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Abstract. The differential-linear cryptanalysis is an important crypt-
analytic tool in cryptography, and has been extensively researched since
its discovery by Langford and Hellman in 1994. There are nevertheless
very few methods to study the middle part where the differential and linear
trail connect. In this paper, we study differential-linear cryptanalysis from
an algebraic perspective. We first introduce a technique called Differential
Algebraic Transitional Form (DATF) for differential-linear cryptanalysis,
then develop a new theory of estimation of the differential-linear bias and
techniques for key recovery in differential-linear cryptanalysis.

The techniques are applied to the CAESAR and LWC finalist Ascon, the
AES finalist Serpent, and the eSTREAM finalist Grain v1. The bias of the
differential-linear approximation is estimated for Ascon and Serpent. The
theoretical estimates of the bias are more accurate than that obtained by
the Differential-Linear Connectivity Table (Bar-On et al., EUROCRYPT
2019), and the techniques can be applied with more rounds. Our general
techniques can also be used to estimate the bias of Grain v1 in differential
cryptanalysis, and have a markedly better performance than the Differ-
ential Engine tool tailor-made for the cipher. The improved key recovery
attacks on round-reduced variants of these ciphers are then proposed. To
the best of our knowledge, they are thus far the best known cryptanalysis
of Serpent, as well as the best differential-linear cryptanalysis of Ascon

and the best initialization analysis of Grain v1. The results have been fully
verified by experiments. Notably, security analysis of Serpent is one of the
most important applications of differential-linear cryptanalysis in the last
two decades. The results in this paper update the differential-linear crypt-
analysis of Serpent-128 and Serpent-256 with one more round after the
work of Biham, Dunkelman and Keller in 2003.
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1 Introduction

Differential cryptanalysis and linear cryptanalysis are the two best-known
techniques for cryptanalysis of block ciphers. Differential-linear attack [LH94,
BDK02] is a chosen plaintext two-stage technique of cryptanalysis in which the
first stage is covered by differential cryptanalysis, which ensures propagation of
useful properties midway through the block cipher. The second stage is then
performed from the middle of the cipher to the ciphertext using linear crypt-
analysis. The technique was discovered by Langford and Hellman [LH94] and
demonstrated on the example of 8-round DES.

Theoretically, the differential-linear attack can be considered as a truncated
differential or a multidimensional linear attack, but is an extreme case for both
types, which is usually measured by the differential-linear bias. Recently, in
2017, Blondeau, Leander and Nyberg [BLN17] gave an exact expression of the
bias under an assumption that the two parts of the cipher are independent, and
revisited the previous treatments of differential-linear bias by Biham et al. in
2002–2003 [BDK02,BDK03], Liu et al. in 2009 [LGZL09], and Lu in 2012 [Lu12],
and formulated assumptions under which a single differential-linear characteristic
gives a close estimate of the bias.

More recently, at EUROCRYPT 2019, Bar-On et al. [BDKW19] showed that
in many cases, dependency between two parts of the cipher significantly affects
the complexity of the differential-linear attack, and might be exploited to make
the attack more efficient. The authors of [BDKW19] presented the Differential-
Linear Connectivity Table (DLCT) which allows to take into account the depen-
dency between the two subciphers, and to choose the differential characteristic
and the linear approximation in a way that takes advantage of this dependency.
They then showed that the DLCT can be constructed efficiently using the Fast
Fourier Transform, and demonstrated the strength of the DLCT by using it to
improve differential-linear attacks on ICEPOLE and on 8-round DES, and to
explain published experimental results on Serpent and on the CAESAR finalist
Ascon which did not comply with the standard differential-linear framework.

In this paper, we study differential-linear cryptanalysis from an algebraic
point of view. In theory, the bias of a differential-linear approximation can be
determined by the algebraic normal forms of the output bits, with input bits
as variables. Nevertheless, this is computationally infeasible for a cipher. In
Sect. 3, we introduce an algebraic and feasible technique called Differential Alge-
braic Transitional Form (DATF) for differential-linear cryptanalysis, and then
develop a new theory of estimation of the differential-linear bias and techniques
for key recovery in differential-linear cryptanalysis. The algebraic transitional
form (ATF) is similar to the algebraic normal form (ANF), but an algebraic
expression in the ANF can be replaced by a transitional variable in the ATF.
This ensures the feasibility of calculating the ATF by iteration. With the DATF
technique, the ATF of the difference of output bits can be computed round by
round, rather than from the derivative of the output function with respect to
the input difference. Based on the DATF algorithm, we describe two feasible
frameworks for estimating the differential-linear bias. One is efficient and has
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a moderate accuracy. The other is less efficient, but more accurate. Further we
exploit an algorithm for key recovery. Unlike the convention, it is an organic com-
bination of distinguisher searching and key guessing, and thus has an advantage
over the existing techniques. We stress that our techniques are purely algebraic
and quite different from the previous methods, including the DLCT [BDKW19]
and its subsequent work [CKW19,CKL+19] as well as the techniques proposed
for ARX ciphers [Leu16,BLT20].

As illustrations, we apply our theory and techniques to three different types
of ciphers, the authenticated cipher Ascon [DEMS16], the block cipher Serpent
[ABK98], and the stream cipher Grain v1 [HJMM08], respectively in Sect. 4,
Sect. 5 and Sect. 6.

Ascon is a family of authenticated encryption and hashing algorithms
designed by Dobraunig et al. [DEMS16,DEMS19] that has been selected as the
primary choice for lightweight authenticated encryption in the final portfolio of
the CAESAR competition and is currently competing in the NIST Lightweight
Cryptography competition. In [DEMS15], Dobraunig et al. presented practi-
cal differential-linear attacks on up to 5 rounds of Ascon, including a 4-round
differential-linear distinguisher. The authors of [DEMS15] stated that while the
overall bias of the approximation is expected to be 2−20 by the theory of the
classical differential-linear framework, experiments show that the bias is 2−2

which is significantly higher. Bar-On et al. [BDKW19] recomputed the bias of
the distinguisher using the DLCT and obtained a theoretical bias of 2−5.

The theory in this paper shows that the bias of this differential-linear approx-
imation is estimated to be 2−2.365. This value is extremely close to the experi-
mentally obtained bias of 2−2, and much higher than the theoretical bias of 2−5

obtained in [BDKW19] using the DLCT. We also show a 5-round differential-
linear approximation with a theoretical bias of 2−5.415 by imposing 9 conditions.
Our experiments show that the bias is 2−4.54, when these conditions are satisfied.

We further propose in Sect. 4 a key recovery attack on 5-round Ascon-128,
which is also applicable to Ascon-128a. The attack benefits from the above
differential-linear approximation with an experimental bias of 2−5.5 using less
conditions. The data complexity of the attack is on average 226, and the expected
time complexity is about 226. This attack improves the existing differential-linear
attack on 5-round Ascon-128 with complexity 236 [DEMS15].

Serpent is a 128-bit block cipher designed by Anderson, Biham and Knudsen.
It is a finalist in the Advanced Encryption Standard (AES) competition. In the
past 20 years, there have been tremendous efforts devoted to cryptanalysis of
Serpent, e.g., [BDK03,DIK08,Lu12,Lu15,BLN17,BDKW19]. In 2003, Biham,
Dunkelman and Keller [BDK03] presented the first differential-linear attack on
11-round Serpent, using a 9-round differential-linear distinguisher with bias of
2−60. An improved attack was presented by Dunkelman et al. in [DIK08]. The
authors of [DIK08] performed experiments with 4 rounds of Serpent, obtained
the bias 2−13.75 for the 4-round approximation rather than 2−15, and concluded
that the actual bias of the 9-round approximation is 2−57.75 and not 2−60. In
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[BDKW19], Bar-On et al. recomputed the bias of the 4-round differential-linear
distinguisher using the DLCT and obtained the value 2−13.68.

In Sect. 5, we revisit the analysis of the bias of this distinguisher by our
theory, and show an estimate of 2−13.736. This value is closer to the experimental
value even than that of [BDKW19]. We conjecture that the gap between the
experimental value and our estimate is a statistical error. We further apply
the DATF with one more round, and obtain the bias 2−17.736 for the 5-round
distinguisher.

For an 11-round variant of Serpent from round 4 to round 14, we propose
in Sect. 5 a key recovery attack with improved time complexities. The data com-
plexity of the attack is 2125.7 chosen ciphertexts, the time complexity is 2125.7

memory accesses, and the memory complexity is 299 bytes. The success proba-
bility of the attack is expected to be more than 99%. As far as we know, this is
the first differential-linear attack on 11-round Serpent-128, through nearly 20
years of community efforts since the publication of its first 10-round attack of
the same kind in 2003 [BDK03].

As mentioned in [BDKW19], the differential-linear technique yields the best
known attacks on the AES finalist Serpent [DIK08,Lu15]. In Sect. 5.3, we nev-
ertheless find that there is a same flaw in the attacks on 12-round Serpent-256
in [DIK08,Lu15] which leads to underestimated time complexity, up to a factor
of 216 or 220 by our analysis, and the existing 12-round attacks are thus worse
than a brute-force attack.

In Sect. 5.3, we extend the chosen ciphertext attack on 11-round Serpent
to 12 rounds (starting from round 4 and ending at round 15). The attack on
12-round Serpent-256 has the data complexity of 2127 chosen ciphertexts, time
complexity of 2251 memory accesses, and memory complexity of 299 bytes. The
success probability of the attack is expected to be more than 77%. To the best of
our knowledge, this is the first correct attack on 12-round Serpent as well as the
best known cryptanalysis on Serpent, almost 20 years after Biham, Dunkelman
and Keller presented the first 11-round attack of different kind in 2001 [BDK01]
and the first 11-round attack of the same kind in 2003 [BDK03].

