computational, statistical, and perfect

indistinguishability respectively; and negl(λ) denotes negligible functions of λ.
For a distribution D, x ← D means that x is sampled according to D. Unless
emphasized otherwise, we assume uniform distribution by default. We use y ∈ D
to mean that y is in the support of D. For a set S we overload the notation by
using x ← S to indicate that x is chosen uniformly at random from S. PPT
denotes probabilistic polynomial time.

Let p be a predicate and D1,D2, . . . probability distributions, then the nota-
tion Pr

[
x1 ← D1;x2 ← D2; . . . : p(x1, x2, . . .)

]
denotes the probability that

p(x1, x2, . . .) holds after the ordered execution of the probabilistic assignments
x1 ← D1;x2 ← D2; . . .. The notation {x1 ← D1;x2 ← D2; . . . : p(x1, x2, . . .)}
denotes the new probability distribution over {(x1, x2, . . .)}.

Black-BoxZero-KnowledgeCommit-and-Prove.We need a zero-knowledge
commit-and-prove protocol ΠZKCnP with the following additional properties:

– it consists of two separate phases: a Commit phase BBCom and a Prove
phase BBProve;

– the Commit phase itself constitutes a statistically-binding commitment
scheme;

– for a public predicate φ(·), the Prove phase constitutes a zero-knowledge
argument for the value φ(x), where x is the value committed in BBCom;

– ΠZKCnP can be constructed assuming only black-box access to OWFs.

A formal definition can be found in the full version [35]. There exist constructions
satisfying the above requirements (e.g., [2,18,27]).

The “One-Oracle” Separation Technique. We first recall in Def. 1 the
notion of fully-black-box reductions. We say that P cannot be obtained from
Q in a fully-black-box way if there is no fully-black-box reduction from Q to P .
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Definition 1 (Fully-Black-Box reductions [40]). There exists a fully-black-
box reduction from a primitive Q to a primitive P , if there exist PPT oracle
machines G and S such that:

– Correctness: For every (possibly-inefficient) f that implements P , Gf

implements Q;
– Security: For every (possibly-inefficient) f that implements P and every

(possibly-inefficient) machine A, if A breaks Gf (w.r.t. Q-security), then SA,f

breaks f (w.r.t. P -security).

A paradigm to rule out fully-black-box constructions is to design an oracle
O, and show that, relative to O, primitive P exists but Q does not. A critical
step in this proof is to construct an oracle machine AO that breaks the security
of Q. We emphasize that A is allowed to be computationally unbounded, as long
as it only makes polynomially-many queries to O (see e.g., [1,25]). Our fully-
black-box separation results in Sect. 4 will follow this paradigm.

4 The Impossibility Results

4.1 Meta-functionally Black-Box Constructions

Functionally Black-Box Protocols. To capture MPC protocols that “do not
know” the code of the target function g, Rosulek [41] proposes the following
notion of functionally-black-box protocols.

Definition 2 (Functionally-Black-Box Protocols [41]). Let C be a class of
functions, and let F (·) be an ideal functionality that is an (uninstantiated) oracle
machine. Let A(·) and B(·) be PPT interactive oracle machines. Then, we say
that (A(·), B(·)) is a functionally-black-box (FBB) protocol for FC in a certain
security model if, for all g ∈ C, the protocol (Ag, Bg) is a secure protocol (in the
model in question) for the ideal functionality Fg.

By instantiating C and F (·) properly, Def. 2 could capture black-box con-
structions of many useful cryptographic protocols. For example, let Cowf be the
collection of OWFs. For any g ∈ Cowf, let Fg

zk be the functionality that takes
input x from party A, queries its oracle g to obtain y = g(x), and outputs y to
party B. Such an Fg

zk is essentially a zero-knowledge argument (of knowledge)
functionality for statements of the form “∃x s.t. g(x) = y”. However, Rosulek
showed that if injective OWFs exist, then it is impossible to have FBB protocols
that implement FCowf

zk with semi-honest security (in the standard MPC setting),
even in the presence of an arbitrary trusted setup. Given the broad application
of ZK proofs, this result is quite discouraging.

Meta-FBB Functionalities. Observe that the above Fg
zk functionality simply

collects input x from A, queries its oracle g, and sends g(x) to B. It only plays
the role of a delegate for A and B to interact with the OWF g. Therefore, it
is temping to investigate whether we can circumvent Rosulek’s lower bound by
allowing the “delegate” Fzk to perform extra computations, such as preprocess-
ing x, post-processing g(x), or making multiple queries to the oracle g, etc.
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More formally, we want a non-cryptographic and deterministic computation
F (used to capture the aforementioned extra computations), such that C′

owf =
{F g | g ∈ Cowf} is a collection of OWFs. And we hope that there exists a FBB
protocol (Ag, Bg) implementing FF g

zk for all F g ∈ C′
owf (we can also denote it as

FC′
owf

zk ). Note that we require (A(·), B(·)) to access g in a black-box way only; they
can make use the code of F . Since C′

owf is also a collection of one-way families,
FC′

owf
zk can be used as a substitute for FCowf

zk , with the only overhead coming from
the computations represented by F (·). Because F (·) is supposed to contain only
simple non-cryptographic operations, the implementation of FC′

owf
zk should be as

efficient as that of FCowf
zk . Therefore, if this approach is possible, it will alleviate

the negative implications of Rosulek’s lower bound.
We can also interpret FC′

owf
zk as a new FBB functionality FCowf

zk [F ], i.e., a new
oracle machine F (·)

zk [F ] to be instantiated with oracle OWFs from the original
collection Cowf. For any g ∈ Cowf, Fg

zk[F ] collects the input X from Party A,
evaluates F g(X), and sends y = F g(X) to Party B.

With this interpretation, FC′
owf

zk is just an instantiation of Def. 2 with F (·) =
F (·)

zk [F ] and C = Cowf. To distinguish with Rosulek’s F (·)
zk functionality. We call

F (·)
zk [F ] the Meta-FBB ZK Functionality. Similarly, one can also extend other

FBB functionalities in [41] (e.g., 2-party secure function evaluation F (·)
sfe, pseudo-

random generator F (·)
prg, where sender A holds the seed and receiver B holds the

key) to the corresponding Meta-FBB version.

4.2 The Main Theorem

In this part, we show that although we relax Rosulek’s FBB notion to the Meta-
FBB one, there still exists strong impossibility result. More specifically, we prove
that, given only black-box access to OWFs, it is impossible to build a PRG that
admits Meta-FBB honest-verifier zero-knowledge protocols.

Definition 3 (Fully-Black-Box PRGs from OWFs). Let C be the collection
of OWFs. A (deterministic) polynomial-time oracle machines G(·) is a fully-
black-box construction of PRG from OWF if there exists a PPT oracle machines
A(·,·) such that:
– Correctness: ∀f ∈ C, Gf is a PRG;
– Security: ∀f ∈ C and every (possibly inefficient) machine M , if M breaks

the pseudo-randomness of Gf , then AM,f breaks the one-wayness of f .

Theorem 2 (Main Theorem). Let C = {f | f is a OWF}. There does not
exist a (deterministic) oracle machine G(·) such that
1. G(·) is a fully-black-box construction of PRG from OWF; and
2. for all f ∈ C, there exists a stand-alone, Meta-FBB, honest-verifier zero-

knowledge argument system Πf = 〈P f , V f 〉 for the functionality Ff
zk[G].

Before showing the full proof in Sect. 4.3, let us provide the high-level idea.

Proof Sketch. We start by assuming (for contradiction) that the G(·) and Π(·)

specified in the theorem exist. We will construct a special oracle denoted as
O � QEasy (explained later) such that:
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1. The oracle O � QEasy is one-way. Thus, GO�QEasy

will be a PRG and ΠO�QEasy

will
be the HVZK system for the language L = {Y : ∃X s.t. Y = GO�QEasy

(X)}.
2. There exist a Ÿ /∈ L (the false statement) and a PO�QEasy

(the cheating prover
P with the oracle O � QEasy) that is able to make V O�QEasy

(Ÿ ) accept.

This will give us the desired contradiction as it breaks the soundness of the
protocol ΠO�QEasy

.
Toward the above goal, we first sample two random oracles O, O′, a ran-

dom string X, and compute Y = GO(X). Let Q = {(q1,O(q1)), . . . , (qt,O(qt))}
denote the query-answer pairs exchanged between G and its oracle O dur-
ing computation Y = GO(X). We now define the oracle O′ � Q(q) :={
O(q) if (q,O(q)) ∈ Q

O′(q) otherwise
. It is not hard to verify that Y = GO′�Q(X). By com-

pleteness, V will accept with probability 1 − δc (where δc is the completeness
error) in the execution ExecO

′�Q
X,Y = 〈PO′�Q(X,Y ), V O′�Q(Y )〉.

Note that during ExecO
′�Q

X,Y , the verifier may make queries to its oracle O′ �Q.
We define a set of “easy” queries:

QEasy := {(q,O(q))
∣
∣ V queries q with “high” probability during ExecO

′�Q
X,Y }.

Let QHard be the set difference Q \ QEasy. It is not hard to see that Y =
GO′�(QEasy∪QHard)(X). By completeness, V will accepts with probability 1 − δc

in the execution Exec
O′�(QEasy∪QHard)
X,Y .

Now, consider the execution 〈PO′�(QEasy∪QHard)(X,Y ), V O′�QEasy

(Y )〉, which is
identical to Exec

O′�(QEasy∪QHard)
X,Y except that we remove the QHard from the verifier’s

oracle. In this execution, the probability that V accepts will not differ too much
from that in Exec

O′�(QEasy∪QHard)
X,Y , because the queries in QHard are asked by V with

only “low” probability.
We then prove that Y is in the range of GO′�QEasy

(·) with probability at most
0.5 (up to negligible error). But the previous argument says that V O′�QEasy

(Y )
accepts with probability close to 1. It then follows from an averaging argument
that there exists “bad” Ö, Ö′ and Ẍ5 such that Ÿ = GÖ(Ẍ) is not in the range
of GÖ′�Q̈Easy

(·), but V Ö′�Q̈Easy

(Ÿ ) can be convinced with probability close to 1, by
the malicious prover P Ö′�(Q̈Easy∪Q̈Hard)(Ẍ, Ÿ ) (which can be viewed as an oracle
machine PÖ′�Q̈Easy

with non-uniform advice Ẍ, Ÿ , and Q̈Hard). This breaks the
soundness of ΠÖ′�Q̈Easy

, thus completing the proof.
We remark that proving Y is in the range of GO′�QEasy

(·) with probability
≤ 0.5 (up to negligible error) is the most involved part. And this is where the
HVZK property of Π(·) plays an essential role. Roughly, we will show that if
this claim does not hold, then there exists an adversary AO

prg that can break the

5 Note that these values already determine the sets Q̈, Q̈Easy, and Q̈Hard as defined
above.
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pseudo-randomness of GO(·) by making polynomially many oracle queries. As
we will explain later, this reduction requires AO

prg to know the set QEasy w.r.t.
the challenge string Y in the security game of PRG. But note that AO

prg does
not know the preimage X (if Y is indeed in the range), which is necessary to
figure out QEasy. This is where the HVZK simulator comes to our rescue. We
will run the simulator SimO

V (Y ) repeatedly for (polynomially) many times to get
an estimate Q̃Easy for the set QEasy. This Q̃Easy will be good enough to finish our
proof. A more detailed overview of this strategy is provided in Sect. 4.4.

4.3 Proof of Thm. 2

Assume for contradiction that there exists an oracle machine G(·) and a protocol
〈P (·), V (·)〉 such that given the access to any one-way function {fn}n∈N:

1. Gfn : {0, 1}� → {0, 1}�+1 is a PRG (
 and n are polynomially related); and
2. Π = 〈P fn , V fn〉 is a semi-honest zero-knowledge argument system for the

Meta-FBB functionality Ffn
zk [G].

We first recall the following lemma, which says that the measure-one of
randomly-sampled oracles is one-way.

Lemma 2 (One-Wayness of Random Oracles [25,44]). Let O = {On}n∈N

be a collection of oracles where each On is chosen uniformly from the space of
functions from {0, 1}n to {0, 1}n. With probability 1 over the choice of O, O is
one-way against unbounded adversaries that make only polynomially many oracle
queries to O.

Let both O = {On}n∈N and O′ = {O′
n}n∈N be defined (independently) as in

Lem. 2. It follows from Lem. 2 that, with probability 1, both O and O′is one-way.
In the following, we show two hybrids. From the second hybrid, we will con-

struct a malicious prover breaking the soundness of Π(·) (with the oracle being
instantiated by a special one-way oracle defined later). This will give us the
desired contradiction, and thus will finish the proof of Thm. 2.

Notations. We first define some notations. For an oracle H and a set of tuples
S = {(q1, a1), . . . , (qt, at)}, we define a new oracle H � S as follows: if q equals
some qi for which there exists a pair (qi, ai) in the set S, the oracle H �S returns
ai; otherwise, it returns H(q). Formally,

H � S(q) =

{
H(q) if q /∈ {q1, . . . , qt}
ai if q = qi ∈ {q1, . . . , qt}

Hybrid H0. This hybrid samples Xn ← {0, 1}�(n), and computes Yn =
GOn(Xn). W.l.o.g., we assume that G on input Xn makes t(n) distinct
queries to its oracle On, where t(n) is a polynomial of n. Let Qn ={(

q1,On(q1)
)
, . . . ,

(
qt,On(qt)

)}
be the query-answer pairs during the compu-

tation Yn = GOn(Xn).
Let ExecO

′
n�Qn

Xn,Yn
= 〈PO′

n�Qn(Xn, Yn), V O′
n�Qn(Yn)〉 denote the execution where

P proves to V that there exists an Xn such that Yn = GO′
n�Qn(Xn). Note
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that during this execution, the verifier may query to its oracle O′
n � Qn. For

each qi ∈ {0, 1}n, let pi denote the probability that qi is queried by V during
Exec

O′
n�Qn

Xn,Yn
. Let QEasy

n defines the set of “easy” queries and their corresponding
answers:

QEasy
n :=

{(
qi,O

′
n � Qn(qi)

) ∣
∣ pi ≥ 1

t(n) · n
during Exec

O′
n�Qn

Xn,Yn

}
. (1)

Let QHard
n be the set difference Qn \QEasy

n . We remark that Qn and QEasy
n ∪QHard

n

may not be the same, but it must hold that Qn ⊆ QEasy
n ∪ QHard

n .
Looking ahead, we will instantiated G(·) and Π(·) with the oracle O′

n�(QEasy
n ∪

QHard
n ). Note that G(·) and Π(·) will have the desired property only if they are

instantiated with one-way functions. Therefore, we show in Claim 3 that the
composed oracle O′

n � (QEasy
n ∪QHard

n ) is one-way. It is worth noting that the one-
wayness of this composed oracle is independent of the choice of {Xn}, though
the definition of Qn, QEasy

n and QHard
n depends on Xn.

Claim 3. The collection of oracles
{
O′

n � (QEasy
n ∪ QHard

n )
}

n∈N
defined above is

one-way with probability 1, where the probability is taken over the sampling of
O = {On}n and O′ = {O′

n}n, and is independent of the distribution of {Xn}n∈N.

Proof. The query-answer pairs in QEasy
n and QHard

n are of the form
(
q,On(q)

)
or(

q,O′
n(q)

)
. Although Xn decides which (q, ∗)6 will be in QEasy

n and QHard
n , the

answer part On(q)’s and O′
n(q)’s are uniformly distributed, independent of Xn.

That is, if On and O′
n are sampled randomly, then for any Xn ∈ {0, 1}�(n),

O′
n � (QEasy

n ∪ QHard
n ) will also be a random oracle. Therefore, for any {Xn}n∈N

where Xn ∈ {0, 1}�(n), the following holds

{
O′

n � (QEasy
n ∪ QHard

n )
}

n∈N

i.d.== {O′′
n}n∈N,

where each O′′
n is sampled uniformly from the space of functions from {0, 1}n to

{0, 1}n. Since it follows from Lem. 2 that {O′′
n}n∈N is one-way with probability

1, so is
{
O′

n � (QEasy
n ∪ QHard

n )
}

n∈N
. ��

Claim 3 (together with our assumption) implies that, with probability 1 taken
over the sampling of O and O′:

– GO′
n�(QEasy

n ∪QHard
n ) : {0, 1}�(n) → {0, 1}�(n)+1 is pseudo-random against all

(unbounded) adversaries that make polynomially many queries to the ora-
cle O′

n � (QEasy
n ∪ QHard

n ); and
– ΠO′

n�(QEasy
n ∪QHard

n ) is a semi-honest zero-knowledge argument system for the
Meta-FBB functionality FO′

n�(QEasy
n ∪QHard

n )
zk [G].

Let Exec
O′

n�(QEasy
n ∪QHard

n )
Xn,Yn

denote the execution 〈PO′
n�(QEasy

n ∪QHard
n )(Xn, Yn),

V O′
n�(QEasy

n ∪QHard
n )(Yn)〉. Let Exec

O′
n�(QEasy

n ∪QHard
n )

Xn,Yn
= 1 denote the event that the

6 The symbol “∗” denotes the wildcard that matches any answer to q.
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verifier accepts at the end of this execution. Claim 3 and the completeness of
ΠO′

n�(QEasy
n ∪QHard

n ) imply that:

Pr
O,O′

[
For sufficient large n ∈ N, ∀Xn ∈ {0, 1}�(n), Yn = GOn(Xn),

Pr
[
ExecO

′
n�(QEasy

n ∪QHard
n )

Xn,Yn
= 1

]
≥ 1 − δc(n)

]
= 1, (2)

where the inner probability is taken over the random coins of the prover and the
verifier during Exec

O′
n�(QEasy

n ∪QHard
n )

Xn,Yn
, and δc(n) is the completeness error.

Hybrid H1. This hybrid is identical to the previous one, except that H1 executes
the protocol

〈PO′
n�(QEasy

n ∪QHard
n )(Xn, Yn), V O′

n�QEasy
n (Yn)〉. (3)

(Compared with the execution Exec
O′

n�(QEasy
n ∪QHard

n )
Xn,Yn

in H0, the only difference is
that H1 remove QHard

n from the verifier’s oracle.)
As mentioned in the Proof Sketch of Thm. 2, we want to show that the

verifier accepts in Execution 3 with probability close to that in the execution
Exec

O′
n�(QEasy

n ∪QHard
n )

Xn,Yn
. This is formalized as Claim 4.

Claim 4. With probability 1 taken over the sampling of O and O′, for suffi-
ciently large n ∈ N, it holds that ∀Xn ∈ {0, 1}�(n) and Yn = GOn(Xn),

Pr
[
〈PO′

n�(QEasy
n ∪QHard

n )(Xn, Yn), V O′
n�QEasy

n (Yn)〉 = 1
]

≥ Pr
[
Exec

O′
n�(QEasy

n ∪QHard
n )

Xn,Yn
= 1

]
− 1

n
, (4)

where the probabilities in the above inequality are taken over the random coins
of the prover and the verifier during the corresponding executions.

Proof. First, we remark that the “with probability 1” part in this claim is to
ensure that {O′

n �(QEasy
n ∪QHard

n )}n is one-way (see Claim 3). In the following, we
proceed with {O′

n � (QEasy
n ∪ QHard

n )}n being one-way (so the probabilities below
are not taken over O and O′).

By definition, any query7 q ∈ QHard
n is asked by V during Exec

O′
n�(QEasy

n ∪QHard
n )

Xn,Yn

with probability < 1
t(n)·n . Let us denote the following event:

EventNoHard: No q ∈ QHard
n is asked by V in Exec

O′
n�(QEasy

n ∪QHard
n )

Xn,Yn

It follows from union bound that

Pr
[
EventNoHard

] ≥ 1 − 1
n

, (5)

where the probability is taken over the random coins of P and V in the execution
Exec

O′
n�(QEasy

n ∪QHard
n )

Xn,Yn
.

7 Technically, elements in QHard
n are query-answer pairs. From here on, we override the

notation “∈” such that q ∈ QHard
n means that there exists a pair (q, ∗) in QHard

n .
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Now, we prove Inequality (4). In the following, for succinctness, let

– Exec0 denote the execution 〈PO′
n�(QEasy

n ∪QHard
n )(Xn, Yn), V O′

n�QEasy
n (Yn)〉;

– Exec1 denote the execution Exec
O′

n�(QEasy
n ∪QHard

n )
Xn,Yn

.

Then, we have (probabilities below are taken over the random coins over P and
V in the corresponding executions):

Pr[Exec1 = 1] ≥ Pr
[
Exec1 = 1

∣
∣ EventNoHard

] · Pr
[
EventNoHard

]

= Pr
[
Exec0 = 1

∣
∣ EventNoHard

] · Pr
[
EventNoHard

]
(6)

≥ Pr[Exec0 = 1] − Pr[¬EventNoHard] (7)

≥ Pr[Exec0 = 1] − 1
n

(8)

where Step 6 is due to the fact that Exec1 and Exec0 are identical assuming V
does not make any query q ∈ QHard

n , Step 7 follows from the basic probability
inequality that Pr

[
A

∣
∣ B

] · Pr[B] ≥ Pr[A] − Pr[¬B], and Step 8 follows from
Inequality (5).

This finishes the proof of Claim 4. ��
Claim 4 indicates that the verifier in Execution 3 accepts with “good” prob-

ability: at least as large as the accepting probability of ExecO
′
n�(QEasy

n ∪QHard
n )

Xn,Yn
minus

1/n. Thus, we will have the desired contradiction if the Yn in Execution 3 is a
false statement, i.e. Yn is not in the range of GO′

n�QEasy
n (i.e. G(·) instantiated by

the verifier’s oracle in Execution 3). This argument is formalized and proved in
Claims 5 and 6, which will eventually finish the proof of Them. 2.

Claim 5. Let QEasy
n be defined as in Expression (1). For sufficiently large n ∈ N,

the following holds:

Pr
O,O′,Xn

[
GOn(Xn) ∈ GO′

n�QEasy
n

({0, 1}�(n)
)] ≤ 1

2
+ negl(n). (9)

Note that the above probability is taken (additionally) over Xn ← {0, 1}�(n).

Claim 6. If Claim 5 holds, then Thm. 2 holds.

The proof of Claim 5 is quite involved. It constitutes the main technical
challenge of the current proof (of Thm. 2). Thus, we will deal with it in Sect. 4.4.
In the following, we show the proof of Claim 6.

Proof of Claim 6. It follows from Expression (2) and Claim 4 that

Pr
O,O′

[
For sufficient large n ∈ N, ∀Xn ∈ {0, 1}�(n), Yn = GOn (Xn),

Pr
[
〈PO′

n�(QEasy
n ∪QHard

n )(Xn, Yn), V O′
n�QEasy

n (Yn)〉 = 1
]

≥ 1 − 1
n

− δc(n)

]
= 1. (10)

Following the same argument as for Claim 3, we can prove the one-wayness
of the oracle {O′

n � QEasy
n }n as follows. For each (q,On(q)) ∈ QEasy

n , the On(q)
is a randomly sampled string from {0, 1}n. Therefore, no matter what Xn is,
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O′
n � QEasy

n is always a randomly sampled oracle (though QEasy
n is determined by

Xn). It then follows from Lem. 2 that:

Pr
O,O′

[
∀Xn ∈ {0, 1}�(n), {O′

n � QEasy
n }n∈N is one-way

]
= 1. (11)

By an averaging argument over Expressions (9) to (11), it follows that there
exists fixed sequences {Ön}n∈N, {Ö′

n}n∈N and {Ẍn}n∈N
8 such that for sufficiently

large n ∈ N,

– {Ön � Q̈Easy
n }n is one-way; thus, GÖn�Q̈Easy

n is a PRG and ΠÖn�Q̈Easy
n is an HVZK

protocol for the membership of GÖn�Q̈Easy
n ; and

– Ÿn is not in the range of GÖn�Q̈Easy
n ; and

– Pr
[
〈P Ö′

n�(Q̈Easy
n ∪Q̈Hard

n )(Ẍn, Ÿn), V Ö′
n�Q̈Easy

n (Ÿn)〉 = 1
]

≥ 1− 1
n −δc(n), where the

probability is taken over the random coins of P and V .
Note that we can treat P Ö′

n�(Q̈Easy
n ∪Q̈Hard

n )(Ẍn, Ÿn) as an oracle machine
PÖ′

n�Q̈Easy
n , which has (Q̈Easy

n , Ẍn, Ÿn) as non-uniform advice and makes only
polynomially many queries to its oracle Ö′

n � Q̈Easy
n .

Since the completeness error δc(·) is negligible, the above means that PÖ′
n�Q̈Easy

n

(with its non-uniform advice) convinces the verifier with non-negligible proba-
bility on the following false statement:

Ÿn ∈ GÖ′
n�Q̈Easy

n
({0, 1}�(n)

)
.

This contradicts the soundness of ΠÖ′
n�Q̈Easy

n . ��

4.4 The Proof Sketch for Claim 5

Due to space constraints, we will present the formal proof for Claim 5 in the full
version [35]. In this part, we provide an overview of it.

We assume for contradiction that Claim 5 is false and try to break the pseudo-
randomness of GOn . First, observe that if Yn = GOn(Xn) where Xn ← {0, 1}�(n),
then our assumption implies that Yn is in the range of GO′

n�QEasy
n (·) with proba-

bility noticeably larger than 1/2. Therefore, on an input Yn, if we can efficiently
test if Yn ∈ GO′

n�QEasy
n

({0, 1}�(n)
)
, we should have some advantage in the PRG

game for GOn(·). This strategy has the following potential problems:

1. Without the preimage Xn, we cannot compute the set QEasy
n (see Expression

(1)) using only polynomially many queries to On;
2. If the input Yn /∈ GOn

({0, 1}�(n)
)
, the set Qn (thus QEasy

n ) is not even well-
defined, as there is no preimage Xn.

To avoid using Xn, we will run the HVZK simulator to obtain an estimate
of the set QEasy

n in the following way. Recall that QEasy
n contains the “easy”

8 Note that these values also fix the corresponding {Ÿn}n∈N, {Q̈Easy
n }n∈N and

{Q̈Hard
n }n∈N as in the above.
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queries made by the verifier during Exec
O′

n�Qn

Xn,Yn
. By the HVZK property of the

protocol ΠO′
n�Qn , each query in QEasy

n should be made with similar probability
in the simulated execution Sim

O′
n�Qn

V (Yn). Therefore, repeating Sim
O′

n�Qn

V (Yn)
(polynomially) many times will give us a good estimate to QEasy

n .
However, without Xn, we cannot figure out the set Qn, which is necessary

if we want to run Sim
O′

n�Qn

V (Yn). Fortunately, by a similar argument as that for
Claim 3, we can prove that the oracle {On}n and {O′

n � Qn}n are identically
distributed, even given Xn and Yn = GOn(Xn). Therefore, running SimOn

V (Yn)
will be just as good as running Sim

O′
n�Qn

V (Yn). Note that this also solves Problem
2, because the simulator still works when invoked on false statements.

Now, we can construct the PRG distinguisher AOn
prg(Yn) as follows: on input

Yn, AOn
prg(Yn) obtains an estimate Q̃Easy

n to QEasy
n by running SimOn

V (Yn) for poly-
nomially many times. It then samples a random function O′

n : {0, 1}n → {0, 1}n,
and outputs 1 if Yn ∈ GO′

n� ˜QEasy
n

({0, 1}�(n)
)
; otherwise, it outputs 0. Note that

although sampling O′ requires exponential time, AOn
prg(Yn) only makes polyno-

mially many queries to the oracle On.
If Yn = GOn(Xn) where Xn ← {0, 1}�(n), then by our assumption AOn(Yn)

outputs 1 with probability noticeably larger than 1/2; if Yn ← {0, 1}�(n)+1, then
Yn is independent of On. Moreover, using a similar argument as for Claim 3, we
can prove that Yn is independent of the oracle Q̃Easy

n (thus O′
n � Q̃Easy

n ). Since the
function GO′

n� ˜QEasy
n (·) stretch by 1 bit, the random Yn will be in its range with

probability 1/2. This means AOn(Yn) outputs 1 with probability exactly 1/2.
This gives us the desired contradiction.

5 Proof-Based One-Way Functions

5.1 Definition

Definition 4 (Proof-Based OWFs). Let λ ∈ N be the security parameter.
Let a(·), b(·) and c(·) be polynomials. A proof-based one-way function consists
of a function Fλ : {0, 1}a(λ) × {0, 1}b(λ) → {0, 1}c(λ) and a protocol Π = (S,R)
of a pair of PPT machines. We use (X,Y ) ← 〈S(1λ, x), R(1λ, r)〉 to denote the
execution of protocol Π where the security parameter is λ, the inputs to S and R
are x and r respectively, and the outputs of S and R are X and Y respectively.
Let Y = ⊥ denote that R aborts in the execution. The following conditions hold:

– One-Wayness. The function {Fλ}λ is one-way in the following sense:
• Easy to compute: for all λ ∈ N and all (x, r) ∈ {0, 1}a(λ) × {0, 1}b(λ),

Fλ(x‖r) can be computed in polynomial time on λ.
• Hard to invert: for any non-uniform PPT adversary A, there exists a

negligible function negl(·) such that ∀r ∈ {0, 1}b(λ),

Pr
[
x ← {0, 1}a(λ),X∗ ← A (

1λ, Fλ(x‖r)) : Fλ(x‖r) = Fλ(X∗)
]

≤ negl(λ),

– Completeness. The protocol Π computes the ideal functionality FF defined
in Fig. 1. Namely, ∀λ ∈ N, ∀x ∈ {0, 1}a(λ) and ∀r ∈ {0, 1}b(λ), if (X,Y ) ←
〈S(1λ, x), R(1λ, r)〉, then X = x‖r and Y = Fλ(x‖r).
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The ideal functionality FF interacts with a sender S and a receiver R. Upon receiving
the input x ∈ {0, 1}a(λ) from S and r ∈ {0, 1}b(λ) from R, the functionality FF sends
x r to S, and F (x r) to R.

Fig. 1. Functionality FF for proof-based OWFs

– Soundness. For every PPT machine S∗ and every auxiliary input z ∈
{0, 1}∗, there exists a negligible function negl(·) such that

Pr
[
r ← {0, 1}b(λ);
(·, Y ) ← 〈S∗(1λ, z), R(1λ, r)〉 :

Y 	= ⊥ and
�x s.t. Fλ(x‖r) = Y

]
≤ negl(λ),

– Zero-Knowledge. This property is defined by requiring only security against
corrupted R in the ideal-real paradigm for 2PC w.r.t. the ideal functionality
FF in Fig. 1. Concretely, denote by REALΠ,A(z)(1λ, x, r) the random variable
consisting of the output of S and the output of the adversary A controlling
R in an execution of Π, where x is the input to S and r to R. Similarly,
denote by IDEALFF ,Sim(z)(1λ, x, r) the corresponding output of S and Sim from
the ideal execution. Then there exist a PPT simulator Sim such that for
any PPT adversary A, ∀x ∈ {0, 1}a(λ), ∀r ∈ {0, 1}b(λ), and ∀z ∈ {0, 1}∗,
{
REALΠ,A(z)(1λ, x, r)

}
λ∈N

c≈ {
IDEALFF ,Sim(z)(1λ, x, r)

}
λ∈N

.

If the constructions of both F and Π makes only black-box access to other prim-
itives, we call this a black-box PB-OWF.

5.2 Our Construction

Following the high-level idea described in Sect. 2.2, we show that PB-OWFs can
be built assuming black-box access to OWFs.

Theorem 7 (Black-Box PB-OWFs from OWFs). There exists a PB-OWF
that satisfies Def. 4 and makes only black-box use of OWFs.

Our construction consists of a one-way function F f (Constr. 1) together with
a protocol Πf

F (Prot. 1). The construction relies on the following building blocks:

– a one-way function f ;
– a zero-knowledge commit-and-prove protocol ΠZKCnP = (BBCom,BBProve).

Such protocols can also be constructed assuming only black-box access to f .

Remark 1 (On the Parameters in Constr. 1). The choice of t(λ) = log2(λ) is
somewhat arbitrary. In fact, any t(λ) = ω(log λ) works as long as (n − k − t) is
some positive polynomial of λ for sufficiently large λ. This is to ensure that we
can prove one-wayness and (1 − δ)t is negligible on λ, which is needed when we
prove soundness. We also remark that the role of r is to specify a size-t subset of
[n]. The canonical way of mapping r to a size-t subset of [n] may consume slightly
less randomness than |r| = t log(n). For simplicity, we forgo further discussion
and assume that there is a deterministic bijection between {0, 1}t log(n) and all
size-t subsets of [n]. Similarly, the {p1, . . . , pk} are interpreted as a size-k subset
of [n], though we assign each pi a length of log(n).



56 X. Liang and O. Pandey

Construction 1: One-Way Function F f

Let m(λ) and n(λ) be polynomials on λ. Let 0 < δ < 1 be a constant, and k(λ) =
δn(λ). Let t(λ) = log2(λ) (see Rmk. 1). Assume that f : {0, 1}λ → {0, 1}m(λ) is a
one-way function. On input x ∈ {0, 1}nλ+(log(n)+m)k and r ∈ {0, 1}t log(n), F f parses
them as

x = (x1, . . . , xn)‖(p1, y
′
p1), . . . , (pk, y′

pk
), and r = (b1, . . . , bt),

where |xi| = λ, |y′
pi

| = m, {pi}i∈[k] is a size-k subset of [n], and {bi}i∈[t] is a size-t
subset of [n]. F f computes via its oracle access to f(·) the values (y1, . . . , yn), where
yi = f(xi) for all i ∈ [n]. Then, it computes s = (s1, . . . , sn) as follows:
1. if {p1, . . . , pk} ∩ {b1, . . . , bt} 	= ∅, then let si := yi for all i ∈ [n].

2. if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then let si :=

{
y′

i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk} .

It finally outputs Y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖(b1, . . . , bt).

Proof of Security. Due to space constraints, the complete proof for that
(F f ,Πf ) satisfies Def. 4 will appear in the full version [35].

Note that Sect. 2.2 already contains the high-level idea for this proof. The one-
wayness, completeness and ZK property follow from rather standard techniques.
In the following, let us provide more details about the soundness proof.

First, note that the r = {b1, . . . , bt} sent by R in Stage 3 is a size-t ran-
dom subset of [n]. It will overlap with {p1, . . . , pk} with negligible probability.
Therefore, the Editing condition will almost never be triggered during a real
execution of Prot. 1, thus can be safely ignored.

Stages 2 to 5 can be though as the following cut-and-choose procedure: the
sender computes {yi = f(xi)}i∈[n]; then the receiver checks t of them randomly.
This ensures that a malicious S∗ cannot cheat on more than k = δn of the yi’s.
We prove this statement formally in the full version [35], which requires us to
handle extra technicalities due to the commit-and-prove structure and Editing
condition. But this claim implies that a non-aborting Y output by an honest
receiver contains at most k = δn many si’s that does not have a preimage under
f (except for negligible probability). Let us assume w.l.o.g. that there are exactly
k such “no-preimage” si’s, which can be denoted as {sp1 , . . . , spk

} (i.e. we denote
the indices of these no-preimage si’s by {p1, . . . , pk}). Then, for each si where
i ∈ [n] \ {p1, . . . , pk}, this si must have (at least) one preimage under f(·). We
denote an arbitrary preimage of such si as f−1(si). In particular, if i is equal to
some bj ∈ {b1, . . . , bt}, the Y already contains the preimage for sbj , which is xbj .

We emphasize that, conditioned on Y 	= ⊥, we have {p1, . . . , pk} ∩
{b1, . . . , bt} = ∅. To see this, recall that R checks at Stage 5 that ybi = f(xbi)
and sbi = ybi for all bi ∈ {b1, . . . , bt}. If there is a pi falling in the set {b1, . . . , bt},
then spi

(= ypi
) does not have a preimage under f(·). Then, R will output Y = ⊥

at Stage 5.
With these observations, we show in the following how to construct x and r

such that F f (x‖r) = Y . At a high-level, we take advantage of Case 2. We will use
the no-preimage spi

’s together with their indices as the (pi, y
′
pi

) part in x. We
will set r to the {b1, . . . , bt} contained in Y . Since {b1, . . . , bt}∩{p1, . . . , pk} = ∅,
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Protocol 1: Protocol Πf
F for Our Proof-Based One-Way Function

Let f , m, n, t, and k be as in Constr. 1.

Input: the security parameter 1λ is the common input. Sender S takes x ∈
{0, 1}nλ+(log(n)+m)k as its private input; receiver R takes r ∈ {0, 1}t·log(n) as its
private input.

1. S parses the input as x = (x1, . . . , xn)‖(p1, y
′
p1), . . . , (pk, y′

pk
), where |xi| = λ for

all i ∈ [n], |y′
pj

| = m for all j ∈ [k], and {pi}i∈[k] forms a size-k subset of [n]. S

defines a 2 × n matrix M =

[
x1 · · · xn

y1 · · · yn

]
, where yi = f(xi) for all i ∈ [n].

2. S and R execute BBCom(α), the Commit stage of ΠZKCnP, where S commits to
the value

α := M‖(p1, y
′
p1), . . . , (pk, y′

pk
). (12)

3. R sends r to S.
4. S interprets r as a size-t subset (b1, . . . , bt) ⊆ [n]. S then defines Mr =[

xb1 · · · xbt

yb1 · · · ybt

]
, i.e. the columns of M specified by r. S also computes s =

(s1, . . . , sn) in the way specified in Constr. 1. S sends to R the values Mr and s.
5. With Mr, R checks (via its oracle access to f(·)) if f(xbi) = ybi holds for all

i ∈ [t]; R also checks if sbi = ybi holds for all i ∈ [t]. If all the checks pass, R
proceeds to next step; otherwise, R halts and outputs ⊥.

6. S and R execute BBProve, the Prove stage of ΠZKCnP, where S proves that it
performs Stage 4 honestly. Namely, S proves that the α committed at Stage 2
satisfies the following conditions:
(a) the values {p1, . . . , pk} contained in α form a size-k subset of [n]; and
(b) the Mr does consist of the columns in M specified by r; and
(c) The s = (s1, . . . , sn) satisfies the following conditions:

– if {p1, . . . , pk} ∩ {b1, . . . , bt} 	= ∅, then si = yi for all i ∈ [n].

– if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then si =

{
y′

i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk} .

We remark that these conditions can indeed be expressed a predicate φ on the
α committed at Stage 2. For completeness, we show the formal definition of φ in
Fig. 2. It is also worth noting that predicate φ needs to have the values r and s
hard-wired, which are defined at Stages 3 and 4 respectively. This is why we need
a ΠZKCnP that allows us to defer the definition of the predicate until the Prove
Stage.

7. (Receiver’s Output). R outputs Y = (s1, . . . , sn)‖(xb1 , . . . xbt)‖{bi}i∈[t].
8. (Sender’s Output). S outputs X=(x1, . . . , xn)‖(p1, y

′
p1), . . . , (pk, y′

pk
)‖{bi}i∈[t].

the function F f will put the no-preimage spi
’s at the positions specified by pi’s

(according to Case 2), which will give us Y . Concretely, we set:

x = (x′
1, . . . , x

′
n)‖(p1, sp1), . . . , (pk, spk

) and r = (b1, . . . , bt),

where x′
i’s are defined as follows: ∀i ∈ [n], x′

i =

⎧
⎪⎨

⎪⎩

xi i ∈ {b1, . . . , bt}
0λ i ∈ {p1, . . . , pk}
f−1(si) otherwise

.
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Predicate φ has the values (λ,m, t, n, k, r, s) (defined in Prot. 1) hard-wired. On the
input α, φλ,m,t,n,k,r,s(α) = 1 if and only if all of the following hold:

– the α can be parsed as M (p1, yp1), . . . , (pk, ypk
), where M =

x1 · · · xn

y1 · · · yn
such

that |xj | = λ and |yj | = m ∀j ∈ [n], |pi| = log(n) and |ypi
| = m ∀i ∈ [k]; and

– the values {p1, . . . , pk} form a size-k subset of [n]; and
– the Mr consists of the columns in M specified by r; and
– the s = (s1, . . . , sn) satisfy the following requirement (recall that the {b1, . . . , bt}

are from r):
• if {p1, . . . , pk} ∩ {b1, . . . , bt = ∅, then si = yi for all i ∈ [n].

• if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then si =
yi i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk} .

Fig. 2. Predicate φλ,m,t,n,k,r,s(·)

We remark that f−1(si) may not be efficiently computable (indeed, f is a
one-way function). But the above proof only relies on the existence of f−1(si).
Also, we have {p1. . . . , pk}∩{b1, . . . , bt} = ∅. It then follows from the description
in Constr. 1 (in particular, Case 2) that F f (x‖r) = Y .

5.3 Proof-Based Pseudo-random Generators

We can also define proof-based pseudo-random generators (PB-PRGs) in a sim-
ilar way as for PB-OWFs. It consists of a two-input function Gg(·, ·) and a pro-
tocol Πg

G = (Sg, Rg) such that for any PRG g, Gg(·, r) is a PRG for any choice
of r, and Πg

G satisfies the same completeness, soundness and ZK requirements as
in Def. 4 but w.r.t. Gg.

Our PB-PRG can be constructed by simply replacing the oracle OWF f with
a PRG g in both Constr. 1 and Prot. 1 (our PB-OWF construction). There is
one caveat: the output Y of Constr. 1 contains the preimage xbi for ybi (or sbi).
While this is fine for one-wayness, such a Y will not be pseudo-random, because
an adversary can always learn if Y is in the range of Gg(·, r) by testing whether
ybi = g(xbi). To fix this, in the output Y , we will place xbi in the position where
we originally put ybi (and we can drop the (xb1 , . . . , xbt) part from Y ). We will
show that this modification lead to a valid PB-PRG.

We present the definition, construction, and the security proof for PB-PRGs
in the full version [35].



Towards a Unified Approach to Black-Box Constructions 59

6 Proof-Based Collision-Resistant Hash Families

We now discuss proof-based collision-resistant hash families (PB-CRHFs). As
mentioned in Sect. 2.3, the definition and construction of PB-CRHF follow the
same template as our PB-OWFs, except that we need to handle the Editing
condition differently. Due to space constraints, we only show an overview of our
PB-CRHF here. See the full version [35] for the details.

Construction 2: Collision-Resistant Hash Family Hhi
z

Let m(λ) and n(λ) be polynomials of λ. Assume w.l.o.g. that is n a power of 2
(i.e., n = 2� for some �). Let 0 < δ < 1 be a constant, and k(λ) = δn(λ). Let
t(λ) = log2(λ) (see also Rmk. 1). Let H′ = {hi}i∈I be a collision-resistant hash
family where hi : {0, 1}2m(λ) → {0, 1}m(λ). Denote its key generation as KGen′.

– Key Generation. On input 1λ, sample a function from H′ by running hi ←
KGen′(1λ); sample a random string z ← {0, 1}m(λ); outputs (i, z) as the hash
key.

– Evaluation. On input x ∈ {0, 1}nm+k(log(2n)+m)+3m and r ∈ {0, 1}t log(n), the
evaluation algorithm parses them as:

x = (x1, . . . , xn)‖(p1, vp1), . . . , (pk, vpk)‖τ‖μ, r = (b1, . . . , bt), (13)
where |xi| = |vpi | = m, {pi}i∈[k] is a size-k subset of [2n − 1], and {bi}i∈[t] is a
size-t subset of [n]. The set {bi}i∈[t] specifies t leaves out of all the n leaves.
The algorithm builds a perfect binary tree T that has n leaves, where all the
nodes are dummies. Note that the indices of the nodes in T are well-defined, even
though T now contains only dummy nodes. The evaluation procedure outputs
Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt), which is computed as follows:
1. Non-Editing: If τ = z or hi(τ) 	= hi(z) or Ind(b1, . . . , bt)∩{p1, . . . , pk} 	= ∅:

(a) It fills the tree T as follows. It places (x1, . . . , xn) at the n leaves. For
any other node in T , its content is the hash value under hi on the con-
catenation of its left child and right child. Denote the root value as t1.

(b) For i ∈ [t], Pbi is the sibling path of leaf xbi in the above tree T ;
(c) Use hi to hash9 the following Λ value to a length-m string denoted as

t2:
Λ = (p1, vp1), . . . , (pk, vpk)‖τ‖μ.

2. Editing: if τ 	= z and hi(τ) = hi(z) and Ind(b1, . . . , bt) ∩ {p1, . . . , pk} = ∅:
(a) It fills the tree T as follows. It places (x1, . . . , xn) at the n leaf positions

in T . Then, fill the tree bottom up, following the rule for Merkle tree
(i.e. the hashing of two children nodes’ contents is the parent node’s
content), with the following exception: for node pi ∈ {p1, . . . , pk}, it fills
node pi with the vpi contained in x, instead of the hash of the children
of node pi. Denote the root value as t1.

(b) For i ∈ [t], Pbi is defined as the sibling path of leaf xbi in the tree T ;
(c) Set t2 = μ (recall that μ is contained in x);

9 Note that the input to hi should have length 2m. But |Λ| > 2m. This can be handled
using domain-extension techniques, e.g., the Merkle-Damg̊ard transformation [5,37].



60 X. Liang and O. Pandey

Protocol 2: Protocol Πhi
z for Our PB-CHRF

Let H′, m, n, δ, t and k be as in Constr. 2. Let ΠZKCnP = (BBCom,BBProve)
be a black-box commit-and-prove protocol. For a function defined by (i, z) from
the PB-CRHF in Constr. 2, this protocol proceeds as follows. Both parties take
the security parameter 1λ as the common input. Sender S takes a string x ∈
{0, 1}nm+k(log(n)+m)+3m as private input; receiver R takes a string r ∈ {0, 1}t log(n)

as private input.

1. S parses x as (x1, . . . , xn)‖(p1, vp1), . . . , (pk, vpk )‖τ‖μ (in the same manner as
in Expression (13)). S build a Merkle tree MT ′

h,m(x) using (x1, . . . , xn) as the
leaves (this is identical to Step 1a). Denote the root of this tree as tx.

2. S and R execute BBCom(ν), the Commit stage of ΠZKCnP, where S commits to
the following value

ν := tx‖(p1, . . . , pk). (14)
3. R sends the value r.
4. S parses r as (b1, . . . , bt) where each bi is of length log(n). With the values x and

r, S evaluates the function Hhi
z as per Constr. 2 to compute the following Y ,

which it sends to R:

Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt).

5. R checks if Pbi is Merkle-consistent for all i ∈ [t]. R aborts if any of the check
fails.

6. S and R execute BBProve, the Prove stage of ΠZKCnP, where S proves that the
ν committed in Stage 2 satisfies the following conditions:
(a) the {p1, . . . , pk} in ν form a size-k subset of [2n − 1], where k = δn; and
(b) the tx contained in τ is equal to t1, or Ind(b1, . . . , bt) ∩ {p1, . . . , pk} = ∅.

7. (Receiver’s Output). R outputs Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt).
8. (Sender’s Output). S outputs

X = (x1, . . . , xn)‖(p1, vp1), . . . , (pk, vpk)‖τ‖μ‖(b1, . . . , bt).

On the Definition. Our PB-CRHF consists of an oracle machine H(·) and an
oracle protocol Π(·)

H . As mentioned in Sect. 2.3, the H(·) will be instantiated as
a hash family. That is, given a collision-resistant hash family H′, we first run
its KGen′ to sample a function hi ∈ H′, and then instantiate H(·)’s oracle as hi.
Therefore, Hhi is also a hash family whose KGen simple runs the KGen′ for H′

(and samples a random string z that we will discuss later).
Once H(·) and Π(·)

H are instantiated with an hi ← KGen′(1λ), we can start
talking about the security. Same as in Def. 4, Hhi takes two inputs x and r.
We require that, for all r, Hhi(·, r) is collision-resistant on its first input. The
protocol Πhi

H satisfies the similar completeness, soundness and ZK requirement
as in Def. 4. We provide a formal definition in the full version [35].

Our Construction. The formal construction is provided in Constr. 2 and
Prot. 2. We follow the high-level idea described in Sect. 2.3 with the following
modifications. Instead of hashing the (x1, . . . , xn) (contained in x) separately,
we build a Merkle tree using them as the leaves. In Constr. 2, Pi denotes the
sibling path from leaf xi to the root; Ind(b1, . . . , bt) denotes the set of indices
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of the nodes on path Pb1 , . . . ,Pbt (see the full version [35] for more details). In
Prot. 2, the receiver checks t leaves and their corresponding sibling paths. This
ensures that there are at least (n − k) “good” leaves, in the sense that there are
valid sibling paths from the Merkle root to them. In the Editing case, this will
allow us to perform preimage editing by planting the vpi

values on the k “bad”
paths to obtain a (partial) tree consistent with the root t1 contained in Y . Note
that we also hash the Λ in Step 1c. As explained in Sect. 2.3, this is to prevent
the adversary from taking advantage of preimage editing to find collisions.

It is also worth noting that Constr. 2 and Prot. 2 work for an x of fixed length.
But since we hash the {xi}i∈[n] part using a Merkle tree, we can handle x with
a various-length {xi}i∈[n] part (which dominates the length of x). To maintain
security, we simply include in Y the height of the Merkle tree.

Proof of Security. The security can be proved in a similar manner as for our
PB-OWFs. We provide the formal security proof in the full version [35].
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Abstract. In a proof of partial knowledge, introduced by Cramer, Dam-
gård and Schoenmakers (CRYPTO 1994), a prover knowing witnesses for
some k-subset of n given public statements can convince the verifier of
this claim without revealing which k-subset. Their solution combines
Σ-protocol theory and linear secret sharing, and achieves linear commu-
nication complexity for general k, n. Especially the “one-out-of-n” case
k = 1 has seen myriad applications during the last decades, e.g., in elec-
tronic voting, ring signatures, and confidential transaction systems.

In this paper we focus on the discrete logarithm (DL) setting, where
the prover claims knowledge of DLs of k-out-of-n given elements. Groth
and Kohlweiss (EUROCRYPT 2015) have shown how to solve the spe-
cial case k = 1 with logarithmic (in n) communication, instead of linear
as prior work. However, their method takes explicit advantage of k = 1
and does not generalize to k > 1. Alternatively, an indirect approach for
solving the considered problem is by translating the k-out-of-n relation
into a circuit and then applying communication-efficient circuit ZK. For
k = 1 this approach has been highly optimized, e.g., in ZCash.

Our main contribution is a new, simple honest-verifier zero-knowledge
proof protocol for proving knowledge of k out of n DLs with logarithmic
communication and for general k and n, without requiring any generic
circuit ZK machinery. Our solution puts forward a novel extension of
the compressed Σ-protocol theory (CRYPTO 2020), which we then uti-
lize to compress a new Σ-protocol for proving knowledge of k-out-of-n
DL’s down to logarithmic size. The latter Σ-protocol is inspired by the
CRYPTO 1994 approach, but a careful re-design of the original protocol
is necessary for the compression technique to apply. Interestingly, even
for k = 1 and general n our approach improves prior direct approaches
as it reduces prover complexity without increasing the communication
complexity. Besides the conceptual simplicity, we also identify regimes of
practical relevance where our approach achieves asymptotic and concrete
improvements, e.g., in proof size and prover complexity, over the generic
approach based on circuit-ZK.

Finally, we show various extensions and generalizations of our core
result. For instance, we extend our protocol to proofs of partial know-
ledge of Pedersen (vector) commitment openings, and/or to include a
proof that the witness satisfies some additional constraint, and we show
how to extend our results to non-threshold access structures.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12828, pp. 65–91, 2021.
https://doi.org/10.1007/978-3-030-84259-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84259-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-84259-8_3


66 T. Attema et al.

1 Introduction

1.1 Proofs of Partial Knowledge

Proofs of partial knowledge [14] allow a prover to convince a verifier that the
prover knows k out of n secrets, without revealing which secrets the prover knows.
Typically, these secrets are solutions to public instances of intractable problems,
such as the discrete logarithm problem. The work of [14] gives an elegant solution
with linear communication complexity that combines Σ-protocol theory with
linear secret sharing. Our goal is to invoke the techniques of Bulletproofs [6,9]
and follow-up work, in particular the compressed Σ-protocol framework of [2],
to construct proofs of partial knowledge with logarithmic communication
complexity.

Compressed Σ-protocol theory [2] was introduced as a strengthening of Σ-
protocol theory. It inherits the flexibility and versatility of Σ-protocols while
compressing their communication complexity from linear to logarithmic. The
main pivot of this theory is a standard Σ-protocol for opening linear forms on
Pedersen vector commitments, i.e., a Σ-protocol for proving that a committed
vector x satisfies L(x) = y for a public linear form L and a public scalar y. By
an appropriate adaptation of the techniques from [6,9] this pivotal Σ-protocol
is compressed to achieve communication complexity that is logarithmic in the
dimension of x; additionally a linearization approach to handle non-linearities
is described [2]. As one of the applications of this theory it was shown how to
obtain circuit zero-knowledge (ZK) protocols with logarithmic communication
complexity for arbitrary arithmetic circuits.

An obvious approach for constructing proofs of partial knowledge with loga-
rithmic complexity is to apply recent advances in communication efficient circuit
ZK to a suitably constructed circuit for capturing the k-out-of-n relation. For
instance, this is how the decentralized and confidential transaction system ZCash
is designed [22].

In this work here, we take a more direct approach that avoids generic cir-
cuit techniques. We find such a direct solution scientifically more appealing, but
there are also efficiency considerations that may make our solution the preferred
choice (we discuss this in detail in Sect. 1.5). Our solution is inspired by the core
idea of [14] of exploiting properties of linear secret sharing; however, the straight-
forward approach of compressing the original [14]-protocol with the techniques
of [2] does not work; the third message in the [14]-protocol includes a consistent
secret sharing of the challenge, which cannot be compressed.

1.2 Their Applications

Proofs of partial knowledge have seen myriad applications during the last
decades. For instance, they were shown to be applicable to the construction
of group signature schemes [10]. Group signature schemes [11] allow a member
of a group to sign a message without revealing which member it is, while a
designated group manager is capable of revoking the anonymity of the signer.



Compressing Proofs of k-Out-Of-n Partial Knowledge 67

Another application is to ring signature schemes [29], which do not con-
tain such a revocation mechanism. In a ring signature scheme, a group member
can select any ad-hoc subset of group members and anonymously sign a mes-
sage on behalf of this subset. Here, 1-out-of-n proofs together with the Fiat-
Shamir [16] heuristic allow for a straightforward construction of ring-signature
schemes. Because of the ad-hoc nature a ring signature must contain a list of
the subset’s members and, therefore, its size grows linearly in the size of the
ring; however, in many practical scenarios the costs of specifying a ring can be
amortized over many instances.

Proofs of partial knowledge, in particular in the form of ring signature
schemes, also play a crucial role in confidential decentralized transactions sys-
tem such as Zerocoin [28]. Zerocoin was proposed as an extension of Bitcoin to
provide stronger privacy guarantees. A Zerocoin transaction requires a ZKPoK
that the transferred coin is an element of a public set of unspent coins. Other
decentralized payment systems that rely on 1-out-of-n proofs to provide confi-
dentiality are, e.g., Lelantus [23], ZCash [22], Zether [8] and Monero [31].

As a generalization of ring signature schemes, threshold ring signatures only
allow a large enough subset to compute a valid signature [7]. These schemes
require a generalization of the special proof of partial knowledge case k = 1. For
instance, Monero is actively working on threshold ring signature schemes [19].
Moreover, in [15], it is shown how their generalization from 1-out-of-n proofs to
so-called many-out-of-many proofs improves the communication complexity of
the Zether payment system. They show that many practical scenarios require
more general proofs of partial knowledge than only 1-out-of-n proofs.

1.3 Our Contributions

In this work, we start off by introducing and analyzing a novel extension of the
core compression protocol from compressed Σ-protocol theory [2]. Namely, we
observe that the compressed Σ-protocol for opening linear forms can be adapted
to apply to general homomorphisms, i.e., for proving that a committed vector
x ∈ Z

n
q satisfies f(x) = y for an arbitrary group homomorphism f : Zn

q → G

and an element y ∈ G. The loss of efficiency is at most a constant factor and the
adapted protocol still achieves a logarithmic communication complexity. Further-
more, the amortization technique to open multiple linear forms for essentially the
price of one [2] directly carries over to opening multiple homomorphisms. This
generalized functionality has not been considered before in the context of log-
arithmic complexity. As we discuss below, it turns out to be very useful in the
design of efficient proofs of partial knowledge, but possibly also beyond.

Indeed, given n group elements P1, . . . , Pn ∈ G, consider a prover claiming
that it knows k out of the n DLs, i.e., it knows a subset S ⊂ {1, . . . , n} of
cardinality k and exponents xi ∈ Zq such that gxi = Pi for all i ∈ S. Inspired
by the design principle of [14], we reduce this k-out-of-n case to the n-out-of-
n case by having the prover “eliminate” the instances that it does not know,
and then we apply the amortized version of the new compressed Σ-protocol for
opening homomorphisms to prove the n instances in one go, with logarithmic
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complexity. However, the original solution of [14] to reduce the k-out-of-n to the
n-out-of-n case, achieved by secret sharing the challenge, does not work for us,
as the resulting protocol is not in the shape for the (above generalization of the)
[2] compression technique to apply.

Instead, we use the following new solution. The prover first chooses an
(n−k+1)-out-of-n Shamir secret sharing (s1, . . . , sn) of the default secret s = 1,
where it selects the non-constant “random” coefficients a1, . . . , an−k of the shar-
ing polynomial p(X) = 1 + a1X + · · · + an−kXn−k so that si = 0 for i �∈ S. The
prover then commits to the vector (a, t) = (a1, . . . , an−k, t1, . . . , tn) ∈ Z

2n−k
q

with ti set to ti = sixi for any i, understood to be equal to 0 for i /∈ S, i.e., when
si = 0. Finally, it proves that

gti = P si
i (1)

for all i ∈ {1, . . . , n}. Proving this linear relation with a standard Σ-protocol
gives a novel secret-sharing based realization of [14], with linear communication
complexity.

This protocol crucially differs from the original proofs-of-partial knowledge,
making it amenable to our compression techniques. First, it generates a single
compact commitment to the vector of interest (a, t). No compact commitments
are used in the original protocol. Second, the (n − k + 1, n)-secret sharing of 1 is
implicitly defined by the committed coefficients a1, . . . , an−k. By contrast, in the
original protocol the prover computes an arbitrary (n − k + 1, n)-secret sharing
of a challenge c sampled uniformly at random by the verifier. Since the verifier
has to check the consistency of this secret sharing this approach has an inherent
linear communication complexity.

Let us consider our proofs-of-partial knowledge realization. By the linearity
of Shamir’s secret sharing scheme, for any i Eq. 1 can be cast as a homomorphism
of the committed values a1, . . . , an−k, t1, . . . , tn,1 and thus our novel variation
of [2], including the amortization over the n homomorphisms, applies, thereby
achieving a logarithmic communication complexity.

In total, our k-out-of-n proof protocol requires the prover to send
4 �log2(2n − k + 1)� − 5 group elements and 4 elements in Zq to the verifier. We
also show how to further reduce this to 2 �log2(2n − k + 1)� − 1 group elements
and 4 elements in Zq on a pairing-based platform. The protocol is public-coin
and can therefore be made non-interactive by the Fiat-Shamir transform [16].
The public set-up, necessary for the vector commitment, consists of at most 2n
group elements, and the complexity of the prover scales linearly in n.

1.4 Extensions and Variations

The conceptual simplicity of our design principle makes it easy to extend the
protocol in various directions, for instance to proofs of partial knowledge about

1 Concretely, we consider the homomorphism fi : Z
2n−k
q → G, (a, t) �→ gtiP

−�i(a)
i

with �i the linear functional �i(a) = a1i + a2i2 + · · · + an−kin−k, and we ask the
prover to prove that the committed values map to Pi.
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“multi-generator discrete logarithms” and corresponding Pedersen vector com-
mitments. Furthermore, by introducing a pairing and considering a pairing based
extension of Pedersen’s vector commitment scheme, we can reduce the relevant
constant by another factor up to 2. Moreover, we show that our proofs of partial
knowledge are compatible with circuit ZK protocols of [2], allowing the prover to
demonstrate that his secret information satisfies some arbitrary given constraint.
Finally, we generalize the results from threshold access structures to arbitrary
access structures.

1.5 Comparison with Other Approaches

Achieving partial proofs of knowledge with logarithmic complexity has received
quite some attention over the last few years, with different approaches and dif-
ferent (partial) solutions. We discuss here the examples that are most relevant
in the context of our new approach, and we compare them with our results.

In [21], Groth and Kohlweiss consider the special case k = 1, and where the
prover claims to be able to open 1 out of n public commitments to zero. Their
solution is a Σ-protocol that works for any additively homomorphic commitment
scheme over Zq and it achieves a logarithmic communication complexity. To
describe their approach, let 1 ≤ � ≤ n be the index of the prover’s secret.
The prover commits to each bit of � and runs �log2(n)� standard Σ-protocols,
in parallel and on a common challenge, proving that all these commitments
can indeed be opened to a binary value. In addition, the prover shows that the
responses of these parallel Σ-protocols satisfy some multiplicative relation, which
completes the protocol. This approach does not have an obvious generalization
to k-out-of-n proofs.

The 1-out-of-n proof of [21] requires the prover to send 4 �log2(n)� group ele-
ments and 3 �log2(n)�+1 field elements. By using Pedersen vector commitments,
instead of ordinary Pedersen commitment, the communication costs can be fur-
ther reduced to �log2(n)�+4 group elements and �log2(n)�+3 field elements [5].
Instead of the binary decomposition, the approach of [5] considers the m-ary
decomposition of the secret index �. Here, we have optimized their approach for
proving knowledge of 1-out-of-n discrete logarithms by taking m = 2. The work
of [5] focuses on a slightly different scenario in which the communication costs
are minimized for m = 4.

In comparison, in our protocol, which works for any k, the prover sends
4 �log2(2n − k + 1)�−5 group elements and 4 field elements to the verifier, which
is reduced to 2 �log2(2n − k + 1)� − 1 group elements and 4 field elements on a
pairing-based platform. Hence, perhaps surprisingly, our simple protocols are
comparable to dedicated solutions for the special case k = 1.

Recently, a generalization from 1-out-of-n proofs of [21] to “many-out-of-
many” proofs was given [15]. This generalization considers a prover that claims to
know the opening of all commitments in one of the orbits of a public permutation
of n public commitments. However, the protocol only works for permutations
with orbits of equal size. Since the permutation is public and of this specific form,
this protocol does not constitute a general k-out-of-n proof of partial knowledge.
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The prover complexity of the aforementioned 1-out-of-n proofs [5,21] is
O

(
n log(n)

)
, and that of the “many-out-of-many” proofs [15] is O

(
n log2(n)

)
. By

contrast, our protocol has prover complexity O
(
n

)
. Here and below, we express

the prover complexity in terms of the number of group exponentiations required,
explaining why these complexities are independent of the security parameter κ.
However, note that the size of the group and therefore the complexity of evalu-
ating a single group exponentiation does depend on κ. Similarly, we specify the
communication costs in terms of the number group and field elements.

Aiming to improve the prover complexity of the 1-out-of-n proofs of [5,21],
Jivanyan and Mamikonyan [24] proposed a hierarchical approach. Their protocol
assumes that n = NM and applies an appropriate 1-out-of-N proof followed by
a 1-out-of-M proof. It reduces the prover complexity from O(n log(n)) down to
O

(
n+N log(N)+M log(M)

)
, which equals O(n) if, for example, N = M =

√
n.

However, this hierarchical approach increases the communication complexity to
O

(
N log(N) + M log(M) + M

)
, hence it is subject to a trade-off between prover

and communication complexity.
Alternatively to our and the above approaches, proofs of partial knowledge

can be constructed via generic circuit ZK protocols. This indirect approach is, for
example, followed by the confidential transaction system ZCash [22]. A standard
construction for the 1-out-of-n case is to incorporate the group elements Pi into
a Merkle tree [27], and ask the prover to prove knowledge of an exponent xi such
that the group element gxi is the leaf of a valid, but secret, Merkle path. In this
case, the arithmetic circuit C implements a composition of the exponentiation
gxi and the log2(n) hash function evaluations corresponding to the validation
of a Merkle path, and it is therefore of size |C| = O

(
κ log(n)

)
, where κ is the

security parameter.
Even though this is obviously possible, to our knowledge this Merkle-tree app-

roach has not been explicitly generalized to the k-out-of-n case before, making
it difficult to do a rigorous efficiency comparison. However, such a generaliza-
tion would require k Merkle paths to be validated, resulting in circuits of size
|C| = O

(
κk log2(n)

)
. In addition, the circuit has to validate that the k Merkle

paths are distinct. If the (public) Merkle tree is constructed such that its leafs
are in a sorted order, this requires a circuit of size O(k). In these complexity
estimates we neglect the O(κn) size circuit required to construct the Merkle tree,
because these costs can be amortized in some applications.

In Table 1, the asymptotic complexities of our direct approach are compared
with the indirect approach, instantiated with typical communication efficient
circuit ZK protocols for which the size of the public parameters and the prover
complexity are linear and the communication complexity is logarithmic in the
circuit size. We observe that, if k = Ω(n/ log(n)), our approach yields an asymp-
totic improvement over the indirect approach.

Moreover, the constants of our approach are small. By contrast, taking for
instance the case k = 1 and a highly optimized group, associated to a security
parameter κ ≈ 100, the indirect approach can be instantiated with arithmetic
circuits containing approximately 1400 log2(n) multiplication gates [22]. Hence,
even for the 1-out-of-n case, where the indirect approach has better asymptotic
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complexities, we obtain better communication complexity for n ranging up to
roughly 9000.

Table 1. Comparison of the asymptotic complexities of the indirect approach, using
typical communication-efficient circuit ZK protocols, and our direct approach, for k-
out-of-n proofs of partial knowledge, with security parameter κ. The size of the public
parameters and the communication complexity are expressed in the number of group
and field elements. The prover complexity is expressed in the number of group expo-
nentiations.

Indirect Circuit ZK Approach Our Direct Approach
Size of Public Parameters O

(
κk logn

)
O

(
n
)

Prover Complexity O
(

κk logn
)

O
(

n
)

Communication Complexity O
(
log (κk logn)

)
O

(
logn

)

The above circuit approach can further be adjusted, for instance by invok-
ing ZK protocols with constant communication complexity [20], or by replacing
Merkle trees with RSA-accumulators [4], which results in arithmetic circuits
with a number of multiplication gates that is constant in n [30]. However, these
approaches are incomparable in that they are based on computational hardness
assumptions that are considered less standard, like the strong-RSA assumption
or the knowledge-of-exponent assumption. Furthermore, in these protocols, the
size of the public parameters and the prover complexity are still linear in the
circuit size, and for practical instances still result in sizeable circuits, respectively.

1.6 Organization of the Paper

The remainder of paper is organized as follows. In Sect. 2, we recall the notation
and some of the results from compressed Σ-protocol theory [2]. In Sect. 3, we
describe our twist on the pivotal Σ-protocol from [2]. In Sect. 4, we combine this
generalization with an adaptation of the techniques from [14] to construct our
proof of partial knowledge. Finally, in Sect. 5, we discuss a number of extensions
and generalizations of our proofs of partial knowledge.

2 Preliminaries

2.1 Interactive Proofs

We briefly introduce the concept of an interactive proof2 and some of the basic
(security) properties. An interactive proof Π for relation R is a protocol between
prover P and a verifier V. It takes as public input the statement x and as prover’s
private input the witness w, which is written as Input(x; w). As the output of
2 In contrast to the original definition [18], we do not require an interactive proof to be

complete and sound by definition; instead, we consider those (and other) properties
as desirable security properties.
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the protocol the verifier either accepts or rejects the prover’s claim of knowing a
witness w. Π is called (perfectly) complete if on any input (x; w) ∈ R the verifier
always accepts. Evaluating Π on input (x; w) is also written as Π(x; w).

An interactive proof with μ communication rounds is also called a μ-move
protocol. Note that the final message is always sent from the prover to the verifier.
The messages communicated in one protocol evaluation are also referred to as a
conversation or a transcript. If all of the verifier’s random coins are made public,
one speaks of a public-coin protocol. All our protocols will be public-coin and
thereby suitable for the Fiat-Shamir transformation [16], which turns public-coin
interactive proofs into non-interactive protocols.

An interactive proof Π for relation R is said to have witness extended emu-
lation [26] if there exists algorithm χ (witness extended emulator) that runs in
expected polynomial time and does the following. The algorithm χ, on input x
and given rewindable oracle access to a (possibly dishonest) prover P∗, outputs a
transcript and a witness w such that: (1) the emulated transcript is statistically
indistinguishable from conversations between P∗ and an honest verifier V, and
(2) the probability that the emulated transcript is accepting and the witness w is
not a valid witness for x is negligible. Witness extended emulation gives a notion
for proofs of knowledge (PoKs) that is sufficient in practical applications [2,6,9].

We also consider the computational version of a PoK, where witness extended
emulation is required to hold only for computationally bounded dishonest provers
under a computational hardness assumption. In those cases, the relation R typ-
ically depends on a (possibly implicit) security parameter, as well as on some
additional public parameters that are assumed to be chosen according to a spe-
cific probability distribution, and the success probability of the prover is then
understood to be on average over the choice of these public parameters. These
computational variants of proofs of knowledge are also called arguments of know-
ledge.

Protocol Π is called honest verifier zero-knowledge (HVZK) if there exists an
efficient simulator that, on input a statement x that admits a witness w, outputs
an accepting transcript, such that the simulated transcripts follow exactly the
same distribution as transcripts between an honest prover and an honest verifier.

A 3-move public-coin interactive proof is called a Σ-protocol. The 3 messages
are then typically denoted (a, c, z) where c is called the challenge. For a HVZK
Σ-protocol the simulator often proceeds by first selecting a random challenge c
and then preparing the messages a and z; in this case, we speak of special honest
verifier zero-knowledge (SHVZK).

A Σ-protocol is called k-special sound if there exists an efficient
algorithm that, on input any statement x and k accepting transcripts
(a, c1, z1), . . . , (a, ck, zk) with common first message a and pairwise distinct chal-
lenges ci, outputs a witness w for x.

More generally, we consider (2μ + 1)-move public-coin protocols, in which
all the verifier’s messages are uniformly random challenges. These protocols are
called (k1, . . . , kμ)-special sound if there exists an efficient algorithm that, on
input any statement x and a (k1, k2, . . . , kμ)-tree of accepting transcripts, out-
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puts a witness w for x. A (k1, k2, . . . , kμ)-tree of accepting transcripts is a set of∏μ
i=1 ki accepting transcripts that are arranged in the following tree structure.

The nodes in this tree correspond to the prover’s messages and the edges corre-
spond to the verifier’s challenges. Every node at depth i has precisely ki children
corresponding to ki pairwise distinct challenges. Every transcript corresponds to
exactly one path from the root node to a leaf node.

We note that in some public-coin protocols the verifier sends μ challenges
in less than 2μ + 1 rounds, i.e., some of the verifier’s messages contain more
than one challenge. For these protocols, we also consider the (k1, . . . , kμ)-special
soundness property. In this case, a (k1, k2, . . . , kμ)-tree of accepting transcripts
contains nodes that do not correspond to a message sent from the prover to the
verifier.

Let us assume that the challenges are sampled uniformly at random from
challenge sets with a cardinality that is exponential in the security parameter.
In this work all challenge sets are equal to Zq

∼= Z/(qZ) for some prime q that is
understood to be exponential in the security parameter. Hence, for the protocols
in this work this assumption is satisfied. Then witness extended emulation is
known to follow from (k1, k2, . . . , kμ)-special soundness [6].3 In this work, we
will show that all protocols are (k1, k2, . . . , kμ)-special sound for some μ and
some list of ki’s, from which witness extended emulation therefore follows.

2.2 Multi-exponentiation and the Pedersen Vector Commitment
Scheme

We consider statements over the ring Zq
∼= Z/(qZ) with q prime. We let G

be an Abelian group of prime order q for which we write its group operation
multiplicatively. We write vectors in Z

n
q or Gn in boldface, i.e., x = (x1, . . . , xn) ∈

Z
n
q and g := (g1, . . . , gn) ∈ G

n, and we write gx for the multi-exponentiation

gx :=
n∏

i=1
gxi

i ∈ G .

Furthermore, for vectors x,y ∈ Z
n
q , g,h ∈ G

n and scalar c ∈ Zq, we have the
following component-wise operations:

g ∗ h := (g1h1, g2h2, . . . , gnhn) ∈ G
n,

gc := (gc
1, gc

2, . . . , gc
n) ∈ G

n,

x ∗ y := (x1y1, x2y2, . . . , xnyn) ∈ Z
n
q .

Additionally, assuming n is even, we write gL := (g1, . . . , gn/2), gR :=
(gn/2+1, . . . , gn) ∈ G

n/2 and xL := (x1, . . . , xn/2), xR := (xn/2+1, . . . , xn) ∈
Z

n/2
q , for the left and right halves of these vectors.

3 In a recent unpublished work [3], it is shown that (k1, k2, . . . , kμ)-special sound-
ness implies the more standard notion of knowledge soundness. In turn, knowledge
soundness implies witness extended emulation [26].
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We let GT be another Abelian group and denote the set of all group homo-
morphisms f : Zn

q → GT by Hom(Zn
q ,GT ). Typically GT = G or GT = Zq, in

the latter case Hom(Zn
q ,GT ) = Hom(Zn

q ,Zq) is the set of linear forms on Z
n
q .

For any homomorphism f : Zn
q → GT it holds that its image im(f) ⊂ GT is a

Zq-module. For this reason, and without loss of generality, we assume that GT

is a Zq-module.
Moreover, we define the left and right part of f as follows:

fL : Zn/2
q → GT , x 
→ f(x, 0),

fR : Zn/2
q → GT , x 
→ f(0,x),

(2)

where, e.g., (x, 0) ∈ Z
n
q is the vector x ∈ Z

n/2
q appended with n/2 zeros.

In this work we also consider the Pedersen vector commitment scheme. This
commitment scheme allows a prover to (compactly) commit to an n-dimensional
vector x ∈ Z

n
q in a single group element P ∈ G. We recall that a Pedersen vector

commitment P is simply a multi-exponentiation, i.e.,

P = hγgx,

for public parameters h ∈ G and g ∈ G
n and for a (private) γ ∈ Zq sampled

uniformly at random by the prover.
The Pedersen vector commitment scheme is perfectly hiding and computa-

tionally binding under the discrete logarithm assumption. More precisely, the
commitment scheme is binding under the assumption that a prover does not
know a non-zero vector (γ, x1, . . . , xn) ∈ Z

n+1
q such that

hγ
n∏

i=1
gxi

i = 1.

Such a non-zero vector (γ, x1, . . . , xn) is also called a non-trivial discrete log
relation for group elements h, g1, . . . , gn. From here on forward, we assume that
these group elements have been sampled uniformly at random in a setup phase
and that the prover does not know a non-trivial discrete logarithm (DL) relation.
These group elements form the set of public parameters for all our protocols. We
say a protocol is computationally (k1, . . . , kμ)-special sound, under the discrete
logarithm assumption, if (k1, . . . , kμ)-special soundness holds under the assump-
tion that a prover does not know a non-trivial DL relation between the public
parameters.

3 Proving Group Homomorphism Openings
on Multi-exponentiations

In this section, we construct an interactive proof for proving that a secret multi-
exponent x ∈ Z

n
q for a public multi-exponentiation P = gx ∈ G is mapped to a

given public value y under an arbitrary but given group homomorphism f : Zn
q →
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GT . Our new protocol has a communication complexity that is logarithmic in the
dimension n. By considering one of the coordinates of x to be “the randomness”,
and considering an f that ignores this coordinate, we immediately get a protocol
that applies to Pedersen vector commitments and proves that the committed
vector satisfied the relation defined by the considered group homomorphism and
the target value y.

Our approach for constructing said protocol is as follows. We start with the
canonical Σ-protocol for the considered problem of proving f(x) = y (Sect. 3.1),
and we then adapt the compression mechanism of [2] such that it is applicable to
our setting. Indeed, our setting is a generalization of [2], which applies to the spe-
cial case where f is a linear form L : Zn

q → Zq. This then results in a compressed
Σ-protocol that features the claimed logarithmic complexity (Sect. 3.3).

Later in the section, we also discuss a couple of (standard) amortization
techniques applied to our protocol, for instance for proving fi(x) = yi for several
group homomorphisms fi at (essentially) the cost of proving one.

3.1 The Standard Σ-protocol for Opening Homomorphisms

We consider the problem of proving that the multi-exponent x of a multi-
exponentiation P = gx is mapped to a certain value y under a given homo-
morphism f ∈ Hom(Zq,GT ), i.e., that f(x) = y, without revealing x. More
concretely, we want to construct PoK protocols for the relation

Rf =
{ (

P ∈ G, y ∈ GT ;x ∈ Z
n
q

)
: P = gx, y = f(x)

}
. (3)

Protocol 1, denoted by Π0, is the canonical Σ-protocol for this relation
Rf , following the generic construction design for q-one-way group homomor-
phisms4 [12,13]. The properties of Π0, known to hold for this generic construc-
tion, are summarized in Theorem 1. Note that the only difference between this
protocol and Protocol 2 of [2] is that here we consider multi-exponentiations
and general group homomorphisms instead of Pedersen commitments and linear
forms.

Theorem 1 (Homomorphism Evaluation). Π0 is a Σ-protocol for relation
Rf . It is perfectly complete, special honest-verifier zero-knowledge and uncondi-
tionally special sound. Moreover, the communication costs are:

– P → V: 1 element of G, 1 element of GT and n elements of Zq.
– V → P: 1 element of Zq.

4 Here, applied to the q-one-way group homomorphisms Zn
q → G×GT , x �→ (gx, f(x)).
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Protocol 1. Σ-protocol Π0 for relation Rf

Opening a homomorphism on a Pedersen vector commitment.
Public Parameters : g ∈ G

n,
Input(P, y;x)

P = gx ∈ G

y = f(x) ∈ GT

Prover Verifier

r ←R Z
n
q

A = gr

t = f(r)
A,t−−−−−−→

c ←R Zq
c←−−−−−−

z = cx + r
z−−−−−−→

gz ?= AP c

f(z) ?= cy + t

3.2 Compression Mechanism

The Σ-protocol Π0 for opening homomorphisms has a linear communication
complexity. We now deploy the techniques from [2,6,9] to compress the commu-
nication complexity from linear to logarithmic. A first observation is that the
verifier’s final check verifies that

(AP c, cy + t; z) ∈ Rf ,

i.e., that the prover’s final message z is a witness with respect to the same relation
Rf for the statement (AP c, cy + t); which is computed by the verifier. This is no
coincidence; this holds generically for this standard construction of Σ-protocols
for q-one-way group homomorphisms. The final message of Π0 can therefore be
understood as a trivial PoK for relation Rf , and replacing this trivial PoK by a
more efficient one will reduce the communication complexity without affecting
security (significantly). In particular, the alternative PoK does not have to be
zero-knowledge since the trivial one obviously is not.

Our compression mechanism is thus an interactive proof Π1 for relation Rf

that is not zero-knowledge anymore but has improved efficiency. The compres-
sion mechanism is very similar to the one used in [2]. The difference is that
we consider the more general case of opening arbitrary group homomorphisms,
rather than restricting ourselves to linear forms. This generalization requires a
minor adaptation. The first step in the compression of [2] is namely to incorpo-
rate the linear form evaluation into the multi-exponentiation as an additional
exponent on a new generator k ∈ G. This reduction step does not apply to
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the general case of opening arbitrary group homomorphisms, and is therefore
omitted in our protocols. For this reason we directly apply (a minor adapta-
tion of) the main compression mechanism of [2]; ultimately this will increase
the communication costs of the compressed Σ-protocol by roughly a factor two
when compared to opening linear forms. However, in contrast to the compressed
Σ-protocol for opening linear forms [2], our protocol is unconditionally sound
rather than computationally. In Sect. 5.1, we show how a more general class of
homomorphisms can be incorporated into the commitment, thereby avoiding the
factor two loss in the communication efficiency.

The compression mechanism, i.e., our protocol Π1 for relation Rf that has
improved efficiency but is not zero-knowledge, is described in Protocol 2 below.
Here, n is assumed to be even, which is without loss of generality (if not the
witness can be appended with a zero). Also, recall that xL := (x1, . . . , xn/2)
equals the left half of the vector x ∈ Z

n
q and that fR(xL) := f(0, . . . , 0,xL), etc.

Before discussing the security of Π1 as a proof of knowledge in Theorem 2, we
emphasize the following two important properties of Π1. The size of the response
has halved compared to the original protocol Π0, and thereby the communication
costs are reduced by roughly a factor two, and second, verifying the correctness
of the response is again by means of checking whether it is a witness for the
relation Rf ′ , now instantiated with the group homomorphism f ′ := cfL + fR ∈
Hom

(
Z

n/2
q ,GT

)
.

Protocol 2. Compression Mechanism Π1 for relation Rf .

Public Parameters : g
Input(P, y;x)

P = gx ∈ G

y = f(x) ∈ GT

Prover Verifier

A = gxL
R , a = fR(xL)

B = gxR
L , b = fL(xR)

A,B,a,b−−−−−−−−−−−−−−→
c ←R Zq

c←−−−−−−−−−−−−−−
g′ := gc

L ∗ gR ∈ G
n/2

Q := AP cBc2

f ′ := cfL + fR

z = xL + cxR

z−−−−−−−−−−−−−−→ (g′)z ?= Q

f ′(z) ?= a + cy + c2b
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Theorem 2 (Compression Mechanism). Let n ∈ Z>0 be even. Then Π1 is
a 3-move protocol for relation Rf . It is perfectly complete and unconditionally
3-special sound. Moreover, the communication costs are:

– P → V: 2 elements of G, 2 elements of GT and n/2 elements of Zq.
– V → P: 1 element of Zq.

Proof. Completeness follows directly.
Special Soundness: We show that the protocol is 3-special sound, i.e., there

exists an efficient algorithm that on input three accepting transcripts computes
a witness for relation Rf .

Let (A, B, a, b, c1, z1), (A, B, a, b, c2, z2) and (A, B, a, b, c3, z3) be three
accepting transcripts for distinct challenges c1, c2, c3 ∈ Zq. Let a1, a2, a3 ∈ Zq be
such that ⎛

⎝
1 1 1
c1 c2 c3
c21 c22 c23

⎞

⎠

⎛

⎝
a1
a2
a3

⎞

⎠ =

⎛

⎝
0
1
0

⎞

⎠ .

Note that, since the challenges are distinct, this Vandermonde matrix is invertible
and a solution to this equation exists. We define z̄ =

∑3
i=1 ai(cizi, zi) for which

it is easily verified that

gz̄ = P and f(z̄) = y.

Hence, z̄ is a witness for relation Rf , which completes the proof. ��

3.3 Compressed Σ-protocol

Finally, we compose Σ-protocol Π0 and its compression mechanism Π1 to obtain
a compressed Σ-protocol for opening homomorphisms on multi-exponentiations
gx such as Pedersen vector commitments. We follow the notation of [2] and write
Πb � Πa for the composition of two composable interactive proofs Πa and Πb.
Protocols Πa and Πb are composable if protocol Πb is a PoK for the prover’s
final message of protocol Πa. Recall that this composition means that the final
message of protocol Πa is replaced by an execution of protocol Πb.

We assume that n is a power of two, if it is not the witness can be appended
with zeros such that its dimension is a power of 2. For n ≤ 2 it is optimal to omit
the compression mechanism, for this reason it is assumed that n > 2. To minimize
the communication complexity we recursively apply the compression protocol Π1
until the dimension of the witness is reduced to four, i.e., μ = �log2(n)�−2 times.
For this composition we write

Πc = Π1 � · · · � Π1︸ ︷︷ ︸
μ times

�Π0. (4)

Theorem 3 captures the security and efficiency properties of Protocol Πc.
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Theorem 3 (Compressed Σ-Protocol for Opening Homomorphisms).
Let n > 2, then Πc is a (2μ + 3)-move protocol for relation Rf , where μ =

�log2(n)� − 2. It is perfectly complete, special honest-verifier zero-knowledge and
unconditionally (2, 3, 3, . . . , 3)-special sound. Moreover, the communication costs
are:

– P → V: 2 �log2(n)� − 3 elements of G, 2 �log2(n)� − 3 elements of GT and 4
elements of Zq.

– V → P: �log2(n)� − 1 elements of Zq.

Proof. Completeness follows in a straightforward manner.
Special Honest Verifier Zero-Knowledge follows since Π0 is SHVZK. A

simulator for Πc runs the simulator for Π0, and replaces the final messages of
the simulated transcripts by honest executions of Π1 � · · · � Π1.

Special Soundness: Since the protocol is the composition of protocols that
are 2- or 3-special sound, it is easily seen that Πc is (2, 3, . . . , 3)-special sound,
i.e., there exists an efficient algorithm that on input a (2, 3, . . . , 3)-tree (depth
μ + 1) of 2 · 3μ accepting transcripts computes a witness for relation Rf . ��
Remark 1. We explicitly emphasize once more that the above and below results
on opening homomorphisms f(x) on multi-exponentiations gx immediately carry
over to opening homomorphisms f(x) on Pedersen vector commitments gxhγ ,
simply by renaming the involved variables in the obvious way.

3.4 Amortization Techniques

This section describes two standard amortization techniques. First, we consider
the scenario where a prover wishes to open one homomorphism f on many multi-
exponentiations P1, . . . , Ps, i.e., we consider the relation

RAmorExp =
{

(P1, . . . , Ps, y1, . . . , ys;x1, . . . ,xs) :
P1 = gx1 , y1 = f(x1), . . . , P1 = gx1 , ys = f(xs)

}
.

(5)

The standard (amortized) Σ-protocol for relation RAmorExp is similar to
Σ-protocol Π0 for relation Rf : it has the same first two moves, but then
the prover’s final response is z = r +

∑s
i=1 cixi and the verifier checks that

gz = AP c
1P c2

2 · · · P cs

s and f(z) = t + cy1 + c2y2 + · · · + csys. The communication
costs of the amortized Σ-protocol are exactly equal to the communication costs
of protocol Π0 and the compression mechanism applies as before. We denote the
compressed amortized Σ-protocol for relation RAmorExp by ΠAmorExp. Its main
properties are summarized in Theorem 4.

Theorem 4 (Amortization over Many Multi-Exponentiations). Let
n > 2, then ΠAmorExp is a (2μ + 3)-move protocol for relation RAmorExp, where
μ = �log2(n)� − 2. It is perfectly complete, special honest-verifier zero-knowledge
and unconditionally (s + 1, 3, 3, . . . , 3)-special sound. Moreover, the communica-
tion costs are:
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– P → V: 2 �log2(n)� − 3 elements of G, 2 �log2(n)� − 3 elements of GT and 4
elements of Zq.

– V → P: �log2(n)� − 1 elements of Zq.

Second, we consider the amortization scenario where a prover wishes to open
many homomorphisms f1, . . . , fs on one multi-exponentiation P , i.e., we consider
a compressed Σ-protocol for the following relation

RAmorHom =
{

(P, y1, . . . , ys;x) : P = gx, y1 = f1(x), . . . ys = fs(x)
}

. (6)

This scenario is reduced to the original scenario of opening one homomor-
phism on one commitment by means of a standard polynomial amortization
trick. In the first move of the protocol, the verifier sends a random challenge
ρ ∈ Zq to the prover, and then Πc is executed on the instance given by P = gx,
fρ = f1 + ρf2 + · · · + ρs−1fs and yρ = y1 + ρy2 + · · · + ρs−1ys.

The core idea behind this construction is the observation that if x satisfies
fρ(x) = yρ for s distinct choices of ρ then fi(x) = yi for all i ∈ {1, . . . , s}. A
caveat is that when trying to extract such an x by rewinding s − 1 times and
choosing different ρ’s, one might potentially extract different choices of x’s. How-
ever, since gx = P must still hold, this would lead to a non-trivial DL relation
among the gi’s, and thus cannot happen when the prover is computationally
bounded.

The properties of this protocol for relation RAmorHom, denoted by ΠAmorHom,
are summarized in Theorem 5. Note that the communication from prover to
verifier is identical to that of protocol Πc. However, the polynomial amortization
trick degrades the soundness from unconditional to computational because of the
above reason.

Theorem 5 (Amortization over Many Homomorphisms). Let n > 2,
then ΠAmorHom is a (2μ + 4)-move protocol for relation RAmorHom, where μ =
�log2(n)� − 2. It is perfectly complete, special honest-verifier zero-knowledge
and computationally (s, 2, 3, 3, . . . , 3)-special sound, under the discrete logarithm
assumption in G. Moreover, the communication costs are:

– P → V: 2 �log2(n)� − 3 elements of G, 2 �log2(n)� − 3 elements of GT and 4
elements of Zq.

– V → P: �log2(n)� elements of Zq.

In the above claim on the computational special soundness we take it as
understood that g1, . . . , gn are chosen uniformly at random in G.

Proof. Completeness and SHVZK follow directly from the corresponding
properties of Protocol Πc.

Special Soundness: From the proof of Theorem 3 we know that for every ρ
there exists an efficient algorithm that, from any (2, 3, . . . , 3)-tree (depth μ + 1)
of accepting transcripts, extracts a witness z such that gz = P and fρ(z) =
y1 + ρy2 + · · · + ρs−1ys.
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We show that there also exists an efficient algorithm that, from s exponents
z1, . . . , zs ∈ Z

n
q such that gzi = P and fρi

(zi) = y1 + ρiy2 + · · · + ρs−1
i ys for

all i and for pairwise distinct challenges ρi ∈ Zq, extracts either a non-trivial
DL-relation for the public parameters g or a witness for relation RAmorHom.
Combining these two results shows that Protocol ΠAmorHom is (s, 2, 3, . . . , 3)-
special sound from which knowledge soundness follows from [2].

First suppose that there exist 1 ≤ i, j ≤ s such that zi �= zj . Then gzi =
P = gzj gives a non-trivial DL-relation, which completes the proof for this case.

Now suppose that zi = z for all i. Let (ai,j)1≤i,j≤s be the inverse of the
Vandermonde matrix generated by the challenges ρ1, . . . , ρs, i.e.,

⎛

⎜
⎝

1 · · · 1
...

. . .
...

ρs
1 · · · ρs

s

⎞

⎟
⎠

⎛

⎜
⎝

a1,1 · · · a1,s

...
. . .

...
as,1 · · · as,s

⎞

⎟
⎠ = Is.

Note that this Vandermonde matrix is invertible because the challenges are pair-
wise distinct. Then for all 1 ≤ i ≤ s it holds that

fi(z) = a1,ifρ1(z) + · · · + as,ifρs
(z) = yi.

Hence z is a witness for relation RAmorHom which completes the proof. ��

4 Proving Partial Knowledge

Here, we show our new efficient proofs for partial knowledge, i.e., for proving
knowledge of k-out-of-n discrete logarithms (Sect. 4.1), and for proving know-
ledge of k-out-of-n commitment openings (Sect. 4.2). As we will see, these new
proofs of partial knowledge follow quite easily by exploiting the core idea of the
general construction in [14] and combining it with the techniques and results
from the section above. This further demonstrates the strength of combining the
compression technique introduced by [6,9] with general Σ-protocol theory.

4.1 Partial Knowledge of DL’s

In this section we construct a simple SHVZK proof of knowledge for proving
knowledge of k-out-of-n discrete logarithms. Our protocol inherits the loga-
rithmic communication from the compressed Σ-protocol(s) from the previous
section. More precisely, we give a SHVZK protocol for the following relation

RPartial =
{ (

g, P1, . . . , Pn ∈ G, k ∈ {1, . . . , n}; S ⊂ {1, . . . , n},x ∈ Z
n
q

)
:

|S| = k, Pi = gxi for all i ∈ S
}

.
(7)

Note that, for notational convenience, the witness x is defined as a vector in Z
n
q

while only the k coefficients (xi)i∈S are relevant in this relation.
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The protocol goes as follows. First, the prover computes the unique polyno-
mial

p(X) = 1 +
n−k∑

j=1
ajXj ∈ Zq[X]

of degree at most n − k such that p(0) = 1 and p(i) = 0 for all i /∈ S.
Second, the prover computes

ti := p(i)xi

for i ∈ {1, . . . , n} (recall that p(i) vanishes for those i for which the prover does
not know xi), and sends a Pedersen commitment P ∈ G to the vector

y = (a1, . . . , an−k, t1, . . . , tn) ∈ Z
2n−k
q

to the verifier. Here, the commitment P is computed as P = gyhγ with respect
to public parameters g = (g1, . . . , g2n−k) ∈ G

2n−k and h ∈ G for which no
non-trivial DL-relations are known to the prover, i.e., so that the commitment
is indeed binding.

Finally, the prover proves to the verifier that the committed vector y satisfies

gti = P
p(i)
i (8)

for all i ∈ {1, . . . , n}, where the exponent p(i) on the right-hand-side term
is understood as the evaluation of the affine function (w1, . . . , wn−k) 
→ 1 +∑n−k

j=1 wjij applied to a1, . . . , an−k. Thus, rewriting (8) as

gtiP
−

∑
j

ajij

i = Pi (9)

we obtain an expression where the left hand side is a group homomorphism f
applied to the committed committed vector y, and thus the prover can prove one
instance of (8) by means of the compressed protocol from Theorem 3; respec-
tively, for improved efficiency, it can invoke the amortized protocol ΠAmorHom
from Theorem 5 for proving that (8) holds for all i ∈ {1, . . . , n}.

The resulting protocol, denoted ΠPartial, is summarized below in Protocol 3.
We note that, in line with the amortized protocol it uses as a subroutine, it is
computationally special sound, based on the assumption that the prover does not
know any non-trivial DL-relations among the public parameters. The security
and efficiency properties of ΠPartial are formally described in Theorem 6.

Theorem 6 (k-out-of-n SHVZK Proof of Partial Knowledge). Let
n > 1, then ΠPartial is a (2μ + 5)-move protocol for relation RPartial, where
μ = �log2(2n − k + 1)� − 2. It is perfectly complete, special honest-verifier zero-
knowledge and computationally (n, 2, 3, 3, . . . , 3)-special sound, under the discrete
logarithm assumption in G. Moreover, the communication costs are:

– P → V: 4 �log2(2n − k + 1)� − 5 elements of G and 4 elements of Zq.
– V → P: �log2(2n − k + 1)� elements of Zq.
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Protocol 3. SHVZK Proof of Partial Knowledge ΠPartial for Relation RPartial
Proving knowledge of k-out-of-n discrete logarithms.

Public Parameters : g ∈ G
2n−k, h ∈ G

Input (g, P1, . . . , Pn, k; S,x)

S ⊂ {1, . . . , n}, |S| = k
gxi = Pi for i ∈ S

Prover Verifier

p(X) = 1 +
∑n−k

i=1 aiX
i s.t.

p(i) = 0 ∀i /∈ S
y = (a1, . . . , an−k,

p(1)x1, . . . , p(n)xn)
γ ←R Zq, P = gyhγ

P−−−−−−−−−−−→
Run ΠAmorHom to prove that y satisfies

gyi+n−kP
−

∑
j

yjij

i = Pi ∀ i ∈ {1, . . . , n}

Proof. Completeness follows in a straightforward manner.
Special Honest Verifier Zero-Knowledge follows immediately from the

fact that P is uniformly random and from the corresponding zero-knowledge
property of ΠAmorHom.

Special Soundness: The computational special soundness of ΠAmorHom
guarantees existence of an extractor that extracts, from any computationally-
bounded successful prover, an opening y = (a1, . . . , an−k, t1, . . . , tn) of the com-
mitment P for which (9) holds for all i ∈ {1, . . . , n}, and thus, considering
the corresponding polynomial p(X) = 1 +

∑n−k
j=1 ajXj , for which (8) holds for

all i ∈ {1, . . . , n}. Given the bounded degree of p and the non-zero constant
coefficient, p(i) = 0 for at most n − k choices of i ∈ {1, . . . , n}. Thus, setting
S := {i : p(i) �= 0}, we have |S| ≥ k, and for any i ∈ S we can set xi := ti/p(i)
and (8) then implies that gxi = Pi. ��

4.2 Partial Knowledge of Commitment Openings

In the previous section we constructed a protocol for proving knowledge of k-out-
of-n discrete logarithms or, equivalently, a protocol for showing that a prover can
open k-out-of-n Pedersen commitments to 0. This protocol can easily be adapted
to accommodate, for example, the following variation of this zero-knowledge
scenario.
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In this variation we let P1, . . . , Pn be Pedersen commitments, for which the
prover claims to know k-out-of-n openings, not necessarily to 0. More precisely,
the prover claims to know a witness for the following relation:5

RPartialCom =
{(

g, h, P1, . . . , Pn ∈ G, k ∈ {1, . . . , n}; S ⊂ {1, . . . , n},

x1, . . . , xn ∈ Zq, γ1, . . . , γn ∈ Zq

)
:

|S| = k, Pi = gxihγi for all i ∈ S
}

.

(10)

A proof of knowledge for relation RPartialCom is obtained by applying the
following adaptations. After defining the polynomial p(X) as before, the prover
computes

ti := p(i)xi ∈ Zq and si := p(i)γi ∈ Zq,

for i ∈ {1, . . . , n} and sends a Pedersen commitment P ∈ G to the vector

y = (a1, . . . , an−k, t1, . . . , tn, s1, . . . , sn) ∈ Z
3n−k
q ,

to the verifier. Finally, by invoking Protocol ΠAmorHom, the prover shows that

gtihsiP
−

∑
j

ajij

i = Pi

for all i ∈ {1, . . . , n}. Formally, we have the following security and efficiency
properties.

Theorem 7 (k-out-of-n SHVZK Proof of Partial Knowledge for Com-
mitment Openings). ΠPartialCom is a (2μ + 5)-move protocol for relation
RPartialCom, where μ = �log2 (3n − k + 1)� − 2. It is perfectly complete, spe-
cial honest-verifier zero-knowledge and computationally (n, 2, 3, 3, . . . , 3)-special
sound, under the discrete logarithm assumption in G. Moreover, the communi-
cation costs are:
– P → V: 4 �log2 (3n − k + 1)� − 5 elements of G and 4 elements of Zq.
– V → P: �log2 (3n − k + 1)� elements of Zq.

Remark 2. We emphasize that ΠPartialCom is only special sound under the
assumption that the prover does not know a non-trivial DL relation between
the public parameters g ∈ G

3n−k and h ∈ G for the Pedersen commitment P to
the vector y, i.e., it is crucial that the commitment P is binding. By contrast, the
special soundness of ΠPartialCom does not depend on a computational assump-
tion regarding the public parameters g, h ∈ G for the Pedersen commitments Pi,
i.e., the commitments Pi are not required to be binding for Protocol ΠPartialCom
to be special sound.

5 Extensions and Generalizations

Our techniques from Sect. 4 for proofs of partial knowledge can be extended and
generalized in various directions. We discuss some examples here.
5 The element h ∈ G, used in the commitments Pi, is not necessarily the same element

as the element h ∈ G used in the Pedersen vector commitment P of Protocol ΠPartial.
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5.1 Pairing Based Commitments to Reduce the Communication
Complexity

We show here that by introducing a pairing and considering a pairing based
extension of Pedersen’s vector commitment scheme (see below), we can incorpo-
rate a trick from [9] to reduce the relevant constant by another factor up to 2.

Recall that, rather than a general homomorphism f : Zn
q → GT , [2] consid-

ers the special case of a linear form L : Zn
q → Zq, with the goal to prove that

a secret vector x ∈ Z
n
q , committed to as P = gxhγ , satisfies L(x) = y for a

publicly known P and y. The trick then is to include y into the commitment by
considering P ′ = gxhγky instead, and proving it to be of the claimed form using a
Σ-protocol and then compressing it. The gained advantage is not that y becomes
hidden in the commitment—y is still known, and P ′ would actually be computed
by the verifier from P and y—but that the public information is reduced to a
single group element. In the language of our general view (Appendix A), Proto-
col 4 is applied to the homomorphism Z

n
q → GT , x 
→ gxhγkL(x), rather than

to Z
n
q → GT × Zq, x 
→ (gxhγ , L(x)). Thereby, in every recursion of the com-

pression mechanism, each “cross term” consists of just one element in GT now,
rather than a pair in GT × Zq. Overall this reduces the communication costs
by roughly a factor up to 2, depending on the choice of the group GT and the
representation of its elements.

To apply this approach to our scenario, and incorporate f(x) ∈ GT into
the commitment, we require a compact vector commitment scheme for vectors
(x, y) ∈ Z

n
q × GT , which have coefficients in both Zq and GT . Under bilin-

ear pairing assumptions these commitment schemes exist [1,25]. Namely, let us
assume that there exists a group G2 of prime order q, and a bilinear pairing
e : GT × G2 → G. For public parameters g ∈ G

n, h ∈ G and R ∈ G2 sampled
uniformly at random, we can define the following commitment scheme:

com′ : Zn
q × GT × Zq → G, (x, y, γ) 
→ gxhγe(y, R), (11)

where γ ∈ Zq is chosen uniformly at random to commit to an element (x, y) ∈
Z

n
q ×GT . This commitment scheme is unconditionally hiding and binding under

the assumption that the prover does not know a non-zero vector (x, y, γ) ∈
Z

n
q × GT × Zq such that gxhγe(y, R) = 1 ∈ G. This assumption is implied by

the double pairing (DBP) assumption, which is in turn implied by the decisional
Diffie-Hellman assumption over GT [1,25].

A more efficient protocol for opening arbitrary homomorphisms f : Zn
q → GT

is now obtained by replacing the Pedersen vector commitment scheme by this
pairing based commitment scheme that allows the group element f(x) to be
incorporated into the commitment. The resulting compressed Σ-protocol for
opening homomorphisms is derived as in Sect. 3, but with the generic compres-
sion Protocol 4 now instantiated with the group homomorphism Z

n+1
q → G,

(x, γ) 
→ gxhγe(cf(x), R), for a random challenge c ∈ Zq, rather than Z
n+1
q →

G×GT , (x, γ) 
→ (gxhγ , f(x)). Applying this modification to the k-out-of-n proof



86 T. Attema et al.

of partial knowledge (Protocol 3) results in communication costs, from prover to
verifier, of exactly 2 �log2(2n − k + 1)� − 1 elements of G and 4 elements of Zq.

5.2 Multi-exponentiations and Vector Commitments

A straightforward generalization of Protocol ΠPartial shows that, instead of
the DL problem for standard exponentiations, we can also consider multi-
exponentiations. More concretely, this generalization gives a protocol for the
following relation

R′ =
{(

h ∈ G
m, P1, . . . , Pn ∈ G, k ∈ {1, . . . , n}; S ⊂ {1, . . . , n},

x1, . . . ,xn ∈ Z
m
q

)
: |S| = k, Pi = hxi for all i ∈ S

}
.

(12)

The only adaptation of protocol ΠPartial that is required is the replacement
of the scalars xi ∈ Zq by vectors xi ∈ Z

m
q . The communication complexity of

the resulting protocol grows logarithmically in the dimension m of the multi-
exponentiations. In a completely analogous manner, protocol ΠPartialCom from
Sect. 4.2 can be generalized to proving partial knowledge of Pedersen vector
commitment openings.

5.3 Plug and Play with Circuit Zero-Knowledge

In many practical scenarios, one wishes to prove not only partial knowledge of
commitment openings, but also that the committed values satisfy some addi-
tional constraints. Typically these constraints are defined by an arithmetic cir-
cuit C : Z

n
q → Zq and the committed values x1, . . . , xn ∈ Zq are claimed to

satisfy C(x1, . . . , xn) = 0. More concretely, we consider a prover that claims to
know a witness for the following relation

RPartialCirc =
{(

g, h, P1, . . . , Pn ∈ G, k ∈ {1, . . . , n}; S ⊂ {1, . . . , n},

x1, . . . , xn ∈ Zq, γ1, . . . , γn ∈ Zq

)
: |S| = k,

C(x1, . . . , xn) = 0, Pi = gxihγi for all i ∈ S
}

.

(13)

Note that in this relation the prover is only committed to k-out-of-n scalars
xi, i.e., it can choose n − k scalars freely.

To handle this extension of the partial knowledge scenario we deploy the
circuit ZK techniques from [2]. For these techniques to be applicable all we
need to show is that we can open homomorphisms and linear forms on the same
Pedersen vector commitment. In [2] it is namely shown how circuit ZK protocols,
for arbitrary arithmetic circuits, are derived from the functionality of opening
linear forms on Pedersen vector commitments.

However, for any homomorphism f : Zn
q → GT and any linear form L : Zn

q →
Zq it is easily seen that the following map is again a homomorphism

(f, L) : Zn
q → GT × Zq x 
→ (f(x), L(x)).
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So the functionality of Protocol Πc, opening homomorphisms, trivially extends
to the functionality of opening homomorphisms and linear forms on the same
vector commitment.

Applying this approach directly results in a protocol for relation RPartialCirc
where the communication costs, from prover to verifier, are roughly 6 log2(n)
elements. These communication costs can be reduced to roughly 4 log2(n) ele-
ments, or 2 log2(n) on a pairing based platform, by applying the techniques
from Sect. 5.1 and [2].

Remark 3. Various other (natural) circuit ZK scenarios exist. For example, when
the circuit C : Zk

q → Zq only takes the scalars xi for i ∈ S as input. Many of
these scenarios are easily dealt with by plug and play (modular design) with the
techniques from [2].

5.4 General Access Structures

Thus far, we have restricted ourselves to provers that claim to know the solutions
of some (secret) subset S, of cardinality at least k, of n (public) DL problems
Pi = gxi , i.e., the secret subset S is an element of a threshold access structure

Γk,n = {A ⊂ {1, . . . , n} : |A| ≥ k} ⊂ 2{1,...,n}.

Here, we describe how the protocols from Sect. 4 can easily be generalized to
arbitrary monotone access structures Γ ⊂ 2{1,...,n}, i.e., to provers that claim to
know the solutions of some subset of S ∈ Γ of n DL problems. Recall that Γ
is called a monotone access structure if for all A ∈ Γ and for all B ⊂ 2{1,...,n}

with A ⊂ B it holds that B ∈ Γ . The proofs of partial knowledge of [14]
already considered arbitrary access structures and we adapt their techniques by
combining them with our compression framework.

Our proofs of k-out-of-n partial knowledge implicitly deploy a linear secret
sharing scheme (LSSS) for access structure Γ ∗

k,n = Γn−k,n. Here, Γ ∗ denotes the
dual of access structure Γ , generally given by

Γ ∗ = {A ⊂ {1, . . . , n} : Ac /∈ Γ}.

More concretely the protocols of Sect. 4 use Shamir’s secret sharing scheme and
the polynomial p(X) = 1 +

∑n−k
j=1 ajXj defines a secret sharing of the field

element 1.
To construct a proof of partial knowledge for monotone access structure Γ

we simply replace p(i) by the i-th share (which may consist of several field
elements, depending on the expansion factor) of a linear secret sharing of 1,
with the randomness chosen so that the “right” shares (i.e., those corresponding
to the xi’s that the prover does not know) vanish.

Note that an honest prover knows (xi)i∈S for some S ∈ Γ . Hence, Sc /∈ Γ ∗

and for this reason the appropriate secret sharing of 1 exists, showing complete-
ness of the generalized proof of partial knowledge.
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Special soundness follows from the following observation. Let A ⊂ {1, . . . , n}
be the subset for which all the corresponding shares vanish. Then, by linearity
of the secret sharing scheme and since the secret sharing reconstructs to 1, it
follows that A /∈ Γ ∗. Hence, Ac ∈ Γ and special soundness follows as before.

The communication complexity of the resulting protocol depends logarith-
mically on the size of the LSSS for Γ ∗, which is given by the monotone-span-
program complexity of Γ ∗ [32] and which coincides with the monotone-span-
program complexity of Γ [17].
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A General View on the Compression

We consider here the natural generalization of the compression Protocol 2 to
an arbitrary group homomorphism Ψ : H → G for groups H and G of prime
exponent6 q and for which H is a direct sum H = H

′ ⊕ H
′ of a group H

′ with
itself. Thus, any x ∈ H can be written as a tuple x = (xL, xR) of group elements
xL, xR ∈ H

′. By convention, we write H
′, and thus H, as an additive group and

G as a multiplicative group. Protocol 4, denoted by ΠΨ , below is a proof of
knowledge for the relation

RΨ =
{

(P ; x) ∈ G × H : Ψ(x) = P
}

.

Its properties are summarized in the following theorem. The proof is along the
very same lines as the proof of Theorem 2, with obvious adjustments. We provide
it here for completeness.

Theorem 8 (General Compression Mechanism). Let H = H
′ ⊕ H

′ for
some group H

′. Then ΠΨ is a 3-move protocol for relation RΨ . It is perfectly com-
plete and unconditionally 3-special sound. Moreover, the communication costs
are:

– P → V: 2 elements of G and 1 element of H′.
– V → P: 1 element of Zq.

Proof. Completeness follows directly.
Special Soundness: We show that the protocol is 3-special sound. Let

(A, B, c1, z1), (A, B, c2, z2) and (A, B, c3, z3) be three accepting transcripts for
distinct challenges c1, c2, c3 ∈ Zq. Let a1, a2, a3 ∈ Zq be such that

⎛

⎝
1 1 1
c1 c2 c3
c21 c22 c23

⎞

⎠

⎛

⎝
a1
a2
a3

⎞

⎠ =

⎛

⎝
0
1
0

⎞

⎠ .

Note that, since the challenges are distinct, this Vandermonde matrix is invertible
and a solution to this equation exists. We define z̄ =

∑3
i=1 ai(cizi, zi) for which

it is easily verified that Ψ(z̄) = P . Hence, z̄ is a witness for relation RΨ , which
completes the proof. ��

https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45472-1_5
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Protocol 4. Generic Compression Mechanism ΠΨ for relation RΨ .

Input(P ; x = (xL, xR))

P = Ψ(xL, xR) ∈ G

Prover Verifier

A = Ψ(0, xL), B = Ψ(xR, 0)
A,B−−−−−−−−−−−−−−→

c ←R Zq
c←−−−−−−−−−−−−−−

z = xL + cxR

z−−−−−−−−−−−−−−→ Ψ(cz, z) ?= AP cBc2

Considering the setting of Sect. 3 and instantiating Ψ with Ψ : Zn
q → G×GT ,

x 
→ (gx, f(x)) for the considered group homomorphism f : Z
n
q → GT , with

n assumed to be even so that Z
n
q = Z

n/2
q ⊕ Z

n/2
q , we recover the relation Rf

and Protocol 2 from Sect. 3. Similarly, we recover the pairing-based compression
protocol of Sect. 5.1 by instantiating Ψ with Ψ : Zn

q → G, x 
→ gxe(f(x), R).
Consider the final verification Ψ(cz, z) ?= AP cBc2 in Protocol 4. In line with

Protocol 2 in Sect. 3, when we define, for an arbitrary given c ∈ Zq, the group
homomorphism Ψ ′ : H′ → G, z 
→ Ψ(cz, z) and the group element P ′ = AP cBc2 ,
we observe that the final verification step in Protocol 4 is to check if (P, z)
satisfies the relation RΨ ′ . Therefore, if H

′ happens to again be a direct sum
H

′ = H
′′ ⊕ H

′′ of a group H
′′ with itself, we can replace the last communication

and verification step in Protocol 2 by an execution of Protocol 2 for the relation
RΨ ′ . Thus, if H is actually the n-fold direct sum of a group H◦ with itself for
n a power of 2 (which we may assume without loss of generality), we obtain a
proof of knowledge for relation RΨ , where the communication costs, from prover
to verifier, are 2 log(n) elements of G and 1 element of H◦.

6 Recall that the exponent of group is the least common multiple of the orders of all
group elements, i.e., it is the smallest e such that ge = 1 for all group elements g.
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Abstract. Zero knowledge proofs are an important building block in
many cryptographic applications. Unfortunately, when the proof state-
ments become very large, existing zero-knowledge proof systems easily
reach their limits: either the computational overhead, the memory foot-
print, or the required bandwidth exceed levels that would be tolerable
in practice.

We present an interactive zero-knowledge proof system for boolean
and arithmetic circuits, called Mac′n′Cheese, with a focus on supporting
large circuits. Our work follows the commit-and-prove paradigm instan-
tiated using information-theoretic MACs based on vector oblivious lin-
ear evaluation to achieve high efficiency. We additionally show how to
optimize disjunctions, with a general OR transformation for proving the
disjunction of m statements that has communication complexity pro-
portional to the longest statement (plus an additive term logarithmic
in m). These disjunctions can further be nested, allowing efficient proofs
about complex statements with many levels of disjunctions. We also show
how to make Mac′n′Cheese non-interactive (after a preprocessing phase)
using the Fiat-Shamir transform, and with only a small degradation in
soundness.

We have implemented the online phase of Mac′n′Cheese and achieve
a runtime of 144 ns per AND gate and 1.5 µs per multiplication gate in
F261−1 when run over a network with a 95 ms latency and a bandwidth
of 31.5 Mbps. In addition, we show that the disjunction optimization
improves communication as expected: when proving a boolean circuit
with eight branches and each branch containing roughly 1 billion mul-
tiplications, Mac′n′Cheese requires only 75 more bytes to communicate
than in the single branch case.

1 Introduction

Zero knowledge (ZK) proofs are interactive protocols which allow a prover P to
convince a verifier V that a certain statement x is true in such a way that V
learns nothing beyond the validity of the statement. ZK proofs have a wide range
of applications in cryptography, from signatures [BG90] to compiling other pro-
tocols from passive to active security [GMW87]. More recently, ZK proofs have
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12828, pp. 92–122, 2021.
https://doi.org/10.1007/978-3-030-84259-8_4
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seen widespread applications outside of classical cryptography, for example in the
cryptocurrency space [BCG+14]. These constructions mostly focus on succinct-
ness and non-interactivity ; namely, the construction of “succinct” proofs that
have a small verification runtime and that do not require interaction between P
and V for validation.

However, for sufficiently large statements—on the order of billions of
instructions—most existing proof systems fail due to either memory constraints
or high prover running times. Systems such as SNARKs [BCG+13] or recent
IOP-based constructions such as Ligero [AHIV17] or STARKs [BBHR19] suffer
from exactly this drawback: they have an inherent asymptotic prover overhead,
paying at least a multiplicative factor log(|x|) in computation when the state-
ment has length |x|, and they need to keep the entire statement x in memory.

1.1 Our Approach: Mac′n′Cheese

In this work we introduce a family of novel ZK proof protocols called
Mac′n′Cheese, which are optimized for statements at scale. We use the commit-
and-prove paradigm [CD97], where we “commit to” values using an information-
theoretic message authentication code (MAC). For each committed value, P
holds the MAC’ed value and the tag, and V holds the MAC key. Such com-
mitments can be generated very efficiently using vector oblivious linear evalua-
tion (VOLE) [BCGI18] in a preprocessing phase, which can generate many such
random commitments with only a small amount of interaction and computa-
tion [WYKW20].

Naively, this commit-and-prove approach leads to a proof with bandwidth
costs that scale linearly with the circuit size. To decrease this, in Mac′n′Cheese
we support efficiently evaluating disjunctive statements, namely, to prove that
one out of m statements is true, the prover only needs to communicate the
information needed to evaluate the true branch among all m disjunctions. Both
parties still perform the computations necessary to evaluate each branch, but
the verifier uses the messages for the correct branch for all m instances simul-
taneously. The idea of optimizing disjunctive statements in this way was first
considered in recent work on stacked garbling [HK20b], with proofs of disjunc-
tions based on garbled circuits. They observed that disjunctive statements can
arise in many natural applications, such as when proving in zero-knowledge the
existence of a bug in a program, so optimizing these is well-motivated.

At a high level, our technique can be seen as a generalized OR composition
for m protocols, where the resulting OR proof has communication complex-
ity proportional to max{Ci}, where Ci is the complexity of the i-th protocol.
Contrasted with the classic OR proof approach [CDS94], which requires

∑
Ci

communication, our techniques for stacking save a multiplicative factor of m.
On the other hand, compared with stacked garbling [HK20b], our underlying
protocols have around 20× less communication, and are also more flexible, since
we can support both boolean and arithmetic circuits.

Efficiency comparison and related work. Table 1 shows the efficiency
of our protocols alongside other VOLE- or garbled-circuit-based protocols,
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Table 1. Comparison of different GC and VOLE-based ZK protocols (costs exclude
OT/VOLE setup). “Comm.” denotes the number of field elements communicated per
multiplication. “Rounds” denotes the total number of rounds required, where we count
rounds as the number of message flows, so one round is a single message from the
prover to the verifier. “Mmps” denotes the number of multiplication gates per second
in millions. We caution against reading too much into these numbers due to differ-
ing experimental environments, and provide them mostly as a rough comparison guide.
“Disjunctions” denotes those protocols that support communication-optimized disjunc-
tions. The variable b denotes the batch-size of multiplications, and ε denotes a value
close to zero that depends on b. Concretely, for a batch size of b = 1000 000 we require
17 rounds with ε = .008 for the boolean case (using F240) and ε = .257 for the arithmetic
case (using Fp for p = 261 − 1).

Protocol Boolean Arithmetic Disjunctions

Comm. Rounds Mmps Comm. Rounds Mmps

Stacked garbling [HK20b] 128 3 0.3a — — — �
Wolverine [WYKW20] 7∗ 3 2.0b 4 3 0.2b ✗†

Line-Point ZK [DIO21] — — — 1 3 — ✗

QuickSilver [YSWW21] 1 3 12.2c 1 3 1.4c ✗

Mac′n′Cheese (simple) 9 3 — 3 3 — �
Mac′n′Cheese (batched) 1 + ε∗ O(log b) 6.9d 1 + ε∗ O(log b) 0.6d �

∗ For large batches (e.g., b ≥ 1 million).
† While we believe Wolverine can be combined with our approach described in Sect. 3.1,
the performance implications of this combination are unclear.
a With a 100 ms latency and a 100 Mbps bandwidth.
b With a 0.1 ms latency and a 50 Mbps bandwidth.
c With a 0.1 ms latency and a 30 Mbps bandwidth for boolean and a 100 Mbps
bandwidth for arithmetic.
d With a 93 ms latency and a 31.5 Mbps bandwidth.

where we focus on communication cost per multiplication gate measured in
field elements. As far as we are aware, there are only two ZK approaches
that can successfully scale to large statements: the garbled circuit ZK app-
roach [JKO13,FNO15,ZRE15,HK20b], and the more recent approach based
on VOLE, namely the concurrent works Wolverine [WYKW20] and Line-Point
ZK [DIO21], plus QuickSilver [YSWW21] (which builds on Line-Point ZK). All
of these VOLE-based approaches have provers that run linear in the proof state-
ment alongside the ability to “stream”—namely, the prover and verifier are not
required to store the entire proof statement in memory.

For Mac′n′Cheese, our first class of “simple” protocols reduces the communi-
cation complexity of Wolverine from 4 to 3 field elements for arithmetic circuits,
and achieves a slightly higher cost (9 bits) for boolean circuits, while avoiding
the need to amortize over many gates. Our second set of protocols has essen-
tially the same practical cost as Line-Point ZK and QuickSilver, but is best run
in large batches, so suited for bigger circuits. Importantly, all of our protocols
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are compatible with our technique for efficient disjunctions—we currently do not
know how to efficiently adapt this technique for QuickSilver or Line-Point ZK1.

Finally, note that for zero knowledge from garbled circuits, the best approach
currently has a communication cost of 128 bits per AND gate, which is around
18× higher than our approach that also supports disjunctive statements. We note
that Heath and Kolesnikov [HK20b] were the first to consider “stacked” disjunc-
tive proofs. Our approach was inspired by stacked garbling, but the technique
is very different, and closer in spirit to the earlier ‘free if’ for private function
evaluation [Kol18] (although neither technique follows from the other).

Implementation. We implemented the online phase of Mac′n′Cheese in the
Rust programming language. Currently, we do not have an implementation
of VOLE, which should add a small amount of communication—0.42 bits per
VOLE—and slight increase in runtime—at most 85 ns per VOLE [WYKW20,
Table 4].

When run on a real-world network (95 ms latency and a bandwidth of
31.5 Mbps), Mac′n′Cheese requires approximately 1.5 µs per multiplication gate
(for F261−1), and 144 ns per AND gate (using F240). Run locally, Mac′n′Cheese
requires approximately 276 ns per multiplication gate and 141 ns per AND gate.
We also show that disjunctions have large communication savings: when run on
a circuit containing eight branches each of which contains 1 billion multiplication
gates, we see a communication increase of only 75 bytes versus running a single
1-billion-gate branch.

1.2 Our Techniques

We present the Mac′n′Cheese approach in four steps: first, we describe the zero-
knowledge protocol in a setting with idealized homomorphic commitments to
single field elements. Next, we present an abstraction for such protocols which
we call Interactive Protocols with Linear Oracle Verification—IPs with LOVe for
short—and explain how IPs with LOVe naturally support nested disjunctions
and can be compiled to ZK protocols using VOLE. We then provide efficient IPs
with LOVe for general circuit satisfiability, which intuitively follow from such
protocols for homomorphic commitments. Finally, we show that our protocols
are compatible with streaming and that we can apply the Fiat-Shamir transform
to reduce the round complexity with only a small loss in soundness.

Circuit satisfiability via idealized homomorphic commitments. Assume
that the statement x, together with a witness w, is provided to P while V only
obtains x. We consider x as a circuit C over a finite field F, such that C(w) = 0
iff (x,w) ∈ R and assume that w is a vector over F.

1 The challenge in applying our disjunction optimization to these protocols is that the
verification check requires input from V, which allows a malicious V to try to guess
the evaluated branch by supplying an invalid value for all other branches.
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Implementing the test that C(w) = 0 can be done using standard techniques
with idealized homomorphic commitments [CD98], but we nevertheless sketch
these now. First, P commits to (1) w, (2) triples of the form a, b, c such that
c = a · b, and (3) the outputs of all the gates of C(w). P and V then engage in
an interactive protocol to test that:

1. The commitments to gate outputs are consistent with C and w; and
2. The output of the output gate of C is zero.

Note that these checks reduce to testing that certain committed values are zero:

– This is clear for testing the output of the output gate.
– For each addition gate (or multiplications with public constants from F) one

can simply apply the respective linear operation to the commitments to the
inputs of the gate, subtract the commitment of the output and test if the
result is a commitment to zero.

– For each multiplication gate, we use Beaver’s circuit randomization app-
roach [Bea92,CD98,KOS16] to reduce multiplication to zero-testing a com-
mitment to a linear combination of commitments to the gate inputs, outputs,
and the random triples (a, b, c), alongside an additional random element sent
by V. (In fact, this random element can be generated by the output of a ran-
dom oracle on the protocol transcript using the Fiat-Shamir transform. We
provide more details on this in Sect. 4.1.)

When instantiating homomorphic commitments with VOLE (as we describe
later), this basic protocol has an amortized communication complexity of 3 field
elements per multiplication gate. This improves upon the arithmetic protocol of
Weng et al. [WYKW20], which uses 4 field elements, although they also present a
variant with 2 field elements per multiplication which has a higher computational
cost due to polynomial operations.

Formalizing security using IPs with LOVe (Sect. 2). Proofs based on ideal
homomorphic commitments can be modeled as a functionality where the prover
initially commits to some secret values, and the verifier is then allowed to perform
linear queries to the commitments, to check that certain relations hold. For
instance, linear interactive oracle proofs (IOPs) [BBC+19] model exactly this. In
Sect. 2, we extend this paradigm with a new abstraction called interactive proofs
with linear oracle verification (IPs with LOVe). In this abstraction, P begins
by committing some proof string π to an oracle O. The parties then exchange
messages for a fixed number of rounds, after which V sends multiple queries of
the form (zi, yi) to O. These queries are determined by V based on the messages
that it received in the previous rounds. O truthfully tells V if 〈π,zi〉 = yi or
not for each of these queries. Eventually, V outputs a bit to represent whether
it accepts or not.

The key difference between IPs with LOVe and linear IOPs [BBC+19], is
that on top of oracle queries, we allow the prover and verifier to exchange a
number of messages. Therefore, IPs with LOVe naturally model homomorphic
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commitments in the same way as linear IOPs, while also giving extra power from
the exchange of messages, which is what we exploit in our protocols for efficient
disjunctions.

From IPs with LOVe to IPs with VOLE. We show that any Public Coin IP
with LOVe can be combined with a VOLE protocol to obtain a ZK proof. This
is described in Sect. 2.2. We instantiate the oracle O that contains the string π
using information-theoretic commitments (or MACs) of the form

MAC(α,β)(x) := xα + β,

where x comes from a field Fp and all remaining value from an extension field Fpk

for k ≥ 1. We call α the “MAC key” and β the “MAC offset”, and sometimes use
the notation K to denote the tuple (α, β), held by the verifier, and τ to denote
the MAC tag, held by the prover. These commitments are linearly homomorphic
for keys that share the α component, so we can realize each oracle query as a
zero-test on such commitments. Their binding guarantee follows from the size
of Fpk .

A batch of n MACs on random values is exactly equivalent to a VOLE of
length n, since the MAC relation can be viewed as evaluating a linear function
on the input x. This can be generated with high efficiency using recent (random)
VOLE protocols based on arithmetic variants of the LPN assumption [BCGI18,
BCG+19a,WYKW20], with communication almost independent of n. VOLE on
random inputs gives us a committed proof string of random elements; the prover
can then take any of these random values and adjust them with a masked value
to commit to an input of his choice.

Disjunctive proofs for IPs with LOVe (Sect. 3). Our main technical con-
tribution, described in Sect. 3.1, can be seen as a general form of OR composition
for IPs with LOVe. The communication complexity in the resulting OR proof is
proportional to the maximum of that in the original proofs. Note that our trans-
formation is different to the stacked garbling approach [HK20b] (which does not
fit the IP with LOVe paradigm), and we obtain much greater efficiency when
using our IPs with LOVe instead.

We limit ourselves to IPs with LOVe that are public coin, i.e., where V only
sends messages that are random bits and where the queries to O can be derived
deterministically from the protocol transcript. This is indeed the case for our
general IP with LOVe protocols that we describe later. We then go on to show
that if one has m such public coin IPs with LOVe Π1, · · · ,Πm whose messages
from P to V can be made “compatible”, then one can construct a (public coin) IP
with LOVe Π whose message complexity essentially only depends on the protocol
Πi which sends the most messages, plus an additional check that requires O(m)
communication but is independent of all m IPs of LOVe themselves. V accepts
in Π if and only if at least one of the instances Πi was accepting.

In order to run Π, P and V initially execute Π1, . . . , Πm in parallel. The
key insight is that we only send those messages from P to V that belong to
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the one protocol Πi∗ where P has a witness wi∗ for xi∗ , padding with dummy
messages such that the communication looks as if it could belong to any of the
m branches. V uses the one message that it obtains per round for all Π1, . . . , Πm

in parallel, not knowing to which of the m protocols it belongs. Finally, instead
of performing the queries to O at the end of each Πi, Π runs a standard (small)
OR-proof à la Cramer et al. [CDS94] to show that the queries in at least one
of the m branches are all valid. The trick here is that we can show that this
OR-proof can itself be expressed as sending certain messages between P and
V followed by queries to O from V, making Π a public coin IP with LOVe as
desired.

Thresholds, logarithmic overhead, and recursive nesting. The OR-proof
of Cramer et al. [CDS94] can be generalized for any threshold r out of m, showing
that at least r instances of Π1, . . . , Πm were correct. We generalize our protocol
to this setting, with communication r times that of Πi, instead of m.

While the above techniques avoid the factor m blowup from [CDS94], they do
still incur an additive O(m) overhead in the number of statements. We present
a different approach, which reduces this to logarithmic using recursion. The key
idea is that we can build a 1-out-of-2 disjunctive proof, which itself satisfies
the conditions required to be stacked. Applying recursion in a binary tree-like
manner, we obtain a 1-out-of-m proof with O(log m) overhead. Note that the
ability to recurse is also useful when capturing proofs about complex programs,
which may contain arbitrary nested levels of disjunctions, with communication
proportional to the longest path through the entire program. The original stacked
garbling approach [HK20b] did not support nested disjunctions, however, a later
update shows how to handle them [HK20a].

Efficient IPs with LOVe for circuit satisfiability (Sect. 4). Towards effi-
ciently instantiating IPs with LOVe, in Sect. 4.1 we describe a simple high-level
syntax for expressing a large class of IPs with LOVe using an abstract homo-
morphic commitment notation. We refer to these as commit-and-prove (C&P)
IPs with LOVe. This avoids the low-level details in the definition, simplifying
the process of specifying and analyzing protocols. To illustrate this, we describe
in Sect. 4.2 a simple protocol for circuit satisfiability.

Next, in Sect. 4.3 we present an optimized circuit satisfiability protocol that
batch-checks n multiplication gates simultaneously. To achieve this, we adapt
the log(n)-round inner product check of Boneh et al. [BBC+19] to C&P IPs
with LOVe, which we then use for the batch check.

Due to the additive overhead generated from the batch check, it might not be
the most communication-efficient approach for binary circuits when n is small.
In Sect. 4.4 we therefore present a batch check of multiplications for binary cir-
cuits that has an overhead of 9 bits, essentially independent of n. This check
uses reverse multiplication-friendly embeddings [BMN18,CCXY18] which were
previously mainly used for efficient multiplications in MPC protocols.
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Streaming and removing interaction (Sect. 5). We wish to obtain a zero-
knowledge proof that both has a small memory footprint, allowing streaming, and
also minimizes interaction, so that ideally the proof is completely non-interactive
after a one-time preprocessing phase (for generating the random VOLEs). We
show how to achieve a small memory footprint in our protocols by verifying each
linear oracle query as it arises during the computation, rather than batching
them together at the end. However, this introduces a high degree of interaction,
since now the parties have to interact for every multiplication gate in the circuit.

The natural approach to avoiding interaction is to apply the Fiat-Shamir
transform by obtaining the verifier’s random challenges from a random ora-
cle. However, the low-memory protocol to which we want to apply this has a
very large round complexity, possibly even linear in the circuit size. The Fiat-
Shamir transform is typically only applied to constant-round protocols, since
in the worst-case, the soundness can degrade exponentially with the number
of rounds [BCS16]. Several works, however, have defined extra conditions on
the underlying protocol which suffice to avoid this degradation, for the cases of
interactive oracle proofs [BCS16] and general interactive proofs [CCH+19].

Following in this direction, we adapt the concept of round-by-round sound-
ness [CCH+19] of interactive proofs to IPs with LOVe. We then show that by
applying a Fiat-Shamir transform, any IP with LOVe satisfying this modified
notion can be transformed into a NIZK (with VOLE preprocessing) in the ran-
dom oracle model, with negligible soundness degradation. Finally, we also show
that our streamable protocols for circuit satisfiability do indeed have round-by-
round soundness, so can safely be made non-interactive.

2 Interactive Proofs with Linear Oracle Verification

In this section we introduce our proof methodology, called interactive proofs
with linear oracle verification (IPs with LOVe). In addition, we show how, using
vector oblivious linear evaluation (VOLE), any public coin IP with LOVe can
be turned into a zero-knowledge proof.

Notation. For any vector r we denote by r|t the restriction to the first t elements
and by r[i] the ith element of r. Let [P ↔ V] denote the distribution of exchanged
messages between two parties P and V and let [P ↔ V]t denote the distribution
of the transcript of the messages exchanged in the first t rounds. Denote by
ViewV[P ↔ V] the view of V when interacting with P. We defer the (standard)
definition of zero-knowledge proofs to the full version.

2.1 Definitions

We now formalize IPs with LOVe over a finite field Fpk . This formalization is a
generalization of linear interactive oracle proofs [BBC+19], where in each round,
the verifier chooses some linear function, and learns the evaluation of this on a
proof string chosen by the prover. In comparison, we let the prover P first fix
the proof string π, which is a vector of field elements. Then, both P and the
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verifier V exchange messages for a certain number of rounds. Finally, V issues
a number of affine queries to π, upon which it makes a decision on whether to
accept or not. These queries can depend on the messages that were exchanged
between both P and V throughout the protocol.

We let P fix π ∈ F
�
pk at the beginning of the protocol and allow V to access

it via oracle queries only at the end of the protocol. In the oracle query stage,
we let V choose q queries (z1, y1), . . . , (zq, yq) ∈ F

�
pk × Fpk which it sends to an

oracle that stores π. This oracle checks that for each of the q queries the relation
〈π,zi〉 = yi holds. The query results are then (truthfully) reported to V by the
oracle.

Note that by default, both π and the queries lie over the extension field Fpk .
In some cases, such as when we are proving statements over Fp, some elements
of π may only be in Fp, which allows for improved efficiency when instantiating
IPs with LOVe, as we will see later. In this case, during the query phase we view
any Fp value as an element of Fpk via some fixed embedding.

Definition 1 (Interactive Protocol with Linear Oracle Verification).
Let Fpk be a field and �, t, q ∈ N. Then a t-round q-query interactive protocol
with linear oracle verification Π = (P,V) with oracle length �, message lengths
rP1 , rV1 , . . . , rPt , rVt ∈ N and message complexity

∑t
h=1(r

P
h + rVh) over Fpk consists

of the algorithm P and PPT algorithm V that interact as follows:

1. Initially, P obtains its respective input while V obtains the statement x. P
then submits a string π ∈ F

�
pk to the oracle. P then outputs a state sP0 while

V outputs a state sV0 . We set an auxiliary variable a0 = ⊥.
2. For round h ∈ [t], P and V do the following:

(a) First, V on input sVh−1 and ah−1 outputs message eh ∈ F
rV
h

p and state sVh.

(b) Then, P on input sPh−1 and eh outputs message ah ∈ F
rP
h

p and state sPh.
3. Finally, V on input at and state sVt makes q linear oracle queries to π over

Fpk and outputs a bit.

We say that the protocol accepts if V outputs 1 at the end of the protocol.

Remark 1. Note that the prover and verifier’s messages (ah,eh) are specified as
elements of the base field Fp, and this is how we count message complexity. This
is an arbitrary restriction, since these messages can easily be used to encode
extension field elements or general bit strings.

Definition 2 (Honest-Verifier Zero-Knowledge Interactive Proof with
Linear Oracle Verification). A t-round q-query interactive protocol with lin-
ear oracle verification Π = (P,V) over Fpk is an honest-verifier zero-knowledge
interactive proof with linear oracle verification (HVZK IP with LOVe) for a
relation R with soundness error ε if it satisfies the following three properties:

Completeness: For all (x,w) ∈ R the interaction between P(x,w) and V(x) is
accepting.
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Soundness: For all x �∈ L(R) and for all (unbounded) algorithms P∗, any inter-
action of P∗ with V(x) is accepting with probability at most ε.

Honest-Verifier Zero-Knowledge: There exists a PPT algorithm S such that
for any (x,w) ∈ R the output of S(x) is perfectly indistinguishable from
ViewV [P(x,w) ↔ V(x)] for any honest V.

We use the notation IP-LOVe to denote a t-round, q-query HVZK IP with LOVe
for relation R over field Fpk with oracle length �, message complexity α elements
of Fp, and soundness error ε.

In this work, all the protocols we construct will additionally be proofs of
knowledge and public coin, as in the following definitions.

Definition 3 (ZK Interactive Proof of Knowledge with LOVe). Let Π
be an IP-LOVe protocol for a statement x using a proof string π such that V
accepts with probability > ε. Then Π is a proof of knowledge if there exists a
PPT extractor E that, on input x,π, outputs a witness w such that (x,w) ∈ R.

Definition 4 (Public Coin IP with LOVe). An IP-LOVe protocol Π is
public coin if

1. V chooses each eh ∈ F
rV
h

p for x ∈ L(R) uniformly at random (and in particu-
lar, independent of sVh−1 and ah−1).

2. There exists a deterministic polytime algorithm Q, which, on input x and
{eh,ah}h∈[t], computes the q oracle queries (z1, y1), . . . , (zq, yq) of V.

3. V accepts iff all queries generated by Q are accepting.

From q-query to 1-query. Given a q-query IP with LOVe, we can always
convert it to one with a single oracle query, with a small loss in soundness, by
taking random linear combinations of all queries over a large enough extension
field. This transformation, given below, is public-coin and adds just one extra
round of communication, so when using IPs with LOVe, we will often assume
they have only one query, to simplify our protocols.

Let Π be an IP-LOVe over Fp (p need not be prime), and let k be such that
pk is superpolynomial in a statistical security parameter. We construct an IP
with LOVe over Fpk , by viewing the proof π ∈ F

�
p from Π as a vector in F

�
pk ,

running the same protocol and then modifying the query phase as follows. Recall
that the q queries (z1, y1), . . . , (zq, yq) in Π accept if and only if 〈π,zi〉 = yi

i.e. μi := 〈π,zi〉 − yi = 0 in Fp. Now, we modify the protocol by having V send
q random elements ρ1, . . . , ρq ∈ Fpk to P.2 Notice that if μ :=

∑
i∈[q] ρiμi = 0,

all queries are satisfied except with probability p−k. We equivalently have μ =
〈π,z〉− y for z =

∑
i∈[q] ρizi and y =

∑
i∈[q] ρiyi. This shows we can reduce the

q oracle queries down to just one query (z, y) over Fpk , at the cost of an extra q
elements of Fpk sent from V to P, and the soundness error increasing by p−k.3

2 If we did not want a public-coin protocol, we could skip this message from V to P.
3 Alternatively, V could send a single random ρ ∈ Fpk , and define ρi = ρi. This

reduces communication while increasing the error probability to q · p−k, by applying
the Schwartz-Zippel Lemma.
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2.2 Instantiating IPs with LOVe Using VOLE

We now show that any IP-LOVe can be transformed into a zero-knowledge proof,
by using vector oblivious linear evaluation (VOLE) to instantiate the linear ora-
cle queries. The functionality for random VOLE is given in Fig. 1: it picks a
vector of random samples (r, τ ), (α,β) such that τ = rα+β, and outputs them
to the respective parties. This can be seen as a secret-sharing of the products
r[i]α, for i = 1, . . . , �. Note that we relax security slightly by allowing corrupt
parties to choose their own randomness. This models existing random VOLE
protocols based on the LPN assumption [BCGI18,BCG+19b,WYKW20], which
can generate a large, length � VOLE with communication that is almost inde-
pendent of �.

Commitments with MACs. We can view each output of a VOLE as an
information-theoretic MAC on the value r[i], which commits the prover to r[i].
We write [x] to denote that the prover holds x, τx ∈ Fpk , while the verifier holds
βx and the fixed MAC key α ∈ Fpk . To open a commitment to x, the prover
sends x, τx and the verifier checks that τx = xα + βx. It is easy to see that
cheating in an opening requires guessing the random MAC key α, so happens
with probability 1/pk.

Since α is the same for each commitment, these commitments are linearly
homomorphic. Indeed, given two commitments [x], [y], the parties can obtain
[x + y] by computing x + y, τx + τy and βx + βy, respectively. Similarly, we can
do multiplication by constant, and addition by constant c (here, the verifier adds
αc to βx, while the prover adds c to x). We overload the + and · operators to
denote these operations being performed on the commitments.

The transformation (Fig. 2). Given the linearly homomorphic commitment
scheme based on VOLE, obtaining a ZK proof is relatively straightforward. First,
the prover commits to its proof string π, by sending each component masked
with a random VOLE commitment. The parties then run the IP-LOVe protocol
as usual, until the query phase. Here, each linear query is computed by applying
the linear function to the committed π, followed by opening the result to check
it gives the correct value. In the full version, we prove the following.

Theorem 1. Suppose ΠLOVe is a public-coin IP-LOVe for relation R, satisfying
completeness, soudness error ε and honest-verifier zero-knowledge. Then, ΠVOLE

ZK

is an honest-verifier zero-knowledge proof for relation R, with soundness error
ε + p−k. Furthermore, if ΠLOVe is a proof of knowledge, then so is ΠVOLE

ZK .

Optimizations: Random proof elements, and subfield VOLE. We
describe two simple optimizations, which reduce communication in certain cases.

Firstly, in our protocols, the proof string π will often contain many random
field elements; clearly, the values di in Step 2 of the Input Phase (cf. Fig. 2) do
not need to be sent in this case, since P can choose π[i] = r[i].

Secondly, when working over an extension field Fpk , sometimes it is known
that π will consist mainly of elements in the base field Fp (viewed as a subset
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Functionality F ,p,k
VOLE

The functionality interacts with a sender S, receiver R, and adversary A.

On input α ∈ Fpk from R, the functionality does the following:

– Sample r, β ← Fpk , and set τ = rα + β.
• If S is corrupted: receive r, τ from A and recompute β = τ − rα.
• If R is corrupted: receive β from A and recompute τ = rα + β.

– Output (r, τ ) to S and β to R.

Fig. 1. Ideal functionality for vector oblivious linear evaluation over Fpk .

Transformation ΠLOVe → ΠVOLE
ZK

Let be the length of the proof string in ΠLOVe, the underlying IP with LOVe over
Fpk .

Input phase: The prover, on input the witness w, chooses the proof string π ∈
Fpk according to ΠLOVe.

1. The parties call FVOLE . View the outputs as random commitments
[r[1]], . . . , [r[ ]], where P learns r[i] ∈ Fpk .

2. P sends di = r[i] − π[i], for i = 1 .
3. Compute the commitments [π[i]] = [r[i]] − di.

Protocol: The parties exchange messages in the protocol, according to ΠLOVe.
Query phase: Let (zj , yj) ∈ Fpk × Fpk , for j ∈ [q], be the oracle queries defined

by ΠLOVe (known to both parties, since Π is public-coin). For each j:
1. Compute [μj ] = i=1 zj [i] · [π[i]] − yj

2. P sends τμj (the MAC on μj) to V, who checks that τμj = βμj .
The verifier outputs 1 if all checks pass.

Fig. 2. Zero-knowledge proof from VOLE and IP with LOVe.

of Fpk by a fixed embedding). In this case, we can optimize communication by
using subfield VOLE instead of VOLE over Fpk . In subfield VOLE [BCG+19b],
r is sampled as a uniform vector over Fp instead of Fpk , while the MACs τ
and keys α,β are still computed over Fpk . This allows P to commit to values
from the subfield Fp (which may be small), by sending only elements from Fp,
while still achieving soundness error p−k. Note that this still allows committing
to an extension field element x ∈ Fpk if needed, by decomposing x into a linear
combination of Fp elements, and committing to each component separately (this
works because the MACs are linear over Fpk).

When analyzing the complexity of our protocols, we assume that the above
two optimizations have been applied.
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3 Stackable Public Coin IPs with LOVe

In this section, we show that when both P and V agree on m relations R1, . . . ,Rm

and instances x1, . . . , xm that can each be proven using (public coin HVZK) IPs
with LOVe over the same field Fp, then we can construct a communication-
efficient protocol showing that at least one of the statements was true. Following
the terminology of stacked garbling [HK20b], we sometimes refer to this as a
stacked proof. Formally, the goal of P is to show that (x1, . . . , xm) ∈ L(ROR)
where

(x1, . . . , xm) ∈ L(ROR) ⇐⇒ x1 ∈ L(R1) ∨ · · · ∨ xm ∈ L(Rm).

Throughout this section, we will write x̂ as a short-hand for x1, . . . , xm when
the statements are clear from the context. Suppose we have IPs with LOVe
over Fp for each instance xi, with message complexity αi. The classic OR-proof
technique by Cramer et al. [CDS94] can be used to give an IP with LOVe with
message complexity ≈

∑
i∈[m] αi. This would be done by running all m proofs in

parallel (which means sending messages for all of them), and then showing that
at least one finished with the expected output using [CDS94]. We show how to
instead reduce the message complexity of such a proof to 2mk+max{αi}, where
the soundness error grows by ≈ p−k. We also give a variant where the message
complexity scales with O(log m), instead of 2m.

Towards this, we introduce the notion of equisimulatable IPs with LOVe.
The idea is that we can compress the messages for the different proof branches
sent by P in such a way that for the true branch, the correct message can be
recovered by V. The distribution of the values for non-taken branches which V
will obtain is indistinguishable from a real protocol execution.

For example, assume that in the Π1 branch, P sends one Fp element that
appears uniformly random to V, while in the Π2 branch it sends two such ele-
ments with the same property. To achieve equisimulatability, if P actually proves
the first branch to be true then it can always append a uniformly random ele-
ment to the message it sends to V, whereas in the second case it just sends
the actual message. In both cases, the distribution of the message sent by P is
identical and V cannot identify which branch was taken by P.

Formally, for m statements with protocols Π1, . . . , Πm, we use the following
two algorithms, which should satisfy the definition below.

– The “combined prover” algorithm CP takes as input instances x1, . . . xm,
instance index i, round index h, and prover message ah ∈ F

rP
h

p , and outputs
a message c ∈ F

∗
p, which encodes ah while disguising it to hide the index i.

– The “decode” algorithm dec takes as input instances x1, . . . xm, index i, round
index h, and combined prover message c ∈ F

∗
p, and recovers a′

h ∈ F
rP
h

p .

Definition 5 (Equisimulatable IPs with LOVe). Let Π1, . . . , Πm be pro-
tocols such that each Πi is an IP with LOVe over Fp for the relation Ri with
round complexity ti. We say that Π1, . . . , Πm are equisimulatable if there exist
two algorithms CP and dec such that:
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1. If ah ← Πi(sPh−1,eh), where Πi’s inputs are from an honest execution of Πi,
then

dec(x̂, i, h, CP(x̂, i, h,ah)) = ah.

2. For any i, j, the distributions {CP(x̂, i, h,ah) | ah ← Πi(sPh−1,eh)}h∈[ti] and
{CP(x̂, j, h,ah) | ah ← Πj(sPh−1,eh)}h∈[tj ], where both the inputs of Πi and
Πj come from honest executions, are perfectly indistinguishable.

We say that CP has message complexity α if the total number of Fp elements
generated by CP for all h ∈ [maxi∈[m] ti] is at most α.

In our constructions of IPs with LOVe, all prover messages will appear uni-
formly random. We show below that this implies both the zero-knowledge prop-
erty and equisimulatability, which gives us an easy criterion for proving that an
IP-LOVe can be stacked. We prove the following lemma in the full version.

Lemma 1. Let Π be an IP-LOVe for proving relation R, satisfying complete-
ness, where V accepts iff all queries are accepting. If the messages from P in an
honest execution are (perfectly) indistinguishable from random, it holds that

1. Π is honest-verifier zero-knowledge; and
2. m such instances of Π (potentially for different relations R′ �= R) are equi-

simulatable (cf. Definition 5).

3.1 Stacking with LOVe

Using the concept of equisimulatability of protocols we now show how to lower the
message complexity when proving ROR. The protocol, given in Fig. 3, is inspired
by the stacked garbling approach [HK20b], although uses a very different tech-
nique.

We start with m equisimulatable IPs with LOVe Πi, over Fp, for proving
individual relations Ri. Note that p can be any prime power, with no restric-
tions on size. We construct a protocol ΠOR, defined over Fpk , which works as
follows. P, having only wi∗ for one of the statements xi∗ , will generate the ora-
cle string π by running Πi∗ ’s first step to create πi∗ , which it then pads with
extra random data, and embeds in to Fpk . Then, P and V will simultaneously run
all Π1, . . . ,Πm, with the following modification: P’s message ch to V in round
h will be determined from ah,i using the combined prover algorithm CP, while
V extracts the message ah,i for each of the instances from ch using dec. Due
to equisimulatability, V can now execute all instances in parallel but cannot tell
which of these is the true one. Conversely, since all Πi are public coin, V sends
a randomness string that is long enough for any of the m instances in round h.
The message complexity is now determined by CP and not the individual proofs.

The challenge now, is that V cannot simply perform the oracle queries for
all Πi, since this would reveal the index i∗ of the true statement. Instead, we
perform a [CDS94]-style OR-proof to shows that at least one of the query’s for
the Πi is accepting. Recall, the basic idea behind [CDS94] is that given m Σ-
protocols for proving relations, an OR proof can be done by having the prover
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choose the random challenge fi for m− 1 of the instances, so it can simulate the
correct messages to be sent in every false instance, without knowing a witness.
Then, after receiving the m initial messages of each Σ-protocol, the verifier picks
a challenge f , which defines the challenge fi∗ = f −

∑
i fi corresponding to the

true instance i∗ (while hiding i∗ from V).
We instantiate the above, where each “instance” corresponds to a small pro-

tocol for verifying that the oracle query 〈πi,zi〉 = yi for protocol Πi succeeds,
without actually performing the query. To carry out one such small protocol, P
includes an extra random value ri in the proof string π := (πi‖ri) (one such ri

for each branch).
For the true Πi∗ the prover later sends di∗ := ri∗ to V. Using the random

challenge fi∗ , the verifier then makes a query to test that 〈π,zi∗‖fi∗〉 =? yi∗ +
fi∗di∗ . This clearly accepts if di∗ = ri∗ and the original query (yi∗ =? 〈πi∗ ,zi∗〉)
accepts.

Importantly, if P does not know a valid witness, but can pick fi in advance,
then P can cheat by setting di = (〈πi,zi〉−yi)/fi+ri, causing the aforementioned
oracle query to succeed as well. This is the crux of Phase II of the protocol in
Fig. 3.

Note that the theorem below assumes that each protocol Πi uses only one
query. As discussed at the end of Sect. 2.1, this can always be achieved by com-
bining queries into one (at the cost of one additional round). The proof of the
following theorem can be found in the full version.

Theorem 2. Let Π1, . . . , Πm be protocols such that each Πi is a ti-round, 1-
query, equisimulatable Public Coin IP with LOVe over Fp for relation Ri with
oracle length �i and soundness error εi. Furthermore, assume that CP has overall
message complexity α. Then the protocol ΠOR in Fig. 3 is a Public Coin IP with
LOVe over Fpk for the relation ROR with

1. round complexity 3 + maxi∈[m] ti;
2. oracle length m + maxi∈[m] �i;
3. query complexity m;
4. message complexity 2mrk + α elements of Fp; and
5. soundness error

∑
i∈[m] εi + 1/pk.

If Π1, . . . , Πm are all proofs of knowledge, then so is ΠOR.

Generalizing to threshold proofs. In [CDS94] the authors describe how to
additionally construct proofs of partial knowledge for any threshold, i.e., how to
show that r out of the m statements are true. Their technique, together with a
modification of ΠOR, can be used to construct a proof in our setting where we
implicitly only communicate the transcript of r statements, and not all m of
them. ΠOR can then be seen as a special case where r = 1, where for general r we
use Shamir secret-sharing, instead of additive shares of the verifier’s challenge
f . More details are found in the full version.
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Protocol ΠOR

Let Π1, . . . , Πm be protocols such that each Πi is ti-round, 1-query equisimulatable
public coin IP with LOVe over Fp for relation Ri with oracle length i.

Both P and V have inputs x1, . . . , xm where xi ∈ L(Ri). P additionally has in-
put wi∗ for (at least) one i∗ ∈ [m] such that (xi∗ , wi∗) ∈ Ri∗ . We define

:= maxi∈[m] i, and t := maxi∈[m] ti. Let zk,i = zk,i| 0 · · · 0
− i times

.

1. P simulates Πi∗ on input (xi∗ , wi∗) to obtain the string πi∗ . It then sets

π = πi∗ 0 · · · 0
− i∗ times

and π = π r1 · · · rm

where all ri are chosen uniformly at random in Fpk .

(Phase I: Running the stacked proof)
2. Define sP0 := (xi∗ , wi∗). For h ∈ [t], P and V do the following:

(a) Let rVh,i be the length of the challenge that V would send for protocol Πi in
round h. V sets rh = maxi∈[m] r

V
h,i, samples eh ← F

rh
p uniformly at random

and then sends it to P.
(b) P sets (ah, sPh) ← Πi∗(sPh−1, eh) where P only uses the first rPh,i∗ elements

of eh as required by Πi∗ . It then computes ch ← CP(x̂, h, i∗, ah) and sends
ch to V.

(Phase II: Running the small OR proof)
3. For i ∈ [m] \ {i∗}, P samples fi ← F

∗
pk uniformly at random and computes

(zi, yi) ← Q(xi, {eh, dec(x̂, h, i, ch)}h∈[ti]). It then computes di := ( π , zi

yi)/fi + ri, and defines di∗ := ri∗ . Finally, P sends (d1, . . . , dm) ∈ F
m
pk to V.

4. V samples f ← Fpk uniformly at random and sends it to P.
5. P sets fi∗ := f − i∈[m]\{i∗} fi and sends f1, . . . , fm−1 to V. V computes the

last challenge fm = f − m−1
i=1 fi.

6. Let βi ∈ F
m
pk be the vector that is fi in the ith position and 0 everywhere else.

For i ∈ [m], V first generates (zi, yi) like P in Step 3. Then, for each i ∈ [m]
it sends the query (zi βi, yi + fidi) to the oracle. V accepts if all queries are
true.

Fig. 3. The protocol ΠOR for an OR-statement.

3.2 Recursive Stacking

ΠOR from Sect. 3.1 has the drawback that to verify one out of m statements,
we still need O(m) communication complexity. We now give an alternative con-
struction that obtains an overhead only logarithmic in m.

The idea behind this alternative protocol is as follows:

1. Any IP-LOVe Π accepts iff all queries are accepting. Assuming (wlog) there
is only one query, this means that for the query (z, y), we have 〈π, z〉 = y i.e.
μ := 〈π, z〉 − y = 0.
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2. If we simulate the parallel evaluation of m protocol instances as in ΠOR, then
if for any branch i∗ it holds that μi∗ = 0, then i∗ must correspond to a “true”
branch.

3. If the prover can then compute the product μ1 · · · μm, and prove that this is
0, then at least one μj was 0 to begin with.

A naive instantiation of the above approach is to perform m − 1 multipli-
cations between the m implicit variables μi, and open the result. However, this
would still give O(m) overhead. Instead, we carefully apply recursion to make
this overhead logarithmic. Here, we use the fact that after combining two pro-
tocols Π1,Π2 with the multiplication method sketched above, we can obtain a
protocol which itself is again stackable: considering all multiplications as a tree,
we only have to provide those values necessary to prove a correct multiplication
that are on the path from μi∗ to the root.

The actual proof for this proceeds in the following steps:

1. First we show that if Π1, Π2 fulfill similar conditions as in ΠOR then we can
combine them using the multiplication-based approach.

2. Next, we show that starting with 2m proofs Π1, . . . , Π2m with similar con-
ditions as in ΠOR, if we construct proofs Π ′

i from Π2i−1,Π2i using the multi-
plication method, then Π ′

1, . . . , Π
′
m again fulfill the same conditions i.e. are

stackable. Also, this can be done with an overhead that is only as big as one
Πi plus one multiplication.

3. Finally, by recursing the previous step, we obtain the log-overhead OR-proof.

The full construction, together with its proof, can be found in the full version.
One drawback of this approach, though, is that unlike our previous OR-proof
based method, it does not give rise to a t-out-of-m proof.

4 IPs with LOVe for Circuit Satisfiability

In this section, we present our protocols for proving circuit satisfiability of arith-
metic and boolean circuits. First, in Sect. 4.1, we define a high-level commit-
and-prove (C&P) syntax for IPs with LOVe. This makes it simpler to specify
protocols, and also aligns with the VOLE instantiation used in Sect. 2.2. We
then describe a simple protocol for arithmetic circuit satisfiability over a finite
field Fp (Sect. 4.2), with communication cost of 3 field elements per multipli-
cation gate for large p. We next show how we can utilize fully linear PCPs by
Boneh et al. [BBC+19] to reduce the amortized multiplication cost to just over
1 Fp element per multiplication gate (Sect. 4.3), when the circuit size is large
enough. The same approach also works over binary fields with the same cost
(Sect. 4.4).

To highlight the power of our disjunctive proof from Sect. 3.1, we point out
that all of these protocols fulfil the criteria of our stacking approach, so lead to
efficient proofs of disjunctions. Recall that from Lemma 1, it suffices that the
sender’s messages in the IP-LOVe are uniformly random, which we show for all
protocols in this section.
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4.1 Defining C&P Protocols

We now define a high-level, commit-and-prove (C&P) syntax for specifying a
large class of IPs with LOVe over Fpk .

We require that the witness in the IP with LOVe is a vector w =
(w1, . . . , wn) of Fp elements, and that the prover chooses the proof string
π = (w1, . . . , wn, r1, . . . , rt), where each ri is uniformly random. As remarked
in Sect. 2.2, we may sometimes wish to mix values in Fp and Fpk , so allow the
possibility that some ri’s are sampled from Fpk and others are in the base field.

Following the notation used for homomorphic commitments in Sect. 2.2, we
write [x] to denote that some value x is committed to by the prover P. Initially, P
is committed to every element wi, ri of the proof string π. Subsequently, we allow
the parties to perform affine operations on these committed values, obtaining
new commitments.

Finally, we model the linear verification oracle by a special instruction
AssertZero, which checks whether its input is a commitment to 0. Since any com-
mitment comes from an affine function of π, this exactly models linear queries
to π. We then specify a C&P protocol over Fpk as follows:

Input phase: P has input the witness w1, . . . , wn ∈ Fp, and samples random
values r1, . . . , rt ← F

t
pk (optionally, some ri’s may be in Fp).

P inputs the proof string π = (w1, . . . , wn, r1, . . . , rt).
Protocol phase: The parties, given commitments [w1], . . . , [wn], run a sequence

of instructions of the following types:
– Random(F) (for F ∈ {Fp,Fpk}): Retrieve [r], where r ∈ F is the next

suitable random value in π.
– Send[P→V](x): Sends value x ∈ Fp from P to V.
– Send[V→P](x): Sends value x ∈ Fp from V to P.
– [z] = a[x] + b[y] + c: Define the commitment [z] for z = ax + by + c, given

some public values a, b, c.
– AssertZero([x]): Asserts to V that [x] is a commitment to x = 0.

Output phase: If none of the AssertZero instructions failed, the verifier out-
puts 1. Otherwise, it outputs 0.

As described previously, by translating AssertZero calls into linear oracle
queries, any C&P protocol specified in the above syntax defines a valid IP-LOVe.

4.2 C&P IP with LOVe for Arithmetic Circuits

We now show a C&P IP with LOVe for arithmetic circuit satisfiability that
satisfies (1) completeness, (2) soundness, and (3) that all inputs to Send are
indistinguishable from random. Thus, by Lemma 1 we conclude that our protocol
is also zero knowledge and supports disjunctions. We prove circuit satisfiability
over a field Fp, but define a protocol over Fpk for some k ≥ 1, so that soundness
can be boosted if necessary.

We begin by defining two auxiliary “instructions”: (1) Fix, which allows P to
fix a random commitment to a value of its choosing, and (2) Reveal, which opens
a commitment to V and checks this was done properly using AssertZero.
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– Fix(x) → [x]: On input x ∈ F (where F ∈ {Fp,Fpk}) from P, output a
commitment [x]. This is implemented as:
1. Random(F) → [r].
2. Send[P→V](x − r) → y.
3. [r] + y → [x].

– Reveal([x]) → x: On input commitment [x], output x to V. This is imple-
mented as:
1. Send[P→V](x).
2. AssertZero([x] − x).

Our protocol works as follows. Let C : F
n
p → Fp be a circuit known to both

parties consisting of Add and Mult gates, which we want to show evaluates to
zero on some input. The prover provides the witness w ∈ F

n
p as input, so the

parties initially get commitments [w1], . . . , [wn]. The parties then execute the
following steps to evaluate the circuit C, where we denote by C∗ the set of
multiplication gates in C.

1. For each gate in C, in topological order, proceed as follows:
Add([x], [y]): Output [x] + [y].
Mult([x], [y]): Run Random(Fpk) → [a], Fix(xy) → [z], and Fix(ay) → [c].

Output [z], and store the commitments [a] and [c].
2. Run Send[V→P](e), where e ∈R Fpk .
3. For each i ∈ [|C∗|] let [xi] and [yi] denote the inputs and [zi], [ai] and [ci]

denote the outputs and stored values in the i-th call to Mult. Then run
AssertMult([xi], [yi], [zi], [ai], [ci], e).

4. Run AssertZero([zout]), where [zout] is the commitment to the output of C.

The subprotocol AssertMult used above works as follows:

AssertMult([x], [y], [z], [a], [c], e):
1. Run Reveal([ε]), where [ε] = e[x] − [a].
2. Run AssertZero(e[z] − [c] − ε[y]).

Before proving security, observe that the communication complexity is 3 field
elements per multiplication gate, of which one is over Fp (for fixing xy) and two
over Fpk (for fixing ay, and revealing ε).

Theorem 3. Let R be a relation that can be represented by an arithmetic circuit
C over Fp such that R(x,w) = 1 ⇔ C(w) = 0. Then the above protocol is
a C&P IP with LOVe over Fpk for R, such that (1) completeness holds, (2)
soundness holds with soundness error p−k, (3) all inputs to Send are perfectly
indistinguishable from random, and (4) the protocol is a proof of knowledge.

The proof can be found in the full version. At a high level, soundness holds
by the security of the Mult operation, where a malicious prover essentially needs
to align its invalid Fix values with the verifier’s random e value, which happens
with probability 1/|Fpk |.
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4.3 Improved C&P IP with LOVe for Arithmetic Circuits

The protocol from Sect. 4.2 communicates 3 field elements per verified multi-
plication. We now present an alternative multiplication verification procedure,
called AssertMultVec, that builds on a protocol from Boneh et al. [BBC+19]4.
AssertMultVec simultaneously proves n multiplication instances at the cost of
communicating n + O(log(n)) F-elements. In particular, for Fp for p = 261 − 1
we require around 64.3 bits of communication per multiplication.

Boneh et al. [BBC+19] introduce a logarithmic-sized proof for “parallel-sum”
circuits. In a “parallel-sum” circuit, identical subcircuits C ′ are evaluated in
parallel on possibly different inputs, with the sum of the output of each C ′ being
the output of the overall circuit. The high-level idea then is to embed checks for
different instances of C ′ within a single polynomial, allowing the verifier to verify
n instances of C ′ in parallel. This protocol, when letting C ′ be a multiplication
gate, can then be used to simultaneously verify the sum of n multiplications. We
call this protocol AssertDotProduct.

In more detail, the AssertDotProduct protocol works as follows. Suppose P
wants to prove that [z] =

∑
i∈[n][xi][yi]. P begins by defining n polynomials

f1, . . . , fn/2, g1, . . . , gn/2 such that fi(j) = x(j−1)n/2+i and gi(j) = y(j−1)n/2+i,
and then computing h =

∑
i∈[n/2] figi. P then commits to h by committing to

its coefficients (denoted as [h]). V defines its own polynomials f ′
i , g

′
i over the

committed values [x(j−1)n/2+i] and [y(j−1)n/2+i] to check that
∑

i∈[n/2] f
′
ig

′
i = h.

By Schwartz-Zippel, this can be done by checking that
∑

i∈[n/2]
f ′

i(r)g
′
i(r) = h(r) (1)

for a random r chosen by V. Here, observe that the evaluation of f ′
i , g

′
i, h in a

public constant r boils down to multiplying the committed coefficients of each
polynomial with appropriate powers of r and summing up the result, both of
which are local operations. Then, verifying Eq. 1 after fixing r is again a dot
product check, although over vectors of length n/2, and we can recursively apply
AssertDotProduct until n = 1. Note that only two Fpr -elements are communi-
cated during one iteration of AssertDotProduct: when committing to h and send-
ing r. See Fig. 4 for a formal presentation of the protocol. There, for the base-case
of AssertDotProduct, we use the multiplication checking procedure from Sect. 4.2.

Given AssertDotProduct, we can batch-verify n multiplications as follows:

1. Assume that n tuples [xi], [yi], [zi] have been committed by P.
2. V chooses a randomization factor r that it sends to P.
3. P shows that 〈ri[xi], [yi]〉 =

∑
i∈[n] r

i[zi]. Since r is public, computing ri[xi]
and

∑
i∈[n] r

i[zi] is local.

This protocol, called AssertMultVec, is presented in Fig. 4.

4 This approach was recently used in the context of MPC-in-the-head-based ZK pro-
tocols [dSGOT21].
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AssertMultVec([x1], . . . , [xn], [y1], . . . , [y2], [z1], . . . , [zn]) ⇒ ∀i xiyi = zi

1. Send[V→P](r) for r ∈R Fpk\{0}.
2. AssertDotProduct(r1[x1], . . . , r

n[xn], [y1], . . . , [yn], i∈[n] r
i[zi]).

AssertDotProduct([x1], . . . , [xn], [y1], . . . , [yn], [z]) ⇒ z = i xiyi

If n ≤ 2:

1. For i ∈ [n]: Mult([xi], [yi]) → ([zi], [ai], [ci]).
2. Run Send[V→P](e), where e ∈R Fpk .
3. For i ∈ [n]: AssertMult([xi], [yi], [zi], [ai], [ci], e).
4. AssertZero( i∈[n][zi] − [z]).

Otherwise:

1. P defines polynomials of least degree f1, . . . , fn/2, g1, . . . , gn/2 ∈ Fp[X] such
that for j ∈ [2]: fi(j) = x(j−1)n/2+i, gi(j) = y(j−1)n/2+i.
P defines the polynomial h = i∈[n/2] figi ∈ Fp[X]. Note that h has degree
≤ 2. Let c0, c1, c2 denote the coefficients of h.

2. For i ∈ {0, 1, 2}: Fix(ci) → [ci].
3. For i ∈ [n/2]: P and V compute (committed) polynomials of least degree [fi ]

and [gi] satisfying for j ∈ [2]: fi(j) = [x(j−1)n/2+i], gi(j) = [y(j−1)n/2+i].
4. Let [h ] be the (committed) polynomial defined by the [ci] values.
5. Send[V→P](r) where r ∈R Fpk\{0, 1}.
6. AssertZero( i∈[2][h ](i) − [z]).

7. AssertDotProduct([f1](r), . . . , [fn/2](r), [g1](r), . . . , [gn/2](r), [h ](r)).

Fig. 4. Protocols for efficient multiplications. See text for necessary notation.

It is clear that both AssertDotProduct and AssertMultVec are complete and
zero-knowledge. The follow theorem, proven in the full version, shows they are
also sound.

Theorem 4. If the protocol AssertMultVec passes, then the input commitments
have the required relation except with probability n+4 log n+1

pk−2

An alternative version of AssertMultVec with a soundness error that is only
logarithmic in n can be achieved as follows:

AssertMultVec′([x1], . . . , [xn], [y1], . . . , [y2], [z1], . . . , [zn]):
1. Send[V→P](r1, . . . , rn) for r1, . . . , rn ∈R Fpk .
2. AssertDotProduct(r1[x1], . . . , rn[xn], [y1], . . . , [yn],

∑
i∈[n] ri[zi]).

One can easily show that AssertMultVec′ has the desired soundness, although at
the expense of communicating more random elements from V to P. In practice,
one can optimize this by having V choose a random PRG seed that it sends to
P, with r1, . . . , rn derived deterministically from the seed.
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4.4 C&P IP with LOVe for Binary Circuits

The protocol from Sect. 4.3 is agnostic to the underlying field, so we can use
p = 2 (and large enough k for soundness) to otain a proof for binary circuits.
For F240 and a batch size of 1 000 000 this requires approximately 1.008 bits per
verified AND-gate.

One of the downsides to the batching approach is that it is most efficient for
large batches of multiplications. When evaluating a disjunctive branch, however,
the size of the batch may be limited by the number of multiplications in the
branch. This is because we need to “complete” a batch of multiplications before
we can apply the OR-proof. Unfortunately, this smaller batch size increases
the per-bit communication cost: as an example, a batch size of 100 requires
approximately 10 bits per verified AND-gate.

We now present an alternative approach that can achieve a fixed per-bit
communication cost of 9 bits per verified AND-gate. This approach uses reverse
multiplication friendly embeddings [BMN18,CCXY18] (RFMEs), defined as fol-
lows.

Definition 6. A (k,m)p-RFME is a pair (φ, ψ) of linear maps φ : Fk
p → Fpm

and ψ : Fpm → F
k
p such that x ∗ y = ψ(φ(x) · φ(y)), where ∗ denotes pairwise

multiplication.

Cascudo et al. [CCXY18] showed that for p = 2 and r < 33, there exist
(3r, 10r−5)2-RFMEs. Noting that for efficiency we would like as small a field as
possible, alongside the requirement of have a statistical security parameter of at
least 40, we use (15, 45)2-RFMEs, and thus work over F245 . Thus, we can verify
the multiplication of 15-element binary vectors [x] and [y] at the cost of a single
multiplication in F245 as follows. The parties locally compute [a] ← φ([x]) and
[b] ← φ([y]), compute [c] ← [a] · [b] using the multiplication verification protocol
over F245 , and finally locally compute [z] ← ψ([c]). This has a per-multiplication
cost of 10 bits per multiplication.

We can do slightly better by having the prover provide the verifier an advice
vector to help compute [c]. Let d be a binary vector for the linear bijection
f : F15

2 × F
30
2 → F

45
2 such that f(z,d) = φ(x) · φ(y). If [z] is provided by the

prover, the verifier can locally compute [c] by computing [c′] ← f([z], [d]) and
then mapping [c′] to its associated element in F245 . The parties can then check
that [c] = [a] · [b] as before. Overall this gives a per-bit communication cost of 9
bits. See the full version for more details.

5 Streaming and Non-interactive Proofs via Fiat-Shamir

We now show how to modify our previous constructions for arithmetic circuit
satisfiability and disjunctions to support streaming, and also be non-interactive
via a variant of the Fiat-Shamir transform [FS87]. We first show how to stream
our IPs with LOVe, at the cost of increased round complexity. Then, we show
how IPs with LOVe can be transformed into NIZKs (with VOLE preprocessing)
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with the Fiat-Shamir transform. To analyze the soundness of this approach, we
define a form of round-by-round soundness for IPs with LOVe, similar to Canetti
et al. [CCH+19], and show that this is satisfied by our constructions.

5.1 Streaming Interactive Proofs

We use the term streaming to refer to a protocol where both the prover and
verifier algorithms can be run using only a constant amount of memory, inde-
pendent of the size of the statement and witness. For disjunctive proofs, we relax
this to allow O(m) memory, where m is the maximum number of branches in
any disjunction. Note that when looking at a C&P IP with LOVe, in addition
to requiring a small memory footprint for P and V, we also need that the lin-
ear oracle queries can be performed with small memory. It is enough to require
that P can compute the result of each oracle query incrementally during the
protocol, and with constant memory; when translating the IP with LOVe into
a zero-knowledge proof based on VOLE (Sect. 2.2), this ensures that the result-
ing protocol also has constant memory, since each AssertZero can be checked
on-the-fly.

Recall that in our protocols for circuit satisfiability, the multiplication gates
are all verified in a batch at the end of the computation. This requires storing
all commitments created during each multiplication in memory, leading to a
memory cost that is linear in the circuit size.

For the more efficient amortized protocol, this drawback seems inherent,
however, we can easily avoid it for the simpler protocol from Sect. 4.2, by checking
multiplications on-the-fly using an independent random challenge from V for each
multiplication. The change is very simple, and for completeness, shown in the
modified multiplication sub-protocol below.

Streaming Mult([xi], [yi]): To evaluate the i-th multiplication gate:

1. Run Random(Fp) to get [ri] and Random(Fpk) to get [r′
i], [ai].

2. Run Fix(xiyi) → [zi], and Fix(aiyi) → [ci].
3. Run Send[V→P](ei ← Fpk).
4. Run Reveal([ε]), where [ε] = ei[xi] − [ai].
5. Run AssertZero(ei[zi] − [ci] − εi[yi]).

For the soundness of this protocol, following the exact same analysis as in
Sect. 4.2, we get a soundness error of p−k, due to the random choice of each
challenge ei. In Sect. 5.3, we show that this protocol also satisfies round-by-round
soundness, implying that it can be made non-interactive using Fiat-Shamir.

5.2 Batching AssertZero with Constant Memory

Recall from Sect. 2 that often, it is useful to combine all the AssertZero state-
ments (that is, linear oracle queries) of an IP with LOVe into just one check,
by batching them together at the end. However, just as with our original cir-
cuit evaluation protocol, this is not amenable to constant memory for streaming
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Transformation Stream(ΠLOVe)

1. P first commits to its inputs as in ΠLOVe.
2. Initialize a dummy commitment [z] := 0.
3. For the i-th AssertZero([γi]) instruction in ΠLOVe

– V sends a random challenge ei ∈ Fpk .
– Update [z] = [z] + ei[γi].

4. All other instructions are kept the same.
5. At the end of the program, run AssertZero([z]).

Fig. 5. The transformation to batch AssertZero in a streamable manner.

algorithms. Instead, in Fig. 5 we give an alternative transformation, which trans-
forms any C&P IP with LOVe ΠLOVe to have just one AssertZero, without storing
all intermediate values.

The idea is that, instead of taking a combination of all AssertZero′s at the end,
we can compute this combination in an incremental manner. At each AssertZero
on input [γ], we take a random challenge e and add e · [γ] to a running state
[z]. At the end of the computation, to verify that all the γ values were zero,
we simply run AssertZero on [z]. Since the challenge e is only sampled after the
value being checked for zero was committed, it holds from the argument for
the batching method from Sect. 2 that cheating in this check requires guessing
a random challenge, so this transformation only increases the soundness error
by p−k.

5.3 Round-by-Round Soundness for IPs with LOVe

The intuition behind the definition of Round-by-round soundness is that in any
given round of a protocol Π, one can define a function State, which, given the
current transcript of Π, outputs a bit indicating whether Π’s execution will fail.
We require that, if State predicts failure in some round i, then State also predicts
failure in round i+1, with high probability over the verifier’s random challenge.

Previously, round-by-round soundness has been defined for standard interac-
tive proofs [CCH+19], without any form of oracle queries. Below is our modified
definition, tailored to IPs with LOVe. Note that unlike the Zero Knowledge set-
ting, where State’s inputs are publicly known, here we give the State function
also the oracle string π as input; without this, there would be no easy way for
the State algorithm to simulate whether a given oracle query to π would succeed
or not. Note also that since we assume Π is public-coin, the oracle query inputs
(z, y) are all computable given the complete transcript, so they are also known
to State.

Definition 7. Let Π be a t-round, public-coin IP-LOVe for a relation R. We
say that Π has round-by-round soundness error ε if there exists a deterministic
(not necessarily efficient) function State that takes input an instance x, proof π
and partial transcript T , and outputs accept or reject, such that the following
properties hold:
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1. If x /∈ L, then State(x,π, ∅) = reject.
2. If State(x,π, T ) = reject for a partial transcript T up to round h ∈ [t], then

for every potential prover message ah,

Pr
eh+1←F

rV
h+1

[State(x,π, T ‖ah‖eh+1) = accept] ≤ ε

3. For any halting transcript T , if State(x,π, T ) = reject then V rejects.

Round-by-round soundness of our protocols for circuit satisfiability.
In the full version, we show that our IPs with LOVe for circuit satisfiability,
including the streamable protocol from Sect. 5.1–5.2, and the efficient batched
multiplication protocol from Sect. 4.3 satisfy round-by-round soundness. We also
show that the same holds for our stacking protocol from Sect. 3.

Roughly speaking, for our circuit satisfiability protocol, the State algorithm
takes as input the proof string π, so can immediately extract the witness and try
to verify whether the statement is true. In later rounds, State also checks whether
the prover’s messages are inconsistent with π and the verifier’s challenges, and
changes to reject if so. A similar strategy works in all our protocols to show that
round-by-round soundness holds.

Soundness of Fiat-Shamir for IPs with LOVe. We now show that the
Fiat-Shamir transformation, when applied to a zero-knowledge proof built from
VOLE and an IP with LOVe, is sound if the underlying IP with LOVe satisfies
round-by-round soundness.

For this, we follow the VOLE-based protocol from Sect. 2.2, while replacing
the verifier’s random challenges with outputs of a random oracle. We use a
slightly augmented VOLE functionality, denoted FVOLE+id, which additionally
samples a random identifier id ∈ {0, 1}λ, and gives this to both parties after
receiving their input. We feed this into the random oracle, which binds the
statement and proof to this instance. The result we obtain is similar to the FS
transform for interactive oracle proofs [BCS16], with the differences that (1)
we start from IPs with LOVe using VOLE preprocessing, and (2) we assume
round-by-round soundness, which is a stronger property than state-restoration
soundness from [BCS16], but we find it simpler to work with. We prove the
following theorem in the full version.

Theorem 5. Let ΠLOVe be a t-round, 1-query, public-coin IP-LOVe for relation
R with round-by-round soundness ε, which is also complete and zero-knowledge.
Then, the compiled protocol ΠVOLE

NIZK in Fig. 6 is a non-interactive zero-knowledge
proof in the FVOLE+id-hybrid model, with soundness error at most

p−k + εt + Q(ε + 2/|C| + 2−λ)

where Q is the number of random oracle queries made by a malicious prover,
and |C| is the size of the smallest challenge set in any given round of Π.

Furthermore, if ΠLOVe is a proof of knowledge, then so is ΠVOLE
NIZK .
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Transformation ΠLOVe → ΠVOLE
NIZK

Let be the length of the proof string in ΠLOVe, the underlying IP with LOVe over
Fpk .

1. The parties call FVOLE+id, obtaining random commitments [r1], . . . , [r ]. Both

parties also receive a random identifier id ∈ {0, 1}λ.
2. The prover chooses the proof string π ∈ Fpk according to ΠLOVe, and computes

di = ri − π[i].
3. Compute the commitments [π[i]] = [ri] − di. Let τ be the prover’s MACs on

π, and (α, β) the verifier’s keys.
4. P defines the dummy first message a0 = ⊥, and challenge e1 = H(x id d a0).
5. For each round i = 1, . . . , t, P computes its message ai and the next challenge

ei+1 = H(ai ei)

6. For the oracle query (z, y) ∈ Fpk × Fpk , P computes the MAC

τQ = τ , z

7. P sends the proof (d1, . . . , d , a1, . . . , at, τ
Q).

8. V recomputes all the challenges ei, then computes its query verification key

βQ = β, z

and checks that τQ = βQ + α · y. If the check passes, V accepts.

Fig. 6. NIZK from VOLE and IP with LOVe.

6 Implementation and Evaluation

We have implemented the online protocol of Mac′n′Cheese with the batched
multiplication approach of Sect. 4.3 in the Rust programming language. Our
implementation achieves a computational security of 128 bits and a statistical
security of ≥40 bits. Our implementation supports pluggable VOLE backends.
The backend that we use, at present, is a “dummy” backend which (insecurely)
generates random MACs by using a pre-shared seed with a PRNG.

Streaming. To facilitate streaming, our implementation does not view its input
as an explicit circuit graph. Instead, the proof statement is lazily built-up by a
series of function invocations. As a result, we get reduced memory consumption
(for free) as temporary values get automatically freed when they are no longer in-
scope. In order to stream a two-way disjunction, both branches of the disjunction
must be interleaved (otherwise the prover would be forced to either buffer the
entirety of a branch, or reveal which branch is ‘true’). To achieve this interleaving,
we leverage stackful coroutines to (cheaply) concurrently execute both branches.

Concurrency. Despite running a multi-round interactive protocol (without exten-
sive use of the Fiat-Shamir transform), we are still able to achieve high-
performance even over a high-latency, throughput-limited network link. We reach
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this result by running one thread which exclusively sends data from the prover
to the verifier to Fix MACs to prover-private values. Once this thread has Fixed
a batch of MACs, it submits them to one of many background threads to ver-
ify the assertions on these MACs. Each background thread has its own unique
connection between the prover and the verifier, so can independently wait for
a response from the other party. As a result, we can provision a large num-
ber of background threads (which will spend most of their time waiting for the
network, rather than running computation) to mitigate the latency effects of
running our multi-round protocol over a network. In addition, this design allows
us to leverage multiple cores independent of the circuit structure.

6.1 Evaluation

We benchmarked our implementation for F240 (for boolean circuits) and F261−1

(for arithmetic circuits). Unless otherwise specified, all benchmarks were run
between two machines: a laptop (2018 MacBook Pro with 8 logical cores and
16 GB of RAM) on the east coast of the U.S., and a server (40 Intel Xeon Silver
4114 cores operating at 2.20 GHz) on the west coast of the U.S. The network
had an average latency of 95 ms and an average bandwidth of 31.5 Mbps. All
numbers are the average of at least four runs of the given experiment.

As noted above, these results do not include the cost of VOLE. We are in
the process of integrating the VOLE protocol of Weng et al. [WYKW20], but
do not believe this will have a large impact on the overall running time and
communication cost given that a single VOLE for F261−1 can be generated in
85 ns at a communication cost of 0.42 bits [WYKW20, Table 4], and can be
largely precomputed.

As mentioned above, our implementation is multi-threaded, and in order to
reduce communication latency we pipeline processing as much as possible. We use
50 threads for all of our experiments, although we note that the CPU utilization
on both the prover and verifier never exceeds 226% (where the maximum possible
utilization is the number of cores times 100%). We reiterate that our verifier was
run on a commodity laptop, and while we use a large number of threads, this
does not equate to extremely high CPU utilization.

Microbenchmarks. Using a multiplication batch size of 1 000 000,Mac′n′Cheese
achieves a per multiplication cost of approximately 144 ns for F240 and 1.5 µs
for F261−1. This equates to 6.9 million multiplications per second (mmps) for
F240 , and 0.6 mmps for F261−1. We found that the main limiter in the arithmetic
case was bandwidth, and thus also ran our microbenchmarks locally (run on the
Location B server), achieving a per multiplication cost of 141 ns (7.0 mmps) for
F240 and 276 ns (3.6 mmps) for F261−1.

Comparison to QuickSilver . We briefly compare to QuickSilver [YSWW21]. Recall
that QuickSilver requires only a single field element per multiplication and
requires only 3 rounds (cf. Table 1), but does not support communication-
optimized disjunctions. When run on localhost within an Amazon EC2 instance,
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Table 2. Performance results for disjunctions. The “Branches” column denotes the
number of branches, where each branch contains 1 billion AND gates. The “Local”
column denotes the time to locally compute the circuit in-the-clear, and provides a
rough lower bound of performance. The “Verify” column denotes the time to verify
the ZK proof. The “Comm. Increase” column denotes the amount of communication
increase from the baseline of 124 MB required in the single-branch case.

Branches Local Verify Comm. Increase

(seconds) (seconds) (bytes)

1 34 139 —

2 81 307 +25

4 163 568 +50

8 327 1254 +75

QuickSilver achieves 7.6 mmps for boolean and 4.8 mmps for arithmetic when uti-
lizing 1 thread, and 15.8 mmps for boolean and 8.9 mmps for arithmetic when
utilizing 4 threads [YSWW21, Table 2]. While it is hard to make an apples-
to-apples comparison here, this does suggest that QuickSilver is slightly faster,
albeit at the expense of communication-optimized disjunctions. Thus, the choice
of QuickSilver versus Mac′n′Cheese may come down to the characteristics of the
input circuit.

Disjunctions. We also explored the effect our disjunction optimization has on
the communication cost. We did so by comparing a proof of a boolean circuit
containing 1 billion multiplication gates to using a boolean circuit containing two
or more branches each containing 1 billion gates5. See Table 2 for the results.

The overall communication in all cases was essentially 124 MB: the OR
proof added only an additional 25 log(m) bytes, where m denotes the number of
branches. In terms of overall running time, we see an increase with the overall
size of the circuit. This is due to the fact that the prover still needs to do the
entire computation, and for this particular example bandwidth is not the bot-
tleneck. The table also reports the time required to simply evaluate the circuit
locally—this presents a reasonable lower bound for Mac′n′Cheese. We find that
in all cases, Mac′n′Cheese takes less than 4.08× the cost of locally evaluating the
circuit.
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5 In more detail, the branched circuit contained one branch computing 150 000 iter-
ations of AES (960 million multiplication gates) and the other branch computing
45 000 iterations of SHA-2 (1.002 billion multiplication gates). The non-branched
circuit only ran the SHA-2 portion of the aforementioned circuit.
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Abstract. We construct public-coin time- and space-efficient zero-
knowledge arguments for NP. For every time T and space S non-
deterministic RAM computation, the prover runs in time T · polylog(T )
and space S ·polylog(T ), and the verifier runs in time n ·polylog(T ), where
n is the input length. Our protocol relies on hidden order groups, which
can be instantiated with a trusted setup from the hardness of factoring
(products of safe primes), or without a trusted setup using class groups.
The argument-system can heuristically be made non-interactive using the
Fiat-Shamir transform.

Our proof builds on DARK (Bünz et al., Eurocrypt 2020), a recent suc-
cinct and efficiently verifiable polynomial commitment scheme. We show
how to implement a variant of DARK in a time- and space-efficient way.
Along the way we:
1. Identify a significant gap in the proof of security of DARK.
2. Give a non-trivial modification of the DARK scheme that overcomes

the aforementioned gap. The modified version also relies on signifi-
cantly weaker cryptographic assumptions than those in the original
DARK scheme. Our proof utilizes ideas from the theory of integer lat-
tices in a novel way.

3. Generalize Pietrzak’s (ITCS 2019) proof of exponentiation (PoE) pro-
tocol to work with general groups of unknown order (without relying
on any cryptographic assumption).

In proving these results, we develop general-purpose techniques for work-
ing with (hidden order) groups, which may be of independent interest.

1 Introduction

Significant overhead in prover efficiency is the main roadblock standing between
zero-knowledge proofs and widespread deployment. While there has been exten-
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sive work on optimizing the running time of the prover, much less attention has
been drawn to the space (or memory) usage. In particular, most protocols in
the literature suffer from the drawback that memory consumption by the prover
is exceedingly large: computations that take time T and space S to compute
directly, require the prover to invest Ω(T ) space in order to prove correctness
(with some notable exceptions [9–11,13,31,44] to be discussed shortly). Moreover,
due to the way that modern memory architectures work, large memory usage
also inevitably leads to more cache misses and slower runtime. Thus, space effi-
ciency of the prover is a severe bottleneck to enabling zero-knowledge proofs for
large-scale complex computations.

The recent work of Block et al. [11] constructed the first publicly verifiable1

zero-knowledge proofs (under standard cryptographic assumptions) in which the
prover is efficient both in terms of time and space. In more detail, for every NP
relation R, for which membership can be computed in time T and space S, the
prover (given as input the instance and corresponding witness) can be imple-
mented in time T · poly(λ, log T ) and space S · poly(λ, log T ) and the verifier
can be implemented in time roughly T · poly(λ, log T ), where here and through-
out this work λ denotes the security parameter. The fact that verification takes
Ω(T ) time is a significant drawback of this protocol and precludes applications
like delegation of computation.

1.1 Our Results

In this work we overcome the main disadvantage of the work of Block et al. by
constructing zero-knowledge proofs with a time- and space-efficient prover and
poly-logarithmic verification. For this result we rely on groups of unknown order,
which are discussed immediately after the statement of Theorem 1.1.

Theorem 1.1 (Informally Stated, see Theorem 4.1). Assume that there
exists a group for which the hidden order assumption holds. Then, every NP
relation that can be verified by a time T and space S RAM machine has a public-
coin zero-knowledge argument-system in which the prover, given as input the
instance x and witness w, runs in time T · poly(λ, log T ) and uses space S ·
poly(λ, log T ). The verifier runs in time |x| · poly(λ, log T ), the communication
complexity is poly(λ, log T ) and the number of rounds is O(log T ).

The argument-system uses a common reference string, which is simply a
description of the hidden-order group G and a random element g ∈ G.

As usual, the protocol can heuristically be made non-interactive by applying
the Fiat-Shamir [29] transform. It is also worth noting that a result similar to
Theorem 1.1 was not known even without the zero-knowledge requirement.

1 Public verifiability has emerged as a central requirement for proof-systems. In a
nutshell it means that anyone who possesses the proof-string can verify its correctness
(while possibly also requiring access to a common reference string). We mention that
time- and space-efficient protocols that are either privately-verifiable or based on
non-standard computational assumptions were previously known. See Sect. 1.2.
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As for the assumption that we use, the hidden order assumption for a group G

states that given a random group element g ∈ G it is computationally infeasible
to find (any multiple of) the order of g. For example, assuming the hardness of
factoring N which is a product of two safe primes, the group Z

∗
N , is a hidden

order group. Therefore, our scheme can be instantiated assuming the hardness
of factoring (products of safe primes).

Lately there has been much interest in public-coin hidden order groups which
means that the description of the group can be generated without a trusted party
(aka a transparent setup). This is not known for the factoring based group (since
one needs to be able to generate a hard instance for factoring without using
private coins). However, as pointed out in [21,26], class groups of an imaginary
quadratic field are a candidate public-coin hidden order group. Since our common
reference string only includes a description of the group and a random element,
using class groups we obtain a protocol that does not require a trusted setup.

Time- and Space-efficient Polynomial Commitments. Theorem 1.1 is derived
from a new polynomial-commitment scheme that we construct, based on a prior
scheme due to Bünz et al. [21]. Roughly speaking, a polynomial-commitment
scheme allows Alice to commit to a low degree polynomial P so that later
Bob can ask her for evaluations P (x) along with proofs that the supplied val-
ues are indeed consistent with her commitment (see Sect. 3.4 for the formal
definition). Polynomial commitments have drawn significant attention recently
(see Sect. 1.2), especially due to their use in compiling ideal model information-
theoretic proof-systems into real-world protocols. Most works use polynomial
commitments in order to obtain shorter proof sizes. In contrast, following [11],
we use polynomial commitments to enable a small space (and time) implementa-
tion of the prover. We believe that this aspect of polynomial commitments will
be a key enabler of large-scale zero-knowledge proofs.

For simplicity, and since it suffices for proving Theorem 1.1, we focus on
polynomial commitments for multilinear2 polynomials P : F

n → F, where F

is a prime order field. Following [11], we consider polynomial commitments in a
streaming model, in which the committer are given (multi-pass) streaming access
to the representation of the polynomial; in our case, the restriction of the multi-
linear polynomial to the Boolean hypercube. This streaming model is motivated
by the fact that when using the commitment scheme to construct an efficient
argument-system, the prover commits to a transcript of the computation - which
can indeed be generated in a streaming manner in small space.

In order to construct their time- and space-efficient arguments, [11] first con-
struct a polynomial commitment scheme for multilinear polynomials in which
the prover runs in quasi-linear time (in the description of the polynomial, which
is of size 2n · log(|F|)) and logarithmic space. However, the verifier for their eval-
uation proof also runs in time that is linear in the size of the polynomial. This is
the core reason that the argument-system constructed in [11] does not achieve
sub-linear verification. In contrast, we give a polynomial commitment scheme in
which the prover is time- and space-efficient and verification is poly-logarithmic.
2 Recall that a multi-variate polynomial is multilinear if its degree in each variable is

at most 1.
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Theorem 1.2 (Informally Stated, see Theorem 4.2). Assume that there
exists a group for which the hidden order assumption holds. Then, there exists a
polynomial commitment scheme for multilinear polynomials P : Fn → F over a
prime order field F (of size |F| � 2poly(n)) with the following efficiency properties:

1. Commitment and evaluation proofs can be computed in time 2n · poly(n, λ)
and space n · poly(λ), given multi-pass streaming access to the evaluations of
P on the Boolean hypercube.

2. The communication complexity and verification time are both poly(n, λ).

Similarly to Theorem 1.1, the commitment scheme is defined relative to a ref-
erence string containing the description of the hidden order group and a random
group element.

Theorem 1.1 follows from Theorem 1.2 using techniques from the work of
Block et al. [11]. Namely, we use a time- and space-efficient polynomial interac-
tive oracle proof 3 (polynomial IOP), constructed in [11] (based on the 2-prover
MIP of [13]). We then compile this polynomial IOP into an argument-system
using the polynomial commitment of Theorem 1.2 in the natural way: namely,
rather than sending polynomials in the clear, the prover simply commits to them
and later proves correctness of evaluations queries. This compilation results in a
succinct argument, which can be made zero-knowledge (while preserving time-
and space-efficiency) using standard techniques [4] (see [12] for details).