The stream cipher Grain v1, proposed by Hell et al. [HJMM08], is an
eSTREAM finalist in the hardware profile. At ASIACRYPT 2010, Knellwolf
et al. [KMN10] proposed conditional differential attacks on NFSR-based cryp-
tosystems, and applied the attack to Grain v1 with 104 rounds. Since the sem-
inal work of [KMN10], there are a lot of efforts working towards the conditional
differential attacks on Grain v1, e.g., [Ban14,Ban16,MTQ17,LG19]. In the lit-
erature, the largest number of initialization rounds of Grain v1 that can be
attacked is 120, proposed by Li and Guan [LG19] using a conditional differential
approximation with an experimental bias 2−12.8.

In Sect. 6, we apply our theory and techniques to conditional differential
attacks on the initialization of Grain v1, and finding an optimized key recovery
attack on round-reduced Grain v1. Using the DATF, we revisit the analysis of
the bias of the 120-round differential approximation of [LG19], and obtain an
estimate of 2−13.39. This is very close to the experimental value 2−12.8, and much
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higher than the estimate of 2−18.13 obtained by the method called Differential
Engine proposed by Banik [Ban14]. Further, a new differential with a theoretical
bias 2−20.77 in the output difference of 125 rounds is found for Grain v1, by an
exhaustive search over all the input differences up to 4 bits using the DATF.
We have verified by experiments that the bias is 2−17.4. Our estimate of the
bias is smaller than the experimental value, but much higher than the estimate
2−24.78 by the Differential Engine tool. By imposing 13 equations on the key
bits and initial value, where 18 expressions of the key bits need to be guessed,
we can mount a chosen IV attack to recover 20 key-bit information on 125-
round Grain v1, with time complexity of about 257, data complexity of 252 and
negligible memory. The success probability of the attack is expected to be more
than 92.5%. To the best of our knowledge, this is thus far the best key recovery
attack in practical complexity as well as the best initialization analysis of Grain
v1, in the single key setting.

Table 1. The differential-linear and differential bias

Cipher Type Rounds Experimental Theoretical estimate

value [BDK03] DLCT [BDKW19] DATF

Ascon DL 4/12 2−2 [DEMS15] 2−20 2−5 2−2.365

CDL 5/12 2−4.54 (Sect. 4) - - 2−5.415

Serpent DL 4/32 2−13.75 [DIK08] 2−15 2−13.68 2−13.736

DL 5/32 2−17.75 [DIK08] 2−19 - 2−17.736

Differential Engine [Ban14] DATF

Grain v1 CD 120/160 2−12.8 [LG19] 2−18.13 2−13.39

CD 125/160 2−17.4 (Sect. 6) 2−24.78 2−20.77

The results on the differential-linear bias of Ascon and Serpent and the dif-
ferential bias of Grain v1 are summarized in Table 1, with the comparisons of
the previous results, where CDL means conditional differential-linear (DL) and
CD means conditional differential. Compared with the DLCT tool, the DATF
techniques can be applied with more rounds for Ascon and Serpent, and pro-
vide more accurate estimation of the DL bias. Besides, our techniques can also
be applied to differential cryptanalysis. Compared with the Differential Engine
method tailor-made for Grain-like ciphers, our techniques are more general and
have a much better performance. Compared with the experimental approach, the
algebraic techniques are more formalized and intelligent for conditional attacks
and, in particular, much faster when the bias is low. This helps us find better
conditional approximations for Ascon and Grain v1.

Our cryptanalytic results of Ascon, Serpent and Grain v1 are summarized
in Table 2, with comparisons of the previous attacks. For Ascon, our attack
outperforms the previous differential-linear one but not the cube-like attack
[LDW17]. For Serpent, to the best of our knowledge, we provide the first correct
attack on its 12-round variant, and the first differential-linear attack on its 11-
round variant with 128-bit key. The best known theoretical attack on Grain v1
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Table 2. Key recovery attacks on Ascon, Serpent, and Grain v1

Cipher Key size Type Rounds Time Data Space Source

Ascon 128 diff.-linear 5/12 236 236 bits neg. [DEMS15]

diff.-linear 5/12 226 226 bits neg. Section 4.2

cube-like 7/12 2103.9 277.2 words - [LDW17]

Serpent 192/256 diff.-linear 11/32 2139.2 En 2125.3 CP 260 B [BDK03]

192/256 diff.-linear 11/32 2135.7 En 2121.8 CP 276 B [DIK08]

192/256 diff.-linear 11/32 2137.7 MA 2113.7 CC 299 B [DIK08]

all diff.-linear 11/32 2125.7 MA 2125.7 CC 299 B Section 5.3

256 diff.-linear 12/32 2251 MA 2127 CC 299 B Section 5.3

Grain v1 80 differential 104/160 279 235 neg. [KMN10]

differential 120/160 268 - neg. [LG19]

differential 125/160 260 252 neg. Section 6.2

fast corr. full 276.7 275.1 269 [TIM+18]

is the fast correlation attack on its full version proposed in [TIM+18], with time
complexity of 276.7, data complexity of 275.1 and memory1 of about 269. This
attack targets at state recovery in the keystream generator, while our attack
targets at key recovery in the initialization. Moreover, our attack on Grain v1
has practical complexities and has been fully verified by experiments on the real
cipher, compared with the impractical complexities of the fast correlation attack
which was verified on a toy cipher in [TIM+18].

2 Differential-Linear Cryptanalysis

Differential-linear cryptanalysis consists of two stages. The first stage ensures
propagation of useful properties in the middle of the cipher, which is covered by

P P ′ Δin

W W ′ Δout

λin λin

C C ′
λout λout

E0 E0

E1 E1

p

1
2 +q 1

2 +q

Fig. 1. Differential-linear cryptanalysis

1 The space complexity of the attack was not provided in [TIM+18] and is assessed
by our analysis.
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differential cryptanalysis. The second stage is performed from the middle of the
cipher to the ciphertext using linear cryptanalysis.

Let E be a cipher which can be described as a cascade of two subciphers E0

and E1, i.e., E = E1 ◦E0. Let Δin and Δout be respectively the input and output
differences of the differential characteristic for E0, and λin and λout respectively
the input and output masks of the linear characteristic for E1, as shown in Fig. 1.

Assume that the differential Δin → Δout is satisfied with probability p,
and the linear approximation λin → λout with probability 1/2 + q (or with
bias q). In case the differential is not satisfied (probability 1 − p) we assume a
random behavior of the parities of the output subset. The probability that a
pair with input difference Δin will satisfy λout · C = λout · C ′ is in that case
p(1/2+2q2)+(1−p) ·1/2 = 1/2+2pq2. The data complexity of the differential-
linear attack/distinguisher is O(p−2q−4).

3 Algebraic Perspective of Differential-Linear
Cryptanalysis

In this section, from an algebraic perspective, we discuss the estimation of the
differential-linear bias as well as techniques for key recovery in differential-linear
cryptanalysis, starting from some basic concepts and facts.

3.1 Basic Concepts and Facts

Let F2 denote the binary field and F
n
2 the n-dimensional vector space over F2.

An n-variable Boolean polynomial is a mapping from F
n
2 into F2, which can be

uniquely represented as a multivariate polynomial over F2,

f(x1, x2, · · · , xn) =
⊕

c=(c1,··· ,cn)∈F
n
2

ac

n∏

i=1

xci
i , ac ∈ F2,

called the algebraic normal form (ANF).
A variable is called isolated if it appears and only appears in the linear part

of the ANF of f . For example, x1 is an isolated variable in x1 ⊕ x2x3 ⊕ x4x5.
For a variable xi, the Boolean polynomial f(x1, x2, · · · , xn) can uniquely be

represented as f = f ′′xi ⊕ f ′ with f ′ and f ′′ independent of xi, which implies
f ′ = f |xi=0 and f ′′ = f |xi=1 ⊕f |xi=0. The partial derivative of f with respect to
the variable xi is the polynomial f ′′, denoted by Dxi

f . For example, Dx2(x1 ⊕
x2x3 ⊕ x4x5) = x3.

For Δ ∈ F
n
2 and an n-variable Boolean polynomial f on X, the derivative of

f with respect to Δ is the polynomial

DΔf(X) = f(X) ⊕ f(X ⊕ Δ),

and the polynomial fΔ is defined as

fΔ(X,x) = f(X ⊕ xΔ),
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where x is a binary variable that we introduce. Note that fΔ is a Boolean poly-
nomial on n + 1 variables. From the above definitions, it is clear that

DxfΔ = DΔf.

Example 1. Let f(x1, x2, x3) = x1 ⊕ x2x3 ⊕ x3 and Δ = (1, 1, 0). On one hand,
the derivative of f with respect to Δ is

DΔf = f(X) ⊕ f(X ⊕ Δ) = f(x1, x2, x3) ⊕ f(x1 ⊕ 1, x2 ⊕ 1, x3)
= (x1 ⊕ x2x3 ⊕ x3) ⊕ ((x1 ⊕ 1) ⊕ (x2 ⊕ 1)x3 ⊕ x3) = x3 ⊕ 1.

On the other hand, by the definition of fΔ we have

fΔ = f(x1⊕x, x2⊕x, x3) = (x1⊕x)⊕(x2⊕x)x3⊕x3 = (x3⊕1)x⊕x1⊕x2x3⊕x3

and the partial derivative of fΔ with respect to x is DxfΔ = x3 ⊕ 1 = DΔf .

Given a Boolean polynomial f on X = (x1, x2, · · · , xn), if the polynomial f
can be represented as a polynomial g on (y1, y2, · · · , ym), where each yi can
be seen as a polynomial on X, to say, yi = φi(X), then the ANF of g is
called in this paper an algebraic transitional form (ATF) of f . The variables
y1, y2, · · · , ym are called transitional variables. Note that the ATF of a Boolean
polynomial is not unique. Actually, the polynomial f is a composition of g and
Φ = (φ1, φ2, · · · , φm), that is, f(X) = g(Φ(X)), denoted by f = g ◦ Φ.

Each polynomial φi can also be represented in terms of the ATF. From this
point of view, an iterated cipher can be iteratively represented by the ATF in
practical time if it is feasible to compute the ANF of its round function. It can
be extended to iteratively computed the ATF of the difference of a cipher. To
this end, we further introduce the following notations and basic facts.

For an input difference Δ ∈ F
n
2 , φi(X ⊕xΔ) = φi ⊕ (DΔφi)x. By introducing

transitional variables αi’s and βi’s, we represent φi(X ⊕xΔ) as αi ⊕xβi. Denote
α = (α1, α2, · · · , αm) and β = (β1, β2, · · · , βm). Then the polynomial fΔ =
f(X ⊕ xΔ) can be represented as

g(α ⊕ xβ) = g(α1 ⊕ xβ1, α2 ⊕ xβ2, · · · , αm ⊕ xβm),

which is called a differential algebraic transitional form (DATF) of f with respect
to Δ. More exactly, we have

fΔ = f(X ⊕ xΔ) = g(Φ(X ⊕ xΔ)) = g(Φ ⊕ (DΔΦ)x) = g(α ⊕ xβ) ◦ Ψ,

where Ψ = (Φ,DΔΦ). Since Ψ is independent of x, we obtain

DΔf = DxfΔ = Dx(g(α ⊕ xβ) ◦ Ψ) = (Dxg(α ⊕ xβ)) ◦ Ψ.

Proposition 1. If an n-variable Boolean polynomial f is a composition of an m-
variable Boolean polynomial g and a function Φ from F

n
2 into F

m
2 , i.e., f = g ◦Φ,

then the derivative of f with respect to Δ is a composition of the partial derivative
of the DATF g(α ⊕ xβ) with respect to x and the function Ψ = (Φ,DΔΦ), i.e.,
DΔf = (Dxg(α ⊕ xβ)) ◦ Ψ , where α and β are m-variable vectors and x is a
binary variable.
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Example 2. Let Δ = (1, 1, 0, 0, 0) and f = g◦Φ with g(y1, y2, y3) = y1⊕y2y3⊕y3,
Φ(x1, x2, x3, x4, x5) = (x1 ⊕x2x3 ⊕x3, x2 ⊕x3x4 ⊕x4, x3 ⊕x4x5 ⊕x5). The ANF
of f is f(X) = x1 ⊕ x2x4x5 ⊕ x2x5 ⊕ x4x5 ⊕ x5.

On one hand, the derivative of f with respect to Δ is

DΔf = f(X) ⊕ f(X ⊕ Δ) = x4x5 ⊕ x5 ⊕ 1.

On the other hand, we have

Dxg(α ⊕ xβ) = Dxg(α1 ⊕ xβ1, α2 ⊕ xβ2, α3 ⊕ xβ3)
= Dx((α1 ⊕ xβ1) ⊕ (α2 ⊕ xβ2)(α3 ⊕ xβ3) ⊕ (α3 ⊕ xβ3))
= Dx((β1 ⊕ β2(α3 ⊕ β3) ⊕ α2β3 ⊕ β3)x ⊕ α1 ⊕ α2α3 ⊕ α3)
= β1 ⊕ β2(α3 ⊕ β3) ⊕ α2β3 ⊕ β3.

Computing DΔΦ = (x3 ⊕ 1, 1, 0) and substituting (α, β) with Ψ = (Φ,DΔΦ),
e.g., β1 = x3 ⊕ 1, β2 = 1, β3 = 0 and α3 = x3 ⊕ x4x5 ⊕ x5, it gives

Dxg(α ⊕ xβ) ◦ Ψ = (x3 ⊕ 1) ⊕ (x3 ⊕ x4x5 ⊕ x5) = x4x5 ⊕ x5 ⊕ 1 = DΔf.

3.2 Calculation of the Differential-Linear Bias

In theory, the differential-linear bias can be determined by the algebraic normal
forms (ANFs) of the output bits, with input bits as variables. Nevertheless, it is
computationally infeasible to compute the ANFs of the output bits of a cipher.
To make it feasible, we compute their algebraic transitional forms (ATFs) rather
than the ANFs. More exactly, we compute the differential algebraic transitional
forms (DATFs) of internal bits as well as output bits of a cipher, and then
estimate the differential-linear bias.

For a cipher E, we consider it as a function from F
n
2 into F

m
2 . The differential-

linear bias corresponding to (Δin, λout) describes the bias of differential-linear
approximation λout ·C ⊕λout ·C ′ = 0, that is, λout ·E(P )⊕λout ·E(P ⊕Δin) = 0.
Denoting f = λout · E gives f(X) ⊕ f(X ⊕ Δin) = 0. The bias is determined
by the Hamming weight of the partial derivative of fΔin

= f(X + xΔin) with
respect to x. By Proposition 1 we know the derivative of f with respect to Δin

can be computed from its DATF.
Now we show how to compute the DATF for an iterated cipher. Given the

round function R of the cipher and an input difference Δin, the procedure for
computing the DATF of the output bits is depicted in Algorithm 1. Note that
we only concern the nonlinear operation and thus the first (last resp.) linear
layer can be omitted in the procedure if it is performed before (after resp.) the
nonlinear operation, and that the key and round keys can be taken as a part of
the state that is treated as a vector of variables or polynomials.

For an input binary variable vector X, we first initialize Y (0) = X ⊕ xΔin

where x is a binary variable. Any instance of (Y (0)|x=0, Y
(0)|x=1) corresponds

to a pair with difference Δin in the convention. Next we compute the algebraic
normal form of the output of the first rounds, i.e., Y (1) = R(Y (0)). We then
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rewrite Y (i−1) as Y ′(i−1) ⊕ xY ′′(i−1) with both Y ′(i−1) and Y ′′(i−1) independent
of x, introduce new variable vectors α(i−1) and β(i−1), and record the expressions
α(i−1) = Y ′(i−1) and β(i−1) = Y ′′(i−1) in an equation set Q. Noting that in this
step we use the “Transitional Rule” described below as the rule for introducing
transitional variable. That is, α(i−1) ⊕ xβ(i−1) = ATF(Y (i−1), x). After this we
compute the ATF of the output of the i-th round Y (i) = R(α(i−1) ⊕ xβ(i−1)).
Finally, we obtain the ATF of the output Y (r) together with an expression set
Q. A diagram of the procedure is depicted in Fig. 2.

Transitional Rule: For a Boolean polynomial u = u′′x ⊕ u′ with u′ and
u′′ independent with the variable x, if u′ involves two or more variables,
then replace u′ with a new transitional variable; if u′′ involves two or more
variables, then replace u′′ with another new transitional variable. The new
expression derived from u is denoted by ATF(u, x), or ATF(u) for short. In
other words, for any polynomial w not involving the variable x, we have

ATF(w) =

{
varw, if w involves two or more variables
w, otherwise

where varw is a transitional variable identified by w, and thus ATF(w) is a
constant or a variable up to a constant. By the rule, we know ATF(u, x) =
ATF(u′′)x⊕ATF(u′) has at most three variables including x. For a polynomial
vector, ATF operates on each component of the vector. This rule ensures that
ATF(f, x) is an ATF of f in a very simplified way that keeps x unchanged.

Remark 1. Our experiments show that the DATF techniques perform best when
the Transitional Rule is applied before the nonlinear operations. Hereinafter,
the rule is thus used before the nonlinear operations by default.

Algorithm 1: Differential Algebraic Transitional Form (DATF)
Input: An input difference Δin, the round function R of an iterated cipher,
and the number r of rounds.
Output: Expressions (Y (r), Q).

1: Initialize the input variable vector Y (0) = X ⊕ xΔin, and set Q = ∅;

2: Compute the ANF of the first round, Y (1) = R(Y (0));
3: for i from 2 to r do
4: Y ′(i−1) ← Y (i−1)|x=0;
5: Y ′′(i−1) ← DxY (i−1);

6: α(i−1) ← ATF(Y ′(i−1));

7: β(i−1) ← ATF(Y ′′(i−1)); // each component of α(i) and β(i) is a variable

up to a constant or a constant

8: Add the expressions α(i−1) = Y ′(i−1) and β(i−1) = Y ′′(i−1) to Q;

9: Compute the ATF of the i-th round, Y (i) = R(α(i−1) ⊕ xβ(i−1));

10: Return (Y (r), Q).
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X ⊕ xΔin

R

α(1) ⊕ xβ(1)

R

α(2) ⊕ xβ(2)

R

...

Y ′(1) ⊕ xY ′′(1)

Y ′(2) ⊕ xY ′′(2)

Y ′(3) ⊕ xY ′′(3)

Y (0)

Y (1)

Y (2)

Y (3)

ATF

ATF(Y (1), x)

ATF

ATF(Y (2), x)

Fig. 2. Differential algebraic transitional form (Algorithm 1)

The polynomial Y (r) is a DATF of E = Rr with respect to Δin, and thus
λout · Y (r) is a DATF of f = λout · E. As analyzed previously, DΔin

f can be
computed from Dx(λout · Y (r)) = λout · DxY (r) and Q.

The Complexity of Algorithm 1. Let tR be the complexity of computing the
ANF of the round function R, and d the algebraic degree of R. The dominant step
is Line 9 in the loop. Usually, after a few rounds, all the components of Y ′(i) and
Y ′′(i) involve at least two variables due to the propagation of both the value and
difference. By the transitional rule, each component of the vectors α(i) and β(i)

is set to a transitional variable. Then the complexity for computing the ATF of
R(α(i) ⊕ xβ(i)) is at most 2dtR. So the complexity of Algorithm 1 is O(2drtR) in
the worst case. Taking d and r as small constants, the complexity is then O(tR).
It is feasible to compute the algebraic expression of R(α(i) ⊕xβ(i)) if it is feasible
to compute the ANF of the round function R with small degree. This is the case
for most iterated ciphers without addition operations.