Our proof of Theorem 1.2 builds on a recent remarkable polynomial-
commitment scheme called DARK (for Diophantine Argument of Knowledge),
due to Bünz et al. [21]. This polynomial commitment scheme was the first such
scheme to achieve logarithmic size proofs and verification time.

We make several significant improvements to the DARK scheme.

1. Identifying andBypassing aGap inDARK:We identify a gap in the secu-
rity proof of [21]. We elaborate on this gap in Sect. 2.2. We emphasize that we do
not know whether this gap can lead to an attack on the DARK scheme. Never-
theless, we find this gap to be significant and in particular we do not know how
to fix their security proof. We mention that we have been informed [23] that the
same gap was discovered independently by the authors of [21].

To obtain our polynomial commitment scheme, we therefore make a non-
trivial modification of the DARK scheme and show that this modification
suffices to prove security. Our security proof relies on a new lemma on the
existence of integral inverses for uniformly random rectangular binary matri-
ces, which we prove. Our proof is based on ideas from the mathematical theory

3 A polynomial IOP is defined similarly to a (public-coin) interactive proof, except that
in every round the prover is allowed to send the truth table of a large polynomial, and
the verifier can query a few points from each polynomial. The notion was proposed
concurrently in [21] and [24]. Essentially the same notion appears also in [38] (called
Probabilistically Checkable Interactive Proof w.r.t. Encoded Provers therein).
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of integer lattices which, to the best of our knowledge, have not been used
before in this context.4 See Sect. 2.3 for details.

2. Improved Assumptions and Simplicity: Setting aside the gap in the
security proof, we also significantly improve the assumptions that the DARK
scheme relies on. The improvement in assumptions stems from a simpler (and
conceptually more appealing) extraction procedure that we describe. This
improvement applies to the two main variants of the DARK scheme. In more
detail:
(a) The first variant of the original DARK scheme uses RSA groups, while

relying on the strong RSA assumption and the adaptive root assumption.
The former assumption, while not new, is relatively strong, whereas the
latter is a new assumption, due to Wesolowski [46], which is not yet well
understood (note that both assumptions are known to hold in the generic
group model [16,27]).
In contrast, when instantiating our scheme in this setting, we only need
to rely on the hardness of factoring (products of safe primes).

(b) In order to obtain an unstructured common random string, Bünz et al.
also give a construction that uses class groups of an imaginary quadratic
field. This construction relies on both the aforementioned adaptive root
assumption (for class groups) and a new assumption that they introduce
on class groups called the 2-strong RSA assumption. The class-group
based construction is also more complex than their construction using
RSA groups.
In contrast, our construction works equally well for both groups and we
can instantiate it using class groups while assuming only the hidden order
assumption (which is weaker than the adaptive root assumption [15]). See
also [1,43] for a comparison between these assumptions.

3. Small Space Polynomial Commitments: We show that the commitment
and evaluation protocols in (our variant of) the DARK scheme can be imple-
mented in time roughly Õ(2n) (i.e., quasi-linear in the description of the poly-
nomial) and space poly(n) (i.e., poly-logarithmic in the description), given
(multi-pass) streaming access to the evaluations of the polynomial on the
Boolean hypercube. Crucially, (and in contrast to the scheme of [11]) the ver-
ifier in our evaluation proofs runs in time poly(n). See Sect. 2.4 for the ideas
underlying our space-efficient implementation.

4. Statistical Proof of Exponentiation over General Groups: We improve
and generalize a recent elegant proof-of-exponentiation protocol due to
Pietrzak [37]. In a proof of exponentiation protocol, the goal is for the prover
to convince the verifier that the triplet (g, h, T ) ∈ G × G × N satisfies the
relation h = g2

T

, where G is a group of unknown order.5 Pietrzak constructs
such a protocol in which the prover runs in time roughly T and the verifier

4 We emphasize that we use lattice theory to show that our group based construction
is secure. In particular all of our hardness assumptions are group based.

5 Since the order of G is not known, one cannot simply compute 2T modulo the group
order and then exponentiate.
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runs in time roughly log(T ) (which is exponentially faster than the direct
computation via repeated squaring). Pietrzak uses his protocol to construct
a simple verifiable delay function [14], based on the Time-Lock puzzles of
Rivest, Shamir and Wagner [39].

Pietrzak’s protocol is designed specifically for the group QR+
N of (signed)

quadratic residues modulo an integer N , which is the product of two safe
primes. Pietrzak [37, Section 6.1] points out that the protocol can also be
extended to class groups, but with two caveats. First, this extension is only
computationally sound and second, it requires an additional assumption from
the class group (namely, that it is hard to find elements of small order). This is
in contrast to Pietrzak’s protocol for QR+

N which provides statistical security
and without relying on any assumption. We note that a different protocol, due
to Wesolowski [46], gives a proof of exponentiation over groups in which the
adaptive root assumption holds (which plausibly includes class groups), but
also only achieves computational soundness and requires a (strong) hardness
assumption. Wesolowski’s protocol is used as sub-routine within the DARK
scheme.

As an additional contribution, which we find to be of independent inter-
est, we show a modification of Pietrzak’s protocol that works over general
groups of unknown order (including class groups) while preserving statistical
security and without relying on any assumption. By replacing Wesolowski’s
protocol within the DARK scheme with our new extension, we obtain that
the evaluation proofs for our polynomial commitment are proofs (rather than
arguments) of knowledge.

1.2 Additional Related Works

Polynomial Commitments. Polynomial commitment schemes were introduced
by Kate et al. [32]. As discussed above, such commitments allow one to commit
to a polynomial and later answer evaluation queries while proving consistency
with the commitment.

There are several variants of polynomial commitments include privately ver-
ifiable schemes [32,36], publicly-verifiable schemes with trusted setup [21], and
zero-knowledge schemes [47]. More recently, much focus has been on obtaining
publicly-verifiable schemes without a trusted setup [5,7,17,21,33,34,42,45,47,
48]. In all but one prior work, the space complexity of the committer is pro-
portional to the description size of the polynomial. The only exception is the
aforementioned work of Block et al. [11] who build a commitment scheme for
multilinear polynomials (based on [17,19]), where the committer’s space com-
plexity is poly-logarithmic in the description of the polynomial, assuming that
the committer is given multi-pass streaming access to its description. As men-
tioned above, a key drawback of their work is that the verification is linear in
the size of the polynomial.

Lastly, we mention that classical works on low degree testing (à la [40]) as well
as more recent works [5,6,8] can be used to construct polynomial-commitments
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by Merkle hashing the entire truth table of the polynomial (and using a self-
correction procedure or protocol).

Privately Verifiable Proofs. The question of constructing proof systems in which
the prover is efficient both in terms of time and space was first raised by Bitan-
sky and Chiesa [10], who constructed a time- and space-efficient (or in their
terminology complexity preserving) interactive argument for any problem in
NP based on fully homomorphic encryption. Holmgren and Rothblum [31] con-
structed non-interactive time- and space-efficient arguments for P based on the
(sub-exponential) learning with errors assumption. The protocols of [10,31] are
privately verifiable, meaning that only a designated verifier (who knows the ran-
domness used to sampled the verifier messages) is able to verify the proof.

Proofs by Recursive Composition. An alternative approach to publicly verifiable
time- and space-efficient arguments is by recursively composing SNARKs for
NP [9,44]. Recursive composition requires both the prover and verifier to make
non-black-box usage of an “inner” verifier for a different SNARK, leading to
large computational overhead. Several recent works [18,20,25] attempt to solve
the inefficiency problems with recursive composition, but at additional expense
to the underlying cryptographic assumptions. In particular, these works rely on
hash functions that are modeled as random oracles in the security proof, despite
being used in a non-black-box way by the honest parties. Security thus cannot
be reduced to a simple computational hardness assumption, even in the random
oracle model. Moreover, the practicality of the schemes crucially requires usage
of a novel hash function (e.g., Rescue [2]) with algebraic structure designed to
maximize the efficiency of non-black-box operations. Such hash functions have
endured far less scrutiny than standard SHA hash functions, and the algebraic
structure could potentially lead to a security vulnerability.

We also mention a recent work of Ephraim et al. [28] which uses recursive
composition to address the related question of implementing the prover in small
depth (i.e., parallel time).

Multi-Prover Proofs. Block et al. [11] gave the first publicly-verifiable time- and
space-efficient arguments for NP but as noted above (and in contrast to Theorem
1.1), the verification time is linear in the computation. Bitansky and Chiesa [10],
as well as Blumberg et al. [13], construct time- and space-efficient multi-prover
interactive proof, that is, soundness only holds under the assumption that the
provers do not collude. Justifying this assumption in practice seems difficult and
indeed multi-prover interactive proofs are usually only used as building blocks
toward more complex systems.

1.3 Organization

We give overviews of our proof techniques in Sect. 2. Preliminaries are in Sect. 3.
In Sect. 4 we formally state our results and in Sect. 5 we describe our polynomial
commitment scheme. The rest of the technical sections are deferred to the full
version [12].
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2 Technical Overview

We start, in Sect. 2.1 with an exposition of (a variant of) the DARK polyno-
mial commitment scheme of [21]. Then, in Sect. 2.2 we describe a gap in their
security proof. In Sect. 2.3 we show how to modify their protocol in order to
resolve this gap (and simultaneously simplify the extraction procedure and relax
the cryptographic assumptions). Then, in Sect. 2.4 we describe our small space
implementation and lastly, in Sect. 2.5 we describe our improved proof of expo-
nentiation protocol.

2.1 Overview of the DARK Scheme

We start with an overview of the DARK polynomial commitment scheme. The
main scheme constructed in [21] was for univariate polynomials. However, for
our applications it will be more useful to consider a variant of their scheme
for (multi-variate) multilinear polynomials.6 We emphasize that the gap in the
security proof (to be discussed shortly) also applies to the original DARK scheme.

DARK Commitments: Encoding Polynomials by Large Integers. Let F = Fp be a
finite field of prime order p. Recall that a multilinear polynomial P : Fn → F can
be specified by its evaluations on the Boolean hypercube. Thus, in order to com-
mit to the polynomial P , we will look at the sequence of values (P (b))b∈{0,1}n . In
order to commit to this sequence Bünz et al. construct a large integer Z(P ) that
encodes it, by looking at this sequence as a base q representation of an integer,
for some q � p. That is, Z(P ) =

∑
b∈{0,1}n qb · P (b), where b is interpreted as

an integer in the natural way.
The commitment to the polynomial P is simply c = gZ(P ), where g is a

random element of the hidden-order group G specified as part of the CRS. We
say that the integer Z is consistent with the multilinear polynomial P if, looking
at the base q representation of Z, and reducing each digit modulo p, we get the
sequence (P (b))b∈{0,1}n . Observe that since q � p, there are many integers
Z that are consistent with a given polynomial P (where one of these integers
is Z(P )). Nevertheless, the commitment is binding since finding two different
integers that are consistent with the same commitment reveals a multiple of the
order of g, which we assumed is computationally infeasible.

We will rely on the fact that this commitment scheme is homomorphic, in the
following sense: given integers Z1 and Z2 that are consistent with the polynomial
P1 and P2, and have sufficiently small digits in their base q representation, it
holds that Z1 + Z2 is consistent with the polynomial P1 + P2 (mod p). This is
also true for scalar multiplication: if α is sufficiently small then αZ1 is consistent
with α ·P1 (mod p). However, the assumption that the digits are small is crucial
for the homomorphisms to work, and jumping ahead, this will be the source of
the gap in the proof.
6 It is worth mentioning that [21] also present a variant of their scheme for multi-

variate polynomials. This variant is somewhat different from the one described here
and is obtained via a reduction to the univariate case.
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Evaluation Proofs. Suppose that the committer wants to prove that P (ζ) = γ,
for some ζ = (ζ1, . . . , ζn) ∈ F

n and γ ∈ F. More precisely, we will show an
interactive protocol that is a proof of knowledge of an integer Z that is consistent
with a polynomial P such that that C = gZ and P (ζ) = γ.

Let P0, P1 : Fn−1 → F be the (n − 1)-variate polynomials defined as P0(·) =
P (0, ·) and P1(·) = P (1, ·). The prover first generates these two polynomials,
and the corresponding commitments c0 = gZ(P0) and c1 = gZ(P1). Also, let
γ0 = P0(ζ2, . . . , ζn) and γ1 = P1(ζ2, . . . , ζn). As its first message, the prover
sends (c0, c1, γ0, γ1). The verifier now checks that:

1. γ = ζ1 · γ1 + (1 − ζ1) · γ0. This equation should indeed hold since P (ζ) =
ζ1 · P1(ζ2, . . . , ζn) + (1 − ζ1) · P0(ζ2, . . . , ζn).

2. The verifier also checks that c0 · (c1)qN/2
= c, where N := 2n. This should

hold since

c0 · (c1)qN/2
= gZ(P0) · gqN/2·Z(P1) = gZ(P0)+qN/2·Z(P1) = gZ(P ),

where the last equality follows from the fact that

Z(P0) + qN/2 · Z(P1) =
∑

b∈{0,1}n−1

qb · P0(b) + qN/2 ·
∑

b∈{0,1}n−1

qb · P1(b)

=
∑

b∈{0,1}n

qb · P (b) = Z(P ),

where the arithmetic is over the integers and we leverage the homomor-
phic properties of the commitment. Note that actually computing the value
(c1)qN/2

is too expensive for the verifier.7 Thus, rather than computing it
directly, this value is supplied by the prover who then proves its correctness
using Wesolowski’s [46] proof of exponentiation protocol.

Observe that we have replaced the single claim that we had about the
tuple (c, ζ, γ) with two separate claims (c0, ζ′, γ0) and (c1, ζ′, γ1), where ζ′ =
(ζ2, . . . , ζn), on (n−1)-variate polynomials so that if the original claim were true
then the two resulting claims are true, whereas if the original claim is false then
intuitively, at least one of the new claims is false.

Since we cannot afford to recurse on both claims, the next idea is to combine
them into a single claim, using a random linear combination. In more detail, the
verifier chooses a random coefficient8 α ∈ F and sends this coefficient to the
prover. Consider now a new commitment

c′ = c0 · (c1)α = gZ(P0)+α·Z(P1). (1)

7 Computing this value directly by exponentiation takes time roughly N = 2n (using
the standard repeated squaring trick) whereas we seek poly(n) time verification. Note
that since the group’s order is not known, one cannot first compute qN/2 modulo
the group order, and only then exponentiate.

8 Looking ahead, it actually makes more sense to choose α from {0, . . . , 2λ − 1} where
λ is a statistical security parameter (independent of the field size). We ignore this
here and simply follow the presentation in [21].
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At first glance, c′ looks like a commitment to the (multilinear) polynomial P ′(·) =
P0(·) + α · P1(·). This is not exactly true since the operations in the exponent
in Eq. (1) are over the integers rather than over the field Fp. Nevertheless, it is
indeed the case that when interacting with the honest prover, c′ = gZ , for an
integer Z that is consistent with P ′. The verifier would therefore like to check
that c′ = gZ such that Z is consistent with a polynomial P ′ such that P ′(ζ′) = γ′,
where γ′ ≡ γ0 + α · γ1 (mod p).

The parties have therefore reduced the instance (c, ζ, γ) to (c′, ζ′, γ′), of
smaller dimension (since the new instance corresponds to a polynomial on n − 1
variables). At the bottom of the recursion (i.e., when the number of variables is
0), the parties are in the following situation - both hold a commitment C0 ∈ G

and a value γ0 ∈ Fp and the claim is that C0 = gZ0 such that Z0 = γ0 (mod p).
This can be checked by having the prover send Z0 and the verifier explicitly
checking that this value is consistent with γ0 (and with C0).

Bounding the Blowup in Coefficients. Note that as the protocol progresses, the
magnitude of the digits in the base q representation of the integers grows. How-
ever, this growth is bounded - in every iteration the main source of growth is
multiplication by α and so the growth is bounded by roughly a factor of p per
iteration. Thus, by setting q � pn we ensure the growth of the coefficients does
not break the homomorphism as the protocol progresses. This suffices for com-
pleteness. For soundness (or rather knowledge soundness), we actually need a
larger bound on q and have the verifier check in the base of the recursion that
Z0 � pn. Loosely speaking, this is done so that a cheating prover cannot use
integers with large digits to violate the homomorphism.

2.2 A Gap in the Proof

We need to show that the above scheme is an argument-of-knowledge.9 Loosely
speaking this means that for every polynomial-time prover strategy P there
exists a polynomial-time extractor E so that for every input (c, ζ, γ), if P con-
vinces V to accept with non-negligible probability, then EP outputs an integer Z
such that g = cZ and Z is consistent with a polynomial P such that P (ζ) = γ.

The extractor works recursively. Let us therefore assume that we have an
extractor for the (n − 1)-variate case and attempt to construct an extractor for
the n-variate case. Thus, we are given a commitment c, a point ζ ∈ F

n a value
γ ∈ F and a prover that convinces the verifier to accept with non-negligible
probability. For sake of this overview however, let us pretend that the prover
succeeds with probability close to 1.

The high-level idea for extraction is as follows. First, let the prover send its
first message which is (c0, c1, γ0, γ1). At this point our extractor continues the

9 We note that [21] only aim to show that the protocol is an argument of knowledge
(and this is inherent to their approach). Jumping ahead we mention that the eval-
uation proof in our variant of DARK will actually be a proof of knowledge (i.e.,
extraction is guaranteed even wrt computationally unbounded provers).
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interaction with two uniformly random choices of α for the verifier, which we
denote by α̂ and α̃. This defines two claim triplets: (ĉ, ζ′, γ̂) and (c̃, ζ′, γ̃), where:

ĉ = c0 · (c1)α̂ c̃ = c0 · (c1)α̃

γ̂ ≡ γ0 + α̂ · γ1 (mod p) γ̃ ≡ γ0 + α̃ · γ1 (mod p).

Since these two claims correspond to the (n − 1)-variate case, we can now recur-
sively run our extractor (twice) to obtain integers Ẑ and Z̃ that are consistent
with the respective claims. Namely, Ẑ (resp., Z̃) is consistent with a polynomial
P̂ (resp., P̃ ) such that P̂ (ζ′) = γ̂ (resp., P̃ (ζ′) = γ̃), and gẐ = ĉ (resp., gZ̃ = c̃).

Consider the following linear-system, over the rationals, with unknowns Z0

and Z1.

Ẑ = Z0 + α̂ · Z1 Z̃ = Z0 + α̃ · Z1

Note that since α̂ and α̃ are random, with overwhelming probability this system
has a (unique) solution over the rationals:

Z0 =
α̂ · Z̃ − α̃ · Ẑ

α̂ − α̃
Z1 =

Ẑ − Z̃

α̂ − α̃
(2)

An immediate difficulty that arises is that this solution may not be integral
(i.e., Z0 and Z1 are not integers). However, Bünz et al. show that finding a frac-
tional solution violates their hardness assumptions. Thus, (under the foregoing
assumptions) we can safely assume that Z0 and Z1 are integers.

At this point we would like to combine Z0 and Z1 into Z = Z0 + q2
n−1

Z1,
which serves as a valid output for the extractor. A question that arises however
is whether Z0 and Z1 have bounded digits in their base q representation. This is
crucial since, as discussed above, if the digits are large the homomorphism breaks.
Bünz et al. claim that it is indeed the case that Z0 and Z1 have small coefficients
by observing that both the numerators and denominators in Eq. (2) consist of
relatively small integers and so their quotient is small. While the claim that the
quotient itself is small is indeed valid, it does not necessarily mean that the base
q representation of the quotient has small digits. Indeed, as demonstrated by the
following example, this is not necessarily true and is the source of the gap in the
DARK extraction procedure.

Example 2.1. Suppose that q is odd and consider the integers a = q + 1 and
b = 2 (in case q is even a similar example with a = q and b = 2 works). Note
that the base q representation of both only has small digits. However, a/b has a
digit of magnitude (q + 1)/2. Using such large digits breaks the homomorphism
within a couple of steps.

We refer the reader to Lemma 8 in the full version of DARK [22] for the
exact location of the gap in the proof. Specifically, in the third paragraph in
that proof, it is claimed that fL(X) has small entries by the triangle inequality,
but this does not account for the division by Δα in the definition of fL. This
division can entirely break the claimed bounds on the base q representation
of fL.
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2.3 Resolving the Gap

Unfortunately, we do not know how to resolve the gap in the extraction procedure
of [21]. Rather, we show how to modify the scheme and construct an extractor
for our modified scheme.

As our first step, for a reason that will be made clear momentarily, rather
than handling a single claim (c, ζ, γ), we construct an interactive proof that
handles a bundle of λ claims {(ci, ζ, γi)}i∈[λ], using the same evaluation point
ζ ∈ F

n, and where λ is an auxiliary statistical security parameter. These λ claims
do not have to be distinct, so to solve the original problem (c, ζ, γ) we can simply
consider λ copies of it. Thus, our goal is to construct a proof-of-knowledge of
integers Z1, . . . , Zλ that are consistent, respectively, with polynomials P1, . . . , Pλ

so that Pi(ζ) = γi, for every i ∈ [λ].
We follow the divide and conquer approach of [21]. Namely, using a similar

type of interaction we split each one of the λ claims (ci, ζ, γi) into two claims
each on an (n− 1)-variate polynomial. At this point, we have, overall, 2λ claims
on (n−1)-variate polynomials and we would like to reduce these to just λ claims
so that we can recurse. Denote this set of claims by {(c′

i, ζ
′, γ′

i)}i∈[2λ] (note that
the indexing intentionally ignores the source for each one of these claims).

Let us first describe how we generate a single claim from these 2λ claims. The
verifier chooses a random subset S ⊆ [2λ] and sends S to the prover. Consider
now the new claim (c̄, ζ′, γ̄), where c̄ =

∏
i∈S c′

i and γ̄ ≡ ∑
i∈S γ′

i (mod p). If the
original claims were true then with probability 1 the new claim is true, whereas,
intuitively, if at least one of the original claims was false then with probability
1/2 the new claim is false10. We therefore repeat this process λ times to derive
λ claims so that if one of the original claims was false, then, with all but 2−λ

probability, one of the new claims will be false.
To actually make this argument work, we need to construct an extractor. As

suggested above, the extractor can rewind the computation a constant r number
of times to deduce a linear-system, analogous to that of Sect. 2.2, but now with
r · λ equations and λ variables, where the coefficients are uniformly random 0/1
values.

Similarly to the situation in Sect. 2.2, it is clear that this linear-system is full
rank (over the rationals) but it is not a priori clear that the solution is integral,
nor that its base q representation has small digits. Nevertheless, we show that
for random Boolean matrices this is indeed the case. This fact, which turns out
to be non-trivial to prove, is summarized in the following lemma:

Lemma 2.2 (Informally Stated, see [12]). If A is uniformly random in
{0, 1}λ×r·λ for r ≥ 5, then with all but 2−Ω(λ) probability A has a right-inverse
B ∈ Z

r·λ×λ. Moreover, the inverse matrix B can be found in poly(λ) time and
its entries have bit length at most poly(λ).

10 This is not actually precise since there are many polynomials that are consistent with
the c′

i’s and so the claim could be true wrt some of these polynomials. This is dealt
with formally by showing knowledge soundness (i.e., constructing an extractor).
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Note that the fact that the inverse matrix B of our linear-system has relatively
small integral coefficients (independent of q) is crucial since it means that our
solution is integral and has small digits in base q.

Our proof of Lemma 2.2 leverages ideas from the theory of integer lattices,
see the full version for details [12]. Having found the desired solution to the
specified linear-system, our extractor can proceed in the extraction similarly
to the extraction in DARK. This concludes the high-level description of our
resolution of the gap in the DARK scheme.

Remark 2.3. Note that our approach not only resolved the gap in the DARK
extraction, but also unconditionally avoided the possibility of the linear-system
having a non-integral solution. This simultaneously simplifies the definitions and
proofs and lets us avoid an undesirable reliance on additional, poorly understood,
cryptographic assumptions.

Remark 2.4. For sake of convenience, we used λ repetitions in our analysis. We
remark however that the number of repetitions here is a statistical security
parameter. Namely, it bounds even a computationaly unbounded adversary’s
success probability by 2−Ω(λ). Thus, in practice it may be best to differentiate
between this parameter and the cryptographic parameter that corresponds to
the size of the group.

2.4 Small Space Implementation

Having resolved the gap in the security proof, we now turn out attention to
implementing the polynomial commitment in small space.

When considering sublinear space algorithms it is important to specify how
the input is given (since the algorithm cannot simply copy the input to its work
tape, see [30] for a comprehensive discussion). For our context, the most natural
choice is for our small space algorithms to be given multi-pass streaming access
to the description of the multilinear polynomial. That is, the evaluations of
the polynomial on the Boolean hypercube are written on the read-only input
tape. The algorithm can process the input tape from left-to-right, or choose
to reset the machine head to the beginning of the tape. The reason that this
choice is natural is that when constructing our argument-system, we will need
to apply this commitment to a transcript of a computation. Such a transcript
can be generated in a (resettable) streaming manner by simply executing the
computation.

With that in mind, let us first consider our commitment algorithm. Recall
that we are given as input the stream of values {P (b)}b∈{0,1}n , where P : Fn → F

is a multilinear polynomial and we need to produce the commitment gZ(P ) = gV ,
where

V =
∑

b∈{0,1}n

qb · P (b).

Note that we cannot compute V directly and then exponentiate. This is because
even storing V requires 2n bits. Rather, we will leverage the fact that V appears
only in the exponent and compute gV directly.
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We do so by iterating through b in lexicographic order while maintaining, as
we go along, two variables C and D. We will maintain the invariant that at the
start of the b-th iteration D = gqb

and C = gV<b , where V<b =
∑

b′<b qb
′ ·P (b′).

To do so we:

– Initialize C as the group’s identity element and D = g.
– To update C and D from b to b + 1, we set C ← C · DP (b) and D ← Dq

(using repeated squaring).

It is not hard to see that the invariant is indeed maintained. Given the value of
D in the last iteration, it is easy to generate the commitment gV .

Implementing the evaluation proofs is more subtle. The key challenge here
is that throughout the recursion, the prover needs to deal with the intermediate
polynomials that are defined throughout the recursion, but only has streaming
access to the original base polynomial. Needless to say, we cannot afford to
explicitly store the intermediate polynomials since this would introduce 2Ω(n)

space usage.
Thus, we need, for sake of space efficiency, to open up the recursion and

work directly with our original stream P . At first glance, one would hope that
using the polynomial P we can emulate streaming access to the intermediate
polynomials that we encounter. Unfortunately, we do not know how to do that.
Rather, in order to commit or evaluate some intermediate polynomial Q, we
show that as we process the base polynomial P , each value that we encounter,
has some partial contribution to Q (with coefficients that depend on the veri-
fier’s random challenges). The crucial observation is that both the commitment
to Q and evaluation are linear and therefore commute. This means that we do
not have to process the partial contributions of each entry of Q in sequence. Fur-
thermore, we show that the coefficients of these entries in the linear combination
can either be produced individually in small space (when evaluating the inter-
mediate polynomials) or generated as a stream in small space (when producing
commitments).

2.5 Generalizing Pietrzak’s Proof of Exponentiation Protocol

Our Proof of Exponentiaion (PoE) protocol builds on Pietrzak’s PoE protocol
[37]. We therefore start by recalling his protocol and then proceed to describe
our improvement.

Pietrzak’s PoE protocol. Let G be a group and q ∈ Z. Recall that the prover
wishes to prove that y = xq2t

for some x, y ∈ G and t ∈ N. As a shorthand,
we will use T = 2t and denote the claim y = xqT

by the tuple (x, y, T ) and
refer to this as a claim of size T (because its validity can be easily checked by
performing T repeated squarings). To proceed with the proof, the prover first
sends a single group element μ = xqT/2

, which implicitly defines two sub-claims
(x, μ, T/2) and (μ, y, T/2) of size T/2 each. Note that if (x, y, T ) is true then
both claims (x, μ, T/2) and (μ, y, T/2) must also be true: y = xqT

and μ = xqT/2
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implies that y = μqT/2
. However, intuitively, if (x, y, T ) is false then for any (even

maliciously generated) μ, at least one of the sub-claims must be false. Instead
of recursing on both subclaims, the prover combines the two subclaims into a
single claim of size T/2. The new claim (x′, y′, T/2) is computed by taking a,
verifier specified, random linear combination of the two claims. That is,

x′ = xr · μ and y′ = μr · y,

where r ← Z2λ is sampled by the verifier. It is easy to see that if (x, μ, T/2) and
(μ, y, T/2) are true then (x′, y′, T/2) is also true, and Pietrzak (relying on QR+

N

not having small order subgroups) shows that if one of (x, μ, T/2) or (μ, y, T/2)
is false, then with overwhelming probability, over the choice of r, the claim
(x′, y′, T/2) is false. Now, the prover and verifier recurse on the T/2-sized claim,
halving the size every time and eventually ending up in the base case (T = 1)
where the verifier just needs to check whether y = xq (which can be done in
poly(λ) time).

Our New PoE protocol. As mentioned above the main downside of Pietrzak’s
protocol is that statistical soundness can only be proved for groups where small
order subgroups do not exist. This difficulty arises since we are taking random
linear combinations of group elements rather than field elements. In particular,
if one of the group elements has small order, then the random linear combination
does not have the desired effect.

Our approach for resolving this difficulty is inspired by our resolution for
the gap in the DARK scheme (see Sects. 2.2 and 2.3). We will maintain more
instances throughout the interaction and take random subset sums of all of these
instances rather than random linear combinations of two instances. Interestingly,
this simple idea gets us quite a bit of mileage - simplifying the analysis, improving
the assumptions (e.g., in the case of class groups) and generalizing the result to
general groups.

In more detail, rather than handling a single claim (x, y, T ), we will show a
protocol for checking λ claims {(xi, yi, T )}[i∈[λ] all sharing the same exponent
parameter T . Note that the single claim case can be easily reduced to this more
general setting by simply setting x1 = · · · = xλ = x and y1 = · · · = yλ = y.

Analogous to Pietrzak’s protocol, our prover sends the sequence of values
μ = (μ1, . . . , μλ) ∈ G

λ as its first message, where μi = xqT/2

i , for every i ∈ [λ].
This decomposes the λ claims {(xi, yi, T )}i∈[λ] into two sets of λ claims each
{(xi, μi, T/2)}i∈[λ] and {(μi, yi, T/2)}i∈[λ]. It will be convenient however to think
of these as a single set of claims {(zi, wi, T/2)}i∈[2λ]. Note that if the original set
of claims was not true, then no matter what values {μi}i∈[λ] the prover sends,
at least one of the claims in {(zi, wi, T/2)}i∈[2λ] must be false.

Reducing Claims via Subset Products. We show a simple and general method
for reducing the number of claims. Let us first see how to produce a single new
claim from these 2λ claims. The verifier chooses at random a set S ⊆ [2λ] and
sends S to the prover. Consider the claim (z′, w′, T/2) where:
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z′ =
∏

i∈S

zi and w′ =
∏

i∈S

wi.

Observe that if all the original claims were true (i.e., wi = zqT/2

i , for every i ∈ [λ])

then (z′)qT/2
=

∏
i∈S zqT/2

i =
∏

i∈S wi = w′ and so the resulting claim holds. On
the other hand, if even just one of the original claims is false then:

Pr
S

[
(z′)qT/2

= w′
]

= Pr
S

[
∏

i∈S

zqT/2

i =
∏

i∈S

wi

]

= Pr
S

[
∏

i∈S

ui = 1G

]

� 1/2,

where ui = zqT/2

i ·w−1
i for every i ∈ [2λ], the group’s identity element is denoted

by 1 and the inequality follows from the simple principle that a random subset
product of a sequence of group elements, not all of which are equal to 1, is equal
to 1 with probability at most 1/2.

To get 2−λ error probability, we simply repeat this process λ times to get a
new sequence of λ claims, each of size T/2. We have thus reduced our λ size T
claims to λ size T/2 claims. We can continue recursing as in Pietrzak’s protocol
until T = 1 in which case the verifier can solve the problem by itself.

Remark 2.5. We remark that our technique introduces a factor of λ overhead in
the communication complexity as compared to Pietrzak’s protocol. This is due
to the fact that the prover has to send λ group elements per round.

Similarly to Remark 2.4, λ is a statistical (rather than computational) secu-
rity parameter and relatively small values of λ may suffice. Moreover, we believe
that it is possible to “interpolate” between our approach and that of [37] by
considering the minimal sub-group size of G and using coefficients of suitably
larger magnitude in our choice of the random matrix.

3 Preliminaries

We let “◦” denote the string concatenation operator and let ε denote the empty
string; that is, for any string s it holds that s = s ◦ ε = ε ◦ s.

Let S be a finite, non-empty set. We let x ← S denote sampling an element
x uniformly at random from S. For any N ∈ N, we let SN denote the set of
all sequences of length N containing elements of S, and note that S0 := {ε}. As
usual, we make the convention that if j > k then

∑k
i=j ai = 0 and

∏k
i=j ai = 1.

We let Fp denote a finite field of prime cardinality p, and often use lower-case
Greek letters to denote elements of F, e.g., α ∈ F. We use boldface lowercase
letters to denote binary vectors, e.g. b ∈ {0, 1}n. For bit strings b ∈ {0, 1}n,
we naturally associate b with integers in the set {0, 1, . . . , 2n − 1}; i.e., b ≡∑n

i=1 bi · 2i−1. We assume that b = (bn, . . . , b1), where bn is the most significant
bit and b1 is the least significant bit. For bit string b ∈ {0, 1}n and σ ∈ {0, 1} we
let σb (resp., bσ) denote the string (σ◦b) ∈ {0, 1}n+1 (resp., (b◦σ) ∈ {0, 1}n+1).
We use boldface lowercase to denote F vectors, e.g., α ∈ F

n. For (αn, . . . , α1) =
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α ∈ F
n, we refer to αn as the most significant field element and α1 as the least

significant field element. For two equal length vectors u, v, we let u
 v denote the
coordinate-wise product of u and v. We let uppercase calligraphic letters denote
sequences and let corresponding lowercase letters to denote its elements, e.g.,
Y = (yb)b∈{0,1}n ∈ F

N is a sequence of N elements in F. Often, for b ∈ {0, 1}n,
we let Yb denote the value yb.

We use upper case letters to denote matrices, e.g., M ∈ Z
m×n. For a matrix

M of dimension m × n, we let M(i, ∗) and M(∗, j) denote the ith row and jth

column of M , respectively. For row vector u of length m and column vector v of
length n, we let u · M and M · v denote the standard matrix-vector product.

Non-standard Notation. We are also interested in matrix-vector “exponents”.
Let G be some group, M ∈ Z

m×n, u = (u1, . . . , um) ∈ G
1×m, and v =

(v1, . . . , vn)� ∈ G
n×1. We let u 
 M and M 
 v denote a matrix-vector expo-

nent, defined as

(u 
 M)j =
m∏

i=1

u
M(i,j)
i (M 
 v)i′ =

n∏

j′=1

v
M(i′,j′)
j′ ,

for every j ∈ [n] and every i′ ∈ [m]. Note that u 
M ∈ G
1×n and M 
 v ∈ G

m×1.
For vector x ∈ Z

n and group element g ∈ G, we abuse notation and define
gx := (gx1 , . . . , gxn). Finally, for k ∈ Z and vector u ∈ G

n, we let uk denote the
vector (uk

1 , . . . , u
k
n) ∈ G

n.

3.1 Multilinear Polynomials

An n-variate polynomial f : Fn → F is multilinear if the individual degree of each
variable in f is at most 1.

Fact 3.1. An multilinear polynomial f : F
n → F (over a finite field F)

is uniquely defined by its evaluations over the Boolean hypercube. Moreover,
for every ζ ∈ F

n it holds that f(ζ) =
∑

b∈{0,1}n f(b) · ∏n
i=1 χ(bi, ζi), where

χ(b, ζ) = b · ζ + (1 − b) · (1 − ζ).

As a short hand, we will often denote
n∏

i=1

χ(bi, ζi) by χ(b, ζ) for n = |b| = |ζ|.

Notation for Multilinear Polynomials. Throughout this work, we represent n-
variate, multilinear polynomials f by the N -sized sequence Y containing eval-
uations of f over the Boolean hypercube. That is, Y := (f(b))b∈{0,1}n , and
denote the evaluation of the multilinear polynomial defined by Y on ζ as
ML(Y, ζ) :=

∑
b Yb · χ(b, ζ). Furthermore, we also consider the evaluation of

a multilinear polynomial defined by some integer sequence Z ∈ Z
N . For any

ζ ∈ Fp for prime p, we define ML(Z, ζ) :=
∑

b(Zb mod p) · χ(b, ζ).
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3.2 Groups of Hidden Order

We start by defining the notion of a group sampler.

Definition 3.2 (Group Sampler). A PPT algorithm G is a group sampler if
for every λ ∈ N, G on input 1λ samples a description11

G of a group of size
at most 2λ. As a shorthand, we denote this random process by G ← G(1λ), and
by g ← G denote the process of sampling a random group element from G and
assigning it to g.

Furthermore, we say that G is public-coin if the output of G (i.e., the group
description) is a uniformly random string.

Here, we will focus only on group samplers G for which the Hidden Order
Assumption holds, which, informally, requires that it be computationally hard
to find (a multiple of) the order of a random group element of G ← G(1λ).

Assumption 3.3 (Hidden Order Assumption). The Hidden Order Assump-
tion holds for G if for every polynomial-size family of circuits A = {Aλ}λ∈N:

Pr
[
ga = 1 ∧ a 
= 0 : G ← G(1λ), g ← G, a ← Aλ(G, g)

] ≤ negl(λ). (3)

Candidates for G. In this work we consider two main candidates for G where the
Hidden Order Assumption is believed to hold:

1. RSA group: the multiplicative group Z
∗
N of integers modulo a product N =

P ·Q for large random primes P and Q. Here, the Hidden Order Assumption
holds assuming the hardness of factoring N when it is a product of safe primes.
This group can be sampled by choosing random primes and specifying their
product. However, this is private-coin type generation and it is not clear how
to generate the group in a public way (this corresponds to the well-studied
problem of generating hard factoring instances using only public-coins).

2. Class group: the class group of an of imaginary quadratic order. Here, the
Hidden Order Assumption (in fact, even much stronger assumptions) are
believed to hold (see, e.g., [21,46]). The main feature of such class groups is
that there is a way to sample the group description using only public-coins.
These are, to the best of our knowledge, the only known public-coin hidden
order groups. We refer the reader to [21] for details.

3.3 Interactive Games and Proof Systems

Definition 3.4 (Merlin-Arthur Games). Let r be a positive integer.
An MA[2r] game (or just an MA game12 if r is unspecified) is a tuple G =

(1r, 1�,W ), where � ∈ Z
+ and W ⊆ {0, 1}∗ is a set, called the win predicate, that

11 The group description includes a poly(λ) description of the identity element, and
poly(λ) size circuits checking membership in the group, equality, performing the
group operation and generating a random element in the group.

12 MA stands for Merlin-Arthur proofs [3] (differing from Arthur-Merlin proofs in that
the prover (Merlin) sends the first message).
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is represented as a boolean circuit. The integer r is called the number of rounds
of G and {0, 1}� is called the challenge space.

If G = (1r, 1�,W ) is an MA[2r] game and P : {0, 1}∗ → {0, 1}∗ is a function,
then the value of G with respect to P is denoted and defined as

v[P ](G)def= Pr
β1,...,βr←{0,1}�

[
(α1, β1, . . . , αr, βr

) ∈ W
]
,

where each αi denotes P (β1, . . . , βi−1). The value of G, denoted v(G), is
supP

{
v[P ](G)

}
.

Definition 3.5 (Game Transcripts). If G =
(
1r, 1�,W ) is an MA[2r] game,

then a transcript for G is a tuple τ = (α1, β1, . . . , αr, βr) with each βi ∈ {0, 1}�

and αi ∈ {0, 1}∗. If τ is contained in W , then it is said to be an accepting
transcript for G. If for a function P : {0, 1}∗ → {0, 1}∗, αi = P (β1, . . . , βi−1)
for each i ∈ [r], then τ is said to be consistent with P . If τ is both an accepting
transcript for G and consistent with P , we say simply that τ is an accepting
transcript for (P,G).

Definition 3.6 (MA Verifiers). For a function r : Z+ → Z
+ and a language

L, an MA[2r] verifier for L is a polynomial-time algorithm V , where:

– V maps any string x ∈ {0, 1}∗ to an MA
[
2r(|x|)] game.13

– The completeness of V is a function c : Z+ → [0, 1], defined as

c(n)def= min
x∈L∩{0,1}n

v
(
V (x)

)
.

– The soundness error of V is a function s : Z+ → [0, 1], defined as

s(n)def= max
x∈{0,1}n\L

v
(
V (x)

)
.

Definition 3.7 (Witness-Extended Emulation (cf. [35])). An MA verifier
V has (statistical) witness-extended ε(·)-emulation with respect to a relation R
if there exists an expected polynomial-time oracle algorithm E such that for all
P : {0, 1}∗ → {0, 1}∗ and all x ∈ {0, 1}∗, if we sample (τ, w) ← EP (x), then:

– τ is distributed uniformly at random on the set of all possible transcripts
between V (x) and P .

– With all but ε(|x|) probability, if τ is an accepting transcript for V (x) then
(x,w) ∈ R.

Definition 3.8. An MA verifier V has statistical witness-extended emulation
with respect to a relation R if it has statistical witness-extended ε-emulation
(as per Definition 3.7) for some negligible function ε.

13 In particular, this definition implies there is a polynomial in n that bounds the length
of any accepting transcript for V (x) when x ∈ {0, 1}n.
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3.4 Multilinear Polynomial Commitment

Polynomial commitment schemes, introduced by Kate et al. [32] and generalized
in [19,21,41,45], are a cryptographic primitive that allows one to commit to
a polynomial of bounded degree and later provably reveal evaluations of the
committed polynomial. Since we consider only multilinear polynomials, we tailor
our definition to them.

Convention. In defining the syntax of various protocols, we use the following
convention for any list of arguments or returned tuple (a, b, c; d, e) – variables
listed before semicolon are known both to the prover and verifier whereas the
ones after are only known to the prover. In this case, a, b, c are public whereas
d, e are secret. In the absence of secret information the semicolon is omitted.

Definition 3.9 (Multilinear Polynomial Commitment Scheme). A mul-
tilinear polynomial commitment scheme is a tuple of protocols (Setup,Com,
isValid,Eval) such that

1. pp ← Setup(1λ, p, 1n): takes as input the security parameter λ ∈ N and out-
puts public parameter pp that allows to support n-variate multilinear polyno-
mials over F = Fp for some prime p.

2. (C; d) ← Com(pp,Y): takes as input public parameters pp and a description
of a multilinear polynomial Y = (yb)b∈{0,1}n and outputs a commitment C
and a (secret) decommitment d.

3. b ← isValid(pp,C,Y, d): takes as input pp, a commitment C, a description of
the multilinear polynomial Y and a decommitment d, and returns a decision
bit b ∈ {0, 1}.

4. Eval(pp,C, ζ, γ;Y, d): is a public-coin interactive proof system (P, V ) for the
relation:

Rml =
{

(pp,C, ζ, γ;Y, d) : isValid(pp,C,Y, d) = 1 ∧ γ = ML(Y, ζ)
}

, (4)

where V is an MA verifier (as per Definition 3.6) where P is the honest
strategy for V . Note that the verifier in this proof-system gets as input the
public parameters pp, commitment C, evaluation point ζ ∈ F

n and claimed
evaluation γ ∈ F, and the prover additionally receives the full description of
the polynomial Y and the decommitment d.

We require the following three properties from the scheme
(Setup,Com, isValid,Eval):

1. Perfect Correctness: for all primes p, λ ∈ N, n ∈ N and all Y ∈ F
2n

p and
ζ ∈ F

n
p ,

Pr
[

1 = Eval(pp,C,Z, γ;Y, d) : pp ← Setup(1λ, p, 1n),
(C; d) ← Com(pp,Y), γ = ML(Y, ζ)

]

= 1 .
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2. Computational Binding: for every polynomial-sized family of circuits A =
{Aλ}λ∈N the following holds

Pr

⎡

⎢
⎢
⎣

(
b0 = b1 = 1

) ∧ (Y0 
= Y1

)
:

pp ← Setup(1λ, p, 1N )
(C,Y0,Y1, d0, d1) ← Aλ(pp)
b0 ← isValid(pp,C,Y0, d0)
b1 ← isValid(pp,C,Y1, d1)

⎤

⎥
⎥
⎦ ≤ negl(λ) .

3. Witness-Extended Emulation: For Eval = (P, V ), V has (statistical)
witness-extended emulation for the relation Rml (defined in Eq. (4)).

Remark 3.10. We note that our definition of polynomial commitment scheme
is stronger than the ones used in the literature (see, e.g., [5,7,11,21,33,34,42,
45,47,48]), in that we require Eval to have statistical soundness (rather than
computational). As a result we show soundness for every pair (x, pp).

A key ingredient in our efficient argument-systems is polynomial commit-
ments that can be generated in a time and space efficient way. We call such
polynomial commitments streamable.

Definition 3.11 (Streamable Multilinear Polynomial Commitment
Scheme). A streamable multilinear polynomial commitment scheme is a multi-
linear polynomial commitment scheme (as per Definition 3.9) with the follow-
ing efficiency properties for n-variate multilinear polynomials over Fp for some
prime p ≤ 2λ:

1. The commitment output by Com is of size n · poly(λ), and assuming multi-
pass streaming access to the description of the polynomial, the commitment
can be implemented in time 2n · poly(n, λ) and space poly(n, λ).

2. The communication complexity of the Eval protocol is n · poly(λ) and the
receiver of Eval runs in time poly(n, λ). Assuming multi-pass streaming access
to the description of the polynomial, the committer of Eval can be implemented
in time 2n · poly(n, λ) and space poly(n, λ).

4 Our Results

In this section we formally state our main results. All analyses, protocols, and
proofs are deferred to the full version [12] (unless otherwise stated).

Time- and Space-efficient Arguments. Our first main result is a time- and space-
efficient public-coin zero-knowledge argument-system.

Theorem 4.1. Assume the existence of a group sampler for which the hidden
order assumptions holds (see Assumption 3.3). Then, there exists a public-coin
zero-knowledge argument-system for any NP relation verifiable by a time T space
S random access machine with the following complexity.
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1. The protocol has perfect completeness and neligible soundness error.
2. The number of rounds is O(log T ).
3. The communication complexity is poly(λ, log T ).
4. The prover runs in time T · poly(λ, log T ) and space S · poly(λ, log T ).
5. The verifier runs in time |x| · poly(λ, log T ), for a given input |x|.
Theorem 4.1 relies on a new polynomial commitment scheme discussed next.

Streamable Polynomial Commitments. The core component of our time- and
space-efficient arguments is a new polynomial commitment scheme for multilin-
ear polynomials where the committer can be implemented in small space and
verification is only poly-logarithmic.

Theorem 4.2. Assume the existence of a group sampler for which the hidden
order assumptions holds. Then, there exists a streamable multilinear polyno-
mial commitment scheme (Setup,Com, isValid,Eval) (as per Definition 3.11) over
finite field F of prime-order p with the following efficiency guarantees:

1. Com outputs a commitment of size poly(λ) bits, runs in time 2n ·
poly(n, λ, log(p)) and space n + O(log(p)) + poly(λ), and uses a single pass
over the stream;

2. Eval has O(n) rounds and communcation complexity poly(n, λ, log(p));
3. The committer of Eval runs in time 2n · poly(n, λ, log(p)) and space n ·

poly(λ, log(p)), and uses O(n) passes over the stream; and
4. The receiver of Eval runs in time poly(n, λ, log(p)).

We present our scheme in Sect. 5.

Proof-of-Exponentiation. Our polynomial commitment scheme relies on a new
Proof-of-Exponentiation (PoE) protocol, which may be of independent interest.

For some group G and base q ∈ Z consider the language

LG,q =
{

(x, y, t) ∈ G × G × N : xq2t

= y
}

. (5)

Note that this problem can be solved in time roughly 2t (by repeated squaring),
but for some groups it is conjectured to not be solvable in significantly less time
(even when leveraging parallelization). Indeed, an instantiation of this language
using RSA groups underlies the original time-lock puzzle construction by Rivest,
Shamir and Wagner [39]. This problem has also been used recently for construct-
ing verifiable delay functions (VDFs). We show a extension of a recent protocol
due to Pietrzak [37] that works for general groups.

Theorem 4.3. Let G be a group whose elements have O(log(|G|))-bit descrip-
tions, and whose group operations take time polylog(|G|), and let q ∈ N. There
exists a perfectly correct, statistically sound public-coin interactive-proof for LG,q

with the following efficiency properties for exponent parameter t:

1. The communication complexity is O(tλ2 + tλ log(|G|)) and there are t rounds.
2. The prover runs in time 2t · poly(log(q), log(|G|), λ) and uses space O(λ ·

log(|G|)) + log(t) + log(q) + λ2

3. The verifier runs in time t · poly(log(|G|), log(q), λ).
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5 Multilinear Polynomial Commitment Scheme
in Hidden Order Groups

We describe our commitment scheme (Setup,Com, isValid,Eval) for multilinear
polynomials f : Fn → F over some field F of prime-order p which is specified
as an input to Setup. Throughout the section, we work with the description
Y := (f(b))b∈{0,1}n ∈ F

2n

of the multilinear polynomial f . First, in Sect. 5.1
we describe how to encode Y as an integer. Then, in Sect. 5.2 we describe our
polynomial commitment scheme.

5.1 Encoding Multilinear Polynomials as an Integer

One key portion of our scheme is encoding the sequence Y, which defines our
multilinear polynomial, as an integer. We do so by using a technique first intro-
duced by [21]. Towards this, we first describe an encoding scheme for integer
sequences. For any N = 2n and an odd integer q ∈ N, let Encq : ZN → Z be the
function that encodes a sequence of integers Z ∈ Z

N as14

Encq(Z) :=
∑

b∈{0,1}n

qb · Zb,

where qb interprets b (an n-bit string) as the naturally corresponding integer
in the set {0, 1, . . . , N − 1}. To decode an integer v ∈ Z, we output its base-q
representation where, for convenience, the base-q digits of v are integers in the
range [−q/2, q/2). We refer to the decoding function as Decq.

Our Encq scheme has two homomorphic properties which we leverage
to design our polynomial commitment. First, Encq(·) is a linear homomor-
phism over Z; that is, for any Z,Z ′ ∈ Z

N and α, β ∈ Z, it holds that
α · Encq(Z) + β · Encq(Z ′) = Encq(α · Z + β · Z ′). Second, Encq(·) satisfies a
restricted form of multiplicative homomorphism; that is, for any d ∈ N, we have
qd · Encq(Z) = Encq((0d,Z)).

Encoding Bounded Integer Sequences. In fact, looking ahead, we are interested
in encoding only sequences of bounded integers. For some B ∈ R�1, we let
Z(B) := {z ∈ Z : − B � z < B} be the set of integers whose absolute value
is bounded by B. Then, to encode integer sequences in Z(B)N , we consider
the restriction of Encq to the set Z(B)N . Notice that by definition, for any
Z ∈ Z(B)N , we have that Encq(Z) ∈ Z(B · (qN − 1)/(q − 1)). We remark that
while Encq is not injective over all integer sequences (as integer sequences (1+q, 0)
and (1, 1) both encode to the integer 1 + q), the restriction of Encq to the set
Z(q/2)N is injective. We capture this in the following fact:

Fact 5.1 ([21, Fact 1]). Let q be any odd integer and let N ∈ N. For any v ∈
Z(qN/2), there exists a unique sequence Z ∈ Z(q/2)N such that v = Encq(Z).
Furthermore, Z = Decq(v).
14 This encoding is valid for sequences of arbitrary length, but we restrict to powers of

two for convenience.
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Proof. For any sequence Z ∈ Z(q/2)N , by definition of Decq we observe that
Decq(Encq(Z)) = Z. This implies that (restriction of) Encq (to Z(q/2)N ) is
injective. Furthermore, the cardinality of sets Z(qN/2) and Z(q/2)N are equal.
Therefore, for every v ∈ Z(qN/2), Decq(v) is the unique sequence in Z(q/2)N

that encodes to v.

Similar to Encq, Decq also satisfies some homomorphic properties: for integers
z1, z2, we have that Decq(z1 + z2) = Decq(z1)+Decq(z2) as long as z1, z2 encode
sequences whose elements are bounded by q/4. For our security proof, we will
use the following more general statement , which we prove in the full version.

Claim 5.2. Let �, q,N ∈ N such that q is odd, and let B1, B2 ≥ 1 be such that
B1 · B2 ≤ q/(2�). Then, for every α1, . . . , α� ∈ Z(B1), and integers z1, . . . , z� ∈
Z(qN/2) such that Decq(zi) ∈ Z(B2)N ,

Decq

( ∑

i∈[�]

αi · zi

)
=

∑

i∈[�]

αi · Decq(zi). (6)

Remark 5.3. Looking ahead, the correctness of our extractor (to show security
for our polynomial commitment scheme) relies crucially on Claim 5.2. The main
issue with [21] is that their extractor relies on a variant of Claim 5.2 (formulated
below) which is false. Lemma 8 in the full version [22] of [21] uses the following
claim to argue correctness of the extracted integer decommitments fL and fR.

Claim 5.4 (False claim implicit in [22, Lemma 8]). For p, q,N ∈ N such
that 2 ≤ p ≤ q where q is odd. For every α ∈ Z(p) and z ∈ Z(qN/2) such that
α | z, Decq(z/α) = Decq(z)/α.

We note that z, z/α ∈ Z(qN/2), by Fact 5.1 Decq(z),Decq(z/α) ∈ Z(q/2)N . But,
Decq(z)/α may not be an integer sequence. Counter-example: for z = 1+q, α = 2,
we have Decq(z) = (1, 1) but Decq(z)/2 is not an integer sequence.

Encoding Y. To encode Y ∈ F
N where F is a field of prime-order p, we first

define a lifting function �·� : F → Z(p/2) in the natural way. That is, for any
α ∈ F, we define �α� to be the unique integer in Z(p/2) such that �α� ≡ α mod p.
We then define Encq(Y) as Encq(Y) :=

∑
b∈{0,1}n qb · �Yb�.

5.2 Scheme

Our polynomial commitment scheme is parameterized by three components: (a)
the encoding scheme (Encq,Decq) defined in Sect. 5.1, (b) A group sampler G
for which the Hidden Order Assumption holds (see Sect. 3.2 for a discussion
on candidates), and (c) a perfectly correct, statistically sound PoE protocol (we
present one such protocol over arbitrary groups the full version). We now present
all algorithms (Setup,Com, isValid,Eval) for the polynomial commitment scheme.
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Setup(1λ, p, 1n): On input security parameter 1λ, a prime p, and the number of
polynomial variables 1n, the algorithm Setup samples group description G ←
G(1λ), samples g ← G, sets q := q(n, p, λ) ∈ N, and outputs public parameters
pp = (q, g,G). We require that q be odd such that q > p · 2n·poly(λ).

Com(pp,Y): On input pp = (q, g,G) output by Setup and sequence Y, Com

computes a commitment to the sequence Y as C = gEncq(Y). The output of Com
is the commitment C and secret decommitment Z = (�Yb�)b∈{0,1}n ∈ Z(p/2)N .

isValid(pp,C,Y,Z): On inputs pp = (q, g,G), C output by Com, committed
sequence Y ∈ F

N and decommitment Z ∈ Z
N for N = 2n, the algorithm isValid

outputs a decision bit. isValid outputs 1 if and only if (1) Z ⊆ Z(q/2)N ; (2)
Y ≡ Z mod p; and (3) C = gEncq(Z). Otherwise, isValid outputs 0.

Eval(pp,C, ζ, γ;Y,Z): On input pp = (q, g,G), C ∈ G, ζ ∈ F
n, γ ∈ F, Y ∈ F

N

and Z ∈ Z
N for N = 2n, Eval is an interactive protocol (P, V ) for the relation,

Rml =
{

(pp,C, ζ, γ;Y,Z) : isValid(pp,C,Y,Z) = 1 ∧ γ = ML(Y, ζ)
}

, (7)

where on common input (pp,C, ζ, γ), P tries to convince V that it knows a
committed sequence Y ∈ F

N and an integer sequence Z ∈ Z
N such that

isValid(pp,C,Y,Z) = 1 and γ is the evaluation of the multilinear polynomial
defined by Y at evaluation point ζ = (ζn, . . . , ζ1); that is, γ

?= ML(Y, ζ).
More specifically, both the committer and receiver in Eval first make λ many
copies of the statement (C, ζ, γ;Z) as (C, ζ,γ;Z), where C = (C, . . . , C) ∈ G

λ,
γ = (γ, . . . , γ) ∈ F

λ, and Z ∈ Z
λ×N is a matrix such that Z(i,b) := Zb for every

i ∈ [λ] and b ∈ {0, 1}n. The committer and receiver then run the subroutine
MultiEval, presented in Algorithm 1.

MultiEval is a recursive protocol which given the statement (C, ζ,γ;Z) proves
that γi = ML(Z(i, ∗), ζ) and Ci = Com(Z(i, ∗)) for every i ∈ [λ], where Z(i, ∗) ∈
Z
1×N is the iþrow of Z. This is done via a divide and conquer approach. Let

Pi : Fn → F be the multilinear polynomial defined by row i of matrix Z for
every i ∈ [λ]. For presentation, we focus on the polynomial P1. To prove that
γ1 = P1(ζ) and C1 = Com(P1) = gEncq(P1), the committer first splits P1 into
it’s “left” and “right” halves, defined by P1,L(·) = P1(·, 0) and P1,R(·, 1). Then
it computes evaluations of these polynomials at the point ζ′ = (ζn, . . . , ζ2) to
obtain γ1,L = P1,L(ζ′) and γ1,R = P1,R(ζ′) (Line 5). Similarly, the committer
also computes commitments C1,L = gEncq(P1,L) and C1,R = gEncq(P1,R) (Line 6).
The claims (γ1,L, γ1,R) and (C1,L, C1,R) are then sent to the receiver. If indeed
the committer defined P1,L and P1,R correctly, then γ1 = γ1,L · (1 − ζ1) + γ1,R · ζ1
(Line 8) and C1,L · CqT

1,R = C1 for T = 2n−1. Since checking C1,L · CqT

1,R = C1

directly is too costly to the receiver, the committer and prover run a proof of
exponent protocol PoE to prove that equality holds (Line 9). The committer does
simultaneously this for all polynomials Pi. The receiver then specifies random
linear combinations U ← {0, 1}λ×2λ (Line 10). The committer and receiver then
obtain a set of λ new evaluations γ′

i =
∑

j∈[λ] U(i, j)·γj,L+U(i, 2j)·γj,R and λ new
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Algorithm 1: MultiEval(C, k, ζ,γ;Z)

Input :C ∈ G
λ, k ∈ N, ζ ∈ F

n, γ ∈ F
λ, and Z ∈ Z

λ×2n−k

.
Output : Accept or reject.

1 if k = n then

2 P sends Z ∈ Z
λ to V .

3 V outputs accept if and only if ‖Z‖∞ ≤ p(2λ)n, γ ≡ Z mod p, and C = gZ .

4 else
5 P computes

γL =
∑

b∈{0,1}n−k−1

(Z(∗, 0b) mod p) ·
n−k−1∏

j=1

χ(bj , ζj+k+1)

γR =
∑

b∈{0,1}n−k−1

(Z(∗, 1b) mod p) ·
n−k−1∏

j=1

χ(bj , ζj+k+1)

6 P computes

CL = g� where � =
∑

b∈{0,1}n−k−1

qb · Z(∗, 0b)

CR = gr where r =
∑

b∈{0,1}n−k−1

qb · Z(∗, 1b)

7 P sends (γL, γR) and (CL,CR) to V .

8 V checks γ
?
= γL · (1 − ζk+1) + γR · ζk+1.

9 P and V run PoE(CR,C/CL, q, n − k − 1, λ) which is a proof showing

CR(i)q2n−k−1

= C(i)/CL(i) for every i ∈ [λ]. Here, C/CL denotes
coordinate-wise division of the elements of C by the elements of CL.

10 V samples U = [UL‖UR] ← {0, 1}λ×2λ and sends U to P , where

UL, UR ∈ {0, 1}λ×λ.
11 P and V compute

γ ′ = UL · γL + UR · γR C′ = (UL � CL) � (UR � CR)

12 For ZL, ZR ∈ {0, 1}λ×2n−k−1
such that Z = [ZL‖ZR], P computes

Z′ = UL · ZL + UR · ZR.

13 return MultiEval(C′, k + 1, ζ, γ ′; Z′)

committments C ′
i =

∏
j∈[λ](Cj,L)U(i,j) · (Cj,R)U(i,2j) (Line 11). This also defines

new matrix Z ′ = UL · ZL + UR · ZR (Line 12) for U = [UL‖UR] and Z = [ZL‖ZR].
If the committer is honest, then the polynomial P ′

1 defined by the row Z ′(1, ∗)
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satisfies γ′
1 = P ′

1(ζ
′) and C ′

1 = gEncq(P
′
1) (and similarly for all other polynomials

P ′
i defined by row Z ′(i, ∗)). The committer and receiver recurse via the above λ-

to-2λ-to-λ reduction until the matrix Z is a single column; at this point, Z is sent
to the receiver. The receiver checks (Line 3) if the entries of Z are appropriately
bounded, if the final vector γ ≡ Z(mod p), and if C = gZ = (gZ1 , . . . , gZλ).

Remark 5.5. For simplicity of presentation, we let the (computational) security
parameter λc given as input to Setup to be equal to the statistical security
parameter λs given to Eval. However, they may be set differently: λc needs to be
set so that 2λε

c is larger than the running time of the adversary (generally, λc =
2048 for RSA groups to have security against 280 time adversaries). However, λs

needs to set so that the success probability of the adversary (we want to tolerate)
is upperbounded by 2−Ω(λs), in fact, even relatively small values of λs would be
sufficient for security, and offer qualitatively more efficient implementations.
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Abstract. We present the first pairing-based ciphertext-policy attribute-
based encryption (CP-ABE) scheme for the class of degree 3 polynomials
with compact parameters: the public key, ciphertext and secret keys com-
prise O(n) group elements, where n is input length for the function. As
an immediate corollary, we obtain a pairing-based broadcast encryption
scheme for N users with O(N1/3)-sized parameters, breaking the long-
standing

√
N barrier for pairing-based broadcast encryption. All of our

constructions achieve adaptive security against unbounded collusions, and
rely on the (bilateral) k-Lin assumption in prime-order bilinear groups.

1 Introduction

In this work, we study broadcast encryption [12] as well as attribute-based
encryption schemes [5,17,23]. In ciphertext-policy attribute-based encryption
(CP-ABE), ciphertexts ct are associated with a predicate f and a message m
and keys sk with an attribute x, and decryption returns m when x satisfies f .
Broadcast encryption is a special case of CP-ABE where the predicate is speci-
fied by a set S ⊆ [N ], and decryption returns m when x ∈ S. In both cases, we
require security against unbounded collusions, so that an adversary that sees a
ciphertext along with secret keys for an arbitrary number of attributes x1, x2, . . .
learns nothing about m as long as none of these attributes satisfies f .

Broadcast encryption has been an active area of research since their introduc-
tion in the 1990s, where a major goal is to obtain schemes with short parameters,
notably short ciphertexts ct and short public keys mpk. In a celebrated work from
2005, Boneh, Gentry and Waters (BGW) [6] presented a pairing-based broadcast
encryption scheme with constant-size ciphertext (ignoring the contribution from
the set S) and secret keys; however, the scheme has large public keys mpk which
is linear in the total number of users N , and moreover, decryption requires access
to mpk. To address these shortcomings, the authors also showed how to modify
their scheme to achieve O(

√
N)-sized public keys, at the cost of a O(

√
N)-sized

ciphertext. A series of follow-up works [7,10,15] showed how to achieve O(
√

N)-
sized parameters (i.e., |mpk| + |ct| + |sk| = O(

√
N)) under the standard k-Lin

assumption, improving upon the q-type assumption used in BGW, while addition-
ally strengthening the security guarantees from selective to adaptive security.

In a recent remarkable break-through, Agrawal and Yamada [2,3] constructed
a broadcast encryption scheme with poly(log N)-sized parameters from pairings
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12828, pp. 155–178, 2021.
https://doi.org/10.1007/978-3-030-84259-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84259-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-84259-8_6
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Scheme |mpk| |ct| |sk| Assumption Remark Security

BGW05 [6] N1−δ Nδ 1 † q-type δ ≤ 1/2 selective√
N

√
N 1 †

[7,10,15] Nmax{δ,1−δ} Nδ N1−δ k-Lin, k ≥ 1 δ ≤ 1 adaptive√
N

√
N

√
N

this work N1−2δ Nδ N1−2δ bi-k-Lin∗, k ≥ 2 δ ≤ 1/3 adaptive

N1/3 N1/3 N1/3

Fig. 1. Comparison with prior pairing-based broadcast encryption schemes for N users,
where the sizes refer to number of group elements, ignoring O(1) factors. Note that |ct|
ignores the contribution from the set S, which is “public”. † In BGW05, decryption
requires knowledge of mpk in addition to sk. Indeed, if we incorporate mpk into sk,
then the secret key sizes matches those in the second row. ∗ Here, bi-k-Lin (bilateral
k-Lin) is a strengthening of k-Lin.

and LWE. Nonetheless, the following basic problem remains open since the work
of BGW:

Can we build a broadcast encryption scheme with o(
√

N)-sized parameters
(that is, |mpk| + |ct| + |sk| = o(

√
N)) from (just) pairings?

Prior approaches for pairing-based broadcast encryption requires |ct| ·
max{|sk|, |mpk|} = Ω(N), which in turn implies a Ω(

√
N) bound on the param-

eter size. Moreover, this is essentially optimal for a large class of approaches for
pairing-based broadcast encryption [14], indicating that breaking the

√
N bar-

rier would require substantially new ideas. As an aside –and an indication of our
limited understanding of broadcast encryption with small parameters– we note
that building a broadcast encryption scheme with o(N)-sized ciphertext from
just LWE is also an open problem.

1.1 Our Results

We present a pairing-based broadcast encryption scheme with O(N1/3)-sized
parameters, breaking the long-standing

√
N barrier. Our broadcast encryption

scheme achieves adaptive security against unbounded collusions, and rely on
the bilateral k-Lin assumption in prime-order bilinear groups. In addition, our
construction offers a range of trade-offs between ciphertext and key sizes (see
Fig. 1). We stress that prior to this work, it was not known how to achieve
o(

√
N)-sized parameters with selective security even with q-type assumptions or

generic bilinear groups.
More generally, we present a CP-ABE for degree 3 polynomials over {0, 1}n

(and more generally, Z
n
p ) where the public key, ciphertext and secret keys

comprise of O(n) group elements; this scheme also achieves adaptive security
against unbounded collusions under the bilateral k-Lin assumption. Our broad-
cast encryption scheme then follows as an immediate corollary, since we can
encode set membership in S ⊆ [N ] as a degree 3 polynomial over {0, 1}O(N1/3).
Prior to this work, CP-ABE schemes with O(n)-sized parameters from pairings
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Scheme |mpk| |ct| |sk| Assumption

inner product [10,18] n3 n3 1 k-Lin, k ≥ 1
n3 1 n3

degree 2 polynomials [22] n2 n2 n k-Lin, k ≥ 1
n2 n n2

this work n n n bi-k-Lin, k ≥ 2

Fig. 2. Prior pairing-based CP-ABE for degree 3 polynomials f : Z
n
p × Z

n
p × Z

n
p →

Zp, where the sizes refer to number of group elements, ignoring O(1) factors. These
constructions follow from the fact that we can encode degree 3 polynomials as inner

product of vectors of length Z
n3

p or as degree 2 polynomials, and then combined with
the appropriate ABE schemes in the literature. All of these schemes achieve adaptive
security.

was only known for the class of degree 2 polynomials [22]. We refer to Fig. 2 for
a summary of prior works on pairing-based CP-ABE for degree 3 polynomials.

The design of our schemes departs quite significantly from existing pairing-
based ABE schemes, in that we exploit the power of “quadratic reconstruction”.
This idea was previously used by Liu, Vaikuntanathan and Wee [22] to con-
struct an information-theoretic, private-key analogue of broadcast construction
–formally, conditional disclosure of secrets (CDS) for index– with O(N1/3)-sized
parameters. However, the scheme only works over fields of characteristic 2, which
are incompatible with bilinear groups operations “in the exponent”. Instead,
we provide new techniques for instantiating quadratic reconstruction that are
inspired in part by recent works on functional encryption for degree 2 polyno-
mials [13,21,26].

2 Technical Overview

We proceed to provide an overview of our constructions. We focus on our CP-
ABE scheme for degree 3 polynomials over Z

n
p × Z

n
p × Z

n
p given by

(x1,x2,x3) �→ (x1 ⊗ x2 ⊗ x3) · f�

where f ∈ Z
n3

p is the coefficient vector. Throughout, we use boldface lower case
to denote row vectors. In our CP-ABE scheme,

– encryption takes as input f ∈ Z
n3

p and a message M and outputs a ciphertext
ct;

– key generation takes as input x1,x2,x3 ∈ Z
n
p and outputs a key sk, and

– decryption takes as input ct, sk along with f ,x1,x2,x3 and outputs M when-
ever (x1 ⊗ x2 ⊗ x3)f� �= 0.

We rely on an asymmetric bilinear group (G1,G2,GT , e) of prime order p where
e : G1 × G2 → GT . We use [·]1, [·]2, [·]T to denote component-wise exponen-
tiations in respective groups G1,G2,GT . The k-Lin assumption in G1 asserts
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that ([A]1, [sA]1) ≈c ([A]1, [u]1) where s ← Z
k
p,A ← Z

k×(k+1)
p ,u ← Z

k+1
p .

The bilateral k-Lin assumption (as used in this work, and slightly weaker than
that used in [13,26]) asserts that ([A]1, [A]2, [sA]2) ≈c ([A]1, [A]2, [u]2), and is
a strengthening of the k-Lin assumption in G2. In symmetric bilinear groups,
the bilateral k-Lin and the standard k-Lin assumption are equivalent. Note that
1-Lin = DDH/SXDH, and that bilateral 1-Lin is false, for the same reason DDH
is false in symmetric bilinear groups. We will describe our construction based
the k-Lin assumption and the bilateral k′-Lin assumption, and set k = 1, k′ = 2
for optimal concrete efficiency.

Following [1,26], we make extensive use of tensor products (cf. Sect. 3). This
enables a more compact description of our schemes, and avoids triple summations
to compute a degree 3 polynomial. Moreover, we will be replacing scalars with
vectors as our schemes get increasingly complex, upon which some scalar-vector
products translate naturally to a tensor product of two vectors, whereas some
other ones translate to a vector-matrix product.

Roadmap. We will begin our overview by describing two candidate CP-ABE
schemes for degree 3 polynomials. We refer to these schemes as “candidates”
because we do not in fact prove “full fledged” security of these two schemes
(though it does seem quite plausible that both schemes are secure in the generic
group model).

– The first achieves

|mpk| = O(n2), |ct| = O(n), |sk| = O(n)

In comparison, prior constructions based on degree 2 polynomials requires
either |ct| = O(n2) or |sk| = O(n2) (cf. Fig 2).

– The second is a variant of the first with |mpk| = O(n) and thus achieves
O(n)-sized parameters.

We then describe in Sect. 2.4 how to modify the second candidate to obtain our
final CP-ABE scheme, which achieves O(n)-sized parameters as well as adaptive
security under the bi-k-Lin assumption.

2.1 CP-ABE for Degree 2 Polynomials

We begin with (a simplified variant of) the CP-ABE scheme in [22] for the class
of degree 2 polynomials over Z

n
p × Z

n
p given by

(x1,x2) �→ (x1 ⊗ x2) · f�

where f ∈ Z
n2

p is the coefficient vector and decryption is possible whenever
(x1 ⊗ x2)f� �= 0:

mpk = [α]T , [w2]1, [w1]1, w1 ← Z
n
p ,w2 ← Z

n
p , α ← Zp

ct = [s]1, [((In1 ⊗ w2)f� + w�
1)s]1, [αs]T · M, s ← Zp

sk = [r]2, [x1rw�
1]2, [x2α − rw2]2, r ← Zp

(1)
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Note that the scheme achieves

|mpk| = O(n), |ct| = O(n), |sk| = O(n)

Decryption uses

(x1 ⊗ x2)f� · αs = (x1 ⊗ ((
sk

︷ ︸︸ ︷

x2α − rw2)
ct

︷︸︸︷

s ))f� (2)

+x1

sk
︷︸︸︷

r ·
ct

︷ ︸︸ ︷

((In1 ⊗ w2) · f� + w�
1)s

−
sk

︷ ︸︸ ︷

x1rw�
1 ·

ct
︷︸︸︷

s

Following the dual system encryption methodology [4,19,20,24,25], security
boils down to showing that M is hidden given a single ciphertext-key pair. In
particular, it suffices to show that if (x1 ⊗ x2)f� = 0, then α is hidden given

ĉt = [(In ⊗ w2) · f� + w�
1]1,

̂sk = [x1w�
1]2, [x2α − w2]2,

(3)

where ĉt, ̂sk are derived from ct, sk by setting r = s = 1 and omitting [αs]T .
Hiding of α then follows from

(ĉt, ̂sk) ≡ (

w̃�
1, ((x1 ⊗ w̃2)f� + x1w̃�

1 −
=0

︷ ︸︸ ︷

(x1 ⊗ x2)f� · α, w̃2)
)

2.2 Our First Candidate CP-ABE

Next, we describe a candidate CP-ABE for degree 3 polynomials with parameter
sizes

|mpk| = O(n2), |ct| = O(n), |sk| = O(n)

To arrive at this scheme, we first replace x2 and w2 in (1) with x2 ⊗ x3 and
w2 ⊗ w3 respectively, where w3 ← Z

n
p . The ciphertext size remains unchanged,

but the secret key size increases to O(n2) due to the term

(x2 ⊗ x3)α − r(w2 ⊗ w3)

To achieve |sk| = O(n), we will compute the above expression using

x2 ⊗ x3α − rw2 ⊗ w3 = x2 ⊗
sk

︷ ︸︸ ︷

(x3α + r3w3) −
sk

︷ ︸︸ ︷

(x2r3 + rw2) ⊗
ct

︷︸︸︷

w3

This yields the following scheme:

mpk = [α]T [w1]1, [w3]1, [w2 ⊗ w3]1, w1,w2,w3 ← Z
n
p , α ← Zp

ct = [s]1, [αs]T · M, [((In ⊗ w2 ⊗ w3) · f� + w�
1 )s]1, [w3s]1, s ← Zp,

sk = [r2]2, [x1r2w
�
1 ]2, [x2r3 + r2w2]2, [x3α + r3w3]2, r2, r3 ← Zp

(4)

Here, we publish [w2 ⊗w3]1 in mpk so that we can compute [(w2 ⊗w3)s]1 in ct.
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Compressing mpk. To get to a CP-ABE scheme with O(n)-sized parameters,
we will compress mpk in the previous scheme as follows: instead of having set-up
pick w3, the encryptor will sample a random w3; this eliminates [w2 ⊗ w3]1
in mpk and reduces mpk to O(n) group elements. Next, we explain how this
modification impacts ct and sk in (4):

– Given [w2]1,w3, s, f , it is easy to compute [(In ⊗ w2 ⊗ w3s) · f�]1 and thus
[((In ⊗ w2 ⊗ w3) · f� + w�

1)s]1 in ct.
– Now, key generation can no longer compute [x3α+r3w3]2, which was used to

compute [(x3α + r3w3)s]T during decryption. Instead, we will compute the
latter using the equation

(x3α + r3w3)s =

sk
︷ ︸︸ ︷

(r3 + r2v0) ·
ct

︷︸︸︷

w3s +

sk
︷ ︸︸ ︷

(x3α + r2v) ·
ct

︷︸︸︷

s −r2 ·
ct

︷ ︸︸ ︷

(v0w3 + v)s

where v0,v are chosen by the set-up algorithm.

Putting these modifications together, we obtain our next candidate.

2.3 Our Second Candidate CP-ABE

Here is our candidate CP-ABE scheme with O(n)-sized parameters, where the
terms not present in the previous scheme are shaded in gray:

mpk = [α]T [w2]1, [w1]1, [v]1, [v0]1

ct = [s]1, [αs]T · M, [((In ⊗ w2 ⊗ w3)f� +w�
1 )s]1, [w3s]1, [(v0w3 + v)s]1 ,

sk = [r2]2, [x1r2w�
1 ]2, [x2r3 + r2w2]2, [r3 + r2v0]2, [x3α + r2v]2

w1,w2,v ← Z
n
p , α, v0 ← Zp

w3 ← Z
n
p , s ← Zp,

r3, r2 ← Zp

(5)

The decryption algorithm on input ct = ([s]1, [αs]T ·M, [c�
1]1, [c2]1, [c3]1) and

sk = ([r2]2, [d1]2, [d2]2, [d3]2, [d4]2), computes [(x1 ⊗ x2 ⊗ x3)f� · αs]T using

(x1 ⊗ x2 ⊗
(i)

︷ ︸︸ ︷

(d3c2 + d4s − r2c3)
︸ ︷︷ ︸

=(x1⊗x2⊗(x3α+r3w3))s

)f� − ( x1 ⊗ (

(ii)
︷ ︸︸ ︷

d2(In ⊗ c2))
︸ ︷︷ ︸

=(x1⊗x2⊗r3w3)s+(x1⊗r2w2⊗w3)s

)f�

+

(iii)
︷ ︸︸ ︷

r2x1c�
1 −

(iv)
︷ ︸︸ ︷

d1s
︸ ︷︷ ︸

=(x1⊗r2w2⊗w3)f�s

where

(i) = (r3 + r2v0)(w3s) + (x3α + r2v)s − r2(v0w3 + v)s = (x3α + r3w3)s
(ii) = (x2r3 + r2w2) · (In ⊗ w3s) = (x2 ⊗ r3w3)s + (r2w2 ⊗ w3)s
(iii) = x1r2((In ⊗ w2 ⊗ w3)f� + w�

1)s = (x1 ⊗ r2w2 ⊗ w3)f�s + x1r2w�
1s

(iv) = x1r2w�
1s
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Security warm-up. As before in Sect. 2.1, it suffices to show that α is compu-
tationally hidden given

ĉt = [(In ⊗ w2 ⊗ w3)f� + w�
1]1, [w3]1, [v0w3 + v]1,

̂sk = [x1w�
1]2, [x2r3 + w2]2, [r3 + v0]2, [x3α + v]2 (6)

Here, we allow adaptive choices of f and x1,x2,x3 subject to the constraint (x1 ⊗
x2⊗x3)f� = 0. In this overview, we focus on the case f is queried before x1,x2,x3.

Step 1. We start by sampling random w̃1, ṽ and programming

w̃�
1 = (In ⊗ w2 ⊗ w3)f� + w�

1, ṽ = v0w3 + v

We can then rewrite ct, sk as:

ct = [w̃�
1]1, [w3]1, [ṽ]1

sk = [x1w̃�
1 − (x1 ⊗ w2 ⊗ w3)f�]2, [x2r3 + w2]2, [r3 + v0]2, [x3α + ṽ − v0w3]2

Step 2. Next, we sample random w̃2, ṽ0 and program

w̃2 = x2r3 + w2, ṽ0 = r3 + v0

We can then rewrite sk as:

sk = [x1w̃�
1 − (x1 ⊗ w̃2 ⊗ w3)f� + (x1 ⊗ x2 ⊗ r3w3)f�]2,

[w̃2]2, [ṽ0]2, [x3α + ṽ − ṽ0w3 + r3w3]2

Step 3. At this point, all of the leakage on α comes from the following terms in
ct, sk:

[w3]1
[(x1 ⊗ x2 ⊗ r3w3)f�]2, [x3α + r3w3]2

If we can argue that [r3w3]2 is pseudorandom, then we have

{[(x1 ⊗ x2 ⊗ r3w3)f�]2, [x3α + r3w3]2} ≈c [(x1 ⊗ x2 ⊗ ˜d4)f�

−
=0

︷ ︸︸ ︷

(x1 ⊗ x2 ⊗ x3)f� α]2, [˜d4]2, ˜d4 ← Z
n
p

and then we are done. Unfortunately, [r3w3]2 is not pseudorandom given [w3]1
for the same reason DDH is false in symmetric bilinear groups; however, an
analogous statement does hold if we replace r3,w3 with their k′-dimensional
analogues (k′ ≥ 2). Concretely, the bilateral k′-Lin assumption tells us that
[r3W3]2 is pseudorandom given [W3]1, where r3 ← Z

k′
p ,W3 ← Z

k′×n
p .
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Modifications. In addition to replacing r3,w3 with r3 ← Z
k′
p ,W3 ← Z

k′×n
p ,

– we replace x2r3 in sk with x2⊗r3, which in turns require increasing the width
of w2 to k′n (so that x2 ⊗ r3 + r2w2 is well-defined);

– we replace w2 ⊗ w3 = w2(In ⊗ w3) in ct with w2(In ⊗ W3);
– we replace v0 with v0 ∈ Z

k′
p .

This means that when we program w̃2 = x2 ⊗ r3 + w2 in Step 2, we have
w2(In ⊗W3) = w̃2(In ⊗W3) −x2 ⊗ r3W3, upon which we could invoke the bi-
k′-Lin assumption. The case f is queried after x1,x2,x3 uses similar ideas, except
we would instead rely on the k′-Lin assumption in G1. Putting the modifications
together, we arrive at the following variant of the scheme in (6):

̂ct = [(In1 ⊗ w2(In2 ⊗ W3))f
� + w�

1 ]1, [W3]1, [v0W3 + v]1, W3 ← Z
k′×n
p

̂sk = [x1w
�
1 ]2, [x2 ⊗ r3 + w2]2, [r3 + v0]2, [x3α + v]2 r3 ← Z

k′
p , r2 ← Zp

(7)

In Lemma 1, we show that the above scheme hides α given ĉt, ̂sk for adaptive
choices of f and x1,x2,x3 subject to the constraint (x1 ⊗ x2 ⊗ x3)f� = 0. This
holds under the k′-Lin assumption in G1 and the bi-k′-Lin assumption.

2.4 Our Final CP-ABE

We now describe how we arrive at our final CP-ABE for the class of degree
3 polynomials, which achieves adaptive security against unbounded collusions
under the k-Lin assumption in G1,G2 and the bilateral k′-Lin assumption, where
k ≥ 1, k′ ≥ 2. Following the dual system encryption methodology and the “com-
piler” in [10], we sample A ← Z

(k+1)×k
p ,B ← Z

k×(k+1)
p and make the following

substitutions to the scheme in (5) combined with (7):

s �→ As� ∈ Z
1×(k+1)
p , α �→ k ∈ Z

k+1
p , r �→ rB ∈ Z

k+1
p

w2 �→ W2 ∈ Z
(k+1)×(k+1)k′n
p , w�

1 �→ W1 ∈ Z
(k+1)n×(k+1)
p ,

v �→ V ∈ Z
(k+1)×(k+1)n
p , v0 �→ V0 ∈ Z

(k+1)×(k+1)k′
p

That is, we increase the width and heights of each of w2,w�
1,v,v0 by a multi-

plicative factor of k + 1. We refer to Sect. 4.1 for a complete description of the
scheme.

In the security proof, we rely on the following fact: for any m, � ≥ 1, with
probability 1 − 2/p over c ← Z

k+1
p ,d ← Z

k+1
p , the matrix

(Im ⊗ d)M(I� ⊗ c�) ∈ Z
m�
p

is uniformly random given M(I� ⊗A), (Im ⊗B)M, where M ← Z
(k+1)m×(k+1)�
p .

This was first observed in [10] for the special case m = � = 1. In our security
reduction, we would then essentially “embed” w2,w�

1,v,v0 from the scheme in
(7) into dW2(In2 ⊗ c�), (In1 ⊗ d)W1c�,dV(In3 ⊗ c�),dV0(Ik′ ⊗ c�).
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In the body of the paper, we consider a broader class of degree 3 polynomi-
als over Z

n1
p × Z

n2
p × Z

n3
p . By varying n1, n2, n3, we obtain trade-offs between

ciphertext and key sizes as described in Fig. 1.

2.5 Discussion

We describe some additional related works as well as open problems.

The GKW lower bound. Gay, Kerendis and Wee showed a N1/(d+1) lower
bound for information-theoretically secure conditional disclosure of secrets
(CDS) protocols for broadcast encryption with degree d reconstruction [14]. The
scheme in (3) constitutes such a CDS scheme with

√
N parameters and linear

reconstruction, where the scheme in (6) constitutes a CDS scheme with com-
putational security and N1/3 parameters with quadratic reconstruction “in the
exponent”. Given that quadratic reconstruction seems to be the best we can hope
for with bilinear maps, beating the N1/3 parameter size achieved in this work
for pairing-based broadcast encryption would be a remarkable break-through.

poly(logN)-sized broadcast encryption. In 2014, Boneh, Waters and
Zhandry constructed such a broadcast encryption scheme with poly(log N)-sized
parameters assuming multi-linear maps [8]. As mentioned earlier, Agrawal and
Yamada [2,3] recently obtained the same result from pairings and LWE. Indepen-
dently, Brakerski and Vaikuntathan [9] presented a “lattice-inspired” candidate
broadcast encryption with poly(log N)-sized parameters, but they were unable
to provide a reduction to LWE or any simple lattice assumption. These latter
two works derived the broadcast encryption scheme as a special case of a more
general result, namely CP-ABE for boolean formula/circuits over {0, 1}n with
poly(n)-sized parameters.

N1/3-sized traitor-tracing. Zhandry [27] recently constructed the first
pairing-based traitor-tracing scheme for N users with O(N1/3)-sized parame-
ters that is secure in the generic group model. While the work also constructed
traitor-tracing schemes with broadcast, these additional schemes do not improve
upon the state-of-the-art for broadcast encryption (see Table 1 in [27]), except
for adding traitor-tracing capabilities. While Zhandry’s results did motivate us
to revisit the LVW conjecture regarding a O(N1/3)-sized broadcast encryption
scheme, the techniques there-in appear to be largely unrelated to those devel-
oped in this work. In a way, broadcast encryption is harder than traitor-tracing
in that we do have poly(log N)-sized traitor-tracing from just LWE [16], but not
for broadcast encryption.

Open problems. We describe two open problems:

– Can we build a pairing-based CP-ABE for degree 2 polynomials with |mpk| =
O(n) and either |ct| = O(1), |sk| = O(n) or |ct| = O(n), |sk| = O(1)? The
former would imply a pairing-based broadcast encryption scheme for N users
with |mpk| = O(

√
N), |ct| = O(1), |sk| = O(

√
N).
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– Another important open problem is to build broadcast encryption with
O(

√
N)-sized parameters, or CP-ABE for degree 2 polynomials with O(n)-

sized parameters from just LWE. All known approaches for LWE-based ABE
has ciphertext size at least linear in the length of the attribute, which in the
case of broadcast encryption means an Ω(N)-sized ciphertext. Much of the
prior research efforts towards LWE-based CP-ABE has focused on the class
of circuits, and perhaps it would be easier to make progress by focusing on
the simple class of degree 2 polynomials.

Perspective. To conclude, our results provide the first indication that we could
leverage techniques and insights from FE for degree 2 polynomials to achieve
surprising asymptotic efficiency improvements in the broader setting of pairing-
based ABE. We are optimistic that this connection could yield further (asymp-
totic) efficiency improvements in other pairing-based schemes, both within ABE
and beyond.

3 Preliminaries

Notations. We denote by s ← S the fact that s is picked uniformly at random
from a finite set S. We use ≈s to denote two distributions being statistically
indistinguishable, and ≈c to denote two distributions being computationally
indistinguishable. We use lower case boldface to denote row vectors and upper
case boldface to denote matrices. For any positive integer N , we use [N ] to
denote {1, 2, . . . , N}.

Tensor product. The tensor product (Kronecker product) for matrices A =
(ai,j) ∈ Z

�×m, B ∈ Z
n×p is defined as

A ⊗ B =

⎡

⎣

a1,1B, . . . , a1,mB
. . . , . . . , . . .

a�,1B, . . . , a�,mB

⎤

⎦ ∈ Z
�n×mp.

The mixed-product property for tensor product says that

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)

A useful corollary of the mixed-product property says that for any pair of row
vectors u,v ∈ Z

n,

u ⊗ v = (u ⊗ 1)(In ⊗ v) = (1 ⊗ v)(u ⊗ In)
= u(In ⊗ v) = v(u ⊗ In)

We adopt the convention that matrix multiplication takes precedence over tensor
product, so that we can write A ⊗ BC to mean A ⊗ (BC).
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3.1 Prime-Order Bilinear Groups

A generator G takes as input a security parameter 1λ and outputs a description
G := (p,G1,G2,GT , e), where p is a prime of Θ(λ) bits, G1, G2 and GT are
cyclic groups of order p, and e : G1 × G2 → GT is a non-degenerate bilinear
map. We require that the group operations in G1, G2, GT and the bilinear
map e are computable in deterministic polynomial time in λ. Let g1 ∈ G1,
g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective generators. We employ the
implicit representation of group elements: for a matrix M over Zp, we define
[M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation is carried out
component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T . We recall
the matrix Diffie-Hellman (MDDH) assumption on G1 [11]:

Assumption 1 (MDDHd
k,� Assumption). Let k, �, d ∈ N. We say that the

MDDHd
k,� assumption holds if for all PPT adversaries A, the following advantage

function is negligible in λ.

Adv
MDDHd

k,�

A (λ) :=
∣

∣ Pr[A(G, [M]1, [MS]1 ) = 1] − Pr[A(G, [M]1, [U]1 ) = 1]
∣

∣

where G := (p,G1,G2,GT , e) ← G(1λ), M ← Z
�×k
p , S ← Z

k×d
p and U ← Z

�×d
p .

The MDDH assumption on G2 can be defined in an analogous way. Escala et
al. [11] showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHd

k,� ∀ k, d ≥ 1, � > k

with a tight security reduction. (In the setting where � ≤ k, the MDDHd
k,�

assumption holds unconditionally.)
The bilateral MDDH assumption is defined analogously with the advantage

function:
∣
∣ Pr[A(G, [M]1, [MS]1 , [M]2, [MS]2 ) = 1]−Pr[A(G, [M]1, [U]1 , [M]2, [U]2 ) = 1]

∣
∣

Note that the bilateral MDDH and bilateral k-Lin assumptions are false for
k = 1. In this paper, we only require a weaker variant of the bilateral MDDH
assumption, as defined with the advantage function:

∣

∣ Pr[A(G, [M]1, [M]2, [MS]2 ) = 1] − Pr[A(G, [M]1, [M]2, [U]2 ) = 1]
∣

∣

3.2 Attribute-Based Encryption

We define attribute-based encryption in the framework of key encapsulation.
A attribute-based encryption scheme for a predicate P( · , · ) consists of four
algorithms (Setup,Enc,KeyGen,Dec):

Setup(1λ,X ,Y) → (pp,mpk,msk). The setup algorithm gets as input the secu-
rity parameter λ, the the predicate domains X ,Y and outputs the public
parameter mpk, and the master key msk.



166 H. Wee

Enc(mpk, x) → (ct, κ). The encryption algorithm gets as input mpk and x ∈ X .
It outputs a ciphertext ct and a symmetric key kem ∈ {0, 1}λ.

KeyGen(msk, y) → sk. The key generation algorithm gets as input msk and y ∈ Y.
It outputs a secret key sk.

Dec(sk, y, ct, x) → κ. The decryption algorithm gets as input sk, ct, x, y such that
P(x, y) = 1. It outputs a symmetric key kem.

In our schemes, we would actually compute kem ∈ GT , which can then be hashed
to {0, 1}λ.

Correctness. We require that for all (x, y) ∈ X × Y such that P(x, y) = 1,

Pr[(ct, kem) ← Enc(mpk, x);Dec(sk, y, ct, x) = kem)] = 1,

where the probability is taken over (mpk,msk) ← Setup(1λ,X ,Y) and the coins
of Enc.

Security definition. For a stateful adversary A, we define the advantage func-
tion

AdvabeA (λ) := Pr

⎡

⎢

⎢

⎢

⎢

⎣

b = b′ :

(mpk,msk) ← Setup(1λ,X ,Y);
x ← AKeyGen(msk,·)(mpk);
b ←r {0, 1}; kem1 ←r {0, 1}λ

(ct, kem0) ← Enc(mpk, x);
b′ ← AKeyGen(msk,·)(ct, kemb)

⎤

⎥

⎥

⎥

⎥

⎦

− 1
2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfies
P(x, y) = 0. An attribute-based encryption scheme is adaptively secure if for all
PPT adversaries A, the advantage AdvabeA (λ) is a negligible function in λ.

CP-ABE for degree 3 polynomials. Here,

X = Z
n1n2n3
p ,Y = Z

n1
p × Z

n2
p × Z

n3
p

and
P(f , (x1,x2,x3)) = 1 ⇐⇒ (x1 ⊗ x2 ⊗ x3) · f� �= 0

Broadcast Encryption. Here,

X = {0, 1}N ,Y = [N ]

where we think of {0, 1}N as the power set of [N ] (i.e., set of all subsets of [N ]),
and

P(S, y) = 1 ⇐⇒ y ∈ S



Broadcast Encryption with Size N1/3 and More from k-Lin 167

4 CP-ABE for Degree 3 Polynomials

In this section, we present an adaptively secure CP-ABE for degree 3 polynomials
against unbounded collusions, under the k-Lin assumption in G1,G2 and the
bilateral k’-Lin assumption, where k ≥ 1, k′ ≥ 2. Our scheme achieves

|mpk| = (k(k + 1) + k(k + 1)(n1 + k′n2 + n3) + k′)|G1| + |GT |
|ct| = (k + 1 + (k + 1)n1 + (k + 1)k′n3 + (k + 1)n3)|G1|
|sk| = (2k + 1 + (k + 1)k′n2 + (k + 1)k′ + (k + 1)n3)|G2|

Setting k = 1, k′ = 2, we obtain

|mpk| =(2n1 + 4n2 + 2n3 + 4)|G1| + |GT |, |ct| = (2n1 + 6n3 + 2)|G1|,
|sk| = (4n2 + 2n3 + 7)|G2|

4.1 Our Scheme

– Setup(p, 1n1 , 1n2 , 1n3): Run G = (G1,G2,GT , e) ← G(p). Sample

A ← Z
(k+1)×k
p ,k ← Z

k+1
p ,W2 ← Z

(k+1)×(k+1)k′n2
p ,W1 ← Z

(k+1)n1×(k+1)
p ,

V ← Z
(k+1)×(k+1)n3
p ,V0 ← Z

(k+1)×(k+1)k′
p ,B ← Z

k×(k+1)
p

For a matrix M ∈ Z
(k+1)m×(k+1)�
p , we write M := M(I� ⊗ A) ∈ Z

(k+1)m×k�
p .

In particular, we have

k = kA, W2 = W2(Ik′n2 ⊗A), W1 = W1A, V = V(In3 ⊗A), V0 = V0(Ik′ ⊗A)

Output

mpk =
(

G, [A]1, [k]T , [W2]1, [W1]1, [V]1, [V0]1
)

, msk = (k,W1,W2,V,V0,B)

– Enc(mpk, f): Sample
s ← Z

k
p,W3 ← Z

k′×n3
p

and output

ct =
(

[As�
︸︷︷︸

c�0

]1, [(In1 ⊗ (W2(In2 ⊗ W3 ⊗ s�)))f� + W1s�
︸ ︷︷ ︸

c�1

]1,

[W3 ⊗ As�
︸ ︷︷ ︸

C2

]1, [V0(W3 ⊗ s�) + V(In3 ⊗ s�)
︸ ︷︷ ︸

C3

]1
)

, kem = [ks�]T

– KeyGen(msk,x1,x2,x3): Sample

r2 ← Z
k
p, r3 ← Z

(k+1)k′
p
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and output

sk =
(

[r2B
︸︷︷︸

d0

]2, [(x1 ⊗ r2B)W1
︸ ︷︷ ︸

d1

]2, [x2 ⊗ r3 + r2BW2
︸ ︷︷ ︸

d2

]2, [r3 + r2BV0
︸ ︷︷ ︸

d3

]2,

[x3 ⊗ k + r2BV
︸ ︷︷ ︸

d4

]2
)

– Dec(sk, (x1,x2,x3), ct, f): Output

[

(x1 ⊗ x2 ⊗
(i)

︷ ︸︸ ︷

(d3C2 + d4(In3 ⊗ c�
0) − d0C3))f� − (x1 ⊗

(ii)
︷ ︸︸ ︷

(d2(In2 ⊗ C2)))f�

+

(iii)
︷ ︸︸ ︷

(x1 ⊗ d0)c�
1 −

(iv)
︷︸︸︷

d1c�
0

]((x1⊗x2⊗x3)f
�)−1

T

where the terms in (i), (ii), (iii), (iv) are computed in GT using the pairing.

4.2 Correctness

Step 1. First, observe that we can rewrite ct, kem in terms of msk and [c0]1
(where c�

0 = As�), namely:

ct =
(

[As�
︸︷︷︸

c�0

]1, [((In1 ⊗ W2(In2 ⊗ W3 ⊗ Ik+1))(f� ⊗ Ik+1) + W1)c�
0

︸ ︷︷ ︸

c�1

]1 (8)

[(W3 ⊗ Ik+1)(In3 ⊗ c�
0)

︸ ︷︷ ︸

C2

]1, [(V0(W3 ⊗ Ik+1) + V)(In3 ⊗ c�
0)

︸ ︷︷ ︸

C3

]1
)

,

kem = [kc�
0]T

To see that this is equivalent to the output of Enc, we will use

(Ik′ ⊗ A)(W3 ⊗ s�) = (W3 ⊗ Ik+1)(In3 ⊗ As�) (9)

We start with the first summand in c�
1:

(In1 ⊗ (

=W2(In2⊗Ik′ ⊗A)
︷ ︸︸ ︷

W2 (In2 ⊗ W3 ⊗ s�)))f� = (In1 ⊗ W2(In2 ⊗ W3 ⊗ Ik+1)
(In2n3 ⊗ As�))f� using (9)

= (In1 ⊗ W2(In2 ⊗ W3 ⊗ Ik+1))
(In1n2n3 ⊗ As�)(f� ⊗ 1)

= (In1 ⊗ W2(In2 ⊗ W3 ⊗ Ik+1))
(f� ⊗ Ik+1)As�
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For the remaining terms, we have:

W1s� = W1As�

W3 ⊗ As� = (W3 ⊗ Ik+1)(In3 ⊗ As�)
=V0(Ik′ ⊗A)
︷ ︸︸ ︷

V0 (W3 ⊗ s�) = (V0(W3 ⊗ Ik+1))(In3 ⊗ As�) using (9)
V(In3 ⊗ s�) = V(In3 ⊗ As�)

Step 2. Next, we show that

(x1 ⊗ x2 ⊗ x3)f
� · kc�0

= (x1 ⊗ x2 ⊗

(i)
︷ ︸︸ ︷

(d3C2 + d4(In3 ⊗ c
�
0 ) − d0C3))f

� − (x1 ⊗

(ii)
︷ ︸︸ ︷

(d2(In2 ⊗ C2)))f
�

+

(iii)
︷ ︸︸ ︷

(x1 ⊗ d0)c
�
1 −

(iv)
︷ ︸︸ ︷

d1c
�
0

This follows readily from the following calculations:

(i) = (r3 + d0V0)(W3 ⊗ Ik+1)(In3 ⊗ c�
0) + (x3 ⊗ k + d0V)(In3 ⊗ c�

0)
−d0(V0(W3 ⊗ Ik+1) + V)(In3 ⊗ c�

0)
= (r3(W3 ⊗ Ik+1) + x3 ⊗ k)(In3 ⊗ c�

0)
= r3(W3 ⊗ c�

0) + x3 ⊗ kc�
0

(ii) = (x2 ⊗ r3 + d0W2) · (In2 ⊗ W3 ⊗ c�
0)

= x2 ⊗ (r3(W3 ⊗ c�
0)) + d0W2(In2 ⊗ W3 ⊗ c�

0)
(iii) = (x1 ⊗ d0)((In1 ⊗ W2(In2 ⊗ W3 ⊗ Ik+1))(f� ⊗ Ik+1) + W1)c�

0

= (x1 ⊗ (d0W2(In2 ⊗ W3 ⊗ c�
0)))f

� + (x1 ⊗ d0)W1c�
0

(iv) = (x1 ⊗ d0)W1c�
0

and thus

(x1 ⊗ x2 ⊗
(i)

︷ ︸︸ ︷

(d3C2 + d4(In3 ⊗ c�
0) − d0C3))f� − (x1 ⊗

(ii)
︷ ︸︸ ︷

(d2(In2 ⊗ C2)))f�

+

(iii)
︷ ︸︸ ︷

(x1 ⊗ d0)c�
1 −

(iv)
︷︸︸︷

d1c�
0

= (x1 ⊗ x2 ⊗ (r3(W3 ⊗ c�
0))) · f� + (x1 ⊗ x2 ⊗ x3 ⊗ kc�

0) · f�
−(x1 ⊗ x2 ⊗ (r3(W3 ⊗ c�

0))) · f� − (x1 ⊗ d0W2(In2 ⊗ W3 ⊗ c�
0)) · f�

+(x1 ⊗ (d0W2(In2 ⊗ W3 ⊗ c�
0)))f

� + (x1 ⊗ d0)W1c�
0

−(x1 ⊗ d0)W1c�
0

Correctness then follows readily.



170 H. Wee

4.3 Core of Security Proof

As described in the technical overview in Sect. 2.3, the core of the security of lies
in proving adaptive security of the scheme in (7) where the adversary is given
just a single ciphertext and a single key and no mpk and with s = r2 = 1. We
formalize and prove this statement next.

Given α0, α1 ∈ Zp, we define the distribution Db over (ct, sk) where:

ct = [(In1 ⊗ w2(In2 ⊗ W3))f� + w�
1]1, [W3]1, [v0W3 + v]1,

sk = [x1w�
1]2, [x2 ⊗ r3 + w2]2, [r3 + v0]2, [x3αb + v]2

and

w1 ← Z
n1
p ,w2 ← Z

k′n2
p ,v ← Z

n3
p ,v0 ← Z

k′
p ,W3 ← Z

k′×n3
p , r3 ← Z

k′
p

and we allow adaptive choices of f and (x1,x2,x3) subject to the constraint
(x1 ⊗ x2 ⊗ x3)f� = 0.

Lemma 1. For all α0, α1 ∈ Zp, we have D0 ≈c D1, under the k′-Lin assumption
in G1 and the bi-k′-Lin assumption.

Proof. We bound the advantage of guessing b given Db, b ← {0, 1} by a negli-
gible function. We proceed via a case analysis, following the “doubly selective”
framework [4,20]:

Case 1 (selective). f is queried before x1,x2,x2.

Step 1. We start by sampling random w̃1 ← Z
n1
p , ṽ ← Z

n3
p and programming

w̃�
1 = (In1 ⊗ w2(In2 ⊗ W3))f� + w�

1, ṽ = v0W3 + v

We can then rewrite ct, sk as:

ct = [w̃�
1]1, [W3]1, [ṽ]1

sk = [x1w̃�
1 − (x1 ⊗ w2(In2 ⊗ W3))f�]2, [x2 ⊗ r3 + w2]2, [r3 + v0]2,

[x3αb + ṽ − v0W3]2

Step 2. Next, we sample random w̃2 ← Z
k′n2
p , ṽ0 ← Z

k′
p and program

w̃2 = x2 ⊗ r3 + w2, ṽ0 = r3 + v0

We can then rewrite ct, sk as:

ct = [w̃�
1]1, [W3]1, [ṽ]1

sk = [x1w̃�
1 + (x1 ⊗ x2 ⊗ r3W3)f� − (x1 ⊗ w̃2(In2 ⊗ W3))f�]2, [w̃2]2, [ṽ0]2,

[x3αb + r3W3 + ṽ − ṽ0W3]2

Step 3. Next, by the bilateral k′-Lin assumption, we have:

{

[W3]1, [r3W3 + x3αb]2
} ≈c

{

[W3]1, [˜d4]2
}

, ˜d4 ← Z
n3
p ,
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This means that

sk ≈c [x1w̃
�
1 + (x1 ⊗ x2 ⊗ d̃4)f

� −
=0

︷ ︸︸ ︷

(x1 ⊗ x2 ⊗ x3)f
�αb −(x1 ⊗ w̃2(In2 ⊗ W3))f

�]2,

[w̃2]2, [ṽ0]2, [d̃4 + ṽ − ṽ0W3]2

That is, the distribution Db is computationally indistinguishable from:

ct = [w̃�
1 ]1, [W3]1, [ṽ]1

sk = [x1w̃�
1 + (x1 ⊗ x2 ⊗ ˜d4)f� − (x1 ⊗ w̃2(In2 ⊗ W3))f�]2, [w̃2]2, [ṽ0]2, [˜d4 + ṽ − ṽ0W3]2

which is independent of the bit b.

Case 2: (co-selective). x1,x2,x2 is queried before f .

Step 1. We start by sampling random ṽ0 ← Z
k′
p , ṽ ← Z

n3
p , w̃2 ← Z

k′n2
p and

programming

w̃2 = x2 ⊗ r3 + w2, ṽ0 = r3 + v0, ṽ = x3αb + v

We can then rewrite ct, sk as:

ct = [−(In1 ⊗ x2 ⊗ r3W3)f� + w�
1 + (In1 ⊗ w̃2(In2 ⊗ W3))f�]1,

[W3]1, [−(r3W3 + x3αb) + ṽ0W3 + ṽ]1
sk = [x1w1

�]2, [w̃2]2, [ṽ0]2, [ṽ]2

Step 2. Next, by the k′-Lin assumption in G1, we have:
{

[W3]1, [r3W3 + x3αb]1
} ≈c

{

[W3]1, [c̃3]1
}

, c̃3 ← Z
n3
p ,

This means that

ct ≈c [(In1 ⊗ x2 ⊗ x3αb)f� + w�
1 − (In1 ⊗ x2 ⊗ c̃3)f�

+(In1 ⊗ w̃2(In2 ⊗ W3))f�]1, [W3]1, [−c̃3 + ṽ0W3 + ṽ]1

Step 3. At this point, the view of the adversary is given by:

ct = [ (In1 ⊗ x2 ⊗ x3αb)f� + w�
1 − (In1 ⊗ x2 ⊗ c̃3)f�

+(In1 ⊗ w̃2(In2 ⊗ W3))f�]1, [W3]1, [−c̃3 + ṽ0W3 + ṽ]1

sk = [ x1w�
1 ]2, [w̃2]2, [ṽ0]2, [ṽ]2

where all of the leakage on αb comes from the boxed terms. We claim that the
advantage of the adversary is 0 here. It suffices to prove this for the case f is fixed
in advance; then, a random guessing (also referred to as complexity leveraging)
argument tells us that the advantage is still 0 even for an adaptively chosen f .

Sample a random w̃1 ← Z
n1
p and program

w̃1 = (In1 ⊗ x2 ⊗ x3αb)f� + w�
1
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Then, we can write

x1w�
1 = x1w̃�

1 − x1(In1 ⊗ x2 ⊗ x3αb)f� = x1w̃�
1 −

=0
︷ ︸︸ ︷

(x1 ⊗ x2 ⊗ x3)f� αb

This means that the view of the adversary (for a fixed f) is identically distributed
to

ct = [ w̃�
1 − (In1 ⊗ x2 ⊗ c̃3)f� + (In1 ⊗ w̃2(In2 ⊗ W3))f�]1, [W3]1, [−c̃3 + ṽ0W3 + ṽ]1

sk = [ x1w̃
�
1 ]2, [w̃2]2, [ṽ0]2, [ṽ]2

The above distribution is independent of the bit b, and hence the advantage is 0.

4.4 Security Proof

The rest of the proof is a routine application of the dual system encryption
methodology [4,10,19,20,24,25], apart from the substitutions in (11), which
slightly generalizes that in [10], as described at the end of Sect. 2.4.

Auxiliary distributions. We define the following additional ciphertext and
key distributions used in the security proof. Sample δ ← Zp.

– (ĉt, ˆkem) is the same as (ct, kem) in (8), except we replace As� with c� ←
Z
(k+1)×1
p :

ĉt =
(

[c�]1, [((In1 ⊗ W2(In2 ⊗ W3 ⊗ Ik+1))(f� ⊗ Ik+1) + W1)c�]1,

[(W3 ⊗ Ik+1)(In3 ⊗ c�)]1, [(V0(W3 ⊗ Ik+1) + V)(In3 ⊗ c�)]1
)

ˆkem = [kc�]T

Henceforth, let a⊥ ∈ Z
k+1
p satisfying a⊥ ·A = 0,a⊥ ·c� = 1, which exists with

probability 1 − 1/p over c.
– ŝk is the same as sk except we replace k with k + δa⊥:

ŝk =
(

[r2B
︸︷︷︸

d0

]2, [(x1 ⊗ r2B)W1
︸ ︷︷ ︸

d1

]2, [x2 ⊗ r3 + r2BW2
︸ ︷︷ ︸

d2

]2, [r3 + r2BV0
︸ ︷︷ ︸

d3

]2, [x3 ⊗ (k + δa
⊥
) + r2BV

︸ ︷︷ ︸

d4

]2
)

– sk[1] is the same as sk except we replace r2B with d ← Z
k+1
p :

sk[1] =
(
[ d
︸︷︷︸

d0

]2, [(x1 ⊗ d)W1
︸ ︷︷ ︸

d1

]2, [x2 ⊗ r3 + dW2
︸ ︷︷ ︸

d2

]2, [r3 + dV0
︸ ︷︷ ︸

d3

]2, [x3 ⊗ k+ dV
︸ ︷︷ ︸

d4

]2
)

– sk[2] is the same as sk[1] except we replace k with k + δa⊥:

sk[2] =
(

[ d
︸︷︷︸

d0

]2, [(x1 ⊗ d)W1
︸ ︷︷ ︸

d1

]2, [x2 ⊗ r3 + dW2
︸ ︷︷ ︸

d2

]2, [r3 + dV0
︸ ︷︷ ︸

d3

]2, [x3 ⊗ (k + δa
⊥
) + dV

︸ ︷︷ ︸

d4

]2
)



Broadcast Encryption with Size N1/3 and More from k-Lin 173

Following the terminology in prior works, (ĉt, ˆkem) is the semi-functional (SF)
ciphertext; ŝk is the SF secret key; sk[1] is the pseudo-normal secret key, and
sk[2] is the pseudo-SF secret key.

Game sequence. We present a series of games. We write Advxx to denote the
advantage of A in Gamexx. Suppose A makes q queries to KeyGen: let (xi

1,x
i
2,x

i
3)

denote the i’th query, and let one of ski, ski[1], ski[2], ŝk
i

denote the i’th key.

– Game0: is the real security game.
– Game1: is the same as Game0 except we replace (ct, kem) with (ĉt, ˆkem).
– Game2,i for i = 1, . . . , q: is the same as Game1, except the first i − 1 keys are

given by ŝk
1
, . . . , ŝk

i−1
(semi-functional) and the last q − i keys are given by

ski+1, . . . , skq (normal). There are 4 sub-games, where the i’th key transitions

from ski in Game2.i.0, to ski[1] in Game2.i.1, to ski[2] in Game2.i.2, to ŝk
i

in
Game2.i.3. Note that Game1 = Game2.1.0 and Game2.i.3 = Game2.(i+1).0.

– Game3: is the same as Game2,q,3, except that kem0 ←r GT .

In Game3, the view of A is statistically independent of the challenge bit b. Hence,
Adv3 = 0. We complete the proof by establishing the following claims:

Game0 ≈c Game1. This follows readily from the k-Lin assumption in G1, where
the reduction on input [A]1, [c0]1 where c�

0 ∈ {As�, c�}, c ← Z
k+1
p :

– runs the honest Setup to generate all the terms in (mpk,msk) apart from A;
– uses msk, c�

0 to compute the challenge ciphertext and KEM:
(

[c�
0]1, [((In1 ⊗ W2(In2 ⊗ W3 ⊗ Ik+1))(f� ⊗ Ik+1) + W1)c�

0]1,

[(W3 ⊗ Ik+1)(In3 ⊗ c�
0)]1, [(V0(W3 ⊗ Ik+1) + V)(In3 ⊗ c�

0)]1
)

[kc�
0]T

By (8), this is (ct, kem) when c�
0 = As�, and (ĉt, ˆkem) when c�

0 = c�;
– uses msk to simulate the KeyGen oracle.

Game2.i.0 ≈c Game2.i.1,Game2.i.2 ≈c Game2.i.3. This follows readily from
the k-Lin assumption in G2, where the reduction on input [B]1, [d0]1 where
d0 ∈ {rB,d},d ← Z

k+1
p :

– runs the honest Setup to generate all the terms in (mpk,msk) apart from B;
– samples a random δ ∈ Zp;
– samples a random c ← Z

k+1
p and uses msk, c to compute the challenge cipher-

text using (8);
– uses msk and δ to generate the first i−1 keys ŝk

1
, . . . , ŝk

i−1
and the last q − i

keys ski+1, . . . , skq;
– computes the i’th key using [d0] and msk, δ using:

(

[d0]2, [(xi
1 ⊗ d0)W1]2, [xi

2 ⊗ r3 + d0W2]2, [r3 + d0V0]2, [xi
3 ⊗ k + d0V]2

)

This is ski when d0 = rB, and ski[1] when d0 = d.
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Game2.i.1 ≈c Game2.i.2. To prove Game2.i.1 ≈c Game2.i.2, it suffices to show

(aux, ĉt, ski[1]) ≈c (aux, ĉt, ski[2]) (10)

where

aux :=
(

G, A, c,B,k, δ, W2, W1, V, V0

BW2, (In1 ⊗ B)W1, BV, BV0

)

This is because given aux, we can compute mpk, ˆkem as well as both sk (for the
last q − i key queries) and ŝk (for the first i − 1 key queries).

– To compute sk, we sample r2 ← Z
k
p, r3 ← Z

(k+1)k′
p and output

sk =
(

[r2B
︸︷︷︸

d0

]2, [(x1 ⊗ r2) · (In1 ⊗ B)W1
︸ ︷︷ ︸

d1

]2, [x2 ⊗ r3 + r2 · BW2
︸ ︷︷ ︸

d2

]2, [r3 + r2 · BV0
︸ ︷︷ ︸

d3

]2,

[x3 ⊗ k + r2 · BV
︸ ︷︷ ︸

d4

]2
)

– To compute ŝk, we would first compute a⊥ given A, c, and then proceed as
in sk, except we replace k with k + δa⊥.

We proceed to prove (10) using Lemma 1. Henceforth, let b⊥ ∈ Z
k+1
p satisfy-

ing B ·b⊥� = 0,d ·b⊥� = 1, which exists with probability 1 − 1/p over d, where
[d]2 is the first component of ski[1] and ski[2]. Sample

W′
1 ← Z

(k+1)n1×(k+1)
p , W′

2 ← Z
(k+1)×(k+1)k′n2
p , V′ ← Z

(k+1)×(k+1)n3
p ,

w1 ← Z
n1
p , w2 ← Z

k′n2
p , v ← Z

n3
p ,

k′ ← Z
k+1
p r′

3 ← Z
(k+1)k′
p

α ← Zp, r3 ← Z
k′
p

V′
0 ← Z

(k+1)×(k+1)k′
p

v0 ← Z
k′
p ,

and substitute

W1 �→ W′
1 + (In1 ⊗ b⊥�) · w�

1 · a⊥ (11)
W2 �→ W′

2 + b⊥� · w2 · (In2 ⊗ a⊥)
V �→ V′ + b⊥� · v · (In3 ⊗ a⊥)
V0 �→ V′

0 + b⊥� · v0 · (Ik′ ⊗ a⊥)
k �→ k′ + α · a⊥

r3 �→ r′
3 + r3(Ik′ ⊗ a⊥)

where in the last line, we have r3 ∈ Z
(k+1)k′
p on the left, and r3 ∈ Z

k′
p on the

right. We can then write

aux =
(

G, A, c,B,k, W
′
2, W

′
1, V

′
, V

′
0

BW′
2, (In1 ⊗ B)W′

1, BV′, BV′
0

)
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and

ĉt = [c
�
]1, [((In1 ⊗ W

′
2(In2 ⊗ W3 ⊗ Ik+1))(f

� ⊗ Ik+1) + W
′
1)c

�

+(In1 ⊗ b
⊥�

) · ( (In1 ⊗ w2(In2 ⊗ W3))f
�

+ w
�
1 )]1,

[( W3 ⊗ Ik+1)(In3 ⊗ c
�
)]1, [(V

′
0(W3 ⊗ Ik+1) + V

′
)(In3 ⊗ c

�
) + b

⊥� · ( v0W3 + v )]1

ˆkem = [k
′
c
�

+ α]T

ski
[1] = [d]2, [(x

i
1 ⊗ d)W

′
1 + x

i
1w

�
1 · a⊥

]2

[x
i
2 ⊗ r

′
3 + dW

′
2 + ( x

i
2 ⊗ r3 + w2 ) · (In2 ⊗ a

⊥
)]2,

[r
′
3 + dV

′
0 + ( r3 + v0 ) · (Ik′ ⊗ a

⊥
)]2,

[x
i
3 ⊗ k

′
+ dV

′
+ ( x

i
3α + v ) · (In3 ⊗ a

⊥
)]2

ski
[2] = [d]2, [(x

i
1 ⊗ d)W

′
1 + x

i
1w

�
1 · a⊥

]2

[x
i
2 ⊗ r

′
3 + dW

′
2 + ( x

i
2 ⊗ r3 + w2 ) · (In2 ⊗ a

⊥
)]2,

[r
′
3 + dV

′
0 + ( r3 + v0 ) · (Ik′ ⊗ a

⊥
)]2,

[x
i
3 ⊗ k

′
+ dV

′
+ ( x

i
3(α + δ) + v ) · (In3 ⊗ a

⊥
)]2

Given the boxed terms together with (c,d,W′
1,W

′
2,V

′,V′
0,k

′, α,a⊥,b⊥, δ, r′
3),

we can simulate ĉt, ski[1], ski[2] as well as aux. Therefore, it suffices to show that
the boxed terms in Game2.i.1 and Game2.i.2 are computationally indistinguish-
able, which follows from Lemma 1. Concretely, the reduction on input (ct, sk)
from Db corresponding to f and (xi

1,x
i
2,x

i
3) and where α0 = α, α1 = α + δ:

1. samples random A,B, c,d,W′
1,W

′
2,V

′,V′
0,k

′, α, δ, r′
3, and call these values

aux′;
2. computes a⊥,b⊥ using A, c,B,d;
3. computes aux using aux′,a⊥,b⊥, which it then uses to compute mpk as well

as the first i − 1 and the last q − i key queries;
4. computes ĉt by using ct from Db for the boxed terms, and computing the

remaining non-boxed terms using aux′,a⊥,b⊥;
5. computes ˆkem using aux′;
6. computes either ski[1] or ski[2] by using sk from Db for the boxed terms, and

computing the remaining non-boxed terms using aux′,a⊥,b⊥;

The output of the reduction is exactly Game2.i.(b+1).

Game2.i.2 ≈c Game2.i.3. Analogous to Game2.i.0 ≈c Game2.i.1.

Game2.q.3 ≡ Game3. In Game2.q, we have kem0 = [kc�], whereas mpk only leaks

[kA]T and ŝk
1
, . . . , ŝk

q
only leaks k + δa⊥. The claim follows from the fact that

kc� is uniformly random in Zp given kA and k + δa⊥.
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5 Broadcast Encryption with Size N1/3

We can encode broadcast encryption for N parties as CP-ABE for degree 3 poly-
nomials whenever n1n2n3 ≥ N , by using the folklore encoding of set membership
in S ⊆ [N ] as a degree 3 polynomial over {0, 1}n1 × {0, 1}n2 × {0, 1}n3 :

– given a set S ⊆ [N ], let f = (f1, . . . , fN ) ∈ {0, 1}N denote the characteristic
vector for the set S (that is, fi = 1 iff i ∈ S);

– given y ∈ [N ], we can pick x1 ∈ {0, 1}n1 ,x2 ∈ {0, 1}n2 ,x3 ∈ {0, 1}n3 such
that x1 ⊗ x2 ⊗ x3 ∈ {0, 1}n1n2n3 is the characteristic vector of the set {y}.

– then, (x1 ⊗ x2 ⊗ x3)f� = 1 iff y ∈ S.

We can then set n1 = N δ, n2 = N1−2δ, n3 = N δ for any 0 ≤ δ ≤ 1/3, which
yields

|mpk| = O(N1−2δ), |ct| = O(N δ), |sk| = O(N1−2δ)

In particular, when δ = 1/3, we achieve

|mpk| = O(N1/3), |ct| = O(N1/3), |sk| = O(N1/3)

A concrete example. While the main focus of this work is on asymptoti-
cally more efficient pairing-based broadcast encryption, our scheme does achieve
pretty concrete good efficiency. We can instantiate our scheme with the popu-
lar BLS12-381 curve with |G1| being 48 bytes and |G2| being 96 bytes. Now,
recall an application for broadcast encryption in BGW05 [6], namely file shar-
ing in encrypted file systems. The Windows EFS has a limit of 256KB in the
file header for the EFS meta-data, and supports a maximum of 800 individ-
ual users. Assuming 32-bit users IDs, we can support 1000 users with a file
header (S, ct) of size 4 × 1000 + 82 × 48 = 7936 bytes, where each user holds
a secret key of size 67 × 96 = 6432 bytes. We can do slightly better by setting
n1 = 20, n2 = 10, n3 = 5, which yields a header of size 4×1000+72×48 = 7456
bytes and a secret key of size 57 × 96 = 5482 bytes. However, since N = 1000
is fairly small, the broadcast encryption scheme with O(

√
N) parameters would

also achieve similar performances: a file header of size 4× 1000+66× 48 = 7168
and a secret key of size 68 × 96 = 6528 bytes.

Acknowledgments. I am extremely grateful to Junqing Gong for meticulous proof-
reading and constructive feedback. I would also like to thank Tianren Liu for helpful
discussions on the challenges of extending our N1/3 CDS scheme in [22] to general
fields while preserving degree 2 reconstruction.
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1 Introduction

1.1 Motivation

Modern cryptography bases the security of schemes on assumptions, including
the basic ones (such as the existence of one-way functions (OWFs)), the more
advanced ones (such as the hardness of factoring, discrete logarithms, and some
lattice problems), and the much more exotic ones (such as the existence of generic
groups [25,29] or algebraic groups [17]). Although there is some analysis on these
assumptions, it is less desirable. We are interested in how to construct cryptog-
raphy based on much mild assumptions or which form of security cryptography
can be achieved if all classical assumptions (such as the existence of OWFs) do
not hold.

Fine-grained cryptography is a direction in approaching the aforementioned
problems. It aims at cryptography with weaker security in a setting where
adversaries have only bounded resources and honest users have less resources
than the adversaries. Under this setting it is possible to make the underlying
assumption extremely mild, for instance, assuming NC1 � ⊕L/poly. This is a
widely accepted worst-case assumption. As ⊕L/poly is the class of languages with
polynomial-sized branching programs and all languages in NC1 have polynomial-
sized branching programs of constant width [3], this assumption holds if there
exists one language having only polynomial-sized branching programs of non-
constant width. This is different to assuming the existence of OWFs which is
an average-case assumption. It requires that the OWF be hard to invert on a
random input. Hence, NC1 � ⊕L/poly is more likely to be true.

The study on fine-grained cryptography was initialized by Merkle [26]. In the
recent years, we are interested in which kind of cryptosystems can be constructed
in this setting. We highlight the recent constructions of OWFs [8], symmetric-
key and (additively homomorphic) public-key encryption [9,13], hash proof sys-
tems (HPS) [14], and non-interactive zero-knowledge (NIZK) proof systems [2].
However, due to the restriction on running resources, many important primi-
tives remain unknown. Surprisingly, digital signature schemes are among them,
although they are implied by OWFs in the classical setting.

Our goal: fine-grained secure ABEs. We focus on constructing attribute-
based encryption (ABE) schemes [19] with fine-grained security, since it has
many applications and implies important primitives, including digital signatures.
In an ABE scheme, messages are encrypted under descriptive values x, secret keys
are associated with values y, and a secret key decrypts the ciphertext if and only
if p(x, y) = 1 for some boolean predicate p. Here the predicate p may express
arbitrary access policy. This is in contrast to traditional public-key encryp-
tion (PKE) schemes without access control on data. Identity-based encryption
[6,12,28] is a simplified version of ABE, where p is the equality predicate, and
it implies signatures in a natural manner (even in the fine-grained setting).

In general, it is challenging to construct ABEs. For instance, in the classical
setting, it is shown that IBEs cannot be constructed using trapdoor permutations
(TDP) or CCA-secure PKE schemes in a black-box manner [7]. Moreover, many



Fine-Grained Secure Attribute-Based Encryption 181

pairing-based constructions of ABE and IBE (for instance, [5,10]) heavily rely
on the algebraic structures of pairing groups. These necessary structures are not
available in fine-grained cryptography. Thus, in this paper, we will transform
the state of the art of fine-grained cryptography, which only provides primitives
related to TDP and CCA-secure PKE, and develop new tools to achieve our
goal.

1.2 Our Contributions

We construct the first fine-grained secure ABE scheme. In particular, our scheme
is computable in AC0[2] and secure against adversaries in NC1. Note that
AC0[2] � NC1 [27,30]. Similar to several existing NC1 fine-grained primitives
[9,13,14], the security of our scheme is based on the same worst-case assump-
tion NC1 � ⊕L/poly. This is a widely accepted, weak assumption. For simplicity,
we consider fine-grained cryptography as schemes with NC1 honest users and
adversaries and security based on NC1 � ⊕L/poly in the rest of this paper.

Previously, fine-grained cryptography can only achieve symmetric-key and
public-key encryption and HPS. Our work enriches its available tools and brings
fine-grained cryptography closer to classical cryptography in terms of function-
ality.

In particular, our construction is presented in a generic manner using predi-
cate encodings [10,32]. Hence, by suitably instantiating the underlying encoding,
we directly obtain a fine-grained IBE scheme (which in turn implies a fine-grained
signature scheme), fine-grained ABEs for inner-product encryption, non-zero
inner-product encryption, spatial encryption, doubly spatial encryption, boolean
span programs, and arithmetic span programs, and also fine-grained broadcast
encryption and fuzzy IBE schemes. Prior to this work, it was unknown whether
these primitives can be constructed in NC1 based on a worst-case complexity
assumption.

Finally, we use our technique to construct an efficient quasi-adaptive NIZK
[23] with fine-grained security. Here “quasi-adaptive” means that common ref-
erence strings may depend on the language of the NIZK system.

1.3 Technique Overview

We borrow the frameworks of the pairing-based constructions of IBEs in [5] and
ABEs in [10] to upgrade the available fine-grained techniques [1,14,22] in achiev-
ing our goal. At a high-level point of view, the main idea in [5,10] is to find a
suitable symmetric-key primitive and transform it to the corresponding public-
key scheme using pairings and the Matrix Decisional Diffie-Hellman (MDDH)
assumption [16]. More precisely, the Blazy-Kiltz-Pan (BKP) framework [5] trans-
forms message authentication codes (MAC) to IBEs, and the Chen-Gay-Wee
(CGW) framework [10] transforms predicate encodings to ABEs.

However, the goal of fine-grained cryptography is to construct schemes with
mild assumptions other than the MDDH assumption. Our work develops tech-
niques to build ABEs without pairings or the MDDH assumption, but only under



182 Y. Wang et al.

the mild assumption that NC1 � ⊕L/poly. For simplicity, we mostly focus on
our techniques in the context of IBE here, and give some ideas about how they
can be extended to construct ABEs. In this paper, we consider adaptive secu-
rity where adversaries can adaptively request user secret keys and a challenge
ciphertext.

The approach of BKP and its limitations in NC1. The “MAC→IBE”
transformation of BKP [5] is an abstraction of the Chen-Wee (CW) IBE scheme
[11], and it also generalizes the “PRF→Signature” framework by Bellare and
Goldwasser (BG) [4] in the IBE context. The BKP transformation requires an
“affine MAC”, namely, a MAC whose verification is done by checking a particular
system of affine equations. Variables in these affine equations are included in
the MAC secret key, and the (public) coefficients are derived from the message
(which will be the identity of the resulting IBE scheme) to be signed. Such a
MAC scheme can be constructed based on the Diffie-Hellman assumption which
is generalized as the MDDH assumption.

We give some ideas about how an affine MAC can be turned into an IBE
scheme. The master public key of an IBE scheme, pk = Com(skMAC), is a com-
mitment of the MAC secret key, skMAC. A user secret key usk[id] of an identity
id consists of a BG signature, namely, a MAC tag τid on the message id and a
NIZK proof of the validity of τid w.r.t. the secret key committed in pk.

Since the MAC verification consists of only affine equations, after imple-
menting the aforementioned commitments and NIZK proofs with the (tuned)
Groth-Sahai (GS) proof system [20], the BKP IBE ciphertext ctid can be viewed
as a randomized linear combination of pk w.r.t. id. This is the key observation of
BKP. The BKP framework can be further improved and extended to construct
ABEs using predicate encodings [32] as in the CGW framework [10].

The MDDH assumption and the pairing-based GS proofs are two key ingredi-
ents for the BKP framework which are not available in fine-grained cryptography.
One direction to resolve this is to develop a fine-grained GS proof system, but it
is not clear what the counterpart of “pairing-product equations” will be. Instead,
we achieve our goal with a simpler and more direct approach.

A hard subset membership problem for NC1 circuits. We first need to find
a counterpart of the MDDH assumption in NC1, since the separation assumption
NC1 � ⊕L/poly does not directly give us tools in constructing cryptographic
schemes. In the work of [1,22], it is shown that, if NC1 � ⊕L/poly holds, then
the following two distributions are indistinguishable for NC1 circuits:

{M0 ∈ {0, 1}n×n : M0
$← ZeroSamp(n)}

︸ ︷︷ ︸

=D0

and {M1 ∈ {0, 1}n×n : M1
$← OneSamp(n)}

︸ ︷︷ ︸

=D1

where n = n(λ) is some polynomial in security parameter λ, and the randomized
sampling algorithms ZeroSamp and OneSamp output matrices with rank n − 1
and full rank, respectively. Concrete definitions of these algorithms are given in
Sect. 2.2, and they are not relevant in this section.

This indistinguishability implies a hard subset membership problem in NC1

implicitly given by Egashira, Wang, and Tanaka [15] for their HPS: Given a
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matrix M from D0 and a random vector t in two specific distributions repre-
sented by M, the task of the problem is to tell whether t is in the span of M.

Our IBE in NC1. Our main technical contribution is a new approach of using
the subset membership problem to transform an affine MAC to IBEs in the fine-
grained setting. Our starting point is constructing a secure affine MAC in NC1.
We prove that, if the subset membership problem is hard in NC1, then our MAC
is secure for NC1 adversaries.

Next, we propose a generic construction of IBE based on affine MACs, fol-
lowing the BKP framework. In stark contrast to the BKP, our construction does
not require pairings. Essentially, we develop a Groth-Sahai-like proof system in
NC1 to prove the validity of our affine MAC. This proof system allows us to
show that if our affine MAC is secure then our resulting IBE is secure in NC1.
At the core of our proof system is a new commitment scheme in NC1, for which
we achieve the hiding property by exploiting the concrete structure of matrices
in D0.

We give more details about the security proof. Firstly, the zero-knowledge
property allows us to generate user secret keys for adversaries without knowing
the MAC secret key. Secondly, we show that if an adversary can break the adap-
tive security of our IBE, then we can construct a reduction to break the security
of our affine MAC. This is a crucial step, and we require some extractability of
the proof system to extract the MAC forgery from the IBE adversary. In the
BKP framework, this extractability can be achieved by computing the inver-
sion of some matrix A ∈ Zk×k

q for some positive integer k. However, in our
setting, inverting a matrix in {0, 1}n×n is impossible, otherwise, this will lead
to a distinguisher for the subset membership problem in NC1. Also, there is
no known way to sample a matrix with its inverse efficiently [14]. To solve it,
our proof system develop a new method in achieving this extractability with-
out inverting any matrix. Our core idea is to prove that with a fresh random
string r $← {0} × {0, 1}n−1, it is possible to extract the forgery from our NC1-
commitments by switching the distribution of the public parameter A ∈ D0

twice (from D0 to D1 and then back to D0) and changing the distribution of r
during the switching procedure.

Dual system methodology in NC1 and ABE. Our techniques for IBE can
also be viewed as the dual system encryption methodology [31] in NC1, which is
an alternative interpretation of our approach. In our proof, there are two impor-
tant technical steps, switching ciphertexts to invalid and randomizing MAC tags
in the user secret keys. These correspond to switching ciphertexts and user secret
keys from functional to semi-functional in the dual system encryption methodol-
ogy [5,10,24,31]. Dual system methodology is very useful in constructing pred-
icate encryption and it was only known with pairings. Our work is for the first
time implementing the dual system methodology without pairings.

Similar to the extension from BKP-IBE [5] to CGW-ABE [10], we further
extend our techniques in constructing ABEs. We first use predicate encodings
[10,32] to generalize the notion of affine MAC and make it useful for constructing
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ABEs. After that, we upgrade our IBE techniques, and transform the generalized
affine MAC to an adaptively secure ABE in NC1.

More extension and open problem. We are optimistic that our approach
can yield many more new public-key schemes in fine-grained cryptography. In
particular, we show that our techniques can also be used to construct an efficient
QA-NIZK in NC1 with adaptive soundness in the full paper. Roughly, we use the
technique for proving the hiding property of the underlying commitment scheme
in our IBE scheme to achieve adaptive soundness.

Also, we are optimistic that our approach can be used to construct hierar-
chical IBE [18,21]. We leave a detailed treatment of it as an open problem.

2 Preliminaries

Notations. We note that all arithmetic computations are over GF (2) in this
work. Namely, all arithmetic computations are performed with a modulus of
2. We write a $← A(b) (respectively, a = A(b)) to denote the random variable
outputted by a probabilistic (respectively, deterministic) algorithm A on input
b. By x $← S we denote the process of sampling an element x from a set or
distribution S uniformly at random. By x ∈ {0, 1}n we denote a column vector
with size n and by, say, x ∈ {1} × {0, 1}n−1 we mean that the first element of
x is 1. By [n] we denote the set {1, · · · , n}. By xi (respectively, xi) we denote
the ith element of a vector x (respectively, x). By negl we denote an unspecified
negligible function.

For a matrix A ∈ {0, 1}n×t with rank t′ < n, we denote the sets
{y|∃x s.t. y = Ax} and {x|Ax = 0} by Im(A) (i.e., the span of A) and Ker(A)
respectively. By A⊥ ∈ {0, 1}n×(n−t′) we denote a matrix consisting of n−t′ linear
independent column vectors in the kernel of A�. Note that for any y /∈ Im(A),

we have y�A⊥ �= 0. By (aij)i∈[l],j∈[m] we denote the matrix

⎛
⎜⎝

a11 · · · a1m

...
. . .

...
al1 · · · alm

⎞
⎟⎠. Let

A = (aij)i∈[l],j∈[m] be an l×m matrix and B = (Bij)i∈[m],j∈[n] be a large matrix
consisting of m × n matrices Bij for all i ∈ [m] and j ∈ [n]. By h �A we denote
(h · aij)i∈[l],j∈[m] and by A � B we denote

(
m∑

k=1

aik � Bkj)i∈[l],j∈[n].

By Mn
0 , Mn

1 , and Nn, we denote the following n × n matrices:

Mn
0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Mn
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 1
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Nn =

⎛
⎜⎜⎜⎜⎝

0 · · · 0
... 0 · · · 0

0
. . .

...
1 0 · · · 0

⎞
⎟⎟⎟⎟⎠

,

and by 0 we denote a zero vector (0, · · · , 0)�.
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Games. We follow [5] to use code-based games for defining and proving security.
A game G contains procedures Init and Finalize, and some additional proce-
dures P1, . . . ,Pn, which are defined in pseudo-code. All variables in a game are
initialized as 0, and all sets are empty (denote by ∅). An adversary A = {aλ}λ∈N

is executed in game G w.r.t. the security parameter λ (denote by Gaλ) if aλ

first calls Init, obtaining its output. Next, it may make arbitrary queries to Pi

(according to their specification) and obtain their output. Finally, it makes one
single call to Finalize(·) and stops. We use Gaλ ⇒ d to denote that G outputs
d after interacting with aλ, and d is the output of Finalize.

2.1 Function Families

In this section, we recall the definitions of function families, NC1 circuits, AC0[2]
circuits, and ⊕L/poly. Note that AC0[2] � NC1 [27,30].

Definition 1 (Function Family). A function family is a family of (possibly
randomized) functions F = {fλ}λ∈N, where for each λ, fλ has a domain Df

λ and
a range Rf

λ.

Definition 2 (NC1). The class of (non-uniform) NC1 function families is the
set of all function families F = {fλ}λ∈N for which there is a polynomial p(·) and
constant c such that for each λ, fλ can be computed by a (randomized) circuit
of size p(λ), depth c log(λ), and fan-in 2 using AND, OR, and NOT gates.

Definition 3 (AC0[2]). The class of (non-uniform) AC0[2] function families is
the set of all function families F = {fλ}λ∈N for which there is a polynomial
p(·) and constant c such that for each λ, fλ can be computed by a (randomized)
circuit of size p(λ), depth c, and unbounded fan-in using AND, OR, NOT, and
PARITY gates.

One can see that multiplication of a constant number of matrices can be per-
formed in AC0[2], since it can be done in constant depth with PARITY gates.

Definition 4 (⊕L/poly). ⊕L/poly is the set of all boolean function families F =
{fλ}λ∈N for which there is a constant c such that for each λ, there is a non-
deterministic Turing machine Mλ such that for each input x with length λ,
Mλ(x) uses at most c log(λ) space, and fλ(x) is equal to the parity of the number
of accepting paths of Mλ(x).

2.2 Sampling Procedure

We now recall the definitions of four sampling procedures LSamp, RSamp,
ZeroSamp, and OneSamp in Fig. 1. Note that the output of ZeroSamp(n) is always
a matrix of rank n − 1 and the output of OneSamp(n) is always a matrix of full
rank [13].

We now recall several assumptions and lemmata on ZeroSamp and OneSamp
given in [13].
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Definition 5 (Fine-grained matrix linear assumption [13]). There exists
a polynomial n = n(λ) in the security parameter λ such that for any family
A = {aλ}λ∈N in NC1, we have

|Pr[aλ(M) = 1 | M $← ZeroSamp(n)]
− Pr[aλ(M′) = 1 | M′ $← OneSamp(n)]| ≤ negl(λ).

Lemma 1 (Lemma 4.3 in [13]). If NC1 � ⊕L/poly, then the fine-grained
matrix linear assumption holds.

Fig. 1. Definitions of LSamp, RSamp, ZeroSamp, and OneSamp. n = n(λ) is a polyno-
mial in the security parameter λ.

Remark. Notice that for any polynomial n = n(λ), we have {fn}λ∈N ∈ NC1 iff
{fλ}λ∈N ∈ NC1 since O(log(n(λ))) = O(log(λ)). Hence, in the above lemma, we
can also set n(·) as an identity function, i.e., n = λ. For simplicity, in the rest of
the paper, we always let ZeroSamp(·) and OneSamp(·) take as input λ.

The following lemma implies that for a matrix M� sampled by ZeroSamp(λ),
there is a unique non-zero vector with the first (respectively, last) element being
1 in the kernel of M (respectively, M�).

Lemma 2 (Lemma 3 in [15]). For all λ ∈ N and all M� ∈ ZeroSamp(λ), it
holds that Ker(M�) = {0,k} where k is a vector such that k ∈ {0, 1}λ−1 × {1}.
Lemma 3 Lemma 4 in [15]). For all λ ∈ N and all M� ∈ ZeroSamp(λ), it
holds that Ker(M) = {0,k} where k is a vector such that k ∈ {1} × {0, 1}λ−1,
i.e., there must exist M⊥ ∈ {1} × {0, 1}λ−1.

The following lemma indicates a simple relation between the distributions of
the outputs of ZeroSamp(λ) and OneSamp(λ).

Lemma 4 (Lemma 7 in [15]). For all λ ∈ N, the distributions of M + Nλ

and M′ are identical, where M� $← ZeroSamp(λ) and M′� $← OneSamp(λ).

We now give two lemmata showing that when sampling a random vector w
from {0, 1}λ, the first element of w does not affect the distribution of Mw for
M� ∈ ZeroSamp(λ).
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Lemma 5 (Lemma 5 in [15]). For all λ ∈ N and all M� ∈ ZeroSamp(λ), it
holds that

Im(M) = {x|w ∈ {0}×{0, 1}λ−1,x = Mw} = {x|w∈{1}×{0, 1}λ−1,x = Mw}.

Lemma 6. For all λ ∈ N and all M� ∈ ZeroSamp(λ), the distributions of x and
x′ are identical, where w $← {0} × {0, 1}λ−1, w′ $← {1} × {0, 1}λ−1, x = Mw,
and x′ = Mw′.

Proof. According to Lemma 3, for any M� ∈ ZeroSamp(λ), there exists k ∈
Ker(M) such that k ∈ {1} × {0, 1}λ−1. Therefore, the distributions of (w + k),
where w $← {0}×{0, 1}λ−1, and w′ $← {1}×{0, 1}λ−1 are identical. Moreover, we
have Mw = M(w +k). Hence, the distributions of Mw and Mw′ are identical.
completing the proof of Lemma 6. �


Below we recall the a theorem implicitly given in [15] as the subset mem-
bership problem for an HPS. Roughly, it shows that for M� $← ZeroSamp(λ), a
vector sampled from the span of M is indistinguishable from one sampled out-
side the span of M for any adversary in NC1. We refer the reader to the full
paper for the proof.

Definition 6 (Fine-grained subset membership problem [15]). Let SY =
{SampYesλ}λ∈N and SN = {SampNoλ}λ∈N be function families described in
Fig. 2. For all λ ∈ N, all M� ∈ ZeroSamp(λ), and all x ∈ SampNoλ(M), we
have x ∈ {0, 1}λ \ Im(M), then for M� $← ZeroSamp(λ) and any adversary
A = {aλ}λ∈N ∈ NC1, we have

|Pr[aλ(x) = 1 | x $← SampYesλ(M)]
− Pr[aλ(x) = 1 | x $← SampNoλ(M)]| ≤ negl(λ).

Fig. 2. Definitions of SY and SN. Note that SY, SN ∈ AC0[2], since they only involve
operations including sampling random bits and multiplication of a matrix and a vector.

Theorem 1 ([15]). If NC1 � ⊕L/poly, then the fine-grained subset membership
problem (see Definition 6) holds.

Remark. Note that the subset membership problem in [15] gives a stronger
result additionally showing that the output distributions of SampYesλ(M) and
SampNoλ(M) are identical to the uniform distributions over Im(M) and {0, 1}λ\
Im(M) respectively. We only need a weak form of it in this work.
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2.3 Predicate Encodings

We now recall the definition of predicate encodings. As in [10], our resulting
construction of ABE is generally based on a predicate encoding. By exploiting
various types of encodings, we can achieve a broad class of ABEs.

Our definitions are slightly different from the original definition in [10], in
that our definition is over GF (2) rather than GF (p), and we require that the
encodings are performed in a circuit class C1.

Definition 7 (Predicate Encoding [10]). Let P = {pλ}λ∈N with pλ : X ×
Y → {0, 1} be a predicate, where X and Y are polynomial-sized spaces associated
with λ. An C1-predicate encoding for P is a function family PE = {rEλ, kEλ, sEλ,
sDλ, rDλ}λ∈N ∈ C1 with

– rEλ : Y × {0, 1}� → {0, 1}η,
– kEλ : Y × {0, 1} → {0, 1}η,
– sEλ : X × {0, 1}� → {0, 1}ζ ,
– sDλ : X × Y × {0, 1}ζ → {0, 1},
– rDλ : X × Y × {0, 1}η → {0, 1},
where � = �(λ), η = η(λ), and ζ = ζ(λ) are polynomials in λ.

Linearity is satisfied is for all λ ∈ N and all (x, y) ∈ X × Y, rEλ(y, ·),
kEλ(y, ·), sEλ(x, ·), sDλ(x, y, ·), and rDλ(x, y, ·) are {0, 1}-linear. Namely, for any
y ∈ Y, any w0,w1 ∈ {0, 1}�, and any c ∈ {0, 1}, we have rEλ(y,w0 + w1 · c) =
rEλ(y,w0)+ rEλ(w1) · c, and the same argument can be made for kEλ, sEλ, sDλ,
and rDλ.

Restricted α-reconstruction is satisfied if for all λ ∈ N, all (x, y) ∈ X × Y
such that pλ(x, y) = 1, all w ∈ {0, 1}�, and all α ∈ {0, 1}, we have

rDλ(x, y, rEλ(y,w)) = sDλ(x, y, sEλ(x,w)) and rDλ(x, y, kEλ(y, α)) = α.

α-privacy is satisfied if for all λ ∈ N, all (x, y) ∈ X ×Y such that pλ(x, y) = 0,
and all α ∈ {0, 1}, the following distributions are identical:

(x, y, α, sEλ(x,w), rEλ(y,w) + kEλ(y, α)) and (x, y, α, sEλ(x,w), rEλ(y,w)),

where w $← {0, 1}�.

Remark on notions for predicate encodings. Similar to [10], we abuse the
notion

rEλ(x,W) where W = (wij)i∈[l],j∈[m] and wij ∈ {0, 1}�

for all i, j to denote the matrix

(rEλ(x,wij))i∈[l],j∈[m].

The same argument is made for (kEλ, sEλ, sDλ, rDλ).

Encoding for equality. We now give an example of predicate encoding PEeq

for equality Peq in Fig. 3. By instantiating our ABKEM given later in Sect. 5 with
this encoding, we immediately achieve an IBKEM. Linearity is straightforward.
Restricted α-reconstruction follows from the fact that u + x�w = u + y�w
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Fig. 3. Definitions of Peq = {pλ}λ∈N and PEeq = {rEλ, kEλ, sEλ, sDλ, rDλ}.

when x = y, and α-privacy follows from the fact that u + x�w and u + y�w
are pairwise independent if x �= y.

2.4 Attribute-Based Key Encapsulation

We now give the definition of fine-grained ABKEM, the instantiation of which
can be easily converted into ABEs by using a one-time symmetric cypher.

Definition 8 (Attribute-Based Key Encapsulation). A C1-attribute-bas-
ed key encapsulation (ABKEM) scheme for a predicate P = {pλ}λ is a function
family ABKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N ∈ C1 with the following prop-
erties.

– Genλ returns the (master) public/secret key (pk, sk). We assume that pk
implicitly defines value spaces X and Y, a key space K, and a ciphertext
space C.

– USKGenλ(sk, y) returns a user secret-key usk[y] for a value y ∈ Y.
– Encλ(pk, x) returns a symmetric key K ∈ K together with a ciphertext ct ∈ C

w.r.t. x ∈ X .
– Decλ(usk[y], x, ct) deterministically returns a decapsulated key K ∈ K or the

reject symbol ⊥.

Perfect correctness is satisfied if for all λ ∈ N, all (pk, sk) ∈ Genλ, all y ∈ Y,
all x ∈ X , all usk[y] ∈ USKGenλ(sk, y), and all (K, ct) ∈ Encλ(pk, x), if pλ(x, y) =
1, we have

Pr[Decλ(pk, usk[y], ct) = K] = 1.

The security requirement we consider is indistinguishability against chosen plain-
text and attribute attacks (PR-AT-CPA) defined as follows.

Definition 9 (PR-AT-CPA Security for ABKEM). Let k(·) and l(·) be func-
tions in λ. ABKEM is C2-(k, l)-PR-AT-CPA secure if for any A = {aλ}λ∈N ∈ C2,
where aλ is allowed to make k rounds of adaptive queries to USKGen(·) and
each round it query l inputs, we have

|Pr[PR-AT-CPAaλ

real ⇒ 1] − Pr[PR-AT-CPAaλ

rand ⇒ 1]| ≤ negl(λ),

where the experiments are defined in Fig. 4.
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Fig. 4. Security Games PR-AT-CPAreal and PR-AT-CPArand for defining PR-AT-CPA
security for ABKEM. The boxed statement redefining K∗ is only executed in game
PR-AT-CPArand.

3 Generalized Affine MAC

In this section, we give the definition of generalized affine MAC, which generalizes
the notion of standard affine MAC [5] by using predicate encodings, and show
how to construct it in the fine-grained setting under the assumption NC1 �

⊕L/poly.

3.1 Definitions

The definition of generalized affine MAC is as follows.

Definition 10 (Generalized Affine MAC). Let PE = {sEλ, rEλ, kEλ, sDλ,
rDλ}λ∈N ∈ C1 be a predicate encoding for P = {pλ}λ∈N, where rEλ : Y×{0, 1}� →
{0, 1}η, kEλ : Y × {0, 1} → {0, 1}η, and sEλ : X × {0, 1}� → {0, 1}ζ .

A C1-generalized affine message authentication code for PE is a function
family MACGA = {GenMACλ,Tagλ,VerMACλ}λ∈N ∈ C1.

1. GenMACλ returns skMAC containing (B,X, x′), where B ∈ ZeroSamp(λ), X ∈
{0, 1}λ×�, and x′ ∈ {0, 1}.

2. Tagλ(skMAC,m ∈ Y) returns a tag τ = (t,u) ∈ {0, 1}λ × {0, 1}η, computed as

t $← SampYesλ(B) (1)

u = rEλ(m,X�t) + kEλ(m, x′) ∈ {0, 1}η. (2)

3. VerMACλ(skMAC,m, τ = (t,u)) verifies if Eq. (2) holds.

Correctness is satisfied if for any skMAC ∈ GenMACλ, m ∈ Y, and τ ∈
Tagλ(skMAC,m), we have 1 = VerMACλ(skMAC,m, τ).

The security requirement we consider is psedorandomness against chosen mes-
sage attacks (PR-CMA) defined as follows.
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Fig. 5. Games PR-CMAreal and PR-CMArand for defining PR-CMA security. The boxed
statement redefining h1 is only executed in game PR-CMArand.

Definition 11 (PR-CMA Security). Let k = k(λ) and l = l(λ) be polynomials
in λ. MACGA is C2-(k, l)-PR-CMA secure if for any A = {aλ}λ∈N ∈ C2, where
aλ is allowed to make k rounds of adaptive queries to Eval(·) and each round
it queries l inputs, we have

Pr[PR-CMAaλ

real ⇒ 1] − Pr[PR-CMAaλ

rand ⇒ 1] ≤ negl(λ),

where the experiments are defined in Fig. 5.

Roughly, the PR-CMA security says that in the presence of many tags and a
challenge token (h,h0, h1), an adversary cannot tell whether the h1 is honestly
generated or randomness.

Standard Affine MAC. Let X = (x0,x1, · · · ,xn) $← {0, 1}λ×(n+1). When
pλ(·) is an identity function, u is computed as

u = x�
0 t +

n∑
i=1

mix�
i t + x′ ∈ {0, 1} (3)

in Eq. (2), and h0 is computed as

h0 = h · (x�
0 +

n∑
i=1

mix�
i ) ∈ {0, 1}1×λ (4)

in Fig. 5, i.e., the predicate encoding is the one for equality (see Fig. 3), the above
definition becomes exactly the same as that of affine MAC given in [5] for the
HPS based IBKEM, except that we only consider computations over GF (2) and
t is sampled by SampYesλ. We give the definition as below.

Definition 12 (Affine MAC [5]). A Generalized affine MAC for the predicate
Peq and encoding PEeq defined as in Fig. 3 is said to be an affine MAC.
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Fig. 6. Definition of MACGA = {GenMACλ,Tagλ,VerMACλ}λ∈N.

3.2 Construction

In this section, we give our construction of AC0[2]-generalized affine MAC based
on NC1 � ⊕L/poly. It is a natural extension of the standard affine MAC from
an HPS in [5].

Theorem 2. If NC1 � ⊕L/poly and PE = {sEλ, rEλ, kEλ, sDλ, rDλ}λ∈N ∈ AC0[2]
is a predicate encoding, where rEλ : Y × {0, 1}� → {0, 1}η, kEλ : Y × {0, 1} →
{0, 1}η, and sEλ : X × {0, 1}� → {0, 1}ζ , then MACGA is an AC0[2]-generalized
affine MAC that is NC1-(k, l)-PR-CMA secure, where k is any constant and l =
l(λ) is any polynomial in λ.

Proof. First, we note that ({GenMACλ}λ∈N, {Tagλ}λ∈N, {VerMACλ}λ∈N) are com-
putable in AC0[2], since they only involve operations including sampling random
bits and multiplication of a constant number of matrices, which can be done
in constant depth with PARITY gates. Also, it is straightforward that MACGA

satisfies correctness.
We now prove that MACGA is NC1-(k, l)-PR-CMA secure by defining a

sequence of intermediate games as in Fig. 7.
Let A = {aλ}λ∈N ∈ NC1 be any adversary against the PR-CMA-security of

MACGA. Game G0 is the real attack game. In games G1,i, the first i − 1 queries
to the Eval oracle are answered with (t,u), where t $← SampNoλ(B) and u
contains no information on kEλ(m, x′), and the remaining are answered as in the
real scheme. To interpolate between G1,i and G1,i+1, we also define G′

1,i, which
answers the i-th query to Eval by picking t $← SampNoλ(B). By definition, we
have G0 = G1,1.

Lemma 7. Pr[PR-CMAaλ

real ⇒ 1] = Pr[Gaλ
0 ⇒ 1] = Pr[Gaλ

1,1 ⇒ 1].

Lemma 8. There exists an adversary B1,i = {b1,i
λ }λ∈N ∈ NC1 such that b1,i

λ

breaks the fine-grained subset membership problem (see Definition 6), which holds
under NC1 � ⊕L/poly according to Lemma 1, with probability

|Pr[G′aλ
1,i ⇒ 1] − Pr[Gaλ

1,i ⇒ 1]|.
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Fig. 7. Games G0, (G1,i,G′
1,i)1≤i≤k·l,G1,k·l+1,G2 for the proof of Theorem 2.

Proof. Games G1,i and G′
1,i only differ in the distribution of t returned by the

Eval oracle for its i-th query. We build b1,i
λ as follows.

The distinguisher b1,i
λ runs in exactly the same way as the challenger in G1,i

except that for its i-th query, it obtains t which is sampled as t $← SampYesλ(B)
or t $← SampNoλ(B). When aλ outputs β ∈ {0, 1}, bλ outputs β if no m such
that pλ(m∗,m) = 1 was queried to Eval. Otherwise, bλ outputs 0.

Since aλ only makes constant rounds of queries, all the operations in bλ are
performed in NC1. Hence, we have B1,i ∈ NC1.

When t is sampled as t $← SampYesλ(B) (respectively, t $← SampNoλ(B)),
the view of aλ is exactly the same as its view in G1,i (respectively, G′

1,i). Thus
the advantage of b1,i

λ in breaking the subset membership problem is |Pr[G′aλ
1,i ⇒

1] − Pr[Gaλ
1,i ⇒ 1]|, completing this part of proof. �


Lemma 9. Pr[Gaλ
1,i+1 ⇒ 1] = Pr[G′aλ

1,i ⇒ 1].

Proof. Let m be the i-th query to Eval such that pλ(m∗,m) �= 1 and let (t,u)
be its tag. We have t /∈ Im(B) due to Lemma 1. We use an information-
theoretic argument to show that in G′

1,i, u does not reveal any information
on x′. Information-theoretically, aλ may learn B�X from each c-th query with
c > i. Thus, for X $← {0, 1}λ×� and w $← {0, 1}�×1, aλ information-theoretically
obtains the distribution of
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⎛
⎝

X�B
h0 = h � sEλ(m∗,X�)

u = rEλ(m,X�t) + kEλ(m, x′)

⎞
⎠

=

⎛
⎜⎝

(X� + wB⊥�)B
h0 = sEλ(m∗,X� + wB⊥�)

u = rEλ(m, (X� + wB⊥�)t) + kEλ(m, x′)

⎞
⎟⎠

=

⎛
⎝

X�B
h0 = sEλ(m∗,X�) + sEλ(m∗,wB⊥�)

u = rEλ(m,X�t) + rEλ(m,w) + kEλ(m, x′)

⎞
⎠ (∵ t /∈ Im(B)).

This distribution is identical to the distribution of
⎛
⎝

X�B
h0 = sEλ(m∗,X�) + sEλ(m∗,wB⊥�)

u = rEλ(m,X�t) + rEλ(m,w)

⎞
⎠ ,

since the distribution of

(m∗,m, x′, sEλ(m∗,w), rEλ(m,w) + kEλ(m, x′)

and
(m∗,m, x′, sEλ(m∗,w), rEλ(m,w)),

are identical due to the α-privacy of PE, completing this part of proof. �

Lemma 10. Pr[Gaλ

2 ⇒ 1] = Pr[Gaλ

1,k·l+1 ⇒ 1].

Proof. Note that aλ can ask at most k · l-many Eval queries. In both G1,k·l+1

and G2, all the answers of Eval are independent of x′. Hence, h1 from G1,k·l+1

is uniform in the view of aλ. �

We now do all the previous steps in the reverse order as in Fig. 8. Then, by

using the above arguments in a reverse order, we have the following lemma.

Lemma 11. There exists an adversary B2 = {b2λ}λ∈N ∈ NC1 such that b2λ breaks
the fine-grained subset membership problem with probability at least

(|Pr[PR-CMAaλ

rand ⇒ 1] − Pr[Gaλ
2 ⇒ 1]|)/(k · l).

Putting all above together, Theorem 2 immediately follows. �

An affine MAC. By instantiating the underlying predicate encoding in Fig. 6
with the encoding for equality (see Fig. 3), we immediately obtain an affine MAC
MAC = {GenMACλ,Tagλ,VerMACλ}λ∈N as in Fig. 9 for message space {0, 1}�,
which will be used to construct an IBE scheme in NC1 later. Formally, we have
the following corollary derived from Theorem 2.

Corollary 1. If NC1 � ⊕L/poly, then MAC is an AC0[2]-affine MAC that is
NC1-(k, l)-PR-CMA secure, where k is any constant and l = l(λ) is any polyno-
mial in λ.
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Fig. 8. Games H0, (H1,i,H′
1,i)1≤i≤k·l,H1,k·l+1,H2 for the proof of Lemma 11.

Fig. 9. Definition of MAC = {GenMACλ,Tagλ,VerMACλ}λ∈N.

4 Fine-Grained Secure Identity-Based Encryption

In this section, we present our fine-grained IBE scheme, which captures the core
techniques of our ABE scheme given later in Sect. 5.

4.1 Definition

We now give the definition of fine-grained IBKEM, which is a special case of fine-
grained ABKEM (see Definition 8) where the boolean predicate is restricted to
be the equality predicate.
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Definition 13 (Identity-Based Key Encapsulation). A C1-identity key
encapsulation (IBKEM) scheme is a function family IBKEM = {Genλ,USKGenλ,
Encλ,Decλ}λ∈N ∈ C1 with the following properties.

– Genλ returns the (master) public/secret key (pk, sk). We assume that pk
implicitly defines an identity space ID, a key space K, and a ciphertext space
C.

– USKGenλ(sk, id) returns a user secret-key usk[id] for an identity id ∈ ID.
– Encλ(pk, id) returns a symmetric key K ∈ K together with a ciphertext ct ∈ C

w.r.t. id ∈ ID.
– Decλ(usk[id], id, ct) deterministically returns a decapsulated key K ∈ K or the

reject symbol ⊥.

Perfect correctness is satisfied if for all λ ∈ N, all (pk, sk) ∈ Genλ, all id ∈ ID,
all usk[id] ∈ USKGenλ(sk, id), and all (K, ct) ∈ Encλ(pk, id), we have

Pr[Decλ(pk, usk[id], ct) = K] = 1.

The security requirement we consider is indistinguishability against chosen plain-
text and identity attacks (PR-ID-CPA) defined as follows.

Definition 14 (PR-ID-CPA Security for IBKEM). Let k(·) and l(·) be func-
tions in λ. IBKEM is C2-(k, l)-PR-ID-CPA secure if for any A = {aλ}λ∈N ∈ C2,
where aλ is allowed to make k rounds of adaptive queries to USKGen(·) and
each round it query l inputs, we have

|Pr[PR-ID-CPAaλ

real ⇒ 1] − Pr[PR-ID-CPAaλ

rand ⇒ 1]| ≤ negl(λ),

where the experiments are defined in Fig. 10.

Fig. 10. Security Games PR-ID-CPAreal and PR-ID-CPArand for defining PR-ID-CPA-

security for IBKEM. The boxed statement redefining K∗ is only executed in game
PR-ID-CPArand.
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4.2 Construction

Let MAC = {GenMACλ,Tagλ,VerMACλ}λ∈N ∈ NC1 be an affine MAC over {0, 1}λ

with message space ID in Fig. 9. Our IBKEM IBKEM = {Genλ,USKGenλ,Encλ,
Decλ}λ∈N for key-space K = {0, 1} and identity space {0, 1}� is defined as in
Fig. 11. 1

Fig. 11. Definition of our IBKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N with identity
space {0, 1}� and key space {0, 1}. idi denotes the ith bit of id for all i ∈ [�].

Theorem 3. Under the assumption NC1 � ⊕L/poly and the NC1-(k, l)-PR-CMA
security of MAC, where k is any constant and l = l(λ) is any polynomial in λ,
IBKEM is an AC0[2]-IBKEM that is NC1-(k, l)-PR-ID-CPA secure against NC1.

Due to the page limit, we refer the reader to the full paper for the proof of
Theorem 3.

Extension to IBKEM with large key space. The key space of the above
IBKEM is {0, 1}, while by running it in parallel, we can easily extend it to an
IBKEM with large key space. The resulting scheme can still be performed in
AC0[2] since running in parallel does not increase the circuit depth. The same
extension can be also made for our fine-grained secure ABKEM given later in
Sect. 5.

Extension to QA-NIZK. Our techniques for proving the hiding property of
the underlying commitment scheme in our IBKEM can also be used to construct
an efficient fine-grained QA-NIZK in NC1 with adaptive soundness. We refer the
reader to the full paper for details.
1 The IBKEM can be straightforwardly extended to one with large key space as we

will discuss later in this section.
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5 Fine-Grained Secure Attribute-Based Encryption

In this section, we generalize our IBE scheme as a fine-grained ABE scheme by
using predicate encodings [10,32]. By instantiating the underlying encodings in
different ways, we can achieve ABEs for inner product, non-zero inner prod-
uct, spatial encryption, doubly spatial encryption, boolean span programs, and
arithmetic span programs, and also broadcast encryption and fuzzy IBE schemes,
which are computable in AC0[2] and secure against NC1 under NC1 � ⊕L/poly.
We refer the reader to the full paper for several instances of the encodings and
also to [10] for more instances. We note that the encodings in [10] are defined
over GF (p), while the ours are over GF (2). However, the proofs for encodings in
[10] can be adopted in our case, since the linearity and α-reconstruction proper-
ties hold in GF (p) also hold in GF (2) and by the standard linear-independence
arguments in GF (2), the α-privacy also holds in our case.

Let PE = {rEλ, kEλ, sEλ, sDλ, rDλ}λ∈N ∈ AC0[2] be a predicate encoding for
P = {pλ}λ∈N with rEλ : Y × {0, 1}� → {0, 1}η, kEλ : Y × {0, 1} → {0, 1}η,
sEλ : X × {0, 1}� → {0, 1}ζ , sDλ : X × Y × {0, 1}ζ → {0, 1}, and rDλ : X ×
Y × {0, 1}η → {0, 1}. Let MACGA = {GenMACλ,Tagλ,VerMACλ}λ∈N ∈ AC0[2] be
a PE-generalized affine MAC over {0, 1}λ with message space Y. Our ABKEM
ABKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N is defined as in Fig. 12.

Fig. 12. Construction of ABKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N.
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Theorem 4. Under the assumption NC1 � ⊕L/poly and the NC1-(k, l)-sEλ-
PR-CMA-security of MACGA, where k is any constant and l = l(λ) is any poly-
nomial in λ, ABKEM is an AC0[2]-ABKEM that is NC1-(k, l)-PR-AT-CPA secure
against NC1.

Proof. First, we note that {Genλ}λ∈N, {USKGenλ}λ∈N, {Encλ}λ∈N, and
{Decλ}λ∈N are computable in AC0[2], since they only involve operations includ-
ing multiplication of a constant number of matrices, sampling random bits, and
running MACGA ∈ AC0[2].

By Equation (2) in Sect. 3.1, we have

rDλ(x, y,v||u)c0

=rDλ(x, y, rEλ

⎛
⎜⎝y,

⎛
⎜⎝

t�Y�
1

...
t�Y�

�

⎞
⎟⎠ + kEλ(y,y′�)||

⎛
⎜⎝

t�x1

...
t�x�

⎞
⎟⎠ + kEλ(y, x′)

⎞
⎟⎠Ar

and

sDλ(x, y,C1t) = sDλ(x, y, sEλ

⎛
⎜⎝x,

⎛
⎜⎝

t�(Y�
1 ||x1)
...

t�(Y�
� ||x�)

⎞
⎟⎠

⎞
⎟⎠)Ar.

Then, due to restricted α-reconstruction (see Definition 7), the difference of the
above equations yields K = (y′�||x′)Ar = z′ · r, i.e., correctness is satisfied.

Let A = {aλ}λ∈N be any adversary against the NC1-(k, l)-PR-AT-CPA secu-
rity of ABKEM. We now prove the NC1-(k, l)-PR-AT-CPA security by defining
a sequence of games G0-G6 as in Fig. 13. Roughly, in the first four games, we
show how to extract a challenge token for MACGA from the challenge session
key and ciphertext by switching the distribution of A twice and changing the
distribution of the randomness r during the switching procedure. In the last two
games, we show that the commitments Zi and z′ perfectly hide the secrets, and
the answers of queries made by aλ reveal no useful information other than the
tags and token for MAC.

Lemma 12. Pr[PR-AT-CPAaλ

real ⇒ 1] = Pr[Gaλ
1 ⇒ 1] = Pr[Gaλ

0 ⇒ 1].

Proof. G0 is the real attack game. In game G1, we change the simulation of c∗
0,

C∗
1 and K∗ in Enc(x) by substituting Zi and z′ with their respective definitions

and substituting A with A + Nλ. Since we have

Nλr=

⎛
⎜⎜⎜⎜⎝

0 · · · 0
... 0 · · · 0

0
. . .

...
1 0 · · · 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0
r2
...

rλ

⎞
⎟⎟⎟⎠ = 0,

the view of aλ in G1 is identical to its view in G0, completing this part of proof.
�
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Fig. 13. Games G0-G6 for the proof of Theorem 4.
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Lemma 13. There exists an adversary B1 = {b1λ}λ∈N ∈ NC1 such that b1λ breaks
the fine-grained matrix linear assumption (see Definition 5), which holds under
NC1 � ⊕L/poly according to Theorem 1, with advantage

|Pr[Gaλ
2 ⇒ 1] − Pr[Gaλ

1 ⇒ 1]|.

Proof. G1 and G2 only differ in the distribution of A, namely, A� $←
ZeroSamp(λ) or A� $← OneSamp(λ), and we build the distinguisher b1λ as follows.

b1λ runs in exactly the same way as the challenger of G1 except that in Init,
instead of generating A by itself, it takes as input A� generated as A� $←
ZeroSamp(λ) or A� $← OneSamp(λ) from its own challenger. When aλ outputs
β, b1λ outputs β as well if no y such that pλ(x, y) = 1 was queried to USKGen.
Otherwise, b1λ outputs 0.

If A is generated as A� $← ZeroSamp(λ) (respectively, A� $← OneSamp(λ)),
the view of aλ is the same as its view in G1 (respectively, G2). Hence, the prob-
ability that b1λ breaks the fine-grained matrix linear assumption is

|Pr[Gaλ
2 ⇒ 1] − Pr[Gaλ

1 ⇒ 1]|.

Moreover, since aλ only makes constant rounds of queries, all operations in
b1λ are performed in NC1. Hence, we have B1 = {b1λ}λ∈N ∈ NC1, completing this
part of proof. �

Lemma 14. Pr[Gaλ

3 ⇒ 1] = Pr[Gaλ
2 ⇒ 1].

Proof. In this game, we sample r in Enc(x) as r $← {0, 1}λ instead of r $←
{0} × {0, 1}λ−1. According to Lemma 4, the distributions of A + Nλ in both
G2 and G3 are identical to that of a matrix sampled from ZeroSamp. Then this
lemma follows from Lemma 6 immediately. �

Lemma 15. There exists an adversary B2 = {b2λ}λ∈N ∈ NC1 such that b2λ breaks
the fine-grained matrix linear assumption with advantage

|Pr[Gaλ
4 ⇒ 1] − Pr[Gaλ

3 ⇒ 1]|.

Proof. G1 and G2 only differ in the distribution of A, namely, A� $← OneSamp(λ)
or A� $← ZeroSamp(λ), and we build the distinguisher b2λ against Lemma 1 as
follows.

b2λ runs in exactly the same way as the challenger of G3 except that in Init,
instead of generating A by itself, it takes as input A� generated as A� $←
ZeroSamp(λ) or A� $← OneSamp(λ) from its own challenger. When aλ outputs
β, b2λ outputs β as well if no y such that pλ(x, y) = 1 was queried to USKGen.
Otherwise, b2λ outputs 0.

If A is generated as A� $← OneSamp(λ) (respectively, A� $← ZeroSamp(λ)),
the view of aλ is the same as its view in G3 (respectively, G4). Hence, the prob-
ability that b2λ breaks the fine-grained matrix linear assumption is

|Pr[Gaλ
4 ⇒ 1] − Pr[Gaλ

3 ⇒ 1]|.
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Moreover, since aλ only makes constant rounds of queries, all operations in
b2λ are performed in NC1. Hence, we have B2 = {b2λ}λ∈N ∈ NC1, completing this
part of proof. �

Lemma 16. Pr[Gaλ

5 ⇒ 1] = Pr[Gaλ
4 ⇒ 1].

Proof. In G5, we do not use (Yi)�
i=1 and y′ in USKGen(y) or Enc(x) any

more. We give the sampling procedure for A in an explicit way and change the
simulation of Zi, z′, v, C∗

1, and K∗ as in Fig. 13. We now show that all the
changes are purely conceptual.

In G5, we generate A by sampling R1 =
(

Iλ−1 0
r̃� 1

)�
$← RSamp(λ) and R0

$←
LSamp(λ), and setting A� = R0Mλ

0R1. This is exactly the “zero-sampling”
procedure, in which case, we have

Zi = (Y�
i ||xi)A = (Y�

i ||xi)R�
1 Mλ

0

�
R�

0

= (Y�
i ||xi)

(
Iλ−1 0
r̃� 1

)

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
...

. . .
0 · · · 0 1
0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

R�
0

= (Y�
i + xi · r̃�||xi)

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
...

. . .
0 · · · 0 1
0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

R�
0

= (0||Y�
i + xi · r̃�)R�

0 = (0||Di)R�
0

and

C∗
1 =sEλ(x, ((Y�

1 | x1)(A + Nλ)r, · · · , (Y�
� | x�)(A + Nλ)r)�)

=sEλ(x, (Z1r + x1, · · · ,Z�r + x�)�)

=sEλ(x, (Z1r, · · · ,Z�r)�) + sEλ(x, (x1, · · · ,x�)�).

Hence, the distributions of Zi in G5 remain the same, and the distributions of z′

and K∗ can be analyzed in the same way. The distribution of v does not change
as well since

v = rEλ(y, (Y1t, · · · ,Y�t)) + kEλ(y,y′�)

= rEλ(y, ((Y�
1 + r̃ · x�

1 )t, · · · , (Y�
� + r̃ · x�

� )t)�) + kEλ(y,y′� + x′ · r̃�)

− (rEλ(y, (r̃ · x�
1 · t, · · · , r̃ · x�

1 · t)�) + kEλ(y, x′ · r̃�))

= rEλ(y, (D�
1 t, · · · ,D�

� t)�) + kEλ(y,d′) − u · r̃�.

Putting all above together, Lemma 16 immediately follows. �
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Lemma 17. There exists an adversary B3 = {b3λ}λ∈N ∈ NC1 such that b3λ breaks
the NC1-(k, l)-PR-CMA security of MACGA with advantage

|Pr[Gaλ
6 ⇒ 1] − Pr[Gaλ

5 ⇒ 1]|.
Proof. The challenger of G6 answers the Enc(x) query by choosing random K∗.
We build b3λ as in Fig. 14 to show that the differences between G6 and G5 can be
bounded by its advantage of breaking the PR-CMA security of MACGA.

b3λ runs in the same way as the challenger of G5 except that it samples Di

and d′ uniformly at random from {0, 1}λ×(λ−1) and {0, 1}1×(λ−1) respectively.
This does not change the view of aλ since Yi and y′ were uniformly sampled
in G5. Moreover, every time on receiving a query y to USKGen, b3λ forwards
y to its evaluation oracle Eval to obtain the answer (t,u), and on receiving
the query x to Enc, b3λ forwards x to its challenge oracle Chal and uses the
answer (h,h0, h1) to simulate r, C∗

1, and K∗ as in Fig. 14. When aλ outputs β,
b3λ outputs β as well if no y such that pλ(x, y) = 1 was queried to USKGen.
Otherwise, b3λ outputs 0.

Fig. 14. Description of B3 = {b3λ}λ∈N (having access to the oracles InitMAC,Eval,
Chal,FinalizeMAC of the PR-CMAreal/PR-CMArand games of Fig. 5) for the proof of
Lemma 17.

If h1 is uniform (i.e., b3λ is in Game PR-CMArand) then the view of aλ is
identical to its view in G6. If h1 is real (i.e., b3λ is in Game PR-CMAreal) then the
view of A is identical to its view in G5. Hence, the advantage of b3λ in breaking
the PR-CMA security is
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Fig. 15. Games H0-H4 for the proof of Theorem 4.

|Pr[Gaλ
6 ⇒ 1] − Pr[Gaλ

5 ⇒ 1]|.

Moreover, since aλ only makes constant rounds of queries, all operations in
b3λ are performed in NC1. Hence, we have B3 = {b3λ}λ∈N ∈ NC1, completing this
part of proof.

We now do all the previous steps in the reverse order as in Fig. 15. Note that
the view of the adversary in H0 (respectively, H4) is identical to its view in G6
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(respectively, PR-AT-CPArand). By using the above arguments in a reverse order,
we have the following lemma.

Lemma 18. There exists an adversary B4 = {b4λ}λ∈N ∈ NC1 such that b4λ breaks
the fine-grained matrix linear assumption with advantage

(|Pr[Haλ
4 ⇒ 1] − Pr[Haλ

0 ⇒ 1]|)/2.

�

Putting all above together, Theorem 4 immediately follows. �
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Abstract. We construct the first multi-input functional encryption
(MIFE) scheme for quadratic functions from pairings. Our construction
supports polynomial number of users, where user i, for i ∈ [n], encrypts
input xi ∈ Z

m to obtain ciphertext CTi, the key generator provides a key

SKc for vector c ∈ Z
(mn)2 and decryption, given CT1, . . . ,CTn and SKc,

recovers 〈c,x⊗x〉 and nothing else. We achieve indistinguishability-based
(selective) security against unbounded collusions under the standard
bilateral matrix Diffie-Hellman assumption. All previous MIFE schemes
either support only inner products (linear functions) or rely on strong
cryptographic assumptions such as indistinguishability obfuscation or
multi-linear maps.
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functions · Pairings

1 Introduction

Functional encryption (FE) [12,29] is a novel cryptographic paradigm that moves
beyond the “all or nothing” access of traditional public key encryption and
enables fine grained access to encrypted data. Concretely, an FE scheme that
supports a function class F allows an owner of a master secret to issue a secret key
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SKf for a function f ∈ F. Decryption of a ciphertext CTx for a message x with
SKf yields f(x) and nothing else. Functional encryption has been extensively
studied in the literature, with elegant constructions supporting various function
classes, achieving different notions of security and from diverse assumptions, e.g.,
[3,9,13,19,20].

Multi-input functional encryption (MIFE) [22] is a natural generalization
of FE, which supports functions that take multiple inputs. In MIFE, multiple
parties can encrypt data independently – thus, n users may encrypt their data
x1, . . . , xn to produce ciphertexts CT1, . . . ,CTn, which can be decrypted using
a functional key SKf to learn f(x1, . . . , xn) and nothing else.

Research in MIFE has followed two broad directions. On one hand, it was
shown that for general function classes (all polynomial sized circuits), FE is
powerful enough to imply MIFE (albeit with exponential loss), which in turn
implies the powerful notion of indistinguishability obfuscation (iO) [8,11]. On
the other hand, for restricted function classes such as constant degree polyno-
mials, single-input schemes do not generically imply multi-input schemes and
constructing multi-input schemes directly proved significantly more challenging.
Intuitively, this is because in the multi-input setting, inputs x1, . . . , xn encrypted
using independent sources of randomness must be combined in a secure way to
“emulate” the single input setting where encodings of x1, . . . , xn may be tied
together using common randomness. Nevertheless, for the inner product func-
tionality, several novel MIFE constructions emerged based on simple, standard
polynomial hardness assumptions [1,2,4,6,15,17,27,30].

Beyond Inner Products. While the inner product functionality is useful for
several meaningful applications (we refer the reader to [6] for a discussion), it is
evidently desirable, from the viewpoint of both theory and practice, to extend
the reach of MIFE from standard assumptions beyond inner products. In the
single input setting, there has been significant progress in this direction. For
quadratic functions, several FE schemes have been constructed from standard
assumptions on pairings [9,21,28]1. Indeed, from pairings, there have also been
innovative constructions for “degree 2.5” FE [7], the so-called “partially hiding
functional encryption” (PHFE) schemes. Intuitively, PHFE permits part of the
encryptor’s input to be public and supports deeper computation on the public
input as compared to the private input.

However, in the multi-input setting, constructions going beyond inner prod-
ucts have proved elusive. Note that unlike the single input setting, quadratic
MIFE cannot be trivially constructed from inner product MIFE even with large
ciphertext, since the naive idea of encrypting all quadratic monomials in advance
cannot deal with quadratic terms derived from two different users. Therefore,
there are currently no candidate constructions for MIFE supporting quadratic

1 Note that FE for quadratic functions are trivially constructible from FE for inner
products (IPFE) by linearizing and encrypting all quadratic monomials. However,
FE for quadratic functions requires that the ciphertext size be linear in input length.
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polynomials, from standard, polynomial hardness assumptions2. This is a signifi-
cant gap in our understanding of MIFE, and motivates the fundamental question:

Can we construct MIFE for quadratic functions from pairings?

1.1 Our Results

In this work, we answer the above question affirmatively and construct the
first MIFE scheme for quadratic functions from pairings. In more detail, we
construct n-input MIFE scheme for the function class Fm,n, which is defined
as follows. Each function f ∈ Fm,n is represented by a vector c ∈ Z

(mn)2 .
For inputs x1, . . . ,xn ∈ Z

m, f is defined as f(x1, . . . ,xn) := 〈c,x ⊗ x〉 where
x = (x1|| · · · ||xn) and ⊗ denotes the Kronecker product. In a quadratic MIFE
scheme for Fm,n, a user can encrypt xi ∈ Z

m to CTi for slot i ∈ [n], a key issuer
can generate a secret key SK for c ∈ Z

(mn)2 , and decryption of CT1, . . . ,CTn

with SK reveals only 〈c,x ⊗ x〉 and nothing else.
To begin, we show that in the public key setting, quadratic MIFE can be

generically obtained from public-key IPFE, which can be obtained even without
pairings, in a relatively simple manner, as the case of public-key inner product
MIFE [6]. Then we provide our main construction in the much more challenging
secret-key setting3. Our construction relies on the bilateral matrix Diffie-Hellmen
assumption [18] and achieves standard indistinguishability-based (selective) secu-
rity against unbounded collusions. We observe that in the symmetric key setting,
selective security is the same as “semi-adaptive” [14,23] security. Recall that in
semi-adaptive security, the adversary is permitted to see the public key before
committing to the challenge. In the symmetric key setting, since the “public key”
is simply public parameters of the scheme, such as group description, which may
always be provided to the adversary in the first step of the game, the distinction
between selective and semi-adaptive is moot. Thus, our construction achieves the
same level of security as single input quadratic FE [9,21,28].

Our construction is built using two newly introduced primitives that we call
predicated IPFE and mixed-group multi-input IPFE, which we describe next.
Predicated IPFE (pIPFE) is a class of attribute-based IPFE [5], but additionally
with a function hiding property. In more detail, a ciphertext pCT and a secret key
pSK of a pIPFE scheme pFE are associated with two vectors {x1,x2} and {y1,y2},
respectively. Decryption of pCT with pSK reveals 〈x2,y2〉 iff 〈x1,y1〉 = 0. Secret
keys are required to hide y2 but not y1, This scheme is the first instantiation
of function-hiding attribute-based IPFE, which may be of independent interest.
Mixed group multi input IPFE is similar to multi input IPFE but supports mixed
2 In an exciting recent work, iO has been constructed from sub-exponential hardness

of four well-founded assumptions [24]. However, this construction relies on a series
of intricate, lossy reductions and is primarily a feasibility result. We will focus on
the polynomial hardness of a well-founded problem in this work.

3 Recall that public-key MIFE does not imply secret-key MIFE. Roughly speaking,
a user who has CT1 for x1 and SK for f of a public-key scheme is allowed to learn
f(x1, x2, . . . , xn) for all (x2, . . . , xn), since this is inherent leakage, while it is not the
case in secret-key MIFE.
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groups, as suggested by the name. In more detail, consider a function f : (Gm1
1 ×

Gm2
2 )n → GT , specified by ([y1,1]2, [y1,2]1, . . . , [yn,1]2, [yn,2]1) where yi,1 ∈

Z
m1
p and yi,2 ∈ Z

m2
p and defined as f

(
([x1,1]1, [x1,2]2), . . . , ([xn,1]1, [xn,2]2)

)
:=

[〈(x1,1,x1,2, . . . ,xn,1,xn,2), (y1,1,y1,2, . . . ,yn,1,yn,2)〉]T
Mixed group multi input IPFE is also required to achieve function-hiding. We

provide constructions for these primitives by leveraging a (multi-input) function-
hiding IPFE scheme based on pairings [4,10,17]. These constructions may be of
independent interest.

1.2 Our Techniques

As discussed above, quadratic MIFE in the public-key setting is simple to achieve
due to the leakage inherent in that setting. We formalize this in the full version
of this paper. Hence, as in prior work [6], we focus on the much more challenging
secret key setting. In the following, we basically use m for the vector length of
each user and n for the number of slots.

Lin’s Single Key Quadratic FE. The starting point of our secret-key
quadratic MIFE scheme is the secret-key quadratic FE scheme from pairings
by Lin [28], which in turn builds upon the public key IPFE scheme from DDH
by Abdalla et al. [3] (ABDP). We begin by recalling the ABDP scheme. In what
follows, we let g� denote the generator of a cyclic group of order p and for matrix
A = (ai,j)i,j , we denote (gai,j

� )i,j by [A]�. The ABDP scheme works as follows:

Setup(1λ): w ← Z
m
p , PK := [w], MSK := w.

Enc(PK,x ∈ Z
m): s ← Zp, CT := ([s], [x + sw]).

KeyGen(MSK, c ∈ Z
m): SK := −c�w.

Dec(CT,SK): −c�w[s] + c�[x + sw] = [〈c,x〉].
Lin’s quadratic (secret key) FE scheme uses a clever interleaving of IPFE

schemes. To compress the size of ABDP ciphertexts for quadratic terms, she
leverages function-hiding IPFE, which is inherently secret-key [10]. Decryption
of components in this scheme yields ciphertexts under the ABDP IPFE scheme,
while secret keys of the ABDP scheme are generated using another function
hiding IPFE. Finally, decryption of ABDP IPFE allows to recover the output.

In more detail, let iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding
IPFE scheme based on pairings. Note that all known function-hiding IPFE
schemes based on pairings output a decryption value as an exponent of the
target-group generator [10,16,26,28,31]. A simplification of her quadratic FE
scheme (we omit the components of the scheme that are only required for the
proof of security) is as follows:

Setup(1λ): w = (w1, . . . , wm), w̃ = (w̃1, . . . , w̃m) ← Z
m
p , iMSK′ ← iSetup(1λ)

MSK := (iMSK′,w, w̃).
Enc(MSK,x ∈ Z

m): s ← Zp, iCT′ ← iEnc(iMSK′, s), iMSK ← iSetup(1λ)
iCTi ← iEnc(iMSK, (xi, wi)), iSKi ← iKeyGen(iMSK, (xi, sw̃i)).
CT := (iCT′, {iCTi, iSKi}i∈[m]).
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KeyGen(MSK, c = {ci,j}i,j∈[m] ∈ Z
m2

):
SK := iSK′ ← iKeyGen(MSK′,−c�(w ⊗ w̃)).

Dec(CT,SK): iDec(iCT′, iSK′) +
∑

i,j∈[m] ci,j iDec(iCTi, iSKj) = [〈c,x ⊗ x〉]T .

To decrypt, we compute iDec(iCTi, iSKj) = [xixj + swiw̃j ]T , which can be
seen as the (i, j)-th element of the ABDP ciphertext [x ⊗ x + sw ⊗ w̃]T , and
iDec(iCT′, iSK′) = [−sc�(w ⊗ w̃)]T , where −c�(w ⊗ w̃) is an ABDP secret key
for c. The function-hiding property of iFE guarantees that iSK hides xi. Since
w ⊗ w̃ only appears on the exponent, one can argue that it is computationally
indistinguishable from random in the security proof using the SXDH assumption.

IP-MIFE instead of IPFE. To generalize the above scheme to the multi-
input setting, our first attempt is to modify Lin’s scheme so that decryption of
the function hiding IPFE scheme generates ciphertexts of a multi-input IPFE
(IP-MIFE) scheme [4] (ACFGU) instead of a single input IPFE scheme (ABDP).
Intuitively, the reason for using IP-MIFE instead of IPFE is to deal with multiple
independent randomnesses derived from different users, which inherently come
in when generating the IPFE ciphertext elements for quadratic terms. Now,
we may hope that the key generator can provide a secret key matching the
ACFGU scheme so that decryption of ciphertexts of the ACFGU scheme yields
the desired result. Fortunately, the ACFGU scheme does not use pairings, so
this basic template does not seem impossible. However, this starting point idea
runs into several hurdles as we discuss below.

Let us recall the n-input ACFGU scheme:

Setup(1λ): MSK := w1, . . . ,wn,u1, . . . ,un ← Z
m
p .

Enc(MSK, i,xi ∈ Z
m): si ← Zp, CTi := ([si], [xi + siwi + ui]).

KeyGen(MSK, (c1, . . . , cn) ∈ Z
mn): SK := (−∑

i∈[n]〈ci,ui〉, {−c�
i wi}i∈[n]).

Dec(CT1, . . . ,CTn,SK):∑
i∈[n](−c�

i wi[si] + c�
i [xi + siwi + ui]) − [

∑
i∈[n]〈ci,ui〉] = [

∑
i∈[n]〈ci,xi〉].

For intuition, we note that the ACFGU scheme may be thought of as running
n instances of the ABDP scheme, where each ABDP decryption outputs the ith

inner product 〈ci,xi〉. Revealing each partial inner product 〈ci,xi〉 would leak
too much information, so these partial decryptions are masked using 〈ci,ui〉 –
this creates an extra term

∑
i∈[n]〈ci,ui〉 during decryption, which, fortunately

may be computed by the key generator and is compensated for by subtraction.

A First Candidate. Armed with these ideas, we construct a first candidate
quadratic MIFE qFE = (qSetup, qEnc, qKeyGen, qDec) as follows. For ease of
exposition, we assume below that the dimension of each user’s input vector m
is set to 1.

qSetup(1λ): iMSK, iMSK′ ← iSetup(1λ), wi, w̃i, ui, ũi ← Zp

qMSK := (iMSK, iMSK′, {wi, w̃i, ui, ũi}i∈[n]).
qEnc(qMSK, i, xi ∈ Z): si, s̃i ← Zp

iCT′
i ← iEnc(iMSK′, si), iSK′

i ← iKeyGen(iMSK′, s̃i)
iCTi ← iEnc(iMSK, (xi, siwi, ui)), iSKi ← iKeyGen(iMSK, (xi, s̃iw̃i, ũi))
qCTi := (iCT′

i, iSK
′
i, iCTi, iSKi).
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qKeyGen(MSK, c={ci,j}i,j∈[n]):
qSK :=([−∑

i,j∈[n] ci,juiũj ]T , {−ci,jwiw̃j}i,j∈[n]).
qDec(qCT1, . . . , qCTn, qSK):

−∑
i,j∈[n] ci,jwiw̃j iDec(iCT′

i, iSK
′
j) +

∑
i,j∈[n] ci,j iDec(iCTi, iSKj)

−[
∑

i,j∈[n] ci,juiũj ]T = [〈c,x ⊗ x〉]T
Observe that {iCTi, iSKi}i∈[n] yield {[xixj + sis̃jwiw̃j +uiũj ]T }i,j∈[n] in decryp-
tion, which can be seen as ciphertexts of the n2-input ACFGU scheme. We also
remark that we decompose the ACFGU ciphertext into ciphertexts and secret
keys of function-hiding IPFE so as to allow decryptors to generate ACFGU
ciphertext elements for quadratic terms derived from two different users. This is
in contrast to Lin’s quadratic FE scheme, which uses function-hiding IPFE to
compress the ciphertext size.

However, this scheme is not secure and leaks unnecessary information to the
decryptor. The problem stems for the fact that the candidate scheme allows two
types of mix-and-match attacks where an adversary can simultaneously use two
different ciphertexts with the same index (slot) for decryption. In more detail, the
adversary can learn the following information using the current scheme. Below,
the superscript denotes the ciphertext index and subscript denotes the slot in a
given ciphertext – thus, qCT1

i denotes the 1st ciphertext for the ith slot (recall
there can be multiple ciphertexts in a given slot).

1. Attack 1: For iCT1
i in qCT1

i and iSK2
i in qCT2

i , we have that iDec(iCT1
i , iSK

2
i ) is

a valid ACFGU ciphertext and usable for the ACFGU decryption with qSK.
This is problematic because it permits combining components from different
ciphertexts qCT1

i and qCT2
i for the same slot i, which does not correspond to

a valid combination. Recall that in an MIFE scheme, a ciphertext in slot i
may be combined with multiple ciphertexts in slot j �= i but not with other
ciphertexts in slot i. However, ciphertext components iCT1

i and iSK1
i from the

same ciphertext and in the same slot i are allowed to be combined. Thus, to
prevent this attack, we need to enforce that ciphertext components can be
combined only when they come either from different slots or the same qCTi.