Next we show how to estimate the differential-linear bias. Given the ATF of
the output Y (r) and the expression set Q generated by Algorithm 1, we target
at estimating the differential-linear bias of the parity of the output pair with
linear mask λout. First we compute the ATF of the parity e = λout ·Y ′′(r), where
Y ′′(r) = DxY (r) is the partial derivative of Y (r) with respect to x. Note that
the bias will be 0 if there is an isolated variable in the ATF of e, assuming that
all the variables follow uniform distribution and are independent of each other.
Therefore, we compute the bias of the polynomial obtained by removing all the
isolated variables from the ATF of e. For the sum of the isolated variables, we
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substitute the expressions Q and obtain a new polynomial. Then we update e
with this new polynomial, and deal with this polynomial iteratively until it is
zero. By the piling-up lemma, we finally obtain the bias ε. The whole procedure
is depicted as Algorithm 2.

Algorithm 2: Estimation of the Differential-Linear Bias
Input: Linear mask λout and the expressions (Y (r), Q).
Output: A bias ε.

1: Calculate the partial derivative of Y (r): Y ′′(r) ← DxY (r);

2: Compute the ATF of the parity e = λout · Y ′′(r), and set ε = 1
2
;

3: while e �= 0 do

4: Select the isolated variables in the ATF of e, and sum them to el;

5: Compute the bias of e∗ = e − el by ε∗ = Bias(e∗), and calculate ε = 2 · ε∗ · ε;

6: Substitute the expressions Q into el, and update e with this new polynomial;

7: Return ε.

/* The procedure for computing the bias from the ATF of f */

8: procedure Bias(f)

9: (f1, f2, · · · , fm) ←Separate(f);

10: ε ← 1
2
;

11: for i from 1 to m do

12: if the number of variables in the expression of fi is small then

13: Compute the bias εi of fi according to its Hamming weight;

14: else

15: Select a variable v minimizing the maximum cardinality of the variable

sets of the polynomials in Separate(fi|v=0) and Separate(fi|v=1);

16: Compute the bias of fi by εi = 1
2
Bias(fi|v=0) + 1

2
Bias(fi|v=1);

17: ε ← 2 · ε · εi;

18: if ε = 0 then

19: break

20: return ε.

/* The procedure for Separating the ATF of f */

21: procedure Separate(f)

22: Separate the Boolean polynomial f as a sum of m polynomials fi whose

variable sets are mutually disjoint, and sort f1, f2, · · · , fm in ascending order

according to the number of terms in their ANFs;

23: return (f1, f2, · · · , fm).

In Algorithm 2, we use a procedure Bias() to compute the bias given an
algebraic expression in binary variables, in which another procedure Separate()
is used to separate the expression as a sum of m polynomials that have no
common variables. For a polynomial that could not be separated, if it involves
a small number of variables, e.g., 20, we can easily compute the bias from its
Hamming weight; otherwise, we guess the values of the variables one by one,
and apply Bias() repeatedly until all the polynomials have a small number of
variables.
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Lemma 2. Given the ATF of f , if the variables are independent and identically
distributed, then the output of Bias(f) gives the bias of f .

Proof. Let εf be the bias of f , and it needs to prove εf = Bias(f). Since
f =

∑m
i=1 fi after the first step Separate(f) and fi’s are independent (because

their variables are disjoint and independent), we have εf = 2m−1εf1εf2 · · · εfm
by

the piling-up lemma. This is calculated by 2m−1Bias(f1)Bias(f2) · · · Bias(fm)
in Line 17 of the procedure. Therefore, it is sufficient to prove εf = Bias(f) for
the case m = 1. This is clearly true when the number n of variables is small.
The rest can be proved by induction. Suppose that it is true that εf = Bias(f)
for any f with at most n − 1 variables. Let v be a variable of f . Since 1

2 + εf =
Pr(v = 0) · (12 + εf |v=0) + Pr(v = 1) · ( 12 + εf |v=1), we have

εf = Pr(v = 0) · εf |v=0 + Pr(v = 1) · εf |v=1 (3.1)

and according the variable distribution and the inductive assumption it implies

εf =
1
2
εf |v=0 +

1
2
εf |v=1 =

1
2
Bias(f |v=0) +

1
2
Bias(f |v=1) = Bias(f).

Since the ATF of the parity with respect to the output linear mask λout is
e = e∗ + el with e∗ = e − el and el sharing no common variables, where el

is the sum of the isolated variables of e, the bias of e is twice the product of
the biases of e∗ and el. Substituting the expressions in Q into el gives a new
Boolean polynomial, and its bias can be computed in a similarly way. From this
observation, the following statement can be derived.

Theorem 3. Assuming that all the variables of e∗’s in Algorithm 2 are inde-
pendent and identically distributed, the output ε of Algorithm 2 is the bias of the
differential-linear approximation Δin → λout.

Proof. As the previous analysis of Algorithm 1, we know Y (i) is a DATF of Ri

with respect to Δin, and thus λout·Y (r) is a DATF of f = λout·Rr. By Proposition
1, Dx(λout · Y (r)) = λout · DxY (r) = e is an ATF of DΔin

f . Suppose that Line 5
executes t and only t times in the algorithm. Let e

(i)
l be the polynomial el after

i executions of Line 5, and e(i) the polynomial obtained by substituting the
expressions Q into e

(i)
l . Then DΔin

f can be represented as e∗ +
∑t−1

i=1 e∗(i) +e(t),
where e∗ = e − e

(1)
l and e∗(i) = e(i) − e

(i+1)
l . Since Line 5 repeates only t times,

we have e(t) = 0 and thus DΔin
f is represented as e∗ +

∑t−1
i=1 e∗(i), in which the

expressions e∗ and e∗(i)’s have independent variables under the assumption of
the theorem. By the piling-up lemma and Lemma 2, the bias of DΔin

f is equal
to 2t−1Bias(e∗)

∏t−1
i=1 Bias(e

∗(i)), which is the output ε of Algorithm 2.

The Complexity of Algorithm 2. The complexity of Line 5 in the loop dom-
inates the complexity, that is, the computation of Bias(e∗). The complexity of
Bias(e∗) is at most 2m∗

, where m∗ is the maximum cardinality of the variable
sets of the polynomials in Separate(e∗). So the complexity of Algorithm 2 is
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O(2m) in the worst case, where m is the maximum of m∗. In the case for most
iterated ciphers without addition operations, especially for lightweight ciphers
using small S-boxes, m is small so that the algorithm is practical. In particular,
when Line 5 executes only once, m is at most twice the size of S-boxes, since the
algorithm treat the output of the last nonlinear operation as the output of the
cipher.

In the following we propose a refined method for estimating the differential-
linear bias. It follows the main framework of Algorithm 1 and Algorithm 2.
The difference is that the assumption of uniform distribution of the transitional
variables is removed and replaced by auxiliary computation. The procedure is
depicted as Algorithm 3, and the different parts include Line 2, Line 6 and
Line 12 (in blue). In Line 2, the probability distribution of each input variable
is set. In Line 6, the probability distribution of each transitional variable is
computed according to the probability distribution of previous variables. In Line
12 of the algorithm, each estimation of bias takes the probability distribution
of transitional variables into account. This refined method usually gives a more
accurate estimation of the bias, while it requires more computations.

With a probability distribution set D = {Pr(Xi = 0) = 1
2 + εi|Xi ∈ X, 1 ≤

i ≤ n}, if Xi’s are independent, then the probability that f(X) equals zero is

Pr(f(X) = 0) =
∑

C∈{X|f(X)=0}

n∏

i=1

(
1
2

+ (−1)Ciεi). (3.2)

According to (3.2), we execute Step 6 of the algorithm. Adapting the procedure
Bias() with (3.2) and (3.1), we execute Step 12. The complexity of the adapted
procedure is about n times the complexity of Bias(). Combining Algorithm 1
and Algorithm 2 with these steps, we obtain Algorithm 3.

Similarly as Theorem 3 for Algorithm 2, we conclude the following statement
for Algorithm 3. Since the probability distribution of each transitional variable
is calculated in the algorithm, the assumption of their distribution is removed.

Theorem 4. Assuming that the variables of the DATF, i.e., Y (i), at each round
are independent, the output ε of Algorithm 3 is the bias of the differential-linear
approximation Δin → λout.

Proof. Since the variables of each round are independent, it can proved by induc-
tion on the number i of rounds that all the probability distributions in D are
correct according to (3.2). Then under the independence assumption of the vari-
ables of the last round, the theorem is proved by the correctness of the modified
procedure that adjusts Bias() with (3.2) and (3.1).

The Complexity of Algorithm 3. Let T1 and T2 respectively be the complex-
ity of Algorithm 1 and Algorithm 2, and n the state size. Then the complexity of
Algorithm 3 is at most T1+2nT2, since the main difference between Algorithm 3
and the combination of Algorithm 1 and Algorithm 2 is generated by (3.2).
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Algorithm 3: Refined Estimation of the Differential-Linear Bias
Input: An input difference Δin, output linear mask λout, the round function R

of an iterated cipher, and the number r of rounds.
Output: A bias ε.

1: Initialize the input variable vector Y (0) = X ⊕ xΔin, and set Q = ∅;

2: Initialize a probability distribution set D = {Pr(Xi = 0) = 1
2
|Xi ∈ X};

3: Compute the ANF of the output of the first round Y (1) = R(Y (0));

4: for i from 2 to r do
5: Write Y (i−1) = Y ′(i−1) ⊕ xY ′′(i−1) with Y ′(i−1) and Y ′′(i−1) independent of x,

introduce new variable vectors α(i−1) and β(i−1), and add the expressions
α(i−1) = Y ′(i−1) and β(i−1) = Y ′′(i−1) to Q;

6: With D, compute the probabilities that α
(i−1)
j and β

(i−1)
j are respectively zero

for all j, and add to D;

7: Compute the ATF of the output of the i-th round Y (i) = R(α(i−1) ⊕ xβ(i−1));
8: Calculate the partial derivative of Y (r): Y ′′(r) ← DxY (r);

9: Compute the ATF of the parity e = λout · Y ′′(r), and set ε = 1
2
;

10: while e �= 0 do
11: Select the isolated variables in the ATF of e, and sum them to el;

12: With D, compute the bias ε∗ of e∗ = e − el, and calculate ε = 2 · ε∗ · ε;
13: Substitute the expressions Q into el, and update e with this new polynomial;
14: Return ε.

3.3 Key Recovery in Differential-Linear Cryptanalysis

To convert a differential-linear distinguisher to a key recovery attack, for a block
cipher, we usually guess some key bits, perform partial encryption or decryp-
tion, and apply the distinguisher. In the previous work, the distinguisher and the
process of key guessing are separately treated. Here we show an algebraic app-
roach to deal with these two processes simultaneously. The approach also applies
to iterated ciphers of other types, including stream ciphers and authenticated
encryption ciphers.

A crucial stage of this approach is to impose some conditions on the inter-
nal bits of the cipher to make uncertain differences determined in the first
rounds. Similar techniques were used in conditional differential cryptanalysis
[BB93,KMN10] and conditional linear cryptanalysis [BP18], and a similar idea
called the partitioning technique was applied to differential-linear cryptanalysis
in [Leu16] with an application to Chaskey.

Our precomputation for the key recovery follows the main framework of esti-
mating the differential-linear bias in Algorithm 3. The procedure is depicted as
Algorithm 4. For the sake of brevity, here we only explain its differences with
Algorithm 3, marked blue in the procedure. The main difference is that some
conditions I are imposed in the first r1 rounds. Note that in each computation
of the ANFs and ATFs we reduce the polynomials over the ideal of I, denoted
by “mod I”.

After precomputation for the key recovery as shown in Algorithm 4, we obtain
a set of expressions QI and a differential-linear bias ε. Then a system of equa-
tions S = {f = 0|f ∈ QI} is derived. Assume that the equations in S are
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Algorithm 4: Key Recovery in Differential-Linear Cryptanalysis
Input: An input difference Δin, output linear mask λout, the round function R

of an iterated cipher, the number r of rounds, and a parameter r1.
Output: A set QI of expressions in key bits and a bias ε.

1: Initialize the input variable vector Y (0) = X ⊕ xΔin, and set Q = ∅ and I = ∅;

2: Initialize a probability distribution set D = {Pr(Xi = 0) = 1
2
|Xi ∈ X};

3: Compute the ANF of the first round Y (1) = R(Y (0)) mod I;

4: for i from 2 to r do

5: Write Y (i−1) = Y ′(i−1) ⊕ xY ′′(i−1) with Y ′(i−1) and Y ′′(i−1) independent of x;
6: if i ≤ r1 and Y ′′(i−1) �∈ {0, 1} then
7: Add Y ′′(i−1) to I, impose Y ′′(i−1) = 0, and set Y ′(i−1) = Y ′(i−1) mod I;
8: Introduce new variable vectors α(i−1) and β(i−1), and add the expressions

α(i−1) = Y ′(i−1) and β(i−1) = Y ′′(i−1) to Q;

9: With D, compute the probabilities that α
(i−1)
j and β

(i−1)
j are zeros for j, and

add to D;

10: Compute the ATF of the i-th round Y (i) = R(α(i−1) ⊕ xβ(i−1)) mod I;

11: Calculate the partial derivative of Y (r): Y ′′(r) ← DxY (r);
12: Compute the ATF of the parity e = λout · Y ′′(r) mod I, and set ε = 1

2
;

13: while e �= 0 do
14: Select the isolated variables in the ATF of e, and sum them to el;

15: With D, compute the bias of e − el, denoted by ε∗, and calculate ε = 2 · ε∗ · ε;

16: Substitute the expressions Q into el, and update e with this new polynomial
(mod I);

17: Deal with I, and obtain a set of expressions in input bits, denoted by QI ;
18: Return QI , ε.

independently and they are always consistent for an arbitrary fixed key. Denote
by n the number of equations in S and by m the number of independent expres-
sions of key bits in S. In the key recovery attack, the key is unknown, and thus
we need to guess the values of the expressions that involve the key bits. For each
guess of these expressions, O( 1

ε2 ) pairs of plaintexts with input difference Δin is
sufficient to mount a distinguisher. We assume a random behavior of the parities
of the output subset for a wrong key. Then the data complexity of the attack is
D = O(2

n

ε2 ). There are 2m values for the m expressions that need to be guessed
in the attack, so the attack time is T = O(2

m

ε2 ).
The success probability of the attack is calculated according to analytical

results of the success probability of linear attacks (also applicable to differential-
linear attacks) in [Sel08, Theorem 2] as below.

Theorem 5. ([Sel08]) Denote by Φ the cumulative distribution functions of the
standard normal distribution. Let PS be the probability that a linear attack on
an m-bit subkey, with a linear approximation of probability p, with N known
plaintext blocks, delivers an a-bit or higher advantage. Assuming that the linear
approximation’s probability to hold is independent for each key tried and is equal
to 1/2 for all wrong keys, we have, for sufficiently large m and N ,
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PS = Φ(2
√

N |p − 1/2| − Φ−1(1 − 2−a−1)). (3.3)

The Complexity of Algorithm 4. Excluding the cost of computing the ATF
and bias that is almost the same as Algorithm 3, the running time of Algorithm 4
mainly depends on the cost tI of each computation of mod I. The former is
computed as T3 = T1 + 2nT2 as previously. Then the complexity of Algorithm 4
is O(T3 + nrtI). Therefore Algorithm 4 is practical when Algorithm 3 is feasible
and the size of I is small.

We have implemented Algorithm 4 in SageMath for Ascon, Serpent, and
Grain v1. Our experiments show that the algorithm performs well when r1 is
small enough (such that the number of independent expressions in I is small),
though it is slower than Algorithm 2 and Algorithm 3. It is a good choice to use
Algorithm 2 and Algorithm 3 to screen differential-linear approximations. Espe-
cially for input difference and output linear mask with small Hamming weights,
we can use Algorithm 2 to exhaust all possible differential-linear approximations,
and use Algorithm 3 to further screen candidates. In the applications in condi-
tional attacks, we can equip Algorithm 4 with Algorithm 2 for fast computation.
As a general method, the algorithm can also be applied with a DL distinguisher
obtained by other approaches, in particular when it can not detect a reasonable
bias.

4 Applications to Ascon

In this section, we apply our techniques to Ascon for estimating the differential-
linear bias, and then propose a key recovery attack to a 5-round variant. Ascon
is a family of authenticated encryption and hashing algorithms designed by
Dobraunig et al. [DEMS16,DEMS19]. It has been selected as the primary choice
for lightweight authenticated encryption in the final portfolio of the CAESAR
competition (2014–2019) and is currently competing in the NIST Lightweight
Cryptography competition. The analysis in this paper is focused on Ascon-128,
and the results are also applicable to Ascon-128a. Note that given the 64 bits of
the output, one can invert the last linear layer. Hereinafter we thus consider the
cipher without the last linear layer.

4.1 Differential-Linear Bias of Ascon

In [DEMS15], Dobraunig et al. presented practical differential-linear attacks on
up to 5 rounds of the Ascon permutation, based on a 4-round differential-linear
distinguisher. The authors of [DEMS15] stated that while the overall bias of
the approximation is expected to be 2−20 by the theory of the differential-linear
attack, experiments show that the bias is 2−2 which is significantly higher.

Recently, at EUROCRYPT 2019, Bar-On et al. [BDKW19] recomputed
the bias of the distinguisher using the Differential-Linear Connectivity Table
(DLCT) and obtained a higher bias of 2−5. This value is significantly higher
than the value 2−20 which follows from the classical differential-linear frame-
work. On the other hand, it is still much lower than the experimentally obtained
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bias of 2−2. The authors of [BDKW19] conjectured that it may be explained by
the effect of other differentials and linear approximations.

In the following, we exploit the two algorithms, Algorithm 2 and Algorithm 3,
as shown in Sect. 3 to estimate the differential-linear bias for Ascon.

Before applying Algorithm 2, we have to compute the DATF of Ascon by
Algorithm 1. We divide the S-box of Ascon into two parts, pSL

and pSN
, and

the permutation of Ascon is then divided into two parts, pA = pSL
◦ pC and

pB = pL ◦ pSN
. The first part of the S-box, pSL

, is actually a linear transform,
as shown below.

In Algorithm 1, we compute the ANF of a half round of p, i.e., R
1
2 = pA,

instead of the entire first round. We then set R = pA ◦ pB , and for the last round
set R = pSN

. A function of r rounds pr without the last linear layer is exactly
pSN

◦Rr−1 ◦pA. The 128-bit key and 128-bit nonce are set to 256 binary variables,
and the IV is set to a constant defined by the cipher.

For the input difference Δin with differences in bit 63 of x3 and x4, by
performing Algorithm 1 with r = 4, we obtain the ATF of the output Y (4)

together with an expression set Q. Note that in Line 3 of Algorithm 1 the
number i of rounds ranges from 1 to r = 4. Applying Algorithm 2 to a single-bit
linear mask in bit 9 then gives a differential-linear bias ε = 2−3.

Similarly as done in Algorithm 1, in Algorithm 3 we set R
1
2 = pA, R =

pA ◦ pB, and for the last round R = pSN
. With the same input difference and

output mask, applying Algorithm 3 to 4 rounds of Ascon permutation gives a
bias ε = 2−2.365. This result slightly improves the estimate of 2−3 obtained by
Algorithm 2, at cost of computations of the probability distribution. It is very
close to the experimentally obtained bias of 2−2, and much higher than the
theoretical bias of 2−5 obtained in [BDKW19] using the DLCT.