2. Attack 2: Let i1 �= i2. For {iCT1
i1 , iSK

1
i1} in qCT1

i1 , {iCT1
i2 , iSK

1
i2} in qCT1

i2

and iSK2
i2 in qCT2

i2 , we have that iDec(iCT1
i1 , iSK

1
i1), iDec(iCT1

i1 , iSK
2
i2) and

iDec(iCT1
i2 , iSK

1
i2) are valid ACFGU ciphertexts and usable for the decryp-

tion with qSK. This decryption leads to an inconsistency attack, where an
adversary can compute a function over multiple ciphertexts for a given slot.
As an example, let us consider the case where a decryptor has cipher-
texts for (scalar) elements x1

1, x
1
2, x

2
2 and a secret key for quadratic function

f = (c1,1, c1,2, c2,2) (w.l.o.g., we can assume c2,1 = 0). Now, the only valid
function evaluations that an adversary should learn are

c1,1x
1
1x

1
1 + c1,2x

1
1x

1
2 + c2,2x

1
2x

1
2, and c1,1x

1
1x

1
1 + c1,2x

1
1x

2
2 + c2,2x

2
2x

2
2

However, the above leakage enables the adversary to additionally learn, e.g.,

c1,1x
1
1x

1
1 + c1,2x

1
1x

2
2 + c2,2x

1
2x

1
2
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The above uses two different inputs (underlined) for the second slot for the
same function evaluation, which is invalid.

More generally, valid combinations correspond to the set of superscripts
(in red) (1, 1), (1, 1), (1, 1) and (1, 1), (1, 2), (2, 2). However, the adversary
can learn function evaluations corresponding to (1, 1), (1, r), (s, t) for any
r, s, t ∈ [2] in the current candidate scheme.

Thus, both attacks leverage the decomposable structure of the quadratic cipher-
text to mix and match invalid components to obtain leakage. While both attacks
have the similarity that they combine different ciphertexts for the same slot in a
given evaluation, the technical treatment to handle them needs to differ. This is
because to address the first attack, we must prevent the attacker from combining
(1, 1), (1, r), (s, t) for s �= t while for the second, we must prevent the same for
r �= t. Intuitively, r and t are the indices related to the ciphertexts of iFE while
s is the index related to the secret keys of iFE, and thus prohibiting the case of
s �= t and that of r �= t are essentially different things, which must be handled
separately. Next, we describe how each of these attacks may be prevented.

Preventing Attack 1. Recall that Lin’s quadratic FE scheme does not allow
attack 1 since the encryption algorithm generates a new iMSK for each cipher-
text. On the other hand, our candidate uses the same iMSK for all ciphertexts so
that decryptors can generate ACFGU ciphertext elements for quadratic terms
from two different users. To prevent this attack, we need a function-hiding IPFE
scheme where iCT is decryptable with iSK if and only if they come from either
different slots or the same qCTi. Thus, we need to extend the functionality
of function-hiding IPFE to check the above condition prior to computation.
Although this primitive is reminiscent of “attribute-based IPFE” [5], we also
need the function-hiding property which has not been considered in prior works.

To address this need, we define and construct a function-hiding “predicated
IPFE” (pIPFE), which can be seen as a combination of inner product encryption
[25] and IPFE. Informally, a ciphertext pCT and a secret key pSK of a pIPFE
scheme pFE are associated with two vectors {x1,x2} and {y1,y2}, respectively.
Here, the secret key must hide y2 but do not y1. Decryption of pCT with pSK
reveals 〈x2,y2〉 iff 〈x1,y1〉 = 0.

To see how function-hiding predicated IPFE yields the desired functionality,
let us set x1 = (02(i−1), 1, L, 02(n−i)), y1 = (02(i−1), L,−1, 02(n−i)) where L ∈ Zp

is sampled randomly for each encryption, and i ∈ [n]. Let (i1, L1) (resp. (i2, L2))
be a pair of a slot index and random element of x1 (resp. y1). It is easy to see
that 〈x1,y1〉 = 0 iff i1 �= i2 or L1 = L2. Since L is chosen from an exponentially
large space, we have that L1 �= L2 with overwhelming probability. We construct
a function-hiding predicated IPFE scheme pFE from a function-hiding IPFE
scheme iFE in a generic way. Please see Sect. 3 for details.

Preventing Attack 2. Attack 2 is much more tricky to handle. A problematic
aspect of this attack is the fact that iDec(iCT1

i1 , iSK
1
i1) and iDec(iCT1

i2 , iSK
1
i2)

are necessary for decryption of ciphertexts qCT1
i1 , qCT

1
i2 respectively, and

iDec(iCT2
i2 , iSK

1
i1) is necessary for combined decryption of the pair qCT1

i1 , qCT
2
i2 .
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However, they leak inappropriate information if both of them are used in decryp-
tion simultaneously. Thus, we cannot solve the problem by building in some sort
of access control into iFE decryption as in the case of attack 1.

Our solution is to bind ACFGU ciphertexts generated from the iFE decryp-
tion with common random elements. That is, iCTi in qCTi is changed to encryp-
tion of (xi, siwi, ui, tivi), and iSKi is changed to a secret key of (xi, s̃iw̃i, riũi, ṽi)
where vi, ṽi are new elements in qMSK and ri, ti are the common random ele-
ments for binding ACFGU ciphertexts, which are chosen by qEnc. Then, decryp-
tion with {iCTi, iSKi}i∈[n] yields {[xixj + sis̃jwiw̃j + rjuiũj + tiviṽj ]T }i,j∈[n].

According to the change of iCT, iSK, the first element of an ACFGU secret
key should be modified as qSK1 = [−∑

i,j∈[n] ci,j(rjuiũj + tiviṽj)]T . By this
construction, we cannot simultaneously use iDec(iCT1

i1 , iSK
1
i1), iDec(iCT

1
i2 , iSK

1
i2)

and iDec(iCT2
i2 , iSK

1
i1) for ACFGU decryption. Intuitively, qSK1 must involve

t1i2 and t2i2 (randomnesses used in iCT1
i2 and iCT2

i2 , respectively) to decrypt the
ACFGU ciphertexts generated from iDec(iCT1

i1 , iSK
1
i1), iDec(iCT1

i2 , iSK
1
i2) and

iDec(iCT2
i2 , iSK

1
i1) together, but in fact qSK1 can involve only one of t1i2 and t2i2 .

How to Generate the Modified Secret Key. The last challenge is how to gen-
erate the modified secret key. It is obvious that qKeyGen cannot generate the mod-
ified key since it contains random elements ri, ti used in ciphertexts. We solve the
problem by employing an additional function-hiding IP-MIFE scheme, denoted by
miFE, into the candidate scheme. That is, qEnc additionally generates an IP-MIFE
ciphertext miCTi for (ri, ti), and qKeyGen generates an IP-MIFE secret key miSK
for {(

∑
j∈[n] cj,iuj ũi,

∑
j∈[n] ci,jviṽj)}i∈[n]. Then, a decryptor can generate the

secret-key element −∑
i,j∈[n] ci,j(rjuiũj + tiviṽj) from miCT1, . . . ,miCTn,miSK

without knowing unnecessary information. This technique is similar to Gay’s tech-
nique in [21], which uses (partially) function-hiding IPFE to generate a “decryp-
tion key” consisting of both elements inherently derived from a ciphertext and
a secret key. Note that our actual scheme needs mixed-group multi-input IPFE
instead of IP-MIFE, which we construct in Sect. 4.

Putting it all Together. Putting together the ideas discussed above, we now
present a second version of our scheme.

qSetup(1λ): iMSK′ ← iSetup(1λ), pMSK ← pSetup(1λ),miMSK ← miSetup(1λ)
wi, w̃i, ui, ũi, vi, ṽi ← Zp

qMSK := (iMSK′, pMSK,miMSK, {wi, w̃i, ui, ũi, vi, ṽi}i∈[n]).
qEnc(qMSK, i, xi ∈ Z): si, s̃i, ri, ti, L ← Zp, �1 = (02(i−1), 1, L, 02(n−i))

�2 = (02(i−1), L,−1, 02(n−i)), iCT′
i ← iEnc(iMSK′, si), iSK′

i ←
iKeyGen(iMSK′, s̃i)
pCTi ← pEnc(pMSK, �1, (xi, siwi, riui, vi))
pSKi ← pKeyGen(pMSK, �2, (xi, s̃iw̃i, ũi, tiṽi))
miCTi ← miEnc(miMSK, (ri, ti)), qCTi := (iCT′

i, iSK
′
i, pCTi, pSKi,miCTi).

qKeyGen(MSK, c={ci,j}i,j∈[n]):
miSK ← miKeyGen(miMSK, {(

∑
j∈[n] cj,iuj ũi,

∑
j∈[n] ci,jviṽj)}i∈[n])

qSK :=(miSK, {−ci,jwiw̃j}i,j∈[n]).
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qDec(qCT1, . . . , qCTn, qSK):
−∑

i,j∈[n] ci,jwiw̃j iDec(iCT′
i, iSK

′
j) +

∑
i,j∈[n] ci,jpDec(pCTi, pSKj)

−miDec(miCT1, . . . ,miCTn,miSK) = [〈c,x ⊗ x〉]T
However, while the above candidate satisfies functionality and resists the afore-
mentioned attacks, we are still far from a proof of security. For instance, one
hurdle is that we must argue that {wiw̃j}i,j∈[n] is pseudorandom, which is not
true because qSK contains these elements not as exponents of group elements
but as elements in Zp. Moreover, since we have already “used up” our pairing,
we cannot move these to the exponent as in [28]. Another hurdle is that the
underlying IPFE schemes satisfy only indistinguishability based security rather
than simulation based security. To arrive at a security proof, we must address
several such challenges, which we describe next.

Overview of Proof of Security. For ease of exposition, we outline our ideas
for the warm-up case of two input quadratic MIFE described in Sect. 5. The
general case is handled in Sect. 6.

First, we briefly recall the definition for indistinguishability based security of
secret-key MIFE. Intuitvely, security requires that all PPT adversaries cannot
guess a randomly chosen bit β with meaningful probability in the following game:
the adversary first outputs a set of challenge messages {i, xj,0

i , xj,1
i }i∈[n],j∈[qCT]

and obtains ciphertexts for {i, xj,β
i }. After that, the adversary can query a key

generation oracle on any functions f such that for all (j1, . . . , jn) ∈ [qCT]n, it
holds that f(xj1,0

1 , . . . , xjn,0
n ) = f(xj1,1

1 , . . . , xjn,1
n ). The goal of the security proof

is to show that ciphertexts for {i, xj,0
i } and {i, xj,1

i } are indistinguishable.
The first challenge in the security proof is how to design a series of hybrids

between the real games Gβ for β = 0 and β = 1. A naive strategy is to change
each ciphertext from β = 0 to β = 1 one by one, that is, in hybrid Hη

ι for
ι ∈ [2], η ∈ [qCT], the adversary is given the ciphertext for xj,1

i if (i, j) ≤ (ι, η)
and that for xj,0

i otherwise, where (i, j) ≤ (ι, η) ⇔ (i−1)qCT+j ≤ (ι−1)qCT+η.
Then, we may hope to prove that G0 ≈c H1

1 ≈c · · · ≈c HqCT
1 ≈c H1

2 ≈c

· · · ≈c HqCT
2 ≈c G1. However, it quickly becomes evident that this strategy

does not work. This is since the queried function f does not necessarily satisfy
f(x1,0

1 , xj2,0
2 ) = f(x1,1

1 , xj2,0
2 ), and thus the adversary can trivially distinguish G0

from H1
1. Even worse, when we change some input from β = 0 to β = 1, the

change affects the quadratic terms that contain an input from another slot such
as x1,1

1 xj2,0
2 . This correlation does not appear in IP-MIFE and makes the proof

much more complex.
We address this issue as follows. Recall that our quadratic MIFE decryp-

tion first generates modified ACFGU ciphertexts {aCTi,�}i,�∈[2] and a secret key
element aSK where

aCTi,� = pDec(pCTi, pSK�) = [xix� + sis̃�wiw̃� + r�uiũ� + tiviṽ�]T

aSK = miDec(miCT1,miCT2,miSK) = [−
∑

i,�∈[2]

ci,�(r�uiũ� + tiviṽ�)]T .
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Our first idea is to define Hη
ι so that qDec(qCTj1

1 , qCTj2
2 , qSK) in Hη

ι yields
({aCTji,j�

i,� }i,�∈[2], aSK
j1,j2) where

aCT
ji,j�
i,� =

[x1
i x1

� + sis̃�wiw̃� + r�uiũ� + tiviṽ�]T (�, j�) ≤ (ι, η)

[x0
i x0

� + sis̃�wiw̃� + r�uiũ� + tiviṽ�]T (�, j�) > (ι, η)

aSKj1,j2 = [−
∑

i,�∈[2]

ci,�(r�uiũ� + tiviṽ�) −
∑

i∈[2]
�∈{k∈[2]|(k,jk)≤(ι,η)}

ci,�(x
1
i x1

� − x0
i x0

� )]T .

Note that variables x, s, s̃, r, t are also indexed by j1, j2, but we often omit
j1, j2 for conciseness if it is clear in context. Observe that, in hybrid
Hη

ι ,
∑

i,�∈[2] ci,�aCT
ji,j�

i,� + aSKj1,j2 =
∑

i,�∈[2] ci,�[x0
i x

0
� + sis̃�wiw̃�]T for all

(ι, η, j1, j2) ∈ [2] × [qCT]3. Therefore, the adversary always obtains f(x0
1, x

0
2) by

decryption in all hybrids and cannot trivially distinguish them. Since the second
term of aSKj1,j2 ,

∑
i,�∈[2] ci,�(x1

i x
1
� − x0

i x
0
�) = 0 due to the query condition, HqCT

2

almost can be seen as G1. Thanks to the function-hiding property of pFE and
miFE, information encoded in ciphertexts and secret keys is not revealed other
than aCTi,�, aSK.

Next we must define encoded vectors in ciphertexts and secret keys in pFE and
miFE in each hybrid so that they are indistinguishable in the hybrid sequence.
First, let us consider vectors encoded in pFE that yield aCTi,�. In G0, recall that
bi = (x0

i , siwi, ui, tivi) and b̃i = (x0
i , s̃iw̃i, riũi, ṽi) are encoded in pCTi and

pSKi, respectively. To make [〈bji

i , b̃j�

� 〉]T = aCTji,j�

i,� in all hybrids, we introduce

a free space, used for only the security proof, and define bji

i , b̃ji

i in Hη
ι as follows:

bji

i = (x0
i , x

1
i , siwi, ui, tivi), b̃ji

i =

{
(0, x1

i , s̃iw̃i, riũi, ṽi) (i, ji) ≤ (ι, η)
(x0

i , 0, s̃iw̃i, riũi, ṽi) (i, ji) > (ι, η)
.

Then, we need to prove that {bji

i , b̃ji

i }i∈[2],ji∈[qCT] in Hη−1
ι and that in Hη

ι are
indistinguishable. Initially, it appears that we can prove it similarly to Lin’s tech-
nique [28], that is, we introduce a more free space and consider an intermediate
hybrid in which we define

bji

i = (xji,0
i , xji,1

i , siwi, ui, tivi, x
ji,0
i xη,0

ι + sis̃ιwiw̃ι + rιuiũι + tiviṽι) (1.1)

b̃ji

i =

⎧
⎪⎨

⎪⎩

(0, xji,1
i , s̃iw̃i, riũi, ṽi, 0) (i, ji) < (ι, η)

(0, 0, 0, 0, 0, 1) (i, ji) = (ι, η)
(xji,0

i , 0, s̃iw̃i, riũi, ṽi, 0) (i, ji) > (ι, η)

Now, we may hope to change xji,0
i xη,0

ι in the last entry of bji

i to xji,1
i xη,1

ι by the
indistinguishability-based security of the (modified) ACFGU IP-MIFE scheme.

However, we get stuck here; the relation between {xji,0
i xη,0

ι }i∈[2],ji∈[qCT]

and {xji,1
i xη,1

ι }i∈[2],ji∈[qCT] implied by the query condition f(xj1,0
1 , xj2,0

2 ) =
f(xj1,1

1 , xj2,1
2 ) is unclear. This is because, in the reduction to ACFGU IP-

MIFE, the simulator is expected to simulate pCT for bji

i and qSK for quadratic
function f using ACFGU ciphertexts for {xji,β

i xη,β
ι }i∈[2],ji∈[qCT] and secret
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keys for linear functions fι, respectively, such that fι(x
j1,0
1 xη,0

ι , xj2,0
2 xη,0

ι ) =
fι(x

j1,1
1 xη,1

ι , xj2,1
2 xη,1

ι ). Note that fι comprises coefficients of f that are related to
the ι-th input. Unfortunately, we cannot derive the above relation on fι from the
query condition. The critical observation we make here is that we have an alterna-
tive equality on fι that are implied by the condition: for all (j1, j2, η) ∈ [qCT]3, we
have

f1(x
η,0
1 xη,0

1 − x1,0
1 x1,0

1 , xj2,0
2 xη,0

1 − xj2,0
2 x1,0

1 ) = f1(x
η,1
1 xη,1

1 − x1,1
1 x1,1

1 , xj2,1
2 xη,1

1 − xj2,1
2 x1,1

1 )

(1.2)
f2(x

j1,0
1 xη,0

2 − xj1,0
1 x1,0

2 , xη,0
2 xη,0

2 − x1,0
2 x1,0

2 ) = f2(x
j1,1
1 xη,1

2 − xj1,1
1 x1,1

2 , xη,1
2 xη,1

2 − x1,1
2 x1,1

2 ).

(1.3)

Equation (1.2) and (1.3) can be obtained by Eq. (1.4)–Eq. (1.5) where

f(xη,0
1 , xj2,0

2 ) = f(xη,1
1 , xj2,1

2 ) f(xj1,0
1 , xη,0

2 ) = f(xj1,1
1 , xη,1

2 ) (1.4)

f(x1,0
1 , xj2,0

2 ) = f(x1,1
1 , xj2,1

2 ) f(xj1,0
1 , x1,0

2 ) = f(xj1,1
1 , x1,1

2 ). (1.5)

The last challenge is to somehow change xji,0
i xη,0

ι in the last entry of Eq. (1.1)
in to xji,1

i xη,1
ι leveraging Eq. (1.2) or Eq. (1.3). We first observe that

x
ji,0
i xη,0

ι + s
ji
i s̃jι

ι wiw̃ι + rjι
ι uiũι + t

ji
i viṽι ≈c x

ji,0
i xη,0

ι + ŝ
ji
i,ιŵi,ι + ûi + v̂

ji
i

= x
ji,0
i xη,0

ι − x
ji,0
i x1,0

ι + ŝ
ji
i,ιŵi,ι + ûi

︸ ︷︷ ︸

ACFGU ciphertext

+v̈
ji
i

where ŝji

i,ι, ŵi,ι, ûi, v̂
ji

i , v̈ji

i are fresh random elements. The computational indis-
tinguishability is implied by the SXDH assumption, and the equality follows by
implicitly defining v̂ji

i = v̈ji

i − xji,0
i x1,0

ι . We can see that the last part of the
above equation is exactly the ACFGU ciphertext of xji,0

i xη,0
ι − xji,0

i x1,0
ι plus

v̈ji

i . At this point, we can use the security of the ACFGU IP-MIFE scheme to
change xji,0

i xη,0
ι − xji,0

i x1,0
ι to xji,1

i xη,1
ι − xji,1

i x1,1
ι . This is because they satisfy

Eq. (1.2) or Eq. (1.3), and thus the reduction can follow the query condition of
IP-MIFE. Perceptive readers may notice that if i = ι, then xji,0

i xη,0
ι −xji,0

i x1,0
ι =

xji,1
i xη,1

ι − xji,1
i x1,1

ι holds only when ji = η. This is not a problem since we can
deal with the terms for i = ι, ji �= η leveraging the security of predicated IPFE.

Next we give some intuition for how to define vectors in miFE. Similarly to
bji

i , b̃ji

i , we want to define f ji

i , f̃i in Hη
ι , which are encoded in miFE and yield aSK,

but this approach quickly runs into cumbersome issues. The first problem is that
the second term of aSKj1,j2 , aSKj1,j2 [2] =

∑
ci,�(x

ji,1
i xj�,1

� − xji,0
i xj�,0

� ), in the
current definition depends on both xj1

1 and xj2
2 . Thus, we must somehow encode

xj1
1 and xj2

2 in miCTj1
1 and miCTj2

2 , respectively. However, we cannot generate
the term xj1

1 xj2
2 via miFE, which can only compute linear functions! A naive idea

may be to program all quadratic terms into additional free spaces in miCT. It
immediately ends in failure; we cannot program q2CT values into O(qCT) spaces.

Our solution is to use Eq. (1.2) and Eq. (1.3) to compress the q2CT values into
qCT values. For instance, Eq. (1.2) implies

f1(x
j1,1
1 xj1,1

1 −xj1,0
1 xj1,0

1 , xj2,1
2 xj1,1

1 −xj2,0
2 xj1,0

1 ) = f1(x
1,1
1 x1,1

1 −x1,0
1 x1,0

1 , xj2,1
2 x1,1

1 −xj2,0
2 x1,0

1 )
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since f1 is a linear function (we change η to j1). This means that∑
�=1 ci,�(x

ji,1
i xj�,1

� − xji,0
i xj�,0

� ) =
∑

�=1 ci,�(x
ji,1
i x1,1

� − xji,0
i x1,0

� ) for all ji. Sim-
ilarly, we can handle the case for � = 2. Thus, we can program aSKj1,j2 [2] in
miCTj1

1 and miCTj2
2 as:

f ji

i =

{
(ri, ti, x

ji,1
i x1,1

1 − xji,0
i x1,0

1 , 0) ι = 1
(ri, ti, x

ji,1
i x1,1

1 − xji,0
i x1,0

1 , xji,1
i x1,1

2 − xji,0
i x1,0

2 ) ι = 2

f̃i = (
∑

�∈[2]

c�,iu�ũi,
∑

�∈[2]

ci,�viṽ�, ci,1, ci,2).

The second problem is the fact that

aSKj1,j2 [2] = 〈f ji

i , f̃i〉 −
∑

i,�∈[2]

ci,�(r�uiũ� + tiviṽ�) =
∑

i∈[2],�∈[ι]

ci,�(x1
i x

1
� − x0

i x
0
�)

in the current definition of f ji

i , f̃i, while aSKj1,j2 [2] should be

aSKj1,j2 [2] =
∑

i∈[2]
�∈{k∈[2]|(k,jk)≤(ι,η)}

ci,�(x1
i x

1
� − x0

i x
0
�).

We adjust them by modifying aCT as aCTji,j�

i,� = aCTji,j�

i,� + Q(x) so that
∑

i,�∈[2] ci,�aCT
ji,j�

i,� +aSKj1,j2 =
∑

i,�∈[2] ci,�[x0
i x

0
� +sis̃�wiw̃�]T holds, where Q is

a quadratic polynomial over variables x = {xji,β
i }i∈[2],ji∈[qCT],β∈{0,1}. The addi-

tional term Q(x) in aCTji,j�

i,� can be programed into pCT and pSK by introducing
more additional space. Please see Sect. 5 for a detailed argument.

2 Preliminaries

In this section, we define some notation and preliminaries that we require. For
vectors v1, . . . ,vn, (v1, . . . ,vn) denotes the vector concatenation as row vectors
regardless of whether each vi is a row or column vector. We use ⊗ for the
Kronecker product. We denote an n-dimensional unit vector (0i−1, 1, 0n−1) by
ei/n. We use standard cryptographic bilinear groups where the matrix decisional
Diffie-Hellman assumption (MDDH) holds [18].

2.1 Multi-input Functional Encryption

Definition 2.1 (Multi-Input Functional Encryption). Let F be a function
family such that, for all f ∈ F, f : X1 × · · · × Xn → Z. An MIFE scheme for F,
MIFE, consists of four algorithms.

Setup(1λ): It takes a security parameter 1λ and outputs a public parameter PP
and a master secret key MSK. The other algorithms implicitly take PP.
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Enc(MSK, i, xi): It takes MSK, an index i ∈ [n], and xi ∈ Xi and outputs a
ciphertext CTi.

KeyGen(MSK, f): It takes MSK, and f ∈ F, and outputs a secret key SK.
Dec(CT1, . . . ,CTn,SK): It takes CT1, . . . ,CTn and SK, and outputs a decryption

value d ∈ Z or a symbol ⊥.

When n = 1, we call it just a functional encryption (FE) scheme and omit the
second argument of Enc.

Correctness. MIFE is correct if it satisfies the following condition. For all λ ∈
N, (x1, . . . , xn) ∈ X1 × · · · × Xn, f ∈ F, we have

Pr

⎡

⎢

⎢

⎣

d = f(x1, . . . , xn)

∣

∣

∣

∣

∣

∣

∣

∣

PP,MSK ← Setup(1λ)
CTi ← Enc(MSK, i, xi)
SK ← KeyGen(MSK, f)
d := Dec(CT1, . . . , ,CTn, SK)

⎤

⎥

⎥

⎦

= 1.

Selective Security. We define two indistinguishability-based security defini-
tions for MIFE, namely, message-hiding and function-hiding. For a stateful PPT
adversary A and λ ∈ N, let

PMIFE,β
A,mh (λ) := Pr

⎡

⎢

⎢

⎣

β′ = 1

∣

∣

∣

∣

∣

∣

∣

∣

{i, xj,0
i , xj,1

i }i∈[n],j∈[qCT,i] ← A(1λ)

PP,MSK ← Setup(1λ),

CTj
i ← Enc(MSK, i, xj,β

i )

β′ ← AKeyGen(MSK,·)(PP, {CTj
i}i∈[n],j∈[qCT,i])

⎤

⎥

⎥

⎦

.

Let qSK be a number of queries to KeyGen. We say A is admissible if, in
case of qCT,1, . . . , qCT,n, qSK ≥ 1, A’s queries satisfy f �(xj1,0

1 , . . . , xjn,0
n ) =

f �(xj1,1
1 , . . . , xjn,1

n ) for all (j1, . . . , jn) ∈ [qCT,1] × · · · × [qCT,n] and � ∈ [qSK].
MIFE is message-hiding if, for all admissible PPT adversaries A, the following
advantage of A is negligible in λ: AdvMIFE

A,mh(λ) := |PMIFE,0
A,mh (λ) − PMIFE,1

A,mh (λ)|.
Next, we define a function-hiding property. Let PMIFE,β

A,fh (λ) be defined the
same as PMIFE,β

A,mh (λ) except that A’s oracle is OSK(β, ·) instead of KeyGen, where
OSK(β, ·) takes (f0, f1) and outputs KeyGen(MSK, fβ). This time, A is admissible
if, in case of qCT,1, . . . , qCT,n, qSK ≥ 1, A’s queries satisfy f �,0(xj1,0

1 , . . . , xjn,0
n ) =

f �,1(xj1,1
1 , . . . , xjn,1

n ) for all (j1, . . . , jn) ∈ [qCT,1]×· · ·×[qCT,n] and � ∈ [qSK]. Then,
MIFE is function-hiding if, for all admissible PPT adversaries A, the following
advantage of A is negligible in λ: AdvMIFE

A,fh (λ) := |PMIFE,0
A,fh (λ) − PMIFE,1

A,fh (λ)|.
Remark 2.1. In this paper, we assume that qCT,i ≥ 1 for all i ∈ [n] and that
qCT,1 = · · · = qCT,n(= qCT). This is w.l.o.g as discussed in [6,17].

We next define quadratic functions.

Definition 2.2 (Bounded-Norm Multi-Input Quadratic functions over
Z). A function family FMQF

m,n,X,C for bounded-norm multi-input quadratic func-
tions consist of functions f : (Xm)n → Z where X = {i | i ∈ Z, |i| ≤ X}. Each
f ∈ FMQF

m,n,X,C is specified by c = {cμ,ν}μ,ν∈[mn] ∈ Z
(mn)2 s.t. ||c||∞ ≤ C and

cμ,ν = 0 if μ > ν. Let xμ be the μ-th element of x = (x1, . . . ,xn) ∈ (Xm)n.
Then, f specified by c is defined as f(x1, . . . ,xn) :=

∑
μ,ν∈[mn] cμ,νxμxν .
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3 Predicated Inner Product Functional Encryption

We define and construct predicated inner product functional encryption.

Definition 3.1 (Inner Products over Bilinear Groups). Let G =
(p,G1, G2, GT , g1, g2, e) be bilinear groups. A function family FIP

m,G for inner
products over bilinear groups consists of functions f : Gm

1 → GT . Each f ∈ FIP
m,G

is specified by [y]2 where y ∈ Z
m
p and defined as f([x]1) := [〈x,y〉]T .

Definition 3.2 (Predicated Inner Products over Bilinear Groups).
A function family FPIP

d,m,G for predicated inner products over bilinear groups
consists of functions f : Z

d
p × Gm

1 → GT ∪ {⊥}. Each f ∈ FPIP
d,m,G is spec-

ified by y1 ∈ Z
d
p and [y2]2 where y2 ∈ Z

m
p and defined as f(x1, [x2]1) :={

[〈x2,y2〉]T if 〈x1,y1〉 = 0
⊥ if 〈x1,y1〉 �= 0

.

We refer to FE for FIP
m,G and FPIP

d,m,G as IPFE and predicated IPFE, respec-
tively. We define partially function-hiding security of FE for FPIP

d,m,G. Partially
function-hiding security guarantees that secret keys hide y2 (but do not y1).

Partially Function-Hiding Security. Let pFE = (pSetup, pEnc, pKeyGen,
pDec) be a FE scheme for FPIP

d,m,G. For a stateful PPT adversary A and λ ∈ N,
let

PpFE,β
A,pfh (λ) := Pr

⎡

⎢
⎢
⎣β′ = 1

∣
∣
∣
∣
∣
∣
∣
∣

{xj
1, [x

j,0
2 ]1, [x

j,1
2 ]1}j∈[qCT] ← A(1λ)

pPP, pMSK ← pSetup(1λ),
pCTj ← pEnc(pMSK, (xj

1, [x
j,β
2 ]1))

β′ ← AOSK(β,·)(pPP, {pCTj}j∈[qCT])

⎤

⎥
⎥
⎦

where OSK takes (y1, [y0
2]2, [y

1
2]2) and outputs pKeyGen(MSK, (y1, [y

β
2 ]2)). Let

qSK be a number of queries to OSK. We say A is admissible if A’s queries satisfy
〈xj,0

2 ,y�,0
2 〉 = 〈xj,1

2 ,y�,1
2 〉 when 〈xj

1,y
�
1〉 = 0 for all j ∈ [qCT] and � ∈ [qSK]. pFE is

partially function-hiding if, for all admissible PPT adversaries A, the following
advantage of A is negligible in λ: AdvpFEA,pfh(λ) := |PpFE,0

A,pfh(λ) − PpFE,1
A,pfh(λ)|.

3.1 Predicated IPFE from IPFE

We construct a partially function-hiding FE scheme for FPIP
d,m,G from a function-

hiding FE scheme for FIP
kd+2m+1,G generically. Note that k is a parameter

for the MDDH assumption. A function-hiding FE scheme for FIP
m,G based

on MDDH is implied by the function-hiding IPFE scheme described in [30,
Appx. A] 4. Let iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding FE
scheme for FIP

kd+2m+1,G. Then, our partially function-hiding FE scheme pFE =
(pSetup, pEnc, pKeyGen, pDec) for FPIP

d,m,G is constructed as shown in Fig. 1.

4 In more detail, this follows since the scheme remains correct and secure even if
input vectors for Enc and KeyGen consist of group elements, and Dec first obtains
decryption values on the exponent of a target-group generator and then computes
its discrete log.
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Fig. 1. Our predicated IPFE scheme.

Correctness. Since 〈z ⊗ x1,a ⊗ y1〉 = 〈z,a〉 · 〈x1,y1〉, iDec(iCT, iSK) outputs
[〈x,y〉]T = [〈v2,y2〉]T if 〈x1,y1〉 = 0. This follows from the correctness of iFE.

For security, we have the following theorem.

Theorem 3.1. If iFE is function-hiding, and the MDDH assumption holds in
G, then pFE is partially function-hiding. More precisely, for all PPT adversaries
A, there exist PPT adversaries B1,B2 such that

AdvpFEA,pfh(λ) ≤ qCT(3AdviFEB1,fh(λ) + 2AdvDk -MDDH
B2

(λ)).

Due to space constraints, the proof is provided in the full version.

4 Mixed-Group Multi-input IPFE

In this section, we define and construct our mixed-group multi-input inner prod-
uct functional encryption (mixed-group IP-MIFE).

Definition 4.1 (Multi-Input Inner Products over Bilinear Groups). Let
G = (p,G1, G2, GT , g1, g2, e) be bilinear groups. A function family FMIP

m,n,G for
multi-input inner products over bilinear groups consists of functions f : (Gm

1 )n →
GT . Each f ∈ FMIP

m,n,G is specified by [y1]2, . . . , [yn]2 where yi ∈ Z
m
p and defined

as f([x]1, . . . , [x]n) := [
∑

i∈[n]〈xi,yi〉]T .

Definition 4.2 (Multi-Input Mixed-Group Inner Products over Bilin-
ear Groups). Let G = (p,G1, G2, GT , g1, g2, e) be bilinear groups. A func-
tion family FMGIP

m1,m2,n,G for multi-input mixed-group inner products over bilinear
groups consists of functions f : (Gm1

1 × Gm2
2 )n → GT . Each f ∈ FMGIP

m1,m2,n,G is
specified by ([y1,1]2, [y1,2]1, . . . , [yn,1]2, [yn,2]1) where yi,1 ∈ Z

m1
p and yi,2 ∈ Z

m2
p

and defined as f(([x1,1]1, [x1,2]2), . . . , ([xn,1]1, [xn,2]2)) := [〈x,y〉]T where x :=
(x1,1,x1,2, . . . ,xn,1,xn,2) and y := (y1,1,y1,2, . . . ,yn,1,yn,2).

We refer to MIFE for FMIP
m,n,G and FMGIP

m1,m2,n,G as IP-MIFE and mixed-group IP-
MIFE, respectively. We require mixed-group IP-MIFE to satisfy the standard
function-hiding security in Definition 2.1.
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Fig. 2. Our mixed-group IP-MIFE scheme.

4.1 Construction

Let FIP′
m,G be a function class defined the same as FIP

m,G in Definition 3.1 except
that G1 and G2 are switched, that is, each f : Gm

2 → GT is specified by [y]1. We
construct a function-hiding MIFE scheme for FMGIP

m1,m2,n,G from a function-hiding
MIFE scheme for FMIP

m1+m2+k+1,n,G and function-hiding FE scheme for FIP′
m2+k+1,G

in a generic way. Note that k is a parameter for the MDDH assumption. A
function-hiding MIFE scheme for FMIP

m,n,G based on MDDH is easily obtained
from a function-hiding multi-input IPFE schemes in [4,17,30]. This is since these
schemes in the literatures work even if input vectors for Enc and KeyGen consist
of group elements, and Dec first obtains decryption values on the exponent of a
target-group generator and then computes its discrete log.

Let miFE = (miSetup,miEnc,miKeyGen,miDec) be a function-hiding MIFE
scheme for FMIP

m1+m2+k+1,n,G and iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-
hiding FE scheme for FIP′

m2+k+1,G. Then, our function-hiding MIFE scheme gFE =
(gSetup, gEnc, gKeyGen, gDec) for FMGIP

m1,m2,n,G is constructed as shown in Fig. 2.

Correctness. Due to the correctness of miFE and iFE, gDec outputs
⎡

⎣
∑

i∈[n]

(〈x̃i,1, ỹi,1〉 + 〈x̃i,2, ỹi,2〉)
⎤

⎦

T

=

⎡

⎣
∑

i∈[n]

(〈xi,1,yi,1〉 + 〈xi,2,yi,2〉)
⎤

⎦

T

.

For security, we have the following theorem.

Theorem 4.1. If miFE and iFE are function-hiding, and the bilateral MDDH
assumption holds in G, then gFE is function-hiding. More precisely, for all PPT
adversaries A, there exist PPT adversaries B1,B2,B3 such that

AdvgFEA,fh(λ)≤(4qCT + 1)AdvmiFE
B1,fh(λ) + n(4qCT + 1)AdviFEB2,fh(λ) + 4nqCTAdv

bi-Dk -MDDH
B3

(λ).

Due to space constraints, the proof is provided in the full version.
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Fig. 3. Our two-input quadratic MIFE scheme.

5 Warm-Up: Two Input Quadratic MIFE

Since our general quadratic MIFE scheme (Sect. 6) is quite complex, we first
present a simpler scheme as a warm-up. This scheme is a MIFE scheme for
FMQF
1,2,X,C from the SXDH assumption, that is m = 1, n = 2. For ease of exposi-

tion, we also restrict the number of ciphertext queries to 2 per slot. The SXDH
assumption is captured as the Dk assumption where Dk consists of all matrices
with the form of (a, 1)� ∈ Z

2
p.

Let pFE = (pSetup, pEnc, pKeyGen, pDec) be an FE scheme for FPIP
4,8,G (Defi-

nition 3.2), iFE = (iSetup, iEnc, iKeyGen, iDec) be an FE scheme for FIP
2,G (Defini-

tion 3.1), and gFE = (gSetup, gEnc, gKeyGen, gDec) be an FE scheme for FMGIP
4,1,2,G

(Definition 4.2). The warm-up scheme qFE = (qSetup, qEnc, qKeyGen, qDec) is
constructed from pFE, iFE, and gFE as shown in Fig. 3. Since gFE cannot be
instantiated from SXDH, the warm-up scheme needs an additional assumption
such as XDLIN (bilateral 2-Lin).

Correctness. Let si, s̃i, ri, ti, li, l̃i,bi, b̃i for i ∈ [2] be random elements used
to generate qCTi. Observe that 〈li, l̃I〉 = 0 for all i, I ∈ [2], and thus
pDec(pCTi, pSKI) = 〈bi, b̃I〉. Due to the correctness of pFE, iFE, gEF, we have
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z1 =
∑

μ,ν∈[2]

cμ,ν(xμxν + sν s̃μwμ,ν + rμuν + tνvμ)

z2 =
∑

μ,ν∈[2]

cμ,νsν s̃μwμ,ν , z3 =
∑

μ,ν∈[2]

cμ,ν(rμuν + tνvμ).

Hence, we have z =
∑

μ,ν∈[2] cμ,νxμxν .

5.1 Multi-input IPFE Scheme for Security Analysis

Before going to the security analysis of our quadratic MIFE scheme, we introduce
a message-hiding IP-MIFE scheme, i.e. an MIFE scheme for FMIP

m,n,G, denoted by
miFE = (miSetup,miEnc,miKeyGen,miDec) that we use for the security proof. The
scheme is obtained by applying the conversion of single to multi-input IPFE by
Abdalla et al. [4, Sec. 4.1], to the single-input IPFE scheme by Abdalla et al. [3,
Sec. 5]. The resulting scheme satisfies the message-hiding security under the DDH
assumption. Note that although Abdalla et al. considered the conversion in the
adaptive setting, it is not hard to see that the conversion works in the selective
setting. The original scheme in [3] uses a pairing-free group for the construction,
but it is easy to see that their scheme can be similarly built on pairing groups
where the SXDH assumption holds. The scheme is described in Fig. 4.

Fig. 4. IP-MIFE scheme by Abdalla et al. Fig. 5. qFE warmup security game.

5.2 Proof of Security

Theorem 5.1. If pFE is partially function-hiding, iFE and gFE are function-
hiding, and GBG outputs bilinear groups where the SXDH assumption holds, then
qFE is message-hiding as long as qCT = 2 and qSK = 1.

Proof. For ease of exposition, we prove security in the restricted game where
an adversary makes two ciphertext queries per slot and one secret key query.
This simplification showcases the basic strategy of the general proof, which is
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Fig. 6. Vectors in Gβ .

Fig. 7. Vectors in H1.

provided in Sect. 6. At a high-level view, our security proof is inspired by that of
the IP-MIFE schemes by Abdalla et al. [4] in which the first queried ciphertexts
of each slot are changed from bit 0 to bit 1 by the information-theoretic property
of the one-time pad and the rest of ciphertexts are changed by the security of
an IPFE scheme. In our case, the IPFE scheme will instead correspond to the
IP-MIFE scheme in Sect. 5.1.

Intuitively, we want to prove G0 ≈c G1 where Gβ is the message-hiding secu-
rity game (described in Fig. 5). In Gβ , the vectors in the ciphertexts and the
secret key that the adversary obtains are defined as Fig. 6. We introduce a series
of hybrid games, H1, . . . ,H15, and prove G0 ≈c H1 ≈c · · · ≈c H15 ≈c G1. In each
hybrid game, the vectors for generating the ciphertexts and the secret keys are
changed from G0, which is shown in Fig. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20 and 21. We frame the parts that are changed from the previous game
by a box and sometimes denote the parts that are not changed by —.

G0 ≈c H1. We can justify this indistinguishability by the (partially) function-
hiding property of pFE and gFE. For all i, j, I, J ∈ [2], we can see that 〈bj

i , b̃
J
I 〉
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Fig. 8. Vectors in H2.

Fig. 9. Vectors in H3.

in G0 and that in H1 are equal unless i = I and j �= J . Recall that 〈lji , l̃JI 〉 �= 0
with overwhelming probability if i = I and j �= J , since L is chosen from the
exponentially large space, Zp. Hence, the indistinguishability of {b, b̃} between
G0 and H1 is implied by the partially function-hiding property of pFE.

Similarly, for all i, j ∈ [2], 〈f j
i , f̃i〉 in G0 and that in H1 are equal, which

implies, for all j1, j2 ∈ [2],
∑

i∈[2](〈f ji

i , f̃i〉 + hji

i h̃i) in G0 and that in H1 are

equal. Thus, the indistinguishability of {f , f̃} between G0 and H1 is implied by
the function-hiding property of gFE.

H1 ≈c H2. We can justify this indistinguishability by the SXDH assumption,
which implies (G, [t]1, [v1t]1) ≈c (G, [t]1, [v̈]1) where G ← GBG(1λ), t =
{tji}i,j∈[2], v̈ = {v̈j

i }i,j∈[2] ← Z
4
p, v1 ← Zp.



228 S. Agrawal et al.

Fig. 10. Vectors in H4.

Fig. 11. Vectors in H5.

H2 = H3. These hybrid games are information-theoretically equivalent. This can

be confirmed by setting v̈j
i :=

{
v̈′j

i + x1,1
1 x1,1

i − x1,0
1 x1,0

i (i = 1)
v̈′j

i + x1,1
1 xj,1

i − x1,0
1 xj,0

i (i = 2)
where v̈′j

i ←
Zp.

H3 ≈c H4. We can justify this indistinguishability by the SXDH assumption, and
the indistinguishability can be shown similarly to that between H1 and H2.

H4 ≈c H5. We can justify this indistinguishability by the (partially) function-
hiding property of pFE and gFE, similarly to the case of G0 ≈c H1.

H5 ≈c H6. We can justify this indistinguishability by the (partially) function-
hiding property of pFE, iFE, and gFE, similarly to the case of G0 ≈c H1. Note
that here we also need to consider iFE since {d, d̃} is also changed, but it is easy
to see that, for all i, j, I, J ∈ [2], 〈dj

i , d̃
J
I 〉 in H5 and that in H6 are equal.

H6 ≈c H7. We can justify this indistinguishability by the SXDH assump-
tion, which implies (G, [s]1, [s̃21s]1) ≈c (G, [s]1, [s̈]1) and (G, [u]1, [r21u]1) ≈c

(G, [u]1, [ü]1) where G ← GBG(1λ), s = {sj
i}i,j∈[2], s̈ = {s̈j

i}i,j∈[2] ← Z
4
p, s̃

2
1 ←

Zp,u = {ui}i∈[2], ü = {üi}i∈[2] ← Z
2
p, r

2
1 ← Zp.
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Fig. 12. Vectors in H6.

Fig. 13. Vectors in H7.

H7 ≈c H8. We can justify this indistinguishability by the message-hiding property
of miFE. First, we prove that, for all j ∈ [2], we have

c1,1(x
2,0
1 x2,0

1 − x1,0
1 x1,0

1 ) + c1,2(x
2,0
1 xj,0

2 − x1,0
1 xj,0

2 )

=c1,1(x
2,1
1 x2,1

1 − x1,1
1 x1,1

1 ) + c1,2(x
2,1
1 xj,1

2 − x1,1
1 xj,1

2 ).
(5.1)

Due to the game condition defined in Definition 2.1, the queries by the adversary
satisfy

∑

i,θ∈[2]

ci,θx
f(i),0
i x

f(θ),0
θ =

∑

i,θ∈[2]

ci,θx
f(i),1
i x

f(θ),1
θ (5.2)

∑

i,θ∈[2]

ci,θx
g(i),0
i x

g(θ),0
θ =

∑

i,θ∈[2]

ci,θx
g(i),1
i x

g(θ),1
θ (5.3)

where f(i) =

{
2 (i = 1)
j (i = 2)

, g(i) =

{
1 (i = 1)
j (i = 2)

. Note that Eq. (5.2) repre-

sents the restriction f(x2,0
1 , xj,0

2 ) = f(x2,1
1 , xj,1

2 ), and Eq. (5.3) represents the
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Fig. 14. Vectors in H8.

restriction f(x1,0
1 , xj,0

2 ) = f(x1,1
1 , xj,1

2 ). Equation (5.2)–Eq. (5.3) implies Eq. (5.1)
by reflecting the fact that c2,1 = 0, which is defined in Definition 2.2.

Thanks to the message-hiding property of 2-slot miFE and Eq. (5.1), we have

{miPP,miCT1,0
1 ,miCT1,0

2 ,miCT2,0
2 ,miSK} ≈c {miPP,miCT1,1

1 ,miCT1,1
2 ,miCT2,1

2 ,miSK}

where

miPP = (G, [w1,1]1, [w1,2]1)

miCT1,β
1 = ([s̈21]1, [s̈

2
1w1,1 + ü1 + x2,β

1 x2,β
1 − x1,β

1 x1,β
1 ]1)

miCTj,β
2 = ([s̈j

2]1, [s̈
j
2w1,2 + ü2 + x2,β

1 xj,β
2 − x1,β

1 xj,β
2︸ ︷︷ ︸

message vectors

]1)

miSK = (
∑

μ∈[2]

c1,μüμ,−c1,1w1,1,−c1,2w1,2, c1,1, c1,2︸ ︷︷ ︸
key vector

).

Roughly speaking, [b]1 in qCT2
1, qCT

1
2, qCT

2
2 is simulatable frommiCT1,β

1 ,miCT1,β
2 ,

miCT2,β
2 , respectively, and [h̃1]1 in qSK is simulatable from miSK, and the case of

β = 0 corresponds to H7 and β = 1 corresponds to H8.

H8 ≈c H9. We can justify this indistinguishability by the SXDH assumption sim-
ilarly to the case of H6 ≈c H7.

H9 ≈c H10. We can justify this indistinguishability by the (partially) function-
hiding property of pFE, iFE, and gFE, similarly to the case of G5 ≈c H6. At this
point, all ciphertexts for slot 1 are changed from encryption of 0-side to that of
1-side.
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Fig. 15. Vectors in H9.

Fig. 16. Vectors in H10.

H10 ≈c H11. As stated above, G0 to H10 are hybrid games for processing the
ciphertexts for slot 1. Next, we apply a similar procedure to slot 2. H11 in the
process for slot 2 corresponds to H7 in the process for slot 1. That is, H10 ≈c H11

can be proven similarly to G0 ≈c H7.

H11 ≈c H12. This indistinguishability can be prove similarly to the case of H7 ≈c

H8, but we need an additional tweak in this case. First, we prove that, for all
j ∈ [2], we have

c2,1(x
2,0
2 xj,0

1 − x1,0
2 xj,0

1 ) + c2,2(x
2,0
2 x2,0

2 − x1,0
2 x1,0

2 ) + c1,2(x
1,0
1 x2,0

2 − x1,0
1 x1,0

2 )

=c2,1(x
2,1
2 xj,1

1 − x1,1
2 xj,1

1 ) + c2,2(x
2,1
2 x2,1

2 − x1,1
2 x1,1

2 ) + c1,2(x
1,1
1 x2,1

2 − x1,1
1 x1,1

2 ).
(5.4)

Due to the game condition defined in Definition 2.1, the queries by the adversary
satisfy

∑

i,θ∈[2]

ci,θx
f(i),0
i x

f(θ),0
θ =

∑

i,θ∈[2]

ci,θx
f(i),1
i x

f(θ),1
θ (5.5)



232 S. Agrawal et al.

Fig. 17. Vectors in H11.

Fig. 18. Vectors in H12.

∑

i,θ∈[2]

ci,θx
g(i),0
i x

g(θ),0
θ =

∑

i,θ∈[2]

ci,θx
g(i),1
i x

g(θ),1
θ (5.6)

where f(i) =

{
1 (i = 1)
2 (i = 2)

, g(i) =

{
1 (i = 1)
1 (i = 2)

. Note that Eq. (5.5) represents

the restriction f(x1,0
1 , x2,0

2 ) = f(x1,1
1 , x2,1

2 ), and Eq. (5.6) represents the restric-
tion f(x1,0

1 , x1,0
2 ) = f(x1,1

1 , x1,1
2 ). Equation (5.5)–Eq. (5.6) implies Eq. (5.4) by

reflecting the fact that c2,1 = 0, which is defined in Definition 2.2.
Thanks to the message-hiding property of 3-slot miFE and Eq. (5.4), we have

{miPP,miCT1,0
1 ,miCT2,0

1 ,miCT1,0
2 ,miCT1,0

3 ,miSK}
≈c{miPP,miCT1,1

1 ,miCT2,1
1 ,miCT1,1

2 ,miCT1,1
3 ,miSK}
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Fig. 19. Vectors in H13.

Fig. 20. Vectors in H14.

Fig. 21. Vectors in H15.
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where

miPP = (G, [w2,1]1, [w2,2]1, [w2,3]1)

miCTj,β
1 = ([s̈j

1]1, [s̈
j
1w2,1 + ü1 + x2,β

2 xj,β
1 − x1,β

2 xj,β
1 ]1)

miCT1,β
2 = ([s̈22]1, [s̈

2
2w2,2 + ü2 + x2,β

2 x2,β
2 − x1,β

2 x1,β
2 ]1)

miCT1,β
3 = ([s̈13]1, [s̈

1
3w2,3 + ü3 + x1,β

1 x2,β
2 − x1,β

1 x1,β
2︸ ︷︷ ︸

message vectors

]1)

miSK = (
∑

μ∈[2]

c2,μüμ + c1,2ü3,−c2,1w2,1,−c2,2w2,2,−c1,2w2,3, c2,1, c2,2, c1,2︸ ︷︷ ︸
key vector

).

Roughly speaking, [b]1 in qCT1
1, qCT

2
1, qCT

2
2 is simulatable from miCT1,β

1 ,

miCT2,β
1 ,miCT1,β

2 , respectively, and [h̃2]1 in qSK is simulatable from miSK and
miCT1,β

3 . More precisely,

h̃2 = K1 − C1K4 − c1,2(C2 + x1,0
1 x2,0

2 − x1,0
1 x1,0

2 )

where miCT1,β
3 = ([C1]1, [C2]1) and miSK = (K1, . . . ,K7). The case of β = 0

corresponds to H11 and β = 1 corresponds to H12.

H12 ≈c H13. We can justify this indistinguishability by the function-hiding prop-
erty of gFE. For all i, j ∈ [2], 〈f j

i , f̃i〉 + hj
i h̃i in H12 and that in H13 are equal

(recall that c2,1 = 0), which implies, for all j1, j2 ∈ [2],
∑

i∈[2](〈f ji

i , f̃i〉 + hji

i h̃i)

in H12 and that in H13 are equal. Thus, the indistinguishability of {f , f̃ , h, h̃}
between H12 and H13 is implied by the function-hiding property of gFE.

H13 ≈c H14. This indistinguishability can be proven similarly to H8 ≈c H10.

H14 ≈c H15. Due to the game condition defined in Definition 2.1, the queries by
the adversary satisfy

∑
i,θ∈[2] ci,θ(x

1,1
i x1,1

θ − x1,0
i x1,0

θ ) = 0, which implies, for all

j1, j2 ∈ [2],
∑

i∈[2](〈f ji

i , f̃i〉 + hji

i h̃i) in H14 and that in H15 are equal. Thus, the

indistinguishability of {f , f̃} between H14 and H15 is implied by the function-
hiding property of gFE.

H15 ≈c G1. It is easy to see that this indistinguishability is implied by the par-
tially function-hiding property of pFE, since, for all i, j, I, J ∈ [2], 〈bj

i , b̃
J
I 〉 in

H15 and that in G1 are equal.

6 Quadratic Multi-input Functional Encryption

We present our quadratic MIFE scheme for FMQF
m,n,X,C . We define the following

functions that relate indices in [n] × [m] with those in [mn]:

– location function, lo : [n] × [m] → [mn], defined as lo(x, y) = (x − 1)m + y;
– location set function, ls : [n] → 2[mn], defined as ls(x) =

{lo(x, 1), . . . , lo(x,m)};
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Fig. 22. Our n-input quadratic MIFE scheme.

– slot function, sl : [mn] → [n], defined as sl(x) = �x/m�;
– entry function, en : [mn] → [m], defined as en(x) = x − m(sl(x) − 1).

Note that we have lo(sl(x), en(x)) = x for all x ∈ [mn]. Let Dk be a matrix
distribution. Let pFE = (pSetup, pEnc, pKeyGen, pDec) be an FE scheme for
FPIP
2n,2+(mn+2)k+(2+k)m,G (Definition 3.2), iFE = (iSetup, iEnc, iKeyGen, iDec) be an

FE scheme for FIP
k+1,G (Definition 3.1), and gFE = (gSetup, gEnc, gKeyGen, gDec)

be an FE scheme for FMGIP
2k+m2n,1,n,G (Definition 4.2). We construct our quadratic

MIFE scheme qFE = (qSetup, qEnc, qKeyGen, qDec) from pFE, iFE, and gFE as
shown in Fig. 22.

Due to space constraints, we present the proof of correctness and security
analysis of our scheme in the full version.
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18. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

20. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol.
9563, pp. 480–511. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49099-0 18

21. Gay, R.: A new paradigm for public-key functional encryption for degree-2 poly-
nomials. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020,
Part I. LNCS, vol. 12110, pp. 95–120. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45374-9 4

22. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

23. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling func-
tionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part
II. LNCS, vol. 9986, pp. 361–388. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53644-5 14

24. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. Cryptology ePrint Archive, Report 2020/1003 (2020). https://eprint.
iacr.org/2020/1003

25. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

26. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98113-0 29

https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-030-45374-9_4
https://doi.org/10.1007/978-3-030-45374-9_4
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-662-53644-5_14
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-319-98113-0_29


238 S. Agrawal et al.
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Abstract. The classic work of Gorbunov, Vaikuntanathan and Wee (CRYPTO
2012) and follow-ups provided constructions of bounded collusion Functional
Encryption (FE) for circuits from mild assumptions. In this work, we improve
the state of affairs for bounded collusion FE in several ways:
1. New Security Notion. We introduce the notion of dynamic bounded collu-

sion FE, where the declaration of collusion bound is delayed to the time
of encryption. This enables the encryptor to dynamically choose the collu-
sion bound for different ciphertexts depending on their individual level of
sensitivity. Hence, the ciphertext size grows linearly with its own collusion
bound and the public key size is independent of collusion bound. In contrast,
all prior constructions have public key and ciphertext size that grow at least
linearly with a fixed bound Q.

2. CPFE for circuits with Dynamic Bounded Collusion. We provide the first
CPFE schemes for circuits enjoying dynamic bounded collusion security.
By assuming identity based encryption (IBE), we construct CPFE for cir-
cuits of unbounded size satisfying non-adaptive simulation based security.
By strengthening the underlying assumption to IBE with receiver selective
opening security, we obtain CPFE for circuits of bounded size enjoying
adaptive simulation based security. Moreover, we show that IBE is a neces-
sary assumption for these primitives. Furthermore, by relying on the Learn-
ing With Errors (LWE) assumption, we obtain the first succinct CPFE for
circuits, i.e. supporting circuits with unbounded size, but fixed output length
and depth. This scheme achieves adaptive simulation based security.

3. KPFE for circuits with dynamic bounded collusion. We provide the first
KPFE for circuits of unbounded size, but bounded depth and output length
satisfying dynamic bounded collusion security from LWE. Our construction
achieves adaptive simulation security improving security of [20].

4. KP and CP FE for TM/NL with dynamic bounded collusion. We provide the
first KPFE and CPFE constructions of bounded collusion functional encryp-
tion for Turing machines in the public key setting from LWE. Our construc-
tions achieve non-adaptive simulation based security. Both the input and the
machine in our construction can be of unbounded polynomial length.
We provide a variant of the above scheme that satisfies adaptive security,
but at the cost of supporting a smaller class of computation, namely Non-
deterministic Logarithmic-space (NL). Since NL contains Nondeterministic
Finite Automata (NFA), this result subsumes all prior work of bounded col-
lusion FE for uniform models from standard assumptions [7,9].
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1 Introduction

Functional encryption [13,29] is a generalization of public key encryption which allows
fine grained control on disclosure of encrypted data. In functional encryption (FE), a
secret key is associated with a function f , a ciphertext is associated with an input x and
decryption reveals f(x) and nothing more. Security requires that any collusion of users
cannot learn more about the ciphertext beyond what they are individually authorized to
learn – this property is known as collusion resistance.

In a classic work, Gorbunov, Vaikuntanathan and Wee [21] provided the first con-
struction of Functional Encryption for circuits in the bounded collusion model – namely
in a model where the scheme may generate an unbounded number of keys but security
holds only against an adversary who obtains at most an a-priori bounded number of
keys, say Q. Their construction supports all polynomial sized circuits, and is based on
the existence of public key encryption (PKE) and pseudorandom generators (PRG) in
NC1. Since circuits are a powerful model of computation, this work provides a strong
feasibility result, and moreover, from weak assumptions. Subsequent work provided
other useful improvements: the work of Ananth and Vaikuntanathan [12] removed the
assumption of PRGs so that the resulting scheme relies on the minimal assumption of
PKE, while a series of works [1,8,12] improved the dependence of the public key and
ciphertext on the collusion boundQ. A parallel line of work has studied the construction
of functional encryption schemes supporting unbounded collusions [2,10,17,23,24],
from standard assumptions, culminating in the recent breakthrough of Jain, Lin and
Sahai [24] which achieves this much sought-after goal. However, this intricate con-
struction relies on several assumptions including pairings making it quantum insecure,
and has many complex reductions that incur significant loss in efficiency. Hence, it
remains meaningful to consider simpler, plausibly post-quantum constructions, even in
weaker security models.

Limitations of Prior Work. Despite their success, existing constructions of FE in the
bounded collusion model suffer from at least three major drawbacks: i) the collusion
bound Q must be declared at setup time and is fixed once and for all, ii) in the public
key setting, these constructions support only the circuit model of computation and iii)
all constructions that we are aware of are in the key policy setting (KPFE), where the
function f is embedded in the secret key and the input x is embedded in the ciphertext
of the FE scheme. The dual, ciphertext policy setting (CPFE), where the roles of f
and x are swapped, is more natural in several applications but has received much less
attention. We discuss each of these limitations in turn.

The first limitation pervades all prior work to the best of our knowledge and is quite
a significant drawback in our opinion. Since the collusion bound must be declared at
setup time, all data encrypted under the scheme must necessarily be subject to the same
level of collusion-resistance. Thus, the practitioner is forced to choose a collusion bound
which is strong enough for the most sensitive information that may ever be encrypted
under the scheme – this implies that Q is an upper bound on collusion resistance. How-
ever, not all information has the same level of sensitivity. Consider an organization:
messages involving a potential merger with another organization, or a case of harass-
ment which must be investigated are significantly more delicate than routine exchanges.
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It is desirable that such sensitive messages are protected even if a large number of key
holders collude. On the other hand, for routine ciphertexts decrypted via function keys
(such as checking whether some encrypted message is spam or not), such a strong level
of collusion resistance is unnecessary. Moreover, the collusion bound Q impacts the
size of the public key and ciphertext of the scheme. Thus, if Q is large, then the pub-
lic key as well as every ciphertext generated by the scheme is forced to grow at least
linearly in Q leading to a prohibitive impact on efficiency.

Regarding the second limitation, it is well known that being non-uniform, the cir-
cuit model is ill-suited for several applications [5,9,11,19]. In particular, circuits force
the size of the input to be fixed a-priori which in turn necessitates instantiation of the
scheme with an upper bound on data size. This again leads to loss in efficiency and is
ill-suited to datasets of dynamic size. Moreover, circuits incur worst case running time
over all inputs, which is also clearly undesirable in practice. Finally, all constructions of
CPFE for circuits that we are aware of, proceed via the universal circuit route, i.e. con-
sider the universal circuit U(f, x) = f(x) and construct KPFE with the circuit U(·, x)
in the secret key and f represented as a string, in the ciphertext. Aside from the loss
of efficiency that results by this transformation (now, both the input and the function
grow with the maximum circuit size), this transformation restricts the CPFE scheme
to bounded size circuits. This is dissatisfying, as much in practice as in theory. The
ciphertext policy variant of FE is desirable in many applications. Even in the special
case of attribute based encryption (ABE), the ciphertext policy model allows an access
control policy f to be embedded against a secret message m in the ciphertext. The
secret key contains user attributes x which represent the various roles of a user, such as
institute, department, date of joining and such others. Decryption succeeds to recover
m if and only if the user’s attributes satisfy the access control policy in the ciphertext. It
is arguably more natural to have an access control policy apply to a secret message than
to a user. Another application scenario is when the function f is proprietary and must
be hidden via encryption, while the data can be made publicly available. For instance,
suppose a government wants to enable citizens to run useful algorithms developed by
different research labs on some public data, e.g. census data. The government publishes
a secret key for the data x, the labs publish ciphertexts with their respective algorithms
fi (of arbitrary size) and anyone can compute fi(x). The research labs want to keep
their algorithms secret from competitors (but the government agency is trusted) so the
function is encrypted. The data is public but becomes available asynchronously and
independently of the function(s), so the labs cannot compute the function outputs each
time. For example, new census data may be published every year but the same programs
can be used every year. Computing private programs on public data is analogous to the
setting of obfuscation, except that here the government agency can be trusted, making
it simpler than obfuscation. Given the many natural applications of CPFE, it is undesir-
able to settle for a limited generic transformation via KPFE.

State of the Art. While FE for uniform models of computation has been studied
[5,9,11,19], direct constructions from standard assumptions, supporting unbounded
length inputs, are few and far-between. In the public key setting, the FE scheme by
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Agrawal and Singh [9] supports Turing machines and is based on the Learning With
Errors assumption. However, this scheme only supports a single key request by the
adversary in the security game. In the symmetric key setting, the recent work of
Agrawal, Maitra and Yamada [7] provided a construction of FE for non-deterministic
finite automata (NFA) which is secure against bounded collusions of arbitrary size.
However, generalizing this construction to the public key setting and to stronger models
like Turing machines was left open. To the best of our knowledge, all bounded collu-
sion FE schemes suffer from the fixed collusion bound, and the only CPFE scheme that
supports unbounded sized circuits is that by Sahai and Seyalioglu [28], which is only
single key secure.

1.1 Our Results

In this work, we improve the state of affairs in several ways:

1. New Security Notion. We introduce the notion of dynamic bounded collusion FE,
where the declaration of collusion bound is delayed to the time of encryption.
This enables the encryptor to dynamically choose the collusion bound for different
ciphertexts depending on their individual level of sensitivity. Hence, the ciphertext
size grows linearly with its own collusion bound and the public key size is inde-
pendent of collusion bound. In contrast, all prior constructions have public key and
ciphertext size that grow at least linearly with a fixed bound Q. All our construc-
tions satisfy our new security notion – we also refer to our new notion as achieving
delayed collusion resistance.

2. CPFE for circuits with Dynamic Bounded Collusion. We provide the first CPFE
schemes for circuits enjoying dynamic bounded collusion security. In more detail:
– By relying on the assumption of identity based encryption (IBE), we construct
CPFE for circuits of unbounded size, output length and depth satisfying non
adaptive simulation based security. Recall that non-adaptive simulation secu-
rity refers to a game where the attacker must make all it’s key requests before
obtaining the challenge ciphertext [13].

– By strengthening the underlying assumption to IBEwith receiver selective open-
ing security, we obtain CPFE for circuits of bounded size, output length and
depth enjoying adaptive simulation based security1. Moreover, we show that
IBE is a necessary assumption for these primitives.

– By relying on the LearningWith Errors (LWE) assumption, we obtain a succinct
CPFE for circuits – namely, supporting circuits with unbounded size, but fixed
output length and depth, which achieves adaptive simulation based security.

3. KPFE for circuits with dynamic bounded collusion. We provide the first KPFE for
circuits of unbounded size, but bounded depth and output length satisfying dynamic
bounded collusion. Our construction relies on LWE and achieves adaptive simula-
tion based security. This improves the security of succinct KPFE by Goldwasser et
al. [20].

1 For the knowledgeable reader, the lower bound from [13] does not apply because there is only
one challenge ciphertext, with bounded output length in the security game.
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4. KP and CP FE for TM/NL with dynamic bounded collusion. We provide the first
KPFE and CPFE constructions of bounded collusion functional encryption for Tur-
ing machines in the public key setting from LWE. Such a result was not known
even with fixed collusion resistance to the best of our knowledge. Our construc-
tions achieve non-adaptive simulation based security. In terms of functionality: a
secret key in our KPFE construction encodes an TM M , a ciphertext encodes a mes-
sage x and decryption allows recovery of M(x) and nothing else. Both the input
x and the machine M in our construction can be of unbounded polynomial length
but the ciphertext size grows with the upper bound on the running time of the Tur-
ing machine on the given input x. Given RAM access to the ciphertext, the scheme
enjoys input specific decryption time.

5. Adaptive Bounded Collusion FE for NL with dynamic bounded collusion. The
above construction guarantees non-adaptive security while supporting general Tur-
ing machines. We also consider a variant of the above scheme that satisfies stronger
adaptive security, but at the cost of supporting smaller class of computation Non-
deterministic Logarithmic-space (NL). Since NL contains Nondeterministic Finite
Automata (NFA), this result subsumes all prior work of bounded collusion FE for
uniform models from standard assumptions [7,9].

1.2 Our Techniques

In this section, we provide an overview of our techniques. At a high level, our work
addresses two broad challenges: obtaining stronger security guarantees via dynamic
collusion and achieving more powerful functionality via general TM or NL. We exam-
ine each of these in turn.

Dynamic Bounded Collusion. Observe that the problem of constructing FE with
delayed collusion bounds has not been studied until our work, even for bounded size
circuits. A first observation is that in such an FE scheme, it is necessary that the effi-
ciency of the setup and key generation algorithms are independent of (or dependent
only poly-logarithmically on) the collusion bound Q. To the best of our knowledge,
previous bounded FE schemes such as [1,8,21] do not satisfy this property. However,
the recent construction by Ananth and Vaikuntanathan [12] (AV19) does satisfy one
half of this requirement – it enjoys a key generation algorithm which is efficient in this
sense. Unfortunately, the setup algorithm of their construction runs in time that grows
with Q. Our first step will be to remove the dependency on Q from the setup algorithm.

Improving AV19 to remove setup dependence on Q. To begin, we recap some relevant
ideas from their construction. Their construction is generic: they construct Q-bounded
FE scheme from a single key FE scheme. For concreteness, we instantiate the single key
FE scheme with the concrete one by Sahai and Seyalioglu [28]. While their construction
is key policy, we adapt it to the ciphertext policy setting in what follows. At a very
high level, their Q bounded FE scheme runs Q subsystems in parallel, such that each
subsystem in turn runs N instances of the SS10 scheme. Since their construction is
optimized using an elegant combinatorial argument, they obtain a secret key size of
poly rather thanO(Q·poly). This optimized construction forms the starting point of our



244 S. Agrawal et al.

work. The specific details of their final construction are not relevant to this overview: we
note only some salient features. Their construction makes use of an “MPC style” secret
sharing scheme, where an input circuit C is divided into shares ̂C1, . . . , ̂CN . Now, n
out of N parties, without any interaction, perform some computation on their shares
corresponding to input x, to obtain partial outputs ŷ1, . . . , ŷn. These n partial outputs
are then combined to obtain output y = C(x).

Using the above secret sharing scheme, the AV19 construction may be summarized
as follows. The setup algorithm generates several (the exact number is not relevant for
us) public and secret key pairs of a PKE scheme. To encrypt a circuit C, the encryptor
computes many shares of C as described above. These shares ̂Ci are then hardwired
into garbled circuits which, given input x, compute ŷi using the above method. The
labels of these garbled circuits are encrypted using the public keys provided by the
setup algorithm. The function key for x is a set of PKE secret keys that depend on x
(again, the precise dependence is not required here). The decryptor first uses the PKE
secret keys to recover the appropriate labels of the garbled circuit corresponding to x.
Then the garbled circuit is evaluated to obtain shares ŷi of the decryption result. These
shares are then combined to obtain C(x).

The reason why their setup algorithm takes time linear in the collusion bound Q is
that the number of public keys required by their scheme is linear in Q. Having unrolled
their construction when instantiated with [28], our approach to removing this depen-
dency is simple: we replace these public keys of PKE with a single master public key
of an identity based encryption (IBE) scheme. Then, encryption with PKi is replaced
by an encryption with IBE.Enc(IBE.mpk, i, ·), where i is the identity. The intuition for
security is the same as the original construction. Thus, we use the power of the IBE
to hide the labels of the garbled circuits, use the power of the garbled circuits to hide
information other than the decryption shares, and finally use the power of the secret
sharing scheme to hide the circuit C.

We show that if we desire adaptive simulation (AD-SIM) security for the resultant
construction, we need an IBE satisfying the stronger security notion of receiver selec-
tive opening security [25]. This is for a reason similar to why [12,21] required non-
committing security for the underlying public key encryption. Since the length of the
message that can be encrypted using an IBE with receiver selective opening security is
bounded, so is the size of the circuits that can be encrypted in our CPFE scheme. If we
relax the security notion and consider non-adaptive (NA-SIM) security, we can use IBE
with standard IND-CPA security. This allows us to encrypt a message of unbounded
length, which in turn allows us to encrypt circuits with unbounded size. A simple adap-
tation of the lower bound of Boneh et al. [13] shows that to support unbounded sized
circuits, NA-SIM security is optimal2.

2 Consider a circuit C∗ with unbounded size and unbounded output length. Let us say that this
circuit has hardwired with random string s of length �, and upon an input x, the circuit ignores
the input and outputs s. Here, � is unbounded. Now if the attacker makes even a single key
request for some x∗ after seeing the challenge ciphertext corresponding to C∗, the simulator
is faced with the impossible task of embedding a random string of length � into a fixed sized
secret key. Hence, the adversary must not be allowed post-challenge key requests when circuits
of unbounded output length are supported.
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Supporting Delayed Collusion in Security. So far, we have constructed bounded CPFE
schemes whose setup and key generation algorithms run in time independent of Q.
However, this is only necessary and not sufficient to construct FE with delayed collusion
bound. Once the system is set up with the bound Q, this will still only be secure against
a collusion of size Q. Our next step is to remove this restriction so that the encryptor
can choose the bound flexibly, and in particular, differently for each ciphertext.

Here, our crucial observation is that the setup and key generation algorithms of
the scheme can be run even for super polynomial Q, thanks to their efficiency prop-
erties. Hence, we may use the “powers of two trick” [19], where we run the system
with different collusion bounds Q = 2, 22, . . . , 2λ. The setup and key generation algo-
rithms are run for these λ subsystems in parallel. When we encrypt the message, the
encryptor chooses the smallest 2i that exceeds the bound Q it wants and encrypts the
message using the i-th subsystem. Decryption is performed using the secret key for the
i-th instance of the subsystem. The resulting scheme inherits the efficiency and secu-
rity properties of the subsystem. Namely, if the subscheme is NA-SIM (respectively
AD-SIM) secure and supports unbounded (respectively bounded) circuits, so does the
resulting scheme. Thus, we obtain two schemes with incomparable properties. Please
see Sect. 3 for details.

Observe that the construction of bounded collusion FE in AV19 can be based on the
minimal assumption of plain PKE [12]. On the other hand, our constructions described
above rely on the stronger primitive of IBE. It is natural to ask whether we can base the
security of the construction to weaker primitives such as PKE. We answer this question
negatively. In our full version [6] we argue that the usage of IBE is unavoidable, by
showing that FE with dynamic bounded collusion for very small class of functionalities
already implies IBE.

Supporting More General Function Classes. Next, we describe our techniques for
supporting more flexible models of computation, namely Turing machines or NL. The
main difficulty of constructing FE for these function classes is to handle unbounded
length inputs and unbounded size machines simultaneously. To address this, we borrow
a trick from the work of Agrawal, Maitra and Yamada [7]: instead of trying to handling
them at once, we construct intermediate schemes that can handle an unbounded size
object on one side, but bounded size object on the other. Towards this, we construct
KPFE and CPFE schemes with dynamic bounded collusion that support unbounded
size circuits, but with bounded output length and depth (note that input length is always
fixed). Later, we will see how to compile these to construct FE for more general function
classes. Note that in the previous step we already constructed a CPFE scheme that
can handle circuits with unbounded size even without restrictions on depth and output
length. However, this construction was only NA-SIM secure. Here, we aim to construct
schemes with AD-SIM security.

Succinct KPFE and CPFE. Let us start with the construction of KPFE that can support
unbounded size circuits. Note that such FE schemes have already been constructed
by the previous works under the name of succinct FE [1,20]. However, they do not
satisfy the security requirement that we want. Namely, they are (conventional) bounded
collusion schemes and do not satisfy the delayed collusion property. In addition, they
only satisfy NA-SIM security. Here, we upgrade the security of existing succinct FE
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schemes so that they satisfy the delayed collusion property and AD-SIM security with
the help of our CPFE scheme for bounded circuits that already satisfies the desired
security properties. In more detail, we combine succinct single-key KPFE, denoted by
1KPFE with our AD-SIM secure CPFE for bounded circuits, to obtain a new succinct
KPFE with the desired security properties.

At a high level, the construction works as follows. The master public key and master
secret key of the final KPFE scheme are those of the CPFE. To encrypt a message x for
a collusion bound 1Q, the encryptor first constructs a circuit 1KPFE.Enc(·, x)3, which
is an encryption algorithm of the single-key KPFE that takes as input a master public
key of the single-key KPFE and outputs an encryption of the message x under the key.
The encryptor then encrypts the circuit using the CPFE scheme with respect to the
bound 1Q. To generate a secret key for a circuit C, we first freshly generate a master
key pair of the single-key KPFE (1KPFE.mpk, 1KPFE.msk). We then generate a CPFE
secret key CPFE.sk corresponding to the string 1KPFE.mpk and then generate secret
key 1KPFE.skC for the circuit C of the single-key KPFE scheme. The final secret key
is (CPFE.sk, 1KPFE.skC). Decryption is done by first decrypting the CPFE ciphertext
using the CPFE secret key to recover 1KPFE.Enc(1KPFE.mpk, x) and then decrypting
it using the secret key 1KPFE.skC of the single-key KPFE scheme to recover C(x).

We discuss the efficiency of the above scheme. First we claim that the above
scheme is succinct (or equivalently, can deal with unbounded size of circuits). This
is the case even though underlying CPFE can only deal with bounded size cir-
cuits, since the size of circuits that should be supported by the encryption algo-
rithm of CPFE is |1KPFE.Enc(·, x)| = poly(λ, |x|), which is independent of the
size of circuits by the succinctness of the underlying 1KPFE scheme. Next, we
discuss the security of the scheme. Intuitively speaking, by the security of the
underlying CPFE, the adversary can obtain no information beyond the decryption
result of the CPFE. This means that, the adversary only obtains the information
{1KPFE.Enc(1KPFE.mpk(i), x), 1KPFE.sk

(i)

C(i)}i∈[Q] for Q freshly generated, inde-
pendent instances. In turn, this implies that the adversary can only obtain the informa-
tion of {C(i)(x)}i∈[Q] by the single-key security of the underlying KPFE, as desired.
A formal argument shows that the resulting KPFE scheme inherits AD-SIM security of
the CPFE, even if the underlying single-key KPFE is only NA-SIM secure. We refer to
the Sect. 4 for details.

Next, we discuss the adaptation to the CPFE setting. In this construction, we use a
reusable garbled circuit scheme [20] instead of single-key succinct KPFE. Recall that a
reusable garbled circuit is a symmetric key variant of single key succinct KPFE, where
the circuit in the secret key is also hidden. Now, to encrypt a circuit C in our CPFE, we
run the garbling algorithm of the reusable garbled circuit scheme on input C to obtain
the garbled version of C as well as some secret information for input garbling. We then
construct an input encoding circuit that takes as input x and outputs an encoded version
of it using the secret information generated above. Then, we encrypt this input encoding
circuit using the underlying CPFE. The final ciphertext consists of the garbled circuit
and the encrypted circuit. To generate a secret key for x, we use the key generation

3 The description here is oversimplified – in fact we need a PRF to derive the randomness for
the encryption.
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algorithm of the underlying CPFE scheme to obtain a secret key for x. Decryption
requires running the decryption algorithm of the underlying CPFE scheme to obtain the
encoded version of input x and then using this result with the garbled version of the cir-
cuit to recover C(x). The resulting scheme is AD-SIM secure and supports unbounded
size circuits. Please see our full version [6] for details.
Handling Unbounded Inputs. So far, we have constructed KPFE and CPFE schemes that
can handle unbounded size circuits but with fixed input size. However, for obtaining FE
for Turing machines, we have to be able to encrypt unbounded length inputs and this
is clearly insufficient. To enable this, we use the “delayed encryption” technique by
Goyal, Koppula, and Waters (GKW16) [22]. Intuitively, the technique uses the power
of garbled circuits and IBE to transport us to a world where there are infinitely many
instances of FE {mpki}i∈N – the encryptor can choose a master public key for some
index j and encrypt the message. A secret key is associated with some index k and the
decryption is possible iff j = k.

In more detail, the GKW16 scheme works as follows. During setup, the master pub-
lic key and master secret key of an IBE scheme are generated. To encrypt a message x
using the j-th instance of the FE scheme as described above without knowing the corre-
sponding mpkj , the encryptor first constructs a circuit Enc(·, x) that takes as input the
master public key mpkj for the j-th instance and outputs the ciphertext Enc(mpkj , x).
The encryptor then garbles this encryption circuit to obtain the corresponding garbled
circuit and set of labels. Then, the encryptor encrypts each pair of labels with the IBE,
where the identity for which a label is encrypted encodes the index j, the position of
the label and a single bit. Note that the above step can be done without knowing mpkj .
Correspondingly, the key generation algorithm computes IBE secret keys for the correct
bits of mpkk, which together with the IBE ciphertexts allow the decryptor to recover
the labels corresponding to mpkj in the jth garbled circuit when j = k. This lets the
decryptor evaluate the garbled circuit to retrieve the ciphertext Enc(mpkj , x) as desired.

With this technique, we make progress towards our goal, because we can encrypt a
message of any length by the scheme, rather than only being able to encrypt a message
of fixed length. However, this is still not enough, since the decryption is possible only
when the index j and k match. For example, let us imagine that we want to construct
FE for Turing machine using infinitely many instances of FE for circuits, where the
i-th instance of FE supports circuits with input length i. Let t be an upper bound on
the runtime of the TM on input x. If we encrypt a message (x, 1t) as an input to a
Turing machine, we may encrypt it using |(x, 1t)|-th instance of the FE. On the other
hand, to generate a secret key for a Turing machine M , we convert the machine into a
circuit CM (·) and generate a secret key for it. However, it is unclear how to define the
input length of the circuit. If the input length does not match |(x, 1t)|, the decryption
is impossible. Meanwhile, the entity who generates the secret key does not know the
input length |(x, 1t)|, so is stuck.

To resolve the above problem, we incorporate a trick by Agrawal, Maitra and
Yamada [7] used to support unbounded inputs for an NFA machine in the context of
ABE. They construct two restricted ABE schemes for NFA: one that supports decryp-
tion in the case where the length |x| of the input x is larger than the size |M | of the
machine M and one that supports the case where |x| ≤ |M |. Then, they run the
restricted schemes in parallel. In the decryption algorithm, these sub-schemes com-
plement each other. Namely, we use the first sub-scheme to decrypt a ciphertext if
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|x| > |M | and the second otherwise. Though they introduce the trick in the context
of ABE, this perfectly works in the context of FE as well. A hurdle is that their tech-
nique works only in the secret key setting, since the encryptor is required to know a
master secret in order to generate unbounded instances of FE (proportional to its input
length) on the fly. However, we show that in conjunction with the technique from [22]
described above, this idea can be made to work in the public key setting as well. In a
nutshell, this technique lets us encode x and M in multiple slots of the FE instances so
that they always intersect, instead of encoding them on a single slot like in [22].

Onward to FE for TM. Armed with these techniques, let us try constructing FE for TM.
As discussed above, our construction handles the cases |(x, 1t)| ≤ |M | and |(x, 1t)| >
|M | separately. Let us begin with the former using our KPFE that supports unbounded
size circuits.

By the technique of [22], we can assume that we are in a world where there are
infinitely many KPFE instances available and the i-th instance supports circuits with
input length i. To encrypt a message x with respect to the time bound 1t, we use the
|(x, 1t)|-th instance of the KPFE. To generate the secret key for a Turing machine M
on the other hand, we encode M into a set of circuits Ci,M for i = 1, . . . , |M |, where
Ci,M is a circuit that takes as input a string (x, 1t) and then run the machine M for
t steps and outputs the result. We then generate secret keys for Ci,M using the i-th
instance of KPFE for all of i ∈ [|M |]. This is possible even for unbounded M , because
each KPFE instance supports unbounded size circuits. The decryption is possible when
|(x, 1t)| ≤ |M | by using the |(x, 1t)|-th instance. However, it is evident that this is an
incomplete scheme, since the decryption is not possible when |(x, 1t)| > |M |.

To complement this, we next construct a scheme that deals with the case of
|(x, 1t)| > |M | using our unbounded CPFE scheme. To encrypt a message (x, 1t)
we convert it into a circuit {Ui,x,t}i∈[|(x,1t)|], where Ui,x,t is a circuit that takes as input
a string M of length i, interprets it as a description of a Turing machine, and then runs
it on input x for t steps to obtain the result. We then encrypt the circuit Ui,x,t using
the i-th instance of the FE for all of i ∈ [|(x, 1t)|]. This requires the underlying CPFE
scheme to support unbounded size of circuits. Since our NA-SIM secure CPFE con-
struction supports such circuits, we can use this here. On the other hand, our CPFE
scheme with AD-SIM security cannot be used here, because the scheme can only sup-
port circuits with bounded depth, which prohibits us from running the Turing machine
inside the circuit for t steps, where t may be arbitrarily large. To generate a secret key
for a Turing machine M , we use the |M |-th instance of the FE. It can be seen that the
decryption is possible in this scheme when |(x, 1t)| > |M |. Having the construction for
the cases of |(x, 1t)| > |M | and |(x, 1t)| ≤ |M |, we can obtain the final construction by
running them in parallel. The final scheme is NA-SIM secure, because the underlying
CPFE scheme is NA-SIM secure (even though the KPFE scheme satisfies the stronger
AD-SIM security). Please see Sect. 5 for details.

Above, the ciphertext size grows with the t, the upper bound on the runtime of the
TM on a given input x. We emphasize that t is not a global bound but can vary with each
input x, and is therefore unbounded. While we do not know how to remove this depen-
dence using our current techniques, we remark that decryption time can still be input
specific using the “powers of two” trick from Goldwasser et al. [19]. This requires the
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decryption algorithm to have RAM access to the ciphertext. In more detail, the encryp-
tor may repeat the encryption procedure for �log2 t� possible values of TM runtime,
with values 2i for i ∈ [�log2 t�]. The decryptor can start with the ciphertext corre-
sponding to the smallest value and proceed to the next ciphertext only if the previous
decryption did not result in a valid output4. This ensures that the scheme enjoys input
specific decryption time.

FE for NL with Adaptive Security. The above construction guarantees NA-SIM secu-
rity while supporting general Turing machines. We also consider a variant of the above
scheme that satisfies stronger AD-SIM security, at the cost of supporting smaller class
of computation NL. This is achieved by using AD-SIM secure FE for both the build-
ing blocks of KPFE and CPFE. Recall that the reason why we cannot use AD-SIM
secure CPFE in the above construction was that it was not possible to run the Turing
machine for an unbounded number of steps inside a circuit of fixed depth. This issue
arises because the Turing machine is run sequentially. In a nutshell, our next idea is to
parallelize computation so that the depth for the corresponding circuit can be bounded
by some fixed polynomial. Such a parallelization of the computation is not known to be
possible for general Turing machines, but we can do it for NL, which is more restric-
tive. To do so, we represent the computation of NL as a multiplication of matrices as
was done in [26]. First, we enumerate all the possible internal configurations of the
Turing machine M on input x that may appear during the computation. The number
of such internal configurations can be bounded by some polynomial, since the length
of the working tape is logarithmic. We then construct the transition matrix M for the
configurations. Then, one can determine whether M accepts the input x within time t
by computing Mt due to the properties of the transition matrix. Since the matrix expo-
nentiation can be done by O(log t) multiplications of the matrix, this can be performed
by fixed polynomial depth even for unbounded t (assuming t < 2λ). We refer to the full
version [6] for details.

1.3 Concurrent Work

A concurrent work [16] independently introduced the notion of dynamic collusion
bound for KPFE schemes, which is the same as what we consider in this paper. They
obtain simulation secure KPFE schemes for circuits with dynamic collusion resistance.
Further, their techniques also significantly overlap with our CPFE constructions in
Sect. 3. In particular, they compile existing bounded collusion KPFE schemes [12,21]
with IND-CPA secure IBE to obtain KPFE for circuits satisfying dynamic collusion
bound property. However, we also extend our results further to obtain succinct CP/KP-
FE schemes for circuits with dynamic collusion property, and also to support Turing
machines and NL with various security tradeoffs as explained in Sect. 1.2. All these
constructions support dynamic collusion resistance. Furthermore, we also argue about
the necessity of IBE to achieve dynamic collusion bound property for FE schemes,
which is left as an open problem in [16].

4 The definition of TM can be easily modified to output “unfinished” if the computation did not
conclude in a given number of steps.
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2 Preliminaries

In this section, we define some notation and preliminaries that we require. Please see
the full version [6] for some additional preliminaries.

2.1 Functional Encryption

Functional encryption (FE) [13,27,29] has been traditionally defined in a setting where
a trusted key generator holding a master secret key provides authorized users with secret
keys corresponding to functions. Such a key, when used to decrypt ciphertexts, reveals
only the function of the plaintexts and nothing else. In this subsection, we define the
notion of functional encryption (FE) more generally so that it captures the above notion
as well as other types of functionalities as special cases.

2.1.1 Syntax and Correctness
Let R : X × Y → {0, 1}∗ be a two-input function where X and Y denote “message
space” and “key attribute space”, respectively. Ideally, we would like to have an FE
scheme that handles the relation R directly, where we can encrypt any message x ∈ X
and can generate a secret key for any key attribute y ∈ Y . However, in many cases,
we are only able to construct a scheme that poses restrictions on the message space
and key attribute space. To capture such restrictions, we introduce a parameter prm
and consider subsets of the domains Xprm ⊆ X and Yprm ⊆ Y specified by it and the
function Rprm defined by restricting the function R on Xprm×Yprm. An FE (FE) scheme
for {Rprm : Xprm × Yprm → {0, 1}∗}prm is defined by the following PPT algorithms:

Setup(1λ, prm) → (mpk,msk): The setup algorithm takes as input the unary represen-
tation of the security parameter λ and a parameter prm that restricts the domain and
range of the function and outputs the master public keympk and a master secret key
msk.

Encrypt(mpk, x) → ct: The encryption algorithm takes as input a master public key
mpk and a message x ∈ Xprm. It outputs a ciphertext ct.

KeyGen(msk, y) → sk: The key generation algorithm takes as input the master secret
key msk, and a key attribute y ∈ Yprm. It outputs a secret key sk. We assume that y
is included in sk.

Dec(ct, sk) → m or ⊥: The decryption algorithm takes as input a ciphertext ct and a
secret key sk. It outputs the message m or ⊥ which represents that the ciphertext is
not in a valid form.

Remark 1 (Bounded collusion variants). In this paper, we mainly focus on FE with
bounded collusion security, where the security is guaranteed only when the number of
secret keys that the adversary obtains during the security game is below collusion bound
Q. To do so, we have to slightly change the syntax above. We consider two different
types of syntax for FE depending on when Q is declared.

– The first notion we consider is bounded collusion FE [12,21], whereQ is fixed when
the system is setup. In more details, we change the syntax of FE defined above so
that all the algorithms (Setup,KeyGen,Enc,Dec) take 1Q as additional input.
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– The second notion we consider is a new notion that we call dynamic bounded collu-
sion FE. In this notion, the bound Q is specified by the encryptor, not by the setup.
Namely, we change the syntax of FE above so that only the encryption algorithms
Enc takes 1Q as input, whereas other algorithms (Setup,KeyGen,Dec) do not.

We note that the requirement that the algorithms run in polynomial time along with the
fact that all algorithms in bounded collusion FE take 1Q as additional input imply that
all the algorithms run in polynomial in Q. In the case of FE with dynamic bounded
collusion, similar implication holds for the encryption algorithm. However, the running
time of Setup and KeyGen should be dependent only on λ and |prm|, whereas the
running time of Dec may indirectly depend on Q if the size of the input ciphertext is
dependent on Q.

Definition 1 (Correctness). An FE scheme FE = (Setup,KeyGen,Enc,Dec) is cor-
rect if for all prm, x ∈ Xprm, and y ∈ Yprm,

Pr
[

(mpk,msk) ← Setup(1λ, prm) :
Dec

(

Enc(mpk, x),KeyGen(msk, y)
)


= R(x, y)

]

= negl(λ)

where probability is taken over the random coins of Setup, KeyGen and Enc.

2.1.2 Security Notions
As security notions for FE, we define simulation-based notions. We are mainly inter-
ested in the bounded collusion settings because the security notion without the collusion
bound is shown to be impossible [4]. We first provide the description of the security
game for FE with dynamic bounded collusion and then for bounded collusion FE.

Definition 2 (AD-SIM and NA-SIM Security for FE with Dynamic Bounded Collu-
sion). Let FE = (Setup,KeyGen,Enc,Dec) be a (public key) FE scheme with dynamic
bounded collusion for the function family {Rprm : Xprm × Yprm → {0, 1}∗}prm. For
every stateful PPT adversary A and a stateful PPT simulator Sim = (SimEnc,SimKG)
consider the following experiments:

ExprealFE,A

(
1λ

)
: ExpidealFE,Sim

(
1λ

)
:

1: prm ← A(1λ)

2: (mpk,msk) ← Setup(1λ, prm)
3: (x, 1Q) ← AKeyGen(msk,·)(mpk)

4: ct ← Enc(mpk, x, 1Q)

5: b ← AO(msk,·)(mpk, ct)
6: Output b

1: prm ← A(1λ)

2: (mpk,msk) ← Setup(1λ, prm)

3: (x, 1Q) ← AKeyGen(msk,·)(mpk)
– Let (y(1), . . . , y(Q1)) be A’s oracle queries.
– Let sk(q) be the oracle reply to y(q).

– Let V :=
{(

z(q) := R(x, y(q)), y(q), sk(q)
)}

q∈[Q1]
.

4: (ct, st) ← SimEnc(mpk,V, 1|x|, 1Q)

5: b ← AO′(st,msk,·)(mpk, ct)
6: Output b
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We emphasize that the adversary A is stateful, even though we do not explicitly
include the internal state of it into the output above for the simplicity of the notation.
On the other hand, the above explicitly denotes the internal state of the simulator Sim
by st. We distinguish between two cases of the above experiment:

1. The adaptive case, where:
– The oracle O(msk, ·) = KeyGen(msk, ·) with 1 ≤ Q1 < Q, and
– The oracle O′(st,msk, ·) takes as input the q-th key query y(q) for q ∈ [Q1 +

1, Q1+Q2] and returns SimKG(st,msk, R(x, y(q)), y(q)), where Q1+Q2 ≤ Q
The FE scheme FE is then said to be simulation secure for one message against
adaptive adversaries (AD-SIM-secure, for short) if there is a PPT simulator Sim
such that for every PPT adversary A, the following holds:

∣

∣

∣Pr[ExprealFE,A

(

1λ
)

= 1] − Pr[ExpidealFE,Sim

(

1λ
)

= 1]
∣

∣

∣ = negl(λ) (2.1)

2. The non-adaptive case, where Q1 ≤ Q and the oracles O(msk, ·) and O′(msk, ·)
are both the “empty” oracles that return nothing: The FE scheme FE is then said
to be simulation secure for one message against non-adaptive queries (NA-SIM-
secure, for short) if there is PPT simulator Sim = (SimEnc,⊥) such that for every
PPT adversaries A, Eq. (2.1) holds. Note that in the non-adaptive case, we can
ignore st since SimKG is not present in the above game and it is never used by other
algorithm.

Definition 3 (AD-SIM and NA-SIM Security for bounded collusion FE [21]). Let
FE = (Setup,KeyGen,Enc,Dec) be a (public key) bounded collusion FE scheme for
the function family {Rprm : Xprm × Yprm → {0, 1}∗}prm. We define AD-SIM and
NA-SIM security for FE by considering the same game as Definition 2 with the fol-
lowing changes:

– We change A to output 1Q in addition to prm at the beginning of the game.
– All the algorithms run in

the experiment (Setup,KeyGen,Enc,Dec,SimEnc,SimKG) take 1Q as additional
input.

We also define weaker notion of the security where the adversary is restricted to always
choose Q = 1 in the non-adaptive case. If the scheme only satisfies this weaker security
notion, we say the scheme is 1-NA-SIM secure.

Remark 2. The above definition allows to argue security of a single instance of FE. For
the security proof of our constructions in Sect. 5.1, it is convenient to consider multi-
instance version of the above notion. In the multi-instance security variant, the adver-
sary declares the number of instances M at the beginning of the game and interact with
each instance as above. In the real world, the adversary interacts with real algorithms in
all instances, while in the ideal world, it interacts with simulators in all instances. The
adversary can make queries in arbitrary order and make them arbitrarily correlated as
long as it respects the restriction for each instance. This multi-instance security notion
is easily shown to be equivalent to the single-instance security notion above by simple
hybrid argument.



Functional Encryption for Turing Machines 253

2.1.3 Special Classes of FE
We then define various kinds of FE by specifying the relation.

KPFE for circuits. To define KPFE for circuits, we set X = {0, 1}∗ and Y as the set of
all circuits and define R(x,C) = C(x) if the length of the string x and the input length
of C match and otherwise R(x,C) = ⊥. In this paper, we will consider the circuit
class Cinp,dep,out that consists of circuits with input length inp := inp(λ), depth dep :=
dep(λ), and output length out := out(λ). To do so, we set prm = (1inp, 1dep, 1out),
Xprm = {0, 1}inp, and Yprm = Cinp,dep,out.

CPFE for circuits. To define CPFE for circuits, we set X to be the set of all circuits
and Y = {0, 1}∗ and define R(C, x) = C(x) if the length of the string x and the input
length of C match and otherwise R(x,C) = ⊥. In this paper, we will consider the
circuit class Cinp that consists of circuits with input length inp := inp(λ). To do so, we
set prm = 1inp, Xprm = Cinp, and Yprm = {0, 1}inp.

Remark 3. In the definition of KPFE for circuits, even though the input length, output
length, and depth of the circuits in Cinp,dep,out are bounded, the size of the circuits is
unbounded. Similar comments hold true for Cinp in the definition of CPFE.

Remark 4. Note that our definition of the KPFE requires that the running time of the
encryption algorithm is bounded by poly(λ, |prm|) = poly(λ, inp, dep, out). In partic-
ular, the running time should be independent from the size of the circuit being supported
by the scheme, which is unbounded. This property is called succinctness in [20].

FE for Turing Machines. To define FE for Turing machines, we set X = {0, 1}∗, Y to
be set of all Turing machine, and define R : X × Y → {0, 1} ∪ {⊥} as

R((x, 1t),M) =

{

1 ifM acceptsx in t steps

0 otherwise.
.

FE for NL. To define FE for NL, we set X = {0, 1}∗, Y to be set of all non-
deterministic Turing machines with two tapes, one of which encodes the input and can
only be read, whereas the other tape can be read as well as written. When we measure
the space complexity of the computation, we consider the space being used for the latter
tape. We define R : X × Y → {0, 1} ∪ {⊥} as

R((x, 1t, 12
s

),M) =

{

1 ifM acceptsxwithin t steps and spaces

0 otherwise.
.

Note that here, s is in the exponent to reflect the idea that the space for the computation
is logarithmically bounded.

We recall the following result by Goldwasser et al. [20] that we will use later in
Sect. 4.

Theorem 1 ([20]). There exists a KPFE scheme KPFE for the circuit class Cinp,dep,out

with 1-NA-SIM security assuming sub-exponential hardness of the LWE problem.



254 S. Agrawal et al.

Remark 5. Note that [20] defines their security notion as full-simulation based security.
However, as stated in [20] only, their full-simulation security is equivalent to the non-
adaptive simulation security definition from [21], where no post-challenge key queries
are allowed. The 1-NA-SIM security given in Definition 3 is implied by the same that
is adopted for this work. Thus, [20] is 1-NA-SIM secure according to our Definition 3.

3 CPFE with Dynamic Bounded Collusion

In this section, we construct public-key, ciphertext-policy functional encryption
(CPFE) schemes with delayed collusion bound. The first scheme supports unbounded
polynomial-size circuits and achieves NA-SIM security. The second scheme only sup-
ports bounded polynomial-size circuits, but achieves stronger AD-SIM security. Both
schemes are obtained by first constructing a bounded FE with special efficiency prop-
erty (Sects. 3.2 and 3.3) and then converting it into a scheme with delayed collusion
bound (Sect. 3.4).

3.1 Preparations

Here, we define reusable, dynamic multi-party computation (RDMPC) protocol in the
client-server framework, which is introduced by Ananth and Vaikuntanathan [12] as a
useful notion for the construction of bounded FE. The formal definition of the protocol
as a tuple of algorithms with its correctness and security definitions appear in our full
version [6]. We adapt the syntax and definitions of [12] to our setting.

We provide some intuition on how these algorithms may be used as a multi-party
computation in a client-server framework. Similar to [12], here also the setting consists
of a single client and N servers. In particular, the client wants to offload an apriori
bounded number of computations R to these N servers. Each computation is termed as
a session. To this end, the protocol consists of two phases as described below:

– An offline phase, where the client takes the session count R and a secret circuit
C ∈ Cinp as input, and encodes it (via CktEnc algorithm) as ( ̂C1, . . . , ̂CN ). For all
k ∈ [N ], it then sends the kth encoding ̂Ck to the kth server.

– An online phase, that is performed for R sessions. The client wishes to delegate
an input x(j) in the jth session for some j ∈ [R]. For this, it encodes x(j) (via
InpEnc algorithm) as x̂(j) and forwards it to all the N servers. Hereon, some n out
of N servers (formalized via any subset S ⊆ [N ] of size n) may come to do some
local computation (via the Local algorithm) on their own inputs to get a partial out-
put encoding. In particular, the uth server may compute the partial output encoding
ŷ
(j)
u = Local( ̂Cu, x̂(j)). The final output C(x(j)) is obtained by combining these
partial output encodings {ŷ

(j)
u }u∈S via the public evaluation algorithm Decode.

Crucially, the R input encodings {x̂(j)}j∈[R] are generated with randomness indepen-
dent from that of the offline phase. Further the terms “reusable” and “dynamic” stems
from the respective requirements that the secret circuit encoding must be reusable across
all R sessions and the final output may be recovered dynamically by any subset S of
the N servers in each session. We then recall the result from [12] adapted to our setting.
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Theorem 2 (Adapted from [12]). Assuming the existence of one-way functions, there
exists an RDMPC protocol with parameter N = Θ(R2λ), t = Θ(Rλ), and n = Θ(t)
for Cinp with any inp = poly(λ).

3.2 Basic Construction

Here, we give a construction of bounded CPFE. The construction supports unbounded
size circuits and is secure against bounded collusion. A nice feature of the construction
is that the running times of the setup and key generation algorithms are independent
from the collusion bound. Looking ahead, we leverage this property to upgrade the
construction to be an CPFE scheme with dynamic bounded collusion property later in
Sect. 3.4.

In more details, we provide the description of CPFE for the circuit class C� for
arbitrary � = �(λ), where C� is the set of all polynomial size circuits with input length
�. Formally, our FE is for the relation Rprm : Xprm × Yprm → {0, 1}∗ where prm = 1�,
Xprm := C�, and Yprm := {0, 1}� and Rprm(C, x) = C(x), for all C ∈ C� and x ∈
{0, 1}�.

Ingredients.We now describe the underlying building blocks used to obtain our CPFE
construction:

1. A reusable, dynamic MPC protocol for C� denoted by RDMPC = (CktEnc, InpEnc,
Local,Decode) with N = Θ(R2λ), t = Θ(Rλ), and n = Θ(t). We can instantiate
this by the protocol by Ananth and Vaikuntanathan [12], which can be based on
any one-way function (See Theorem 2). Looking ahead, we will set R = λ in our
construction and therefore ignore the dependence on R when considering the size
of the parameters in the following. We denote the length of an encoding x̂ of x ∈
{0, 1}� by ̂� = poly(λ, �). We also denote the size of the circuit Local( ̂Cj , ·) by
ŝ(λ,R, |C|), where ̂Cj is an output of CktEnc on input a circuit C. By the efficiency
properties of RDMPC, we have ŝ(λ, |C|) = poly(λ, | ̂Cj |) = poly(λ, |C|).

2. A garbled circuit scheme GC = (GC.Garble,GC.Eval) for circuit class C
̂�. We can

instantiate this by Yao’s scheme [30], which can be based on any one-way func-
tion. We assume that a label is represented by a binary string. The length of a label
depends on the size of circuits that are garbled. We denote the length of the labels
obtained by garbling a circuit of size ŝ(λ, |C|) by L(λ, |C|). By the efficiency prop-
erty of the garbled circuit, we have L(λ, |C|) = poly(λ, ŝ(λ, |C|)) = poly(λ, |C|).

3. An IBE scheme IBE = (IBE.Setup, IBE.Enc, IBE.KeyGen, IBE.Dec) with
IND-CPA security whose identity space and message space are {0, 1}∗. We can
instantiate IBE from various standard assumptions including LWE [3,14], CDH,
and Factoring [15].

Construction. Let N := N(λ,R), n := n(λ,R), and t := t(λ,R) be the parameters
associated with RDMPC. In the following construction, we run the protocol with R =
λ. The basic CPFE scheme BCPFE = (Setup, KeyGen, Enc, Dec) for the circuit class
C� works as follows. Note that the scheme below deviates from the syntax of bounded
collusion FE because Setup and KeyGen take the collusion bound Q as binary form,
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rather than unary form as defined in Remark 1. This change in syntax is to reflect the
fact that these algorithms run in polylogarithmic time in Q rather than in polynomial
time. Even with this change, we can consider the same correctness requirement and
security notions for it.

Setup(1λ, 1�, Q) : On input the security parameter λ, an input length � = poly(λ)
of the circuit family to be supported, and the upper bound for the collu-
sion 1 ≤ Q ≤ 2λ in binary form and compute (IBE.mpk, IBE.msk) ←
IBE.Setup(1λ). Output the master key pair as (mpk,msk) := (IBE.mpk,
IBE.msk).

KeyGen(msk, x,Q) : On input master secret key msk = IBE.msk, an input x ∈ {0, 1}�

and the upper bound for the collusion 1 ≤ Q ≤ 2λ in binary form and do the
following:
1. Compute x̂ ← InpEnc(1λ, 1λ, 1�, x).
2. Sample u ← [Q].
3. Sample random set Δ ⊂ [N ] such that |Δ| = n.
4. For all j ∈ Δ and k ∈ [̂�], generate a secret key as

IBE.sku,j,k,x̂k
← IBE.KeyGen(IBE.msk, (u, j, k, x̂k)),

where x̂k is the k-th bit of x̂.
5. Output

sk =
(

u,Δ, {IBE.sku,j,k,x̂k
}j∈Δ,k∈[̂�]

)

. (3.1)

Enc(mpk, C, 1Q) : On input the master public key mpk = IBE.mpk, a circuit C ∈ C�,
and the query bound 1 ≤ Q ≤ 2λ in unary form, do the following:
1. Compute ( ̂Ci,1, . . . , ̂Ci,N ) ← CktEnc(1λ, 1λ, 1�, C) for i ∈ [Q].
2. Define the circuit Li,j(·) := Local( ̂Ci,j , ·) with input length ̂� := |x̂|.

For all i ∈ [Q] and j ∈ [N ], do the following:
(a) Run the garbling algorithm

{labi,j,k,b}k∈[̂�],b∈{0,1} ← GC.Garble(1λ, Li,j).

(b) For all k ∈ [̂�] and b ∈ {0, 1}, compute

IBE.cti,j,k,b ← IBE.Enc (IBE.mpk, (i, j, k, b), labi,j,k,b) .

3. Output

ct = {IBE.cti,j,k,b}i∈[Q],j∈[N ],k∈[̂�],b∈{0,1} . (3.2)

Dec(ct, sk, 1Q) : On input a secret key sk, a ciphertext ct, and the query bound 1 ≤
Q ≤ 2λ in unary form, do the following:
1. Parse the secret key as Eq. (3.1) and the ciphertext as Eq. (3.2).
2. For all j ∈ Δ, do the following:
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(a) For all k ∈ [̂�], compute lab′
u,j,k := IBE.Dec(IBE.sku,j,k,x̂k

, IBE.
ctu,j,k,x̂k

), where x̂k is the k-th bit of x̂.
(b) Compute ŷ′

u,j := GC.Eval({lab′
u,j,k}k∈[̂�])

3. Compute and output z = Decode({ŷ′
u,j}j∈Δ).

Remark 6 (Intuition for the construction.). The above scheme can be seen as a variant
of the FE scheme by Ananth and Vaikuntanathan [12], who showed a generic con-
struction of Q-bounded FE scheme from a single-key FE scheme. Here, we instantiate
the single-key FE scheme with the construction by Sahai and Seyalioglu [28] and then
replace the PKE used for encrypting the labels of the garbled circuits inside their con-
struction with IBE. In more details, in our construction above, we run QN instances of
the single-key FE scheme. These QN instances are grouped into Q groups each con-
sisting of N instances. In the key generation algorithm of BCPFE, one chooses a group
u ∈ [Q] and then generates n out of N secret keys of the single-key FE instances in
the group. To encrypt a message, one generates shares of the message (in our case, a
circuit) using RDMPC and then encrypts them using N instances of FE for each group
i ∈ [Q]. By the correctness of RDMPC, n secret keys of the single-key FE from a single
group can recover the decryption results.

Security. The following theorem asserts the security of our CPFE scheme.

Theorem 3. Assume that IBE satisfies IND-CPA security, GC is a secure garbled cir-
cuit scheme, and RDMPC is secure. Then, BCPFE for the circuit class C� is NA-SIM-
secure.

We refer to the full version [6] for the detailed proof of Theorem 3.

3.3 A Variant of Basic Construction with AD-SIM Security

Here, we provide a variant of the basic construction in Sect. 3.2 that satisfies stronger
AD-SIM security rather than NA-SIM security at the cost of only supporting circuits
with bounded size. Similarly to the construction in Sect. 3.2, the construction can be
upgraded into a construction with delayed collusion bound in Sect. 3.4. In more details,
our construction is for the circuit class C�,s, where C�,s is the set of circuits with input
length � and size at most s. Formally, our FE is for the relation Rprm : Xprm × Yprm →
{0, 1}∗ where prm = (1�, 1s), Xprm := C�,s, and Yprm := {0, 1}� and Rprm(C, x) =
C(x), for all C ∈ C�,s and x ∈ {0, 1}�.

Ingredients and Parameters. Our construction is the same as that in Sect. 3, but we
require stronger SIM-RSO security for the IBE [25]. As shown in [25], IBE with
SIM-RSO security can be constructed only from IBE with more standard IND-CPA
security. Therefore, our construction here can be based on the same set of assumptions
as the construction in Sect. 3. However, since the IBE scheme with SIM-RSO security
can only encrypt messages with bounded length, we will have a bound on the length of
the labels of GC. This in turn implies that we can only support circuits with bounded
size as messages of the CPFE. In the construction, we encrypt circuits with fixed size
s = s(λ). We denote the size of the circuit Local( ̂Cj , ·) by ŝ, where ̂Cj is an output of
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CktEnc on input a circuit C of size s. We also denote the length of the labels output by
GC on input a circuit of size ŝ as L. While ŝ and L are polynomial function in λ and s,
we treat them as functions only depend on λ here, since the size of the circuit s is fixed.
We assume that the message space of IBE is {0, 1}L.

We observe that Setup and KeyGen run in time poly(λ, �, s, logQ) by the efficiency
properties of IBE and RDMPC. This means that these algorithms can be run even for
super polynomial Q. Looking ahead, this property will be used crucially for the full-
fledged construction that we show in Sect. 3.4. We also observe that Enc and Dec run
in time Q · poly(λ, �, s) by the efficiency properties of IBE, GC, and RDMPC.

The following theorem asserts the security of our CPFE scheme.

Theorem 4. Assume that IBE satisfies IND-CPA security and SIM-RSO security, GC
is a secure garbled circuit scheme, and RDMPC is secure. Then, BCPFE for the circuit
class C�,s is AD-SIM-secure.

Overview for the proof. Before going to the formal proof, we provide its overview.
The proof is similar to that for Theorem 3. However, here, we have to consider secret
key queries after the encryption query. Since we consider simulation-based security
definition for BCPFE, this intuitively means that we have to be able to “program” a
decryption result into a secret key issued after the encryption query. RDMPC already
has this type of capability, since this is designed for constructing FE with AD-SIM secu-
rity [12]. Using this property and the security of the garbled circuits, we can “program”
the decryption results into labels of garbled circuits. What remains is to simulate the
IBE ciphertexts and secret keys so that the decryption results correspond with the labels
generated as above. For this purpose, we use IBE with SIM-RSO security [25].

We refer to the full version [6] for the detailed proof of Theorem 4.

3.4 Full-Fledged Construction

In Sects. 3.2 and 3.3, we construct bounded collusion CPFE schemes. Here, we show
that these schemes can be converted into CPFE schemes with dynamic bounded collu-
sion property. The resulting schemes satisfy the same level of the security and support
the same class of circuits as the original schemes. The conversion is the same for both
schemes. Let BCPFE = (BCPFE.Setup,BCPFE.KeyGen,BCPFE.Enc,BCPFE.Dec)
be our FE scheme in either Sect. 3.2 or 3.3 and let Cprm be the supported circuit class.
We have prm = 1� or prm = (1�, 1s). An input to a circuit C ∈ Cprm has fixed length
�(λ) in both cases.
Construction. We now construct a CPFE scheme CPFE = (CPFE.Setup,
CPFE.KeyGen,CPFE.Enc,CPFE.Dec) with delayed collusion bound as follows.

Setup(1λ, prm) : On input the security parameter λ, the parameter prm that specifies
the circuit family to be supported, do the following:
1. Run (BCPFE.mpki,BCPFEmski) ← BCPFE.Setup(1λ, prm, 2i) for i ∈ [λ],

where 2i is represented as a binary number here.
2. Output (mpk,msk) := ({BCPFE.mpki}i∈[λ], {BCPFE.mski}i∈[λ]).

KeyGen(msk, x) : On input master secret key msk = {BCPFE.mski}i∈[λ] and an input
x ∈ {0, 1}�, do the following:
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1. Run BCPFE.ski ← BCPFE.KeyGen(IBE.mski, x, 2i) for i ∈ [λ], where 2i is
represented as a binary number above.

2. Output sk := {BCPFE.ski}i∈[λ].
Enc(mpk, C, 1Q) : On input the master public key mpk, a circuit C ∈ Cprm, and the

query bound 1 ≤ Q ≤ 2λ in unary form, do the following:
1. Find u such that 2u−1 < Q ≤ 2u.
2. Parse mpk → {BCPFE.mpki}i∈[λ].
3. Compute BCPFE.ctu ← BCPFE.Enc

(

BCPFE.mpku, x, 12
u)

and output ct =
BCPFE.ctu.

Dec(ct, sk, 1Q) : On input a secret key sk, a ciphertext ct, and the query bound 1 ≤
Q ≤ 2λ in unary form, do the following:
1. Find u such that 2u−1 < Q ≤ 2u.
2. Parse sk → {BCPFE.ski}i∈[λ] and ct = BCPFE.ctu.
3. Compute and output BCPFE.Dec(BCPFE.sku,BCPFE.ctu).

It is clear that the correctness of the above scheme follows from that of the underlying
scheme BCPFE. We analyse the efficiency of the above construction in our full version
[6].

The following theorem asserts the security of our CPFE scheme.

Theorem 5. If BCPFE satisfies AD-SIM security as bounded FE scheme, then so
does CPFE scheme as FE with delayed collusion bound. Similarly, if BCPFE satis-
fies NA-SIM security as bounded FE scheme, then so does CPFE scheme as FE with
delayed collusion bound.

The proof of the above theorem appears in our full version [6].

4 Succinct KPFE with Dynamic Bounded Collusion

In this section, we construct new succinct public key KPFE scheme. The construction
substantially improves the security of the previous succinct bounded KPFE schemes
[1,20], because it supports delayed collusion bound and satisfies AD-SIM security. Fur-
thermore, our construction can be instantiated only from the LWE assumption, similarly
to the previous constructions.

In our full version [6], we also construct a CPFE scheme for unbounded size circuits
with AD-SIM security and delayed collusion property. The construction is the dual ver-
sion of the KPFE scheme in this section in the sense that it satisfies similar properties
and the idea for the construction is very similar. Further, the scheme can be instantiated
only from the LWE assumption, similar to the construction in this section.

We now describe the parameters for our KPFE scheme in more detail. We construct
KPFE scheme for the circuit family Cinp,dep,out containing circuits with input length
inp = inp(λ), depth dep = dep(λ), output length out = out(λ) but with arbitrary
polynomial size. Formally, we construct an FE scheme for prm = (1inp, 1dep, 1out),
Xprm = {0, 1}inp, Yprm = Cinp,dep,out and Rprm : Xprm × Yprm → {0, 1}out, where
R(x,C) = C(x), for all C ∈ Cinp,dep,out and x ∈ {0, 1}inp.
Ingredients. The underlying building blocks for our KPFE construction are as follows:
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1. A bounded, public key KPFE scheme, denoted by

1KPFE = (1KPFE.Setup, 1KPFE.KeyGen, 1KPFE.Enc, 1KPFE.Dec),

for the same functionality (i.e., Rprm defined above). We require the scheme to sat-
isfy NA-SIM security against a single key query. We can instantiate such a scheme
with the succinct KPFE scheme from LWE [20] (See Theorem 1).

2. A CPFE scheme denoted by

CPFE = (CPFE.Setup,CPFE.KeyGen,CPFE.Enc,CPFE.Dec),

for bounded polynomial sized circuits that already supports delayed collusion bound
property and satisfies AD-SIM security. Namely, CPFE supports a circuit class
Cinp′,size′ consisting of circuits with input length inp′ and size at most size′, where
the setting of the parameters is deferred until the description of the construction.
Formally, we use FE with prm′ = 1inp

′
,Xprm′ = Cinp′,size′ ,Yprm′ = {0, 1}inp′

and
Rprm′ : Xprm′ × Yprm′ → {0, 1}∗, where R(C, x) = C(x), for all C ∈ Cinp′,size′ and
x ∈ {0, 1}inp′

. We instantiate it from our construction in Sect. 3.4, which in turn can
be based on any IBE.

3. A pseudorandom function PRF = (PRF.Setup,PRF.Eval). We assume without loss
of generality that the input and output space of PRF is the 1KPFE public key space
and the randomness space used in 1KPFE.Enc algorithm respectively.

At a high level, our KPFE construction is a compiler that applies the CPFE scheme
already satisfying the delayed collusion property and AD-SIM security on top of the
single key, succinct KPFE scheme. This makes the resultant KPFE satisfy the delayed
collusion property and AD-SIM security as well. We now proceed to the formal con-
struction below.

4.1 Construction

The KPFE scheme KPFE = (Setup,KeyGen,Enc,Dec) with delayed collusion bound
for the circuit class Cinp,dep,out is as follows.

Setup(1λ, prm): On input the security parameter λ and the parameters prm =
(1inp, 1dep, 1out) do the following:
1. Compute prm′ := (1inp

′
, 1size

′
), where inp′ := inp′(λ, prm) is the length of the

master public key for 1KPFE output by 1KPFE.Setup(1λ, prm) and size′ =
size′(λ, prm) is the size of the circuit E[x,K] described in Fig. 1.

2. Run (CPFE.mpk,CPFE.msk) ← CPFE.Setup(1λ, prm′).
3. Output (mpk,msk) := (CPFE.mpk,CPFE.msk).

KeyGen(msk, C) : On input the master secret key msk = CPFE.msk and a circuit
C ∈ Cinp,dep,out, do the following:
1. Compute (1KPFE.mpk, 1KPFE.msk) ← 1KPFE.Setup(1λ, prm).
2. Generate a secret key under 1KPFE as 1KPFE.sk ← 1KPFE.KeyGen

(1KPFE.msk, C).
3. Generate another secret key CPFE.sk ← CPFE.KeyGen(CPFE.msk,

1KPFE.mpk), where 1KPFE.mpk is interpreted as a string in {0, 1}inp′
.
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4. Output the full secret key sk := (CPFE.sk, 1KPFE.sk).

Enc(mpk, x, 1Q) : On input the master public key mpk = CPFE.mpk, an input x ∈
{0, 1}inp and the query bound 1 ≤ Q < 2λ, do the following:
1. Sample a PRF key K ← PRF.Setup(1λ).
2. Using prm, construct the circuit E[x,K](·) defined as Fig. 1.
3. Compute a ciphertext CPFE.ct ← CPFE.Enc(CPFE.mpk,E[x,K], 1Q).
4. Output the ciphertext ct := CPFE.ct.

Dec(ct, sk) : On input a secret key sk associated with circuit C and a ciphertext ct, do
the following:
1. Parse the ciphertext ct = CPFE.ct and the secret key sk = (CPFE.sk,

1KPFE.sk), where CPFE.sk and 1KPFE.sk are associated with 1KPFE.mpk ∈
{0, 1}inp′

and the circuit C respectively.
2. Compute y = CPFE.Dec(CPFE.sk,CPFE.ct).
3. Compute and output z = 1KPFE.Dec(1KPFE.sk, y).

Fig. 1. Circuit E[x,K].

In our full version [6], we show that the scheme is correct, succinct and satisfies
AD-SIM security.

5 FE for Turing Machines with Dynamic Bounded Collusion

In this section, we construct FE for Turing machines from KPFE and CPFE schemes
that we have constructed so far. For conciseness, we first provide a generic construction
of FE that combines many instance of FE together in Sect. 5.1. We then instantiate
this generic construction to construct FE for Turing machines with NA-SIM security in
Sect. 5.2 and FE for NL with AD-SIM security in our full version [6].

5.1 Generalized Bundling of Functionality

Consider an FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for a parame-
ter prm = 1i and a relation Ri : Xi × Yi → {0, 1} ∪ {⊥} for all i ∈ N. Using such
FE, we will construct a new FE with message space A and key space B. We assume
that there exist efficiently computable maps S : N → 2N and T : N → 2N such
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that maxS(n) and max T (n) can be bounded by some fixed polynomial in n. We also
assume that there exist maps f with domain A and g with domain B such that

f(x) ∈
∏

i∈S(|x|)
Xi and g(y) ∈

∏

i∈T (|y|)
Yi,

where |x| and |y| are the lengths of x and y as binary strings. Namely, f and g are maps
such that

f : A 
 x �→ {f(x)i ∈ Xi}i∈S(|x|) , g : B 
 y �→ {g(y)i ∈ Yi}i∈T (|y|) .

Here, we require that the length of |f(x)|i and |g(x)|i can be computed from the length
of |x| alone and they do not depend on the actual value of x. In this setting, we can
construct an FE scheme BFE = (Setup,KeyGen,Enc,Dec) for a two input function
Rbndl : A × B → {0, 1}∗ defined in the following

Rbndl(x, y) = {Ri(f(x)i, g(y)i)}i∈S(|x|)∩T (|y|) , (5.1)

where f(x)i ∈ Xi and g(y)i ∈ Yi are the i-th entries of f(x) and g(x), respectively.

Ingredients. We now describe the underlying building blocks used to obtain our FE
construction:

1. A pseudorandom function PRF = (PRF.Setup,PRF.Eval). We assume that
PRF.Eval(K, ·) has domain {0, 1}λ and range {0, 1}λ for any key K output by
PRF.Setup(1λ). The input space {0, 1}λ can be regarded as [2λ] by the natural bijec-
tion between the two sets. We can instantiate PRF from any one-way function [18].

2. An FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for a parameter
prm = 1i and a relation Ri : Xi × Yi → {0, 1} ∪ {⊥} for i ∈ N with delayed
collusion property. We require the scheme to have either NA-SIM or AD-SIM secu-
rity. We also require that the randomness used by FE.Setup(1λ, 1i) is of fixed length
λ. This is without loss of generality, since we can generate unbounded length of
pseudorandom bits from a binary string R of length λ by regarding R as a PRF key.

3. A garbled circuit scheme GC = (GC.Garble,GC.Eval). We assume that a label is
represented by a binary string and denote its length by L(λ, |C|), where C is the
circuit being garbled. We can instantiate it by Yao’s garbled circuit [30], which can
be based on any one-way function.

4. An IBE scheme IBE = (IBE.Setup, IBE.Enc, IBE.KeyGen, IBE.Dec) with
IND-CPA security whose identity space and message space are {0, 1}∗. We assume
that the key generation algorithm is deterministic. This is without loss of general-
ity, since we can use PRF to derandomize the key generation algorithm. We can
instantiate IBE from various standard assumptions including LWE [3,14], CDH,
and Factoring [15].

Construction. We then provide the description of the construction of BFE =
(Setup,KeyGen,Enc,Dec) for Rbndl above.
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Setup(1λ) : On input the security parameter λ, do the following:
1. Run (IBE.mpk, IBE.msk) ← IBE.Setup(1λ).
2. Sample a PRF key K ← PRF.Setup(1λ).
3. Output the master key pair as (mpk,msk) := (IBE.mpk, (IBE.msk,K)).

KeyGen(msk, y) : On input master secret key msk = IBE.msk, a key attribute y ∈ B,
do the following:
1. Compute T (|y|) ⊆ N, where |y| is the length of y as a binary string.
2. Compute Ri = PRF.Eval(K, i) for i ∈ T (|y|), where i ∈ N is interpreted as a

binary string in {0, 1}λ.
3. Run (FE.mpki,FE.mski) ← FE.Setup(1λ, 1i;Ri) for i ∈ T (|y|).
4. Compute g(y) = {g(y)i ∈ Yi}i∈T (|y|).
5. For i ∈ T (|y|), compute

FE.ski ← FE.KeyGen(FE.mski, g(y)i).

6. Let �i := |FE.mpki|. For all i ∈ T (|y|) and j ∈ �i, generate a secret key as

IBE.ski,j ← IBE.KeyGen(IBE.msk, (i, j,FE.mpki,j))

where FE.mpki,j is the j-th bit of FE.mpki ∈ {0, 1} as a binary string.
7. Output

sk =
(

T (|y|),
{

FE.ski, {IBE.ski,j}j∈[�i]

}

i∈T (|y|)

)

. (5.2)

Enc(mpk, x, 1Q) : On input the encryption key mpk = IBE.mpk, a message x ∈ A,
and the query bound 1 ≤ Q ≤ 2λ in unary form, do the following:
1. Compute S(|x|) ⊂ N, where |x| is the length of x as a binary string.
2. Compute f(x) = {f(x)i}i∈S(|x|).
3. Do the following for i ∈ S(|x|).

(a) Compute the length �i of FE.mpki. This is done without knowing FE.mpki.
(b) Sample a randomness ri for the encryption algorithm FE.Enc

(FE.mpki, f(x)i, 1Q; ri). This is done without knowing FE.mpki.
(c) Define a circuit

Ei(·) := FE.Enc(·, f(x)i, 1Q; ri)

that takes as input a string str ∈ {0, 1}�i and outputs FE.Enc(str,
f(x)i, 1Q; ri), where str is interpreted as a master public key of the FE.

(d) Generate a garbled circuit

{labi,j,b}j∈[�i],b∈{0,1} ← GC.Garble(1λ,Ei).

(e) For all j ∈ [�i] and b ∈ {0, 1}, compute

IBE.cti,j,b ← IBE.Enc (IBE.mpk, (i, j, b), labi,j,b) .

4. Output

ct =
(

S(|x|), {IBE.cti,j,b}i∈S(|x|),j∈[�i],b∈{0,1}

)

. (5.3)
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Dec(ct, sk) : On input a secret key sk, a ciphertext ct, and the query bound 1 ≤ Q ≤ 2λ

in unary form, do the following:
1. Parse the secret key as Eq. (5.2) and the ciphertext as Eq. (5.3).
2. For all i ∈ S(|x|) ∩ T (|y|) do the following.

(a) Retrieve FE.mpki from the FE.ski.
(b) For all j ∈ [�i] compute lab′

i,j := IBE.Dec(IBE.ski,j,FE.mpki,j ,
IBE.cti,j,FE.mpki,j ).

(c) Compute ci := GC.Eval({lab′
i,j}j∈[�i]).

(d) Compute zi := FE.Dec(FE.ski, ci)
3. Output {zi}i∈S(|x|)∩T (|y|).

In the full version [6], we show that the scheme is correct, satisfies efficiency in that
all the algorithms run in time polynomial in their respective input lengths and satisfies
AD-SIM (resp., NA-SIM) security, if the same holds for the FE.

5.2 FE for Turing Machines with NA-SIM Security

Here, we provide the construction of FE for Turing machines defined as in Sect. 2.1.3,
which satisfies NA-SIM security. Recall that in FE for Turing machines, a ciphertext is
associated with (x, 1t) and a secret key is for a Turing machine M , and the decryption
results to 1 if the machine accepts the input within t steps and 0 otherwise. To construct
such a scheme, we start with constructing two schemes with partial functionality and
then combine them. The one scheme takes care of the case where |(x, 1t)| > |M |, while
the other takes care of the case where |(x, 1t)| ≤ |M |. Both schemes are obtained by
applying the generic conversion in Sect. 5.1 to the schemes we constructed so far.

5.2.1 The Case of |(x, 1t)| > |M |
We first show that by applying the conversion in Sect. 5.1 to the CPFE scheme
in Sect. 3.2, we can obtain an FE scheme for Turing machines for the case where
|(x, 1t)| > |M |. Formally, we construct an FE for R> : A × B → {0, 1}, where
A = {0, 1}∗, B is the set of all Turing machines, and

R>((x, 1t),M) =

{

1 ( if M accepts x in t steps) ∧
(

|(x, 1t)| > |M |
)

0 otherwise.
.

To apply the conversion, we recall that the scheme in Sect. 3.2 is an FE for prm = 1i,
Ri : Xi × Yi → {0, 1} where Xi is the set of circuits with input length i, Yi = {0, 1}i,
and Ri(C, x) = C(x). We then set S, T , f , and g as

S(i) = {1, 2, . . . , i − 1}, T (i) = {i}, f(x, 1t) = {Ui,x,t(·)}i∈[|(x,1t)|−1] , g(M) = M

where Ui,x,t(·) is defined as Fig. 2. The circuit (in particular, Step 2 of the computation)
is padded so that the circuit size only depends on |(x, 1t)|. Note that Ui,x,t is in Xi even
for x and t with unbounded length, since Xi contains circuits of unbounded size.
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Fig. 2. Circuit Ui,x,t.

Then, by inspection, we can observe that for Xi,Yi,S, T , f, g,A,B defined as
above, Rbndl defined as Eq. (5.1) is equivalent to R> except for the case of |(x, 1t)| ≤
|M |. In this case, the decryption result in FE for Rbndl is an empty set ∅, whereas
it should be 0 in FE for R>. However, the former can be converted into the latter
very easily. To do so, we add the extra step to the decryption algorithm of the former
where it outputs 0 if the decryption result is ∅. Since the original scheme in Sect. 3.2 is
NA-SIM secure, so is the resulting scheme by the security of our bundling construction
in Sect. 5.1.

5.2.2 The Case of |(x, 1t)| ≤ |M |
We next show that by applying the conversion in Sect. 5.1 to the KPFE scheme in
Sect. 4, we can obtain an FE scheme for Turing machines for the case where |(x, 1t)| ≤
|M |. Formally, we construct an FE for R≤ : A × B → {0, 1}, where A = {0, 1}∗, B is
the set of all Turing machines, and

R≤((x, 1t),M) =

{

1 (ifM acceptsx in t steps) ∧
(

|(x, 1t)| ≤ |M |
)

0 otherwise.
.

To apply the conversion, we observe that the scheme in Sect. 4 can be used as an FE for
prm = 1i, Ri : Xi × Yi → {0, 1} where Xi is the set of circuits with input length i,
depth i ·λ, and output length 1 and Yi = {0, 1}i, and Ri(C, x) = C(x). We then set S,
T , f , and g as

S(i) = i, T (i) = {1, 2, . . . , i}, f(x, 1t) = (x, 1t), g(M) = {Ui,M (·)}i∈[M ] ,

where Ui,M (·) is defined as Fig. 3. Here, we check that Ui,M (·) is in Yi. Recall that
even though Yi supports circuits with unbounded size, it has a bound on the depth of
the circuit. We therefore argue that the depth of Ui,M (·) does not exceed iλ, even for
unbounded size |M |. We evaluate the depth of Step 2 of the circuit, since this is the only
non-trivial step. In the full version [6], we prove that this step can be implemented by a
circuit with depth

t · poly(log |x|, log t, log |M |) ≤ i · poly(log λ) ≤ i · λ
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Then, by inspection, we can observe that for Xi,Yi,S, T , f, g,A,B defined as
above, Rbndl defined as Equation (5.1) is equivalent to R≤ except for the case of
|(x, 1t)| > |M |. In this case, the decryption result in FE for Rbndl is an empty set
∅, whereas it should be 0 in FE for R>. However, the former can be converted into
the latter by adding the extra step to the decryption algorithm where it outputs 0 if the
decryption result is ∅. This gives us the construction of FE for R≤. Since the original
scheme is AD-SIM secure, so is the resulting scheme by the security of our bundling
construction in Sect. 5.1.

5.2.3 Putting the Pieces Together
Here, we combine the two schemes we considered so far to obtain the full-fledged
scheme. We set A = {0, 1}∗ and B to be the set of all Turing machines. We also set
R1 = R>, R2 = R≤, Xi = A, Yi = B for i = 1, 2. We have already constructed
schemes for R1 and R2 and now combine them. To do so, we set S, T , f , and g as

S(i) = {1, 2}, T (i) = {1, 2}, f(x, 1t) = {(x, 1t), (x, 1t)}, g(M) = {M,M}

We observe that for Xi,Yi,S, T , f, g,A,B defined as above, Rbndl defined as Equation
(5.1) is

Rbndl((x, 1t),M) =

⎧

⎪

⎨

⎪

⎩

(1, 0) (ifM acceptsx in t steps) ∧
(

|(x, 1t)| > |M |
)

(0, 1) (ifM acceptsx in t steps) ∧
(

|(x, 1t)| ≤ |M |
)

(0, 0) otherwise.

.

An FE for the above relation is not exactly the same as the FE for Turing machines we
defined in Sect. 2.1.3. However, the former readily implies the latter. To do so, we add
the extra step to the decryption algorithm of the former where it checks whether there
is 1 in the left or right slot of the decryption result and outputs 1 if there is. Otherwise,
it outputs 0.

It is obvious that the obtained scheme satisfies correctness and efficiency require-
ments if so does the underlying schemes. As for the security, we can see by the security
of our bundling construction in Sect. 5.1 that the resulting scheme is NA-SIM secure if
we combine an AD-SIM and an NA-SIM secure scheme for R≤ and R> respectively.

Fig. 3. Circuit Ui,M .



Functional Encryption for Turing Machines 267

Remark 7. One might think that FE for Rbndl constructed above leaks more informa-
tion on (x, 1t) than FE for Turing machines and so is our final scheme, because the
decryption result can be ∅, in addition to 0 or 1 and the decryptor can know whether
|(x, 1t)| > |M | or not. However, it is not the case since whether the decryption result is
∅ or not can be checked only from the length of the string |(x, 1t)|, which is not meant
to be hidden in our definition (and other standard definitions) of FE.

To sum up, we have the following theorem:

Theorem 6. We have FE for Turing machines with delayed collusion property that
satisfies NA-SIM security from the sub-exponential LWE assumption.

Due to space constraints, we provide our AD-SIM secure FE for NL in the full version
[6].
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Abstract. In this work we resolve the open problem raised by Prab-
hakaran and Rosulek at CRYPTO 2007, and present the first anonymous,
rerandomizable, Replayable-CCA (RCCA) secure public-key encryption
scheme. This solution opens the door to numerous privacy-oriented appli-
cations with a highly desired RCCA security level. At the core of our con-
struction is a non-trivial extension of smooth projective hash functions
(Cramer and Shoup, EUROCRYPT 2002), and a modular generic frame-
work developed for constructing rerandomizable RCCA-secure encryp-
tion schemes with receiver-anonymity. The framework gives an enhanced
abstraction of the original Prabhakaran and Rosulek’s scheme (which was
the first construction of rerandomizable RCCA-secure encryption in the
standard model), where the most crucial enhancement is the first real-
ization of the desirable property of receiver-anonymity, essential to pri-
vacy settings. It also serves as a conceptually more intuitive and generic
understanding of RCCA security, which leads, for example, to new imple-
mentations of the notion. Finally, note that (since CCA security is not
applicable to the privacy applications motivating our work) the concrete
results and the conceptual advancement presented here, seem to substan-
tially expand the power and relevance of the notion of rerandomizable
RCCA-secure encryption.

Keywords: RCCA security · Receiver-anonymity · Smooth projective
hash function

1 Introduction

RCCA security. Security against adaptive chosen-ciphertext attacks (CCA)
is widely considered as a de facto security standard for public-key encryption
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(PKE). However, it is evidenced that for some practical purposes, a somewhat
weaker security notion than CCA security is already sufficient [1,16,25]. To this
end, Canetti et al. [5] introduced the notion of Replayable-CCA (RCCA) security,
which is essentially the same as CCA security, except that no guarantees are
given against adversaries with the capability of malleating a ciphertext into a new
one of the same plaintext. Such a relaxation endows PKE with desirable features
such as rerandomizable RCCA (Rand-RCCA) security which was proposed by
Canetti et al. [5] and later formalized by Groth [14]. This notion turns out to
have numerous practical applications, such as: cryptographic reverse firewalls
[9,12,18], mixnets [13,20] and controlled-malleable NIZK [11].

Constructing Rand-RCCA-secure PKE has been generally considered a diffi-
cult problem, and was posed as an open problem in [5]. The difficulty is mainly
due to the fact that RCCA security and rerandomizability are seemingly incom-
patible in some sense. In particular, the construction has to be almost CCA
secure while at the same time has special mathematical structure for realizing
rerandomizability. A notable construction was by Prabhakaran and Rosulek [22]
at CRYPTO 2007 (hereafter referred to as PR scheme) which is the first perfect
Rand-RCCA-secure PKE based on the DDH assumption in the standard model.
Receiver-anonymity in the RCCA setting. In [22], Prabhakaran and
Rosulek further defined a new notion called RCCA receiver-anonymity which
is similar to the notion of key-privacy introduced by Bellare et al. in [2] but in
the RCCA setting. For an RCCA receiver-anonymous encryption scheme, the
generated ciphertext should not tell the adversary any information about the
underlying public key. Such a property turns out to be essential in privacy-
oriented applications where ciphertext-rerandomizability, adaptive security (i.e.,
permitting strong adversary who may probe the system with ciphertexts), and
receiver-anonymity are required simultaneously.

A typical example—given by Prabhakaran and Rosulek [22]—is the applica-
tion of rerandomizable encryption in mixnets where receiver-anonymity is indis-
pensable. More precisely, consider an anonymous communication (AC) protocol
based on universal mixnet [13] where a set of message relays (called mixnodes or
mixes) receive a batch of encrypted messages, rerandomize and randomly per-
mute them, and send them on their way forward. Unfortunately, the requirement
of ciphertext-rerandomizability, while enabling unlinkability of multiple cipher-
texts in terms of their contents, contradicts the desirable strong CCA security.
Thus, as it turned out, only rerandomizable CPA-secure encryption schemes
are used in previous universal mixnet-based AC protocols [13]. To strengthen
the security to the adaptive one (i.e., allowing an adversary of the network to
attempt sending ciphertexts of its own to the network as part of its attack),
RCCA security is the alternative as it reconciles the required rerandomizability
and adaptive security (this active attacker, in fact, is what most earlier works
on anonymity are not protected against due to the encryption being CPA-
secure only). However, as pointed out by Prabhakaran and Rosulek, without
receiver-anonymity, the attacker might still be able to correlate the ciphertexts
for the same recipient (i.e., sender-receiver relationships are not broken by the
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mixing!). This example application demonstrates that anonymous Rand-RCCA-
secure PKE is meaningful to strengthening the security of universal mixnet-based
AC protocol on the one hand, and to allowing it to achieve anonymity (breaking
completely sender-receiver relationship) at the same time. More broadly, for vari-
ous other privacy-oriented applications [19,23,24,28], RCCA receiver-anonymity
is also desirable for privacy protection while withstanding strong adversary with
decryption query capability (see the full version [29] for further motivating appli-
cations).
The open problem. Unfortunately, the PR scheme [22] does not achieve
receiver-anonymity, and therefore, how to construct an anonymous Rand-RCCA-
secure PKE to support the above mentioned applications under strong adversary
was left as an explicit open problem by Prabhakaran and Rosulek in [22]:

“Adding anonymity brings out the power of rerandomizability and yields a
potent cryptographic primitive. We note that our scheme does not achieve
this definition of anonymity, and leave it as an interesting open problem.”

Somewhat surprisingly, in spite of further developments in constructing Rand-
RCCA encryption throughout many years [6,10,11,13,14,17,22], the above open
problem remains unsolved to date. The main technical challenge of achieving
RCCA receiver-anonymity arises from the fact that different from the typical CCA
game, the decryption oracle in the RCCA game would output “replay” if the
query decryption result equals to either of the challenge plaintexts. Such a relax-
ation, in fact, gives the adversary more power and consequently raises the diffi-
culty to achieve receiver-anonymity in the RCCA setting. Specifically, the adver-
sary can guess the underlying public key, re-encrypt the challenge ciphertext and
verify its guess via querying the decryption oracle. Thus, to defend against this
attack, it is required that the rerandomization of ciphertext should not involve
the public key. Such a feature was originally referred to as “universal rerandomiza-
tion” by Golle et al. [13]. However, achieving receiver-anonymity is more challeng-
ing than realizing universal rerandomizability, since there may exist other ways
allowing the adversary to rerandomize a ciphertext using the public key. In other
words, receiver-anonymity is strictly stronger than universal rerandomizability.
An example is the PR scheme which is universally rerandomizable but not receiver-
anonymous (see Sect. 2 for the detailed analysis).

Motivated by the aforementioned state of affairs and the requirement of
receiver-anonymity for privacy-oriented applications, our main goal in this
work is to resolve the above challenging problem of achieving RCCA receiver-
anonymity. More specifically, we ask whether it is possible to achieve receiver-
anonymity in the RCCA setting; and if the answer is positive, how to attempt a
solution which is as generic as possible. Our second question is motivated by the
fact that a generic paradigm would enable a better understanding of the under-
lying key ideas and more diversified constructions of anonymous Rand-RCCA-
secure encryption in a conceptually clear and modular way. Also, a framework
using abstract building blocks enables more concrete instantiations from var-
ious assumptions, leading to better security (as will be demonstrated by our
additional results below).
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Our results. We resolve the Prabhakaran and Rosulek’s open problem in this
work. We design a modular framework for constructing anonymous Rand-RCCA-
secure PKE via an extension of the notion of smooth projective hash functions
by Cramer and Shoup [8]. Our contributions can be summarized as follows:

– We formalize a novel extension of smooth projective hash function with var-
ious types of rerandomizability (Re-SPHF), and redefine the property of
smoothness which is crucial to generally realize Rand-RCCA security with
receiver-anonymity;

– We design a framework for constructing anonymous Rand-RCCA-secure
PKE from Re-SPHFs, and rigorously prove its RCCA security and receiver-
anonymity. These turn out to provide a conceptually intuitive understanding
of RCCA security and receiver-anonymity;

– We provide the first anonymous Rand-RCCA-Secure PKE scheme from k-
linear (k-Lin) assumption, which—putting anonymity aside—also improves
the PR scheme with its more general hardness assumption.

Remark. It is worth noting that in [22], Prabhakaran and Rosulek also pointed
out the potential of generalizing their scheme by following the Cramer-Shoup
paradigm [8] (hereafter referred to as CS-paradigm), but they left such an inves-
tigation open as well. In fact, as we will illustrate in this work, our proposed
framework can, in fact, be viewed as an abstraction of a modified PR scheme.
Thus, while mainly motivated by achieving a solution to the RCCA receiver-
anonymity, our work also closes Prabhakaran and Rosulek’s second open ques-
tion of generalization via SPHFs.

2 Technical Overview and Related Work

First, let us explain why the PR scheme does not satisfy receiver-anonymity. As a
countermeasure, we introduce a concrete approach to achieving RCCA receiver-
anonymity based on the PR scheme. To generalize our proposed approach, fol-
lowing the SPHF-based CS-paradigm [8], we then define an extension of SPHF
that could well explain the modified PR scheme and its security. To this end,
we successfully design a general framework for anonymous, Rand-RCCA-secure
PKE, which can, in turn, be instantiated based on different assumptions.
Why the PR scheme is not receiver-anonymous? We start by reviewing
the PR scheme and its core idea leading to the RCCA security. The crucial idea
toward achieving this goal is using two “strands” of Cramer-Shoup ciphertexts
[8] which can be “uniquely” recombined with each other for rerandomization
without changing the underlying plaintext.
Overview of the PR scheme. Let G, G be two cyclic groups of prime orders p, q

where p = 2q+1 where G is also a subgroup of Z
∗
p. Let g and g be generators of G

and G respectively, [a] denotes vector (ga1 , · · · , gan) for a = (a1, · · · , an) ∈ Z
n
p ,
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and [a] denotes vector (ga1 , · · · , gan) for a = (a1, · · · , an) ∈ Z
n
q . The ciphertext

of the PR scheme is

ζ :=
(

[u(x + z)] , M ·
[
b�x

]
,

[
α�x

]
︸ ︷︷ ︸

C1: message-carrying strand

, [uy] ,
[
b�y

]
,

[
α�y

]
︸ ︷︷ ︸
C2: rerandomization strand

, �
)

� :=
(

[x] , u ·
[
b

�
x
]
,

[
c�x

]
︸ ︷︷ ︸

C3: mask-carrying strand

, [y] ,
[
b

�
y
]
,

[
c�y

]
︸ ︷︷ ︸
C4: rerandomization strand

) (1)

where u ∈ G, given fixed g ∈ Z
4
p and g ∈ Z

2
q, x,y, z,b, c,d ∈ Z

4
p with x = xg,

y = yg for x, y ∈ Zp and z �= zg for any z ∈ Zp, x,y,b, c ∈ Z
2
q with x = xg,

y = yg for x, y ∈ Zq, α = c + τd, τ = Ψ(M) and Ψ : G → Zp is a collision-
resistant hash function. � is the ciphertext of random mask u under a malleable
(and also rerandomizable) encryption scheme (see Sect. 3.1). At the high level,
the strand C1 carries the message while the strand C2 is to help rerandomize C1

without public key. The encrypted mask u shared between C1 and C2 disables
the adversary to mix together strands from two different ciphertexts (of the same
plaintext) to obtain a valid ciphertext. The exponents of strand C1 are perturbed
by an additional vector z to restrict the manner of recombining the two strands.
Consequently, to rerandomize ciphertext ζ, one randomly picks υ ∈ G, s, t ∈ Z

∗
p,

s, t ∈ Z
∗
q and computes

C ′
1 :=

(
[υ · u(x + z) + sυ · uy] , M ·

[
b�x

]
·
[
sb�y

]
,

[
α�x

]
·
[
sα�y

])
,

C ′
3 :=

(
[x + s · y] , υ · u ·

[
b

�
x
]

·
[
sb

�
y
]
,

[
c�x

]
·
[
sc�y

])
,

C ′
2 :=

(
[tυ · uy] ,

[
tb�y

]
,

[
tα�y

])
and C ′

4 :=
([

t · y
]
,

[
tb

�
y
]
,

[
tc�y

])
.

Partial rerandomizability breaking the receiver-anonymity. It is shown in [22]
that the above is the only valid way for full rerandomization of ciphertext. How-
ever, one can note that strands C3 and C4 can also be rerandomized with public
keys

[
b

�
g
]

and
[
c�g

]
as follows.

C ′
3 :=

(
[x + s · g] , u ·

[
b

�
x
]

·
[
sb

�
g
]
,

[
c�x

]
·
[
sc�g

])
,

C ′
4 :=

([
y + t · g

]
,

[
b

�
y
]

·
[
tb

�
g
]
,

[
c�y

]
·
[
tc�g

])
,

where s, t ∈ Z
∗
q . We now demonstrate why the PR scheme is not RCCA receiver-

anonymous. Recalling the game of RCCA receiver-anonymity in Fig. 2, the adver-
sary has access to a guarded decryption oracle which on input ζ, first computes
M0 = Dec(SK0, ζ) and M1 = Dec(SK1, ζ), then checks if M ∈ {M0,M1}. If so,
it returns replay, otherwise it returns (M0,M1). As for the PR scheme, adver-
sary could obtain a ciphertext ζ∗

0 by rerandomizing strands C3 and C4 in the
challenge ciphertext ζ∗ with public key PK0 in the above way. If b = 0, ζ∗

0 is a
valid ciphertext of M ; otherwise, ζ∗

0 is invalid. With the response of the guarded
decryption oracle, the adversary is able to distinguish these two cases.

Our concrete treatment of the PR scheme forRCCA receiver-anonymity.
To achieve RCCA receiver-anonymity, we have to disable the rerandomization of
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strands C3 and C4 employing the public key. Note that the rerandomization of
strands C1 and C2 is restricted by mask u and vector z. If we also apply this tech-
nique to C3 and C4, extra strands are required to encrypt the mask in C3 and C4,
which would incur the partial rerandomization of ciphertext employing the public
key again. To bypass this problem, we move the masks and additional vectors to
the validity checking components of strands. Since the validity checking part con-
tains only one component, an additional component is appended to each strand
for perturbation on the validity checking part. Concretely, the ciphertext of our
variant is:

ζ :=
(

[x] , M ·
[
b�x

]
,

[
uα�x†] ,

[
uβ�x‡]

︸ ︷︷ ︸
C1: message-carrying strand

, [y] ,
[
b�y

]
,

[
uα�y

]
,

[
uβ�y

]
︸ ︷︷ ︸

C2: rerandomization strand

, �
)
,

� :=
(

[x] , u ·
[
b

�
x
]
,

[
uc�x†] ,

[
ud

�
x‡

]

︸ ︷︷ ︸
C3: mask-carrying strand

, [y] ,
[
b

�
y
]
,

[
uc�y

]
,
[
ud

�
y
]

︸ ︷︷ ︸
C4: rerandomization strand

)

(2)
where u ∈ G, x† = x + z1g, x‡ = x + z2g for z1, z2 ∈ Z

∗
p with z1 �= z2,

x† = x + z1g, x‡ = x + z2g for z1, z2 ∈ Z
∗
q with z1 �= z2, c,d, e, f ∈ Z

2
p,

α = c + md, β = e + mf , m = Ψ(M) and Ψ : G → Zp is a collision-resistant
hash function. The rerandomization of strands C1, C2 is still restricted by mask u
and vector (z1, z2). As for strands C3, C4, their rerandomization can be restricted
by mask u and vector (z1, z2), since u is placed on validity checking part.

We stress that the above modifications are carefully conducted to preserve
the RCCA security of the encryption scheme. First of all, extra secret keys (e.g.,
e, f and d) are introduced to compute the additional component in validity
checking part such that, given a valid ciphertext ζ, the attacker cannot infer a
new validity checking part for particular [x] or [x] (that cannot be obtained by
re-encrypting ζ). Secondly, the usage of mask u in strands C3, C4 is safe and
sound. Taking component

[
uc�x†] as example, it is equivalent to the value of[

(u mod q)c�x†], as mask u is an integer in Z
∗
p. Since the modular operation

satisfies the homomorphism property, the re-encryption on strands C3, C4 main-
tains correctness. Note that a component in the validity checking part actually
corresponds to two different masks u, u′ with u′ = u mod q. We remark that
this would not affect the RCCA security as long as the size of the modulus q is
large enough so that the attacker cannot guess the value of mask u trivially.
Generalization of our approach. Note that the ciphertext structure of our
above variant still shares some similarities with that of the PR scheme which is
essentially a double “strand” of Cramer-Shoup ciphertext. We turn to explore
whether it is possible to generalize our treatment following the CS-paradigm [8].

We start by recalling the CS-paradigm based on SPHF, and then seek to
extend the notion of SPHF to interpret our proposed variant and its security.
Recalling Cramer-Shoup paradigm from SPHFs. Smooth Projective Hash Func-
tion (SPHF) was originally proposed by Cramer and Shoup [8] for generally
constructing practical CCA-secure PKE. Roughly, SPHF is a family of hash
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functions H = (Hsk)sk∈K indexed by K that map the non-empty element set X
onto the hash value set Π. Each SPHF is associated with an NP-language L ⊂ X
where elements in L are computationally indistinguishable from those in X\L
(i.e., hard subset membership problem). For any x ∈ L, Hsk(x) could be effi-
ciently computed using either the hashing key sk ∈ K, i.e., Priv(sk, x) = Hsk(x)
(private evaluation mode), or the projection key pk = φ(sk) ∈ P with the witness
w ∈ W to the fact x ∈ L, i.e., Pub(pk, x, w) = Hsk(x) (public evaluation mode).
The notion of SPHF could be generalized to tag-based SPHF where a tag τ is also
taken as an auxiliary input by H(·),Priv and Pub. The CS-paradigm is based on
a Smooth1 SPHF = (H(·), φ,Priv,Pub) and a Smooth2 tag-based ŜPHF = (Ĥ(·), φ̂,

P̂riv, P̂ub). The public key is (pk, p̂k) = (φ(sk), φ̂(ŝk)) and the ciphertext is

ζ :=
(
x, M · Pub(pk, x, w), P̂ub(p̂k, x, w, τ)

)
=

(
x, M · Hsk(x), Ĥ

̂sk(x, τ)
)

,

where x ∈ L, w is the witness of x, τ = Ψ (x, M · Hsk(x)) and Ψ is a collision-
resistant hash function. To make our later argument easier to follow, below we
first provide an overview of justification of CCA security from SPHF. Consider
the challenge ciphertext ζ∗ = (x∗, Mb · π∗, π̂∗) in the CCA security game.

1) Due to the hard subset membership problem, we can replace x∗ ∈ L in ζ∗

with x∗ ∈ X\L and compute π∗ = Priv(sk, x∗), π̂∗ = P̂riv(ŝk, x∗, τ∗).
2) By the Smooth2 property of tag-based ŜPHF, any “bad” ciphertext ζ including

x �= x∗ ∈ X\L will be rejected by the decryption oracle as π̂ = Ĥ
̂sk(x, τ) is

uniformly distributed, even conditioned on p̂k and π̂∗.
3) By the Smooth1 property of SPHF, π∗ in ζ∗ is uniformly distributed and thus

ζ∗ perfectly hides Mb, which yields the CCA security.

Generalization of our construction via newly extended SPHFs. As the first
attempt to generalize our variant, we abstract strands C1 and C2 in Eq. (2)
using the following SPHFs:

SPHF = (H(·), φ,Priv,Pub), ŜPHF = (Ĥ(·), φ̂, P̂riv, P̂ub), S̃PHF = (H̃(·), φ̃, P̃riv, P̃ub),

based on which C1 and C2 in our variant could be written as

C1 :=

(
[x], M · Hsk([x]), Ĥ

̂sk([x], τ)

)
, C2 :=

(
[y], Hsk([y]), H̃

˜sk([y], τ)

)
, (3)

where tag τ = (u,m), hashing key ŝk = (c,d, e, f) and s̃k = ŝk. Note that
these SPHFs are defined on the same set X =

{
[a]

∣
∣a ∈ Z

2
p

}
with NP-language

L = {[rg]|r ∈ Zp} for g ∈ Z
2
p. The rerandomization of C1 and C2 is defined as

C′
1 =

(
[x+ sy], M ·

Hsk([x])·(Hsk([y]))
s

︷ ︸︸ ︷[
b�x

]
·
[
sb�y

]
,

( ̂H
̂sk
([x],τ))υ·( ˜H

˜sk
([y],τ))sυ

︷ ︸︸ ︷[
υuα�x†

]
·
[
sυuα�y

]
,

[
υuβ�x‡

]
·
[
sυuβ�y

])

C′
2 =

(
[ty] ,

(Hsk([y]))
t

︷ ︸︸ ︷[
tb�y

]
,

( ˜H
˜sk
([y],τ))tυ

︷ ︸︸ ︷[
tυ · uα�y

]
,
[
tυ · uβ�y

])
,
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where υ ←$ G, s, t ←$ Z
∗
p. The generalization of strand C3(C4) is similar to that of

C1(C2) and can be denoted by SPHFs defined on the same set X =
{
[a]

∣
∣a ∈ Z

2
q

}

with NP-language L = {[rg]|r ∈ Zq} for g ∈ Z
2
q. The ciphertext rerandomization

in our variant could be classified with respect to SPHFs as follows.

– Self-rerandomization within same SPHF, e.g.,

(Hsk([x]),Hsk([y])) � Hsk([x]) · (Hsk([y]))s

– Pairwise-rerandomization between different SPHFs, e.g.,
(
Ĥ

̂sk([x], τ), H̃
˜sk([y], τ)

)
�

(
Ĥ

̂sk([x], τ)
)υ

·
(
H̃

˜sk([y], τ)
)sυ

Motivated by these observations, we put forward the notion of rerandomizable
SPHF (Re-SPHF) which is a regular SPHF augmented with self- and pairwise-
rerandomizability. Specifically, based on the typical definition of SPHF, we for-
malize three extra algorithms namely RandX, RandT and RandH to capture both
cases of rerandomization. The correctness of ciphertext in our variant is guar-
anteed by the rerandomization correctness with respect to RandX, RandT and
RandH in Re-SPHF, while the perfect rerandomization of ciphertext is captured
by the notion of perfect rerandomization in Re-SPHFs.
Arguments of RCCA security with receiver-anonymity. Analogous to the classi-
fication of rerandomization, we redefine two types of smoothness for Re-SPHF
as below. Let CRX(x∗) denote the set of all rerandomization of x∗ obtained
via RandX, CRX(x∗

1, x
∗
2) denote the set of all rerandomization of x∗

1 obtained via
RandX with x∗

2 and CRT(τ∗) denote the set of all rerandomization of τ∗ obtained
via RandT. Let

s≡ denote statistical indistinguishability between distributions.
– Controlled-Self-Rerandomizable Smoothness (CSR-Smooth). For any x∗ ∈ X ,
τ∗ ∈ T and (x, τ) ∈ X\L × T with x /∈ CRX(x∗) or τ /∈ CRT(τ∗),

(
pk,Hsk(x∗, τ∗), Hsk(x, τ)

)
s≡

(
pk,Hsk(x∗, τ∗), π ←$ Π

)
.

– Controlled-Pairwise-Rerandomizable Smoothness (CPR-Smooth). For any x∗
1,

x∗
2 ∈ X , τ∗ ∈ T and (x, τ) ∈ X\L × T with x /∈ CRX(x∗

1, x
∗
2) or τ /∈ CRT(τ∗),

(
p̂k, Ĥ

̂sk(x
∗
1, τ

∗), H̃
˜sk(x

∗
2, τ

∗), Ĥ
̂sk(x, τ)

)
s≡

(
p̂k, Ĥ

̂sk(x
∗
1, τ

∗), H̃
˜sk(x

∗
2, τ

∗), π ←$ Π̂
)
,

where ŝk = s̃k. Also, we redefine two enhanced Smooth1 for Re-SPHF as below.
– Self-Twin 1-Smoothness (ST-Smooth1). For x1, x2 ←$ X\L and τ ←$ T ,

(
pk, Hsk(x1, τ) , Hsk(x2, τ)

)
s≡

(
pk, π1 ←$ Π, π2 ←$ Π

)
.

– Pairwise-Twin 1-Smoothness (PT-Smooth1). For x1, x2 ←$ X\L and τ ←$ T ,
(
p̂k, Ĥ

̂sk(x1, τ) , H̃
˜sk(x2, τ)

)
s≡

(
p̂k, π1 ←$ Π̂, π2 ←$ Π̃

)
.
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We now show how to realize RCCA security and receiver-anonymity with
these new properties. Consider a challenge ciphertext ζ∗ with words [x∗], [y∗] ∈ L
and [x∗], [y∗] ∈ L in the RCCA security game. Similar to the security justification
of CS-paradigm, below we provide the arguments to justify the RCCA security
of our variant.

1) Due to the hard subset membership problems on (X ,L) and (X ,L), the
challenge ciphertext ζ∗ generated by alternative encryption algorithm, where
[x∗], [y∗] ∈ L and [x∗], [y∗] ∈ L are replaced with non-words (i.e., [x∗], [y∗] ∈
X\L and [x∗], [y∗] ∈ X\L) and the corresponding hash values are computed
with hashing keys, is computationally indistinguishable from one generated
by original encryption algorithm.

2) Note that the Smooth2 property used for proving the CS-paradigm is not
satisfied here as the adversary may construct a valid ciphertext with at least
one non-word via rerandomizing ζ∗. Fortunately, the manner to rerandomize
ζ∗ in our variant is restricted by z1, z2, z1, z2, u and querying such a “valid”
rerandomization of ζ∗ will not leak information about private key. To the end,
a computationally unbounded decryption oracle with public key and challenge
ciphertext ζ∗ only will reject “bad” ciphertext ζ that includes at least one
non-word but is not a “valid” rerandomization of ζ∗, as the corresponding
hash values (e.g., H̃

˜sk([y], τ) and Ĥ
̂sk([x], τ)) in ciphertext ζ are uniformly

distributed by properties CSR-Smooth and CPR-Smooth.
3) By properties ST-Smooth1 and PT-Smooth1, all the hash values in ζ∗ are

uniformly distributed conditioned on public key, and Mb is perfectly hidden
in ζ∗, which yields the RCCA security of our variant.

Note that RCCA security guarantees the privacy of the underlying plaintext,
while RCCA receiver-anonymity captures the privacy of the public key. The jus-
tification for receiver-anonymity is indeed similar to the above arguments. In
particular, the decryption oracle also relies on CSR-Smooth and CPR-Smooth
properties to reject all the “bad” ciphertexts. In the end, the uniform distribu-
tions of all the hash values in ζ∗ imply the receiver-anonymity in RCCA setting.

Related Work. Here we illustrate several previous constructions of Rand-
RCCA-secure PKE and provide an efficiency comparison with our scheme,
putting aside the receiver-anonymity. Also, some related SPHFs variants will
be given.
Non-anonymous constructions. Groth [14] presented a perfect Rand-RCCA-
secure scheme, where the ciphertext can be rerandomized into another one in an
unlinkable way, under the generic group model, and the ciphertext size expan-
sion is as large as the bit-length of the plaintext. Phan and Pointcheval [21] then
designed an efficient framework of RCCA-secure scheme, while Faonio and Fiore
[10] showed that the rerandomizability of its ElGamal-based instantiation in [20]
cannot resist any active attacks. Chase et al. [6] introduced a new way to con-
struct perfect Rand-RCCA-secure PKE from a malleable NIZK system, where
their construction has public verifiability property. Libert et al. [17] proposed a
new construction that improves on Chase et al.’s scheme but still suffers from
high computational costs and large ciphertext size (of 62 group elements) due
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Table 1. Comparison of Rand-RCCA-secure PKE schemes (k=2). |PK| and |CT | repre-
sent the number of elements in public key and ciphertext, where � denotes the bit-length
of plaintext. Here G and G are standard DDH groups that satisfy certain requirements.
G1, G2 and GT are groups in bilinear pairing. Here E, E, E1, E2, ET denote the execu-
tion time of exponentiation on G, G, G1, G2, GT and the time cost of pairing is P. “Std”
refers to standard model, “GGM” refers to generic group model, and “NPR” refers to
non-programmable random oracle model. “Perfect” indicates perfect rerandomizabil-
ity, “Universal” indicates that ciphertext rerandomization does not require the public
key, and “Anonymity” refers to RCCA receiver-anonymity.

PKE Groth04 [14] PR07 [22] LPQ17 [17] FFHR19 [11] FF20[10] Ours (k-Lin)

|PK| O(�)G 4G + 7G 11G1 + 16G2 7G1 + 7G2 + 2GT 11G 6G + 10G

|CT | O(�)G 8G + 12G 42G1 + 20G2 3G1 + 2G2 + GT 11G 12G + 12G

Enc O(�)E 8E + 14E 79E1 + 64E2 4E1 + 5E2 + 3ET + 5P 15E 12E + 16E

Dec O(�)E 8E + 24E 1E1 + 142P 8E1 + 4E2 + 4P 18E 18E + 18E

Rerand O(�)E 8E + 16E 48E1 + 24E2 6E1 + 7E2 + 3ET + 9P 11E 14E + 14E

Model GGM Std Std Std NPR Std

Assumption DDH DDH SXDH Dk-MDDH DDH k-Linear

Perfect � � � � × �
Universal × � × × × �

Anonymity × × × × × �

to the adoption of NIZK. Recently, Faonio et al. [11] gave a new construction of
perfect Rand-RCCA-secure PKE from Dk-MDDH assumption. The ciphertext
in their scheme (when k = 1) is extremely short and consists of only 6 group
elements. In a most recent work, Faonio and Fiore [10] proposed a more efficient
Rand-RCCA-secure PKE with only weak rerandomizability, and where security
is justified in the random oracle model.

In Table 1, we compare our scheme with previous works, putting aside our
exclusive property of receiver-anonymity. Compared with the recent work of Fao-
nio et al. [11], our 2-Lin-based instantiation, although based on special groups
which are larger than a regular setting, does not involve any pairing computations.
SPHF variants. Variants of SPHF with new properties have also been proposed
in the literature [4,7,11,15,27]. Here we briefly introduce two works that are
closely related to our Re-SPHF. Wee [27] built the frameworks for construct-
ing PKE satisfying key-dependent message (KDM) security using SPHF with
homomorphic hash function. Faonio et al. [11] presented controlled-malleable
smooth-projective hash function (cmSPHF), an extension of malleable smooth-
projective hash function (mSPHF) by Chen et al. in [7] with respect to elements
and tags. However, the cmSPHF cannot support universal rerandomizability.

3 Preliminaries

Let n ∈ N denote the security parameter and negl(·) denote the negligible func-
tion. For x = (x1, · · · , xn) ∈ Z

n
p and g ∈ G, [x] denotes vector (gx1 , · · · , gxn).

For set X , x ←$ X denotes that x is sampled uniformly from X at random. For
any randomized algorithm F , y ←$ F(x) denotes the random output of F .
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3.1 Public-Key Encryption (PKE)

A PKE scheme consists of algorithms (KGen,Enc,Dec): KGen(1n) takes as input
the security parameter 1n, and outputs the key pair (PK,SK); The encryption
algorithm Enc(PK,M) takes as input the public key PK and the plaintext M , and
outputs the ciphertext ζ; The decryption algorithm Dec(SK, ζ) takes as input
the secret key SK and the ciphertext ζ, and outputs the plaintext M or ⊥.

A PKE scheme should satisfy decryption correctness which captures the fact
that, for (PK,SK) ←$KGen(1n), for any M ∈ M (in valid message space),

Pr[Dec(SK, ζ) �= M : ζ ←$Enc(PK,M)] ≤ negl(n) .

Below we provide the definitions of rerandomizable PKE. As mentioned
above, in this work, we are mainly interested in “universal rerandomization” that
does not require the public key, which is crucial to realize receiver-anonymity.
Therefore, we mainly follow the definitions given in [22].
Rerandomizable PKE. We say a PKE scheme is (universally) rerandomizable
if there exists algorithm Rerand that takes as input ciphertext ζ and outputs
a new ciphertext ζ ′; and for (PK,SK) ←$KGen(1n), any (possibly malicious)
ciphertext ζ,

Pr[Dec(SK, ζ ′) �= Dec(SK, ζ) : ζ ′ ←$Rerand(ζ)] ≤ negl(n) .

Definition 1 (Perfectly Rerandomizable PKE [11]). Assume PKE =
(KGen, Enc,Dec,Rerand) is rerandomizable. We say PKE is perfectly rerandom-
izable if following properties are satisfied.

– For (PK,SK) ←$KGen(1n), any M ∈ M and any (honestly generated) cipher-
text ζ in the support of Enc(PK,M), the distribution of Rerand(ζ) is identical
to that of Enc(PK,M).

– For (PK,SK) ←$KGen(1n) and any (possibly unbounded) adversary A, given
PK, the probability of A generating a ciphertext ζ such that Dec(SK, ζ) =
M �= ⊥ for some M and ζ is not in the range of Enc(PK,M) is negligible.

Coupled with the second property, called the tightness of decryption in both
[22] and [11], the first property can be extended to any malicious ciphertext that
decrypts successfully.
Malleable PKE. We say a PKE scheme is malleable if there exists an algo-
rithm Maul that takes as input a ciphertext ζ and a message M ′, and out-
puts a new ciphertext ζ ′; and for (PK,SK) ←$KGen(1n), any M,M ′ ∈ M and
ζ ←$Enc(PK,M),

Pr[Dec(SK, ζ ′) �= M · M ′ : ζ ′ ←$Maul(ζ,M ′)] ≤ negl(n) .

W.l.o.g., we assume that message space M is a multiplicative group, and let “ ·”
denote multiplication operation on M.
Security definitions. We follow the definitions of RCCA security and RCCA
receiver-anonymity in [22].
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Fig. 1. Definition of IND-RCCA game.

Fig. 2. Definition of ANON-RCCA game.

Definition 2 (RCCA Security). Let PKE = (KGen,Enc,Dec) be a PKE
scheme. Consider the security game IND-RCCAA

PKE(n) in Fig. 1. We say PKE is
RCCA-secure if for any PPT algorithm A in game IND-RCCAA

PKE(n),

AdvIND-RCCA
A,PKE (n) :=

∣
∣
∣
∣Pr

[
IND-RCCAA

PKE(n) = 1
]

− 1
2

∣
∣
∣
∣ ≤ negl(n) .

Definition 3 (RCCA Receiver-Anonymity). Let PKE = (KGen,Enc,Dec)
be a PKE scheme. Consider the security game ANON-RCCAA

PKE(n) in Fig. 2. We
say PKE is RCCA receiver-anonymous if for any PPT algorithm A in game
ANON-RCCAA

PKE(n),

AdvANON-RCCA
A,PKE (n) :=

∣
∣
∣
∣Pr

[
ANON-RCCAA

PKE(n) = 1
]

− 1
2

∣
∣
∣
∣ ≤ negl(n) .
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3.2 Smooth Projective Hash Function (SPHF)

In this work, we focus on a more general version of smooth projective hash
function, called tag-based smooth projective hash function (tag-SPHF) [8]. The
regular SPHF can be regarded as a special case of tag-SPHF with empty tag
space T = ∅. A tag-SPHF is associated with set X , NP-language L where L ⊂ X ,
and defined by four algorithms (Setup, φ,Priv,Pub) as follows:

– Setup(1n) takes as input a security parameter 1n, and outputs public param-
eters pp =

(
K, T ,Π,H(·)

)
, where K is the hashing key space, T is the tag

space, Π is the hash value space, H(·) : X × T → Π is an efficiently com-
putable hash function family indexed by hashing key sk ∈ K.

– φ(sk) derives the projection key pk from the hashing key sk ∈ K.
– Priv(sk, x, τ) takes as input an element x ∈ X , tag τ ∈ T and hashing key sk,

and outputs hash value π = Hsk(x, τ) ∈ Π.
– Pub(pk, x, w, τ) takes as input a word x ∈ L with witness w, tag τ and

projection key pk, and outputs hash value π = Hsk(x, τ) ∈ Π.

In regular SPHF, both the input of algorithms Priv(sk, x) and Pub(pk, x, w)
do not include tag τ , and the outputted hash value is π = Hsk(x).

Definition 4 (Correctness). For pp ←$Setup(1n), sk ←$ K and pk = φ(sk),
any x ∈ L with witness w to the fact of x ∈ L and any τ ∈ T ,

Pr[Priv(sk, x, τ) �= Pub(pk, x, w, τ)] ≤ negl(n).

Assume that SPHF = (Setup, φ,Priv,Pub) is associated with X , L and T .

Definition 5 (1-Smoothness). We say SPHF is Smooth1 if for pp ←$Setup(1n),
sk ←$ K, pk = φ(sk) and any (x, τ) ∈ X\L × T , the following two distributions are
statistically indistinguishable:

V1 = {(pk, x, τ, π)|π = Hsk(x, τ)}, V2 = {(pk, x, τ, π′)|π′ ←$ Π}.

For certain tag-SPHFs, the smoothness property may be enhanced as follows.

Definition 6 (2-Smoothness). We say SPHF is Smooth2 if for pp ←$Setup(1n),
sk ←$ K, pk = φ(sk), any (x∗, τ∗) ∈ X ×T and any (x, τ) ∈ X\L×T with (x, τ) �=
(x∗, τ∗), the following two distributions are statistically indistinguishable:

V1 = {(pk, x∗, τ∗, x, τ,Hsk(x∗, τ∗), π)|π = Hsk(x, τ)},
V2 = {(pk, x∗, τ∗, x, τ,Hsk(x∗, τ∗), π′)|π′ ←$ Π}.

We assume that it is efficient to sample elements from set X and L. Below
we define the hard subset membership problem (SMP) between X and L.

Definition 7 (Hard Subset Membership Problem). We say the subset
membership problem is hard on (X ,L) if for any PPT adversary A,

|Pr[A(x) = 1] − Pr[A(x′) = 1]| ≤ negl(n) ,

where x ←$ L and x′ ←$ X .
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4 Rerandomizable Tag-SPHF

4.1 Syntax of Rerandomizable Tag-SPHF

We slightly extend the typical SPHF syntax in such a way that the hash function
family H is indexed not only by the hashing key sk ∈ K (as the typical case)
but also by some (possible) auxiliary information ax, which is fixed as part of
the public parameter. For generality and simplicity considerations, hereafter we
assume that such information is public and implicitly included in the description
of hash function family, and remain to use H(·) instead of Hax,(·). Note that ax
is set as “null” for typical SPHFs. We remark that since now the hash function
family is not solely indexed by the hash key, for two SPHFs that are even with
the same (X ,L,K, T ,Π), their corresponding hash function families are not
necessarily the same due to the possibly different auxiliary index ax.

Definition 8 (Rerandomizable Tag-SPHF (Re-T-SPHF)). Let I and I ′

be two tag-SPHFs associated with same sets X and L, sharing partially the same
public parameter (K, T ,Π) but having (possibly) different hash function families
H(·) and H ′

(·). We say I is pairwise-rerandomizable with respect to I ′ if:

– There exist three efficient algorithms as below.
• I.RandX(x, x′, rx) takes as input elements x, x′ ∈ X and randomness rx ∈

Rx, outputs a new element x∗ ∈ X ;
• I.RandT(τ, rτ ) takes as input tag τ ∈ T and randomness rτ ∈ Rτ , outputs

a new tag τ∗ ∈ T ;
• I.RandH(π, π′, rx, rτ ) takes as input hash values π, π′ ∈ Π and random-

nesses rx ∈ Rx, rτ ∈ Rτ , outputs a rerandomized hash value π∗ ∈ Π,
where Rx and Rτ are randomness space for element and tag respectively.

– For sk ←$ K, any x, x′ ∈ X , any τ ∈ T , let π = Hsk(x, τ) and π′ = H ′
sk(x

′, τ),

Pr

⎡

⎢
⎢
⎣Hsk(x∗, τ∗) �= π∗ :

rx ←$ Rx; rτ ←$ Rτ

x∗ := I.RandX(x, x′, rx);
τ∗ := I.RandT(τ, rτ )
π∗ := I.RandH(π, π′, rx, rτ )

⎤

⎥
⎥
⎦ ≤ negl(n) .

If I ′ = I1, we say that I is self-rerandomizable. In this case, the input x and x′

for algorithm RandX could be the same element. We say that I is linearly reran-
domizable if for any π, π′,Δ ∈ Π (w.l.o.g., considering Π as a multiplicative
group), rx ←$ Rx, rτ ←$ Rτ , I.RandH(π·Δ,π′, rx, rτ ) = I.RandH(π, π′, rx, rτ )·Δ.

Remark (Re-SPHF). For a regular rerandomizable SPHF (hereafter referred
to as Re-SPHF) where tag space T = ∅, the algorithm RandT is absent and the
parameter rτ in the input of algorithm RandH is explicitly omitted.

1 That is, H(·) and H ′
(·) have the same auxiliary index (which could be “null”), and

thus are the same (since they work on the same K).
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Definition 9 (Perfect Re-T-SPHF). Assume I is pairwise-rerandomizable
with respect to I ′. We say that I is perfectly rerandomizable on Ts with
respect to I ′ if for sk ←$ K, any x, x′ ∈ X , any τ ∈ Ts ⊆ T , rx ←$ Rx, rτ ←$ Rτ

and π = Hsk(x, τ), π′ = H ′
sk(x

′, τ), the following distributions are identical:

V1 = {(x′′, τ ′′, π′′)|x′′ ←$ X ; τ ′′ ←$ Ts; π′′ = Hsk(x′′, τ ′′)},

V2 =
{

(x∗, τ∗, π∗)
∣
∣
∣
∣
x∗ := I.RandX(x, x′, rx); τ∗ := I.RandT(τ, rτ )
π∗ := I.RandH(π, π′, rx, rτ )

}
.

If Ts = T , we say I is perfectly pairwise-rerandomizable with respect to I ′.
If I ′ = I, we say I is perfectly self-rerandomizable on Ts.

4.2 Redefining Smoothness for Re-T-SPHFs

We define the property of smoothness for Re-T-SPHFs as below.

Definition 10 (Controlled-Self-Rerandomizable Smoothness). Let I be
self-rerandomizable. Assume it is associated with sets X and L, and the public
parameter is (K, T ,Π,H(·)). Denote CRX(x) = {I.RandX(x, x, rx)|rx ∈ Rx}
and CRT(τ) = {I.RandT(τ, rτ )|rτ ∈ Rτ}. We say I satisfies controlled-self-
rerandomizable smoothness (CSR-Smooth) if for sk ←$ K and pk := I.φ(sk),
any (x∗, τ∗) ∈ X × T and any (x, τ) ∈ X\L × T with x /∈ CRX(x∗) or τ /∈
CRT(τ∗), the following two distributions are statistically indistinguishable,

V1 = {(pk, x∗, x,Hsk(x∗, τ∗), π)|π = Hsk(x, τ)},
V2 = {(pk, x∗, x,Hsk(x∗, τ∗), π′)|π′ ←$ Π}.

Definition 11 (Controlled-Pairwise-Rerandomizable Smoothness). Let
I be pairwise-rerandomizable with respect to I ′. Assume they are associated with
sets X and L, and work on (K, T ,Π). Let H(·) and H ′

(·) be the hash function
family of I and I ′ respectively. Denote CRX(x, x′) = {I.RandX(x, x′, rx)|rx ∈
Rx} and CRT(τ) = {I.RandT(τ, rτ )|rτ ∈ Rτ}. We say I satisfies controlled-
pairwise-rerandomizable smoothness (CPR-Smooth) with respect to I ′ if for
sk ←$ K and pk := I.φ(sk), any (x∗

1, τ
∗
1 ), (x∗

2, τ
∗
2 ) ∈ X × T with τ∗

1 = τ∗
2 and any

(x, τ) ∈ X\L × T with x /∈ CRX(x∗
1, x

∗
2) or τ /∈ CRT(τ∗

1 ), the following two
distributions are statistically indistinguishable:

V1 = {(pk, x∗
1, x

∗
2, x,Hsk(x∗

1, τ
∗
1 ),H ′

sk(x
∗
2, τ

∗
2 ), π)|π = Hsk(x, τ)},

V2 = {(pk, x∗
1, x

∗
2, x,Hsk(x∗

1, τ
∗
1 ),H ′

sk(x
∗
2, τ

∗
2 ), π′)|π′ ←$ Π}.

Definition 12 (Self-Twin 1-Smoothness). Let I be self-rerandomizable.
Assume it is associated with sets X and L, and the public parameter is
(K, T ,Π,H(·)). We say I satisfies self-twin 1-smoothness (ST-Smooth1) if
for sk ←$ K and pk := I.φ(sk), x∗, x ←$ X\L, τ ←$ T , the following two distri-
butions are statistically indistinguishable:

V1 = {(pk, x∗, x, τ, π∗, π)|π∗ = Hsk(x∗, τ), π = Hsk(x, τ)},
V2 = {(pk, x∗, x, τ, π′′, π′)|π′′, π′ ←$ Π}.
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Definition 13 (Pairwise-Twin 1-Smoothness). Let I be pairwise-
rerandomizable with respect to I ′. Assume they are associated with sets X and L,
and work on (K, T ,Π). Let H(·) and H ′

(·) be the hash function family of I and I ′

respectively.We say I satisfiespairwise-twin1-smoothness (PT-Smooth1) with
respect to I ′ if for sk ←$ K and pk := I.φ(sk), x∗, x ←$ X\L, τ ←$ T , the following
two distributions are statistically indistinguishable:

V1 = {(pk, x∗, x, τ, π∗, π)|π∗ = Hsk(x∗, τ), π = H ′
sk(x, τ)},

V2 = {(pk, x∗, x, τ, π′′, π′)|π′′, π′ ←$ Π}.

5 A General Framework of Rand-RCCA-secure PKE

5.1 Our Generic Construction

The generic construction of the anonymous Rand-RCCA-secure scheme PKE =
(KGen, Enc, Dec, Rerand) is depicted in Fig. 3 where the sub-scheme MPKE =
(MKGen, MEnc, MDec, MRerand, Maul) is given in Fig. 4.

Fig. 3. Our anonymous Rand-RCCA-secure scheme PKE
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Fig. 4. Generic rerandomizable and malleable encryption scheme MPKE

Table 2. Descriptions of Re-(T)-SPHFs in the PKE. The first four rows describe the
sets on which subset membership problems are defined, hash value spaces, tag spaces
and hashing key spaces respectively. The rest of rows indicate certain algorithms in
these Re-(T)-SPHFs are required to be identical.

SPHF I0 I1 I2 I0 I3 I4

SMP (X , L) (X , L)

Hash Value Π0 Π1 Π0 Π3

Tag − Π0 × Z − Π0

Hashing Key K0 K1 K0 K3

Alg. φ I0.φ I1.φ I0.φ I3.φ

Alg. RandX I0.RandX I0.RandX

Alg. RandT − I1.RandT − I3.RandT

Descriptions of underlying SPHFs. We firstly describe the details of all the
building blocks, i.e., the underlying Re-(T)-SPHFs, in Table 2.

For the Rand-RCCA security of the PKE, the underlying subset membership
problems must be hard. Besides, we require that both I0 and I0 are perfectly self-
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rerandomizable and ST-Smooth1; and I1 is perfectly pairwise-rerandomizable on
Π0 × {s} for any s ∈ Z, CPR-Smooth and PT-Smooth1 with respect to I2; and
I2 is perfectly self-rerandomizable on Π0 × {s} for any s ∈ Z and CSR-Smooth;
and I3 is perfectly pairwise-rerandomizable, CPR-Smooth and PT-Smooth1 with
respect to I4; and I4 is perfectly self-rerandomizable and CSR-Smooth.

To ensure the consistency of rerandomization, we require that I0 and I0
are linearly rerandomizable. Let ψ be an injection that maps Π0 into Z, T1 =
Π0 × Z and T3 = Π0. It is required that I1.RandT(τ, rτ ) = (rτ · u, ψ(M)) and
I3.RandT(τ ′, rτ ) = rτ · u for any τ = (u, ψ(M)) ∈ T1, any τ ′ = u ∈ T3 and any
rτ ∈ Π0. In algorithms Maul and MRerand, 1Rx

and 1Π0
denote the identity

elements in groups Rx and Π0 respectively.
Correctness. Below we analyze the correctness of the MPKE and then the PKE.

Theorem 1. For any key pair (mpk,msk), any randomness rτ ∈ Π0, any
ciphertext � and �′ = MRerand(Maul(�, rτ )) in the scheme MPKE, we have

MDec(msk, �′) =
{

rτ · MDec(msk, �), MDec(msk, �) �= ⊥
⊥, MDec(msk, �) = ⊥ .

Proof. Let � = (x3, e3, π̂3, x4, π4, π̃4),msk = (sk0, sk3, sk4) andu = MDec(msk, �).
If u �= ⊥, then e3 · u−1 = I0.Priv(sk0, x3) holds and validity checking on � passes.
Let �′ = (x′

3, e
′
3, π̂

′
3, x

′
4, π

′
4, π̃

′
4) = MRerand(Maul(�, rτ )). By the requirement on

I3.RandT, the linear rerandomizability of I0 and the consistency of rerandomiza-
tion in I0, I3 and I4, let u′ = rτ · u, we have e′

3 · u′−1 = I0.Priv(sk0, x′
3) and the

validity checking on �′ also passes. Thus,MDec(msk, �′) = rτ ·u = r·MDec(msk, �).
If u = ⊥, then π4 �= I0.Priv(sk0, x4), π̂3 �= I3.Priv(sk3, x3, u) or π̃4 �= I4.Priv(

sk4, x4, u) holds. In this case, the corresponding inequalities also hold in cipher-
text �′, then MDec(msk, �′) = ⊥. �

Theorem 2. For any public/private key pair (PK,SK), any ciphertext ζ and
ζ ′ = Rerand(ζ) in the scheme PKE, we have Dec(SK, ζ) = Dec(SK, ζ ′).

Proof. Let ζ = (x1, e1, π̂1, x2, π2, π̃2, �) and ζ ′ = (x′
1, e

′
1, π̂

′
1, x

′
2, π

′
2, π̃

′
2, �

′) be a
rerandomized ciphertext of ζ. Let SK = (sk0, sk1, sk2,msk), u = MDec(msk, �),
M = Dec(SK, ζ) and τ = (u, ψ(M)).

If M �= ⊥, then u = MDec(msk, �) �= ⊥, e1 · M−1 = I0.Priv(sk0, x1) and
the validity checking on ζ passes. By the requirement on I1.RandT, the linear
rerandomizability of I0 and the consistency of rerandomization in I0, I1 and I2,
we have e′

1 ·M−1 = I0.Priv(sk0, x′
1) and the validity checking on �′ passes. Thus,

we have Dec(SK, ζ ′) = M .
If M = ⊥, then u = ⊥, π2 �= I0.Priv(sk0, x2), π̂1 �= I1.Priv(sk1, x1, τ) or π̃2 �=

I2.Priv(sk2, x2, τ) holds. In this case, u′ = ⊥, by Theorem 1, or the corresponding
inequalities hold in ζ ′ as well, and then Dec(SK, ζ ′) = ⊥. �
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5.2 Security Analysis

Noting that the scheme MPKE is a sub-scheme of PKE, below we will provide the
security of PKE as the whole but will not separately give one regarding MPKE.

Theorem 3 (Perfect Rerandomization). The scheme PKE is a perfectly
rerandomizable encryption scheme.

Proof. Given fixed plaintext M , key pair (PK,SK), the distribution of the
ciphertexts of M is determined by x1, x2, x3, x4 and u. Let ζ∗ be a cipher-
text in the support of Enc(PK,M). Consider random variables ζ ←$Enc(PK,M)
and ζ ′ ←$Rerand(ζ∗). In ciphertext ζ, u is uniformly sampled from Π0, while
u′ = rτ · u∗ in ζ ′ is also uniformly distributed on Π0 as rτ is randomly picked
from Π0. By the perfect rerandomizability of I0, I3 and I4, the distribution of �
and �′ is identical. Since I0 is perfectly self-rerandomizable, the distribution of
(x1, e1) (resp. (x2, π2)) in ζ is identical to that of (x′

1, e
′
1) (resp. (x′

2, π
′
2)) in ζ ′.

The distributions of (x1, π̂1) and (x′
1, π̂

′
1) are identical by the perfect pairwise-

rerandomizability of I1. Similarly, the distribution of (x2, π̃2) is the same as
that of (x′

2, π̃
′
2) by the perfect self-rerandomizability of I2. The 1-smoothness

of all the Re-(T)-SPHFs guarantees that any (possibly unbounded) adversary is
unable to generate a malicious ciphertext that is decryptable. Put it all together,
the theorem follows. �

Theorem 4 (RCCA Security). For any (X ,L) and (X ,L) where subset mem-
bership problems are hard, the proposed PKE in Fig. 3 is RCCA-secure.

Proof. We prove the RCCA security of the scheme PKE by constructing a
sequence of games G0-G3 and demonstrating the indistinguishability between
them.
Game G0: This is the IND-RCCA game. Specifically, challenger generates key
pair (PK,SK) via KGen, and sends PK to adversary A. After querying decryption
oracle DOSK, A chooses two plaintexts M0, M1. Then, challenger randomly picks
b ∈ {0, 1} and sends ζ∗ ←$Enc(PK,Mb) to A. Finally, A outputs b′ after querying
guarded decryption oracle GDOM0,M1

SK .
Let Si denote the event that b = b′ in game Gi, we have AdvIND-RCCA

A,PKE (n) =
|Pr[S0 ] − 1/2|. Let the challenge ciphertext be ζ∗ = (x∗

1, e
∗
1, π̂

∗
1 , x

∗
2, π

∗
2 , π̃

∗
2 , �

∗)
and �∗ = (x∗

3, e
∗
3, π̂

∗
3 , x

∗
4, π

∗
4 , π̃

∗
4). Below we describe the modifications in G1-G3.

Game G1: This game is the same as G0 except that challenge ciphertext ζ∗ is
generated by using secret key. Specifically, for the challenge ciphertext ζ∗, all
the hash values are computed using hashing key. By the correctness of Re-(T)-
SPHFs, same values would be computed in G0. The differences between G0 and
G1 are only syntactical.

We call a ciphertext ζ bad if it is invalid (i.e., Dec(SK, ζ) = ⊥) or at least
one of its elements is non-language (i.e., x1 ∈ X\L, x2 ∈ X\L, x3 ∈ X\L or
x4 ∈ X\L) unless it is a rerandomization of the challenge ciphertext. �

Lemma 1. In game G1, the decryption oracle rejects all the bad ciphertexts
except with negligible probability.
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Fig. 5. Modified encryption algorithms AltEnc and AltMEnc

Proof. First, querying a valid ciphertext ζ with x1, x2 ∈ L and x3, x4 ∈ L does
not reveal more information about the secret key SK.

Consider the first bad ciphertext ζ submitted to the decryption oracle. If at
least one of its elements is non-language, by the 1-smoothness of I0, I1, I2, I0, I3
and I4, the corresponding hash value is uniformly distributed over appropriate
domain and the probability that ζ is valid is negligible. If ζ is invalid, the decryp-
tion oracle rejects it with probability 1. Meanwhile, the rejection from decryption
oracle rules out a negligible faction of secret keys, and the correct secret key is
still uniformly distributed among the rest of secret keys in adversary’s view. Since
the number of query is polynomial, the probability that adversary generates a
“valid” bad ciphertext is negligible. �

Game G2: This game is the same as G1 except that challenge ciphertext ζ∗ is
generated with x∗

3, x
∗
4 ←$ X\L and x∗

1, x
∗
2 ←$ X\L. That is, ζ∗ is generated using

AltEnc in Fig. 5. By the hardness of SMP on (X ,L) and (X ,L), games G1 and G2

are of computational indistinguishability. Here we omit the details of reduction.

Lemma 2. In game G2, if the decryption oracles reject all the bad ciphertexts
except with negligible probability, then the challenge ciphertext ζ∗ is distributed
independently of plaintext Mb and mask u∗, even given public key PK.

Proof. Since x∗
1, x

∗
2 ∈ X\L, by the pairwise-twin 1-smoothness of I1 with

respect to I2, π̂∗
1 and π̃∗

2 are uniformly distributed over appropriate domains
given pk1(pk2). Similarly, π̂∗

3 and π̃∗
4 are uniformly distributed over appropriate

domains given pk3(pk4) by the pairwise-twin 1-smoothness of I3 with respect to
I4. By the self-twin 1-smoothness of I0, both π∗

1 and π∗
2 are statistically close to

random. Similarly, π∗
3 and π∗

4 are statistically close to random by the self-twin
1-smoothness of I0. �

By Lemma 1, in Phase 1, the decryption oracle rejects all the bad cipher-
texts except with negligible probability. Thus, before Phase 2, u∗ is uniformly
distributed in adversary’s view. This is crucial to the proof of Lemma 4.
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Game G3: This game is the same as G2 except that both decryption oracle DOSK

(in Phase 1) and guarded decryption oracle GDOM0,M1
SK (in Phase 2) return the

output of alternate decryption algorithm AltDec (described below) that uses
public keys and challenge ciphertext to decrypt ciphertexts instead of secret
keys. We now prove that G2 and G3 are statistically indistinguishable. Note that
in this case AltDec is allowed to run in unbounded time. In fact, this is essentially
why AltDec is able to answer any decryption query using the public key and the
challenge ciphertext only.

For any decryption query ζ = (x1, e1, π̂1, x2, π2, π̃2, �), we first describe
the sub-algorithm AltMDec which is called by AltDec to decrypt � =
(x3, e3, π̂3, x4, π4, π̃4). Let �∗ = (x∗

3, e
∗
3, π̂

∗
3 , x

∗
4, π

∗
4 , π̃

∗
4) denote the encryption of

u∗ in challenge ciphertext ζ∗. To decrypt �, AltMDec performs as below.

(i) Check that x3, x4 ∈ L. If not, go to (ii). Otherwise, let w3, w4 be the
witnesses of x3, x4, check that π4 = I0.Pub(pk0, x4, w4) holds. If not, output
⊥. Otherwise, compute u = e3 ·(I0.Pub(pk0, x3, w3))−1, and check that π̂3 =
I3.Pub(pk3, x3, w3, u) and π̃4 = I4.Pub(pk4, x4, w4, u) hold. If not, output ⊥.
Otherwise, output (σ = u, s = 0).

(ii) If AltMDec is called in Phase 1, output ⊥. Otherwise, check that there exist
r3, r4 ∈ Rx and rτ ∈ Π0 such that � = MRerand(Maul(�∗, rτ )). If r3, r4 or
rτ does not exist, output ⊥. Otherwise, output (σ = rτ , s = 1).

The correctness of AltMDec is proved in Lemma 3.

Lemma 3. Let (mpk,msk) be a public/secret key pair of the MPKE and �∗ be a
ciphertext generated using AltMEnc. Let (σ, s) = AltMDec(mpk, �∗, �), if (σ, s) �=
⊥, then MDec(msk, �) = σ · MDec(msk, �∗)s.

Proof. If s = 0, � is a fresh encryption of u with x3, x4 ∈ L. By the correctness
of I0, I3 and I4, MDec also decrypts � into u. If s = 1, � is a derivative ciphertext
of �∗. Although � and �∗ both are not generated by MEnc, one can verify that
MDec(msk, �) = rτ · u∗ = rτ · MDec(msk, �∗). �

Now we are ready to describe AltDec. Let ζ∗ = (x∗
1, e

∗
1, π̂

∗
1 , x

∗
2, π

∗
2 , π̃

∗
2 , �

∗) be
the challenge ciphertext. AltDec then decrypts ζ = (x1, e1, π̂1, x2, π2, π̃2, �) with
PK and ζ∗ as below.