4.2 Differential-Linear Cryptanalysis of Ascon

Now we apply the key recovery algorithm, Algorithm 4, to 5-round Ascon-128.
By performing Algorithm 4 with r1 = 2 and r = 5 over all possible single-bit
or two-bit input differences and all possible single-bit output masks, we obtain a
differential-linear bias ε = 2−5.415 for the input difference Δin with differences in
bit 63 of x3 and x4 and the output mask λout in bit 36. The R function is the same
as defined previously, and in Line 4 of Algorithm 4 the number i of rounds ranges
from 1 to 5. The set of expressions QI has 9 polynomials, with algebraic degree at
most 2. Among these 9 polynomials, 6 of them involve both the key and nonce bits,
2 polynomials involve only a single key bit (bit 63 and 127 respectively), and one
involves only two nonce bits (bit 63 XOR bit 127). We impose bit 63 and bit 127 of
the nonce to be equal, and run all the possible cases for the other 8 polynomials by
experiments on random 228 samples for each case. We then derive a bias of 2−4.5

when all the polynomials equals zero and a reasonable high bias of 2−5.5 when 5
of them equals zero. The 5 equations are listed as follows, where ki means bit i of
the key and vi means bit i of the nonce.
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k63 = 0;
k127 = 0;
v52 = k12v76 + k12 + k35v99 + k42v106 + k45 + k52 + k99 + k109 + k116

+ v12 + v42 + v45 + v76 + v106 + v109 + v116 + 1;
v74 = k10k74 + k10v10 + k10 + k32k96 + k32v32 + k32 + k35k99 + k35v35 + k35

+ k74v10 + k74 + k96v32 + k96 + k99v35 + k99

+ v10 + v32 + v35 + v96 + v99 + 1;
v83 = k19k83 + k19v19 + k19 + k41k105 + k41v41 + k41 + k44k108 + k44v44 + k44

+ k83v19 + k83 + k105v41 + k105 + k108v44 + k108

+ v19 + v41 + v44 + v105 + v108.

Our experiments show that the differential-linear bias is significantly smaller
than 2−5.5 when one or more equations of the above equations are not satisfied.
Fixing the values of Vfix = {v10, v19, v32, v35, v41, v44, v76, v99, v106}, 215.3+3 sam-
ples with v52, v74, v83 running over possible values are sufficient to distinguish
k63 = k127 = 0 from the other cases. For the case k63 = k127 = 0, we can also
recover 3 extra expressions on key bits. More exactly, in this case, we are able
to derive the above 5 equations. We can further set up 9 more equations by
flipping the values of Vfix bit by bit. By elimination of nonlinear terms in key
bits and after simplification, we obtain 12 linear equations on key bits, that is,
k63 = 0, k127 = 0, k12 = c0, k35 = c1, k42 = c2, k99 = c3, k10+k74 = c4, k19+k83 =
c5, k32 + k96 = c6, k41 + k105 = c7, k44 + k108 = c8, k45 + k52 + k109 + k116 = c9.
Since we know the value c4 of the sum k10 + k74, we can linearize the quadratic
term k10k74 to k10(1 + k10 + k74) = (1 + c4)k10. By a similar way, the two non-
linear equations can be linearized, and they are linearly independent with the
previous equations with a high probability.

Noting that the characteristics of Ascon are rotation-invariant within the
64-bit words, the same method can be used to set up other equations by placing
differences in bit i of x3, x4 and observing the bias at position (i + 37) mod 64.
For each i, we can detect whether ki = ki+64 = 0 is satisfied, and then set up 14
linear equations. We can obtain on average 16 i’s with ki = ki+64 = 0, and thus
derive 16 × 14 = 224 linear equations on key bits, which is sufficient to recover
the correct key. We have verified by experiments on thousands of keys that for
most cases the linear system has at least 104 linearly independent equations.

The data complexity of the attack is on average 64 × 219.3 + 16 × 9 × 217.3 ≈
226 bits, and the expected time complexity is about 226, for most of the keys.
The complexity has been practically verified. This attack significantly improves
the existing differential-linear attack on 5-round Ascon-128 with complexity 236

[DEMS15]. Our results are summarized in Table 3, with the comparisons of the
previous differential-linear attacks.

Remark 2. We have made a lot of efforts to apply the method to Ascon for 6
and more rounds, e.g., performing an exhaustive search over all the possible
DL approximations with low-weight differences and linear masks, but we did
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Table 3. Differential-linear cryptanalysis on Ascon-128

Type Rounds Time Data Source

key recovery 4/12 218 218 [DEMS15]

key recovery 5/12 236 236 [DEMS15]

key recovery 5/12 226 226 Section 4.2

not find any approximation with bias larger than 2−64. This probably enhances
confidence that there does not exist valid DL approximation for 6-round Ascon,
at least for low-weight differences and linear masks.

5 Applications to Serpent

In this section, we first give a brief description of the cipher Serpent [ABK98],
as well as revisit the estimation of the differential-linear bias in [BDK03] by our
techniques, and then propose key recovery attacks to round-reduced Serpent.

5.1 A Brief Description of Serpent

In [ABK98] Anderson, Biham and Knudsen presented the block cipher Serpent.
Serpent is an AES finalist. Serpent has a block size of 128 bits and supports a
key size of 128, 192 or 256 bits. The cipher is a 32-round SP-network operating
on a block of four 32-bit words. Each round is composed of key mixing, a layer
of S-boxes and a linear transformation.

In the following, we adopt the notations of [ABK98,BDK03] in the bitsliced
version. The intermediate value of the round i is denoted by B̂i (which is a 128-
bit value). The rounds are numbered from 0 to 31. Each B̂i is composed of four
32-bit words X0,X1,X2,X3. Serpent has 32 rounds, and a set of eight 4-bit to 4-
bit S-boxes. Each round function Ri(i ∈ {0, · · · , 31}) uses a single S-box 32 times
in parallel. For example, R0 uses S0, 32 copies of which are applied in parallel.
Thus, the first copy of S0 takes the least significant bits from X0,X1,X2,X3

and returns the output to the same bits. This can be implemented as a Boolean
expression of the 4 words. The set of eight S-boxes is used four times. S0 is used
in round 0, S1 is used in round 1, etc. After using S7 in round 7, S0 is used
again in round 8, then S1 in round 9, and so on. In the last round (round 31)
the linear transformation is omitted and another key is XORed.

5.2 Differential-Linear Bias of Serpent

One of the first applications of the differential-linear cryptanalysis is an attack
on the AES finalist Serpent presented by Biham et al. in [BDK03]. The attack
is based on a 9-round differential-linear distinguisher with bias of 2−60 and tar-
gets an 11-round variant of the cipher. In [DIK08], Dunkelman et al. performed



Differential-Linear Cryptanalysis from an Algebraic Perspective 267

experiments with reduced round variants of Serpent, and concluded that the
actual bias of the approximation is 2−57.75 and not 2−60. In [BDKW19], Bar-On
et al. recomputed the bias of the distinguisher using the DLCT and obtained
the value 2−57.68.

In this section, we revisit the analysis of the bias of this distinguisher by
DATF techniques, and show an estimate of 2−57.736. This value is extremely
close to the experimental value.

Before showing our results, we recall the analysis of [BDK03]. In the following,
we adopt the notations of [BDKW19,BDK03], and refer the reader to [BDK03]
for the exact difference and mask values. The differential-linear distinguisher of
[BDK03] targets a 9-round reduced variant of Serpent that starts with round
2 of the cipher. This variant is denoted by E and decomposed as E = E1 ◦ E0,
where E0 consists of rounds 2–4 and E1 consists of rounds 5–10. For E0, the
distinguisher uses a differential characteristic of the form

Δ0
p0=2−5

−−−−−→
LT ◦S2

Δ1
p1=2−1

−−−−−→
LT ◦S3

Δ2
p2=1−−−−→

LT ◦S4
Δ3,

where Δ2,Δ3 are truncated differences. For E1, the distinguisher uses a linear
approximation of the form

λ0
q0=2−5

−−−−−→
LT ◦S5

λ1
q1=2−3

−−−−−→
LT ◦S6

λ2
q1=2−21

−−−−−→
R4

λ6,

where all nonzero bits of the mask λ0 are included in the bits that are known to
be zero in Δ3. The authors of [BDK03] found out by experiments that there are
other differentials which also predict the difference in the bits of λ0. Summing
all the differentials, they got that the probability that λ0 · Δ3 = 0 is 1/2 + 2−7,
and hence used p = 2−7 in their analysis. Using the complexity analysis of the
classical differential-linear framework, the authors of [BDK03] concluded that
the overall bias of the approximation is 2 × 2−7 × (2−27)2 = 2−60.

The authors of [DIK08] checked experimentally the first 4 rounds of the
differential-linear distinguisher of [BDK03] (that is, a 4-round distinguisher
which starts with the difference Δ0 and ends with the mask λ1) and found
that its bias is 2−13.75, instead of the estimate 2 · 2−7 · (2−5)2 = 2−16. They
concluded that the bias of the 9-round distinguisher is 2−57.75 instead of 2−60.

The authors of [BDKW19] considered a 3-round variant of Serpent that
starts at round 3, denoted it by E′, and found that its bias is 2−8.68. Hence
they concluded that the bias of the 4-round distinguisher examined in [DIK08]
is 2−5 · 2−8.68 = 2−13.68.

We apply Algorithm 3 to the 3-round variant of Serpent E′ considered in
[BDKW19], with the input difference Δin = Δ1 and output mask λout = λ1,
and obtain a bias ε = 2−8.736. Therefore we conclude that the bias of the 4-
round distinguisher examined in [DIK08] is 2−5 · 2−8.736 = 2−13.736. This value
is extremely close to the experimental value, and slightly more accurate than
that of [BDKW19]. Note that the gap is 2−20.4 while the standard deviation of
the bias was 2−18.87 in the experiment of [DIK08]. We conjecture that the gap
between the experimental value and our estimate is a statistical error.
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We further apply Algorithm 3 to a 4-round variant of Serpent that starts
at round 3, with the input difference Δin = Δ1 and output mask λout = λ2,
and obtain a bias ε = 2−12.736. We thus conclude that the bias of the 5-round
distinguisher is 2−5 · 2−12.736 = 2−17.736.

5.3 Differential-Linear Cryptanalysis of 11-Round and 12-Round
Serpent

In this section, we first point out the flaws in the previous attacks on 12-round
Serpent, and then show our improved attack by applying Algorithm 4.

Comments on the Attacks on 12-round Serpent in [DIK08,Lu15]. The
authors of [DIK08] found that the S-boxes 2, 3, 19, and 23 do not affect the active
bits of LT−1(Δ0), and used this property to extend the 11-round attack to 12
rounds by partially encrypting plaintexts for one more round. Nevertheless, in
Step 3(b) of the 11-round attack, the bits input to the 5 active S-boxes in round
1 are partially encrypted, and thus not only the differences but also the values of
these bits must be taken into account. Our experiment shows that the S-boxes 2,
3, 19, and 23 affect their values, though they do not affect their differences. This
implies that the attack on 12-round Serpent in [DIK08] has an underestimated
time complexity, up to a factor of 216. The same issue exists in the 12-round
attack on Serpent in [Lu15] with time complexity of 2244.9 encryptions. Instead,
they used the property that the S-boxes 1, 8, 10, 30, and 14 of Round 0 do not
affect the difference corresponding to the S-boxes 18, 22, 24 and 25 of Round 1,
but our experiment shows that all the S-boxes of Round 0 affect their values. This
means that the complexity was underestimated by a factor of 220. We therefore
conclude that these attacks are thus worse than a brute-force attack.2

The Improved Attacks on 11-round Serpent. First, we consider a 6-round
variant of Serpent that starts at round 1, using Algorithm 4. The input dif-
ference is set to Δin = {11, 14, 18, 31, 46, 49, 50, 75, 78, 81, 82, 95, 107, 114, 127},
and the output mask λout = λ2. With r1 = 2, performing Algorithm 4, we
obtain a bias ε = 2−12.736. The set of expressions QI has 16 independent poly-
nomials, 11 of which are generated in round 1. The remaining 5 polynomials
are produced in round 2, and the probability that all of these 5 polynomials
equal zeros is 2−5. If we impose the 11 polynomials in round 1 to be zeros,
which are all linear, then we obtain a differential-linear distinguisher with a
bias of 2−5 · 2−12.736 = 2−17.736, for 6-round Serpent. By assuming the piling-
up lemma to hold for the linear approximation from round 7 to round 10
2 The authors of [DIK08] have confirmed the issue with the attacks after a long-

time effort to find solution for fixing it. We are grateful to them for their helpful
discussions and precious feedback on the issue. The flaw was found when we tried
to apply our techniques to Serpent. We believe that the techniques can improve
the 12-round attacks in [DIK08], but the “improved” attack is even worse than a
brute-force attack. We were then aware that this is a contradiction.
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(λ2
q1=2−21

−−−−−→
R4

λ6), we can obtain a 10-round differential-linear distinguisher with

a bias 4 · 2−17.736 · 2−21 · 2−21 = 2−57.736, by imposing 11 linear equations on
the input bits and key bits in round 1. This is because imposing these equations
makes the differential characteristic Δin

LT ◦S1−−−−→ Δ0 hold with probability one.
Nevertheless, the technique of Sect. 3.3 can not be adopted directly, since the
required data exceeds 2128. As a trade off, the data complexity can be cut down
by imposing less equations, at cost of increasing the attack time.

Based on the above observation, we improve the differential-linear attack on
11-round Serpent as follows.

In the attack, we use an input difference with 3 active S-boxes 11, 14, 18:

Δin = {11, 14, 18, 46, 50, 75, 78, 82, 107, 114},

and impose the following 6 equations:

v11 = k11;
v14 = k14 ⊕ k78 ⊕ v78 ⊕ 1;
v18 = k18 ⊕ k50 ⊕ v50;
v43 = k43 ⊕ k107 ⊕ v107 ⊕ 1;
v46 = k46 ⊕ k78 ⊕ v78 ⊕ 1;
v82 = v50 ⊕ k50 ⊕ k82 ⊕ 1,

(5.1)

where vi and ki respectively denote bit i of plain-text input to round 1 and the
128-bit subkey K1 of round 1.

The attack is described by the following procedure.

1. Select N = 2125.6 pairs of plaintexts with difference Δin, consisting of 2111.6

structures, each is chosen by selecting:

(a) Any pairs of plaintexts (P0, P0 ⊕ Δin).
(b) The pairs of plaintexts (Pi, Pi ⊕ Δin) for 1 ≤ i ≤ 214 − 1, where

P1, · · · , P214−1 differ from P0 by all the 214 − 1 possible (non-empty) sub-
sets of the 6 bits {11, 14, 18, 43, 46, 82}, S-box 17 (bits {17, 49, 81, 113}) and
S-box 31 (bits {31, 63, 95, 127}) in round 1.

2. Request the ciphertexts of these plaintext structures (encrypted under the
unknown key K).

3. For each value of the 6 expressions of K1, choose the 2119.6 pairs of plaintexts
(P, P ⊕Δin) with P satisfying (5.1), and perform the following steps for each
value of the 8 bits of K1 entering S-box 17 and S-box 31:

(a) Initialize an array of 256 counters to zeros.
(b) Partially encrypt for each plaintext the S-boxes 17 and 31 in round 1, and

find the pairs which satisfy the difference Δ0 before round 2.
(c) Given those 2119.6 pairs, perform for each ciphertext pair: count over all

pairs how many times each of the 256 possibilities of the 56 bits entering the
7 active S-boxes in round 11 occurs.
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(d) For each guess of the subkey entering these S-boxes, find how many pairs
agree on the output subset parity, and how many disagree.

(e) The highest entry in the array should correspond to the 28 bits of K12

entering the 7 active S-boxes in round 11.

4. Each trial of the key gives us 42 bits of the subkeys (14 bits in round 1 and
28 bits in round 11), along with a measure for correctness. The correct value
of the 40 bits is expected to be the most frequently suggested value.

5. The rest of the key bits are then recovered by auxiliary techniques.

The data complexity of the attack is 2126.6 chosen plaintexts, the time com-
plexity of the attack is 2120.6 · 214 · 2

352 = 2127.1 encryptions, and the memory
complexity is 260 bytes for the 11-round attack. Using the formula (3.3), the suc-
cess probability of the attack is expected to be about 85%. As far as we know,
this is the first differential-linear cryptanalysis on 11-round Serpent-128.

Further Improvements on the Attacks on Serpent. In [DIK08], Dunkel-
man et al. presented a 9-round differential-linear approximation in the inverse
direction with a bias of 2−54, starting from round 13 and ending at round 5, and
showed an attack on 11-round Serpent with data complexity of 2113.7 chosen
ciphertexts, time complexity of 2137.7 memory accesses, and memory complexity
of 299 bytes.

With the help of Algorithm 4, we can improve the attack on 11-round
Serpent in the setting of chosen ciphertext attack, using the techniques as dis-
cussed previously. By imposing 12 linear equations on the ciphertext and the bits
of subkey K15 that are XORed with the 6 active S-boxes in round 14, the 9-round
differential-linear approximation in the inverse direction can be extended to 10
rounds with the same bias 2−54, starting from round 14 and ending at round
5. Then the time complexity can be cut down by a factor of about 2−12. The
improved attack on 11-round Serpent has the data complexity of 2125.7 chosen
ciphertexts, time complexity of 2125.7 memory accesses, and memory complexity
of 299 bytes. Using the Formula (3.3), the success probability of the attack is
expected to be more than 99%.

Our experiment shows that there is one S-box in round 15 that does not
affect either the differences or the values of the 6 active S-boxes in round 14.
Based on this observation, we can extend the chosen ciphertext attack on 11-
round Serpent to 12 rounds (starting from round 15 and ending at round 4), by
guessing the bits of the subkey K16 that are XORed with the other 31 S-boxes.
The attack on 12-round Serpent-256 has the data complexity of 2127 chosen
ciphertexts, time complexity of 2127 · 2124 = 2251 memory accesses, and memory
complexity of 299 bytes. The success probability of the attack is expected to be
more than 77%. To the best of our knowledge, this is the first correct attack on
12-round Serpent.

The cryptanalytic results are summarized in Table 4, with the comparisons
of the previous differential-linear attacks.
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Table 4. Differential-linear cryptanalysis on Serpent

Key size Rounds Time Data Memory Source

192 & 256 11/32 2139.2 En 2125.3 CP 260 B [BDK03]

192 & 256 2135.7 En 2121.8 CP 276 B [DIK08]

192 & 256 2137.7 MA 2113.7 CC 299 B [DIK08]

all 11/32 2127.1 En 2126.6 CP 260 B Section 5.3

all 2125.7 MA 2125.7 CC 299 B Section 5.3

256 12/32 2251 MA 2127 CC 299 B Section 5.3

6 Applications to Grain v1

As mentioned earlier, an extreme case of the differential-linear attack can be
theoretically considered as a truncated differential attack, see also [BLN17]. The
techniques we propose for differential-linear attack can also be used in a (trun-
cated) differential attack. In this section, we apply the previous techniques to
differential cryptanalysis of the stream cipher Grain v1, propose key recovery
attacks to a round-reduced variant of the cipher, and also revisit the previous
differential attacks.

Grain v1 is an NFSR-based stream cipher proposed by Hell et al. [HJMM08].
The cipher is one of the finalists which has been selected in the eSTREAM
hardware profile. Grain v1 uses an 80-bit secret key K = (k0, k1, . . . , k79) and a
64-bit initial value V = (v0, v1, . . . , v63). It consists of three main building blocks:
an 80-bit LFSR, an 80-bit NFSR and a non-linear output function. In this paper,
round-reduced variants of Grain v1 with r initialization rounds means the cipher
outputs keystream after r rounds and the first keystream bit is zr.