(i) Compute (σ, s) = AltMDec(mpk, �∗, �). If AltMDec returns ⊥, then also
return ⊥.

(ii) If s = 0, then σ = u. Check that there exist message M and witnesses w1,
w2 such that x1, x2 ∈ L and

e1 = I0.Pub(pk0, x1, w1) · M π2 = I0.Pub(pk0, x2, w2)
π̂1 = I1.Pub(pk1, x1, w1, τ) π̃2 = I2.Pub(pk2, x2, w2, τ),

where τ = (u, ψ(M)). If not, output ⊥. If M /∈ {M0,M1}, output M ;
otherwise, output replay.
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(iii) If s = 1, then σ = rτ . Check that there exist randomness r1, r2 ∈ Rx such
that following equalities hold.

x1 = I0.RandX(x∗
1, x

∗
2, r1) x2 = I0.RandX(x∗

2, x
∗
2, r2)

e1 = I0.RandH(e∗
1, π

∗
2 , r1) π2 = I0.RandH(π∗

2 , π
∗
2 , r2)

π̂1 = I1.RandH(π̂∗
1 , π̃

∗
2 , r1, rτ ) π̃2 = I2.RandH(π̃∗

2 , π̃
∗
2 , r2, rτ ).

If not, output ⊥. Otherwise, output replay.

Lemma 4. The output of DOSK(resp. GDOM0,M1
SK ) in G3 agrees with the output

of DOSK(resp. GDOM0,M1
SK ) in G2 with overwhelming probability.

Proof. In the cases where DOSK(resp. GDOM0,M1
SK ) in G3 outputs M , DOSK(resp.

GDOM0,M1
SK ) in G2 also outputs M by Lemma 3 and the correctness of decryption.

Similarly, when GDOM0,M1
SK in G3 outputs replay, GDOM0,M1

SK in G2 also outputs
replay by Lemma 3 and correctness of decryption and rerandomization.

We now prove that when DOSK(resp. GDOM0,M1
SK ) in G3 outputs ⊥ on query ζ,

DOSK(resp. GDOM0,M1
SK ) in G2 also would output ⊥ with overwhelming probabil-

ity. That is, when AltDec outputs ⊥, Dec also would output ⊥ with overwhelming
probability. Let ζ∗ = (x∗

1, e
∗
1, π̂

∗
1 , x

∗
2, π

∗
2 , π̃

∗
2 , �

∗) denote the challenge ciphertext
where �∗ = (x∗

3, e
∗
3, π̂

∗
3 , x

∗
4, π

∗
4 , π̃

∗
4) and ζ = (x1, e1, π̂1, x2, π2, π̃2, �) denote the

decryption query input where � = (x3, e3, π̂3, x4, π4, π̃4).
Case 1. If AltDec outputs ⊥ due to AltMDec returning ⊥, there are following
possible sub-cases.

– In Phase 1, x3 /∈ L or x4 /∈ L. By the 1-smoothness of I0, π3 = e3 · u−1 or
π4 is statistically close to random, and thus ζ will be rejected by Dec with
overwhelming probability.

– In Phase 2, r3, r4 ∈ Rx or rτ ∈ Π0 does not exist for � =
MRerand(Maul(�∗, rτ )) with x3 or x4 /∈ L. If rτ does not exist, by the
CPR-Smooth of I3 or CSR-Smooth of I4, π̂3 or π̃4 is close to random, as
x3 or x4 /∈ L. If r3 does not exist and x3 /∈ L, π̂3 is close to random by the
CPR-Smooth of I3. If r4 does not exist and x4 /∈ L, π̃4 is close to random
by the CSR-Smooth of I4. If r3 does not exist and x3 ∈ L, then x4 /∈ L. In
this case, we assume that there exists r4 such that x4 = I0.RandX(x∗

4, x
∗
4, r4).

Since u∗ is uniformly sampled from Π0 at random, the underlying u of π̃4

equals to rτ · u∗ which is uniformly distributed over Π0. Then, π̂3 is close to
random, as u is uniformly distributed and π̂3 is independent of π̂∗

3 . Similarly,
we can prove that π̃4 is close to random when r4 does not exist, r3 exists,
x4 ∈ L and x3 /∈ L.

– In both Phase 1 and 2, π4 �= I0.Pub(pk0, x4, w4), π̂3 �= I3.Pub(pk3, x3, w3, u)
or π̃4 �= I4.Pub(pk4, x4, w4, u) holds. Obviously, MDec would reject � and Dec
would reject ζ.

Case 2. Suppose that (σ, s) = AltMDec(mpk, �∗, �) and (σ, s) �= ⊥. There are
following sub-cases where AltDec outputs ⊥.
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– In Phase 1, (σ, s) = (u, 0) and x1 or x2 /∈ L. By the 1-smoothness of I0, I1
and I2, π2, π̂1 or π̃2 is statistically close to random. Suppose x1, x2 ∈ L and
pk0, pk1(pk2) are fixed. If any equation in decryption rule (ii) of AltDec does
not hold for any M ∈ Π0, ζ would be rejected due to the validity checking.

– In Phase 2, (σ, s) = (u, 0) and x1 or x2 /∈ L. If x1 = I0.RandX(x∗
1, x

∗
2, r1)

or x2 = I0.RandX(x∗
2, x

∗
2, r2), the underlying tag τ = (u, ψ(M)) of π̂1 or π̃2

which is derived from π̂∗
1 and π̃∗

2 via I1.RandH or I2.RandH would be related
to τ∗ = (u∗, ψ(M∗)) where u∗ is uniformly distributed over Π0. However,
s = 0 indicates that the value of u is fixed and u = σ. Thus, the validity
checking on ζ would fail. Otherwise, x1 �= I0.RandX(x∗

1, x
∗
2, r1) and x2 �=

I0.RandX(x∗
2, x

∗
2, r2). Given fixed pk1, π̂∗

1 and π̃∗
2 , the value of π̂1 is statistically

close to random as I1 is CPR-Smooth.
– In Phase 1 and 2, (σ, s) = (u, 0) and x1, x2 ∈ L. If equations in rule (ii) of
AltDec do not hold simultaneously for any M ∈ Π0, the validity checking on
ζ in Dec would fail.

– In Phase 2, (σ, s) = (rτ , 1), and there do not exist r1, r2 ∈ Rx such
that equations in decryption rule (iii) of AltDec hold at the same time. If
x1 �= I0.RandX(x∗

1, x
∗
2, r1) for any r1 ∈ Rx or τ �= I0.RandT(τ∗, rτ ), due to the

fact that I1 is CPR-Smooth, π̂1 is statistically indistinguishable from random
hash value given fixed pk1, π̂∗

1 and π̃∗
2 . Similarly, if x2 �= I0.RandX(x∗

2, x
∗
2, r2)

for any r2 ∈ Rx or τ �= I0.RandT(τ∗, rτ ), due to the fact that I2 is
CSR-Smooth, π̃2 is statistically close to random hash value given fixed pk2
and π̃∗

2 . Suppose that x1 = I0.RandX(x∗
1, x

∗
2, r1), x2 = I0.RandX(x∗

1, x
∗
2, r2)

and τ = I0.RandT(τ∗, rτ ). If equations in rule (iii) of AltDec do not hold
simultaneously, the validity checking on ζ in Dec would fail.

In conclusion, The output of DOSK(resp. GDOM0,M1
SK ) in G3 is the same as

that in G2 in every case with overwhelming probability. �

Lemma 5. Pr[S3 ] = 1/2.

Proof. Note that AltMDec and AltDec do not use secret key to perform decryp-
tion. The decryption oracle responses in game G3 do not provide extra informa-
tion about secret key besides public key and challenge ciphertext ζ∗ generated
using AltEnc. Lemma 2 shows that ζ∗ is distributed independently of bit b, from
which the lemma follows. �

Putting it all together, the theorem follows. �

Theorem 5 (RCCA Receiver-Anonymity). For any (X ,L) and (X ,L)
where subset membership problems are hard, the proposed PKE in Fig. 3 is RCCA
receiver-anonymous.

Proof. We prove the receiver-anonymity of PKE by constructing a sequence of
games G0-G3 and demonstrating the indistinguishability between them.
Game G0: This is the ANON-RCCA game. Specifically, challenger generates
two key pairs (PK0,SK0) and (PK1,SK1) via KGen, and sends (PK0,PK1) to
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adversary A. After querying decryption oracle DOSK0,SK1 , A chooses a plaintext
M . Then, challenger randomly picks b ∈ {0, 1} and sends ζ∗ ←$Enc(PKb,M) to
A. Finally, A outputs b′ after querying guarded decryption oracle GDOM

SK0,SK1
.

Let Si denote the event that b = b′ in game Gi, we have AdvANON-RCCA
A,PKE (n) =

|Pr[S0 ] − 1/2|.
Game G1: This game is the same as G0 except that challenge ciphertext ζ∗ is
generated by using secret key SKb. According to the analysis in Theorem 4, game
G1 is identical to G0 by the correctness of SPHFs.
Game G2: This game is the same as G1 except that challenge ciphertext ζ∗ is
generated with x∗

3, x
∗
4 ←$ X\L and x∗

1, x
∗
2 ←$ X\L. That is, ζ∗ is generated using

AltEnc in Fig. 5. By the hardness of SMP on (X ,L) and (X ,L), games G1 and
G2 are of computational indistinguishability.
Game G3: This game is the same as G2 except that both decryption oracle
DOSK0,SK1 (in Phase 1) and guarded decryption oracle GDOM

SK0,SK1
(in Phase 2)

work as follows. First, it runs alternative decryption algorithm AltDec∗, which
is the same as AltDec in Theorem 4 except that it outputs replay when decryp-
tion result equals to M , with PK0 and PK1 respectively. If AltDec∗ outputs
replay, it returns replay, otherwise, it returns the results of running AltDec∗.
By Lemma 4, the output of DOSK0,SK1(GDOM

SK0,SK1
) in G3 agrees with the output

of DOSK0,SK1(GDOM
SK0,SK1

) in G2 with overwhelming probability. Thus, games G2

and G3 are statistically indistinguishable.
Note that AltDec∗ does not use secret key to perform decryption. The decryp-

tion oracle responses in game G3 do not provide extra information about secret
key SKb besides public keys PK0,PK1 and challenge ciphertext ζ∗ generated
using AltEnc. By Lemma 2, ζ∗ is distributed independently of PKb. Thus, we
have Pr[S3 ] = 1/2, from which the theorem follows. �

6 Instantiations

In this section, we show how to instantiate our framework from the k-Lin
assumption. More generally, it could be constructed from graded rings [3] and
we provide the details in the full version [29].

6.1 Regular SPHF from k-Lin Assumption

Let G be a cyclic group with prime order p. The k-Lin assumption says
that

[
r�gk+1

]
is pseudorandom given [g�], [gk+1], [r�G] where r,g ←$ Z

k
p,

gk+1 ←$ Zp and G = diag(g�) ∈ Z
k×k
p , gk+1 = (gk+1, · · · , gk+1)� ∈ Z

k
p.

Let element set X =
{[
x�]∣∣x ∈ Z

k+1
p

}
and L =

{[
w�P

]∣∣w ∈ Z
k
p

}
where

P = (G gk+1) ∈ Z
k×(k+1)
p . Below is a regular SPHF from k-Lin assumption.

– Setup(1n). Let K = Z
k+1
p , Π = G and T = ∅. Since the tag space is empty,

H(·) : X → G is an efficient hash function family indexed by sk ∈ Z
k+1
p .

– φ(sk). For sk = a ∈ Z
k+1
p , outputs pk = [Pa] ∈ G

k.
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– Priv(sk, x). For sk = a ∈ Z
k+1
p and x =

[
x�]

∈ X , outputs π =
[
x�a

]
∈ G.

– Pub(pk, x, w). For pk = [Pa] ∈ G
k and x =

[
w�P

]
∈ L with witness w ∈ Z

k
p,

outputs π =
[
w�(Pa)

]
∈ G.

Since
[
w�(Pa)

]
=

[
(w�P)a

]
, the correctness of SPHF holds. For any x /∈ L

and pk = [Pa], vector x� is not in the linear span of P, then hash value Hsk(x) =[
x�a

]
is independent from pk = [Pa]. This guarantees the 1-smoothness.

6.2 Instantiating the Underlying Re-(T)-SPHFs of Our Framework

(1) Construction of I0 and I0. The algorithms (I0.Setup, I0.φ, I0.Priv, I0.Pub)
are the same as those of regular SPHF from k-Lin assumption, and thus the 1-
smoothness of I0 is obvious. Below we provide the remaining algorithms, i.e.,
I0.RandX and I0.RandH.

– I0.RandX(x, x′, rx). For x =
[
x�]

, x′ =
[
x′�]

∈ X and rx ∈ Zp, outputs
x∗ =

[
x� + rxx′�]

.
– I0.RandH(π, π′, rx). For π =

[
x�a

]
, π′ =

[
x′�a

]
∈ G and rx ∈ Zp, outputs

π∗ = π · (π′)rx =
[
x�a + rxx′�a

]
.

Since π∗ =
[
(x� + rxx′�)a

]
= I0.Priv(sk, I0.RandX(x, x′, rx)), the correct-

ness of rerandomization holds. For any π, π′,Δ ∈ G and any rx ∈ Zp, we have
I0.RandH(π ·Δ,π′, rx) = (π ·Δ) · (π′)rx = (π · (π′)rx) ·Δ = I0.RandH(π, π′, rx) ·Δ
and I0 is linearly rerandomizable. Due to lack of space, the proofs of following
theorems appear in the full version [29].

Theorem 6. I0 is perfectly self-rerandomizable.

Theorem 7. I0 is ST-Smooth1 when k ≥ 2.

The construction of I0 is exactly the same as I0. In concrete scheme, it
is associated with X and NP-language L that are defined over G

k+1
where G

is a cyclic group with prime order q and a subgroup of Z
∗
p. Specifically, X =

{[
x�]∣∣x ∈ Z

k+1
q

}
, and L =

{[
w�P

]∣∣w ∈ Z
k
q

}
where P = (G gk+1) ∈ Z

k×(k+1)
q ,

G = diag(g�) ∈ Z
k×k
q , gk+1 = (gk+1, · · · , gk+1)� ∈ Z

k
q , g ←$ Z

k
q , gk+1 ←$ Zq.

(2) Construction of I1 and I2. We first describe the framework of I1 as below.

– I1.Setup(1n). Let K1 = (Zk+1
p )4, Π1 = G

2, T1 = G × Z
∗
p. Pick λ1,λ2 ←$ Z

k
p

with λ1 �= λ2, ax = (λ1,λ2). Ĥ(·) : X × T1 → G
2 is indexed by sk1 ∈ K1 and

ax.
– I1.φ(sk1). For sk1 = (b, c,d, e) ∈ (Zk+1

p )4, outputs

pk1 = ([Pb], [Pc], [Pd], [Pe]).

– I1.Priv(sk1, x, τ). For sk1 = (b, c,d, e), x =
[
x�]

and τ = (τ0, τ1), outputs
hash value π = Ĥsk1(x, τ) = (π1, π2) =

([
(x� + λ�

1 P)(τ0(b + τ1c))
]
,
[
(x� + λ�

2 P)(τ0(d + τ1e))
])

.
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– I1.Pub(pk1, x, w, τ). For pk1 = ([Pb], [Pc], [Pd], [Pe]), x =
[
w�P

]
with wit-

ness w and τ = (τ0, τ1), outputs π = Ĥsk1(x, τ) = (π1, π2) =
([

(w� + λ�
1 )(τ0(Pb + τ1Pc))

]
,
[
(w� + λ�

2 )(τ0(Pd + τ1Pe))
])

.

– I1.RandX(x, x′, rx). For x =
[
x�]

, x′ =
[
x′�]

and rx ∈ Zp, outputs x∗ =[
x� + rxx′�]

.
– I1.RandT(τ, rτ ). For τ = (τ0, τ1) and rτ ∈ Zp, outputs τ∗ = (rτ · τ0, τ1).
– I1.RandH(π, π′, rx, rτ ). For π = (π1, π2), π′ = (π′

1, π
′
2), rx ∈ Zp and rτ ∈ Zp,

outputs π∗ = ((π1 · (π′
1)

rx)rτ , (π2 · (π′
2)

rx)rτ ).

As for I2, its algorithms I2.φ, I2.RandX, I2.RandT and I2.RandH are the same
as I1.φ, I1.RandX, I1.RandT and I1.RandH. Besides, I2.Setup is the same as
I1.Setup except that ax is null and the hash function family is H̃(·) : X ×T2 → G

2

where T2 = T1. I2.Priv and I2.Pub are equivalent to I1.Priv and I1.Pub with
λ1 = λ2 = 0.

– I2.Priv(sk2, x, τ). For sk2 = (b, c,d, e) ∈ (Zk+1
p )4, x =

[
x�]

and τ = (τ0, τ1),
outputs hash value π = H̃sk2(x, τ) = (π1, π2) =

([
x�(τ0(b + τ1c))

]
,
[
x�(τ0(d + τ1e))

])
.

– I2.Pub(pk2, x, w, τ). For pk2 = ([Pb], [Pc], [Pd], [Pe]), x =
[
w�P

]
with wit-

ness w and τ = (τ0, τ1), outputs π = H̃sk2(x, τ) = (π1, π2) =
([
w�(τ0(Pb + τ1Pc))

]
,
[
w�(τ0(Pd + τ1Pe))

])
.

One can verify the correctness of I1 and I2 easily. For any x /∈ L, any τ ∈ T1

and pk1 = ([Pb], [Pc], [Pd], [Pe]), vector x� is not in the linear span of P,
then

([
(x� + λ�

1 P)(τ0(b + τ1c))
]
,
[
(x� + λ�

2 P)(τ0(d + τ1e))
])

is independent
of pk1, from which the 1-smoothness property holds for both I1 and I2. As for the
correctness of rerandomization, we consider π = Ĥsk1(x, τ) and π′ = H̃sk2(x

′, τ)
as I1 is rerandomizable with respect to I2. For rx, rτ ∈ Zp, one can verify
that rerandomized hash value π∗ = I1.RandH(π, π′, rx, rτ ) = I1.Priv(sk1, x∗, τ∗)
where x∗ = I1.RandX(x, x′, rx) and τ∗ = I1.RandT(τ, rτ ). This also holds for
π = H̃sk2(x, τ) and π′ = H̃sk2(x

′, τ). The proofs of following theorems are pro-
vided in the full version [29].

Theorem 8. Let T1(s) = G × {s} ⊆ T1 with s ∈ Z
∗
p. I1 is perfectly pairwise-

rerandomizable on T1(s) with respect to I2 for any s ∈ Z
∗
p.

Theorem 9. Let T2(s) = G × {s} ⊆ T2 with s ∈ Z
∗
p. I2 is perfectly self-

rerandomizable on T2(s) for any s ∈ Z
∗
p.

Theorem 10. I1 is PT-Smooth1 with respect to I2 when k ≥ 2.

Theorem 11. I1 is CPR-Smooth with respect to I2.
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Fig. 6. k-Lin-based anonymous Rand-RCCA-secure scheme PKE
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Theorem 12. I2 is CSR-Smooth.

(3) Construction of I3 and I4. We first describe the framework of I3 as below.

– I3.Setup(1n). Let K3 = (Zk+1
q )2, Π3 = G

2
and T3 = G. Pick λ1,λ2 ←$ Z

k
q

with λ1 �= λ2, ax = (λ1,λ2) and Ĥ(·) : X × T3 → G
2

is indexed by sk3 ∈ K3

and ax.
– I3.φ(sk3). For sk3 = (b, c) ∈ (Zk+1

q )2, outputs pk3 =
(
[Pb], [Pc]

)
.

– I3.Priv(sk3, x, τ). For sk3 = (b, c) ∈ (Zk+1
q )2, x =

[
x�]

and τ ∈ G, outputs

hash value π = (π1, π2) =
([

(x� + λ
�
1 P)τb

]
,
[
(x� + λ

�
2 P)τc

])
.

– I3.Pub(pk3, x, w, τ). For pk3 =
(
[Pb], [Pc]

)
, x =

[
w�P

]
with witness w and

τ ∈ G, outputs π = (π1, π2) =
([

(w� + λ
�
1 )τPb

]
,
[
(w� + λ

�
2 )τPc

])
.

– I3.RandX(x, x′, rx). For x =
[
x�]

, x′ =
[
x′�]

∈ X and rx ∈ Zq, outputs
x∗ =

[
x� + rxx′�]

.
– I3.RandT(τ, rτ ). For τ ∈ G and rτ ∈ Zq, outputs τ∗ = rτ · τ .
– I3.RandH(π, π′, rx, rτ ). For π = (π1, π2), π′ = (π′

1, π
′
2), rx ∈ Zq and rτ ∈ Zq,

outputs π∗ = ((π1 · (π′
1)

rx)rτ , (π2 · (π′
2)

rx)rτ ).

As for I4, its algorithms I4.φ, I4.RandX, I4.RandT and I4.RandH are the same
as I3.φ, I3.RandX, I3.RandT and I3.RandH. Besides, I4.Setup is the same as
I3.Setup except that ax is null and the hash function family is H̃(·) : X ×T4 → G

2

where T4 = T3. I4.Priv and I4.Pub are equivalent to I3.Priv and I3.Pub with
λ1 = λ2 = 0.

– I4.Priv(sk4, x, τ). For sk4 = (b, c) ∈ (Zk+1
q )2, x =

[
x�]

∈ X and τ ∈ G,
outputs π = (π1, π2) =

([
x�τb

]
,
[
x�τc

])
.

– I4.Pub(pk4, x, w, τ). For pk4 =
([
Pb

]
,
[
Pc

])
, x =

[
w�P

]
with witness w

and τ ∈ G, outputs π = (π1, π2) =
([
w�τPb

]
,
[
w�τPc

])
.

One can verify the correctness and 1-smoothness of I3 and I4. Analogous to
the proofs of Theorem 8, 9, 10, 11 and 12, one can easily prove that if k ≥ 2, I3 is
perfectly pairwise-rerandomizable, PT-Smooth1 and CPR-Smooth with respect to
I4, and I4 is perfectly self-rerandomizable and CSR-Smooth. The concrete proofs
are given in the full version [29].

6.3 Concrete PKE from k-Lin Assumption

Figure 6 depicts the full concrete scheme PKE based on k-Lin assumption. Note
that the group G and G should be chosen relevantly to ensure that u in tag τ
could be encrypted with proper group. Concretely, let G = QR

∗
2q+1 and G =

QR
∗
2p+1 be two groups of quadratic residues where p = 2q+1 and (q, 2q+1, 4q+3)

is a sequence of primes, called a Cunningham chain (of the first kind) of length 3.
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Abstract. Traitor tracing aims to identify the source of leaked decryp-
tion keys. Since the “traitor” can try to hide their key within obfuscated
code in order to evade tracing, the tracing algorithm should work for
general, potentially obfuscated, decoder programs. In the setting of such
general decoder programs, prior work uses black box tracing: the tracing
algorithm ignores the implementation of the decoder, and instead traces
just by making queries to the decoder and observing the outputs.

We observe that, in some settings, such black box tracing leads to
consistency and user privacy issues. On the other hand, these issues do
not appear inherent to white box tracing, where the tracing algorithm
actually inspects the decoder implementation. We therefore develop new
white box traitor tracing schemes providing consistency and/or privacy.
Our schemes can be instantiated under various assumptions ranging from
public key encryption and NIZKs to indistinguishability obfuscation,
with different trade-offs. To the best of our knowledge, ours is the first
work to consider white box tracing in the general decoder setting.

1 Introduction

Traitor tracing [CFN94] deters piracy by embedding identifying information into
users’ personalized decryption keys. From a leaked key, it should be possible to
“trace,” extracting the “traitor’s” identifying information; with this informa-
tion, remedial action can be taken such as fines, prosecution, and/or revocation.
Tracing is ideally possible even in a variety of adversarial scenarios, such as if
many users collude or if the secret key is hidden inside an obfuscated decoder
program. The bulk of the tracing literature has focused on reducing the sizes of
various components, such as ciphertexts and public and secret keys.

Analyzing (potentially obfuscated) program code is notoriously difficult. Con-
sequently, most recent traitor tracing works (e.g. [CFN94,BSW06,BN08,BZ14,
NWZ16,GKW18,Zha20]) operate in a black box model: the tracer actually does
not try to inspect the particular software of the decoder, but instead simply
queries the decoder on various ciphertexts and observes the outputs. From just
the input/output behavior, the tracer is able to extract the identifying informa-
tion1.
1 Another oft-cited reason to consider black box tracing is that the decoder could be

contained in a hardware device employing various tamper resistant mechanisms to
prevent it’s code from being inspected. In this work, however, we will only consider
software decoders.
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This work: white box tracing. In this work, we consider the use of white box
algorithms for tracing general decoders. Specifically, we allow the adversary to
produce arbitrary (potentially obfuscated) programs in an attempt to remove the
embedded identifying information, but use non-black box algorithms for tracing.
The two main questions we explore in this work are:

What are potential advantages of white box tracing? And,
How to white box trace general adversarial decoders?

Remark 1. An early model for traitor tracing, which we will call faked key trac-
ing, stipulates that the traitor outputs an actual valid key for the system. Trac-
ing then uses the combinatorial or algebraic structure of the key, as opposed to
its input/output behavior. Many early traitor tracing works consider faked key
tracing [KD98,BF99,NP01,KY03,TS06,JKL09,JKL09,ADVW13], and some
refer to this model as “white box tracing” or “non-black box tracing” (see,
e.g. [NDC+15] and [GNPT13], respectively). Such naming reflects that non-
black box tracing algorithms have always coincided with tracing models where
the traitor must output a valid key. Outside of traitor tracing, however, the
labels “white box” or “non-black box” refer to the type of access to a program,
and is potentially orthogonal to the format of the program. We therefore prefer
the terms “faked key” versus “general decoder” to refer to the structure of the
adversary’s decoder, and terms “black box” versus “white box” to refer to the
level of access the tracing algorithm has to the decoder. To the best of our knowl-
edge, ours is the first work exploring white box tracing in the general decoder
setting.

1.1 Motivation

To motivate white box tracing, we now discuss limitations of black box tracing;
overcoming these limitations will be the focus of our work. These limitations are
orthogonal to the “usual” goal of traitor tracing, namely minimizing parameter
sizes. As such, parameter sizes are only a secondary consideration in this work.

Public tracing. We first motivate a particular type of traitor tracing which has
both public tracing and embedded identities. Embedded identities, originally pro-
posed by Nishimaki et al. [NWZ16], means that arbitrary information can be
embedded in the secret keys; in contrast, most tracing schemes only embed an
index from a polynomial-sized set. Nishimaki et al. point out that the tracer
would naturally want to know useful identifying information about the traitor,
in order to prosecute or fine. The key issuer could of course maintain a database
mapping user indices to actual identifying information, but having to store such
a database in the clear naturally creates privacy concerns. Embedded identi-
ties allow this information to be stored directly in the issued keys themselves,
eschewing the need for such a database.

For public tracing, the tracing algorithm only needs the public key and no
secrets. This is in contrast to secret tracing, where a secret key is required to
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trace, and anyone with the secret key can break the security of the system. There
are at least a few reasons to prefer public tracing algorithms:

– Secret key tracing means the tracer cannot be compromised. Public key trac-
ing allows anyone to trace, removing a potential point of failure.

– As explained in [Pfi96], private tracing provides no natural mechanism for
submitting evidence to a judge, as there is no way besides revealing the secret
tracing key to certify the results of tracing. While there are solutions in the
secret tracing setting, public tracing automatically solves the problem: the
judge can always verify by simply re-tracing with the public key.

– In private key tracing, the tracer must somehow discover the decoder in order
to trace, and deterrence therefore relies on such discovery. It may take time
for the tracer to discover the decoder program, or it may never be discovered
if the traitor and an unauthorized user are secretive enough in their commu-
nication. After all, the pirate decoder would naturally be transmitted out of
band, and there is no reason to believe the tracer would automatically see
the decoder.
In contrast, with public key tracing, the sensitive information is immediately
revealed to anyone who receives the decoder, including the un-authorized
user. Especially when combined with embedded identities, public tracing
yields a very strong deterrent mechanism: for example, if the embedded infor-
mation contains a bank account number, then a traitor would likely be unwill-
ing to send their key to anyone else, especially the unscrupulous un-authorized
user.

The good news is that there already exist such public embedded identity trac-
ing schemes, with different trade-offs in terms of parameter sizes and assumptions
used [NWZ16,GKW19]. However, as we will now explain, public black box trac-
ing schemes, including all existing public tracing schemes for general decoders,
are inherently vulnerable to certain kinds of attacks.

Problem 1: Privacy. Consider an encrypted group chat application, where a
group of users broadcast messages to the entire group. The broadcasts are
encrypted to protect against eavesdropping. The group members are also mutu-
ally distrusting, and want to protect against a traitor revealing their key to an
outside user. For example, the group could consist of political dissidents coordi-
nating a protest against an authoritarian regime, and they are concerned that a
member may give their key to government agents.

The group therefore will use a traitor tracing scheme to encrypt their mes-
sage, embedding sensitive or identifying information of each user into personal-
ized decryption keys. In this decentralized scenario, it is unclear who the tracer
should be, and also unclear how to securely maintain a database of users’ iden-
tifying information. Therefore, the group would naturally want a scheme with
public tracing and embedded identities, as discussed above2.

2 Similar to [NWZ16], we envision the original setup and key distribution executed
through multiparty computation, so no single user is responsible for setup.
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Unfortunately, we observe that such constructions inherently come with pri-
vacy concerns, due to having black box tracing. A malicious Alice (whether or
not an authorized group member) may try to steal Bob’s private information by
running the tracing algorithm over the network. That is, Alice can send messages
to Bob, and see how he responds, mounting a chosen ciphertext attack against
Bob’s decryption functionality. This is exactly how black box tracing works, and
since the scheme has public tracing, Alice has all the access she needs to trace
Bob’s key. In fact, tracing algorithms typically work in the “minimal access” set-
ting, meaning Alice only needs to know whether Bob decrypts. In our political
dissident scenario above, this means government agents may be able to learn the
identities of the dissidents (or whatever sensitive information is embedded in the
user keys) by simply posting messages to the group chat, and seeing if there are
any responses. This would naturally concern the group members.

Thus, it is impossible to get the best of all worlds—public tracing, embedded
sensitive information, and user privacy under chosen ciphertext attacks—with
black box tracing. White box tracing, on the other hand, may offer a solution:
the remote attacker never actually sees the user’s decryption program, and may
therefore be unable to run a white box tracing algorithm. Of course, at this point
it is not clear how to actually use white box tracing to achieve these goals.

Remark 2. Nishimaki et al. consider an object they call “anonymous” traitor
tracing, where the users never reveal their identifying information to the key
issuer. However, beyond motivating the direct embedding of sensitive informa-
tion within user keys, they do not further explore anonymity or privacy in traitor
tracing. In particular, they do not discuss the privacy issue we observe here.

Problem 2: Consistency. In traitor tracing, the functionality of the various user
keys is different. This is inherent, for similar reasons to the case of watermarking
as explained by Barak et al. [BGI+01]: if each user key had identical functional-
ity, then a traitor could apply indistinguishability obfuscation (iO) to their key.
The guarantees of iO would then imply the obfuscations of different users’ keys
are computationally indistinguishable, and hence cannot be efficiently traced.
Thus any efficient tracing scheme that maintains perfect consistency would nec-
essarily prove the non-existence of iO, which currently seems out of reach.

This means certain ciphertexts will decrypt differently under different user
keys. While these differing inputs would not occur under normal operation, it is
nonetheless easy to find differing inputs in the case of public black box tracing:
since the tracing algorithm must distinguish between the keys by querying the
decoder functionality, it must be querying exactly on these differing inputs.

To see why this might be an issue, consider executing a multi-party compu-
tation (MPC) protocol. As is standard in the MPC literature, assume that the
users have access to a reliable broadcast channel: when one user sends a mes-
sage on the channel, all other users are guaranteed to receive the same message.
Now, suppose that the set of users want to encrypt the broadcasts in their MPC
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protocol using a traitor tracing scheme3. Unfortunately, even if the ciphertexts
are sent over a reliable broadcast channel, the MPC is run on a virtual plain-
text channel that is not reliable: a malicious user may broadcast a ciphertext
specifically designed to decrypt differently by different users. Typical MPC pro-
tocols require broadcasts to be received consistently between the various users,
and such an inconsistent decryption would break the guarantees of the MPC
protocol4.

More generally, in any setting where a broadcast channel is needed to ensure
that all users receive the same message, encrypting the communication with a
public black box tracing scheme can result in an unreliable broadcast channel.

On the other hand, such consistency issues do not appear inherent to white
box tracing: a malicious user only has black box access to the other users’ decryp-
tion functionalities, and may be unable to use this access to find an input that
decrypts differently. Yet if a user actually leaks their decryption key or an obfus-
cated decoder with the key inside, a white box tracing algorithm might never-
theless be able to trace, and in particular may be able to find such a differing
ciphertext by inspecting the code. Again, it is not yet clear how exactly to use
white box tracing to achieve this goal.

1.2 Overview of Our Results

In this work, we give several new results for white box traitor tracing:

– In Sect. 3, we give definitions for privacy and consistency in the traitor tracing
setting. Formalizing the above observations, we show that it is impossible
to satisfy either privacy or consistency while simultaneously achieving the
tracing guarantee with a public black box tracing algorithm.

– In Sect. 5, we construct a secure white box public tracing system that also
satisfies our privacy notion. Our construction can be based on either generic
public key encryption and non-interactive zero knowledge, or on indistin-
guishability obfuscation (iO), with different trade-offs in terms of collusion
resistance and parameter sizes. This scheme is not consistent.

– We do not fully solve the consistency problem, but in Sect. 6 we demon-
strate a white box traitor tracing scheme that achieves the tracing guarantee
for constant-sized collusions, while also achieving consistency and privacy
(both for arbitrary collusions). Our scheme uses fully homomorphic encryp-
tion, compute-and-compare obfuscation, and non-interactive zero knowledge,
which are all implied by circularly secure Learning With Errors (LWE) or iO.

Along the way, we introduce and build a notion of black box function privacy
for functional encryption (Sect. 4), which may be of independent interest.

3 Of course, MPC security already implies that outsiders will be unable to learn any-
thing about the users’ inputs even without encrypting. But perhaps the users are
encrypting messages for other reasons.

4 There are MPC protocols that do not need broadcast channels, but they often come
at the cost of increased round complexity (see [CGZ20] and references therein).
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1.3 Future Directions

Our work motivates several fascinating future directions:

– We are able to construct consistent tracing only for constant-sized collu-
sions. Is arbitrary-collusion consistent tracing possible, potentially even under
extremely strong assumptions? Alternatively, is there an impossibility?

– Our constructions utilize heavy machinery, using non-black box techniques at
many levels. This leads our constructions to be inefficient. Can truly efficient
white box tracing be achieved?

– Traitor tracing can be seen as a special case of the more general problem
of software watermarking. To the best of our knowledge, all works in the
watermarking setting also use black box mark detection/extraction, and the
privacy and consistency issues naturally translate to watermarking. Can white
box techniques be used to overcome similar issues in watermarking?

– There is a large gap between known programs that can be watermarked
(e.g. puncturable PRFs [CHN+16]) and programs that are known to be
un-watermarkable (e.g. un-obfuscatable functions [BGI+01]). Can white box
mark detection/extraction be use to help close this gap?

– Chosen ciphertext attacks for traitor tracing has been considered before
(e.g. [DF03]), but to the best of our knowledge, prior such explorations have
been limited to message secrecy goals. Our work highlights further conse-
quences of CCA attacks. Are there other possible consequences?

2 Our Techniques

2.1 Part 1: Private Traitor Tracing

Definitions and impossibility. In Sect. 3.2, we give a formal model for privacy of
a user’s sensitive information under chosen ciphertext queries to their decryp-
tion functionality. We give several indistinguishability and simulation-based
definitions formalizing “learning nothing”; we show that the indistinguishabil-
ity notions are equivalent to the corresponding simulation-based notions. Our
strongest notion actually gives the adversary the full master secret key, mean-
ing privacy holds even if the master key is leaked. We also formalize the above
observations, showing that even the weakest versions of our privacy notion are
impossible for black box public tracing schemes. Our strongest notion of privacy
(where the adversary gets the master secret key) is even incompatible with black
box secret tracing.

Theorem 1 (Informal). Black box publicly traceable schemes cannot be pri-
vate.

Achieving privacy through white box tracing. In Sect. 5 turn to building a scheme
that can be publicly traced while maintaining privacy. Since black box tracing is
impossible, we must devise a tracing scheme that is inherently white box, in that
accessing the code of decoder allows for tracing while black box access cannot.
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The natural starting point are the un-obfuscatable functions (UOFs) of Barak
et al. [BGI+01], which can be learned from any code for the function, but not
from black box access. While UOFs are indeed closely related to our goal, they
do not immediately give what we need:

– UOFs are not necessarily decryption functions. While Barak et al. show how
to extend their UOFs to encryption functions, it is not obvious that they can
be extended to the decryption functionality.

– In Barak et al.’s UOF, the functionality of the encryption scheme is tied to
the UOF itself. In the traitor tracing system, we want many different users
to be able to decrypt the same ciphertext, hence seemingly all keys would
have the same UOF. But at the same time, the users should have different
sensitive information, seemingly requiring different UOFs.

– Barak et al.’s UOF does not handle the case of colluding users.
– Barak et al.’s UOF requires perfect or near-perfect correctness for the decoder.

While this can be extended to much lower correctness using robust un-
obfuscatable function [BP13], the current techniques do not extend to the
inverse-polynomial correctness setting, as usually required in traitor tracing.

Our idea is to use black box traitor tracing techniques, but set the embedded
information for a user to be a UOF in order to upgrade the black box scheme
into a white box scheme. However, this requires care. The naive approach is to
set the embedded information to be the actual code of the UOF, but this will
not work: the adversary can mount the black box tracing algorithm remotely to
recover the UOF code, and then recover the user’s private information from the
UOF code. We therefore need a more sophisticated embedding.

To describe our solution, we first recall the black box tracing scheme of
Nishimaki et al. [NWZ16], which follows the PLBE framework [BSW06]. Start
from a public key functional encryption (FE), which allows for generating secret
keys skf for functions g; skf allows for learning f(x) from an encryption of x, but
nothing else about x. Assume the identity space is [I], for some exponentially-
large integer I. Nishimaki et al. encrypt a message m by FE-encrypting the pair
(0,m). The secret key with identity id embedded is then skfid

where

fid(z,m) =

{
m if id > z

⊥ if id ≤ z
.

Notice that fid(0,m) = m, meaning skfid
will decrypt honest ciphertexts, while

fid(I,m) = ⊥. By FE security, given any decoder D built from skfid
and any

z, one can test if id > z by looking at the decoder’s decryption probability on
encryptions of (z,m). A binary search over z can then recover id; Nishimaki
et al. show how to extend the binary search to the case of colluding users and
to decoders with small decryption probability, as required for traitor tracing.

In order to embed a function into the secret key, rather than just a string,
we modify Nishimaki et al.’s construction as follows. To embed a function g, we
choose a random “tag” τ , and generate the function secret key skfg,τ

where
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fg,τ (z, x,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m if τ > z

⊥ if (τ < z) ∨ (τ = z ∧ x = ⊥)
m if τ = z ∧ x �= ⊥ ∧ g(x) = 1
⊥ if τ = z ∧ x �= ⊥ ∧ g(x) = 0

.

If we set x = ⊥, then skfg,τ
has the same structure as fid above with id = τ .

Therefore, we can first run a binary over z search to recover τ . Then we evaluate
g on an input x by testing the decoder on encryptions of (τ, x,m), and seeing
whether it is able to decrypt; if it can decrypt, we must have g(x) = 1, otherwise
g(x) = 0. The result is what we call function-embedded traitor tracing (FETT).

Remark 3. The structure above is similar to an optimization Nishimaki et al.
employ to get a scheme where ciphertexts are very short, in particular shorter
than the identity id. Essentially, they let g be the function with polynomial-
sized domain whose truth table is id. The structure was also used in [GKW19],
again with g being a truth table, with the goal of achieving efficient traitor
tracing under standard assumptions. Our use of this structure is with an entirely
different goal: to embedding functions in a non-trivial way into the secret keys.

With a FETT, we can now build our private traitor tracing scheme by setting
g to be an un-obfuscatable function UOFid, which has the identity id of the user
embedded. Given a decoder D, we can construct a program P that evaluates
UOFid by running the FETT tracing algorithm as described above. The un-
obfuscatable function guarantee means that from P , we can extract the identity
id. Meanwhile, the intuition for privacy is that a remote user can only make
black box queries to the user, corresponding to black box queries to UOFid; the
un-obfuscatable function guarantee means that such queries do not reveal id.
Realizing this intuition, however, comes with several challenges:

– Since tracing is randomized, the program P is a randomized procedure,
whereas the un-obfuscatable function guarantee of Barak et al. only applied
to deterministic circuits. One can make P deterministic by hard-coding the
randomness, but for any particular choice of randomness there may be some x
where P outputs the incorrect answer. Additionally, the original P may actu-
ally completely fail to evaluate UOFid correctly on some inputs, for example
if x is the master secret key. Fortunately, we show that P correctly com-
putes UOFid for inputs x that are efficiently computable to the adversary. We
show that the Barak et al. functions maintain the un-obfuscatable function
guarantee even for this relaxed notion of correctness for P 5.

– For a secure FE, black box queries to the secret key skf might still reveal
the code for f . If such an FE is used in our construction, the result is that a
remote adversary may be able to obtain the code for UOFid, and hence id. As
such, we actually need a function privacy notion for the FE scheme, which

5 Our needed notion is also implied by robust UOFs [BP13], but these are only known
from trapdoor permutations. Barak et al.’s construction relies on just one-way func-
tions, which are implied by FE.
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roughly requires that black box queries to skf are “no better than” black
box queries to f itself. This notion of function privacy is incompatible with
existing notions of privacy for public key functional encryption6. In Sect. 4, we
show a simple transformation upgrading any plain FE scheme into one with
our notion of function privacy using non-interactive zero knowledge (NIZK)
proofs.

Remark 4. Our “black box” function privacy notion may have applications
beyond this work. For example, consider a common-cited application of func-
tional encryption to filtering spam. Here, f is a spam filter employed by an email
server. A user wants the server to be able to route encrypted emails according to
the spam filter, but does not want the server to learn anything beyond whether
or not an email was spam. The solution is to give the server skf . But now sup-
pose that f is proprietary, and the server wants to prevent potential spammers
from learning too much about f7. A spammer can effectively query f by sending
spam to the user and seeing whether or not the user actually receives the email
(as indicated, say, by whether the user clicks on a link). Plain functional encryp-
tion, unfortunately, may allow the adversary to do more: the result of decrypting
malicious ciphertexts may reveal the bits of skf , or even the code of f . Black
box function privacy guarantees that the spammer is limited to just querying f
and learning the input/output behavior of f .

Instantiations. We can plug any FE scheme (and NIZK) into our construction.
Our conversions preserve the ciphertext sizes of the underlying FE. Using known
FE constructions, we obtain the following:

Theorem 2 (Informal). Assuming public key encryption and NIZKs, there
exists a traitor tracing scheme with public tracing, embedded identities, and pri-
vacy, with poly(N)-sized ciphertexts for collusions of size N . Assuming indistin-
guishability obfuscation and one-way functions, there exists such a scheme with
O(1)-sized ciphertexts.

2.2 Part 2: Toward Consistent Traitor Tracing

Next, we turn to the problem of making sure different users decrypt consistently.

Definition and impossibility. In Sect. 3.3, we define several variants of consis-
tency. The strongest requires that even if the master secret key is leaked, it is
impossible to find a ciphertext that decrypts differently under any two users.
This variant is quite strong, and we do not know how to achieve it. Instead we
also consider weaker variants. The variant we ultimately achieve requires that
a malicious user, or group of users, cannot find a ciphertext that would cause

6 Full function privacy, which in particular implies black box function privacy, is pos-
sible in the secret key setting for functional encryption [BS15].

7 To prevent the user himself from learning f , we can imagine skf is generated using
a multiparty computation protocol between the server and user.
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two honest users to decrypt differently. Note that our notion does allow a group
of malicious users to find ciphertexts that they decrypt differently (or that they
decrypt differently than the honest user(s)). We nevertheless believe our notion
is meaningful, as the consistency between honest users seems most important.
We formalize the above observations, showing that even the weakest versions of
our consistency notion are impossible for black box public tracing schemes. Our
strongest notion of consistency (where the adversary gets the master secret key)
is even incompatible with black box secret tracing schemes.

Theorem 3 (Informal). Black box publicly traceable schemes cannot be con-
sistent.

Challenges. We first observe that our private traitor tracing scheme is not con-
sistent, a consequence of the first step of our tracing algorithm being black
box. First, known UOFs for circuits are non-evasive, with the accepting inputs
depending on the function. With this fact, the black box tracing step can eas-
ily be used to find differing inputs. An even more basic reason is that tracing
recovers the tags τ , and keys with different tags have different functionalities.
For privacy, these are not concerning since the tags and non-evasive parts of the
UOFs are independent of the identifying information that must be kept secret.
For consistency, however, these issues mean it is easy to find differing inputs.
Even if one can find evasive UOFs for circuits, the tag problem will persist, as
secret keys must have distinct tags for collusion-resistance.

Our Construction. We are unable to fully solve the consistency problem. How-
ever, in Sect. 6 we achieve a solution which remains traceable with public tracing
for constant-sized collusions, and achieves consistency (and privacy) for arbitrary
collusions.

At a very high level, our idea is to restructure fg,τ to require a special key σ in
order to activate the functionality g. By keeping σ secret, we can guarantee that
differing inputs cannot be found. However, keeping σ secret means tracing is no
longer possible. To overcome this issue, we encrypt σ using a fully homomorphic
encryption (FHE) scheme. We can then run the tracing algorithm homomor-
phically on the encryption of σ, arriving at an encryption of the users’ sensitive
information. Of course, we now need a way to decrypt to recover the information
in the clear, without using the FHE decryption key (recall that we want public
tracing). We show that, by providing a certain compute-and-compare obfusca-
tion in the public key [WZ17,GKW17], we can allow for decrypting in exactly
the instance where tracing succeeds.

Unfortunately, the above is not consistent if the adversary has even a single
key. This is because any user with a secret key can run the tracing algorithm on
their key. It is not difficult to show that doing so will actually allow the user to
decrypt any FHE ciphertext—including recovering σ—bring us back to square
one. The natural solution is to have different σ and different FHE instances for
each user, so that a user can recover their own σ but no one else’s. But if the σ
are isolated in different instances, there is no way to simultaneously provide the
σ for different users when homomorphically running the tracing algorithm.
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Our solution is to provide a unique σ and FHE instance for each subset of
users; we set σ to simply be a signature on the (description of the) set. Of
course, there are exponentially-many such subsets, so we only consider subsets
of a constant size c to keep the number of subsets polynomial. Tracing then
runs homomorphically on every subset of tags, using the compute-and-compare
obfuscations to check if tracing succeeded, and if so recovering the sensitive
information of the users for that subset. We prove that, as long as at most c
users collude, at least one of the subsets will succeed during honest tracing.

Now, an adversary controlling a set S of secret keys will be able to run
tracing on any subset of S, and would be able to find the σ for that subset.
Using such σ would allow the adversary to find inputs that differ amongst the
keys they control. However, we show that the σ for any set not entirely contained
in S remains hidden. This is sufficient to show that the adversary cannot find
differing inputs for the honest users.

By instantiating our scheme with known FHE and compute-and-compare
obfuscations, we obtain the following:

Theorem 4 (Informal). Assuming circularly secure learning with errors, or
both sub-exponentially secure indistinguishability obfuscation and lossy encryp-
tion, for any constant c, there exists a traitor tracing scheme with public tracing,
embedded identities, and consistency, tolerating c collusions.

3 Traitor Tracing Definitions

Here, we define traitor tracing, including our new notions of privacy and consis-
tency. Our actual constructions will be given in Sects. 4, 5, and 6.

3.1 Basic Tracing Definition

We first recall the definition of (plain) traitor tracing appearing in recent
works [NWZ16,GKRW18,GKW18,Zha20]. A traitor tracing scheme is a tuple
ΠTT = (Gen,Enc,Derive,Dec,Trace) of PPT algorithms:8

(pk,msk) ← Gen(1λ, N) sk ← Derive(msk, id) m ← Dec(sk, c)

c ← Enc(pk,m) A ← Trace(pk,D,m0,m1, 1N , 11/ε) .

Above, λ is the security parameter, N an upper bound on the number of users,
pk the public key, msk the master secret key, id a user identity, sk a user-specific
secret key, m a message, and c a ciphertext, D the code of a decoder program,
m0,m1 two challenge messages, and ε ∈ (0, 1/2] a “goodness” parameter. We
require that there exists a negligible function negl such that for all λ > 0, N >
0, id,m:

Pr
[
Dec(skid, c) = m :

(pk,msk)←Gen(1λ,N)
skid←Derive(msk,id)

c←Enc(pk,m)

]
≥ 1 − negl(λ) .

Consider the following experiment on adversary A and parameter ε = ε(λ):
8 Note that N may be allowed to be super-polynomial.
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– A gets input 1λ, and produces a number N .
– Run (pk,msk) ← Gen(1λ, N). Send pk to A.
– A then makes at most N “identity” queries on identities id. For each query,

respond with skid ← Derive(msk, id). Let T be the set of id queried.
– A outputs D and m0,m1. Run A ← Trace(pk,D,m0,m1, 1|T |, 11/ε).

We define the following events. BadTrε(A, λ) means an honest user is accused:
A � T . GoodDecε(A, λ) means the decoder succeeds in distinguishing encryp-
tions of m0 and m1: Pr[D(c) = b : b ← {0, 1}, c ← Enc(pk,mb)] ≥ 1/2 + ε(λ). In
this case, we say D is “good.” GoodTrε(A, λ) means someone is accused: |A| > 0.

Definition 1. A traitor tracing scheme ΠTT is traceable if, for all PPT A and
inverse-poly ε, there exists a negligible function negl such that Pr[BadTrε(A, λ)] ≤
negl(λ) and Pr[GoodTrε(A, λ)] ≥ Pr[GoodDecε(A, λ)] − negl(λ).

We will occasionally distinguish between traitor tracing schemes where Trace has
full access to the code of D versus schemes where Trace only makes queries to
the decoder. We will say that a scheme where Trace has full access is white box
traceable, and a scheme where Trace only makes queries is black box traceable; for
the latter we write TraceD(pk,m0,m1, 1N , 11/ε). We note that most prior work
on traitor tracing explicitly defines tracing to be black box.

We will also consider traitor tracing with bounded collusions, where N is
bounded to some value c, which may be a function of λ. In this case, we say the
scheme is c-bounded collusion traceable (or c-traceable, for short).

Remark 5. The bulk of the tracing literature sets the identity space to be [N ].
Starting with Nishimaki et al. [NWZ16], some recent works have considered the
case where the identity space is exponentially large, say n-bit strings. These
works often use terminology such as “embedded identities” [GKW19] to disam-
biguate from the usual setting. In this work, we will largely ignore such distinc-
tions.

3.2 Private Traitor Tracing

We now give our new definition of privacy in traitor tracing. Let A be an adver-
sary, and consider the following experiment:

– A gets input 1λ, and produces a number N .
– Run (pk,msk) ← Gen(1λ, N), and send pk to A. A can now make two kinds

of queries, in any order:
• At most N “identity” queries on identities id; respond with sk ←

Derive(msk, id).
• A single “challenge” query on two identities id∗

0, id
∗
1. Choose a random bit

b ∈ {0, 1} and compute sk∗ ← Derive(msk, id∗
b); There is no reply.

– After the challenge query is made, A can additionally make arbitrary “cipher-
text” queries on ciphertexts c. Respond with Dec(skid∗

b
, c).

– Finally, A outputs a guess b′ for b.
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Definition 2. A traitor tracing scheme Π is indistinguishably private (IND-P)
if, for all PPT adversaries A, there exists a negligible function negl such that
Pr[b′ = b] ≤ 1/2 + negl(λ).

Note that our definition allows for id∗
b to also be asked during identity queries.

We can also consider some variations on the above notion:

– We can limit N to be at most some value c (which may depend on λ). We
say such a scheme is c-bounded collusion indistinguishably private (c-IND-P).

– Alternatively, we can imagine giving A the master secret key msk in the clear
at the beginning of the experiment. In this case, we note that identity queries
are redundant, as the adversary can now run Derive for himself. This setting
captures the case where the master secret key may unintentionally be leaked,
or alternatively where the key distributor is initially honest but later becomes
corrupted. In this case, we say the scheme is leaked master indistinguishably
private (LM-IND-P).

Simulation-based notions. We can also define simulation-based notions of pri-
vacy for traitor tracing, which require that the responses to ciphertext queries
can be simulated without knowing the identity. More precisely, we consider two
experiments, called the “Real world” and the “Ideal world”. The “Real world”
is identical to the experiment above, except that the challenge query consists of
a single identity id∗ and sk∗ ← Derive(msk, id∗). In the “Ideal world”, the exper-
iment is the same, except that sk∗ is never computed, and ciphertext queries on
ciphertext c are answered by a simulator S(msk, c, r) that does not know id∗.
Here, r is some randomness that is chosen at the beginning of the experiment,
and used for every ciphertext query. Let WR,WI be the probabilities A outputs
1 in the Real/Ideal world, respectively.

Definition 3. A traitor tracing scheme Π is simulation private (SIM-P) if there
exists a simulator S such that, for all PPT adversaries A, there exists a negligible
function negl such that |Pr[WR = 1] − Pr[WI = 1]| ≤ negl(λ).

We can define c-SIM-P and LM-SIM-P analogously. Note that we always give S
the master secret key msk; this is in some sense necessary, since S somehow must
be able to decrypt ciphertexts in order to simulate.

It is easy to show that the indistinguishability and corresponding simulation
notions are equivalent, by having S simply compute sk for an arbitrary id, and
answer all decryption queries with sk. Thus we have that:

Lemma 1. A traitor tracing schemeΠ is IND-P(respectively c-IND-P/LM-IND-P)
if and only if it is SIM-P(resp. c-SIM-P/LM-SIM-P).

Impossibility of Black Box Traceable Private Traitor Tracing. Here, we show
that black box traceable private traitor tracing is impossible:

Theorem 1. If Π is black box 1-traceable9, then it is not even 0-IND-P.
9 Recall that c-traceable means the adversary gets ≤ c secret keys.
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Proof. Let A be the following adversary for privacy: on input pk,msk, it outputs
two random (distinct) identities id∗

0, id
∗
1. It also chooses two random distinct

messages m0,m1. Let ε = 1/2. A runs A ← TraceDec(pk,m0,m1, 11, 11/ε), where
Dec uses A’s decryption oracle to decrypt ciphertexts c to get m, and then
outputs 1 if and only if m = m1. If A contains exactly one of id∗

b , output b;
otherwise output a random bit. By the correctness of Π, with probability 1−negl,
D is a “good” decoder and so GoodDecε(A, λ) happens. As D only depends on the
single secret key skid∗

b
, 1-traceability means A = {id∗

b} with probability 1 − negl.
As such, A will output b with probability 1 − negl, breaking 0-IND-P. 
�

3.3 Consistent Traitor Tracing

In this section, we give our new definition of consistency for traitor tracing. Let
A be an adversary, and consider the following experiment:

– A gets input 1λ, and produces a number N .
– Run (pk,msk) ← Gen(1λ, N), and send pk to A. A can now make two kinds

of queries, in any order:
• At most N “identity” queries on identities id; respond with sk ←

Derive(msk, id). Let T be the set of id queried.
• A single “challenge” query on two identities id∗

0, id
∗
1. Compute sk∗

b ←
Derive(msk, id∗

b) for b = 0, 1; there is no reply.
Throughout the experiment, we require id∗

0, id
∗
1 /∈ T , or else we immediately

abort and set the output of the experiment to Lose.
– After the challenge query is made, A can additionally make arbitrary “cipher-

text” queries on ciphertexts c. For such queries, compute mb = Dec(skid∗
b
, c)

for b = 0, 1. If m0 = m1, respond with m0. Otherwise, immediately abort and
set the output of the experiment to Win

– At the end of the experiment, if no abort happened, output Lose.

Definition 4. A traitor tracing scheme Π is weakly consistent (W-CONSIS)
if, for all PPT adversaries A, there exists a negligible function negl such that
Pr[Win] ≤ negl(λ).

Note that we can consider numerous variants of consistency:

– We can bound N by c, in which case Π is c-bounded collusion weakly consistent
(c-W-CONSIS).

– We can give A the master secret key msk, in which case we say that Π
is leaked master weakly consistent (LM-W-CONSIS). Note that in this case,
identity queries are redundant.

– Instead of having separate challenge and ciphertext queries, we can simply ask
the adversary to produce a ciphertext that results in different decryption out-
comes among the secret keys controlled by the adversary. In other words, the
adversary cannot find a differing input amongst his secret keys, even though
he has them in the clear. In this case, we say that Π is strongly consistent
(S-CONSIS). Bounded collusion strong consistency and leaked master strong
consistency are defined similarly.
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Relation to Privacy. Here, we discuss the relationship between privacy and con-
sistency. We observe that consistency actually implies privacy: if the adversary
cannot find a ciphertext on which two secret keys decrypt differently, then any-
thing it can learn by querying the secret key must be independent of the iden-
tifying information. This is formalized by the following:

Theorem 5. If Π is W-CONSIS (respectively LM-W-CONSIS or c-W-CONSIS),
then it is also IND-P (resp. LM-IND-P, c-IND-P).

Proof. We prove the case W-CONSIS ⇒ IND-P, the other cases being proved
similarly. Let A be an adversary for IND-P; we use A to construct an adversary
A′ for W-CONSIS. A′ runs A, answering all queries by forwarding all queries to
its own challenger. Notice that A′ perfectly simulates the view of A, up until
A makes a ciphertext query where the secret keys sk∗

0, sk
∗
1 result in different

outcomes. But in this case, A′ will forward the query and win.
Suppose that A′ does not win. Conditioned on this case, A learns nothing

about b since its queries would be answered identically with both sk∗
0, sk

∗
1. As

such, the probability A wins is exactly 1/2. Overall, if A′ wins with probability
ε, A wins with probability at most 1/2 + ε. By the assumed W-CONSIS security,
ε must be negligible. We conclude that IND-P holds. 
�
As an immediate corollary of Theorem 5, we have:

Corollary 1. If Π is black box 1-traceable, then it is not even 0-W-CONSIS.

4 Functional Encryption and Black Box Privacy

In this section, we discuss functional encryption and introduce a new notion
of privacy called black box function privacy. A functional encryption scheme is
tuple ΠFE = (Gen,Enc,Derive,Dec) of PPT algorithms:

(pk,msk) ← Gen(1λ, N) c ← Enc(pk,m)
skf ← Derive(msk, f) o ← Dec(skf , c) .

Above, λ is the security parameter, N an upper bound on the number of users,
pk the public key, msk the master secret key, f a function, skf a function-specific
secret key, m a message, c a ciphertext, and o an output. We require that Dec
recovers f(m): there exists a negligible negl such that for all λ > 0, N, f,m:

Pr
[
Dec(skf , f, c) = f(m) :

(pk,msk)←Gen(1λ,N)
skf ←Derive(msk,f)

c←Enc(pk,m)

]
≥ 1 − negl(λ) .

If the probability above is identically 1, we say the scheme is perfectly correct.
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Ciphertext Indistinguishability. We now recall the “usual” definition of security
for functional encryption [BSW10,O’N10], which we will call ciphertext indistin-
guishability. Consider the following experiment on an adversary A:

– A gets input 1λ, and produces a number N .
– Run (pk,msk) ← Gen(1λ, N) and send pk to A. A can now make two kinds

of queries, in any order:
• Up to N “function” queries on functions f ; Return skf ← Derive(msk, f).
• A single “challenge” query on a pair of messages m0,m1. Choose a random

bit b ∈ {0, 1} and reply with Enc(pk,mb).
The only restriction on m0,m1 and the various f is that f(m0) = f(m1).

– Finally, A outputs a guess b′ for b.

Definition 5. ΠFE is adaptively ciphertext indistinguishable (IND-C) if for all
A, there exists a negligible negl such that Pr[b′ = b] ≤ 1/2 + negl(λ).

We also consider a c-bounded collusion (c-IND-C) version where N ≤ c = c(λ).

Known Results. Indistinguishability obfuscation (plus one-way functions) implies
functional encryption with adaptive ciphertext indistinguishability [Wat14,
ABSV15]. Public key encryption implies c-bounded collusion functional encryp-
tion for any polynomial c, where the parameters of the system grows polynomially
in c [GVW12]. These schemes are perfectly correct.

4.1 Black Box Function Privacy

We now consider the privacy of f . Function privacy has been considered before
(e.g. [BS15,AAB+13]), however it has always previously tried to keep f private
even given skf . Note that for public key functional encryption, we can always
construct from skf a circuit Cf (x) = Dec(skf ,Enc(pk, x)) which computes f .
Here, we consider a stronger notion of privacy, but in a weaker threat model.
We do not care about hiding f from the user who holds skf ; instead, we want to
hide f from other remote users mounting a chosen ciphertext attack against the
holder of skf . Now, an adversary can query f(x) by querying skf on Enc(pk, x).
By Barak et al.’s impossibility result [BGI+01], such queries may reveal less
than the actual code Cf , allowing for stronger privacy in the black box model.

Our Definition. Our formalization black box function privacy uses the Real/Ideal
paradigm. Let f∗ be a function and consider the following “Real” experiment
BB-FP-Expf∗

Real(A, λ) between an adversary A and a challenger:

– A gets input 1λ, and produces a number N .
– Run (pk,msk) ← Gen(1λ, N) and send pk and msk to A. Run sk∗ ←

Derive(msk, f∗); sk∗ is kept secret.
– A can now make an arbitrary number of “ciphertext” queries, where it pro-

duces a ciphertext c. In response, it gets Dec(sk∗, c).
– Finally, A outputs a bit b, which is the output of the experiment.
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Also consider the “Ideal” experiment BB-FP-Expf∗
Ideal(S, λ) for a “simulator” S.

The Ideal experiment is identical to the Real experiment, except “ciphertext”
queries are replaced with “function” queries, where S sends x and receives f∗(x),
and sk∗ is never generated. Note that by giving A, S the master secret key, A
and S can always compute function secret keys on its own.

Definition 6. A functional encryption scheme ΠFE is black box function private
(BB-FP) if, for every PPT A, there exists a PPT simulator S and a negligible
negl such that, for every function f∗,∣∣∣Pr[1 ← BB-FP-Expf∗

Real(A, λ)] − Pr[1 ← BB-FP-Expf∗
Ideal(S, λ)]

∣∣∣ < negl(λ).

4.2 Upgrading to Black Box Function Privacy

In the full version [Zha21], we show the following:

Theorem 6. Assuming the existence of NIZKs and a functional encryption
scheme that is both perfectly correct and IND-C (resp. c-IND-C), then there exists
a functional encryption scheme that is perfectly correct, IND-C (resp. c-IND-C)
and BB-FP.

The proof idea is simple: the simulator runs the adversary, decrypting any cipher-
text query it receives to learn the input x, which it then sends as a function query.
To decrypt, the simulator obtains the secret key for the identity function by using
the master secret key. The potential problem is that the adversary may try to
devise a ciphertext which decrypts inconsistently under the identity secret key vs
the secret key for the function f∗. To overcome this problem, we include a zero-
knowledge proof of well-formedness, which combined with (perfect) correctness
guarantees that decryption will be consistent.

5 Constructing Private Traitor Tracing

In this section, we give our private traitor tracing scheme with whitebox tracing.
Our construction will consist of two pieces: we first build a function-embedded
traitor tracing scheme, which allows for embedding functions, rather than iden-
tities. We then embed un-obfuscatable functions into the scheme. The result
allows for tracing, while maintaining privacy.

5.1 Function-Embedded Traitor Tracing (FETT)

Here, we introduce and construct function-embedded traitor tracing (FETT). The
rough idea of a FETT is that user secret keys have functions embedded in them,
rather than just data. The tracing algorithm will take as an additional input x,
and will output the embedded function f evaluated on x. While our ultimate
goal is to construct a white box tracing scheme, this part of our construction
will actually leverage prior techniques and will therefore be black box.
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We will require a notion of black box function privacy analogous to functional
encryption, where having oracle access to the decryption function of a secret
key with f embedded is “no better than” having black box access to f itself.
Black box function privacy implies that we cannot simply use identity-embedded
traitor tracing (e.g. [NWZ16]) where we set the identity to be some (perhaps
obfuscated) code of f . Indeed, in such a solution tracing would recover the code
of f . Looking forward to our private tracing construction, black box function
privacy allows us to embed an un-obfusctatable function (UOF), and use the
inability to learn the UOF under black box queries to argue privacy.

In order to formalize our notion of tracing, we actually break tracing into
two steps that we call FindTags and Eval. The first step, FindTags, extracts from
a decoder a list of “tags” that were used in generating the user secret keys. The
tracing guarantee insists that the recovered tags correspond to users controlled
by the adversary. We note that these tags are independent of the function f . We
then have a second step, Eval, which takes as input a tag and an input x, and
computes f(x), where f is the function embedded in the secret key associated
with the given tag.

In the case of colluding users, these tags allow for disambiguating between
the functions controlled by the adversary, both in the construction and also in
the definition. We now give the full definition: a FETT is a tuple ΠFETT where:

(pk,msk) ← Gen(1λ, N) sk ← Derive(msk, f, τ)

c ← Enc(pk,m) A ← FindTagsD(pk,m0,m1, 1N , 11/ε)

m ← Dec(sk, c) o ← EvalD(pk,m0,m1, 1N , 11/ε, τ, x) .

Above, λ, pk,msk, sk,m, c,D,m0,m1, N, ε are the same as in plain traitor tracing.
τ is a tag from set Γ and x is an input. Correctness is similar to standard traitor
tracing: there exists a negligible function negl such that for all λ > 0, N, f,m:

Pr

[
Dec(sk, c) = m :

(pk,msk)←Gen(1λ,N)
τ←Γ

sk←Derive(msk,f,τ)
c←Enc(pk,m)

]
≥ 1 − negl(λ) .

Consider the following experiment on adversary A and parameter ε = ε(λ):

– A gets input 1λ, and produces a number N .
– Run (pk,msk) ← Gen(1λ, N). Send pk to A.
– A then makes an arbitrary number of queries on functions fi. For each query,

respond with sk ← Derive(msk, τi), where τi ← Γ is chosen randomly. Let T
be the set of τi generated.

– A produces a decoder D, two messages m0,m1, and an input x∗.
– Run A ← FindTagsD(pk,m0,m1, 1|T |, 11/ε).
– Additionally, let yi = fi(x∗) and y′

i ← EvalD(pk,m0,m1, 1|T |, 11/ε, τi, x
∗) for

each i such that τi ∈ A.

We define the following events. BadTrε(A, λ),GoodDecε(A, λ),GoodTrε(A, λ) are
as before: BadTr means A � T , GoodDec means Pr[D(Enc(pk,mb)) = b] ≥
1/2 + ε(λ), and GoodTr means |A| > 0. Finally, Incorrectε(A, λ) means yi �= y′

i

for some i such that τi ∈ A.
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Definition 7. ΠFETT is traceable if, for all PPT A and inverse-poly
ε, there exists a negligible negl such that Pr[BadTrε(A, λ)] ≤ negl(λ),
Pr[GoodTrε(A, λ)] ≥ Pr[GoodDecε(A, λ)] − negl(λ), and Pr[Incorrectε(A, λ)] ≤
negl(λ).

Note that the first two inequalities correspond to the standard tracing guar-
antee, with the τi playing the role of identities. The final inequality corresponds
to the requirement that the function computed by Eval matches the function
embedded in the secret key, at least on inputs computable by the adversary.

We also need a notion of black box function privacy for traitor tracing. The
definition is syntactically identical to that of black box function privacy, and
so we omit the formal definition. However, we note that the function f plays a
different role in functional encryption vs traitor tracing: in functional encryption,
the secret key for a function f recovers f(m). In function-embedded traitor
tracing, the secret key for a function f recovers m entirely. Yet in both cases it
is possible to query f on arbitrary inputs, either through encryption or through
tracing. Black box function privacy in both cases means, essentially, that you
cannot do better than black box queries.

5.2 From BB Private FE to FETTs

We now show how to use functional encryption with black box function privacy to
build function-embedded traitor tracing. Our construction is an adaptation of a
construction from Nishimaki et al. [NWZ16]. Specifically, they give a variant of
their main construction which achieves short ciphertexts, despite having secret
keys with large embedded identities. In this work, we do not focus on the sizes
of parameters, but the general structure of their construction will be useful for us.

Construction 1. Let ΠFE = (GenFE,EncFE,DeriveFE,DecFE) be a functional
encryption scheme. We will assume without loss of generality that all functions
considered output a single bit; we can convert any long-output function into a
single-bit function by providing an additional input which selects the desired out-
put bit. Let ΠFETT = (GenFETT,EncFETT,DeriveFETT,DecFETT,FindTags,Eval) be
the following traitor tracing scheme:

– GenFETT = GenFE.
– EncFETT(pk,m) = EncFE(pk, (0,⊥,m) ).
– DeriveFETT(pk, g, τ) = DeriveFE(pk, fg,τ ) where τ ← [2λ] and

fg,τ (z, x,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m if τ > z

⊥ if (τ < z) ∨ (τ = z ∧ x = ⊥)
m if τ = z ∧ x �= ⊥ ∧ g(x) = 1
⊥ if τ = z ∧ x �= ⊥ ∧ g(x) = 0

.

Note that z is allowed to range from 0 to 2λ, and x comes from the domain
of g, or x can be the special symbol ⊥.

– DecFETT(sk, c) = DecFE(sk, c).
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Before describing tracing in detail, we first give an intuition for the above
construction. Under normal operation, z = 0 and x = ⊥, meaning that fτ,g

outputs m. Therefore, the scheme is correct. We also note that black box function
privacy of ΠFETT follows immediately from the black box function privacy of ΠFE.

For tracing, FindTags runs the oracle jump-finding algorithm of Nishimaki
et al. [NWZ16], essentially performing a binary search to find a list of τ ; each τ
value has the property that there is a significant “jump” in decryption probability
between z = τ and z = τ − 1. In this part, x = ⊥, and so the function g is never
used. Then Eval will set x to be the desired input and z = τ , and see which
side of the jump the decryption probability is closer to. Functional encryption
security implies that the decoder cannot tell whether the ciphertext contains
(τ − g(x),⊥,m) or (τ, x,m) (since both cases decrypt identically), and as a
result the decryption probability in Eval will indicate the value of g(x).

FindTagsD(pk,m0,m1, 1|T |, 11/ε). Our FindTags algorithm is essentially the trac-
ing algorithm of Nishimaki et al. [NWZ16]. Consider x = ⊥; then fg,τ (z,⊥,m) is
m if τ > z and is ⊥ if τ ≤ z. As such, we can write fτ (z,m) = fg,τ (z,⊥,m), which
is independent of g. Thus, by setting Enc(pk, (z,m)) = EncFE(pk, (z, x = ⊥,m)),
we obtain a private linear broadcast encryption scheme (PLBE) [BSW06] with
the tags τ as the indices. Nishimaki et al. show how to trace such a scheme in
the case that the tag space is super-polynomial; due to lack of space, we defer
the details to the Full Version [Zha21], and paraphrase their main result. We
will call their tracing algorithm FindTags. Let p(τ) = Pr[D(EncFE(τ,⊥,mb)) =
b : b ← {0, 1}].

Theorem 7 ([NWZ16]). There exists a PPT FindTagsD(pk,m0,m1, 1|T |, 11/ε)
and inverse polynomial δ = δ(ε, |T |, λ) such that, for all PPT adversaries A and
all inverse-polynomials ε, there exists a negligible function negl such that

– Pr[BadTrε(A, λ)] ≤ negl(λ),
– Pr[GoodTrε(A, λ)] ≥ Pr[GoodDecε(A, λ)] − negl(λ),
– Except with probability negl(λ), |p(τ) − p(τ − 1)| ≥ 4δ for all τ ∈ A.

EvalD(aux, τ, x). Define q(τ, x) = Pr[D(EncFE(τ, x,mb)) = b : b ← {0, 1}].
Eval will compute estimates p̂(τ), p̂(τ − 1), q̂(τ, x) of p(τ), p(τ − 1), q(τ, x) by
making O(λ/δ2) queries to D on ciphertexts with plaintext (τ,⊥,mb), (τ − 1,
⊥,mb), (τ, x,mb), respectively. The result is:

Lemma 2. Except with negligible probability in λ, |p̂(τ)−p(τ)|, |p̂(τ −1)−p(τ −
1)|, and |q̂(τ, x) − q(τ, x)| are < δ.

Now, notice that the τi are all distinct with overwhelming probability, and
that fg,τ (τ, x,m) = fg,τ (τ−g(x),⊥,m), while fg,τ ′(τ, x,m) for τ ′ �= τ is indepen-
dent of g. Therefore, by ciphertext indistinguishability, encryptions of (τi, x,m)
are indistinguishable from encryptions of (τi − gi(x),⊥,m), for any x that can
be produced by the adversary. As a result, |q(τi, x) − p(τi − f(x))| < negl(λ).
Thus, |q̂(τi, x) − p̂(τi − f(x))| < 2δ, while |q̂(τi, x) − p̂(τi − (¬f(x)))| > 2δ.
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Therefore, Eval outputs b such that q̂(τi, x) is closer to p̂(τi − b) than to
p̂(τi − (¬b)). By the above, we have that Pr[Incorrectε(A, λ)] ≤ negl(λ).

Putting everything together, we have the following theorem:

Theorem 8. If ΠFE is IND-C, then ΠFETT is traceable. If ΠFE is black box func-
tion private, then so is ΠFETT.

5.3 Un-Obfuscatable Functions (UOFs)

We will make use of un-obfuscatable functions (UOFs). These were originally
constructed by Barak et al. [BGI+01]. Here, we define a variant which differs in
a few key ways from that of Barak et al.:

– We allow for embedding messages into the program.
– We only require that the embedded message can be reconstructed from the

program code, whereas Barak et al. reconstruct the entire function.
– For technical reasons, we must allow the obfuscated code to be randomized

and have differing inputs from the original code. We instead require, essen-
tially, that as long as differing inputs are hard to find, it is possible to learn
the embedded message.

More formally, an un-obfuscatable function ΠUOF = (Sample,Extract,Diff) is a
tuple of PPT algorithms:

f ← Sample(1λ,m; r) m ← Extract(f ′) x ← Diff(f ′, r,m, 11/ε) .

Above, m is a message, r the random coins for Sample, f ′ a probabilistic cir-
cuit, and ε a parameter. We require two security properties. First is black box
unlearnability, where we require that it is impossible to learn anything about m
with just black box access to f . Concretely, consider the following experiment
on an adversary A:

– A, on input the security parameter 1λ, produces two messages m0,m1. Choose
a random bit b and compute f ← Sample(1λ,mb).

– A now can now make arbitrary queries to f .
– Finally, A produces a guess b′ for b.

We say that ΠUOF is black box unlearnable if, for any PPT adversary A, there
exists a negligible negl such that Pr[b′ = b] < 1/2 + negl(λ).

The second security requirement is reverse engineerability, where we require
that m can be learned given any code f ′ computing m. For technical reasons, we
need to allow f ′ to be randomized and also have some differing inputs from f .
But if m cannot be learned, then it must be possible to actually compute such
differing inputs. In more detail, consider the following experiment on adversary
A and parameter ε:

– A, on input the security parameter 1λ, produces a message m. Reply with
f ← Sample(1λ,m; r) for random coins r.

– A then outputs f ′. Run m′ ← Extract(f ′) and x ← Diff(f ′, r,m, 11/ε).
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Let Goodfuncδ(A, λ) be the event that Pr[f ′(x) �= f(x)] < δ(λ) where the prob-
ability in Pr is over the random coins of f ′. Let BadExtrε(A, λ) be the event that
f ′ satisfies Pr[Extract(f ′) �= m] ≥ ε(λ), where the probability in Pr is over the
random coins on Extract. We say that ΠUOF is reverse engineerable if, for every
PPT A and inverse polynomial ε, there exists a inverse polynomial δ and negli-
gible negl such that Pr[BadExtrε(A, λ) ∧ Goodfuncδ(A, λ)] < negl(λ). Note that
in Barak et al.’s notion, f ′ and f are required to compute identical functions,
Goodfunc is always guaranteed to happen and there is no need to consider Diff.

Definition 8. An un-obfuscatable function ΠUOF is secure if it is black box
unlearnable and reverse engineerable.

Barak et al.’s construction. In the Full Version [Zha21], we recall Barak et al.’s
construction of an unobfuscatable function, and show that it satisfies our def-
inition; in particular, we show an algorithm Extract which extracts a differing
input from any program where extraction fails. The result is the following:

Theorem 9. Assuming one-way functions, there exists a secure un-obfuscatable
function.

5.4 Our Private Traitor Tracing Scheme

We now turn to our private tracing scheme.

Construction 2. Let ΠFETT = (Gen,Enc,DeriveFETT,Dec,FindTags,Eval) be a
FETT and ΠUOF = (Sample,Extract,Diff) a UOF. Define the new traitor tracing
scheme Π = (Gen,Enc,Derive,Dec,Trace) where

– Derive(msk, id) : Return sk ← DeriveFETT(msk, Sample(1λ, id) ).
– Trace(pk,D,m0,m1, 1N , 11/ε): Produce A ← FindTagsD(pk,m0,m1, 1N , 11/ε).

Then, for each τi ∈ A, run idi ← Extract(Pi) where Pi is the (randomized)
program x 
→ EvalD(pk,m0,m1, 1N , 11/ε, τi, x). Output {idi : τi ∈ A}.

The correctness of Π is immediate. We now discuss security:

Theorem 10. If ΠFETT is traceable and black box function private and if ΠUOF

is secure, then Π is traceable and leaked master indistinguishably private.

Proof. First, we consider privacy. By black box function privacy, the view of a
privacy adversary can be simulated by making black box queries to the functions
f . But by the black box unlearnability of ΠUOF, such queries reveal nothing about
the identities. Thus, privacy follows.

We now consider tracing. Let A be a tracing adversary for Π. We construct
a new adversary A′ for ΠFETT. A′ simulates A. For each secret key query on
identity idi, A′ runs fi ← Sample(1λ, idi; ri) with fresh randomness ri and makes
a secret key query on fi, which it forwards to A. A′ thus perfectly simulates the
view of A. Now, once A produces a decoder D, A′ outputs D. Additionally, A′

runs the (public) algorithm FindTags on D to collect a set A′ of tags τi. Next,
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A′ matches the τi to the ri, idi, and constructs the programs Pi as in Trace. It
then runs xi ← Diff(Pi, ri, idi, 11/ε′

) for an ε′ to be specified later. It outputs D
and sets x∗ to be a random choice amongst the xi.

Consider running Trace on D, and let A be the set of τi recovered by FindTags
when run as a part of Trace. By the tracing security of ΠFETT, we know that,
except with negligible probability, FindTags correctly outputs a subset of the
tags τi generated during the adversary’s identity queries. It remains to show
that Trace correctly recovers the corresponding idi. Let p be the probability that
A is indeed a subset of the correct τi, but for some i∗, the recovered identity
id′

i∗ := Extract(Pi∗) is such that id′
i∗ �= idi∗ . We must show that p is negligible.

Suppose toward contradiction p is non-negligible, and let ε′ be a polynomial
which lower bounds (p/N)2 infinitely often; note that p is determined entirely
by A, ε, meaning we can set ε′ freely.

Suppose we choose i∗ at random from A; then with probability at least p/N ,
we will have that id′

i∗ �= idi∗ . Note also that, once A outputs the decoder D, A
and the A′ generated by A′ are two samples from identical distributions. As a
consequence, with probability at least (p/N)2 ≥ ε′, the x∗ produced by A′ is
equal to xi∗ and id′

i∗ �= idi∗ . Moreover, the Pi∗ constructed by A′ is identical
to the Pi∗ constructed inside Trace. Therefore, by the reverse engineerability
of ΠUOF, we must have that x∗ is a differing input: there exists a δ such that
Pr[Pi∗(x∗) �= f(x∗)] ≥ δ. This implies that, in the FETT experiment, yi∗ :=
fi∗(x∗) and y′

i∗ := Pi∗(x∗) differ with non-negligible probability. In other words,
Pr[Incorrectε(A′, λ)] is non-negligible, contradicting the security of ΠFETT. 
�

6 Toward Consistent Traitor Tracing

Here, we give our construction of consistent traitor tracing. We first recall some
additional definitions.

Fully Homomorphic Encryption. Fully homomorphic encryption (FHE) can be
built from circularly-secure variants of LWE [Gen09,GSW13], or from sub-
exponentially secure iO and “lossy” encryption [CLTV15]. An FHE scheme is
a tuple ΠFHE = (Gen,Enc,Dec,Eval) where (Gen,Enc,Dec) form a public key
encryption scheme. Additionally, Eval(c, f) takes as input a ciphertext and a
circuit f , with the property that, for every polynomial poly, there exists a neg-
ligible function such that, for every λ > 0, x and f such that |f | ≤ poly(λ):

Pr
[
Dec(sk, Eval(c, f) ) = f(x) : (pk,sk)←Gen(1λ)

c←Enc(pk,x)

]
≥ 1 − negl(λ) .

Compute and Compare Obfuscation. Compute and compare obfuscation can be
built from LWE [GKW17,WZ17], or seen as a special case of iO. It consists of a
PPT algorithm CCObf(C, β) which takes as input a circuit C : {0, 1}n → {0, 1}λ,
and a value β ∈ {0, 1}λ. It outputs a circuit C ′ : {0, 1}n → {0, 1} such that:
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– Correctness: C ′(x) = 1 if C(x) = β, and C ′(x) = 0 otherwise.
– Security: There exists an algorithm Sim with the following guarantee. For any

C, let β be chosen uniformly from {0, 1}λ. Then for any PPT A, there exists
a negligible negl such that∣∣∣Pr[A(CCObf(C, β)) = 1] − Pr[A(Sim(1|C|, 1n, 1λ)) = 1]

∣∣∣ < negl(λ) .

In other words, if β is uniform, then C ′ reveals nothing about C, β.

6.1 The Construction

Construction 3. Fix a constant c. Let ΠFHE = (GenFHE,EncFHE,DecFHE,
EvalFHE) be a fully homomorphic encryption scheme, ΠFE = (GenFE,EncFE,
DeriveFE,DecFE) a functional encryption scheme, ΠSig = (GenSig,Sign,Ver) a
signature scheme, F a PRF, and CCObf a compute and compare obfuscation
scheme. Define the traitor tracing scheme Π = (Gen,Enc,Derive,Dec,Trace) as
follows:

– Gen(1λ, N): run (pkFE,mskFE) ← GenFE(1λ, N). Also run (pkSig, skSig) ←
GenSig(1λ). For each i ∈ [N ], choose a random key ki ← {0, 1}λ. Then,
for every S ⊆ [N ] such that |S| ≤ c, let σS ← Sign(skSig, S), run
(pkS , skS) ← GenFHE(1λ), cS ← EncFHE(pkS , σS), βS ← ⊕i∈SF(ki, S) and
finally PS ← CCObf(DecFHE(skS , ·), βS). Output pk = (pkFE, (pkS , cS , PS)S)
and msk = (mskFE, (ki)i∈[N ], ctr = 0).

– Enc(pk,m) = EncFE(pkFE, (⊥,⊥,⊥,⊥,m) )
– Derive(msk, id): Run sk ← DeriveFETT(mskFE, hid,i) where i = ctr and

hid,i(S, σ, j, x,m) =

{
m if Ver(pkSig, S, σ) = 0 ∨ i ∈ S \ {j}
gid,i(S, j, x,m) if Ver(pkSig, S, σ) = 1 ∧ i /∈ S \ {j} ,

gid,i(S, j, x,m) =

⎧⎪⎨
⎪⎩

⊥ if i �= j ∨ x = ⊥
m if i = j ∧ fid,i(S, x) = 1
⊥ if i = j ∧ fid,i(S, x) = 0

, and

fid,i(S, x = (b, u)) =

{
F(ki, S)u if b = 0
idu if b = 1

.

Also increment ctr within msk. Here, F(ki, S)u is the uth bit of F(ki, S).

We note that our construction requires a stateful Gen, which keeps a counter.
This is to ensure that the tags used for different users are unique. An alternative,
similar to what was done in [GKW19], would be to have Derive take the tag as
an explicit input, and assume some external mechanism to ensure distinct tags.

Before formally giving the tracing algorithm and proving security, we discuss
the intuition behind the above construction. Consider encryptions of plaintexts
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(S, σS ,⊥,⊥,m). Since gid,i(S,⊥,⊥,m) = ⊥, such ciphertexts can be decrypted
by users with indices i ∈ S, but cannot be decrypted by i /∈ S. Let p(S) be the
probability a decoder decrypts such ciphertexts.

For any good decoder, we must have p([N ]) be large. FE security implies p(Q)
is close to p([N ]), where Q is the set of indices the adversary controls. Moreover,
FE security implies that p(∅) is close to 0. A straightforward argument implies
that there must therefore exist a set S∗ ⊆ Q such that p(S∗) is noticeably larger
than p(S∗\{i}) for all i ∈ S∗. Supposing we could sign arbitrary sets, we can
recover S∗ by estimating the various p(S) values.

On the other hand, the ability to sign sets S also allows for easily finding
differing inputs, which would break consistency. Instead, we can use the encryp-
tions of signatures to homomorphically compute p(S). Unfortunately, we cannot
directly compare different p(S), since the signatures for different S, and therefore
the p(S), are isolated in different FHE instances. However, given an (encrypted)
signature on S, we can (homomorphically) estimate p(S\{i}) for any i ∈ S
by testing the decoder on ciphertexts encrypting (S, σS , i,⊥,m). Indeed, these
ciphertexts can only be decrypted by users in S\{i}, and functional encryption
security implies that encryptions of (S, σS , i,⊥,m) are indistinguishable from
encryptions of (S\{i}, σS\{i},⊥,⊥,m).

For the set S∗ (which at this point is still FHE encrypted), we can then
run the decoder (again, homomorphically) on encryptions of (S∗, σS∗

, i, x,m).
Depending on the value of fid,i(S∗, x), the decryption probability will either be
roughly p(S∗) or p(S∗\{i}); since the definition of S∗ means the two probabilities
are noticeably different, this allows us to learn fid,i(S∗, x). From here, we can
compute F(ki, S∗) by setting b = 0, and hence βS∗

.
Up until this point, we cannot actually tell which set is S∗, since all results are

computed homomorphically and therefore still hidden under FHE encryptions.
We perform the above procedure for each set S, as there are only polynomial
many. We then apply the program PS to the resulting ciphertext, which will
output 1 in the case S = S∗. This allows us to actually determine S∗.

The next step is to determine the identities for users in S∗. We show that
any accepting input to PS∗

actually allows us to decrypt ciphertexts encrypted
under pkS∗

; in particular we can find σS∗
in the clear. This then allows us to

evaluate fid,i(S∗, x) on arbitrary inputs x in the clear. Using such queries we can
easily compute the various id by setting b = 1.

It remains to justify consistency, which follows from the fact that βS is pseu-
dorandom as long as S contains honest users. By applying compute and com-
pare security, we have that σS remains hidden for such sets. Since the adversary
cannot obtain a signature on any S containing honest users, any ciphertext he
devises will be decrypted correctly by all honest users; in particular, all honest
users answer identically.
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6.2 Tracing

We now give the algorithm Trace(pk,D,m0,m1, 1c, 11/ε). Define

p(S) = Pr[D(EncFE(pkFE, (S, σS ,⊥,⊥,mb))) = b : b ← {0, 1}]

p(S, i) = Pr[D(EncFE(pkFE, (S, σS , i,⊥,mb))) = b : b ← {0, 1}]

q(S, i, x) = Pr[D(EncFE(pkFE, (S, σS , i, x,mb))) = b : b ← {0, 1}] .

Let δ = ε/(10c + 2). For any S, given σS we can compute an estimates
p̃(S), p̃(S, i), q̃(S, i, x) such that |p̃(S) − p(S)|, |p̃(S, i) − p(S, i)|, |q̃(S, i, x) −
p(S, i, x)| < δ, except with negligible probability. Each quantity is computed
by making O(λ/δ2) queries to D. We define several subroutines:

– ConfirmTagsD(pk,m0,m1, 1c, 11/ε, S, σ): This algorithm plays an analogous
role as FindTags from Sect. 5, except that instead of discovering a set
of accused users, it simply confirms whether the input set S should be
accused. In this sense, ConfirmTags works in the black box confirmation model
of [BF99]. The algorithm is also somewhat different that of Sect. 5, owing to
the different tracing structure in this construction.
Compute estimate p̃(S), and for each j ∈ S, compute estimates p̃(S, j). If
there exists a j ∈ S such that |p̃(S, j) − p̃(S)| < 4δ, abort and output ⊥.
Otherwise, output aux = (p̃(S), (p̃(S, j))j∈S).

– EvalD(pk,m0,m1, 1c, 11/ε, aux, S, σ, j, x): This algorithm is analogous to Eval
from Sect. 5. Compute estimate q̃(S, j, x), and output 1 such that q̃(S, j, x) is
closer to p̃(S) than it is to p̃(S, j); otherwise output 0.

– Dec∗(pkS , cS , PS , C, d): here, C is a circuit, with the property that C(σS) =
βS , meaning PS(EvalFHE(cS , C)) = 1; d is a ciphertext encrypting a bit b.
Dec∗ will output b. Dec∗ works as follows. It homomorphically computes d′, an
encryption of b·σS , from d, cS . Then it will run and output PS(EvalFHE(d′, C)).

With these subroutines in hand, Trace works as follows. Let CS(σ) be the
function which runs ConfirmTags to recover aux or ⊥. If aux is recovered, then
for each i ∈ S, it runs EvalD(pk,m0,m1, 1c, 11/ε, aux, S, σ, i, x) on the various
x = (0, u) to compute strings βS,i = F(ki, S). Finally, it outputs ⊕i∈SβS,i. The
circuit CS is ostensibly randomized, but we will hard-code the randomness to
get a deterministic circuit.

For each set S, we will say that tracing succeeds if PS(Eval(cS , CS)) =
1, which is equivalent to requiring CS(σS) = βS . For each S, Trace runs
Dec∗(pkS , cS , PS , CS , d = cS). Let S be some set such that Dec∗ outputs a
signature σ. Then Trace runs ConfirmTagsD(pk,m0,m1, 1c, 11/ε, S, σ) to recover
aux, and runs EvalD(pk,m0,m1, 1c, 11/ε, aux, S, σ, i, x) on various x = (1, u) to
compute the bits of idi for i ∈ S.

6.3 Security

Theorem 11. If ΠFE is ciphertext indistinguishable and black box function pri-
vate, and ΠFHE,ΠSig,F,CCObf are secure, then Π in Construction 3 is c-traceable
and leaked master weakly consistent.
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Proof. We first prove leaked master weak consistency. Let A be an adversary for
consistency. By the black box function privacy of ΠFE, there exists a simulator
Sim that only makes queries to the functions hid,i of the various honest users,
and can still find a differing input with non-negligible probability. In particular,
it must with non-negligible probability find a query (S∗, σ, z, x,m) to some hid,i

such that σ is a valid signature on S∗ and i ∈ S∗. Let q be the index of the
first query where this happens. For all prior queries, hid,i outputs m. Therefore,
all prior queries can be simulated without knowing a signature on any S that
contains honest users, and also without knowing ki for any honest user i.

For every honest user i, we can therefore replace each evaluation of βS,i

with random. This change will be undetectable before query q, by the PRF
security of F. But this means, by compute and compare security, that PS,i can
be simulated without knowing skS,i, which again will be undetectable before
query q. We finally rely on the security of pkS,i to conclude that the entire view
of the adversary up until query q can be simulated just knowing σS , where S
ranges over all subsets containing only adversarial users.

The result is that the view of the adversary up until query q can be simulated
by making signing queries on S containing only adversarial users, but then query
q produces a signature on an S∗ containing at least one honest user, which must
therefore be different than any of the queries S. Thus, such an algorithm can
forge signatures, a contradiction to the security of pkSig.

We now prove c-traceability. Consider an attacker A which makes up to c
queries. Let Q be the set of i ∈ [N ] corresponding to the adversary’s queries. Let
D be the output of A, and suppose GoodDecε happens. We note that for any
honest user i /∈ Q, by functional encryption security p(S) and p(S\{i}) will be
negligibly close, except with negligibly-small probability. As such, honest users
will never be accused. We now prove that some user will be accused.

Claim. Except with negligible probability, p(Q) > 1/2 + ε − δ and p(∅) < 1/2 + δ

Proof. Under all the adversary’s keys, (⊥,⊥,⊥,⊥,m) and (Q,σQ,⊥,⊥,m)
decrypt correctly, so encryptions of these values are indistinguishable. p(Q) >
1/2 + ε − δ follows by the goodness of D. On the other hand, (∅, σ∅,⊥,⊥,m)
will always fail to decrypt, so p(∅) < 1/2 + δ except with negligible
probability. 
�
Claim. Except with negligible probability, there exists an S∗ ⊆ Q such that, for
all i ∈ S∗, p(S∗\{i}) ≤ p(S∗) − 8δ.

Proof. Assume p(Q) > 1/2 + ε − δ and p(∅) < 1/2 + δ. Suppose toward con-
tradiction that, for each set S ⊆ Q, there exists an iS such that p(S\{iS}) >
p(S) − 8δ. Then setting S0 = Q and Sj = Sj−1\{iSj−1}, we get that p(Sj) >
p(Sj−1) − 8δ and S|Q| = ∅. But this means that p(∅) > p(Q) − 8δ|Q|, a contra-
diction. 
�
Claim. Except with negligible probability, |p(S∗\{j}) − p(S∗, j)| < δ for any
i ∈ S∗.
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Proof. For any i ∈ S∗ and any secret key under the adversary’s control,
(S∗ \ i, σS∗\i,⊥,⊥,m) and (S∗, σS∗

, i,⊥,m) decrypt identically. Therefore, their
encryptions are indistinguishable. 
�

By the above claims, p(S∗, i) < p(S∗) − 8δ for each i ∈ S∗, except with neg-
ligible probability. But then p̃(S∗, i) < p̃(S∗) − 6δ except with negligible proba-
bility. When we homomorphically run FindTagsD0 (pk,m0,m1, 1c, 11/ε, S∗, σ∗), no
abort will happen and the result will be (an encryption of) aux.

Claim. For any i ∈ S∗ and x, if fid,i(S∗, x) = 0 then |q(S∗, i, x) − p(S∗, i))| < δ
except with negligible probability. If fid,i(S∗, x) = 1, then |q(S∗, i, x) − p(S∗))| <
δ.

Proof. If fid,i(S∗, x) = 0, then the secret key for user i rejects encryptions
of (S∗, σS∗

, i, x,m), while all other users in S∗ decrypt and users outside S∗

reject. This is the same functionality as (S∗, σS∗
, i,⊥,m). On the other hand, if

fid,i(S∗, x) = 1, then the secret key for user i correctly decrypts (S∗, σS∗
, i, x,m),

corresponding to the same functionality as (S∗, σS∗
,⊥,⊥,m). The claim follows

by functional encryption security. 
�
Claim. For any i ∈ S∗ and any input x, except with negligible probability
EvalD0 (pk,m0,m1, 1c, 11/ε, aux, S∗, σS∗

, i, x) outputs fid,i(S∗, x).

Proof. If fid,i(S∗, x) = 0, then |q̃(S∗, i, x) − p̃(S∗, i)| < 3δ. But since |p̃(S∗) −
p̃(S∗, i)| > 6δ, we must have |q̃(S∗, i, x) − p̃(S∗)| > 3δ. As such, q̃(S∗, i, x) is
closer to p̃(S∗, i) than p̃(S∗), and Eval0 therefore outputs 0 on input x. Analo-
gously, Eval0 outputs 1 on inputs x such that fid,i(S∗, x) = 1. 
�

Therefore, the circuit CS∗
(σS∗

) will correctly evaluate βS∗,i = F(ki, S∗), and
therefore correctly output βS∗

with overwhelming probability. 
�
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Abstract. The Fiat-Shamir transform is a general method for reduc-
ing interaction in public-coin protocols by replacing the random veri-
fier messages with deterministic hashes of the protocol transcript. The
soundness of this transformation is usually heuristic and lacks a formal
security proof. Instead, to argue security, one can rely on the random ora-
cle methodology, which informally states that whenever a random oracle
soundly instantiates Fiat-Shamir, a hash function that is “sufficiently
unstructured” (such as fixed-length SHA-2) should suffice. Finally, for
some special interactive protocols, it is known how to (1) isolate a con-
crete security property of a hash function that suffices to instantiate
Fiat-Shamir and (2) build a hash function satisfying this property under
a cryptographic assumption such as Learning with Errors.

In this work, we abandon this methodology and ask whether Fiat-
Shamir truly requires a cryptographic hash function. Perhaps surpris-
ingly, we show that in two of its most common applications—building
signature schemes as well as (general-purpose) non-interactive zero-
knowledge arguments—there are sound Fiat-Shamir instantiations using
extremely simple and non-cryptographic hash functions such as sum-
mod-p or bit decomposition. In some cases, we make idealized assump-
tions (i.e., we invoke the generic group model), while in others, we prove
soundness in the plain model.

On the negative side, we also identify important cases in which a cryp-
tographic hash function is provably necessary to instantiate Fiat-Shamir.
We hope this work leads to an improved understanding of the precise role
of the hash function in the Fiat-Shamir transformation.
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1 Introduction

The Fiat-Shamir transform is a general-purpose method for converting public-
coin interactive protocols into non-interactive protocols with the same function-
ality. As a prototypical example, let Π denote a 3-message (public-coin) argu-
ment system with transcripts of the form (α, β, γ). Then, given any hash function
h, the Fiat-Shamir transform of Π using h, denoted ΠFS,h, is a one-message argu-
ment system in which the prover sends an entire transcript (α, β = h(α), γ) in
one shot.

The Fiat-Shamir transform was introduced by [27] to remove interaction
from a 3-message identification scheme, but it was later realized1 that the trans-
formation is extremely general: it can plausibly be applied to any constant-
round public-coin interactive argument system (and more). Due to its general-
ity and its practical efficiency (it removes interaction with very low computa-
tional overhead), the transformation has been a cornerstone of both theoretical
and practical cryptography for over 30 years. Some of its applications include
the construction of efficient signature schemes [27,50,52], non-interactive zero-
knowledge arguments (NIZKs) [1,11,12,49], and succinct non-interactive argu-
ments (SNARGs) [2–7,36,43,56].

However, the vast majority of applications of the Fiat-Shamir transform are
only heuristically sound. That is, the resulting non-interactive protocols do not
have proofs of soundness based on the computational intractability of a well-
studied mathematical problem [32]. Nonetheless, the protocols appear to be
sound in practice, so it has been a long-standing goal of theoretical cryptog-
raphy to justify the soundness of the transformation.

So far, there have been two main approaches for justifying soundness of Fiat-
Shamir.

– The Random Oracle Model [1]: In this design methodology, a Fiat-Shamir
hash function is first modeled as a random function O to which all par-
ties (honest and dishonest) have public query access. Security is “argued” by
showing that the protocol ΠFS,O is sound “in the random oracle model” (i.e.,
against query-bounded adversaries). In reality, the hash function h is instan-
tiated by an “unstructured” hash function (such as SHA-2 on bounded-length
inputs), where the implicit expectation is that “Fiat-Shamir for Π” is not an
application that can distinguish h from a random oracle.

– Correlation Intractability: In a recent line of work [9,11,12,33,34,37,49],
a different methodology was developed for provably instantiating Fiat-Shamir
in the standard model:

• Identify a special class C of protocols and a cryptographic security prop-
erty P of a hash function family H such that if H satisfies P, then H
soundly instantiates Fiat-Shamir for every Π ∈ C. In all cases so far, P
has been a restricted form of correlation intractability [13].

• Construct a hash function family satisfying P under reasonable (hopefully
standard) cryptographic assumptions.

1 See discussion in [1].
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The first of these approaches attempts to justify the use of Fiat-Shamir in high
generality, while the second provides full security proofs for carefully chosen
protocols and hash functions.

Why Cryptographic Hash Functions? In both approaches above, it is essential
that the hash function h possesses a form of cryptographic hardness. In the
random oracle methodology, it is heuristically assumed that h is indistinguishable
from a truly random function (at least in any meaningful way), while in the
standard model, results so far have relied on correlation-intractable hash families
[13,47] whose security can be based on standard cryptographic assumptions [9,
11,49].

All of these results support the intuition that the Fiat-Shamir hash family H
provides a form of cryptographic hardness that ensures the soundness of ΠFS,H.
In this work, we ask whether this intuition is accurate.

Is it possible to instantiate the Fiat-Shamir heuristic with a non-cryptographic
hash function?

We note that this question requires formalizing what it means to be a “non-
cryptographic” (rather than cryptographic) hash function; we partially address
this issue later, but this remains somewhat up to interpretation.

A related question concerns the design of Fiat-Shamir hash functions. What
should they look like? Again, prior works give us some possible answers:

– As originally proposed in [27], a Fiat-Shamir hash function could be instanti-
ated using a pseudorandom function family [31] (they give DES as an example
instantiation).

– As proposed in the random oracle methodology [1], the following design advice
is given. “When instantiating a random oracle by a concrete function h, care
must be taken first to ensure that it is adequately conservative in its design
so as not to succumb to cryptanalytic attack, and second to ensure that h
exposes no relevant ‘structure’ attributable to its being designed from some
lower-level primitive.” In other words, the hash function should be unstruc-
tured and complex enough to be indistinguishable from a random function.

– In the provably secure instantiations of [11,49], the hash function families are
based on flavors of fully homomorphic encryption, which can be instantiated
from lattice assumptions [10,29].

– In a recent work of [9], a (modified) trapdoor hash function [25] is used, which
has instantiations based on the DDH/LWE/QR/DCR assumptions.

A common theme is that all of the candidate Fiat-Shamir hash functions
above are complex. Indeed, they have to be complex enough to realize the
described security properties. In contrast, we ask:

Is it possible to instantiate Fiat-Shamir with a simple hash function?
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As an example, can we hope to have a linear Fiat-Shamir hash function h(x) =
Ax + b?

We note that for various contrived protocols Π, the answer is “yes” for unin-
teresting reasons. For example, given any constant-round, public-coin interac-
tive protocol Π, there is a protocol Π̃ that replaces all prover messages αi with
random-oracle commitments O(αi) and requires the prover to open these com-
mitments in the last round. For this protocol Π̃, even the identity function can
be used to instantiate Fiat-Shamir in the random oracle model, since we have
in effect already applied a random-oracle Fiat-Shamir transformation when con-
verting Π to Π̃.

To avoid these trivialities, we phrase our goal more specifically: for various
naturally occurring protocols (or classes of naturally occurring protocols), deter-
mine if simple/non-cryptographic hash functions may suffice for Fiat-Shamir,
and give principled justification for this possibility or impossibility.

1.1 Our Contributions

We begin the systematic study of instantiating Fiat-Shamir with simple and
non-cryptographic hash functions. In particular, we focus on two common and
important use cases of Fiat-Shamir:

1. Round-compressing 3-message identification schemes [27,40,52], and
2. Round-compressing 3-message honest-verifier zero knowledge argument sys-

tems to obtain NIZK arguments for NP [1,9,11,12,17,21,49].

For these two use cases, we identify some common 3-message protocols to which
Fiat-Shamir is applied:

– Schnorr’s identification scheme [52].
– The Chaum-Pedersen interactive proof system for the Diffie-Hellman lan-

guage [15].
– Lyubashevsky’s lattice-based identification scheme [40].
– More generally, Σ-protocols [23], which are typically repeated in parallel to

obtain negligible soundness error.

In this work, we consider whether existing protocols from above can be round-
compressed using a simple/non-cryptographic hash function. We are able to show
both negative results and (perhaps surprisingly) positive results on this front.

Before stating our results more formally, we discuss (1) the specific problems
we want to solve and (2) what constitutes a solution to the problem.

Our Methodology. There are two major issues to resolve in order to define
our problem:

(i) What does it mean for a hash function to be cryptographic?
(ii) How do we give evidence for the soundness (or lack thereof) of our round-

compressed protocols?
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We first partially address question (i). One appealing intuitive definition of
a cryptographic hash function is as follows:

Definition 1 (Cryptographic Hash Function, definition attempt). A
hash function h (or hash function family H) is cryptographic if there is a
game G between a challenger and adversary (who is given h or h ← H) with
a statistical-computational gap; that is, the maximum probability that a compu-
tationally bounded adversary can win G is noticeably smaller than the maximum
probability that an unbounded adversary can win G.

Unfortunately, this definition has major issues. In particular, under a literal
interpretation of the definition, if NP �⊂ BPP, then every hash function is “cryp-
tographic”: just define the game G that ignores the hash family H and gives the
adversary an instance of a hard NP problem to solve.

More specific to our application, the soundness of ΠFS,H is precisely a game
with a computational-statistical gap so long as an accepting proof exists but
is computationally hard to find. Therefore, no matter how “simple” or “non-
cryptographic” H appears to be, as long as it can compile Fiat-Shamir for some
protocol, it is necessarily “cryptographic” under this definition.

Indeed, an important philosophical point in this work is that the “computa-
tional hardness” within the soundness property of ΠFS,H can derive from two
different places: the hash family H and the interactive protocol Π.

For our purposes, we appeal to the following intuitive (non-technical) defini-
tion of a cryptographic hash function:

Definition 2 (Cryptographic Hash Function, intuition-level). Infor-
mally, a hash function h (or hash function family H) is cryptographic if there is
a game G between a challenger and adversary with a statistical-computational
gap that does not derive from some separate hard problem.

Given this partial answer to question (i), we now describe how we handle (ii):

How We Give Positive Results. In order to obtain a positive result, we accom-
plish (at least) one of three things:

– We show that any hash function h (or hash family H) satisfying an
information-theoretic property (e.g., pairwise-independence) suffices to
instantiate ΠFS,H soundly. We believe that in spirit, this says that Fiat-
Shamir for Π does not require a cryptographic hash function (Definition 2),
as a purely information theoretic property should be insufficient to establish
computational hardness.

– We show that a single fixed hash function h (rather than a distribution on
hash functions) is enough to soundly instantiate ΠFS,h. More specifically,
we show “average-case soundness”, i.e., soundness on a random NO-instance.
This is at least enough to strongly distinguish our Fiat-Shamir instantiations
from random-oracle hash functions as well as correlation-intractable hash
functions, which crucially rely on the randomness of the hash function to
derive computational hardness.
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– We instantiate ΠFS,h with an extremely simple hash function h, such as a
linear function modulo a prime p or the bit decomposition function G−1 :
Z

n
q → Z

n log q
2 . This does not directly prove that h is not cryptographic, but

it again distinguishes our constructions from prior work, in which the Fiat-
Shamir hash functions are comparatively complex (see above). Indeed, they
are sufficiently complex to guarantee security properties such as correlation
intractability.

While some of our positive results hold in the standard model, others are
shown to hold in the (auxiliary-input) generic group model [18,19,45,53,55]. One
might ask why such a result is meaningful—after all, we are replacing one random
oracle (the hash function) with another (the generic group labeling). However,
the idealized assumptions in our constructions are used quite differently from
assuming that a Fiat-Shamir hash function behaves like a random oracle. Indeed,
our hash functions are information-theoretic and do not make any calls to the
group oracle. As a result, our constructions are examples of naturally occurring
interactive protocols Π (unlike the contrived example from the introduction)
that possess enough hardness to guarantee that ΠFS,h is sound for simple choices
of h satisfying only information-theoretic properties.

Additionally, our lower bounds in the GGM suggest candidate schemes
over concrete groups (Z×

p and elliptic curve groups) that are plausibly secure.
Although interpreting hardness results in the GGM in the standard model
requires care [24,28,54], we believe that it would be very interesting to under-
stand the real-world security of the resulting (extremely simple!) schemes. We do
some preliminary analysis of the concrete schemes—finding non-generic attacks
for one of our two GGM-based protocols but not the other—but largely leave
these questions open.

How We Give Negative Results. In order to obtain a negative result, we would
like to show that for a particular protocol Π, if ΠFS,H is sound, then H nec-
essarily satisfies some concrete cryptographic security property P. However, as
already discussed, such a theorem is not meaningful—P can just be “the sound-
ness of ΠFS,H.” In other words, this fails to distinguish between hardness in the
hash function family H from hardness in the protocol Π.

Instead, we switch the order of quantifiers in the theorem statement: we show
that there exists a universal security property P such that for any protocol Π ∈ C
in a large class, if a hash function family H soundly instantiates Fiat-Shamir for
Π then H necessarily satisfies P. Since P is independent of the protocol Π, this
comes closer to distinguishing H-hardness from hardness in Π.

However, there is still one issue with the above strategy: NP-completeness
also gives a (trivial) universal property P. To avoid this problem, we prove a rel-
ativizing result: the same property P is satisfied by H even if it instantiates Fiat-
Shamir for various protocols ΠO(·) that exist relative to an oracle distribution
O. This establishes that the property P is not “cheating” using NP-completeness.
As an example, our negative results will capture the {0, 1}-challenge variant of



340 Y. Chen et al.

Schnorr’s identification scheme in the generic group model as well as Blum’s
Hamiltonicity protocol [8] instantiated in the random-oracle model.

Finally, we show that hash functions satisfying our property P imply the
existence of one-way functions, the quintessential cryptographic object. This
results in a formalization of the statement “one-way functions are necessary to
instantiate Fiat-Shamir hash functions for natural protocols.”

As an added bonus, we are also sometimes able to give direct attacks on
ΠFS,H relative to an oracle (i.e., in the generic group model or the random oracle
model). That is, for the idealized protocols, we show unconditional polynomial-
query attacks on the non-interactive protocol. This is further evidence that a
sound Fiat-Shamir instantiation must sometimes rely on hardness from the hash
function family H, in direct contrast to our positive results.

Our Results. With the above discussion in mind, we are now ready to formally
state our results. First, we give several positive results for soundly instantiating
Fiat-Shamir with non-cryptographic hash functions.

Fiat-Shamir for Lattice-Based Identification Schemes. We first describe our pos-
itive results in the standard model, which hold for lattice-based analogues of the
Schnorr protocol. In particular, we consider common variants of Lyubashevsky’s
identification schemes [38–40], which were designed to obtain efficient signature
schemes in the random oracle model via Fiat-Shamir.

We obtain a sound Fiat-Shamir instantiation for the main protocol Π defined
in [40]. Our Fiat-Shamir hash function in ΠFS,h maps Zq elements to their bit-
decomposition (also known as the G−1 function).

Theorem 1. Consider Lyubashevsky’s identification scheme over Zq in dimen-
sion n. Define the hash function h : Z

n
q → Z

n log q
2 as the bit decomposition

function
h(v) = G−1(v).

Then, under the Short Integer Solution (SIS) assumption, Fiat-Shamir applied
to Lyubashevsky’s scheme using hash function h is sound on random instances.

We note the following interesting details about our result.

– We obtain a meaningful soundness guarantee using a deterministic hash
function. This stands in contrast to typical Fiat-Shamir instantiations.

– More generally, we prove Theorem 1 for a class of Fiat-Shamir hash functions
(including bit-decomposition) satisfying an information-theoretic prop-
erty.

– Most importantly, and uniquely to the lattice setting, we emphasize that
soundness is proved in the standard model! More specifically, the SIS
assumption suffices to argue average-case soundness, where soundness
requires that a cheating prover cannot convince a verifier to accept on a
random instance. We stress that this is the typical soundness notion for the
setting of identification/signature schemes and a necessary relaxation for the
case of deterministic hash functions.
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To contrast this with prior work on Fiat-Shamir in the standard model [9,
11,12,34,49], we note that (1) it was not known how to do Fiat-Shamir for the
[40] protocol in the correlation intractability framework, and (2) our Fiat-Shamir
compiler uses the bit decomposition function and not any form of CI.

Finally, as an extension of Theorem 1, we prove that variants of our protocol
ΠFS show a surprising connection to Micciancio-Peikert lattice trapdoors [41,44].
Namely, the prover algorithm in ΠFS can be interpreted as a preimage sampling
algorithm using a Micciancio-Peikert trapdoor.

Theorem 2 (Informal). Lattice-based Lyubashevsky signatures using the bit-
decomposition Fiat-Shamir hash function are equivalent to lattice-based Hash-
and-Sign signatures.

This highlights a strong connection between two seemingly orthogonal paths
to build signatures from lattice-based assumptions: one using lattice trapdoors
[14,30,44] and the other through the Fiat-Shamir heuristic [38–40]. To the best
of our knowledge (see [48]), no such connection was known before. We discuss
this connection in more detail in the technical overview.

Schnorr Signatures with a Linear Fiat-Shamir Hash Function. Our next result
concerns the Schnorr signature scheme, obtained by applying Fiat-Shamir to
Schnorr’s three-message protocol for proving knowledge of a discrete logarithm.
We show that for signing short messages (i.e. the message space is a sparse
subset of Zp), this classic application of the Fiat-Shamir paradigm does not
seem to require any cryptographic properties from the underlying Fiat-Shamir
hash function.

Recall that the Schnorr protocol works over a cryptographic group G of order
p, and that the Fiat-Shamir hash function takes as input a group element g ∈ G
along with a message m ∈ M to be signed, and outputs an element in Zp.

Theorem 3 (Schnorr Signatures with a Zp-Linear Hash Function).
Consider the Schnorr signature scheme over a group G of order p, where the
message space M is a sparse subset of Zp, i.e. M ⊂ Zp and |M|/Zp ≤ negl(λ).
Let � be the maximum bit-length representation of any group element, so that
any g ∈ G can be viewed as g ∈ {0, 1}� = [2�]. Define the hash family

hk(g,m) := g + m + k (mod p),

where on the right-hand side, g is the integer with binary representation g ∈
{0, 1}�.

In the auxiliary-input generic group model [55], the Schnorr signature scheme
instantiated using h as the Fiat-Shamir hash function is existentially unforgeable
against chosen message attacks (EUF-CMA).

As in the lattice setting, we can actually prove that Fiat-Shamir for Schnorr is
sound whenever h (or the family H) satisfies an information-theoretic property.
However, our security proof relies on the GGM and does not seem to carry over
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to the standard model. Nonetheless, we view Theorem 3 as another interesting
example of a Fiat-Shamir instantiation whose soundness does not rely on any
cryptographic property of the hash function. Instead, strong cryptographic
hardness from the group turns out to be sufficient!

Another takeaway from Theorem 3 is that Schnorr-like signatures can plau-
sibly be obtained by combining a collision-resistant hash function (to implement
hash-and-sign) with an information-theoretic Fiat-Shamir hash function (for
Schnorr signatures on short messages). While this does not appear significantly
different from using a cryptographic Fiat-Shamir hash function in implementa-
tion, it highlights the fact that cryptographic hashing is required for signatures
only to (computationally) avoid collisions between long messages, and not for
ensuring soundness of the Fiat-Shamir compilation.

Aside on Generic Groups. The Generic Group Model [53] models a crypto-
graphic group G as a random injection G → [L] for a sufficiently large “label
space” L, by providing an oracle O that computes group products and inverses
on (pairs of) labels.2 The auxiliary-input GGM [18,55] gives the adversary the
additional power to record an arbitrary (S-bounded) function of the group’s
truth table to use for solving computational problems later.

In the plain GGM, soundness of our variant of Schnorr signatures follows
from analysis due to [46]; this work characterized a security property of H that
suffices for (long-message) signatures schemes in the GGM. For our purposes,
it turns out that an information-theoretic property of h suffices; see Sect. 2 for
details. In fact, using the even simpler (keyless) function h(g,m) = g + m is
secure in the GGM.

However, since soundness is proved in the GGM, it is reasonable to ask
whether the hardness result plausibly translates to concrete groups such as Z

×
p

or elliptic curve groups. Indeed, it is known that GGM lower bounds sometimes
fail to carry over to these groups in cases of interest (see, e.g., [28,54]). In this
work, we observe that this issue also comes up in the case of Schnorr signatures
as analyzed by [46]. In more detail, [46] proves that as long as a hash family H
satisfies two (possibly computational) properties, then Schnorr signatures using
H are secure in the GGM. On the other hand, we find choices of H that satisfy
the premises of [46], but attacks exist over all concrete groups. This highlights
an important situation where GGM-based analysis spectacularly fails to capture
real-world attacks on a scheme.

On the other hand, we further observe that these non-generic attacks can be
captured by the auxiliary-input GGM; that is,

2 There is an alternative formulation of a Generic Group Model due to Maurer [42],
but the honest parties in Schnorr’s signature scheme execute non-generic algorithms
according to this definition (since Maurer’s GGM does not provide concrete repre-
sentations of group elements, which are necessary to evaluate the Fiat-Shamir hash
function), so a [42]-generic analysis is not applicable.
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– Given some (possibly hard-to-compute) short piece of information w about
G (but independent of the Schnorr public parameters), Schnorr signatures
using H are insecure, and

– Over important concrete groups such as Z
×
p or elliptic curve groups, this

information w is actually efficiently computable.

For example, the short information could be a solution z to the equation
az = �, where � ∈ [L] is a fixed label such that � ≡ −1 (mod p). To remedy
this problem, we prove a lower bound in the aux-input GGM, thus avoiding an
important class of “non-generic” attacks for the hash function in Theorem 3 (and
more). This proof is the new technical component of Theorem 3.

In fact, we know of no efficient attacks on the scheme from Theorem 3 over
the group Z

×
p . We find the question of whether this scheme is secure to be

interesting, as it would result in a signature scheme that is extremely simple to
write down—in fact, key generation, signing, and verifying only require random
sampling and arithmetic over Zp. We do some preliminary analysis of the scheme
in the full version but leave the question largely out of the scope of this paper.

The Chaum-Pedersen Protocol and NIZKs for NP. Next, we consider a
minor variant of the interactive proof system due to Chaum and Peder-
sen [15] for proving membership in the Diffie-Hellman language LDH :=
{(g, gu, gv, guv)}g∈G,u,v∈Zp

. The protocol was originally introduced to instan-
tiate a (special-purpose) blind signature scheme, but it has since found other
applications (e.g., to the Cramer-Shoup cryptosystem [22]). Notably, a recent
line of work [20,21,35,51] has shown that a non-interactive, adaptively sound,
(single-theorem) zero-knowledge argument for LDH (along with CDH) suffices
to instantiate non-interactive zero-knowledge (NIZK) arguments for all of NP.

We prove in the (auxiliary-input) GGM that a simple, fixed Fiat-Shamir
hash function h suffices to compile the modified3 Chaum-Pedersen protocol into
an argument for LDH satisfying an intermediate (i.e., in between selective and
adaptive) notion of soundness we call semi-adaptive soundness. Here, the prover
is given a random gu, and wins if it convinces the verifier to accept a NO-instance
of LDH of the form (g, gu, gy, gz).

Theorem 4. Let ΠCP denote the modified Chaum-Pedersen protocol over a
group G of order p. Let � be the maximum bit-length representation of any group
element, so that any g ∈ G can be viewed as g ∈ {0, 1}� = [2�]. Define the hash
function

h(g1, g2, g3, g4) = g1 + g2 + g3 + g4 (mod p),

where on the right-hand side, each gi is the integer with binary representation
gi ∈ {0, 1}�.

In the auxiliary-input generic group model, (ΠCP)FS,h is a semi-adaptively
sound argument system for LDH.

3 Our modification simply requires the verifier to reject if the third message z is equal
to 0 ∈ Zp.



344 Y. Chen et al.

In the full version, we prove a stronger result: as long as h satisfies an (easily
satisfied but complicated to state) information theoretic property, (ΠCP)FS,h is
sound in the aux-input GGM.

By tweaking the hash function to be h′(·) := h(·) + r where r is a common
random string, (ΠCP)FS,h′ becomes a (single-theorem) NIZK argument for LDH

with semi-adaptive soundness. It turns out that semi-adaptive soundness suffices
to instantiate the hidden bits model of [26], and consequently NIZKs for NP in
the standard model [20,21,35,51].

However, we also cryptanalyze this protocol over concrete groups such as Z×
p

and elliptic curve groups (see the full version), and unlike the case of Schnorr
signatures above, we find non-generic attacks (that fall outside the aux-input
GGM) on the scheme. Thus, Theorem 4 should be viewed as a theoretical result
that does not have direct implications over commonly used groups. This dispar-
ity between the GGM and the standard model appears to be quite subtle and
deserves further study, as further discussed in our conclusion (Sect. 1.2).

Negative Results. To complement our positive results, we also show that for
some protocols, Fiat-Shamir necessarily requires a cryptographic hash func-
tion. Our negative results apply to a large class C of three-message honest-
verifier zero-knowledge (HVZK) arguments (or proofs), in particular,
those obtained by taking parallel repetitions of sigma protocols with polynomial-
size challenge space. Two prototypical examples to have in mind are:

– Blum’s Hamiltonicity protocol [8], repeated in parallel to obtain negligible
soundness error.

– The one bit challenge variant Πbit−Sch of Schnorr’s identification scheme,
again repeated in parallel.

We analyze Fiat-Shamir for these protocols in both the standard model
and in idealized models (the random-oracle model and the preprocessing GGM,
respectively). We give evidence that analogues to Theorem 3, Theorem 4, and
Theorem 1 do not exist for these protocols. Our two results are as follows.

– Polynomial-Query Attacks: First, we show that in idealized models, there
will (unconditionally) be a polynomial-query attack on ΠFS,H, as long as H
does not depend on the oracle. In other words, a (poly-query) sound Fiat-
Shamir instantiation requires that H depends on the oracle, which is one way
of arguing that H is cryptographic.

Theorem 5 (Informal). For Π = Πbit−Sch instantiated in the generic group
model, if H is a hash family that does not call the group oracle, then Πt

FS,H is
unsound in the GGM.

For any instantiation of the [8] protocol in the random oracle model, if H is
a hash family that does not depend on the oracle O, then ΠFS,H is unsound.

More generally, for any Π ∈ C constructed relative to an oracle O, if H does
not depend on O, then ΠFS,H is unsound.
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This is in contrast to Schnorr/Chaum-Pedersen results, in which an oracle-
independent hash function suffices for a sound Fiat-Shamir instantiation.

Generalization: What is the class C? In full generality (see the full version), the
class C of protocols Π for which we give a polynomial-query attack on ΠFS,H is
informally characterized as follows.

• Π := Πt
Base is the parallel repetition of a 3-message public-coin HVZK argu-

ment system ΠBase = Π
O(·)
Base (with simulator Sim) relative to an oracle O.

• The Verifier’s challenge space Σ in ΠBase is polynomial-size.
• The underlying language L �∈ BPP.
• (ΠBase,Sim) is challenge hiding (see the full verseion).

The last requirement (challenge hiding) is a technical condition that slightly
strengthens the standard notion of HVZK.

We emphasize that our result makes no assumptions about the way in which
the oracle O is used in the construction of the interactive protocol ΠBase. The
most substantial requirement is that Π is the result of parallel repetition applied
to a protocol with a small (i.e., polynomial) challenge space. This property dis-
tinguishes the protocols that we can attack from the protocols for which we find
sound Fiat-Shamir instantiations.

– Conditional Polynomial-time Attacks and Mix-and-Match Resis-
tance: We describe a concrete security property (which we call “mix-and-
match resistance”) such that for any protocol Π in a large class C′ (again
including the two example protocols above, in the standard model), any hash
function (family) H that instantiates Fiat-Shamir for Π must possess this
security property. In other words, we show:

Theorem 6 (Informal). If H is not mix-and-match resistant, then for any
Π ∈ C, there is a polynomial-time attack on the soundness of ΠFS,H.

At a high level, mix-and-match resistance is a security property asserting
the hardness of finding a combination of many partial inputs that hashes to
a corresponding combination of prescribed outputs. We also show that mix-
and-match resistant hash functions imply the existence of OWFs. Therefore,
Theorem 6 implies that (in the setting above) if ΠFS,H is sound, then H can be
used to build a OWF (obliviously to the protocol Π).

This result also holds in the ROM and the GGM, in the sense that if H
does not depend on the oracle O and is not mix-and-match resistant, then the
polynomial-query attack from Theorem 5 can be upgraded to a polynomial-time
attack. As discussed above, this further establishes that the “mix-and-match
resistance” property of H is not “borrowing hardness” from the protocol Π,
since our analysis applies to protocols whose security is unconditional.

Somewhat orthogonally, one might wonder whether mix-and-match resistant
hash functions (as introduced in this work) are known to exist under standard
cryptographic assumptions. The works of [11,49] tell us that the answer is “yes,”
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because they give a standard-model instantiation of Fiat-Shamir for a proto-
col Π ∈ C under standard assumptions. In the full verseion, we explore this
connection further by showing that correlation-intractable hash functions (as
constructed by [11,49]) suffice to instantiate Fiat-Shamir for (a variant of) the
idealized Blum protocol.

1.2 Conclusions

One of the main takeaways of this work is that our title question “Does Fiat-
Shamir require a cryptographic hash function?” is surprisingly deep and difficult
to resolve. We believe that our positive and negative results improve our under-
standing of the ground truth and point to fascinating new research directions.

Before now, the prevailing intuition was that for any natural protocol
(Schnorr, Lyubashevsky, Blum, etc.), sound Fiat-Shamir compilation necessi-
tates a carefully-constructed cryptographic hash function. In this methodology,
the soundness of Fiat-Shamir has been argued by either (1) treating the hash
function as a random oracle or (2) invoking some concrete security property
of the function family. That is, the computational hardness of some problem
derived from H guarantees the soundness of the protocol.

In this work, we argue soundness of Fiat-Shamir (for certain protocols) by
using an information-theoretic property of H together with cryptographic hard-
ness from the interactive protocol. Despite the caveats in our results, the con-
ceptual point is clear: it is possible to prove meaningful notions of soundness for
a Fiat-Shamir protocol by using security properties of the interactive protocol
itself instead of security properties of the hash function.

Moreover, the instantiations of our positive results have noticeable qualitative
differences from prior approaches to Fiat-Shamir, such as being able to use a
single hash function h (rather than a family), much simpler hash functions, and
ones that contain no associated cryptographic hardness. This contrasts strongly
with how we usually think of Fiat-Shamir; essentially all prior work required
that the hash function be complex and/or cryptographic.

On the other hand, we also show (and formalize a way to show) that some
protocols do require a cryptographic Fiat-Shamir hash function. This implies
that the ground truth is complicated and hard to characterize, but in our view,
worth understanding.

What about Fiat-Shamir in Practice? Since Schnorr signatures are heavily used
in practice, one might ask how our positive results over groups relate to the
use of Fiat-Shamir over concrete groups. The answer to this question crucially
depends on how accurately the generic group model (with preprocessing) reflects
the concrete security of these protocols.

While generic group analysis is often considered to be a meaningful reflection
of real-world attacks, we discovered multiple non-generic attacks on Fiat-Shamir
protocols over groups. Such attacks are therefore not covered by prior generic
analyses such as [46].
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– In the case of Schnorr signatures over Z×
p , all of the new attacks we found were

captured by the preprocessing generic group model, and so our new analysis
in the preprocessing model rules out all such attacks on many variants of
Schnorr signatures. Therefore, we view our positive results for Schnorr as a
first step towards finding secure simple variants of Schnorr signatures, such
as the candidate given in Construction 11.

– On the other hand, we have already discovered attacks (see the full version)
on certain variants of our Chaum-Pedersen protocol over groups such as F

×
p ,

even in settings where we have a valid (preprocessing) generic group analysis.

This results in a bizarre state of affairs in which it is unclear how to inter-
pret generic group analyses for Fiat-Shamir protocols over groups; this deserves
future attention and cryptanalytic effort. Nonetheless, we consider the concep-
tual contributions of these aux-input GGM analyses to be valuable whether they
turn out to reflect real-world attacks or not.

Future Work. We believe that our framework can serve as a potential com-
plement to the correlation intractability framework for provable Fiat-Shamir
soundness. Towards this end, we broadly ask,

Which interactive protocols allow for “simple” Fiat-Shamir compilers?

To start with, we consider differences between the protocols in our positive
and negative results. Heuristically, we note that all protocols in our positive
results achieve negligible soundness error using a single non-separable large chal-
lenge. In contrast, the separability of the challenge in the parallel repetition of
a Σ-protocol appears to necessitate using a cryptographic hash function.

In this context, our contributions are a starting point for a more precise
understanding of when hardness is required from a Fiat-Shamir hash function.

2 Technical Overview

We give an overview of our positive results for lattice-based identification pro-
tocols in Sect. 2.1 and our positive results for group-based protocols in Sect. 2.2.
We then describe some of our negative results in Sect. 2.3.

2.1 A Non-interactive Lattice-Based Identification Scheme

We describe how we obtain positive results in the lattice setting (Theorem 1).
We consider Lyubashevky’s three-message identification protocol [40], which can
be seen as a lattice analogue to the Schnorr protocol.

To sample an instance for the protocol, we sample a uniformly random wide
matrix A over Zq along with a wide matrix R with random small entries. The
shared instance is (A,Y = AR mod q), and the prover’s goal is to convince
the verifier it knows a short R satisfying AR = Y mod q.
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The interactive protocol Π then executes as follows:

– The prover samples a short vector t and sends α := At mod q.
– The verifier responds by sending a random vector c with small entries.
– The prover responds with z := t+Rc.
– The verifier accepts if A · z = α +Y · c mod q and z is short.

As in [40], this interactive protocol is average-case sound under the SIS
assumption. We now analyze the non-interactive protocol ΠFS,h for a (vector-
valued) Fiat-Shamir hash function h. A malicious prover attacking the average-
case soundness of ΠFS,h must solve the following problem.

– Input: Random matrices (A,Y) and the description of a (vector-valued)
hash function h.4

– Output: Vectors α, z such that A · z = α+Y · h(α) mod q and z is short.

Our main insight is that this problem is provably hard for a fixed Fiat-Shamir
hash function h if simple information-theoretic conditions are satisfied.

Theorem 7. Suppose h satisfies the following properties:

1. h produces “short” output, i.e., the entries are small relative to the modulus
2. α is a linear function of h(α), i.e. there exists a matrix G such that for all

α, G · h(α) = α mod q.

Then, ΠFS,h is one-time (average-case) sound.

Theorem 7 can be proved as follows. If the condition in Theorem 7 are sat-
isfied, then the relation A · z− α −Y · h(α) = 0 mod q checked by the verifier
can be rewritten as

[
A‖Y +G

] ·
[

z
−h(α)

]
= 0 mod q. (1)

Since A,Y are (statistically) uniformly random and z,h(α) are short, a
malicious prover outputting α, z is solving SIS for the random matrix [A‖Y+G].

A simple concrete instantiation of h is the bit-decomposition function that
maps (vectors of) Zq elements to (the concatenation of) their bit decomposition
in {0, 1}�log q� (also called G−1(·) in the lattice literature). The corresponding
G is the “powers-of-two” gadget matrix of Micciancio-Peikert [44].

Connections to Lattice Signatures from Lattice Trapdoors. Interestingly, it turns
out the honest prover algorithm of the rejection sampling-based protocol exactly
matches the trapdoor preimage sampling algorithm of Lyubashevsky-Wichs [41]
using a Micciancio-Peikert trapdoor [44]. This can be seen by considering Eq.
(1), which implies that the transcript of the protocol gives a short preimage of 0
of a matrix with a Micciancio-Peikert trapdoor (here R). Average-case soundness
4 Y is technically sampled as A · R for some a “short” matrix R, but parameters are

set so that Y is statistically close to uniform.
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implies that this should be hard to do without knowledge of R (further using
that [A‖AR + G] looks uniformly random over the randomness of R), and
witness-indistinguishability implies that the preimage sampling algorithm reveals
no more information about the trapdoor R.

In fact, our protocol shows the connection between seemingly orthogonal
paths to obtain signatures from lattice-based assumptions: one relying on lat-
tice trapdoors and trapdoor preimage sampling [30,41,44] and another through
Fiat-Shamir [38–40]. The lattice signature schemes constructed from lattice trap-
doors [30,41,44] can actually be derived by applying the Fiat-Shamir heuristic
(with aborts) using the bit-decomposition function (namely G−1(·)) as the hash
function to Lyubashevsky’s three-message identification scheme [40]. Let us start
by describing the signature scheme for signing a short random message v ∈ Z

n
q .

The Fiat-Shamir hash function takes as input the first message α from the pro-
tocol, and the message v, and outputs

h(α,v) = G−1(α − v).

The signature consists of the challenge c = G−1(α − v) and z from the third
message of the protocol. The verifier of the signature takes v and its signature,
and accepts if A · z = α +Y · c mod q and z is short, that is:

[A ‖G+Y]
[
z

−c

]
= v (mod q). (2)

We now argue that this gives a signature scheme for random (short) messages,
where the adversary can receive signature of random messages, and seeks to forge
a signature for a random message given by the challenger. To handle signing

queries, one can sample (z, c), and set the message as v = [A ‖G+Y]
[
z

−c

]
.

Then, the hardness of signing a random message v is then equivalent to
breaking the SIS problem for a random target v. To sign an arbitrary long
message μ, we replace v in the previous protocol by H(μ) where H is a random
oracle. This exactly recovers the trapdoor-based lattice signatures [30,41,44] in
the random oracle model. We stress that here, the only purpose of the random
oracle is to compress the message (in a hash-and-sign manner), as opposed to
collapse an interactive protocol. In particular the Fiat-Shamir hash function is
still the non-cryptographic G−1 function.

2.2 Fiat-Shamir for Schnorr in the Generic Group Model

The following section on the generic group model (GGM) contains a number of
technical arguments, designed to motivate and provide intuition for our group-
based results. We provide a roadmap for the discussion:

1. First we explain why Fiat-Shamir for Schnorr is secure in the (plain) GGM,
even for simple, information-theoretic hash functions. We start with the case
of “no-message” signatures (non-interactive identification) and then extend
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our reasoning to handle messages and signing queries.
We remark that our security claims for Schnorr in the plain GGM could have
been proven using prior analysis of [46]. However, we have two reasons for
“re-doing” the analysis here: (1) our goal is to provide clear intuition tailored
to information-theoretic Fiat-Shamir hash functions, and (2) our analysis will
readily extend to the auxiliary-input setting, which we motivate next.

2. We will demonstrate that for Schnorr signatures, a (plain) GGM security
proof does not capture a class of non-uniform attacks that work on any con-
crete group. In fact, we show that for common groups such as Z∗

p, these attacks
do not even require non-uniform advice.

3. We address these issues by extending our analysis to hold in the auxiliary-
input GGM, albeit for a slightly more restricted class of Fiat-Shamir hash
functions. We show this class still contains simple, information-theoretic hash
functions, and we discuss potential implications of these results.

Non-Interactive Identification in the Generic Group Model. We begin by consid-
ering the classic Schnorr protocol for proving knowledge of a discrete logarithm.
Recall that the protocol relies on a cryptographic group G = 〈g〉 of prime order
p. The prover and verifier share an instance gu for a random u known to the
honest prover, and engage in the following interaction:

– The prover samples a random r ← Zp and sends gr.
– The verifier replies with a random c ← Zp.
– The prover sends z = r + cu.
– The verifier accepts if gz = (gr)(gu)c.

To build intuition, we will try to construct a (one-time secure) non-interactive
identification scheme using a simple Fiat-Shamir hash function. In a moment,
we will extend this (to handle messages and signing queries) to build full-fledged
digital signatures.

For a Fiat-Shamir hash function h, a malicious prover for the non-interactive
Schnorr protocol must solve the following problem.

– Input: A group description G = (g, p), a hash function h : G → Zp, and a
random group element gu.

– Output: gr, z satisfying gz = (gr)(gu)h(g
r).

We want to identify simple choices of h that make this problem hard in the
GGM. However, it will be illuminating to instead identify which choices of h will
make this problem easy.

This problem is clearly easy if h is a constant function, i.e. h(gx) = c for
all gx; the malicious prover could always win by outputting z = 0 and gr =
((gu)c)−1 = g−uc. Taking this a step further, we can argue that for any constant
c ∈ Zp, the hash function h should not output c on a 1/poly(λ) fraction of its
inputs. Otherwise, a malicious prover can pick a random z and set gr = g−uc+z.
Since gr is distributed randomly, h(gr) = c holds with 1/poly(λ) probability, in
which case z, g−uc+z is a solution.
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Put another way, as long as the min-entropy of h on a random input is
O(log(λ)), the above is a completely generic method (i.e. one that works on any
cyclic group) for breaking the resulting non-interactive protocol.

It turns out that this simple class of h—those functions which, on random
inputs, produce a low min-entropy output—are the only hash functions for which
generic group algorithms (in the sense of Shoup [53]) exist to solve the above
problem. That is, all hash functions h with super-logarithmic min-entropy can
be proven to soundly compile non-interactive Schnorr in the GGM:

Theorem 8. In the generic group model (GGM), the non-interactive Schnorr
protocol is one-time secure provided h(·) on a random input has entropy ω(log λ).

Recall that in the generic group model, group elements gx are replaced by
labels σ(x) where σ is a random injection from Zp to an exponentially-larger
label space [L] (say of size Ω(p3), where p itself is a λ-bit prime). The attacker
interacts with an oracle (who knows the truth table of σ) to perform honest group
operations such as raising a group element to a known exponent, performing the
group operation on any two group elements, and taking the inverse.

In this model, the only way an attacker can output a valid group label σ(r)
is to obtain this label from oracle queries (with overwhelming probability, any
other label it might choose to output will not have a preimage). Furthermore, if
the attacker is initialized with σ(1), σ(u) for random u ← Zp, then any label it
obtains from the oracle is of the form σ(α ·u+β), where α, β can be determined
from prior oracle queries. In other words, the attacker must “know” α and β.

The attacker is trying to find z along with σ(r) such that z = r+u ·h(σ(r)).
But the attacker knows α and β such that r = α · u+ β, so this equation can be
written as z = α · u+ β + u · h(σ(α · u+ β)). If α+ h(σ(α · u+ β)) �= 0, then the
attacker can solve for u. However, this means the attacker has found a discrete
log, which it can only do with negligible probability [53].

Therefore, it must be the case that α + h(σ(α · u + β)) = 0. However, the
poly-query attacker only learns σ(α · u+ β) for poly-many choices of (α, β), and
for each distinct choice of (α, β), the resulting label σ(α · u + β) is random.
h evaluated on a random input has min-entropy ω(log(λ)), so the probability
α+h(σ(α ·u+β)) = 0 holds is negligible; a union bound over the polynomially-
many (α, β) oracle queries completes the argument.

Schnorr Signatures in the Generic Group Model. We now consider a slightly
more difficult task: compiling Schnorr’s identification protocol into a digital sig-
nature scheme with existential unforgeability against chosen-message attacks
(EUF-CMA security).

Note that the semantics of the hash function itself are now different: the
standard Fiat-Shamir compiler for signatures takes as input a message m ∈ M
to be signed (in addition to the first message of the interactive protocol), i.e.
h : G × M → Zp. For the purposes of this technical overview, we will restrict
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to the case where M is a poly(λ)-size set.5 We stress that a restriction to only
signing “short” messages will be crucial to the following discussion.

Furthermore, the EUF-CMA security experiment requires security in the
presence of an unbounded number of signing queries. So the EUF-CMA attacker
must solve following task:

– Input: A group description G = (g, p), a hash function h : G × M → Zp,
and a random group element gu.

– Oracle Queries: The attacker is free to make an unbounded number of
queries to a signing oracle who knows u. It submits any m ∈ M, the signing
oracle samples a random r ← Zp, computes z = r + h(gr,m) · u, and returns
the signature (gr, z).

– Output: Any (m∗, (gr∗
, z∗)) where m∗ ∈ M satisfying gz∗

= (gr∗
)

(gu)h(g
r∗

,m∗)·u that was not the result of a signing query.

We would like to identify a class of hash functions h for which this problem
is hard, and as in the previous section, we will start by identifying choices of h
that make this problem easy.

Suppose that h has the following undesirable property: for some choice of m ∈
M, the random variable obtained by sampling random gr ← G and outputting
h(gr,m) has min-entropy O(log λ). In this case, breaking EUF-CMA security
can be done efficiently without any signing queries. Let c ∈ Zp be such that
h(gr,m) = c holds with noticeable probability (guaranteed to exist by the low
min-entropy property). The attack is to a uniformly random value z ← Zp, and
then compute gr = g−uc+z. Since gr is randomly distributed, then h(gr,m) = c
with noticeable probability, and the resulting (gr, z) constitutes a valid signature
on m. To prevent this attack, we must require that for all m ∈ M, the random
variable h(gr,m)gr←G has min-entropy ω(log λ).

Another undesirable property of h is the following: suppose for some choice of
distinct m,m′ ∈ M, the random variable (χh(gr,m)=h(gr,m′))gr←G (where χx=y

is the indicator function that equals 1 if x = y and 0 otherwise) has noticeable
expected value, i.e. h(gr,m) = h(gr,m′) occurs with noticeable probability. If h
satisfies this property, there is a straightforward attack using one signing query:
the attacker queries on m, learns a random valid signature (gr, z), and then
submits (m′, (gr, z)) as its forgery. Since the signing oracle provides a randomly
generated valid signature (i.e. gr is random in G), the Fiat-Shamir challenge for
the m and m′ executions will be identical with noticeable probability, meaning
the signature (gr, z) for m is a valid signature for m′ with noticeable probability.
To prevent this attack, we must require that for all distinct m,m′ ∈ M, the
random variable (χh(gr,m)=h(gr,m′))gr←G has negligible expectation.

5 This restriction can in fact be relaxed somewhat, but our positive statements for
information-theoretic Fiat-Shamir hash functions in the generic group model will
crucially rely on |M|/p being negligible in λ.
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To recap, we have the following minimum requirements on h:6.

1. For all m ∈ M, we the min entropy of h(gr,m)gr←G is ω(log λ).
2. For all distinct m,m′ ∈ M, we have Egr←G[(χh(gr,m)=h(gr,m′))] ≤ negl(λ).

It turns out that these minimum requirements on h are sufficient to guarantee
EUF-CMA security of Schnorr in the GGM:

Theorem 9. Suppose M ⊂ Zp and M = poly(λ). Let h : G × M → Zp be
any function satisfying conditions (1) and (2) above. Then the resulting Schnorr
signature scheme is EUF-CMA secure in the generic group model.

We first note that our proof of Theorem 8 implies that an attacker can-
not generate a valid forgery before it has received any signing queries. That is,
given σ(u), the attacker cannot output (m∗, (σ(r∗), z∗)) where m∗ ∈ M and
z∗ = r∗ + h(σ(r∗),m∗) · u. To see this, note that for any fixed m, the hash func-
tion h(·,m) satisfies the same min-entropy property required for non-interactive
identification (by condition (1) on h). A union bound over M implies the attacker
cannot provide a forgery for any m.

Given this analysis, we prove Theorem 9 in two steps.

– Step 1: Generate signing queries without knowledge of u. In this
step, we write down a hybrid experiment in which the adversary’s view has
no explicit dependence on the discrete logarithm u. We accomplish this by
instead programming the group oracle.

In more detail, when signing queries are answered honestly, the adversary
receives (σ(r), r + u · h(σ(r),m)). However, these signing queries can be sim-
ulated in the following way:

• Sample a random label � ← [L]
• Sample a random exponent z ← Zp.
• Program the value σ(zi − x · h(�,m)) = �. If the oracle σ was already

programmed at �, abort.
• Output the signature (�, z,m)

Moreover, this gives us an implicit representation of the group element cor-
responding to label � as a publicly known linear combination of gu and g,
namely, (gz · (gu)−h(�,m)). These group elements will all be distinct with high
probability over the choice of u.

6 This is the characterization for the case |M| = poly(λ). For larger message spaces
(that still satisfy |M|/p ≤ negl(λ)), the requirements are mildly strengthened: we
require that (1) for all targets c ∈ Zp, the probability over a random choice of r
that h(gr, m) = c for any m is negligible, and that for any m ∈ M, the probability
over a random choice of r that h(gr, m′) = h(gr, m) for any m′ is negligible (i.e., we
reversed an order of quantifiers in each requirement). These are exactly information-
theoretic analogues of the RPP and RPSP properties defined in [46].
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Essentially, this simulated experiment is indistinguishable from the real secu-
rity game as long as the programmed values σ(zi − u · h(�,m))) do not con-
tradict any of the adversary’s previous queries to the group oracle. One can
show that the probability of this is negligible because of the randomness of
u according to the adversary’s view. This is effectively an invocation of the
generic group hardness of computing discrete logs.

– Step 2: Invoke the statistical properties of h. Now that we have simu-
lated all of the signature queries, we consider a potential forgery (σ(r∗), z∗ =
r∗ + u · h(σ(r∗),m∗),m∗) and break into two cases.

• Case 1: �∗ := σ(r∗) matches one of the signing queries. In this case,
we claim that a forgery allows us to compute the discrete logarithm u.
Indeed, this is because we have a signing query equation of the form

z = r∗ + h(�∗,m)u

and a forgery equation of the form

z∗ = r∗ + h(�∗,m∗)u.

Moreover, the two hash values (h(�∗,m), h(�∗,m∗)) must be distinct
because (1) the marginal distribution on �∗ is random, and (2) we assumed
that for a random �∗, there will not exist an h-collision with prefix �∗.

• Case 2: �∗ does not match any signing query. In this case, we also
claim that a forgery allows us to compute the discrete logarithm u. Indeed,
the forgery equation

z∗ = r∗ + h(�∗,m∗)u

along with the adversary’s implicit representation of the exponent

r∗ = α + βu

(which follows from the fact that the adversary’s view can be computed
generically given only gu) implies that

z∗ = α + (β + h(�∗,m∗))u.

Then, either β + h(�∗,m∗) �= 0, in which case the adversary can indeed
compute u, or β + h(�∗,m∗) = 0. We claim that the high min-entropy of
h(�,m) for random � implies that this event is unlikely. Indeed, �∗ must
have been obtained by some group oracle query, so this follows by a union
bound over all group oracle queries made by the adversary.

This completes our proof sketch of Theorem 9.

Preprocessing Attacks. We next show how the [46] characterization of Schnorr
signature security in the GGM fails to capture security in concrete groups. Since
the attacks that we discover fall into the framework of the auxiliary-input GGM
[18,55], we then analyze Schnorr signatures in this stronger adversary model.
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We first describe an attack in the case of Schnorr signatures for short mes-
sages, using the hash function h(gr,m) = gr + m (mod p) over the group7

G = Z
×
p . We showed above that this signature scheme is secure in the generic

group model, but we will nonetheless give an attack over Z
×
p .

In order to have a well-specified protocol, we need to fix a mapping Int :
G → Z from group elements to integers. For simplicity, we choose our mapping
so that R ∈ Z

×
p maps to the unique integer a ∈ [−p−1

2 , p−1
2 ] such that R ≡ a

(mod p).
The attack proceeds as follows: we are given a random group element gu and

want to output m, gr, z satisfying gz = (gr)(gu)Int(g
r)+m. We do this by picking

r,m such that Int(gr) + m = 0 (mod p − 1) and then setting r = z. So, for
example, if the message space M contains m = p−2, then we can pick r = 0, so
that gr ≡ 1 (mod p) and 1+ p − 2 ≡ 0 (mod p − 1). This choice is by no means
special; if 1 ∈ M, then we can pick r = p−1

2 and obtain another forgery.
This strategy readily generalizes to groups beyond Z

×
p : for a cyclic group G

of order p, all that is required to produce a forgery is knowledge of an exponent
r ∈ Zp and a message μ ∈ M ⊂ Zp such that Int(gr) = −μ (mod p). It also
generalizes to the case of full Schnorr signatures over G, using hash functions of
the form h(gr,m) = Int(gr) + H(m) for a collision-resistant hash function H.
One can check that the hash function (family) h satisfies the hypotheses of [46],
so Schnorr signatures using h are secure in the GGM. However, if G has a known
equation of the form

Int(gr) = −μ,

and H additionally satisfies H(0) = μ (which can be arranged without sacrificing
collision resistance by hard-coding this value into a hash function H whose range
excludes μ), then again (r, r) is a valid signature. Thus, we see that for every
group G with some hard-coded equation Int(gr) = −μ, there exists a hash
family h satisfying the [46] hypotheses which leads to an insecure instantiation
of Schnorr signatures.

We now observe that one can view this attack as an attack in the auxiliary-
input generic group model. The Aux-Input GGM is the following adversary model
for some problem P over a group G.

– The adversary is given the description of a group G as a random injection
from G → [L] (i.e., the adversary is given the full truth tables of the group
operation).

– The adversary then stores S bits of information about this group G (and
forgets everything else).

– The adversary then receives an instance of P (as characterized by a security
game with a challenger). As in the GGM, the adversary can also query the
group oracle.

In other words, an aux-input GGM adversary is a GGM adversary that is
augmented with some S bits of non-uniform advice about the group.

7 This group does not have prime order, but this detail is not relevant to our analysis.
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Given this definition, it is easy to see that the attacks described above fall
into the aux-input GGM. Indeed, as long as the adversary “remembers” one
equation of the form Int(gr) = −μ (of which many are guaranteed to exist), it
will be able to execute an attack. Thus, one can view the attacks on Z

×
p and

other groups as the result of the following three-step process:

– There exist attacks on the schemes above in the auxiliary-input GGM. This
means that for every concrete group G, there exists a non-uniform attack on
the scheme.

– In the case of specific groups such as Z×
p , the non-uniform advice necessary to

carry out the attack can be computed efficiently given the group description.

Security in the Aux-Input GGM. Given the existence of preprocessing attacks as
above, in order to have confidence in the concrete security of a Schnorr signature
scheme using hash family h, it is necessary to prove security in the auxiliary-
input GGM.

Just as in the case of our GGM lower bounds, we give a characterization
of hash functions (and hash function families) h that lead to secure Schnorr
signatures in the auxiliary-input GGM. We state a special case of our theorem
for the purposes of this overview; we refer to the full version for a more general
statement.

Theorem 10. Let M ⊂ Zp and |M|/Zp ≤ negl(λ). Suppose the (keyed) Fiat-
Shamir hash function Hk : [L] × M → Zp satisfies the following properties:

– For any m ∈ M, h(gu,m) has min-entropy log(|M|) · log λ on a random
gu ← G.

– Zero-avoidance: For any (stateful, potentially unbounded) adversary A:

Pr
[
Hk(�,m) = 0 | � ← A(1λ), k ← K,m ← A(k)

] ≤ negl(λ);

Then Schnorr signatures with Fiat-Shamir hash function Hk are EUF-CMA
secure in the AI-GGM against adversaries (A1,A2) with advice of size S =
poly(λ), T = poly(λ) oracle queries, Q = poly(λ) signing queries.

The first of the two hypotheses is the same as in Theorem 9; the second rules
out the preprocessing attacks described above. Similarly to before, Theorem 10
says that once these attacks are avoided, no further attacks in the Aux-Input
GGM exist.

We prove Theorem 10 using the framework of [18], who show a rough equiva-
lence between the auxiliary-input GGM and an a priori weaker adversary model
called the bit-fixing GGM (BF-GGM). Informally, in the BF-GGM, instead of
learning an arbitrary S bits of information about a random group G, the adver-
sary can only remember the labels of P group elements (and their corresponding
exponents with respect to the canonical generator). In [18], it is shown that for
any (efficient and generic) challenger-adversary game, security in the AI-GGM
follows from security in the (ostensibly weaker) BF-GGM with a slight loss in
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parameters. We can apply this result directly to the soundness of Schnorr sig-
natures, reducing our problem to proving a lower bound in the BF-GGM.

Now, we can conveniently extend all of our GGM analysis (i.e., the proof of
Theorem 9 to apply in the BF-GGM (and therefore to the AI-GGM via [18]).
The BF-GGM lower bound will look very similar to before:

– Step 1: Generate signing queries without knowledge of u. We simulate
signing queries in exactly the same way as before. Some care is required to
argue that indistinguishability still holds, because the adversary additionally
has access to a short list of hard-coded group labels.

– Step 2: Invoke the statistical properties of h. We again consider a
potential forgery (σ(r∗), z∗ = r∗ + h(σ(r∗),m∗)u,m∗). This time, we break
into three cases:

• Case 0: �∗ appears in the adversary’s auxiliary information. This
case is unique to the BF-GGM setting; however, the forgery equation

z∗ = r∗ + h(�∗,m)u

allows us to solve for u unless h(�∗,m) = 0, which cannot happen (except
with negligible probability) because we assumed that h was 0-avoiding.

• Case 1: �∗ := σ(r∗) matches one of the signing queries. This case
matches our GGM analysis above.

• Case 2: �∗ does not match any signing query. This case also matches
our GGM analysis above.

This completes our proof sketch of Theorem 10.

Application: (Candidate) Simple Schnorr Signatures. One takeaway of our anal-
ysis is that it might be possible that simple compilations of Schnorr signatures
(for small message space) are secure. The appeal of such a signature scheme is
that all of the operations are extremely simple, and can be implemented with
random sampling and modular arithmetic. We stress that the only evidence we
have for security is that this scheme resists generic preprocessing attacks, and
that so far, we have been unable to leverage non-generic properties of Z

×
p to

break this scheme. Further analysis of this simple scheme is beyond the imme-
diate scope of this work, and we strongly recommend against considering this
scheme “secure” unless it withstands significant cryptanalytic effort.

Construction 11. Consider the Schnorr signature scheme for group Z
×
p , where

the Fiat-Shamir hash function has random k ← Zq, and outputs gr+m+k(mod
q) on input (gr,m):

– Group: Z×
p with a generator g of a cyclic subgroup of order q, where p = 2q+1.

– Message space: Any subset M ⊂ Zq of poly(λ) size.
– Signing key: sk ← Zq.
– Verification key: (k, gsk) where k ← Zq.
– Sign(sk,m): Sample r ← Zq. Let z = r + (gr + m + k) · sk(mod q). Output

(gr, z).
– Ver(vk,m, (gr, z)): Accept if gz = gr · (gsk)g

r+m+k(mod p).
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Extensions to Chaum-Pedersen and NIZKs for NP. Our analysis for Schnorr
signatures in the AI-GGM easily extends to prove semi-adaptive soundness of
the Chaum-Pedersen protocol for proving validity of a Diffie-Hellman tuple. As
the security analysis is extremely similar to our analysis for Schnorr, we defer
this result (and its implications for NIZKs for NP) to the full version.

2.3 Negative Results

In this section, we give a simple example of a negative result that we can prove
using our methods. In particular, we consider an idealized variant of Blum’s
Hamiltonicity protocol [8] in which the commitment scheme is instantiated with
a random oracle.

Fig. 1. The Zero Knowledge Proof System ΠBlum for Graph Hamiltonicity.

The Blum protocol Π = ΠBlum is described in Fig. 1. For this example, we
instantiate Com(b; r) = O(b, r) as an idealized bitwise commitment scheme in the
random oracle model. Π then is repeated t times in parallel to obtain soundness
error 2−t.

At first glance, especially given our positive results for Schnorr and Chaum-
Pedersen, one might hypothesize that since we have made the commitment
scheme “super-secure”, Fiat-Shamir for Πt might be instantiable with a simple
hash function h. In fact, we show that even for this idealized variant of the Blum
protocol, a (successful) Fiat-Shamir hash function h for this protocol necessarily
satisfies a cryptographic security property.

As discussed earlier, there are two variants of this result. First, we give
a polynomial-query attack on Πt

FS,h for any hash function h that does not
invoke the random oracle O. Then, we extend this polynomial-query attack to a
polynomial-time attack assuming the easiness of some computational problem
depending on h.

To understand our attack, we first consider an “obviously broken” choice of
hash function h: define h(α1, . . . , αt) = (f(α1), . . . , f(αt)) to be a fixed function
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applied to each commitment separately. This corresponds to a parallel repetition
of ΠFS,f , which is the application of Fiat-Shamir to a protocol with constant
soundness error. We know that such a non-interactive protocol is unsound via
a reset attack : given an instance G, it is possible to prepare a commitment α1

that can successfully answer either a “0” challenge or a “1” challenge. Therefore,
if α1 is prepared to answer the challenge b (for a uniformly random bit b),
we have that f(α1) = b with probability 1/2 (since α1 hides b) and so after an
expected constant number of string commitment queries, we obtain an accepting
transcript (α1, b1, γ1) for the first repetition. This can be done for each “slot”,
giving a polynomial-query break of soundness for the overall protocol.

To rephrase the attack, for our example choice of h, if one prepares enough
“fake commitments” {α

(i)
1 }, {α

(i)
2 }, . . . , {α

(i)
t } for each of the t repetitions, then

with high probability, there exists a combination of the individual commitments
that hashes to the “bad challenge” whose answer was generated along with the
commitments. We show that the above argument generalizes to all hash functions
h. The poly-query attack is as follows.

1. For 1 ≤ i ≤ t, 1 ≤ � ≤ q, sample a random bit y
(i)
� ← {0, 1} and sample

message α
(i)
� : if y

(i)
� = 0, sample α

(i)
� as in the honest protocol, while if y

(i)
� = 1,

and sample α
(�)
i as a commitment to a cycle graph.

2. Find v ∈ [q]t such that h(α[v]) = y[v]. Abort if no such v exists.
3. Output α[v] as well as the necessary decommitments to α[v] (either the entire

graph or just the edges in the cycle).

This constitutes a poly-query attack on the protocol Πt
FS,H in the random

oracle model as long as Step (2) has a solution with high probability over (α, y).
In the case h = (f, . . . , f) as above, this condition follows immediately. We show
in the full version that for any h, as long as q = ω(t), Step (2) has a solution
with high probability over (α, y).

To obtain a (conditional) polynomial-time attack on the protocol, we note
that if the solution to the problem in Step (2) can be found efficiently, then the
above attack can be implemented in polynomial time.

Crucially, the above analysis generalizes well because the computational
problem in Step (2) does not depend on the protocol. We accomplish this by
reducing breaking the soundness of Πt

FS,h to solving a “mix-and-match” problem
of the following form: given many strings {α

(i)
� } (q strings for each slot) which

are each associated with a random bit b
(i)
� , find a concatenation α[v] of t different

α
(i)
� (one for each slot) such that h(α[v]) = b[v] (the corresponding combination

of bits). This motivates our definition of “mix-and-match resistance” (see the
full version), a security property which captures the analogous problems for a
wide class of protocols Π.

While the analysis above is tailored to (parallel repeated) ΠBlum, it turns out
that the argument only relies on a couple of (basic) properties of the protocol,
namely:
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– Given a challenge β, it is possible to sample a (pseudorandom) first message α
along with an accepting response γ for α, even when the statement x is false.
This property is used to construct a mix-and-match problem in our attack,
and essentially follows from an honest-verifier zero knowledge property of the
protocol.

– The protocol is obtained by applying parallel repetition to a protocol with
polynomial-size challenge space. This independence property is enough to
guarantee that the “mix-and-match” problem information-theoretically has a
solution.

We refer the reader to the full version for more details on the extent to which
the result generalizes.
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Abstract. Zero-knowledge succinct non-interactive arguments (zk-
SNARKs) rely on knowledge assumptions for their security. Meanwhile,
as the complexity and scale of cryptographic systems continues to grow,
the composition of secure protocols is of vital importance. The cur-
rent gold standards of composable security, the Universal Composabil-
ity and Constructive Cryptography frameworks cannot capture knowl-
edge assumptions, as their core proofs of composition prohibit white-box
extraction. In this paper, we present a formal model allowing the compo-
sition of knowledge assumptions. Despite showing impossibility for the
general case, we demonstrate the model’s usefulness when limiting knowl-
edge assumptions to few instances of protocols at a time. We finish by
providing the first instance of a simultaneously succinct and composable
zk-SNARK, by using existing results within our framework.

1 Introduction

Knowledge assumptions, a class of non-falsifiable assumptions, are often used in
cases where both succinctness and extractability are required. Perhaps the most
notable modern usage is in zk-SNARKs [12,18,20–22,30,33], which typically rely
on either a knowledge-of-exponent assumption [13], the Algebraic Group Model
(AGM) [17], or the even stronger Generic Group Model (GGM) [34].

The idea of utilising additional assumptions for extraction extends outside
of what it traditionally considered a “knowledge assumption” to extractable
functions, notably extractable one-way functions [9,10], and extractable hash
functions [4]. Arguably, one of the main benefits of the random oracle model, one
of the most common “non-standard” assumptions, is to provide extractability.

The typical statement of these assumptions is that for every adversary there
exists a corresponding extractor, such that when both are given the same inputs
and randomness, the extractor can provide meaningful information about how the
output of the adversary was created. In the Algebraic Group Model, for instance,
the extractor will show how to represent the adversaries output as powers of input
group elements, and in extractable hash functions it will provide a preimage to the
output hash.

This is formalised as a security game, which is then assumed to hold axiomat-
ically. The existence of the extractor may be used in a security proof to demon-
strate the existence of a preimage. At the same time, a one-wayness property can
c© International Association for Cryptologic Research 2021
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be asserted, with this differing subtly from extraction in that an adversary to
one-wayness does not have access to the input and randomness to extract from.
This methodology has seen success in proving the security of various interesting
primitives, such as non-malleable codes [27], and SNARKs.

Proving these primitives’ security under composition would typically involve
using one of a number of off-the-shelf compositional frameworks, such as Uni-
versal Composability [8] or Constructive Cryptography [31], specifying an ideal
behaviour for the primitive, and constructing a simulator which coerces the ideal
behaviour to mimic that of the actual protocol. This simulator will naturally need
to make use of the extraction properties, often to infer the exact ideal intent behind
adversarial actions. It is in this that the conflict between extraction and compo-
sitional frameworks arises: As the extraction is white-box, the simulator requires
the input of its counter-party – the environment, or distinguisher, of the simula-
tion experiment. This cannot be allowed however, as it would give the simulator
access to all information in the system1, not just that of the adversary.

This conflict has been observed before in the literature, for instance in [28].
Often, the remedy is to extend the original protocol with additional components
to enable the simulator to extract “black-box”, i.e. without the original inputs.
For example, the Fischlin transform [15] uses multiple queries to a random oracle
to bypass the inability to extract from the commitment phase of an underlying
Sigma protocol, which would allow using the simpler Fiat-Shamir transform [14]
instead. C∅C∅ [28] extends zk-SNARKs with an encryption of the witness, and a
proof of correctness of this encryption to a public key the simulator can control.

A primary downside of these approaches is that (witness) succinctness is usu-
ally lost – size being limited by the information-theoretic reality of black-box wit-
ness extraction. Thus C∅C∅ proofs are longer than their witnesses, and UC-secure
commitments [11] are longer than the message domain. A secondary one is the
necessity of adding an encryption to the implementation of a primitive where no
decryption would be needed; in theory this is harmless but in practice, it adds
complexity without a functional purpose (beyond its usefulness in the security
argument).

The above limitation can often be bypassed by using a local random oracle,
as this does permit extraction. Restricting the model to allow the adversary to
perform only specific computations on knowledge-implying objects, could be one
way to generalise this approach. Just as a random oracle functionality would
abstract over extractable hash functions, a generic group functionality would
abstract over knowledge of exponent type assumptions. This would constitute
a far stronger assumption however, running counter to recent developments to
relax assumptions, such as the Algebraic Group Model [17], which aim for a
more faithful representation of knowledge assumptions.

Our contributions. We present the first composability framework that can
overcome the above limitations in terms of implementation complexity and

1 Recall that the simulator is the ideal-world adversary, and should by definition not
have access to secrets the distinguisher holds.
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succinctness while being reasonably accommodating to more realistic models
of computation compared to the random oracle model. In terms of applications,
our approach suggests a viable direction for the composable design of SNARKs,
a topic of current high interest due to their application in blockchain proto-
cols (with prominent examples including privacy-preserving blockchains, such
as [2,26], blockchain interoperability [19] and scalability [16]), without sacrificing
their succinctness, something infeasible with previous compositional approaches.

In more details, our work builds on the Algebraic Group Model approach
and explores its consequences for composition. Our contributions are two-fold:
We distill a notion of knowledge assumptions suitable for composable analyses,
and present a framework allowing their usage in composable security proofs.

First, we define the concept of knowledge-respecting distinguishing environ-
ments, which we will call distinguishers, to be consistent with the terminology
of Constructive Cryptography. We use the Constructive Cryptography frame-
work [31] as an orientation point for this work, due to its relative simplicity
compared to the many moving parts of UC [8], making it easier to re-establish
composition after making sweeping changes to the model, as we do in this paper.

Similar to an algebraic algorithm, distinguishers in our model need to explain
how they computed each knowledge-implying object they produce. We show how
to extend a compositional framework by giving the simulator access to these
explanations. For this purpose, we attach a type system to messages sent in the
composition framework, which can mark which parts of messages imply further
knowledge. The knowledge assumption is used to transform individual nodes in
the network into corresponding nodes which also output this implied knowledge
to a repository, which the simulator has oracle access to.

We re-establish well-known composition results with support for typed mes-
sages, and sets of valid distinguishers. The latter constrains the generality of the
composition, but is what enables the usage of knowledge assumptions, as they
require the distinguishers to be well-behaved.

Our second contribution investigates under which conditions it is reasonable
to assume knowledge-respecting distinguishers. To this end, we define stronger
versions of knowledge assumptions that depend on auxiliary and knowledge-
implying inputs. These assumptions suffice to extend a distinguisher with an
extractor providing said explanations.

Within this setting we are able to establish not only an impossibility result on
full general composition, but more interestingly a positive result on the composi-
tion of systems relying on different knowledge assumptions. Intuitively: You can
use a knowledge assumption only once, or you need to ensure the various uses
do not interfere with each other (specifically, the simulators of both invocations
cannot provide any advantage due to extraction, as shown in the example in
Sect. 5). This result has the immediate effect of enabling the usage of primitives
relying on knowledge assumptions in larger protocols – provided the underlying
assumption is not used in multiple composing proofs.

We demonstrate the power of the framework by presenting a composable
NIZK, which can be realised by any extractable zk-SNARK scheme with sim-
ulation extractability relying on the AGM. Notably, this is true of Groth’s
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zk-SNARK [1,20]. To our knowledge, this is the first time a SNARK has been
demonstrated to be composably secure without costly modifications to add
black-box extraction. We additionally demonstrate that this may be combined
with a protocol to securely instantiate an updateable reference string, when used
with SNARKs supporting this, demonstrating that despite general-case impossi-
bility, special composition cases that are highly relevant to current applications
are provable within the framework.

2 Modelling Knowledge Assumptions

We formally define knowledge assumptions over a type of knowledge-implying
objects X. When an object of the type X is produced, the assumption states
that whoever produced it must know a corresponding witness of the type W . The
knowledge of exponent assumption is an example of this, where X corresponds
to pairs of group elements, and W is an exponent. A relation R ⊆ X ×W defines
which witnesses are valid for which knowledge-implying objects.

In the case of the knowledge of exponent assumption, it roughly states that
given a generator, and a random power s of the generator, the only way to
produce a pair of group elements, where one is the sth power of the other, is
to exponentiate the original pair, and in so doing implying knowledge of this
exponent. There is one extra item needed: The initial exponent s needs to be
sampled randomly. Indeed, this is true for any knowledge assumption: The all-
quantification over potential distinguishers implies the existence of distinguishers
which “know” objects in X without knowing their corresponding witness. To
avoid this pre-knowledge, we assume X itself is randomly selected at the start of
the protocol. For this purpose, we will assume a distribution init, which given a
source of public randomness (such as a global common random string), produces
public parameters pp, which parameterise the knowledge assumption. In the case
of knowledge of exponent, this needs to sample an exponent s, and output the
pair (g, gs). For this particular setup, public randomness is insufficient.

Beyond this, users do not operate in isolation: If Alice produces the pair
(gx, gxs), knowing x and transmits this to Bob, he can produce (gxy, gxys) with-
out knowing xy. This does not mean that the knowledge assumption does not
hold, however it is more complex than one might originally imagine: One party
can use knowledge-implying objects from another user as (part of) their own wit-
nesses. Crucially this needs to be limited to objects the user actually received:
Bob cannot produce (gsy, gs2y) for instance, as he never received (gs, gs2

), and
does not know s. This setting also lends itself more to some interpretations of
knowledge assumptions than others. For instance, the classical knowledge-of-
exponent assumption [13] does not allow linear combinations of inputs, while
the t-knowledge-of-exponent assumption [23] does. When used composably, the
latter is more “natural”, in much the same way that IND-CCA definitions of
encryption fit better into compositional frameworks than IND-CPA ones, due to
them already accounting for part of the composable interaction.
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Definition 1 (Knowledge Assumption). A knowledge assumption K is
defined by a tuple (init,X,W,R) consisting of:
1. init, a private-coin distribution to sample public parameters pp from, which

the others are parameterised by.
2. Xpp, the set of all objects which imply knowledge.
3. Wpp, the set of witnesses, where ∀x ∈ Xpp : (input, x) ∈ Wpp.
4. Rpp : (I ⊆ Xpp) → (Y ⊆ (Xpp × Wpp)), the relation new knowledge must

satisfy, parameterised by input objects, where

∀x, y ∈ Xpp, I ⊆ Xpp : (x, (input, y)) ∈ Rpp(I) ⇐⇒ x = y ∧ x ∈ I.

Rpp must be monotonically increasing: ∀I ⊆ J ⊆ Xpp : Rpp(I) ⊆ Rpp(J).
The inclusion of (input, x) in Wpp and Rpp for all x ∈ Xpp ensures that parties
are permitted to know objects they have received as inputs, without needing
to know corresponding witnesses. Importantly, this is possible only for inputs,
and not for other objects. For each knowledge assumption K, the assumption
it describes is in a setting of computational security, with a security parameter
λ. Broadly, the assumption states that, for a restricted class of “K-respecting”
adversaries, it is possible to compute witnesses for each adversarial output, given
the same inputs.

Assumption 1 (K-Knowledge). The assumption corresponding to the tuple
K = (init,X,W,R) is associated with a set of probabilistic polynomial time (PPT)
algorithms, RespK. We will say an algorithm is K-respecting if it is in RespK. This
set should contain all adversaries and protocols of interest. The K-knowledge
assumption itself is then that, for all A ∈ RespK, there exists a PPT extractor
X , such that:

Pr

⎡
⎢⎣
pp

r←− init;
∃I ⊆ Xpp, aux ∈ {0, 1}∗ :
Game 1(Ar′ ,Xr′ , pp, I, aux)

⎤
⎥⎦ ≤ negl(λ),

where Ar′ and Xr′ are A and X supplied with the same random coins r′ (as
such, they behave deterministically within Game 1).

While it is trivial to construct adversaries which are not K-respecting by
encoding knowledge-implying objects within the auxiliary input, these trivial
cases are isomorphic to an adversary which is K-respecting, and which receives
such encoded objects directly. We therefore limit ourselves to considering adver-
saries which communicate through the “proper” channel, rather than covertly. In
this way, we also bypass existing impossibility results employing obfuscation [7]:
We exclude by assumption adversaries which would use obfuscation.

Game 1 (Knowledge Extraction). The adversary Ar wins the knowledge
extraction game if and only if it outputs a series of objects in Xpp, for which the
extractor Xr fails to output the corresponding witness:

let �x ← Ar(I, aux), �w ← Xr(I, aux) in �x ∈ X∗
pp ∧

|�x|∨
i=1

(xi, wi) /∈ Rpp(I).
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Crucial for composition are the existential quantifications, which combined state
that we assume extraction for all of the following:

– Algorithms in RespK – Input objects I – Auxiliary inputs aux

This makes knowledge assumptions following Assumption 1 stronger than their
typical property-based definitions. It is also non-standard as a result, as it relies
on quantifiers within a probability experiment. While the adversarial win condi-
tion is well-defined, it is not necessarily computable. Nevertheless, quantifications
are required for their usage in composable proofs.

2.1 Examples of Knowledge Assumptions

To motivate this definition, we demonstrate that it can be applied to various
commonly used knowledge assumptions, including the knowledge of exponent
assumption, the Algebraic Group Model and variants, and even to random ora-
cles. We detail our flavour of the AGM here, and leave the details of the others
to the full version of this paper [24, Appendix E]. Witnesses naturally seem to
form a restricted expression language describing how to construct a knowledge-
implying object. A more natural way to express the relation R is often an eval-
uation function over witnesses, returning a knowledge-implying object.

The Algebraic Group Model. Assuming a distribution groupSetup providing a
group G and a generator g, we can recreate the Algebraic Group Model [17] as
a knowledge assumption fitting Definition 1:

KAGM := (init,X,W,R)
init := groupSetup

X := G

W := { (op, a, b) | a, b ∈ W } ∪
{ (input, i) | i ∈ X } ∪
{ generator }

eval(I, w) :=

⎧
⎪⎨
⎪⎩

eval(g) ◦ eval(h) if w = (op, g, h)
i if w = (input, i) ∧ i ∈ I

g if w = generator

(x,w) ∈ R(I) ⇐⇒ x = eval(I, w)

3 Typed Networks of Random Systems

While it is not our goal to pioneer a new composable security framework, existing
frameworks do not quite fit the needs of this paper. Notably, Universal Com-
posability [8] has many moving parts, such as session IDs, control functions and
different tapes which make the core issues harder to grasp. Constructive Cryp-
tography [31] does not have a well-established notion of globality and makes
variable numbers of interfaces difficult to implement, which make the transfor-
mations we will later perform trickier.
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Furthermore, the analysis of knowledge assumptions benefits from a clear
type system imposed on messages being passed – knowing which parts of mes-
sages encode objects of interest to knowledge assumptions (and which do not)
makes the analysis more straightforward. Due to both of these reasons, we con-
struct a compositional framework sharing many similarities with Constructive
Cryptography, however using graphs (networks) of typed random systems as the
basic unit instead of random systems themselves. Crucially, when we establish
composition within this framework, we do so with respect to sets of valid dis-
tinguishers. This will allow us to permit only distinguishers which respect the
knowledge assumption.

Our definitions can embed existing security proofs in Constructive Cryptogra-
phy, and due to the close relation between composable frameworks, likely also those
in other frameworks, such as UC. Notably, our results directly imply that primi-
tives proven using knowledge assumptions under this framework can be directly
used in place of hybrids in systems proven in Constructive Cryptography.

3.1 Type Definition

We introduce a rudimentary type system for messages passed through the net-
work. For a casual reader, the details of this are unimportant – understanding
that the type system allows filtering which parts of messages are relevant to a
knowledge assumption and which aren’t is sufficient to follow our construction.

Nevertheless, we formally define our type system as consisting of a unit type
1, empty type 0, sum and product types τ1 + τ2/τ1 × τ2, and the Kleene star τ∗.
This type system was chosen to be minimal while still:

1. Allowing existing protocols to be fit within it. As most of cryptography oper-
ates on arbitrary length strings, (1 + 1)∗, or finite mathematical objects,
1 + . . . + 1, these can be embedded in the type system.

2. Allowing new types to be embedded in larger message spaces. The inclusion
of sum types enables optional inclusion, while product types enables inclusion
of multiple instances of a type alongside auxiliary information.

We stress that this type system may be (and will!) extended, and that a richer
system may make sense in practice. Types follow the grammar

τ ≡ 0 | 1 | τ1 + τ2 | τ1 × τ2 | τ∗,

and the corresponding expression language follows the grammar

E ≡ � | inj1(E) | inj2(E) | (E1, E2) | ε | E1 ::E2.

We will also use 2 to represent 1 + 1, and 0 and 1 for inj1(�) and inj2(�)
respectively. Formally, the typing rules are:

� � : 1
� x : τ1

� inj1(x) : τ1 + τ2

� x : τ2

� inj2(x) : τ1 + τ2

� x : τ1 � y : τ2

� (x, y) : τ1 × τ2
� ε : τ∗ � x : τ � �x : τ∗

� x :: �x : τ∗
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Note that there is no means to construct the empty type 0.

Knowledge assumptions. We expand this basic type system by allowing objects
to be annotated with a knowledge assumption. Specifically, given a knowledge
assumption K = (init,X,W,R), where init returns pp : τ , and for all pp in the
domain of init, both Xpp and Wpp are valid types, there are two additional types
present:

1. The type of knowledge-implying objects in K: [Kpp] (equivalent to Xpp)
2. The type of witnessed objects in K with respect to an input set of knowledge

I: ∀I ⊆ Xpp : 〈Kpp, I〉 (equivalent to Xpp × Wpp)

Formally then, we define K types through the grammar

τ ≡ 0 | 1 | τ1 + τ2 | τ1 × τ2 | τ∗ | [Kpp] | 〈Kpp, I〉,
with the corresponding expression grammar being

E ≡ � | inj1(E) | inj2(E) | (E1, E2) | ε | E1 ::E2 | [E]Kpp | 〈E〉I
Kpp

.

Crucially, the types of messages may depend on prior interactions. This is
particularly obvious with the set of input knowledge I, which will be defined as
the set of all previously received x : [Kpp], however it also applies to pp itself,
which may be provided from another component of the system. This allows
for the secure sampling of public parameters, or delegating this to a common
reference string (CRS). The typing rules are extended with the following two
rules, where Xpp and Wpp are type variable:

� x : Xpp � w : Wpp (x,w) ∈ Rpp(I)
� 〈x,w〉I

Kpp
: 〈Kpp, I〉

� x : Xpp

� [x]Kpp : [Kpp]

3.2 Random Systems

We use the same basic building-block as Constructive Cryptography [31]: Ran-
dom systems [32]. We briefly recap this notion:

Definition 2. An (X ,Y)-random system F is an infinite sequence of conditional
probability distributions PF

Yi|XiY i−1 for i ≥ 1, where X and Y distribute over X
and Y respectively.

Specifically, random systems produce outputs in the domain Y when given
an input in X , and are stateful – their behaviour can depend on prior inputs
and outputs. [31] itself works with random systems based on an automaton with
internal state; such an automaton can then also be constrained to a reasonable
notion of feasibility, such as being limited to a polynomial number of execution
steps with respect to some security parameter.

We will not go into depth on modelling computational security, as it is not the
primary focus of this paper, however we will assume the existence of a feasibility
notion of this type. We follow the approach of [29], and consider random systems
as equivalence classes over probabilistic systems. We make a minor tweak to the
setting of [31] as well, and use random-access machines instead of automata.
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3.3 Typed Networks

We will consider networks of random systems (which can be considered as
labelled graphs) as our basic object to define composition over.

Definition 3 (Cryptographic Networks). A typed cryptographic network is
a set of nodes N , satisfying the following conditions:

1. Each node n ∈ N is a tuple n = (In, On, τn, Rn, An) representing:
– In a set of available input interfaces.
– On a set of available output interfaces.
– τn : In ∪ On → T , a mapping from interfaces to their types.
– Rn, a

(∑
i∈In

τn(i),
∑

o∈On
τn(o)

)
random system.

– An ⊆ In ∪ On, the subset of interfaces which behave adversarially.
2. Both input and output interfaces are unique within the network:

∀a, b ∈ N : a �= b =⇒ Ia ∩ Ib = ∅ ∧ Oa ∩ Ob = ∅.

3. Matching input and output interfaces define directed channels in the implied
network graph. Therefore, where a, b ∈ N, i ∈ Oa ∩ Ib:
– The interface types match: τa(i) = τb(i).
– The edges have a consistent adversariality: i ∈ Aa ⇐⇒ i ∈ Ab.

We denote the set of all valid cryptographic networks by N.

This corresponds to a directed network graph whose vertices are nodes, and
whose edges connect output interfaces to their corresponding input interface.

Composing multiple such networks is a straightforward operation, achieved
through set union. While the resulting network is not necessarily valid, as it
may lead to uniqueness of interfaces being violated, it can be used to construct
any valid network out of its components. We also make use of a disjoint union,
A � B, by which we mean the union of A and B, while asserting that A and B
are disjoint. Due to the frequency of its use, we will allow omitting the disjoint
union operator, that is, we write AB to denote A � B.

Definition 4 (Unbound Interfaces). In a typed cryptographic network N ,
the sets of unbound input and output interfaces, written I(N) and O(N), respec-
tively, are defined as the set of all tuples (i, τ) for which there exists a ∈ N
and i ∈ Ia (resp. i ∈ Oa), where for all b ∈ N , i /∈ Ob (resp. i /∈ Ib), with τ
being defined as its type, τa(i). Furthermore, IOH(N) is defined as the unbound
honest interfaces: all (i, ·) ∈ I(N) ∪ O(N), where i is honest, that is, where
∀a ∈ N : i /∈ Aa.

We can define a straightforward token-passing execution mechanism over
typed cryptographic networks, which demonstrates how each network behaves as
a single random system.2 We primarily operate with networks instead of reducing
2 Termination is an issue here, in so far as the network may loop infinitely using

message passing. We consider a non-terminating network to return the symbol ⊥,
although this might render the output uncomputable.
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them to a single random system to preserve their structure: It allows easily
applying knowledge assumptions to each part, and enables sharing components
in parallel composition, a requirement for globality.

Definition 5 (Execution). A typed cryptographic network N , together with an
ordering of I(N) and O(N) defines a random system through token-passing exe-
cution, with the input and output domains

∑
(·,τ)∈I(N) τ/

∑
(·,τ)∈O(N) τ , respec-

tively. Execution is defined through a stateful passing of messages – any input
to N will be targeted to some (i, ·) ∈ I(N). The input is provided to the random
system Ra, for which i ∈ Ia. Its output will be associated with an o ∈ Oa. If there
exists a b ∈ N such that o ∈ Ib, it is forwarded to Rb, continuing in a loop until
no such node exists. At this point, the output is associated with (o, ·) ∈ O(N)
(note that, if O(N) = ∅, the corresponding random system cannot be defined, as
it has an empty output domain), and is encoded to the appropriate part of the
output domain.

The full version of this paper [24, Appendix A] goes into more detail
on the semantics, formally describing the functions exec(N, i, x) and
execState(N, i, x,Σ). In order to help with preventing interface clashes, we intro-
duce a renaming operation.

Definition 6 (Renaming). For a cryptographic network N , renaming inter-
faces a1, . . . , an to b1, . . . , bn, is denoted by:

N [a1/b1, . . . , an/bn] := { m ∈ N | m[a1/b1, . . . , an/bn] } .

Where, for m = (Im, Om, τm, ·, Am), m[a1/b1, . . . , an/bn] is defined by replacing
each occurrence of ai in the sets Im, Om and Am with the corresponding bi, as
well as changing the domain of τm to accept bi instead of ai, with the same effect.

To ensure renaming does not introduce unexpected effects, we leave it unde-
fined when any of the output names bi are present in the network N , and are
not themselves renamed (i.e. no aj exists such that aj = bi). Likewise, we pro-
hibit renaming where multiple output names are equal. For a set of cryptographic
networks, the same notation denotes renaming on each of its elements.

When talking about valid distinguishers, these are sets of cryptographic networks
closed under internal renaming.

Definition 7 (Distinguisher Set). A set of distinguishers D ⊆ N is any
subset of N which is closed under internal renaming: For any D ∈ D, �n = a1/b1,
. . . , an/bn, where no ai or bi are in I(D) or O(D), D[�n] ∈ N =⇒ D[�n] ∈ D.

Composition is also defined for distinguisher sets. Given a set of networks
D and a network A, DA is defined as the closure under internal renaming of
{ DA | D ∈ D : DA ∈ N }. Observe that N is closed under composition, and
therefore NA ⊆ N for any A ∈ N. Renaming for distinguisher sets is defined
similarly, allowing distinguisher sets to give special meaning to some external
interfaces, but not to internal ones.
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3.4 Observational Indistinguishability

Now that we have established the semantics of cryptographic networks, we can
reason about their observational indistinguishability, defined through the statis-
tical distances of their induced random systems combined with arbitrary distin-
guishers. The indistinguishability experiment is visualised in Fig. 1.

Definition 8 (Observational Indistinguishability). Two cryptographic
networks A and B are observationally indistinguishable with advantage ε with
respect to the set of valid distinguishers D, written A

ε,D∼ B, if and only if:

– Their unbound inputs and outputs match: I(A) = I(B) ∧ O(A) = O(B).
– For any network D ∈ D for which DA and DB are both in N, with

I(DA) = I(DB) = (·,1) and O(DA) = O(DB) = (·,2), the statistical dis-
tance δD(A,B) is at most ε, where

δD(A,B) := sup
D∈D

ΔD(A,B)

ΔD(A,B) := |Pr(DA = 1) − Pr(DB = 1)|.
To simplify some corner cases, where ∀D ∈ D : DA /∈ N ∨ DB /∈ N, we
consider δD(A,B) to be 0 – in other words, we consider undefined behaviours
indistinguishable.

The D term is omitted if it is clear from the context.

Fig. 1. A visual representation of a non-specific A
D∼ B experiment, with solid lines

representing honest interfaces, and dashed representing adversarial interfaces.

Observe that observational indistinguishability claims can be weakened:

A
ε,D1∼ B ∧ D2 ⊆ D1 =⇒ A

ε,D2∼ B (1)

Lemma 1 (Observational Renaming). Observational indistinguishability is
closed under interface renaming:

∀A,B ∈ N,D ⊆ N, ε, �n : A[�n], B[�n] ∈ N ∧ A
ε,D∼ B =⇒ A[�n]

ε,D[�n]∼ B[�n]
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Proof. By precondition, we know that I(A) = I(B) ∧ O(A) = O(B), that
δD(A,B) ≤ ε, and that D is closed under renaming. As renaming is restricted
by definition to not create any new connections, I(A[�n]) = I(A)[�n] = I(B)[�n] =
I(B[�n]), and likewise for O. As D remains unchanged, it remains to show that
supD∈D |Pr(DA[�n] = 1) − Pr(DB[�n] = 1)| ≤ ε.

Consider how, for D ∈ D, (DA)[�n] and (DB)[�n], are related to D′(A[�n])
and D′(B[�n]). If (DA)[�n] is well-defined, then for D′ = D[�n], then (DA)[�n] =
D′(A[�n). Moreover, for any D′ ∈ D, there exists some internal renaming �m
such that (D′[�m]A)[�n] and (D′[�m]B)[�n] are well-defined, as the renaming �m
can remove the potential name clashes introduced by �n. As D is closed under
renaming, it is therefore sufficient to show that supD∈D |Pr((DA)[�n] = 1) −
Pr((DB)[�n] = 1)| ≤ ε. As the execution semantics of (DA)[�n] and (DB)[�n] does
not use interface names, this is equivalent to supD∈D |Pr(DA = 1) − Pr(DB =
1)| = δD(A,B) ≤ ε. ��
Lemma 2 (Observational Equivalence). Observational indistinguishability
is an equivalence relation: It is transitive3 (Eq. 2), reflexive (Eq. 3), and sym-
metric (Eq. 4). For all A,B,C ∈ N,D ⊆ N, ε1, ε2 ∈ R:

A
ε1,D∼ B ∧ B

ε2,D∼ C =⇒ A
ε1+ε2,D∼ C (2)

A
0,D∼ A (3)

A
ε1,D∼ B ⇐⇒ B

ε1,D∼ A (4)

Proof. We prove each part independently, given the well-known fact that statis-
tical distance forms a pseudo-metric [31].

Transitivity. The equality of the input and output interfaces can be established
by the transitivity of equality. The statistical distance is established through
the triangle equality. Specifically, for all D ∈ D, ΔD(A,C) ≤ ΔD(A,B) +
ΔD(B,C) ≤ ε1 + ε2. The only case where this is not immediate is if DB /∈ N,
which occurs in the case of an internal interface name collision – resolvable with
renaming and use of Lemma 1. ��

Reflexivity. By the reflexivity of equality for input and output interfaces, and
δD(A,A) = 0 being established for pseudo-metrics. ��

Symmetry. By the symmetry of equality, and pseudo-metrics. ��
Lemma 3 (Observational Subgraph Substitution). Observational indis-
tinguishability is closed under subgraph substitution.

∀A,B,C ∈ N,D ⊆ N, ε ∈ R : A
ε,DC∼ B ⇐⇒ CA

ε,D∼ CB

3 Technically, due to the error terms, the relation is not transitive, but obeys a triangle
inequality, and as a result it is also not an equivalence relation. We view this as a
weak transitivity instead, as in practice, for negligible error terms, it behaves as
such.
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Proof. The equality of outgoing interfaces is trivially preserved under substitu-
tion, as the outgoing interfaces of A and B are the same by assumption.

We know that ∀D ∈ DC : ΔD(A,B) ≤ ε. Suppose there existed a distin-
guisher D ∈ D such that ΔD(CA,CB) ≥ ε. Then, we can define D′ ∈ DC as
DC, redrawing the boundary between distinguisher and network. By definition,
D′ ∈ DC, allowing us to conclude ∃D′ ∈ DC : ΔD′

(A,B) ≥ ε, arriving at a
contradiction. The proof runs analogously in the opposite direction. ��
Corollary 1. For D = N, observational indistinguishability has the following,
simpler statement for closure under subgraph substitution:

∀A,B,C ∈ N, ε : A
ε,N∼ B =⇒ CA

ε,N∼ CB

3.5 Composably Secure Construction of Networks

(Composable) simulation-based security proofs are then proofs that there exists
an extension to one network connecting only on adversarial interfaces, such that
it is observationally indistinguishable to another. We visualise and provide an
example of construction in Fig. 2. Please be aware that despite the similar nota-
tion and model, the notion of construction described here differs significantly
from that used in Constructive Cryptography.4

Definition 9 (Network Construction). A network A ∈ N constructs
another network B ∈ N with respect to a distinguisher class D with simula-

tor α ∈ N and error ε ∈ R, written A
ε,α,D

B, if and only if A
ε,D∼ αB and α

and B have disjoint honest interfaces: IOH(α)∩IOH(B) = ∅. The D term may
be omitted when it is clear from the context, the α term may be omitted when it
is of no interest, and the ε term may be omitted when it is negligible.

Fig. 2. A visual representation of a non-specific A
α,D

B experiment.

4 Specifically, Constructive Cryptography’s construction moves the real-world proto-
col into the notation, becoming rather a statement of “resource A can be used to
construct resource B”. By contrast, this paper’s construction statement is closer to
UC-emulation, being a statement of “system A is at least as secure as system B”.
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As with observational indistinguishability, network construction statements
can be arbitrarily weakened. Furthermore, it is directly implied by indistin-
guishability:

A
ε,α,D1

B ∧ D2 ⊆ D1 =⇒ A
ε,α,D2

B (5)

A
ε,D∼ B =⇒ A

ε,∅,D
B (6)

Theorem 1 (Generalised Composition). Network construction is compos-
able, in that is satisfies transitivity (Eq. 7), subgraph substitutability (Eq. 8),
and renameability (Eq. 9). For all A,B,C, α, β ∈ N,D ⊆ N, ε1, ε2 ∈ R, �n:

A
ε1,α,D

B ∧ B
ε2,β,Dα

C ∧ αβC ∈ N =⇒ A
ε1+ε2,αβ,D

C (7)

A
ε1,α,DC

B ∧ IOH(C) ∩ IOH(αB) = ∅ =⇒ CA
ε1,α,D

CB (8)

A[�n], α[�n]B[�n] ∈ N ∧ A
ε1,α,D

B =⇒ A[�n]
ε1,α[�n],D[�n]

B[�n] (9)

Proof. We will prove each of the three properties separately.

Transitivity. By assumption, we know that A
ε1,D∼ αB and B

ε2,Dα∼ βC. By
Lemma 3, we can conclude that αB

ε2,D∼ αβC. By transitivity (Lemma 2), we

conclude that A
ε1+ε2,D∼ αβC.

Observe that β and C, as well as α and B have disjoint honest interfaces by
assumption. As B

ε2,D∼ βC, they have the same public-facing interfaces. As αβC
is well-defined, and as α and B have disjoint honest interfaces, so does α and
βC. From each of α, β, and C’s honest interfaces being disjoint, we conclude
that so are αβ and C’s. ��

Closure under subgraph substitution. By assumption, we know A
ε1,DC∼ αB. By

Lemma 3, we can conclude that CA
ε1,D∼ CαB. As composition is a disjoint

union, it is commutative, and therefore CαB = αCB. The interface disjointness
requirement is satisfied by the precondition. ��

Closure under renaming. By assumption, we know A
ε1,D∼ αB. By Lemma 1,

we conclude that A[�n]
ε1,D[�n]∼ (αB)[�n] = α[�n]B[�n]. As α[�n]B[�n] ∈ N, both α[�n]

and B[�n] are in N. As the honesty of edges remains unaffected by subgraph
substitution, name collisions are not introduced, the disjointness requirement
is also satisfied. Combined, this implies network construction in the renamed
setting. ��

From the generalised composition theorem, which notably relies on modifying
the distinguisher set (e.g. from D to Dα in Eq. 7), we can infer operations similar
to sequential and parallel composition in Constructive Cryptography, given D =
N. For any D, identity also holds, due to the identity of indistinguishability, and
indistinguishability lifting to construction.
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Corollary 2 (Traditional Composition). For D = N, honest net-
work construction has the following, simpler statements for universal
transitivity (Eq. 10) and universal closure under subgraph sub-
stitution (Eq. 11). Identity (Eq. 12) holds regardless of D. For all
A,B,C, α, β ∈ N, ε1, ε2 ∈ R,D ⊆ N:

A
ε1,α,N

B ∧ B
ε2,β,N

C ∧ αβC ∈ N =⇒ A
ε1+ε2,αβ,N

C (10)

A
ε1,α,N

B ∧ IH(C) ∩ IH(αB) = ∅ =⇒ CA
ε1,α,N

CB (11)

A
0,∅,D

A (12)

4 The Limited Composition of K-Networks

Having established a composition system which allows restricting the domain of
permissible distinguishers, and having formalised the general notion of knowl-
edge assumptions, we can now establish the main contribution of this paper:
Permitting extraction from knowledge assumptions within a composable setting.

We use a similar idea to that of “algebraic adversaries” in the Algebraic
Group Model [17], requiring random systems to output not only knowledge-
implying objects, but also their corresponding witness. We then add new nodes
to the network which gather all data extracted in this way in a central repository
of knowledge for each knowledge assumption. Crucially, while the distinguisher
supplies witnesses for all knowledge-implying objects it outputs, it is not capable
of retrieving witnesses from other parts of the system.

Simulators are provided with read access to this repository, allowing the
simulator to extract the knowledge it requires, but not any more about the
behaviour of honest parties. The composition of constructions using knowledge
assumptions is proven, provided the parts being composed do not both utilise
the same knowledge assumption. In such a case, Theorem 1 provides a fall-back
for what needs to be proven, namely that the simulator of one system does not
permit distinguishing in the other system. At a technical level, modifications
to Definition 3 are needed to allow types to depend on previously transmitted
values. We note these formally in the full version of this paper [24, Appendix C].
This section serves as a detailed proof sketch, with [24, Appendix C] addressing
some of the subtleties.

4.1 Knowledge Respecting Systems

The Algebraic Group Model [17] popularised the idea of “algebraic” adver-
saries, which must adhere to outputting group elements through a representation
describing how they may be constructed from input group elements. Security
proofs in the AGM assume that all adversaries are algebraic, and therefore the
representation of group elements can be directly accessed in the reduction – by
assumption it is provided by the adversary itself.
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While this is equivalent to an extractor-based approach, for composition we
will follow a similar “algebraic” approach. The premise is that for any random
system R outputting (among other things) knowledge-implying objects in K, it
is possible to construct an equivalent random system K(R), which outputs the
corresponding witnesses as well, provided each step of the random system is
governed by a K-respecting algorithm.

Recall that a random system is an infinite sequence of probability distribu-
tions. As this is not in itself useful for applying Definition 1, we instead inter-
pret them as an equivalence class over stateful, interactive, and probabilistic
algorithms [29], with associated input and output types. For any such typed
algorithm A and knowledge assumption Kpp, A can be separated into A1 and
A2, where A1 outputs only a series of [Xpp] values, and A2 all the remaining
information, such that A’s output can be trivially reconstructed by inserting the
[Xpp] values of A1 into the gaps in A2’s outputs. Likewise, inputs can be split
into the �I and aux inputs used in Game 1. Given this, we can define when a ran-
dom system is K-respecting. Each such system has a corresponding “K-lifted”
system, which behaves “algebraically”, in that it also output witnesses.

Definition 10 (K-Respecting Systems). A typed random system R is said
to be K-respecting (or R ∈ RespSysK), if and only if its equivalence class of
stateful probabilistic algorithms contains a stateful algorithm A that when split
as described in Subsect. 4.1 into A1 and A2, satisfies A1 ∈ RespK. For a set �K,
RespSys�K :=

⋂
K∈�K RespSysK.

Definition 11 (�K-Lifted Systems). A typed random system R induces a
set of �K-lifted random systems. This is defined by replacing, for any K =
(·,X,W,R) ∈ �K, any (part of) an output from R with type [Kpp] with (a part
of) the output with type 〈Kpp, IKpp〉, where IKpp is constructed as the set of all

prior inputs to R of type [Kpp]. The output (part) 〈x,w〉IKpp

Kpp
of the lifted system

must be such that the equivalent output (part) on the unlifted system is [x]Kpp ,
and (x,w) ∈ RKpp(IKpp) with overwhelming probability.

Theorem 2 (�K-Lifting is Possible). For random systems R ∈ RespSys�K, at
least one �K-lifting of R, denoted �K(R), exists.

Proof. Split R into algorithms AK for each K ∈ �K, and A∗ for the remaining
computation, such that each AK outputs only [K], and A∗ outputs no such values,
as described above. Then, by Assumption 1, there exist corresponding extractors
XK for each K ∈ �K, such that given the same inputs XK outputs witnesses to the
knowledge-implying objects output by AK.

Replace AK with A′
K, which runs both AK and XK, and outputs 〈x,w〉K,

where [x]K is the output of AK, and w is the output of XK. When reassembled
into a random system, this modification satisfies Definition 11. ��
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4.2 Lifting Networks for Knowledge Extraction

The set of �K-respecting random systems RespSys�K, along with the transformation
�K(R) for any R ∈ RespSys�K, provides a means of lifting individual random
systems. Applied to networks, it is clear something more is necessary – the
lifting does not preserve the types of output interfaces, and to permit these to
match again some additional changes need to be made to the networks. Looking
forward, the lifted systems will interact with a separate, universal node repo,
which stores witnesses for the simulator to access.

We extend the notion of �K-respecting to apply to networks, a network is
�K-respecting if and only if all vertices in it are also �K-respecting (we will use
RespNet�K as the corresponding set of �K-respecting networks5). In lifting networks
in this set, not only is each individual node lifted, but all outgoing connections
are connected to a new node, which we name Charon, which acts as a relay;
re-erasing witnesses, while also informing a central repository of knowledge (out-
side of this network) of any witnesses it processes. We take the name from the
ferryman of the dead in ancient Greek mythology, who in our case demands his
toll in knowledge rather than coins. For any �K-respecting network N , we define
the lifting �K(N) as follows:

Definition 12 (Network Lifting). The network lifting �K(N) for any crypto-
graphic network N ∈ RespNet�K is defined to compose as expected. In particular,
if there exists �K′, N ′ : N = �K′(N ′), then �K(N) is defined as (�K ∪ �K′)(N ′). Oth-
erwise6, �K(N) is defined as consisting of nodes n′ for each node n ∈ N , where
Rn′ = �K(Rn), and each output interface is renamed to a unique7 new interface
name. For each output interface now named x, and previously named y in N ,
�K(N) contains a new node Charon(�K, adv), where adv denotes if the interface
is adversarial, connected to free interfaces on the knowledge repository repo
and the public parameters for each knowledge assumption. Note that repo is
not part of the lifted network itself, which allows disjoint networks to remain
disjoint when lifted.

We specify the node Charon in full detail in [24, Appendix B], along with the
node repo(K), which collects witnesses from Charon, and provides adversarial
access to them. repo allows for some variation. For instance, it could

1. Return the set of all witnesses.
2. Return at most one witness.
3. Abort when no witness is available.

5 This set also forbids interface name clashes with repo, ensuring this can be safely
inserted, and is a subset of N.

6 Note that this is well-founded recursion, due to the base-case of �K = ∅, and as the
order in which knowledge assumptions are added does not affect Charon or repo.

7 Where we assume uniqueness, this is assumed globally: In �K(A)�K(B), the uniquely

selected interface names should not clash, therefore being the same as �K(AB).
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4. For recursive witnesses (such as those used in the AGM and KEA assump-
tions), consolidate the witness into a maximal one, by recursively resolving
(input, i) terms.

We focus on 1, as it is the simplest. The set of valid �K-distinguishers D�K is
defined with respect to repo, where we assume the choice of variation is made
separately for each knowledge assumption. Informally, it ensures that all parts
of the distinguisher are �K-lifted, and the distinguisher collects all witnesses in
a central knowledge repository repo, but does not retrieve witnesses from this,
effectively only providing access to the simulator.

Definition 13 (�K-Distinguishers). The set of valid �K-distinguishers D�K, for
any set of knowledge assumptions �K, is defined as the closure under internal
renaming of ⎧

⎨
⎩

�K(N) ∪
⋃

K∈�K

repo(K)

∣∣∣∣∣∣
N ∈ RespNet�K

⎫
⎬
⎭ .

Note that as N ∈ RespNet�K, it cannot directly connect to any of the repo nodes.

As the number of repo and public parameter interfaces may differ between
the real and ideal world, we must normalise them before establishing indistin-
guishability. To do so, we wrap both worlds to contain an additional node, which
we name ⊥, which consumes all remaining interfaces, depending on the number
already used. Formally, this is defined in [24, Appendix B.3].

Given these definitions, existing indistinguishability and construction results
between �K-respecting networks can be lifted to equivalent results between the
lifted networks, with respect to �K-distinguishers:

Lemma 4 (Indistinguishability Lifting). If A1A2

ε,D�K1∼ B1B2, where for
i ∈ {1, 2}, Ai, Bi ∈ RespNet�K2

, �K1 ∩ �K2 = ∅, and �K := �K1 ∪ �K2, then:

A1A2

ε,D�K1∼ B1B2 =⇒ A1
�K2(A2)

ε,D�K∼ B1
�K2(B2).

Lemma 5 (Construction Lifting). For A1,2, B1,2, α1,2 ∈ RespNet�K2
and

�K1, �K2 where �K1 ∩ �K2 = ∅, and �K := �K1 ∪ �K2:

A1A2

ε,α1α2,D�K1 B1B2 =⇒ A1
�K2(A2)

ε,α1�K2(α2),D�K B1
�K2(B2).

We visualise the construction experiment against a knowledge-respecting dis-
tinguisher set DK in Fig. 3. This may be contrasted with Fig. 2, which does not
have repo(K), and does not allow the simulator to extract.

Lemma 6 (D�K Closure). D�K is closed under sequential composition with lifted
(with respect to �K) networks in RespNet�K: ∀R ∈ RespNet�K : D�K

�K(R) ⊆ D�K
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Fig. 3. A visual representation of a non-specific A
α,DK B experiment. The small

points denote Charon(K) nodes, while K denotes the repo(K) node. Public parameters
have been omitted. Note that outside of D Charon nodes are permitted, but not
required.

Proof. Follows immediately from RespNet�K being closed under set union, and
Definition 13 stating that any �K-lifted network has a corresponding distinguisher
in D�K. ��

As a stricter set of knowledge assumptions corresponds to a smaller set of
permissible distinguishers, indistinguishability and construction results can be
transferred to larger sets of knowledge assumptions. A proof without knowledge
assumptions is clearly ideal – it still holds, regardless which knowledge assump-
tions are added.

Lemma 7 (Knowledge Weakening). In addition to weakening with respect
to a subset of distinguishers being possible, weakening is also possible for dis-
tinguishers with a greater set of knowledge assumptions. For all A,B,C, α ∈
N, �K1, �K2, where �K1 ⊆ �K2:

A
ε,D�K1

C

∼ B =⇒ A
ε,D�K2

C

∼ B (13)

A
ε,α,D�K1

C

B =⇒ A
ε,α,D�K2

C

B (14)

4.3 A Restricted Composition Theorem

The rules established in Theorem 1 still hold, and it is clear why a simplification
as in Corollary 2 is not possible – it assumes that the distinguisher set D is
closed under sequential composition with simulators and networks, which is not
the case for D�K.

Theorem 1 already provides a sufficient condition for what needs to be proven
to enable this composition, however we can go a step further: While D�K is not
closed under sequential composition with arbitrary networks, it is closed under
sequential composition with knowledge-lifted networks. We can use this fact to
establish a simplified composition theorem when composing with a �K-lifted proof
or network component. We observe that this implies composition with proofs
which do not utilise knowledge assumptions, as they are isomorphic to �K = ∅.



Composition with Knowledge Assumptions 383

In particular, Constructive Cryptography proofs directly imply construction in
the context of this paper as well, and can therefore be composed with protocols
utilising our framework freely.

Theorem 3 (Knowledge Composition). When composing proofs against
�K1 or �K2 distinguishers, where �K1 ∩ �K2 = ∅, and �K := �K1 ∪ �K2, the following
simplified composition rules of transitivity (Eq. 15) and subgraph substitu-
tion (Eq. 16) apply. For all A,B, α ∈ RespNet�K2

, F ∈ RespNet�K, C,D,E, β, γ ∈
N, ε, ε1, ε2.

⎡
⎢⎢⎢⎣

A
ε1,α,D�K1 B

∧
B

ε2,β,D�K2 C

⎤
⎥⎥⎥⎦ ∧ αβC ∈ N =⇒ A

ε1+ε2,�K2(α)β,D�K C (15)

D
ε,γ,D�K E ∧ IOH(F ) ∩ IOH(γE) = ∅ =⇒ �K(F )D

ε,γ,D�K �K(F )E (16)

4.4 Reusing Knowledge Assumptions

Theorem 3 and its supporting lemmas prominently require disjoint sets of knowl-
edge assumptions. The primary reason for this lies in the definition of �K using
the union of the knowledge assumptions �K1 and �K2 – all statements could also be
made using a disjoint union here instead. If knowledge assumptions were not dis-
joint, this would place an unreasonable constraint on the distinguisher however:
It would prevent it from copying information from one instance of a knowledge
assumption to another instance of the same knowledge assumption, something
any adversary is clearly capable of doing.

Equality for knowledge assumptions is not really well defined, and indeed
knowledge assumptions may be related. The disjointness requirement is there-
fore more a statement of intent than an actual constraint, and we stress the
importance of it for reasonably constraining the distinguisher set here: If the
distinguisher is constrained with respect to two instances of knowledge assump-
tions which are related, it may not be permitted to copy from one two to another
for instance, an artificial and unreasonable constraint.

Care must be taken that knowledge stemming from one knowledge assump-
tion does not give an advantage in another. In many – but not all – cases this
is easy to establish, for instance, we conjecture that multiple instances with the
AGM with independently sampled groups are sufficiently independent. If this
care is not taken, the union of two knowledge assumptions may be greater than
the sum of its parts, as using both together prevents the distinguisher from
exploiting structural relationships between the two, something a real adversary
may do.
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5 zk-SNARKs with an Updateable Reference String

To demonstrate the usefulness of this framework, we will showcase an example
of how it can lift existing results to composability. For brevity, we sketch the
approach instead of providing it in full detail. Specifically, we sketch how Groth’s
zk-SNARK [20], due to being simulation extractable [1], can be used to construct
an ideal NIZK. Our methodology applies to any SNARK scheme which permits
proof simulation and extraction through the AGM. Further, we sketch how,
when used for a SNARK requiring an updateable reference string, a round-robin
protocol to produce the reference string can be used to instantiate the NIZK
from only the CRS providing the AGM parameters.

Our approach for NIZKs is similar to C∅C∅ [28], with the difference that no
additional transformation is necessary to extract witnesses, as these are provided
through KbAGM-lifting and the simulator’s ability to extract from the knowledge
assumption. The round-robin update follows [25] for its composable treatment
updateable reference strings, simplified to a setting with fixes participants.

Once our proof sketch is complete, we also give a clear example of why
universal composition is not possible with knowledge assumptions: Specifically,
we construct a complementary ideal network and simulator which clearly violates
the zero-knowledge properties of the NIZK, and allows distinguishing the real
and ideal worlds. We stress that this is only possible due to it extracting from
the same knowledge assumption.

5.1 Construction

Our construction is in two parts, each consisting of a real and ideal world.
We describe and illustrate the set-up and behaviour here, leaving a more for-
mal description of the exact behaviour to the full version of this paper [24,
Appendix D]. Throughout the construction, we assume a set of n parties, iden-
tified by an element in Zn. We assume static corruption with at least one honest
party – specifically we assume a set of adversaries A ⊂ Zn, and a corresponding
set of honest parties H := Zn \ A. These sets cannot be used in the protocols
themselves, but are known to the distinguisher and non-protocol nodes (that is,
they can be used to define ideal behaviour).

SNARKs. The highest level ideal world consists of a proof-malleable NIZK node
(nizk, see [24, Appendix D.2]), following the design of C∅C∅ [28]. In the cor-
responding real-world, we use a zk-SNARK scheme S = (S, T, P,Prove,Verify,
SimProve,Xw) satisfying the standard properties of correctness, soundness, and
zero-knowledge in the random oracle model with SRS. Here S, T , and P , are
the structure function, trapdoor domain, and permissible permutations8 of the

8 This can also capture non-updateable reference strings, when parameterised with
the set of permissible permutations P = {id}. Notably this allows us to capture
Groth’s zk-SNARK, while not excluding updateable zk-SNARKs such as Plonk [18]
and Sonic [30].
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structured reference strings, as given in [25]. SimProve should take as inputs
only the statement x and trapdoor τ ∈ T . In addition, S should be simulation
extractable with respect to the AGM – after any arbitrary interaction, Xw should
be able to produce the witness for any valid statement/proof pair, with the sole
exception that the proof was generated with SimProve. Such white-box simula-
tion extractability has been under-studied for zk-SNARKs, although it has been
established for Groth’s zk-SNARK [1], and is plausible to hold in the AGM for
most SNARKs. For this reason, we rely on Groth’s zk-SNARK to concretely
instantiate this example, although we conjecture it applies to other SNARKs –
and indeed part of the result can only apply to other SNARKs.

In the real world an adversarially biased (updateable) structured reference
string (srs, see [24, Appendix D.3]), parameterised for the SNARK’s refer-
ence string, is available. Further, for each honest party j ∈ H, an instance
of the SNARK protocol node (snark-node(j), see [24, Appendix D.3]) is avail-
able, which connects to the corresponding party’s srs interface, and runs the
SNARK’s Prove and Verify algorithms when queried. In both worlds, the KbAGM

public parameters are provided by a node G (see [24, Appendix D.1]). Finally,
the SNARK’s Prove and Verify algorithms make use of a random oracle, which
is available in the real world, providing query interfaces to all parties (we do not
treat the random oracle as a knowledge assumption in this example).

The ideal-world therefore consists of {nizk, G} (and the simulator, which will
be introduced in the security analysis), and the real-world consists of snark �
{srs,ro, G}, where snark := { snark-node(j) | j ∈ H }. The topology of
both worlds is sketched in Fig. 4.

Fig. 4. The SNARK to NIZK topologies. snark-node is represented by Π, and the
public parameter node G is omitted for clarity.

Round-robin SRS. If the reference string used in the SNARK scheme S is also
updateable in the sense of [25], we can construct the SRS itself through a round-
robin update protocol. We assume therefore that S is additionally parameterised
by algorithms ProveUpd and VerifyUpd allowing the proving and verification
of update proofs, the permutation lifting † which maps permutations in P to
permutations over the structure, and the algorithms Sρ and Xp used by the
simulator to simulate update proofs and extract permutations from updates
respectively. A notable difference again with respect to the extraction is that
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it should be with respect to the AGM, rather than with respect to a NIZK as
presented in [25].

The ideal world in this part matches part of the SNARK real world previously,
consisting of the pair of nodes {srs, G}. The real-world consists of a node pro-
viding synchronous, authenticated broadcast (bcast, see [24, Appendix D.4]),
and for each honest party j ∈ H, a round-robin protocol node (rr-node(j),
see [24, Appendix D.4]).

The srs node requires each honest party to request initialisation, which in
the round-robin node is mapped to a) reconstructing the current SRS, and b)
broadcasting a randomly sampled update to it. As the real-world has no means
of identifying honest parties, it requires all parties to broadcast a valid update
before the reference string can be used. The adversary has access to the broadcast
directly for corrupted parties to produce these updates.

The ideal-world therefore consists of {srs, G} (and simulator), and the real-
world consists of rr-setup � {bcast, G}, where rr-setup := { rr-node(j) |
j ∈ H }. The topology of both worlds is sketched in Fig. 5.

Fig. 5. The round-robin setup to SRS topologies. bcast and rr-node are abbreviated
to bc and rr respectively, and the public parameter node G is omitted for clarity.

5.2 Security Analysis

This example is interesting for two reasons: Firstly, it provides a concrete way to
realise a composable NIZK, and secondly it showcases (when the second optional
stage of realising the SRS is used) special-case composition between two con-
structions using the same knowledge assumption, and what this requires of the
corresponding simulators, as both simulators extract from repo(KbAGM).

The two simulators, α for the simulator between snark and nizk, and β for
the simulator between rr-setup and srs, are specified in full detail in the full
version of this paper [24, Appendix D.5], although we sketch the most impor-
tant aspects here. Notably, α needs to extract the witnesses from adversarial
SNARK proofs, and β needs to extract the underlying trapdoor permutation
from adversarial updates.

Round-robin SRS. The simulator β for the round-robin SRS setup emulates the
broadcast node bcast towards the adversary, and when notified of an honest
party’s initialisation, does one of two things: For the first honest party, it queries



Composition with Knowledge Assumptions 387

the honest SRS part from srs, and simulates the corresponding update proof
using the simulator Sρ, as it knows the full trapdoor to use for this. For subse-
quent honest updates, it simply simulates the update protocol. In either case,
the update is internally recorded to emulate the corresponding broadcast.

When an adversarial broadcast is received, the update is verified against the
current SRS. If it succeeds, it is updated, and the corresponding permutation is
extracted from the update proof (using KbAGM), and recorded. Specifically, the
extractor Xp, given oracle access to repo(KbAGM), extracts the permutation from
any update proof ρ. Observe that a) such a permutation exists by the nature
of the verification of update proofs, and b) the only group elements which the
simulator cannot extract from are those in the honest SRS component produced
by the srs node.

Given this, the adversary cannot create a valid update for which the per-
mutation is not extractable, unless it reuses (part of) the honest update. This
would directly require inverting its structure before re-applying (part of) it again
however, or the adversary extracting the permutation itself. In either case, this
amounts to breaking a discrete logarithm for SNARKs we considered, which we
assume computationally infeasible.

Theorem 4 (Round-Robin uSRS). Given the computational hardness of
the structure function S, as well as computational hardness to extract a trapdoor
permutation p from an update proof ρ:

K(rr-setup) � {G} β,DK {srs, G}

Proof (sketch). The simulated broadcast network the adversary has access to
behaves identically between the real protocol and the simulated one, due to
identical execution, except for the first honest update. This is distributed uni-
formly randomly in the space of possible permutations in both cases.

As the simulator reproduces a permutation which applies precisely all
updates after the first honest one, and the first honest update is distributed
the same in both worlds, the permutation the simulator applies to the honest
trapdoor causes it to be distributed as in the real protocol. Further, both worlds
abort if and only if the reference string is queried prior to full initialisation in
both worlds. By the reasoning above and the hardness assumptions, extraction
of adversarial updates always succeeds, and as a result the simulated update
proof also succeeds. ��

SNARK. The SNARK simulator α both faithfully simulates the srs node, cre-
ates simulated proofs for honest proving queries, and extracts witnesses using Xw

(which is given access to repo(KbAGM)) from adversarial proofs when requested
by the nizk node. Finally, if the simulator fails to extract a witness when asked
for one for a valid proof, it requests a maul. The SNARK simulator can co-exist
with the SRS simulator provided above, provided that the SRS update proofs
cannot be interpreted as NIZK proofs (with the trapdoor permutation as a wit-
ness) themselves, or transformed into ones. In practice, this is not the case, as the
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AGM allows only for very specific transformations of group elements, and map-
ping update proofs to a corresponding NIZK would involve first solving DLOG
before re-encoding the witness as a polynomial in most SNARKs.

Theorem 5 (SNARK Protocols Construct NIZKs). For any secure
SNARK scheme S:

K(snark) � {srs,K(ro), G} α,DK {nizk, G}. (17)

Additionally, if S is updateable (and therefore β is well-defined), and update
proofs cannot be transformed into NIZK proofs with the trapdoor permutation as
a witness:

K(snark) � {srs,K(ro), G} α,DKβ {nizk, G}. (18)

Proof (sketch). All honestly generated proofs will verify in both worlds, by defi-
nition in the ideal world, and by the correctness of the SNARK in the real world.
Further, the proofs themselves are indistinguishable, by the zero-knowledge prop-
erty of the SNARK.

Adversarial proofs which fail to verify will also be rejected in the ideal world,
as the simulator will refuse to provide a witness, causing them to be rejected.
As per the above, the extractor Xw is able to (using repo(KbAGM)) extract
the witnesses for any adversarial proof which does verify, except for cases of
malleability. As S is only (at most) proof-malleable, the simulator can, and
does, account for this by attempting to create a mauled proof when extraction
fails.

The simulator provides the ideal-world simulation of the srs node, which is
emulated faithfully except that the simulator has access to the trapdoor. As a
result, this part of the system cannot be used to distinguish. We conclude that
Eq. 17 holds.

For Eq. 18, it remains to be shown that α and β do not interfere: In particular,
that neither prevents the other from extracting where they need to, and that
neither reveal information due to their extractions which would provide the
distinguisher a non-negligible advantage. As β only interacts with the SRS, and
this is not changed once all users have submitted their contribution, and α
requires the SRS to be fully initialised before it is used, α will not prevent β
from extracting – it does nothing while β is run.

Knowledge of the group elements exchanged during the update phase also
does not assist the distinguisher in constructing a witness for any statement, as
it can simulate them locally by running the honest update process. Therefore α
can still fully extract in all cases.

Finally, due to the strict temporal order, β can, by definition, not assist the
distinguisher in extracting any additional differences between snark and α (and
the srs part is emulated faithfully, preventing it there). Likewise, α cannot assist
the distinguisher in extracting anything meaningful from β, as this would imply
a NIZK witness containing the permutation of an honest update. As these are
sampled locally, and the corresponding update proofs cannot be transformed
into NIZK proofs, α cannot be leveraged to extract them. ��
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Corollary 3. For an updateable SNARK scheme S whose update proofs cannot
be transformed into NIZK proofs with the trapdoor permutation as a witness:

K(snark � rr-setup) � {K(ro), G} βα,DK {nizk, G}
The topology for the composed statement arises naturally from the topologies
of its parts, as shown in Fig. 6.

Fig. 6. The combined full example topology, arising from the composition of prior
components, again with G omitted for clarity.

Proof. From Theorem 4, Theorem 3 and Eq. 16, we can conclude that K(snark�
rr-setup) � {K(ro), G} β,DK

K(snark) � {srs,K(ro), G}. The corollary then
follows from Theorem 5, Theorem 3, Eq. 18 and Eq. 15. ��

5.3 The Impossibility of General Composition

The two parts of Theorem 3 are limited when compared to Corollary 2 in two
separate, but related ways: The closure under subgraph substitution requires the
added node to be a �K-wrapped node, and transitivity requires the two composing
proofs to use separate knowledge assumptions.

We will demonstrate that the nicer results from Corollary 2 are not achievable
with respect to knowledge-respecting distinguishers, by means of a small counter-
example for both situations.

Theorem 6 (Subgraph Substitution is Limited). Subgraph substitution
with knowledge assumptions does not universally preserve secure construction.
∃A,B,C, α ∈ N, ε ∈ R, �K:

A
ε,α,D�K B �=⇒ CA

ε,α,D�K CB

Proof (sketch). Let A be the Groth-16 real world, and B be the NIZK ideal
world respectively, with α being their simulator, and �K being {KbAGM}. Let C
be a node which receives elements in Xpp, queries repo(KbAGM), and returns the
witness to the distinguisher.
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Then the following distinguisher can trivially distinguish the two worlds: a)
Make any honest proving query. b) Request extraction. c) Output whether or
not extraction succeeded. ��
Theorem 7 (Transitivity is Limited). Construction with knowledge assump-
tions is not universally transitive. ∃A,B,C, α, β ∈ N, ε1, ε2 ∈ R,D�K:

A
ε1,α,D�K B ∧ B

ε2,β,D�K C �=⇒ A
ε1+ε2,αβ,D�K C

Proof (sketch). Let B be the Groth-16 real world, and C be the NIZK ideal
world respectively, with β being their simulator, and �K being {KbAGM}. Let A
be Groth-16 with additional interfaces for each party to reveal any witnesses of
broadcast proofs, which are shared through an additional broadcast channel. Let
α reproduce this functionality by extracting witnesses from the provided proofs.

Then a distinguisher which makes an honest proof and extracts it will receive
the witness in the real and hybrid world, but not in the ideal world, where the
knowledge extraction of the proof will fail, as it is simulated by β. It is therefore
possible to distinguish, and transitivity does not hold. ��

6 Conclusion

In this paper, we have for the first time demonstrated the composability of
a white-box extractable zk-SNARK, without any transformations or modifica-
tions applied, and not compromising on succinctness. This result has immediate
applications in the many systems which use zk-SNARKs and non-interactive
zero-knowledge, reducing the gap between the theory and practice of compos-
able systems relying on SNARKs. Our results are sufficiently general to hope for
similar benefits when applied to other primitives utilising knowledge assump-
tions.

We nonetheless leave a number of pressing issues to future work: In many
cases knowledge assumptions are reused. For instance many different protocols
rely on the same groups, with the BLS12-381 and BN-254 curves being de-facto
standards for zk-SNARK computation due to their direct use in major software
implementations [3,5]. To what degree this reuse it harmful, if at all, is a question
of immediate interest and concern. This is compounded by a recent interest
in recursive zk-SNARKs, such as Halo [6] – a natural compositional definition
of which would construct a zk-SNARK from itself repeatedly. We hope that
this work paves the way for a proper compositional treatment of such recursive
constructions.

The foundations of knowledge assumptions also require further fleshing out to
match reality more fully. It is clear that some knowledge assumptions are related,
for instance the knowledge of exponent assumption is implied by the AGM. More
interestingly, non-interactive zero-knowledge can itself be seen as a knowledge
assumption – knowledge of a valid proof implying knowledge of the witness.
Exploring the formal relationship between different knowledge assumptions and
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expanding the model to fit these (for instance, by permitting public parameters
to be adversarially influenced) may give valuable insight into the nature of these
assumptions.

Acknowledgements. The second and third author were partially supported by the
EU Horizon 2020 project PRIVILEDGE #780477.
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and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol.
6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27375-9 3

32. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46035-7 8

33. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252.
IEEE Computer Society Press, May 2013

34. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/3-540-69053-0_18


Non-interactive Batch Arguments for NP
from Standard Assumptions

Arka Rai Choudhuri(B) , Abhishek Jain, and Zhengzhong Jin

Johns Hopkins University, Baltimore, USA
{achoud,abhishek,zzjin}@cs.jhu.edu

Abstract. We study the problem of designing non-interactive batch
arguments for NP. Such an argument system allows an efficient prover
to prove multiple NP statements, with size smaller than the combined
witness length.

We provide the first construction of such an argument system for NP
in the common reference string model based on standard cryptographic
assumptions. Prior works either require non-standard assumptions (or
the random oracle model) or can only support private verification.

At the heart of our result is a new dual mode interactive batch argu-
ment system for NP. We show how to apply the correlation-intractability
framework for Fiat-Shamir – that has primarily been applied to proof
systems – to such interactive arguments.

1 Introduction

Consider the following scenario: Alice wants to convince Bob of the veracity of k
statements (x1, . . . , xk) in an NP language. A näıve solution is for Alice to send
a witness wi for each of the k instances and for Bob to verify each pair (xi, wi).
This proof is non-interactive (i.e., consists of a single message) as well as publicly
verifiable (i.e., anyone can verify its correctness). However, it is quite expensive,
requiring communication that grows linearly with the combined length of the
witnesses.

Can we do better? That is, can we non-interactively prove k NP statements
with communication much smaller than k · m, where m = m(|x|) is the witness
length? Addressing this question is the main focus of this work.

Batch Arguments. We study the problem of designing batch arguments
(BARG) for NP in the common reference string (CRS) model. Such an argu-
ment system allows an efficient prover to compute a non-interactive and publicly
verifiable “batch proof” of k NP instances, with size much smaller than k · m.
If any of the k instances is false, then no polynomial-time cheating prover must
be able to produce an accepting proof.

In the interactive setting, the problem of batch proofs was first studied by
Reingold, Rothblum and Rothblum [48] and more recently in [49,50]. The focus
of these works is on achieving statistical soundness, and we refer the reader to
Sect. 1.2 for a discussion. In this work, we focus on the (harder) non-interactive
setting but settle for the weaker notion of computational soundness.
c© International Association for Cryptologic Research 2021
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Since verifying the membership of k NP instances is itself an NP problem,
BARGs with poly-logarithmic communication can be obtained from succinct
non-interactive arguments (SNARGs) for NP [3,4,18,28,44]. However, SNARGs
for NP are presently only known to exist under strong, non-falsifiable assump-
tions [24,45] (or the random oracle model). In the designated-verifier setting,
Brakerski, Holmgren and Kalai [6] constructed two-message batch arguments for
NP with communication proportional to the size of a single witness, assuming the
existence of a computational private information retrieval scheme [13,41]. The
main drawback of their solution is that it requires private verification. Recently,
Kalai, Paneth and Yang [34] constructed the first non-interactive publicly veri-
fiable batch arguments for NP, but rely on a new non-standard (but falsifiable)
assumption on groups with bilinear maps.

This state of affairs motivates the following basic question:

Do there exist BARGs for NP based on standard assumptions?

1.1 Our Results

We provide the first construction of a publicly verifiable non-interactive batch
argument system for NP in the CRS model from standard computational assump-
tions. Our scheme achieves non-adaptive computational soundness.

Theorem 1 (Informal). Let C-SAT be the circuit satisfiability language defined
by a boolean circuit C : {0, 1}|x| × {0, 1}|y| �→ {0, 1}. Assuming standard compu-
tational assumptions, there exists a BARG for C-SAT in the CRS model with non-
adaptive soundness. The proof size for k statements is Õ((|C|+√

k|C|) ·λ), where
λ is the security parameter.

When the number of statements k is smaller than |C|, the size of the proof only
grows with |C|; otherwise, it essentially only grows with k.

On our assumptions. Our construction relies on two essential cryptographic
components:

– Somewhere-Extractable Linearly Homomorphic Commitment. The
first building block for achieving our result is a new notion of somewhere-
extractable linearly homomorphic commitment (SE-LHC) schemes (Sect. 4).
We show an instantiation of SE-LHC assuming the hardness of the quadratic
residuosity (QR) assumption.

– Correlation-Intractable Hash Functions for TC0. Our second crypto-
graphic building block is a correlation-intractable hash function (CIH) [12]
for TC0 circuits. CIH for bounded-depth polynomial-size circuits are known
from the learning with errors (LWE) assumption [10,47]. Very recently, CIH
for TC0 circuits were constructed based on the sub-exponential hardness of the
Decisional Diffie-Hellman (DDH) assumption against polynomial-time adver-
saries [31].
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Putting together the above, Theorem 1 can be instantiated based on QR and
either LWE or sub-exponential DDH.

We refer the reader to Sect. 2 for an overview of our construction.

On adaptive soundness. Our construction in Theorem 1 achieves non-
adaptive (computational) soundness. This seems inherent, as there are known
barriers to constructing BARGs with adaptive soundness based on falsifiable
assumptions. Specifically, Brakerski, Holmgren and Kalai [6] showed a transfor-
mation from adaptively-sound BARGs (with argument of knowledge property1)
to adaptively-sound SNARGs using RAM delegation schemes. This in turn allows
for using the Gentry-Wichs [24] black-box lower bound for SNARGs.

1.2 Related Works

Batch verification is an interesting question for various cryptographic primitives,
and can lead to practical benefits in some settings (see, e.g., [9]).

In the setting of interactive proofs, the problem of batch verification of NP
has been recently studied in a sequence of works [48–50]. These works consider
the class UP, a subset of NP, where each statement in the language has a unique
witness of membership. To the best of our knowledge, no positive results are
known in this regime for NP. It should be noted that while there are lower
bounds on the communication complexity of interactive proofs for languages in
NP [25,26], the lower bounds do not appear to directly extend to the NP batch
language L⊗k due to the additional structure inherent to L⊗k. We refer the
reader to [48] for a detailed discussion on this topic.

If we consider computational soundness, where security holds only for com-
putationally bounded cheating provers, Killian’s protocol [39] gives us an inter-
active batch argument based on collision resistance of hash functions. In the
non-interactive setting, Brakerski, Holmgren and Kalai [6] construct privately-
verifiable non-adaptive batch arguments (of knowledge) assuming computational
private information retrieval schemes. Kalai, Paneth and Yang [34] construct a
publicly-verifiable non-adaptive batch argument, but rely on a new (falsifiable)
decisional assumption on groups with bilinear pairings. One can also generically
use SNARGs to construct non-interactive batch arguments, but constructions of
SNARGs are only known based on strong non-falsifiable assumptions (or in the
random oracle mode).

Very recently, there have been works that consider the problem of batch
verification for statistical zero-knowledge (SZK) proofs [37,38]. The specific goals
in these works are orthogonal to the problem we consider: the prover in these
works is no longer required to be efficient, but it is imperative that the resultant
batch protocol is also an SZK proof system.

1 Our construction in Theorem 1 achieves (non-adaptive) argument of knowledge prop-
erty.
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2 Technical Overview

As established in the introduction, we want to design publicly verifiable non-
interactive batch arguments for NP. To this end, there exists a well-studied
general paradigm one could follow: (i) First, construct an interactive public-
coin proof system (P, V ) for NP; (ii) Next, apply the Fiat-Shamir (FS) round-
collapsing transform [22] on (P, V ) with respect to some hash function family H
to obtain a non-interactive proof.

Originally, the soundness of the FS transformation was only established
when modeling the hash family as a random oracle. But the transforma-
tion has garnered a lot of recent attention with an exciting line of work
that demonstrate the soundness of the transformation when the hash func-
tion family is correlation intractable [12]. In particular, this idea has been used
with much success in the context of non-interactive zero-knowledge arguments
[7,10,11,16,17,29,31,35,47], (publicly verifiable) succinct non-interactive argu-
ments of knowledge for log-space uniform computation [10,32,33,36] and estab-
lishing the hardness of the complexity class PPAD [14,32,33,36,42].

Since this paradigm is central to our work as well, we start by describing
the transformation, correlation intractability (CI), and the role it plays in the
soundness of the transformation.

2.1 Background

Fiat-Shamir Transformation and CI. The Fiat-Shamir transform with
respect to some hash family H, utilizes a sampled hash function h ← H as
the common reference string (CRS) to convert a public-coin interactive protocol
into a non-interactive proof in the CRS model, where the verifier’s messages
are derived (non-interactively) by the prover applying the hash function h to
the transcript. For instance, consider the following flow of messages between the
prover and the verifier, where the verifier’s message β is a uniformly random
string:

The prover computes the verifier’s message as β := h(x, α), and the resultant
non-interactive proof is the tuple (α, β, γ) - the verifier can recompute β and
check if the prover did indeed compute it correctly. Unlike soundness in the
interactive setting, where a cheating prover P∗ has no control over the verifier’s
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message β, in the transformed non-interactive protocol, P∗ has some control over
β. Specifically, P∗ can try different values of α to input into the hash function
until it gets a β that it considers favorable. Let’s formalize what we mean. For
a statement x /∈ L, when the prover evaluates the hash function h on (x, α), it
wants to find an element from the following set of bad challenges,

Bx,α :=
{
β

∣
∣ ∃γ s.t. V(x, α, β, γ) = 1

}
. (1)

Can we hope to enforce some restrictions on the hash family H, such that it is
intractable to find an α such that h(x, α) ∈ Bx,α, i.e. the hash evaluation doesn’t
result in a bad challenge? This is exactly where the correlation intractability of
the hash family H helps. Intuitively, H is a correlation intractable hash family
(CIH) for a function f , if the following holds for all probabilistic polynomial time
adversary (PPT) A,

Prh←H [h(x) = f(x) | A(h) = x ] ≤ negl(λ) .

This yields the following idea - define a function BAD(·), that on input (x, α),
outputs an element in Bx,α. Let us for the moment assume that Bx,α for all α
and x /∈ L has at most a single element. If H is a CIH for f(·) := BAD(·), then
any cheating prover that outputs an accepting transcript (α, β, γ) for x /∈ L must
break the correlation intractability of H since β ∈ Bx,α by definition.

But what about when Bx,α consists of multiple elements? We want to argue
that the cheating prover doesn’t output any element from Bx,α. If |Bx,α| is poly-
nomially bounded, we can argue this via a simple application of the union bound:
modify BAD(·, ·) to additionally take in as input an index i, and output the i-th
element of Bx,α (for some ordering of the elements). Let fi(·) := BAD(·, i), then
by the union bound we have for any PPT adversary A,2

Prh←H
[
h(x) ∈ {f1(x), · · · , f|B|(x)} | A(h) = x

] ≤ |B| · negl(λ) .

While our description above is for a protocol with a single verifier message,
this can be extended to multi-round protocols by further constraining the inter-
active protocol to satisfy additional properties such as round-by-round soundness
[10]. We will elaborate on these properties soon, once we discuss our specific app-
roach.

Clearly, the BAD functions we can support using the above methodology are
constrained by the functions for which we can construct CIH. The known CIH
from standard assumptions are: bounded-depth polynomial size circuits from
LWE [10,47], linear approximable relations from trapdoor hash functions [7,21],
and TC0 circuits from sub-exponential DDH [31]. At the very least, we thus
require BAD to be efficiently computable.

Putting together the above, we obtain the following design principles for con-
structing an interactive protocol which is “compatible” with the CIH framework
for Fiat-Shamir (w.r.t. known constructions of CIH):

2 For notation convenience, we drop the subscript for B.
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1. The BAD function is efficiently computable.
2. For every x /∈ L and every α, the size of B is polynomially bounded.

In this work, we follow the Fiat-Shamir paradigm as well to obtain our main
result. In the following, we start by discussing potential choices for an interactive
protocol that meets our desired efficiency goals while still being compatible with
the CIH framework.

Considerations for the interactive protocol. Since the Fiat-Shamir trans-
formation does not reduce the communication complexity of the interactive
protocol, our starting point needs to be a protocol where the total commu-
nication between the prover and verifier is much smaller than O(km), where
k denotes the number of instances, and m the length of a single witness. A
natural candidate that satisfies our requirements is Killian’s protocol for lan-
guages in NP [39]. Specifically, it is a public-coin interactive protocol where
the total communication between the prover and verifier is significantly smaller
than the length of the witness. Thus by defining the following NP language,
L⊗k = {(x1, . . . , xk) : ∀i ∈ [k], xi ∈ L}, Killian’s protocol gives us a pub-
lic coin interactive argument with total communication significantly smaller
than O(km). Unfortunately, a recent work of [2] established non-trivial bar-
riers towards instantiating the hash function in the Fiat-Shamir transformation
applied to Killian’s protocol.

There is in fact a broader point to consider: Kilian’s protocol is an argument,
i.e. its soundness holds only against computationally bounded cheating provers.
In general, successful applications of the Fiat-Shamir paradigm when used in
conjunction with CIH, have been largely restricted to interactive proofs, where
the soundness holds against computationally unbounded cheating provers. Intu-
itively, this is because B, as defined in Eq. 1, does not capture the computational
resource bounds of a cheating prover. Specifically, B may contain exponentially
many elements but does not capture the fact that for a computationally bounded
cheating prover, finding the γ corresponding to β ∈ B is intractable. And as we
have already outlined above, we need B to be of polynomial size. In fact, there are
examples of certain interactive arguments that are not sound on the application
of the Fiat-Shamir transformation (see e.g. [1,27]).

Given the above state of affairs, the natural approach is to consider public
coin interactive batch proofs for NP that achieve the same succinctness properties
as (non-interactive) BARGs. Presently, however, interactive batch proofs are
only known for the class UP, a subset of NP for which there is exactly one
witness of membership for each statement [48–50]. Indeed, constructing such
proofs for NP is an open problem.

2.2 Dual-Mode Interactive Batch Arguments

We therefore deviate from the above approach and instead define and construct
a primitive we call dual-mode interactive batch arguments. Intuitively, these are
interactive arguments in the common reference string (CRS) model, where the
CRS can be generated in two computationally indistinguishable modes - (1)
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normal mode; and (2) trapdoor mode. We require that in the trapdoor mode, the
protocol is sound against all (possibly unbounded) cheating provers; however, in
the normal mode, it only achieves computational soundness.

This gives us the best of both worlds – we bypass the problem of constructing
interactive batch proofs, but still retain the possibility of applying the Fiat-
Shamir transform to the protocol when it is executed in the trapdoor mode
(without running into the issues that arise for arguments). In order to apply the
Fiat-Shamir transform, we require some additional properties from dual mode
interactive batch arguments: specifically, we require such protocols to be Fiat-
Shamir friendly, a notion we will elaborate on shortly.

We present a dual-mode interactive batch argument system for proving mul-
tiple instances of the NP-complete problem R1CS. An R1CS instance x is defined
to be the tuple x := (A,B,C, io,m), where io denotes the public input and out-
put of the instance, and A,B,C ∈ {0, 1}m×m are matrices. We say that a vector
w ∈ {0, 1}m−|io|−1 is a witness for x if (A·z)◦(B ·z) = (C ·z), where z = (io, 1, w),
· is the matrix-vector product, and ◦ is the Hadamard (entry-wise) product.3

Background: Spartan Protocol. Our starting point is the Spartan protocol
[51] which proves the satisfiability of a single R1CS instance x with total com-
munication sub-linear in the witness size |w|, i.e. the protocol is succinct. The
Spartan protocol is defined over a field F, such that log |F| ≈ λ, and follows
roughly the structure described below:

1. The prover first computes a commitment c to the witness w, that it sends
to the verifier. In order to achieve communication succinctness, |c| must be
sub-linear in m. (We shall see below that the commitment scheme needs to
satisfy some additional properties.)

2. The verifier then sends a random element element τ ∈ F
s, where s is such

that m = 2s.
3. It was shown in [51] that with probability s/|F| over the choice of τ , any R1CS

instances can then be reduced to the following check:
∑

x∈{0,1}s

Gio,w,τ (x) = 0, (2)

where Gio,w,τ : Fs �→ F is a polynomial with degree 3 in each variable, and
is determined entirely by x, the witness w and τ . For the purpose of our
discussion, the exact form of the polynomial is not immediately relevant.
Note that without the witness w, the verifier does not have a representation
of Gio,w,τ , but we shall see shortly that it doesn’t matter.
The above check is precisely the scenario where the sumcheck protocol [43,
52], an interactive protocol between a prover and verifier, is useful. In the
sumcheck protocol, the prover is attempting to convince the verifier of the

3 R1CS instances are more generally defined over a field, but for this overview we
will consider them over F2 (or {0, 1}). An instance of Boolean circuit satisfiability
(C-SAT), defined by a circuit C can be transformed to an R1CS instance where
m ≈ |C|. See the full version for details on the transformation.
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claim
∑

b1,··· ,b�∈{0,1} g(b1, · · · , b�) = v, where g : F
s �→ F is an s variate

polynomial of degree at most d in each variable, and v ∈ F is a publicly
known value. The resultant interactive protocol is an s round public coin proof
where the prover sends O(d ·s) field elements. Importantly the verifier is only
required to evaluate g at a single point r∗ ∈ F

s at the end of the protocol,
where r∗ determined solely by the verifier’s randomness in sumcheck protocol.

4. The prover and verifier run the sumcheck protocol for Eq. 2, at the end of
which verifier needs to evaluate Gio,w,τ (·) at the point r∗ (and compare against
some value determined by the sumcheck protocol). But since the verifier does
not have access to Gio,w,τ (·), it asks the prover to send relevant information
so that it can complete the check. Since the Spartan protocol requires this
message from the prover to be succinct, the prover cannot send w in the
clear.
Fortunately, it turns out that the value that the prover needs to send is
simply a linear combination of the bits of w where the linear coefficients
are determined entirely by A,B,C, τ and r∗ i.e. let

∑
i∈[m] σi · wi be the

corresponding linear combination where the coefficients σi are known to both
the prover and verifier, and are even independent of io.4

5. The prover now opens the commitment c to
∑

i∈[m] σi · wi such that the
opening is succinct. This allows the verifier to complete its check.

Spartan provides various instantiations for the commitment scheme satisfying
the above properties, where the commitment opening is an interactive protocol.
The resulting protocol is computationally sound.

The Spartan protocol does not satisfy our desired properties from a dual-
mode interactive batch argument. However, it serves as a useful starting point
for us. In Spartan, the goal was to have the total communication be sub-linear in
m, while in the batch setting, we are fine with total communication proportional
to a single witness. This in turn means that we can consider commitment schemes
where the commitment size is proportional to a single witness. Let us now see how
we can use this insight to adapt the Spartan protocol to both make it suitable
for batch verification, and achieve the notion of dual-mode batch arguments.

Our Construction. We now discuss the main steps in our interactive protocol,
while highlighting the differences from the above discussion. We want to batch
prove k instances {x(j)}j∈[k] where the matrices A, B and C are the same across
all instances, and only the public input-output io varies across the instances.
The reader may view this as multiple instances with the same relation circuit,
but different statements. The description of the protocol now follows.

1. To commit to a batch of witnesses {w(j)}j∈[k], we follow the batch commit-
ment strategy in [48]: arrange the witnesses as rows of a k × m matrix, and
commit to the column of each matrix, i.e. ∀i ∈ [m], ci ← Com(w(1)

i , . . . , w
(k)
i ).

If the k-tuple commitment has size O(λ), then the total commitment is of
size Õ(m), ignoring polynomial factors in O(λ).

4 Strictly speaking, the prover needs to send 3 separate linear combinations of the
witness, but we ignore this here for simplicity.
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This indicates that our commitment scheme must allow us to commit to the
k-tuple succinctly.

2. Given that each instance has a different statement io and witness w, each of
the k instances define a different polynomial, giving rise to the k polynomials
{G(j)

io,w,τ}j∈[k]. The prover and verifier then run k sumcheck protocols in paral-
lel with the same verifier randomness. As discussed earlier, at the end of the
sumcheck protocols, the verifier needs to evaluate each of these polynomials
at points r∗(j) determined solely by the verifier’s randomness in the sumcheck
protocol.
Since the verifier uses the same randomness across all instances of the sum-
check protocol execution, the polynomials need to be evaluated at the same
point r∗. Additionally, since the linear coefficients depend only on A,B,C, τ
and r∗, this in turn implies that the linear coefficients for all the witnesses
w(j) are the same: (σ1, · · · , σm).

3. As in Spartan, the prover now needs to send
∑

i∈[m] σ
(j)
i w

(j)
i to the verifier.

For convenience, this can be be re-written as sending the k-tuple,
∑

i∈[m] σi ·
(w(1)

i , · · · , w
(k)
i ), where · indicates component-wise multiplication.

If our commitment scheme satisfies linear homomorphism, i.e.

Com(
∑

i∈[m]

σi · (w(1)
i , · · · , w

(k)
i )) =

∑

i∈[m]

σiCom(w(1)
i , . . . , w

(k)
i ),

then it suffices for the prover to open to the commitment
∑

i∈[m] σici.
Thus our commitment scheme must satisfy linear homomorphism (as
described above), with the size of the opening proportional to the size of the
underlying message.

Let us go back to our requirement from dual-mode interactive batch argu-
ments. For the protocol to achieve statistical soundness in the trapdoor mode,
we need at the very least, the commitment to be statistically binding. How-
ever, this seems at odds with our succinctness requirements since we want the
total number of bits sent to be significantly smaller than the size of the message
committed.

Key Tool: Somewhere-Extractable Linearly Homomorphic Commit-
ments. We resolve this issue by utilizing a commitment scheme in the CRS
model, where the CRS is generated in one of two computationally indistinguish-
able ways - (1) normal mode; or (2) extraction mode. In the extraction mode,
the CRS generation algorithm takes as input an index i∗, and additionally out-
puts an extraction trapdoor td that is not a part of the CRS. We require that
the commitment of the k-tuple in the extraction mode for index i∗, is statisti-
cally binding at the i∗-th index of the commitment. Further, there is an effi-
cient algorithm Ext such that given the trapdoor td, Ext extracts the underlying
message at the i∗-th index, and this holds even if the commitment was “mal-
formed”. Additionally, the extraction also satisfies linear homomorphism, i.e.
σ1 ·Ext(c1, td)+σ2 ·Ext(c2, td) = Ext(σ1 ·c1+σ2 ·c2, td). The linear homomorphism
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property of extraction ensures that once we extract from the commitments, the
opening of the linear homomorphic evaluation can be computed solely from the
linear coefficients - ensuring that the committer is bound to opening of the linear
homomorphism.

If all m commitments are committed via the extraction mode CRS for index
i∗, then the prover is statistically bound to w(i∗). Then intuitively, in the extrac-
tion mode, the security can be reduced to the soundness of the other components
of the protocol for the i∗-th instance. The reduction to the check for polynomial
G(i∗)
io,w,τ (via [51]), and the sumcheck protocol are both statistically sound, thereby

satisfying overall statistical soundness. Thus, by setting the trapdoor mode (resp.,
normal model) CRS to be the extraction mode (resp., normal mode) CRS of
the commitment scheme, we obtain a dual-mode interactive batch argument.
Note the added syntax for the trapdoor mode of the dual-mode interactive batch
argument - it takes in as input an index i∗, and generates a trapdoor td (not be
included in the CRS).

We now summarize our requirements of the commitment scheme from the
above discussion:

1. Commitment scheme for k-tuples in the CRS model, with indistinguishable
methods of generating the CRS - normal mode or extraction mode such that
the commitment is statistically binding at the i∗-th index when the CRS is
generated in the extraction mode on input i∗.

2. Efficient extraction of the message at i∗-th index in the extraction mode,
given the trapdoor td.

3. The commitment should allow for linear homomorphism (even over the
extracted values).

4. The commitment should be succinct, while the opening should depend only
on the size of the committed message.

We refer to such commitments as somewhere-extractable linearly homomorphic
commitments. Our notion is similar to the notion of somewhere statistically-
binding hash functions [30], but requires some additional properties. Later, in
Sect. 2.4, we describe our construction of such commitment schemes based on
the quadratic residuosity assumption. For now, we will simply assume that such
commitment schemes exist.

One point of note is that since the CRS of the commitment scheme requires
the index of the statement we want to prove soundness for, we can only achieve
non-adaptive security. We will later show in the technical sections that this is in
some sense the best that one can hope for.

Costs. From the description of the protocol, the communication cost for the
commitment (and its opening) is Õ(m), while the communication cost from k

sumcheck protocols is Õ(ks) = Õ(k log m), giving us a total communication cost
of Õ(m + k log m).
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2.3 Fiat-Shamir Compatibility

As we have alluded to before, constructing a dual-mode interactive batch argu-
ment is an important first step towards a non-interactive protocol. But by itself,
it is not enough. We need to show that our constructed protocol in Fiat-Shamir
friendly. This has been recently formalized by [32] as the notion of Fiat-Shamir
(FS) compatibility, that extends our earlier discussion in Sect. 2.1 on the rela-
tionship between CIH and the Fiat-Shamir transform.

Let the prover’s i-th message in the protocol be denoted by αi, while the
corresponding verifier message by βi. The protocol transcript transi is defined to
be transi := (α1, β1, · · · , αi, βi), which collects all messages up to (and including)
the i-th round messages. An interactive proof is said to be FS compatible if it
follows the following two properties:

Round-by-round soundness: There is a function State that takes as input
the statement x, and a transcript prefix transi := (α1, β1, · · · , αi, βi), and out-
puts Accept or Reject. We require some additional properties from State: for
every x /∈ L, State(x, ∅) = Reject, and for every full transcript trans the verifier
rejects if State(x, trans) = Reject. Perhaps, most importantly, we require that
if State(x, trans) = Reject, then for any prover message α, State(x, trans|α|β) =
Reject with overwhelming probability over the choice of β.

Efficient BAD function: For every x /∈ L, when State(x, transi) = Reject,
we require an efficiently computable function BAD5 that outputs the “bad”
verifier challenges β that will result in State switching output to Accept, i.e.
if State(x, trans) = Reject, then BAD(x, trans|α) outputs a uniformly random
element from the set B defined as

B :=
{
β

∣∣ State(x, trans|α|β) = Accept
}

.

From our earlier design principles, we require the size of the set B to be polyno-
mially bounded.

Before we proceed, let’s recall our discussion from Sect. 2.1 on Fiat-Shamir
and CI-hash functions. It is easy to see that the discussion there also applies here
- as long as we can construct a CIH H that is CI for the circuits computing BAD,
then the Fiat-Shamir transformed protocol with respect to H is sound.

We know of the following CI-hash functions based on standard assumptions6:

– CI for all a priori polynomially bounded circuits assuming LWE [47]; and
– CI for all of TC0 assuming sub-exponential security of DDH [31].

5 Unlike the definition in [32], we will require any non-uniform advice to the BAD
function to also be efficiently computable.

6 We note that the CI-hash function constructed in [7] is also based on standard
assumptions, but the class of functions that it supports (i.e. class it is CI for) is very
small, and therefore limits its applicability.
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We want to be able to leverage both of these constructions for our final non-
interactive batch argument. Since the size (and depth) of the circuit computing
BAD directly corresponds to the functions for which we need CI, to achieve
a result based on sub-exponential security of DDH, we need to show that the
function BAD can be computed in TC0. We call such protocols to be strongly FS
compatible.

Let us now demonstrate that our dual-mode protocol in the trapdoor mode
is FS-compatible. Recall that in the trapdoor mode an index i∗ is specified, and
we shall prove FS compatibility when x(i∗) /∈ LR1CS. This is sufficient, since for
a batch instance to be false, there is at least one index j such that x(j) /∈ L. In
particular, this allows us to ignore the other sumcheck executions while estab-
lishing FS compatibility. We will further show that BAD can also be computed
in TC0. Since we only focus on a single instance x(i∗), in what follows, we skip
the index i∗ for the instance to simplify notation.

Round-by-Round soundness. The verifier messages can be split into two
cases: (a) τ ∈ F

s; (b) verifer messages inside the sumcheck protocol. We only
sketch here the main ideas and refer the reader to the technical sections for more
details as our primary focus will be on the construction of the BAD function.

For the sumcheck, we rely on [32] that already establishes the sumcheck
protocol to be round-by-round sound. The main difference is that [32] requires
full knowledge of the polynomial over which the sumcheck is computed. In our
setting, however, the polynomial Gio,w,τ is (partially) determined by the witness,
which is sent within the commitment. We resolve this issue by using the trapdoor
td to extract the i∗-th witness and compute the polynomial, since the CRS was
generated in the trapdoor mode for i∗. For the verifier message τ , we can rely
on the Theorem underlying Spartan [51] that shows that any R1CS instance x
can be reduced to the sum

∑
x∈{0,1}s Gio,w,τ (x) = 0 other than with probability

s/|F| over the choice of τ . The actual State computation for τ will be elaborated
upon in the BAD function computation below.

Efficient BAD function. As described above, verifier messages can be split
into two cases. From the definition of the BAD function, it suffices to build two
separate functions, one for each cases. Let’s start with the simpler case of the
sumcheck verifier messages.

Sumcheck BAD function: In the sumcheck protocol, for each round i ∈ [s], the
prover sends a univariate polynomial g∗

i : F �→ F of degree 3 to the verifier. If
computed correctly, it should correspond to the polynomial gi, defined as

gi(x) :=
∑

xi+1,··· ,xs∈{0,1}
Gio,w,τ (β1, · · · , βi−1, x, xi+1, · · · , xs).

The set of bad challenges in the i-th round are the verifier challenges βi such
that both polynomials gi and g∗

i evaluate to the same value on βi, i.e. B :=
{βi | gi(βi) = g∗

i (βi)}. Alternatively B consists of the roots of the polynomial
gi − g∗

i . Since Gio,w,τ is a polynomial that is degree 3 in each variable, |B| ≤ 3.
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Unlike [32], which demonstrate BAD function for the general sumcheck, we
focus on the setting where the true polynomial gi can be computed in polynomial
time (e.g. s = O(log λ)). Thus on input, (x, transi−1|αi), BAD (i) parses αi as
the polynomial g∗

i ; (ii) computes the true polynomial gi, using the trapdoor first
to extract w and determine Gio,w,τ ; and (iii) use a polynomial time algorithm
like Cantor-Zassenhaus to compute the (three) roots of gi − g∗

i , and output one
at random.

τ BAD function: To describe the BAD function corresponding to τ , we need
to look at the polynomial Gio,w,τ implied by [51] (Theorem 2). So far we have
focused on Gio,w,τ (x) as a polynomial over the variables x, with τ ∈ F

s fixed.
Let us now focus on the same polynomial over both x and τ , i.e. for every τ ,
Gio,w,τ (x) = G′

io,w(x, τ). In fact [51] showed that G′
io,w(x, τ) is a polynomial over

x1, · · · , xs and τ1, · · · , τs that has degree 1 in each τi (see full version for details).
Thus, we can rewrite

∑
x∈{0,1}s Gio,w,τ (x) as a polynomial over τ1, · · · , τs. Specif-

ically, let
Q(τ) :=

∑

x∈{0,1}s

G′
io,w(x, τ),

where Q is a polynomial over s variables τ1, · · · , τs, with degree 1 in each τi.
Note that as in the case of Gio,w,τ , Q is determined by the witness w that only
the prover has access to. For x and w such that RR1CS(x, w) = 1, the correctly
computed polynomial Qio,w is the zero polynomial, i.e. Qio,w ≡ 0. The random
τ ∈ F

s, sent by the verifier is to test whether Q(τ) = 0. If Q 
≡ 0, then by the
Schwartz-Zippel lemma, Q(τ) = 0 with probability at most s/|F| over the choice
of τ , which is negligible in λ for our choice of F. This suggests the following
strategy for BAD, when Q 
≡ 0, let B := {τ ∈ F

s | Q(τ) = 0}. BAD then works
as follows: (i) uses the trapdoor td to first extract w and determine Q; and (ii)
solve for τ from B and output a random such τ .

While this appears to work on the surface, on closer inspection it can be
observed that while the Schwartz-Zippel lemma guarantees the probability to
be at most s/|F|, the size of the set B can be exponential (|B| ≈ |Fs−1|). As
indicated by our design goals at the start, this is undesirable and something we
do not know how to work around.

We take an alternate approach. Instead of using a single hash function that
outputs the vector τ ∈ F

s, we consider a sequence of hash functions (h1, · · · , hs)
that each output a single τi. Specifically, for every i, τi := hi(x, τ1, · · · , τi−1).

Let Q|τ∗
1 ,··· ,τ∗

i−1
be the polynomial Q with the first i − 1 variables fixed to be

values τ∗
1 , · · · , τ∗

i−1. If Q 
≡ 0, then we want it to continue to be the case that for
the prefix τ∗

1 , · · · , τ∗
i−1, Q|τ∗

1 ,··· ,τ∗
i−1


≡ 0. This then lets us define the i-th bad set
Bi when Q|τ1,··· ,τi−1


≡ 0,

Bi :=
{

τ ∈ F | Q|τ1,··· ,τi−1,τ
≡ 0

}
.

Before we describe the BAD function, let us take a moment to see how one
determines whether Q|τ1,··· ,τi−1,τ

≡ 0. This corresponds to all coefficients of the
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said polynomial to be 0. At a high level, from the description of Q, the coefficients
are determined by the sum over m = 2s values, which in turn is computable in
polynomial time as m = poly(λ). Then a bad τ simply corresponds to those
elements in F that result in the coefficients becoming 0. Since the polynomial
is linear in each variable, solving for such a τ corresponds to solving a linear
system in F. Correspondingly, for all i, the set Bi is of bounded polynomial size.
We refer the reader to the full version for more details on these steps.

We are finally in a position to describe the BAD function, which on input
(x, τ1, · · · , τi−1) (note that the prover message is empty) does the following: (i)
use the trapdoor td to first extract w and determine Q, and then correspondingly
Q|τ1,··· ,τi−1,τ

; and (ii) solve the linear equation in τ such that Q|τ1,··· ,τi−1,τ
≡ 0,

and output such a τ if it exists.
From our discussions above, BAD is in fact efficiently computable, and thus

satisfies our requirement.

BAD has low depth. To base our non-interactive protocol on CIH for TC0, we
need to demonstrate that the BAD function for both cases can be computed
in TC0. In contrast to when we established that BAD was efficient, here, the
simpler case is the BAD function for τ . But before we proceed, we note that
in both cases, we require trapdoor extraction, and thus we additionally require
low-depth extraction property from our commitment scheme. We proceed with
our discussion assuming this to be the case, and will provide more details when
discussing out construction of the commitment scheme in Sect. 2.4.

τ BAD function: In the above description, we are only solving linear equations in
F, which can be computed in TC0, thus trivially giving us the required property.

Sumcheck BAD function: Unfortunately, things are not so simple for the BAD
function in the sumcheck case. The BAD function as described, needs to compute
a root of a degree 3 polynomial in F. While we do know how to do this in
polynomial time, for computing roots in low depth, we are only aware of root
finding for degree 2 polynomials in F to be in TC0.

To circumvent this issue, we take a closer look at the polynomial Gio,w,τ
7.

It turns out that Gio,w,τ is of a special form (see full version for details),
where we compute a sumcheck protocol for,

∑

x∈{0,1}s

Gio,w,τ (x) =
∑

x∈{0,1}s

fio,w,τ (x)

⎛

⎝
s∏

j=1

hj,τ (xj)

⎞

⎠ = 0,

where f is a polynomial with individual degree 2, and each hj,τ is a univariate
polynomial in xj with degree 1. Moreover, the coefficients of hi,τ are determined
only by τ , and therefore known to the verifier once it samples τ . This suggests

7 For simplicity, we focus on a single polynomial here as our explanation extends to
the batch setting too.
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a slight modification of the sumcheck polynomial, where the prover in the i-th
round sends the degree 2 polynomial g∗′

to the verifier which it has purportedly
computed as,

g′
i(x) =

∑

xi+1,··· ,xs∈{0,1}
fio,w,τ (β1, · · · , βi−1, x, xi+1, · · · , xs)

(
i−1∏

j=1

hj,τ (βj)

) (
s∏

j=i+1

hj,τ (xj)

)
.

The verifier then locally computes hi,τ , and computes gi, Clearly, the three roots
of the polynomial g∗

i − gi consist of the two roots of g∗′
i − g′

i and the root of hi,τ .
Thus, by modifying the sumcheck protocol as suggested above, we can then
reduce the root computation in BAD to computation of roots for a degree 2
polynomial, and a degree 1 polynomial, both of which we can compute in TC0.

This establishes that our dual-mode protocol in the trapdoor mode is
strongly FS-compatible. [32] demonstrate that the Fiat-Shamir transformation
with respect to H for any FS-compatible protocol is sound as long as H is
CI for polynomial size functions (larger than BAD). We extend their proof to
demonstrate that if we strengthen FS compatibility to strong FS compatibility,
it suffices for H to be CI for TC0.

Next, we show how to leverage our protocol to construct a non-interactive
batch argument (BARG).

Going from FS-Compatibility to BARGs. In this final step, we finally con-
struct our non-interactive arguments. We apply the Fiat-Shamir transform to
the dual-mode interactive batch argument to achieve a publicly verifiable non-
adaptive BARG in the CRS model. For soundness of the transform we rely on
(i) mode indistinguishability property of the protocol to switch to the trapdoor
mode; and (ii) then in the trapdoor mode, we rely on the FS-compatibility that
we have discussed above.

Communication sub-linear in k. The above construction has an additive term
that is linear in k (recall that the communication cost is Õ(m + k log m)). We
describe how one can generically make this sub-linear by using fairly standard
techniques. The idea is to simply batch k1 instances into a larger instance of the
language L⊗k1 := {(x1, . . . , xk1) : ∀i ∈ [k1], xi ∈ L} that has a relation circuit
of size k1|C| + k1, where |C| is the size of the underlying relation circuit. Then
we apply our dual-mode batch argument for k/k1 instances of L⊗k1 . By setting
k1 ≈ O(

√
k), we get communication that is sub-linear in k. Note that from our

earlier discussion m ≈ k1|C| + k1.

2.4 Somewhere-Extractable Linearly Homomorphic Commitment

We now finally describe our construction of the somewhere-extractable linearly
homomorphic commitment scheme. Over the course of the above discussion,
we have accumulated various requirements that our commitment scheme must
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satisfy. We describe a construction that achieves these properties based on the
quadratic residuosity (QR) assumption.

We start by focusing on the simpler goal of constructing a somewhere statis-
tically binding commitment scheme building on ideas from the recent work on
trapdoor hash functions [21].8 We will discuss how to achieve the extraction and
linear homomorphism properties later.

Recall that, for any Blum integer N = p · q, where p, q are primes such
that p (mod 4) = q (mod 4) = 3, we denote Z

∗
N as the multiplicative group

modulo N , and JN as the subgroup of Z∗
N with Jacobi symbol +1, and QRN be

the subgroup of quadratic residues. Let H = {−1,+1} also be a multiplicative
group, then JN = H × QRN . We now describe the commitment scheme:

– The trapdoor mode commitment key for the coordinate i∗ consists of two
arrays of group elements.

[
g
h

]
=

[
g1 g2 . . . gi∗ . . . gk

gs
1 gs

2 . . . −gs
i∗ . . . gs

k

]
,

where s ← �(N − 1)/2� is sampled uniformly at random, and the elements of
the second row are the corresponding first row elements raised to the exponent
s, except that we flip the sign on the i∗-th coordinate.
In the normal mode, we do not flip the sign, i.e. let h = (g)s. The mode
indistinguishability relies on the quadratic residuosity assumption9.

– To commit to a vector x = (x1, x2, . . . , xk) of length k, we compute (cg =
∏k

i=1 gxi
i , ch =

∏k
i=1 hxi

i ). Then ch = cs
g · (−1)xi∗ . Hence, xi∗ is statistical

binding. Furthermore, the commitment size is compact, since it only contains
two group elements.

Linear Homomorphism and Extraction. We now discuss how to achieve the
desired extraction and the linear homomorphism properties. We observe that the
commitment described above is essentially an encryption of xi∗ . Hence, one can
use the trapdoor td = (p, q, s) to extract xi∗ . The linear homomorphism works
as follows: if we denote the commitment of x under the key (g,h) as (gx,hx),
then for any two commitments (gx,hx), (gy,hy), and any integers a, b ∈ Z, we
can compute

(
(gx)a · (gy)b = ga·x+b·y, (hx)a · (hy)b = ha·x+b·y)

,

which is exactly the commitment for a · x + b · y.
However, if we use the above commitment scheme for our application to batch

arguments, we face the following challenge: the field operation needs modulo 2
computation, but the honest prover can not hope to perform such computation,
since the homomorphic operation is over Z.
8 Similar ideas have also been used in the constructions of somewhere statistically-

binding hash functions [30,40,46] and hash encryption schemes [8,19,20,23].
9 The mode indistinguishability follows from [5], which relies on the quadratic resid-

uosity assumption.
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To overcome this issue, we have the honest prover do all the operations over
the polynomial ring Z[α], instead of the field F. Note that this modification
does not affect completeness since the honest prover is essentially proving some
polynomial identities (e.g. the R1CS instance (A · z) ◦ (B · z) = C · z reduced
from circuit satisfiability), and such identities hold regardless of whether the
underlying variables are taken from a field or a ring. For soundness, we make
the following observation: if a proof is accepted over the ring Z[α], then if we
further perform modulo 2 operation, the proof must still be accepted. Hence the
soundness can be reduced to the case when operations are over F. See Sect. 5 for
a more detailed discussion.

(Linearly Homomorphic) Extraction from any Commitment. The afore-
mentioned extraction and linear homomorphism only works for “well-formed”
commitments. In order to prove round-by-round soundness of our dual-mode
interactive batch argument protocol, however, we need the extraction works for
any (possibly not well-formed) commitment. Moreover, the linear homomor-
phism property must also hold over the extracted values.

To achieve such a property, we observe that for any (possibly not well-formed)
commitments c = (cg, ch) ∈ JN × JN , we can still compute ch/cs

g, which is
also a group element in JN . From the decomposition JN = H × QRN , there
exists a unique m ∈ Z2 and g ∈ QRN such that ch/cs

g = (−1)m · g. Hence, we
define the extracted message for c as m. Since N is a Blum integer, |QRN | =
(p− 1)/2 · (q − 1)/2 is an odd number. We let n denote |QRN |. Then, we extract
m by computing

(ch/cs
g)

n = (−1)m · gn = (−1)m.

We show that this extraction can be decomposed to an off-line pre-
precomputation phase and an online extraction phase, where the online extrac-
tion can be computed in TC0. We allow the off-line pre-precomputation to be
deeper than TC0 circuits, since in our protocol, the pre-computation is always
performed honestly by the prover and the verifier.

We now show that the linear homomorphism property also holds for the
above extraction algorithm. For any two commitments c = (cg, ch), d = (dg, dh),
the extraction is a “linear operation” over cg, ch, i.e. if Ext(c, td) = mc, then
(−1)mc = cn

hc−sn
g . Similarly, if Ext(d, td) = md, then (−1)md = dn

hd−sn
g . Now for

any linear combination a, b ∈ Z, when we extract from a · c + b · d, we compute
(ca

h ·db
h)n · (ca

g ·db
g)

−sn = (−1)a·m1+b·m2 . Hence, the extracted value for a · c+ b ·d
is a · m1 + b · m2 (mod 2), which establishes the linear homomorphism property.

For more details, see Sect. 4.2.

Full Version. Due to space constraints, preliminaries and details of the proofs
have been omitted from this manuscript, and can be found in the full version of
the paper [15].

3 Preliminaries

We defer most of the preliminaries to the full version, but describe here some
notation that will be used in the rest of the paper.
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We start with some basic notation: For any n length string a, we denote by
ai the i-th position of the string. Often we will see i represented in the binary
form, i.e. i ∈ {0, 1}�|x|	, in such a scenario we simply convert i to its integer
representation to index into the string a. To concatenate two strings a and b,
we denote it as (a, b). Lastly, we will consider matrices of the form A ∈ F

m×n,
which we shall view as functions A : {0, 1}�log m	×{0, 1}�log n	 �→ F, where A(i, j)
corresponds to the element in A along the i-th row, and j-th column.

3.1 Complexity Problems

We define below the two relevant complexity problems, Boolean circuit satisfi-
ability (C-SAT) and satisfiability of systems of rank-1 quadratic equations over
a finite field F (R1CS). Our starting point will be C-SAT instances, but our
protocol will be designed for R1CS instances.

Definition 1 (Circuit-C-SAT). A circuit satisfiability instance C-SAT is a
tuple (C, x), defined by a Boolean circuit C : {0, 1}|x| × {0, 1}|y| �→ {0, 1} and a
string x ∈ {0, 1}|x|.

A C-SAT instance is said to be satisfiable if there exists a string y ∈ {0, 1}|y|

such that C(x, y) = 1. We denote this as RC-SAT((C, x), y) = 1.

Definition 2 (R1CS). An R1CS instance is a tuple x = (F, A,B,C, io,m, n)
where (a) io denotes the public input and output of the instance; (b) A,B,C ∈
F

m×m with m ≥ |io| + 1; and (c) there are at most n non-zero entries in each
matrix.

An R1CS instance is said to be satisfiable if there exists a witness w ∈
F

m−|io|−1 such that (A · z) ◦ (B · z) = (C · z), where z = (io, 1, w), · is the
matrix-vector product and ◦ is the Hadamard (entry-wise) product. We denote
this as RR1CS(x, w) = 1.

Circuit-SAT to R1CS. As discussed above, while our definition is for general
R1CS instances, we shall consider instances generated via a reduction from
C-SAT. Given a C-SAT instance, one can convert it into an R1CS instance over
F where A,B,C ∈ F

m×m for m = O(|C|) and n = O(|C|), i.e. the matrices A,B
and C are sparse. Furthermore, io ∈ {0, 1}|x| and the witness w ∈ {0, 1}|C|−|x|.

We will use the following theorem from [51] that shows that any R1CS
instance can be represented by sum over the Boolean hypercube (i.e. over {0, 1}�

for some �) of a low degree polynomial.

Theorem 2. ([51]). For any R1CS instance x = (F, A,B,C, io,m, n) there
exists a degree 3, log m-variate polynomial G such that

∑

x∈{0,1}log m

G(x) = 0

if and only if there exists a witness w such that, except with soundness error
negligible in λ, RR1CS(x, w) = 1. Here |F| is exponential in λ and m = O(λ).
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4 Somewhere-Extractable Linearly Homomorphic
Commitments

In this section, we introduce the notion of somewhere-extractable linearly homo-
morphic commitment. In such a commitment scheme, one commits to a vector of
values using a commitment key that can be generated using one of two indistin-
guishable modes: normal mode or extraction mode. Before going into the details,
we give an overview of the desired properties from such a scheme:

Somewhere Extraction: When generating the commitment key K in the
extraction mode, a coordinate i∗ is chosen such that any commitment under
the key K binds the least significant bit of the i∗-th coordinate of the com-
mitted message. Further, alongside the commitment key, the key generation
algorithm in the extraction mode also outputs a trapdoor td, which allows
one to extract the least significant bit of the i∗-th coordinate of the message
(i.e. extraction (mod 2)). We denote this extraction algorithm as Ext(·, td).

Linear Homomorphism: Consider two commitments c1 = Com(K,m1; r1)
and c2 = Com(K,m2; r2) under the same commitment key (in any mode)
for messages m1,m2 with corresponding randomness r1, r2. For any integers
a and b, given c1 and c2, there is a way to homomorphically obtain the
commitment Com(K, a · m1 + b · m2; a · r1 + b · r2).

Linearly Homomorphic Extraction: The aforementioned linear homomor-
phism only concerns well-formed commitments. However, we also need the
linear homomorphism properties to hold for commitments that may not be
well-formed. To this end, we introduce an extractable space E , such that for
any c ∈ E , as the name suggests, we can use the extraction algorithm Ext to
extract a message. Additionally, we require E to satisfy the following proper-
ties:

Public Verifiability: Given any c, it can be publicly verified if c ∈ E .
Close Under Linear Homomorphism: The linear homomorphic opera-
tion is closed in E , i.e. for any two elements in E , the linear homomorphic
evaluated commitment is also in E .

Extraction is Linear Homomorphic: Most importantly, the extraction
operation is linear homomorphic in E , i.e. for any two elements c1, c2 ∈ E ,
and any two integers a1, a2, we have

Ext(a1 · c1 + a2 · c2, td) = a1 · Ext(c1, td) + a2 · Ext(c2, td) (mod 2)

Low-Depth Extraction: For our applications, we ideally want the extraction
algorithm Ext be computed in low depth, specifically TC0. However, this is
hard to achieve. Hence, we decompose the extraction algorithm to an offline
pre-computation phase PreComp, where PreComp is not allowed to use td but
can be of polynomial depth, and a low-depth online-phase OnlineExt(·, td). We
only require that the online-phase of extraction OnlineExt(·, td) be computed
in TC0.
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In Sect. 4.1 we formally define such a commitment scheme. In the full version
we also we show an extension of the definition to a more general setting, where
the commitments are over polynomials. Lastly, in Sect. 4.2, we construct such a
commitment scheme from the quadratic residuosity assumption.

4.1 Definition

A somewhere-extractable linearly homomorphic commitment scheme is a tuple of
algorithms LHC = (Gen,ExtGen,Com,Ext,Samp) described below, where Samp
is a randomness sampling algorithm for the commitment.10

– Gen(1λ, 1k): On input the security parameter λ and input length k, outputs
a commitment key K.

– ExtGen(1λ, 1k, i∗): On input the security parameter λ, input length k and an
index i∗ ∈ [k], outputs an extractable commitment key K, and a trapdoor td.

– Com(K, (x1, x2 . . . , xk); r): On input a commitment key K, k integers (x1, x2,
. . . , xk) ∈ Z

k and randomness r ← Samp(K) as input, outputs a commitment
c.

– Ext(c, td): On input a commitment c and a trapdoor td, output a message m.
Further, this can be decomposed into two algorithms PreComp and OnlineExt
described as follows:

• PreComp(1λ, c): On input the security parameter λ and a commitment c,
output a pre-processed value c′ that is to be used for online extraction.

• OnlineExt(c′, td): On input the pre-processed commitment c′ and a trap-
door td, output a message m ∈ F2.

For correctness, we require that Ext(c, td) = OnlineExt(PreComp(1λ, c), td).
We also emphasize that PreComp does not take the trapdoor as input.

We require the algorithms to satisfy the following properties.

Compactness: The size of the commitment is bounded by some fixed polyno-
mial poly(λ) in the security parameter.

Key Indistinguishability: For any integer i∗ ∈ [k], and any non-uniform PPT
adversary D, there exists a negligible function ν(λ) such that

|Pr
[
K ← Gen(1λ, 1k) : D(1λ,K) = 1

] −
Pr

[
K ← ExtGen(1λ, 1k, i∗) : D(1λ,K) = 1

] | < ν(λ).

Linear Homomorphism: There exists a binary operation “+” over the com-
mitments such that, for any key K, a, b ∈ Z, and any integers vectors
x,y ∈ Z

k, and randomness r, u ∈ Z, we have

a · Com(K,x; r) + b · Com(K,y;u) = Com(K, a · x + b · y; a · r + b · u).

10 We use an explicit randomness sampling algorithm because in our construction from
QR, the randomness is sampled from a space that depends on the commitment key.
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Extraction: The extraction algorithm Ext satisfies the following properties:
Somewhere F2-Extraction: For any x = (x1, x2, . . . , xk) ∈ Z

k, any i∗ ∈
[k], and any randomness r ∈ Z,

Pr[(K, td) ← ExtGen(1λ, 1k, i∗), c = Com(K,x; r) :
Ext(c′, td) = xi∗ mod 2] = 1.

Linearly Homomorphic Extraction: There exists an extractable space
E and a polynomial time algorithm EVer such that, for any c ∈ {0, 1}∗,

Pr
[
c ∈ E ⇐⇒ EVer(1λ, c) = 1

]
= 1.

Furthermore, E is closed under linear combination, i.e. for any a1, a2 ∈
Z, c1, c2 ∈ E , we have a1 · c1 + a2 · c2 ∈ E , and

Pr [Ext(a1 · c1 + a2 · c2, td) = a1 · Ext(c1, td) + a2 · Ext(c2, td) (mod 2)] = 1.

In addition, every “well-formed” commitment is in E . i.e. for any key K,
input x ∈ Z

k, and randomness r ∈ Z, we have Com(K,x; r) ∈ E .
Low-Depth Online Extraction: The algorithm OnlineExt can be com-

puted by TC0 circuits.

4.2 Construction

We present our construction of somewhere-extractable linearly homomorphic
commitments in Fig. 1.

The reader may note that we have not split the extraction algorithm Ext
in Fig. 1 as necessitated by the definition. Instead we defer the decomposition
into PreComp and OnlineExt to the full version of the paper. We state below the
theorem and defer the proof to the full version of the paper.

Theorem 3. The construction in Fig. 1 is a somewhere-extractable linearly
homomorphic commitment based on the Quadratic Residuosity assumption.

5 Dual Mode Interactive Batch Arguments for NP

In this section, we define and construct dual mode interactive batch arguments
for NP. At a high-level, such an argument system allows for proving multiple
instances of an NP language while incurring roughly the communication (and
verification) cost of proving a single instance. We consider such protocols in
the CRS model that may be executed in one of two modes – normal mode or
trapdoor mode. The former corresponds to normal protocol execution while the
latter mode is used in the security proof. Crucially, in the trapdoor mode, we
require the protocol to satisfy non-adaptive statistical soundness.

Dual Mode Interactive Batch Arguments. We start by providing a formal
definition. We shall denote by OutA〈A(a), B(b)〉 the random variable that cor-
responds to the output of party A on execution of the protocol between A with
input a, and B with input b. Here the probability is taken over the random coins
of both A and B.
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Fig. 1. Construction of somewhere-extractable linearly homomorphic commitment.

Definition 3 (Dual-Mode Interactive Batch Arguments). A dual-
mode interactive batch argument, denoted by a tuple of PPT algorithms
(P,V,Gen,TGen), is an interactive protocol in the common reference string
(CRS) model for an NP language L defined by relation RL if it satisfies the
following properties:

Completeness. For all x = (x1, . . . , xk) and w = (w1, . . . , wk) such that for
each i ∈ [k], RL(xi, wi) = 1, it holds that:

Pr
[
OutV〈P(crs,x,w),V(crs,x)〉 = 1

∣∣ crs ← Gen(1λ, 1k)
]

= 1.

Dual Mode Indistinguishability. The two setup modes are computationally
indistinguishable, i.e. ∀k ∈ N,∀i∗ ∈ [k],

{
crs : crs ← Gen(1λ, 1k)

}
λ∈N

≈c

{
crs : crs ← TGen(1λ, 1k, i∗)

}
λ∈N

Non-Adaptive Statistical Soundness in Trapdoor Mode. For every (pos-
sible unbounded) cheating prover P∗ and all x = (x1, . . . , xk) where ∃i s.t.
xi /∈ L, it holds that ∀i∗ ∈ [k] s.t. xi∗ /∈ L:

Pr
[
OutV〈P∗(crs,x,w),V(crs,x)〉 = 1

∣∣∣ (crs, td) ← TGen(1λ, 1k, i∗)
]

≤ negl(λ) .

Remark 1. The above definition implies (non-adaptive) soundness against PPT
cheating provers in the normal mode. This is easily observed via a sequence of
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hybrids: (i) switch the crs being generated in the normal mode to the trapdoor
mode for a randomly chosen index i∗ while relying on the computational indis-
tinguishability. With probability at least 1/k the chosen index i∗ will be such
that xi∗ /∈ L; (ii) rely on the non-adaptive statistical soundness in the trapdoor
mode.

Our Construction. We construct a dual mode interactive batch argument
for R1CS, where the instances are generated from instances of Boolean circuit
satisfiability that all share the circuit C but have different statements x. (We
refer the reader to the full version for the corresponding reduction from Boolean
satisfiability to R1CS.) This results in k instances of R1CS,

{x(j)}j∈[k] = (F, A,B,C, {io(j)}j∈[k],m, n),

where all the ioj are of the same length, and the instances share the same
F, A, B, C, m and n. Furthermore, as a consequence of the reduction, the
witnesses to these instances {w(j)}j∈[k] are all binary values, i.e. ∀j ∈ [k],
w(j) ∈ {0, 1}m−|io|−1. We work with the field F, which is an extension field
of F2 of size 2λ. Specifically, F := F2[α]/(v(α)) for some irreducible polynomial
v(α) in F2 of degree λ.11

Our protocol relies on a single cryptographic component, namely, a
somewhere-extractable linearly homomorphic commitment scheme LHC =
(Gen,ExtGen,Com,Ext,Samp) (Sect. 4.1) which can be built (see Sect. 4.2) from
the quadratic residuosity assumption. The dual mode property of our protocol
comes exclusively from the use of this commitment scheme.

The formal description of the protocol is presented in Fig. 2.

Below, we provide an overview of our protocol, focusing on how we implement
batching. We note that due to the lack of space, we omit some details regarding
the underlying polynomials used in our construction, and refer the reader to the
full version for the details.

1. Given k R1CS instances {x(j)}j∈[k], the prover needs to commit to k witnesses
{w(j)}j∈[k], where the witnesses are all of the same size |w|. This is done by
first representing the k witnesses as a matrix W , where each witness occupies
a single row. The prover uses LHC to commit to |w| k-tuples corresponding
to each column of the matrix W . From the compactness property of LHC, the
total size of the commitments sent by the prover is proportional to the size
of a single witness |w|.
An observant reader may note that the message space for a k-tuple commit-
ment in LHC is Z

k, and not F
k as we would like. Here we utilize the fact

that the prover is committing to the witness whose values are only binary
(as consequence of the reduction from C-SAT to R1CS, see Sect. 3.1)12, and

11 One can think of the representation to be a λ length vector in F2 corresponding to
the coefficients of the polynomial f ∈ F2[α]/(v(α)).

12 Our protocol does not handle arbitrary R1CS instances where the witness may have
values in F outside of {0, 1}.
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Fig. 2. Interactive Batch Argument for R1CS.

therefore the message space for the commitment of a k-tuple is {0, 1}k ⊂ Z
k.

This also explains why we commit to the witness w rather than its multilinear
extension, since they are equivalent when the witness is a binary string.
Let {cy}y∈[|w|] denote the commitments.

2. The prover and verifier run sumcheck protocols for polynomials {G(j)
τ,io}j∈[k]

- there are k distinct polynomials since the witness (which determines the
polynomial) for each R1CS instance is different. Specifically, the sumcheck
protocol is to prove that the following sum

∑

x∈{0,1}log m

G(j)
τ,io :=

∑

x∈{0,1}log m

F̃io(x) · ẽq(x, τ)
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is 0, where F̃io is a polynomial that depends on A,B,C, io and w. The prover
and verifier run all k sumchecks in parallel, where the verifier uses the same
randomness across all the sumcheck protocols.

3. At the end of the sumcheck protocol, the verifier needs to evaluate each
polynomial {G(j)

τ,io}j∈[k] at a point r∗ ∈ F
log m determined by the sumcheck

polynomial. Note that since the verifier used the same randomness across
all the sumcheck protocols, it is the same value r∗ for all the polynomials
{G(j)}j∈[k]. Since ẽq(r∗, τ) can be computed locally by the verifier, the check
at the end of the sumcheck reduces to computing, for each j ∈ [k],

The terms that depend solely on the instance and common input can be
computed by the verifier locally. The remaining terms that depend on the
witness, highlighted in above, are terms that the prover needs to send to
the verifier. We denote these terms by {ν

(j)
A,2, ν

(j)
B,2, ν

(j)
C,2}j∈[k], where for each

j ∈ [k],

ν
(j)
A,2 :=

∑

y∈{0,1}s2

Ã′′(r∗, y) · w(j)
y , ν

(j)
B,2 :=

∑

y∈{0,1}s2

B̃′′(r∗, y) · w(j)
y

ν
(j)
C,2 :=

∑

y∈{0,1}s2

C̃ ′′(r∗, y) · w(j)
y

There are two crucial observations to be made here: (i) for each fixed r∗,
the above values are simply a linear combination of each individual witness
w(j) (with appropriate coefficients); and (ii) the linear coefficients are the
same for each witness, and in fact the linear coefficients depend only on the
index of the witness.

4. The above observations allow the prover to open the commitments to {ν
(j)
A,2,

ν
(j)
B,2, ν

(j)
C,2}j∈[k] by the linear homomorphism property of LHC since the prop-

erty allows for the same linear coefficient to be applied all values in the k-tuple
within the commitment.
Specifically, the prover sends the values (and randomness) in the clear to the
verifier, who then performs the same linear homomorphism over the commit-
ted values {cy}y∈[|w|] to check if the openings sent by the prover are correct
before computing the checks necessitated by the sumcheck.
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While we remarked that the values that are inside the commitment are
binary, this is not true of the linear coefficients that are in F. But since
F = F2[α]/(v(α)), by the homomorphism with respect to polynomial property
of LHC and that F2[α]/(v(α)) ⊂ Z[α]/(v(α)), it is fine that coefficients are in
F.
Lastly it should be noted that the homomorphism properties are defined over
Z[α]/(v(α)) and not F2[α]/(v(α)), meaning there is no modular reduction in
the coefficients of the resultant polynomial after the homomorphism oper-
ation, i.e. the λ length vector has elements in Z instead of F2. Therefore,
to verify correctness of the commitment, the prover computes the values
{ν

(j)
A,2, ν

(j)
B,2, ν

(j)
C,2}j∈[k] over Z[α]/(v(α)), i.e. no modular reduction. The veri-

fier does the commitment check over Z[α]/(v(α)), but once the check passes
successfully reduces to F2[α]/(v(α))13. While this increases the number of bits
sent by the prover, we show in the full version of the paper that the increase
is quite small, giving us the following theorem.

Theorem 4. Assuming the existence of somewhere-extractable linearly homo-
morphic commitments, the protocol in Fig. 2 is a dual-mode interactive batch
argument for R1CS where

– Total communication cost is O(mλ + (λ + k) log m)
– The verifier’s total run time is O(k|io| + n + m) · poly(λ)

where all instances have the same length |io|.
We defer the proof to the full version of the paper. Since we start with Boolean
circuit satisfiability to generate R1CS instances, we get the following corollary
with costs corresponding to the size the Boolean circuit.

Corollary 1. If we start with C-SAT instances defined by a boolean circuit C :
{0, 1}|x|×{0, 1}|y| �→ {0, 1}, then the protocol in Fig. 2 is a dual-mode interactive
batch argument for C-SAT where

– Total communication cost is O(|C| + k log |C|)poly(λ)
– The verifier’s total run time is O(k|x| + |C|) · poly(λ)

6 Non-interactive Batch Arguments for NP

We now construct a non-interactive batch argument system for NP. We start by
formally defining this notion below.

Definition 4 (Non-interactive Batch Arguments). A non-interactive batch
argument for an NP language L defined by relation RL is a tuple of algorithms
(Gen,P,V) satisfying the following properties:

13 This is just reducing each element in the λ length vector to F2.
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– Completeness: For all x = (x1, . . . , xk) and w = (w1, . . . , wk) such that for
each i ∈ [k], RL(xi, wi) = 1, it holds that:

Pr[V(crs,x, π) = 1 | crs ← Gen(1λ), π ← P(crs,x,w)] = 1.

– (Non-adaptive) Soundness: For every PPT adversary P∗ and all x =
(x1, . . . , xk) where ∃i s.t. xi /∈ L, it holds that:

Pr[V(crs,x, π) = 1 | crs ← Gen(1λ), π ← P∗(crs)] ≤ negl(λ) .

In the full version, we show that the Fiat-Shamir transform w.r.t. H when
applied to any strongly FS compatible protocol is sound as long as H is corre-
lation intractable for TC0. Next, we construct a non-interactive batch argument
system for NP by demonstrating that the above transformation remains sound
when applied to our dual-mode interactive batch argument (Sect. 5), even though
the aforementioned protocol does not satisfy strong FS compatibility. Finally, we
show that we show that although our described protocol has a linear dependence
on k, this can be made sub-linear.
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Abstract. Lossy trapdoor functions, introduced by Peikert and Waters
(STOC ’08), can be initialized in one of two indistinguishable modes: in
injective mode, the function preserves all information about its input,
and can be efficiently inverted given a trapdoor, while in lossy mode,
the function loses some information about its input. Such functions have
found countless applications in cryptography, and can be constructed
from a variety of Cryptomania assumptions. In this work, we introduce
targeted lossy functions (TLFs), which relax lossy trapdoor functions
along two orthogonal dimensions. Firstly, they do not require an inver-
sion trapdoor in injective mode. Secondly, the lossy mode of the function
is initialized with some target input, and the function is only required
to lose information about this particular target. The injective and lossy
modes should be indistinguishable even given the target. We construct
TLFs from Minicrypt assumptions, namely, injective pseudorandom gen-
erators, or even one-way functions under a natural relaxation of injec-
tivity. We then generalize TLFs to incorporate branches, and construct
all-injective-but-one and all-lossy-but-one variants. We show a wide vari-
ety of applications of targeted lossy functions. In several cases, we get
the first Minicrypt constructions of primitives that were previously only
known under Cryptomania assumptions. Our applications include:

– Pseudo-entropy functions from one-way functions.
– Deterministic leakage-resilient message-authentication codes and

improved leakage-resilient symmetric-key encryption from one-way
functions.

– Extractors for extractor-dependent sources from one-way functions.
– Selective-opening secure symmetric-key encryption from one-way

functions.
– A new construction of CCA PKE from (exponentially secure) trap-

door functions and injective pseudorandom generators.
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1 Introduction

Lossy trapdoor functions, introduced by Peikert and Waters [PW08], are a fun-
damental cryptographic tool and have found countless applications in many areas
of cryptography. They can be constructed from a wide variety of specific number-
theoretic and algebraic “Cryptomania” assumptions. In this work, we introduce
a relaxation of lossy trapdoor functions that we call targeted-lossy functions
(TLFs), and show how to instantiate them using “Minicrypt” assumptions, such
as injective pseudorandom generators or even one-way functions for a natural
variant. We then provide applications of TLFs to a diverse set of problems. For
several of these problems, we get the first solutions under one-way functions,
where previously only solutions under specific Cryptomania assumptions were
known.

Lossy Trapdoor Functions. Lossy trapdoor functions consist of a function family
Ffk(·) indexed by a public function key fk. The function key fk can be generated
in one of two modes. In injective mode, the function Ffk(·) is injective, and
therefore each output y = Ffk(x) uniquely determines the input x. Furthermore,
the public function key fk is generated together with a secret trapdoor td that
allows one to efficiently invert the function and recover the input x from the
output y = Ffk(x). In lossy mode, the output y = Ffk(x) loses some information
about the input x. This is captured by defining a lossiness parameter � and
requiring that the size of the image of Ffk is at most a 1

2� fraction of the size
of the domain. In particular, this implies that when x is uniformly random over
its domain, then the conditional entropy1 of x given Ffk(x) is at least � bits,
meaning that this information about x is lost by Ffk(x). The two modes should
be computationally indistinguishable: given fk, one cannot tell if it was generated
in injective mode or lossy mode.

Since their introduction, lossy trapdoor functions have turned out to be
incredibly versatile tool and have quickly become an integral part of our cryp-
tographic tool-set. They have found countless and varied applications, includ-
ing to CCA security, trapdoor functions with many hard-core bits, collision-
resistant hash functions, and oblivious transfer [PW08], deterministic encryp-
tion [BFO08], analyzing OAEP [KOS10], hedged public-key encryption with
bad randomnes [BBN+09], selective opening security [BHY09], pseudo-entropy
functions [BHK11], point-function obfuscation [Zha16], computational extrac-
tors [DVW20,GKK20], incompressible encodings [MW20], etc.

Lossy trapdoor functions are known to imply public-key encryption, mak-
ing them a Cryptomania primitive. We currently know how to construct lossy
trapdoor functions under most (but not all) concrete Cryptomania assumptions,
such as DDH, LWE, Quadratic Residuosity (QR), Decision-Composite Residu-
osity (DCR), and Phi-hiding [PW08,KOS10,FGK+13], but not e.g., factoring,
RSA, or the (low noise) LPN assumption.

1 Throughout the introduction, entropy refers to min-entropy, and conditional entropy
refers to average-case conditional min-entropy [DORS08].
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Targeted-Lossy Functions. In this work, we introduce a relaxation of lossy trap-
door functions, that we call targeted-lossy functions (TLFs), with the goal of
constructing them under weaker assumptions. TLFs relax the notion of lossy
trapdoor functions along two orthogonal dimensions:

– No inversion trapdoor in injective mode. When we generate fk in injective
mode, we now only require that the function Ffk(·) is injective, but we no
longer require there to be a trapdoor td that allows us to efficiently invert it.

– Targeted Lossiness. When we generate fk in lossy mode, we are now also given
a target input x∗ and only require that Ffk(x∗) loses � bits of information
about the particular target x∗. In particular, when the target x∗ is chosen
uniformly at random and fk is chosen in lossy mode for this target, then the
conditional entropy of x∗ given (fk, Ffk(x∗)) should be at least � bits.

The two modes should be computationally indistinguishable even given the
potential target x∗. In other words, given the pair (fk, x∗), one cannot distin-
guish whether fk was chosen in injective mode and independently of x∗ or in
lossy mode with x∗ as the target.

Notice that the first relaxation already appears to take us out of Cryptomania
– without a trapdoor, there is no obvious way to use this primitive to construct
public-key encryption. This relaxation was considered on its own in prior works
(e.g., [BHK11,DVW20]), and is already known to have interesting applications.
Unfortunately, there has been no progress towards achieving this relaxation on
its own under any Minicrypt assumption, or even under any assumption that
doesn’t already imply the full notion of lossy trapdoor functions.2 This motivates
us to consider this relaxations in conjunction with our second relaxation.

Lossy Targeted Lossy

target

Fig. 1. Lossy vs Targeted-Lossy

2 It is also known that, with a sufficiently high lossyness rate, this relaxation on its
own would already at least imply collision-resistant hashing [PW08], and therefore
is unlikely to follow from one-way functions/permutations.
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The second relaxation substantially weakens the lossiness requirement and
only asks for targeted lossiness. To highlight the difference between standard
vs targeted lossiness, notice that targeted lossiness with parameter � could be
achieved by choosing a lossy function key fk for some target x∗, where the output
y = Ffk(x∗) has 2� pre-images in the set S = {x : Ffk(x) = y}, but for every
x �∈ S, the value Ffk(x) has a unique pre-image x. Such a function would not be
lossy in the standard sense. For example, if the domain of the function is {0, 1}n

with n = 2�, then, from the point of view of standard lossiness, the function only
has negligible information loss �′ = O(2−�), even though its targeted-lossiness
� can be an arbitrarily large polynomial.3 This example is illustrated in Fig. 1.
Despite the significant difference between the notions, we show that targeted
lossiness suffices in many applications in place of standard lossiness.4

TLFs with Branches/Tags. We also consider an augmented notion of TLFs with
branches/tags, analogously to prior notions of branches for lossy trapdoor func-
tions [PW08]. In this setting, a single function key fk defines an entire family
of functions Ffk,tag(·) with various branches indexed by tag. We can sample the
function key fk with a special branch tag∗ and a target value x∗, and we require
that the pair (fk, x∗) computationally hides tag∗. We define two main variants
of this notion, depending on whether the special branch is lossy or injective.

In a targeted all-injective-but-one (T-AIBO) family, the special branch tag∗

is targeted-lossy and all other branches are injective. In particular, for all tag �=
tag∗, the function Ffk,tag is injective, while Ffk,tag∗(x∗) loses � bits of information
about the target x∗. This notion is most directly analogous to the way branches
were defined for standard lossy trapdoor functions of [PW08].

In a targeted all-lossy-but-one (T-ALBO) family, the function Ffk,tag∗ is injec-
tive on the special branch tag∗, while all other branches Ffk,tag are cumula-
tively targeted-lossy. In particular, the cumulative outputs of all lossy branches
(Ffk,tag(x∗))tag �=tag∗ must lose �-bits of information about the target x∗. An anal-
ogous notion of branches for the case of lossy trapdoor functions was previously
considered in [CPW20], and a relaxed version without trapdoors (but with-
out the second relaxation to targeted lossiness) was considered implicitly in
[BHK11,GKK20] and explicitly in [DVW20]. All prior constructions relied on
Cryptomania assumptions.

Relaxing Injectivity. It turns out that we can also relax the injectivity require-
ment of TLFs, while sufficing for most of our applications. When we choose fk
in injective mode, instead of requiring that Ffk(x) uniquely determines x, we
3 The function has an image of size 2n − 2� + 1, which we can write as 1

2�′ 2n for

�′ = O(2−�).
4 We could also consider the second relaxation to targeted lossiness on its own, with-

out making the first relaxation (i.e., by still insisting on an inversion trapdoor in
injective mode). In that case, the resulting notion would still be a Cryptomania
primitive. Interestingly, this notion was considered informally in [GGH19], where it
was constructed under the CDH assumption, which is not known to imply standard
lossy trapdoor functions. Not much else is known about this setting.
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only require that it uniquely determines some property of x, modeled as an arbi-
trary function P (x). In this case, we also require that when fk is in lossy mode
for the target value x∗, then Ffk(x∗) loses � bits of information about the same
property P (x∗). We can define T-AIBOs and T-ALBOs with relaxed injectiv-
ity analogously, and even allow the property P to depend on fk. In the case of
T-ALBOs, by setting the property P (x) = Ffk,tag∗(x), this relaxed injectivity
requirement is equivalent to insisting that the cumulative outputs of all lossy
branches (Ffk,tag(x∗))tag �=tag∗ should lose � bits of information about the output
of the “injective” branch Ffk,tag∗(x∗).

1.1 Our Results

We construct targeted lossy functions (TLFs) from injective pseudorandom gen-
erators (PRGs). We also generalize our construction to targeted all-injective-but-
one functions (T-AIBOs) under the same assumption. For all-lossy-but-one func-
tions (T-ALBOs), we need a stronger “doubly injective” PRG G(x) = (y0, y1),
whose output consists of two halves y0, y1, and the PRG is injective on each half
individually (i.e., either one of y0, y1 uniquely determines x). We also construct
TLFs, T-AIBOs and T-ALBOs with relaxed injectivity from just one-way func-
tions. In all cases, we start with a basic construction that only achieves lossiness
of � = 1 bits, but can then amplify lossiness via parallel repetition to get to an
arbitrary polynomial �. (However, the lossiness rate of our constructions, defined
as �/n where n is the domain size, is only 1/λ, where λ is the security parameter.
Achieving a higher lossiness rate in Minicrypt is a fascinating open problem.)

Application: Pseudo-entropy Functions. The work of Braverman, Hassidim, and
Kalai [BHK11] introduced the notion of a pseudo-entropy function (PEF), and
constructed them under the DDH assumption. A PEF fk(x) has a secret key
k and takes as inputs values x. The requirement is that for any a-priori chosen
input x∗, we can indistinguishibly select the key k so that fk(x∗) has � bits of
true statistical entropy even given fk(x) for all inputs x �= x∗. We observe that
PEFs follow almost immediately from T-ALBOs with relaxed injectivity (just by
“renaming” the various components), and therefore get a construction of PEFs
from one-way functions. The amount of entropy � in our construction can be
set to an arbitrarily large polynomial. (On the other hand, the entropy rate of
our construction, defined as �/n where n is the key size, is stuck at 1/λ. This is
in contrast to the construction of [BHK11], which achieved an entropy rate of
1 − o(1) under DDH.)

Application: Leakage-Resilience. Leakage-resilient cryptography aims to preserve
security even if an adversary can get some partial leakage on the secret key.
We consider the setting of memory leakage [AGV09,ADW09,NS09,HLWW13],
where an adversary can learn any efficiently computable function of the secret
key, as long as the number of leaked bits is bounded by some parameter �.
As shown by [BHK11], pseudo-entropy functions (PEFs) are useful for leakage-
resilient symmetric-key cryptography and were previously used to construct
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(selectively secure) deterministic leakage-resilient MACs under DDH. By using
our new construction of PEFs from one-way functions, we get the first (selec-
tively secure) deterministic leakage-resilient MACs from just one-way functions.
The amount of leakage � that we can tolerate can be set to an arbitrarily large
polynomial. (However, the length of the key grows depending on � and the leak-
age rate of our construction, defined as �/n where n is the key size, is stuck at
1/λ. This is in contrast to the construction of [BHK11], which achieved a leakage
rate of 1 − o(1) under DDH.) We can also use a similar technique to construct
leakage-resilient CPA-secure symmetric-key encryption from one-way functions.

We note that a prior work of [HLWW13] constructed leakage-resilient
symmetric-key primitives, including CPA-secure symmetric-key encryption and
(adaptively secure) MACs from one-way functions. The amount of leakage and
the leakage rate are the same as in our construction. However, the MACs in the
prior work were inherently randomized, while in this work we get deterministic
MACs. This is especially crucial in the context of leakage-resilience since, in a
randomized construction, leakage that occurs during a computation may also
depend on the randomness of the computation in addition to the secret key, but
such leakage was not analyzed by the prior work (and indeed, the proof there
would fail). Furthermore, our MAC has a smaller signature size: the ratio of leak-
age to signature size is (1 − o(1)) in our construction while it is 1/λ in the prior
work. For the case of CPA-secure symmetric-key encryption, in the prior work
the ciphertext size grew linearly with the leakage bound �, while in our work,
only the secret key size grows with the leakage bound �, but the ciphertext size
just has a minimal O(λ) additive overhead on top of the message length. For
both MACs and symmetric-key encryption, our constructions are substantially
different from those of [HLWW13].

Application: Extractor-Dependent Sources. The work of Dodis, Vaikuntanathan
and Wichs [DVW20], which we will refer to as DVW, defined the notion of (com-
putational) extractors for extractor-dependent sources. The goal is to extract
nearly uniform randomness R from an arbitrary source of randomness X that
has some sufficient entropy. Classical results show this to be possible using a
seeded randomness extractor R = Ext(X;S), which relies on a public random
seed S. As long as the source X is independent of the seed S, the output R is
nearly uniform even given S. Usually, we think of the source X as coming from
nature and therefore consider it to be worst-case but not adversarial – this is
used to justify its independence from S. DVW considered a setting where the
seed S is repeatedly used to extract randomness from nature and may there-
fore impact nature itself (e.g., consider using the timing of interrupts to derive
entropy, but the interrupts may depend on processes that may themselves rely
on extracted outputs). They model this by assuming that the source which pro-
duces X can depend on oracle access to the extractor Ext(·;S), but is independent
of the seed S otherwise, and they refer to such sources as extractor-dependent
sources. DVW showed that extractors for extractor-dependent sources cannot
exist unconditionally and at least imply one-way functions. They also distin-
guished between two scenarios, depending on whether the source can output
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some additional correlated auxiliary information AUX in addition to the sample
X, as long as it preserves the entropy of X. The setting with auxiliary infor-
mation is considered more realistic. As their main results, DVW show how to
construct extractors for extractor-dependent sources in the setting without aux-
iliary information from sub-exponentially secure one-way functions, and in the
setting with auxiliary information from a wide range of Cryptomania assump-
tions such as DDH, DLIN, LWE or DCR. They also gave some evidence that it
would be difficult to construct such extractors from simple Minicrypt primitives,
by showing that a large class of constructions—ones where seeing the outputs of
the extractor on many inputs uniquely determines the seed—cannot be proven
secure via a black box reduction.

Despite the above negative result, in this work we construct extractors for
extractor-dependent sources, even in the setting with auxiliary information, from
standard one-way functions! Our construction does not require sub-exponential
security, is entirely black-box in the one-way function, and achieves the same
parameters as the prior constructions from Cryptomania assumptions. We cir-
cumvent the negative result of DVW by using a construction that lies outside of
the class considered there—by relying on lossiness, we ensure that many outputs
don’t uniquely determine the seed—yet can still be instantiated in Minicrypt.
Our main technique is to adapt a construction of DVW, which relied on all-lossy-
but-one functions (without a trapdoor), and adapt it to only rely on targeted
all-lossy-but-one functions.

Applications: Selective Opening Security. We also apply TLFs to the prob-
lem of selective opening security [DNRS99,BHY09] for symmetric-key encryp-
tion. A selective opening attack considers a scenario where an adversary sees
a large number of ciphertexts and adaptively asks to “open” some subset of
them; we would like to argue that the adversary does not learn anything about
the messages encrypted in the remaining ciphertexts. An opening could cor-
respond to seeing the encryption randomness or, if all the ciphertexts are
encrypted under different keys, then seeing the corresponding secret keys.
Surprisingly, selective opening security does not follow generically from stan-
dard encryption security [BDWY12,HR14,HRW16]. On the other hand, we
have constructions of selective-opening secure public-key encryption for both
randomness-opening and key-opening under many specific public-key assump-
tions [BHY09,FHKW10,HLOV11,Hof12,HPW15]. However, the problem does
not appear to have been studied in the symmetric-key setting. One piece of good
news is that symmetric-key encryption schemes are often “public coin”, meaning
that the encryption randomness is sent in the clear as part of the ciphertext. Such
schemes are automatically secure against selective randomness-opening attacks,
since the randomness is available to the adversary for free! Therefore, we focus
on constructing a public-coin symmetric-key encryption that achieves security
under selective key-opening attacks. We consider a setting where n secret keys
k1, . . . , kn are chosen uniformly at random and the adversary is given a CPA
oracle for each of these keys. In addition, the adversary gets n challenge cipher-
texts, one under each key. The adversary gets to adaptively choose to open some



Targeted Lossy Functions and Applications 431

arbitrary subset of the n ciphertexts and receive the corresponding secret keys,
and we want to argue that the messages encrypted in the remaining ciphertexts
stay hidden. Formalizing this requires some care and we naturally adapt the
simulation-based definition of selective security from the public-key setting. We
show how to construct such selectively secure symmetric-key encryption from
one-way functions via our constructions of T-ALBOs/PEFs.

Application: CCA Encryption from Injective Trapdoor Functions. The recent
work of [HKW20] gave a black-box construction of CCA-secure public-key
encryption from any injective trapdoor function. In this work, we give a com-
pletely different construction using targeted all-injective-but-one functions (T-
AIBOs). As our final result, we get CCA-secure public-key encryption from
any injective trapdoor function with a very high (strongly exponential) level
of security and an injective pseudorandom generator. While our end-result is
strictly worse than [HKW20] in terms of the assumptions, our construction is
conceptually simple and we hope it may point to further applications and/or
improvements.

1.2 Our Techniques

Basic Construction. Our basic construction of targeted lossy functions (TLFs)
with lossiness � = 1 is extremely simple. Let G : {0, 1}λ → {0, 1}3λ+1 be an
injective pseudorandom generator (PRG), where λ is the security parameter.
Let H = {h : {0, 1}3λ+1 → {0, 1}3λ} be a universal hash function family that
compresses the input by 1 bit. We define the function family Ffk : {0, 1}λ →
{0, 1}3λ via Ffk(x) = h(G(x)), where fk = h ∈ H.

The above parameters ensure that if we choose fk = h randomly, then the
function Ffk is injective with overwhelming probability. In particular, for any
x0 �= x1 ∈ {0, 1}λ, the probability that G(x0) and G(x1) are a collision on h
is 2−3λ. By taking a union bound over all such pairs x0, x1, the probability of
there being any collision is at most 2−λ.

For the lossy mode of the function, we’re given some random target that
we denote by x∗

0. We choose an additional random input x∗
1 and “program”

the hash function h so that the values G(x∗
0) and G(x∗

1) collide, which ensures
that Ffk(x∗

0) = Ffk(x∗
1). Since x∗

0 and x∗
1 are treated symmetrically, the tuple

(fk, y = Ffk(x∗
0) = Ffk(x∗

1)) does not disambiguate between them, and hence
preserves at least � = 1 bit of entropy in the target.

We can ensure that programming h with a collision in lossy mode is computa-
tionally indistinguishable from choosing a random h in injective mode, even given
the target x∗

0. For concreteness, we consider the specific universal hash function
ha(x) = chop(a ·x) that performs a field multiplication over F23λ+1 and chops off
the least significant bit. Using the standard representation of field elements, this
implies that for all y we have chop(y) = chop(y+1).5 In that case, programming
h to ensure G(x∗

0) collides with G(x∗
1) means choosing a = (G(x∗

0) − G(x∗
1))

−1.

5 The addition here is over F23λ+1 which is of characteristic 2.
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But, even if we’re given the target x∗
0, the value a = (G(x∗

0) − G(x∗
1))

−1 is
indistinguishable from uniform by the pseudorandomness of G(x∗

1). Therefore
the lossy mode of choosing a for a target x∗

0 is indistinguishable from the injec-
tive mode of choosing a uniformly at random. The above summarizes the entire
construction and proof of security, highlighting its simplicity!

If we don’t have an injective PRG, the same construction above already
achieves a relaxed form of injectivity. Namely, the injective mode of the function
uniquely determines the property P (x) = G(x), while the lossy mode of the
function loses 1-bit of information about the same property P (x∗) = G(x∗) for
the target x∗.

The above only achieves lossiness of 1 bit, but can amplify the lossiness
arbitrarily via parallel repetition. Given a TLF Ffk with 1 bit of lossiness, we
define F ′

fk′(x1, . . . , x�) = Ffk1(x1)|| · · · ||Ffk�
(x�) for fk′ = (fk1, . . . , fk�) to get �

bits of lossiness. While the lossiness amount can be made arbitrarily large, the
lossiness rate (defined as the ratio of the lossiness � to the input size) is stuck at
1
λ and is not improved by parallel repetition.6

Targeted All-Injective-But-One Functions (T -AIBOs). We can also easily
extend the basic construction to get a T-AIBO. For branches tag ∈ {0, 1}t,
we need to define a family of functions Ffk,tag(·) such that, for a special branch
tag∗, the function Ffk,tag∗ is lossy and for all other branches it is injective. We
can achieve this generically from any TLF without branches where the injective
function key fk is uniformly random, as is the case in our basic construction. We
simply set fk = h to be a pairwise-independent hash function and then apply
it to the value tag to derive a function key f̂k = h(tag) for the basic TLF; the
output of Ffk,tag(x) is then set to Ff̂k(x). We program the hash so that the special
branch tag∗ maps to a lossy function key f̂k

∗
for the target value x∗. The output

of the hash on any other tag �= tag∗ is random and independent, and therefore
the resulting TLF function key f̂k is injective with overwhelming probability.

Targeted All-Lossy-But-One Functions (T -ALBOs). Getting T-ALBOs is more
involved. Recall that we need a family of functions Ffk,tag(·) such that there is a
special branch tag∗ on which the function is injective and, on all other branches
tag �= tag∗, it is cumulatively targeted-lossy for some target x∗, meaning that
the entire collection of outputs on all the lossy tags (Ffk,tag(x∗))tag �=tag∗ must lose
�-bits of information about x∗. We start with an approach that was originally
proposed by [BHK11], and later abstracted more explicitly in [DVW20], as a
way of converting lossy (trapdoor) functions into all-lossy-but-one (trapdoor)
6 We could slightly improve the lossiness rate of the basic construction to O(log(λ))/λ

by using a t = poly(λ)-wise independent hash function and programming it to have t
collisions instead of just 1 collision. This would come at the cost of a larger function
key fk. This slight improvement in lossiness rate would only be of interest if we were
to consider exact security. Otherwise, asymptotic polynomial/negligible security is
too coarse-grained to capture this improvement since it does not even distinguish
between λ and λε for ε > 0; in other words, in the asymptotic setting we can anyway
“cheat” and make the rate as high 1/λε by changing the security parameter to λε

and weakening exact security accordingly.
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functions in the non-targeted setting. We first describe this approach and then
show how to adapt it to the targeted setting.

The basic idea of [BHK11,DVW20] is to rely on function composition. As
a first step, assume we have a lossy (trapdoor) function Ffk where both the
domain and the range are {0, 1}n, and in particular are the same. We can use it
to construct an all-lossy-but-one (trapdoor) function F fk,tag with tags in {0, 1}t.
We define the function key fk = ((fk01, fk

1
1), . . . , (fk

0
t , fk

1
t )) to consist of 2t function

keys for the underlying lossy function and we define

F fk,tag(x) = (Ffk
tagt
t

◦ F
fk

tagt−1
t−1

◦ · · · ◦ Ffk
tag1
1

)(x)

where tagi denotes the i’th bit of tag. We set the t function keys fk
tag∗

i
i corre-

sponding to the injective branch tag∗ to be injective and the other t function
keys fk1−tag∗

i
i to be lossy. Since the composition of injective functions is injective,

it holds that Ffk,tag∗ is an injective function. On the other hand, for any lossy
branch tag �= tag∗, there exists some i such that tagi �= tag∗

i and therefore one
of the functions Ffk

tagi
i

applied during the computation of Ffk,tag(x) will be lossy
and lose � bits of information about its input, which is the same as losing � bits
of information about x since its input is a permutation of x. This shows that for
each lossy branch tag �= tag∗, the function Ffk,tag is individually lossy. But we
can even show that the lossy branches are cumulatively lossy. This is because the
only information revealed about x by all the 2t − 1 lossy branches cumulatively,
(Ffk,tag(x∗))tag �=tag∗ , can be deduced from the t values one gets by applying the
first i−1 injective functions followed by a lossy one in position i, for i = 1, . . . , t.
Each such output reveals at most n− � bits of information about x and hence in
they reveal at most t(n − �) bits in total. This gives lossiness �′ = n − t(n − �),
which can be large if � is very close to n and t is small relative to n; e.g., if
� = n(1 − o(1)) and t = o(n) then �′ = (1 − o(1))n. Indeed, one can get such
parameters from DDH.

Unfortunately, there are several issues with applying the above approach in
our case. Firstly, our basic TLF does not have the same domain and range: it
maps an input in {0, 1}λ to an output in {0, 1}3λ. This makes it difficult to even
syntactically rely on the above approach. Fortunately, this is relatively easy to
fix. We can redefine our basic TLF with modified parameters Ffk : {0, 1}3λ →
{0, 1}3λ via Ffk(x) = h(G(x)) where now we have x ∈ {0, 1}3λ, the injective
PRG is of the form G : {0, 1}3λ → {0, 1}3λ+1, and the universal hash functions
are of the form h : {0, 1}3λ+1 → {0, 1}3λ. This lets us syntactically use Ffk

in the above construction to define a family with branches. Unfortunately, now
Ffk is no longer injective when fk is chosen in “injective mode”. However, we
can regain injectivity by first pre-processing a smaller input x ∈ {0, 1}λ via an
injective PRG G′ : {0, 1}λ → {0, 1}3λ. We define the overall function with
branches F fk,tag : {0, 1}λ → {0, 1}3λ via:

F fk,tag(x) = (Ffk
tagt
t

◦ F
fk

tagt−1
t−1

◦ · · · ◦ Ffk
tag1
1

)(G′(x)).
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This preserves injectivity on the branch tag∗ since, with overwhelming prob-
ability, each function component F

fk
tag∗

i
i

is injective over the domain of inputs

(F
fk

tag∗
i−1

i

◦ · · · ◦F
fk

tag∗
1

1

)(G′(x)) of size 2λ. For targeted lossiness, we can now chose

each of the targeted lossy keys fk
1−tag∗

i
i with the target x∗[i] = (F

fk
tag∗

i−1
i

◦ · · · ◦
F
fk

tag∗
1

1

)(G′(x∗)). This is enough to show that each lossy branch is individually

targeted-lossy. Unfortunately, we don’t get cumulative lossiness. Recall that the
argument we employed in the previous paragraph only gave cumulative lossiness
�′ = n − t(n − �), which was only meaningful when the initial lossiness � was a
large fraction of the domain size n. But in our case � = 1 and hence the above
does not give us any meaningful bound on �′, even for tag size t = 2.

To solve the above issue, we need to control the lossiness more carefully to
ensure that the leakages from different lossy tags don’t add up. We do so by
going under the hood of our basic TLF construction. We set x∗

0 = x∗ to be the
target and choose a uniformly random and independent x∗

1. We then choose all
the lossy function keys fk

1−tag∗
i

i to ensure that the two values x∗
0, x

∗
1 collide on

every lossy branch. We can do so by programming the universal hash function
in the ith lossy key to ensure that it has a collision on G(x∗

0[i]), G(x∗
1[i]) where

x∗
b [i] = (F

fk
tag∗

i−1
i

◦ · · · ◦ F
fk

tag∗
1

1

)(G′(x∗
b)). This guarantees that F

fk
1−tag∗

i
i

(x∗
0[i]) =

F
fk

1−tag∗
i

i

(x∗
1[i]) and so x∗

0 and x∗
1 collide on every lossy branch. While this ensures

cumulative lossiness, we now lose indistinguishability. The reason is that the
randomness of G(x∗

1[i]) is used twice: once to define the lossy key fk
1−tag∗

i
i , and

once to define x∗
1[i + 1], which is used to define the lossy key fk

1−tag∗
i+1

i+1 . Since
we’re reusing the same randomness, the lossy keys for different values i will
appear correlated and can then be distinguished from injective keys. We can fix
this issue by using two different PRGs G0 and G1 for the 0 functions Ffk0i

and
the 1 functions Ffk1i

respectively. We need G0, G1 to each be injective and also
to be mutually pseudorandom so that, for a random x the values G0(x), G1(x)
look like random and independent values.7 With this modification, we preserve
indistinguishability. This is because, the lossy function key fk

1−tag∗
i

i now only

relies on G1−tag∗
(x∗

1[i]) while the value x∗
1[i + 1] used to define fk

1−tag∗
i+1

i+1 only
relies on Gtag∗

(x∗
1[i]), and hence we can argue that the two values look random

and independent.

T -ALBO with Relaxed Injectivity. We can also get a T-ALBO with relaxed injec-
tivity by using the same construction as above with standard PRGs rather than
injective PRGs, and therefore from one-way functions. The observation is that,
when we program the lossy mode to ensure that the target x∗ = x∗

0 collides with
some random x∗

1 on every lossy tag, it’s very unlikely that x∗
0 and x∗

1 would col-
lide on the injective tag, even when the PRG is not injective. Therefore, although
the injective output Ffk,tag∗(x∗) may not uniquely determine x∗, we ensure that

7 Equivalently, we can think of G0(x), G1(x) as the left/right halves of a single PRG
G(x).
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Ffk,tag∗(x∗) has 1-bit of entropy even given (Ffk,tag(x∗))tag �=tag∗ . In other words,
the injective mode of the function reveals at least 1 bit of information about
x∗ that was lost by all the lossy evaluations on x∗. In fact, we can even ensure
that the above holds if we shorten the output size of the function to just 1 bit
(in which case, the function certainly can’t be injective). We do so by applying
a universal hash function with 1-bit output at the end, and programming it to
ensure that Ffk,tag∗(x∗

0) and Ffk,tag∗(x∗
1) hash to different bits. This ensures 1 bit

of entropy in a 1 bit output, and therefore the output of the injective branch
is uniformly random, even given the outputs of all the lossy branches. We can
amplify from 1 bit to many bits via parallel repetition.

Applications of T -ALBOs. We notice that T-ALBOs with relaxed injectivity
directly give us pseudo-entropy functions, just by relabeling the components.
We define the secret key k of the pseudo-entropy function as k = (fk, s) to con-
sist of a function key fk for a T-ALBO and a uniformly random input s for it. We
then define the pseudo-entropy function fk(x) = Ffk,tag=x(s) which interprets its
input x as a branch and evaluates the T-ALBO on s. For any input x∗ chosen
a-priori, we can choose k = (fk, s) by selecting a random s and choosing fk with
the injective branch x∗ and the target s. This guarantees the properties of a
pseudo-entropy function: the value k chosen this way is indistinguishable from
an honestly chosen k that is independent of x∗, but ensures that fk(x∗) has � bits
of statistical entropy even given fk(x) for all x �= x∗. This shows that T-ALBOs
directly give pseudo-entropy functions. In fact, this gives a pseudo-entropy func-
tion where the key k consists of a uniformly random secret component s and
a public but carefully chosen component fk defined in terms of s and the point
x∗ on which we want to ensure statistical entropy. Conversely, a pseudo-entropy
function of this form also gives a T-ALBO. By using a T-ALBO where lossiness
� is equal to the output size (as we showed can be done above), we can even
ensure that fk(x∗) is uniformly random given fk(x) for all x �= x∗.

Our applications to leakage-resilient MACs, leakage-resilient symmetric-key
encryption, and extractors for extractor-dependent sources follow as interesting
applications of pseudo-entropy functions.

For selective-opening security, we notice that our pseudo-entropy function has
an additional feature. Not only can we ensure that fk(x∗) is uniformly random
given fk(x) for all x �= x∗, but for any output y we can even efficiently find a
key ky such that fky

(x∗) = y and fky
(x) = fk(x) for all x �= x∗. Intuitively,

this additional feature gives us the ability to efficiently “equivocate”, which is
used to get selective-opening security. In particular, a simulator can efficiently
find a key ky to open a challenge ciphertext to any value it wants, and ky looks
consistent even to an adversary that got access to a CPA oracle.

Application of T -AIBOs to CCA Security. We also give an application of T-
AIBOs to CCA-secure encryption from any trapdoor function with a sufficient
high level of security. We describe a simplified version of this result, and the main
body gives a more general treatment. Let Ffk,tag be a T-AIBO with λ-bit input
and � = 1 bits of lossiness, as we constructed from injective pseudorandom gen-
erators. Let fpk be a family of trapdoor functions (not necessarily permutations)
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with input length n = λ3. Our CCA encryption public key consists of the pair
(pk, fk) and the secret key is the trapdoor of the trapdoor function. The encryp-
tion procedure selects a random r ∈ {0, 1}n and parses it as r = (r1, . . . , rd)
with d = λ2 and ri ∈ {0, 1}λ. It also selects a one-time signature key pair
(vk, sk). It computes y = fpk(r) and y1 = Ffk,vk(r1), . . . , yλ2 = Ffk,vk(rd) then
uses a Goldreich-Levin hardcore bit of r to one-time pad the message and signs
everything under vk. The decryption procedure checks the signature, inverts y
to recover r and checks that y1, . . . , yd were computed correctly: if so it recovers
the hardcore bit and decrypts the message, else it rejects.

To prove CCA security, we select fk to be lossy on the branch tag = vk and
the target value r that correspond to the challenge ciphertext. We can then
simulate the decryption procedure without knowing the trapdoor td by brute-
force inverting all the values yi = Ffk,vk(ri) in Õ(2λ) time. In the challenge
ciphertext, the value r = (r1, . . . , rd) has d = λ2 bits of entropy even given
y1, . . . , yd. We argue that this makes it hard to recover r even given the trapdoor
function output fpk(r) and the ability to run in Õ(2λ) time. We show that this
follows from very strong exponential hardness of the trapdoor function: we need
to assume that for input length n = λ3 no adversary running in time Õ(2λ)

can invert the function with better than 2λ2

2λ3 probability. While this is a strong
assumption, note that the trivial attack that tries 2λ random inputs only has
success probability 2λ

2λ3 and generic non-uniform attacks [DGK17] can’t do better

than 2
˜O(λ)

2λ3 .

1.3 Relation to Distributed Point Functions

We observe an interesting connection between T-ALBOs (with relaxed injectiv-
ity), pseudo-entropy functions, and distributed-point functions (DPFs) [GI14,
BGI15]. In fact, even though the notions look very different and were introduced
with different goals in mind, they are essentially equivalent. We already discussed
the connection between T-ALBOs and pseudo-entropy functions, and so we now
show the connection to DPFs.

Distributed point functions were defined in the context of 2-server private
information retrieval (PIR). They consist of a function family fk : [N ] → {0, 1}.
Given some target x∗ ∈ [N ], it should be possible to choose two keys k0, k1 such
that fk0(x

∗) �= fk1(x
∗) differ on the target point, but for all other points x �= x∗

they are the same fk0(x
∗) = fk1(x

∗). Each of the keys k0, k1 should individually
computationally hide the value x∗. This gives 2-server PIR. When a client wants
to retrieve a value DB[x∗] at the location x∗ ∈ [N ] of a database DB ∈ {0, 1}N , it
chooses the two keys k0, k1 using a target x∗ and sends kb to server b. Each server
b computes yb =

⊕
x∈[N ] fkb

(x) ·DB[x] and the client computes y0⊕y1 = DB[x∗].
Neither server individually learns anything about the location x∗ by the hiding
property of the DPF.
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A pseudo-entropy function with 1-bit output and 1-bit entropy almost
already gives a DPF. If we select the key k to preserve entropy on x∗, then
fk(x∗) has 1 bit of entropy even given fk(x) for all x �= x∗. That means that
there must be some key k′ such that fk′(x∗) �= fk(x∗) but fk′(x) = fk(x) for all
x �= x∗. We can define k0 = k and k1 = k′ to get the two DPF keys for the point
x∗. The only difficulty is ensuring that we can kind k′ efficiently. Recall that in
our construction of pseudo-entropy functions for T-ALBOs, we set k = (fk, s)
where fk is a function key of a T-ALBO with the “injective” branch x∗ and
the target input s. When we choose fk, our T-ALBO construction in turn sets
s0 = s, picks a random s1 and ensures that the function outputs collide on s0, s1
for all branches x �= x∗ but differ on the branch x∗. Therefore, we can efficiently
set k0 = (fk, s0) and k1 = (fk, s1).

Interestingly, although our construction of T-ALBOs was initially inspired by
the works of [BHK11,DVW20], we observe in retrospect that it is very similar to
the construction of DPFs in [BGI15]. Indeed the function composition construc-
tion of T-ALBOs using two PRGs G0, G1 is similar to the GGM construction
of PRFs from PRGs [GGM86], and the use of hash functions h is similar to the
use of “correction words” in the adaptation of GGM to DPFs in [BGI15].

We hope that the connections between all these notions help foster a better
understanding of each of them. The fact that completely different motivations
and construction approaches surreptitiously converged to yield related notions
and constructions should perhaps be viewed as a good indication of just how
fundamental these ideas are.

2 Preliminaries

Basic Notation. For an integer N , we let [N ] := {1, 2, . . . , N}. For a set S
we let x ← S denote sampling x uniformly at random from S. For a distri-
bution S we let x ← S denote sampling x according to the distribution. We
will denote the security parameter by λ. We say a function f(λ) is negligible,
denoted f(λ) = negl(λ), if f(λ) = O(λ−c) for every constant c > 0. A function is
f(λ) is polynomial, denoted f(λ) = poly(λ), if f(λ) = O(λc) for some constant
c > 0. We say that an event occurs with overwhelming probability if it holds
with probability 1 − negl(λ). For a randomized algorithm A, we will sometimes
explicitly denote the randomness coins it uses, writing A(x; coins). We will write
D1

c≈ D2 if the (ensembles of) distributions D1 and D2 are computationally
indistinguishable.

Information Theory. For two random variables X,Y with support supp(X) and
supp(Y ) respectively, we define their statistical distance SD(X,Y ) as

SD(X,Y ) :=
∑

u∈supp(X)∪supp(Y )

1
2
|Pr[X = u] − Pr[Y = u]|.

Two ensembles of random variables X = {Xλ}λ, Y = {Yλ}λ are statistically
close if SD(Xλ, Yλ) = negl(λ).
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The min-entropy H∞(X) of a random variable X is defined as

H∞(X) := − log( max
x∈supp(X)

Pr[X = x]).

Following Dodis et al. [DORS08], we define the (average) conditional min-
entropy of X given Y as: H∞(X|Y ) = − log

(
Ey←Y

[
2−H∞(X|Y =y)

])
. Note that

H∞(X|Y ) = k iff the optimal strategy for guessing X given Y succeeds with
probability 2−k.

3 Definitions

3.1 Targeted Lossy Functions (TLFs)

We first define our basic notion of targeted lossy functions (TLF).

Definition 1 (Targeted Lossy Functions). A targeted lossy function (TLF)
function family with input length n = n(λ), output length m ≥ n and lossiness
parameter � = �(λ) consists of PPT algorithms (InjectiveGen, LossyGen, F ) with
the following syntax:

– fk ← InjectiveGen(1λ): generates a function key fk.
– fk ← LossyGen(1λ, x∗): on input a target value x∗ ∈ {0, 1}n, generates a

function key fk.
– y = Ffk(x): a deterministic algorithm which, on input fk along with a value

x ∈ {0, 1}n, outputs y ∈ {0, 1}m.

We require the following properties:

Injectivity: With overwhelming probability over the choice of fk ← InjectiveGen(
1λ), the function Ffk is injective over its domain {0, 1}n.

�-Lossiness: For random variables x∗ ← {0, 1}n, fk ← LossyGen(1λ, x∗), we
have

H∞(x∗ | fk, Ffk(x∗)) ≥ �.

Indistinguishability: For all x∗ ∈ {0, 1}n, we have the computational indistin-
guishability

(x∗, fkinj)
c≈ (x∗, fkloss)

where fkinj ← InjectiveGen(1λ) and fkloss ← LossyGen(1λ, x∗).

Relaxing Injectivity. We can also define a variant of TLFs with relaxed injectivity,
where we require the injective mode to only uniquely determine some property
P (x) while lossy mode loses �-bits of information on P (x∗) for the target x∗. In
particular, we require that there exists some function P : {0, 1}∗ → {0, 1}∗ for
which the following holds:

– Relaxed Injectivity: With overwhelming probability over the choice of fk ←
InjectiveGen(1λ) it holds that for all x, x′ ∈ {0, 1}n if Ffk(x) = Ffk(x′) then
P (x) = P (x′).

– �-Lossiness: For random variables x∗ ← {0, 1}n, fk ← LossyGen(1λ, x∗), we
have

H∞(P (x∗) | fk, Ffk(x∗)) ≥ �.
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3.2 Targeted All-Lossy-But-One Functions (T-ALBO)

Next, we define a tagged version of TLFs, that we name targeted all-lossy-but-
one functions (T-ALBO).

Definition 2 (T-ALBO). A targeted all-lossy-but-one (T-ALBO) function
family with input length n = n(λ), output length m ≥ n, tag length t = t(λ) and
lossiness parameter � = �(λ), consists of PPT algorithms (InjectiveGen, LossyGen,
F ) with the following syntax:

– fk ← InjectiveGen(1λ): generates a function key fk.
– fk ← LossyGen(1λ, tag∗, x∗): on input tag∗ ∈ {0, 1}t, x∗ ∈ {0, 1}n, generates a

function key fk.
– y = Ffk,tag(x): a deterministic algorithm, which, on input fk, tag along with a

value x ∈ {0, 1}n, outputs y ∈ {0, 1}m.

We require the following properties:

Injectivity: With overwhelming probability over the choice of fk ← InjectiveGen(
1λ), for all tag ∈ {0, 1}t, the function Ffk,tag is injective over the domain
{0, 1}n. Moreover, for any tag∗, x∗, with overwhelming probability over the
choice of fk ← LossyGen(1λ, tag∗, x∗), the function Ffk,tag∗ on tag tag∗ is
injective.

�-Lossiness: For all tag∗ ∈ {0, 1}t and random variables x∗ ← {0, 1}n,
fk ← LossyGen(1λ, tag∗, x∗), we have H∞(x∗ | fk, (Ffk,tag(x∗))tag �=tag∗) ≥ �.
We use (Ffk,tag(x∗))tag �=tag∗ to denote the (ordered) list of outputs of the func-
tion Ffk,tag(x∗) on all 2t − 1 possible lossy tags tag �= tag∗.

Indistinguishability: For all tag∗ ∈ {0, 1}t and all x∗ ∈ {0, 1}n, we have

(tag∗, x∗, fkinj)
c≈ (tag∗, x∗, fkloss)

where fkinj ← InjectiveGen(1λ) and fkloss ← LossyGen(1λ, tag∗, x∗).

Relaxing Injectivity: Entropy-Preserving T -ALBOs. We can also relax injectivity
in much the same way as we did for TLFs, by requiring that injective mode
uniquely determines some property P (x) while lossy mode loses information on
P (x∗). Here, we can even allow the property P to depend on fk, tag∗. In this case,
without loss of generality, we can set P (x) = Ffk,tag∗(x) to be the output on the
“injective” tag, and therefore it tautologically holds that Ffk,tag∗(x) determines
P (x). Hence this notion just requires that seeing the output of the function
on input x∗ over all lossy branches tag �= tag∗ preserves some entropy of the
output Ffk,tag∗(x∗) on the “injective” branch tag∗. We call this notion entropy
preserving. This notion also meaningfully allows us to make the output much
smaller than the input size, and potentially just 1-bit.

Definition 3 (Entropy-Preserving T-ALBO). An entropy-preserving T-
ALBOwith input lengthn = n(λ), output lengthm = m(λ), tag length t = t(λ) and
lossiness parameter � = �(λ), consists of algorithms (InjectiveGen, LossyGen, F ).



440 W. Quach et al.

We require that they satisfy the same indistinguishability property as in
Definition 2. However, we replace the injectivity and lossiness properties with the
following entropy-preserving property. For any fixed tag∗ ∈ {0, 1}t we have:

H∞(Ffk(tag∗, x∗) | fk, (Ffk,tag(x∗))tag �=tag∗) ≥ �,

where we define the random variables x∗ ← {0, 1}n, fk ← LossyGen(1λ, tag∗, x∗).
We say that (InjectiveGen, LossyGen, F ) is maximally entropy-preserving if

� = m, where m is the output size of the T-ALBO.

3.3 Targeted All-Injective-But-One Functions (T-AIBO)

Last, we define another tagged variant of TLFs that we call targeted all-injective-
but-one lossy functions (T-AIBO). In a T-AIBO, the branches tag �= tag∗ are
injective, whereas only tag∗ corresponds to a lossy branch.

Definition 4 (T-AIBO). A targeted all-injective-but-one T-AIBO function
family with input length n = n(λ), output length m ≥ n, tag length t = t(λ) and
lossiness parameter � = �(λ), consists of PPT algorithms (InjectiveGen, LossyGen,
F ) with the following syntax:

– fk ← InjectiveGen(1λ): generates a function key fk.
– fk ← LossyGen(1λ, tag∗, x∗): on input tag∗ ∈ {0, 1}t, x∗ ∈ {0, 1}n, generates a

function key fk.
– y = Ffk,tag(x): a deterministic polynomial time algorithm, which, on input

fk, tag along with a value x ∈ {0, 1}n outputs y ∈ {0, 1}m.

We require the following properties:

Injectivity on injective branches: With overwhelming probability over the
choice of fk ← InjectiveGen(1λ), we have that for all tags tag ∈ {0, 1}t,
the function Ffk,tag is injective over the domain {0, 1}n. Moreover, for any
tag∗, x∗, with overwhelming probability over fk ← LossyGen(1λ, tag∗, x∗), we
have that for all tags tag �= tag∗, the function Ffk,tag is injective.

�-Lossiness: For any tag∗ ∈ {0, 1}t and random variables x∗ ← {0, 1}n, fk ←
LossyGen(1λ, tag∗, x∗), we have H∞(x∗ | fk, Ffk,tag∗(x∗)) ≥ �.

Indistinguishability: For any tag∗ ∈ {0, 1}t and x∗ ∈ {0, 1}n, we have the
computational indistinguishability

(tag∗, x∗, fkinj)
c≈ (tag∗, x∗, fkloss)

where x∗ ← {0, 1}n, fkinj ← InjectiveGen(1λ) and fkloss ← LossyGen(1λ, tag∗,
x∗).

We could also relax injectivity as we did for TLFs and T-ALBOs. Since we
do not consider this notion in the paper, we omit it for simplicity.
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4 Constructions

In this section we present our constructions of TLFs and its variants. In Sect. 4.1,
we give the construction of basic TLFs (Theorem 1). Then, we show in Sect. 4.2
our construction of a T-AIBO (Theorem 2). Finally, in Sect. 4.3, we build
both a T-ALBO (Theorem 3) and a maximally entropy-preserving T-ALBO
(Theorem 4).

4.1 Targeted Lossy Functions

We start with our base construction of TLF. We prove the following:

Theorem 1 (TLFs from Injective PRGs). Let � = �(λ) be a polynomial.
Assuming the existence of injective PRGs, there exists a TLF with input length
n = �λ, output length m = 3�λ and lossiness �.

Let G : {0, 1}λ → {0, 1}3λ+1 be an injective PRG. Let F = F23λ+1 be the
field of size 23λ+1. We represent elements of F in the standard manner as 3λ + 1
coefficients of polynomials in F2[X]/(f) for some appropriate polynomial f , so
that adding elements in F can be performed by adding their coefficients compo-
nent wise. For a ∈ F, represented as a bit string of length 3λ + 1, define chop(a)
as the first 3λ bits of the representation of a (i.e., the last bit, corresponding
to the constant term of the polynomial, is chopped off). Let e = 1F ∈ F be
the field element that has 0s in the first 3λ positions and 1 in the last position.
Note that for all x ∈ F we have chop(x + e) = chop(x), and hence for all x1, x2,
chop(x1) = chop(x2) if and only if x1 = x2 or x1 = x2 + e.

We first construct an LTF (InjectiveGen, LossyGen, F ) with input length n = λ
and output length m = 3λ, and lossiness 1 as follows.

– InjectiveGen(1λ): Sample a ← F and output fk = a.
– LossyGen(1λ, x∗): On input x∗ ∈ {0, 1}λ, set x∗

0 := x∗ and sample x∗
1 ←

{0, 1}λ \ {x∗}. Set a = e · (G(x∗
0) − G(x∗

1))
−1, and output fk = a.

– Ffk(x) = chop(a · G(x)) ∈ {0, 1}3λ.

Claim 1. Suppose G : {0, 1}λ → {0, 1}3λ+1 is an injective PRG. Then
(InjectiveGen, LossyGen, F ) is a TLF with input length n = λ, output length
m = 3λ and lossiness � = 1.

Proof. Note that in lossy mode, a is well-defined by injectivity of G. We prove
injectivity, �-lossiness and indistinguishability.

Injectivity. Fix any x0 �= x1 ∈ F. By injectivity of G, we have G(x0) �= G(x1).
Therefore, Ffk(x0) = Ffk(x1) iff chop(a · G(x0)) = chop(a · G(x1)), which occurs
iff a = e · (G(x0) − G(x1))−1 or a = 0. This happens with probability 2/|F|
over the randomness of fk ← InjectiveGen(1λ). By taking a union bound over
all pairs of distinct inputs x0, x1 ∈ {0, 1}λ, we obtain that the probability over
fk ← InjectiveGen(1λ) that Ffk is not injective is at most 22λ+1

|F| = 1
2λ .
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(� = 1)-Lossiness. Let x∗
0 = x∗ ← {0, 1}λ be a random target, and let x∗

1 ←
{0, 1}λ \ {x∗

0} denotes the random value sampled during the execution of fk ←
LossyGen(1λ, x∗

0); we will denote such an execution via fk = LossyGen(1λ, x∗
0;x

∗
1).

We think of x∗
0, x

∗
1 as random variables, which in turn define the random variables

fk = LossyGen(1λ, x∗
0;x

∗
1), y = Ffk(x∗

0) = Ffk(x∗
1). We observe that the resulting

distribution of fk, y does not reveal anything about x∗
0, x

∗
1 beyond the (unordered)

set {x∗
0, x

∗
1}, due to the symmetry of how x∗

0, x
∗
1 are treated by LossyGen. In

other words, x∗
0 → {x∗

0, x
∗
1} → (fk, y) forms a Markov chain. A data processing

inequality gives:

H∞(x∗
0 | fk, y) ≥ H∞(x∗

0 | {x∗
0, x

∗
1}) ≥ 1,

where the last inequality follows since one cannot predict x∗
0 given the

(unordered) set {x∗
0, x

∗
1} with probability better than 1/2. Note that x∗

0, x
∗
1 are

uniformly random over {0, 1}λ conditioned on x∗
0 �= x∗

1.

Indistinguishability. We define a hybrid experiment where LossyGen is modi-
fied as follows:

– ˜LossyGen(1λ, x∗): Set x∗
0 := x∗ and select u∗

1 ← F. If u∗
1 = G(x∗

0), output
fk = 0. Otherwise output a = e · (G(x∗

0) − u∗
1)

−1.

The output of ˜LossyGen is indistinguishable from the output of LossyGen by PRG
security of G, noting that u∗

1 = G(x∗
0) with negligible probability 1/23λ+1 over

the randomness of u∗
1 alone.

Moreover, even given x∗, the output of ˜LossyGen is uniformly random in F

over the choice of u∗
1 alone, and is therefore identically distributed as the output

of InjectiveGen.

Amplifying (absolute) lossiness. The construction above only have lossiness 1.
We note here that we can amplify this lossiness, which gives Theorem 1.

The idea is that (absolute) lossiness can be amplified by partitioning a
(longer) input into blocks and applying an independent TLF on each chunk.
Suppose TLF (InjectiveGen, LossyGen, F ) is a TLF with input size n, output size
m and lossiness �. Let k = k(λ) be a polynomial. The modified scheme is defined
as follows:

– InjectiveGen(1λ): For all i ∈ [k], compute fki ← InjectiveGen(1λ). Output
{fki}i∈[k].

– LossyGen(1λ, x∗): On input x∗ ∈ {0, 1}kn, parse x∗ = x1‖ · · · ‖xk ∈ {0, 1}kn

where xi ∈ {0, 1}n for all i ∈ [k]. For all i ∈ [k], compute fki ← LossyGen(1λ,
xi). Output {fki}i∈[k].

– F fk(x) : On input x ∈ {0, 1}kn, parse x = x1‖ · · · ‖xk ∈ {0, 1}kn where
xi ∈ {0, 1}n for all i ∈ [k]. For all i ∈ [k], compute yi = Ffki

(xi). Output
(y1‖ · · · ‖yk).

The resulting scheme is a TLF with input size kn, output size km and lossiness
k�. This is at the cost of making the input longer, and therefore doesn’t affect the
lossiness rate. Applying the above to our construction from Claim 1, we obtain
Theorem 1.
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Remark: Relaxed Injectivity. If we take our construction of TLFs above but
remove the requirement that the PRG is injective, we get relaxed injectivity
with the property P (x) = G(x). The proof is otherwise identical.

4.2 T-AIBOs

We describe our construction of T-AIBO. We prove the following:

Theorem 2 (T-AIBOs from Injective PRGs). Let � = �(λ) and t = t(λ) be
polynomials. Assuming the existence of injective PRGs, there exists a T-AIBO
with input length n = �λ, tag length t, output length m = � · (3λ + t) and
lossiness �.

We build on our construction of TLF from Sect. 4.1. Recall that we built our
TLF as Ffk(s) = chop(a · G(s)), where a ∈ F forms the key fk. In order to build
a T-AIBO, we now compute atag = hk(tag) where h is a pairwise independent
hash function.

More formally, let t = t(λ) be the tag length. Let n = 3λ + t + 1, and let
F = F2n . We consider elements tag ∈ {0, 1}t as elements of F (for instance
by considering any injection induced by the coefficient embedding of F as in
Sect. 4.1, setting the remaining 3λ + 1 entries as 0), over which we define the
pairwise independent hash function

hu,v(tag) = u · tag + v ∈ F,

where u, v ∈ F. We will use the following useful algorithm related to h:

– Equivocate(tag, y): on input tag ∈ F and y ∈ F, sample u ← F, compute
v = y − u · tag, and output (u, v).

Namely, Equivocate(tag, y) samples a random key (u, v) conditioned on
hu,v(tag) = y. Note that for any fixed tag ∈ F, we have that hu,v(tag) is uniform
over F over the randomness of (u, v). As a result, for all tag ∈ F, we have:
(
tag, (u, v) ← F×F, y = hu,v(tag)

)
≡

(
tag, (u, v) ← Equivocate(tag, y), y ← F

)

(1)
We now describe our first construction of a T-AIBO with lossiness � = 1.

Let t = t(λ) and n = 3λ + t + 1, G : {0, 1}λ → {0, 1}3λ+t+1 be an injective
PRG and h be the pairwise independent hash function from above. We define
the following algorithms:

– InjectiveGen(1λ): Sample (u, v) ← F × F and set fk = (u, v).
– LossyGen(1λ, tag∗, x∗): Set x∗

0 = x∗ and sample x∗
1 ← {0, 1}λ \ {x∗

0}. Let
a = e · (G(x∗

0) − G(x∗
1))

−1. Compute (u, v) ← Equivocate(tag∗, a) and output
fk = (u, v).

– Ffk(tag, x): Output chop(hu,v(tag) · G(x)).
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Claim 2. Suppose G : {0, 1}λ → {0, 1}3λ+t+1 is an injective PRG. Then
(InjectiveGen, LossyGen, F ) is a T-AIBO with input length λ, tag length t, output
length 3λ + t, and lossiness � = 1.

Proof. We prove injectivity, 1-lossiness and indistinguishability.
Injectivity follows by the same argument as the TLF of Claim 1. In particular,

an identical argument shows that, by injectivity of G, for any fixed tag ∈ {0, 1}t,
the probability that Ffk,tag is not injective is at most 22λ+1

|F| = 1
2t+λ . An union

bound over the 2t possible tags shows that the probability that Ffk,tag is not
injective for some tag is at most 1

2λ .
The proof of 1-lossiness is identical to the proof of Claim 1. In partic-

ular, we define random variables x∗
0 = x∗ ← {0, 1}λ denoting the target,

x∗
1 ← {0, 1}λ \ {x∗

0} denoting the random value sampled during the execution of
fk ← LossyGen(1λ, tag∗, x∗

0), and y = Ffk,tag∗(x∗
0) = Ffk,tag∗(x∗

1). We observe that
the resulting distribution of fk, y does not reveal anything about x∗

0, x
∗
1 beyond

the (unordered) set {x∗
0, x

∗
1}, due to the symmetry of how x∗

0, x
∗
1 are treated by

LossyGen. In other words, x∗
0 → {x∗

0, x
∗
1} → (fk, y) forms a Markov chain. A

data-processing inequality then shows:

H∞(x∗
0 | fk, y) ≥ H∞(x∗

0 | {x∗
0, x

∗
1}) ≥ 1.

For indistinguishability, we first argue that for any tag∗ ∈ {0, 1}t and any
x∗ ∈ {0, 1}n, the value a sampled during LossyGen(1λ, tag∗, x∗) is computation-
ally indistinguishable from uniformly random by PRG security of G, over the
randomness of x∗

1. Then, indistinguishability follows by Eq. (1).

As for TLFs and T-ALBOs one can amplify lossiness by concatenating T-
AIBOs evaluations on blocks of the input, which gives Theorem 2.

Remark 1 (Generic Construction of T -AIBOs from TLFs). In the above, we
build a T-AIBO starting from the particular TLF from Sect. 4.1. We note that
our transformation above can be made semi-generic, by assuming that the injec-
tive function keys fk generated by the InjectiveGen procedure of the base TLF
are (computationally indistinguishable from) uniformly random (as is the case
in our construction). In that case, by mapping branches tag to function keys fk
via a programmable pairwise independent hash function, we generically obtain
a T-AIBO from such a TLF, in the same way as above.

4.3 T-ALBOs

We now describe our construction of T-ALBOs. We prove the following theorems:

Theorem 3 (T-ALBOs from Injective PRGs). Let � = �(λ) and t = t(λ)
be any polynomials. Assuming the existence of injective PRGs, there exists a
T-ALBO with input length n = �λ, tag length t, output length m = � · (3λ + t)
and lossiness �.
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Theorem 4 (Entropy-Preserving T-ALBOs from OWFs). Let � = �(λ)
and t = t(λ) be any polynomials. Assuming the existence of one-way functions,
there exists an entropy-preserving T-ALBO with input length n = �λ, tag length
t, output length m = � and lossiness �. In particular, such a T-ALBO is maxi-
mally entropy preserving.

Again, we build on our construction of TLF from Sect. 4.1. We refer to our
technical overview for a high level overview of the following construction. We
begin with our construction of a standard T-ALBO (satisfying injectivity) from
any injective PRG.

Building blocks. Let n = 3λ+ t. Let F = F23λ+t+1 . Let G : {0, 1}n → {0, 1}2(n+1)

be a PRG. We will write G(x) = (G0(x), G1(x)). In particular, G0 and G1 are
PRGs with input size n and output size n + 1; we will furthermore assume that
each of the functions G0 and G1 is injective. We define (InjectiveGen0, LossyGen0,
F 0) and (InjectiveGen1, LossyGen1, F 1) as follows:

– InjectiveGenb(1λ): Sample a ← F and output fk = a.
– LossyGenb(1λ, x∗, x∗

1): On input x∗, x∗
1 ∈ {0, 1}n, set x∗

0 = x∗. If Gb(x∗
0) =

Gb(x∗
1), output fk = 0. Otherwise compute a = e · (Gb(x∗

0) − Gb(x∗
1))

−1, and
output fk = a.

– F b
fk(x) = chop(a · Gb(x)) ∈ {0, 1}n.

Let G′ : {0, 1}λ → {0, 1}n be an injective PRG.

Construction. We define a T-ALBO (InjectiveGen, LossyGen, F ) as follows.

– InjectiveGen(1λ): For all i ≤ t and b ∈ {0, 1}, sample fkb
i ← InjectiveGenb(1λ),

and output fk = {fkb
i}i∈[t],b∈{0,1}.

– LossyGen(1λ, tag∗, x∗): Sample x∗
1 ← {0, 1}λ \ {x∗}, and set x

(0)
0 = G′(x∗),

and x
(0)
1 = G′(x∗

1).
For i = 1 to t, sample

fk
tag∗

i
i ← InjectiveGentag

∗
i (1λ).

Then set

x
(i)
0 = F

tag∗
i

fk
tag∗

i
i

(x(i−1)
0 ) = F

tag∗
i

fk
tag∗

i
i

◦ · · · ◦ F
tag∗

1

fk
tag∗

1
1

(x(0)
0 )

x
(i)
1 = F

tag∗
i

fk
tag∗

i
i

(x(i−1)
1 ) = F

tag∗
i

fk
tag∗

i
i

◦ · · · ◦ F
tag∗

1

fk
tag∗

1
1

(x(0)
1 ).

Sample
fk

1−tag∗
i

i ← LossyGen1−tag∗
i (1λ, x

(i−1)
0 , x

(i−1)
1 ).

The output is
fk = (fk(b)i )i∈[t],b∈{0,1}.
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– F fk,tag(x): Output
y = F

tagt

fk
tagt
t

◦ · · · ◦ F
tag1
fk

tag1
1

(G′(x)).

Claim 3. Suppose G0, G1 and G′ are injective PRGs, and G = (G0, G1) is a
PRG. Then (InjectiveGen, LossyGen, F ) is a T-ALBO with input length λ, tag
length t, output length 3λ + t + 1, and lossiness 1.

Proof. We first show a useful property of (InjectiveGen0, LossyGen0, F 0) and
(InjectiveGen1, LossyGen1, F 1).

– For all x∗ ∈ {0, 1}n, we have the following computational indistinguishability:

(fk0inj , F
0
fk0inj

(x∗
1), x

∗, fk1los)
c≈ (fk0inj , u, x∗, fk1inj), (2)

where fk0inj ← InjectiveGen0(1λ), fk1inj ← InjectiveGen1(1λ), x∗
1 ← {0, 1}n

and fk1los ← LossyGen1(1λ, tag∗, x∗, x∗
1).

Symmetrically, we have:

(fk1inj , F
1
fk1inj

(x∗
1), x

∗, fk0los)
c≈ (fk1inj , u, x∗, fk0inj), (3)

where fk1inj ← InjectiveGen1(1λ), fk0inj ← InjectiveGen0(1λ), x∗
1 ← {0, 1}n

and fk0los ← LossyGen0(1λ, tag∗, x∗, x∗
1).

These properties follow by PRG security of G = (G0, G1), so that Ffkb
inj

(x∗
1)

is computationally indistinguishable from uniformly random over the random-
ness of Gb(x∗

1), while indistinguishability of fk1−b
inj and fk1−b

los follows over the
(independent) randomness of G1−b(x∗

1).
We now prove that the construction above is a T-ALBO.

Injectivity. Fix x0 �= x1 ∈ {0, 1}λ. By injectivity of G′, we have G′(x0) �= G′(x1).
Let i ∈ [t] and b ∈ {0, 1}, and let x

(i)
0 �= x

(i)
1 ∈ {0, 1}n. By injectivity of Gb,

the probability over fkb
i ← InjectiveGenb(1λ) that F b

fkb
i
(x(i)

0 ) = F b
fkb

i
(x(i)

1 ) is 2/|F|
(which correspond to either a = e·(Gb(x(i)

0 −Gb(x(i)
1 ))−1 or a = 0). In particular,

for any fixed tag ∈ {0, 1}t, we have, by taking an union bound over i ∈ [t], that
the probability over fk ← InjectiveGen(1λ) that F fk,tag(G

′(x0)) = F fk,tag(G
′(x1))

is at most 2t/|F|. Then, by union bound over all tag ∈ {0, 1}t and pairs of input
x0 �= x1 ∈ {0, 1}λ, the probability that there exists a tag tag and two inputs
x0 �= x1 such that F fk,tag(G

′(x0)) = F fk,tag(G
′(x1)) is at most 2t·2t·22λ

|F| = t
2λ ,

which is negligible.
An almost identical argument (without the union bound over all tags) shows

that the branch tag∗ is injective in lossy mode.



Targeted Lossy Functions and Applications 447

1-Lossiness. Fix tag∗ ∈ {0, 1}t. Let x∗
0 ← {0, 1}λ be the target, and let x∗

1 ←
{0, 1}λ \ {x∗

0} be the value sampled during fk ← LossyGen(1λ, tag∗, x∗
0).

First, we claim that, for all tag �= tag∗, F fk,tag(x
∗
0) = F fk,tag(x

∗
1). To see this,

fix any tag �= tag∗, and let i denote the smallest index in [t] such that tagi �= tag∗
i .

Recall that we have

fk
1−tag∗

i
i ← LossyGen1−tag∗

i (1λ, x
(i−1)
0 , x

(i−1)
1 ),

and in particular, by construction of LossyGen and F :

F
tagi

fk
tagi
i

(x(i−1)
0 ) = F

tagi

fk
tagi
i

(x(i−1)
1 ).

As tagj = tag∗
j for all j < i, we have by construction of x

(i−1)
0 and x

(i−1)
1 :

yi := F
tagi

fk
tagi
i

◦ · · · ◦ F
tag1
fk

tag1
1

(G′(x∗
0)) = F

tagi

fk
tagi
i

◦ · · · ◦ F
tag1
fk

tag1
1

(G′(x∗
1)),

and in particular

F fk,tag(x
∗
0) = F

tagt

fk
(tagt)
t

◦ · · · ◦ F
tagi+1

fk
(tagi+1)
i+1

(yi)

= F fk,tag(x
∗
1)

(where by convention we consider the composition to be empty if i = t).
Then, we observe, similarly to the proof of Claim 1, that the resulting distri-

bution (fk, (F fk,tag(x
∗))tag �=tag∗) does not reveal anything about x∗

0, x
∗
1 beyond the

(unordered) set {x∗
0, x

∗
1}. This follows since x∗

0, x
∗
1 are treated symmetrically in

the generation of fk and the fact that F fk,tag(x∗
0) = F fk,tag(x∗

1) for all tag �= tag∗.
In other words, x∗

0 → {x∗
0, x

∗
1} → (fk, (F fk,tag(x

∗
0))tag �=tag∗) forms a Markov chain.

A data-processing inequality then shows:

H∞(x∗
0 | fk, (F fk,tag(x

∗
0))tag �=tag∗) ≥ H∞(x∗

0 | {x∗
0, x

∗
1}) ≥ 1,

where the last inequality follows since one cannot predict x∗
0 given the

(unordered) set {x∗
0, x

∗
1} with probability better than 1/2. Note that x∗

0, x
∗
1 are

uniformly random over {0, 1}λ conditioned on x∗
0 �= x∗

1.

Indistinguishability. On a high level, x
(0)
1 looks pseudorandom by security of

G′. Then, we switch lossy keys to injective keys, one by one, using our special
TLF property (Eq. (2), Eq. (3)), simultaneously switching x

(j)
1 to uniform and

fk
1−tag∗

j

i to injective.
Fix tag∗ ∈ {0, 1}t and x∗ ∈ {0, 1}λ. We define the following hybrids:

Hybrid H0: This is the distribution induced by the lossy mode, namely, the
output distribution is:

(tag∗, x∗, fk),

where fk ← LossyGen(1λ, tag∗, x∗).
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Hybrid H1,j , 0 ≤ j ≤ t: We switch how we generate fk.
For all i ≤ t, sample

fk
tag∗

i
i ← InjectiveGentag

∗
i (1λ).

Sample x
(j)
1 ← {0, 1}n, and set, for all i > j:

x
(i)
1 = F

tag∗
i

fk
tag∗

i
i

◦ · · · ◦ F
tag∗

j+1

fk
tag∗

j+1
1

(x(j)
1 ),

and set for all i ≥ j + 1:

fk
1−tag∗

i
i ← LossyGen1−tag∗

i (1λ, x
(i−1)
0 , x

(i−1)
1 ).

For all i < j, set:

fk
1−tag∗

i
i ← InjectiveGen1−tag∗

i (1λ),

and set if j ≥ 1:

fk
1−tag∗

j

j ← InjectiveGen1−tag∗
j (1λ).

Output (tag∗, x∗, fk) where

fk = (fkb
i )i∈[t],b∈{0,1}.

Note that the distribution output by Hybrid H2,t is identical to the one
output by InjectiveGen(1λ). Therefore it suffices to prove that the hybrid distri-
butions above are indistinguishable.

Claim 4. Assuming G′ is a PRG, for all tag∗ ∈ {0, 1}t and all x∗ ∈ {0, 1}n,
the distributions

(tag∗, x∗, fk)

generated in Hybrids H0 and H1,0 are computationally indistinguishable.

Proof. The only difference between these two hybrids is how x
(0)
1 is distributed.

In H0, it is computed as G′(x∗
1) where x∗

1 ← {0, 1}λ, and in H1,0, as uniformly
random in {0, 1}n. Indistinguishability follows by PRG security of G′.

Claim 5. For all tag∗ ∈ {0, 1}t, all x∗ ∈ {0, 1}n, and for all j ∈ [t], the distri-
butions

(tag∗, x∗, fk)

generated in Hybrids H1,j−1 and H1,j are computationally indistinguishable.

Proof. Fix tag∗ ∈ {0, 1}t, x∗ ∈ {0, 1}n, j ∈ [t]. The only differences between

hybrids H1,j−1 and H1,j , are how x
(j)
1 and fk

1−tag∗
j

j are generated.
To argue indistinguishability, we use our special joint indistinguishabil-

ity property of (InjectiveGen0, LossyGen0, F 0) and (InjectiveGen1, LossyGen1, F 1)
(Eq. (2), Eq. (3)).
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Suppose tag∗
j = 0. We use the output distribution (fk0, u, x∗, fk1) from Eq.

(2), setting x∗ = x
(j−1)
0 = F

tag∗
j−1

fk
tag∗

j−1
j−1

◦ · · · ◦ F
tag∗

1

fk
tag∗

1
1

(x(0)
0 ) where x

(0)
0 = G′(x∗). We

set fk0j = fk0, x
(j)
1 = u and fk1j = fk1, where we implicitly set x∗

1 from Eq. (2) as

x∗
1 = x

(j−1)
1 (note that x

(j−1)
1 is only used to define x

(j)
1 and fk

1−tag∗
j

j in H1,j−1,
and is not used in H1,j). We compute all the other components as in Hybrid
H1,j .

If the distribution of Eq. (2) comes in lossy mode (meaning that fk0 is in
lossy mode), then we obtain the output distribution of Hybrid H1,j−1. If the
distribution comes in injective mode (meaning that fk0 is in injective mode),
then we obtain the output distribution of Hybrid H1,j .

The case tag∗
i = 1 is almost identical, where we use Eq. (3) instead of Eq. (2).

This overall shows that for any tag∗ ∈ {0, 1}t and x∗ ∈ {0, 1}λ, the dis-
tributions (tag∗, x∗, fk) induced by Hybrids H0 and H1,t are computationally
indistinguishable, which concludes the proof.

Amplifying Lossiness. As in our construction of TLF, the construction above of
T-ALBO only has lossiness 1. We note that we can also amplify lossiness for
T-ALBOs, which gives Theorem 3.

We now move on to our construction of (maximally) entropy-preserving T-
ALBO.

Entropy-Preserving T -ALBOs. We also construct an entropy-preserving T-
ALBO, and refer to the full version for the construction and a proof.

5 Applications of T-ALBOs

We first recall in Sect. 5.1 the definition of pseudo-entropy functions (PEF) intro-
duced by [BHK11]. We note that any entropy-preserving T-ALBO directly gives
such a PEF, thus giving a construction from one-way functions (Theorem 5). Then,
we describe applications of PEF, by constructing (1) extractor-dependent extrac-
tors (Theorem 6), (2) leakage-resilient, deterministic MACs (Theorem 7), and (3)
leakage-resilient, public-coin symmetric encryption schemes (Theorem 8).

5.1 Pseudo-Entropy Functions

Definition 5 (Pseudo-Entropy Functions.). A pseudo-entropy function
family with input length n = n(λ), output length m = m(λ), and lossiness param-
eter � = �(λ) consists of the following PPT algorithms (Gen, LossyGen, f):

– k ← Gen(1λ): generates a key k.
– k ← LossyGen(1λ, x∗): on input x∗ ∈ {0, 1}n, outputs a key k.
– y = fk(x): on input x ∈ {0, 1}n, deterministically outputs y ∈ {0, 1}m.
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We require the following properties:
�-Lossiness: For all x∗ ∈ {0, 1}n:

H∞ (fk(x∗)) | {fk(x)}x�=x′) ≥ �

over the randomness of k ← LossyGen(1λ, x∗).

Indistinguishability: For all x∗ ∈ {0, 1}n:

Gen(1λ)
c≈ LossyGen(1λ, x∗).

Next, we show the following:

Theorem 5 (PEFs from OWFs). Let � = �(λ) and t = t(λ) be polynomials.
Assuming the existence of one-way functions, there exists a PEF with input
length t, output length � and lossiness �.

We refer to the full version for construction and proof of Theorem 5.

5.2 Extractor-Dependent Extractors

We show how to build ED-extractors with auxiliary information from one-way
functions:

Theorem 6 (ED-Extractors from OWFs). Assuming the existence of one-
way functions there exists an ED-extractor for α-entropy sources with auxiliary
information, where α = λΩ(1).

We refer to the full version for the definition of ED-extractors, our construc-
tion and the proof of Theorem 6.

5.3 Leakage-Resilient Symmetric-Key MACs

In the full version, we show how to build leakage-resilient symmetric-key MACs
from PEFs.

Theorem 7 (Deterministic Leakage-Resilient MACs from OWFs). Let
m = poly(λ) be a message length and t ≥ ω(log λ) be a tag length. Assuming one-
way functions, there exists, for all L such that t − L = ω(log λ), a deterministic
MAC with message length m and tag length t that satisfies selective unforgeability
even given leakage of size L.

We refer to the full version for the construction and proof of Theorem 7.

5.4 Leakage-Resilient Symmetric Encryption

In the full version, we show how to build leakage-resilient symmetric encryption
from PEFs.

Theorem 8 (Leakage-Resilient Symmetric Encryption from OWFs).
For any polynomial leakage amount L = L(λ) and message length m = m(λ),
assuming one-way functions exists, there exists a public-coin, symmetric encryp-
tion scheme with message length m, ciphertext size m + O(λ), and key size
O((L + λ)λ).

We refer to the full version for the construction and proof of Theorem 8.
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5.5 Symmetric-Key Encryption Secure Against Selective Opening
Attacks

Finally, we show that PEFs have applications to security against selective open-
ing attacks. We refer to the full version for a definition of selective opening
security.

Theorem 9 (Selective Opening Security from OWFs). Assuming one-
way functions exist, there exists a symmetric-key encryption scheme that
achieves simulation-security against selective opening of keys and randomness.

We refer to the full version for a definition of selective opening security, and
the construction and a proof of Theorem 9.

6 Application of T-AIBOs to CCA Security

We prove the following theorem:

Theorem 10 (CCA Encryption from Strong Trapdoor Functions). Let
d = d(λ), n = n(λ) = ω(log λ), ρ = d · n, and m = max(n + 1, λ). Let TDF be
a trapdoor function with input length ρ. Suppose that no time T = 2n · poly(λ)
adversary can invert TDF with probability 2d

2ρ · ε for any non-negligible ε. Assume
furthermore the existence of an injective PRG G : {0, 1}n → {0, 1}m.

Then there exists a CCA-secure (public-key) encryption scheme.

We refer to the full version for the construction and proof of Theorem 10.
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Abstract. Block ciphers such as the Advanced Encryption Standard
(Rijndael) are used extensively in practice, yet our understanding of their
security continues to be highly incomplete. This paper promotes and con-
tinues a research program aimed at proving the security of block ciphers
against important and well-studied classes of attacks. In particular, we
initiate the study of (almost) t-wise independence of concrete block-
cipher construction paradigms such as substitution-permutation net-
works and key-alternating ciphers. Sufficiently strong (almost) pairwise
independence already suffices to resist (truncated) differential attacks
and linear cryptanalysis, and hence this is a relevant and meaningful
target. Our results are two-fold.

Our first result concerns substitution-permutation networks (SPNs)
that model ciphers such as AES. We prove the almost pairwise-
independence of an SPN instantiated with concrete S-boxes together
with an appropriate linear mixing layer, given sufficiently many rounds
and independent sub-keys. Our proof relies on a characterization of S-box
computation on input differences in terms of sampling output differences
from certain subspaces, and a new randomness extraction lemma (which
we prove with Fourier-analytic techniques) that establishes when such
sampling yields uniformity. We use our techniques in particular to prove
almost pairwise-independence for sufficiently many rounds of both the
AES block cipher (which uses a variant of the patched inverse function
x �→ x−1 as the S-box) and the MiMC block cipher (which uses the
cubing function x �→ x3 as the S-box), assuming independent sub-keys.

Secondly, we show that instantiating a key-alternating cipher (which
can be thought of as a degenerate case of SPNs) with most permutations
gives us (almost) t-wise independence in t + o(t) rounds. In order to do
this, we use the probabilistic method to develop two new lemmas, an
independence-amplification lemma and a distance amplification lemma,
that allow us to reason about the evolution of key-alternating ciphers.

1 Introduction

Block ciphers are among the most fundamental building blocks in cryptography,
and applications demand strong pseudorandomness properties from them. How-
ever, the simplicity of widely adopted designs, such as Substitution-Permutation
c© International Association for Cryptologic Research 2021
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Networks (SPNs), which underlie AES, is inherently at odds with the reduction-
ist approach of provable security, as there are no clear underlying hard mathe-
matical problems upon which security can be based. Instead, the security valida-
tion of block ciphers has gone through cryptanalysis, and considered a number
of different techniques, including linear [41] and differential [5] cryptanalysis,
higher-order [36] and truncated [34] differential attacks, impossible differential
attacks [33], algebraic attacks [25], integral cryptanalysis [35], biclique attacks [7],
and so on.

Lacking full proofs of security, the next best thing is to prove that certain
relevant classes of attacks cannot possibly succeed. The more “concrete” and
less “asymptotic” such a proof is, the better, and the class of attacks should
be as large as possible. The most successful such effort has developed provable
bounds for linear and differential cryptanalysis, starting with the seminal work
of Nyberg and Knudsen [46], and culminating with fairly precise estimates for
concrete block ciphers like AES (see e.g. [29–32,48,49]).

t-wise independence. In this paper, we move one step forward and study the
(almost) t-wise independence of concrete block ciphers – namely, for a block
cipher E : {0, 1}s × {0, 1}n → {0, 1}n, we demand that for any distinct t inputs
x1, . . . , xt and a random key S, the distribution of

E(S, x1), . . . , E(S, xk)

is statistically close to that of t uniform, but distinct, n-bit strings.
This property is attractive for two reasons. First and foremost, it is poten-

tially achievable unconditionally by a concrete design, as long as s ≥ t · n. For
example, a variant of AES-128 with 11 independent round keys1 can (potentially)
be 11-wise independent. Second, t-wise independence already implies resilience
against a large class of attacks that have been previously studied. Indeed, the
case t = 2 (i.e., almost pairwise independence) already implies resilience to lin-
ear and differential cryptanalysis but also to truncated differential attacks and
any other attack that exploits statistical deviations of pairs of outputs. Simi-
larly, t-wise independence implies resilience to order log2(t) differential attacks.
One caveat with this view point is that actual cipher instances typically have
fixed-length keys which do not grow with t – however, similar to prior works
on analyzing simpler properties of block ciphers, and in particular expected dif-
ferential probabilities, we promote the heuristic angle that properties which are
true for independent keys (possibly, unconditionally) remain true (computation-
ally) when these keys are derived via a suitable key-scheduling algorithms from
a short, single key.2

We note that existing bounds on differential probabilities for ciphers such as
AES could imply pairwise independence, if good enough, but unfortunately, the
1 Such an “independence assumption” is common across block cipher analyses. For

more, see Sect. 1.2.
2 We note that the impact of key-schedules on cryptographic attacks is mostly not

well understood.
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current state of the art (cf. e.g. [49]) proves upper bounds of the order 2−111 for
128-bit outputs which does not imply anything about (almost) pairwise inde-
pendence. Without a finer grained understanding of the difference distribution,
this could well imply a large distance of pairs of outputs from the uniform dis-
tribution.

Scope: Substitution-Permutation Networks. Our focus in this paper is
on concrete block cipher designs (which likely benefit from other security prop-
erties, such as resilience to algebraic attacks), and in particular Substitution-
Permutation Networks (SPNs), a class for which AES is a special instance, and
a generalization thereof called Key-Alternating Ciphers (KACs). SPNs alternate
computationally simple rounds as follows, starting from the state being equal to
the block cipher input:

1. A key-mixing step which consists of XORing the keys bit-wise with the current
state;

2. A local non-linear step where each bit of the output depends only on a few
bits of the input; Concretely, this proceeds by partitioning the n-bit state into
k b-bit blocks, and applying a non-linear permutation S : {0, 1}b → {0, 1}b

(a so-called “S-box”) to each block in parallel;
3. A linear mixing step is then applied to the state.

We will refer to k as the width and to the important special case where b = n (i.e.,
k = 1) as a Key-Alternating Cipher (or KAC, for short). (For this case, we can
omit the mixing step without loss of generality.) Most modern ciphers are SPNs
(or KACs). For example, AES uses an S-box obtained from the patched inverse
x �→ x2b−2 and a mixing layer alternating two simple operations (ShiftRows and
MixColumns). The MiMC cipher [1] is a KAC applying the permutation x �→ x3

to its state.

A similar viewpoint to ours was already taken by Vaudenay’s decorrelation
theory [51], but we are unaware of any application of decorrelation to SPNs
with concrete S-boxes. (In fact, this was left as an open problem.) Similarly,
Hoory et al. [24] also suggested the use and analysis of t-wise independence, but
the resulting constructions, while very elegant and simple, are far from existing
practical designs, and better fit in the general theoretical pursuit of building
t-wise independent permutations [2,9,28].

Our Program. This raises the following questions: If we take t-wise indepen-
dence as our security goal, what are good choices for the non-linear (resp. linear)
step? Which choices provably work and which do not? Again, we stress that our
goal is to find concrete, fixed choices of these layers, without modeling the S-box
as a random permutation oracle.

Our results come in two forms:

1. Results about concrete SPN instantiations of SPNs with S-boxes such as the
patched inversion function, and where we prove pairwise independence of the
resulting construction. In particular, one of our results applies to the round
structure of AES, without any simplifications or idealized assumptions.



The t-wise Independence of Substitution-Permutation Networks 457

2. Existential results, which hold for most choices of P , where we prove almost
t-wise independence for KACs with a number of rounds that grows with t.

Next, we provide a detailed overview of our results, and the underlying tech-
niques. Then, we give an overview of the most relevant related work.

1.1 Our Results and Techniques

This section gives an overview of our results, and the underlying techniques.

Pairwise independence of SPNs. Our first result deals with SPNs of width k
with a concrete S-box S : F2b → F2b (thus, n = b · k is the block size here). In
particular we focus on the case where the S-box is S(x) = x−1 (patched so that
0−1 = 0), though the results extend to other S-boxes. Our main theorem here
can be cast as follows.

Theorem (Informal). For a suitably instantiated mixing layer,3 and as
long as 2k+8

2b +
√

k/2b < 1
2 , the r-round SPN with S-box S(x) = x−1 of

width k is δ-close to pairwise independent for sufficiently large r = r(δ).
In particular, if 2k+8

2b +
√

k/2b = C/2, then r = O( log(1/δ)
log(1/C) ).

We briefly highlight the main ideas behind the proof and note that we will
focus in particular on showing that a three round SPN is O(

√
k/2b)-close to

pairwise independent – this result will rely on a new extraction lemma, which
we explain below. We then resort to an amplification result by Maurer, Pietrzak,
and Renner [42] to conclude that the (r/3)-fold sequential composition of the
SPN is δ-close to pairwise independent, as desired.

Our analysis of the output distribution of a three-round SPN for any two
distinct inputs x �= x′ will take the standard (and essentially equivalent) app-
roach of studying the distribution of the difference of the outputs of the two
evaluation. To this end, we start with a (fixed) input difference Δ = x⊕x′ �= 0n.
Then, our first step is to show, using (mostly) algebraic properties of the field
F2b , that after ignoring some corner cases that happen with probability no more
than O(k/2b), the input differences to the third round – denoted by V1, . . . , Vk

– satisfy jointly a very strong distributional property, namely:

any subset of them of size k′ ≤ k has (jointly) min-entropy at least k′(b − 1).

For this to true, we only need mild assumptions on the linear mixing layer. We
merely require it to be described by a full-rank k × k matrix whose entries are
all non-zero.

To understand the effect of the third round, at last, we resort to our extraction
lemma – we want to show in particular that the distribution of the differences
Z1, . . . , Zk, which we obtain after applying the final round of S-boxes with input

3 Our requirement is very mild, and is in particular implied by having maximum
branch number, as it is in the case in many SPN analysis.
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differences V1, . . . , Vk, is very close to uniform.4 Imagine first that the differences
Zi are not sampled via the S-box, but rather each Zi is sampled independently
from the (n−1)-dimensional sub-space orthogonal to {0b, Vi}. (We interpret the
latter as a linear subspace of F

b
2, and Vi as a vector in this space.) Our extraction

lemma shows that in this case, the Zi’s are very close to uniform – the proof
uses Fourier-analytic techniques.

Of course, the Zi’s are not sampled this way – by applying the S-boxes to
inputs with differences Vi – yet, the key insight is that this is almost equivalent
to our sub-space representation, in that by applying a lemma of Nyberg [45] we
can show that there exist permutations π, π′ such that π′(Zi) is O(k/2b) close
to a random vector sampled orthogonal to {0b, π(Vi)}.

We also give a proof of a weaker bound for a two-round SPN of order
√

2k−b.
This bound could be interesting in some parameter regimes.

The AES case. Unfortunately, we cannot apply the above theorem directly to the
AES round structure or the AES parameters. First off, the AES S-box combines
the inverse with a F2-affine function – it turns out this is not particularly difficult
to handle (the affine function can be cast as part of the mixing). But we encounter
other problems, in that the mixing layers does not satisfy the assumptions needed
for the theorem to work, and the theorem does not apply when k = 16 and b = 8.
Still, we can adapt our techniques to obtain a refined analysis which tells us that
six AES rounds (with independent sub-keys) are ε-close to pairwise independent,
for some ε < 1/2. Then, using the MPR result in the iteration, we obtain the
following result:

Theorem. 6r-round AES is 2r−1(0.472)r-close to pairwise independence.

The bound is likely far from tight, as we expect much better, but non-trivial
further work seems required to obtain a substantial improvement. However, we
do stress that barring the use of independent keys (which again, are common in
analyses of expected differential probabilities for AES), this theorem applies to
the actual AES structure.

Existential Results. All of the above results are about pairwise independence. It
is interesting to extend them to t-wise independence for t ≥ 3. While we leave
this important question open for SPNs and concrete S-boxes, we investigate the
general question whether (almost) t-wise independent constructions exist in the
first place.

To this end, we employ the probabilistic method to show that there exist
permutations to instantiate a (t + 1)-round key-alternating cipher so that it is
(almost) t-wise independent. We stress that while our probabilistic argument
picks such permutations at random to show their existence, these permutations
can then be fixed.

4 The last mixing stage does not affect the argument – it will merely preserve unifor-
mity by virtue of being a permutation.
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Our probabilistic argument is quite involved and requires the study of mar-
tingale sequences and their concentration. Our result follows by showing two
new lemmas, and employing a careful alternation between them. The first is an
independence amplification lemma that shows how to take a KAC that is very
close to t-wise independent and by adding an additional round, obtain a KAC
that is somewhat close to a t + 1-wise independent distribution. The second is
a distance amplification lemma that shows how to get from a somewhat close to
t-wise independent KAC to a very close to t-wise independent KAC, again by
adding one round.

1.2 Perspectives and Open Problems

On Independent Keys and Other Such “Ideal” Assumptions. We remark that, to
date, all analyses of block ciphers make ideal assumptions such as the indepen-
dence of round keys and/or ideal components. For example, analyses of (iterated)
Even-Mansour ciphers assume that both the construction and the adversary have
oracle access to a random permutation P , and that P remains unqueried on an
exponential number of points. This is a highly idealized model: a random permu-
tation would take exponentially many bits to write down, and indeed, in the real
world, P is instantiated with a concrete permutation. The proofs say nothing
about what happens to the pseudorandomness of such a cipher when P is instan-
tiated with any concrete permutation. And moreover, analyses of multi-round
constructions all assume independent keys.

In contrast, our work continues a research program that aims to avoid such
“oracle access” assumptions. This line of work, which has its roots in the work of
Nyberg in the 1990s, treats the component permutations and mixing functions as
concrete functions (indeed, ones that are used in block ciphers such as AES and
MiMC). While proving computational pseudorandomness is way out of reach,
this line of research aims to understand the security of these constructions against
concrete practical attacks.

The “independent round keys” assumption is very common and rooted in
the model of Markov Ciphers of Lai, Massey, and Murphy [37], and adopted
by Nyberg [45] and follow-up works. The expectation is that t-wise indepen-
dence becomes t-wise pseudorandomness with an appropriate instantiation of
the key schedule; nevertheless, understanding the precise role of key schedules is
an important open problem.

On Algebraic and Other Attacks. The research program we undertake is to study
several classes of concrete, powerful, attacks against block ciphers. In particu-
lar, t-wise independence rules out an important attack vector, but the program
does not stop at just t-wise independence. In particular, the two outstanding
open problems that come of this work are (a) to prove t-wise independence of
multi-round AES with independent round keys, for t > 2; and (b) to formalize
and prove security against algebraic attacks. We view solving these problems as
an important quest that will likely require importing analytic techniques from
mathematics and TCS, as well as inventing new ones.
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On Differential Attacks vs. Almost Pairwise Independence. We note that mean-
ingful differential probabilities need to be very close to 2−n, or else, they do not
rule out distinguishers. For example, in the case of AES-128, a 2−127 bound on
the expected differential probability (see Sect. 2 for the definition) does not rule
out the first bit of the output being always the same as the first bit of the input.
In this case, there is a distinguisher that always works!

We note that our analysis can make the statistical distance as small as we
want with sufficiently many rounds, and in particular, make the differential prob-
abilities arbitrarily close to the ideal 2−128. We note that ours is the first such
result; in particular, our result for AES is the first such optimal bound for the
AES design. Showing a tighter tradeoff between the number of rounds and the
statistical distance is an interesting open question. Showing a direct bound on
the differential probability without going through statistical distance would be
interesting as well.

1.3 Related Work

Coppersmith and Grossman [15] and Kaliski, Rivest and Sherman [26] analyzed
the groups generated by transition functions of the DES block cipher. [10] show
that the group generated by the round functions of a cipher similar to AES is
the alternating group. On the other hand, [44] provide a cautionary tale where
guarantees on the group generated by the round functions does not guarantee
security.

Bounds on Linear and Differential Probabilities. There is an extensive body of
literature on provable bounds for linear [41] and differential cryptanalysis [5] of
block ciphers. We note that while sufficiently strong bounds on the differential
probability – say (1 + ε)2−n for block size n and ε = o(1) - would imply almost
pairwise independence, these works fall short of proving such strong guarantees.

Adopting the formal framework of Lai, Massey, and Murphy [37], Nyberg
and Knudsen [46] prove bounds on the differential probability for Feistel ciphers
as a function of the underlying non-linear function. Several works have been
devoted to studying the differential properties of fixed functions to instantiate
these results – relevant to this work, [45] is the first work to show properties
of differentials of the inverse permutation x �→ x−1 in a finite field (these were
later revisited by Daemen and Rijmen [17]). We also refer to [6] for a com-
prehensive survey on the progress in designing non-linear functions suitable for
cryptography.

Much effort has also been devoted to provable bounds on linear and differ-
ential probabilities for AES and (more abstractly) SPNs. Hong et al. [23] gave
the first analysis of two-round SPNs where the mixing layer has optimal branch
number. This result was further generalized to arbitrary branch number by Kang
et al. [27]. Very concrete bounds for the specific case of AES were then given
via refined methods in several works [29–32,48,49]. The best known result here
shows that the maximum expected differential probability is at most 1.144×2−111

for four rounds of AES. Miles and Viola [43] also provide generic bounds (i.e.,
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these bounds only depend on the S-box and the number of rounds) for linear
and differential attacks against multi-round SPNs – however, the quality of their
bounds decreases with a higher number of rounds.

Baignères and Vaudenay [4] proved optimal resilience to differential crypt-
analysis whenever the S-boxes are chosen uniformly at random and secret (i.e.,
their description is part of the key). Later, Miles and Viola [43] improves this
result (implicitly) by showing that SPNs with random S-boxes are effectively a
pseudorandom function when the number of queries is smaller than the input
size of the S-box.

Stronger Differentials. Strong notions of differential attacks have been proposed.
For example, Lai [36] introduced the notion of higher order differentials, which
consider the k-th derivative (as opposed to the simple derivative of a func-
tion), whereas Knudsen [34] introduced truncated differentials, which only con-
sider a subset of the bits of the output. We note that security against k-th
order differential cryptanalysis is implied by the k-wise independence, whereas
pairwise independence implies resistance to truncated differential cryptanalysis.
Another attack technique introduced by Knudsen is that of “impossible differ-
ential attacks” [33], which leverage differences which occur with probability 0 –
once again, sufficiently strong pairwise independence implicitly guarantees that
differences occur with sufficiently large probability.

Decorrelation theory. Vaudenay [51] takes a similar position to ours, proving
properties of block cipher constructions on a bounded number of inputs, and
inferring a number of properties from these statements. The work also naturally
exploits a natural connection with t-wise independence, like ours. Interestingly,
Vaudenay considers a number of different distance measures for the resulting
distributions, and use their properties to derive a number of results. However,
we are not aware of any use of decorrelation theory about the security of SPNs
or KACs with concrete permutations. Still, it would be interesting to consider-
ing distance measures from decorrelation theory in the context of our paper to
improve tightness.

Analyses with Public Ideal Permutations. A substantial body of works considers
analyses in models where the rounds of a KAC are (public) random permutation
P : {0, 1}n → {0, 1}n given to the adversary. In particular, since the adversary is
query-bounded, she cannot obtain the entire truth table of P and therefore, this
is an idealized model. (This model is effectively capturing generic attacks that
treat these components as a black box.) Increasingly tighter bounds for security
as a pseudorandom permutation have been developed by several works [8,12,
22,38,50] which assume the permutations and the keys are independent. Other
works consider identical permutations and/or identical keys [11,52]. The model
was also considered to prove the stronger version of indifferentiability for key-
alternating ciphers (cf. ]e.g. [3,20,21]).

The model was then adapted to SPNs by assuming that the individual S-
boxes are public random permutations {0, 1}b → {0, 1}b [13,14,18,19]. Crucially,
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these results assume that the number of queries to the S-box is smaller than 2b,
which is rather unrealistic for small values of b (e.g., b = 8 as in AES).

2 Preliminaries

Notational Conventions. When n is a positive integer, let [n] denote the set
{1, 2, . . . , n}. When p is a prime or prime power, let Fp denote the finite field of
size p. The logarithm function log uses base 2 by default. Probability distribu-
tions are typically denoted by calligraphic letters, e.g., D. Sampling an element
from D is denoted by d ← D. For any finite set S, sampling x uniformly from S
is denoted by x ← S.