At ASIACRYPT 2010, Knellwolf et al. [KMN10] proposed conditional differen-
tial attacks on NFSR-based cryptosystems, with applications to 104-round Grain
v1. The framework of this attack is as follows: First, in a chosen plaintext attack
scenario, the authors choose a suitable difference that controls difference propa-
gation as many rounds as possible. Second, they impose conditions to prevent the
propagation of the difference to the newly generated state bits at first few rounds.
Since the bias of the keystream is wanted to be tested, there is an important trade-
off between the number of imposed conditions and the number of inputs that can
be derived. Finally, depending on whether the conditions involve the initial value
only, or also key variables, they obtain distinguishing and partial key recovering
attacks. In the literature, the largest number of initialization rounds of Grain v1
that can be attacked is 120, proposed by Li and Guan [LG19] using a conditional
differential approximation with an experimental bias 2−12.8.

6.1 Searching the Differences of Round-Reduced Grain v1

In this section, we exploit the two algorithms, Algorithm 1 and Algorithm 2, as
shown in Sect. 3 to estimate the differential-linear bias as well as search for good
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differences for Grain v1. We use Algorithm 2 rather than Algorithm 3 because of
its efficiency. By an exhaustive search over all the differences in at most 4 bits of
the initial value, the algorithms find a differential approximation with a theoretical
bias 2−20.77 for 125-round Grain v1. For purposes of comparison, we have applied
the existing method called Differential Engine proposed by Banik in [Ban14] to
analyzing the bias of the same approximation, and detect a bias of 2−24.78, which
is much smaller. The found input difference is a 2-bit difference, with differences
in bit 21 and 46 of the initial value. The output linear mask is located in the first
bit of the keystream. Note here that we use modified Algorithm 1 and Algorithm 2
which partially adopt the key recovery techniques of Algorithm 4 with r1 = 50.
From the algorithms we obtain 6 equations represented by the ATFs of the internal
bits of Grain v1. The ANFs of the internal bits on the key and initial value are
very complicated. Instead of directly converting the ATF into the ANF, we analyze
these equations specifically one by one manually.

Using the same method, we revisit the analysis of the conditional differential
bias of 120 rounds in [LG19], and obtain a theoretical estimate of 2−13.39. This is
very close to the experimental value 2−12.8, and much higher than the estimate
of 2−18.13 obtained by the Differential Engine method.

6.2 Analysis of 125-Round Grain v1

Imposing the appropriate conditions is the crucial part of conditional differential
attack. It has a trade-off between the two aims: one is to prevent a maximum
number of propagation, the other is to find enough IVs that satisfy the condi-
tions. A condition that we assign a certain IV bit to fixed value 0 or 1 is called
Type 0 condition, and a condition which is a function of IV bits and key bits is
called Type 1 condition.

We now introduce the strategy of our conditions analysis. Since the updated
symbolic expressions of Grain v1 are rather complicated after few rounds, it is
not easy to analyze conditions. A new variable is used to compute the updated
expression and we store the original complex one and factor the condition expres-

sion as f +
n∑

i=1

figi. Thus it is easier to analyze expressions and impose simple

conditions. To obtain enough IVs that satisfy the conditions, we allow Type 1
conditions to have the term

∑
i,j

kivj and we guess the value of each ki when

we attack 125-round Grain v1. We finally impose 10 Type 0 conditions and 13
Type 1 conditions.

We have performed for 8 random keys each with 240 pairs of initial values
that satisfy the above equations, and observed a bias of 2−17.4 with standard
deviation of 2−20.5. Hence we use the bias 2−17.4 in our attack.

In the above equations, there are in total 20 independent expressions of key
bits that need to be guessed in the attack. A primary analysis of the attack
gives a data complexity of 2 · 213 · 238 = 252 chosen IVs and a time complexity of
220 ·239 = 259. Since 20 expressions of key bits are recovered, the full key recovery
attack runs in time 260. Using the Formula (3.3), the success probability of the
attack is expected to be more than 87.7%.
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By imposing two extra bits of IV to be zeros, e.g., v47 = v50 = 0, two less
expressions of the key need to be guessed, and the time complexity of the attack
can be cut down to 218 · 239 = 257, keeping the data complexity unchanged.
After recovering the 18 expressions of the key, we can recover the other two
key expressions, at cost of additional but negligible time and data. The success
probability of the attack is expected to be more than 92.5%. To the best of
our knowledge, this is the best known initialization analysis of Grain v1 in the
single key setting. The results are summarized in Table 5, with the comparisons
of the previous differential attacks. Note here that this table does not include
the distinguishing, related key or weak-key attacks.

Table 5. Differential cryptanalysis on Grain v1 in the single key setting

Type Rounds Time Data Gain Source

partial key recovery 104/160 235 235 1 bit [KMN10]

full key recovery 105/160 271 - 9 bits [Ban16]

partial key recovery 110/160 247 - 15 bits [MTQ17]

partial key recovery 120/160 242.75 - 12 bits [LG19]

partial key recovery 125/160 257 252 20 bits Section 6.2

full key recovery 125/160 260 252 20 bits Section 6.2

7 Discussions and Open Problems

Here we would like to discuss why our theoretical value is more accurate than
that of the DLCT tool [BDKW19] and why the gap behaves different for Ascon,
Serpent and Grain v1. As a general case, it has been proven in Theorem 4 that
the theoretical value given by Algorithm 3 is accurate, under the assumption that
the variables of each round are independent. The number of transitional variables
in each round is at most twice the number of updated bits. Thus the assumption
is competitive with the traditional assumption of differential-linear cryptanalysis,
i.e., round independence within E0 and E1 (see also [BLN17,BDKW19]). For a
concrete case, especially in the case of low-weight differences and linear masks, a
much weaker assumption might be required in the DATF techniques. Compared
with round independence assumption, our assumption for Ascon and Serpent is
weaker, which leads to more accurate estimation.

When applying Algorithm 3 to 3- and 4-round Serpent, we have two observa-
tions: (1) there are no isolated variables in the ATF of the parity e, that is, Line
12 of Algorithm 3 runs only once; (2) the number of transitional variables is small.
The property (1) avoids using the piling-up lemma in Line 12 of Algorithm 3 and
makes the assumption become a weaker one. The property (2) makes the assump-
tion easy to be satisfied. They are the reasons that our value is extremely close to
the experimental value and why we conjecture that the gap between the experi-
mental value and our estimate is generated by the statistical error.
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For the approximation of 4-round Ascon, Line 12 of Algorithm 3 runs twice, and
the number of transitional variables is relatively small. This makes the assumption
more valid, because a transitional variable in e − el relies on the transitional vari-
ables of the expression obtained by substituting Q into el. This may produce an
inaccurate estimation when using the piling-up lemma in Line 12. We conjecture
this is the reason why there is still a gap in the case of Ascon.

For the application to Grain v1, it is much more complicated. Algorithm 2
rather than Algorithm 3 is applied in the key-dependent setting. For 120 rounds,
Line 5 of Algorithm 2 runs twice, that is, the piling-up lemma in Line 5 is used
once. For 125 rounds, Line 5 of Algorithm 2 runs three times, that is, the piling-up
lemma in Line 5 is used twice. These produce a bigger gap between the assumption
and the truth. Moreover, a significant difference between the theoretical analysis
and experimental evaluation of the 125-round bias is the number of conditional
equations, i.e., 6 equations on the internal bits for the former and 23 conditions in
the key and IV bits for the latter.

To conclude, the less the frequency of using the piling-up lemmaand the smaller
the number of transitional variables related to the approximation, the more accu-
rate the theoretical estimation of its bias would be.

Usage and Limitation. The underlying idea of the DATF techniques is simple
and easy implemented in symbolic computation software, e.g., SageMath. All the
algorithms are practical for almost iterated cipher without using addition opera-
tions reduced to a moderate number of rounds, e.g., Ascon reduced to 4–5 out of 12
rounds, Serpent reduced to 4–6 out of 32 rounds, and Grain v1 reduced to 125 out
of 160 rounds. The running time ranges from a few seconds to dozens of minutes,
for calculating the bias of one differential-linear or differential trail in SageMath.
The techniques are superior to the DLCT in both the accuracy and the length of
the trail, which has at least been illustrated in the above instances, and the new
techniques proposed in this paper thus can be seen, at least, as a complementary
analytical tool to the existing theory of differential-linear cryptanalysis as well as
differential cryptanalysis. It seems that the DATF techniques are suitable for anal-
ysis of low-weight differential-linear or differential trails and not suitable for linear
trails. Thus using the DATF together with the classical differential-linear crypt-
analytic methods might be a good choice.

Open Problems and Future Work. In the future, it is worthy of working on
the applications of the DATF techniques to more cryptographic primitives. The
techniques can be applied to most iterated ciphers but not to ARX ciphers that
use addition operations. A natural question is how to adjust the techniques appli-
cable to a cipher using additions. It is also worthy of comparative study between
the DLCT and DATF techniques. A main question raised is whether the DATF
techniques are more efficient and more accurate than the DLCT tool in the gen-
eral case. Though our estimates of the bias in the differential-linear approximation
are close to the experimental values, there are still some gaps in some cases. These
cases happen when the assumption is not satisfied. It is worthy of further study
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of the DATF techniques as well as exploration of new methods, for analysis of the
differential-linear bias under weaker assumptions or without assumptions.

8 Conclusion

In this paper, we have shown a new theory of differential-linear cryptanalysis from
an algebraic perspective, including the estimation of the differential-linear bias and
techniques for key recovery. As illustrations, we applied it to the CAESAR finalist
Ascon, the AES finalist Serpent, and the eSTREAM finalist Grain v1, and gained
themost accurate estimation of the bias aswell as the best knowndifferential-linear
or differential attacks. In particular, the results in this paper update the cryptanal-
ysis of Serpent with one more round. Our technique for key recovery is an organic
combination of distinguisher searching and key guessing, and thus outperforms the
previous key recovery in differential-linear cryptanalysis. We believe that this new
cryptanalytic tool is useful in both cryptanalysis and design of symmetric cryp-
tosystems.
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