Definition 1 (Entropy). For a distribution over domain Ω whose probability
mass function is p.

– Its Shannon entropy is H(p) = −∑
x∈Ω p(x) log(p(x)).

– Its Min-entropy is H∞(p) = − log
(
maxx∈Ω p(x)

)
.

– Its Rényi entropy of order 2, also known as the collision entropy, is H2(p) =
− log

(∑
x∈Ω p2(x)

)
.

2.1 Almost t-wise Independent Permutations and Cryptanalysis

We review notions of almost t-wise independence, and state some connections
with standard notions from the cryptanalytic literature.

Definition 2. The statistical distance (or total variation distance) between two
probability distributions p and q with domain Ω is dTV(p, q) := 1

2 ·∑x∈Ω |p(x)−
q(x)|. Moreover, dTV(p, q) :=

∑
x∈Ω:p(x)>q(x) p(x) − q(x).

For a two argument function F : {0, 1}m × {0, 1}n → {0, 1}� we often write
FK(x) = F (K,x), and refer to F as a function family. (Alternatively, we use
the set notation F = {FK}K∈{0,1}m whenever more convenient.) We will be
considering mostly permutation families, where � = n, and FK is one-to-one for
each K.

Definition 3 (close to t-wise independence). We say that a permutation
family F : {0, 1}m × {0, 1}n → {0, 1}n is ε-close to t-wise independent if for
all distinct x1, . . . , xt ∈ {0, 1}n, and a uniformly random m-bit string K, the
distribution of (FK(x1), . . . , FK(xt)) has statistical distance at most ε from that
of t uniformly sampled distinct n-bit values (i.e., sampled without repetition).

We will use the following amplification lemma, which is due to Maurer,
Pietrzak, and Renner [42].

Lemma 1 (MPR Amplification Lemma). Let F and G be ε- and δ-close
to t-wise independent permutation families. Then, the permutation family F ◦ G
such that (F ◦ G)K1||K2(x) = FK1(GK2(x)) is 2εδ-close to t-wise independent.
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In particular, this implies that the permutation family F r obtained by
sequential r-fold composition of an ε-close to t-wise independent permutation
family F is 2r−1εr-close to t-wise independent. We point out that for a mean-
ingful application of this lemma, we require that ε < 1/2.

Differential and linear cryptanalysis. For a permutation family F : {0, 1}m ×
{0, 1}n → {0, 1}n, we define the expected differential probability (EDP) for a
given pair Δ and Δ′ of non-zero input- and output-differences, as

EDPF (Δ,Δ′) = Pr
K,X

[FK(X ⊕ Δ) ⊕ FK(X) = Δ′] ,

where K and X are independent and uniformly distributed over the m-bit and
n-bit strings, respectively. We also define MEDPF = maxΔ,Δ′ �=0 EDPF (Δ,Δ′).
It is easy to see that if F is ε-close to pairwise independent, then MEDPF ≤
ε + 1

2n−1 . We note that a similar result extends to any subset of n output bits,
and hence to so-called truncated differential probabilities.

We note that higher-order differential cryptanalysis [34,36] generalizes dif-
ferential cryptanalysis to look at higher order derivatives. It is not hard to see
that almost t-wise independence will imply resistance to order-log2 t differential
cryptanalysis, as the property relies on the evaluation of the cipher on at most
t inputs. We note that while (almost) t-wise independence refers to attacks that
look at an arbitrary set of t inputs, an order-log2 t differential attack looks at all
inputs that lie in some log2 t-dimensional hypercube, so a total of t inputs but
they are not arbitrary.

The connection between pairwise independence and linear cryptanalysis is
slightly less obvious. For more details, see the final version of our paper [40].

2.2 Key-Alternating Ciphers and Substitution Permutation
Networks

A Key Alternating Cipher (KAC) (cf. Fig. 1) is parameterized by a block size n,
number of rounds r, and a fixed permutation P : F2n → F2n . A KAC is a family
of functions indexed by r + 1 sub-keys K0,K1, . . . ,Kr, and defined recursively
as follows:

F
(0)
P (x) = x ⊕ K0

F
(i)
P,K0,...,Ki

(x) = P (F (i−1)
P,K0,...,Ki−1

(x)) ⊕ Ki .

The family of functions is FP :=
{
F

(r)
P,K0,...,Kr

(x) : Ki ∈ F
n
2

}
. One can also

naturally extend this to have different permutations in each round.
A Substitution-Permutation Network (SPN) (cf. Fig. 2) can be seen as a spe-

cial case of a KAC, where n = k · b (we refer to k as the width), and the
permutation P is obtained from an S-box S : F2b → F2b and a linear mixing
layer, described by a matrix M ∈ F

k×k
2b . In particular, P splits its input x into

k b-bit blocks x1, . . . , xk, and computes first yi = S(xi) for each i, and finally
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Fig. 1. Illustration of key alternating cipher

Fig. 2. Illustration of substitution permutation network

outputs M · (y1, . . . , yk). One can of course instead think of a KAC as a special
of an SPN with width k = 1.

A fact that we will use repeatedly is that in order to bound how close to
pairwise independent an SPN or KAC is, it is enough to analyze the distribution
of the non-zero difference of outputs of the SPN/KAC, and its distance from the
uniform distribution over non-zero strings.

Analyzing Pairwise Independence of KACs and SPNs. We will use the following
lemma to reduce the analysis of pairwise independence to analyzing the distri-
bution of differences.

Lemma 2. Assume that the KAC (resp. SPN) FP (resp. FP,M ) has the property
that for any input difference Δ �= 0, the distribution of

Δ′ := FK(x) ⊕ FK(x ⊕ Δ)

is ε-close to uniform (where the randomness of the distribution is taken over x
and K). Then, the KAC (resp. SPN) is ε-close to pairwise independent.

The proof is deferred to the full version [40].

Advanced Encryption Standard. The mostly widely used block cipher is the world
is Advanced Encryption Standard (AES), which is based on the SPN framework.
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The block size is 128 bits, width is 16, i.e. n = 128, k = 16, b = 8. AES is a family
of ciphers which have 10, 12 or 14 rounds.

The S-box is instantiated by S(x) = A(x28−2), where x �→ x28−2 is the
patched inverse function over F28 , A is an invertible affine function over F

8
2. The

exact form of A is irrelevant for this paper (as shown by Lemma 14).
The linear mixing function is instantiated by the composition of ShiftRows

and MixColumns. Their descriptions are deferred to the full version [40].

2.3 Trace in Fields of Characteristic Two

We describe a number of facts related to the finite field F2n of characteristic 2
and the trace function over it. For proofs of the claims below, we refer the reader
to any standard text on the subject, e.g. [39].

Definition 4. The trace function Tr : F2n → F2 is defined as Tr(x) =
∑n−1

i=0 x2i

.

Lemma 3. For every x ∈ F2n , Tr(x2) = Tr(x).

Lemma 4. For every x, y ∈ F2n , Tr(x + y) = Tr(x) + Tr(y). In particular, the
set of elements x ∈ F2n with Tr(x) = 0 form an F2-subspace of dimension n − 1.

Lemma 5. Let α ∈ F2n . The equation y(y ⊕ 1) = α over F2n has two solutions
if Tr(α) = 0 and no solutions otherwise.

Corollary 1. Let a, b, c ∈ F2n and a, b are non-zero. The equation ax2+bx+c =
0 has two solutions over F2n if Tr(ac/b2) = 0 and no solutions otherwise.

Lemma 6. For every x �= y ∈ F2n , let Sx := {z : Tr(xz) = 0} and Sy :=
{z : Tr(yz) = 0}. Then, Sx �= Sy. Indeed, since these are (n − 1)-dimensional
subspaces, they intersect at exactly 2n−2 elements.

We also need the following Lemma from Nyberg’s work [45], which we reprove
for completeness.

Lemma 7 ([45]). Let P : F2n → F2n be the patched inversion function P (x) =
x2n−2. For every δ, γ �= 0, let pδ,γ := Pr

x←F2n
[P (x) ⊕ P (x ⊕ δ) = γ]. Then,

pδ,γ =

{
2/2n, if δγ = 1
0, if δγ �= 1

+

{
2/2n, if Tr((δγ)−1) = 0
0, if Tr((δγ)−1) = 1

The following corollary is an immediate consequence.

Corollary 2. For any non-zero δ ∈ F2n , let

p(γ) := Pr
x←F2n

[P (x) ⊕ P (x ⊕ δ) = γ] .

Let Dδ denote the distribution with probability mass function p and let D′
δ denote

the distribution with probability mass function p′(γ) = p(γ−1), we have:

– D′
δ is (2/2b)-close to the uniform distribution on a subspace of dimension

b − 1.
– H2(Dδ) ≥ − log2

(
2
2b + 8

22b

)
.
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2.4 Basics of Discrete Fourier Analysis

The characters of the group F
n
2 are functions {χx : F

n
2 → R}x∈F

n
2

defined by

χx(y) = (−1)〈x,y〉

The functions {χx}x∈F
n
2

are orthonormal under the inner product5

〈χx, χx′〉 :=
1
2n

∑

y∈F
n
2

χx(y)χx′(y) .

Let f : F
n
2 → R be a real-valued function on F

n
2 . Writing f =

∑
x∈F

n
2

f̂(x)χx, we
have the Fourier (inversion) formulas

f(y) =
∑

x∈F
n
2

f̂(x)χx(y) and f̂(x) = 〈f, χx〉 =
1
2n

∑

y∈F
n
2

f(y)χx(y)

We need the following two facts. For proofs, we refer the reader to [47].

Lemma 8 (Parseval’s Theorem). 1
2n

∑
y∈F

n
2

f(y)2 =
∑

x∈F
n
2

f̂(x)2.

If S is a subspace of F
n
2 , let S⊥ = {y : 〈x,y〉 = 0 for all x ∈ S} denote its dual

subspace. If S is k-dimensional, S⊥ is (n − k)-dimensional.

Lemma 9. Let S ⊆ F
n
2 be a subspace and fS denote the uniform probability

distribution on S. That is, fS(y) = 1
|S| if y ∈ S and 0 otherwise. Then, f̂S(x) =

1
2n if x ∈ S⊥ and 0 otherwise.

In particular, let S ⊆ F
n
2 be an (n − 1)-dimensional subspace which can equiva-

lently be denoted as (the dual subspace) S = {0, v}⊥ for some v ∈ F
n
2 . Then,

f̂S(y) =

{
1
2n , if y ∈ {0, v}
0, otherwise

Let f : F
n
2 → R, g : F

n′
2 → R be two real-valued functions on F

n
2 and F

n′
2

respectively. Their tensor product f ⊗ g : F
n+n′
2 → R is a real-valued function

on F
n+n′
2 such that

(f ⊗ g)(x, y) := f(x) · g(y) for all x ∈ F
n
2 , y ∈ F

n′
2 .

Assume X,Y are two independent random variables on F
n
2 and F

n′
2 respectively,

and f, g are the probability mass functions of X,Y . Then f ⊗g is the probability
mass function of (X,Y ), as

Pr[(X,Y ) = (x, y)] = Pr[X = x] · Pr[Y = y] = f(x) · g(y) = (f ⊗ g)(x, y).

The Fourier transform of the tensor equals the tensor of the Fourier transforms.

Lemma 10 (Fourier transform of a Tensor). For any f : F
n
2 → R, g : F

n′
2 →

R, f̂ ⊗ g = f̂ ⊗ ĝ.
5 Note that there are two inner products at play here, one over F

n
2 and the other over

R
2n , and we are abusing notation by denoting them both as 〈·, ·〉.
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3 Pairwise Independence of SPNs

The main result of this section is a proof of pairwise independence of the 3-round
substitution-permutation network (see Fig. 2) where the non-linear S-box is the
patched inverse function over F2n , used in the AES block cipher. We will show
that the 3-round SPN is ε-close to pairwise independent for a constant ε < 1/2,
and note that an application of the MPR amplification lemma (Lemma 1) gives
us 2−Ω(r)-closeness to pairwise independence in 3r rounds.

In Sect. 3.1, we start with our main technical result, an S-box extraction
lemma, which says that when the input difference of a single round of SPN has
sufficient Rényi entropy, the output difference is close to uniformly random. We
follow this up by describing mixing functions and their properties in Sect. 3.2.
In Sect. 3.3, we then use the S-box extraction lemma and properties of mixing
functions to show our main result, namely the pairwise independence of 3-round
SPN. The reader is encouraged to refer back to Sect. 2.4 for relevant facts about
discrete Fourier analysis as and when necessary.

3.1 The S-box Extraction Lemma

Before we state the S-box extraction lemma, we describe how it will be used to
show the pairwise independence of SPNs. As noted in Lemma 2, it is sufficient
to show that the distribution of output differences on any two inputs is close to
uniformly random.

Consider the scenario in the last round of a substitution-permutation net-
work, as illustrated in Fig. 3. Before the last round, we will show that the input
difference already has high (Rényi) entropy. Indeed, we will show that if there
is one round of S-boxes and mixing before the last round, Δi has large entropy
for any i ∈ [k]; and if there are two rounds of S-boxes and mixing before the last
round, the joint distribution of (Δ1, . . . ,Δk) has (proportionally) high entropy.
The question we ask then is, is the output (difference) vector (Δ′

1, . . . ,Δ
′
k) close

to uniform? The extraction lemma provides an affirmative answer to this ques-
tion.

Lemma 11 (The S-Box Extraction Lemma). Let k, b be positive integers
and n = bk. Let D be a distribution over (Fb

2)
k and consider the following prob-

abilistic process called SampD.

1. Sample (v1, . . . , vk) ← D. Let S1, . . . , Sk be (b − 1)-dimensional subspaces
where each Si = {0, vi}⊥ is the subspace orthogonal to vi.

2. For each i ∈ [k], sample xi ← Si independently at random, and output
(x1, . . . , xk).

For any T ⊆ [k], let vT denote the concatenation of (vi)i∈T , let DT denote the
distribution of vT , let H2[DT ] denote its Rényi entropy. Then, the statistical dis-
tance between the joint distribution of (x1, . . . , xk) and the uniform distribution
over F

bk
2 is at most

1
2

√ ∑

T⊆[k],T �=∅

2− H2[DT ] .
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Fig. 3. Application scenario of the extraction lemma

In particular, we have:

– Weak Extraction: Assume that for all i ∈ [k], H2[vi] ≥ h for a fixed real h ≤
b. Then the statistical distance between the joint distribution of (x1, . . . , xk)

and the uniform distribution over F
bk
2 is at most 1

2 ·
√

2k−1
2h .

– Strong Extraction: Assume that for any T ⊆ [k], H2[vT ] ≥ h · |T | where
vT denotes the concatenation of (vi)i∈T . Then the statistical distance between
the joint distribution of (x1, . . . , xk) and the uniform distribution over F

bk
2 is

at most
1
2

·
√(

1 +
1
2h

)k

− 1

which, in turn, is at most
√

k
2h+1 assuming k ≤ 2h.

Proof. Let f denote the probability mass function of SampD. That is,
f(x1, . . . , xk) is the probability that SampD outputs (x1, . . . , xk). Let
p(v1, . . . , vk) denote the probability assigned by the distribution D to (v1, . . . , vk)
and let φS denote the probability mass function of the uniform distribution over
the subspace S ⊆ F

b
2. Then,

f(x1, . . . , xk) =
∑

v1,...,vk∈F
b
2

p(v1, . . . , vk) · φS1(x1) · φS2(x2) · . . . · φSk
(xk)

where Si = {0, vi}⊥ is an implicit function of vi, as before. We will write this as

f =
∑

v1,...,vk∈F
b
2

p(v1, . . . , vk) ·
(
φS1 ⊗ φS2 ⊗ . . . ⊗ φSk

)

We are interested in the statistical distance dTV(f, u) = 1
2‖f − u‖1, where u is

the uniform distribution over F
bk
2 . It suffices to bound ‖f̂ − û‖2

2 since

‖f − u‖2
1 ≤ 2kb‖f − u‖2

2 = 22kb‖f̂ − û‖2
2. (1)
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where the inequality comes from Cauchy-Schwartz and the equality comes from
Parseval’s theorem (Lemma 8).

The Fourier transform of f equals

f̂(y1, . . . , yk) =
∑

v1,...,vk∈F
b
2

p(v1,...,vk) ·
∏

i∈[k]

φ̂Si
(yi)

Observe that by Lemma 9, φ̂Si
is 0 everywhere except for φ̂Si

(vi) = φ̂Si
(0) =

1/2b. Thus the only inputs (y1, . . . , yk) on which f̂(y1, . . . , yk) �= 0 are those in
the set {0, v1} × {0, v2} × . . . × {0, vk}. Thus,

f̂(y1, . . . , yk) =
1

2bk
· Pr[vi = yi for all i s.t. yi �= 0]. (2)

The �2-norm of the Fourier transform of f − u can then be computed as
∥∥∥f̂ − û

∥∥∥
2

2
=

∑

y1,...,yk∈F
b
2

(y1,...,yk) �=0

f̂2(y1, . . . , yk)

=
∑

T⊆[k]
T �=∅

∑

y1,...,yk∈F
b
2

yi �=0 iff i∈T

f̂2(y1, . . . , yk)

=
∑

T⊆[k]
T �=∅

∑

y1,...,yk∈F
b
2

yi �=0 iff i∈T

1
22bk

· Pr[vi = yi for all i ∈ T ]2. (3)

Let vT := (vi)i∈T denote the vector v restricted to indices in T , let DT denote
the distribution of vT , and let fT denote the probability mass function of DT .
Then,6 ∥∥∥f̂ − û

∥∥∥
2

2
≤ 1

22bk

∑

T⊆[k]
T �=∅

||fT ||22 =
1

22kb

∑

T⊆[k]
T �=∅

2− H2[DT ]. (4)

Combining with equation (1) concludes the proof of the general case.

dTV(f, u) ≤ 1
2

· 2kb · ‖f̂ − û‖2 ≤ 1
2

√√
√√

∑

T⊆[k]
T �=∅

2− H2[DT ]. (5)

Setting 1: Weak Extraction. Assume for any i ∈ [k], H2[D{i}] ≥ h. Then, for
any non-empty set T ⊆ [k], we have H2[DT ] ≥ h. Therefore, combining with
equation (5),

dTV(f, u) ≤ 1
2

√√
√√

∑

T⊆[k]
T �=∅

2− H2[DT ] ≤ 1
2

·
√

2k − 1
2h

.

6 The first inequality symbol in the equation is tight, if V1, . . . , Vk are always non-zero.
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Setting 2: Strong Extraction. Assume for any T ⊆ [k], H2[DT ] ≥ h · |T |. Then

∑

T⊆[k]
T �=∅

2− H2[DT ] ≤
∑

T⊆[k]
T �=∅

( 1
2h

)|T |
=

(
1 +

1
2h

)k

− 1

using the binomial expansion. Combining with equation (5), we have

dTV(f, u) ≤ 1
2

√√√√
∑

T⊆[k]
T �=∅

2− H2[DT ] ≤ 1
2

·
√(

1 +
1
2h

)k

− 1.

If we additionally assume that k ≤ 2h, then

dTV(f, u) ≤ 1
2

·
√(

1 +
1
2h

)k

− 1 ≤ 1
2

√
e

k

2h − 1 ≤ 1
2

√
2k

2h
.

The last inequality symbol holds only if k
2h ≤ 1.256 . . ., which follows from the

condition k ≤ 2h. ��
We remark that Fourier analysis can be bypassed here. The above proof

uses Fourier analysis to bound the collision probability. There is an alternative
proof of the extraction lemma in the full version [40] that bounds the collision
probability using “elementary” non-Fourier methods.

Comparing Fig. 3 with the statement of the extraction lemma. The outstand-
ing contrast is that the extraction lemma assumes a very specific linear algebra
structure. That is, consider the domain as vector space F

b
2, the output (differ-

ence) vector is sampled as a random vector orthogonal to the input (difference)
vector. While in each round of SPN, the input is subtracted by the random key
and then feed into the S-box. The output difference is not sampled uniformly
from a subspace.

However, we hope the two can be bridged by change of variables. Say we start
with two inputs differing Δ, let Δ′ denote the difference after key-subtraction
and S-box. We hope there exist 1-to-1 mappings πin, πout : F2b → F

b
2 such that

πout(Δ′) is a random vector orthogonal to πin(Δ).

Fig. 4. Subtracting key followed by S-box ≈ subspace sampling, modulo change of
variables
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Figure 4 illustrates the property we are looking for. Although it cannot be
exactly satisfied by any S-box—we know πout(Δ′) doesn’t equal x by distribution,
because Δ = 0 ⇐⇒ Δ′ = 0—we show that pragmatic S-boxes almost satisfy
the property.

Assuming the S-box is the patched inverse function, the following lemma
shows that πout(Δ′) is statistically close to a random vector orthogonal to πin(Δ),
as long as Δ �= 0.

Lemma 12. Assume S-box is the patched inverse P (x) = x2b−2. There exist
1-to-1 mappings πin, πout : F2b → F

b
2 such that for any non-zero Δ ∈ F2b , letting

Δ′ denotes a random variable defined by

Δ′ := P (r) − P (r + Δ)

for a uniformly random r ∈ F2b , the statistical distance between πout(Δ′) and
the uniform distribution over {0, πin(Δ)}⊥ is no more than 2

2b .

Proof. As shown in Lemma 7 (from [45]),

Pr[Δ′ = δ] =

{
2
2b , if δ = 1

Δ

0, o.w.
+

{
2
2b , if Tr( 1

δΔ ) = 0
0, o.w.

Define πout(x) = x2b−2 to be the patched inverse as well. Then

Pr[πout(Δ′) = x] =

{
2
2b , if x = Δ

0, o.w.
+

{
2
2b , if x �= 0 and Tr( x

Δ ) = 0
0, o.w.

As show in Lemma 4, x �→ Tr( x
Δ ) is linear function over F2. Define πin(Δ) as

the coefficient vector of x �→ Tr( x
Δ ). Then

Pr[πout(Δ′) = x] =

{
2
2b , if x = Δ

0, o.w.
+

{
2
2b , if x �= 0 and 〈πin(Δ), x〉 = 0
0, o.w.

Apparently, the statistical distance between πout(Δ′) and the uniform distance
over {0, πin(Δ)}⊥ is 2

2b . ��
The following lemma shows the analogous statement for the cube function.

The proof is deferred to the full version [40].

Lemma 13. Assume S-box is the cube function P (x) = x3 over F2b where b is
odd7. There exist 1-to-1 mappings πin, πout : F2b → F

b
2 such that for any non-zero

Δ ∈ F2b , letting Δ′ denote a random variable defined by

Δ′ := P (r) − P (r + Δ)

for a uniformly random r ∈ F2b , πout(Δ′) is the uniform distribution over
{0, πin(Δ)}⊥.
7 The condition on b being odd is necessary to ensure that P is a permutation.
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In Sect. 3.4 we are going to analyze AES. The S-box in AES is called Rijndael
S-box, which is not exactly the patched inverse function. Rijndael S-box is the
composition of the patched inverse function and an affine transformation. The
following lemma shows that the additional affine transformation makes little
difference.

Lemma 14. Assume S-box is P (x) = A(x2b−2), where A is an affine permuta-
tion over F

b
2. There exist 1-to-1 mappings πin, πout : F2b → F

b
2. For any non-zero

Δ ∈ F2b , let Δ′ denote a random variable defined by

Δ′ := P (r) − P (r + Δ)

for a uniformly random r ∈ F2b . The statistical distance between πout(Δ′) and
the uniform distribution over {0, πin(Δ)}⊥ is no more than 2

2b .

Proof. As we are analyzing the differences, any additive constant in the affine
function A has no effect. Thus we can safely assume A is a linear permutation.

When input difference is Δ, the output difference is

Δ′ = P (r) − P (r + Δ) = A(r2b−2) − A((r + Δ)2
b−2) = A(r2b−2 − (r + Δ)2

b−2).

Define Δ∗ = r2b−2 − (r + Δ)2
b−2, then Δ′ = A(Δ∗).

Lemma 12 shows that there exists πin, πout such that πout(Δ∗) is close to
uniform distribution over {0, πin(Δ)}. Define π′

out(x) := πout(A−1(x)). Then
π′

out(Δ
′) = πout(A−1(Δ′)) = πout(Δ∗), which is close to uniform distribution

over {0, πin(Δ)}. Thus πin, π′
out are what we need. ��

3.2 Properties of Mixing Functions

Before proceeding to show the almost-pairwise independence of SPN construc-
tions using the extraction lemma, we describe properties that we need the mixing
functions to satisfy. We define two such properties below and prove some ele-
mentary statements about them.

The first property that we call diffusion requires that if one of the input blocks
of the (typically linear) function M : (F2b)k → (F2b)k has sufficient entropy and
the distribution of the k input blocks are independent, then each output block
has large entropy. It is not hard to see that both the sufficient entropy condition
and the independence condition on the input are necessary for such a statement
to be true. Looking ahead, this property will turn out to be useful in the first
layer (or the first few layers) of the SPN where we wish to propagate differences
in one input block to differences in all of them.

Property 1 (Diffusion). Let M : (F2b)k → (F2b)k be a function. Let Hα ∈
{H2,H∞} be an entropy function. Let X1, . . . , Xk be independent random vari-
ables over F such that there exists an i for which Hα(Xi) ≥ h for a real h, and
let (Y1, . . . , Yk) := M(X1, . . . , Xk). M is diffusing if

for all i ∈ [k], Hα(Yi) ≥ h.
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We now show a sufficient condition for a function to be diffusing. The proof is
deferred to the full version [40].

Lemma 15. If M ∈ (F2b)k×k is a matrix with no zero entry, the linear mapping
x �→ Mx is diffusing (i.e. satisfies Property 1).

The second property that we call entropy-preservation requires that if all
of the input blocks of the (typically linear) function M : (F2b)k → (F2b)k have
sufficient entropy and the distribution of the k blocks are independent, then each
collection of output blocks have large joint entropy. Looking ahead, this property
will turn out to be useful in the subsequent layers of the SPN to ensure that
the mixing layers do not reduce the entropy. As one might expect, this property
comes for free if M is an invertible linear map. The proof is deferred to the full
version [40].

Property 2 (Entropy Preservation). A function M : (F2b)k → (F2b)k is entropy
preserving if for any entropy function Hα ∈ {H2,H∞}, for any real h, for any
independent random variables X1, . . . , Xk over F2b such that Hα(Xi) ≥ h for all
i ∈ [k], letting (Y1, . . . , Yk) := M(X1, . . . , Xk), we have

Hα(Yi1 , . . . , Yis) ≥ s · h

for any {i1, . . . , is} ⊆ [k].

Lemma 16. If M ∈ (F2b)k×k is an invertible matrix, the mapping x �→ Mx is
entropy-preserving (i.e. satisfies Property 2).

Connection to Branch Number. The branch number of a matrix M ∈ (F2b)k×k

is defined to be
br(M) = maxα∈(F2b )k(wt(α) + wt(Mα))

where wt denotes the Hamming weight. Having an optimal branch number is
considered a desirable feature for mixing functions [16,27]. An observation by
Miles and Viola [43] says that any matrix with the maximal branching number of
k+1 also satisfies Properties 1 and 2, although the converse does not necessarily
hold.

3.3 Proofs of Pairwise Independence

In this section, we show several proofs of pairwise independence of SPNs using
the patched inverse function P (x) = x2b−2 over the finite field F2b . The first
result (Theorem 1) applies in a regime where k ≤ b is relatively small; here, the
result says that a 2-round SPN is close to pairwise independent. The second result
(Theorem 2) is much more general and applies to large k as long as k ≤ 2b−4;
here, the result says that a 3-round SPN is close to pairwise independent.
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Fig. 5. Illustration of the proof of Theorem 2 and Lemma 17

Theorem 1. Assume the S-box is P (x) = x2b−2 over F2b assume the mixing
function is diffusing, that is, it satisfies Property 1. Then a 2-round SPN with k
blocks each of which has b bits is ε-close to 2-wise independent where

ε ≤ 2 + 4k
2b

+

√
2k − 1
2b+1

.

Theorem 2. Assume the S-box is patched inverse P (x) = x2b−2, assume the
mixing function satisfies Property 1 and Property 2. Then 3-round SPN is ε-
close to 2-wise independent where

ε ≤ 2 + 8k
2b

+

√
k

2b
.

Proof. Name the variables as in Fig. 5, fix any input differences Δ1,1, . . . ,Δ1,k

which are not all zero. We wish to show that the distribution of (Δ′
3,1, . . . ,Δ

′
3,k)

is ε-close to uniform. By Lemma 2, this implies ε-closeness to pairwise indepen-
dence. We proceed via a hybrid argument.

Hybrid 0. Hybrid 0 is the real world hybrid that is illustrated in Fig. 5.

Hybrid 1. Pick some j where Δ1,j �= 0. W.l.o.g., assume Δ1,1 �= 0. Note that the
distribution of Δ′

1,1 is (2/2b)-close to uniformly random over a subset of size 2b−1

(Corollary 2). Call this uniform distribution D′
1,1. We have H∞(D′

1,1) = b − 1.
Hybrid 1 is the same as hybrid 0 except that we replace Δ′

1,1 by a random
sample from the distribution D′

1,1. The statistical distance from Hybrid 0 is at
most 2

2b .

Claim. Assume that the mixing function satisfies Property 1. In Hybrid 1,
H∞[Δ2,j ] ≥ b − 1 for all j ∈ [k].
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Hybrid 2. In this hybrid, we ensure Δ2,j �= 0 for all j ∈ [k]. Formally, hybrid 2
is the same as hybrid 1 except that we replace Δ2,j by 1 if Δ2,j = 0 in hybrid 1.
The statistical distance from Hybrid 1 is at most 2k

2b .

Lemma 17 shows that the joint distribution of (Δ′
3,1, . . . ,Δ

′
3,k) is

(
6k
2b +

√
k
2b

)

close to uniform in hybrid 2.
Putting everything together, the statistical distance between (Δ′

3,1, . . . ,Δ
′
3,k)

and the uniform distribution is at most 2+8k
2b +

√
k
2b . ��

Lemma 17. Assume the S-box is patched inverse P (x) = x2b−2, assume the
mixing function satisfies Property 2. Starting with a pair of inputs, whose differ-
ence is entry-wise-nonzero, after a 2-round SPN, the statistical distance between

the output difference and the uniform distribution is no more than 6k
2b +

√
k
2b .

Proof. Name the variables as the last two rounds in Fig. 5, fix any set of input
differences Δ2,1, . . . ,Δ2,k which are all non-zero. We wish to show that the dis-
tribution of (Δ′

3,1, . . . ,Δ
′
3,k) is ε-close to uniform. We proceed via a hybrid argu-

ment.

Hybrid 0. Hybrid 0 is the real world hybrid.

Hybrid 1. Since Δ2,j �= 0 for all j ∈ [k], the distribution of Δ′
2,j is (2/2b)-close

to uniformly random over a subset of size 2b−1 (Corollary 2). Call this uniform
distribution D′

2,j . We have H∞(D′
2,j) = b − 1.

Hybrid 1 is the same as hybrid 0 except that we replace Δ′
2,j by a vector

drawn from the distribution D′
2,j for each j ∈ [k]. The statistical distance from

Hybrid 0 is at most 2k
2b .

Claim. Assume that the mixing function satisfies Property 2. In Hybrid 1,
H∞[Δ3,j ] ≥ b − 1 for all j ∈ [k].

Hybrid 2. In this hybrid, we change the way Δ′
3,j is sampled based on Δ3,j . In

particular:

– When Δ3,j = δ �= 0, the distribution of πout(Δ′
3,j) conditioning on Δ3,j = δ

is 2
2b -close to uniform distribution over {0, πin(δ)}⊥. Let πout(Δ′

3,j) sampled
uniformly from {0, πin(δ)}⊥ in hybrid 2.

– When Δ3,j = 0, Δ′
3,j is chosen to be uniformly random in hybrid 2.

Let us calculate the statistical distance between hybrids 1 and 2. The first
bullet introduces a statistical distance of at most 2k/2b. The probability that
a fixed coordinate Δ3,j is 0 is at most 2/2b, and therefore, the probability that
some coordinate is 0 is at most 2k/2b. In total, the statistical distance is at most
4k
2b .
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By applying our extraction lemma8 (Lemma 11), we know that, in hybrid 2,

the joint distribution of Δ′
3,1, . . . ,Δ

′
3,k is at most

√
k
2b -away from uniform.

Counting them together, the statistical distance between (Δ′
3,1, . . . ,Δ

′
3,k) and

the uniform distribution is at most 6k
2b +

√
k
2b . ��

3.4 AES is Almost Pairwise-Independent

Good asymptotic bounds have been shown in Theorem 1 and 2, but the analysis
there is way too loose on AES parameter (k = 16, b = 8). This section empha-
sizes on better concrete bound. Comparing with Sect. 3.3, the concrete bound is
improved by the following tricks.

– Lemma 11 shows that the statistical distance is less than 1
2 ·

√(
1 + 1

2h

)k

− 1,

which is less than
√

k
2h+1 . The former is tighter. In particular, when k = 16,

b = 8, h = − log2

(
2
2b + 8

22b

)
, the former shows dTV ≤ 0.18357. . . ≤ 47

256 , and
the latter shows dTV ≤ 0.25.

– Lemma 18 is the strengthening of Lemma 17. Besides using the tighter bound
from Lemma 11, it also considers Rényi entropy instead of min-entropy.

– Theorem 3 is the strengthening of Theorem 2. The proof of Theorem 3 (resp.
Theorem 2) shows that after two rounds of AES (resp. one round of SPN), all
block differences are non-zero with high probability. Then ignoring the rare
event, Lemma 18 (resp. Lemma 17) will conclude the proof.
The proof of Theorem 3 also carefully analyzes the rare event that some block
difference is zero after 2 rounds of AES. It observes that, given the rare event
happens, after two more rounds, all block differences will be non-zero with
high probability.

Lemma 18 (Strengthening of Lemma 17). Assume the S-box is patched
inverse P (x) = x2b−2, assume the mixing function satisfies Property 2. Starting
with a pair of inputs, whose difference is entry-wise-nonzero, after a 2-round
SPN, the statistical distance between the output difference and the uniform dis-
tribution is no more than 4k

2b + 1
2

√
(1 + 2−h)k − 1, where h = − log2

(
2
2b + 8

22b

)
.

In particular, when k = 16, b = 8, we have dTV ≤ 64+47
256 .

The proof is mostly the same of Lemma 17 and is deferred to the full version [40].

Lemma 19. Starting with a pair of distinct inputs, after 2-round of AES,
including a tailing linear mixing, the output difference has zero entry with prob-
ability no more than 25

27 .

Theorem 3. 6-round of AES is 0.472-close to pairwise independence.

The proof is similar to that of Theorem 2 and is deferred to the full version [40].

8 Our extraction lemma also requires k ≤ 2b−1. In the case k > 2b−1, Lemma 17 can

be trivially proved as dTV ≤ 1 ≤ 6k
2b

+
√

k
2b

.
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3.5 Multi-round SPNs and AES

We now combine the bounds from Theorems 1, 2, and 3 with the MPR amplifi-
cation lemma (Lemma 1) to obtain the following theorems.

Theorem 4. Assume the S-box is P (x) = x2b−2 over F2b assume the mixing
function is diffusing, that is, it satisfies Property 1. Then a (2r)-round SPN
with k blocks each of which has b bits is ε-close to 2-wise independent where

ε ≤ 2r−1

(
2 + 4k

2b
+

√
2k − 1
2b+1

)r

.

Further, if the mixing function additionally satisfies Property 2, then (3r)-round
SPN is ε-close to 2-wise independent where

ε ≤ 2r−1

(
2 + 8k

2b
+

√
k

2b

)r

.

Theorem 5. 6r-round AES is 2r−1(0.472)r-close to pairwise independence.

4 t-wise Independence of KAC

In this section, we consider a key-alternating cipher whose ith round consists of
applying a public, fixed permutation pi to the current state followed by adding
a (private) round-key si. The main result of this section is that for every r,
there exist public permutations p1, . . . , pr such that r rounds of KAC using
these permutations gets us close to (r − o(r))-wise independence. We achieve a
strong notion of pointwise closeness (see Definition 6) much stronger than the
statistical distance measures considered in previous sections. Furthermore, it is
easy to see that a t-round KAC can at best be (close to) t-wise independence,
due to a simple entropy argument, meaning that our result is nearly optimal and
entropy-preserving.

We remark that this is an existential result: namely, we do not explicitly
construct the fixed permutations used by the KAC, but merely show that they
exist. Indeed, we show that most permutations work, as is typical of probabilistic
arguments. We also remark that the permutations p1, . . . , pr are fixed and known
to the adversary, thus the only secret randomness in the construction comes from
the round keys si.

We start with some new notations. We encourage the reader to consult the
full version [40] for tail bounds that are extensively used in our analysis.

4.1 Definitions and Notations

Let D denote the domain and let 2n = N := |D|. Throughout this report, we
will consider many distribution of permutations over D. Permutation distribu-
tions will be denoted by calligraphic letters (e.g. F ,G,H). A random choice of
a permutation from such a distribution will act as a key for the KAC. Here are
two simple examples of permutation distributions:



478 T. Liu et al.

Example 1 (Shift permutations). Denoted by S, the uniform distribution over

{σs : x �→ x + s | s ∈ D},

which consists of all shift permutations σs that additively shifts the input by s.
The definition assumes D to be a group. The support of S is of size N .

We now define a notation for composition of permutations, the cornerstone
of the KAC construction.

Definition 5 (Composition). Let F ,G be distributions over permutations,
and let p be a permutation over D. Their compositions are defined as

F ◦ p is the distribution of f ◦ p where f ← F ,

p ◦ G is the distribution of p ◦ g where g ← G,

F ◦ G is the distribution of f ◦ g where f ← F , g ← G independently.

Key Alternating Cipher. Given the language of permutation distributions from
above, we can give an alternative definition of key-alternating ciphers (KACs).
A t-round KAC is parametered by fixed permutations p1, . . . , pt−1, and is the
composition

S ◦ p1 ◦ S ◦ p2 ◦ S ◦ p3 ◦ · · · ◦ pt−1 ◦ S.

In words, this means picking t round-keys s1, . . . , st ← D and letting

fs1,...,st
(x) = st + pt−1(st−1 + pt−2(st−2 + . . .))

︸ ︷︷ ︸
repeated t − 1 times

as illustrated in Fig. 1.

Pointwise Closeness to t-wise Independence. Finally, we define the notion of
being pointwise close to t-wise independent which we achieve. It is a stronger
notion than being close to t-wise independent (Definition 3), a notion that we
worked with in Sect. 4. This only makes the results of this section stronger.

Definition 6 (pointwise close to t-wise independence). Let F be a dis-
tribution over permutations. F is pointwise ε-close to t-wise independence if for
any distinct x1, . . . , xt ∈ D and any distinct y1, . . . , yt ∈ D,

Pr
f←F

[
f(x1) = y1 ∧ f(x2) = y2 ∧ · · · ∧ f(xt) = yt

]
∈

(1 − ε

N t
,
1 + ε

N t

)
.

4.2 Existential Results for Key Alternating Ciphers

In this section, we will prove our main existential result, that is, for some r =
t + o(t) + s, there exist permutations p1, . . . , pr such that a r-round KAC using
these permutations is exp(−s)-close to t-wise independent.

The result is proved by a careful induction that combines two steps.
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– Independence Amplification: Lemma 20 shows that if F is pointwise ε-close to
t-wise independent, then S◦p◦F is pointwise (c(1+ε)t2 log N)-close to (t+1)-
wise independent, for most permutations p and for some constant c > 1. In
other words, one more KAC round takes you from very t-wise independent to
somewhat (t + 1)-wise independent. It is important to note that even though
the distance of the resulting permutation is c(1 + ε)t2 log N � 1, this is still
a non-trivial pointwise guarantee.
In fact, one can inductively apply Lemma 20 and conclude that t-round KAC
is pointwise ((t!)2(c log N)t−1)-close to t-wise independence, starting from just
1-wise independence. As mentioned before, although the distance is much
larger than 1, this is a non-trivial statement, because it is about pointwise
closeness.

– Distance Amplification: Lemma 21 will reduce the distance to t-wise indepen-
dence by adding more rounds. Say F is pointwise ε-close to t-wise independent
and is pointwise ε′-close to (t + 1)-wise independent, where ε′ � ε. I.e., F is
very close to t-wise independent and somewhat close to (t + 1)-wise indepen-
dent. Lemma 21 shows that adding one more round makes it much closer to
(t + 1)-wise independent. More formally, S ◦ p ◦ F is pointwise

(
ε + Õ( ε′t

3√
N

)
)
-

close to (t + 1)-wise independent, for most permutations p.

Iterated applications of Lemmas 20 and 21 takes us very close to t-wise inde-
pendence in 2t rounds. Indeed, it is not hard to see that one can do even better:
between any two successive applications of distance amplification, one can afford
to do a large number (≈ log N/ log log N many) of iterations of independence
amplification. Therefore, to get to t-wise independence, it suffices to work with
a (t + o(t))-round KAC.

For example, 1-round KAC is 1-wise independent. Then, 2-round KAC is
O(log N)-close to 2-wise independent, due to Lemma 20. By adding one more
round, Lemma 21 shows that 3-round KAC is O( log N

N )-close to 2-wise indepen-
dent. Figure 6 illustrates the progression of the inductive argument.

More generally, we show:

Theorem 6 (Main KAC Theorem). For every t, let r = t + o(t). There
exist fixed permutations p1, . . . , pr such that the r-round key-alternating cipher
is 1/NΩ(1)-close to t-wise independent.

The theorem follows from Lemma 20 and Lemma 21 below whose proofs are
deferred to the full version [40]. Finally, we remark that the proof of the theorem
shows more: that an overwhelming fraction of choices of permutations p1, . . . , pr

gives us a t-wise independent KAC.

Lemma 20. Let F be a distribution which is pointwise ε-close to �-wise inde-
pendence. At least 1− 1/N t+1 of the possible permutations p satisfy the property
that S ◦ p ◦ F is pointwise O((1 + ε)(t + 1)2 log N)-close to (t + 1)-wise indepen-
dence.
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Fig. 6. Illustration of the inductive proof using Lemmas 20, 21.

Lemma 21. Let F be a permutation distribution that is pointwise ε-close to
t-wise independence and is pointwise ε′-close to (t + 1)-wise independence. At
least 1−1/N t+1 of the possible permutations p satisfy the property that S ◦p◦F
is pointwise

(
ε + 4ε′(t + 1) 3

√
ln N/N

)
-close to (t + 1)-wise independence.
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Abstract. A weak pseudorandom function (WPRF) is a keyed function
fk : {0, 1}n → {0, 1} such that, for a random key k, a collection of
samples (x, fk(x)), for uniformly random inputs x, cannot be efficiently
distinguished from totally random input-output pairs (x, y). We study
WPRFs in AC0[MOD2], the class of functions computable by AC0 circuits
with parity gates, making the following contributions.

– WPRF by sparse polynomials. We propose the first WPRF can-
didate that can be computed by sparse multivariate polynomials over
F2. We prove that it has subexponential security against linear and
algebraic attacks.

– WPRF in AC0◦MOD2. We study the existence of WPRFs computed
by AC0 circuits over parity gates. We propose a modified version of a
previous WPRF candidate of Akavia et al. (ITCS 2014), and prove
that it resists the algebraic attacks that were used by Bogdanov and
Rosen (ECCC 2017) to break the original candidate in quasipolyno-
mial time. We give evidence against the possibility of using public
parity gates and relate this question to other conjectures.

– Between Lapland and Cryptomania. We show that WPRFs in
AC0[MOD2] imply a variant of the Learning Parity with Noise (LPN)
assumption. We further show that WPRFs in a subclass of AC0[MOD2]
that includes a recent candidate by Boyle et al. (FOCS 2020) imply,
under a seemingly weak additional conjecture, public-key encryption.

1 Introduction

This work explores the minimal achievable complexity ofweak pseudorandom func-
tions. Roughly speaking, a pseudorandom function (PRF) family [31] is a collec-
tion of efficiently computable functions fk(x), such that a random function from
c© International Association for Cryptologic Research 2021
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the collection induced by a uniform choice of the key k cannot be efficiently dis-
tinguished from a truly random function. The existence (or nonexistence) of PRFs
in low complexity classes is closely related to questions in computational learn-
ing theory [38,58]: Indeed, any complexity class rich enough to contain PRFs is
inherently unlearnable, even when membership queries are allowed. In this light,
understanding the feasibility of low-complexity PRFs corresponds to exploring
the border between the learnable and the unlearnable. More broadly, the study
of low-complexity PRFs has proven to be a rich and fruitful research direction,
motivated by many connections with circuit lower bounds [43,54,56], derandom-
ization [49,61], and “high-end” cryptographic applications [2,8,14,15,17,42].

We focus on the existence of weak pseudorandom functions (WPRFs) in
AC0[MOD2], the class of polynomial-size, constant-depth circuits over AND, OR,
XOR gates and negations.1

Informally, a WPRF relaxes a PRF by restricting the distinguisher to only get
input-output pairs for uniformly random inputs x, as opposed to chosen inputs
x. WPRFs imply hardness results for learning (without membership queries)
under the uniform distribution, and can serve as useful building blocks for most
“symmetric” cryptographic primitives, such as private-key encryption and mes-
sage authentication [46]. As a result, minimizing their complexity can lead to
improving the complexity of these primitives.

Levels of security. We say that a WPRF has quasipolynomial, subexponential,
or exponential security when the distinguisher’s circuit size is bounded by a
corresponding function of the key length. Concretely, there exists c > 0 such
that every circuit of size T = nlogc n, T = 2nc

, or T = 2cn (respectively) has at
most 1/T distinguishing advantage between fk and a random function, for all
sufficiently large key lengths n, given unlimited access to examples on uniformly
random inputs. In the case of quasipolynomial and subexponential security, we
can equivalently let n be the input length, since the key length and input length
are polynomially related. In this work we consider subexponential security by
default. This is typically the best level of security achieved by constructions from
standard cryptographic assumptions.

WPRFs in low complexity classes. We return to the question of WPRFs in
AC0[MOD2]. At the lower end, much is known about the power and limitations of
AC0. This includes unconditional circuit lower bounds (e.g. AC0 cannot compute
parity [28,32]), derandomization (e.g. AC0 cannot distinguish any polylog-wise
independent distribution from the uniform distribution [16]), and learning algo-
rithms (e.g. AC0 can be learned from quasipolynomially many samples under
the uniform distribution [41]). The latter imply, in particular, that AC0 can-
not contain a WPRF with better than quasipolynomial security. Slightly above

1 More precisely, AND/OR/XOR gates can have an unbounded fan-in, and depth
is defined to be the length of the longest path from an input to the output, not
counting negations. As is common in the study of constant-depth PRFs, we consider
the complexity of mapping the input to the output when the key is fixed.
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AC0[MOD2], the picture is also relatively clear: strong PRFs with subexponential
security exist in the class TC0 (of polynomial-size constant-depth circuits with
threshold gates) under standard cryptographic assumptions [9,47,48]. In con-
trast, despite some partial results [1,6,14,15,60], the space in between AC0 and
TC0 remains a relatively uncharted territory.
Sparse F2-polynomials. Sparse polynomials are a natural object of study in
several areas, including computational learning theory. We will be interested
in sparse n-variate polynomials over F2, namely sums of poly(n) monomials.
Sparse F2-polynomials can be viewed as the subclass of AC0[MOD2] corresponding
to depth-2 circuits that take the XOR of ANDs of inputs. A WPRF in this class
would show the hardness of learning sparse F2-polynomials under the uniform
distribution. We briefly survey some relevant known results.

A result of Hellerstein and Servedio [34] implies an 2Õ(
√

n)-time PAC learn-
ing algorithm (applying to any input distribution) for learning sparse F2-
polynomials. In the converse direction, a recent work of Daniely and Vardi [24]
shows that sparse F2-polynomials are hard to learn in better than quasipolyno-
mial time, albeit only under a specific non-uniform input distribution (a highly
biased Bernoulli distribution), under the conjectured existence of polynomial-
stretch local pseudorandom generators [4,30,35]. Finally, Boneh et al. [14] put
forward a WPRF candidate in ACC0 that implies 2Ω(n)-hardness of learning
sparse F3-polynomials, again under a special input distribution (uniform over
{−1, 1}n). To our knowledge, no result is currently known that supports the
hardness of learning sparse F2-polynomials in any hardness regime under the
uniform distribution, or in the subexponential hardness regime under any dis-
tribution.

The class AC0◦MOD2. The class AC0◦MOD2 of AC0 on top of parities can be seen
as a minimal extension of AC0. Despite its apparent simplicity, it is quite poorly
understood. In particular, it is open whether the mod-2 inner-product function
is in this class [56]. Akavia et al. [1] put forward the question of WPRFs in
AC0◦MOD2 as a second-best alternative to WPRFs in AC0. They presented a can-
didate construction where fk(x) applies a specific DNF formula (the “TRIBES”
function) to a secret linear mapping Ak · x of the input x, and proved resistance
against several classes of attacks. However, this candidate was later broken by
a quasipolynomial-time algebraic attack [13] exploiting the low rational degree
of functions fk in the family. Namely, there exists a low-degree g for which
fk · g = 0 or (fk ⊕1) · g = 0. This kind of attacks further rules out the possibility
of any WPRF with better than quasipolynomial security that can be computed
by depth-2 AC0 circuits over XOR.

1.1 Our Contribution

Candidate WPRF by sparse F2-polynomials. We present a candidate
WPRF in the class of sparse F2-polynomials that can be conjectured to have
subexponential security. More concretely, we conjecture our candidate to be
secure against distinguishers of size T = 2nε

for a constant ε ≥ 1/8, where
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n is the input size. To our knowledge, this is the first proposal for a candidate
WPRF in this class. We give several kinds of evidence for the security of our
candidate. First, building on previous works, we show that it has high ratio-
nal degree. This implies that it cannot be broken by a subexponential algebraic
attack (the same attack that breaks the candidate of [1] in quasipolynomial
time). Second, we reduce its security to a variable-density variant of the Learn-
ing Parity with Noise (LPN) [12] assumption. This assumption is similar to (but
essentially incomparable) to the variable-density LPN assumption used in the
recent work of Boyle et al. [15] to build a WPRF in the class of XNF formulas
(sparse F2-polynomials in the inputs and their negations). Finally, we prove that
it cannot be broken by any attack that fits into the framework of linear attacks,
a general framework that captures in particular all known attacks against the
LPN assumption and its variants. Our analysis builds upon the analysis of [15];
however, our setting involves additional challenges that require to significantly
refine their proof techniques.

Our candidate WPRF provides an explicit distribution D over sparse n-
variate F2-polynomials such that the following plausibly holds: no circuit of size
2n1/8

, given the values of a secret polynomial p ∈R D on uniformly random
inputs, can predict the value of p on a fresh random input with better than
2−n1/8

advantage.
As noted above, the recent work of Daniely and Vardi [24] shows hardness of

learning sparse F2-polynomials, assuming the existence of local pseudorandom
generators. Our results are incomparable (and complementary) to their result:

– The result of [24] only shows the hardness of learning sparse F2-polynomials
for inputs sampled from a very specific distribution D over strings {0, 1}n,
which outputs n independent samples from a highly biased Bernoulli distri-
bution. In contrast, our results hold with respect to the uniform distribution.

– The result of [24] fundamentally cannot apply to the subexponential regime.
The core reason is the following: from the existence of a learner for s-sparse
polynomials given N examples, [24] only derives a contradiction to the exis-
tence of (log s)-local PRGs which stretch N bits from their input. However,
it is known [44] that logarithmic-locality pseudorandom generators cannot
possibly achieve stretch beyond quasipolynomial. Therefore, their result does
not apply to the setting where s is polynomial and N is subexponential. In
contrast, our result applies even to subexponential-time learning algorithms,
in the setting where s is polynomial.

– On the other hand, the result of [24] relies on the existence of local PRGs,
which is a relatively well-established assumption. In contrast, our result relies
on a new variant of LPN, which we support by proving that it resists a large
class of attacks (including in particular all standard attacks against LPN).

Candidate weak PRF in AC0 ◦ MOD2. We revisit the question of Akavia
et al. [1]:

Can weak pseudorandom functions exist in the class AC0 ◦ MOD2?
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We present a new candidate WPRF in AC0 ◦ MOD2 which follows the high-level
template of Akavia et al. [1], but with an alternative choice of AC0 circuit struc-
ture. The WPRF candidate of Akavia et al. [1] (hereafter referred to as the
“ABGKR” candidate) is of the form

fs,K(x) = 〈x, s〉 ⊕ g(K · x mod 2)

for s ∈ {0, 1}n, K ∈ {0, 1}(n−1)×n, where g(x) =
∨λ

i=1

∧log λ
j=1 xij is a DNF (the

so-called TRIBES function). Since fs,K(x) can be written as (¬〈x, s〉∧g(K ·x))∨
(〈x, s〉 ∧ ¬g(K · x)), it indeed belongs to AC0 ◦ MOD2. Notice that this candidate
is an instance of the learning parity with simple deterministic noise framework,
where g(·) is the noise function. Since the noise function is biased, XORing it
with 〈x, s〉 makes the final function balanced.

Unfortunately, this candidate was broken in [13] by an algebraic attack. In
our candidate, we address this issue by simply adding a layer of OR gates after
the parity layer, replacing the noise function with:

g(x) =
λ∨

i=1

λ∧

j=1

w∨

k=1

xijk.

We conjecture that our candidate is a subexponentially secure WPRF. We
observe that our candidate resists the same classes of attacks as addressed for
the ABGKR candidate. However, we are further able to prove that our candidate
construction has high rational degree, thus circumventing the algebraic attacks
under which the ABGKR candidate was insecure.2

We also study the resistance of our candidate against linear attacks, a large
class of attacks that includes most state-of-the-art attacks on learning parity
problems (such as the learning parity with noise assumption), whose structure
bears connections to our candidate. We put forth a conjecture which, if true,
implies that our candidate (as well as the WPRF candidates of [1,14]) cannot
be broken by linear attacks.

We view our results as providing a strong indication that AC0◦MOD2 may not
be learnable under the uniform distribution. We compare our results to known
results regarding low-complexity PRFs on Table 1. As shown in the Table, our
work fills gaps in our understanding of the complexity of weak PRFs.

On WRPFs in AC0 on top of public parities. The conjectured security of
our candidate above relies on the MOD2 portion of the AC0◦MOD2 circuit remaining
secret, dictated by the secret WPRF key. We further revisit the question:

Can WPRF exist in the class formed by AC0atop public parities?

2 Formally, high rational degree does not prove resistance to the attack from [13],
which only requires proximity to low rational degree. However, we view this as strong
evidence that the attack does not apply to our candidate.
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Table 1. Comparison of positive and negative results for low-depth PRFs. We consider
the complexity of computing the output for any fixed key, where security level is with
respect to the key length (see Definition 4). We write AC0[MOD2] to denote the class AC0
with XOR gates at all levels, and ACC0 to denote the class AC0 with MODm gates for a
fixed integer m (m = 6 suffices). RLF refers to the conjectured one-wayness of random
local functions [30] and Factor to the intractability of factoring.

Circuit Class Reference Flavor Security Assumption

AC0 [12] Weak PRF Quasipolynomial Heuristic
[6,39] Weak PRF Quasipolynomial Factor, RLF
[41] No WPRF with better than quasipolynomial sec.

AC0 + O(1) XOR,MAJ [60] No Strong PRF

Sparse F2-polynomials This work Weak PRF Subexponential Heuristic
[34] No WPRF with input length n and better than 2Õ(

√
n) sec.

XNF formulas [15] Weak PRF Subexponential Heuristic

AC0 ◦ MOD2 [1,13] Weak PRF Quasipolynomial Heuristic
This work Weak PRF Subexponential Heuristic

AC0[MOD2] [39,47,60] Strong PRF Quasipolynomial DDH, Factor
[15] Weak PRF Subexponential Heuristic

[18,40,54] No strong PRF with better than quasipolynomial sec.

ACC0 [14] Weak & Strong Exponential Heuristic
almost-AC0[MOD2] [62] Strong PRF Subexponential Low-noise LPN
quasilinear-TC0 [43] Strong PRF Exponential Heuristic
TC0 [9,47,48] Strong PRF Subexponential LWE, DDH, Fact

That is, we study the (in)existence of WPRFs of the form fk(x) = gk(G·x), where
gk ∈ AC0 and G is a public matrix. The existence of such a candidate would imply
AC0 is not weakly learnable on all linear distributions (i.e. uniform distributions
over linear subspaces of F

n
2 ). Note, however, that it does not directly imply

strong learnability, as boosting techniques would require the learner to modify
the input distribution, an option that is not available for WPRFs.

We put forth a conjecture regarding the heavy Fourier coefficients of func-
tions of this form, which implies that no WPRF can exist in AC0 on top of
public parities. This is a direct strengthening of a conjecture of [1], which asserts
the existence of a heavy Fourier coefficient for any function in this class. We
conjecture further about the form of a heavy Fourier coefficient: namely, its
expressibility as GT · b for a low-weight vector b ∈ {0, 1}n. This conjectured
form implies that a heavy Fourier coefficient can be found within quasipolyno-
mial time, and leveraged to obtain nontritival advantage in distinguishing the
function from random.

We demonstrate that both pieces of evidence supporting the (more conser-
vative) conjecture of Akavia et al. [1] apply as well to our strengthened variant.
Namely, the conjecture provably holds for the case of:
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– Arbitrary gk ∈ AC0 and “typical” public matrices G, including random matri-
ces with high probability. More concretely, any G for which G · x for uniform
inputs x fools AC0.

– Arbitrary public G, and gk of polynomial size and depth 2 (i.e., CNF/DNF).

We observe that Akavia et al.’s proof for the former immediately applies to our
setting as well; namely, the heavy Fourier coefficient they demonstrate already
is of the desired form. The latter claim holds via a more subtle extension of the
argument of Jackson [36], beyond the treatment within [1].

Relation between conjectures. We map the relation between the various
conjectures posed within this work and beyond (depicted in Sect. 4.3, Fig. 1).

In particular, we draw a connection between our results and the linear IPPP
conjecture of Servedio and Viola [56]: we observe that the nonexistence of WPRF
in AC0 over public parities (which follows from our conjecture above), together
with the existence of a WPRF in AC0 ◦ MOD2 (for which we provide a candidate)
implies the Linear IPPP conjecture.

A related but technically incomparable observation was recently made in [27],
which proves under a standard cryptographic assumption (namely, the learn-
ing with rounding assumption [9]) that either (1) the known quasipolynomial
time learning algorithm for AC0 under the uniform distribution [41] cannot be
extended to all F2-linear distributions, even with subexponential time, or (2)
an IPPP-style hardness conjecture is true, in the sense that AC0 ◦ MOD2 cannot
compute inner-products over the integers (as opposed to inner product modulo
2). The paper also achieves related results under the assumption underlying the
WPRF candidate of [14]. Our result is incomparable: it relies on new assumptions
regarding the security of WPRF candidates in AC0 ◦ MOD2 instead of standard
cryptographic assumptions, but applies to the “true” Linear IPPP conjecture
instead of a variant over the integers.

Between Lapland and Cryptomania. Finally, we put forth the study of
a new family of LPN-style assumptions, called LPN with simple determinis-
tic noise. Roughly, these assumptions assert that one cannot distinguish pairs
(x, 〈x, s〉 ⊕ gk(x)) with random x from random pairs (x, y), where s is a secret
vector, and gk is a simple secret function sampled at random from a family.
By simple, we mean that gk should belong to a low complexity class (such as
AC0[MOD2]).

To our knowledge, this flavor of the learning parity with noise problem has
never been studied; it bears some resemblance but is incomparable to the learning
parity with structured noise framework of Arora and Ge [7], which consider noise
patterns which are not deterministic, but satisfy some structure (typically, being
roots of a low degree polynomial). This LPN with simple noise formulation
captures the candidate weak PRF of [1], our candidate weak PRF in AC0 ◦MOD2,
and a recent candidate WPRF from [14] that can be viewed as being based on
Learning with Rounding (LWR) [9] modulo 6. In the full version of this paper we
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formulate a list of simple combinatorial properties of the noise function that we
conjecture to be sufficient for the resulting candidate to defeat all linear attacks.

Further, we show that any candidate weak PRF in AC0[MOD2] implies the
existence of a hard instance of learning parity with simple noise. Weak PRFs in
AC0[MOD2] therefore necessarily live in “Lapland”, where there exist some codes
(and deterministic noise distributions) for which the learning parity with noise
assumption is hard. [1] describe a natural conjecture which implies that LPN
is necessary for WPRFs in AC0 ◦ MOD2. Our result strengthens this, since it is
unconditional and applies to the whole of AC0[MOD2]; on the other hand, we only
show hardness of a specific instance of learning parity with simple noise, rather
than standard LPN. It is an interesting open question to obtain a more natural
LPN implication from candidate weak PRFs in AC0[MOD2].

Our approach uses a result of Razborov and Smolensky [53,57], who show
that any AC0[MOD2] function can be approximated by a low-degree polynomial; we
show that the approximation noise itself can be used to define a learning parity
with noise instance that fits our framework. On the other hand, we observe that
the Razborov-Smolensky approximation could also be leveraged in a positive
sense, for improving efficiency when evaluating the PRF homomorphically on
ciphtertexts or as part of a secure computation. For more details we refer to [10].

Note that the seeming contradiction of the Razborov-Smolensky approxima-
tion being sufficiently noisy to avoid decoding attacks (as far as we know), but
precise enough to be useful for replacing the weak PRF by its approximation in
applications, can be explained by the different number of input-output pairs con-
sidered in both contexts. An attacker attempting to break the security requires
at least a quasipolynomial number of samples (because the low-degree multi-
variate polynomial potentially consists of a quasipolynomial number of terms),
thus noise will occur almost certainly, whereas in an honest setting, when only
computing a polynomial number of samples, likely the approximation will be
perfect on all samples considered.

Since Lapland only has partial overlap with Cryptomania (that is, presently
only LPN with low noise rate is known to imply public-key encryption with
more than quasi-polynomial security3), one can further ask where in the regime
between Lapland and Cryptomania weak PRFs in AC0[MOD2] fall.

We put forward a second framework for “variable-density learning parity with
noise (VDLPN) assumptions” into which the recent candidate weak PRF of [15]
(who coined the term variable-density learning parity with noise for a specific
instance of this broader framework) and our weak PRF candidate computed by
sparse polynomials fall into. We further observe that any weak PRF candidate
within this framework implies an instance of learning parity with simple deter-
ministic noise with noise rate below the bound of [3]. This still does not imply
public-key encryption, because the framework of [3] requires the code distribu-
tion to be dense, which is not the case for variable density learning parity with

3 More precisely, by a result of [3], random LPN implies public-key encryption if the
noise rate is in o(

√
M), where M is the length of the secret.
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noise. We still view this as an indication that weak PRFs within this framework
“morally” live in Cryptomania.

To formalize this intuition, we put forward a conjecture, stating that with
respect to some fixed noise rate, either all codes are efficiently decodable, or
almost all codes are hard to decode. This is backed-up by the common under-
standing that LPN is in fact hard for random codes when choosing reasonably
dense noise. Based on this conjecture we can indeed prove that candidate weak
PRFs within the VDLPN framework imply public-key encryption following the
strategy of [3]. We are not aware of any such implication for general functions
in AC0[MOD2] such as our candidate weak PRF in AC0 ◦ MOD2, even if willing to
assume this conjecture, because the flavor of learning parity with noise implied
by Razborov-Smolensky does not give low enough noise rate.

This is particularly interesting in light of recent developments on construct-
ing pseudorandom correlation functions [15], since candidate constructions of
expressive correlations so far all rely on either the VDLPN assumption [15],
factoring-based assumptions [51], or extremely low-noise LPN [23], which with
our result in mind, all imply public-key encryption.

2 Preliminaries

We start by recalling some basic properties of Boolean functions. We mostly
follow standard notations and terminology (see, e.g., [41,50]), except that we
identify parity functions with vectors in {0, 1}n instead of subsets S ⊆ {1, . . . , n}.

Boolean functions. A Boolean function is a function f : {0, 1}n → {0, 1}.
When considering the Fourier coefficients of a function f we will consider it as
a function f : {0, 1}n → {1,−1} by identifying an output b ∈ {0, 1} with (−1)b.

The set of all real-valued functions on the cube {0, 1}n is a 2n-dimensional real
vector space with an inner product defined by 〈g, f〉 = 2−n ·∑x∈{0,1}n f(x)·g(x).
The norm of f is defined as ‖f‖ =

√〈f, f〉.
Definition 1 (Characters). For y ∈ {0, 1}n, the character χy is defined as
χy(x) = (−1)〈x,y〉.

Note that {χy}y∈{0,1}n forms an orthonormal basis of the space of all real-valued
functions on {0, 1}n. Further, for all y, z ∈ {0, 1}n it holds that χyχz = χy⊕z.

Definition 2 (Fourier coefficients). As {χy}y∈{0,1}n forms a basis, we can
write every real-valued function f on the cube as f =

∑
y∈{0,1}n f̂(y) · χy, for

real-valued coefficients f̂(y), called Fourier coefficients.

Note that this is well-defined, as {χy} forms a basis for all functions f : {0, 1} →
R. Further, as {χy} forms a orthonormal basis, the Fourier coefficient corre-
sponding to y ∈ {0, 1}n can be computed as f̂(y) = 〈f, χy〉. For every Boolean
function f we have 1 = ‖f‖2 = 〈f, f〉 = ∑

y∈{0,1}n f̂(y)2.
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Definition 3 (Degree). The degree deg(f) of a Boolean function f is defined
as the maximal Hamming weight of a vector y ∈ {0, 1}n for which f̂(y) 
= 0.

It can be shown that the above notion of degree coincides with standard algebraic
degree.

Circuit classes. The class AC0 is the class of functions computed by a family of
constant-depth, polynomial-size circuits of over AND/OR gates of unbounded
fan-in along with negations. The class AC0◦MOD2 is defined similarly, except that
one also allows parity (XOR) gates only at the bottom. This can be viewed as
applying an AC0 function to an F2-linear encoding of the input. We define the
circuit depth to be the length of the longest path from an input to an output, not
counting negations. For instance, a DNF formula has depth 2. For AC0 ◦ MOD2
circuits we will consider by default only the depth of the AC0 part, namely
ignoring parities. See, e.g., [1,19,56] for known facts about AC0 and AC0 ◦ MOD2.

In the context of cryptographic primitives, we will consider AC0 or AC0◦MOD2
circuit families {Cλ}, parameterized by a security parameter λ, where the input
length n = n(λ) is assumed to be a monotonically-increasing, polynomially-
bounded function of λ. We assume by default that such a circuit family is
polynomial-time uniform, namely there is a polynomial-time algorithm whose
output on input 1λ is a description of Cλ; however, we drop the uniformity
requirement in the context of negative results.

2.1 Pseudorandom Functions

We consider here weak PRFs, which relax standard PRFs by only considering dis-
tinguishers that get the outputs of the function on uniformly random inputs. We
require subexponential security by default, namely security against distinguishers
of size 2nε

for some ε > 0. This is the typical level of security achieved by con-
structions based on the strongest plausible versions of standard cryptographic
assumptions. We formally define this notion below.

Definition 4 ((Weak) pseudorandom function [31,46]). Let λ ∈ N denote
a security parameter and n = n(λ), κ = κ(λ) be monotonically-increasing and
polynomially-bounded input length and key length functions, respectively.

A (weak) pseudorandom function is syntactically defined by a function family
F = {fλ : {0, 1}κ ×{0, 1}n → {0, 1}}, where the output fλ(k, x) can be computed
from (k, x) in polynomial time. Since λ and κ are determined by the input length
n, we will sometimes write fk(x) instead of fλ(k, x).

For T = T (κ) and ε = ε(κ), we say that F is a (T, ε)-secure strong pseudo-
random function (PRF), if for every λ ∈ N and every oracle circuit A of size
T (κ), it holds

Pr
k
[Afk(·) = 1] − Pr

R
[AR(·) = 1] ≤ ε(κ),

where κ = κ(λ), k
$← {0, 1}κ is chosen at random, and R : {0, 1}n → {0, 1} is a

truly random function. A T -secure PRF is a (T, 1/T )-secure PRF.
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We say that F is a (T, ε)-secure weak PRF (WPRF) or T -secure WPRF if the
above holds when A only gets access to samples (xi, fk(xi)), where xi

$← {0, 1}n

are chosen uniformly and independently. We say that F is a (Q,T, ε)-secure
(strong/ weak) PRF if A only gets access to at most Q (chosen/ random) sam-
ples. Finally, we say that a (W)PRF F has polynomial security if it is T -secure
for every polynomial T , and that it has subexponential (resp., quasipolynomial,
exponential) security if there exists c > 0 such that it is T -secure for T = 2κc

(resp., T = κlogc κ, T = 2κc).

Our choice of subexponential security as the default level of security is moti-
vated both from a cryptographic perspective and from an algorithmic perspec-
tive. From a cryptographic perspective, candidate PRFs with quasipolynomial
security are relatively easy to obtain even in very low complexity classes and
are considered “borderline insecure.” Subexponential (rather than exponential)
security is typically the best level of security one can get from standard assump-
tions. From an algorithmic perspective, quasipolynomial-time algorithms (such
as the LMN learning algorithm [41]) are considered “borderline efficient” and
hence ruling out such algorithms requires PRFs with better than quasipolyno-
mial security.

Finally, when referring to a (W)PRF F in a circuit complexity class such as
AC0 or AC0 ◦ MOD2, the default convention is that for each key sequence k(λ), the
induced function family fk is in the class. We note that even when considered as
a function of both the input and the key, our candidate constructions remain in
AC0[MOD2]. On the other hand, our negative results and conjectures are stronger
in that they apply to the fixed-key case and do not assume polynomial-time
uniformity.

2.2 Preliminaries on Probability

Given t distributions (D1, · · · ,Dt) over F
n
2 , we denote by

⊕
i≤t Di the distribu-

tion obtained by independently sampling vi
$← Di for i = 1 to t and outputting

v ← v1 ⊕ · · · ⊕ vt.

Definition 5 (Bias of a Distribution). Given a distribution D over F
n
2 and

a vector u ∈ F
n
2 , the bias of D with respect to u, denoted biasu(D), is equal to

biasu(D) =
∣
∣
∣ 12 − Pr

v
$←D [uᵀ · v = 1]

∣
∣
∣. Then, the bias of D, denoted bias(D), is

defined as bias(D) = maxu �=0n biasu(D).

2.3 Algebraic Attacks and Rational Degree

Algebraic attacks have been introduced in [52] and were extended and abstracted
in [20–22]. In its most basic form, an algebraic attack proceeds as follows: given
a function F : {0, 1}n �→ {0, 1}, it finds low degree multivariate polynomials
(g, h) such that F · g = h. If polynomials (g, h) of degree at most d are found,
then the function F can be inverted given nÕ(d) random samples (x, F (x)). The
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hardness of inverting a function with an algebraic attack is measured by its
rational degree:

Definition 6 (Rational Degree). The rational degree of a boolean function F
is defined as the following quantity:

RD(F ) = min
g �=0

{deg(g) | Fg = 0 ∨ (F ⊕ 1)g = 0}.

Observe that the smallest d such that there exist polynomials (g, h) of degree at
most d satisfying F · g = h necessarily satisfies d ≥ RD(F ).

3 WPRFs by Sparse Multivariate Polynomials

In this section, we put forth a new candidate WPRF in a very low subclass of
AC0[MOD2]: the class of sparse multivariate polynomials over F2. That is, the key
defines a sum of poly(n) monomials in the inputs x1, . . . , xn. We conjecture that
our candidate achieves subexponential security. To our knowledge, this is the
first proposal for a WPRF in this class with plausible subexponential security.

In more detail, our candidate is inspired by a WPRF candidate from [15],
which belongs to the class of XNF formulas, i.e., sparse polynomials in the inputs
and their negations. Multivariate polynomials are an important object of study
in learning theory. Our candidate WPRF provides an explicit distribution D over
sparse n-variate F2-polynomials such that the following plausibly holds: there is a
constant ε > 0 such that no 2nε

-time algorithm, given the values of a polynomial
p sampled from D on uniformly random inputs, can predict the value of p on a
fresh random input with better than 2−nε

advantage. In contrast, the candidate
of [15] only implies hardness of learning sparse polynomials under a somewhat
artificial input distribution: the distribution over vector pairs (x,y) where y is
the bitwise negation of x. To our knowledge, the only previous results in this
setting are limited to showing quasi-polynomial hardness of learning sparse F2-
polynomials under the uniform distribution [24]. Our candidate complements
the results of [34], which imply a 2Õ(

√
n)-time learning algorithms for sparse

F2-polynomials.
To support the conjectured subexponential security of our new candidate,

we first observe that known results imply that it cannot be broken by algebraic
attacks, as defined in Sect. 2. Furthermore, we show that its security can be
formulated as an LPN-style assumption, which closely resembles (but is techni-
cally incomparable to) the variable-density learning parity with noise assumption
of [15]. We provide support for the security of the candidate by proving that it
cannot be broken in subexponential time by any linear attack, a large class of
attacks which captures essentially all known attacks against LPN and its vari-
ants. Our analysis builds upon, but does not follow from, the analysis of [15]. In
the full version we elaborate on the specific challenges that arise when trying to
extend the analysis of [15] to our candidate.
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3.1 Our Candidate

Our candidate builds upon the candidate of [15], which was carefully crafted
as a XOR of variable-size terms (products of variables and negated variables),
where the purpose of terms of size i is to defeat all linear attacks that depend on
(approximately) 2i samples. In [15], the set of input variables in each term is fixed
in advance; the WPRF key simply tells, for each variable in each term, whether
to use the input or its negation. To confine our candidate to the subclass of sparse
F2-polynomials, we must refrain from using negations of inputs. This suggests
a very natural variant: instead of selecting between bits x and 1 − x, the key
is used to randomly select one out of b random bits x1 · · · xb for each variable
of each monomial. When b is large enough, since the fraction of zeroes and
ones in random b-bit strings is tightly concentrated around 1/2, this intuitively
provides security guarantees comparable to that of [15]. We formally introduce
the candidate below.

– Input domain: x ∈ {0, 1}n with n = w · D · (D − 1) · b/2. We view x as
a concatenation of D blocks (xi)i≤D, where block xi contains w sub-blocks
xi,1, · · · , xi,w, and each sub-block xi,j is composed of i b-bit strings (xi,j,�)�≤i.
Given a string xi,j,�, we write xi,j,�[k] to denote its k-th bit.

– Key domain: K = (Ki,j,�)i≤D,j≤w,�≤i ∈ [b]s with s = w · ∑D
i=1 i.

– Candidate:

FK(x) =
D⊕

i=1

w⊕

j=1

i∧

�=1

xi,j,�[Ki,j,�]

Security against algebraic attacks. The security of our candidate against
algebraic attacks [22] follows directly from a known bound on the rational degree
of triangular functions.

Lemma 7. For any K ∈ [b]s, an algebraic attack in the sense of [22] requires
(time and) number of samples lower bounded by nΩ(D) = 2Ω(D log(D+w+b)).

Lemma 7 follows readily from the fact that our candidate weak PRF has
high rational degree: for any K ∈ {0, 1}s, it holds that RD(FK) ≥ D. The proof
follows immediately from [42]: for any fixed choice of key K, FK is a direct sum
of w independent triangular functions of degree D, each evaluated on distinct
portions of the input, where (denoting D′ = D(D−1)/2) the triangular function
of degree D is the function TD(x1, · · · , xD′) = x1 ⊕x2x3 ⊕· · ·⊕∧D′

�=D′−D x�. By
Lemma 3 of [42], the rational degree of a direct sum of functions is at least the
largest rational degree of its components, and by Lemma 6 of [42], the rational
degree of TD is exactly D.

3.2 Variable-Density LPN Formulation

We now show that the security of our weak PRF candidate follows from a
VDLPN-style assumption, in the spirit of [15]. We note, however, that the con-
crete assumption is not directly comparable to that of [15]: while the corre-
sponding noise distributions are similar, the variable-density matrix distribution
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in our work is very different. In the following, for each (i, j) ∈ [D] × [w], it is
convenient to view Ki,j = (Ki,j,�)�≤i as a single integer from the set [bi], via the
natural embedding. Then, let u(Ki,j) denote the unit length-bi vector with a 1
at position Ki,j and 0’s elsewhere. We can rewrite FK as

FK(x) =
D⊕

i=1

w⊕

j=1

〈
i⊗

�=1

xi,j,� , u(Ki,j)

〉

=

〈

x1,1,�|| · · · ||
D⊗

�=1

xD,w,� , u(K1,1)|| · · · ||u(KD,w)

〉

= 〈h(x) , e(K)〉

where h : x → (x1,1,1|| · · · ||
⊗D

�=1 xD,w,�) and e : K → (u(K1,1)|| · · · ||u(KD,w)).
Now, given a bound N on the number of samples, we let H = H(D,w, b, N)

denote the distribution over matrices H in F
N×(w·∑D

i=1 bi)
2 whose N rows are

sampled as h(x) for independent samples x
$← {0, 1}n. Furthermore, we let

N = N (D,w, b) denote the distribution over vectors e in F
w·∑D

i=1 bi

2 induced
by sampling K

$← [b]s and outputting e(K). Clearly, breaking the security of
our candidate given N samples is equivalent to breaking the (H,N )-dualLPN
assumption. This variant of the dual LPN assumption is very close in spirit to
the regular VDLPN assumption from [15]: the noise distribution is the same up to
setting b = 2. The matrix distribution, on the other hand, is quite different, but
satisfies the same sparsity condition: the matrix H is divided into D submatrices
Hi, and the average sparsity of the rows of Hi is (w · (b/2)i)/(w · bi) = 1/2i.
The matrix distribution in [15] satisfies the same variable density structure,
which motivated the name “variable-density LPN”. Therefore, we view our new
candidate as belonging to the same family of LPN variants.

3.3 Security Against Linear Attacks

We turn to consider the class of linear attacks, which in the context of pseu-
dorandom generators captures the notion of small-bias generators [45]. Linear
attacks capture, intuitively, every attack where the distinguisher is restricted
to compute a linear function of the LPN samples, the identity of which can be
arbitrarily determined from the public LPN matrix and inputs. This captures
essentially all known attacks against standard variants of LPN, such as those
based on Gaussian elimination, statistical decoding, information set decoding,
and BKW-style attacks. The work of [15] provided support for their VDLPN
conjecture by proving subexponential security against such linear attacks.

In the context of a WPRF, a linear distinguisher is first given N random
inputs x1, . . . , xN , and then must choose a subset of indices S ⊂ {1, . . . , N} such
that the distribution

⊕
i∈S fk(xi), for a random choice of k, is biased towards 0 or

1. More formally, we use the following notion of an (ε, δ,N)-biased WPRF, which
naturally extends the standard notion of an ε-biased pseudorandom generator.
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Definition 8 ((ε, δ,N)x-biased weak PRF family, [15]). A function family
{FK : Fn(λ)

2 �→ F2}K∈F
s(λ)
2

is (ε, δ,N)-biased if for every large enough λ ∈ N,

letting Dλ,N (x) (for some x ∈ (Fn(λ)
2 )N ) biased with inputs of length samples

K
$← F

s(λ)
2 and outputs y = (FK(x(1)), · · · , FK(x(N))), it holds that

Pr
x(1),··· ,x(N(λ)) $←F

n(λ)
2

[bias(Dλ,N (x)) > ε(λ)] ≤ δ(λ).

Notation and theorem statement. We first introduce some notation. Recall
that a sample H from H is a concatenation of D matrices Hi, where each matrix
Hi is itself a concatenation of w submatrices Hi,j ∈ F

N×bi

2 whose rows are of the
form

⊗i
�=1 xi,j,�, where the (xi,j,�)�≤i are i uniformly random independent b-bit

strings. For any fixed matrix H in the support of H, we let Dout(H) denote the
distribution induced by sampling e ← N and outputting H · e.

Theorem 9 (Low bias). Fix a security parameter λ. There exist constants
0 < β, ν, μ < 1 such that for any parameters (D,w, b, N) satisfying w = poly(λ),
b = poly(λ), D2 ≤ β · w, D ≤

√
b

2λ + 1, and N ≤ 2D, letting H = H(D,w, b, N),
it holds that

Pr
H←H

[bias(Dout(H)) > μw] ≤ νD + νλ2
.

For example, using the choice of parameters (D,w, b, N) = (λ, λ2/β, 4λ4, 2λ),
our candidate is (2−Ω(λ2), 2−Ω(λ), 2λ)-biased with inputs of length O(λ8), and
keys of length Õ(λ4).

To facilitate comparison with the analysis of [15], we let H′ and N ′ denote
respectively the matrix and noise distributions for the VDLPN variant of [15],
where a sample H ← H′ can also be broken into D matrices Hi = Hi,1|| · · · ||Hi,w

where the Hi,j are independent matrices; we denote by H′
i the distribution over

Hi induced by H ← H′ for any i ≤ D.

High level overview. At a high level, the security analysis follows the same
approach as the analysis in [15] (which should come as no surprise due to the
similarities between the candidates); however, the analysis is significantly more
involved due to the more complex structure of the matrix distribution for our
candidate. Fix i ≤ D. The analysis of [15] proceeds roughly as follows.

1. Using a strong concentration bound (McDiarmid’s bounded difference
inequality), it shows that for any fixed attack vector v ∈ F

N
2 whose Hamming

weight is between 2i−1 and 2i, except with probability at most exp(−Ω(w·2i)),
a random matrix Hi ← H′

i satisfies HW(vᵀ·Hi,j)/ |vᵀ · Hi,j | ∈ [ε, 1−ε], where
ε is some constant (that is, vᵀ · Hi,j has a fraction of ones bounded by a con-
stant, and bounded away from 1 by a constant), for a fraction at least w/2
of the w submatrices Hi,j of Hj . Such a matrix Hi is called good with respect
to v.
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2. From a union bound over all vectors v of weight between 2i−1 and 2i, it
follows that, except with probability at most exp(−Ω((logN − w) · 2i)), a
random matrix Hi ← H′

i will be good with respect to all vectors v in this
weight range. When w is sufficiently larger than logN , this probability is
bounded by exp(−Ω(w)) for any i ≤ D.

3. By a union bound over all i ≤ D, with probability at least 1 − D ·
exp(−Ω(w)) = 1 − exp(−Ω(w)), a random matrix H ← H′ satisfies the
following: for every nonzero vector v, there is an i∗ ≤ D such that Hi∗ is
good with respect to v. Then, for any such matrix H, H · e for e ← N ′

is the vector obtained by sampling a uniformly random column from each
(Hi,j)i≤D,j≤w and XORing them all. Since Hi∗ is good with respect to v,
H · e will include at least w/2 terms sampled randomly and independently
from bitstrings v · Hi∗,j with a fraction of ones in [ε, 1 − ε]. It follows that,
with probability at least 1− exp(−Ω(w)) over the random choice of H ← H′,
the distribution of H · e for e ← N ′ has bias with respect to v at most
(1 − ε)w/2/2 = 2−Ω(w), for any possible nonzero vector v.

Looking ahead, our security analysis will follow the same three steps as above,
and the steps 2 and 3 will be the same as in [15]. However, while the first step
also consists in proving a similar bound, the actual analysis turns out to be much
more involved due to the different matrix structure. Due to space limitations,
the proof of Theorem 9 is deferred to the full version.

4 WPRFs in AC0 ◦ MOD2

In this section we present a candidate construction of a weak PRF in AC0 ◦ MOD2
(recall, unlike AC0[MOD2], here the parity gates must lie at the input layer of the
circuit). We follow the high-level template of Akavia et al. [1]. Their construction,
referred to as ABGKR, is of the form

fs,K(x) = 〈x, s〉 ⊕ g(K · x mod 2)

for s ∈ {0, 1}n, K ∈ {0, 1}(n−1)×n, where g(x) =
∨λ

i=1

∧log λ
j=1 xij is a DNF (the

so-called TRIBES function). Since fs,K(x) can be written as (¬〈x, s〉 ∧ g(K ·
x)) ∨ (〈x, s〉 ∧ ¬g(K · x)), it indeed belongs to AC0 ◦ MOD2.

The rationale behind the design of Akavia et al. is the following: even when
picking a very simple function g (in their case, a DNF), the function gK(x) =
g(K · x) can already not be distinguished from a random c-unbalanced function
(i.e. a random function f with Prx[f(x) = 1] = c for some constant c 
= 1/2)
for various natural attacks (e.g. correlations with small function families and
closeness to low-degree polynomial). Then, this function gk is XORed with 〈x, s〉
to make the final function balanced.

From unbalanced WPRFs to standard WPRFs. We observe that this
transformation does actually provably turn an unbalanced WPRF into a “stan-
dard” WPRF, under the LPN assumption. The proof of this observation is
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straightforward; for details we refer to the full version. In spite of its simplicity,
this observation had to our knowledge never been made.

We further note that there exists an alternative, unconditional transfor-
mation from a c-unbalanced WPRF in AC0 ◦ MOD2 into a standard WPRF in
AC0 ◦ MOD2 which relies on the Von Neumann randomness extractor: assume
w.l.o.g. that c < 1/2. Use (say) 2n parallel instances of the c-unbalanced WPRF
on independent inputs and keys, grouped into n pairs. Then, take the first pair
of distinct output bits (since c is a constant, there is one such pair with over-
whelming probability 1− 2−O(n)): if it is 01, define the output of the WPRF to
be 0; else, define it to be 1. It is relatively straightforward to prove that if gk is
a c-unbalanced WPRF, the resulting function is a WPRF. This process can be
executed in AC0, hence the resulting function is in AC0 ◦ MOD2.

Our approach. The above discussion justifies focusing on the task of building
unbalanced WPRFs in AC0◦MOD2, since the latter imply standard WPRFs in the
same class through simple transformations. The ABGKR candidate instantiates
this unbalanced WPRF with a DNF on top of parities; however, the attack
of [13] allows to distinguish any depth-2 AC0 circuit on top of parities from
unbalanced random functions, since any such function must have low rational
degree. Therefore, any unbalanced WPRF in AC0 ◦ MOD2 must have at least
three layers of AND/OR gates. With the goal of finding the simplest possible
modification of the ABGKR candidate which can retain subexponential security,
we ask:

Is there a subexponentially secure unbalanced WPRF computable by a
depth-3 AC0circuit on top of parities?

Our candidate. We put forth the following candidate unbalanced WPRF:
gk(x) = g(K · x), with

g(x) =
λ∨

i=1

λ∧

j=1

w∨

k=1

xijk, (1)

where λ is a security parameter (i.e., we will bound the complexity of various
attacks on our candidate as a function of λ) and m,w are chosen such that
w = �log λ−log log λ� and m = λ2w. That is, we simply add a single layer of ORs
after the parity layer, with parameters chosen to guarantee that Prx[g(x) = 1]
is constant. Note that choosing the fan-in of the gates more carefully, one can
actually obtain bias 1 = 2+ on(1). In this case the function g(x), which replaces
the TRIBES function in ABGKR, corresponds to the degree-3 Sipser function.
For more details, we refer to [33,55].

We conjecture that this candidate achieves subexponential security. Observe
that since the attack of [13] distinguishes any depth-2 AC0 circuit on top of
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parities from unbalanced random functions, our candidate actually enjoys opti-
mal depth.4

4.1 Provable Resistance to Algebraic Attacks

Algebraic attacks are a general class of cryptanalytic algorithms that aim to
either invert a function or distinguish it from random, by obtaining many samples
and using these to derive a system of linear equations over the secret inputs. This
class of attack was first developed by the applied cryptographic community and
used to break public-key encryption schemes and stream ciphers [20,22,52]. It
generalizes in particular the correlation attacks [37] that have been developed
for attacking LFSRs. Correlation attacks have been considered in the theory
community in the context of constructing local pseudorandom generators [44].

The resistance of a WPRF fk : {0, 1}n → {0, 1} to algebraic attacks can
be measured by its rational degree, that is, the smallest d for which there exist
non-zero polynomials p and q of algebraic degree at most d, such that

fk(x) · p(x) = q(x), ∀x ∈ {0, 1}n. (2)

Applebaum and Lovett [5] formally studied algebraic attacks of local functions,
and showed that if a predicate has large rational degree then it provably resists
a natural class of algebraic attacks.

On the other hand, if a WPRF candidate fk has low rational degree d, then
it can be distinguished from random via a simple algebraic attack, which obtains
O(nd) samples and tests whether (2) holds for each of them. This is exactly the
type of attack that Bogdanov and Rosen [13] observed breaks the candidate of
Akavia et al. [1] in quasipolynomial time, since it has rational degree O(log λ).

We, on the other hand, show that our candidate has rational degree λ. Even
though, formally, this does not rule out the attack of [13], which only requires
proximity to low rational degree, we view this as strong evidence that the attack
does not apply to our candidate.

To analyze the rational degree of our candidate, we first give a general method
for determining the exact rational degree of any function in AC0 that can be
expressed as alternating layers of AND and OR gates that each depend on dis-
joint subsets of the input. We then use this to compute the rational degree of
our noise function, and finally our candidate unbiased WPRF.

Towards understanding our techniques, we first briefly recall the attack of
Bogdanov and Rosen [13]. To that end, note that the rational degree can be
characterized as the minimal d such that there exists a polynomial p 
= 0 of
algebraic degree d such that f · p = 0 or (f ⊕ 1) · p = 0 (also referred to as the
algebraic immunity in the literature). The attack of Bogdanov and Rosen [13]
4 However, transforming our candidate into a standard WPRF, e.g. using the LPN-

based transformation, results in a candidate computed by a depth-4 AC0 circuit
on top of parities. It is an interesting question whether the optimal depth can be
achieved for standard WPRFs, i.e., whether there exists subexponentially-secure
standard WPRFs computable by depth-3 AC0 circuit on top of parities.
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builds on the observation that f =
∨

fi always has rational degree at most
mini deg fi, as fi(x) = 1 implies f(x) = 1 and thus (f ⊕ 1) · fi = 0. Therefore,
for any DNF either all inner conjunctions have high algebraic degree (and thus
the DNF is highly biased towards 0), or the function is susceptible to rational
degree attacks.

We observe that while a disjunction does not increase the rational degree
of a function, it does have an effect that can be leveraged. Namely, consider a
function p 
= 0 of minimal algebraic degree such that f · p = 0. We will prove
that if pi are the minimal annihilating functions for fi (and all functions depend
on disjoint parts of the input), p must have algebraic degree at least

∑
i pi.

Now, using that conjunctions behave in a dual way, alternating between
conjunctions and disjunctions allows to increase the rational degree while keeping
the function’s bias constant. In order to prove this, we introduce the notion of
primal and dual rational degree.

Definition 10 (Primal and dual rational degree). For f : {0, 1}n → {0, 1},
we define the primal rational degree ρ as the minimal ρ such that there exists
a polynomial p 
= 0 with algebraic degree ρ and f · p = 0. Further, we define
the dual rational degree ρ′ of f as the primal rational degree of its negation.
Namely, we define the dual rational degree as the minimal ρ′ such that there
exists a polynomial p 
= 0 with algebraic degree ρ′ and (f ⊕ 1) · p = 0. Note that
the rational degree of f is d = min(ρ, ρ′).

With the notion of primal and dual rational degree we can distill our main
observation in the following lemma, which we prove in the full version.

Lemma 11. Let f, h : {0, 1}n → {0, 1} be Boolean functions that depend on
disjoint parts of the input5, where f and h have primal rational degree ρf and
ρh and dual rational degree ρ′

f and ρ′
h, respectively. Then:

(i) The primal rational degree of f ∨ h is lower bounded by ρf + ρh.
(ii) The dual rational degree ρ′ of f ∨ h is lower bounded by min(ρ′

f , ρ′
h).

With this, it is straightforward to compute the exact rational degree of a
disjunction, where all terms depend on disjoint parts of the input. Similarly,
we can also apply this to compute the rational degree of a conjunction, since∧s

i=1 fi =
∨s

i=1(fi ⊕ 1) ⊕ 1.
Put together, and applied to our candidate, we obtain the following.

Lemma 12. Let m = m(λ) ∈ N, let g : {0, 1}m → {0, 1} be as in Eq. 1, let n =
m + 1, and let s ∈ {0, 1}n,K ∈ {0, 1}m×n be such that the map x �→ (〈x, s〉,K ·
x) mod 2 is invertible. Then, our candidate weak PRF fs,K : {0, 1}n → {0, 1}
defined via

f(x) �→ 〈x, s〉 + g(K · x mod 2)

has rational degree at least λ.

For further details and discussion, we refer the reader to the full version.
5 We say that f depends on the i-th index of the input, if xi appears with a non-zero

coefficient in some term in f .
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Fig. 1. Relation between different assumptions/ conjectures. A → B means that A
implies B. By a linear distribution we mean the uniform distribution over a linear
subspace V ⊆ {0, 1}n, where dotted implications were already observed by [1].

4.2 On Resistance to Linear Attacks

We also consider the resistance of our candidate to linear attacks, as was done for
our other candidate in Sect. 3. While we have not been able to prove resistance of
linear attacks for this candidate, we formulate a combinatorial conjecture which
states, informally, that if the deterministic noise function is c-unbalanced for
some constant c and far from all low-degree polynomials, then no attack from
the linear attack framework can break the corresponding LPN with simple noise
assumption. If true, this conjecture would imply that our candidate, the ABGKR
candidate, as well as the “LWR mod 6” candidate from [14], cannot be broken
by any of the above attacks. We provide preliminary observations regarding the
plausibility of the conjecture; we view proving or disproving this conjecture as
an interesting open question. For more details we refer to the full version

4.3 On WPRFs in AC0 with Public Parities

In this work we give a candidate construction of a weak PRF in AC0 ◦ MOD2,
where the parities are secret. In particular, we conjecture that such a weak PRF
exists (this is in the following referred to as Conjecture I).
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We also consider the natural question of the existence of a simpler class of
WPRF of the form fk(x) = gk(G ·x), where G is a public matrix. Note that if G
is removed (or surjective) then fk could be learned by the algorithm of Linial,
Mansour and Nisan [41] for learning AC0 under the uniform distribution.

While Akavia et al. [1] conjectured that any function in AC0 ◦ MOD2 has a
large Fourier coefficient, we take this further by suggesting that, in the case of
a public matrix G, the heavy Fourier coefficient of fk stems from a low-order
coefficient of gk (in the following referred to as Conjecture II). This would imply
that the high-weight Fourier coefficient can be used to distinguish the function
from random in quasipolynomial time even given only access to random samples,
and therefore allows to conclude that there cannot exist a weak PRF in AC0 on
top of public parities (in the following referred to as Conjecture III).

We prove Conjecture II for the case when gk is a family of DNFs, by extending
the work of Jackson [36] to show that the coefficient is of the right form. The
idea of Jackson is that any DNF correlates with a parity of its term that is
“most likely” to be satisfied, which implies a heavy Fourier coefficient. We further
observe that this means the function is either biased, or the term can contain only
a few non-correlated variables. Since an AND clause is only satisfied for exactly
one setting of inputs, if there are too many independent terms in the DNF
then the function is biased. Otherwise, there are many dependencies between
the individual terms, which we show implies the heavy Fourier coefficient comes
from a vector of the form a = G�v for some low-weight v.

We further prove Conjecture II for arbitrary gk ∈ AC0 if the matrix G is
random (or, more generally, defines a polylog-wise independent map).

We present the formal Conjectures I, II and III as well as the proof of Con-
jecture II for the above mentioned special cases in the full version.

Linear IPPP and Relations Between Conjectures. Finally, in the full
version, we also elaborate on the relations between our conjectures, and pre-
vious conjectures in the literature including the “Linear IPPP” conjecture [56],
asserting that mod-2 inner product is not in AC0 ◦ MOD2. These connections are
illustrated in Fig. 1.

5 Between Lapland and Cryptomania

In this section we present two abstract frameworks. We first introduce the notion
of learning parity with simple deterministic noise, which captures our candidate
weak PRF in AC0 ◦ MOD2 from Sect. 4. Further, we show that every weak PRF
candidate in AC0[MOD2] implies some form of learning parity with simple deter-
ministic noise.

Next, we introduce an abstract framework that captures variable-density
learning parity with noise style assumptions such as the candidate weak PRF
of [15] and our candidate weak PRF from Sect. 3.

Further, if one believes that either no code is hard to decode or almost all
codes are hard to decode with respect to some noise level, then we show that each
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candidate that fits into the VDLPN framework lives in Cryptomania. We are not
aware of any similar implications for functions that can be cast as learning parity
with AC0[MOD2]-noise more generally.

5.1 Learning Parity with Simple Deterministic Noise

We observe that the Akavia et al. [1] candidate as well as our own candidate in
AC0 ◦ MOD2 can be cast as a form of new LPN-style assumption, that we refer to
as LPN with simple deterministic noise. This can be viewed as a generic method
to transform a biased weak PRF into a weak PRF. Formally, we define learning
parity with simple noise as follows.

Definition 13 (Learning parity with simple deterministic noise). Let
n = n(λ), κ = κ(λ) ∈ N and let G = {gk : {0, 1}n → {0, 1} | k ∈ {0, 1}κ} be
a family of keyed functions in a low-complexity class. We say a function family
F = {fs,k : {0, 1}n → {0, 1} | s ∈ {0, 1}n, k ∈ {0, 1}κ} is an instance of learning
parity with simple deterministic noise from G, if fs,k : {0, 1}n → {0, 1} is of the
form fs,k(x) = 〈x, s〉 ⊕ gk(x).

In this paper by simple we usually refer to noise functions in AC0[MOD2]. Note
that if G is in AC0[MOD2], then so is F . Further note that fs,k can be written as

fs,k(x) = (¬〈x, s〉 ∧ gk(x)) ∨ (〈x, s〉 ∧ ¬gk(x)).

This shows that for gk ∈ AC0 ◦ MOD2 we also have fs,k ∈ AC0 ◦ MOD2 (where we
consider the key as fixed). Note that this transformation from a biased weak
PRF gk to a weak PRF fs,k is not depth-preserving, however.

This framework can be extended to capture more general input distributions
as follows.

Definition 14 (Extension to general input distributions). Let n =
n(λ), κ = κ(λ),M = M(λ) ∈ N, let G = {gk : {0, 1}n → {0, 1} | k ∈ {0, 1}κ} be a
family of keyed functions in a low-complexity class, and let h : {0, 1}n → {0, 1}M

a function. We say that a function family F = {fs,k : {0, 1}n → {0, 1} | s ∈
{0, 1}M , k ∈ {0, 1}κ} is an instance of learning parity with simple determin-
istic noise from G with respect to the input distribution generated by h, if
fs,k : {0, 1}n → {0, 1} is of the form fs,k(x) = 〈h(x), s〉 ⊕ gk(x).

Of course not every class of noise functions gives rise to a candidate weak
PRF. In the full version we make progress on studying learning parity with simple
noise by presenting a combinatorial conjecture about properties that the family
of noise functions G has to satisfy (informally speaking, these are the properties
of being “balanced” and having “high-degree”), that we believe are sufficient in
order to resist all linear attacks. However, note that as the attack by Bogdanov
and Rosen [13] showed, satisfying these properties is still not sufficient to be
a weak PRF, because other classes of attacks such as algebraic attacks might
apply.
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5.2 Weak PRFs in AC0[MOD2] Live in Lapland

The results on circuit lower bounds by Razborov and Smolensky [53,57] show
that every function in AC0[MOD2] can be approximated by a polynomial of poly-
logarithmic degree. More formally, their result can be stated as follows.

Theorem 15 (Razborov-Smolensky [53,57]). Let n, d, S ∈ N. If
f : {0, 1}n → {0, 1} can be computed by depth-d, size-S circuit with MOD2 gates,
then for any integer ε > 0, there exists a polynomial p(x) ∈ F2[x1, . . . , xn] of
degree at most (log(S/ε))d such that Prx[f(x) 
= p(x)] ≤ ε.

The theorem implies that if there is a weak PRF in AC0[MOD2], then learning
parity with noise is hard, where the code is a “punctured” Reed-Muller code of
quasipolynomial dimension (i.e. the row corresponding to an input x consists of
the of all low-degree monomials evaluated on x), the secret corresponds to the
coefficient of the polynomial that approximates the weak PRF, and the noise
corresponds to the approximation error. In other words, the existence of a weak
PRF in AC0[MOD2] says that this kind of punctured Reed-Muller codes are hard
to decode for some nontrivial noise rate.

Corollary 16. Let n = n(λ), κ = κ(λ) ∈ N. If there exists a (Q,T, ε)-weak PRF
in AC0[MOD2], then there exists c, C ∈ N with c < C, a family of keyed functions
G = {gk : {0, 1}n → {0, 1} | k ∈ {0, 1}κ} and a function h : {0, 1}n → {0, 1}M

where M = 2log
C κ, such that the learning parity function fs,k = 〈h(x), s〉⊕gk(x)

with deterministic noise gk ∈ G respective to the input distribution generated by
h is a (Q,O(T ), ε)-weak PRF. Further, for the corresponding noise rate we have
that Prx,k[gk(x) = 1] ≤ 2− logc κ.

Note that the Razborov-Smolensky result does not make any guarantees as
to the distribution over the approximating low-degree polynomial for the func-
tions in the PRF family, corresponding to distribution over the secret s in the
LPN instance. However, the corresponding LPN instance reduces to the case of
average-case s. Namely, samples 〈x, s∗〉 ⊕ gk(s) for arbitrary s∗ can be gener-
ically converted to consistent samples for uniform secret s∗ + s′, by offsetting
each sample by 〈x, s′〉.

Note that having a superpolynomial secret in Corollary 16 only “scales down”
the LPN security when expressed as a function of the secret size, and in the
subexponential regime the resulting guarantee remains meaningful. More explic-
itly, the corollary can be understood as follows: If there exists a weak PRF
in AC0[MOD2] with subexponential security 2κδ

, then there exists an instance of
deterministic LPN that has secret length M = 2log

C κ and security in the order
of 2κδ

= 22
δ·log1/C M

. Thus, the existence of weak PRF candidates in AC0[MOD2]
with subexponential security implies what can be viewed as an instance of deter-
ministic LPN with “subsubexponential hardness” in the secret length (which lies
strictly between quasipolynomial and subexponential).

Consider a hardness of decoding interpretation of Corollary 16. Observe that
the noise rate ε implied by Razborov-Smolensky is above the minimal distance
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of the corresponding (punctured) Reed-Muller code of low-degree multivariate
polynomials, therefore unique decoding will in general not be possible. That is,
we expect many low-degree multivariate polynomials p(x) to agree with a given
function fk in AC0[MOD2] up to this noise rate. Identifying any such p(x) con-
stitutes an attack on the pseudorandomness of fk, as it provides a low-error
prediction of fk evaluations. Note that the number of (punctured) Reed-Muller
codewords within this distance is bounded: in particular, for Q = 2κδ

, the proba-
bility that a random word in the space {0, 1}Q will be within Hamming distance
Δ = 2κδ−logc κ of a codeword will be negligible. Thus, we can conclude that the
existence of a weak PRF in AC0[MOD2] implies that the punctured Reed-Muller
code is hard to decode in some non-unique decoding regime. We formalize this
in the following corollary.

Corollary 17. Suppose for every c, C ∈ N with c ≤ C, there is an algorithm
A running in time 2no(1)

such that, given a generating matrix G of a punctured
RM code over F2 with parameters (logC n, n) and corrupted codeword y, A finds
a codeword which is within relative distance 2− logc n from y. Then there are no
WPRFs in AC0[MOD2].

While it is known that the decoding of some linear codes and even structured
codes such as Reed-Solomon codes for certain noise rates is NP-hard [11,29],
we are not aware of similar result for (punctured) Reed-Muller codes as the
one described above. Also, to our knowledge known results on NP-hardness of
computing and approximating the minimum distance of codes [25,59] do not
apply to our example. We leave it as an interesting open question to find a more
natural implication from weak PRFs in AC0[MOD2] to the hardness of decoding
linear codes.

5.3 A Framework for VDLPN Assumptions

In [15], a candidate weak PRF in AC0[MOD2] was given, with security based on a
specific variable-density learning parity with noise assumption. In the following
we give a framework of variable-density learning parity with noise that captures
the weak PRF candidate of [15] and also our candidate based on sparse poly-
nomials presented in Sect. 3 in AC0[MOD2]. Note that the VDLPN framework is
not restricted to functions in AC0[MOD2]. And, on the other hand, not all func-
tion families in AC0[MOD2] fall within this framework. Therefore, the conditional
public-key implication that we give in the following only applies to candidates
such as the one given in [15] and our candidate based on sparse polynomials,
but not our candidate weak PRF in AC0 ◦ MOD2.

Definition 18 (A framework for VDLPN). Let n = n(λ), N = N(λ), κ =
κ(λ) ∈ N. Let h : {0, 1}n → {0, 1}N and e : {0, 1}κ → {0, 1}N . We say that (h, e)
defines an instance of variable-density learning party with noise, if fk(x) :=
〈h(x), e(k)〉 is efficiently computable, and there exist ζi = ζi(λ), ηi = ηi(λ) ∈ [0, 1]
for all i ∈ [N ], such that
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1. for all i ∈ [N ] it holds: Prx[h(x)i = 1] = ζi and Prk[e(k)i = 1] = ηi,
2. for all i ∈ [N ] it holds: ζi ≥ ζi+1 and ηi ≥ ηi+1,

3. there exist polynomials p = p(λ), q = q(λ) ∈ N such that:
∑N

i=1 ζi ≤ p and
∑N

i=1 ηi ≤ q.

We say that the variable-density learning parity with noise (VDLPN) assumption
with respect to (h, e) is (Q,T, ε)-hard, if fk(x) := 〈h(x), e(k)〉 is a (Q,T, ε)-weak
PRF.

Note that – even though not directly falling into the framework of learning
parity with simple noise – VDLPN implies an instance thereof. To see this con-
sider a VDLPN tuple (h, e). Now, let h0 : {0, 1}n → {0, 1}n and h1 : {0, 1}n →
{0, 1}N−n such that h(x) = (h0(x), h1(x)) for all x ∈ {0, 1}n, and similarly let
e0 : {0, 1}κ → {0, 1}n, e1 : {0, 1}κ → {0, 1}N−n, such that e(k) = (e0(k), e1(k))
for all k ∈ {0, 1}κ. Let G = {gk : {0, 1}n → {0, 1} | k ∈ {0, 1}κ}, where
gk(x) = 〈h1(x), e1(k)〉, and let fs,k = 〈h0(x), s〉 ⊕ gk(x). Now, if VDLPN with
respect to (h, e) is hard, then so is learning parity with simple deterministic
noise G with respect to the input distribution generated by h0, due to the same
reduction of LPN with arbitrary secret s∗ to a uniform secret s′ mentioned in a
comment following Corollary 16.

5.4 Connections of VDLPN to Cryptomania

In the following we outline why VDLPN “morally” implies LPN with low noise
and therefore public-key encryption. We cannot show a direct PKE implication,
because the Alekhnovich construction [3] does not apply directly if the matrix
is also sparse, since the dual LPN assumption (i.e. the assumption that the pair
(H, v) for a matrix H that generates the dual code and v = H · e for a sparse
noise vector e is indistinguishable from (H, r) for a uniformly random vector r)
cannot hold true in this case, as v will be biased towards 0.

What we mean by “morally” is that the noise rate itself is sufficiently low
to imply PKE, and because typically LPN is considered to be hard on average
for random codes (if the noise is sufficiently dense). In order to formalize this
observation we formulate a conjecture stating that if there exists a code that
is hard to decode with respect to some noise rate (where the noise itself can
depend on the generator matrix of the code), then “almost all” codes are hard
to decode with respect to this noise rate. In order to deal with the fact that the
noise might depend on the matrix (and therefore replacing the matrix might in
fact trivially render LPN insecure), we simultaneously replace the noise by noise
that is Bernoulli distributed at the same rate.

Conjecture 19 (Random LPN is the hardest). Let n = n(λ), Q = Q(λ), κ =
κ(λ),M = M(λ) ∈ N, let G = {gk : {0, 1}n → {0, 1} | k ∈ {0, 1}κ} be a family
of keyed functions and let h : {0, 1}n → {0, 1}M such that learning parity with
simple noise G is (Q,T, ε)-hard for the input distribution generated by h. Then,
we conjecture that the standard LPN problem with noise with rate η is (Q,T, ε)-
hard. More precisely, we conjecture that if A

$← {0, 1}Q×M , s
$← {0, 1}M are both
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sampled uniformly at random, and a noise vector e is sampled according to the
Bernoulli distribution over {0, 1}Q with rate η ≥ Pr

x
$←D,k

$←{0,1}κ
[gk(x) = 1],

then there exists a constant c > 0 such that the distribution of (A,As + f) is
(T, ε + 2−λc

)-indistinguishable from the uniform distribution.

Note that relaxing the success probability of the adversary to ε + 2−λc

is
necessary, because there obviously exist some codes that are easy to distinguish
from random for any non-trivial noise rate (e.g. A chosen as the all zero matrix).

In order to further weaken the conjecture, allowing for the possibility that
there exist some codes that are significantly harder to decode than random codes,
one can require that the input the generated by h (i.e. obtained by sampling
x

$← {0, 1}n and outputting h(x)), have min-entropy at least polylog(λ). This
weaker conjecture is still sufficient to prove the PKE implication of VDLPN.

In the full version, we prove the following.

Lemma 20. Let n = n(λ), N = N(λ), κ = κ(λ) ∈ N, h : {0, 1}n → {0, 1}N and
e : {0, 1}κ → {0, 1}N . Let T = T (λ) ∈ N and Q = Q(λ) such that Q ∈ λω(1).
Then, if Conjecture 19 holds and VDLPN is (Q, 2λc

, 2−λc

)-hard for (h, e) for
some constant c > 0, then public-key encryption with quasipolynomial running
time and subexponential security exists.

Remark 21. Note that the noise rate implied by Razborov-Smolensky does not
suffice to construct public-key encryption via Alekhnovich [3] (even under the
“random LPN is the hardest” conjecture), because the noise rate implied by the
Razborov-Smolensky approximation is ω(1/

√
M). In addition, constructions of

PKE from LPN with constant noise, e.g., [63], have quasi-polynomial running
time and security. We are therefore not aware of any public-key implications for
general weak PRFs in AC0[MOD2].
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Abstract. We study new candidates for symmetric cryptographic prim-
itives that leverage alternation between linear functions over Z2 and Z3

to support fast protocols for secure multiparty computation (MPC). This
continues the study of weak pseudorandom functions of this kind initi-
ated by Boneh et al. (TCC 2018) and Cheon et al. (PKC 2021).

We make the following contributions.
• Candidates. We propose new designs of symmetric primitives based

on alternating moduli. These include candidate one-way functions,
pseudorandom generators, and weak pseudorandom functions. We
propose concrete parameters based on cryptanalysis.

• Protocols. We provide a unified approach for securely evaluating
modulus-alternating primitives in different MPC models. For the
original candidate of Boneh et al., our protocols obtain at least
2x improvement in all performance measures. We report efficiency
benchmarks of an optimized implementation.

• Applications. We showcase the usefulness of our candidates for a
variety of applications. This includes short “Picnic-style” signature
schemes, as well as protocols for oblivious pseudorandom functions,
hierarchical key derivation, and distributed key generation for func-
tion secret sharing.

1 Introduction

Symmetric-key cryptographic primitives, such one-way functions (OWFs) [53],
pseudorandom generators (PRGs) [13,65] and pseudorandom functions
(PRFs) [39], are deployed in innumerable settings, and serve as fundamental
building blocks of modern cryptography. While traditional use cases primarily
considered settings where the function evaluation was done by a single party,
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12828, pp. 517–547, 2021.
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many applications (recently also arising in the context of cryptocurrencies)
require evaluation in a distributed fashion to avoid single points of failure. This
motivates the study of secure multiparty computation (MPC) protocols for eval-
uating such symmetric-key primitives in a setting where inputs, outputs, and
keys are secret-shared or distributed between two or more parties.

Towards this goal, a long line of work [32,56,62] has made substantial
progress on concretely efficient MPC protocols for distributing the computa-
tion of symmetric primitives, such as AES or SHA-256, which are widely used
in practice. Unfortunately, the constructions themselves were not designed with
distributed evaluation in mind, and are thus optimized for performance met-
rics relevant to the single-party setting. More recent work (see [3–5,15,41] and
references therein) has therefore proposed to start from scratch by designing
MPC-friendly primitives from the ground up. In this work, we continue this line
of research by proposing a new suite of simple MPC-friendly candidate designs
for a number of symmetric primitives.

Our MPC setting. We focus on the semi-honest setting of security for simplic-
ity. This is considered adequate in many cases. In particular, it suffices for the
construction of signature schemes via an “MPC-in-the-head” technique [25,45].
While recent general techniques from the literature [14,24] can be used to extend
some of our protocols to the malicious security model with a low amortized cost,
we leave such an extension to future work. We consider protocols for both two
parties (2PC) and multiple parties, both with and without an honest majority
assumption, and both with and without preprocessing. In the following, we con-
sider by default the setting of (semi-honest) 2PC with preprocessing. However,
our contributions apply to the other settings as well.

Efficiency metrics for MPC. Concretely efficient MPC protocols can be
divided into two broad categories: protocols based on garbled circuits [66] and
protocols based on linear secret sharing [10,26,40]. Protocols based on garbled
circuits have low round complexity but their communication cost will be pro-
hibitively high for our purposes. We will therefore focus on protocols based on
secret sharing. Roughly speaking, the complexity of evaluating a given function
f using such protocols is determined by the size and the depth of a circuit C that
evaluates f . Here we assume that C is comprised of atomic gates of two kinds:
linear gates (computing modular addition or multiplication by a public value)
and MPC-friendly nonlinear gates that are supported by efficient subprotocols.
A typical example for a nonlinear gate is modular multiplication of two secret
values. Given such a representation for f , the communication cost of an MPC
protocol for f scales linearly with the size of C, namely the number of gates
weighted by the “MPC cost” of each gate, whereas the round complexity scales
linearly with the depth of C, namely the number of gates on a longest input-
output path. Since linear gates do not require any interaction, they do not count
towards the size or the depth. We use the term “nonlinear size” and “nonlinear
depth” to refer to the size and the depth when excluding linear gates.

Our design criteria. The above efficiency metrics for MPC are quite crude,
since not all kinds of nonlinear gates are the same. However, they still serve
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as a good intuitive guideline for the design of MPC-friendly primitives. More
concretely, we would like to design primitives with the following goals in mind.

• Low nonlinear depth. Minimizing round complexity calls for minimizing non-
linear depth. Unfortunately, constructions like AES or even MPC-friendly
ones such as LowMC [4] have quite a high nonlinear depth, which leads to
high-latency protocols when using the secret-sharing approach.

• Small nonlinear size. For keeping the communication complexity low, we
would like to minimize the number of nonlinear gates and make them as
“small” and “MPC-friendly” as possible.

• High algebraic degree. Security of block ciphers and (weak) PRFs provably
requires high algebraic degree. While there are low-degree implementations
of weaker primitives such as OWFs and PRGs [6,38,54], these typically come
at the price of bigger input size and higher nonlinear size [30,63].

• Simplicity. A simple design is almost always easier to implement and prone
to fewer errors and attacks. This is particularly valuable since a substantial
amount of work has previously gone into implementations that resist timing
and cache side-channels. Simple constructions are also easier to reason about
and cryptanalyze, which builds confidence in their security, and may serve as
interesting objects of study from a theory perspective [2,38,55].

The alternating moduli paradigm. The above design goals may seem inher-
ently at odds with each other. How can “high algebraic degree” co-exist with
“small gates” and “low nonlinear depth”? Towards settling this apparent con-
flict, a new design paradigm was recently proposed by Boneh et al. [15] and
further explored by Cheon et al. [29]. The idea is to break the computation into
two or more parts, where each part includes a linear function over a different
modulus. The simplest choice of moduli, which also seems to lead to the best
efficiency, is 2 and 3.

Boneh et al. [15] proposed a weak PRF1 (wPRF) candidate with the following
simple description: the input x is a vector over Z2 and the secret key specifies a
matrix K over Z2. The PRF first computes the matrix-vector product Kx over
Z2, then interprets the result as a vector over Z3 in the natural way, and finally
applies a public, compressive linear map over Z3 to obtain an output vector y
over Z3. (When the output is a single Z3 element, the final compressive map is
just a sum over Z3.)

The above mapping from x and K to y has two nonlinear steps: The first is
the matrix-vector product over Z2, whose cost can be reduced when the matrix
K has a special form. The second is a conversion of a mod-2 vector to a mod-3
vector, which consists of small (finite-size) parallel nonlinear gates. Overall, the
nonlinear depth is 2. Why is this a high-degree function? Viewing both the input
and the (binary representation of) the output as vectors over Z2, high degree over

1 A weak PRF is one whose security only holds when evaluated on random inputs. In
many applications of strong PRF, a weak PRF can be used instead by first applying
a hash function (modeled as a random oracle) to the input.
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Z2 comes from the final linear map over Z3. Viewing the input as a vector over
Z3, high degree comes from the linear map over Z2 defined by the key. Despite
its simplicity, the design can be conjectured to have a good level of security with
small input and key size (say, 256 bits for 128-bit security). It mostly resisted
the initial cryptanalysis, where attacks found in [29] require a very big number
of samples and are quite easy to circumvent by slightly modifying the design (as
suggested in [29]).

A primary motivation for the alternating moduli paradigm was its MPC-
friendliness. Indeed, several MPC protocols were proposed in [15]. These pro-
tocols demonstrated significant efficiency advantages over earlier MPC-friendly
designs, mainly in the setting of 2PC with preprocessing or 3-party computation
with an honest majority.

Another, very different, motivation is the goal of identifying simple function
classes that are “hard to learn.” Indeed, the conjectures from [15] imply hardness
of learning results for low complexity classes such as (depth-2) ACC0 circuits,
sparse Z3 polynomials, or width-3 branching programs. These conjectures are
also of interest outside the field of cryptography [27,28,36,49], which further
motivates cryptanalysis efforts.

Remaining challenges. The initial works of [15,29] have only scratched the
surface of the kind of questions one may ask.

• What about simpler symmetric primitives such as OWFs and PRGs? MPC
protocols for these primitives are motivated by many applications, includ-
ing Picnic-style post-quantum digital signatures [25,50] and lightweight dis-
tributed key generation for function secret sharing [22].

• Are there similar candidates where the input, output, and key are all over
Z2? This too is motivated by natural applications.

• Can the MPC protocols given in [15] be further improved? Can the prepro-
cessing be realized at a low amortized cost? This motivates an additional
design criterion: “PCG-friendliness,” leveraging recent advances in pseudo-
random correlation generators [18,19,64].

1.1 Our Contributions

1.1.1 New Candidate Constructions
We introduce several candidate constructions for OWF, PRG, and (weak) PRF,
all based on alternation between linear maps over Z2 and Z3.

• Candidate OWF. We expand on the general structure of the (2, 3)-wPRF
candidate from [15] to construct a candidate OWF. Recall that the wPRF
candidate computes B(Kx) where K is the secret key (over Z2) and B is
a compressive Z3 linear map. For our (2, 3)-OWF candidate, we replace the
secret key matrix with another randomly sampled (expanding) public matrix
A. Specifically, given A ∈ Z

m×n
2 and B ∈ Z

t×m
3 where m ≥ n, t, our OWF

candidate is defined as F(x) = B(Ax) where Ax is first reinterpreted as a
0/1 vector over Z3.
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• Candidate wPRF. The wPRF candidate from [15] has inputs over Z2 but
outputs over Z3. This is not suitable for applications in which the output
should be further processed using secret sharing over Z2. To this end, we
propose an “LPN-style” wPRF candidate where both the input and output
are over Z2. Specifically, given a secret key matrix K ∈ Z

m×n
2 and a public

compressive map B ∈ Z
t×m
2 , for an input x ∈ Z

n
2 , our LPN-wPRF candidate

first computes an intermediate vector

w = [(Kx mod 2) + (Kx mod 3) mod 2] mod 2

where for Kx mod 3, both K and x are first reinterpreted over Z3. Then, the
candidate is defined as FK(x) = Bw. Intuitively, each intermediate vector
bit can be thought of as a deterministic Learning-Parity-with-Noise (LPN)
instance with a noise rate of 1/3. The noise is deterministically generated and
is dependent on the input x and a specific column of K. A similar candidate
was considered in [15] (as their alternate candidate) but it only outputs a
single bit (it uses K ∈ Z

1×n
2 and outputs the intermediate vector directly).

Our candidate generalizes this to multiple output bits. But more importantly,
it also does not output the intermediate vector directly and instead applies
an additional compressive linear map (using B). We show how this allows our
candidate to resist standard attacks on LPN.

• Candidate PRG. We also propose a candidate length-doubling PRG that
is similar to our LPN-wPRF. Specifically, we use a public matrix A ∈ Z

m×n
2

instead of the key for the first linear map. It follows the same structure as
the LPN-wPRF, by first expanding the input to the intermediate vector w
and then applying a compressive Z2 linear map B. Choosing the length m
of the intermediate vector to be large enough, we can ensure that the final
compressive map still results in an output of size t = 2n.

1.1.2 Cryptanalysis and Implications on Parameter Choices
Algebraic attacks. Given that the constructions heavily mix linear operations
over Z2 and Z3, we will rely on the arguments of Boneh et al. [15], and conjecture
that algebraic attacks do not threaten their security. Instead, we will focus on
combinatorial attacks and statistical tests.

OWF. Our most interesting attack on the candidate OWF reduces the inversion
problem to a particular type of subset-sum problem, where addition simultane-
ously involves operations over Z2 and Z3. Thus, we can invert the OWF by
applying a variant of recent subset-sum algorithms based on the representation
technique [9,16,42]. Compared to a standard meet-in-the-middle approach, this
attack forced us to increase the parameters by about 30%.

wPRF and PRG constructions. Our candidate constructions are related
to the ones proposed in [15] and recently analyzed in [29]. The latter work
describes distinguishing attacks on the constructions of [15] with asymptotically
exponential (yet, concretely significant) complexity. Specifically, the attack on
the (2, 3)-wPRF candidate of [15] exploits an interaction between the structure
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of the circulant matrix K and the choice of B (which is fixed to the vector 1). On
the other hand, our construction uses a random choice of B which, as we show,
is unlikely to result in such an interaction. The weakness in the “LPN-style”
wPRF candidate of [15] was due to conditional correlation between the key and
the output. We fix it by applying an additional compressive linear map.

It is important to emphasize that [29] analyzed constructions where the out-
put length is t = 1, while our constructions use t � 1. Although longer out-
put gives better performance, it may also degrade security. For example, at the
extreme end, if t = m the scheme is trivially broken in polynomial time by
linear algebra, forcing t � m. Our security analysis shows that our candidate
constructions resist such simple linear algebra attacks. Yet, the main part of
security analysis is focused on statistical distinguishers that exploit a bias in the
output. The strength of such a bias depends on the minimal distance of the code
generated by the rows of the t × m matrix B (the second linear operation of
the construction). As this code is generated at random, we use the probabilistic
method (in a similar way it is used to obtain the Gilbert–Varshamov bound for
linear codes) to argue that its minimal distance is sufficiently large, except with
negligible probability. Note that larger t results in a smaller minimal distance.

We place a concrete limit of 240 on the number of samples generated by our
wPRF candidates with any particular key. This reduces the probability of bad
events such as collisions (where the same input to the wPRF is selected twice)
and undesired interactions between the input and the structured circulant matrix
K. More details about such inputs are given in the security analysis.

Concrete parameters. In Table 1, we summarize the recommended concrete
parameters for our constructions with the goal of obtaining s-bit security. For
the (2, 3)-OWF and (2, 3)-wPRF constructions we give both aggressive and more
conservative parameter sets. Note that the OWF and PRG use the minimal secret
input (and output) sizes, while for wPRFs we use a larger secret. This is a result
of different tradeoffs between security and performance. For example, we could
have set n = s for the (2, 3)-wPRF, but cryptanalysis would force setting m to
be much larger than 2s and result in less efficient protocols. A lower bound on
m in case n = s is deduced by a subset-sum attack which resembles the one on
the (2, 3)-OWF construction. Yet, optimizations that exploit the additional data
available may be possible. While we do not expect security to degrade sharply
in this case, we leave the concrete analysis for this parameter setting to future
work. On the other hand, setting n = 2s for the (2, 3)-OWF would also require
doubling the size of the output,2 once again, degrading efficiency.

Our constructions are new and it is not unlikely that some will be broken and
require updating the parameter sets (even the “conservative” ones). Conversely,
if for some of our constructions the more aggressive parameter sets turn out to
resist future analysis, we would gain further confidence in their security.

One of the main questions we leave open is how to better exploit the struc-
tured matrices used in our constructions in cryptanalysis. This question is partic-
2 Otherwise, each output would have 2s preimages and there would be no security

advantage.
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Table 1. Concrete parameters for s-bit security.

Construction Parameters (n, m, t) Comment

(2, 3)-OWF (s, 3.13s, s/ log 3) aggressive

(s, 3.53s, s/ log 3) conservative

(2, 3)-wPRF (2s, 2s, s/ log 3) aggressive

(2.5s, 2.5s, s/ log 3) conservative

LPN-PRG (s, 3s, 2s)

LPN-wPRF (2s, 2s, s)

ularly interesting for the wPRF constructions where the attacker obtains several
samples, and can perhaps utilize the structured matrices to combine their infor-
mation in more efficient attacks.

1.1.3 Distributed Protocols and Optimized Implementations
As discussed above, our design criteria are guided by the goal of supporting effi-
cient MPC protocols for distributed evaluation. We consider semi-honest proto-
cols in several standard MPC models, either with or without preprocessing.

Efficient protocols. For our wPRF candidates, we present protocols in several
different settings: (1) 2PC with preprocessing, where the input, key, and output
are all secret-shared between the parties; (2) 3PC with one passive corruption,
and (3) an OPRF-style 2PC with preprocessing, where one party holds the key
and the other holds the input. For the (2, 3)-wPRF candidate, our 2PC protocols
perform 1.5-5x better than the protocols from [15] for the same functionality,
in both online communication and preprocessing size. For instance, in the 2PC
setting, our protocol requires 2 rounds, 1536 bits of online communication, and
662 bits of preprocessing (i.e., correlated randomness). In contrast, the protocol
from [15] for the same setting requires 4 rounds, roughly 2600 bits of online
communication and roughly 3500 bits of preprocessing. Similarly, our OPRF
protocol requires 2 rounds and 641 bits of online communication while the one
from [15] requires 4 rounds and roughly 1800 bits of online communication.

A key ingredient for the efficiency improvement is a subprotocol for modulus
conversion gates that switch between shares in Z2 and Z3 using circuit-dependent
correlations. While [15] used OT in their protocols, we use these modulus conver-
sion gates for better efficiency. We note that the same blueprint can also be used
to construct efficient distributed protocols for other variants of our constructions.

Distributing the dealer at a low amortized cost. The 2PC protocols pre-
sented in [15] rely on trusted preprocessing to generate two kinds of correlated
randomness. The first kind, used to securely multiply the input and the key
matrix, can be thought of as a standard multiplication triple [8] over a ring.
(Using a circulant matrix for the key, this involves a single multiplication in a
ring of polynomials over Z2.) It was also pointed out that using efficient pseu-
dorandom correlation generators (PCGs) for vector oblivious-linear evaluation
(VOLE) correlations [18,19,59], this kind of correlation can be generated at
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a low amortized cost when the same key is reused with multiple inputs. (In
fact, using more recent PCGs for independent OLE correlations [21] the latter
restriction can be removed, albeit at a considerably higher cost.) The second
kind of correlated randomness used in [15] is a standard oblivious transfer (OT)
correlation, which can also be efficiently generated using either classical [43]
or “silent” [19,64] OT extension. The latter techniques use a PCG for OT to
enable fast local generation of many random instances of OT from a pair of short,
correlated seeds. However, the main source of improvement over the protocols
from [15] is our use of the modulus conversion correlations described above. We
show how to generate both kinds of correlations from a standard OT correlation
using only a single message, where in the Z2 → Z3 case the (amortized) commu-
nication is < 1.38 bits per instance, and in the (less commonly used) Z3 → Z2

case it is 6 bits per instance. This means that the amortized cost of distributing
the dealer in our protocols is typically much lower than the cost of the online
protocol that consumes the correlated randomness.

1.1.4 Applications
MPC protocols for the symmetric primitives we consider in this work are use-
ful for a variety of cryptographic applications. Here we discuss some of these
motivating applications.

Digital signatures. Using the MPC-friendliness of candidates, we can effi-
ciently prove knowledge of an input (e.g., of an OWF input, wPRF key, or
PRG seed), using proof protocols based on the MPC-in-the-head paradigm [45].
This is the approach taken by many recently designed post-quantum signature
schemes [7,11,12,25,51,58], as it only requires a secure OWF and hash function,
and has opened up the range of hardness assumptions possible for public-key
signatures. We present the first optimized public-key signature scheme based on
alternating moduli cryptography.

We provide a detailed description of a signature scheme using our OWF can-
didate, as a modification to the Picnic algorithm [25,50,51,61], a third round
candidate in the NIST Post-Quantum Cryptography Standardization Process.3

We replace the OWF used in Picnic (an instance of the LowMC block cipher [4],
which is assumed to be a OWF), update the MPC protocol accordingly, and
quantify the resulting signature sizes. Using our conservative (2, 3)-OWF param-
eters, we find that signatures sizes are slightly shorter, with signatures at the
128-bit security level (64-bit quantum) having size ranging from 10.3–13.3KB
(depending on MPC parameter choices). This shows that OWFs based on alter-
nating moduli are competitive with block-cipher based designs, with potential
for future improvements, and we can choose a OWF with an (arguably) simpler
mathematical description, without sacrificing performance.

Oblivious pseudorandom functions. We construct an OPRF protocol that
computes our (2, 3)-wPRF candidate in an oblivious setting. In the multi-input
setting (where the key is used for multiple evaluations), our protocol requires
3 See https://csrc.nist.gov/projects/post-quantum-cryptography/.

https://csrc.nist.gov/projects/post-quantum-cryptography/
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only 2 rounds and 641 bits of online communication. Compared to a standard
DDH-based OPRF [46,47], which require 512 bits of communication for 128-bit
security, our protocol requires slightly higher communication but has a much
faster online computation, which typically forms the efficiency bottleneck. In
particular, our implementation shows that our OPRF protocol is faster than a
single scalar multiplication over the Curve25519 elliptic curve. Consequently, we
expect our protocol to be faster than a number of OPRF protocols [37,48] that
are based on number theoretic PRFs. Note that, unlike OPRFs based on number
theoretic assumptions, ours provide plausible post-quantum security. Motivated
by the latter goal, recent works [41,60] construct an OPRF protocol from the
Legendre PRF [31]. For 128-bit security and only a single output bit, the recent
protocol from [60] has online communication cost of 13KB, substantially higher
than ours (with 128 output bits), and with a higher computational cost.

Fully distributed wPRF. Unlike the OPRF setting, in which one party holds
the PRF key and another holds the input, there are settings in which both the
input and the key need to be distributed between two or more parties. In this
setting, most of the techniques for efficient OPRF protocols (including the DDH-
based protocols discussed above) do not apply. One motivating application for
fully distributed wPRF, already considered in [15,44], is a distributed implemen-
tation of searchable symmetric encryption (SSE) service. In distributed SSE, a
client can obtain a decryption key of database entries matching a chosen keyword
w by interacting with two or more servers, while keeping the keyword w secret.
To this end, the client secret-shares w between the servers, who also hold shares
of a wPRF key. Following interaction between the servers, the servers reveal the
wPRF output to the client. This output can be used by the client to decrypt
database entries associated with keyword w.

Secret-output wPRF. Our (2, 3)-wPRF candidate is well suited for applica-
tions that have privately held secret-shared inputs but require a public output
that is delivered in the clear to one or more parties. However, it is insufficient
for applications in which the output of the function needs to itself be kept secret
and reused as the input to a subsequent PRF invocation.

One such common application arises in the context of deterministic signa-
tures, which consists of generating a nonce by applying a PRF to the private key.
In Schnorr and ECDSA, the nonce and a corresponding signature are sufficient
to recover the private key. Thus, the nonce must also be distributed using the
same secret-shared structure as the key. Distributed generation of determinis-
tic signatures is once application that has both private input (the private key)
and output (the nonce). Another example arises in the context of key derivation
functions (KDFs), especially in a hierarchical structure, where the output of the
PRF may need to be used as an input (or even a key) for another evaluation of
the PRF. A related application arises in the context of Bitcoin’s BIP-32 deriva-
tion [57]. Motivated by such applications, we propose our LPN-wPRF candidate
which has both its input and output over Z2.

Distributed FSS key generation. Function secret sharing (FSS) [22] is a use-
ful tool for a variety of cryptographic applications; see [17,21] for recent examples.
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In many of these applications, two or more parties need to securely generate FSS
keys, which in turn reduces to secure evaluation of a length-doubling PRG. Our
LPN-style PRG candidate serves as a good basis for such protocols. In contrast to
the black-box FSS key generation protocol of Doerner and shelat [35], its compu-
tational cost only scales logarithmically with the domain size. The optimal conjec-
tured seed length of our PRG candidate ensures that FSS the key size is optimal
as well.

1.1.5 Future Directions
Our work leaves several interesting avenues for further work. One direction is
designing MPC protocols with malicious security while minimizing the extra
cost. Recent techniques from [14,24] can be helpful towards this goal. Another
direction is designing and analyzing other symmetric primitives based on the
alternating moduli paradigm. Relevant examples include hash functions, strong
PRFs, and block ciphers. In fact, a strong PRF candidate was already suggested
in [15], but analyzing its concrete security is left for future work.

2 Preliminaries

Notation. We start with some basic notation. For a positive integer k, [k]
denotes the set {1, . . . , k}. Zp denotes the ring of integers modulo p. We use
bold uppercase letters (e.g., A,K) to denote matrices. We use 0l and 1l to
denote the all zeros and the all ones vector respectively (of length l), and drop l
when sufficiently clear. For a vector x, by x mod p, we mean that each element
in x is taken modulo p. We use x

$←− X to denote sampling uniformly at random
a set X . Funcs[X ,Y] denotes the set of all functions from X to Y. a ‖ b denotes
concatenating the strings a and b.

For distributed protocols with N parties, we use P = {P1, . . . ,PN} to denote
the set of parties. For a value x in group G, we use �x� to denote an additive
sharing of x (in G) among the protocol parties, and �x�(i) to denote the share
of the ith party. When clear from context (e.g., a local protocol for Pi), we will
often drop the superscript. When G

′ = G
l is a product group (e.g., Z

l
p), for

x ∈ G
′, we may also say that �x� is a sharing over G, similar to the standard

practice of calling x a vector over G.
For a v ∈ G, we use ṽ to denote a random mask sampled from the same group,

and v̂ = v + ṽ (where + is the group operation for G) to denote v masked by ṽ.
We use the + operator quite liberally and unless specified, it denotes the group
operation (e.g., component-wise addition mod p for Z

l
p) for the summands.

We now briefly recall standard symmetric primitives.

Definition 1 (Weak Pseudorandom Function (wPRF)). Let K =
{Kλ}λ∈N, X = {Xλ}λ∈N, and Y = {Yλ}λ∈N be ensembles of finite sets indexed
by a security parameter λ. Consider an efficiently computable function family
{Fλ}λ∈N where each function is given by Fλ : Kλ × Xλ → Yλ. We say that
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{Fλ}λ∈N is an (l, t, ε)-weak pseudorandom function if for infinitely many λ ∈ N

and all adversaries A running in time at most t(λ), the following holds: taking

fλ
$←− Funcs[Xλ,Yλ], k

$←− Kλ, and x1, . . . , xl
$←− Xλ, we have that,

∣
∣
∣Pr

[

A
(

1λ, {xi,Fλ(k, xi)}i∈[l]

)]

− Pr
[

A
(

1λ, {xi, fλ(xi)}i∈[l]

)]∣
∣
∣ ≤ ε(λ).

Definition 2 (One-way Function (OWF)). Let X = {Xλ}λ∈N, and Y =
{Yλ}λ∈N be ensembles of finite sets indexed by a security parameter λ. Consider
an efficiently computable function family {Fλ}λ∈N where each function is given by
Fλ : Xλ → Yλ. We say that {Fλ}λ∈N is a (t, ε)-one-way function if for infinitely
many λ ∈ N and all adversaries A running in time at most t(λ), we have that,

Pr
[

x
$←− X ; y ← Fλ(x) : Fλ(A(1|x|, y)) = y

]

≤ ε(λ)

Definition 3 (Pseudorandom Generator (PRG)). Let X = {Xλ}λ∈N, and
Y = {Yλ}λ∈N be ensembles of finite sets indexed by a security parameter λ.
Consider an efficiently computable function family {Fλ}λ∈N where each function
is given by Fλ : Xλ → Yλ. We say that {Fλ}λ∈N is an (l, t, ε)-pseudorandom
generator if F is length-expanding (i.e., ∀λ,∀x ∈ Xλ, |x| < |Fλ(x)|) and for
infinitely many λ ∈ N and all adversaries A running in time at most t(λ), the

following holds: taking x1, . . . , xl
$←− Xλ y1, . . . , yl

$←− Yλ, we have that,
∣
∣
∣Pr

[

A
(

1λ, {Fλ(xi)}i∈[l]

)]

− Pr
[

A
(

1λ, {yi}i∈[l]

)]∣
∣
∣ ≤ ε(λ).

3 Candidate Constructions

In this section, we introduce our suite of candidate constructions for a number
of cryptographic primitives: weak pseudorandom function families (wPRF), one-
way functions (OWF), and pseudorandom generators (PRG). Our constructions
are all based on alternating mod-2 and mod-3 linear maps. Given the wide range
of candidates we propose, we find it useful to have a clean and unified way to
describe the candidate constructions in a way that will later (in Sect. 5) support
a unified design of matching MPC protocols.

Circuit gates. We make use of five types of basic operations, or “gates,” which
we detail below. All our constructions can be succinctly represented using just
these gates. We denote by Gates the set comprising of these gates.

• Mod-p Public Linear Gate. For a prime p, given a public matrix A ∈ Z
s×l
p ,

the gate LinAp (·) takes as input x ∈ Z
l
p and outputs y = Ax ∈ Z

s
p.

• Mod-p Addition Gate. For a prime p, the gate Addp(·, ·) takes input x, x′ ∈
Z

l
p and outputs y = x + x′ mod p.

• Mod-p Bilinear Gate. For a prime p, and positive integers s and l, the gate
BLs,l

p (·, ·) takes as input a matrix K ∈ Z
s×l
p and a vector x ∈ Z

l
p and outputs

y = Kx ∈ Z
s
p. When clear from context, we will drop the superscript and

simply write BLp(K, x).
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Fig. 1. Pictorial representations of the circuit gates. For the linear and bilinear gates,
non-compressive means that the length of the output vector is greater than or equal
to the length of the input vector, while compressive means that the output vector is
smaller than the input vector. Additionally, for p = 2, the gates are shaded in violet,
and for p = 3, the gates contain diagonal orange lines.

• Z2 → Z3 conversion. For a positive integer l, the gate Convertl(2,3)(·) takes
as input a vector x ∈ Z

l
2 and returns its equivalent representation x∗ in

Z
l
3. When clear from context, we will drop the superscript and simply write

Convert(2,3)(x).
• Z3 → Z2 conversion. For a positive integer l, the gate Convertl(3,2)(·) takes

as input a vector x ∈ Z
l
3 and computes its map x∗ in Z

l
2. For this, each Z3

element in x is computed modulo 2 to get the corresponding Z2 element in the
output x∗. Specifically, each 0 and 2 are mapped to 0 while each 1 is mapped
to 1. When clear from context, we will drop the superscript and simply write
Convert(3,2)(x).

The Lin and the BL gates will behave very differently in the context of distributed
protocols. For Lin, the matrix A will be publicly available to all parties, while
the input x will be secret shared. On the other hand, for BL, both the key K
and the input x will be secret shared. We call this gate bilinear because its
output is linear in both of its (secret-shared) inputs. Also note that although
the Convert(2,3) gate is effectively a no-op in a centralized evaluation, in the
distributed setting, the gate will be used to convert an additive sharing over Z2

to an additive sharing over Z3. Figure 1 pictorially represents each circuit gate.

Construction styles. The candidate constructions we introduce follow one of
two broad styles which we detail below. A wPRF construction for the first style
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(2, 3)-constructions

Parameters. Let λ be the security parameter and define parameters n, m, t as
functions of λ such that m ≥ n, m ≥ t.
Public values. Let A ∈ Z

m×n
2 and B ∈ Z

t×m
3 be fixed public matrices chosen

uniformly at random. The matrices can also be chosen to be full-rank circulant
matrices.

Construction 1 (Mod-2/Mod-3 wPRF Candidate [15]) The (2, 3)-wPRF
candidate is a family of functions Fλ : Zm×n

2 ×Z
n
2 → Z

t
3 with key-space Kλ = Z

m×n
2 ,

input space Xλ = Z
n
2 and output space Yλ = Z

t
3. For a key K ∈ Kλ, we define

FK(x) = Fλ(K, x) as follows:

1. On input x ∈ Z
n
2 , first compute w = BL2(K, x) = Kx.

2. Output y = LinB3 Convert(2,3)(w)
)
. That is, view w as a vector over Z3 and

then output y = Bw.

Construction 2 (Mod-2/Mod-3 OWF Candidate) The (2, 3)-OWF candi-
date is a function Fλ : Z

n
2 → Z

t
3 with input space Xλ = Z

n
2 and output space

Yλ = Z
t
3. We define F(x) = Fλ(x) as follows:

1. On input x ∈ Z
n
2 , first compute w = LinA2 (x) = Ax.

2. Output y = LinB3 Convert(2,3)(w)
)
. That is, view w as a vector over Z3 and

then output y = Bw.

K

x

B y

(2, 3)-wPRF

Ax B y

(2, 3)-OWF

Fig. 2. (2, 3)-constructions

was first proposed by [15]. Here, we also propose a suite of symmetric primitives
(e.g., OWFs, PRGs) with the same basic structure.

• (p, q)-constructions. For distinct primes p, q, the (p, q)-constructions have
the following structure: On an input x over Zp, first a linear mod p map is
applied, followed by a linear mod q map. Note that after the mod p map,
the input is first reinterpreted as a vector over Zq. For unkeyed primitives
(e.g., OWF), both maps are public, while for keyed primitives (e.g., wPRF),
the key is used for the first linear map. The construction is parameterized by
positive integers n,m, t (functions of the security parameter λ) denoting the
length of the input vector (over Zp), the length of the intermediate vector,
and the length of the output vector (over Zq) respectively. The two linear
maps can be represented by matrices A ∈ Z

m×n
p and B ∈ Z

t×m
q . For keyed

primitives, the key K ∈ Z
m×n
p will be used instead of A.

Concretely, given an input x ∈ Z
n
p , the construction output is of the

form y = Bw ∈ Z
t
q where w = Ax is first viewed over Zq. In this paper,

we will analyze this style of construction for (p, q) = (2, 3) and (3, 2) since
these are arguably the simplest constructions that employ linear maps over
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LPN-style-constructions

Parameters. n, m, t are functions of the security parameter λ.
Public values. Let A ∈ Z

m×n
2 and B ∈ Z

t×m
2 be fixed public matrices chosen

uniformly at random. Alternatively, the matrices can also be chosen to be full-rank
circulant matrices.

Construction 3 (LPN-wPRF Candidate) The LPN-wPRF candidate is a
family of functions Fλ : Z

m×n
2 × Z

n
2 → Z

t
2 with key-space Kλ = Z

m×n
2 , in-

put space Xλ = Z
n
2 and output space Yλ = Z

t
2. For a key K ∈ Kλ, we define

FK(x) = Fλ(K, x) as follows:

1. On input x ∈ Z
n
2 , first compute u = BL2(K, x) = Kx.

2. Let K∗ = Convert(2,3)(K) and x∗ = Convert(2,3)(x). Compute v =
Convert(3,2)(BL3(K∗, x∗)) = K∗x∗ mod 2. That is, compute v = (Kx mod
3) mod 2 where both K and x are first reinterpreted over Z3.

3. Compute w = u ⊕ v and output y = LinB2 (w).

Construction 4 (LPN-PRG Candidate) The LPN-PRG is a length-doubling
PRG candidate defined as the function Fλ : Zn

2 → Z
2n
2 with input space Xλ = Z

n
2

and output space Yλ = Z
2n
2 . For this construction, we consider the parameters

n, m, t with m ≥ n, t and t = 2n. We define F(x) = Fλ as follows:

1. On input x ∈ Z
n
2 , first compute u = Lin2(A, x) = Ax.

2. Let x∗ = Convert(2,3)(x). Compute v = Convert(3,2)(LinA3 (x∗)) = (Ax∗) mod 2.
That is, compute (Ax mod 3) mod 2 where both A and x are first reinterpreted
over Z3.

3. Compute w = u ⊕ v and output y = LinB2 (w).

K

x

K

x

LPN-wPRF

B y

Ax

x A

B y

LPN-PRG

Fig. 3. LPN-style-constructions

alternate moduli. We find that the (2, 3)-constructions outperform the (3, 2)-
constructions and we will primarily use the former style for our constructions.
We will use (3, 2)-conversion gates in primitives where both the input and the
output are shared over Z2.

• LPN-style-constructions. These constructions have the following general
structure: On input x over Z2, first a linear mod 2 map given by the matrix A
is applied to obtain u. Concurrently, the same linear map is also applied over
Z3 (where both x and A are now reinterpreted over Z3) and then reduced
modulo 2 to obtain v. The sum w = u ⊕ v is then multiplied by a second
linear map (given by B) over Z2. The map B is always public, while for
keyed primitives, the key K is used instead of A.
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The construction is parameterized by positive integers n,m, t (as functions of
the security parameter λ) denoting the size of the input vector, the intermediate
vector(s), and the output vector (all over Zp). Concretely, given A ∈ Z

m×n
2 and

a public B ∈ Z
t×m
2 , for an input x ∈ Z

n
2 , the construction first computes the

intermediate vector:

w = [(Ax mod 2) + (Ax mod 3) mod 2] mod 2.

The output y is then computed as y = Bw mod 2. The upshot of this style is
that the input and the output are both over Z2. Intuitively, each intermediate
vector bit can be thought of as a deterministic Learning-Parity-with-Noise (LPN)
instance with a noise rate of 1/3. The noise is deterministically generated and
is dependent on the input x and a specific column of A. The noise for the ith

instance will be 1 if and only if 〈Ai, x〉 = 1.
A similar construction was considered in [15] but only for a single-bit output.

Specifically, they considered A ∈ Z
1×n
2 and output the single bit w. In our con-

struction, we additionally apply a compressive linear map (using B) to get the final
output. This is done to resist standard attacks on LPN (see Sect. 4 for details).

Winning candidates. Through cryptanalysis and considering the cost for each
candidate (See Sects. 4 and 5 for details), we find that some of our candidates
are more suited (i.e., “win”) for a particular setting. Specifically, out of the
candidates we consider, we find the following: (2, 3)-wPRF and (2, 3)-OWF are
the best wPRF/OWF candidates with no restriction on the input/output space.
LPN-wPRF is the best wPRF candidate when the input and output space are
over Z2. LPN-PRG is the best PRG candidate. We provide formal and pictorial
descriptions of our winning candidates in Figs. 2 and 3.

Structured keys. The constructions we described previously use general matri-
ces in, e.g., Zm×n

p . For keyed primitives, this results in a key size of mn elements
of Zp which is expensive to communicate within distributed protocols. There-
fore, we will instead take advantage of structured matrices whose representation
is only linear in n and m. Since both n and m are O(λ) in our constructions,
this reduces the communication complexity from quadratic to linear in λ. Fur-
thermore, some structured matrices also benefit from asymptotically faster algo-
rithms (e.g., FFT-based) for matrix multiplications and matrix-vector products.
We briefly describe the types of structured matrices we utilize below. For this,
consider a matrix M ∈ Z

m×n
p .

• (Toeplitz matrices). A Toeplitz matrix, or a diagonal-constant matrix, is a
matrix where each diagonal from left to right is constant. Specifically, M is
Toeplitz if for all i ∈ [m] and j ∈ [n], it holds that Mi,j = Mi+1,j+1 where
Mi,j denotes the element in row i and column j of M. This means that a
Toeplitz matrix can be represented by a single column and a single row, i.e.,
with n + m − 1 field elements.

• (Generalized circulant matrices). A generalized circulant matrix is a matrix
where each row after the first, is a cyclic rotation of the first row. Specifically,
if the first row of generalized circulant matrix M is the vector (a1, . . . , an),
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then the mth row of M will be given by the same vector cyclically rotated m−1
times. In general, m �= n, but the special case of m = n is called a (square)
circulant matrix. Unless specified, for brevity, we will often use the term
circulant to denote either generalized circulant matrices or the more specific
(square) circulant matrices. This will not matter for our setting, since both
can be efficiently represented using just n field elements (given the dimension
of the matrix).

We will usually instantiate our constructions using generalized circulant
matrices to take advantage of their efficient representations. However, care must
be taken while adding structure since this could potentially damage the secu-
rity of a construction. Our cryptanalysis in Sect. 4 will therefore consider our
constructions with structured matrices.

4 Cryptanalysis

We give a summary of cryptanalysis of our constructions, focusing on the main
attacks that influence our parameters and defer details to the full version [34].

4.1 Summary of Security Evaluation of the (2, 3)-OWF

The attacker is given ŷ ∈ Z
t
3 and tries to invert it. Our most interesting attack

on the (2, 3)-OWF is based on a reduction to subset-sum.

Reduction to subset-sum. For a vector w ∈ Z
m
2 , there is an (m − n) × m

(parity check) matrix P such that there exists x ∈ Z
n
2 for which Ax = w if and

only if Pw = 0. Assume that ŷ is the output of the (2, 3)-OWF on x ∈ Z
n
2 , and

let w = Ax. Then, w satisfies the conditions Pw = 0 (over Z2) and Bw = ŷ
(over Z3). We attempt to find such w by a reduction to subset-sum, as detailed
below. Suppose we find a set J ⊆ [m] such that

⎛

⎝
∑

j∈J

Pej mod 2,
∑

j∈J

Bej mod 3

⎞

⎠ = (0, ŷ)

where ei ∈ {0, 1}m is the i’th unit vector. Then, the preimage x can be computed
by solving the linear equation system Ax =

∑

j∈J ej mod 2.
Thus, we have reduced the problem to subset-sum with m binary variables

(ε1, . . . , εm) ∈ {0, 1}m, where we associate εi = 1 with (Pei,Bei) ∈ Z
m−n
2 × Z

t
3,

and define the target as (0, ŷ) ∈ Z
m−n
2 ×Z

t
3. We further note that the parity check

matrix P defines the linear code spanned by the columns of A. Therefore, the
reduction is bi-directional, implying that inverting the (2, 3)-OWF is equivalent
to solving this special type of subset-sum problem.

Solving the subset-sum problem. We can now apply the advanced subset-
sum algorithm by Howgrave-Graham and Joux [42] and the more recent
ones [9,16], which are based on the representation technique. These algorithms
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were mostly designed to solve subset-sum problems over the integers. Below, we
describe the main ideas of these algorithms and explain how to apply them to
the special subset-sum problem we consider.

In the subset-sum problem over the integers, we are given m positive integers
(a1, a2, . . . , am) and a positive integer S such that S =

∑m
i=1 εiai for εi ∈ {0, 1}.

The goal is to recover the unknown coefficients εi. A standard meet-in-the-middle
approach for solving the problem has time complexity of about 2m/2. The rep-
resentation technique gives an improved algorithm as briefly summarized below.

Assume that a solution to the subset-sum problem is chosen uniformly from
{0, 1}m and the parameters are set such that the instance has about one solution on
average. Effectively, this means that the density of the problem d = n

logmax({ai}m
i=1)

is set to 1. The main idea of the basic algorithm of Howgrave-Graham and Joux [42]
is to split the problem into twoparts bywritingS = σ1+σ2, whereσ1 =

∑m
i=1 αiai,

σ2 =
∑m

i=1 βiai and (αi, βi) ∈ {(0, 0), (0, 1), (1, 0)}. Thus, εi = αi + βi for each
i is a solution to the problem. Note that each coefficient εi with value 1 can be
split into (0, 1), or (1, 0). Thus, assuming that the solution has Hamming weight4

of m/2 (which occurs with probability Ω(1/
√

m)), it has 2m/2 different represen-
tations. Consequently, we may focus on finding only one of these representations
by solving two subset-sum problems of Hamming weight m/4. Focusing on a sin-
gle representation of the solution beats the standard meet-in-the-middle approach
which requires time 2m/2.

Adaptation of previous subset-sum algorithms. The algorithm of [42]
can be easily adapted to our specialized subset-sum problem (although it
is not defined over the integers). Moreover the improved algorithm of [9]
considers additional representations of the solution by allowing αi and βi

to also take the value −1 (implying that εi = 0 can be decomposed into
(αi, βi) ∈ {(0, 0), (−1, 1), (1,−1)}). In our case, we associate αi = −1 with
(P(−ei),B(−ei)) = (Pei, 2 · Bei) ∈ Z

m−n
2 × Z

t
3. Finally, the recent improved

algorithm of [16] considers representations over {−1, 0, 1, 2} and we can adapt
this to our setting in a similar way. In terms of complexity, ignoring polynomial
factors in m, the attack of [42] runs in time 20.337m and uses 20.256m mem-
ory, while the complexity of attack of [16] requires 20.283m time and memory.
Thus, conservatively ignoring polynomial factors, for s-bit security we require
0.283m ≥ s, or m ≥ 3.53s.

4.2 Summary of Security Evaluation of the (2, 3)-wPRF

For the (2, 3)-wPRF, the attacker obtains several samples (x1,B, y1), . . . , (x2r ,
B, y2r ) and tries to mount a key recovery and/or a distinguishing attack. We
restrict the number of samples produced with a single secret to 240. We set the
parameters such that n− log 3 · t ≥ s, and thus there are 2s keys on average that
are consistent with a single sample. Therefore, any key recovery attack faster

4 In general, one may guess the Hamming weight of the solution and repeat the algo-
rithm accordingly a polynomial number of times.
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than 2s will use at least two samples. Particularly, the subset-sum attack can
also be applied to the (2, 3)-wPRF, but it is not clear how to use it efficiently
on more than one sample (without strong relations between them).

The most important distinguishing attack looks for a bias in a linear com-
bination of the output over Z3. Given a single sample (x,B, y), assume there
exist v ∈ Z

m
3 and u ∈ Z

t
3 such that uB = v and the Hamming weight of v is

	. As y = Bw mod 3, the attacker computes uy mod 3 = vw mod 3 and thus
obtains the value of a linear combination mod 3 of 	 entries of w ∈ {0, 1}m.
Since w ∈ Z

m
2 , this linear combination is biased, and the strength of the bias

depends on how small 	 is. The bias can be amplified using several samples. Con-
sequently, we require that the rows of B do not span a vector of low Hamming
weight. This analysis is probabilistic and leads to a lower bound on m.

Another important attack we consider exploits the fact that K is circulant
and preserves symmetric properties of the input x (e.g., the two halves of x are
equal). This attack imposes a lower bound on n so that such a symmetric vector
is not found in the data, except with negligible probability. We leave it as an
open problem to extend this basic attack.

Overall, we set n = m = 2s and t = s/ log 3. These are somewhat aggressive
parameters as the security margin against the above attacks in rather narrow.
A choice of n = m = 2.5s is more conservative.

4.3 Summary of Security Evaluation of the LPN-PRG

The attacker is given a single sample A,B, y and tries to mount a key recovery
and/or a distinguishing attack. The construction differs from the alternative
wPRF construction from [15] in two ways. The first transformation generates
t = 2n samples using a public matrix. Similarly to [15], each sample can be
viewed as an LPN sample, i.e., a noisy linear equation over Z2 in the bits of
the seed (although the noise is generated deterministically). However, in [15]
A is a random matrix, whereas we use a (structured) Toeplitz matrix which
may weaken the construction. On the other hand, the second transformation B
“compresses” the samples and generally strengthens the construction.

A significant consideration in selecting the parameters is that the rows of B do
not span a low Hamming weight vector, imposing a lower bound on m. Thus, only
dense linear combinations of samples are available at the output, accumulating
the noise. This should defeat standard attacks against LPN. Overall, setting
n = s,m = 3s, t = 2s seems to provide sufficient resistance against the considered
attacks.

4.4 Summary of Security Evaluation of the LPN-wPRF

The attacks we consider against this primitive include a union of some of the
attacks considered for the LPN-PRG and for the (2, 3)-wPRF constructions with
some adjustments. Overall, we propose to set n = m = 2s and t = s.
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5 Distributed Protocols

We now describe efficient MPC protocols to compute our candidate constructions
in several useful distributed settings. First, in Sect. 5.1, we provide a technical
overview for our overall protocol design. Section 5.2 quantifies this approach by
providing concrete costs for distributed evaluations for our (2, 3)-wPRF construc-
tion. We also provide two novel OPRF protocols based on this PRF in Sect. 5.3.
In Sect. 5.4 we describe efficient protocols for distributing the generation of cor-
related randomness for modulus conversion gates. We defer the details of our
constructions and proofs as well as protocols for other settings (3PC without
preprocessing and public-input evaluation) to the full version [34].

5.1 Technical Overview

Recall that all our constructions can be succinctly represented using a set Gates
of five basic gates. We will view each construction as a circuit over the basis
Gates and follow the approach of [23,33] to securely evaluate such circuits using
circuit-dependent correlated randomness.

We begin with distributed protocols to evaluate each of the five gates.
Abstractly, the goal of a gate protocol is to convert shares of the inputs to shares
of the outputs (or shares of a masked output). To make our formalism cleaner, the
gate protocols, by themselves, will involve no communication. Instead, they can
additionally take in masked versions of the inputs, and possibly some additional
correlated randomness. When composing gate protocols, whenever a masked input
is needed, the parties will exchange their local shares to publicly reveal the masked
value. This choice also prevents redoing the same communication when the masked
value is already available from earlier gate evaluations.

5.1.1 Distributed Computation of Circuit Gates
We provide local protocols to compute the circuit gates we use. The description
of inputs (including shared correlated randomness) and outputs for each gate
protocol is also summarized in Table 2. Note that the protocols work for any
number of parties. Protocols for the Lin and Add gates directly follow from the
homomorphic properties of additive secret sharing, while the protocol for the
BL gate is a generalization of Beaver’s multiplication triples [8] (see, e.g., [23]).
Here, we briefly provide protocols for the new modulus conversion gates.

Z2 → Z3 conversion protocol π
(2,3)
Convert.

• Functionality: Abstractly, the goal of the Z2 → Z3 conversion protocol is
to convert a sharing of x over Z2 to a sharing of the same x∗ = x, but
now over Z3. For our purpose, the parties will be provided the masked input
x̂ = x⊕ x̃ (i.e., masking is over Z2) directly along with correlated randomness
that shares x̃ over Z3.

• Preprocessing: Each party is also provided with shares of the mask r = x̃
over Z3 as correlated randomness.
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Table 2. Summary of input, output, and randomness for circuit gate protocols.

Protocol
Public
Inputs

Shared
Inputs

Shared Correlated
Randomness

Output Shares
(over base group G)

πA,p
Lin A x - y = Ax (over Zp)

πp
Add x, x′ - y = x+ x′ (over Zp)

πp
BL K̂, x̂ - K̃, x̃, K̃x̃ y = Kx (over Zp)

π
(2,3)
Convert x̂ (over Z2) - r = x̃ (over Z3) x∗ = x (over Z3)

π
(3,2)
Convert x̂ (over Z3) - u = x̃ mod 2 (over Z2)

v = (x̃+ 1 mod 3) mod 2 (over Z2)

x∗ = x mod 2 (over Z2)

• Protocol details: For the protocol π
(2,3)
Convert(x̂ | r), each party proceeds as

follows:
�x∗�(i) = �x̂�(i) + �r�(i) + (x̂ � �r�(i)) mod 3

where � denotes the Hadamard (component-wise) product modulo 3.

Z3 → Z2 conversion protocol π
(3,2)
Convert.

• Functionality: Abstractly, the goal of the protocol is to convert a sharing of
x over Z3 to a sharing of x∗ = x mod 2 over Z2. For our purpose, the parties
will be provided with the masked input x̂ = x+ x̃ mod 3 directly, along with
correlated randomness over Z3 (see below).

• Preprocessing: Each party is also given shares (over Z2) of two vectors:
u = x̃ mod 2 and v = (x̃ + 1 mod 3) mod 2 as correlated randomness.

• Protocol details: For the protocol π
(3,2)
Convert(x̂ | u, v), each party computes its

share of x∗ as follows: For each position j ∈ [l], �x∗�(i)j = 1 − �u�
(i)
j − �v�

(i)
j ,

�v�
(i)
j , �u�

(i)
j when x̂j = 0, 1, 2 respectively.

In the full version, we show a generic technique to evaluate any construction
built using the previous five gates in a distributed fashion. We also analyze the
communication and preprocessing costs. Abstractly, communication will only be
needed before BL,Convert(2,3), and Convert(3,2) gates to reconstruct the masked
input. In terms of preprocessing, if PRG seeds are used for compression, then
the computation for the BLk,l

p ,Convertl(2,3), and Convertl(3,2) gates will require a
preprocessing of log2 p · k bits, log2 3 · l bits, and 2l bits respectively.

Concrete costs. In Table 3, we provide the concrete costs for our protocols
in different settings for our specific parameter choices. Preprocessing costs are
based on the usage of a trusted dealer. Later, in Sect. 5.4, we will show how to
distribute the dealer, through efficient protocols for generating the preprocessed
correlations we require from standard OT-correlations. This combined with fast
silent OT [20,64] makes the gap between the online cost mentioned in Table 3
and the total cost (including distributing the dealer) quite small. As a concrete
example, the (amortized) total cost for the (2, 3)-wPRF in the distributed 2PC
setting is only 23% higher than the online cost when a trusted dealer is used.
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Table 3. Concrete MPC costs for our winning candidate constructions in three set-
tings (Distributed 2PC (with preprocessing), 3PC, and Public-input 2PC) using our
proposed parameters. For the distributed 2PC and the public-input 2PC settings, we
provide the total online communication (bits, messages, rounds) and the preprocess-
ing required in bits (without compression, with compression). For the compressed size
of the preprocessing, we do not include values that can be reused (e.g., PRG seeds).
For the distributed 3PC setting, we provide the total online communication cost (bits,
messages, rounds) for our (2, 3)-constructions. The cost of the reusable PRG seeds is
not included.

Primitive Construction
Param.
(n, m, t)

Distributed 2PC
(with preprocessing)

Distributed
3PC

Public-Input 2PC
(with preprocessing)

Online
Comm.

Prepr.
Online
Comm.

Online
Comm.

Prepr.

wPRF (2, 3)-wPRF (256, 256, 81) (1536, 4, 2) (2348, 662) (1430, 4, 1) (512, 2, 1) (1324, 406)

LPN-wPRF (256, 256, 128) (2860, 6, 3) (4995, 1730) (1324, 4, 2) (3160, 918)

OWF (2, 3)-OWF (128, 452, 81) (904, 2, 1) (2337, 717) (2525, 4, 1) - -

PRG LPN-PRG (128, 512, 256) (1880, 4, 2) (4334, 1227) - -

5.2 Distributed Evaluation in the Preprocessing Model

We briefly sketch a 2-party protocol for (2, 3)-wPRF in the preprocessing model
and defer details to the full version. In this setting, two parties, denoted by P1

and P2 hold shares of both the key K and the input x. The goal is to compute
shares of the output y.

For this, we provide the parties with preprocessed tuples for the BL gate,
and the Convert2,3 gate. To evaluate an input, the two parties first mask their
shares of K and x, and exchange them to reveal K̂ and x̂. Both parties use πBL

to compute shares of the intermediate vector w. Then, they mask their shares
and exchange them to reveal ŵ. The parties can now use the π

(2,3)
Convert protocol

followed by a local multiplication by B to obtain shares of the output y. Note
that this protocol can easily be extrapolated for distributed N -party evaluation.

5.3 Oblivious Evaluation

While our distributed protocols can be used directly for semi-honest oblivious
PRF, or OPRF, evaluation in the preprocessing model, here we provide two pro-
tocols in this setting whose efficiency rivals that of DDH-based OPRF protocols.
Recall that in the OPRF setting, one party P1 (called the “server”) holds the
key K and the other party P2 (called the “client”) holds the input x. The goal
of the protocol is to have the client learn the output of the PRF for key K and
input x, while the server learns nothing. We provide only a brief description of
our protocols next, and defer the details to the full version.

OPRF Protocol πoprf
1 . Our first OPRF protocol is in spirit similar to the

distributed evaluation for the (2, 3)-wPRF construction. Since K is known to
the server, and x is known to the client, both parties do not need to exchange
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their shares to reconstruct the masked values K̂ and x̂; the party that holds
a value can mask it locally and send it to the other party. This allows us to
decouple the server’s message that masks its PRF key from the rest of the
evaluation. To update the key, the server can simply send K̂ = K + K̃ to the
client. Many PRF evaluations can now be done using the same K̂. The upshot
of this is that when the client already knows the key mask, the protocol has an
optimal 2-round structure (one message from the client followed by one message
from the server). For our parameters (n = m = 256, t = 81), πoprf

1 has 897 bits of
online communication for input evaluation. To update the key, the server sends
a 256-bit message to the client.

OPRF Protocol πoprf
2 . For the second protocol, the server masks the PRF in

a different way; a multiplicative mask is used instead of an additive one. This
saves 256 bits in the online phase at the expense of a slower key update phase.

5.4 Distributing the Trusted Dealer

In this section we show how to generate the preprocessing we require efficiently
and without a trusted dealer. We will focus on the 2-party setting specifically.

5.4.1 (2, 3)-correlations from OT Correlations
We provide a new technique to generate the correlations needed for the π

(2,3)
Convert

protocol. The key technique we use is to convert OT correlations to the types of
correlations our protocols require. Since prior work [19,20,64] has shown how to
efficiently create OT-correlations, this implies that the correlations required for
our protocols can also be efficiently generated. For a 1-out-of-2 OT correlation
over Z3, P1 holds (z0, z1) and P2 holds (c, zc) where z0, z1

$←− Z3, c ∈ Z2 and
zc = z0 if c = 0 and zc = z1 if c = 1. We refer to ((z0, z1), (c, zc)) as an OT
correlation pair.

Conversion technique. Recall that for the Z2 → Z3 conversion protocol
π

(2,3)
Convert, as preprocessing, a dealer provides the parties with shares of a bit-

vector both over Z2 and Z3. For simplicity, we first consider the correlated
randomness for a single element. To convert the sharing for a single bit, the
dealer provides the following correlated randomness to the parties: P1 is given
(w1, r1) and P2 is given (w2, r2) such that w1, w2 ∈ Z2; r1, r2 ∈ Z3 and
(w1 + w2) mod 2 = (r1 + r2) mod 3. We refer to ((w1, r1), (w2, r2)) as a (2, 3)-
correlation pair.

We now show, in Protocol 5, how to convert an OT-correlation into a (2, 3)-
correlation. Suppose for now that we have the ability to “throw” away OT-
correlations where z0 = z1. We will get rid of this assumption later by commu-
nicating a single message from P1 to P2 which will intuitively detail which OT
correlations to discard.

Protocol 5. Given a (1-out-of-2) OT correlation ((z0, z1), (c, zc)) over Z3 where
z0 �= z1, to generate a (2, 3)-correlation, the parties proceed as follows:
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• P1 computes

(w1, r1) =

{

(0, z0) if z1 = z0 − 1 mod 3
(1, z1) if z0 = z1 − 1 mod 3

• P2 computes (w2, r2) = (c,−zc mod 3).

This means that an OT correlation can locally be converted to a (2, 3)-
correlation when z0 �= z1. Since P1 knows these values, it still needs to com-
municate to P2 whether to use a given correlation or not. The communication
can be compressed using the binary entropy function Hb(p) which computes the
entropy of a Bernoulli process with probability p. This leads to a communica-
tion cost of 1.5l · Hb(1/3) ≈ 1.377l for an l-length (2, 3)-correlation. As another
upshot, this means that the required (2, 3) correlations can be generated even
during the first round of the online protocol.

5.4.2 (3, 2)-correlations from OT Correlations
We now show, in Protocol 6, how to convert OT-correlations to the correlations
we require for the π

(3,2)
Convert protocol. For this, we will need 1-out-of-3 OT corre-

lations for 2-bit strings. Formally, in such a correlation, P1 receives (z0, z1, z2)
where each zj is a 2-bit string, while P2 receives (c, zc) where c ∈ Z3 and zc is
the corresponding zj indexed by j = c. As before, these OT correlations can also
be efficiently generated and compressed using existing work [20,64].

Now, to convert a single Z2 element to Z3, our protocol requires the following
correlated randomness: Pi is given (x̃i, ui, vi) where x̃i ∈ Z3, ui, vi ∈ Z2 such
that the following holds. Define x̃ = x̃1 + x̃ mod 3, u = u1 + u2 mod 2, and
v = v1 + v2 mod 2. Then, u = x̃ mod 2 and v = (x̃ + 1 mod 3) mod 2. We call
this sharing between the two protocol parties a (3, 2)-correlation pair.

Protocol 6. Given a (1-out-of-3) OT-correlation ((z0, z1, z2), (c, zc)) for 2-bit
strings, to generate a (3, 2)-correlation from this, the parties proceed as follows:

• First, P1 samples its shares randomly as x̃1
$←− Z3, u1, v1

$←− Z2.
• Now, for each j ∈ Z3, P1 sets the 2-bit string sj as follows. Let w = x̃i +

j mod 3. Then, sj = (u1 ‖ ¬v1) if w = 0; sj = (¬u1 ‖ v1) if w = 1;
sj = (u1 ‖ v1) if w = 2. Intuitively, P1 sets the OT tuple to be what P2’s
share would be if it chose that particular index in an OT protocol.

• P1 masks the sj and sends them to P2. Specifically, P1 sends rj ← sj + zj

(where each bit is added modulo 2) for each j ∈ Z3.
• P2 sets x̃2 ← c, and u2 ‖ v2 ← rc (i.e., the corresponding 2-bit string rc sent

by P1 is parsed into u2 and v2)
• Finally, for the (3, 2)-correlation, Pi takes its share as (x̃i, ui, vi)

This is less efficient than generating (2, 3)-correlations and takes 6 bits of commu-
nication per instance. Note that the communication is still unidirectional as only
P1 sends a message. Consequently, the (3, 2)-correlations can also be generated
on the fly given OT correlations as part of the first protocol round.
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6 Application: Signatures with the (2, 3)-OWF

Here we describe a signature scheme using the (2, 3)-OWF. Our presentation is
tailored to the (2, 3)-OWF, but we note that this approach is general. All of the
candidate primitives in this paper would be a suitable choice of F (note that
they are all OWFs when the input is chosen at random) and we evaluated them
all before settling on (2, 3)-OWF, which gives the shortest signatures.

Abstractly, a signature scheme can be built from any OWF F and an MPC
protocol to evaluate it, by setting the public key to y = F(x) for a random
secret x, and then proving knowledge of x, using a proof system based on the
MPC-in-the-head paradigm [45]. To make the proof non-interactive, typically
the Fiat-Shamir transform is used, and the message to be signed is bound to the
proof by including it in the hash when computing the challenge. In addition to
assuming the OWF is secure, the only other assumption required is a secure hash
function. As no additional number-theoretic assumptions are required, these
types of signatures are often proposed as secure post-quantum schemes.

Concretely, our design follows the Picnic signature scheme [25], specifically
the variant instantiated with the KKW proof system [51] (named Picnic2 and
Picnic3). We chose to use the KKW, rather than ZKB++ proof system since our
MPC protocol to evaluate the (2, 3)-OWF is most efficient with a pre-processing
phase, and KKW generally produces shorter signatures. We replace the LowMC
block cipher [4] in Picnic with the (2, 3)-OWF, and make the corresponding
changes to the MPC protocol.

This is the first signature scheme based on the hardness of inverting the (2, 3)-
OWF (or similar function), a function with a simple mathematical description,
making it an accessible target for cryptanalysis, especially when compared to
block ciphers. Arguably, the simplicity of the OWF can lead to simpler imple-
mentations: the MPC protocol is simpler, and no large precomputed constants
are required.

Our presentation is somewhat brief here as many parts are identical to Picnic.
More details can be found in the full version.

Parameters. Let κ be a security parameter. The (2, 3)-OWF parameters are
denoted (n,m, t). The KKW parameters (N,M, τ) denote the number of parties
N , the total number of MPC instances M , and the number τ of MPC instances
where the verifier checks the online phase of simulation. The scheme also requires
a cryptographic hash function.

Key generation. The signer chooses a random x ∈ Z
n
2 as secret key, and

a random seed s ∈ {0, 1}κ such that s expands to matrices A ∈ Z
m×n
2 and

B ∈ Z
m×t
3 that are full rank (using a suitable cryptographic function, such as

the SHAKE extendable output function [52]). Compute y = F(x) and set (y, s)
as the public key. Recall that the (2, 3)-OWF is defined as y = F(x) where x ∈ Z

n
2

and y ∈ Z
t
3, and is computed as y = B(Ax) where Ax is first cast to Z3.

MPC protocol. By combining the protocols for the gates π3
Add, πA,2

Lin , πB,3
Lin ,

and π
(2,3)
Convert described in Sect. 5, we have an N -party protocol for the (2, 3)-
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Table 4. Signature size estimates for Picnic using (2, 3)-OWF, compared to Picnic
using LowMC. The left table shows security level L1 (128 bits) with N = 16 and
N = 64 parties, and the right table shows level L5 (256 bits).

OWF Params KKW params
Sig. size (KB)

(n, m, t) (N, M, τ)

(128, 453, 81) (16, 150, 51) 13.30

(16, 168, 45) 12.48

(16, 250, 36) 11.54

Picnic3-L1 (16, 250, 36) 12.60

(128, 453, 81) (64, 151, 45) 13.59

(64, 209, 34) 11.70

(64, 343, 27) 10.66

Picnic2-L1 (64, 343, 27) 12.36

OWF Params KKW params
Sig. size (KB)

(n, m, t) (N, M, τ)

(256, 906, 162) (16, 324, 92) 50.19

(16, 400, 79) 47.08

(16, 604, 68) 45.82

Picnic3-L5 (16, 604, 68) 48.72

(256, 906, 162) (64, 322, 82) 51.23

(64, 518, 60) 44.04

(64, 604, 57) 43.45

Picnic2-L5 (64, 604, 58) 46.18

OWF. The most challenging and costly step (in terms of communication) is the
conversion gate, all other operations are done locally by the parties.

Sign and verify. The prover simulates the preprocessing and online phase for
all M MPC instances, and commits to the preprocessing values, and MPC inputs
and outputs. Then she is challenged to open τ of the M MPC instances. The
verifier will check the simulation of the online phase for these instances, by re-
computing all values as the prover did for N −1 of the parties, and for remaining
unopened party, the prover will provide the missing broadcast messages and
commitments so that the verifier may complete the simulation and recompute
all commitments. For the M−τ instances not chosen by the challenge, the verifier
will check the preprocessing phase only, by recomputing the preprocessing phase
as the prover did.

Parameter selection and signature size. The impact of OWF choice is
limited to one term, which is the sum of the sizes of the MPC inputs, broadcast
messages, and auxiliary values produced by preprocessing. Selecting the KKW
parameters (M,N, τ) once the MPC costs are known follows the approach in
Picnic: a range of options are possible, and we try to select parameters that
balance speed (mostly dependent on the number of MPC executions and number
of parties) and size. Since the MPC costs of the (2, 3)-OWF are very close to
those of LowMC, the options follow a similar curve.

Table 4 gives some options with N = 16, 64 parties, providing 128 and 256 bits
of security. For each category, we highlight the row of (2, 3)-OWF parameters
that are a direct comparison to Picnic. Signatures using the (2, 3)-OWF are
slightly shorter (five to fifteen percent) than Picnic using LowMC.

7 Implementation and Evaluation

We implemented our 2-party protocols to compute the (2, 3)-wPRF candidate
(Construction 1) both in the distributed and oblivious evaluation settings. Our
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Table 5. Centralized 23-wPRF benchmarks for a baseline implementation and for
different optimization techniques. Packing was done into 64-bit sized words (for both
Z2 and Z3 vectors). For the lookup table optimization, a table with 81×220

Z3 elements,
or roughly of size 135MB, was preprocessed. Runtimes are all given in microseconds
(μs).

Optimization
Runtime (μs) Evaluations/sec

Packing Bit Slicing Lookup Table

Baseline implementation 156.41 6K

� 26.84 37K

� � 18.5 65K

� � � 6.08 165K

implementations are in C++. For the (2, 3)-wPRF construction, we used the
parameters n = m = 256 and t = 81. The implemented 23-constructions use a
Toeplitz matrix in Z

256×256
2 as the key, take as input a vector in Z

256
2 and output

a vector in Z
81
3 . The correlated randomness was implemented as if provided by

a trusted third party. See Sect. 5.4 for concretely efficient protocols for securely
generating the correlated randomness, which we did not implement but give
efficiency estimates based on prior works.

Optimizations. We start with a centralized implementation of the 23-wPRF.
We find optimizations that provide a roughly 25x better performance over a näıve
implementation. We use three major optimizations in our implementation. First,
we use bit packing for Z2 vectors through which we can pack several elements
in a machine word and operate on them together in an SIMD manner. Second,
we use bit slicing for Z3 vectors by representing them as a pair of Z2 vectors.
All operations on the Z3 vectors can now be translated to operations on the
Z2 vectors. Finally, we use a lookup table optimization for the final Z3 linear
mapping (i.e., multiplication by B). For this, we split the 256-column matrix
B into 16 pieces with 16 columns each and store multiplications with all Z16

3

vectors for each piece. The size for each piece was decided as a tradeoff between
the lookup table size and the computational efficiency. We provide benchmarks
for our optimizations in Table 5.

7.1 Performance Benchmarks

Experimental setup. We ran all our experiments on a t2.medium AWS EC2
instance with 4GiB RAM (architecture: x86-64 Intel(R) Xeon(R) CPU E5-2686
v4 @ 2.30GHz) running on Ubuntu 18.04. The performance benchmarks and
timing results we provide are averaged over 1000 runs. For the distributed con-
struction benchmarks, both parties were run on the same instance. We separately
report the computational runtime for the parties, and analytically compute the
communication costs.
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Table 6. Comparison of protocols for (semi-honest) OPRF evaluation in the prepro-
cessing model. Runtimes in microseconds (μs) are provided separately for refreshing
the key (Key Update) and for evaluating an input (Evaluation). Communication and
preprocessing are also provided separately for the two stages.

Protocol
Runtime (μs)

Preprocessing (bits)
Communication (bits)

Client Server Client Server

πoprf
1 Key Update - 0.65 256 - 256

Evaluation 8.54 9.45 2092 512 385

πoprf
2 Key Update - 3.16 256 - 256

Evaluation 7.91 8.21 1836 256 385

DDH-based OPRF 57.38 28.69 - 256 256

Distributed wPRF evaluation. We implement our 2-party semi-honest dis-
tributed protocol for evaluating the (2, 3)-wPRF construction and report timings
for our implementation. Since this candidate was first proposed in [15], we also
implement their protocol as a comparison point. For both protocols, we use the
parameters n = m = 256, t = 81 for the PRF and use the same optimizations
for an accurate comparison. We found that our protocol is better in all metrics.
For a single evaluation, our protocol requires 12.12 µs, 662 bits of preprocess-
ing, and 1536 bits of online communication. On the other hand, the protocol
from [15] requires 28.02μs, 3533 bits of preprocessing, and 2612 bits of online
communication for one evaluation.

OPRF evaluation. In Table 6, we provide performance benchmarks for both
our oblivious protocols (see Sect. 5.3) for the (2, 3)-wPRF construction. We also
compare our results to the standard DDH-based OPRF (details in the full ver-
sion [34]). For our timing results, we report both the server and client runtimes
(averages over 1000 runs). For each construction, we also include the size of the
preprocessed correlated randomness, and the online communication cost. All
constructions are parameterized appropriately to provide 128-bit security.

For our constructions, we report separately, the timings for refreshing the
key and evaluating the input. For the comparison with the DDH-based OPRF
construction, we use the libsodium library [1] for the elliptic curve scalar multi-
plication operation. We use the Curve25519 elliptic curve, which has a 256-bit
key size, and provides 128 bits of security.
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Abstract. Real-world random number generators (RNGs) cannot
afford to use (slow) cryptographic hashing every time they refresh their
state R with a new entropic input X. Instead, they use “superefficient”
simple entropy-accumulation procedures, such as

R ← rotα,n(R) ⊕ X,

where rotα,n rotates an n-bit state R by some fixed number α. For exam-
ple, Microsoft’s RNG uses α = 5 for n = 32 and α = 19 for n = 64. Where
do these numbers come from? Are they good choices? Should rotation
be replaced by a better permutation π of the input bits?

In this work we initiate a rigorous study of these pragmatic ques-
tions, by modeling the sequence of successive entropic inputs X1, X2, . . .
as independent (but otherwise adversarial) samples from some natural
distribution family D. Our contribution is as follows.

– We define 2-monotone distributions as a rich family D that includes
relevant real-world distributions (Gaussian, exponential, etc.), but
avoids trivial impossibility results.

– For any α with gcd(α, n) = 1, we show that rotation accumulates
Ω(n) bits of entropy from n independent samples X1, . . . , Xn from
any (unknown) 2-monotone distribution with entropy k > 1.

– However, we also show some choices of α perform much better than
others for a given n. E.g., we show α = 19 is one of the best choices
for n = 64; in contrast, α = 5 is good, but generally worse than
α = 7, for n = 32.

– More generally, given a permutation π and k ≥ 1, we define a simple
parameter, the covering number Cπ,k, and show that it characterizes
the number of steps before the rule

(R1, . . . , Rn) ← (Rπ(1), . . . , Rπ(n)) ⊕ X

accumulates nearly n bits of entropy from independent, 2-monotone
samples of min-entropy k each.

– We build a simple permutation π∗, which achieves nearly optimal
Cπ∗,k ≈ n/k for all values of k simultaneously, and experimentally
validate that it compares favorably with all rotations rotα,n.
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1 Introduction

Good random number generation is essential for cryptography and beyond. In
practice, this difficult task is solved by a primitive called a Random Number Gen-
erator (RNG, or RNG with input), whose aim is to quickly accumulate entropy
from various physical entropic sources in the environment with unknown distri-
butions (such as timing of interrupts, etc.). The RNG then converts this high-
entropy state into the (pseudo)random bits that are needed for applications.
In this work we focus on the first step: entropy accumulation. This is usually
achieved by a procedure S ← Refresh(S,X), where S is the state of the RNG,
and X is the entropic input whose entropy we are trying to “accumulate” into
the fixed-length RNG state S.1 Intuitively, we wish to design Refresh so that
S converges to a high-entropy, and eventually (almost) uniform distribution,
provided that the input samples X1,X2, . . . collectively have enough entropy,
without too many additional assumptions about the Xi.

In the context of RNGs, the requirement of entropy accumulation was for-
malized by Dodis et al. [9] (building on prior influential work of [3]), and there
has been much follow-up work [7,10,14,16]. Most of these works consider a very
powerful adversary, who tries to choose the worst possible entropy source for the
Refresh subject to satisfying the overall entropy constraints. As such, all existing
Refresh procedures in the literature are relatively expensive, using either a cryp-
tographic hash function Hash which simply sets S ← Hash(S,X) for the new
input X, or, under some additional assumptions [9], a full field multiplication
over a finite field GF[2N ] for large values of N (on the order of 500–1000).

Unfortunately, the Refresh procedures from these theoretical works appear to
miss the following critical consideration, making them insufficient for real-world
RNG design. Many practical entropy sources—such as interrupt timings—come
at a very rapid pace (but possibly with relatively low entropy per sample). Hence,
running a cryptographically secure hash function (or doing a very large finite
field multiplication) every time we receive such an input X would be not only be
prohibitively expensive, but completely infeasible for an operating system RNG,
for example.

As a result, practitioners use the following elegant compromise, not yet
modeled by the theory of RNGs (prior to our work), but found in every
major operating system including /dev/random [23] for Linux, Yarrow [19]
for MacOs/iOS/FreeBSD, and Fortuna [13] for Windows [11,12]. The state of
the RNG will consist of two pieces: a relatively long state S for the “slow”
entropy accumulation procedure we denote by Slow-Refresh, and a small array of
very short states R—sometimes called registers—for the “superefficient” entropy
accumulation procedure Fast-Refresh. On every single interrupt timing X, one

1 Equivalently, one can think of the refresh procedure as a randomness condenser
[21,22], which condenses |S| + |X| bits back to |S| bits, while trying not to lose the
overall entropy in both S and X (and therefore “accumulating” the fresh entropy
brought by X back into the state S).
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always updates one of the registers R (usually in some round-robin manner):

R ← Fast-Refresh(R,X)

Since interrupts could happen very frequently, the mandatory requirement for
the fast refresh operation is extreme speed and simplicity. We comment on this
below, but first complete the refresh procedure description. Less frequently, one
would accumulate the state of all the registers {R} into the long RNG state S:

S ← Slow-Refresh(S, {R})

The latter function is typically implemented as a cryptographic hash function
Hash, and can afford to be much slower. It is then this longer state S that will
be used to generate (pseudo)random bits. This in particular means that the
registers R do not need to achieve the same guarantees as the larger state S.

All existing theoretical modelings of RNGs with input only focused on the
slow accumulation procedure Slow-Refresh. As such, it completely abstracted
away a key question concerning the design of all practical RNGs:

What is the best way to design extremely fast and practical refresh procedures
Fast-Refresh to accumulate entropy as fast as possible?

The goal of this work is to model these super-efficient entropy accumulators, and
to build the theoretical foundations for this very important primitive. Hence, for
much of this work (with the exception of Sect. 8), we will completely ignore
Slow-Refresh (and all other details of RNGs), and focus exclusively on the clear
question of understanding the design of super-efficient entropy accumulation.

Existing Designs: Cyclic Rotation. To dig into our question a bit deeper,
it is helpful to see what is typically done in practice. As we said, the fast-
refresh procedure has to be blazing fast, and can realistically involve just a few
simple bit-level operations applied to the entropic input and the register. In fact,
most RNGs we know, such as the one used by Windows 10 [12], implement the
following “rotate-then-xor” procedure. The register R is typically an n = 32
or n = 64-bit value. The raw input X—such as the timing of the previous
interrupt—is also an n-bit string. To refresh the register (quickly!), one simply
cyclically rotates the bits of the register by some fixed constant α (e.g., rotation
by two would map the bit string (1, 1, 0, 1, 0, 1) to (0, 1, 1, 1, 0, 1)), and then XORs
the input X to the result:

R ← rotα,n(R) ⊕ X

Concretely, Microsoft uses α = 5 for n = 32 and α = 19 for n = 64 [12].

Our Questions. While this design appears reasonable, it raises a lot of questions
that we would like to answer.

– How were these (seemingly mysterious) rotation numbers α selected?
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– Is there some rigorous metric/model that can help compare different rotation
amounts to each other, either practically, or theoretically, or both?

– In particular, are Microsoft’s choices of α = 5 for n = 32 and α = 19 for
n = 64 “good”?

– How should one model the distributions of the entropic inputs X to properly
study these refresh procedures?

– Is rotation really the best way to permute the bits of the state for entropy
accumulation?

– In particular, can rotation be replaced by a “better” permutation π of the n
register positions: (R1, . . . , Rn) ← (Rπ(1), . . . , Rπ(n)) ⊕ X?

To start answering these questions informally, let us make some simple obser-
vations to get some intuition for why Microsoft might have chosen these seem-
ingly mysterious numbers, 5 and 19. First, it seems clear that we should take
the rotation amount α relatively prime to n, to make sure every bit eventually
affects every other bit. Second, we claim that it is unwise to take α very small
(e.g., α = 1), since practical sources will tend to “have most of their entropy in
the lower-order bits,” so that small values of α will take a lot of time to affect
all the bits of the register. For example, even if every sample of X is uniform
in its n/2 least significant bits, rotation by 1 will only accumulate n/2 + � − 1
bits after � steps. For a similar reason, one should avoid values of α where a
small multiple of α is very close to n; such as α = 11 for n = 32, or α = 21
for n = 64. For example, after three such steps with α = 11 for n = 32, a fresh
sample which is uniform in its 5 least-significant bits will contribute only one
fresh bit of entropy, just as if we had α = 1.

Choosing between the remaining possibilities of, e.g., α = 5, 7, 9, . . . , yields
subtle tradeoffs. Indeed, while it is clear that there is something interesting going
on here, it is not immediately clear how to formalize this.

1.1 Our Model

In this work, we use the tools of modern information theory and cryptography
to make the above ad-hoc arguments more systematic and theoretically sound,
so that we have higher confidence in the quality of our answers. In the process,
we will uncover some interesting theory.

Syntax and Efficiency. First, we restrict our attention to entropy accumulation
of the form

(R1, . . . , Rn) ← (Rπ(1), . . . , Rπ(n)) ⊕ X

for some permutation π : [n] → [n] of the n-bit register R, as this model is
quite natural in our context of super-efficient constructions. For conciseness, we
let Aπ(R) = (Rπ(1), . . . , Rπ(n)), with cyclic rotation rotα,n(R) being of most
immediate interest to us.

Modeling of Entropic Inputs X. Given the extreme simplicity of our accumu-
lation procedure, it is clear that we will not be able to withstand the same level
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of generality and “malicious” attacks that are modeled in prior work addressing
the complementary question of “slow refresh”. For example, even if the marginal
distributions of Xi are completely uniform in {0, 1}n, we will fail to accumulate
a single bit of entropy if, for example, the Xi satisfy Aπ(X2i−1) = X2i. (The
state will be zero after every even number of steps when starting from R = 0n!)

Hence, as the first modeling assumption we will assume that the inputs Xi

are independent. This is a common abstraction in the randomness extraction
literature dating back to [6].2 While it might not be entirely accurate in practice,
we believe that it captures some of what is useful about natural sources such as
interrupt timings, which do not appear fully adversarial.

Second, to minimize the number of parameters, and also to focus on the
high-level picture, in our analyses we will assume that the entropy of each (inde-
pendent) sample is lower bounded by some parameter k. (Once again, this is
standard in the randomness extraction literature; with very few exceptions, such
as [17].) The key point is that our refresh procedure does not know/use anything
about k, and a “good” result should yield quick entropy accumulation for all val-
ues of k; presumably in roughly n/k steps, which is the best possible. Thus, even
if the quality of source is unknown, a “good” result of this type will tell us that
our entropy accumulation always works to the best extent possible.

Finally, we will further restrict each sample to come from some (natural)
family of distributions D. (This is also common in the literature. E.g., [2] did so
in the context of slow refresh.) Indeed, it is easy to see that our refresh procedure
is too simple to work for arbitrary (even independent) distributions of entropy
k. For example, if only k bits of X0 have entropy, it is trivial to see where these
k bits “travel” after i mixing steps given by π. Say, for rotation by 1, after i such
rotations the first k bits (1, . . . , k) go to locations (1+ i mod n, . . . , k+ i mod n).
Thus, in this example (which is easy to generalize to any π) one can define
Xi to be uniform over positions (1 + i mod n, . . . , i + k mod n). This gives k
independent bits of entropy, but this entropy is repeatedly added to the same
place (just shifted over and over). Hence, we can never accumulate any entropy
beyond the first k bits in this example.

Two-Monotone Distributions. Of course, the example above seems rather
artificial, and unlikely to occur in the actual distributions encountered by these
RNGs. (E.g., it seems implausible that the distribution of interrupt timings could
have, say, the 10th bit uniformly random but the least significant bit fixed.) Thus,
we must choose an appropriate family of distributions. We need some restriction
on our sources to avoid the counterexamples above, but we would of course like
to work with the most general class of distributions possible.

As our first main contribution, we provide a definition that is quite general
but sufficient for our purposes. Indeed, as we will discuss more below, for this
class of distributions, we are able to formalize the intuitive requirement that
“natural distributions have most of their entropy in the lower-order bits.”

2 See also [4,5,17] for some exciting advances in the area of randomness extraction
from independent sources.
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Specifically, we define a very wide class of distribution, which we call 2-
monotone. These are n-bit distributions such that the probability mass function
over {0, . . . , 2n − 1} (i.e., interpreting the n bits as an integer written in binary)
“has at most one peak.” (Formally, the distribution is 2-monotone if we can
divide Z2n into two intervals such that the probability mass function is mono-
tone on the two intervals. See Sect. 3.) This is a large class, and it includes, e.g.,
Gaussians over Z2n , exponential distributions over Z2n , and uniform distribu-
tions over an interval—three natural distributions that one might use to model,
e.g., the timing of interrupts.

We then show that any such distribution does in fact “have most of its
entropy in the lower order bits.” (The precise statement is Fourier analytic. See
Lemma 1.) This will help us overcome the impossibility result sketched above,
while maintaining a (surprisingly!) large level of generality. To summarize, we
will instantiate our family of distributions to be Dk,n—all two-monotone distri-
butions on n bits having entropy at least k, and will allow arbitrary independent
(but not necessarily identical) choices of entropic inputs X1,X2, . . . ∈ Dk,n.

Goal: Entropy Accumulation. We must also select the notion of entropy for
the register R for our goal of entropy accumulation. As our default choice, we will
use the standard notion of min-entropy, Hmin(R). This is a conservative notion
of entropy which is enough to be composed with any Slow-Refresh procedure
(or any other randomness extractor [20]) from the literature. However, some
RNGs [7,9],3 and all randomness extractors based on the famous leftover hash
lemma [15], can work for a less conservative notion of entropy, called collision
entropy H2(R). Hence, in our results we will keep track of both the min- and the
collision entropy of R.4 Indeed, our collision entropy results will be, as expected,
slightly better than the min-entropy bounds.

Putting everything together, we arrive at the following clean question:

Main Question: For given n, k, permutation π, and number of iterations �,
what is the min-/collision entropy of R�, where R0 = 0n, Ri = AπRi−1 ⊕Xi,
and X1,X2, . . . , X� are independent two-monotone distributions from Dk,n?

Bigger Picture. We stress once again that our question is largely complemen-
tary and incomparable to the analyses of “slow refresh” procedures from all
the prior work [7,9,10,14,16]. Slow refresh operates on much larger block size
N � n, is concerned with randomness extraction rather than accumulation, and
attempts to defend against much more powerful attacks. In order to achieve this,

3 This is not stated in the results of [7,9], but is implicit from the technical analysis.
4 Our results will eventually give standard randomness extractors, when R accumu-

lates nearly a full n bits of entropy because SD(D, U) ≤ 1
2

· √
2n−H2(D) − 1, and

SD(D, U) ≤ 2n−Hmin(D) − 1. However, we choose to focus on entropy accumulation,
as (1) this is the use of superefficient entropy accumulators in real-world applica-
tions; (2) the restrictive format of our accumulators—while sufficient to quickly get
to nearly n bits of entropy (which is our goal!)—will be wasteful in “squeezing the
last few bits” of entropy needed for extraction.
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the slow-refresh procedure must necessarily be much slower than our fast-refresh
procedure. In particular, the two procedures are used in different, complemen-
tary places in the overall RNG design: the array or registers becomes an input
to the slow-refresh procedure after many fast-refresh calls. In Sect. 8, we briefly
discuss how our results might start filling the “missing link” in the prior RNG
work, but stress once again that they cannot be meaningfully compared to each
other.

1.2 Our Contributions

Rotation performs reasonably well. Recall that we show a key property
of 2-monotone distributions: they “have most of its entropy in the lower order
bits.” (The precise statement is Fourier analytic. See Lemma 1.) Using this
characterization, we can then relatively easily show that any rotation on n bits
(with α coprime to n, or, indeed, any cyclic permutation) can accumulate nearly
a full n bits of entropy in n steps.

Theorem 1 (Informal, see Theorem 8). Any rotation on n bits (with rota-
tion number α coprime to n) will accumulate (approximately) n(1−2−2k+2) bits
of collision entropy and (approximately) n(1 − 2−k+1) bits of min-entropy from
any n independent sources in Dk,n, for k > 1.

Comparing different rotations using covering number. Theorem 1 jus-
tifies the use of rotation, but only if we are willing to wait n steps (regardless
of how large k is) and fails to distinguish between different rotation numbers α.
Indeed, as we discussed above, when α = 1, we do in fact need roughly n steps in
order to accumulate nearly n bits of entropy, even if the input already has very
high entropy. So, if we wish to do better, we must somehow distinguish between
different rotation numbers.5

To do this, we introduce a simple, efficiently computable quantity Cα,k,
which we call the covering number. Intuitively, Cα,k is the number of steps
needed for rotation by α to accumulate full entropy when the input is uni-
form on {0, . . . , 2k − 1}. Equivalently, Cα,k is the minimal number m such that
{i + αj mod n : 0 ≤ i < k, 0 ≤ j < m} = [n], i.e., the minimal m such that
“m rotations of the first k bits are sufficient to cover all bits.” It is easy to see
that the covering number is at least n/k and at most n − k + 1.

Notice that the covering number is exactly the number of steps needed to
accumulate full entropy from the (two-monotone) distribution in which the first
k bits are uniform and independent, while the remaining n − k bits are fixed.
We show (using Fourier-analytic techniques) that the covering number actually
characterizes the performance of rotation by α on all 2-monotone distributions
with entropy k, up to a factor of 2 in k. In other words, up to this factor of 2
in k (and ignoring the specific notion of “accumulating enough entropy”), the
uniform distribution on {0, . . . , 2k − 1} is “the worst case”.
5 It is easy to see that all rotations perform identically if we wait exactly n steps. So,

this question is essentially only interesting for fewer than n steps.
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Theorem 2 (Informal, see Theorem 10). Let m := Cα,�k/2� and k ≥ 2.
After m steps, rotation by α accumulates at least n · (1 − 2−k) bits of collision
entropy and n · (1 − 2−k/2) bits of min-entropy from any distribution in Dk,n.
Alternatively, it accumulates at least n − 1 bits of collision entropy after m(1 +
log(n/k)/k) steps, and n−1 bits of min-entropy after m(1+2 log(n/k)/k) steps.

Theorem 2 suggests comparing rotations according to their covering numbers
Cα,k, effectively reducing a seemingly very difficult problem to a simple calcu-
lation. Therefore, we compute these covering numbers for different rotations.
While there is no unambiguous ranking of the different rotations,6 we show that
some rotations perform well in general, while others do not. (E.g., C11,k > n−3k
for n = 32.) In particular, Microsoft’s choice of α = 19 when n = 64 is quite rea-
sonable (though α ∈ {15, 23, 27} also seem like reasonable choices). Microsoft’s
choice of α = 5 for n = 32 is also reasonable, though we observe that certain
other choices, particularly α = 7 and α = 9, also perform reasonably well for
all k and perform noticeably better when the input has high entropy. See Figs. 3
and 4 for the data. (See [1] for a table with all covering numbers for n = 32 and
n = 64.)

Other Permutations and Tightness. Our analysis of the covering number
above extends immediately to any cyclic permutation π : [n] → [n]. Specifically,
the covering number Cπ,k of π essentially characterizes its behavior as an entropy
accumulator when its input is a 2-monotone source with entropy k (up to a factor
of 2 in k). In fact, in Theorem 11 we show that this generalization of Theorem 2
is quite tight. In particular, there exists a distribution D ∈ Dk,n (in fact, the
same distribution that we use for our empirical results discussed below) such that
no permutation π (including all rotations and the new permutation we discuss
below) accumulates more than n − 1 bits of collision entropy from D in fewer
than n log(n)/(k2 + 4) steps. Similarly, it takes at least 2n log(n)/(k2 + 4) steps
to accumulate n − 1 bits of min-entropy from this distribution.

Notice, in particular, that our upper and lower bounds nearly match when
one sets m ≈ n/k. (While m = Cπ,�k/2� cannot be smaller than 2n/k, as we
describe below in more detail, we expect that this factor of two is an artifact of
our proof and that taking m ≈ Cπ,k is a good heuristic. Since Cπ,k can be as
small as 
n/k�, this suggests taking m ≈ n/k.)

A different permutation: bit-reversed rotation. Our characterization of
condensing in terms of Cπ,k motivates us to find a permutation π whose covering
number Cπ,k is small for all k; ideally, Cπ,k ≈ n/k, which is the minimal possible
covering number. Indeed, in this regime, our condensing is provably the best
possible: we accumulate almost all k bits of input entropy for each of the first
nearly n/k steps.

6 Some rotations will perform very well for some k, and others will perform well for
other k. E.g., for α = k, Cα,k = �n/k	 is always minimal. So every rotation has an
optimal covering number for at least one choice of k.
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To that end, we construct a permutation that we call bit-reversed rotation.
This is the permutation obtained by (1) associating the ith bit with the (log2 n+
1)-bit string i written in binary; (2) setting σ(i) to be the number obtained by
reversing this bit string; and (3) sending the ith bit to the unique position j
with σ(j) + 1 = σ(i) mod 2n. This permutation actually arises naturally from a
simple greedy construction in this context,7 and it satisfies Cπ,k = n/k whenever
n and k are both powers of two. I.e., it has optimal covering number Cπ,k for all
powers of two k simultaneously! (For general k, the covering number is always
bounded by 2n/k; see Theorem 14.)

In Fig. 5, we compare covering numbers of bit-reversed rotation against cov-
ering numbers of rotation-by-5 for n = 32 and rotation-by-19 for n = 64 used by
Microsoft (and the optimal value n/k). We see that bit-reversed rotation seems
to perform at least as well as rotation, and better in several regions. Thus, while
we leave it to practitioners to determine whether implementing our new permu-
tation would be preferable in the context of their RNGs, our study suggests that
it seems to be the most natural choice from a theoretical perspective. (More on
this in our experimental results below.)

Experimental results to compute the exact number of samples needed.
Theorem 2 (and its generalization in Theorem 10) gives strong theoretical jus-
tification for using a cyclic permutation with low covering numbers. However,
this loss of a factor of 2 in k (i.e., the fact that the theorem requires Cπ,�k/2�
samples instead of Cπ,k steps) is unfortunate—especially for the practical case
that interests us most, in which n is a small constant like n = 32 or n = 64. For
practical applications, we care about the fine-grained detail of the performance,
and we expect that Cπ,k is in fact the right answer, as in the following heuristic.

We expect that (just slightly more than) Cπ,k steps should be sufficient to
accumulate nearly full entropy from 2-monotone sources with entropy at least k.

This is of course true—essentially by definition—for the special case of the uni-
form distribution over {0, . . . , 2k − 1}, and also gives us a lower bound for the
general class Dk,n.

To that end, in Theorem 16 we use the Fourier-analytic theoretical machinery
that we used to prove Theorem 2 in order to derive a closed form expression
for the exact (min- or collision) entropy accumulated by any permutation when
the input source is an exponential distribution. (In other words, the distribution
in which the probability that an interrupt happens at time t is proportional to
e−t/σ for some σ > 0.) This is a natural example of a 2-monotone distribution
(and far less trivial than the uniform distribution), and this closed form lets us
compute exactly the number of samples needed to accumulate, say, (n − 1) bits
of min-/collision entropy.8

7 It also arises naturally in other contexts, such as in the fast Fourier transform (in
the form of the bit-reversed involution, which we call σ above).

8 As we see from both our theoretical and our experimental results, our accumulators
quickly collect almost n bits of entropy, at nearly optimal pace of k bits per sample,
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These exact calculations allow us to answer three interesting questions, at
least for the clean and natural case of exponential distributions:

1. Exactly how close is Cπ,k to the actual number of samples to accumulate
nearly n (say, (n − 1)) bits of entropy close?

2. Does bit-reversed rotation perform at least as well as any rotation by α?
3. How much faster does collision entropy accumulate compared to min-entropy?

Fig. 1. Comparison between the exact number of samples needed to condense to 31 bits
of collision/min-entropy (or 63 bits) from the exponential distribution, for bit-reversed
rotation and the rotations used by Microsoft with input entropy k.

Our empirical results show that (at least for this natural distribution), (1) the
true number of samples needed to accumulate from k bits of entropy to nearly
n bits of entropy is very close to Cπ,k; (2) bit-reversed rotation compares quite
favorably with rotation by α; and (3) collision entropy accumulates slightly but
notably faster than min-entropy. There are some subtleties, though. (See Fig. 1
for the high-level picture.) For more detailed discussion, we refer readers to the
full version of the paper [8].

Summary. Overall, we believe that our work provides both theoretical and prac-
tical results to shed light on a previously unexplored, but significant aspect of all
practical RNGs: the design of “superefficient” entropy accumulation functions.

2 Preliminaries

For an integer n ≥ 1, we write [n] := {0, . . . , n − 1}. For a distribution D over
{0, 1}n and x ∈ {0, 1}n, we write D(x) := PrX∼D[X = x] for the probability
that D assigns to x.

but squeezing the last couple of bits (i.e., becoming an extractor) takes many more
samples. This is why we stop our experiments at (n − 1) bits of entropy.



558 Y. Dodis et al.

The min-entropy and collision entropy of D are

Hmin(D) := min
x∈{0,1}n

log2(1/D(x)) and H2(D) := log2(1/
∑

x

D(x)2) .

We will consider the problem of converting independent samples from a distribu-
tion D with some min-entropy into a new distribution with large min-/collision
entropy.

For a distribution D over {0, 1}n and w ∈ {0, 1}n, we define the Fourier
coefficient of D at w as

D̂(w) := E
X∼D

[(−1)〈X ,w 〉] = Pr
X∼D

[〈X,w〉 = 0 mod 2]− Pr
X∼D

[〈X,w〉 = 1 mod 2].

Fact 3. For any distribution D over {0, 1}n, and x in {0, 1}n,

D(x) =
1
2n

∑

w∈{0,1}n

D̂(w)(−1)〈x,w 〉 .

Theorem 4 (Parseval’s theorem). For any distribution D over {0, 1}n,
∑

x∈{0,1}n

D(x)2 = 2−n
∑

w∈{0,1}n

D̂(w)2 .

Corollary 1. For any distribution D over {0, 1}n,

H2(D) = n − log2
( ∑

w∈{0,1}n

D̂(w)2
)

,

and
Hmin(D) ≥ n − log2

( ∑

w∈{0,1}n

|D̂(w)|
)

.

Corollary 1 shows that the sum of the squares of Fourier coefficients char-
acterizes the collision entropy, and the sum of the absolute values of Fourier
coefficients is useful for bounding min-entropy.

Proof. By Parseval’s theorem, we have

H2(D) = log2(1/
∑

x

D2(x)) = log2(2
n/

∑

w∈{0,1}n

D̂2(w)) ,

which implies the desired conclusion. By Fact 3,

Hmin(D) = min
x∈{0,1}n

log2(1/D(x))

= min
x∈{0,1}n

log2(2
n/

∑

w∈{0,1}n

D̂(w)(−1)〈x,w 〉)

≥ log2(2
n/

∑

w∈{0,1}n

|D̂(w)|)

as desired. ��
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The Fourier coefficients arise naturally in our context because they interact
nicely with both convolution and linear transformations, as this next well-known
claim shows.

Claim 5. For distributions D1, . . . , Dm over {0, 1}n and linear transformations
A1, . . . , Am ∈ F

n×n
2 , let D be the distribution given by

Pr
X∼D

[X = x] = Pr
X 1∼D1,...,Xm∼Dm

[A1X1 ⊕ · · · ⊕ AmXm = x] ,

where the Xi are independent. Then,

D̂(w) = D̂1(AT
1 w) · · · D̂m(AT

mw) .

for any w ∈ {0, 1}n.

Proof. We have

E[(−1)〈w ,X 〉] = E[(−1)〈w ,A1X 1⊕···⊕AmXm〉]

= E[(−1)〈w ,A1X 1〉] · · · E[(−1)〈w ,AmXm〉]

= E[(−1)〈AT
1 w ,X 1〉] · · · E[(−1)〈AT

mw ,Xm〉]

= D̂1(AT
1 w) · · · D̂m(AT

mw) .

��
For a distribution D over {0, 1}n, integer � ≥ 1, and linear transformation A :

F
n
2 → F

n
2 , we write D

(�)
A for the distribution obtained by sampling X1, . . . ,X�

independently and returning X1 ⊕ AX2 ⊕ · · · ⊕ A�−1X�.

3 Capturing Natural Distributions

In this section, we consider natural distributions over the integers (e.g., the kinds
of distributions that one might expect for interrupt timings). We associate with
each integer 0 ≤ x < 2n the vector x = (x0, . . . , xn−1) ∈ {0, 1}n given by its
binary representation. In other words, the xi ∈ {0, 1} are the unique bits that
satisfy x =

∑
2ixi. For example, x might correspond to the timing of a keystroke.

We observe that many natural distributions are captured by the general class
of 2-monotone distributions, which we define below. See Sect. 7 for examples of
natural distributions that are 2-monotone.

Definition 1 (2-monotone distributions over Z2n). A function p : [2n] →
[0, 1] is monotone over an interval {i1, i1 + 1, . . . , i2} if

p[i1 mod 2n] ≤ · · · ≤ p[i2 mod 2n] or p[i1 mod 2n] ≥ · · · ≥ p[i2 mod 2n] .

We say that p is 2-monotone over Z2n , if there exist 0 ≤ i1 < i2 ≤ 2n − 1 such
that p is monotone on the interval {i1, . . . , i2} and on the interval {i2, . . . , 2n −
1, 2n, . . . , 2n + i1 − 1}.
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We say that a distribution D over {0, 1}n is 2-monotone over Z2n if it is
obtained by sampling an integer 0 ≤ X ≤ 2n − 1 (interpreted as a bit string as
above) according to a 2-monotone probability mass function (Fig. 2).

Fig. 2. A depiction of a 2-monotone distribution over Z2n

Intuitively, 2-monotone distributions “change direction at most twice” when
viewed as functions on the cycle Z2n , so that they have “at most one peak”
(and “at most one trough”). (For example, all unimodal distributions are 2-
monotone.)

A very nice feature of 2-monotone distributions D is that |D̂(w)| is small
if wi = 1 for some small index i. This formally captures the intuition that the
lower-order bits of “natural distributions” should have high entropy.

Lemma 1. For any 2-monotone distribution D over {0, 1}n with min-entropy
k, and w ∈ {0, 1}n with wi = 1,

∣∣D̂(w)
∣∣ ≤ min{1, 2i+1−k} .

The lemma follows immediately from the following two claims.

Claim 6. If
∑2n−1

j=1 |D(j) − D(j − 1)| ≤ ε, then for any w with wi = 1,

|D̂(w)| ≤ min{1, 2i · ε} .
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Proof. We have

|D̂(w)| =
∣∣∣ E
X∼D

[(−1)〈X ,w 〉]
∣∣∣

=
∣∣∣

∑

X :X i=0

(−1)〈X ,w 〉(D(X) − D(X + ei))
∣∣∣

≤
∑

X :X i=0

|D(X) − D(X + ei)|

=
∑

X :X i=0

|D(X) − D(X + 2i)|

≤
∑

X :X i=0

2i∑

j=1

|D(X + j) − D(X + j − 1)|

≤ 2i ·
2n−1∑

j=1

|D(j) − D(j − 1)|.

��
Claim 7. If D is 2-monotone over Z2n with min-entropy k, then

2n−1∑

j=1

|D(j) − D(j − 1)| ≤ 21−k .

Proof. Suppose p is monotone on {0, . . . , i} and {i, . . . , 2n−1} for 0 < i < 2n−1.

2n−1∑

j=1

|D(j) − D(j − 1)| =
i∑

j=1

|D(j) − D(j − 1)| +
2n−1∑

j=i

|D(j) − D(j − 1)|

= |D(i) − D(0)| + |D(2n−1) − D(i)|
≤ 21−k

where the second inequality is by monotonicity of p, and the last inequality is
because D has min-entropy k, so |D(x) − D(y)| ≤ 2−k for every 0 ≤ x, y ≤
2n − 1. Similarly, if p is monotone on {i1, . . . , i2} and {i2, . . . , 2n − 1, 0, . . . , i1}
for 0 < i1 < i2 < 2n − 1, we have

2n−1∑

j=1

|D(j) − D(j − 1)| ≤ 2|D(i1) − D(i2)| ≤ 21−k.

The desired conclusion follows. ��

4 Rotation Condensers

In this section, we set out to understand the power of rotation condensers gener-
ically. For integers 0 < α < n, we write rotα,n for the linear transformation over
{0, 1}n defined by
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rotα,n((x1, . . . , xn)) := (x1+α, x2+α, . . . , xn, x1, . . . , xα) .

I.e., rotα,n rotates the coordinates of a vector x by α. Notice that rotTα,n =
rotn−α,n and rotkα,n = rotkα mod n,n.

Theorem 8. For any 1 ≤ α < n with gcd(α, n) = 1, and any 2-monotone
distribution D over {0, 1}n with min-entropy k > 1, it holds that

H2(D
(n)
rotα,n

) ≥ n(1 − log2(1 + 2−2k+2)) ≈ n(1 − 2−2k+2) ,

Hmin(D
(n)
rotα,n

) ≥ n(1 − log2(1 + 2−k+1)) ≈ n(1 − 2−k+1) .

Theorem 8 provides some basic theoretical justification for the use of rotα,n

as a condenser. It shows rotation provably condenses to Ω(n) bits entropy within
n steps.

Note that the theorem works for any rotation with gcd(α, n) = 1, which
means it also works for rotation whose rotation number is α = 1. Although we
typically think of rotation by 1 as the worst condenser (and we will show this in
the next section), our result shows it can still condense 2-monotone distributions
to linear entropy within n steps. What’s more, the proof of Theorem 8 imme-
diately generalizes to any cyclic permutation,9 so that any cyclic permutation
can condense to Ω(n) bits of entropy within n steps. (In particular, this can be
applied to the cyclic permutation torn that we define in Sect. 6.)

Proof. Let A := rotα,n. For w ∈ {0, 1}n, we say that w hits e0 if w0 = 1,
and say that (w, ATw, . . . , (AT )n−1w) hits e0 j times if there are j choices of
i such that (AT )iw hits e0. By Lemma 1, for every w hitting e0, it holds that
|D̂(w)| ≤ 2−k+1.

Claim 9. For w ∈ {0, 1}n, (w, ATw, . . . , (AT )n−1w) hits e0 exactly |w| times.

Proof. It suffices to notice that for every i, there exists a distinct 0 ≤ j < n
such that (AT )jei = e0 since A = rotα,n and gcd(α, n) = 1. For such an i and
j, (AT )jw hits e0 if and only if wi = 1. Therefore, the total number of hits is
exactly the number of non-zero coordinates in w. ��

Given the claim, we note that

|̂D(n)
A (w)| =

∣∣∣
n−1∏

i=0

D̂((AT )iw)
∣∣∣ ≤

∏

i:(AT )iw hits e0

|D̂((AT )iw)| ≤ (2−k+1)|w |

9 A cyclic permutation is a permutation σ : [n] → [n] such that for all x ∈ [n],
σi(x) = x if and only if n divides i.
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where the equality is by Claim 5, and the last inequality is by the claim and
Lemma 1. Therefore,

∑

w∈{0,1}n

|̂D(n)
A (w)|2 ≤

∑

w∈{0,1}n

(2−k+1)2|w | =
n∑

j=0

(
n

j

)
(2−k+1)2j = (1+2−2k+2)n,

∑

w∈{0,1}n

|̂D(n)
A (w)| ≤

∑

w∈{0,1}n

(2−k+1)|w | =
n∑

j=0

(
n

j

)
(2−k+1)j = (1 + 2−k+1)n.

Finally, by Corollary 1, we have

H2(D
(n)
A ) = n − log(

∑

w∈{0,1}n

|̂D(n)
A (w)|2) ≥ n − log(1 + 2−2k+2)n

Hmin(D
(n)
A ) ≥ n − log(

∑

w∈{0,1}n

|̂D(n)
A (w)|) ≥ n − log(1 + 2−k+1)n

which imply the desired conclusion. ��

5 Comparing Different Rotations and Permutations

In this section, we show how to compare the performance of different permuta-
tions on two-monotone distributions. For a permutation π : [n] → [n], we write
Aπ for the linear transformation over {0, 1}n defined by

Aπ(x1, . . . , xn) := (xπ(1), . . . , xπ(n)) .

I.e., Aπ permutes coordinates of a vector x by π. We slightly abuse notation and
write D

(�)
π to denote D

(�)
Aπ

.
We show that the rate of convergence of the condenser associated with a

permutation π when run on two-monotone distributions with min-entropy k is
governed by what we call the covering number Cπ,k.

To get some intuition behind the covering number, consider the simple case
when we want to extract from the distribution D that is uniform on [2k] (or,
in terms of bit strings, uniform on {0, 1}k × {0}n−k). Notice that D

(m)
π is the

distribution that is uniform over the space spanned by {ei : ∃0 ≤ j < k, 0 ≤
� < m, π�(j) = i}.

In particular, the distribution D
(m)
π has full entropy n if and only if {π�(j) :

0 ≤ j < k, 0 ≤ � < m} is the full set of coordinates [n]. We call the minimal
such m the covering number of π, and the above discussion shows that it arises
naturally in this context.

Definition 2 (Covering number). For a permutation π : [n] → [n], and an
integer 1 ≤ k ≤ n, the covering number Cπ,k is the smallest natural number m
such that

{π�(j) : 0 ≤ j < k, 0 ≤ � < m} = [n]

where πi = π ◦ πi−1 for i ≥ 1, π0 is the identity function. (If no such m exists,
we say Cπ,k = ∞.)
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To get some intuition for the covering number, first notice that we must have
Cπ,k ≥ 
n/k�. (This corresponds to the fact that we need at least 
n/k� sources
with k bits of entropy each in order to have any hope of extracting n bits of
entropy.) Of course, the covering number can be much worse than this, e.g.,
Crot1,n,k = n − k + 1, which is the worst possible.

Also, notice that Crotk,n,k = 
n/k�. In other words, the optimal covering
number 
n/k� is always achieved for fixed k by rotation by exactly k bits. (This
suggests that, if your input is “nice enough,” e.g., 2-monotone, and you happen
to know it has k bits of entropy, then rotating by α = k is a good idea. And,
indeed, this is the case.) So, every choice of α has an optimal covering number
for at least one choice of k, and we will not be able to unambiguously say that
one choice of α is the “best”. Still, the performance of different choices of α over
all 1 ≤ k ≤ n does vary considerably.

As we explained above, the covering number arises naturally when consider-
ing how quickly we can extract from the uniform distribution on [2k], which is
perhaps the simplest 2-monotone distribution.

The following theorem shows that the covering number actually characterizes
how quickly we converge to a high-entropy distribution for any 2-monotone
distribution. In the proof, “we lose a factor of two in k,” so that we need to take
at least Cπ,k/2 steps, rather than Cπ,k steps. And, we are of course only able to
condense, not to extract. But, otherwise the result is tight. In Sect. 7.2, we show
empirically that roughly Cπ,k steps is already enough for very strong condensing
for natural distributions, suggesting that the factor of two loss is an artifact
of the proof. Put together, the empirical data and the theoretical justification
below strongly suggest that

The covering number Cπ,k is the right measure of how well a permutation π
condenses for natural real-world distributions.

Theorem 10. Let D be a two-monotone distribution with min-entropy at least
k for some integer k ≥ 2. Let π : [n] → [n] be a permutation with covering
number m := Cπ,k′ , where k′ := �k/2�. Then for any � ≥ m,

H2(D(�)
π ) ≥ n − (�n/k′� + 1) · log2(1 + 2k′−k��/m�) ≈ n(1 − 2k/2−k�/m) ,

Hmin(D(�)
π ) ≥ n − (�n/k′� + 1) · log2(1 + 2k′−(k/2)��/m�) ≈ n(1 − 2k/2−k�/(2m)) .

Furthermore, there exists a two-monotone distribution D with min-entropy k
such that for all 1 ≤ � < Cπ,k

Hmin(D(�)
π ) = H2(D(�)

π ) ≤ n − (Cπ,k − �) .

In [8], we prove the following better lower bound on condensing (using the
techniques developed in Sect. 7), showing that the results in Theorem 10 are
quite tight. In fact, the distribution that we use to prove the theorem is exactly
the same as the distribution that we use in our empirical results in Sect. 7.2.
(This distribution arises naturally in this context.)
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Theorem 11. For every integer 1 ≤ s ≤ n, there is a 2-monotone distribution
D (in fact, a monotone distribution) with min-entropy k > s − 1 + 1/2s such
that

H2(D(�)
π ) ≤ n · (1 − 2−s2�/n−4�/n) ≈ n(1 − 2−k2�/n−4�/n)

Hmin(D(�)
π ) ≤ n · (1 − 2−s2�/(2n)−2�/n) ≈ n(1 − 2−k2�/(2n)−2�/n) .

Notice how close these bounds are to the bounds in Theorem 10 with m := n/k.

5.1 Proof of Theorem 10

Proof. The “furthermore” part of the theorem is trivial. Indeed, it holds for the
uniform distribution over [2k], which is clearly 2-monotone with min-entropy k.
So, it remains only to prove the first statement.

Let k′ = �k/2� and let B0, B1, . . . , Bm−1 be a partition of [n] such that
Bi ⊆ πi([k′]) . Observe that 0 ≤ |Bi| ≤ k′. We use wS to denote the projection
of w onto S ⊆ [n]. Let b be either 1 or 2.

Claim 12.
∑

w |D̂(�)
π (w)|b ≤ ∑

w | ̂D(m)
π (w)|b��/m� .

Proof.

∑

w

|D̂(�)
π (w)|b =

∑

w

�−1∏

i=0

|D̂((AT
π )iw)|b

≤
∑

w

��/m�−1∏

j=0

m−1∏

i=0

|D̂((AT
π )jm+iw)|b

=
∑

w

��/m�−1∏

j=0

| ̂D(m)
π ((AT

π )jmw)|b

≤
��/m�−1∏

j=0

( ∑

w

| ̂D(m)
π ((AT

π )jmw)|b��/m�
)1/��/m�

=
��/m�−1∏

j=0

( ∑

w ′
| ̂D(m)

π (w′)|b��/m�
)1/��/m�

=
∑

w

| ̂D(m)
π (w)|b��/m�

where the first line is by Claim 5, the fourth line is by a claim proved in [8] and
the fifth line is because (AT

π )jm is a permutation over {0, 1}n. ��
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Claim 13. | ̂D(m)
π (w)|b��/m� ≤ 2−aw ·(bk/2)��/m�, where aw := |{i : wBi

�= 0}|.
Proof. We say that w hits [k′] if there exists an i ∈ [k′] such that wi = 1. By
Lemma 1, for any 2-monotone distribution with min-entropy at least k, and any
w which hits [k′], it holds that

|D̂(w)| ≤ 2(k
′−1)+1−k ≤ 2−k/2 .

For w, let Sw := {i ∈ [m] : (AT
π )iw hits [k′]}. Observe that, if wBi

�= 0,
because Bi ⊆ πi([k′]), then

(
(AT

π )iw
)
[k′] = wπi([k′]) �= 0

where πi([k′]) := {πi(j) : j ∈ [k′]}. I.e., (AT
π )iw hits [k′]. Therefore, |Sw | ≥ aw .

Moreover,

| ̂
D

(m)
π (w)|b��/m� =

m−1∏

i=0

|D̂((AT
π )i(w))|b��/m�

≤
∏

i∈Sw

|D̂((AT
π )iw)|b��/m�

≤ 2−|Sw |·(bk/2)��/m�

≤ 2−aw ·(bk/2)��/m�

as needed. ��
We then prove Theorem 10 given above claims.

∑

w

|D̂(�)
π (w)|b ≤

∑

w

| ̂
D

(m)
π (w)|b��/m�

≤
∑

w

2−aw ·(bk/2)��/m�

=
∑

S⊆[m]

(
m

|S|

)
∑

w :{i:w Bi
�=0}=S

2−|S|·(bk/2)��/m�

=
∑

S⊆[m]

(
m

|S|

)
2−|S|·(bk/2)��/m� ∏

i∈S

(2|Bi| − 1)

=
∑

S⊆[m]

(
m

|S|

)
∏

i∈S

(
(2|Bi| − 1)2−(bk/2)��/m�)

=

m−1∏

i=0

(
1 + (2|Bi| − 1) · 2−(bk/2)·��/m�)

where the first inequality is by Claim 12, and the second inequality is by
Claim 13. Furthermore, by a claim proved in [8], when 0 ≤ |Bi| ≤ k′ and∑m−1

i=0 |Bi| = n,

m−1∏

i=0

(
1 + (2|Bi| − 1) · 2−(bk/2)·��/m�) ≤ (1 + (2k′ − 1) · 2−(bk/2)·��/m�)�n/k′�+1.
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Finally, by Corollary 1, we have

H2(D(�)
π ) ≥ n − log

( ∑

w

|D̂(�)
π (w)|2) ≥ n − (� n

k′ � + 1) · log
(
1 + 2k′−k��/m�) ,

Hmin(D(�)
π ) ≥ n − log

( ∑

w

|D̂(�)
π (w)|) ≥ n − (� n

k′ � + 1) · log
(
1 + 2k′−(k/2)��/m�) .

as needed. ��

5.2 Covering Numbers of Different Rotations When n = 32, 64

In Figs. 3 and 4, we show the covering numbers of rotations with different rota-
tion number α when n = 32, 64. In both cases, we compare the rotation numbers
α chosen by Microsoft (α = 5 for n = 32 and α = 19 for n = 64) with other
rotations that also perform well. (In Sect. 6, we show a different cyclic permuta-
tion, which is not a rotation, but has optimal covering number Cn,k = n/k when
both n and k are powers of two.) We also compare the covering numbers with
the natural lower bound of 
n/k�.

Fig. 3. Covering numbers of different rotations when n = 32
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Fig. 4. Covering number of different rotations when n = 64

6 A New Recommendation: Bit-Reversed Rotation

Our characterization in terms of the covering number suggests the following
“greedy” construction of a permutation with small covering number. Recall that
we can write a cyclic permutation π in cycle notation as

a0 := 0 → a1 := π(0) → a2 := π(π(0)) → · · · → an−1 := πn−1(0) → an := 0 .

So, suppose that n is a power of two, and suppose that we want to build some
permutation π : [n] → [n] such that Cπ,2 = n/2 is as small as possible. Notice
that this holds if and only if an/2 = 1. I.e., “0 and 1 should be maximally far
apart on the cycle”:

a0 = 0 → a1 → · · · → an/2−1 → an/2 = 1 → an/2+1 → · · · → an−1 → an = 0 .

Similarly, Cπ,4 = n/4 if and only if {an/4, an/2, a3n/4} = {1, 2, 3}, i.e., if and
only if “0, 1, 2, and 3 are maximally far apart on the cycle” so that no two
of them are within distance less than n/4. Therefore if we simultaneously have
Cπ,2 = n/2 and Cπ,4 = n/4, then the permutation must have either the form

a0 = 0 → · · · → an/4 = 2 → · · · → an/2 = 1 → · · · → a3n/4 = 3 → · · · → 0, (1)
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or

a0 = 0 → · · · → an/4 = 3 → · · · → an/2 = 1 → · · · → a3n/4 = 2 → · · · → 0. (2)

Continuing in this way, we see that we can build a cyclic permutation π : [n] →
[n] such that Cπ,2a = n/2a for all integers 0 ≤ a ≤ log2 n. In fact, we get a
family of permutations (where the different members of the family vary as in
Eqs. (1) and (2)), which represents all permutations that satisfy Cπ,2a = n/2a

for all a. And, it is not hard to see that every such permutation has covering
numbers given by Cπ,k = n/k′, where k′ := 2�log2 k� is the largest power of two
smaller than k. (We prove this carefully below for one particular member of the
family.)

Since all such permutations are essentially identical from our perspective, we
choose one with a particularly elegant description. This elegant description might
also help with efficient implementations. In particular, our choice, which we call
bit-reversed rotation, is obtained by conjugating rot1,n with the well-studied and
very efficient bit-reversal permutation.

Definition 3 (Bit-reversed rotation). For a power of two n = 2a, the bit-
reversal permutation σn : [n] → [n] is defined by

σn

(
b0 + 2b1 + · · · + 2a−1ba−1

)
= ba−1 + 2ba−2 + · · · + 2a−1b0

for bi ∈ {0, 1}. (E.g., σ8(3) = 6, and σ16(10) = 5.) Notice that σn is an invo-
lution, i.e., σ−1

n = σn. We nevertheless sometimes write σ−1
n when this seems

more natural.
Then, the bit-reversed rotation torn : [n] → [n] (tor is rot “reversed”) is given

by torn := σ−1
n ◦ rot1,n ◦ σn. E.g., in cyclic notation, tor8 is

0 → 4 → 2 → 6 → 1 → 5 → 3 → 7 → 0 .

Equivalently, torn can be defined recursively via the recurrence tor2n(i + n) =
torn(i) for i < n together with the identity tor2n(i) = i + n. (These two rules
as simply describe binary addition, except with the bits reversed. I.e., “if the
highest-order bit is 0, set it to 1; if it is 1, then set it to 0 and perform the same
operation on the remaining bits.”)

Theorem 14. For a power of two n and 1 ≤ k ≤ n,

Ctorn,k = n/k′ ≤ 2n/k ,

where k′ := 2�log2 k� is the largest power of two that is no larger than k.

Proof. The result follows from the recurrence relation Ctor2n,k = 2Ctorn,k for
k ≤ n, together with two base cases, Ctorn,n = 1 and Ctorn,� = 2 for n/2 ≤ � < n.

The first base case, Ctorn,n = 1 is trivial. The second base case Ctorn,� = 2 for
n/2 ≤ � < n follows the simple observation that for all i < n/2, torn(i) ≥ n/2.
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This in particular implies that Ctorn,n/2 = 2, and since 1 < Ctorn,� ≤ Ctorn,n/2

for n/2 ≤ � < n, we must have Ctorn,� = 2 for all such �.
To see the recurrence relation, notice that the recursive formula for torn

implies that tor22n(i) = torn(i) for i < n. Applying this identity repeatedly
gives tor2�

2n(i) = tor�n(i). Similarly, tor2�+1
2n (i) = tor�n(i) + n. It follows that

i ∈ {tor�n(0), . . . , tor�n(k − 1)} if and only if i, i + n ∈ {tor2�
2n(0), . . . , tor2�

2n(k −
1), tor2�+1

2n (0), . . . , tor2�+1
2n (k−1)}, which immediately implies the recurrence rela-

tion.

Applying Theorem 10 immediately yields the following corollary, which shows
that the bit-reversed rotation yields quite a good condenser. (In Sect. 7.2, we
show empirical results that suggest even better performance, suggesting that
the factor of 2 loss in k′ is unnecessary.)

Corollary 2. For any power of two n, and any 2-monotone distribution D with
min-entropy at least k ≥ 2, then for any � ≥ m

H2(D
(�)
torn) ≥ n − (�n/k′� + 1) · log2(1 + 2k′−k��/m�) ≈ n · (1 − 2−k2�/(2n)) ,

Hmin(D
(�)
torn) ≥ n − (�n/k′� + 1) · log2(1 + 2k′−(k/2)��/m�) ≈ n · (1 − 2−k2�/(4n)) ,

where k′ := �k/2�, and m := n/2�log2 k′� is the smallest power of two that is no
smaller than n/k′.

In Fig. 5, we plot the covering numbers Ctorn,k together with Crotα,n,k for
comparison.

Fig. 5. The covering numbers of bit-reversed rotation and the two rotations rot5,32 and
rot19,64 used by Microsoft. The n/k line represents the best possible value of �n/k	.
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6.1 A Brief Note on Efficient Implementation

We leave it to practitioners to determine whether bit-reversed rotation can be
implemented efficiently enough for their applications. However, we do note two
things. First, we note that the bit-reversal permutation σn on which bit-reversed
rotation is based is well-studied (in part because of its relationship with algo-
rithms for the Fast Fourier Transform), with many fast implementations known
(see, e.g., [18]).

Second, recall that we have defined our extractor according to the state
update procedure Si+1 ← torn(Si) ⊕ X = σn(rot1,n(σn(Si))) ⊕ X, where σn is
the bit-reversal permutation. (Here, we have used the fact that σn = σ−1

n , to
replace σ−1

n ◦ rot1,n ◦ σn with simply σn ◦ rot1,n ◦ σn, since for implementation
it seems quite useful to observe that these are the same map.) However, we
note that one can equivalently use the rule S′

i+1 ← rot1,n(S′
i) ⊕ σn(X). I.e., one

can simply perform the bit-reversal permutation on the input X and rotate the
state S′ by one. It is then easy to see that this rule maintains the invariant
Si = σn(S′

i), and in particular, that Si and S′
i have the same entropy. Therefore,

one can use the second rule instead of the first, which could improve efficiency
by replacing two applications of σn with a single application.10

7 Examples of Natural Distributions and Some
Computational Results

Here, we list some natural distributions, all of which are 2-monotone. We then
compute exactly the number of steps necessary to condense for the special case
of the exponential distribution, which has a particularly nice form that makes
such exact computation feasible.

Discrete Gaussian. For s > 0, we write DZ,s for the discrete Gaussian distri-
bution over the integers with parameter s, i.e., defined by

Pr
X∼DZ,s

[X = z] =
exp(−πz2/s2)∑∞

z′=−∞ exp(−π(z′)2/s2)

for all integers z ∈ Z.
Similarly, for σ > 0, the exponential distribution EZ,σ with parameter σ is

the distribution over Z≥0 defined by

Pr
X∼Dσ

[X = z] =
exp(−z/σ)∑∞

z′=0 exp(−z′/σ)

for all integers z ≥ 0.

10 More generally, for any invertible linear transformations A, B, one can replace the
rule Si+1 ← B−1AB(Si) ⊕ X with the equivalent rule S′

i+1 ← AS′
i ⊕ BX. This

maintains the invariant Si = B−1S′
i.
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Uniform distribution over an interval. For 0 ≤ N1 < N2 ≤ 2n, let UN1,N2

be the distribution over {0, 1}n obtained by sampling an integer N1 ≤ X < N2

uniformly at random (interpreted as a bit string as above).

Shifted exponential distribution. For any σ ≥ 1 and any integer 0 ≤
N < 2n, let Eσ,N be the distribution over {0, 1}n obtained by sampling an
integer Y from an exponential distribution with parameter σ and setting X :=
N + Y mod 2n (and interpreting this as a bit string).

Shifted discrete Gaussian distribution. For any s ≥ 1 and any integer
0 ≤ N < 2n, let Ds,N be the distribution over {0, 1}n obtained by sampling an
integer Y from the discrete Gaussian distribution DZ,s with parameter σ and
setting X := N + Y mod 2n (and interpreting this as a bit string).

Claim 15. UN1,N2 , Eσ,N , and Ds,N are all 2-monotone.

Proof. This fact is immediate for the uniform distribution UN1,N2 , by taking the
monotone intervals {N1, . . . , N2−1} and {N2−1, . . . , . . . , 2n+N1−1}. Similarly,
for Eσ,N , we can take the intervals {N −1, N} and {N, . . . , 2n +N −1}. For the
Gaussian Ds,N , this follows from the fact that the function t �→ ∑

z∈Z
e−π(z−t)2

has maxima at t ∈ Z, minima at t ∈ Z + 1/2 and no other critical points, which
one can verify, e.g., using the Poisson summation formula. ��

7.1 Entropy of Product Distributions Under Permutations

Below, we show an exact formula for the min-/collision entropy resulting from
applying our permutation-based condensers to a product distribution. This exact
formula is of course very useful, as it allows us to easily compute the min-
/collision entropy of the state of our extractor, without directly computing the
sum of 2n Fourier coefficients. Indeed, in Sect. 7.2, we use this formula to show
empirically that our extractor performs similarly as well with the unshifted expo-
nential distribution—a product distribution.

Theorem 16. Let D be a product distribution over {0, 1}n with Prx∼D[Xi =
0] = (1 + εi)/2 for εi ≥ 0. Then, for any cyclic permutation π : [n] → [n],

H2(D(�)
π ) = n −

n−1∑

i=0

log2
(
1 +

�−1∏

j=0

ε2πj(i)

)
,

Hmin(D(�)
π ) = n −

n−1∑

i=0

log2
(
1 +

�−1∏

j=0

επj(i)

)
.

Proof. We have

D̂
(�)
π (w) =

�−1∏

j=0

D̂(πj(w)) =
�−1∏

j=0

∏

wi=1

D̂(eπj(i)) =
�−1∏

j=0

∏

wi=1

επj(i) ≥ 0
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where the second equality is because D is a product distribution. Therefore,

D(�)
π (x) =

1
2n

∑

w∈{0,1}n

D̂
(�)
π (w)(−1)〈x,w 〉 ≤ 1

2n

∑

w∈{0,1}n

D̂
(�)
π (w) = D(�)

π (0) .

Moreover,

∑

w

|D̂(�)
π (w)|2 =

n−1∏

i=0

(
1 +

�−1∏

j=0

|D̂(eπj(i))|2
)

=
n−1∏

i=0

(
1 +

�−1∏

j=0

ε2πj(i)

)
,

∑

w

D̂
(�)
π (w) =

n−1∏

i=0

(
1 +

�−1∏

j=0

D̂(eπj(i))
)

=
n−1∏

i=0

(
1 +

�−1∏

j=0

επj(i)

)
.

The equality for H2(D
(�)
π ) follows from Corollary 1, and the equality for

Hmin(D
(�)
π ) follows from

Hmin(D(�)
π ) = log2(1/D(�)

π (0)) = log2(2
n/

∑

w∈{0,1}n

D̂
(�)
π (w)) .

��
Corollary 3. For any σ ≥ 1, let D := Eσ be the distribution over {0, 1}n

obtained by sampling an integer Y from an exponential distribution with param-
eter σ and setting X := Y mod 2n (and interpreting this as a bit string), as
described above. Then, for any cyclic permutation π : [n] → [n],

H2(D(�)
π ) = n −

n−1∑

i=0

log2
(
1 +

( �−1∏

j=0

1 − exp(−2πj(i)/σ)
1 + exp(−2πj(i)/σ)

)2)

Hmin(D(�)
π ) = n −

n−1∑

i=0

log2
(
1 +

�−1∏

j=0

1 − exp(−2πj(i)/σ)
1 + exp(−2πj(i)/σ)

)
.

Proof. For any 0 ≤ x < 2n,

Pr
X∼D

[X = x] =

∑
z≥0 exp(−(x + 2nz)/σ)

∑
z≥0 exp(−z/σ)

= Cσ ·
∏

i

exp(−2ixi/σ) ,

where

Cσ :=

∑
z≥0 exp(−2nz/σ)

∑
z≥0 exp(−z/σ)

.

I.e., D is a product distribution. From the above expression, we see that

Pr
X∼D

[Xi = 0] = exp(2i/σ) · Pr
X∼D

[Xi = 1] .

The desired conclusion then follows from Theorem 16 with

εi =
1 − exp(−2i/σ)
1 + exp(−2i/σ)

.

��
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7.2 Computational Results for n = 32 and n = 64

Finally, we use the formula from Corollary 3 to directly compute the number of
samples needed to condense to nearly full entropy from the exponential distribu-
tion with different starting entropy and different permutations. At a high level,
these results confirm that the covering number Cπ,k provides a good estimate for
the number of steps needed to condense. We display a more detailed discussion
in the full version [8].

8 Bigger Picture

In this work we abstracted out and analysed the fast entropy accumulation proce-
dures found in modern RNGs. We can now combine our results with prior RNG
literature [7,9,10,14,16] to get a better big picture guarantee of the resulting
RNG, but we start with some observations.

First, every RNG so far used a different (and often incompatible) modeling
of the security of the slow refresh procedure. So, it’s not clear what is the “right”
model for slow refresh—let alone a hybrid fast/slow model. The good news is
that all of the slow refresh models share one thing in common—their rate of
convergence depends only on either the overall collision/min-entropy that they
received. So, the fact that our work guarantees entropic output from a fast refresh
seems like a good start in trying to unify the two models.

Indeed, our results do (trivially) combine with every prior RNG work, and for
concreteness we state one such combination below (focusing on the slow refresh
RNG work of [10], but other combinations are done analogously). The main
issue with such naive combinations is that they appear to only work with a
relatively weak RNG adversary, which must output independent (but not nec-
essarily identical) samples from the family of two-monotone distributions Dk,n,
for (fixed but unknown) min-entropy k per sample. We show a concrete example
of a combined slow-refresh and fast-refresh procedure in the full version [8], but
we stress that this is meant only as a proof of concept and that we do not claim
that the model used in [8] is the “right” model.

As a positive, this is already a highly non-trivial and quite interesting model.
For example, very related “constant entropy rate” adversaries were mentioned
by Fergusson and Schneier [13]—and later formalized by [10]—in their design
and analysis of Fortuna, which directly led to the Windows 10 RNG [12]. On
the negative side, prior work on slow refresh [9,10,14,16]

[7] worked hard to give a lot of power to the RNG attacker, including the
ability to output correlated samples, and drastically change the entropy of each
sample (subject only to providing enough entropy overall). Thus, it is unfortu-
nate that the naive composition that follows from using our work did not use all
these powerful security guarantees of the slow-refresh procedures, and resulted
in a much weaker overall attacker.

We note that, while the naive composition currently does not capture the
ability of the distribution sampler to change its entropy parameter k, it is clear
that the final RNG is at least somewhat resilient and easily adaptable to this



No Time to Hash 575

change, as the RNG design does not use the knowledge of k, and simultaneously
provides good guarantees for all k. So it feels the actual hybrid slow-/fast-refresh
RNG is much more robust that the current composition states. If nothing else,
the resulting RNGs are basically what is used in the real world, and these RNGs
appear to work well against practical entropy sources. In particular, while it is
great that the standards for the slow refresh procedure in the literature are very
high, the existing entropy sources (e.g., modeling timing of interrupts) appear to
be much less adversarial, and likely lie somewhere in between the independent
2-monotone sources modeled in this paper and the very general classes handled
in the literature on slow refresh procedures.

In summary, we view our current work as only the starting point in trying
to understand and model the overall security of the composed RNG, and believe
that finding the “right” model to combine fast refresh with slow refresh is a great
avenue for future work.
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Abstract. An Oblivious RAM (ORAM), introduced by Goldreich and
Ostrovsky (J. ACM 1996), is a (probabilistic) RAM that hides its access
pattern, i.e., for every input the observed locations accessed are similarly
distributed. In recent years there has been great progress both in terms
of upper bounds as well as in terms of lower bounds, essentially pinning
down the smallest overhead possible in various settings of parameters.

We observe that there is a very natural setting of parameters in which
no non-trivial lower bound is known, even not ones in restricted models
of computation (like the so called balls and bins model). Let N and w be
the number of cells and bit-size of cells, respectively, in the RAM that we
wish to simulate obliviously. Denote by b the cell bit-size of the ORAM.
All previous ORAM lower bounds have a multiplicative w/b factor which
makes them trivial in many settings of parameters of interest.

In this work, we prove a new ORAM lower bound that captures this
setting (and in all other settings it is at least as good as previous ones,
quantitatively). We show that any ORAM must make (amortized)

Ω

(
log

(
Nw

m

)
/ log

(
b

w

))

memory probes for every logical operation. Here, m denotes the bit-size
of the local storage of the ORAM. Our lower bound implies that log-
arithmic overhead in accesses is necessary, even if b � w. Our lower
bound is tight for all settings of parameters, up to the log(b/w) factor.
Our bound also extends to the non-colluding multi-server setting.

As an application, we derive the first (unconditional) separation
between the overhead needed for ORAMs in the online vs. offline models.
Specifically, we show that when w = log N and b, m ∈ poly log N , there
exists an offline ORAM that makes (on average) o(1) memory probes per
logical operation while every online one must make Ω(log N/ log log N)
memory probes per logical operation. No such previous separation was
known for any setting of parameters, not even in the balls and bins model.
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1 Introduction

An oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [22], is a
probabilistic RAM machine whose goal is to simulate an arbitrary RAM program
while ensuring observable access patterns do not reveal information neither about
the underlying data nor about the program being executed. This is obtained by
making sure that any two sequences of logical operations on the memory (either
reads or writes) translate into indistinguishable sequences of physical probes to
the memory. ORAMs have become an indispensable tool in the design of cryp-
tographic systems where it is necessary to make the observable access pattern
independent of the underlying sensitive data. Somewhat surprisingly, this task
comes up not only in the context of software protection, as originally suggested
by [22], but also in less directly related contexts such as the design of secure
processor [15,16], secure multi-party computation [5,21,25,38,40,55], and other
central notions in computer science [4,6,9,12,20,37,39,46,51,52,58,60].

A trivial way to construct an ORAM is to replace every logical access with
a scan of the entire memory. While this solution is perfectly secure, it is highly
inefficient and so the question is how efficient could an ORAM be compared to
an insecure RAM. The primary efficiency metric of interest is:

I/O efficiency: The total number of physical probes to the memory of the
ORAM amortized per logical operation.

Some previous works use bandwidth as the metric, but we chose to use I/O
efficiency as our central metric since it is robust and well-defined in various
ORAM settings. I/O efficiency can be translated into communication/bandwidth
by multiplying by the ORAM cell size. See Remark 2.

Following Boyle and Naor [7], we shall distinguish between two classes of
ORAM schemes: offline and online. An ORAM scheme is online if it supports
accesses arriving in an online manner, one by one. An ORAM scheme is offline
if it requires all accesses to be specified at once in advance. Most known ORAM
constructions (e.g., [3,10,22,24,30,41,48,50,54]) work in the online setting as
well with few exceptions (e.g., [7,28,47]). Also, most applications of ORAM
schemes require that the scheme is online.

Existing lower bounds. Assume that the goal is to obliviously simulate a
RAM of N cells each of size w bits on a RAM with N ′ cells each of size b bits
and using a local storage of size m bits. In the original work of Goldreich and
Ostrovsky [22] it was shown that any ORAM scheme (even offline ones) must
have I/O efficiency1,2

Ω

(
w

b
· log N

1 + log(m/b)

)
.

1 To the best of our knowledge, the lower bound technique of [22] was never ana-
lyzed without assuming that b = w. For completeness, we add a proof in the full
version [29]. The bound that we state here is a little bit simplified for presentation
purposes.

2 Throughout this paper, unless otherwise stated, log stands for log2.
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In one sense, this lower bound is very powerful: (1) It is pretty robust to the
choice of w and b as long as b = w, (2) it can be cast for few other efficiency
metrics besides I/O (see [54] for details), and (3) it applies to schemes that have
O(1) statistical failure probability. However, as observed by Boyle and Naor [7]
this lower bound only applies to schemes in the so called “balls and bins” model3

which do not use cryptographic assumptions, leaving the possibility of more
efficient constructions outside of this model.

In a beautiful recent work, Larsen and Nielsen [33, Theorem 2] proved a lower
bound that applies to any online ORAM scheme, even ones that are not in the
balls and bins model and ones that use cryptographic assumptions. They prove
that any online ORAM must have I/O efficiency

Ω

(
w

b
· log

(
Nw

m

))
.

Similarly to the lower bound of Goldreich and Ostrovsky [22], this lower bound
is also pretty robust to the choice of b and w as long as b = w.

Is sub-logarithmic efficiency possible? The above two lower bounds become
completely trivial in the setting where, say, w = log N and b,m ∈ Θ(log2 N).
In this case, both lower bounds simplify to Ω(1). This is by no means an eso-
teric setting of parameters. It is quite common and natural to consider RAM
algorithms that take advantage of being able to place multiple elements in one
cell and process all of them within a single memory access. Indeed, there is a
long line of work in core algorithms literature designing efficient algorithms and
studying tradeoffs in this setting (e.g., [2,17,23,53]).

Focusing on oblivious sorting, one notable result is due to Goodrich [23] (see
also a follow-up by Chan et al. [11]4) who showed an oblivious sorting algorithm
that sorts N elements each of size w bits with O((Nw/b) · logm/b(Nw/b))
memory probes on a RAM with cells of size b bits and local storage of size m
bits. Setting w = log N and b,m ∈ O(log3 N) (see also the full version [29]
for the parameterization), we obtain an oblivious sorting algorithm with O(N)
memory probes. In contrast, when w = b we have existing Ω(N · log N) lower
bounds on the number of memory probes, either in the balls and bins model [36]
or assuming a well-known network coding conjecture [14].

Oblivious sorting is one of the core building blocks in the design of many
oblivious RAM constructions (for example, [3,10,22,24,30,41]), suggesting that
it may be possible to use the algorithms of [11,23] to get an ORAM construction
with sub-logarithmic I/O efficiency. This direction was pursued first by Goodrich
and Mitzenmacher [23,24] and then by Chan et al. [11], but they were only able

3 In the balls and bins model, items are modeled as “balls”, CPU registers and server-
side data storage locations are modeled as “bins”, and the set of allowed data oper-
ations consists only of moving balls between bins. See the full version [29] for the
definition of the model.

4 Chan et al. [11]’s algorithm has the same asymptotic efficiency and it is additionally
in the balls and bins model.
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to construct an ORAM with O(log N) I/O efficiency,5 assuming that w = log N
and b,m ∈ O(log3 N). By now, we already have an ORAM construction, due
to Asharov et al. [3], with O(log N) I/O efficiency assuming only w = b and
m ∈ O(b).

Given the state of affairs, it is an intriguing question whether more efficient
ORAM constructions exist when b � w:

Is the linear dependence on w/b necessary? Alternatively,
is it possible to break the logarithmic barrier for ORAM efficiency if b � w?

1.1 Our Results

In this work, we answer the above question negatively by showing that any online
ORAM construction, including ones that are not in the balls and bins model
and perhaps use cryptographic assumptions, cannot go below the logarithmic
I/O efficiency barrier even if b � w. Restricted to online schemes, for a wide
ranges of parameters, our lower bound improves on the lower bound of Goldreich
and Ostrovsky [22] as well as the one of Larsen and Nielsen [33]. Specifically, we
prove the following theorem.

Theorem 1 (Informal; See Theorem 3). Consider a RAM with memory
of N cells, each of size w bits. Any online ORAM that simulates such a RAM
using cells of size b bits and local storage of size m bits, must have I/O efficiency

Ω

(
log

(
Nw

m

)
/

(
1 + log

(
b

w

)))
.

When b = w, our lower bound is identical to the one of Larsen and
Nielsen [33] and is at least as good as the one of Goldreich and Ostrovsky [22].
However, when b ∈ ω(w), our lower bound is already better than both. For
example, when w = log N and b,m ∈ O(logc N) for any c ≥ 2, our lower
bound is Ω(log N/ log log N) while the ones of Goldreich and Ostrovsky [22] and
Larsen and Nielsen [33] are both only Ω(1). As in [33]’s lower bound, our lower
bound applies to ORAM schemes satisfying computational indistinguishability
only with probability p and having δ failure probability in correctness for some
fixed constants 0 < p, δ < 1. While this makes schemes somewhat weak, this
only makes our lower bound stronger. Lastly, let us mention that our technique
is pretty general and can be used to extend and improve other related lower
bounds when b � w (see Sect. 1.2 for pointers). For example, in the full ver-
sion [29] we extend our lower bound to apply to the non-colluding multi-server
setting, improving the recent lower bound of Larsen et al. [34] whenever b � w.

5 Actually, these works [11,24] give ORAM constructions in a more general model
called the external memory model, where there are three entities, a CPU, a cache,
and a memory. The standard ORAM setting (which we consider here) is a special
case of that model.
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We remark that our lower bound in Theorem 1 is tight for all settings of
parameters up to the log(b/w) factor. This is due to the construction of Asharov
et al. [3] who constructed an ORAM with O(log N) I/O efficiency for all values
of w ≥ log N assuming only m ≥ b ≥ w (and assuming that one-way functions
exist).6

Separating offline and online ORAM. We use Theorem 1 to obtain the first
separation between offline and online ORAM schemes. Specifically, we show that
when we want to obliviously simulate a RAM with N cells of logarithmic size
using a RAM with cells and local storage of poly-logarithmic size (in N), then
there is an offline ORAM with o(1) I/O efficiency while every online ORAM must
have Ω̃(log N) I/O efficiency. This separation is essentially optimal in terms of
the gap between the cost of the offline and the online oblivious simulations.

Theorem 2 (Informal; See Theorem 6). Consider the task of obliviously sim-
ulating a RAM with N cells each of size w = log N bits using an ORAM with cells
of size b bits and using local storage of size m bits such that b,m ∈ poly log N . There
exists an offline ORAM scheme with o(1) I/O efficiency, while every online ORAM
scheme for this task must have Ω(log N/ log log N) I/O efficiency.

We emphasize that the separation is unconditional in the sense that it neither
assumes that schemes are in the balls and bins model (for the lower bound), nor
that one-way functions exist (for the upper bound). Prior to this work, there
was no such separation, even assuming either of these assumptions (and in any
range of parameters).

1.2 Related Work

Passive Server. It is implicit in the standard definition of an ORAM that the
server merely acts as a storage provider and does not perform any computation
for the client. There are constructions where the server is actively perform-
ing computation (including memory I/O) for the client and this is not counted
in the total I/O efficiency of the scheme (e.g., [1,13,19–21,45,52]). Many of
these schemes achieve sub-logarithmic client-side I/O efficiency. Our lower bound
shows that, in such cases, the server must have logarithmic I/O efficiency.

Related oblivious lower bounds. The beautiful result and technique of
Larsen and Nielsen [33] inspired a fruitful line of works [26,27,32,34,42,43].
Most related to the ORAM problem are [26,27,34,43] on which we briefly elab-
orate. Jacob et al. [27] showed that the lower bound technique of [33] can be
used to show logarithmic lower bounds on the overhead of oblivious simulation
of various specific data structures like stacks, queues, and more. Persiano and
Yeo [43] showed that logarithmic overhead is necessary for RAM simulation even
if the the security requirement is differential privacy, intuitively hiding only one
6 We believe that the log(b/w) factor is necessary in the lower bound, at least for

some range of parameters. Specifically, when b, m ∈ NΘ(1) and w = log N , by re-
parameterizing Path ORAM [50], we obtain an ORAM with O(1) I/O efficiency.
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access.7 Hubáček et al. [26] extended [33]’s logarithmic lower bound to the set-
ting where the adversary does not see boundaries between queries. Larsen et
al. [34] showed that logarithmic overhead in oblivious simulation is necessary
even if data is allowed to be split over multiple servers, only one of which is
controlled by an attacker.

All of the above papers give lower bounds that mostly apply to the symmetric
setting where the cell size is identical in the given RAM and the simulated one
since they suffer from a w/b factor loss. We believe that considering those prob-
lems and extending the lower bounds to the asymmetric setting (when possible)
is intriguing, and we hope that our techniques in this paper will be helpful. In the
full version [29], we show that using our techniques it is possible to improve the
lower bound of Larsen et al. [34] to not suffer from a loss of w/b multiplicative
factor even in the multi-server setting. This lower bound generalized our main
result (Theorem 1) as it implies the latter when restricting to a single server.
We refer to the full version [29] for the precise problem definition and statement
of the result.

We believe that similarly, using our technique, one can improve the results
in [26,42] as they rely on a similar hard distribution to that of [33]. This is left
for future work.

The cell probe model. Following Larsen and Nielsen [33], our lower bound
holds in an augmented version of the well known cell probe model (to capture
the obliviousness requirement). Details about our model are given in Sect. 3;
Here, we mention some classical and notable facts about the cell probe model.
The cell probe model, introduced by Yao [59], is a model of computation similar
to the RAM model, except that all computational operations are free of charge
except memory access. This model is useful in the analysis of data structures,
especially for proving lower bounds on the number of memory accesses needed
to solve a given problem.

By now, there are few techniques for proving lower bounds in the cell probe
model. The strongest technique [31,35] can prove super-logarithmic lower bounds
and therefore should not be applicable as is to the ORAM setting where log-
arithmic upper bounds are known (unless additional requirements are made).
Another technique, due to Pǎtraşcu and Demaine [44], is the so called informa-
tion transfer method which is used to prove logarithmic lower bounds in the cell
probe model. Larsen and Nielsen [33] were able to use this technique to prove
their lower bound on ORAM constructions. We also use this technique. Persiano
and Yeo’s [43] lower bound, mentioned above, were able to adapt the chrono-
gram technique due to Fredman and Saks [18] which can also be used to prove
logarithmic lower bounds.

Other related work. In the balls and bins model and where the server is
passive (i.e., not performing any computation), Cash et al. [8] proved that any

7 The lower bound of Persiano and Yeo [43] also looses the w/b factor, similarly to
Larsen and Nielsen. Specifically, it is Ω((w/b) · log(N/m)) which is trivial if b � w.
It is an open problem to improve their lower bound in the setting where b � w.
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one-round ORAM must have either Ω(
√

N) I/O efficiency or Ω(
√

N)-bit local
storage.

Boyle and Naor [7] proved that an unconditional lower bounds for offline
ORAMs would imply a non-trivial circuit lower bound which is a long standing
open problem. This result is obtained by constructing an offline ORAM from any
sorting circuit, where the efficiency of the resulting ORAM is proportional to the
size of the circuit. In a followup work, Weiss and Wichs [57] showed that proving
a lower bound for online read-only ORAM is at least as hard as either proving a
non-trivial circuit lower bound or ruling out a very good locally decodable code.

As mentioned, some ORAM constructions have improved I/O efficiency at
the cost of setting the cell size b to be super-logarithmic in the memory size.
These works include not only schemes based on oblivious sorting [11,23,24,52],
but also several “tree-based” constructions [48,50].

2 Technical Overview

This section gives a high level overview of our results. We first briefly recall the
model and problem we want to solve. We proceed with explaining the beautiful
technique of Larsen and Nielsen [33] and why it fails to give our desired lower
bound. Lastly, building on the intuition we gained up to that point, we explain
the main ideas in our proof and highlighting some of the technical challenges we
are faced with.

2.1 The Model, Problem, and Recap of Larsen and Nielsen [33]

The model and problem. As observed by Larsen and Nielsen [33], it is con-
venient to state the ORAM problem as an oblivious data structure, as defined
in [56], solving the array maintenance problem, where the goal is to maintain
an array of N entries, each of size w bits, while supporting two operations: (1)
(write, a, x): set the content of entry a ∈ [N ] to x ∈ {0, 1}w and (2) (read, a):
return the content of entry a ∈ [N ]. The lower bound that we prove, identical
to [33], is on the cell probe complexity of any oblivious data structures solving
the array maintenance problem. To get a lower bound on the I/O efficiency of
ORAMs, it suffices to divide the number of probes by the number of operations.

Briefly, an oblivious data structure is a data structure that solves some given
problem with an additional security guarantee which says that the (physical,
observable) access patterns resulting from a sequence of logical data structure
operations should reveal nothing on the latter sequence other than its length.
For this purpose the oblivious data structure can use a small trusted/secure
local storage (“cache”) on which it can perform operations “for free” and with-
out leaking any data. The oblivious data structure is therefore parametrized by
N ′, b,m, its total number of cells, the bit-size of each cell, and the bit-size of
its local storage, respectively. The efficiency metric of interest is the number of
probes to the physical memory needed to answer one logical access. It is typically



586 I. Komargodski and W.-K. Lin

assumed that m ≥ b ≥ log N ′ so that the local storage can hold at least a single
cell from the memory and that a single cell can hold a pointer to another cell.

Throughout most of this overview (except where we explicitly say other-
wise), we consider the simpler setting where the oblivious data structure has
perfect security and correctness. Perfect security means that for all sequence of
logical operations of the same length, the observable sequence of physical mem-
ory probes is identically distributed. Perfect correctness means that the data
structure never makes mistakes. With some additional technical work, these two
assumptions can be relaxed.

Larsen and Nielsen’s lower bound. The lower bound of Larsen and
Nielsen [33] adapts the information transfer technique of Pǎtraşcu and
Demaine [44] to the oblivious setting. We give a high level overview next. Fix
a given oblivious data structure for the array maintenance problem (i.e., an
ORAM). For any sequence of N operations, we associate a complete binary tree
with N leaves (we assume that N is a power of two for simplicity). The leaves
are associated with the logical operations and their associated physical probes,
in chronological order. That is, during the execution of the sequence, for each
i, all cell addresses probed during the ith operation are associated with the ith
leaf. Next, the leaf-level probes are partially assigned to internal nodes: for each
probe to cell address q that is associated with leaf i, if chronologically the most
recent probe to cell q happened during the jth operation (so that j < i), then the
probe (i, q) is assigned to the lowest common ancestor of leaves i and j. Notice
that the assignment is partial, i.e., some physical probes may not be assigned
to any internal node, and thus it suffices to prove a lower bound on the total
number of probes assigned to internal nodes.

For each fixed internal node v, Larsen and Nielsen [33] used the information
transfer technique [44] to prove a lower bound on the number of associated phys-
ical probes with v by designing a hard distribution of sequences of operations.
Let n be the number of leaves and thus operations in the subtree induced by
v. In the hard distribution, all N − n operations that are not in the subtree of
v are just dummy reads from a fixed address. In the subtree induced by v, the
first n/2 operations are writes to addresses 1, 2, . . . , n/2 with uniformly random
values x1, . . . , xn/2 ← {0, 1}w , and then the second n/2 operations are reads
from addresses 1, 2, . . . , n/2. That is,

(write, 1, x1), . . . , (write, n, xn/2), (read, 1), . . . , (read, n/2).

To show that node v is associated with “many” probes when executing a
sequence of operations from this distribution, the intuition is that in order to
correctly answer the n/2 read operations, any data structure for the array main-
tenance problem (even non-oblivious ones!) must probe “many” cells that were
also probed during the n/2 write operations. This intuition is formalized by a
compression argument. Quantitatively, recalling that each cell in the array main-
tenance problem consists of w bits and each cell in the data structure consists
of b bits, there must exist a set of Ω(n ·w/b) cells from the data structure that
are probed during the first as well as the second n/2 operations (here, we ignore
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the local storage of m bits for simplicity). By the definition of our binary tree,
all of these Ω(n · w/b) probes are associated with node v.

The proof proceeds by using the security guarantee of the data structure (as
the above argument relied solely on correctness). The main observation is that
since the tree and the associated probes of each node are efficiently computable
by the adversary who only sees physical probes, then by security, the number of
associated probes of each node must be the same for all sequences of operations.
Namely, if node v is associated with Ω(n ·w/b) probes when executing the hard
distribution, then node v must also be associated with Ω(n · w/b) probes when
executing any other sequence of operations of the same length; otherwise, an
adversary can easily distinguish the two. Since the tree is a complete binary tree
with N leaves, by summation there are Ω(N · (w/b) · log N) associated probes
to internal nodes which implies their lower bound.

Losing the w/b term is inherent when using the hard distribution designed
by Larsen and Nielsen [33]. Recall that in their distribution we first write random
values to addresses 1, . . . , n/2 and then read those addresses in order. Indeed,
using only correctness, each probe can carry information regarding b/w values
and so the whole sequence of writes can be read using only O(n · w/b) probes.
The fundamental reason for the loss is therefore that the sequence of addresses
in the read phase is completely determined a priori and the data structure can
use this information during the write phase to organize data cleverly.

2.2 Our Hard Distribution and Information Transfer Tree

We propose the following hard distribution of sequences of n + k ≤ N opera-
tions. The first n operations are writes to addresses 1, 2, . . . , n with uniformly
random values x1, . . . , xn ← {0, 1}w (same as in [33]). Then, in the last k opera-
tions, instead of sequentially reading from those addresses, we perform read from
uniformly random words a1, a2, . . . , ak ← [n]. That is,

(write, 1, x1), . . . , (write, n, xn), (read, a1), . . . , (read, ak).

Indeed, now the sequence of reads is not known during the write phase so we
avoid the aforementioned optimization the construction can use. But is this the
only optimization? We prove that it is. The intuition is that no matter how large
the cell size b is, no matter how the data structure scheme processes the n write
requests, in order to read from a uniformly random address ai ∈ [n] correctly,
the construction must probe at least one cell (unless the construction got lucky
and the corresponding value to address ai was accidentally in the local storage).
That is true only because the address ai is chosen both randomly and online
and therefore any pre-computation or pre-fetching that uses the fact that cells
are moderately large is useless. In a high level, using a compression argument
we show that for k ≤ n · w/b, the following holds:

Lemma: Any correct data structure solving the array maintenance prob-
lem when fed a length n + k sequence of requests sampled from our hard
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distribution, must probe Ω(k) cells during the read phase that were also
probed during the write phase.

Whenever b ∈ ω(w), this lower bound is better than the Ω(k · w/b) lower
bound obtained with Larsen and Nielsen’s hard distribution. We note that we are
only able to prove that the above statement holds with high-enough probability,
smaller than 1 (which is enough to carry out the rest of the argument). Indeed,
there will always be “easy” read sequences, like the one of Larsen and Nielsen,
where the number of necessary probes will be smaller. Finally, we emphasize that
in the above lemma, the read phase consists of only k operations (which differs
from Larsen and Nielsen’s hard distribution which has n reads). This is specially
designed to work with the information transfer tree that we will introduce below.

This lemma is central to our proof and while it may seem intuitively correct,
the actual proof turns out to require very delicate and non-trivial probability
analysis. We will get back to this in Sect. 2.3, where we will explain the main
challenges and describe our solutions. Meanwhile, we proceed to explain how the
lemma is used to derive the final lower bound using a generalized version of the
information transfer tree described above.

Revisiting the information transfer tree. Recall that in the partial assign-
ment of Larsen and Nielsen [33], a probe to a cell is assigned to a node v only if
v is the lowest common ancestor between the probe and the most recent probe
to the same cell. However, if a cell is probed 100 times during the read phase
corresponding to v (i.e., v’s right subtree), it will be counted and associated to
v at most once! Working out the details, it turns out that even if we use our
improved lemma from above in the binary tree approach, we would still lose the
w/b factor. Therefore, we need to find a more fine-grained way to account for
multiple probes to the same cell during the read phase.

Our solution is to consider a tree with larger arity so that we could count
several probes to the same cell during the read phase of a given node (i.e.,
with multiplicity). We let χ, the arity of the tree, be proportional to b/w and
consider a complete χ-ary tree with N leaves. Consider a node v that has an
induced subtree of 2n leaves and consider an associated sequence of n writes
followed by n reads. Divide the n read operations into χ/2 equal-size groups so
that each group has k � n/(χ/2) reads. For each such group we imagine a child
node which is “in charge” of this group. Let the children of v that correspond
to the read phase be u1, . . . , uχ/2 so that each ui is in charge of k disjoint read
operations. Next in the partial assignment, we associate with v index-cell pairs
of the form (i, q), where i is an index from [χ/2] and q is a physical address of a
probed cell. The index i tells us from which group the probe came and q tells us
to which cell. Intuitively, this allows us to count probes to the same cell q with
multiplicity, distinguishing them by the value of i. (In comparison, Larsen and
Nielsen [33] only associated q’s to nodes and so they do not distinguish multiple
accesses to the same cell.) See Fig. 1 for an illustration.

Using our Lemma. Our lemma from above almost fits this framework. To prove
that a group of k operations associated to node ui introduces Ω(k) accesses that
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Fig. 1. Hard distribution on χ-ary tree.

are counted in v, we slightly modify the hard distribution to consist of a padding
sequence of read operations (say from address 1) between the write phase and
the reads that ui is in charge of. Summing up over all ui’s, the node v will be
associated with Ω(χ · k) = Ω(n) index-cell pairs, which is our goal and the best
one can hope for.

The last step, where we use the obliviousness of the data structure in order
to argue that any sequence of operations behaves as “the hardest one”, is similar
to Larsen and Nielsen [33]. Recall that the tree is of depth logχ N , the arity is
χ, and for each level d, there are χd nodes at that level each has associated
Ω(N/χd) probes. Therefore, we get a lower bound of Ω(N · log N/ log(b/w))
probes to perform N operations. This is essentially the lower bound claimed in
Theorem 1, omitting the size of local storage m (which we ignored throughout
this overview and only complicates the proof slightly).

Remark 1 (Relation to [44]). Pǎtraşcu and Demaine [44, Section 7] consider a
related problem in a somewhat different context. There, they observe that the
basic information transfer method suffers from the w/b factor loss. To remedy
the situation they propose a new hard distribution, similar to ours, and also
propose to consider an information transfer tree with higher arity, as we do.
Essentially, our proof could be seen as an extension of their technique to the
oblivious setting. The latter introduces many technical challenges, especially in
the compression argument, as we elaborate next.

2.3 Our Compression Argument

Recall that our hard sequence consists of n writes to fixed addresses 1, . . . , n of
uniformly random values followed by k ≤ n · w/b reads from uniformly random
addresses from [n].8 Our goal is to argue that during the read phase, Ω(k) distinct
cells must be probed. Let us refer to the write sequence as L and the read sequence

8 In fact, as mentioned we will need to consider an augmented sequence that has a
padding sequence of reads from some fixed address in between the write sequence
and the read sequence mentioned above. This will complicate the argument slightly
so for simplicity we ignore it here.
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as R (for left- and right-side). Denote by Cells(L) the cells probed during the
execution of the L sequence of accesses and by Cells(R) the cells probed during
the execution of the R sequence (after executing the L sequence). Note that
L,R,Cells(L),Cells(R) are all random variables. We want to prove that with
high probability |Cells(L) ∩ Cells(R)| ∈ Ω(k). That is, for some constant ε < 1,

Pr [|Cells(L) ∩ Cells(R)| ≥ εk] > 3/4, (1)

where the probability is over the choice of L and R, and the randomness of the
ORAM which influences Cells(L) and Cells(R).

The proof is done via a compression argument where we imagine two com-
munication parties Alice and Bob. Alice gets as input x = x1, . . . , xn ← {0, 1}w
(chosen uniformly at random) and she sends one message to Bob who is able to
recover x. If the message sent by Alice contains < n ·w bits, we get a contradic-
tion. To this end, we assume that Inequality (1) is false, namely that the read
phase can be implemented with εk probes for some small enough ε, and use that
to get a too good to be true encoding scheme. This implies a contradiction, as
needed. This proof is somewhat technical so we provide some intuition on how
it works and refer to the technical section for full details.

Warmup: an expectation argument. It is insightful to first prove a weaker
statement (which does not suffice for us) and then explain how to improve it.
Here, we argue that

E [|Cells(L) ∩ Cells(R)|] ≥ εk. (2)

The proof is by contradiction, namely, we assume that Inequality (2) is false and
obtain an impossible compression scheme. To this end, Alice and Bob share a
long string S that is chosen completely independent of the input to Alice. The
string consists of (1) a sequence of k addresses a1, . . . , ak ← [n] that define the R,
(2) a random tape ρ for the ORAM, and (3) an integer t ← [k] sampled uniformly
at random. Note that even conditioned on the shared string S, the entropy in the
input to Alice, namely x1, . . . , xn ← {0, 1}w , is still nw. Therefore, by Shannon’s
source coding theorem, the only way for Alice to correctly transmit them to Bob
is by sending at least nw bits.

In a high level, Alice splits the indices [n] into two groups: easy and hard.
An index i is easy if Bob can learn value xi without making a probe to Cells(L),
that is, a probe to a cell that was written to during the write sequence. All other
indices are hard. By our assumption, the set of hard indices cannot be too large.
Alice sends those hard values explicitly to Bob. To learn the values corresponding
to easy indices, we use the correctness of the data structure to transfer them.
The challenging part is for Alice to determine which index is easy and which is
hard. Alice does this by seeing how likely it is to make the probe in Cells(L) from
a given index by “planting” that index in the random read operation given in
S (while keeping the rest of the operations fixed). If any Cells(L)-probe occurs,
this index is considered hard, otherwise it is easy. A more precise description
follows.

Alice’s encoding on input nw bits interpreted as x1, . . . , xn ∈ {0, 1}w :
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1. Using the ORAM, Alice executes the sequence of operations (L,R) prescribed
by x1, . . . , xn and a1, . . . , ak. Then, Alice sends the contents of overlapping
cells (yielded by the execution) to Bob, where the overlapping cells are defined
as the cells probed during the write sequence L and then probed during the
read sequence R (i.e., Cells(L) ∩ Cells(R)).

2. For each i ∈ [n], Alice replaces the tth read with operation (read, i) and (using
the ORAM) executes the replaced sequence, that is, the sequence (L, R̂t,i)
where

L := (write, 1, x1), . . . , (write, n, xn)︸ ︷︷ ︸
write phase

,

R̂t,i :=(read, a1), . . . , (read, at−1), (read, i)︸ ︷︷ ︸
planted read

, (read, at+1), . . . , (read, ak).

Depending on the probed locations induced by (read, i), do:
(a) If (read, i) probes at least one cell that was written to during the write

phase (i.e., in Cells(L)), then i is called hard. Alice sends value (i, xi)
directly to Bob.

(b) Otherwise, (read, i) probes no cell in Cells(L) and i is called easy. Alice
sends nothing to Bob as Bob can recover xi by executing (read, i) himself.

On Bob’s side, the hard xi’s are received from Alice directly, while the easy
xi’s are recovered by executing (read, i) planted as the tth read operation, that
is, after the prefix (read, a1), . . . , (read, at−1). Bob indeed recovers all easy xi’s
correctly: Bob received the content of the overlapping cells that suffice to execute
the prefix read sequence.

Analyzing the size of the message from Alice to Bob is a bit more challeng-
ing. In a high level, Alice’s message consists of just two parts, the contents of
overlapping cells and the values of “hard” inputs. By assumption (Inequality (2)
is false), the number of overlapping cells is εk and so the first part consists of
at most εkb ≤ εnw bits. For the second part, roughly speaking, we consider
all possible samples of (a1, a2, . . . , ak, t) ∈ [n]k × [k] while fixing x1, . . . , xn. By
assumption, with probability at most ε, (read, at) is hard, which means that at
most ε fraction of all such samples are hard. Then, for any set of n distinct
samples, on average, there are at most εn hard samples. Noticing that Alice’s
procedure is choosing a random set of n samples, we conclude that in expecta-
tion there are εn hard samples, which means εn hard xi’s on average. It follows
that the second part of Alice’s message consumes εnw bits, and then the total
message length is 2εnw bits, which is a contradiction when ε is small enough.

The high probability argument. Recall that in the last step of lower bound
proof we need to move from a claim about the load of a node in the information
transfer tree to the load of the same node under any other input sequence of
operations. Since security only holds with constant probability, this step loses
a constant factor and therefore we need our original compression argument to
hold with high probability and not just in expectation.
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This complicates the compression argument as follows. Now, Alice cannot
just send the content of the overlapping cells directly to help Bob answer easy
queries (for which it uses the correctness of the data structure), since there is no
bound on the expected number of overlapping cells. Instead, we modify Alice’s
procedure to distinguish between two cases, either sending the overlapping cells
directly is too expensive or it is not. In the latter case, we need to analyze and
bound the number of hard indices i conditioned on the event that the number of
overlapping cells is small. This requires delicate conditional probability analysis
on which we elaborate next. In the former case, there is no compression since
Alice just sends all x1, . . . , xn in the clear but we can show that this case does
not happen too often due to the assumption (Inequality (1) is false).

Specifically, the most challenging is to prove that conditioned on the over-
lapping cells set being small, the expected size of the set of hard indices is
bounded by a sufficiently small constant times n. Let GoodL,R be the con-
ditioned event. What we show is that if β < 3/4 is a constant for which
Pr [|Cells(L) ∩ Cells(R)| ≥ εk] = β (our assumption, see Inequality (1)), then:

Lemma: E [|H| | GoodL,R] < (β + ε/(1 − β))n.

We define GoodL, ̂Rt,i
similarly as the event when the overlapping cells between

(L, R̂t,i) is small. By linearity of expectation and the law of total probability:

E [|H| | GoodL,R] =
∑
i∈[n]

Pr[i ∈ H | GoodL,R]

=
∑
i∈[n]

Pr[i ∈ H ∧ ¬GoodL, ̂Rt,i
| GoodL,R]

+
∑
i∈[n]

Pr[i ∈ H ∧ GoodL, ̂Rt,i
| GoodL,R].

We now bound each of these terms separately. It is rather easy (though a bit
technical) to bound the second term. Specifically, we show that

∑
i∈[n] Pr[i ∈

H ∧ GoodL, ̂Rt,i
| GoodL,R] ≤ εn/(1 − β). Indeed, for each i ∈ [n], Pr[i ∈

H ∧ GoodL, ̂Rt,i
| GoodL,R] ≤ Pr[i ∈ H ∧ GoodL, ̂Rt,i

]/Pr[GoodL,R]. So, the
denominator is exactly 1 − β. The fact that the nominator is bounded by ε
follows from the definition of GoodL, ̂Rt,i

.
The bound on the first term is much more interesting. In words, the event we

are trying to bound corresponds to sampling the sequences L and R and then
R̂t,i and asking what is the probability that GoodL, ̂Rt,i

occurs conditioned on
GoodL,R occurring (ignoring event i ∈ H). To analyze this event, we recall that
R̂t,i is obtained by resampling the tth operation in R. So, what is the probability
that by resampling only one read operation in R we suddenly do not satisfy the
event Good? We prove a general lemma that partial resampling cannot reduce
the probability beyond a certain point! Here is a simple variant of the lemma
(we state and prove a more general version in the full version [29]):
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Partial Resampling Lemma: Consider two independent random variables
X and Y . Let Y ∗ be an independent random variable distributed identi-
cally to Y . Let f be an arbitrary Boolean function. Then,

Pr[f(X,Y ∗) = 1 | f(X,Y ) = 1] ≥ Pr[f(X,Y ) = 1].

This means that if the event GoodL,R occurs, then it must also occur in
GoodL, ̂Rt,i

with good probability. Plugging in the assumption, we can bound
the second term by βn.

Together, the two bounds imply that E [|H| | GoodL,R] < (β + ε/(1 − β))n,
as needed.

3 The Model

This section introduces the model in which our lower bound is proven. As in pre-
vious works [27,33,43], we start-off with the cell probe model, first described by
Yao [59]. Traditionally, this model is used to prove lower bounds for word-RAM
data structures and is extremely powerful in the sense that it allows arbitrary
computations and only charges for memory accesses.

In a high-level, the cell probe model models the interaction between a CPU
and a memory. The memory is modeled as a word-RAM, that is, an array of cells
such that each cell can contain at most b bits. The CPU can perform operations
on the memory, namely, either reading the content of some cell or overwriting
the content of some cell. An algorithm executed in this setting is charged one
unit of cost on every operation it makes (read or write) and all computation
based on the contents of probed cells is free of charge.

Whereas this model captures traditional data structures, it does not capture
data structures that have privacy requirements for the stored data and/or the
operations performed. Indeed, the latter are usually modeled in the client-server
model, where a client wishes to outsource data to server while retaining the
ability to perform computation over the data. At the same time, the client wishes
to hide the performed operations as well as the contents of its data cells from
the server who sees the entire memory and the memory accesses. To address
this gap, Larsen and Nielsen [33] introduced the Oblivious Cell Probe Model, an
augmented version of the cell probe model. We briefly introduce this model next,
mostly following Larsen and Nielsen.

Data structure problems. A data structure problem in the oblivious cell
probe model is defined by a tuple (U ,Q,O, f), where U is a universe of update
operations, Q is a universe of queries, and O is an output domain. Furthermore,
there is a query function f : U∗×Q → O. For a sequence of updates u1, . . . , uM ∈
U and a query q ∈ Q, we say that the answer to the query q after updates
u1, . . . , uM is f(u1, . . . , uM , q).

Oblivious Cell Probe Data Structures. An oblivious cell probe data struc-
ture for a given data structure problem P = (U ,Q,O, f), consists of a random-
ized algorithm implementing the update and query operations for P. The data
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structure is parametrized by three integers m, b, and N ′, denoting the client
storage and cell size in bits, and the number of cells respectively. We follow the
standard assumption log N ′ ≤ b so that any cell can store the address of any
other cell. We further assume that the data structure has access to a finite string
of randomness ρ of length 
. The parameter 
 can be arbitrary large and so ρ can
contain a random oracle. Fixing ρ, the algorithm DS is deterministic. As such,
the data structure can be described by a decision tree Top for every operation
op ∈ U ∪ Q, i.e., it has one decision tree for every possible operation in the data
structure problem. Each node in the decision tree is labelled by an index indi-
cating the location to probe in the memory (held by the server). The decision
of which path to continue to in the tree depends on the answer to the probe to
the memory and small local information stored by the client.

More precisely, each node in the decision tree Top, where op ∈ U ∪ Q, is
labeled by an address i ∈ [N ′] and it has one child for every triple of the form
(m0, c0, ρ) ∈ {0, 1}m ×{0, 1}b ×{0, 1}�. Each edge to a child is further labeled by
(j,m1, c1) ∈ [N ′] × {0, 1}m × {0, 1}b . To process an operation op, the oblivious
cell probe data structure starts its execution at the root of the tree and traverses
from root to leaf. When visiting a node v in this traversal, labelled with some
address iv ∈ [N ′], it probes the memory cell iv. If C denotes its content, M
denotes the current contents of the client memory and ρ denotes the random
bit-string, the process continues by descending to the child of v corresponding
to the tuple (M,C, ρ). If the edge to the child is labelled (j,m1, c1), then the
memory cell of address j has its contents updated to c1 and the client memory is
updated to m1. We say that memory cell j is probed. The execution stops when
reaching a leaf. Each leaf v of the decision tree Top, where op ∈ Q, is labeled
with an element ansv in O (the answer to the query). We say that the oblivious
cell probe data structure returns ansv as its answer to the query op.

I/O efficiency. The I/O efficiency of an oblivious data structure is related to the
depth of the decision tree as each edge corresponds to a cell probe. Furthermore,
our model assumes that the server is passive, i.e., it can only update or retrieve
a cell for the client.

Definition 1 (Expected amortized I/O efficiency). An oblivious cell probe
data structure has expected amortized I/O efficiency t(M) on a sequence y of M
operations from U ∪ Q if the total number of memory probes is no more than
t(M) · M in expectation. The expectation is taken over the random choice of
the randomness ρ ∈ {0, 1}�. An oblivious cell probe data structure has expected
amortized I/O efficiency t(M) if it has expected amortized I/O efficiency t(M)
on all sequences y of operations from U ∪ Q.

Remark 2 (Other efficiency notions). There are few other metrics of efficiency
of interest in the context of ORAM constructions. It is common to consider the
bandwidth efficiency of a construction, namely, the communication complexity
consumed by the construction when processing a sequence of operations, amor-
tized per operation. This is equal to b times the I/O efficiency. Vice versa, if the
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amortized bandwidth of a construction is t(·), then the I/O efficiency of that
construction is t/b.

Thus, there is a Q = Q(N, b,w) lower bound on I/O efficiency if and only if
there is a b ·Q lower bound on bandwidth. For example, suppose that w = log N
and b,m ∈ Θ(log2 N). Then, the previously known lower bound [33] says that
Ω(log2 N) amortized bandwidth is necessary (that is Ω(1) I/O efficiency), but
our improved lower bound says that Ω(log3 N/ log log N) bandwidth is necessary
(that is Ω(log N/ log log N) I/O efficiency).

It is also common to measure the complexity of an ORAM construction in
the language of efficiency overhead (either I/O or bandwidth) where we compare
the ratio between the efficiency of the ORAM and the efficiency of the insecure
RAM. This makes complete sense when b = w, but when b ∈ ω(w) it is more
confusing since the basic unit of cost (cell size) is different between the two
settings. Some papers do explicitly distinguish between w and b [48,49,52,57]
and measure complexity correctly. For clarity, we will avoid the term overhead.

Correctness and security. Let y = (op1, . . . , opM ) be a sequence of M opera-
tions to the given data structure problem, where each opi ∈ U ∩Q. For an obliv-
ious cell probe data structure, define the (possibly randomized) probe sequence
on y as the tuple:

Access(y) = (Access(op1), . . . ,Access(opM )),

where Access(opi) is the sequence of memory addresses probed while processing
opi. More precisely, let Access(y; ρ) := (Access(op1; ρ), . . . ,Access(opM ; ρ)) be
the deterministic sequence of operations when the random bit-string fixed to ρ
and let Access(y) be the random variable describing Access(y; ρ) for a random
ρ ∈ {0, 1}�.

Definition 2 (Correctness and security). An oblivious cell probe data struc-
ture is said to be δ-correct and ε-secure if the following two properties hold:

– Security: For any two data request sequences y and z of the same length
M , their probe sequences Access(y) and Access(z) cannot be distinguished
with probability better than ε by an algorithm which is polynomial time in
M + log |U| + log |Q| + b.

– Correctness: The oblivious cell probe data structure has failure probability
at most δ, namely, for every sequence and any operation op in the sequence,
the data structure answers op correctly with probability at least 1 − δ.

ORAM is array maintenance. As observed in previous work [33], the def-
inition of an online ORAM coincides with the definition of an oblivious data
structure (see [56]) solving the array maintenance problem. In this problem, the
goal is to maintain an array of N entries, each of size w bits, while allowing write
and read operations, where (write, i, a) sets the content of the ith cell to the value
a and (read, i) return the content of the ith cell (for i ∈ [N ] and a ∈ {0, 1}w ).
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Therefore, in order to prove a lower bound on the I/O efficiency of an ORAM
scheme, it suffices to prove a lower bound on the I/O efficiency of any correct
and secure data structure for the array maintenance problem in the oblivious
cell probe model.

Remark 3 (Operation boundaries). We follow Larsen and Nielsen [33] and assume
that the adversary sees which cell access belongs to which operation from y.
Hubáček et al. [26] were able to extend the lower bound of Larsen and Nielsen [33]
to account for this gap. We suspect that our techniques and lower bound could
be extended to capture this stronger setting, but it is left for future work.

4 An ORAM Lower Bound

This section is devoted to the proof of our lower bound on the I/O efficiency of
oblivious cell probe data structures solving the array maintenance problem. As
mentioned, such a lower bound directly implies an I/O efficiency lower bound
for online ORAMs. Our main theorem is stated next.

Theorem 3 (Main theorem). Let DS be an oblivious cell probe data structure
for the array maintenance problem on arrays of N entries, each of size w bits.
Let N ′ denote the number of cells in DS, b denote the cell size in bits, and
m denote the number of bits of client memory. Assume that 16 ≤ w ≤ b and
w ≤ m ≤ Nw.

If DS is (1/128)-correct and (1/4)-secure, then there is a sequence of 
 ∈
(N/(2 �b/w
), N ] operations such that the expected amortized I/O efficiency of
DS on this sequence is

Ω

(
log(Nw/m)

1 + log �b/w

)

.

In particular, when w ≤ m ≤ N1−ε for ε > 0, b = logc N for c > 1, and
w = log N , the I/O efficiency is Ω

(
log N

log log N

)
. The rest of this section is devoted

to the proof of Theorem 3.

Proof (Proof of Theorem 3). We start with the following definition.

Definition 3 (Set of probed cells). Given a length M sequence of operations,
seq = (op1, . . . , opM ), define Cells(opi | op1, . . . , opi−1) as the set of addresses
of (physical) cells accessed by DS during its execution of operation opi after
executing the sequence (op1, . . . , opi−1). Similarly, given seq and i, j ∈ [M ] such
that i < j, Cells(opi, opi+1, . . . , opj | op1, . . . , opi−1) is defined as the set of
addresses of cells accessed by DS during its execution of operations (opi, . . . , opj)
after executing the sequence (op1, . . . , opi−1).

Notice that we define Cells(opi | op1, . . . , opi−1) as a set and so its cardinality
does not account for multiplicities. Therefore, we will use the sum of cardinali-
ties

∑
i∈[M ]

∣∣Cells(opi | op1, . . . , opi−1)
∣∣ as a lower bound on the total number of

accesses made by DS.
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We now construct the information transfer tree. Fix 
 to be a power of
χ := 2 �b/w
 in the range (N/(2 �b/w
), N ]. Let T be the complete χ-ary tree
consisting of 
 leaves (see Fig. 2 for visualization). For any sequence of opera-
tions seq = (op1, . . . , op�), for each i ∈ [
], we associate opi to the ith leaf of T.
Additionally, Cells(opi | op1, . . . , opi−1) (i.e., the addresses of cells accessed by
DS during its execution of the ith operation in the sequence) are associated to
the same ith leaf. For each accessed cell q that is associated with a leaf i, we
map q to at most one internal node v of T, where v is an ancestor of i. This is
described next.

First, for each internal v ∈ T, we define a set of index-cell pairs, Pv(seq), as
follows. A pair of index-cell (i, q) ∈ [
] × [N ′] is in Pv(seq) if and only if

– i is a leaf in the subtree induced by v and q ∈ Cells(opi | op1, . . . , opi−1),
– There exists j < i such that q ∈ Cells(opj | op1, . . . , opj−1),
– For all j′ ∈ {j + 1, . . . , i − 1}, it holds that q /∈ Cells(opj′ | op1, . . . , opj′−1),

and
– The lowest common ancestor of i and j is v.

Notice that each cell access q ∈ Cells(opi | op1, . . . , opi−1) during the execution
of opi is assigned to at most one v ∈ T. Hence, for any seq and execution of DS,
we have that ∑

i∈[�]

∣∣Cells(opi | op1, . . . , opi−1)
∣∣ ≥

∑
v∈T

|Pv(seq)| .

We conclude the proof of the theorem using the following lemma whose proof
is given below.

Lemma 1. Let ε := 1/128. Fix any sequence seq consisting of 
 operations. Let
v ∈ T be an internal node whose subtree consists of at least 2 · max{8,m/(εw)}
leaves. For any (1/4)-secure and (1/128)-correct DS against 
 operations, it holds
that

E [|Pv(seq)|] ≥ ε · 
/(4χd(v)),

where d(v) is the depth of v (i.e. the distance from v to the root).

Let us first explain why Lemma 1 implies Theorem 3. Let d∗ be the maximum
depth for which Lemma 1 applies. Summing over all nodes in T, by linearity of
expectation, we have that

E

[∑
v∈T

|Pv(seq)|
]

=
∑
v∈T

E [|Pv(seq)|] ≥
∑

v∈T,d(v)∈[0,d∗]

E [|Pv(seq)|] ≥ (d∗ + 1) · ε�/4,

where the last inequality follows by Lemma 1. Since Lemma 1 applies to any
node v that has at least 2 · max{8,m/(εw)} leaves in its induced subtree, we
have

d∗ :=
⌊
logχ

⌈



2 · max{8,m/(εw)}
⌉⌋

∈ Ω

(
log(Nw/m)
1 + log(b/w)

)
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Fig. 2. The distribution D(v, u) of hard sequences for the parent-child pair (v, u) in the
complete χ-ary tree of � leaves. Each leaf is associated with a read or write operation,
and the hard sequence is the operations from the left-most to the right-most leaves.
Given the internal node v and its child u where u is in the right-side of the subtree
induced by v, we focus on the operations in the Left-side of the subtree of v, i.e., L
part, and on the operations in the subtree induced by u, i.e., R (for right-side) part.
The L part is n = �v/2 write operations to fixed locations with random contents (where
�v = �/χd is the number of leaves in the subtree of v), and the R part is k = �v/χ read
operations from random locations that were written in L part. The remaining parts
A, B, C are all padding operations that just read the fixed location 1. The overall hard
sequence is then (A, L, B, R, C).

for all m, b,w, N such that b ≥ w ≥ 16 and w ≤ m ≤ Nw (which ensure
that the logs are nonnegative). Hence, for any seq of 
 operations, the expected
number of accesses is lower bounded by 
 · Ω

(
log(Nw/m)
1+log(b/w )

)
, which concludes the

proof of Theorem 3.
We conclude this section with the proof of Lemma 1. Note that this proof

will rely on Theorem 5 which is stated and proved in Sect. 5.

Proof (Proof of Lemma 1). Recall that Pv(seq) consists of pairs of index-cell
pairs (i, q) such that during the ith operation DS accesses physical cell q and
also the most recent access to q was made at some operation j < i such that j
is a leaf in the induced subtree of v and v is the the lowest common ancestor
of i and j. Denote Pv,u(seq) the subset of (i, q) in Pv(seq) that result from an
operation i that happens in the subtree induced by u. It holds that

|Pv(seq)| =
∑

u is a child of v

|Pv,u(seq)| . (3)

We therefore prove a lower bound on each |Pv,u(seq)|. To this end, for a
given pair of parent-child, (v, u), in the tree, we design a distribution of access
seqhard which causes |Pv,u(seqhard)| to be large with high probability. We then
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use the security guarantee of DS, ensuring that the access pattern resulting
from executing any seq must be indistinguishable, and therefore the same large
number of probes must occur on any input sequence. That is, |Pv,u(seq)| is large
with high probability. We give the hard distribution next.

The hard distribution. To describe the distribution of hard sequences, we set
up some notation. Specifically, we will explain how to “split” a given length 

sequence of operations w.r.t a given internal node v ∈ T.

– Let d := d(v) be the depth of the node v, and let l := l(v) ∈ [
χd

]
be the

index of v in the dth level.
– Let 
v := 
/χd be the number of leaves in the subtree induced by v. Set

n := 
v/2, and k := 
v/χ.
– Recall that v has χ children. Let U := {χ/2 + 1, χ/2 + 2, . . . , χ} be the set

of indices of second half children of v (i.e., the right half of children). Given
u ∈ U , we slightly abuse notation and say that the uth child of v is u.

Because our goal is to bound the number of probes during the subtree of u,
we choose to perform n writes during the first n leaves of v, and then perform k
reads during the k leaves of u ∈ U (Fig. 2). The remaining parts are just padding
to 
 operations. Formally, the distribution of hard sequence D(v, u), with induced
parameters l, 
v, n, k as above, is sampled as follow:

1. Let A be the sequence consisting of (l − 1) · 
v dummy reads, i.e., repeating
(read, 1) for (l − 1) · 
v times.

A := (read, 1), . . . , (read, 1)︸ ︷︷ ︸
(l−1)·�v times

,

2. Let L (for left-side) be the sequence of n writes to fixed locations with random
words, i.e.,

L := (write, 1, x1), (write, 2, x2), . . . , (write, n, xn),

where x1, . . . , xn ← {0, 1}w are chosen independently uniformly at random.
3. Let B be the sequence consisting of k · (u − 1) − n dummy reads,

B := (read, 1), . . . , (read, 1)︸ ︷︷ ︸
k·(u−1)−n times

,

4. Let R (for right-side) be the sequence of k reads from random addresses in
[n], i.e.,

R := (read, a1), (read, a2), . . . , (read, ak),

where a1, . . . , ak ← [n] are chosen independently uniformly at random.
5. Let C be the sequence of dummy reads whose goal is to pad the whole sequence

to length 
,
C := (read, 1), . . . , (read, 1)︸ ︷︷ ︸

�−(l−1)·�v−u·k times

,
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* Output the concatenated length 
 sequence

seqhard = A,L,B,R,C.

We are interested in the set of cells that are touched both during the L,B
sequence and during the R sequence, i.e., the set Cells(L,B | A) ∩ Cells(R |
A,L,B) (see Definition 3 for Cells(. . . ) notation). By definition, it holds that

|Pv,u(seqhard)| ≥ |Cells(L,B | A) ∩ Cells(R | A,L,B)| .
In Theorem 5 we prove the following.

Theorem 4 (See Theorem 5). Let δ := 1/128 and ε := 1/128. If DS is δ-
correct (for the array maintenance problem), then as long as n ∈ [max{8,
m/(εw)}, N ] and k ≤ n · w/b, it holds that

Pr [|Cells(L,B | A) ∩ Cells(R | A,L,B)| ≥ εk] > 3/4.

Indeed, observe that the conditions to apply this theorem are met since k ≤
nw/b as n = 
v/2, k = 
v/χ, and χ = 2 �b/w
. Also, since v is an internal node
whose induced subtree consists of 
v ≥ 2 · max{8,m/(εw)} leaves, we also have
n ∈ [max{8,m/(εw)}, N ]. Therefore, Pr [|Pv,u(seqhard)| ≥ εk] > 3/4.

Due to the security guarantee of DS, we deduce that for any (equal-length)
sequence seq the above should hold. Namely, denoting the randomness of the
DS by ρ, we have

Pr
seqhard,ρ

[|Pv,u(seqhard)| ≥ εk] − Pr
ρ

[|Pv,u(seq)| ≥ εk] ≤ 1/4.

Therefore, we obtain that Pr [|Pv,u(seq)| ≥ εk] > 1/2 and so E [|Pv,u(seq)|] >
εk/2. Using Eq. (3) and linearity of expectation we obtain that

E[|Pv(seq)|] = E

[ ∑
u is a child of v

|Pv,u(seq)|
]

=
∑

u is a child of v

E [|Pv,u(seq)|]

> (χ/2) · (εk/2) = ε
/(4χd).

5 The Compression Argument

Let DS be an oblivious cell probe data structure for the array maintenance
problem on arrays of N entries, each of w bits. Let N ′ denote the number of
cells in DS, let b denote the bit-length of each cell, and let m denote the number
of bits of client memory.

Consider the following distribution over sequences of operations given to DS.
The distribution is denoted DA,B,n,k and it is parametrized by two sequences
of operations A and B, and by two positive integers n, k ≤ N . The sequence
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A consist of arbitrary reads and writes (A is going to be a prefix sequence)
and B consist of arbitrary reads but no writes (B is going to be a padding
sequence). Each sequence of operations sampled from DA,B,n,k consists of 4
parts, A,L,B,R, in this order, where L (for left-side) is a sequence of n writes
to fixed addresses 1, . . . , n with uniformly random data, and R (for right-side)
is a sequence of k reads from uniformly random indices in [n]. The full sequence
(A,L,B,R) looks as follows:

A : Fixed sequence of reads and writes;
L : (write, 1, x1), (write, 2, x2), . . . , (write, n, xn),

where x1, . . . , xn ← {0, 1}w , chosen uniformly at random;
B : Fixed sequence of reads;
R : (read, a1), (read, a2), . . . , (read, ak),

where a1, . . . , ak ← [n], chosen uniformly at random.

Recall that in Definition 3, given a sequence of operations (X,Y ) and ran-
domness ρ, we let Cells(Y | X) be the set of addresses of (physical) cells probed
by DS during its execution of the Y sequence after executing the X sequence.9

For example, in an instance of sequence (A,L,B,R) sampled from our distri-
bution, (1) Cells(L,B | A) contains the (physical) addresses of cells probed by
DS during the execution of the L and B parts after executing the A sequence,
and (2) Cells(R | A,L,B) contains the (physical) addresses of cells probed by
DS during the execution of the R sequence after executing the A,L, and B
sequences. We prove the following theorem.

Theorem 5. Let δ := 1/128, ε := 1/128 and α := 3/4. Further, fix integers n ∈
[max{8,m/(εw)}, N ], w ≥ 16, and k ≤ n ·w/b. Lastly, fix arbitrary sequences A
and B as above. Then, if DS is δ-correct (for the array maintenance problem),
then it holds that

Pr [|Cells(L,B | A) ∩ Cells(R | A,L,B)| ≥ εk] > α,

where the probability is taken over the choice of L and R (i.e., over the choice
of (A,L,B,R) from DA,B,n,k), and over the internal randomness of DS.

In order to prove Theorem 5, we assume for contradiction that the statement
is false, namely that there are A,B, n, k as in the theorem statement and a β ≤ α
for which

Pr [|Cells(L,B | A) ∩ Cells(R | A,L,B)| ≥ εk] = β. (4)

To reach a contradiction, we construct a randomized compression scheme that
encodes nw uniformly random bits into a message that is less than nw bits.
Section 5.1 describes the encoding and decoding procedure of such compression,
9 Notice that Cells(Y | X) is a set of addresses, whereas Access(X‖Y ) is a sequence

of addresses.
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and it also shows the compression is correct. We then in Sect. 5.2 prove that the
expected size of the encoding is less then nw bits, which is a contradiction to
Shannon’s source coding theorem and concludes the proof of Theorem 5.

The reader may find it helpful to first read the full version [29] where we
prove a weaker version of Theorem 5. Specifically, we show that the expected
size of the intersection of both sets from Theorem 5 is Ω(k) (rather than that it
holds with high probability).

5.1 The Encoding and Decoding Procedures

The encoder, Alice, gets as input the nw random bits interpreted as x1, . . . , xn ∈
{0, 1}w , and the decoder, Bob, aims to recover x1, . . . , xn. Our compression
scheme uses a long string which is shared by Alice and Bob but is completely
independent of x1, . . . , xn. This shared string consists of

– Fixed read/write sequence A and read-only sequence B;
– A sequence R of k reads where the indices are sampled uniformly at random

(i.e., (read, a1), (read, a2), . . . , (read, ak), where a1, . . . , ak ← [n]);
– An integer t ← [k] sampled uniformly at random; and
– A random tape ρ used by DS.

Since x1, . . . , xn are sampled independently and uniformly, their entropy con-
ditioned on the shared string is nw. Therefore, by Shannon’s source coding
theorem, the only way for Alice to correctly transmit them to Bob is by sending
at least nw bits.

Alice’s encoding:

– Input: nw bits interpreted as x1, . . . , xn ∈ {0, 1}w .
– Procedure:

1. Using ρ and DS, execute the sequence of requests

A,L,B,R,

where A,B, and R are taken from the shared string, and L := (write, 1,
x1), (write, 2, x2), . . . , (write, n, xn). Define the following collections of
cells’ indices that are physically probed during the execution:

• C0 := Cells(L,B | A). That is, the cells probed during the execution
of the L,B sequences.

• C := C0 ∩ Cells(R | A,L,B). That is, the cells probed during the
execution of the L,B sequences which are also probed during the
execution of the R sequence.

Right after executing A,L,B using ρ, let σ be the local state of DS, and
let content(C) be the contents of the cells in C.

2. Define R[1 . . . t − 1] := (read, a1), . . . , (read, at−1) to be the sequence of
operations that consists of the first t − 1 reads from R. For each i ∈ [n],
define R̂t,i to be a sequence of operations that consists of R[1 . . . t − 1]
and then, as its tth operation, it performs a read from index i. That is,

R̂t,i := (read, a1), . . . , (read, at−1), (read, i).
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3. For each i ∈ [n], using ρ and DS, execute the sequence of operations

A,L,B, R̂t,i.

• We say that i ∈ [n] (or R̂t,i correspondingly) is easy iff

Cells((read, i) | A,L,B,R[1 . . . t − 1]) ∩ C0 = ∅,

and hard otherwise. Let H ⊂ [n] be the set of hard i’s and h :=
(xi)i∈H (written in increasing order w.r.t. i).

• For each i ∈ [n], add i into set H0 iff DS answers operation (read, i)
incorrectly (after the execution of A,L,B,R[1 . . . t − 1]). That is, let
i ∈ H0 iff the answer to (read, i) is not xi. Let h0 := (xi)i∈H0 (written
in increasing order w.r.t. i).

– Output:
• If |C| ≥ εk, output a bit 0, followed by msg0 := (x1, . . . , xn).
• Else (i.e., |C| < εk), output a bit 1, followed by msg1 := (σ, C, content(C),

H,h,H0, h0).

Bob’s decoding:

– Input from Alice is either
• the first bit is 0, followed by msg0 := (x′

1, . . . , x
′
n), or

• the first bit is 1, followed by msg1 := (σ,C, content(C),H, h,H0, h0).
– Procedure:

1. If the first bit is 0, output the received x′
1, . . . , x

′
n directly. Otherwise,

continue as follows.
2. For each hard i ∈ [n], i.e., i ∈ H, recover x′

i by reading it from h (recall
that elements in h are ordered in increasing i).

3. For each incorrect index i ∈ H0, recover x′
i by reading it from h0 (recall

that elements in h0 are ordered in increasing i).
4. For each easy and correct i ∈ [n], i.e., i /∈ H ∪ H0, recover x′

i using the
following steps:
(a) Using DS and randomness ρ, execute the sequence of operations A.

Then, replace the content of cells in C with content(C) and replace
the local state of DS with σ.

(b) Using this configuration, randomness ρ, and DS, execute R̂t,i and let
x′

i be the result of the tth operation in R̂t,i, i.e., (read, i).
– Output: x′

1, . . . , x
′
n.

Correctness of compression. For correctness, we show that Bob always out-
puts values x′

1, . . . , x
′
n such that x′

i = xi for all i ∈ [n], where x1, . . . , xn are the
inputs of Alice. Whenever |C| ≥ εk, correctness holds immediately since Alice
just sends x1, . . . , xn explicitly to Bob. We therefore consider the case where
|C| < εk. For every hard i ∈ H or incorrect i ∈ H0, we have x′

i = xi by con-
struction (since it is transmitted explicitly as part of h or h0). For each easy and
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correct i ∈ [n], executing R̂t,i (using DS, local state σ, and random tape ρ) needs
only the contents of cells either in C or not in C0 (observe that R[1 . . . t − 1]
needs both and then easy (read, i) needs only those not in C0). Bob can obtain
the content of these cells not in C0 by executing the sequence of operations A.
Hence, all the needed information can be obtained by Bob and it is identical
to that of Alice. Recall that sequence B is read-only so the output is indeed
xi written by L. Therefore, by correctness of DS (as writes to and reads from
i ∈ [n] ⊆ [N ] are valid operations), Bob indeed obtains x′

i = xi for all i ∈ [n].

5.2 Encoding Size Analysis

We upper bound the expected size of the encoding outputted by Alice. We follow
the conventions that i) |s| denotes the number of bits of s for any sequence s,
and ii) |S| denotes the cardinality of S for any set S.

The encoding consists of a bit j and the message msgj , where j depends on
whether |C| ≥ εk. Let Good be the indicator for the event that |C| < εk. By the
law of total expectation, the expected size is the sum of two cases,

E
[∣∣j,msgj

∣∣] = 1+E [|msg0| | ¬Good]·Pr [¬Good]+E [|msg1| | Good] ·Pr [Good] .

By Eq. (4), we have

Pr[Good] = 1 − β and Pr[¬Good] = β, (5)

and by construction, |msg0| is always nw bits. We thus focus on proving an upper
bound on the second conditional expectation, namely on E[|msg1| | Good].

Recall that the encoding msg1 consists of σ,C, content(C),H, h,H0, h0 and
so by linearity of expectation, it suffices to bound the expected size of each
component marginally. First, since the local state of DS is m bits, we know that
|σ| ≤ m. Second, by the definition of the event Good, we have that

E [|C| | Good] < εk and E [|content(C)| | Good] < εkb,

where the latter inequality follows since each cell consists of b bits. Third, for
H0 and h0, we have E[|H0|] ≤ δn by δ-correctness of DS and then linearity of
expectation. Hence, we have E[|h0|] ≤ δnw without conditioning on Good. That
is, it takes just δnw bits even if Alice had always sent h0.

We are therefore left with upper bounding the number of hard read requests
R̂t,i, namely, the cardinality of H. For this, we use the fact that the tth read
request is online and is made after the previous t−1 requests are executed. That
is, after executed t − 1 requests where DS reads cells in C, the set C is fixed.
Then, when given the tth request, DS must touch a new cell not in C (unless it
got lucky and it was already in C). Intuitively, this means that DS must spend
probes in order to answer the tth random read request (no matter how many
probes were spent on write requests and on previous read requests). Formalizing
this intuition into a bound on |H| is done in the following Lemma (see the full
version [29] for the proof).
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Lemma 2. Assuming Eq. (4), then E [|H| | Good] < (β + ε/(1 − β))n.

Expected size of encoding. We now sum up the expected size of msg1 sent
by Alice conditioned on the case Good. Recall that σ takes m bits, and C and
content(C) consume together at most 2εkb bits conditioned on Good. The set
H can be described simply using a binary string of n bits, where the ith bit
indicates whether i ∈ H or not. To describe h, by Lemma 2, h can be described
with at most (β + ε/(1 − β))nw bits in expectation. The set H0 is described
using n bits as well, but we defer h0 since its expectation is not conditional. So,
the expected size conditioned on Good is

m + 2εkb + n + (β + ε/(1 − β)) · nw + n ≤ m + 2εnw + n + (β + ε/(1 − β)) · nw + n

≤ (3ε + ε/(1 − β) + 1/8 + β) · nw,

where the first inequality follows since k ≤ nw/b, and the second is since m ≤
εnw and w ≥ 16. The total expected size is then

1 + E[|h0|] + E[|msg0| | ¬Good] · Pr[¬Good] + E[|msg1| | Good] · Pr[Good]
≤ 1 + δnw + nw · Pr[¬Good] + (3ε + ε/(1 − β) + 1/8 + β) · nw · Pr[Good]
= 1 + δnw + nwβ + (3ε + ε/(1 − β) + 1/8 + β) · (1 − β) · nw,

where the first term 1 is the bit indicating if the case is Good in Alice’s encoding,
and the last equality follows since Pr[Good] = 1 − β (Eq. (5)). Plugging in
δ = 1/128, ε = 1/128 and β ≤ α = 3/4, we obtain that the expected encoding
size is strictly smaller than

1 + (1/128 + 3/4 + (1/4)(1/16 + 1/8 + 3/4)) · nw < nw

in bits, where the inequality follows since n ≥ 8 and w ≥ 16. By Shannon’s
source coding theorem, we thus reached a contradiction which completes the
proof of Theorem 5.

6 Separating Offline and Online ORAM

In this section we prove a separation between the offline and online ORAM
models. Concretely, we prove the following result.

Theorem 6. Consider the task of obliviously simulating a RAM with N cells
each of size w = log N bits using a RAM of N ′ cells each of size b bits and using
local memory of size m bits for b,m ∈ poly log N . There exists an offline ORAM
scheme with N ′ ∈ O(N) for this task with o(1) I/O efficiency, while every online
ORAM scheme for this task must have Ω(log N/ log log N) I/O efficiency (no
matter how large N ′ is).

Proof. The lower bound follows directly from Theorem 3. Plugging in the val-
ues of w, b,m, we get that every online ORAM scheme for this task must
have Ω(log N/ log log N) I/O efficiency. The upper bound follows from existing
results [7,11] and is deferred to the full version [29].
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Abstract. We present the first Oblivious RAM (ORAM) construction
that for N memory blocks supports accesses with worst-case O(log N)
overhead for any block size Ω(log N) while requiring a client memory
of only a constant number of memory blocks. We rely on the existence
of one-way functions and guarantee computational security. Our result
closes a long line of research on fundamental feasibility results for ORAM
constructions as logarithmic overhead is necessary.

The previous best logarithmic overhead construction only guarantees
it in an amortized sense, i.e., logarithmic overhead is achieved only for
long enough access sequences, where some of the individual accesses incur
Θ(N) overhead. The previously best ORAM in terms of worst-case over-
head achieves O(log2 N/ log log N) overhead.

Technically, we design a novel de-amortization framework for mod-
ern ORAM constructions that use the “shuffled inputs” assumption. Our
framework significantly departs from all previous de-amortization frame-
works, originating from Ostrovsky and Shoup (STOC ’97), that seem to be
fundamentally too weak to be applied on modern ORAM constructions.

Keywords: Oblivious RAM · Worst-case overhead · Deamortization

1 Introduction

Imagine a client that wishes to offload a database containing sensitive informa-
tion to an untrusted server and later access the database and retrieve parts of it.
By now, it is well-known that merely encrypting the entries of the database before
uploading them to the server does not guarantee privacy (e.g., [6,21,22,41]).
Indeed, the access patterns themselves may reveal non-trivial information about
the underlying data or program being executed on the data. To mitigate these
kinds of attacks, we would like to be able not only to encrypt the underlying data
but also to “scramble” the observed access patterns so that they look unrelated
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to the data. The algorithmic tool that achieves this goal is called an Oblivious
RAM (ORAM).

An ORAM, introduced in the seminal work of Goldreich and Ostro-
vsky [16,17], is a (probabilistic) RAM machine whose memory accesses do not
reveal anything about the input—including both program and data—on which it
is executed. An ORAM construction accomplishes this by permuting data blocks
stored on the server and periodic reshuffling them around. Since their introduc-
tion more than 30 years ago, ORAMs have also become a central tool in design-
ing various cryptographic systems, including cloud computing design, secure
processor design, multi-party computation protocols, and more [4,12,13,15,26–
29,31,34,35,38–40].

To be useful, ORAMs have to be “efficient”. Whether an ORAM is effi-
cient or not is typically measured by its (asymptotic) overhead in bandwidth:
that is, how many data items must be accessed in the oblivious simulation
as compared to the original non-oblivious implementation. There has been a
tremendous effort in designing the most efficient ORAM construction possi-
ble [2,7,17,18,24,30,32,33,37]. The current record is the OptORAMa scheme
by Asharov et al. [2] (building on Patel et al. [30]) who obtained an ORAM with
amortized logarithmic overhead. Namely, their ORAM can simulate a RAM of
size N so that over the span of T accesses, the total number of accesses would be
O(T · log N). The beautiful lower bound of Larsen and Nielsen [25] (see also [23])
shows that this is essentially the best possible: that is, every ORAM construction
must spend on average Ω(log N) physical accesses per one logical operation.1

Worst-case overhead. Much of the recent progress on ORAM constructions
focuses on reducing its amortized cost [2,30], whereas the worst-case overhead
of an operation was ignored. Specifically, while achieving logarithmic amortized
overhead, these constructions have Ω(N) worst-case overhead, due to the occa-
sional reshuffling operations. This worst-case behavior renders these schemes
much less useful in many applications since every now and then an access will
“block” until Ω(N) physical accesses are complete which is clearly unacceptable.

The first to address this problem were Ostrovsky and Shoup [29] who showed
how to spread the reshuffling operations over time, and achieve a worst-case
O(log3 N) overhead version of the original ORAM of Goldreich and Ostro-
vsky [17]. Related techniques were later applied on other ORAM schemes
[7,19,24]. In spite of the recent great progress in ORAM constructions, the best
known construction in terms of worst-case overhead is from almost a decade ago
due to Kushilevitz, Lu, and Ostrovsky [24] who achieved O(log2 N/ log log N)
worst-case overhead (and their scheme was further clarified in the subsequent work
of Chan et al. [7]). Crucially, the techniques of Ostrovsky and Shoup do not apply

1 The lower bounds of [23,25] only apply to “online” ORAMs which support opera-
tions that come in an online fashion, one by one. These lower bounds even apply
to computationally secure constructions. There is a logarithmic lower bound for
“offline” ORAMs which see the whole set of operations ahead of time due to Gol-
dreich and Ostrovsky [17], but it only applies to statistically secure constructions in
the balls-and-bins model (see Boyle and Naor [5]).
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to the recent constructions that are based on “randomness reusing” of [2,30], as
we elaborate below in Sect. 2.

Thus, the current state of affairs leaves open the following fundamental ques-
tion (also raised in [2]):

Is there a worst-case logarithmic overhead ORAM? That is, is there an ORAM
construction that can simulate every logical operation with O(log N) physical

accesses?

1.1 Our Contributions

Optimal worst-case overhead ORAM. We propose a new ORAM construction
that achieve logarithmic worst-case overhead (in the memory size), while con-
suming O(1) client-side storage, and O(N) server-side storage. Here, N denoted
the memory size. Obliviousness of our construction relies on the existence of
one-way functions. Our result answers an important question left open by the
recent OptORAMa work [2].

Theorem 1.1. There is a computationally-secure ORAM with O(log N) worst-
case overhead assuming that one-way functions exist.

The construction that achieves Theorem 1.1 is in the most standard model
and make the same set of assumptions as all prior computationally-secure ORAM
schemes. We assume a standard word-RAM where each memory word has at least
w = log N bits, i.e., large enough to store its own logical address. We assume
that word-level addition and boolean operations can be done in unit cost. We
assume that the CPU has constant number of private registers. We additionally
assume that a single evaluation of a PRF resulting in at least word-size number
of pseudo-random bits, can be done in unit cost.

Technically, we significantly depart from all previous “deamortized” ORAM
constructions. While all previous works2 almost directly use the approach of
Ostrovsky and Shoup [29], it seems like this approach is fundamentally too weak
to be applied on modern ORAM constructions that achieve amortized logarith-
mic overhead [2,30]. To this end, we build a new set of novel algorithmic tools
from ground up and show how to amend the construction of Asharov et al. [2]
so that it could be deamortized.

Linear-time oblivious deduplication. A noteworthy building block that we
develop is an algorithm for efficient oblivious deduplication. Consider two sets of
n elements A and B, where the goal is to obliviously compute A ∪ B, that is,
merge them into one larger set while removing duplicate elements. (Note that we
assume that the elements within A are distinct, and ditto for B. Also, we assume
that if there is a duplication, we keep the copy coming from A for concreteness.)
Oblivious deduplication is a central building block in many previous worst-case

2 Here we ignore tree-based constructions [32,33,37] since it is not known how to use
them to get even amortized logarithmic overhead.
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efficient ORAM constructions. Before this work, the only known solution was to
apply a generic oblivious sort on the concatenation of A and B, followed by a
linear scan which “deletes” the duplicates (after the sort, duplicates are adjacent
in memory). Using the best known oblivious sort (e.g., AKS [1]), this approach
would incur O(n · log n) time. Eventually the extra log factor propagates into the
overhead of the ORAM, resulting in O(log2 N/ log log N) worst-case overhead (at
best).

We show that the extra log n overhead can be avoided by designing a linear
time algorithm for this task which is oblivious if the input arrays are randomly
shuffled. That is, we show that if A and B are shuffled with independent secret
permutations, then there is a way to compute A∪B in time O(n) while maintain-
ing obliviousness. Linear overhead is clearly the best possible (since just reading
the input takes linear time), matching the state of the art without obliviousness.

Theorem 1.2. There is a linear time (probabilistic) algorithm that gets as input
two sets A and B and outputs A∪B. The algorithm is further (computationally)
oblivious if A and B are independently secretly shuffled and if one-way functions
exist.

Conclusions and Open Problems. We see our work as closing a long line of
research on theoretical feasibility results for ORAM constructions. Our worst-
case logarithmic overhead ORAM result, at least asymptotically, is optimal in
terms of computational overhead. Unfortunately, the concrete constant, inher-
ited from [2], underlying our construction is rather large. Using better generic
building blocks (say the oblivious compaction algorithm of Dittmer and Ostro-
vsky [11]) we can get a much better constant but we believe that it is still too
large for deployment. Whether there is a construction with (worst-case) loga-
rithmic asymptotic overhead and a small constant is a major open problem.

Another exciting open problem is to bring down the cost of statistically secure
ORAMs closer to O(log N) or prove that it is impossible. Specifically, the best
statistically secure ORAMs has overhead O

(
log2 N/ log log N

)
[9] and it relies

on the tree-based paradigm due to Shi et al. [32] which was later improved by
[9,10,13,33,37]. Interestingly, tree based ORAMs have so far been more con-
cretely efficient than hierarchical ones and this question is also somewhat related
to the previous one.

Lastly, we mention a recent work of Asharov et al. [3] who gives an optimal
Oblivious PRAM (OPRAM). An OPRAM is an extension of ORAM to the
parallel setting where several processors make concurrent accesses to a shared
memory. Their main result is that (assuming one-way functions) any PRAM
with memory capacity N can be obliviously simulated in space O(N), incurring
only amortized O(log N) overhead in work and (worst-case) O(log N) overhead
in depth. We believe that our techniques can be further extended to obtain a
worst-case logarithmic work and depth overhead OPRAM, but this is left for
future work.
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2 Technical Overview

2.1 Background: Underlying ORAM Without Deamortization

The hierarchical paradigm and oblivious hash tables. We will build from an
underlying (amortized) ORAM scheme which follows the hierarchical paradigm
established by Goldreich and Ostrovsky [16,17]. An ORAM scheme in the hier-
archical paradigm can be viewed as a technique to reduce the task of construct-
ing ORAM to the task of constructing an oblivious hash table. Specifically, A
hierarchical ORAM typically consists of log2 N + 1 levels numbered 0, 1, . . . , n.
Each level i is an oblivious hash table that can contain at most 2i elements. An
oblivious hash table is a data structure that supports the following operations:

– Build takes an input array containing (key, value) pairs and creates the data
structure (we also say a pair is an element, a block, or an item);

– Lookup receives a key k, and returns the value corresponding to the key k
contained in the data structure, or returns ⊥ if not found or if the key looked
up is dummy (denoted ⊥).

– Extract is called when the data structure is destructed, and returns a list of
unvisited items in the data structure.

Almost all known ORAM schemes in the hierarchical paradigm guarantee the
following non-recurrent invariant: for each oblivious hash table in the hierarchy,
the same real (i.e., non-dummy) key must be looked up at most once during
the life-cycle of the data structure. Therefore, the data structure only needs to
provide obliviousness if this non-recurrent assumption is respected. Finally, an
oblivious hash table often has an access budget in the sense that it can only
support up to an a-priori fixed number of lookup requests. Typically this budget
is at least n which is the size of the array input into Build.

Achieving amortized logarithmic overhead. The original oblivious hash table
implementation suggested by Goldreich and Ostrovsky [16,17] is slow and takes
O(n log n) time to build for an input array of size n. This would result in a
non-optimal ORAM scheme. Instead, we adopt the efficient oblivious hash table
suggested by Asharov et al. [2] (which is built upon Patel et al. [30]). Asharov
et al. showed an oblivious hash table with O(n) build time and O(1) lookup
overhead, except with the following input assumptions, output requirement, and
caveat:

– Randomly shuffled requirement: the input array of Build must be randomly
shuffled; moreover, the Extract function outputs the unvisited blocks in a
random order. In either case, the randomness is hidden from the adversary.

– Size assumption: to obtain negligible in λ failure probability, the construction
only works for hash tables that are at least poly log(λ) in size.

– Stash: while the main hash table data structure can indeed be looked up in
constant time, the hash table construction actually comes with a stash, and
sometimes the element to be looked up actually resides in the stash. Each
stash has expected constant size but with noticeable probability, the size can
be as large as O(log λ).
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We briefly overview how past works [2,30] deal with the above imperfect-
ness to make the ORAM scheme work. The recent work by Patel et al. [30] and
Asharov et al. [2] show that by relying on the “residual randomness”, ORAM
constructions can respect the randomly shuffled input assumption. Specifically,
when each oblivious hash table is destructed in the ORAM, the unvisited ele-
ments in the hash table appear in a random order, and the random permutation
is hidden from the adversary. The size assumption can be dealt with by using
yet another designated, slower, data-structure for smaller levels in the ORAM
that are less than poly log(λ) in size. Finally, the stash issue can be dealt with by
merging the stashes of all oblivious hash tables into a single one, and accessing
the merged stash once and for all for each ORAM request—one can prove that
the merged stash is at most poly logarithmic in size except with negligible prob-
ability, and is stored in a designated data structure to allow fast lookup (i.e.,
taking strictly logarithmic time).

Simplifying assumptions. For ease of understanding, let us first ignore the size
assumption and the stash issue mentioned above—these introduce additional
technicalities for constructing an optimal, deamortized ORAM as we shall men-
tion shortly. For the time being, we pretend that we can indeed have an oblivious
hash table for randomly shuffled inputs can be built in linear time, regardless
of the size, and moreover, assuming that lookup need not deal with the stash
technicality.

Underlying ORAM scheme without deamortization. With these simplifying
assumptions, we can construct an ORAM scheme as follows—our description
below matches the rebuild description of Asharov et al. [3] in their optimal
OPRAM scheme, and is a variant of Goldreich and Ostrovsky’s original hierar-
chical construction.

Assume that the total memory size N is a power of 2. Imagine that there are
log2 N + 1 levels, where the i-th level is an oblivious hash table (for randomly
shuffled inputs) of capacity 2i. We use T0, . . . ,TL to denote all the L + 1 levels
where L = log2 N .

In the steady state of the ORAM (i.e., ignoring the initial time steps when
the levels are not yet populated), every level except level 0 is either half full (HF)
or full (F). A level i > 0 is half full iff it contains up to 2i−1 real blocks. A level i
is full iff it may contain up to 2i real blocks3. Level 0 is either empty or full, and
as we shall see, it is guaranteed to be empty at the end of every ORAM request.
Whenever a new ORAM request arrives asking for the block at logical address
addr, we do the following:

– Fetch phase. From i = 0 to L, we look up each oblivious hash table for the
logical address addr; once the block is found, for all subsequent levels, we
instead look for a dummy block.

3 The actual number of real blocks may be smaller if the requests keep asking for the
same block or a small set of blocks. The maximum load is achieved when the ORAM
requests cycle through addresses 1, 2, . . . , N in a round-robin fashion.
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– Maintain phase. The block at addr just fetched is updated if necessary, and
then it is entered into the smallest level (i.e., level 0), which makes the smallest
level full. At this moment, let � be either the smallest level that is half full or
� = L if all levels are full. Regardless of which case, all levels 0, 1, . . . , � − 1
are full. We now perform the following rebuild procedure:
1. For each level i = 0 to � − 2 in parallel:

let T′
i+1 := Build(Intersperse(Ti.Extract(),Di))—where Di is an array of

size 2i containing only dummy elements, and Intersperse merges two ran-
domly shuffled arrays into a randomly shuffled array.

2. Let T′
� := Build(T�−1.Extract()∪T�.Extract()) while we also remove

dummy elements when unifying the two arrays;
3. Replace T1, . . . ,T� with the new hash tables T′

1, . . . ,T
′
� and let T0 be

emptied.
After this rebuild procedure, T0, . . . ,T�−1 are all half full (and in fact T0 is
empty), and T� becomes full. In the above Steps 1 and 2, one can also imagine
that each level 1, . . . , � − 1 is “rebuilding itself down” into the next level (and
we will use this terminology later). For ease of understanding, the maintain
phase is depicted in Fig. 1.

Fact 2.1. In the above construction, a level i ≥ 1 switches state (either from
half full to full, or vice versa) every 2i−1 requests. Similarly, a level i wants to
rebuild itself down every 2i requests—this also coincides with when level i + 1
refreshes.

Assuming that the oblivious hash table supports Build in linear-time (for
randomly shuffled inputs), supports Lookup in constant time, and moreover, its
Extract function outputs unvisited blocks in a random order, then the above
ORAM scheme is secure and achieves O(log N) amortized overhead.

2.2 Why Existing Deamortization Techniques Fail

Clearly the scheme mentioned in Sect. 2.1 cannot give a worst-case efficient
ORAM. For instance, when rebuilding the largest level (which happens every N
accesses), just reading it requires O(N) work. We describe existing deamortiza-
tion techniques and explain why they are incompatible with the new generation
of amortized optimal ORAM constructions.

Ostrovsky and Shoup [29] proposed a deamortization technique that, roughly
speaking, “spread” the rebuild procedures over many accesses rather than per-
forming them atomically. The challenge is how to support accesses to the level
while it is being rebuilt.

To do this, first, we modify the access process so that it does not delete an
element once it is found in some level (while it is still reinserted into the smallest
level). With this change, it is immediate that except for the smallest level, the
only time the contents of a level changes, is during the rebuild procedure and
in the latter we always just “pull” content from its previous (i.e., smaller) level.
That is, it takes 2i accesses until the content of the ith table is modified, and
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it will be filled with the content of table i − 1 which is also fixed and known.
Thus, the rebuild process for a level can be done slowly and in advance across
many accesses as follows: each level has a table called CurrentActive and has
another table that is UnderConstruction, which is being slowly built from
CurrentActive and the previous level CurrentActive. When the construc-
tion of the level is complete, we just update the pointer of CurrentActive
to the new rebuilt table, and start a new UnderConstruction version, thus
doing the rebuild in the deamortized sense, by spreading the cost uniformly.

There is one very important technical detail with the above approach: since
we never actually delete elements, the same key may (and will) appear multiple
times in the structure, perhaps with different values. The important invariant
is that the newest version of the element is always the one that resides in the
smaller level. At some point, these copies will meet in the same level during some
rebuild process and then the older copy will be suppressed and discarded. The
later task is known as oblivious deduplication and it is usually implemented
using oblivious sort.

Multiple variants and adaptations of the above deamortization technique
were used in previous ORAM constructions [7,19,24]. However, as we shall argue
next, there are inherent obstacles one runs into while trying to apply it on the
more recent (amortized) logarithmic overhead ORAM constructions [2,30].

Challenge I: Access-while-rebuild breaks security. Recall that in the deamortiza-
tion technique of Ostrovsky and Shoup, we start rebuilding the table into the
next level while we also access it at the same time. However, when applied on
the ORAM of [2,30], this completely breaks the input assumption (and there-
fore security) and is not compatible with the “residual randomness” technique:
A lookup that is performed while building reveals the position of an element
in the new table–the security of the latter inherently relies on the permutation
being completely secret.

To elaborate further, in Ostrovsky and Shoup we know in advance the content
of the levels and we start the rebuild process ahead of time, while still allowing
accesses to the same levels. In the context of in Ostrovsky and Shoup, this is
secure as we re-randomize the levels (by obliviously sorting/shuffling it) during
the rebuild process. However, in our case we cannot re-randomize the levels as
this is too expensive, and we follow the residual randomness technique. Moreover,
we cannot know in advance which elements will be looked up in the previous
level, i.e., the residual randomness will be consumed and thus for security we
are not allowed to reuse randomness.

Challenge II: Deduplication takes quasi-linear time. As mentioned, multiple
copies of the same key will appear during the lifetime of the ORAM (some
might be with different values) and so a deduplication mechanism is needed.
More precisely, the task is to compute A ∪ B given two sets A and B of size
n. (Assume we prefer the copy in A over B for concreteness.) The best known
algorithm uses oblivious sort and takes quasi-linear time. However, if we want to
have a logarithmic overhead ORAM construction we must implement it in linear
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time. Note that, even ignoring obliviousness, it is not immediately obvious how
to do this in linear time. The most natural approach is to use sorting, but better
algorithms can be achieved using hashing tools.

Challenge III: Cannot “lock” shared memory. As mentioned, each level in [2,30]
effectively supports lookup in constant time, but this is due to the “shared stash”
technique (previously used in [9,18,20,24]). Specifically, in isolation, each level
requires O(1) accesses to a main table and an additional scan of a O(log N)-size
stash. The shared stash trick utilizes the fact that there are many levels and an
access will translate to multiple lookups for the same key in many levels–this
allows us to merge all of the stashes into a global one and scan it only once for all
levels. Therefore, the number of accesses per level is O(1) amortized. This makes
the ORAM construction not completely black-box in a hash table and therefore
less compatible with Ostrovsky-Shoup [29]. Concretely, while we rebuild a table,
we cannot “lock” the global stash as we need to allow accesses to it (addition
and removal of elements) while handling other ORAM accesses.

2.3 Our Deamortization Approach

We now intuitively describe how to deamortize the ORAM scheme mentioned in
Sect. 2.1. To address Challenge I mentioned in Sect. 2.2, whenever some level is
involved in a rebuild, i.e., its destructor Extract function is being called, this level
no longer can support lookups. Yet the ORAM must continue to serve requests.
We propose a new pipelining approach that works with this new constraint that
comes with the new amortized logarithmic-overhead ORAMs.

Our key idea is to maintain two copies of each level, henceforth called the
A-copy and the B-copy respectively, each uses its own independent randomness.
At a high level, whenever some level in the A-copy involved in a rebuild and
being destructed, the corresponding level in the B-copy fills in the lookups; and
whenever some level in the B-copy is involved in a rebuilt and being destructed,
the next level in the A-copy can fill in. This guarantees that we never lookup
and rebuild from a table at the same time – while rebuilding all lookups are
performed at a different copy that uses independent randomness. That is, we
essentially split the queries between A and B, so that we can reuse randomness
in each hierarchy by itself. Whenever an element is found in one copy, we update
its content and put it in the top of the two hierarchies of A and B.

We next elaborate our idea in the following schedule of deamortization.
Henceforth, we use Ai and Bi to denote the i-th level in the A-copy and B-copy,
respectively. In our earlier non-deamortized scheme, recall that a level i ≥ 1 is
reconstructed every 2i−1 requests. We may imagine that there is some counter ctr
that increments upon every request, and thus a level i ≥ 1 is refreshed whenever
the ctr = k ·2i−1 for some integer k. For simplicity, in this overview we ignore the
treatment of the first level and the last level, and just look at intermediate levels.
To achieve deamortization, the idea is to rely on careful pipelining to maintain
the following schedule:
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– The level Ai is refreshed (i.e., completes reconstruction) at time step ctr1 =
k · 2i + 2i−2 where k is an integer. Level Ai is now “half full” and just pulled
new content from level i − 1.

– The level Bi is refreshed at time ctr2 = k · 2i + 2 · 2i−2, i.e., just a little later
than the corresponding Ai finished reconstruction.

– At time ctr2 = k · 2i +2 · 2i−2, level Ai starts pulling more content from Ai−1.
This will take 2i−2 time, which will finish at ctr3 = k · 2i + 3 · 2i−2.
During this rebuild period [ctr2, ctr3], Ai is dysfunctional and cannot support
accesses; fortunately, Bi contains identical contents as Ai (but rerandomized
differently for obliviousness), and therefore Bi can fill in for the lookups.

– At time ctr3, Ai finishes, and Bi can catch up and pull information from level
Bi−1. It will start rebuilding and will finish at time ctr4 := ctr3 + 2i−2. At
this time range Bi is dysfunctional, however, its content is also in Ai, which
also hold in addition some fresher content from Ai−1.

– After Bi finishes and becomes full, Ai wants to push all its content down
into level Ai+1 while also pulling new content from level Ai−1. However, the
rebuild of level Ai+1 takes twice as much time. Thus, level Ai will have new
content already at time ctr5 := ctr4 + 2i−2, while level Ai+1 will have the
old content of Ai only at time ctr6 := ctr5 + 2i−2. Luckily, the content is not
lost; The content exists all this time at the Bi copy, which is activated and
functional in [ctr4, ctr6].
At time ctr5, we essentially finished a cycle, i.e., Ai is half full and just finished
refreshing, and we are essentially back to the first item.

Recall that rebuilding Ai (or Bi, resp.) from Ai−1 (or Bi−1, resp.) takes work
Θ(2i). This amount of work is spread across ctr2−ctr1 (or ctr3−ctr2, resp.) time
steps. One can verify that indeed, ctr2−ctr1 = Θ(2i) and thus in each time step,
a constant amount of work is performed associated with the rebuilding of Ai (or
Bi, resp.). At most O(log N) many levels are being rebuilt simultaneously, and
thus the total amount of work per time step associated with rebuilds is O(log N).
Observe also that the time in between two adjacent rebuilds of Ai is only 2i−1,
and the hash table Ai can support up to 2i requests, so we will not run out of
the access budget. A similar observation holds for Bi.

In our final scheme, we will actually have different designated place for the
table Ai when it is half-full, and a different placed for Ai when it is full, denoted
as AHF

i and AF
i , respectively (likewise for BHF

i and BF
i ). Thus, we have 4 tables

at the same level, but (the newest version of) each element has exactly 1 copy
in each of Ai and Bi. Moreover, only one copy of (AHF

i ,AF
i ) is valid at any given

time, likewise for Bi. We can view AHF
i and AF

i as two possible states of Ai, and
then we have just two copies in each level, or as independent hash tables, and
then we have four tables. The rebuild schedule is depicted in Fig. 3.

Why deduplication is necessary in the deamortized scheme. The rebuild proce-
dure of the deamortized scheme is otherwise the same as the underlying non-
deamortized scheme except that a deduplication pre-processing step is necessary
whenever we are building a half full level Ai and a full level Ai−1 to create a
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new level Ai (and the same for the B-copy). This is because in the deamortized
scheme, the rebuilding process is happening while the ORAM is still serving
queries. For example, Ai may be rebuilding itself down into Ai+1, and the corre-
sponding Bi is taking over as Ai in serving queries. During the rebuild, a memory
block at address addr∗ may get rebuilt from Ai, into Ai+1, but it can also be
requested during the same rebuild interim, causing a separate copy of addr∗ to
be entered into the smallest level. Duplicates will be suppressed when two dupli-
cate copies of the same addr∗ “meet” in a future rebuild, while lookup guarantees
that the freshest copy (which resides in the level that is smallest compared to
any other copy) will be found.

We next describe how to accomplish oblivious deduplication in linear time.

2.4 Linear-Time Oblivious Deduplication

To address Challenge II from Sect. 2.2, another contribution of our paper is a
linear-time oblivious deduplication algorithm that takes advantage of the fact
that the input arrays to be deduplicated are randomly shuffled. To see the main
idea, let us first describe a non-oblivious algorithm that runs in linear time.
(This is already not trivial.) While the most natural implementation is to sort
the concatenated array and then perform a linear scan while removing duplicates
(which reside in adjacent positions after the sort), the cost of this implementation
is dominated by the sort. Using the best sorting algorithms in the RAM model,
one can achieve o(n · log n) cost [14,36] but we still do not know of linear time
sorting algorithms.

Our idea to get a linear time algorithm is to use hashing tools. Specifically,
consider a Cuckoo hash–this is a hash table that supports lookup by just 2
accesses to a main table and another scan of say O(log λ) size stash. (The stash
needs to be of this size to guarantee the probability of failure is negligible in λ.)
Consider hashing X1 and X2 independently into a Cuckoo hash tables T1, T2 each
having a long enough stash so that the hashing succeeds with all but negligible
probability. For i ∈ {1, 2}, denote Ti = (TM

i , TS
i ) where TM

i is the main table
of Ti and TS

i is the stash of Ti. This costs just O(n). Now, we can perform the
deduplication as follows:

1. For each element in the stash of T1, i.e., TS
1 , we perform a full lookup in T2.

That is, for each of the O(log λ) elements in TS
1 , we touch O(1) elements in

TM
2 and then scan TS

2 . Doing so, we remove the elements from T2 that are
also in TS

1 . This costs overall O(log2 λ).
2. So far, we took care of elements that appear in T2 and in TS

1 and we need
to remove duplicates which appear in T2 and TM

1 . For this, we scan every
remaining element in T2 and for each we touch the two locations in TM

1 to
check if it is there. If so, we delete it from T2. Crucially, now we do not need
to visit the stash TS

1 . When we look for the elements in T2 \ TS
1 , we can go

directly to the main table and spend O(1) work per lookup, as we know that
the element is not in the stash TS

1 !
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Eventually, we concatenate the elements of T1 together with what is left in
T2 after performing the above process. Overall, the cost of this algorithm is
O(n + log2 λ) = O(n) whenever n is large enough compared to λ.

This algorithm is clearly non-oblivious and “naively” replacing the Cuckoo
hash with an oblivious version thereof does not meet our goal since known con-
structions require ω(n) time for building (since building an oblivious Cuckoo
hash uses oblivious sort). This is where the “shuffled inputs” assumptions comes
into play: we do not necessarily need the full power of Cuckoo hashing since
we are guaranteed that the input lists are shuffled. Therefore, instead of using
Cuckoo hash, we use in a white-box manner the linear-time oblivious hash table
for shuffled inputs from [2] (see also Sect. 3.4). This hash table has linear build
time and is secure only when the input array is randomly shuffled; otherwise, it
behaves conceptually in a similar manner to “standard” oblivious Cuckoo hash:
lookup is performed by a scan of a stash and O(1) accesses to a “main table”.
We therefore manage to use it for our purpose, deduplication.

Dealing with the shared stash. So far, we have assumed an idealized oblivious
hash table (for randomly shuffled inputs) without stashes. As mentioned ear-
lier, known instantiations of the oblivious hash table with the desired efficiency
requirements have an extra stash that must be visited during a Lookup opera-
tion, and the constant-time lookup is only possible with a “shared stash” trick,
i.e., by merging all logarithmically many stashes into a globally shared one.

Accommodating the shared stashes creates extra technicalities, as we men-
tioned in Challenge III in Sect. 2.2. To deal with them, the main idea is to support
more fine-grained access to the shared memory area. That is, while in [2], every
extract requires to atomically scan the shared memory to retrieve all elements
that “belong” to some given level, in our construction we avoid such linear scans
by using more efficient data structures. Specifically, we use a version of an obliv-
ious dictionary which supports lookup of elements w.r.t. various auxiliary keys
such as the level they came from or the logical address.

To elaborate, recall that each level is associated with a stash of O(log λ)
elements, and thus the shared stash consists of O(log N · log λ) elements. All
such elements are store the oblivious dictionary accompanied with the auxiliary
keys. Specifically, an element is inserted to the dictionary when a level is newly
built, is queried by a logical address when lookups are performed during the fetch
phase, and is popped from the dictionary when a level is being extracted. Recall
that each operation of the oblivious dictionary takes only poly log(log N + log λ)
time, e.g., by instantiating a perfect ORAM [8], and that each level is at least
poly(log N +log λ) in size. The efficiency follows as inserting or popping elements
take only a o(1) fraction of time during build or extract a level, and only O(1)
queries are performed during a fetch. The security follows since the dictionary
is perfectly oblivious.

Organization. The remaining of the paper is organized as follows. In Sect. 3 we
provide the preliminaries, which includes definition of obliviousness, some basic
building blocks we use in our construction, our 2-key dictionary and revisit and
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overview the oblivious hash table construction of [2]. In Sect. 4 we provide our
deduplication algorithm, and in Sect. 5 we provide our deamortized construction.
The case of combining the stashes is deferred to the full version.

3 Preliminaries

The security parameter is denoted λ and it is given as input to algorithms
in unary (i.e., as 1λ). A function negl : N → R

+ is negligible if for every
constant c > 0 there exists an integer Nc such that negl(λ) < λ−c for
all λ > Nc. Two sequences of random variables X = {Xλ}λ∈N

and Y =
{Yλ}λ∈N

are computationally indistinguishable if for any probabilistic polyno-
mial time algorithm A, there exists a negligible function negl(·) such that∣
∣Pr

[A(1λ,Xλ) = 1
] − Pr

[A(1λ, Yλ) = 1
]∣∣ ≤ negl(λ) for all λ ∈ N. For n ∈ N,

denote [n] = {1, . . . , n}.

Random-access machines (RAM). A RAM (or a RAM program) is an interactive
Turing machine that consists of a memory and a CPU. The program maps some
input to an output where its computation is performed by the CPU and using
the interaction with the memory. The memory is denoted as mem[N,w] and is
indexed by the logical address space [N ] = {1, 2, . . . , N}. We denote by w to
denote the bit-length of each block. The CPU has an internal state that consists
of O(1) words. The memory supports read/write instructions (op, addr, data)
where op ∈ {read,write}, addr ∈ [N ] and data ∈ {0, 1}w ∪ {⊥}:

– If op = read then data = ⊥ and the returned value is the content of the block
located in the logical address addr in the memory.

– If op = write then the memory data in logical address addr is updated to data.

We use the standard setting that w = Θ(log N) (so an address can be stored in
a word). We follow the standard convention that the CPU performs one word-
level operation per unit time, i.e., such that additions or subtraction (arithmetic
operations), bitwise operations such as AND, OR, NOT or shift, memory accesses
or evaluation of pseudorandom function.

3.1 Oblivious Machines

Intuitively, we say that a machine M is oblivious if there exists a simulator that
can simulate its access pattern without knowing the input. Specifically, there
exists a simulator Sim such that, for all inputs x, all memory accesses in the
computation M(x) can be simulated by Sim where Sim just receives the length
of x (i.e., |x|) and not the input itself.

We say that a RAM program Mf oblivious simulates a (deterministic) RAM
program f if for every input x it holds that Mf (x) = f(x), and that Mf is
oblivious. For randomized functionalities, we require that the joint distribution of
the output of Mf and the access pattern of the simulator is indistinguishable from
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the joint distribution of the output of f and its access pattern in the computation.
See discussion in [2]. We are now ready for the definition of oblivious simulation:

Definition 3.1 (Oblivious simulation). Let f,Mf : {0, 1}∗ → {0, 1}∗ be two
RAM machines. We say that Mf obliviously simulates f if there exists a proba-
bilistic polynomial time simulator Sim such that for every input x ∈ {0, 1}∗, the
following holds:

{
(out,Addr) : (out,Addrs) ← Mf (1λ, x)

}
λ

≈
{(

f(x),Sim(1λ, 1|x|
)}

λ

depending on whether ≈ refers to computational, statistical, or perfectly indistin-
guishable we say that Mf is computationally, statistically, or perfectly oblivious,
respectively.

Reactive random-access machines. We consider functionalities that are reactive,
i.e., proceed in stages, where the functionality preserves an internal state between
stages. Such a reactive functionality can be described as a sequence of RAM
machines, where each machine also receives as an input a state, updates it, and
the output is the input state for the next machine. We use it to capture building
blocks such as oblivious hash tables (see Sect. 3.4).

A reactive machine F receives commands of the form (commandi, inpi) and
produces an output outi while maintaining some (secret) internal state. Our
definition considers an adversary A (a distinguisher) that participates in either a
real execution or an ideal one, and with each command receives the access pattern
(resp. simulated access pattern) and the output of the algorithm (resp. output
of the functionality). The adversary A can then adaptively choose the next
command to execute.

Definition 3.2 (Oblivious simulation of a reactive functionality). We say that
a reactive machine MF is an oblivious implementation of the reactive function-
ality F if there exists a PPT simulator Sim such that for any non-uniform PPT
(stateful) adversary A, the view of the adversary A in the following two experi-
ments Exptreal,MF (1λ) and Exptideal,F

A,Sim (1λ) is computationally indistinguishable:

Exptreal,MF
A (1λ):

Let (cmdi, inpi) ← A (
1λ

)

Loop while cmdi 
= ⊥:
outi,Addri ← MF

(
1λ, cmdi, inpi

)

(cmdi, inpi) ← A (
1λ, outi,Addri

)

Exptideal,FA,Sim (1λ):

Let (cmdi, inpi) ← A (
1λ

)

Loop while cmdi 
= ⊥:
outi ← F(cmdi, inpi).
Addri ← Sim

(
1λ, cmdi

)
.

(cmdi, inpi) ← A (
1λ, outi,Addri

)

We define statistical or perfect simulation analogously, requiring the two
experiments to be either statistically close or identically distributed.

ORAM simulation overhead. We consider the standard ORAM functionality,
implementing a logical memory. In this functionality, the user gets to choose the
next command (i.e., either read or write) as well as the address and data according
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to the access pattern it has observed so far. During its life span, the functionality
holds (as an internal state) N memory blocks, each of size w. Denote the internal
state X[1, . . . , N ]. Initially, X[addr] = 0 for every addr ∈ [N ]. The functionality
is as follows:

– Access(op, addr, data): where op ∈ {read,write}, addr ∈ [N ] and data ∈
{0, 1}w.

1. If op = read, set data∗ := X[addr].
2. If op = write, set X[addr] := data and data∗ := data.
3. Output data∗.

Typically, the metric of interest for ORAM construction is known as com-
putation overhead and it is defined as the (multiplicative) blowup in runtime of
the compiled program. We distinguish between the worst-case and the amortized
variants:

– Amortized computation overhead: We say that the amortized computa-
tion overhead of the ORAM is g : N → N if for every sequence of operations
((op1, addr1, data1), . . . , (opq, addrq, dataq)) at most g(N)·q computation steps
are taken during the execution of the ORAM.

– Worst-case computation overhead: We say that the amortized computa-
tion overhead of the ORAM is g : N → N if every sequence of operations ((op1,
addr1, data1), . . . , (opq, addrq, dataq)), handling each operation in the sequence
consumes g(N) computation steps.

It is immediate that worst-case overhead g(N) directly implies amortized
overhead of g(N) but the converse is not necessarily true.

3.2 Basic Building Blocks

We briefly describe few functionalities that we use in our construction, and refer
to [2] for their implementation:

1. Intersperse(X,Y ) is an algorithm that takes two arrays, each is randomly
shuffled, returns a randomly shuffled array, and runs in linear time (i.e.,
O(|X|+ |Y |)). It obliviously implements the ideal functionality FShuffle–which
takes an array and randomly shuffled it.

2. IntersperseRD(X) takes an array that contains real and dummy elements, and
is assumed that all real elements are shuffled among themselves, but there is
no guarantee about the locations of the dummies in the array (e.g., they can
all reside at the end of the array). The algorithm returns a randomly shuffled
array, runs in linear time, and obliviously implements the ideal functionality
FShuffle.

3. Compaction: Given an array in which some of the elements are distinguished,
it moves all distinguished elements to the beginning of the array and runs in
linear time.
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3.3 Perfectly Oblivious 2-Key Dictionary

In this section we use known results to get a new oblivious dictionary-like data
structure. Our structure, termed two-key dictionary, needs to support three oper-
ations: Insert, PopKey, and PopTime. Each element has a key k and a label t for
“time”. The Insert operation takes the key k along with timestamp t and a value
v and adds (k, t, v) to the dictionary, the k appears at most once in the dictionary
(so that it overwrites if there is a previous tuple (k, t′, v′) for the same k). One
can pop an element with key k by using PopKey(k)–the operation returns and
removes the element with the key k. Analogously, PopTime(t1, t2) takes as input
a time period [t1, t2] and returns an element that is labeled with a timestamp t
in the given period. This (reactive) functionality appears as Functionality 3.3.

Functionality 3.3: F2KeyDict - Dictionary Functionality

– Initialization of the state: let M be an empty list indexed by k ∈ [K] for the
given key space K, where all M [k] are initialized as ⊥.

– F2KeyDict.Insert(k, t, v):
• Input: a key k, time t ∈ N, and a value v, where k might be ⊥, i.e., a

dummy insertion.
• The procedure:

1. If k 
= ⊥, set M [k] := (t, v).
• Output: The Insert operation has no input.

– F2KeyDict.PopKey(k):
• Input: a key k (that might be ⊥, i.e., dummy).
• The procedure:

1. Set (t∗, v∗) := M [k] and then set M [k] := ⊥.
• Output: The valude v∗.

– F2KeyDict.PopTime(t1, t2):
• Input: time t1, t2 ∈ N such that t1 < t2.
• The procedure:

1. Let k be the smallest index such that M [k] = (t∗, ·) for some t∗ ∈
[t1, t2]. If no such k exists, set v∗ := ⊥. Otherwise, set (t∗, v∗) := M [k]
and then set M [k] := ⊥.

• Output: The value v∗.

Theorem 3.4. Assume the tuple of (k, t, v) (i.e., key, time, and value) can be
stored in a constant number of memory words. Assume further that the two-key
dictionary needs to support at most n elements. There exists a perfectly oblivious
implementation of functionality F2KeyDict such that each operation Insert, PopKey,
and PopTime takes O(log4 n) time in the worst-case.

Proof. The first step is to obtain a perfectly oblivious ORAM that has O(log3 n)
worst-case overhead when simulating a memory of size n. Such an ORAM can be
obtained by applying the deamortization technique of Ostrovsky and Shoup [29]
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on the (amortized) O(log3 n) overhead perfect ORAM construction of Chan
et al. [8]. It directly works (although never formally stated to the best of our
knowledge) since the construction of Chan et al. is based exactly on the original
hierarchical framework of Goldreich and Ostrovsky [16,17] which was deamor-
tized in Ostrovsky and Shoup [29].

Given this ORAM, it is straightforward to prove the theorem by just com-
piling a non-oblivious implementation of F2KeyDict. For the latter, we instanti-
ate two balanced binary search trees (e.g., red-black tree), where the first tree
orders elements according to the key k, and the second tree orders elements by
the given time t. This implementation has logarithmic cost for each operation.
Therefore, compiling it using the above worst-case perfect ORAM, we have a per-
fectly oblivious implementation of F2KeyDict taking O(log4 n) time in the worst
case.

3.4 Oblivious Hash Table for Shuffled Inputs

Here we recall what an oblivious hash table is and the shuffled inputs assumption
(taken from [2, Section 4.4]). An oblivious hash table is a (reactive) functionality
that supports three operations: Build, Lookup and Extract that are defines as
follows. The Build operation gets as input an array of items, Lookup is used to
search for an item and then delete it, and finally Extract returns the “remaining”
elements in the table. Obliviousness means, as usual, that the access patterns
throughout the life time of the system should be unrelated to the elements in the
array nor the values being searched for. We will achieve this guarantee assuming
the input to Build is random shuffled.

Functionality 3.5: FHT - Hash Table Functionality for Non-Recurrent
Lookups

FHT.Build(I): The input

– Input: an input array I = (a1, . . . , an) containing n elements, where each ai

is either dummy or a (key, value) pair denoted (ki, vi) ∈ {0, 1}D × {0, 1}D for
some D ∈ N. We assume that both the key and the value can be stored in
O(1) memory words, i.e., D = O(w) where w denotes the word size.

– The procedure:
1. Initialize the internal state state to I,P where P = ∅. P will store the

keys that were already queried.
2. Output: The Build operation has no input.

FHT.Lookup(k):

– Input: a key k ∈ {0, 1}D ∪ {⊥}.
– The procedure:

1. Parse the internal state as state = (I,P).
2. If k ∈ P (i.e., k is a recurrent lookup) then halt and output fail. (Security

is only guaranteed if no such recurrent lookup is performed, so in the
construction we do not need to check this explicitly.)
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3. If k = ⊥ or k 
∈ I then set v∗ = ⊥.
4. Otherwise, set v∗ = v where v is the value that corresponds to the key

k in I.
5. Update P = P ∪ {(k, v)}.

– Output: The element v∗.

FHT.Extract():

– The procedure:
1. Parse the internal state state = (I,P).
2. Define an array I′ = (a′

1, . . . , a
′
n) as follows. For i ∈ [n] set a′

i = ai if
ai = (k, v) 
∈ P. Otherwise, set a′

i = dummy.
3. Shuffle I′ uniformly at random.

– Output: The array I′.

The work of Asharov et al. [2, Corollary 8.9] shows a construction of a hash
table, denoted as CombHT, with the following properties:

Theorem 3.6. Assume that one-way functions exist. Then, for any c ∈ N,
there exists a construction, denoted as CombHT, that (computationally) obliv-
iously implements the FHT functionality (Functionality 3.5) with the following
properties:

1. The input array is log9+c λ ≤ n ≤ 2λ;
2. The input assumption is that the input array is randomly shuffled;
3. Build and Extract each take O(n) time. Build outputs a main table and a stash

of size O(log λ);
4. Lookup takes O(1) time in addition to linearly scanning a stash of size

O(log λ).

The high-level idea of this construction is given in the full version for com-
pleteness, and we refer to [2, Section 8.4] for full details.

4 Oblivious Deduplication in Linear Time

Consider two arrays X1 of size n and X2 of size 2n, where it is guaranteed that
at least half of the elements in X2 are dummies,4 and the keys in each array are
unique. In what follows we describe an algorithm for merging the (real) contents
of the arrays while removing duplicates, preferring the ones in X1. That is,
viewing the input arrays as sets, we compute X1 ∪X2 while preferring duplicate
elements from X1. We start with the abstract functionality FDedup and then give
our implementation.

4 One could easily modify our algorithm to work more generally for a list X2 of size
m which has at least n dummies and result with an array of size m. We chose to be
concrete for simplicity.
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The functionality FDedup. The exact functionality is described next. It can be
viewed as a non-efficient non-oblivious implementation. The input consists of
an array X1 of size n and an array X2 of size 2n. The array X2 contains at
most n real elements. Every key appears at most once in each input list (a
key may appear once in each of the arrays with different associate values). The
functionality does the following:

1. Initialize an array Y of size 2n.
2. Copy to Y all real elements in both arrays X1 and X2. If the two arrays

contain the same key (with possibly different associated value), then remove
the copy from X2 and prefer the one in X1. Pad Y with dummies to be of
size 2n.

3. Uniformly shuffle Y and return it.

The main theorem of this section is stated next.

Theorem 4.1. There is an algorithm that implements the functionality FDedup

in time O(n) for n ≥ log11 λ (and with negligible error probability). The algo-
rithm is computationally oblivious if one-way functions exist and if the input
arrays are independently randomly shuffled.

Recall the O(n) time non-oblivious algorithm from Sect. 2–it is clearly non-
oblivious and “naively” replacing the Cuckoo hash with an oblivious version
thereof does not meet our goal since known constructions require ω(n) time for
building. However, we do not necessarily need the full power of Cuckoo hashing
since we are guaranteed that the input lists are shuffled. Therefore, instead of
using Cuckoo hash, we use the hash table CombHT from Sect. 3.4 which has
linear build time and otherwise behaves conceptually in a similar manner to
“standard” oblivious Cuckoo hash: lookup is performed by a scan of a stash and
O(1) accesses to a “main table”. The idea therefore is conceptually in the same
spirit, but we rearrange and then compose the procedures of CombHT (in a non-
black-box way) to guarantee obliviousness. Namely in Step 3, for each duplicate
that reside in the first hash table, we mark the element by its counterpart in the
second hash table; then in Step 5, we are able to emulate identically the lookup
procedures on the second table (even we perform no access on its stash). We refer
the reader to the construction of CombHT in the full version for a comprehensive
construction.

The algorithm Dedup(X1,X2) works as follows:

1. Perform T1 := HT.Build(X1) and T2 := HT.Build(X2).
2. Denote T1 = (sk1,OBins1,CombS1,T,CombS1,S,OF1,T,OF1,S) and T2 = (sk2,

OBins2,CombS2,T,CombS2,S,OF2,T,OF2,S).
3. Initialize an empty array L. Linearly scan OF2,S and Comb2,S, and for each

element (k, v), perform the following:
(a) Perform a real lookup (k′, v′) := T1.Lookup(k). If k is found in T1 then:

i Mark the element (k′, v′) at T1 as “CombS” if k comes from CombS2,S,
or “OF” if k comes from OF2,S.
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ii Mark the element (k, v) as “accessed” in T2.
(b) Write (k′, v′) to the next slot in L (including the mark when k is found).
In the end of this loop, obliviously shuffle L.

4. Perform S′
1 := T1.Extract(). Then, perform S1 := Intersperse(S′

1‖L).
5. Linearly scan S1, and for each element (k, v), perform the following:

(a) If k is marked as “OF”, then perform a real lookup (k′, v′) := T2.Lookup(k)
while not scanning the stashes (OF2,S,CombS2,S) and proceeding as if k
is found in OF2,S.

(b) If k is marked as “CombS”, then perform a real lookup (k′, v′) := T2.
Lookup(k) while not scanning the stashes (OF2,S,CombS2,S) and proceed-
ing as if k is found in CombS2,S.

(c) If k is not marked, then perform a real lookup (k′, v′) := T2.Lookup(k)
while not scanning the stashes (OF2,S,CombS2,S) and proceeding as if k
is not found in the stashes.

6. Perform S2 := T2.Extract() (recall that “accessed” elements in T2 are not
extracted).

7. Run Z := Intersperse(S1‖S2). Run tight compaction on Z to move all dummy
elements to the end. Truncate the array to be of size 2n. Run IntersperseRD
to randomly shuffle Z.

8. Output Z.

The full proof of Theorem 4.1 appears in the full version. Here, we briefly
argue that the efficiency is as required. In Step 3, we scan the stashes of T2 and
then for each element perform a O(log λ)-time lookup, and then we shuffle L.
Since the stashes are of size O(log λ), the running time of this step is O(log2 λ) ≤
O(n). Step 5 consist of a linear scan of a list and then an O(1) lookup on each
item. Steps 4 and 6 consume O(n) time. Step 7 consumes O(n) time, as well.
Overall, the overhead is linear in n, as needed.

5 The ORAM Construction with Worst Case Complexity

In this section we present our deamortized construction.

The combined stash technique. As we saw in Sect. 3.4, our hash table supports
lookup in O(1) time in addition to a lookup in a stash of size O(log λ). To allow
faster lookups, constructions use “the combined stash” technique (see [2,7,20]).
According to this technique, all stashes of all levels are combined into one global
stash. Then, utilizing the fact that we look for the same element in all levels (or
dummy lookup once the element is found), we have to search for the element
only once in the global stash (instead of searching for it in O(log N) different
stashes), and then spend just O(1) lookup time per level.
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As we mentioned in the introduction, the fact that there is a shared memory
to all levels introduces some complications in the final construction. We therefore
present our deamortized construction in two steps:

1. In Sect. 5.1 we look at a somewhat idealized construction in which the main
building block is a hash table that takes O(1) time per lookup, while it takes
linear time for Extract and Build (on shuffled inputs). That is, “there is no
stash”. We emphasize that we do not know how to realize such an oblivious
hash table. Nevertheless, we describe this construction for aiding understand-
ing and capturing the main ideas behind our deamortized construction.

2. In the full version we proceed to our final construction, in which the hash
table is implemented as in Sect. 3.4, that is, O(1) lookup time in addition to
a scan of a stash of size O(log λ). To achieve effectively O(1) time per lookup,
we have also to use the combining stash technique as we described above.

5.1 Assuming Hash Table with O(1) Lookup Time

In this section, we assume the existence of a construction of a hash table, denoted
as HT, that achieves the following:

Assumption 5.1. Assume that for any c ∈ N there exists a construction,
denoted as HT that obliviously implements the FHT functionality (Functional-
ity 3.5) with the following properties:

1. The input array is log9+c λ ≤ n ≤ 2λ;
2. The input assumption is that the input array is randomly shuffled;
3. Build and Extract each take O(n) time.
4. Lookup takes O(1) time.

This is equivalent to Theorem 3.6 where the construction has no stash and
Lookup takes worst-case O(1) time. We proceed to the construction. We first
start with the underlying primitives and the memory organization, and proceed
to the specification of the construction.

Structure: Let � = 
11 log log λ� and L = 
log N�.
1. Each level i ∈ {� + 1, . . . , L} consists of four instances of HT as in Assump-

tion 5.1, each of capacity 2i. We denote the levels as (AHF
�+1, . . . ,A

HF
L ),

(AF
�+1, . . . ,A

F
L), (BHF

�+1, . . . ,B
HF
L ) and (BF

�+1, . . . ,B
F
L).

2. Two perfect dictionaries (see Sect. 3.3), denotes as A�,B�, each of capacity
2�+1+O(log N ·log λ). Each dictionary holds elements of the form (addr, data)
where addr ∈ [N ], data ∈ {0, 1}w.

3. Pointers (A�, . . . ,AL), (B�, . . . ,BL) where each Ai points to either
{AHF

i ,AF
i , Null} and each Bi to {BHF

i ,BF
i , Null}, where Null is a null pointer.

4. A global counter ctr, initialized as 0.
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Construction 5.2: Oblivious RAM Access(op, addr, data)

– Input: op ∈ {read,write}, addr ∈ [N ] and data ∈ {0, 1}w.
– Secret state: As above.
– Initialization: ctr is initialized to 0 as above, and all other data structures

are initialized as empty.
– The algorithm:

Lookup:
1. Initialize found = false, data∗ = ⊥.
2. Perform fetched := A�.PopKey(addr).
3. If fetched 
= ⊥: then B�.PopKey(⊥).

Otherwise, fetched := B�.PopKey(addr).
4. If fetched 
= ⊥: set found = true.
5. For each i ∈ {� + 1, . . . , L} in increasing order, do (if Ai (or Bi resp.) is

“null”, then let the result of Lookup be ⊥):
(a) If found = false:

i. Set fetched := Ai.Lookup(addr).
ii. If fetched 
= ⊥ then set found := true and data∗ := fetched.

(b) Else, perform Ai.Lookup(⊥).
(c) If found = false:

i. Set fetched := Bi.Lookup(addr).
ii. If fetched 
= ⊥ then set found := true and data∗ := fetched.

(d) Else, perform Bi.Lookup(⊥).
Write back:
6. If found = false, i.e., this is the first time addr is being accessed, set

data∗ = 0.
7. Let (k, v) := (addr, data∗) if this is a read operation; else let

(k, v) := (addr, data).
8. Insert (k, v) into A� and B� using Insert(k, ctr mod 2�+1, v).

Rebuild:
9. Increment ctr by 1.

10. For i ∈ {� + 1, . . . , L}:
(a) If ctr ≡ 2i−2 mod 2i then continue to 1-out-of-4 case:

If ctr ≡ 0 mod 2i 2i−2 mod 2i 2 · 2i−2 mod 2i 3 · 2i−2 mod 2i

Set Ai := Null AHF
i Null AF

i

Set Bi := BF
i BF

i BHF
i Null

Start RebuildHF(AHF
i ) RebuildHF(BHF

i ) RebuildF(AF
i ) RebuildF(BF

i )

By starting a task we mean to add the relevant task into the list Tasks.
The procedures RebuildHF and RebuildF are defined below.

11. In a round robin fashion, for each task t ∈ Tasks, execute t.eachEpoch
steps.

12. Return v.
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Before proceeding, we refer the reader to depictions of the rebuilding scheduling
in Figs. 2 and 3. In Step 10a, the schedule of the rebuild tasks is asymmetric
(AHF

i and AF
i always start earlier than the Bi counterparts). This leads to the

asymmetry between the setting of pointers Ai and Bi in Step 10a. Due to the
asymmetry in schedule, there is a period such that both pointers Ai and Bi are
available and storing distinct sets of elements (i.e., from ctr ≡ 2i−2 mod 2i to
ctr ≡ 2 · 2i−2 mod 2i). Hence, Step 5 has to fetch addr in both Ai and Bi as their
contents are distinct (our schedule is deterministic, but fetching addr in both
tables is necessary as we do not know which table stores addr).

The procedure RebuildF. In this procedure, we build the table AF
i from the

two tables AF
i−1 and AHF

i (similarly, BF
i from BF

i−1 and BHF
i ). This is done by

extracting the two tables, running Dedup (see Sect. 4) on the two tables, and
then building the hash table. All those operations take linear work, and therefore
we can spend O(1) time per Access to the ORAM and finish the task in linear
time. This is formalized in the eachEpoch variable.

In case the level to be rebuilt is � + 1, we extract all elements from the
dictionary of level �. This takes O(poly log log N) per element. This will also be
the eachEpoch value. That is, we spend O(poly log log N) work for the rebuilding
of level � + 1 with each Access to the ORAM.

RebuildF(CF
i ):

– Input: The task has input CF
i ∈ {AF

i ,BF
i } for some index i ∈ {� +

1, . . . , L}.
– eachEpoch: The total time allocated to this task is 2i−2.

1. If i = � + 1: Let W ∈ O(2i · poly(log log N)) bound the total work
of this procedure. Set eachEpoch = W/2i−2 = poly log log N .5

2. If i > � + 1: The total work is W ∈ O(2i). Set eachEpoch =
W/2i−2 ∈ O(1).

– The task:
1. If i = � + 1, run Ci−1.PopTime(0, 2� − 1) repeatedly for 2� times.

That is, we extract all elements with ctr mod 2�+1 ∈ [0, 2� − 1],
i.e., all elements that were added to the dictionary while building
AHF

i and BHF
i . Let X be the list of popped elements, and then

obliviously shuffle X. Run Y := CHF
i .Extract().

2. Else i > � + 1, run X := CF
i−1.Extract() and Y := CHF

i .Extract().
3. Run Z := Dedup(X,Y ).
4. Run CF

i := HT.Build(Z).

The procedure RebuildHF. In this procedure, we rebuild table AHF
i from the

contents of the table AF
i−1 (or BHF

i from BF
i−1). This is performed by adding

dummy elements and building the next level. For i > � + 1 this requires linear
work, and therefore we can spend O(1) time per Access to the ORAM and finish
the task in linear time. Likewise the case of RebuildF, the level � + 1 requires
5 Note that this implies that we run poly log log N work per each access for the first

level.
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some more work but we have to finish also in linear time, so we spend more work
with each access to the ORAM.

For the case of i = L we do not simply build AHF
L from AF

L−1. Instead, we also
have to merge the contents on AF

L and AF
L−1 into AHF

L . This is performed similarly
to RebuildF: We first extract the two levels, run deduplication, and build level L.

RebuildHF(CHF
i ):

– Input: The task gets as input a table CHF
i ∈ {AHF

i ,BHF
i } for some index

i ∈ {� + 1, . . . , L}.
– eachEpoch: The total time allocated to this task is 2i−2.

1. If i = � + 1: Let W ∈ O(2i · poly(log log N)) bound the total work
of this procedure. Set eachEpoch = W/2i−2 = poly log log N .

2. If i > � + 1: The total work is W ∈ O(2i). Set eachEpoch =
W/2i−2 ∈ O(1).

– The task:
1. If i = L:

(a) Run X := CF
L−1.Extract() and Y := CF

L.Extract().
(b) Run Z := Dedup(X,Y ).
(c) Run CHF

L := HT.Build(Z).
2. Otherwise:

(a) If i = � + 1, run Ci−1.PopTime(2�, 2�+1 − 1) repeatedly for
2� times. That is, we extract all elements with ctr mod 2�+1 ∈
[2�, 2�+1−1], i.e., all elements that were added to the dictionary
while building AF

i and BF
i . Let X be the list of popped elements,

and then obliviously shuffle X.
(b) Else i > � + 1, run X := CF

i−1.Extract().
(c) Initialize an array Y of 2i−1 dummies.
(d) Intersperse X and Y into Z and run CHF

i .Build(Z).

Analysis. We next prove the following theorem:

Theorem 5.3. Let N be the capacity of the ORAM and let λ ∈ N be a security
parameter. Assuming the existence of HT as in Assumption 5.1, Construction 5.2
obliviously implements the ORAM functionality, and each Access takes O(log N+
log4 log λ) in the worst case.

Proof. We start with the efficiency analysis. Each access requires two lookups
(PopKey) at the dictionaries A�,B� (Steps 2 and 3) and writing back to the two
dictionaries (Step 8). Each dictionary contains at most 2� ≤ log12 λ, and each
access costs O(log4 log λ) time (see Sect. 3.3).

Then, we perform one access to each one of the tables A�+1, . . . ,AL, B�+1,
. . . ,BL, each takes O(1) time by Assumption 5.1, and overall it takes O(log N)
times. So overall, the lookup and write back take O(log N + log4 log λ) work.

In the rebuild process, by construction we have exactly one task being rebuilt
in each level, and start the next task only when the previous one finishes. It is
easy to see that each process takes a linear time in the size of the level, and
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therefore we spend O(1) per task with each Access to the ORAM, except for level
� + 1. The procedures for level � + 1 require 2� accesses to the dictionaries, each
translates to O(log4 log λ) work (total O(2� · log4 log λ), and oblivious shuffle of a
list of size 2� which can also be implemented in total O(2� · log4 log λ). Therefore,
we spend O(log N + log4 log λ) work for the rebuilding of all levels, combined.

Security. Since the ORAM functionality is deterministic, it is enough to sepa-
rately consider correctness and obliviousness. We show here obliviousness, and
then discuss correctness.

We show security in the hybrid model where we invoke F2KeyDict, FHT, FDedup,
FShuffle instead of oblivious dictionary, oblivious hash table, oblivious dedupli-
cation and intersperse, respectively. Replacing all ideal functionalities with the
corresponding construction is straightforward using the composition theorem.

It is easy to simulate Construction 5.2: We access the two dictionaries, and
then access the two hash tables in each level and finally write back to the dictio-
naries. The rebuild process and which hash table we use has a public schedule
known to the adversary. Likewise which tasks are currently running.

We now show how to simulate the two procedures: RebuildF and RebuildHF.
For the case of i > � + 1, in RebuildF: We just have two ideal calls to Extract.
Since Extract returns an oblivious permutation of the element in the hash table,
this implies that the input assumption of Dedup is preserved. We then obtain an
array of size 2i which is randomly shuffled and therefore the input assumption of
FHT is preserved. Simulation is just these three ideal calls. Simulating RebuildHF
is similar for the case of i = L, and for the case of i ∈ {� + 2, . . . , L − 1} it is
also just ideal calls to FHT.Extract, FShuffle (to intersperse the two arrays) and
FHT.Build. As for i = � + 1, in both procedures we have ideal calls to F2KeyDict

and we shuffle the output so that input assumptions are preserved.

Correctness. We also prove the correctness in the hybrid model, and our goal
is to show that every Access to an address addr reads the data that was
most recently written to addr, i.e., satisfying the ORAM functionalities: Each
Access(read, addr,⊥) for a given addr will have the answer data, according to the
last operation Access(write, addr, data) that was given to the ORAM (with the
same addr). We begin with describing two invariants in Definitions 5.4 and 5.5
and show that they hold.

Definition 5.4 (Vertical invariant). Fixing any addr ∈ [N ], we say that
(addr, data) is the freshest version at some given time ctr if the pair (addr, data)
is the most recent pair having addr read or written by Access operation to the
ORAM. Then, for every addr ∈ [N ], it holds that

– every level in the hierarchy HA := {Ai}i∈[�,L] consists of at most one version
of addr, and

– Among all levels in {AHF
i ,AF

i }i∈[�,L] that contain addr (in which some might
be rebuilt and unavailable), the freshest version of addr must reside in the
smallest level.
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This holds symmetrically for hierarchy HB := {Bi}i∈[�,L].

Definition 5.5 (Horizontal invariant). For every addr ∈ [N ], it holds that the
freshest version of addr must fall in one of the following cases:

1. It is in the same level of the two hierarchies, i.e., it is in both Ai and Bi for
some i ∈ [�, L].

2. It is in RebuildF(AF
i ) and BHF

i for some i ∈ [� + 1, L], and Bi = BHF
i .

3. It is in AF
i and RebuildF(BF

i ) for some i ∈ [� + 1, L], and Ai = AF
i .

4. It is in Bi and either in RebuildHF(AHF
i+1) or in RebuildF(AF

i+1) for some i ∈
[�, L − 1].

5. It is in Ai+1 and either in RebuildHF(BHF
i+1) or in RebuildF(BF

i+1) for some
i ∈ [�, L − 1].

The invariants imply correctness. Using the above vertical and horizontal invari-
ants (whose proofs are below), it suffices to syntactically check the correctness:
we list all possible locations of the newest version below and conclude the cor-
rectness of Access.

– In both A� and B�: the element from A� is outputted (following Step 2).
– In B� while A�+1 is rebuilding (A�+1 takes elements from A� but A�+1 is still

unavailable): the element from B� is outputted (following Step 3).
– In A�+1 while B�+1 is rebuilding (B�+1 takes elements from B� but B�+1 is

still unavailable): the element from A�+1 is outputted (Step 5(a)i).
– In both Ai and Bi, i ∈ [�+1, L]: the element from Ai is outputted (Step 5(a)i).
– In Bi while Ai+1 is rebuilding down, for i ∈ [�+1, L− 1]: there are two cases,

either Ai−1 has finished its rebuild down to Ai, or Ai−1 has not yet. In both
cases, the element from Bi is outputted by Step 5(c)i.

– In Ai+1 while Bi is rebuilding down, i ∈ [� + 1, L − 1]: the element from Ai+1

is outputted (Step 5(a)i).

Notice that for two addresses addr, addr′, it may happen that addr is in Case 4
for some i and that addr′ is in Case 5 for i′ = i − 1. This means addr is in Bi

while addr′ is in Ai, so that both Ai and Bi are available for lookup, but they
have disjoint contents addr and addr′. This special case explains the reason we
perform lookup on both Ai and Bi in Steps 5(a)i and 5(c)i.

In the full version, we prove two lemmas showing that both the vertical (Defi-
nition 5.4) and the horizontal invariant (Definition 5.5) hold in the construction.
This concludes the proof.
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Moreover, in the full version we also use the combined stash technique and
show how to deamortize it as well. We show:

Theorem 5.6. Let N be the capacity of the ORAM and let λ ∈ N be a secu-
rity parameter. Assuming the existence of one-way functions, the construction
described above obliviously implements the ORAM functionality. The construc-
tion has O(log N + log4 log λ) worst case overhead.
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A Figures

Fig. 1. The rebuild process of [3]: The first three levels are “full” and the forth is
the first level which is “half full”. Each level is pushed down, while levels 3 and 4 are
merged. After this operation, the first level is empty, two levels are “half full” and the
last level is full.
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Fig. 2. The Rebuild process (for levels i and i+1), demonstrating which table is being
rebuilt at each stage and which tables we lookup in with each access. The timeline goes
left-to-right, each colored box is rebuilding the enclosed table, and the left/right side
of the box denotes the starting/ending time of the rebuild. Notice that the rebuild at
level i+1 changes the status in both levels i and i+1, e.g., the starting of BF

i+1 (on the
bottom-right) switches both Bi and Bi+1 to Null, and its ending assigns Bi+1 := BF

i+1.
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(a) At time (0) (i.e., ctr ≡ 0 mod 2i), we start rebuilding AHF
i which pulls elements

from level i − 1 (colored orange next).

(b) At time (1) (i.e., ctr ≡ 2i−2 mod 2i), the table AHF
i is ready, and we start rebuilding

BHF
i .

(c) At time (2), BHF
i is ready, and we start rebuilding AF

i – merging elements from AHF
i

and pulling new elements from level i − 1 (colored red next).

(d) At time (3) AF
i is ready, start rebuilding BF

i .

(e) At time (4) BF
i is ready, and we again rebuild AHF

i , pulling new elements (colored
green next). AHF

i+1 start rebuilding, pulling the elements from AF
i .

(f) At time (5), AHF
i is ready with a new content (colored green), while BF

i is still active,
and BHF

i starts to rebuild. AF
i+1 is still rebuilding, as it is bigger.

(g) At time (6), AHF
i+1 is ready with the old content, and BHF

i is ready with the new
content. We start rebuilding AF

i to fetch new content from Ai−1.

(h) At time (7), AF
i and AF

i+1 are both full, BF
i and BF

i+1 are rebuilding.

Fig. 3. The rebuilding process. AHF
i and AF

i are both shown in the same table, likewise
BHF

i and BF
i . (Color figure online)
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Abstract. Imagine one or more non-colluding servers each holding a
large public database, e.g., the repository of DNS entries. Clients would
like to access entries in this database without disclosing their queries to
the servers. Classical private information retrieval (PIR) schemes achieve
polylogarithmic bandwidth per query, but require the server to per-
form linear computation per query, which is a significant barrier towards
deployment.

Several recent works showed, however, that by introducing a one-
time, per-client, off-line preprocessing phase, an unbounded number of
client queries can be subsequently served with sublinear online compu-
tation time per query (and the cost of the preprocessing can be amortized
over the unboundedly many queries). Existing preprocessing PIR schemes
(supporting unbounded queries), unfortunately, make undesirable trade-
offs to achieve sublinear online computation: they are either significantly
non-optimal in online time or bandwidth, or require the servers to store
a linear amount of state per client or even per query, or require polyloga-
rithmically many non-colluding servers.

We propose a novel 2-server preprocessing PIR scheme that achieves
˜O(

√
n) online computation per query and ˜O(

√
n) client storage, while pre-

serving the polylogarithmic online bandwidth of classical PIR schemes.
Both the online bandwidth and computation are optimal up to a poly-
logarithmic factor. In our construction, each server stores only the origi-
nal database and nothing extra, and each online query is served within a
single round trip. Our construction relies on the standard LWE assump-
tion. As an important stepping stone, we propose new, more generalized
definitions for a cryptographic object called a Privately Puncturable Pseu-
dorandom Set, and give novel constructions that depart significantly from
prior approaches.

Please read the online full version [47] for complete details and proofs.
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1 Introduction

Imagine that a service provider has a large public database, DB, and is serving
clients who request records from DB. For example, in a search-engine scenario
each entry in DB may be the search result for a specific keyword; in the DNS
scenario, each entry contains the records for a specific domain name. Without loss
of generality, we may assume that the database DB ∈ {0, 1}n is an array of bits
indexed by {0, 1, . . . , n− 1}, and a client’s query is an index i ∈ {0, 1, . . . , n− 1}
into DB1. Although the database itself is public, the clients wish to hide their
queries from the server. This problem has been studied in a beautiful line of work
called Private Information Retrieval (PIR), first formulated by Chor, Goldreich,
Kushilevitz, and Sudan [18,19]. Since then, a rich line of work [4,9,10,13,16,17,
21,23,24,26,28,32,34,35,37,38,40,42–44] has improved the original construction
of Chor et al. [18]. This paper focuses on 2-server PIR, i.e., there are two non-
colluding servers, and the goal is to prevent each individual server from learning
anything about the clients’ actual queries.

Single- or multi-server PIR schemes with polylogarithmic bandwidth (bits
sent per query) and linear server work per query are well known [9,10,13,16,17,
24,28,32,34,37,38,42–44]. While these PIR schemes are elegant in construction
and achieve non-trivial asymptotic bounds, the prohibitive server running time
per query is a significant barrier towards practical deployment. For example,
in our motivating applications, the database may have billions or trillions of
entries. Unfortunately, in the original formulation phrased by Chor et al. [18],
linear server work is required to achieve privacy [6]—intuitively, if there is a loca-
tion that the server does not need to read, the query is definitely not looking
for that location. To avoid this drawback, a promising direction has been sug-
gested by a few recent works [6,20], namely, PIR with preprocessing. In PIR with
preprocessing, clients and servers are allowed to perform one-time offline pre-
processing. After preprocessing, the PIR scheme should support an unbounded
number of queries from each client. The cost of the offline preprocessing can
thus be amortized “away” over sufficiently many queries, and we can hope for
sublinear amortized (i.e., online) running time per query.

Preprocessing PIR was considered in several prior works [6,38,44]. Beimel,
Ishai, and Malkin [6] were the first to suggest using preprocessing to reduce the
server’s online computation. They constructed a statistically secure 2-server PIR
scheme with nε online bandwidth and running time for some constant ε ∈ (0, 1)
by having the servers preprocess the n-bit DB into an encoded version of poly(n)
bits. The line of work on preprocessing PIRs culminated in the elegant work by
Corrigan-Gibbs and Kogan [20], who showed that, assuming one-way functions,
there is a 2-server preprocessing PIR scheme with O(

√
n) online bandwidth

and running time (ignoring the dependence on the security parameter). In their
scheme the servers store only the original database DB and nothing extra, but
each client needs to store a “hint” of size O(

√
n). Corrigan-Gibbs and Kogan [20]

also proved that the O(
√

n) online computation is optimal, assuming that the

1 If the query is a keyword or domain name, it can be hashed to an index, and if each
entry has multiple bits, we can treat it as retrieving multiple indices.
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client downloads only O(
√

n) amount of information from the server during pre-
processing and that the servers store only the unencoded database (and the proof
works by reducing PIR to Yao’s Box problem [53]). The main drawback with
their scheme is the significantly non-optimal O(

√
n) online bandwidth which is

also much worse than classical PIR without preprocessing.
Given the state of affairs for preprocessing PIR, we ask the following question:

Can we construct a preprocessing PIR scheme that is simultaneously optimal
in online bandwidth and online time?

Before we present our results and contributions, we point out a couple of
important desiderata and clarify the problem statement:

– Unbounded query setting. First, we want the PIR scheme to support an
unbounded number of queries after a one-time processing. This is necessary in
the vast majority of conceivable applications (e.g., oblivious DNS [1,49], obliv-
ious Safe Browsing [2], the four excellent use cases in the Splinter work [52],
and other applications [3,4]). Unsurprisingly, state-of-the-art PIR implemen-
tations invariably support unbounded number of queries too [3,4,52]. With-
out the unbounded requirement, there is indeed a scheme with O(

√
n) online

computation and ˜O(1) online bandwidth shown in the same work of Corrigan-
Gibbs and Kogan [20]—unfortunately, this scheme supports only a single
query after the preprocessing, and thus the linear preprocessing cost should
be charged to each query, and cannot be amortized over multiple queries.

– No per-client server state. Second, the server should not have to store per-client
state. There are alternative solutions if we let the server store per-client state
(and often O(n) state per client). For example, one strawman candidate is to
use an Oblivious RAM (ORAM) scheme [29,31,48]. During the offline phase,
the client downloads the database from the server and uses a secret key to
compile the database into an ORAM which is then stored on the server. This
would allow queries to be supported in polylogarithmic running time and band-
width per query, and constant roundtrips (provided the server can perform
computation) [22,25,27,39]. Unfortunately, Ω(n) per-client state on the server
would clearly be a barrier towards practicality in some motivating applica-
tions. Similarly, the recent doubly-efficient (1-server) PIR constructions in the
designated-client setting [11,15] also suffers from the same drawback, although
they remove the need for clients to store persistent state. A doubly-efficient PIR
construction in the public-client setting promises to remove the O(n) per-client
state at the server. Unfortunately, the only known such construction relies on
virtual blackbox (VBB) obfuscation which is known to be impossible [5]. We
compare with additional related works in Sect. 7.

Besides the above, we also want the client-side storage to be small—if the
client could store the entire database, then there is no need to talk to the server.

Our results and contributions. We answer the above question affirmatively,
assuming Learning With Errors (LWE) [45]. Our scheme employs two servers, a
“left” server and a “right” server and, at a high level, works as follows.
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– During the offline preprocessing phase, each client sends a single message of
size roughly ˜O(

√
n) to the left server2. The left server responds with a hint

of ˜O(
√

n) bits, which is stored by the client. Then online queries begin.
– For each online query, the client sends a single poly-logarithmically sized

message to each server in parallel. In particular, the message sent to the right
server is used for answering the query. Using its locally stored hint and the
right server’s response, the client can reconstruct the correct answer to the
query except with negligible probability. The message sent to the left server
is used to partially “refresh” the client’s hint. The client uses the answer from
the left server and the outcome of the present query to update one entry in
the ˜O(

√
n)-sized hint it stores.

More formally, we prove the following theorem:

Theorem 1 (2-server preprocessing PIR). Assuming the Learning With
Errors (LWE) assumption, there exists a 2-server preprocessing PIR scheme
that satisfies the following performance bounds:

– the offline server running time is ˜O(n); the offline client running time and
bandwidth is ˜O(

√
n).

– the online server and client time per query is ˜O(
√

n); the online bandwidth
per query is ˜O(1).

– each online query can be accomplished in a single roundtrip, that is, the client
sends a single message to each server in parallel, and reconstructs the answer
from the two servers’ responses respectively; and

– each server needs to store only the original database DB and no extra infor-
mation; each client needs to store ˜O(

√
n) bits of information.

Due to the lower bound of Corrigan-Gibbs and Kogan [20], our scheme’s total
online time is optimal up to poly-logarithmic factors, assuming that the client
downloads only approximately

√
n amount of information from the server during

preprocessing. In comparison, the prior state-of-the-art scheme [20] can achieve
optimal online computation, but their

√
n online bandwidth is significantly non-

optimal. We improve their bandwidth consumption by a roughly
√

n factor, and
thus achieve near optimality in both online computation and bandwidth. Table 1
compares our result with the most relevant prior work.

Theorem 1 does not give the exact constant c in the hidden logc n factor; how-
ever, in the online full version [47], we give a more careful analysis of the concrete
constants. Specifically, we show that with some fine-tuning, we can get the fol-
lowing more precise asymptotical performance where α(λ) denotes an arbitrarily
small super-constant function: the offline server time is O(n log2 n log λ) · α(λ),
the offline client time is O(

√
n log2 n log λ) · α(λ), and the offline client band-

width is O(
√

n log2 n log λ) · α(λ). Moreover, the online client time per query is

2 The ˜O(·) notation hides polylogarithmic factors and dependence on the security
parameter.
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Table 1. Comparison with prior schemes. Includes only schemes where the servers
need not store per-client state, has sublinear online time, and supports an unbounded
number of queries (possibly after a one-time preprocessing). Sections 1 and 7 review
additional related work in the broader design space, when we are willing to relax
these desiderata. “C-Time”, “S-Time”, and “BW” denote client time, server time, and
bandwidth, respectively. “OLDC” means oblivious locally decodable codes, and “VBB
Obf.” means virtual-blackbox obfuscation. ε ∈ (0, 1) is a constant.
�: Beimel et al. [6] requires the servers to store a large poly(n) amount of state.

Offline Online

Scheme #server Assumpt. C-Time S-Time BW C-Time S-Time BW

[6]� 2 None 0 poly(n) 0 nε nε nε

[20] 2 OWF O(
√

n) O(n) O(
√

n) O(
√

n) O(
√

n) O(
√

n)

2 OWF O(
√

n) O(n) O(
√

n) O(n5/6) O(
√

n) ˜O(1)

[11] 1 OLDC, VBB Obf. 0 0 0 nε nε nε

Our PIR 2 LWE ˜O(
√

n) ˜O(n) ˜O(
√

n) ˜O(
√

n) ˜O(
√

n) ˜O(1)

LB [20] - - - - n/β - β -

O(
√

n log2 n log λ) · α(λ), the online server runtime is O(
√

n log n log λ) · α(λ),
and the online bandwidth per query is O(log n · log λ) · α(λ).

Furthermore, in the online full version [47], we also discuss how to tune the
parameters to get near optimality of the online bandwidth and computation, for
every choice of offline bandwidth, in light of the known lower bound [20].

Remark 1. Like in earlier works [20], for simplicity, in our asymptotical perfor-
mance bounds, we hide a security parameter χ(λ) factor that is related to the
strength of the LWE assumption. If we assume standard polynomial security,
χ(λ) is polynomially bounded in λ; if we assume subexponential security, χ(λ)
is poly-logarithmic in λ.

Technical highlight. Our 2-server preprocessing PIR scheme is inspired by
the very recent work of Corrigan-Gibbs and Kogan [20]. At a high level, their
work shows how to construct a 2-server preprocessing PIR scheme using a cryp-
tographic object which they call a Puncturable Pseudorandom Set (PRSet). A
PRSet scheme provides an algorithm for generating a secret key sk that can
be used to generate a pseudorandom subset Set(sk) ⊆ {0, 1, . . . , n − 1}; sk
thus serves as a succinct representation of the set Set(sk). Further, there is
an efficient puncturing algorithm: suppose some element x ∈ Set(sk), then
Puncture(sk, x) outputs a punctured key skx that effectively removes x from
the set, i.e., Set(skx) = Set(sk)\{x}.

Unfortunately the Corrigan-Gibbs and Kogan [20] PRSet scheme is not effi-
cient in all dimensions, namely, set enumeration time, membership test time,
and punctured key size. As a tradeoff, they opt for efficient set enumeration
and efficient membership test, allowing their PIR scheme to achieve roughly
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√
n online running time. Their PRSet scheme, however, adopts a trivial punc-

turing algorithm. The punctured key is simply the entire punctured set itself
minus the element x to be removed, which causes their online bandwidth to be
roughly

√
n, which is asymptotically worse than classical PIR schemes without

preprocessing [10,13,17,24,26,28,37,38,42].
To achieve our stated result, an important stepping stone is to construct

a new Privately Puncturable Pseudorandom Set (PRSet) that is efficient in all
dimensions. Unfortunately, as explained in Sect. 2, these requirements seem to
be inherently conflicting, and we were not able to directly reconcile them—likely
Corrigan-Gibbs and Kogan [20] encountered the same barriers.

Our key insight is to observe that the Corrigan-Gibbs and Kogan formulation
of a PRSet scheme seems too restrictive. We generalize their PRSet abstraction
in the following ways.

1. Emulating a customized sampling distribution. Corrigan-Gibbs and Kogan
consider only PRSet schemes that emulate simple distributions, such as sam-
pling a random

√
n-sized subset among n elements, or sampling each element

at random with probability 1/
√

n. By contrast, we generalize the PRSet def-
inition to allow it to emulate an arbitrary distribution of choice. Later we
discuss the challenges of choosing this distribution.

2. Relaxed correctness definition. Corrigan-Gibbs and Kogan’s definition insists
on almost-always correctness. We observe that a weaker notion, which we call
“occasional correctness,” is sufficient for obtaining a 2-server preprocessing
PIR (since our PIR construction relies on parallel repetition to amplify the
correctness to 1 − negl(λ)) where λ denotes the security parameter globally.
Specifically, we want the puncturing algorithm to remove the point x being
punctured, and only the point x—but we only need this to happen with
considerable but not overwhelming probability.

Therefore, one technical contribution we make is to devise a more general-
ized/relaxed abstraction of a Privately Puncturable Pseudorandom Set (PRSet)
scheme that is suitable and sufficient for constructing an efficient 2-server prepro-
cessing PIR. To do so, we need to identify an appropriate sampling distribution
that the PRSet should emulate. In our carefully chosen distribution, each ele-
ment from {0, 1, . . . , n−1} is included in the set with roughly 1/(

√
n ·poly log n)

probability, but the sampling is not completely independent among the elements.
For example, if some element x is included in the set, it might make some other
element y more likely to be included. As we explain in more detail in Sects. 2
and 4.4, an independent distribution seems to facilitate an efficient membership
test, but preclude efficient set enumeration; on the other hand, having more
dependence and the right type of dependence can enable efficient set enumera-
tion, but may destroy the efficiency of the membership test. We seek a middle
ground by choosing a distribution that has a limited amount of dependence, and
the right type of dependence.
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We next show how to construct a PRSet scheme that emulates our carefully
chosen distribution, and prove the construction secure under our new defini-
tions. Our construction relies on the existence of Privately Puncturable PRFs
which can be constructed assuming LWE [7,9,12,14]. Our PRSet construction
is remotely inspired by the line of work on designing block ciphers and format
preserving encryption from pseudorandom functions [41,46,50], but our problem
definition and solutions are novel and fundamentally different from prior works.

Finally, we use our PRSet scheme to construct a 2-server preprocessing
PIR scheme and prove the PIR scheme correct and secure. Our construction
is inspired by Corrigan-Gibbs and Kogan [20] but differs in several important
details. The proofs are rather technical and involved. Perhaps somewhat sur-
prisingly, proving correctness turns out to be the most technically challenging
part of our proof, although proving privacy is also non-trivial. Our PIR scheme
runs k parallel instances of a single-copy PIR scheme. We need to prove occa-
sional correctness of each single-copy scheme, and use majority voting among
all instances to amplify correctness. Unfortunately, we cannot easily argue occa-
sional correctness of the single-copy PIR from the occasional correctness of the
PRSet scheme. Part of challenge arises from the fact that conditioning on events
that have taken place skews the distribution of the pseudorandom sets, and we
need to make an occasional correctness argument even for this skewed distribu-
tion (which does not even have a clean and succinct description). At a very high
level, to make the argument work, we make an involved stochastic domination
argument that effectively shows that conditioning on the events that have taken
place will not worsen the probability of certain bad events that could lead to
incorrectness. We refer the reader to Sect. 4.4 for more detailed discussions on
the technicalities in the proof.

Non-goals and open questions. Previous preprocessing PIR schemes in the
unbounded query setting are significantly non-optimal in either online bandwidth
or computation. Our work is primarily a theoretical exploration aimed at bridging
the important theoretical gap in our understanding. We do not claim immediate
practicality of our scheme. We believe, however, that achieving asymptotical
near optimality represents an important step forward towards eventually having
a practical PIR scheme. Specifically, we suggest the following possible future
directions towards better concrete performance: 1) the parameters in our current
theorems are not tight, therefore concrete security parameterization is a potential
improvement; and 2) designing a concretely efficient Privately Puncturable PRF
would be critical to concrete performance. For example, instantiations based on
other assumptions might be more efficient than the current LWE-based schemes.

Besides improving concrete performance, there are also interesting theoretical
open questions. One seemingly challenging question is whether we can asymp-
totically reduce the client online time—the lower bound by Corrigan-Gibbs and
Kogan [20] shows that the server computation (or the combined server-client
computation) must be at least

√
n per query, assuming the client downloads

√
n

information from the server during pre-processing. The known lower bound does
not rule out schemes with asymptotically smaller client online time.
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2 Strawman Attempts

To understand our ideas, it helps to first illustrate a strawman scheme and see
why it fails—the toy scheme below is a variant (and slight simplification) of the
elegant 2-server preprocessing PIR scheme by Corrigan-Gibbs and Kogan [20].
This toy scheme is meant for illustrating the “core” of the scheme, and is not
concerned about compressing storage or bandwidth.

An Inefficient Toy Scheme: Single-Copy Version
Offline preprocessing. (DBk denotes the k-th bit of the database)

– Client generates
√

n sets S1, S2, . . . , S√
n. Each Sj ⊆ {0, 1, . . . , n − 1}

where j ∈ [
√

n] is sampled by including each element i ∈ {0, 1, . . . , n−1}
with independent probabilitya 1/

√
n.

– Client sends the resulting sets S1, . . . , S√
n to Left. For each set j ∈ [

√
n],

Left responds with the parity bit pj := ⊕k∈Sj
DBk of indices in the set.

– Client stores the hint T := {Tj := (Sj , pj)}j∈[
√

n].

Online query for index x ∈ {0, 1, . . . , n − 1}.
– Query: (Client ⇔ Right)

1. Find an entry Tj := (Sj , pj) in its hint table T such that x ∈ Sj . Let
S∗ := Sj if found, else let S∗ be a fresh random set containing x.

2. Send the set S := Resample(S∗, x) to Right, where Resample(S∗, x)
outputs a set almost identical to S∗, except that the coin used to
determine x’s membership is re-tossed.

3. Upon obtaining a response p := ⊕k∈SDBk from Right, output the
candidate answer β′ := pj ⊕ p or β′ := 0 if no such Tj was found
earlier.

4. Client obtains the true answer β := DBx—the full scheme will repeat
this single-copy scheme k times, and β is computed as a majority vote
among the k candidate answers, which is guaranteed to be correct
except with negligible probability.

– Refresh (Client ⇔ Left)
1. Client samples a random set S containing x, and then lets S′ :=

Resample(S, x), and sends S′ to Left (notice that this is equivalent
to just sampling a fresh set, but we write it this way for later conve-
nience).

2. Left responds with p := ⊕k∈S′DBk. If a table entry Tj containing x
was found and consumed earlier, Client replaces Tj with (S, p ⊕ β).

a The work of Corrigan-Gibbs and Kogan [20] samples a set of fixed size√
n, whereas in our particular variant, the size of each set is a random

variable whose expectation is
√

n.

In this toy scheme, during pre-processing, the client samples
√

n sets each
containing

√
n randomly chosen bits, and downloads the parity of each set from
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the left server. During an online query, suppose the client wants the index i,
it finds a set S∗ containing i. It then resamples the decision whether i should
belong to the set, and the resampled set S removes i with high probability. It
sends the resampled set S to the right server, which returns its parity. Now,
if such a set S∗ was found, XORing the parity of the set S∗ and the set S
gives client the correct answer with high probability. To support an unbounded
number of queries, the client performs a refresh procedure with the left server
to replenish the set that was just consumed.

Correctness amplification through parallel repetition. The above toy
scheme guarantees correctness for the query x, provided that 1) an entry Tj :=
(Sj , pj) containing x is found, and 2) Resample(Sj , x) happens to remove x from
the set Sj . It is not hard to prove that correctness is guaranteed with probability
at least 3/5 for sufficiently large n. To amplify correctness, we can run k copies
of the scheme, and instead of calling the true-answer oracle to obtain the answer
β, we set β to be the majority vote among the k candidate answers, which is
correct with 1 − 2−Θ(k) probability due to the standard Chernoff bound. If we
set k = ω(log λ), then the failure probability would be negligibly small in λ.

Privacy. In the inefficient toy scheme, left-server privacy is easy to see: basically
the left server Left sees

√
n random sets during the offline phase. During each

online query, it sees a random set as well.
Arguing right-server privacy is a little more subtle. The right server Right

is not involved during the offline phase. We want to show that for each online
query, Right sees a fresh random set. Recall that during a query for x, the client
finds an entry Tj := (Sj , pj) such that Sj � x. It lets S∗ := Sj if such an entry
Tj is found, else S∗ is a fresh random set containing x. The client now sends
Resample(S∗, x) to Right and if such a Tj was found and consumed, it replaces
Tj with a fresh set containing x. We can prove right-server privacy by induction:
suppose that conditioned on Right’s view so far, the client’s hint table T contains√

n independent random sets (note that this is true at the beginning of the online
phase). Then, we can argue that during the next query for x, Resample(S∗, x)
is distributed as a fresh random set conditioned on Right’s view so far; and
moreover, at the end of the query, the client’s hint table T is distributed as

√
n

independent random sets conditioned on Right’s view so far.

Performance bounds. In the toy scheme, the bandwidth and server runtime
are O(

√
n) for each online query. If the client adopts an efficient data structure

for testing set membership, the client’s runtime can also be upper bounded
by O(

√
n) per query, but its storage is O(n). We want to reduce the online

bandwidth to polylogarithmic and reduce the client-side storage to sublinear,
while preserving the ˜O(

√
n) online time for both the server and the client.

Strawman ideas for improving efficiency. A failed attempt to improve effi-
ciency is the following. Let us generate each set using a pseudorandom function
(PRF) rather than using true randomness. Specifically, we may assume that
the PRF(sk, ·) outputs a number in [n], and an element i ∈ {0, 1, . . . , n − 1} is
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considered in the set iff PRF(sk, i) ∈ [1,
√

n]. Moreover, sampling a pseudoran-
dom set would boil down to sampling a fresh PRF secret key.

In this way, a pseudorandom set can be succinctly represented by a PRF
secret key, and we can improve the client’s storage to

√
n ·χ(λ) where χ(λ) is an

upper bound on the length of the PRF key. During the online phase, the client
needs to resample the set at the point x where x ∈ {0, 1, . . . , n−1} is the current
query. If we could represent this locally resampled set succinctly too, then we
can reduce the online bandwidth.

To achieve this, our idea is to adopt a Privately Puncturable PRF [7,9,14]. A
Puncturable PRF is a PRF with the following additional functionality: given a
point x and the secret key sk, one can call the skx ← Puncture(sk, x) function
to obtain a secret key skx that allows one to evaluate the PRF correctly at any
point other than x. In an ordinary Puncturable PRF construction [30], using
the punctured key skx to evaluate over the point x could result in an invalid
symbol ⊥. In contrast, a Privately Puncturable PRF allows one to remove a
point x and obtain a punctured key skx; however, the punctured key skx does
not disclose the point x. For skx to hide x, it must be that using skx to evaluate
over the point x yields a non-⊥ outcome r. Not only so, imprecisely speaking, to
a computationally bounded adversary, calling Puncture(sk, x) should behave
just like resampling the PRF’s outcome at the point x.

If we use a Privately Puncturable PRF to construct a pseudorandom set like
above, during each online query, we obtain a construct which we call a Privately
Puncturable Pseudorandom Set. Generating a pseudorandom set is achieved by
sampling a PRF key sk. Further, given a set represented by sk that contains
a specific element x, one can perform a puncturing operation at x to derive a
punctured secret key skx—this puncturing procedure acts as if we resampled the
coins that determine whether x is in the set or not.

With such a Privately Puncturable Pseudorandom set, during each online
query, the client can find a secret key sk from its table T that contains the
queried element x ∈ {0, 1, . . . , n − 1} (or sample a random sk containing x if
not found), puncture the element x from the set sk, and send the punctured key
skx to the right server. Similarly, to perform a refresh operation with the left
server, the client simply samples a key sk′ such that the associated set contains
x, puncture x from sk′, and send the resulting punctured key sk′

x to the left
server. This approach allows us to compress the online bandwidth to O(χ(λ))
bits per copy (and recall that there are k = ω(log λ) parallel copies), where χ(λ)
denotes the length of a punctured key.

Unfortunately, this idea completely fails because to generate the set from a
secret key sk, the server would have to do a linear amount of work! This defeats
our original goal of achieving sublinear online runtime.

Corrigan-Gibbs and Kogan’s variant and why it fails too. At this point,
we also briefly overview the approach of Corrigan-Gibbs and Kogan [20]. They
adopt a different PRSet construction that indeed allows efficient set enumera-
tion in roughly

√
n (rather than linear in n) time. Unfortunately, their scheme

does not offer a puncturing procedure that achieves any non-trivial efficiency;
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thus in each online query, the client has to send an entire (
√

n − 1)-sized set
(rather than a punctured secret key) to each server. More specifically, Corrigan-
Gibbs and Kogan [20] use a Pseudorandom Permutation (PRP) on the domain
{0, 1, . . . , n−1} to sample a pseudorandom set. A secret key sk of a PRP scheme
defines a corresponding set {PRP(sk, i)}i∈{0,1,...,

√
n−1}. Thus, the definition of

the set itself gives an efficient set enumeration algorithm. To determine whether
an element x ∈ {0, 1, . . . , n − 1} is in the set generated by sk, simply check
whether PRP−1(sk, x) ∈ {0, 1, . . . ,

√
n−1}. Their approach samples the set from

a different distribution than our earlier strawman—in particular, the sampled set
is of fixed size

√
n, and therefore x being in the set is not independent of whether

y 
= x is in the set (even when the PRP is replaced with a completely random
permutation). For this reason, during the online phase, they adopt a slightly
different approach than our earlier strawman: after finding a set either from the
table T or freshly generated that contains the queried element x, they remove x
from the set with high probability, but with a small probability, they remove a
random element other than x. In this way, the right server sees a random set of
size exactly

√
n − 1, and the same applies to the left server.

The main problem with their approach is that it is not amenable to punc-
turing (with non-trivial efficiency). In fact, Boneh, Kim, and Wu proved the
non-existence of Puncturable PRPs [8]. In our case, the domain size n is polyno-
mially bounded, and even if we punctured a point x from the PRP, the adversary
can easily recover PRP(sk, x) by evaluating PRP(sk, ·) at all other points.

To get around the non-existence of puncturable PRP barrier, one might be
tempted to compute the pseudorandom set as {PRF(sk, i)}i∈{0,1,...,

√
n−1} instead,

i.e., essentially the “dual” of our earlier PRF-based strawman scheme. While this
approach allows for efficient set enumeration, it precludes efficient membership
testing which, in our context, would make the client’s online runtime linear.

3 Generalized Privately Puncturable Pseudorandom Set

To summarize the above discussion, we would like to construct a Privately Punc-
turable Pseudorandom Set (PRSet) scheme with some non-trivial security and
efficiency requirements which we shall state shortly after defining the syntax:

– (sk,msk) ← Gen(1λ, n): given the security parameter 1λ and the universe
size n, samples a secret key sk and a corresponding master secret key3 msk;

– S ← Set(sk): a deterministic algorithm that outputs a set S given the secret
key sk;

– b ← Member(sk, x): given a secret key sk and an element x ∈ {0, 1, . . . , n −
1}, output a bit indicating whether x ∈ Set(sk); and

– skx ← Puncture(msk, x): given a master secret key msk and an element
x ∈ {0, 1, . . . , n − 1}, outputs a secret key skx punctured at x.

3 The secret key sk is needed to enumerate the set, whereas the msk contains extra
secret information needed for computing a punctured key. Jumping ahead, in our
PIR scheme, the secret key sk can be sent to the server whereas the master secret
key msk is kept secret by the client.
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We note that a PRSet scheme is parametrized by a family of distributions Dn.
The pseudorandom set generated by the PRSet scheme should emulate the dis-
tribution Dn—we will define this more formally shortly.

Efficiency requirements. Our goal is to use the PRSet scheme to sample
pseudorandom sets of size roughly

√
n. For efficiency, we want that enumerating

the set can be accomplished with the Set(sk) algorithm, taking time roughly√
n (rather than linear in n). Additionally, we want that the membership test

algorithm, i.e., Member(sk, x), completes in polylogarithmic time.

3.1 Security Definitions

For security, we want the following:

1. Pseudorandomness w.r.t. some distribution Dn: given a randomly sam-
pled secret key (sk, ) ← Gen(1λ, n), the associated set Set(sk) is computa-
tionally indistinguishable from a set sampled at random from some distribu-
tion Dn—we shall specify the distribution Dn later;

2. Security w.r.t. puncturing I: we want the following two distributions to
be computationally indistinguishable for any x ∈ {0, 1, . . . , n − 1}:

– Sample (sk,msk) ← Gen(1λ, n) until Set(sk) contains x, and output
Puncture(msk, x).

– Sample (sk, ) ← Gen(1λ, n) and output sk.
The above definition says that a key punctured at any point is computation-
ally indistinguishable from an unpunctured key, which implies that a punc-
tured secret key should be simulatable without knowledge of the point x
being punctured. In our PIR scheme, we only need the latter property, i.e.,
that a punctured key is simulatable without knowledge of the point being
punctured—but we define this slightly stronger version for simplicity.

3. Security w.r.t. puncturing II (defined w.r.t. Dn): we want the fol-
lowing two distributions to be computationally indistinguishable for any
x ∈ {0, 1, . . . , n − 1}:

– Sample (sk,msk) ← Gen(1λ, n) until Set(sk) contains x, let skx ←
Puncture(msk, x), and output (Set(sk), x ∈ Set(skx)) where “x ∈
Set(skx)” denotes the boolean predicate whether x ∈ Set(skx).

– Sample (sk,msk) ← Gen(1λ, n) until Set(sk) contains x, and output
(Set(sk), Bernoulli(ρ)) where ρ := Pr

S
$←Dn

[x ∈ S].
Intuitively, the above says that knowing the unpunctured set reveals nothing
about whether x still belongs to the set after puncturing x from the set.

Remark 2. Jumping ahead, the “security w.r.t. puncturing I” property will be
used in proving the privacy of our PIR scheme, and the “security w.r.t. punc-
turing II” property will be needed for proving correctness—it turns out that the
correctness proof is rather technical (see Sect. 4.4 for further discussions).
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3.2 Defining Occasional Correctness

From the strawman attempts described in Sect. 2, we are essentially faced with
the following dilemma. Consider some distribution Dn which the pseudorandom
set tries to emulate. On one hand, we want each element to be included in the
set with independent probability, since this would enable puncturing and efficient
membership test. On the other hand, we do not want complete independence
among elements, since it would preclude efficient set enumeration. It seems like
we have hit a wall, but what comes to our rescue is the observation that our
single-copy scheme need not guarantee (1 − negl(λ))-correctness. Since we can
take majority vote among k = ω(log λ) parallel copies, it suffices for each copy
to have 2/3-correctness. We therefore hope to seek middle ground between the
seemingly conflicting requirements by relaxing correctness.

Informally speaking, we want the following notion of occasional correctness:
with 1 − o(1) probability over the choice of a PRSet secret key that contains an
element x ∈ {0, 1, . . . , n − 1}, puncturing at an arbitrary point x would remove
the point x from the set, and only x. Recall that earlier, we said that puncturing
at x should behave as if we resampled the choice whether x is in the set or
not, independent of the unpunctured set (see “security w.r.t. puncturing II”).
Thus, the relaxed correctness requirement intuitively implies that the resampling
that happens at puncturing should only choose to include x in the punctured
set with small (but possibly non-negligible) probability. Furthermore, jumping
ahead, in our construction, puncturing at x may occasionally end up removing
other elements besides x from the set, but this should not happen too often.

It turns out that to formally prove our PIR scheme secure, we actually need a
more refined occasional correctness definition. Specifically, our formal definition
lets us specify exactly which set of elements are related to x such that they might
accidentally get evicted from the set due to the puncturing of x. Further, we also
need to define an extra monotonicity condition that the puncturing operation
never adds an element to the set.

Formally, we define occasional correctness as below.

Functionality preservation under puncturing. To define functionality
preservation, we introduce a symmetric boolean predicate Related(x, y) :
{0, 1, . . . , n − 1}2 → {0, 1}, that outputs whether two elements x and y are
related or not. We may assume that Related(x, y) = Related(y, x).

We say that PRSet := (Gen, Set, Member, Puncture) satisfies function-
ality preservation w.r.t. the Related predicate, iff for any λ, n ∈ N, with prob-
ability 1 − negl(λ) for some negligible function negl(·), the following holds: let
(sk,msk) ← Gen(1λ, n), then, for any x ∈ Set(sk): let skx ← Puncture(msk, x):

1. Set(skx) ⊆ Set(sk);
2. Set(skx) runs in time no more than Set(sk);
3. for any y ∈ Set(sk)\Set(skx), it must be that Related(x, y) = 1.

Intuitively, the above requires that puncturing results in a subset of the original
set; and the set enumeration time can only reduce once a set has been punctured.
Moreover, puncturing x can only cause elements related to x to be removed from
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the set. Later on, when we instantiate the distribution S
$← Dn that the PRSet

scheme tries to emulate, we shall see that most elements in the sampled set S
likely do not have other related elements in S.

3.3 Choosing a Sampling Distribution

Recall that each element wants to decide at random whether to be included
in the sampled set. Our idea is to allow weak dependence in the coins chosen
by different elements. Such weak dependence should be sufficient to allow effi-
cient set enumeration, and yet without destroying efficient membership tests.
Of course, we have to pay a price for introducing the weak dependence among
elements, and indeed we pay in terms of the correctness of puncturing. In our
PRSet scheme, puncturing a secret key msk at a point x may, with some small
but non-negligible probability over the choice of msk, not only cause the coins
for x to be resampled, but also the coins for some elements other than x. When
this happens, puncturing at the point x may end up removing other elements
from the set, and possibly lead to an incorrect output in our single-copy PIR.

Even with this high-level intuition, identifying a construction that works is
challenging. To this end, our approach is very remotely inspired by the line of
work on designing block ciphers and format-preserving encryption [41,46,50].
Despite the remote reminiscence, of course, our problem definition and solutions
are fundamentally different from block ciphers.

To convey the intuition, let us first describe the distribution our PRSet scheme
aims to emulate, assuming the existence of a random oracle4 RO : {0, 1}∗ →
{0, 1}. Suppose we sample an RO at random which will determine a pseudo-
random set of expected size roughly

√
n/ log2 n. To determine if an element

x ∈ {0, 1, . . . , n − 1} is in the set associated with RO or not, write x as a log n-
bit string, i.e., x := {0, 1}log n. We then say that x is in the set iff using RO to
“hash” every sufficiently long suffix of 02 log log n||x outputs 1. More formally, set
membership of x ∈ {0, 1}log n is defined with the following algorithm:

1. let z := 0B ||x, i.e., prepend B := �2 log log n
 number of 0s in front of
the string x;

2. we say that x is in the set iff RO(z[i :]) = 1 for every i ∈ [1, 1
2 log n + B],

where z[i :] denotes the suffix z[i : log n + B] starting at the index i. For
example, z[1 :] = z, z[2 :] is the string z removing the first bit, and so
on.

Fig. 1. A toy example.

Toy example. Figure 1 gives a toy example: sup-
pose that n = 4, and thus B = 2 log log n = 2, and
1
2 log n + B = 3. Then, the string x = 10 is in the
set iff RO(0010) = RO(010) = RO(10) = 1.

The above sampling distribution has the fol-
lowing properties.

4 Our final scheme does not need any random oracle, the RO is only for exposition.
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Expected set size. Each x ∈ {0, 1}log n is included in the set with probability
2−( 1

2 log n+B) ≈ 1/(
√

n log2 n), and the expected set size is roughly
√

n/ log2 n.

Fast membership test. The definition itself gives a fast algorithm to test if
an element x ∈ {0, 1}log n is in the set, by making 1

2 log n + B calls to RO.

Fast set enumeration. Enumerating all elements in the set can be accom-
plished by making roughly

√
n ·poly log n calls to RO with at least 1−o(1) prob-

ability. Let 
 ≥ 1
2 log n+1, and let Z� be the set of all strings z of length exactly


, such that using RO to “hash” all suffixes of z of length at least 1
2 log n + 1

outputs 1. To enumerate the set generated by RO, we can start out Z 1
2 log n+1,

which takes at most 2
1
2 log n+1 RO calls to generate. Then, for each 
 := 1

2 log n+2
to 1

2 log n + B, we will generate Z� from Z�−1. This can be accomplished by
enumerating all elements z′ ∈ Z�−1, and checking whether RO(0||z′) = 1 and
RO(1||z′) = 1. In our online full version [47], we will prove that with at least
1 − o(1) probability, all the Z� sets encountered along the way will not exceed√

n · poly log n in size. Thus, with 1 − o(1) probability, set enumeration can be
accomplished by making at most

√
n · poly log n calls to RO.

Occasional correctness of “puncturing”. Suppose that we sample an RO
whose associated set contains the element x ∈ {0, 1}log n. In this idealized world
with RO, imagine that puncturing the point x from RO means that we resample
the outcomes for RO((0B ||x)[i :]) for every i ∈ [1, 1

2 log n + B]. We want to make
sure that with 1 − o(1) probability over the choice of the RO, puncturing the
point x removes x and only x from the resulting set. We prove (a more refined
version of) this statement in our online full version [47]. At a high level, to prove
this statement, it suffices to prove that the expected number of related elements
in the set is o(1), where an element x′ 
= x is related to x, iff the longest common
suffix of x and x′ has length at least 1

2 log n + 1.

3.4 Our PRSet Scheme

Given the above distribution Dn, we can derive a PRSet scheme by replacing the
RO with a privately puncturable PRF [7,9,14]—we review the formal definition
for a privately puncturable PRF in the online full version [47]. Puncturing a
point x ∈ {0, 1}log n simply punctures all queries we must make to the PRF to
determine x’s membership. For a punctured key to be indistinguishable from a
freshly generated secret key, we puncture a set of “useless” points from a freshly
generated secret key as well, since original keys and punctured keys may be triv-
ially distinguishable in the underlying privately puncturable PRF scheme. More
formally, let PRF := (Gen,Eval,Puncture,PEval) be a privately puncturable
PRF scheme where Eval and PEval denote the evaluation algorithms using a
normal key and a punctured key, respectively. Our PRSet scheme is described
below:
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Our PRSet scheme

– Gen(1λ, n): let B := �2 log log n
,
1. call PRF.Gen with the appropriate parameters to generate a normal

PRF key sk′.
2. let P be an arbitrary set of 1

2 log n+B distinct strings in {0, 1}log n+B

that begin with the bit 1;
3. call sk ← PRF.Puncture(sk′, P ), and output (sk,msk = sk′).

– Set(sk): similar to the earlier set enumeration algorithm for the distribu-
tion Dn, but replace RO(·) calls with calls to PRF.PEval(sk, ·) instead;

– Member(sk, x):
1. write x ∈ {0, 1}log n as a binary string, and let z := 0B ||x;
2. if for every 1 ≤ i ≤ 1

2 · log n + B, PRF.PEval(sk, z[i :]) = 1, then
output 1; else output 0.

– Puncture(msk, x):
1. write x ∈ {0, 1}log n as a binary string, and let z := 0B ||x;
2. let P := {z[i :]}i∈[1, 12 ·log n+B] and skP ← PRF.Puncture(msk, P );

output skP .

Performance bounds. Our privately puncturable PRF scheme must support
puncturing O(log n) many points. As stated in the online full version [47], we
can construct such a privately puncturable PRF with ˜O(1) runtime for Gen,
Eval, and PEval, and moreover, each punctured key is of length ˜O(1). Using
such a privately puncturable PRF, our resulting PRSet scheme achieves ˜O(1)
time for PRSet.Gen, PRSet.Member, and PRSet.Puncture operations, and the
expected runtime for PRSet.Set is ˜O(

√
n). Bounding the runtime of PRSet.Set

will require a probabilistic analysis of the distribution Dn, which we defer to the
online full version [47].

We also defer to Sect. 5 a detailed proof of security for our PRSet scheme.

4 Putting it All Together: Our PIR Scheme

4.1 Definitions: Two-Server Preprocessing PIR

In our definition below, the two servers are treated as stateful algorithms Left
and Right, respectively (but in our construction, the only state they need to
store is the database itself). The client is treated as a stateful algorithm denoted
Client. Initially, all of Client, Left, and Right receive the parameters 1λ and n.

– Offline setup. Client receives nothing and each of Left and Right receives the
same database DB ∈ {0, 1}n as input. Client sends a single message to Left,
and Left responds with a single message often called a hint.

– Online queries. The following can be repeated for a priori-unknown poly-
nomially many steps. Upon receiving an index x ∈ {0, 1, . . . , n − 1} to query,
Client sends a single message to Left and a single message to Right. It receives
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a single response from each server Left and Right. Client then performs some
computation and outputs an answer β ∈ {0, 1}.

Correctness. Given a database DB ∈ {0, 1}n where the bits are indexed
0, 1, . . . , n − 1, the correct answer for a query x ∈ {0, 1, . . . , n − 1} is the x-
th bit of DB.

For correctness, we require that for any Q,n that are polynomially bounded in
λ, there is a negligible function negl(·), such that for any database DB ∈ {0, 1}n,
for any sequence of queries x1, x2, . . . , xQ ∈ {0, 1, . . . , n−1}, an honest execution
of the offline/online PIR scheme with DB and queries x1, x2, . . . , xQ returns all
correct answers with probability 1 − negl(λ).

Privacy. For privacy, we require the following.

– Left-server privacy. There is a probabilistic polynomial time (p.p.t.) stateful
simulator Sim, such that for any arbitrary (even computationally unbounded)
algorithm Right∗, for any non-uniform p.p.t. adversary A, A’s views in the
Real and Ideal experiments are computationally indistinguishable:
1. Real: The honest Client interacts with A who acts as the left server and

may deviate arbitrarily from the prescribed protocol, and an arbitrary
(even computationally unbounded) algorithm Right∗ acting as the right
server. In every online step t, A adaptively chooses the next query xt ∈
{0, 1, . . . , n − 1}, and Client is invoked with xt.

2. Ideal: The simulated client Sim interacts with A who acts as the left
server, and an arbitrary (even computationally unbounded) algorithm
Right∗ acting as the right server. In every online step t, A adaptively
chooses the next query xt ∈ {0, 1, . . . , n − 1}, and Sim is invoked without
receiving xt.

– Right-server privacy. Right-server privacy is defined in a symmetric way as
above by exchanging left and right.

Intuitively, the above privacy definition requires that any single server alone
cannot learn anything about the client’s queries; further, this must hold even
when both servers can behave maliciously. However, recall that we do not guar-
antee correctness if one or both server(s) fail to respond correctly.

4.2 Construction

We describe our PIR scheme below, where Client, Left, Right denote the client,
the left server, and the right server, respectively.

Our PIR Scheme

Run k = ω(log λ) parallel copies of the single-copy scheme described below.

Offline setup. For i = 1 to lenT := 6
√

n · log3 n in parallel:

1. Client: Sample (ski,mski) ← PRSet.Gen(1λ, n), send ski to Left.
2. Left: Run Si ← PRSet.Set(ski). If the runtime of PRSet.Set(ski), mea-

sured in terms of PRF.PEval calls, exceeds maxT := 6
√

n log5 n, return
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pi := 0 to Client. Else, return the parity bit pi ∈ {0, 1} of the set Si to
Client.

3. Client: Save Ti := (ski,mski, pi) where T := (T1, T2, . . . , TlenT) denotes a
table saved by Client.

Online query for index x ∈ {0, 1, . . . , n − 1}.
– Query (Client ⇔ Right):

1. Client:
(a) Sample

(sk,msk) ← PRSet.Gen(1λ, n) subject to PRSet.Member(sk,
x) = 1, append (sk,msk, 0) to the end of the table T . (�)

(b) Henceforth parse Ti := (ski,mski, pi). Let j be the smallest entry
in the table T such that PRSet.Member(skj , x) = 1.

(c) Call ˜skj := PRSet.Puncture(mskj , x). Send ˜skj to Right.
2. Right: Run S ← PRSet.Set(˜skj). If the runtime exceeds maxT, return

p := 0 to Client. Else, return the parity bit p ∈ {0, 1} of the set S to
Client.

3. Client: Let β′ := p ⊕ pj be a candidate answer of this copy. Let β be
the majority vote among the candidate answers of all k copies.

– Refresh (Client ⇔ Left):
1. Client:

(a) Sample a new sk′,msk′) ← PRSet.Gen(1λ, n) subject to the con-
straint PRSet.Member(sk′, x) = 1. (�)

(b) Call sk′
x ← PRSet.Puncture(msk′, x), and send sk′

x to Left.
2. Left: Run S ← PRSet.Set(sk′

x). If the runtime exceeds maxT, return
p := 0 to Client. Else, return the parity bit p ∈ {0, 1} of the set S to
Client.

3. Client: Replace Tj := (sk′,msk′, p⊕β). Finally, remove the last entry
from the table T .

Remark. To obtain deterministic performance bounds, we can have the
client run the Step 1(a) of both the Query and Refresh phases, marked
with (�), at the very beginning of each online query, and simply abort if
the number of tries exceeds maxT—in this case, no message is sent and the
client outputs a canonical bit 0 as the candidate answer. It is not hard to
see that this change does not affect the privacy proof and adds only o(1)
correctness failure probability for each instance per query.

Intuitively, the idea here is to summarize the random sets in the earlier toy
scheme with the keys of a PRSet scheme, i.e., the client stores the lenT number
of keys to represent lenT sets; moreover, the client sends punctured keys to the
servers rather than the full sets. By construction, in each copy, the client always
obtains answers from the respective servers during the query and refresh phases,
but the answers may be incorrect with some small probability. The k = ω(log λ)
parallel repetitions make the overall error probability negligibly small.
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Specifically, the answer from the right-server during the query phase may
be incorrect if 1) the queried index x is not found in the lenT sets stored by
the client; 2) x is found to be in some set represented by (skj ,mskj), but the
parity bit stored by the client is incorrect (see why the refresh phase may cause
error shortly); 3) puncturing the key mskj does not result in exactly the set
Set(skj)\{x}; or 4) the right server exceeds maxT set enumeration time.

The refresh phase can incur error with small probability too, and thus cause
the client to store an incorrect parity bit for the refreshed set. Recall that during
refresh, the client computes the parity bit of a newly refreshed set as β+p where
β is the client’s belief of the answer to the present query, and p is the answer
returned by the left server. If either β or p is wrong, the refreshed parity bit
may be incorrect. Specifically, p can be wrong if the left server exceeded maxT
set enumeration time. Moreover, if the punctured key sk′

x does not give exactly
Set(sk′)\{x}, then the parity p returned by the left server could be incorrect.

4.3 Performance Analysis

For our performance analysis, we will assume that Step 1(a) of both the Query
and Refresh phases, marked (�) in the PIR scheme, are capped at maxT runtime,
since this will give us deterministic performance bounds—see the remark at the
end of the PIR algorithm.

We now analyze the performance bounds for each instance of PIR—keep in
mind that our final scheme involves k = ω(log λ) = ˜O(1) parallel instances. Our
analysis below also shows how to translate the runtime of the underlying PRSet
scheme to the runtime of the resulting PIR scheme. Specifically, we will use our
PRSet scheme whose performance bounds are stated in Sect. 3.4.

– The offline bandwidth and client computation are ˜O(
√

n), the offline server
computation is ˜O(n). The offline client computation is dominated by running
PRSet.Gen for lenT = ˜O(

√
n) number of times; the bandwidth is dominated

by transmitting lenT number of PRSet keys to the server and then for the
server to transmit 1 parity bit back for each of the lenT keys; and the server
computation is dominated by running the PRSet.Set algorithm for lenT num-
ber of times, where each PRSet.Set call is capped at maxT = ˜O(

√
n) runtime.

– The online server and client runtime is ˜O(
√

n), and the online bandwidth is
˜O(1). Specifically, during the “Query” phase, the client’s runtime is bounded
by the following: Step 1(a) is capped at maxT calls to PRSet.Gen and
PRSet.Member; Step 1(b) involves running PRSet.Member at most lenT
number of times; the runtime of Step 1(c) and Step 3 is dominated by other
steps. During the “Refresh” phase, the client’s runtime involves the following:
Step 1(a) is capped at maxT calls to PRSet.Gen and PRSet.Member, and
the runtime of Step 1(b) and 3 is dominated by Step 1(a). Both the left and
right server’s runtime includes a single call to PRSet.Set capped at maxT,
and the cost of computing the parity of at most maxT number of bits. The
online bandwidth involves the client sending a single PRSet key to each of the
left and right server, and each server sending back one bit.
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4.4 Proof Roadmap

Proving our PIR scheme secure turns out to be very much non-trivial. Somewhat
surprisingly at first, the most challenging part is actually the proof of occasional
correctness of the single-copy version of our PIR scheme (see Sects. 5 and the
online full version [47])—even though we are only asking for a relaxed correct-
ness requirement. At a high level, the challenge arises from the fact that the
distribution of the PRSet key sk becomes skewed, when conditioning on the fact
that the key sk is chosen during the online query phase, since it is the first entry
in the client’s hint table T that contains the queried element x. In one part of
the occasional correctness proof, we need to argue that, imprecisely speaking,
despite this skewed distribution, the selected secret key can provide a correct
answer to the present query with 1−o(1) probability. In a key technical step, we
make a stochastic domination type of argument that roughly speaking, proves
the following: conditioned on the secret key not having been consumed so far
and now being consumed by the present query, it makes it less likely, in com-
parison with a freshly generated PRSet key, for certain bad events to happen
that might lead to incorrectness. To make this argument work, we rewrite the
randomized experiment into an equivalent one where the sampling of a subset
of the random coins is delayed to the point when they are consumed. In our
scheme, multiple bad events can lead to incorrectness of a single copy of the
scheme. Therefore, in our proof, we bound the probability of each of these bad
events (see the appendices)—to do so, we often view the randomized experiment
in different lights, to facilitate the analyses of different bad events.

5 Proofs for Our PRSet Scheme

Lemma 1 (Correctness, pseudorandomness, and functionality preser-
vation under puncturing). The above PRSet construction satisfies correct-
ness. Further, suppose that the PRF scheme satisfies pseudorandomness; then
the PRSet scheme also satisfies pseudorandomness and functionality preserva-
tion under puncturing.

Proof. Correctness follows directly from the construction. Pseudorandomness
relies on the pseudorandomness of the PRF through a straightforward reduc-
tion. To see functionality preservation, let (sk,msk) ← Gen(1λ, n), let skx ←
Puncture(msk, x), and below we may ignore the negligible probability event
that the underlying puncturable PRF violates its functionality preservation
property. Notice that for every string z that is a suffix of 0B ||x of length at
least 1

2 log n + 1, PRF.PEval(sk, z) = 1, but there may exist such z where
PRF.PEval(skx, z) becomes 0 instead. For any string z that is not a suffix of
0B ||x of length at least 1

2 log n + 1, PRF.PEval(sk, z) = PRF.PEval(skx, z).
Given the above observation, “functional preservation under puncturing” is easy
to verify.

Lemma 2 (Security w.r.t. puncturing). Suppose that the PRF scheme sat-
isfies pseudorandomness and privacy w.r.t. puncturing as defined in the online
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full version [47]. Then, the above PRSet construction satisfies security w.r.t.
puncturing.

Proof. We need to prove two properties.

First property. We begin by proving the first property, that is, the following
distributions are computationally indistinguishable for any x ∈ {0, 1, . . . , n−1}:

– Expt0: Repeat (sk,msk) ← Gen(1λ, n) until x ∈ Set(sk), let skx ←
Puncture(msk, x), output skx.

– Expt1: (sk,msk) ← Gen(1λ, n) and output sk.

We define an intermediate hybrid experiment Hyb: sample (sk,msk) ←
Gen(1λ, n), let skx ← Puncture(msk, x), and output skx.

Claim 1. Suppose that the puncturable PRF satisfies pseudorandomness as
defined in the online full version [47]. Then, Expt0 and Hyb are computationally
indistinguishable.

Proof. Suppose that there is an efficient adversary A that can distinguish Expt0
and Hyb with non-negligible probability. We can construct an efficient reduction
B that breaks the pseudorandomness of the PRF scheme.

Let Px denote the set containing the m = 1
2 log n + B queries we need to

make to determine whether x is in the set. B asks its own challenger denoted C
for a PRF key punctured at Px, and it obtains skPx

. It forwards skPx
to A. B then

obtains a vector of bits denoted β := (β1, . . . , βm) as the purported outcomes
for {Eval(sk, y)}y∈Px

. If β = 1, then B outputs whatever A outputs. Else, it
outputs a random bit.

Case 1. If the challenger C is using real values for {Eval(sk, y)}y∈Px
, then A’s

view is identically distributed as Expt0. The probability that B outputs 1 is

p := Pr[A(Expt0) = 1] · Pr[β = 1] +
1
2

· Pr[β 
= 1]

Case 2. If the challenger C is using random values in place of {Eval(sk, y)}y∈Px
,

then A’s view is identically distributed as Hyb. In this case, the probability that
B outputs 1 is equal to

p′ := Pr[A(Hyb) = 1] · Pr[β = 1] +
1
2

· Pr[β 
= 1]

Note that in Case 1, |Pr[β = 1]−1/2m| ≤ negl(λ) due to the pseudorandomness
of the PRF; and in Case 2 Pr[β = 1] = 1/2m. Moreover, 1/2m is non-negligible
due to the choice of m. Therefore, if |Pr[A(Expt0) = 1] − Pr[A(Hyb) = 1]| is
non-negligible, then |p − p′| would be non-negligible, too.

Claim 2. Suppose that the puncturable PRF satisfies privacy w.r.t. puncturing
as defined in the online full version [47]. Then, Hyb is computationally indistin-
guishable from Expt1.
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Proof. Follows from a straightforward reduction to the privacy w.r.t. puncturing
property of the PRF.

The computational indistinguishability of Expt0 and Expt1 now follows from
Claim 1 and Claim 2.

Second property. We next prove the second property, that is, we want to show
that the following two distributions are computationally indistinguishable:

– Expt∗0: Repeat (sk,msk) ← Gen(1λ, n) until x ∈ Set(sk), let skx ←
Puncture(msk, x), and output (Set(sk), x ∈ Set(skx)) where x ∈ Set(skx)
denotes a boolean predicate.

– Expt∗1: Repeat (sk,msk) ← Gen(1λ, n) until x ∈ Set(sk), and output
(Set(sk),Bernoulli(ρ)) where ρ := 2−( 1

2 log n+B).

Let (sk,msk) ← Gen(1λ, n) until x ∈ Set(sk), and let skx ←
Puncture(msk, x). Observe that there is a deterministic, polynomial-time func-
tion Reconstruct such that Reconstruct(skx, x) = Set(sk). Essentially,
Reconstruct uses answers to PRF.PEval(skx, ·) calls to determine set mem-
bership, except that when encountering any string z that is a suffix of 0B ||x of
length at least 1

2 log n + 1, override the outcome of PRF.PEval(skx, z) to 1.
We can therefore rewrite Expt∗0 as the following experiment Hyb: repeat

(sk,msk) ← Gen(1λ, n) until x ∈ Set(sk), let skx ← Puncture(msk, x), and
output (Reconstruct(skx, x), x ∈ Set(skx)).

Due to the first property which we just proved, the above distribution Hyb is
computationally indistinguishable from the following Hyb′: (sk, ) ← Gen(1λ, n),
and output (Reconstruct(sk, x), x ∈ Set(sk)).

Now, consider the experiment Ideal which is defined just like in Hyb, except
that sampling a PRF secret key is replaced with sampling an RO, and to deter-
mine set membership, any call to PRF.PEval(sk, ·) is replaced with RO(·). In
Ideal, Reconstruct(RO, x) does not need to look at the coins that determine
x’s membership in the set. Based on this observation as well as the pseudo-
randomness of the underlying PRF, we conclude that Ideal is computationally
indistinguishable from Expt∗1.

Deferred contents. We defer the probabilistic analysis of the distribution Dn,
and proofs for the runtime of set enumeration to the online full version [47].

6 Proofs for Our PIR Scheme

Single-copy variant of our PIR scheme. In our proofs, we consider a single-
copy variant of our PIR scheme. In the single-copy scheme, we set the number of
parallel instances k := 1. Further, we imagine that the true answer β is obtained
from some true-answer oracle rather than taking majority vote.
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6.1 Privacy Proof

We focus on the single-copy variant, and prove its privacy.

Theorem 2 (Left-server privacy). Suppose that the PRSet scheme satisfies
(the first property in) “security w.r.t. puncturing”. Then, the single-copy scheme
satisfies left-server privacy.

Proof. We define the following simulator Sim which fully specifies the ideal exper-
iment Ideal:

– Offline setup. For i = 1 to lenT := 6
√

n · log3 n: sample (ski,mski) ←
PRSet.Gen(1λ, n) and send {ski}i∈[1,lenT] to A acting as the left server.

– Online queries. For each online query, sample (sk′,msk′) ← PRSet.Gen(1λ, n)
and send sk′ to A acting as the left server.

The computational indistinguishability of A’s views in Real and Ideal fol-
low due to a straightforward hybrid argument relying on the “security w.r.t.
puncturing” property of the PRSet scheme. Specifically, let Q be the total num-
ber of queries in the online phase. We define a sequence of hybrid experiments
{Hybi}i∈{0,1,...,Q}, where in Hybi, during the first i online steps, A (acting as the
left server) receives a message constructed like in Ideal, and during the remain-
ing Q − i online steps, A receives a message constructed like in Real. Clearly,
Hyb0 = Real and HybQ = Ideal. It suffices to show that any two adjacent hybrid
experiments are computationally indistinguishable, and this follows due to a
straightforward reduction to the “security w.r.t. puncturing” property of the
PRSet scheme.

Theorem 3 (Right-server privacy). Suppose that the PRSet scheme satisfies
(the first property in) security w.r.t. puncturing. Then, the single-copy scheme
satisfies right-server privacy.

Proof. We define the following simulator Sim which fully specifies the ideal exper-
iment Ideal:

– Offline setup. A, acting as the right server, receives nothing.
– Online queries. For each online query, sample (sk′,msk′) ← PRSet.Gen(1λ, n)

and send sk′ to A acting as the right server.

We now need to argue that any non-uniform p.p.t.A’s views in Real and Ideal
are computationally indistinguishable.

Real∗. First, we consider the following experiment Real∗.

– Offline setup. For each i ∈ [1, lenT], Client samples (ski,mski) ←
PRSet.Gen(1λ, n), and lets Ti := (ski,mski). The adversary A, acting as
the right server, receives nothing.

– Online queries. For each online query x ∈ {0, 1, . . . , n − 1}:
a) Client samples (sk,msk) ← PRSet.Gen(1λ, n) subject to PRSet.Member

(sk, x) = 1, and appends (sk,msk) to the end of the table T .
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b) Client finds the smallest entry Tj := (skj ,mskj) in T such that
PRSet.Member(skj , x) = 1. It sends PRSet.Puncture(mskj , x) to A act-
ing as the right server.

c) Client samples (sk′,msk′) ← PRSet.Gen(1λ, n) subject to PRSet.
Member(sk, x) = 1, overwrites Tj with (sk′,msk′), and removes the last
entry from T .

Real∗ is just a rewrite of Real throwing away terms that we do not care. Let
ViewReal and ViewReal∗ denote A’s view and the client’s table T (truncating the
third field of each entry in Real) at the beginning of each online query, in the
experiments Real and Real∗, respectively. We have that even for a computation-
ally unbounded A, ViewReal and ViewReal∗ are identically distributed.

Fact 1. In Real∗, for every online step t, even if A is computationally
unbounded, and even when conditioned on A’s view over the first t − 1 steps,

– let x ∈ {0, 1, . . . , n − 1} be the t-th online query, the message A receives in
the t-th query is distributed as: sample (sk,msk) ← PRSet.Gen(1λ, n) subject
to PRSet.Member(sk, x) = 1 and output PRSet.Puncture(sk, x);

– at the end of the t-th online query, the client’s table T is a fresh uniform sam-
ple from PRSet.Gen(1λ, n)lenT independent of the message A receives during
the t-th query, i.e., T contains a sample of lenT uniform, independent entries
from the distribution PRSet.Gen(1λ, n).

Proof. We can prove by induction.

Base case. At the end of the offline phase (henceforth also called the 0-th
query), indeed the client’s table T is a uniform sample from the distribution
PRSet.Gen(1λ, n)lenT.

Inductive step. Suppose that at the end of the t-th step, the client’s table T
is uniform sample from the distribution PRSet.Gen(1λ, n)lenT even when con-
ditioned on A’s view in the first t steps. We now prove that the stated claims
hold for t + 1. Let x ∈ {0, 1, . . . , n − 1} be the query made in online step t + 1,
the choice of x depends only on A’s view in the first t online queries. Hence-
forth, for i ∈ [1, lenT], let αi,x be the probability that in a random sample from
the distribution PRSet.Gen(1λ, n)lenT, the first entry that contains x is i. Let
αlenT+1,x := 1 − ∑lenT

i=1 αi,x.
Consider the following experiment Expt:

– Client samples an index u ∈ [lenT + 1] such that u = i with probability αi,x.
– ∀j < u, Client samples Tj := (skj ,mskj) ← PRSet.Gen(1λ, n) subject to
PRSet.Member(skj , x) = 0.

– For u, Client samples (sk,msk) and (sk′,msk′) independently from the dis-
tribution PRSet.Gen(1λ, n) subject to PRSet.Member(skj , x) = 1. It sends
PRSet.Puncture(sk, x) to A and saves Tu := (sk′,msk′).

– ∀j ∈ [u + 1, lenT + 1], Client samples Tj := (skj ,mskj) ← PRSet.Gen(1λ, n).
– Finally, Client removes last entry from T .
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Let ViewReal∗
t+1 be the message A receives during the (t+1)-st query as well as the

client’s table T at the end of the (t + 1)-st query in Real∗. Let ViewExpt be the
message A receives as well as the client’s table T at the end in Expt. Suppose
that the induction hypothesis holds, then it is not hard to see that ViewExpt is
identically distributed as ViewReal∗

t+1 even when conditioning on the view of A in
the first t queries in Real∗, and even when A is computationally unbounded.

In the experiment Expt, it is not hard to see the distribution ViewExpt is
the following: T is sampled at random from PRSet.Gen(1λ, n)lenT, and A’s
received message is distributed as: sample (sk,msk) ← PRSet.Gen(1λ, n) subject
to PRSet.Member(sk, x) = 1 and output PRSet.Puncture(sk, x).

Given Fact 1, we can prove that any non-uniform p.p.t. A’s views in Ideal
and Real∗ are computationally indistinguishable through a standard hybrid argu-
ment, relying on the “security w.r.t. puncturing” property of the PRSet scheme—
the hybrid sequence is similar to the proof of Theorem 2.

6.2 Correctness Proof

Deferred to the online full version [47].

7 Additional Related Work

Beimel et al. [6] proved that in the original formulation of PIR, the servers must
collectively probe all n bits of the database on average to respond to a client’s
query. Various techniques have been suggested to overcome this key performance
bottleneck, e.g., encoding the server-side database, storing per-client or even
per-query server state, batching, introducing assumptions like Virtual-Blackbox
obfuscation which is known to be impossible [5], or having many non-colluding
servers. We review this line of work below.

As mentioned in Sect. 1, the work of Beimel et al. achieves sublinear online
computation by encoding the database into a n1+ε to poly(n)-sized string. The
recent (designated-client) doubly efficient PIR schemes [11,15] rely on encoding
the database as well as having the server store Ω(n) state per client, which is
a significant barrier towards practicality in our motivating applications. Boyle
et al. [11] show that assuming Virtual-Blackbox Obfuscation which is known
to be impossible [5] (and additional non-standard assumptions that are not yet
well understood), one can indeed construct a preprocessing PIR with nε online
runtime and bandwidth, without having to store per-client state at the server.

A related notion called private anonymous data access (PANDA) was recently
introduced by Hamlin et al. [33]. PANDA is a form of preprocessing PIR which
requires a third-party trusted setup besides the client and the servers (which is
not necessary in our work); and moreover, the server storage and time grow
w.r.t. the number of corrupt clients. In our motivating examples, the number of
clients is essentially unbounded which makes known PANDA schemes unsuitable.
Some works [6,23] suggested having the server store per-query state to reduce
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the online time. Specifically, the construction by Beimel et al. [6] requires a
linear amount of server storage per query, and this is even worse than per-client
storage. Other works [43] improve the online time by making the number of
public-key operations sublinear, along with a still linear number of symmetric-
key operations. Sharding has also been suggested to spread out the server work
online [21] but the total work across all servers is still linear.

A couple of works [38,44] construct preprocessing PIR schemes whose online
runtime is marginally sublinear, e.g., roughly O(n/ log n); and the complexity of
these protocols is much larger than Corrigan-Gibbs and Kogan [20].

An elegant line of work suggested batching queries from the same client
[3,4,32,34] or among multiple clients [6,35,40] to amortize the linear server
work among the batch. Our formulation can be viewed as a generalization of
batched PIR, since we do not require the requests to come in a batch, and we
can nonetheless achieve small online bandwidth and work. The work by Beimel
et al. [6] also showed how to get a preprocessing PIR with polylogarithmic online
bandwidth and cost assuming polylogarithmically many non-colluding servers,
and poly(n) server space. Toledo et al. [51] consider how to relax the security
definition and achieve differential-privacy-style security, to improve the server
time to sublinear.

The concurrent of Kogan and Corrigan-Gibbs [36] gives a practical instanti-
ation of their earlier work [20], with a clever trick to remove the k-fold parallel
repetition. Their implementation is indeed in the unbounded query setting. For
their particular application, i.e., private blocklist, it turns out that the dabase
is somewhat small, and therefore, they are willing to incur Θ(n) computation
per online query, in exchange for roughly O(

√
n) online time and logarithmic

bandwidth. While their implementation is indeed a practical sweetspot for the
private blocklist application, for larger databases, incurring linear client time
per online query could be prohibitive. Their trick to remove the k-fold repetition
does not seem to immediately apply to our construction because we have an
additional source of error from our underlying PRSet scheme.

Deferred Contents

In the interest of space, we defer additional details and proofs to the online full
version [47].
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1 Introduction

A tight security proof establishes a close relation between the security of a cryp-
tosystem and its underlying building blocks, independent of deployment param-
eters such as the number of users, protocol sessions, issued signatures, etc. This
enables a theoretically-sound instantiation with optimal parameters, without the
need to compensate a security loss by increasing key lengths or group sizes.

AKE. Authenticated key exchange (AKE) protocols enable two parties to
authenticate each other and compute a shared session key. In comparison to
many other cryptographic primitives, standard security models for AKE are
extremely complex. Following the approach of Bellare-Rogaway [5] and Canetti-
Krawczyk [7], a very strong active adversary is considered, which essentially
“carries” all protocol messages between parties running the protocol and thus is
able to modify, replace, replay, drop, or inject arbitrary messages. Furthermore,
the adversary may adaptively corrupt parties and reveal session keys while adap-
tively choosing which session(s) to “attack”.

Achieving security in such a strong and complex model gives very strong
security guarantees, but it also makes tightness particularly difficult to achieve.
Indeed, most security proofs of AKE protocols are extremely lossy, often even
with a quadratic security loss in the total number of sessions established over
the entire lifetime of the protocol. Considering for instance the huge number
of TLS connections per day in practice, this loss may be too large to compen-
sate in practice because the resulting increase of deployment parameters would
incur an intolerable performance overhead. Hence, such protocols could not be
instantiated in a theoretically-sound way.

Therefore tight security of AKE protocols is a well-established research area,
with several known constructions [2,11,13,19,23,29]. As recently pointed out
by Jager et al. [23], some of these constructions [2,19,29] consider a “Multi-
Bit-Guess” (MBG) security experiment, which is not known to compose tightly
with primitives that apply the shared session key, e.g., to build a secure channel.
The standard and well established security notion in the context of multiple
challenges is “Single-Bit Guess” (SBG) security. Unfortunately, the only known
constructions in the SBG model [11,13,23] apply proof techniques that seem
to inherently require the random oracle model [4]. For instance, [23] is based
on non-committing encryption, which is known to be not instantiable without
random oracles [32], whereas [11,13] use a similar approach based on adaptive
reprogramming of the random oracle.

Currently, there exists no AKE protocol which achieves tight security in a
standard (SBG) AKE security model, with a security proof in the standard
model, without random oracles, not even an impractical one.

Digital Signatures. Digital signatures are a foundational cryptographic primi-
tive and often used to build AKE protocols. All known tightly-secure AKE proto-
cols with full forward security [2,11,13,19,23,29] are based on signatures that pro-
vide tight existential unforgeability under chosen-message attacks (EUF-CMA),
but in a multi-user setting and in the presence of an adversary that may adaptively



672 S. Han et al.

corrupt users to obtain their secret keys (MU-EUF-CMAcorr security [2]). It is easy
to prove that MU-EUF-CMAcorr security is non-tightly implied by standard EUF-
CMA security, but with a linear security loss in the number of users.

The construction of a tightly MU-EUF-CMAcorr secure signature scheme has
to overcome the following, seemingly paradoxical technical problem. On the one
hand, the reduction must be able to output user secret keys to the adversary, to
respond to adaptive secret key corruption queries. However, it cannot apply a
guessing argument, as this would incur a tightness loss. Therefore it is forced to
“know” the secret keys of all users. On the other hand, it must be able to extract a
solution to a computationally hard problem from a forgery produced by an adver-
sary. This seems to be in conflict with the fact that the reduction has to know secret
keys for all users, as knowledge of the secret key should enable the reduction to com-
pute a “forged” signature by itself, without the adversary. In fact, tight multi-user
security is known to be impossible for many signature schemes, for example when
the public key uniquely defines the matching secret key [3].

Several previous works have developed techniques to overcome this seeming
paradox [1,2,12,19]. Essentially, their approach is to build schemes where secret
keys are not uniquely determined by public parameters, along with a reduction
that exploits this to evade the paradox. However, all currently known construc-
tions either use the random oracle model, and therefore cannot be used to build
tightly-secure AKE in the standard model, or are based on tree-based signatures
[2], which yields signatures with hundreds of group elements and thus would incur
even more overhead than compensating the security loss with larger parameters.
Jumping slightly ahead, we remark that [2] also describes a pairing-based sig-
nature scheme with short constant-size signatures, but we identify a gap in the
security proof. Hence, currently there is no practical signature scheme which
achieves tight security in the multi-user setting with adaptive corruptions.

1.1 Contributions

Summarizing the previous paragraphs, we can formulate the following natural
questions related to AKE and signatures:

Do there exist efficient AKEs and signature schemes with tight multi-user
security in the standard model?

Tightly-secure signatures. We identify a subtle gap in the MU-EUF-
CMAcorr security proof of the scheme from [2] with constant-size signatures
(namely, SIGC in [2, Section 2.3]). We did not find a way to close this gap and
therefore develop a new variant of this scheme and prove tight MU-EUF-CMAcorr

security in the standard model. More precisely, SIGC follows the blueprint of the
Blazy-Kiltz-Pan (BKP) identity-based encryption scheme [6], and transforms an
algebraic message authentication code (MAC) scheme into a signature scheme
with pairings. If the MAC is tightly-secure in a model with adaptive corrup-
tions, so is the signature scheme. We notice, however, that their MAC does not
achieve tight security with adaptive corruptions since the corruption queries leak
too much secret information to the adversary.
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Fig. 1. The two-message protocol AKE2msg using the “KEM+2×SIG” approach and the
three-message protocols AKE3msg (including the red parts) and AKEstate

3msg (including the
red and gray parts) using the “Nonce+KEM+2×SIG” approach. (AKEstate

3msg additionally
uses a symmetric encryption scheme SE.)

To overcome this issue, we borrow recent techniques from tightly-secure hier-
archical identity-based encryption schemes [26,27] to construct a new MAC
scheme that can be proven tightly secure under adaptive corruptions. Our con-
struction is based on pairings and general random self-reducible matrix Diffie-
Hellman (MDDH) assumptions [15]. When instantiated based on the Dk-MDDH
assumption (e.g., k-Lin), a signature consists of 4k + 1 group elements. That is
5 group elements for k = 1 (SXDH). This yields the first tightly MU-EUF-
CMAcorr-secure signature in the standard model with practical efficiency.

We remark that our new signature scheme circumvents known impossibil-
ity results for signatures and MACs [3,30], since these apply only to schemes
with re-randomizable signatures or re-randomizable secret keys [3], or deter-
ministic schemes [30]. Our construction is probabilistic and not efficiently re-
randomizable in the sense of [3].1

Tightly-secure AKE in the standard model. The classical “key encap-
sulation plus digital signatures” (KEM + 2 × SIG) paradigm to construct AKE
protocols gives rise to efficient protocols and is the basis of many constructions,
e.g., [7,10,11,13,19,23,29]. To establish a session key, two parties Alice and Bob
proceed as follows (cf. Fig. 1). Alice generates an ephemeral KEM key pair (p̂k, ŝk)
and sends the signed public key to Bob. Bob then uses this public key to encap-
sulate a session key, signs the ciphertext, and sends it back to Alice. Alice then
obtains the session key K by decapsulating with the KEM secret key. For exam-
ple, one can view the classical “signed Diffie-Hellman” as a specific instantiation of
this paradigm, by considering the Diffie-Hellman protocol as the ElGamal KEM.

Our approach to construct efficient AKE protocols with tight security is based
on this KEM+2×SIG paradigm. Given a tightly MU-EUF-CMAcorr secure signa-
ture scheme, it remains to determine suitable security notions for the underlying
1 Our signatures are only re-randomizable over all strings output by the signing algo-

rithm. The impossibility result from [3] requires uniform re-randomizability over all
strings accepted by the verification algorithm, which does not hold for our scheme.
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Fig. 2. Schematic overview of our AKE constructions.

KEM, which finds a balance between two properties. The security notion must
be strong enough to enable a tight security proof in presence of adaptive session
key reveals and possibly even state reveals. At the same time, it must be weak
enough to be achievable in the standard model. We now sketch the construction
of our three AKE protocols along with the corresponding KEM security notions,
see also Fig. 2. In terms of AKE security, we consider a generic and versatile
security model which provides strong properties, such as full forward security
and key-compromise impersonation (KCI) security. “Partnering” of oracles is
defined based on original key partnering [28]. The model is defined in pseu-
docode to avoid ambiguity.

– Our first result is a new tight security proof for the two-message protocol
AKE2msg, which follows the KEM+2 × SIG paradigm. AKE2msg is exactly the
LLGW protocol [29] and the main technical difficulty is to adopt the LLGW proof
strategy from the “Multi-Bit-Guess” to the standard “Single-Bit-Guess” set-
ting. This requires significant modifications to the proof outline and the under-
lying KEM security definition. Our new proof relies on Multi-User/Challenge
one-time CCA (MUC-otCCA) security for KEMs, allowing the adversary to
ask many challenge queries but only one decapsulation query per user. Even
though this is a slightly weaker version of the standard Multi-User/Challenge
CCA (MUC-CCA) security notion for KEMs (allowing for unbounded decap-
sulation queries [17]), the most efficient instantiations we could find are the
MUC-CCA-secure schemes with tight security from [17,18,22].2

– Our second result is a three-message protocol AKE3msg resisting replay
attacks, which extends the KEM+2×SIG protocol AKE2msg with an additional
nonce sent at the beginning of the protocol (“Nonce + KEM + 2 × SIG”). For
our security proof we require the KEM security notion of Multi-User Single-
Challenge one-time CCA (MUSC-otCCA) security, allowing the adversary to

2 We are aware of the generic constructions of bounded-CCA secure KEMs from CPA-
secure KEMs [8], but they do not seem to offer tight security in a multi-challenge
setting.
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ask only one challenge and one decapsulation query per user. This notion is
considerably weaker than MUC-otCCA security and it is achievable from any
universal2 hash proof system [9]. (For example, based on a standard assump-
tion such as Matrix DDH (MDDH) [15] which yields highly efficient KEMs.)

– Our third result is a three-message protocol AKEstate
3msg, which extends the

Nonce+KEM+2×SIG protocol AKE3msg by encrypting the state with a sym-
metric encryption (SE) scheme. AKEstate

3msg has tight security in a very strong
model that even allows the adversary to obtain session states of oracles [7].
The fact that the reduction must be able to respond to adaptive queries
for session states by an adversary makes it significantly more difficult to
achieve tight security. Our key technical contribution is a new “Multi-User
SIMulatability” (ε-MU-SIM) security notion for KEMs, which we also show
to be tightly achievable by universal2 hash proof systems. We stress that the
reduction to the security of the symmetric encryption scheme is the only part
of the security proof which is not tight. We tolerate this, since compensating
a security loss for symmetric encryption incurs significantly less performance
penalty than for public key primitives.3

Note that our AKE3msg and AKEstate
3msg use nonce to resist replay attacks and admit

KEM security with one challenge per user. This can also be achieved generically
by assuming synchronized counters between parties, following the approach of
[29]. Consequently, we can also use counter instead of nonce in AKE3msg and
AKEstate

3msg, and obtain two two-message counter-based AKE protocols which have
the same efficiency and security as AKE3msg and AKEstate

3msg, respectively.

Instantiations. Table 1 gives example instantiations of our protocols from
universal2 hash proof systems from the MDDH assumption and compares them
to known protocols. The protocols BHJKL [2] and LLGW [29] only offer tight
security in the MBG model which implies security in our standard SBG model
with a loss of T , the number of test queries [23]. For more details on our instan-
tiations we refer to Sect. 6. Note that there are other works which study AKE in
the standard model (e.g., [16,24]). However, they do not focus on tightness and
have a quadratic security loss.

Technical approach to AKE. In the following, we give a brief overview of
our technical approach to tight security under our SBG-type security definition
and show how our protocols prevent replay attacks and support state reveals.

To obtain an AKE protocol with a tight security reduction in the KEM+2×
SIG framework, we rely on the tight MU-EUF-CMAcorr security of the signature
scheme to guarantee authentication and deal with corruptions, and on the tight
MUC-CCA security of KEM to deal with session key reveals. To this end, recall

3 For instance, openssl speed aes shows that AES-256 is only about 1.5 times slower
than AES-128 on a standard laptop computer. Given that the cost of symmetric key
operations is already small in comparison to the public key operations, we consider
this as negligible.
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Table 1. Comparison of standard model AKE protocols with full forward security,
where T refers to the number of test queries. Protocols AKEstate

3msg and AKE2msg refer to
our protocols given in Fig. 1, instantiated from Dk-MDDH. The column Communi-
cation counts the communication complexity of the protocols in terms of the number
of group elements, exponents and nonces, where we instantiate all protocols with our
new signature scheme from Subsect. 5.3. The column Security Loss lists the security
loss of the reduction in the “Single-Bit-Guess” (SBG) model, ignoring all symmetric
bounds.

Protocol Communication #Msg. Assumption State Security

Reveal Loss

BHJKL [2] 11 + 11 3 SXDH no O(λT )

(2k2 + 6k + 5) + (6k + 9) Dk-MDDH

LLGW [29] 9 + 10 2 SXDH no O(λT )

(k2 + 7k + 1) + (6k + 4) Dk-MDDH

AKEstate
3msg 8 + 7 3 SXDH yes O(λ)

(5k + 3) + (5k + 2) Dk-MDDH

AKE2msg (= LLGW) 9 + 10 2 SXDH no O(λ)

(k2 + 7k + 1) + (6k + 4) Dk-MDDH

that the SBG-style security game for MUC-CCA security allows multiple encap-
sulation and decapsulation queries per user, but considers only a single challenge
bit. At the same time, observe that the reduction algorithm can always use the
challenge key (which is either the real encapsulated key or a random key) as the
session key of the simulated AKE protocol. In combination, these observations
immediately lead to a tight security proof for AKE2msg. We remark that AKE2msg

can also be proved secure under an even weaker security notion for KEM, namely
MUC-otCCA, which allows only one decapsulation query per user. This assumes
that parties choose to “close” a session once this session accepts or rejects. In
this way we can guarantee that the adversary has only a single opportunity to
submit a ciphertext per p̂k.

To prevent replay attacks we make use of an exchange of nonces resulting
in protocol AKE3msg. As a byproduct of using nonces (in combination with the
signature scheme), we can now guarantee that the adversary cannot replay any
message anymore. This includes p̂k, and thus we can ensure that the simulator
only needs to respond to one encapsulation query per p̂k in the security game.
In this way we can further weaken the security requirement that we need from
the KEM to MUSC-otCCA.

Now, to support state reveals, we use a symmetric encryption scheme SE that
is used to encrypt the ephemeral secret key ŝk of each session, similar to [23].
More concretely, we require that the state is computed as st = SE.E(s, ŝk), where
s is the secret key of SE that is made part of the long-term secret key. This mod-
ification yields protocol AKEstate

3msg. Having introduced such a state, we now also
consider a security model that allows the adversary to issue state reveal queries
to obtain the state st. But now the reduction to the MUSC-otCCA security of
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the KEM cannot work as before, since the reduction algorithm cannot output
SE.E(s, ŝk) to the adversary. A natural way to address this problem is to make
use of the security of SE, and make the reduction change the state to an encryp-
tion of some dummy random key r, i.e., st = SE.E(s, r). However, now the SE
reduction algorithm is faced with a critical decision: If the adversary asks a state
reveal query, should the reduction output st = SE.E(s, ŝk) or st = SE.E(s, r)? It
seems that both choices are problematic. If the reduction responds with the
encryption of KEM secret key ŝk, then the reduction to the KEM will fail in
case the adversary asks a test query. If on the other hand the reduction outputs
an encryption of a dummy random key, then the reduction will fail in case the
adversary queries the secret key via a corrupt query. To solve this problem, the
existing approaches rely on a non-committing symmetric encryption scheme that
is proven secure in the random oracle model [23].

To obtain a tight security supporting state reveals in the standard model,
we enhance the MUSC-otCCA security of KEM to our new ε-MU-SIM-security,
so that a symmetric encryption scheme SE with comparatively weak security
guarantees suffices. The idea is to rely on a security notion for the symmetric
encryption scheme that is as weak as possible while still being able to compen-
sate for this via a stronger KEM. Somewhat surprisingly, our proof shows that
when relying on an ε-MU-SIM-secure KEM, we only need to require IND-mRPA
security (indistinguishability against random plaintext attacks) from SE. Such a
symmetric encryption scheme can be easily instantiated using any weakly secure
(deterministic) encryption scheme like as AES or even using a weak PRF. Let
us now describe ε-MU-SIM-secure KEM in slightly more detail. In a nutshell,
an ε-MU-SIM-secure KEM provides the reduction with access to an additional
encapsulation algorithm Encap∗ that is keyed with the secret key. We have secu-
rity requirements as follows:

• Computational indistinguishability between Encap and Encap∗: We require
that the reduction can switch to using Encap∗ without the adversary noticing
even given the secret key ŝk of the KEM. In particular, the resulting indistin-
guishability notion must tightly reduce to an underlying security assumption.

• Statistical ε-uniformity: When using the alternative encapsulation mechanism
Encap∗, we require that the encapsulated key in the challenge ciphertext c∗

will be indistinguishable from random with statistical distance ε (even if a
decapsulation of some distinct ciphertext c �= c∗ of its choice is given). This
is particularly useful when aiming at tight security reductions.

• Since we want to apply ε-MU-SIM-secure KEMs in a protocol setting with
multiple parties, security must in general hold in a multi-user setting.

Fortunately, such a KEM can be instantiated from universal2 hash proof systems
(HPS). In particular, we show that the ε-MU-SIM-security is implied by the
hardness of subset membership problems and the universal2-property of HPS.

Our new ε-MU-SIM-secure KEM now allows us to avoid the above mentioned
decision when dealing with state reveals and in this way opens a new avenue
towards a tight security reduction. To this end, we use a novel strategy in our
security proof.
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1. We first switch from using Encap to Encap∗. By the security properties of our
KEM, the adversary cannot notice this, even given ŝk.

2. Next, we replace the session keys of tested sessions with random keys – one
user at a time. We apply a hybrid argument over all users. In the η-th hybrid
(η = 1, ..., μ with μ being the number of users), we replace the test session
keys related to the η-th user with random keys. We can show that this is
not recognizable by the adversary since the key K∗ generated by Encap∗ is
statistically close to uniform even if the adversary gets to see another key for
a ciphertext of its choice. We distinguish the following cases.
Case 1: The adversary corrupts the η-th user. For each session related to this

user, the adversary can either reveal the session state or test this session,
but not both. If the adversary reveals the state, we do not have to replace
the session key at all, so the change is in fact only a conceptual one. If
the session is tested, the adversary does not know the state SE.E(s, ŝk)
and thus we can replace the session key by exploiting the ε-uniformity of
Encap∗.

Case 2: The adversary does not corrupt the η-th user. In this case, we rely
on the IND-mRPA security of SE and replace ŝk in the encrypted state
with a random dummy key for this user. Then, we can use ε-uniformity
to replace all tested keys for that user with random keys, as the state
does not contain any information about ŝk. After that, we have to switch
back to using the original state encryption mechanism and encrypt the
real secret key ŝk, getting ready for the next hybrid.

After μ hybrids, we change all tested keys to random. At this point the
adversary has no advantage in the security game.

Overall, this security proof loses a factor of 2μ – but only when reducing to the
IND-mRPA security of the symmetric encryption scheme. All other steps of the
proof feature tight security reductions.

2 Security Notions for KEMs

2.1 Preliminaries

Let ∅ denote an empty string. If x is defined by y or the value of y is assigned
to x, we write x := y. For μ ∈ N, define [μ] := {1, 2, ..., μ}. Denote by x ←$ X
the procedure of sampling x from set X uniformly at random. If D is distribu-
tion, x ← D means that x is sampled according to D. All our algorithms are
probabilistic unless states otherwise. We use y ←$ A(x) to define the random
variable y obtained by executing algorithm A on input x. We use y ∈ A(x)
to indicate that y lies in the support of A(x). If A is deterministic we write
y ← A(x). We also use y ← A(x; r) to make the random coins r used in the
probabilistic computation explicit. Denote by T(A) the running time of A. For
two distributions X and Y , the statistical distance between them is defined by
Δ(X;Y ) := 1

2 ·
∑

x |Pr[X = x] − Pr[Y = x]|, and conditioned on Z = z, the sta-
tistical distance between X and Y is denoted by Δ(X;Y |Z = z). For 0 ≤ ε ≤ 1,
X and Y are said to be ε-close, denoted by X ≈ε Y , if Δ(X;Y ) ≤ ε.
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Definition 1 (Collision-resistant hash functions). A family of hash func-
tions H is collision resistant if for any adversary A,

AdvcrH(A) := Pr[x1 �= x2 ∧ H(x1) = H(x2)|(x1, x2) ←$ A(H),H ←$ H].

2.2 Key Encapsulation Mechanisms

Definition 2 (KEM). A key encapsulation mechanism (KEM) scheme
KEM = (KEM.Setup,KEM.Gen,Encap,Decap) consists of four algorithms:

– KEM.Setup: The setup algorithm outputs public parameters ppKEM, which
determine an encapsulation key space K, public key & secret key spaces
PK × SK, and a ciphertext space CT .

– KEM.Gen(ppKEM): Taking ppKEM as input, the key generation algorithm out-
puts a pair of public key and secret key (pk, sk) ∈ PK × SK. W.l.o.g., we
assume that KEM.Gen first samples sk ←$ SK uniformly, and then computes
pk from sk deterministically via a polynomial-time algorithm KEM.PK, i.e.,
pk := KEM.PK(sk). This is reasonable since we can always take the random-
ness used by KEM.Gen as the secret key.

– Encap(pk): Taking pk as input, the encapsulation algorithm outputs a pair of
ciphertext c ∈ CT and encapsulated key K ∈ K.

– Decap(sk, c): Taking as input sk and c, the deterministic decapsulation algo-
rithm outputs K ∈ K ∪ {⊥}.

We require that for all ppKEM ∈ KEM.Setup, (pk, sk) ∈ KEM.Gen(ppKEM),
(c,K) ∈ Encap(pk), it holds that Decap(sk, c) = K.

We define two security notions for KEMs, the first one in the Multi-
User/Challenge (MUC) setting, the second one in the Multi-User and Single
Challenge (MUSC) setting. Both notions only allow for one single decapsulation
query per user.

Definition 3 (MUC-otCCA/MUSC-otCCA Security for KEM). To
KEM, the number of users μ ∈ N, and an adversary A we associate the advantage
functions Advmuc-otcca

KEM,μ (A) :=
∣
∣ Pr[Expmuc-otcca

KEM,μ,A ⇒ 1] − 1
2

∣
∣ and Advmusc-otcca

KEM,μ (A) :=∣
∣ Pr[Expmusc-otcca

KEM,μ,A ⇒ 1] − 1
2

∣
∣, where the experiments are defined in Fig. 3.

Below we recall the definition of the diversity property from [29].

Definition 4 (γ-Diversity of KEM). A KEM scheme KEM is called γ-diverse
if for all ppKEM ∈ KEM.Setup, it holds that

Pr

[
(pk, sk) ←$ KEM.Gen(ppKEM);

r, r′ ←$ R; (c, K) ← Encap(pk; r); (c′, K′) ← Encap(pk; r′)
: K = K′

]
≤ 2−γ ,

Pr

[
(pk, sk) ←$ KEM.Gen(ppKEM); (pk′, sk′) ←$ KEM.Gen(ppKEM);

r ←$ R; (c, K) ← Encap(pk; r); (c′, K′) ← Encap(pk′; r)
: K = K′

]
≤ 2−γ ,

where R is the randomness space of Encap. If γ = log |K|, then KEM is perfectly
diverse.



680 S. Han et al.

Fig. 3. The MUC-otCCA security experiment Expmuc-otcca
KEM,μ,A and the MUSC-otCCA secu-

rity experiment Expmusc-otcca
KEM,μ,A of KEM, where in the latter the adversary can query the

encapsulation oracle only once for each user.

We also propose a new security notion for KEMs called ε-MU-SIM (ε-multi-user
simulatable) security. Jumping ahead, ε-MU-SIM secure KEMs will serve as the
main building block in our generic AKE construction with state reveal later.
We present the formal definition of ε-MU-SIM security (Definition 5). We also
present simple constructions of ε-MU-SIM secure KEMs from universal2-HPS in
the full version [21].

Informally, ε-MU-SIM security requires that there exists a simulated encap-
sulation algorithm Encap∗(sk) which returns simulated ciphertext/key pairs
(c∗,K∗) satisfying the following two properties. Firstly, they should be com-
putationally indistinguishable from real ciphertext/key pairs. Secondly, given c∗

and an arbitrary single decryption query, the simulated key K∗ should be ε-close
to uniform.

Definition 5 (ε-MU-SIM Security for KEM). We require that there exists
a simulated encapsulation algorithm Encap∗(sk) which takes the secret key sk
as input, and outputs a pair of simulated c∗ ∈ CT and simulated K∗ ∈ K. For
ε-uniformity we require that for any (unbounded) adversary A, it holds that

∣
∣ Pr[c ←$ A(pk, c∗,K∗) : c �= c∗ ∧ A(pk, c∗,K∗,Decap(sk, c)) ⇒ 1]

− Pr[c ←$ A(pk, c∗, R) : c �= c∗ ∧ A(pk, c∗, R,Decap(sk, c)) ⇒ 1]
∣
∣ ≤ ε,

(1)

where the probability is over ppKEM ←$ KEM.Setup, (pk, sk) ←$ KEM.Gen
(ppKEM), (c∗,K∗) ←$ Encap∗(sk), R ←$ K and the internal randomness of A.

Furthermore, to KEM, a simulated encapsulation algorithm Encap∗, an adver-
sary A, and μ ∈ N we associate the advantage function Advmu-sim

KEM,Encap∗,μ(A) :=
∣
∣
∣Pr

[
A

(
{pki, ski, c

(0)
i ,K

(0)
i }i∈[μ]

)
⇒ 1

]
− Pr

[
A

(
{pki, ski, c

(1)
i ,K

(1)
i }i∈[μ]

)
⇒ 1

]∣
∣
∣ , (2)

where ppKEM ←$ KEM.Setup, (pki, ski) ←$ KEM.Gen(ppKEM), (c(0)i ,K
(0)
i ) ←$

Encap(pki), and (c(1)i ,K
(1)
i ) ←$ Encap∗(ski) for ∀i ∈ [μ].

Note that ε-MU-SIM security tightly implies MUSC-otCCArev&corr security which
is a stronger variant of MUSC-otCCA security supporting key reveal and user
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corrupt queries. Reveal and corrupt queries can be tolerated since in the security
experiment (2), adversary A also obtains secret keys sk1, . . . , skμ. By (1) one can
see that one single decapsulation query is supported. In particular, ε-MU-SIM
security tightly implies MUSC-otCCA security. In the full version [21], we will
define universal2 hash proof systems, construct HPSMDDH schemes from the
MDDH assumptions, and show how they imply ε-MU-SIM secure KEMs.

3 Authenticated Key Exchange

3.1 Definition of Authenticated Key Exchange

Definition 6 (AKE). An authenticated key exchange (AKE) scheme AKE =
(AKE.Setup,AKE.Gen,AKE.Protocol) consists of two probabilistic algorithms and
an interactive protocol.

– AKE.Setup: The setup algorithm outputs the public parameter ppAKE.
– AKE.Gen(ppAKE, Pi): The generation algorithm takes as input ppAKE and a

party Pi, and outputs a key pair (pki, ski).
– AKE.Protocol(Pi(resi) � Pj(resj)): The protocol involves two parties Pi and

Pj, who have access to their own resources, resi :=(ski, ppAKE, {pku}u∈[μ])
and resj := (skj , ppAKE, {pku}u∈[μ]), respectively. Here μ is the total number
of users. After execution, Pi outputs a flag Ψi ∈ {∅,accept, reject}, and
a session key ki (ki might be the empty string ∅), and Pj outputs (Ψj , kj)
similarly.

Correctness of AKE. For any distinct and honest parties Pi and Pj , they share
the same session key after the execution of AKE.Protocol(Pi(resi) � Pj(resj)),
i.e., Ψi = Ψj = accept, ki = kj �= ∅.

3.2 Security Model of AKE

We will adapt the security model formalized by [2,19,28], which in turn followed
the model proposed by Bellare and Rogaway [5]. We also include replay attacks
[29] and multiple test queries with respect to the same random bit [23].

First, we will define oracles and their static variables in the model. Then we
describe the security experiment and the corresponding security notions.

Oracles. Suppose there are at most μ users P1, P2, ..., Pμ, and each user will
involve at most � instances. Pi is formalized by a series of oracles, π1

i , π2
i , ..., π�

i .
Oracle πs

i formalizes Pi’s execution of the s-th protocol instance.
Each oracle πs

i has access to Pi’s resource resi := (ski, ppAKE,PKList :=
{pku}u∈[μ]). πs

i also has its own variables varsi := (stsi ,Pid
s
i , k

s
i , Ψ

s
i ).

– stsi : State information that has to be stored between two rounds in order to
execute the protocol.

– Pids
i : The intended communication peer’s identity.
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– ks
i ∈ K: The session key computed by πs

i . Here K is the session key space. We
assume that ∅ ∈ K.

– Ψs
i ∈ {∅,accept, reject}: Ψs

i indicates whether πs
i has completed the protocol

execution and accepted ks
i .

At the beginning, (stsi ,Pid
s
i , k

s
i , Ψ

s
i ) are initialized to (∅, ∅, ∅, ∅). We declare that

ks
i �= ∅ if and only if Ψs

i = accept.

Security Experiment. To define the security notion of AKE, we first formalize
the security experiment ExpAKE,μ,�,A with the help of the oracles defined above.
ExpAKE,μ,�,A is a game played between an AKE challenger C and an adversary
A. C will simulate the executions of the � protocol instances for each of the μ
users with oracles πs

i . We give a formal description in Fig. 4.
Adversary A may copy, delay, erase, replay, and interpolate the messages

transmitted in the network. This is formalized by the query Send to oracle
πs

i . With Send, A can send arbitrary messages to any oracle πs
i . Then πs

i will
execute the AKE protocol according to the protocol specification for Pi. The
StateReveal(i, s) oracle allows A to reveal πs

i ’s session state.
We also allow the adversary to observe session keys of its choices. This is

reflected by a SessionKeyReveal query to oracle πs
i .

A Corrupt query allows A to corrupt a party Pi and get its long-term secret
key ski. With a RegisterCorrupt query, A can register a new party without public
key certification. The public key is then known to all other users.

We introduce a Test query to formalize the pseudorandomness of ks
i . There-

fore, the challenger chooses a bit b ←$ {0, 1} at the beginning of the experiment.
When A issues a Test query for πs

i , the oracle will return ⊥ if the session key
ks

i is not generated yet. Otherwise, πs
i will return ks

i or a truly random key,
depending on b. The task of A is to tell whether the key is the true session key
or a random key. The adversary is allowed to make multiple test queries.

Formally, the queries by A are described as follows.

– Send(i, s, j,msg): If msg = 
, it means that A asks oracle πs
i to send the first

protocol message to Pj . Otherwise, A impersonates Pj to send message msg
to πs

i . Then πs
i executes the AKE protocol with msg as Pi does, computes

a message msg′, and updates its own variables varsi = (stsi ,Pid
s
i , k

s
i , Ψ

s
i ). The

output message msg′ is returned to A.
If Send(i, s, j,msg) is the τ -th query asked by A and πs

i changes Ψs
i to accept

after that, then we say that πs
i is τ -accepted.

– Corrupt(i): C reveals party Pi’s long-term secret key ski to A. After corruption,
π1

i , ..., π�
i will stop answering any query from A.

If Corrupt(i) is the τ -th query asked by A, we say that Pi is τ -corrupted.
If A has never asked Corrupt(i), we say that Pi is ∞-corrupted.

– RegisterCorrupt(i, pki): It means that A registers a new party Pi (i > μ). C
distributes (Pi, pki) to all users. In this case, we say that Pi is 0-corrupted.

– StateReveal(i, s): The query means that A asks C to reveal πs
i ’s session state.

C returns stsi to A.
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Fig. 4. The security experiments ExpAKE,μ,�,A, ExpreplayAKE,μ,�,A (both without red text)

and Expreplay,stateAKE,μ,�,A (with red text). The list of trivial attacks is given in Table 2.
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– SessionKeyReveal(i, s): The query means that A asks C to reveal πs
i ’s session

key. If Ψs
i �= accept, C returns ⊥. Otherwise, C returns the session key ks

i of
πs

i .
– Test(i, s): If Ψs

i �= accept, C returns ⊥. Otherwise, C sets k0 = ks
i , samples

k1 ←$ K, and returns kb to A. We require that A can ask Test(i, s) to each
oracle πs

i only once.

Informally, the pseudorandomness of ks
i asks that any PPT adversary A with

access to Test(i, s) cannot distinguish ks
i from a uniformly random key. Yet, we

have to exclude some trivial attacks. We will define them later and first introduce
partnering.

Definition 7 (Original Key [28]). For two oracles πs
i and πt

j, the original key,
denoted as K(πs

i , π
t
j), is the session key computed by the two peers of the protocol

under a passive adversary only, where πs
i is the initiator.

Remark 1. We note that K(πs
i , π

t
j) is determined by the identities of Pi and Pj

and the internal randomness.

Definition 8 (Partner [28]). Let K(·, ·) denote the original key function. We
say that an oracle πs

i is partnered to πt
j, denoted as Partner(πs

i ← πt
j)

4, if one of
the following requirements holds:

– πs
i has sent the first message and ks

i = K(πs
i , π

t
j) �= ∅, or

– πs
i has received the first message and ks

i = K(πt
j , π

s
i ) �= ∅.

We write Partner(πs
i ↔ πt

j) if Partner(πs
i ← πt

j) and Partner(πt
j ← πs

i ).

Trivial Attacks. In order to prevent the adversary from trivial attacks, we keep
track of the following variables for each party Pi and oracle πs

i :

– crpi: whether Pi is corrupted.
– Aflags

i : whether the intended partner is corrupted when πs
i accepts.

– T s
i : whether πs

i was tested.
– kRevs

i : whether the session key ks
i was revealed.

– stRevs
i : whether the session state stsi was revealed.

– FirstAccs
i : whether Pi or its partner is the first to accept the key in the

session.

Based on that we give a list of trivial attacks TA1-TA7 in Table 2.

Remark 2. We introduced variable FirstAcc to indicate whether the party or its
partner is the first to accept the key. This is used to determine whether the state
of an oracle is allowed to be revealed when the oracle or its partner is tested.

4 The arrow notion πs
i ← πt

j means πs
i (not necessarily πt

j) has computed and accepted
the original key.
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– In general, the session key of the party which accepts the key after its partner
(i.e., FirstAcc = false), by the correctness of AKE, must be identical to its
partner’s. Thus, the session key is fully determined by the state and long-term
key of that party (as well as transcripts).

– However, the session key of the party which accepts the key before its partner
(i.e., FirstAcc = true) might involve fresh randomness beyond its state and
long-term key.

Thus, it is a trivial attack to reveal the state and the long-term key of the same
oracle, if the oracle or its partner is tested and the oracle accepts the key after
its partner (i.e., FirstAcc = false). This is a minimal trivial attack regarding
state reveal5, and it is formalized as TA6 and TA7 in Table 2.

The following definition also captures replay attacks. Given Partner(πs′
i′ ← πt

j),
a successful replay attack means that A resends to πs

i the messages, which
were sent from πt

j to πs′
i′ , and πs

i is fooled to compute a session key, i.e.,
Partner(πs

i ← πt
j). Note that a stateless 2-pass AKE protocol cannot be secure

against replay attacks [29]. Therefore, we also define security without replay
attacks in Definition 11.

Furthermore, we distinguish between security with state reveals (Definition 9)
and without state reveals (Definition 10), where in the latter the adversary
cannot query the session state of an oracle.

Table 2. Trivial attacks TA1-TA7 for security experiments ExpAKE,μ,�,A,

ExpreplayAKE,μ,�,A and Expreplay,stateAKE,μ,�,A, where TA6 and TA7 are only defined in Expreplay,stateAKE,μ,�,A.
Note that “Aflags

i = false” is implicitly contained in TA2-TA7 because of TA1.

Types Trivial attacks Explanation

TA1 T s
i = true ∧ Aflags

i = true πs
i is tested but πs

i ’s partner is corrupted when

πs
i accepts session key ks

i

TA2 T s
i = true ∧ kRevs

i = true πs
i is tested and its session key ks

i is revealed

TA3 T s
i = true when Test(i, s) is queried Test(i, s) is queried at least twice

TA4 T s
i = true ∧ Partner(πs

i ↔ πt
j) ∧ kRevt

j = true πs
i is tested, πs

i and πt
j are partnered to each

other, and πt
j ’s session key kt

j is revealed

TA5 T s
i = true ∧ Partner(πs

i ↔ πt
j) ∧ T t

j = true πs
i is tested, πs

i and πt
j are partnered to each

other, and πt
j is tested

TA6 T s
i = true ∧ FirstAccs

i = false

∧ stRevs
i = true ∧ crpi = true

πs
i is tested, πs

i accepts its key after its partner,

and πs
i is both corrupted and has its state stsi

revealed

TA7 T s
i = true ∧ Partner(πs

i ← πt
j) ∧ FirstAcct

j =

false ∧ stRevt
j = true ∧ crpj = true

πs
i is tested, πs

i accepts its session key before

its partner, but its partner πt
j is both corrupted

and state revealed

Definition 9 (Security of AKE with Replay Attacks and State Reveal).
Let μ be the number of users and � the maximum number of protocol executions
5 It is also possible to define the trivial attack regardless of FirstAcc, but our definition

of TA6 and TA7 is minimal and makes our security model stronger.
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per user. The security experiment Expreplay,stateAKE,μ,�,A (see Fig. 4) is played between the
challenger C and the adversary A.

1. C runs AKE.Setup to get AKE public parameter ppAKE.
2. For each party Pi, C runs AKE.Gen(ppAKE, Pi) to get the long-term key pair

(pki, ski). Next it chooses a random bit b ←$ {0, 1} and provides A with the
public parameter ppAKE and the list of public keys PKList := {pki}i∈[μ].

3. A asks C Send, Corrupt, RegisterCorrupt, SessionKeyReveal, StateReveal and
Test queries adaptively.

4. At the end of the experiment, A terminates with an output b∗.

• Strong Authentication. Let WinAuth denote the event that A breaks authen-
tication in the security experiment. WinAuth happens iff ∃(i, s) ∈ [μ] × [�] s.t.
(1) πs

i is τ -accepted.
(2) Pj is τ̂ -corrupted with j := Pids

i and τ̂ > τ .
(3) Either (3.1) or (3.2) or (3.3) happens6. Let j := Pids

i .
(3.1) There is no oracle πt

j that πs
i is partnered to.

(3.2) There exist two distinct oracles πt
j and πt′

j′ , to which πs
i is partnered.

(3.3) There exist two oracles πs′
i′ and πt

j with (i′, s′) �= (i, s), such that both
πs

i and πs′
i′ are partnered to πt

j.
• Indistinguishability. Let WinInd denote the event that A breaks indistin-

guishability in Expreplay,stateAKE,μ,�,A above. Let b∗ be A’s output. Then WinInd happens
iff b∗ = b. Trivial attacks are already considered during the execution of the
experiment. A list of trivial attacks is given in Table 2.

Note that Expreplay,stateAKE,μ,�,A ⇒ 1 iff WinInd happens. Hence, the advantage of A is
defined as

Advreplay,stateAKE,μ,� (A) : = max{Pr[WinAuth], |Pr[WinInd] − 1/2|}
= max{Pr[WinAuth], |Pr[Expreplay,stateAKE,μ,�,A ⇒ 1] − 1/2|}.

Definition 10 (Security of AKE with Replay Attacks and without
State Reveal). The security experiment ExpreplayAKE,μ,�,A (see Fig. 4) is defined like
Expreplay,stateAKE,μ,�,A except that we disallow state reveal queries. Similarly, the advantage
of an adversary A in ExpreplayAKE,μ,�,A is defined as

AdvreplayAKE,μ,�(A) := max{Pr[WinAuth], |Pr[ExpreplayAKE,μ,�,A ⇒ 1] − 1/2|}.

Definition 11 (Security of AKE without Replay Attack and State
Reveal). The security experiment ExpAKE,μ,�,A (see Fig. 4) is defined like
Expreplay,stateAKE,μ,�,A except that we disallow replay attacks and state reveal queries. Sim-
ilarly, the advantage of an adversary A in ExpAKE,μ,�,A is defined as

AdvAKE,μ,�(A) := max{Pr[WinAuth], |Pr[ExpAKE,μ,�,A ⇒ 1] − 1/2|}.
6 Given (1) ∧ (2), (3.1) indicates a successful impersonation of Pj , (3.2) suggests one

instance of Pi has multiple partners, and (3.3) corresponds to a successful replay
attack.
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Remark 3 (Perfect Forward Security and KCI Resistance). The security model
of AKE supports (perfect) forward security (a.k.a. forward secrecy [20]). That is,
if Pi or its partner Pj has been corrupted at some moment, then the exchanged
session keys computed before the corruption remain hidden from the adversary.
Meanwhile, πs

i may be corrupted before Test(i, s), which provides resistance to
key-compromise impersonation (KCI) attacks [25].

4 AKE Protocols

We construct AKE protocols AKE2msg, AKE3msg and AKEstate
3msg from a signature

scheme SIG and a key encapsulation mechanism KEM. Additionally, we use a
symmetric encryption scheme SE with key space KSE to encrypt the state in
protocol AKEstate

3msg. Apart from that, AKEstate
3msg and AKE3msg are the same. The

protocols are given in Fig. 5.
The setup algorithm generates the public parameter ppAKE := (ppSIG, ppKEM)

by running SIG.Setup and KEM.Setup. The key generation algorithm inputs the
public parameter and a party Pi and generates a signature key pair (vki, sski).
In AKEstate

3msg, it also chooses a symmetric key si uniformly from the key space
KSE. It returns the public key vki and the secret key (sski, si).

The protocol is executed between two parties Pi and Pj . Each party has access
to their own resources resi and resj which contain the corresponding secret key,
the public parameter and a list PKList consisting of the public keys of all parties.
Each party initializes its local variables Ψi, ki and sti with the empty string. To
initiate a session in AKE3msg and AKEstate

3msg, the party Pj chooses a bitstring N

uniformly from {0, 1}λ and sends it to Pi. The next message and the first message
in protocol AKE2msg is sent by Pi. It generates an ephemeral key pair (p̂k, ŝk) by
running KEM.Gen(ppKEM) and computes a signature σ1 over the identities of Pi

and Pj , the ephemeral public key and the nonce (only in AKE3msg and AKEstate
3msg).

When using state encryption, it also encrypts the ephemeral secret key using its
symmetric key si and stores the ciphertext in sti. It then sends (p̂k, σ1) to Pj .
Pj verifies the signature using vki and rejects if it is not valid. Otherwise, it con-
tinues the protocol by computing (c,K) ←$ Encap(p̂k). It computes a signature
σ2 over the identities as well as the previous message, c and the nonce (only in
AKE3msg and AKEstate

3msg). Pj accepts the session key and sets kj to K. It sends
(c, σ2) to Pi. Pi verifies the signature and rejects if it is invalid. Otherwise, it
retrieves the ephemeral secret key by decrypting the state, computes the session
key K from c and accepts.

Correctness. Correctness of AKE2msg, AKE3msg and AKEstate
3msg follows directly

from the correctness of SIG, KEM and SE.
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Fig. 5. Generic construction of AKE2msg (without red and gray parts), AKE3msg (with
red and without gray parts) and AKEstate

3msg (with red and gray parts) from KEM, SIG
and SE. Note that the state of Pj only consists of public parts and is therefore omitted
here.

Theorem 1 (Security of AKEstate
3msg with Replay Attacks and State

Reveals). For any adversary A against AKEstate
3msg with replay attacks and

state reveals, there exist an MU-EUF-CMAcorr adversary BSIG against SIG, an
ε-MU-SIM adversary BKEM against KEM and an IND-mRPA adversary BSE

against SE such that

Advreplay,stateAKEstate
3msg,μ,�(A) ≤ Advmu-sim

KEM,Encap∗,μ�(BKEM) + 2 · Advmu-corr
SIG,μ (BSIG)

+ 2μ · Advmrpa
SE,μ(BSE) + 2μ� · ε + 2(μ�)2 · 2−γ + μ�2 · 2−λ ,

where γ is the diversity parameter of KEM and λ is the length of the nonce N
in bits. Furthermore, T(A) ≈ T(BKEM), T(A) ≈ T(BSIG) and T(A) ≈ T(BSE).

We will give a proof sketch below. The formal proof is given in the full version
[21].
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Proof Sketch. The signatures in the protocol ensure that the adversary can only
forward messages for those sessions that it wants to test. Thus the experiment
can control all ephemeral public keys p̂k and ciphertexts c that are used for test
queries. Due to the nonce, the adversary can also not replay a message containing
a particular p̂k. Thus, each p̂k is used in at most one test query.

A party will close a session when it accepts or rejects the session. Thus,
the adversary can submit at most one ciphertext c′ which is different from the
ciphertext used in the test query. Using a session key reveal query, the adversary
will only see at most one more key decapsulated with ŝk.

To deal with state reveals, the adversary A can additionally obtain the state
which is the encrypted ŝk. The reduction must know ŝk in order to answer those
queries. The simulatability property of KEM ensures that Encap and Encap∗

are indistinguishable, even given ŝk. So, we first switch from Encap to Encap∗.
Now, we want to replace the session keys of tested sessions with random keys.
Therefore, we have to do a hybrid argument over all users. In the η-th hybrid, we
replace the test session keys for party Pη. We can show that this is unnoticeable
using that the key K∗ generated by Encap∗ is statistically close to uniform even if
the adversary gets to see another key for a ciphertext of its choice. We distinguish
the following cases.

Case 1: The adversary corrupts Pη. For each session, the adversary can either
reveal the session state or test this session. If the adversary reveals the state,
we do not have to replace the session key. If the session is tested, the adversary
does not know the state E(sη, ŝk) and thus we can replace the session key by
ε-uniformity of Encap∗.

Case 2: The adversary does not corrupt Pη. In this case, we use that SE is IND-
mRPA secure and replace ŝk in the encrypted state with a random secret key
for this party. Then we can use ε-uniformity to replace all tested keys for that
party with random keys, as the state does not contain any information about
ŝk. After that, we have to switch back the state encryption to encrypt the
real secret key ŝk, getting ready for the next hybrid.

After these changes, the Test oracle will always output a random key, indepen-
dent of the bit b.

Overall, the proof loses a factor of 2μ only in the IND-mRPA security of the
symmetric encryption scheme. All other parts are tight.

Theorem 2 (Security of AKE3msg with Replay Attacks and without
State Reveals). For any adversary A against AKE3msg with replay attacks and
without state reveals, there exist an MU-EUF-CMAcorr adversary BSIG against
SIG and an MUSC-otCCA adversary BKEM against KEM such that

AdvreplayAKE3msg,μ,�(A) ≤ 2 · Advmusc-otcca
KEM,μ� (BKEM) + 2 · Advmu-corr

SIG,μ (BSIG)

+ 2(μ�)2 · 2−γ + μ�2 · 2−λ ,

where γ is the diversity parameter of KEM and λ is the length of the nonce N
in bits. Furthermore, T(A) ≈ T(BKEM) and T(A) ≈ T(BSIG).
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Theorem 3 (Security of AKE2msg without State Reveals and Replay
Attacks). For any adversary A against AKE2msg without state reveals and replay
attacks, there exist an MU-EUF-CMAcorr adversary BSIG against SIG and an
MUC-otCCA adversary BKEM against KEM such that

AdvAKE2msg,μ,�(A) ≤ 2 · Advmuc-otcca
KEM,μ� (BKEM) + Advmu-corr

SIG,μ (BSIG) + (μ�)2 · 2−γ ,

where γ is the diversity parameter of KEM. Furthermore, T(A) ≈ T(BKEM) and
T(A) ≈ T(BSIG).

The proofs of Theorem 2 and Theorem 3 are given in the full version [21], due
to space limitations.

5 Signatures with Tight Adaptive Corruptions

5.1 Pairing Groups and MDDH Assumptions

Let GGen be a pairing group generation algorithm that returns a description
PG := (G1,G2,GT , q,P1,P2, e) of asymmetric pairing groups where G1, G2,
GT are cyclic groups of order q for a λ-bit prime q, P1 and P2 are generators
of G1 and G2, respectively, and e : G1 × G2 is an efficient computable (non-
degenerated) bilinear map. PT := e(P1,P2) is a generator in GT . In this paper,
we only consider Type III pairings, where G1 �= G2 and there is no efficient
homomorphism between them. All constructions in this paper can be easily
instantiated with Type I pairings by setting G1 = G2 and defining the dimension
k to be greater than 1.

We use the implicit representation of group elements as in [14]. For s ∈
{1, 2, T} and a ∈ Zq define [a]s = aPs ∈ Gs as the implicit representation
of a in Gs. Similarly, for a matrix A = (aij) ∈ Z

n×m
q we define [A]s as the

implicit representation of A in Gs. Span(A) := {Ar | r ∈ Z
m
q } ⊂ Z

n
q denotes

the linear span of A, and similarly Span([A]s) := {[Ar]s | r ∈ Z
m
q } ⊂ G

n
s .

Note that it is efficient to compute [AB]s given ([A]s,B) or (A, [B]s) with
matching dimensions. We define [A]1 ◦ [B]2 := e([A]1, [B]2) = [AB]T , which can
be efficiently computed given [A]1 and [B]2.

We recall the definition of the Matrix Decisional Diffie-Hellman (MDDH)
and related assumptions from [14].

Definition 12 (Matrix distribution). Let k, � ∈ N with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
q of full rank k in polynomial

time. Let Dk := Dk+1,k.

For positive integers k, η, n ∈ N
+ and a matrix A ∈ Z

(k+η)×n
q , we denote the k

rows of A by A ∈ Z
k×n
q and the lower η rows of A by A ∈ Z

η×n
q . Without loss of

generality, we assume A for A ←$ D�,k form an invertible square matrix in Z
k×k
q .

The D�,k-MDDH problem is to distinguish the two distributions ([A], [Aw]) and
([A], [u]) where A ←$ D�,k, w ←$ Z

k
q and u ←$ Z

�
q.



AKE and Signatures with Tight Security in the Standard Model 691

Definition 13 (D�,k-MDDH assumption). Let D�,k be a matrix distribution
and s ∈ {1, 2, T}. We say that the D�,k-MDDH assumption holds relative to
GGen in group Gs if for all adversaries A, it holds that

AdvMDDH
GGen,D�,k,Gs

(A) := |Pr[A(PG, [A]s, [Aw]s) ⇒ 1] − Pr[A(PG, [A]s, [u]s) ⇒ 1]|

is negligible where the probability is taken over PG ←$ GGen(1λ), A ←$ D�,k,
w ←$ Z

k
q and u ←$ Z

�
q.

Definition 14 (Uniform distribution). Let k, � ∈ N
+ with � > k. We call

U�,k a uniform distribution if it outputs uniformly random matrices in Z
�×k
q of

rank k in polynomial time. Let Uk := Uk+1,k.

Lemma 1 (D�,k-MDDH ⇒ Uk-MDDH [14]). Let �, k ∈ N+ with � > k and let
D�,k be a matrix distribution. A Uk-MDDH instance is at least as hard as an
D�,k instance. More precisely, for each adversary A there exists an adversary B
with

AdvMDDH
GGen,Uk,Gs

(A) ≤ AdvMDDH
GGen,D�,k,Gs

(B)

and T(A) ≈ T(B).

The Kernel-Diffie-Hellman assumption (Dk-KMDH) [31] is a (weaker) com-
putational analogue of the Dk-MDDH Assumption.

Definition 15 (Dk-KMDH). Let Dk be a matrix distribution. We say that the
Dk-Kernel Diffie-Hellman (Dk-KMDH) assumption holds relative to a prime
order group Gs for s ∈ {1, 2} if for all PPT adversaries A,

AdvKMDH
GGen,Dk,Gs

(A) : = Pr[c	A = 0 ∧ c �= 0 | [c]3−s ←$ A(PG, [A]s)],

where the probabilities are taken over PG ←$ GGen(1λ) and A ←$ Dk.

5.2 Previous Schemes with Tight Adaptive Corruptions

We will construct a signature scheme with tight MU-EUF-CMAcorr security and
only small constant number of elements in signatures. Such a scheme has been
proposed in [2, Section 2.3] (called SIGC), but we identify a gap in their proof.
We now present the gap in their security proof and why we think it will be hard
to close it.

The construction of SIGC follows the BKP IBE schemes [6], namely, it tightly
transforms an affine MAC [6] into a signature in the multi-user setting. In order
to have a tightly MU-EUF-CMAcorr secure signature scheme, the underlying
MAC needs to be tightly secure against adaptive corruption of its secret keys
in the multi-user setting. We will now point to potential problems in formally
proving it.

We abstract the underlying MAC of SIGC as MACBHJKL: For message space
{0, 1}�, it chooses A′ ←$ Dk and random vectors xi,j ←$ Z

k
q (for 1 ≤ i ≤ � and

j = 0, 1). Then it defines B := A′ ∈ Z
k×k
q and publishes system parameters



692 S. Han et al.

pp := ([B]1, ([B	xi,j ]1)1≤i≤�,j=0,1). For each user n, it chooses its MAC secret
key as [x′

n]1 ←$ G1, and its MAC tag consist of ([t]1, [u]1), where

t = Bs ∈ Z
k
q for s ←$ Z

k
q

u = x′
n + t	 ∑

i
xi,mi

︸ ︷︷ ︸
=:x(m)

∈ Zq. (3)

In their security proof, they argue that [u]1 in the MAC tagging queries is pseudo-
random, given pp and some of the secret keys [x′

n]1 (via the adaptive corruption
queries) to an adversary.7 In achieving this, they define a sequence of hybrids
Hj for 1 ≤ j ≤ �. In each Hj , they replace x′

n for each user n with RFn,j(m|j),
where RFn,j : {0, 1}j → Zq is a random function and m is the first tagging query
to user n, and generate the MAC tag of m′ as

u = RFn,j(m′|j) + t	x(m′) (4)

with t as in Eq. (3).
In their final step (between H� and Game 4), they argue that the distribution

of u = RFn,�(m′) + t	x(m′) is uniformly random (as in Game 4) even for an
unbounded adversary, given pp and adaptive corruptions. Then they conclude
that H� (where u = RFn,�(m′) + t	x(m′)) and Game 4 (where u is chosen
uniformly at random) are identical and Pr[χ4] = Pr[H� = 1] (according to their
notation). However, this is not the case: B ∈ Z

k×k
q is full-rank and thus, given

[B	xi,j ]1 in pp, xi,j ∈ Z
k
q is uniquely defined. (For concreteness, imagine a

simple example where an (unbounded) adversary A only queries one MAG tag
for message m for user n and then asks for the secret key [x′

n]1 := RFn,�(m) of
user n. Then, A sees that u = RFn,�(m)+t	x(m) is uniquely defined by [x′

n]1, [t]1
and pp in H�, while u is uniformly at random in Game 4.) We suppose this gap
is inherent, since the terms B	xi,j completely leak the information about xi,j .
This is also the same reason why the BKP MAC cannot be used to construct a
tightly secure hierarchical IBE (HIBE) (cf. [26] for more discussion).

To resolve this, we follow the tightly secure HIBE approach in [26] and choose
B ←$ Z

3k×k
q . Now, there is a non-zero kernel matrix B⊥ ∈ Z

3k×2k
q for B (with

overwhelming probability), and the mapping xi,j ∈ Z
3k
q �→ B	xi,j ∈ Z

k
q is lossy.

In particular, the information about xi,j in the orthogonal space of B is perfectly
hidden from (unbounded) adversaries, given B	xi,j .

5.3 Our Construction

Let H : {0, 1}∗ → {0, 1}λ be a function chosen from a collision-resistant hash func-
tion family H. Our signature scheme SIGMDDH := (SIG.Setup,SIG.Gen,Sign,Ver)
is defined in Fig. 6. Correctness can be verified as

[v, u]1 ◦ [A]2 = [(y′, x′) · A + t	 · (Y(hm) | x(hm)) · A]T

for ([t]1, [u]1, [v]1) ←$ Sign(ssk,m).
7 This is different to the BKP IBE where [B�xi,j ]1 and [x′

n]1 are not available to an
adversary.
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Fig. 6. Our signature scheme with tight adaptive corruptions, where for hm ∈ {0, 1}λ

we define the functions x(hm) :=
∑λ

i=1 xi,hmi , Y(hm) :=
∑λ

i=1 Yi,hmi , Z(hm) :=∑λ
i=1 Zi,hmi , and P(hm) :=

∑λ
i=1 Pi,hmi .

Theorem 4 (Security of SIGMDDH). For any adversary A against the
MU-EUF-CMAcorr security of SIGMDDH, there are adversaries B against the col-
lision resistance of H, B1 against the U3k,k-MDDH assumption over G1 and B2

against the Dk-KMDH assumption over G2 with

Pr[Expmu-corr
SIG,μ,A ⇒ 1] ≤AdvcrH(B) + (8kλ + 2k)AdvMDDH

GGen,U3k,k,G1
(B1)

+ AdvKMDH
GGen,Dk,G2

(B2) +
4λ + 2k + 2

q − 1
,

where T(B) ≈ T(A) ≈ T(B1) ≈ T(B2).

Proof. We prove the tight MU-EUF-CMAcorr security of SIGMDDH with a
sequence of games given in Fig. 7. Let A be an adversary against the
MU-EUF-CMAcorr security of SIGMDDH, and let Wini denote the probability that
Gi returns 1.

Game G0: G0 is the original MU-EUF-CMAcorr security experiment Expmu-corr
SIG,μ,A

(see the full version [21] for the formal definition). In addition to the original
game, we add a rejection rule if there is a collision between the forgery and a
signing query, namely, H(vki∗ ,m∗) = H(vki,m) where (i,m) is one of the signing
queries. By the collision resistance of H, we have

|Pr[Expmu-corr
SIG,μ,A ⇒ 1] − Pr[Win0]| ≤ AdvcrH(B).

For better readability, we assume all the signing queries are distinct for
the following games. If the same (i,m) is asked multiple times, we can take
the first response ([t]1, [u]1, [v]1) and answer the repeated queries with the
re-randomization ([t′]1, [u′]1, [v′]1) as t′ := t + Bs′ (for s′ ←$ Z

k
q ), u′ :=

u + s′	(B	x(hm)) and v′ := v + s′	(B	x(hm)) and hm := H(vki,m). Note
that this will not change the view of A.
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Fig. 7. Games used to prove Theorem 4.

Game G1: For verifying the forgery, in addition to using Ver, we use the secret
[x′

i∗ ]1 and ([xj,b]1)1≤j≤λ to check if ([t∗]1, [u∗]1) in the forgery satisfies the fol-
lowing equation:

[u∗]1 = [x′
i∗ ]1 + [t∗]	1 · x(hm∗). (5)

We note that

Ver(vki∗ ,m∗, σ∗) = 1

⇔(v ‖ u) · A = (y′
i∗ ‖ x′

i∗)A + t∗	 · (Y(hm) ‖ x(hm)) · A.

Thus, if Eq. (5) does not hold, then the vector [(v ‖ u)]1 − ([y′
i∗ ‖ x′

i∗ ]1 +[t∗	]1 ·
x(hm∗)) ∈ G

1×(k+1)
1 is non-zero and orthogonal to [A]2. Therefore, we bound

the difference between G0 and G1 with the Dk-KMDH assumption as

|Pr[Win0] − Pr[Win1]| ≤ AdvKMDH
GGen,Dk,G2

(B).
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Game G2: We do not use the values Yj,b (for 1 ≤ j ≤ λ and b = 0, 1) and y′
i

(for 1 ≤ i ≤ μ) to simulate G2. We make this change by substituting all Yj,b

and y′
i using the formulas

Y	
j,b = (Zj,b − xj,b · A)(A)−1 and y′

i = (z′
i − x′

i · A)(A)−1, (6)

respectively. More precisely, the public parameters pp are computed by picking
Zj,b and xj,b at random and then defining Yj,b using Eq. (6). The verification
keys vki for user i (1 ≤ i ≤ μ) are computed by picking z′

i and x′
i at random.

For OSign(i,m), we now compute

v := y′
i + t	Y(hm) ∈ Z

1×k
q

= (z′
i − x′

i · A)(A)−1 + t	(Z(hm) − x(hm) · A)(A)−1

= (z′
i + t	Z(hm) − (x′

i + t	x(hm))
︸ ︷︷ ︸

=u

·A)(A)−1.

The secret verification of the forgery can be done by knowing x′
i∗ and xj,b.

The changes in G2 are only conceptual, since Eq. (6) are equivalent to Zj,b =
(Yj,b ‖ xj,b)A and z′

i = (y′
i ‖ x′

i)A. Thus, we have

Pr[Win1] = Pr[Win2].

In order to bound Pr[Win2], consider a “message authentication code” MAC
which is defined as follows.

– The public parameters consist of ppMAC := (PG, [B]1, ([di,j ]1)1≤i≤λ,j=0,1),
where di,j := B	xi,j ∈ Z

k
q for xi,j ←$ Z

3k
q and B ←$ U3k,k.

– The secret key is [x′]1.
– The MAC tag on hm is ([t]1, [u]1), where t := Bs and u := x′ + t	x(hm), for

s ←$ Z
k
q .

Note that strictly speaking MAC is not a MAC since verification cannot only be
done efficiently by knowing the values xi,j .

The following lemma states MU-EUF-CMAcorr security of MAC, with proof
in the full version [21].

Lemma 2 (Core Lemma). For every adversaries A interacting with
UF-CMAcorr, there exists an adversary B against the U3k,k-MDDH assumption
in G1 with

Pr[UF-CMAcorr
A ⇒ 1] ≤ (8kλ + 2k) · AdvMDDH

GGen,U3k,k,G1
(B1) +

4λ + 2k + 2
q − 1

,

and T(B) ≈ T(A), where Qe is the number of A’s queries to OMac.

Finally, we bound the probability that the adversary wins in G2 using our
Core Lemma (Lemma 2) by constructing an adversary BMAC as in Fig. 9.

Pr[Win2] = Pr[UF-CMAcorr
BMAC

⇒ 1].
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Fig. 8. Game UF-CMAcorr for Lemma 2.

In order to analyze Pr[Win2] we argue as follows. The simulated pp and
(vki)1≤i≤μ are distributed as in G2. Further, queries to OSign and OCorr from
sski can be perfectly simulated using OMac and O′

Corr, respectively. The addi-
tional group elements [v]1 from σ and [y′

i]1 can be simulated as in G2. Finally,
using a valid forgery (i∗,m∗, σ∗) output by A, BMAC wins its own game by call-
ing OVer(i∗, hm∗, ([t∗]1, [u∗]1), where ([t∗]1, [u∗]1) is a valid MAC tag on hm∗ for
user i∗. ��

Fig. 9. Reduction BMAC to bound the winning probability in G2. BMAC receives ppMAC

and gets oracle access to OMac and OVer, and O′
Corr as in Fig. 8.
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6 Concrete Instantiation of Our AKE Protocols

For AKE3msg, we use our new signature scheme SIGMDDH (Fig. 6) and the
ε-MU-SIM KEM constructed from the MDDH-based hash proof system
HPSMDDH (cf. the full version [21]). For AKEstate

3msg, the symmetric encryption
scheme to protect against state reveals can be instantiated using any weakly
secure (deterministic) encryption scheme such as AES or even a weak PRF.

For the KEM constructed in the full version [21], the KEM public key consists
of 2k group elements and the ciphertext of k + 1 group elements. A signature
consists of 4k + 1 group elements, cf. Fig. 6. Therefore, the first message is a
bitstring of length λ, the second message consists of 6k + 1 group elements and
the third message consists of 5k+2 group elements. For k = 1, we get an efficient
SXDH-based scheme with 15 elements in total.

We instantiate protocol AKE2msg using our signature scheme from Fig. 6 and
the MUC-otCCA secure KEM from Han et al. [22]. γ-diversity of the KEM
is proven in [29, Appendix D.2]. We analyze the communication complexity of
AKE2msg as follows. The KEM public key consists of k2 +3k group elements and
the ciphertext of 2k + 3 group elements. A signature consists of 4k + 1 group
elements. Therefore, the first message consists of k2 + 7k + 1 group elements
and the second message consists of 6k + 4 group elements. For k = 1, we get an
efficient SXDH-based scheme with 9 + 10 = 19 group elements in total.

For an overview we refer to Table 1 of the introduction.
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24. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

25. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

26. Langrehr, R., Pan, J.: Tightly secure hierarchical identity-based encryption. In:
Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 436–465. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 15

27. Langrehr, R., Pan, J.: Unbounded HIBE with tight security. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 129–159. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 5
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Abstract. OPAQUE [Jarecki et al., Eurocrypt 2018] is an asymmetric
password authenticated key exchange (aPAKE) protocol that is being
developed as an Internet standard and for use within TLS 1.3. OPAQUE
combines an Oblivious PRF (OPRF) with an authenticated key exchange
to provide strong security properties, including security against pre-
computation attacks (called saPAKE security). However, the security
of OPAQUE relies crucially on the security of the OPRF. If the latter
breaks (by cryptanalysis, quantum attacks or security compromise), the
user’s password is exposed to an offline dictionary attack. To address
this weakness, we present KHAPE, a variant of OPAQUE that does
not require the use of an OPRF to achieve aPAKE security, resulting
in improved resilience and near-optimal computational performance. An
OPRF can be optionally added to KHAPE, for enhanced saPAKE secu-
rity, but without opening the password to an offline dictionary attack
upon OPRF compromise.

In addition to resilience to OPRF compromise, a DH-based imple-
mentation of KHAPE (using HMQV) offers the best performance among
aPAKE protocols in terms of exponentiations with less than the cost of an
exponentiation on top of an UNauthenticated Diffie-Hellman exchange.
KHAPE uses three messages if the server initiates the exchange or four
when the client does (one more than OPAQUE in the latter case).

All results in the paper are proven within the UC framework in the
ideal cipher model. Of independent interest is our treatment of key-
hiding AKE which KHAPE uses as a main component as well as our UC
proofs of AKE security for protocols 3DH (a basis of Signal), HMQV
and SKEME, that we use as efficient instantiations of KHAPE.

1 Introduction

In the last few years the subject of password authenticated key exchange (PAKE)
protocols, particularly in the client-server setting (called asymmetric PAKE, or
aPAKE for short), has seen renewed interest due to the weaknesses of pass-
word protocols and the ongoing standardization effort at the Internet Engineer-
ing Task Force [49]. In particular, due to vulnerabilities in PKI systems and
TLS deployment, the standard PKI-based encrypted password authentication

c© International Association for Cryptologic Research 2021
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https://doi.org/10.1007/978-3-030-84259-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84259-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-84259-8_24


702 Y. Gu et al.

(or “password-over-TLS”) often leads to disclosure of passwords and increased
exploitation of phishing techniques. Even when the password is decrypted at the
correct server, its presence in plaintext form after decryption, constitutes a secu-
rity vulnerability as evidenced by repeated incidents where plaintext passwords
were accidentally stored in large quantities and for long periods of time even by
security-conscious companies [1,2].

In this paper we investigate the question of how “minimal” an asymmetric
PAKE can be. In spite of the many subtleties surrounding the design and anal-
ysis of aPAKE protocols, there are several efficient and practical realizations
which meet a universally composable (UC) notion of aPAKE [27]. For example,
the overhead of the recently analyzed SPAKE2+ protocol [51] over the unau-
thenticated Diffie-Hellman (uDH) protocol is 1 or 2 exponentiations per party.
Similar overhead costs are also imposed by the generic results which compile
any PAKE to aPAKE [27,33]. Known strong aPAKEs (see below), add similar
or larger overhead costs [15,37].

The comparison to uDH is significant not only from a practical point of
view, but also because PAKE protocols imply unauthenticated key exchange in
the sense of the Impagliazzo-Rudich results [29,34]. Thus, we can see uDH as
the lowest possible expected performance of PAKE protocols. But how close to
the uDH cost can we get; can one improve on existing protocols?

In the symmetric PAKE case, where the two peers share the same password,
there are almost optimal answers to this question. The Bellovin-Merrit’s clas-
sical EKE protocol [10], shows that all you need is to apply a symmetric-key
encryption on top of the uDH transcript. It requires a carefully chosen encryp-
tion scheme, e.g., one that is modeled after an ideal cipher, but it only involves
symmetric key techniques [4,9,14,46].1

Can this low overhead relative to uDH be achieved also in the more involved
setting of asymmetric PAKEs, where security against offline attacks is to be
provided even when the server is broken into? We show an aPAKE protocol,
KHAPE, that only requires symmetric operations (in the ideal cipher model)
over regular authenticated DH.

KHAPE (for Key-Hiding Asymmetric PakE) can be seen as a variant of the
OPAQUE protocol [37] that is being developed into an Internet standard [42] and
intended for use within TLS 1.3 [52]. OPAQUE introduces the idea of password-
encrypted credentials containing an encrypted private key for the user and an
authenticated public key for the server. The user deposits the encrypted cre-
dentials at the server during password registration and it retrieves them for
login sessions, thus allowing user and server to run a regular authenticated key
exchange (AKE) protocol. However, encrypting and authenticating credentials
with a password opens the protocol to trivial offline dictionary attacks. There-
fore, OPAQUE first runs an Oblivious PRF (OPRF) on the user’s password
in order to derive a strong encryption key for the credential. This makes the

1 Several other symmetric PAKE protocols, e.g. SPAKE2 [5], SPEKE [30,35,43] and
TBPEKE [48], attain universally composable security without relying on an ideal
cipher but incur additional exponentiations over uDH costs [3].



KHAPE: Asymmetric PAKE from Key-Hiding Key Exchange 703

protocol fully reliant on the strength of the OPRF. If OPRF is ever broken (by
cryptanalysis, quantum attacks or security compromise), the user’s password is
exposed to an offline dictionary attack.

Near-optimal aPAKE. KHAPE addresses this weakness by dispensing with the
OPRF (hence also improving performance). It uses a “paradoxical” mechanism
that allows to directly encrypt credentials with the password and still prevent
dictionary attacks. Two key ideas are: (i) dispense with authentication of the
credentials2 and instead use a non-committing encryption where decryption of
a given ciphertext under different keys cannot help identify which key from a
candidate set was used to produce that ciphertext; and (ii) using a key-hiding
AKE. The latter refers to AKE protocols that require that no adversary, not even
active one, can identify the long-term keys used by the peers to an exchange even
if provided with a list of candidate keys (a notion reminiscent of key anonymity
for public key encryption [8]).

Fortunately, many established AKE protocols are key hiding, including
implicitly authenticated protocols such as 3DH [44] and HMQV [41], and KEM-
based protocols with key-hiding KEMs (e.g., SKEME [39]). The non-committing
property of encryption models symmetric encryption as an ideal model (simi-
larly to the case of EKE discussed above) and allows for implementations based
on random oracles with hash-to-curve operations to encode group elements as
strings (see Sect. 8). As a result, KHAPE with HMQV, uses only one fixed-base
exponentiation, one variable-base (multi)exponentiation for each party, and one
hash-to-curve operation for the client. In all, it achieves computational overhead
relative to unauthenticated Diffie-Hellman of less than the cost of one exponentia-
tion, thus providing a close-to-optimal answer to our motivating questions above.
Such computational performance compares favorably to that of other efficient
aPAKE protocols such as SPAKE2+ and OPAQUE that incur overhead of one
and two (variable-base) exponentiations, respectively, for server and client. In
terms of number of messages, KHAPE uses 4 (3 if server initiates), compared to
3 messages in SPAKE2+ and OPAQUE.

Refer to Sect. 6 for a detailed description and rationale of the generic KHAPE
protocol (compiling any key-hiding AKE into an aPAKE) and to Sect. 7 for the
instantiation using HMQV.

On Strong aPAKE and reliance on OPRF. In the comparisons above, it
is important to stress that OPAQUE achieves a stronger notion of aPAKE, the
so called Strong aPAKE (saPAKE) model from [37]. In this model, the attacker
that compromises a server can only start running an offline dictionary attack
after breaking into the server. In contrast, in regular aPAKE, an offline attack
is still needed but a specialized dictionary can be prepared ahead of time and
used to find the password almost instantaneously when breaking into the server.
KHAPE, as discussed above, does not provide this stronger security. However, as
shown in [37], one can add a run of an OPRF to any aPAKE protocol to achieve

2 Dispensing with authentication of credentials in OPAQUE completely breaks the
protocol, allowing for trivial offline dictionary attacks.
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Strong aPAKE security. If one does that to KHAPE, one gets a Strong aPAKE
protocol with performance similar to that of OPAQUE (using HMQV or 3DH).

However, there is a significant difference in the reliance on the security of
OPRF. While the password security of OPAQUE breaks down with a compro-
mise of the OPRF key (namely, it allows for an offline dictionary attack on the
password), in KHAPE the effect of compromising the OPRF is only to fall back
to the (non-strong) aPAKE setting. In particular, this distinction is relevant in
the context of quantum-safe cryptography as there are currently no known effi-
cient OPRFs considered to be quantum safe. This opens a path to quantum-safe
aPAKEs based on KHAPE with key hiding quantum-safe KEMs.

Closer comparison with OPAQUE. As stated above, KHAPE has an advan-
tage over OPAQUE in terms of security due to its weaker reliance on OPRF
and its computational advantage when the OPRF is not used. Also, KHAPE
seems more conducive to post-quantum security via post-quantum key-hiding
KEMs.3 On the other hand, KHAPE requires one more message and allows for a
more restrictive family of AKEs relative to OPAQUE (e.g., it does not allow for
signature-based protocols as those based on SIGMA [40] and used in TLS 1.3
and IKEv2). KHAPE also relies for its analysis on the ideal cipher model while
OPAQUE uses the random oracle model. An interesting advantage of KHAPE
over OPAQUE is that in OPAQUE, an online attacker testing a password learns
whether the password was wrong before the server does (in KHAPE the server
learns first). This leads to a more complex mechanism for counting password fail-
ures at a server running OPAQUE, especially in settings with unreliable commu-
nication. Finally, we point out an advantage of using an OPRF with KHAPE (in
addition to providing Strong aPAKE security): It allows for multi-server secu-
rity via a threshold OPRF [36] where an attacker needs to break into multiple
servers before it can run an offline attack on a password.

UC model analysis of (key-hiding) AKE’s. All our protocols are framed
and analyzed in the Universally Composable (UC) model [17]. This includes a
formalization of the key-hiding AKE functionality that underlies the design of
KHAPE. In order to instantiate KHAPE with specific AKE protocols, we prove
that protocols 3DH [44] and HMQV [41] realize the key-hiding AKE functionality
(in the ROM and under the Gap CDH assumption). We prove a similar result
for SKEME [39] with appropriate KEM functions. We see the security analysis
of these AKE protocols in the UC model, with and without key confirmation, as
a contribution of independent interest. Moreover, the study of key-hiding AKE
has applicability in other settings, e.g., where a gateway or IP address hides
behind it other identities; say, a corporate site hosting employee identities or a
web server aggregating different websites.

Organization. In Sect. 2, we define the notion of UC key-hiding AKE. In Sects. 3
and 4, we show, respectively, that 3DH and HMQV, are secure UC key-hiding
AKE protocols under the Gap DH assumption in ROM. In Sect. 5, we study
3 We are currently investigating the use of NIST’s post-quantum KEM selections [47]

in conjunction with KHAPE.
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the security of the SKEME protocol as a key-hiding AKE. In Sect. 6, we show
a compiler from key-hiding AKE to asymmetric PAKE. In Sect. 7 we describe
a concrete example of aPAKE, KHAPE-HMQV, that instantiates KHAPE with
HMQV as the key-hiding AKE. Finally, in Sect. 8 we survey potential instan-
tiations of our ideal cipher encryption. In the full version of the paper [28], we
include more background material as well as full proofs for all our theorems.

2 The Key-Hiding AKE UC Functionality

Protocol KHAPE results from the composition of an encrypted credentials scheme
and a key-hiding AKE protocol. Figure 1 defines the UC functionality FkhAKE that
captures the properties required from a key-hiding AKE protocol. The modeling
choices target the following requirements: First, as shown in Sect. 6, the security
and key-hiding properties of this key-hiding AKE model suffice for our main
application, a generic construction of UC aPAKE from any protocol realizing
FkhAKE. Second, as we show in the final version [28], adding a standard key
confirmation to any protocol that realizes FkhAKE results in a (standard) UC
AKE with explicit entity authentication. Lastly, this functionality is realized by
several well-known and efficient AKE protocols, including 3DH and HMQV, as
shown in Sects. 3 and 4, as well as by a KEM-based AKE such as SKEME, if
instantiated with a key-hiding KEM, see Sect. 5. We provide more details and
rationale for the FkhAKE next.

High-level requirements for key-hiding AKE. The most salient property
we require from AKE is key hiding. To illustrate this requirement consider an
experiment where the attacker A is provided with a transcript of a session
between a party P and its counterparty CP. Party P has two inputs in this
AKE instance: a public key pkCP for CP and its own private key skP which P
uses to authenticate to CP who presumably knows P’s public key pkP. In addi-
tion, A is given a pair of private keys: P’s private key skP and a second random
independent private key. A’s goal is to decide which of the two keys P used in
that session.4 We are interested in AKE protocols where the attacker has no
better chance to answer correctly than guessing randomly even for sessions in
which A is allowed to choose the messages from CP.

The key hiding property will come up in the analysis of KHAPE as follows.
The attacker learns a ciphertext c that encrypts the user’s private key under
the user’s password. By decrypting this ciphertext under all passwords in a
dictionary, the attacker obtains a set of possible private keys for the user. The key
hiding property ensures that the attacker cannot identify the correct key (or the
password) in the set. Fortunately, as we prove here, a large class of AKE protocols
satisfy the key-hiding property, including implicitly authenticated protocols such
as HMQV and 3DH, and some KEM-based protocols.

4 This is reminiscent of key anonymity for PK encryption [8] where the attacker needs
to distinguish between public keys for a given ciphertext.
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– PK is the list of all public keys created via Init, initially empty
– PK P is the list of all public keys created by P, initially empty for all P
– CPK is the list of all compromised keys in PK , initially empty

Keys: Initialization and Attacks

On Init from P:

Send (Init,P) to A, let A specify pk s.t. pk PK , add pk to PK and to PK P, and
output (Init, pk) to P

On (Compromise,P, pk) from A:

If pk ∈ PK P then add pk to CPK

Login Sessions: Initialization and Attacks

On (NewSession, sid,CP, pk , pkCP) from P:

If pk ∈ PK P and there is no prior session record sid,P, ·, ·, ·, then:
– create session record sid,P,CP, pk , pkCP, marked fresh
– initialize random function Rsid

P : ({0, 1}∗)3 → {0, 1}κ

– send (NewSession, sid,P,CP) to A
On (Interfere, sid,P) from A:

If session sid,P,CP, pkP, pkCP, is marked fresh then change its mark to interfered

Login Sessions: Key Establishment

On (NewKey, sid,P, α) from A:

If ∃ session record rec = sid,P,CP, pkP, pkCP, then:

– if rec is marked fresh: If ∃ record sid,CP,P, pkCP, pkP, k marked fresh s.t.
k = ⊥ then set k ← k , else pick k ←R {0, 1}κ

– if rec is marked interfered then set k ← Rsid
P (pkP, pkCP, α)

– update rec to sid,P,CP, pkP, pkCP, k and output (NewKey, sid, k) to P

Session-Key Query

On (SessionKey, sid,P, pk , pk , α) from A:

If ∃ record sid,P, ... and pk ∈ CPK or pk PK , send Rsid
P (pk , pk , α) to A

Fig. 1. FkhAKE: functionality for key-hiding AKE

Additionally, FkhAKE strengthens the basic guarantees of AKE protocols
in several ways. It requires resilience to KCI (key-compromise impersonation)
attacks, namely, upon the compromise of the private key of party P, the attacker
can impersonate P to others but it cannot impersonate others to P. In the aPAKE
setting, this ensures that an attacker that compromises a server, cannot imper-
sonate the client to the server without going through an offline dictionary attack.
In the context of key hiding AKE, we also need KCI resilience to prevent the
attacker from authenticating to the client when given a set of possible private
keys for that client.
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Second, FkhAKE requires that keys exchanged by a honest P with a corrupted
CP still maintain a good amount of randomness, namely, the attacker can cause
them to deviate from uniform but not by much (a property sometimes referred
to as “contributive” key exchange, and not required in standard UC treatment).
In the setting of protocol KHAPE, adversarial choice of session keys (particularly
the ability of the attacker to create equal keys in different sessions) could lead to
protocols where the attacker can test more than one password in a single session.

Properties that we do not consider as part of the FkhAKE functionality, but
will be provided by our final aPAKE protocol, KHAPE, include key confirmation,
explicit authentication and full forward secrecy (FkhAKE itself implies forward
secrecy only against passive attackers).

Identities and public keys. We consider a setting where each party P has
multiple public keys in the form of arbitrary handles pk . In the security model
we assume that the public keys are arbitrary bitstrings chosen without loss of
generality by the attacker (ideal adversary) A, with the limitation that honest
parties are assigned non-repeating pk strings. Pairs (P, pk) act as regular UC
identities from the environment’s point of view, but the pk component is con-
cealed from A during key exchange sessions, even for sessions which are actively
attacked by A. This model can capture practical settings where P represents a
gateway or IP address behind which other identities reside, e.g., a corporate site
hosting employee identities or a web server aggregating different websites, and
where one is interested to hide which party behind the gateway is communicating
in a given session. Our specific application setting when using key-hiding AKE
in the aPAKE construction of Sect. 6, is more abstract: The party symbols P,CP
represent parties like internet clients and servers, while the multiplicity of public
keys comes from decryptions of encrypted credentials under multiple password.

(Compromise,P, pk). This adversarial action hands the (long-term) private key
of party (P, pk) to the attacker A. Such private-key leakage does not provide A
with control over party P, and it does not even imply that the sessions which
party P runs using the (leaked) key pk are insecure. However, when combined
with the ability to run active attacks, via the Interfere action below, A can fully
impersonate (P, pk) in sessions of A’s choice. The leakage of the private key sk
corresponding to (P, pk) does not affect the security of a session executed by
party P even if it uses the compromised key pk . This captures the KCI property,
i.e. that leakage of the private key of party P does not allow to impersonate
others to party P. Also, any party P′ which runs AKE with a counterparty
identity specified as (P, pk), will also be secure as long as A does not actively
interfere in that protocol. This captures the requirement that passively-observed
AKE instance are secure regardless of the compromise of the long-term secrets
used by either party. Note that A cannot compromise a party P but rather an
identity pair (P, pk) and such compromise does not affect other pairs (P, pk ′).
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NewSession. A session is initiated by a party P that specifies its own identity
pair (P, pk) as well as the intended counterparty identity pair (CP, pkCP). Session
identifiers sid are assumed to be unique within an honest party. The role of the
initialized session-specific random function Rsid

P is described below. A record for a
session is initialized as fresh and is represented by a tuple 〈sid,P,CP, pk , pkCP,⊥〉
where the last position, set to ⊥, is reserved for recording the session key. An
essential element in NewSession is that A learns (sid,P,CP) but it does not learn
(pk , pkCP). In the real world this translates into the inability of the attacker to
identify public (or private) keys associated to a pair of parties (P,CP) engaging
in the Key-Hiding AKE protocol.

The functionality enforces that an honest P can start a session only on key pk
which P generated and for which it holds a private key. However, the functionality
does not check anything about the intended counterparty’s identity (CP, pkCP),
so the private key corresponding to pkCP could be held by party CP, or it could
be held by a different party, or it could be compromised by the adversary, or it
could be that pkCP was not even generated by the key generation interface of
FkhAKE, and it is an adversarial public key, whose private key the environment
gave to the adversary. Our model thus includes honest parties who are tricked to
use a wrong public key for the counterparty (e.g., via a phishing attack) in which
case the attacker may know the corresponding private key. Note that regardless
of what key pkCP the session runs on, it is not given to the adversary, so if it
is a key created by the envriment (i.e. a higher-level application which uses the
key-hiding AKE) it does not necessarily follow that this key will be known to
the adversary, and only in the case it is known the adversary will be able to
attack that session using interfaces Interfere, NewKey, and SessionKey below.

Function Rsid
P . When command NewSession creates a session for (sid,P) the

functionality initializes a random function Rsid
P specific to this session. Function

Rsid
P is used to set the value of the session key for sessions in which A actively

interferes. It also allows A to have limited control over the value of the key
under strict circumstances, namely it must know the pulic keys pk , pkCP used
on that session, and it must compromise party (CP, pkCP). Even then the only
freedom A has is to evaluate function Rsid

P on any point α via a SessionKey
query, see below, and then choose one such point in the NewKey caommand.
This captures the “contributive” property discussed above: If an honest party
runs the AKE protocol even with adversary as a counterparty, the adversary’s
influence over the session key is limited to pre-computing polynomially-many
random key candidates and then choosing one of them as a key on that session.
The exact mechanics and functionality of Rsid

P are defined in the NewKey and
SessionKey actions below.

(Interfere, sid,P). This action represents an active attack on session (P, sid) and
makes the session change its status from fresh to interfered. The adversary does
not have to know either P’s own key pk or the intended counterparty key pkCP
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which P uses on that session.5 Such active atack will prevent session (P, sid) from
establishing a secure key with any other honest party session, e.g. (CP, sid). It
will also allow A to learn and/or influence the value of the session key this
session outputs (using function Rsid

P ), but only if in addition to being active A
compromises the counterparty key (CP, pkCP) used on session (P, sid).

NewKey. This action finalizes an AKE instance and makes (P, sid) output a
session key. If the session is fresh then it receives either a fresh random key or
the same key that was previously received by a matching session. If the session
is interfered, the value of the session key is determined by the function Rsid

P on
input (pk , pkCP, α) where α is chosen arbitrarily by A, allowing A to influence
the value of the session key (but in a very limited way as explained above). In
the real-world, α represents transcript elements generated by the attacker, e.g.,
value Y an adversarial P2 sends to an honest party P1 in 3DH or HMQV.

SessionKey. This action allows A to query the function Rsid
P associated to a ses-

sion (sid,P), potentially allowing A to learn and/or influence the session key
for (sid,P). Note that learning any values of function Rsid

P is useless unless the
adversary actively attacks session (sid,P), because otherwise Rsid

P is not used
to determine the key output by session (sid,P). Moreover, A needs to provide
(pk , pkCP, α) as input to SessionKey, and if those inputs do not match P’s own
key pk and the intended counterparty key pkCP which P uses on session (sid,P),
then this query reveals an irrelevant value, since Rsid

P is a random fuction. Finally,
FkhAKE releases value Rsid

P (pk , pkCP, α) to A only if key pkCP is either compro-
mised or adversarial. Summing up, the ability to learn (and/or control via the
NewKey interface) the session key output by session (sid,P) is restricted to the
case where all of the following hold: A actively interfered on that session, A
guesses keys pk , pkCP which this session uses, and A compromises counterparty’s
key (CP, pkCP).

How FkhAKE ensures key hiding and session security. The description of
FkhAKE is now complete. We now explain how FkhAKE ensures the key hiding
property by which A cannot learn the value pk for an identity pair (P, pk) even if
A knows P, has a list of all possible values of (P, pk), and actively interacts with
(P, pk) using a compromised party (CP, pkCP). Let’s assume these conditions
hold. Note that the only actions in which A can learn pk values from FkhAKE are
upon key generation and via the SessionKey call. Key generation assumes that A
has a list of all possible values (P, pk). As we explain above, the only argument
on which the value of function Rsid

P is useful is a tuple (pk , pkCP, α) which the
functionality uses to derive a session key for an actively attacked session (sid,P).

Consequently, the only way FkhAKE can leak the session key output by (sid,P)
is if A satisfies the three conditions above, i.e. it interferes in that session, key

5 Currently functionality FkhAKE assumes the ideal-world adversary A knows, and
indeed creates, all honest parties’ public keys. A tighter model is possible, if FkhAKE

samples public keys on behalf of honest players using the prescribed key generation
algorithm, instead of letting A pick them. This would allow modeling use cases where
the public keys are not public and are not freely available to the adversary.
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pkCP used on that session is either compromised or adversarial, and A queries
SessionKey on the proper keys pk , pkCP. This is also the only way A can learn
anything about keys pk , pkCP used by session (sid,P): It has to attack the ses-
sion, compromise pkCP, get a session key candidate k∗ via query SessionKey on
pk , pkCP, and then compare this key candidate against any information it has
about the key k output by session (sid,P). For example, if P’s higher-level appli-
cation uses key k to MAC or encrypt a message, the adversary can verify the
result against a candidate key k∗ and thus learn whether k∗ = k , and hence
whether keys pk , pkCP which A used to compute k∗ were the same keys that
were used by session (sid,P).

3 3DH as Key-Hiding AKE

We show that protocol 3DH, presented in Fig. 2, realizes the UC notion of Key-
Hiding AKE, as defined by functionality FkhAKE in Sect. 2, under the Gap CDH
assumption in ROM. As a consequence, 3DH can be used to instantiate protocol
KHAPE in a simple and efficient way.

3DH [44] is a simple, implicitly authenticated key exchange used as the basis
of the X3DH protocol [45] that underlies the Signal protocol. It consists of a
plain Diffie-Hellman exchange authenticated via the session-key derivation that
combines the ephemeral and long-term key of both peers. Specifically, if (a,A)
and (b,B) are the long-term key pairs of two parties P1 and P2, and (x,X)
and (y, Y ) are their ephemeral DH values, then 3DH combines these key pairs
to compute a (hash of) the triple of Diffie-Hellman values, σ = gxb‖gay‖gxy.
Security of 3DH is intuitively easy to see: It follows from the fact that to compute
σ the attacker must either (1) know (x, a) to attack party P2 who uses A as a
public key for its counterparty, or (2) know (y, b) to attack party P1 who uses
B as a public key for its counterparty. In other words, the attacker wins only if
it is an active man-in-the-middle attacker and it compromises the key used as
counterparty’s public key by the attacked party. (Recall that “compromising a
public key” stands for learning the corresponding private key.) The key-hiding
property comes from the fact that the values X and Y exchanged in the protocol
do not depend on long-term keys, and the fact that the only information about
the long-term keys used by any party can be gleaned only from the session key
they output and from H oracle queries on a σ value computed using these keys.
The formal proof of key-hiding in the UC model captures this argument, and we
present it below.

We note that 3DH is not the most efficient key-hiding AKE. 3DH costs one
fixed-base and three variable-base exponentiations per party, and in Sect. 4 we
will show that HMQV, which preserves the bandwidth and round complexity
of 3DH but folds the three variable-base exponentiations of 3DH into a single
multi-exponentiation, realizes the key-hiding AKE functionality under the same
Gap CDH assumption (although with worse exact security guarantees). However,
HMQV can be seen as a modification of 3DH, and the security analysis of 3DH
we show below will form a blueprint for the analysis of HMQV in Sect. 4.
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group G of prime order p with generator g
hash function H : {0, 1}∗ → {0, 1}κ

P1 on Init P2 on Init

a ←R Zp, A ← ga b ←R Zp , B ← gb

store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1,A,B) P2 on (NewSession, sid,CP2,B ,A)
(assume P1 <lex CP1) (assume CP2 <lex P2)

retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x ←R Zp , X ← gx y ←R Zp , Y ← gy

X Y

σ1 ← Bx Y a Y x σ2 ← Xb Ay Xy

k1 ← H(sid,P1,CP1, X, Y, σ1) k2 ← H(sid,CP2,P2, X, Y, σ2)
output k1 output k2

Fig. 2. Protocol 3DH: “Triple Diffie-Hellman” key exchange

Conventions.

(1) In Fig. 2 we assume that each party runs 3DH using key pair (sk , pk) pre-
viously generated via procedure Init. In Fig. 2 these are resp. (a,A) for P1 and
(b,B) for P2. Note that no such requirement is posed on the counterparty public
key each party uses, resp. public key B used by P1 and A used by P2.
(2) We implicitly assume that each party Pi uses its own identity as a protocol
input, together with the identity CPi of its assumed counterparty. These identi-
ties could be e.g. domain names, user names, or any other identifiers. They have
no other semantics except that the two parties can establish the same session
key only if they assume matching identifiers, i.e. (P1,CP1) = (CP2,P2).
(3) Protocol 3DH is symmetric except for the ordering of group elements in tuple
σ and the ordering of elements in the inputs to hash H. Each protocol party P
can locally determine this order based on whether string P is lexicographically
smaller than string CP. (In Fig. 2 we assume that P1 <lex P2.) An equivalent
way to see it is that each party P computes a “role” bit role ∈ {1, 2} and follows
the protocol of party Prole in Fig. 2: Party P sets this bit as role = 1, called the
“client role”, if P <lex CP, and role = 2, called the “server role”, otherwise.
(4) We assume that parties verify public keys and ephemeral DH values, resp.
B, Y for P1 and A,X for P2, as group G elements. Optionally, instead of group
membership testing one can use cofactor exponentiation to compute σ.
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Cryptographic Setting: Gap CDH and RO Hash. Let g generate a cyclic
group G of prime order p. The Computational Diffie-Hellman (CDH) assumption
on G states that given (X,Y ) = (gx, gy) for (x, y) ←R (Zp)2 it is hard to find
cdhg(X,Y ) = gxy. The Gap CDH assumption states that CDH is hard even if
the adversary has access to a Decisional Diffie-Hellman oracle ddhg, which on
input (A,B,C) returns 1 if C = cdhg(A,B) and 0 otherwise.

Theorem 1. Protocol 3DH shown in Fig. 2 realizes FkhAKE if the Gap CDH
assumption holds and H is a random oracle.

Initialization: Initialize an empty list KLP for each P

On (Init,P) from F :
pick sk ←R Zp , set pk ← gsk , add (sk , pk) to KLP, and send pk to F
On Z’s permission to send (Compromise,P, pk) to F :
if ∃ (sk , pk) ∈ KLP send sk to A and (Compromise,P, pk) to F
On (NewSession, sid,P,CP) from F :
if P <lex CP then set role ← 1 else set role ← 2
pick w ←R Zp , store sid,P,CP, role, w , send W = gw to A
On A’s message Z to session Psid (only first such message counts):
if ∃ record sid,P,CP, ·, w :

if ∃ no record sid,CP,P, ·, z s.t. gz = Z then send (Interfere, sid,P) to F
send (NewKey, sid,P, Z) to F

On query (sid,C,S, X, Y, σ) to random oracle H:
if ∃ (sid,C,S, X, Y, σ), k in TH then output k , else pick k ←R {0, 1}κ and:

if ∃ record sid,C,S, 1, x and (a,A) ∈ KLC s.t. (X, σ) = (gx, (Bx Y a Y x)) for
some B , send (SessionKey, sid,C,A,B , Y ) to F , if F returns k∗ reset k ← k∗

if ∃ record sid,S,C, 2, y and (b,B) ∈ KLS s.t. (Y, σ) = (gy, (Xb Ay Xy)) for
some A, send (SessionKey, sid,S,B ,A, X) to F , if F returns k∗ reset k ← k∗

add (sid,C, S,X, Y, σ), k to TH and output k

Fig. 3. Simulator SIM showing that 3DH realizes FkhAKE (abbreviated “F”)

Proof Overview. We show that for any efficient environment algorithm Z, its
view of the real-world security game, i.e. an interaction between the real-world
adversary and honest parties who follow protocol 3DH, is indistinguishable from
its view of the ideal-world game, i.e. an interaction between the ideal-world
adversary, whose role is played by the simulator, with the functionality FkhAKE.
We show the simulator algorithm SIM in Fig. 3. The real-world game, Game 0, is
shown in Fig. 4, and the ideal-world game defined by a composition of algorithm
SIM and functionality FkhAKE, denoted Game 7, is shown in Fig. 5.
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Initialization: Initialize an empty list KLP for each P

On message Init to P:
pick sk ←R Zp , set pk ← gsk , add (sk , pk) to KLP, and output (Init, pk)

On message (Compromise,P, pk):
If ∃ (sk , pk) ∈ KLP then output sk

On message (NewSession, sid,CP, pkP, pkCP) to P:
if ∃ (sk , pkP)∈KLP, pick w ←R Zp , write sid,P,CP, sk , pkCP, w , output W = gw

On message Z to session Psid (only first such message is processed):
if ∃ record sid,P,CP, skP, pkCP, w , set σ ← ((pkCP)

w ZskP Zw),
k ← H(sid, {P,CP, W, Z, σ}ord), output (NewKey, sid, k)

On H query (sid,C,S, X, Y, σ):
if ∃ (sid,C,S, X, Y, σ), k in TH then output k , else pick k ←R {0, 1}κ and:
add (sid,C, S,X, Y, σ), k to TH and output k

Fig. 4. 3DH: Environment’s view of real-world interaction (Game 0)

As is standard, we assume that the real-world adversary A is a subroutine
of the environment Z, therefore the sole party that interacts with Games 0
or 7 is Z, issuing commands Init and NewSession to honest parties P, adaptively
compromising public keys, and using A to send protocol messages Z to honest
party’s sesssions and making hash function H queries. The proof follows a stan-
dard strategy of showing a sequence of games that bridge between Game 0 and
Game 7, where at each transition we argue that the change is indistinguishable.
We use Gi to denote the event that Z outputs 1 while interacting with Game i,
and the theorem follows if we show that |Pr[G0]−Pr[G7]| is negligible under the
stated assumptions.

Notation. To make the real-world interaction in Fig. 4 more concise, we adopt a
notation which stresses the symmetric nature of 3DH protocol: We use variable
W = gw to denote the message which party P sends out, and variable Z to denote
the message it receives, e.g. (W,Z) = (X,Y ) if P plays the “client” role and
(W,Z) = (Y,X) if P plays the “server” role. If σ = σ1‖σ2‖σ3 then let {σ}flip =
σ2‖σ1‖σ3. We will use {P,CP,W,Z, σ}ord to denote string P,CP,W,Z, σ if P <lex

CP or string CP,P, Z,W, {σ}flip if CP <lex P. With this notation each party’s
3DH protocol code can be restated in the symmetric way, as in Fig. 4, because
session key computation of party P can be denoted in a uniform way as k ←
H(sid, {P,CP,W,Z, σ}ord) for σ = (pkCP)w‖ZskP‖Zw.
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We use the same symmetric notation to describe simulator SIM in Fig. 3 and
the ideal-world game implied by SIM and FkhAKE in Fig. 5, except for the way
SIM treats H oracle queries, which we separate into two cases based on the roles
played by the two parties whose sessions are potentially involved in any H query.
In H-handling code of SIM we denote the identifiers of the two parties involved
in a query as C and S, for the parties playing respectively the client and server
roles, and the code that follows uses role-specific notation to handle attacks on
the sessions executed respectively by C and S.

Throughout the proof we use Psid to denote a session of party P with identifier
sid. We use vsid

P to denote a local variable v pertaining to session Psid or a message
v which this session receives, and whenever identifier sid is clear from the context
we write vP instead of vsid

P . Note that session CPsid is uniquely defined for every
session Psid by setting CP = CPsid

P , and we will implicitly assume below that a
counterparty’s session is defined in this way.

For a fixed environment Z, let qK and qses be (the upper-bounds on) the
number of resp. keys and sessions initialized by Z, let qH be the number of H
oracle queries Z makes, and let εZ

g-cdh be the maximum advantage in solving
Gap CDH in G of an algorithm that makes qH DDH oracle queries and uses the
resources of Z plus O(qH + qses) exponentiations in G.
Define the following two functions for every session Psid:

3DHsid
P (pk , pk ′, Z) = cdhg(W, pk ′)‖cdhg(pk , Z)‖cdhg(W,Z) for W = W sid

P (1)

Rsid
P (pk , pk ′, Z) = H(sid, {P,CPsid

P ,W sid
P , Z, 3DHsid

P (pk , pk ′, Z)}ord) (2)

If session Psid runs on its own private key skP, counterparty’s public key pkCP,
and receives message Z, then its output session key is k = Rsid

P (pkP, pkCP, Z)
for pkP = gskP . Note also that an adversary can locally compute function Rsid

P

for any pkP, any key pkCP which was either generated by the adversary or it
was generated by an honest party but it has been compromised, and any Z
which the adversary generates, because the adversary can then compute func-
tions cdhg(·, pkCP) and cdhg(·, Z) on any inputs.

Simulator. Simulator SIM, shown in Fig. 3, picks all (sk , pk) pairs on behalf
of honest players and surrenders the corresponding private key whenever an
honestly-generated public key is compromised. To simulate honest party P
behavior the simulator sends W = gw for random w. When Psid receives Z
the simulator forks: If Z originated from honest session CPsid which runs on
matching identifiers (sid,CP,P), SIM treats this as a case of honest-but-curious
attack that connects two potentially matching sessions and sends NewKey to
FkhAKE. (Z included in this call is ignored by FkhAKE.) Otherwise SIM treats
it as an active attack on Psid and sends Interfere followed by (NewKey, ..., Z).
Note that in response FkhAKE will treat Psid as interfered and set its output key
as k ← Rsid

P (pkP, pkCP, Z) where (pkP, pkCP) are the (own,counterparty) pair of
public keys which Psid uses, and which is unknown to SIM (except if pkCP was
generated by the adversary, in which case it was leaked to SIM at NewSession).
Finally, SIM services H oracle queries (sid,C,S,X, Y, σ) by identifying those that
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pertain to viable session-key computations by either session Csid or Ssid. We
describe it here only for Csid-side H queries since Ssid-side queries are handled
symmetrically. If H query involves σ = 3DHsid

C (A,B , Y ) for some A,B s.t. (1) A
is one of the public keys generated by C, and (2) B is either some compromised
honestly generated public key or it is an adversarial key which Csid uses for the
counterparty (recall that if Csid runs on an adversary-generated counterparty
key pkCP then functionality FkhAKE leaks it to the adversary), then SIM treats
that query as a potential computation of a session key output by Csid, queries
(SessionKey, sid,C,A,B , Y ) to FkhAKE. If B is compromised or adverarial then
FkhAKE responds with k∗ ← Rsid

C (A,B , Y ) and SIM embeds k∗ into H output.
Note that if (A,B) matches the (own,counterparty) keys used by Csid, and Csid

receives Z = Y in the protocol, then k∗ will match the session key output by Csid.
For all other triples (A,B , Y ) the outputs of Rsid

C are irrelevant except that (1)
if the adversary learns the real session key output by Csid then these H outputs
inform the adversary that pair (A,B) is not the (own,counterparty) key pair
used by Csid, and (2) if the adversary bets on some (A,B) pair used by Csid then
it can use H queries to find an “optimal” protocol response Y to Csid for which
the resulting (randomly sampled) session key has some properties the adversary
likes, e.g. its last 20 bits are all zeroes, etc.

Game Sequence from Game 0 to Game 7. The full proof comprising the
transitions between these games is presented in the full version [28].

4 HMQV as Key-Hiding AKE

We show that protocol HMQV [41], presented in Fig. 6, realizes the UC notion
of Key-Hiding AKE, as defined by functionality FkhAKE in Sect. 2, under the Gap
CDH assumption in ROM. It allows us to use HMQV with KHAPE, resulting
in its most efficient instantiation, and, to the best of our knowledge the most
efficient aPAKE protocol proposed. HMQV has been analyzed in [41] under
the game-based AKE model of Canetti and Krawczyk [18], but the analysis we
present is the first, to the best of our knowledge, to be done in the UC model.6

The logic of why HMQV is key hiding is similar to the case of 3DH. Namely,
the only way to attack the privacy of party P which runs HMQV on inputs
(sk , pk) = (a,B), is to compromise the private key b corresponding to the public
key B . (And symmetrically for the party that runs on (sk , pk) = (b,A).) The
HMQV equation, just like the 3DH key equation, involves both the ephemeral
sessions secrets (x, y) and the long-term keys (a, b), combining them in a DH-
like formula σ = g(x+da)·(y+eb) where d, e are hashes of (session state identifiers
and) resp. X = gx and Y = gy. Following essentially the same arithmetics as in
the proof due to [41] shows that the only way to compute σ is to know either
both x, a or both y, b, which means that the attacker must be (1) active, to chose
the ephemeral session state variable resp. x or y, and (2) it must know the
counterparty private key, resp. a or b.

6 However, we do not include adaptive session state compromise considered in [18,41].
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Initialization: Initialize empty lists: PK , CPK , and KLP for all P

On message Init to P:
set sk ←R Zp , pk ← gsk , send (Init, pk) to P, add pk to PK and (sk , pk) to KLP

On message (Compromise,P, pk):
If ∃ (sk , pk) ∈ KLP add pk to CPK and output sk

On message (NewSession, sid,CP, pkP, pkCP) to P:
if ∃ (sk , pkP) ∈ KLP then:

initialize random function Rsid
P : ({0, 1}∗)3 → {0, 1}κ

if P <lex CP then set role ← 1 else set role ← 2
pick w ←R Zp , write sid,P,CP, pkP, pkCP, role, w, as fresh, output W = gw

On message Z to session Psid (only first such message is processed):
if ∃ record rec = sid,P,CP, pkP, pkCP, role, w, :

if ∃ record rec = sid,CP,P, pkCP, pkP, role , z, k s.t. gz = Z
then if rec is fresh, (pkP, pkCP) = (pkP, pkCP), and k = ⊥:

then k ← k
else k ←R {0, 1}κ

else set k ← Rsid
P (pkP, pkCP, Z) and re-label rec as interfered

update rec to sid,P,CP, pkP, pkCP, role, w, k , send (NewKey, sid, k) to P

On H query (sid,C,S, X, Y, σ):
if ∃ (sid,C,S, X, Y, σ), k in TH then output k , else pick k ←R {0, 1}κ and:

1. if ∃ record sid,C,S, ·, ·, 1, x, s.t. (X, σ) = (gx, (Bx Y a Y x)) for some
(a,A) ∈ KLC and B s.t. B ∈ CPK or B PK then reset k ← Rsid

C (A,B , Y )

2. if ∃ record sid,S,C, ·, ·, 2, y, s.t. (Y, σ) = (gy, (Xb Ay Xy)) for some
(b,B) ∈ KLS and A s.t. A ∈ CPK or A PK then reset k ← Rsid

S (B ,A, X)

add (sid,C, S,X, Y, σ), k to TH and output k

Fig. 5. 3DH: Environment’s view of ideal-world interaction (Game 7)

Theorem 2. Protocol HMQV shown in Fig. 6 realizes FkhAKE if the Gap CDH
assumption holds and H,H′ are random oracles.

The proof of Theorem 2 follows the template of the proof for the correspond-
ing theorem on 3DH security, i.e. Theorem 1, and we present it in the full version
[28].
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group G of prime order p with generator g
hash functions H : {0, 1}∗ → {0, 1}κ, H : {0, 1}∗ → Zp

P1 on Init P2 on Init

a ←R Zp, A ← ga b ←R Zp , B ← gb

store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1,A,B) P2 on (NewSession, sid,CP2,B ,A)
(assume P1 <lex CP1) (assume CP2 <lex P2)

retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x ←R Zp , X ← gx y ←R Zp , Y ← gy

X Y

d1 ← H (sid,P1,CP1, 1, X) d2 ← H (sid,CP2,P2, 1, X)

e1 ← H (sid,P1,CP1, 2, Y ) e2 ← H (sid,CP2,P2, 2, Y )

σ1 ← (Y · Be1)x+d1·a σ2 ← (X · Ad2)y+e2·b

k1 ← H(sid,P1,CP1, X, Y, σ1) k2 ← H(sid,CP2,P2, X, Y, σ2)
output k1 output k2

Fig. 6. Protocol HMQV [41]

5 SKEME as Key-Hiding AKE

We present a KEM-based instantiation of the SKEME protocol [39] in Fig. 7.
For compliance with the UC notion of AKE modeled by functionality FkhAKE,
we derive the session key via a hash involving several additional elements,
including a session identifier sid, party identities C and S, public keys A and
B , and the transcript X, c, Y, d. We will also use {P,CP,A,B ,X, c, Y, d, σ}ord
to denote (P,CP, A,B, gw, c, Z, d, (K,L,Zw)) if P plays role = 1, and string
(CP,P, A,B,Z, c, gw, d, (K,L,Zw)) if role = 2. Using this notation each party P
can derive its session key as k ← H(sid, {P,CP,A,B ,X, c, Y, d, σ}ord).

The security of the protocol relies on two properties of the underlying
KEM. First, we assume KEM to be One-Way under Plaintext-Checking-Attack,
abbreviated as OW-PCA[31], where the attacker is given access to a Plaintext-
Checking Oracle that on input a key K and ciphertext c, it tells if c decapsulates
to K under a given KEM key. Second, we require the KEM to be perfectly key-
private, namely, given two pairs of private-public keys and a key encapsulation
under one of them, one cannot distinguish (information-theoretically) which pair
generated that ciphertext. Note the correspondence to the notion of key-hiding
PKE [8]. See more details in the full version [28].
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group G of prime order p with generator g
hash function H : {0, 1}∗ → {0, 1}κ

KEM scheme KEM = (Gen,Enc,Dec)
P1 on Init P2 on Init

(a, A) ← KEM.Gen (b, B) ← KEM.Gen
store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1,A,B) P2 on (NewSession, sid,CP2,B ,A)
(assume P1 <lex CP1) (assume CP2 <lex P2)

retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x ←R Zp , X ← gx y ←R Zp , Y ← gy

c, K ← KEM.Enc(B) d, L ← KEM.Enc(A)
X, c Y, d

L ← KEM.Dec(a, d) K ← KEM.Dec(b, c)

σ ← (K, L, Y x) σ ← (K, L, Xy)
k1 ← H(sid,P1,CP1, A, B,X, c, Y, d, σ) k2 ← H(st,CP2,P2, A, B, X, c, Y, d, σ)
output k1 output k2

Fig. 7. Protocol SKEME: KEM-authenticated key exchange

Theorem 3. Protocol SKEME shown in Fig. 7 realizes FkhAKE if the Gap CDH
assumption holds, KEM is a OW-PCA secure and perfect key-private KEM, and
H is a random oracle.

Because of inherent similarities of SKEME and 3DH, the proof of the above
theorem follows a similar pattern as the proof of Theorem 1, and we present it
in [28].

6 Compiler from Key-Hiding AKE to Asymmetric PAKE

We show that any UC Key-Hiding AKE protocol can be converted to a UC
asymmetric PAKE (aPAKE) with a very small computational overhead. We call
this AKE-to-aPAKE compiler construction KHAPE, which stands for Key-Hiding
Asymmetric PakE, shown in Fig. 8. The compiler views each party’s AKE inputs,
namely its own private key and its counterparty public key, as a single object,
an AKE “credential”. The two parties participating in aPAKE, the server and
the user, a.k.a. the client, each will have such a credential: The server’s creden-
tial contains the server’s private key and the client’s public key, and the client’s
credential contains the client’s private key and the server’s public key. Running
AKE on such matching pair of inputs would establish a secure shared key, but
while the server can store its credential, the client’s only input is her password
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and it is not clear how one can derive an AKE credential from a password. Pro-
tocol KHAPE enables precisely this derivation: In addition to server’s credential,
the server will also store a ciphertext which encrypts, via an ideal cipher, the
client’s credential under the user’s password, and the aPAKE protocol consists
of server sending that ciphertext to the client, the client decrypting it using the
user’s password to obtain its certificate, and using that certificate to run an AKE
instance with the server.

• cipher (IC∗.E, IC∗.D) on space of private and public AKE keys (See Def. 1)
• pseudorandom function prf

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S generates two AKE key pairs (a,A) and (b,B), sets e ← IC∗.E(pw , (a,B)),
stores file[uid,S] ← (e, (b,A)), and discards all other values

C on (CltSession, sid,S, pw) S on (SvrSession, sid,C, uid)
(a,B) ← IC∗.D(pw , e) e (e, (b,A)) ← file[uid, S]

(sid,C,S, a,B) (sid,S,C, b,A)

Key-Hiding AKE
k1 k2

τ ← prf(k1, 1)
τ

γ ← ⊥ if τ = prf(k2, 1)
else γ ← prf(k2, 2)γ

K1 ← ⊥ if γ = prf(k1, 2) K2 ← ⊥ if τ = prf(k2, 1)
else K1 ← prf(k1, 0) else K2 ← prf(k2, 0)
output K1 output K2

Fig. 8. Protocol KHAPE: Compiler from key-hiding AKE to aPAKE

Reduced-bandwidth variant. In the aPAKE construction in Fig. 8, ciphertext
e password-encrypts a pair of the client’s secret key skC and the server’s public
key pkS. Without loss of generality every AKE key pair (sk , pk) is generated
by the key generation algorithm from uniformly sampled randomness r. The
aPAKE construction can be modified so that envelope e password-encrypts only
the server’s public key pkS, while the client derives its private key skC using
the key generation algorithm on randomness r ← H(pw) via RO hash H. Note
that if key-hiding AKE is either 3DH or HMQV then this amounts to the client
setting it’s secret exponent a ← H(pw) where H maps onto range Zq.7 This

7 If AKE is implemented as SKEME of Sect. 5 then the client must also derive the
public key pkC, since it is used in the key-derivation hash, see Fig. 7.
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change does not simplify the construction of the ideal cipher by much because
typically the public key is a group element and the private key is a random
modular residue, but it reduces the size of ciphertext e. We believe that the
security proof for the aPAKE protocol in Fig. 8 can be adjusted to show security
of this reduced-bandwidth implementation.

Why we need key-hiding AKE. Note that anyone who observes the
credential-encrypting ciphertext e can decrypt it under any password. Each pass-
word guess will decrypt e into some credential cred = (skC, pkS), where skC is
a client’s private key and pkS is a server’s public key. Let cred(pw) denote the
credential obtained by decrypting e using password pw . For any password guess
pw∗ the attacker can use credential cred(pw∗) as input to an AKE protocol
with the server, but that is equivalent to an on-line password authentication
attempt using pw∗ as a password guess (see below). Note that the attacker can
also either watch or interfere with AKE instances executed by the honest user
on credential cred(pw) that corresponds to the correct password pw . Moreover,
the attacker w.l.o.g. holds a list of credential candidates cred(pw1), ..., cred(pwn)
corresponding to offline password guesses. However, the key-hiding property of
AKE implies that even if cred(pw) is on the attacker’s list, interfering or watch-
ing client’s AKE instances cannot help the attacker decide which credential is
the one that the client uses. The only way to learn anything from client AKE
instances on input cred(pw) would be to engage them using a matching creden-
tial, i.e. (skS, pkC). This is possible if the adversary compromises the server who
holds exactly these keys, but otherwise doing so is equivalent to breaking AKE
security.

Why we need mutual key confirmation. To handle the server-side attack
we needed the key-hiding property of AKE to imply that the only way to decide
which keys (skS, pkC) the server uses is to engage in an AKE instance using
the matching counterparty keys (skC, pkS). The key-hiding property provided
by 3DH and HMQV, as modeled by functionality FkhAKE, actually does not
suffice for this by itself. Let the attacker hold a list of n possible decrypted
client credentials cred i = cred(pw i) = (ai,Bi) for i = 1, ..., n, and let S hold
credential credS = (b,A) which matches cred i, i.e. A = gai and Bi = gb , which
is the case if password guess pw i matches the correct password pw . If an active
attacker chooses x and sends X = gx to S then it can locally complete the 3DH or
HMQV equation using any key pair (ai,Bi) it holds, thus computing n candidate
session keys ki. By 3DH or HMQV correctness, since the i-th client credential
matches the server’s credential, key ki equals to the session key k computed by
S. Therefore, if S used key k straight away then the attacker could observe that
ki = k and hence that pw i = pw .

However, the fix is simple: To make the server’s session key output safe to use,
the client must first send a key confirmation message to the server, implemented
in Fig. 8 by client’s final message τ . This stops the attack because the attacker
sending τ uniquely determines one of the keys ki on its candidate list, and since
this succeeds only if ki = k , this attack reduces to an on-line test of a single
password guess pw i, which is unavoidable in a (a)PAKE protocol. A natural
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question is if there is no equivalent attack on the client-side, which would be
abetted by the client sending a key confirmation message τ . This is not the case
because of the following asymmetry: Off-line password guesses give the attacker
a list of possible client-side credentials, which by AKE rules can be tested against
server sessions. However, by the key-hiding property of AKE such credentials are
useless in deciding which of them, if any, is used by the honest user. Moreover,
since the ciphertext e encrypts only the client-side keys, by the KCI property of
the AKE the knowledge of client-side keys is not helpful in breaking the security
of AKE instances executed by the honest client on such keys.

Server-to-client key confirmation is needed too, in this case to ensure forward
secrecy. Without it, an attacker could choose Y = gy (in the HMQV or 3DH
instantiations) and later, after the session is complete, compromise the server to
learn the private key b with which it can compute the session key. The client-to-
server key confirmation addresses this issue on the client side.

In addition to ensuring security, key confirmation serves as (explicit) entity
authentication in this aPAKE construction.

Why we need credential encryption to be an ideal cipher. Note that
the attacker can attack the client too, by sending an arbitrary ciphertext to the
client, but the ideal cipher property is that the ciphertext commits the attacker
to only one choice of key for which the attacker can decide a plaintext: for all
other keys the decrypted plaintext will be random.

For the above to work the encryption used to password-encrypt the client
credential needs to be an ideal cipher over the space of (private,public) key pairs
used in AKE. In all key-hiding AKE protocols examples we discuss in this paper,
i.e. 3DH, HMQV, as well as SKEME instantiated with Diffie-Hellman KEM, this
message space is Zp × G where G is a group of order p. We refer to Sect. 8 for
several methods of instantiate an ideal cipher on this space. Here we will assume
the implementation of the following form, which is realized by the Elligator2 or
Elligator-squared encodings (see Sect. 8).

Definition 1. [(IC∗.E, IC∗.D) instantiation.] Let X be the Cartesian product of
the space of private keys and the space of public keys in AKE, let IC.E, IC.D
be an ideal cipher on n-bit strings, and let map be a (randomized) invertible
quasi-bijective map from X to X ′ = {0, 1}n. A randomized 1-1 function map :
X → X ′ is quasi-bijective if there is a negligible statistical difference between
a uniform distribution over X ′ and x′ ←R map(x) for random x in X. Instead
of a direct ideal cipher on message space X protocol KHAPE in Fig. 8 uses a
randomized cipher (IC∗.E, IC∗.D) on X ′ where IC∗.E(x) outputs IC.E(x′) where
x′ ← map(x; r) for random r used by map, and IC∗.D(y) outputs x = map−1(x′)
where x′ = IC.D(y).

Comparison with Encrypted Key Exchange of Bellovin-Merritt. It
is instructive to compare the KHAPE design to that of the “Encrypted Key
Exchange” (EKE) construction of Bellovin-Meritt [10]. The EKE compiler starts
from unauthenticated KE, uses an Ideal Cipher to encrypt each KE protocol mes-
sage under the password, and this results in UC PAKE in the IC model (see e.g.
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[46]). By contrast, our compiler starts from Authenticated KE, and uses IC to
password-encrypt only the client’s inputs to the AKE protocol, while the pro-
tocol messages themselves are exchanged without any change. Just like EKE,
our compiler adds only symmetric-key overhead to the underlying KE, but it
results in an aPAKE instead of just PAKE. However, just like EKE, it imposes
additional requirements on the underlying key exchange protocol: Whereas EKE
needs the key exchange to have a “random transcript” property, i.e. KE proto-
col messages must be random in some message space, in the case of KHAPE
the underlying AKE needs to have the key-hiding property we define in Sect. 2.
Either condition also relies on an Ideal Cipher (IC) modeling for a non-standard
plaintext space: For EKE the IC plaintext space is the space of KE protocol
messages, while for KHAPE the IC plaintext space is the Cartesian product of
the space of private keys and the space of public keys which form AKE protocol
inputs.

UC aPAKE security model. The UC functionality FaPAKE with which we
model aPAKE security corresponds to the functionality from Gentry et al. [27]
with some slight modifications. The main notational change is that we use a user
account identifier uid, instead of generic session identifier sid, to index password
files held by a given server. Functionality FaPAKE also includes uni-directional
(client-to-server) entity authentication as part of the security definition. FaPAKE is
described in the full version of the paper [28] where we also discuss several subtle
issues involved in UC modeling of tight bounds on adversary’s local computation
during an offline dictionary attack.

Theorem 4. Protocol KHAPE realizes the UC aPAKE functionality FaPAKE if
the AKE protocol realizes the Key-Hiding AKE functionality FkhAKE, assuming
that prf is a secure PRF and (Enc,Dec) is an ideal cipher over message space of
private,public key pairs in AKE.

The proof of the theorem is presented in the full version of the paper [28].

7 Concrete aPAKE Instantiation: KHAPE-HMQV

We include a concrete aPAKE protocol we call KHAPE-HMQV, which results
from instantiating protocol KHAPE shown in Sect. 6 with HMQV as the key-
hiding AKE (as proved in Sect. 4). The resulting protocol is shown in Fig. 9. It
uses only 1 fixed-base exponentiation plus 1 variable-base (multi)exponentiation
for each party, and 1 ideal cipher decryption for the client. It has 3 flows if the
server initiates and 4 if the client initiates. The communication costs include
one group element and a κ-bit key authenticator for both sides plus an ideal
cipher encryption of a field element a and another group element B from server
to client. Implementations of an ideal cipher over field elements may expand the
ciphertext by Ω(κ) bits and require a hash-to-curve operation, see Sect. 8.
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• global hash functions H : {0, 1}∗ → {0, 1}κ, H : {0, 1}∗ → Zp

• group G of prime order p with generator g
• cipher (IC∗.E, IC∗.D) on space Zp × G (see also page 21)

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S picks two fresh AKE keys (a,A) and (b,B), sets e ← IC∗.E(pw , (a,B))
S stores file[uid,S] ← (e, b,A) and discards all other ephemeral values

C on (CltSession, sid,S, pw) S on (SvrSession, sid,C, uid)

x ←R Zp , X ← gx y ←R Zp , Y ← gy

(a,B) ← IC∗.D(pw , e) e, Y (e, b,A) ← file[uid,S]

dC ← H (sid,C,S, 1, X)
eC ← H (sid,C,S, 2, Y )

σC ← (Y · BeC)x+dC·a

k1 ← H(sid,C,S, X, Y, σC)
τ ← prf(k1, 1)

τ , X
dS ← H (sid,C, S, 1, X)
eS ← H (sid,C,S, 2, Y )

σS ← (X · AdS)y+eS·b

k2 ← H(sid,C,S, X, Y, σS)

γ ← ⊥ if τ = prf(k2, 1)γ
else γ ← prf(k2, 2)

K1 ← ⊥ if γ = prf(k1, 2) K2 ← ⊥ if τ = prf(k2, 1)
else K1 ← prf(k1, 0) else K2 ← prf(k2, 0)
output K1 output K2

Fig. 9. KHAPE with HMQV: Concrete aPAKE protocol KHAPE-HMQV

While we are showing the protocol with the encryption of credentials done
on the server side during password registration (initialization), this can be done
interactively by the server sending its public key and the user encrypting it
together with its private key under the password (or it can all be done on the
client side if the client chooses the server’s public key). It is important to highlight
that the server needs a random independent pair of private-public keys per user.
One optimization is to omit the encryption of the user’s private key, and instead
derive this key from the password. Our analysis can be adapted to this case.

We note that KHAPE can be made into a Strong aPAKE (saPAKE), secure
against pre-computation attacks, using the technique of [37]. Namely, running
an OPRF protocol on pw between client and server and deriving the creden-
tial encryption key from the output of the OPRF. In addition to providing
saPAKE security, the OPRF strengthens the protocol against online client-side
attacks (the attacker cannot have a pre-computed list of passwords to try) and it
allows for distributing the server through a threshold OPRF. As discussed in the
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introduction, the break of the OPRF in the context of KHAPE voids the above
benefits but does not endanger the password (a major advantage of KHAPE over
OPAQUE).

8 Curve Encodings and Ideal Cipher

8.1 Quasi Bijections

Protocol KHAPE encrypts group elements (server’s public key pkS) using an
encryption function modeled as an ideal cipher which works over a space {0, 1}n

for some n. Thus, prior to encryption, group elements need to be encoded as
bitstrings of length n to which the ideal cipher will be applied. We require such
encoding, denoted map, from G to {0, 1}n to be a bijection (or close to it) so
that if e is an encryption of g ∈ G under password pw , its decryption under a
different pw ′ returns a random element in G. The following definition considers
randomized encodings.

Definition 2. A randomized ε-quasi bijection map with domain A, randomness
space R = {0, 1}ρ and range B consists of two algorithms map and map−1,
map : A × R → B and map−1 : B → A with the following properties:

1. map−1 is deterministic and for all a ∈ A, r ∈ R,map−1(map(a, r)) = a;
2. map maps the uniform distribution on A × R to a distribution on B that is

ε-close to uniform.

The term ε-close refers to a statistical distance of at most ε between the two
distributions. It can also be used in the sense of computational indistinguishabil-
ity, e.g., if implementing randomness using a PRG. To accommodate bijections
whose randomized map from A to B may exceed a given time bound in some
inputs, one can consider the range of map to include an additional element ⊥
to which such inputs are mapped. A simpler way is to define that such inputs
are mapped to a fixed element in B. The probability of inputs mapped to that
value is already accounted for in the statistical distance bound ε. We use quasi
bijection without specifying ε when we assume this value to be negligible.

Quasi bijections from field elements to bitstrings. We are interested in
quasi-bijective encoding into the set {0, 1}n over which the IC encryption works.
Most mappings presented below have a field Zq as the range, in which case a
further transformation (preserving quasi-bijectiveness) may be needed. Note that
when representing elements of Zq as n-bit numbers for n = 	log q
, the uniform
distribution on Zq is ε-close to the uniform distribution over {0, 1}n for ε =
(2n mod q)/q. So when q is very close to 2n, one can use the bit representation
of field elements directly, and this is the case for many of the standardized elliptic
curves. When this is not the case, one maps u ∈ Zq to a (n+k)-bit integer selected
as u + tq for t randomly chosen as a non-negative integer < (2n+k − u)/q. The
resulting distribution is 2−k-close to the uniform distribution over {0, 1}n+k.
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8.2 Implementing Quasi-Bijective Encodings

We focus on the case where G is an elliptic curve. There is a large variety of
well-studied quasi-bijective encodings in the literature (cf. [11,16,26,50,53]). We
survey some representative examples for elliptic curve groups EC(q) over fields
of large prime-order q.

Note that we use both directions of these encodings in KHAPE: From pkS to
a bitstring when encrypting pkS at the time of password registration, and from
a bitstring to a curve point when the client decrypts pkS . This means that the
performance of the latter operation is more significant for the efficiency of the
protocol. Fortunately this is always the more efficient direction, even though the
other direction is quite efficient too for the maps discussed below.

Elligator-squared [38,53]. This method applies to most elliptic curves and
accommodates ε-quasi bijections for the whole set of curve points with negligible
values of ε.

Curve points are encoded as a pair of field elements (u, v) ∈ Z
2
q. There is a

deterministic function f from Zq to EC such that P ∈ EC is represented by
(u, v) if and only if P = f(u) + f(v). Given a point P there is a randomized
procedure Rf that returns such encoding (u, v).

In [53] (Theorem 1), it is proven that for suitable choices of f , Rf is an ε-
quasi bijection into (Zq)2, with ε = O(q−1/2) (see Definition 2). Since u, v are
field elements, a further bijection into bitstrings may be needed as specified in
Sect. 8.1.

In [38], the above construction is improved by allowing both u and v to
be represented directly as bit strings: u as a string of �q� bits and v can be
be shortened even further (the amount of shortening increases the statistical
distance for the quasi bijection from EC to the distribution of bitstrings (u, v)).
This encoding uses two functions f, g where a point P is recovered from (u, v)
as P = f(u) + g(v) (in this case, function g can be simply g(v) = v · P ).

The performance of Elligator-squared depends on the functions f, g whose
cost with typical instantiations (e.g., Elligator, SWU) is dominated by a single
base-field exponentiation at the cost of a fraction (≈10–15%) of a scalar multi-
plication. Implementing g(v) = v · P is also a low-cost option (also allowing to
shorten v [38]). The cost of the inverse map, from a curve point to its bitstring
encoding, for the curves analyzed in [53] is 3 base-field exponentiations.

Elligator2. This mapping from [11] is of more restricted applicability than
Elligator-squared as it applies to a smaller set of curves (e.g., it requires an ele-
ment of order 2). Yet, this class includes some of the common curves used in prac-
tice, particularly Curve25519. Eligator2 defines an injective mapping between the
integers {0, . . . , (q − 1)/2} and (about) half of the elements in the curve. To be
used in our setting, it means that when generating a pair (skS , pkS=gskS ) for the
server during password registration, the key generation procedure will choose a
random skS and will test if the resultant pkS has a valid encoding under Elli-
gator2. If so, it will keep this pair, otherwise it will choose another random pair
and repeat until a representable point is found. The expected number of trials is
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2 and the testing procedure is very efficient (and only used during registration,
not for login).

The advantages of Ellligator2 include the use of a single field element as a
point representation (which requires further expansion into a bit string only if
q is not close to 2n) and the map is injective, hence quasi-bijective with ε = 0
over the subset of encodable curve elements. Both directions of the map are very
efficient, costing about a single base-field exponentiation (a fraction of the cost
of a scalar multiplication).

Detailed implementation information for the components of the above trans-
forms is found in [11,25,54]. See [7] for some comparison between Elligator2 and
Elligator-squared.

8.3 Ideal Cipher Constructions

Protocol KHAPE uses an ideal cipher to encrypt group elements, specifically
a pair (skC, pkS) where both elements are encoded as bitstrings to fit the ideal
cipher interface as described in previous subsections. Thus, we consider the input
to the encryption simply as a bitstring of a given fixed length, and require imple-
mentations of ideal ciphers of sufficiently long block length. For example, the
combined input length for curves of 256 bits ranges between 512 and 1024 bits.
Constructions of encryption schemes that are indifferentiable from an ideal cipher
have been investigated extensively in the literature. Techniques include domain
extension mechanisms (e.g., to expand the block size for block ciphers, including
AES) [19], Feistel networks and constructions from random oracles [20,23,32],
dedicated constructions such as those based on iterated Even-Mansour and key
alternating ciphers [6,22,24,24], and basic components such as wide-input (pub-
lic) random permutations [12,13,21]. A recent technique by McQuoid et al. [46],
builds a dedicated transform that can replace the ideal cipher in cases where
encryption is “one-time”, namely, keys (or cipher instances) are used to encrypt
a single message (as in our protocols). They build a very efficient transform using
a random oracle with just two Feistel rounds. A dedicated analysis for the use
of this technique in our context is left for future work.
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