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Abstract. We carry out the first provable security analysis of the new
FIDO2 protocols, the promising FIDO Alliance’s proposal for a standard
for passwordless user authentication. Our analysis covers the core com-
ponents of FIDO2: the W3C’s Web Authentication (WebAuthn) specifi-
cation and the new Client-to-Authenticator Protocol (CTAP2).

Our analysis is modular. For WebAuthn and CTAP2, in turn, we
propose appropriate security models that aim to capture their intended
security goals and use the models to analyze their security. First, our
proof confirms the authentication security of WebAuthn. Then, we show
CTAP2 can only be proved secure in a weak sense; meanwhile, we iden-
tify a series of its design flaws and provide suggestions for improvement.
To withstand stronger yet realistic adversaries, we propose a generic pro-
tocol called sSPACA and prove its strong security; with proper instantia-
tions, SPACA is also more efficient than CTAP2. Finally, we analyze the
overall security guarantees provided by FIDO2 and WebAuthn+sPACA
based on the security of their components.

We expect that our models and provable security results will help
clarify the security guarantees of the FIDO2 protocols. In addition, we
advocate the adoption of our sSPACA protocol as a substitute for CTAP2
for both stronger security and better performance.

1 Introduction

Motivation. Passwords are pervasive yet insecure. According to some studies, the
average consumer of McAfee has 23 online accounts that require a password [17],
and the average employee using LastPass has to manage 191 passwords [22]. Not
only are the passwords difficult to keep track of, but it is well-known that achiev-
ing strong security while relying on passwords is quite difficult (if not impossi-
ble). According to the Verizon Data Breach Investigations Report [34], 81% of
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hacking-related breaches relied on either stolen and/or weak passwords. What
some users may consider an acceptable password, may not withstand sophis-
ticated and powerful modern password cracking tools. Moreover, even strong
passwords may fall prey to phishing attacks and identity fraud. According to
Symantec, in 2017, phishing emails were the most widely used means of infec-
tion, employed by 71% of the groups that staged cyber attacks [31].

An ambitious project which tackles the above problem is spearheaded by the
Fast Identity Online (FIDO) Alliance. A truly international effort, the alliance
has working groups in the US, China, Europe, Japan, Korea and India and
has brought together many companies and types of vendors, including Amazon,
Google, Microsoft, Apple, RSA, Intel, Yubico, Visa, Samsung, major banks, etc.

The goal is to enable user-friendly passwordless authentication secure against
phishing and identity fraud. The core idea is to rely on security devices (con-
trolled via biometrics and/or PINs) which can then be used to register and
later seamlessly authenticate to online services. The various standards defined
by FIDO formalize several protocols, most notably Universal Authentication
Framework (UAF), the Universal Second Factor (U2F) protocols and the new
FIDO2 protocols: W3C’s Web Authentication (WebAuthn) and FIDO Alliance’s
Client-to-Authenticator Protocol v2.0 (CTAP2!).

FIDO2 is moving towards wide deployment and standardization with great
success. Major web browsers including Google Chrome and Mozilla Firefox have
implemented WebAuthn. In 2018, Client-to-Authenticator Protocol (CTAP)?
was recognized as international standards by the International Telecommuni-
cation Union’s Telecommunication Standardization Sector (ITU-T). In 2019,
WebAuthn became an official web standard. Also, Android and Windows Hello
earned FIDO2 Certification. Although the above deployment is backed-up by
highly detailed description of the security goals and a variety of possible attacks
and countermeasures, these are informal [21].

Our Focus. We provide the first provable security analysis of the FIDO2 proto-
cols. Our focus is to clarify the formal trust model assumed by the protocols, to
define and prove their exact security guarantees, and to identify and fix potential
design flaws and security vulnerabilities that hinder their widespread use. Our
analysis covers the actions of human users authorizing the use of credentials via
gestures and shows that, depending on the capabilities of security devices, such
gestures enhance the security of FIDO2 protocols in different ways. We concen-
trate on the FIDO2 authentication properties and leave the study of its arguably
less central anonymity goals for future work.

Related Work. Some initial work in this direction already exists. Hu and
Zhang [25] analyzed the security of FIDO UAF 1.0 and identified several vul-
nerabilities in different attack scenarios. Later, Panos et al. [32] analyzed FIDO
UAF 1.1 and explored some potential attack vectors and vulnerabilities. How-
ever, both works were informal. FIDO U2F and WebAuthn were analyzed using
the applied pi-calculus and ProVerif tool [23,27,33]. Regarding an older version

! The older version is called CTAP1/U2F.
2 CTAP refers to both versions: CTAP1/U2F and CTAP2.
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of FIDO U2F, Pereira et al. [33] presented a server-in-the-middle attack and
Jacomme and Kremer [27] further analyzed it with a structured and fine-grained
threat model for malware. Guirat and Halpin [23] confirmed the authentication
security provided by WebAuthn while pointed out that the claimed privacy prop-
erties (i.e., account unlinkability) failed to hold due to the same attestation key
pair used for different servers.

However, none of the existing work employs the cryptographic provable secu-
rity approach to the FIDO2 protocols in the course of deployment. In particular,
there is no analysis of CTAP2, and the results for WebAuthn [27] are limited in
scope: as noted by the authors themselves, their model “makes a number of sim-
plifications and so much work is needed to formally model the complete protocol
as given in the W3C specification”. The analysis in [27] further uses the symbolic
model (often called the Dolev-Yao model [18]), which captures weaker adversar-
ial capabilities than those in computational models (e.g., the Bellare-Rogaway
model [10]) employed by the provable security approach we adopt here.

The works on two-factor authentication (e.g., [16,29]) are related to our work,
but the user in such protocols has to use the password and the two-factor device
during each authentication/login. With FIDO2, there is no password during user
registration or authentication. The PIN used in FIDO2 is meant to authorize a
client (e.g., a browser) access to an authenticator device (e.g., an authentication
token); the server does not use passwords at all.> Some two-factor protocols can
also generate a binding cookie after the first login to avoid using the two-factor
device or even the password for future logins. However, this requires trusting
the client, e.g., a malicious browser can log in as the user without having the
two-factor device (or the password). FIDO2 uses the PIN to prevent an attacker
with a stolen device from authenticating to a server from a new client.

Our work is not directly applicable to federated authentication protocols such
as Kerberos, OAuth, or OpenID. FIDO2 allows the user to keep a single hardware
token that it can use to authenticate to multiple servers without having to use
a federated identity. The only trust anchor is an attestation key pair for the
token. To the best of our knowledge, there are no complete and formal security
models for federated authentication in the literature, but such models would
differ significantly from the ones we consider here. It is interesting to see how
FIDO2 and federated authentication can be used securely together; we leave this
as an interesting direction for future work. Our work could, however, be adapted
to analyze some second-factor authentication protocols like Google 2-step [2].

FIDO2 Overview. FIDO2 consists of two core components (see Fig.1 for the
communication channels and Fig. 2 for the simplified FIDO2 flow).

WebAuthn is a web API that can be built into browsers to enable web appli-
cations to integrate user authentication. At its heart, WebAuthn is a password-
less “challenge-response” scheme between a server and a user. The user relies
on a trusted authenticator device (e.g., a security token or a smartphone) and
a possibly untrusted client (e.g., a browser or an operating system installed on

3 Some form of prior user authentication method is required for registration of a new
credential, but this is a set-up assumption for the protocol.
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Fig. 2. FIDO2 flow (simplified): double arrow = CTAP2 authorized message.

the user’s laptop). Such a device-assisted “challenge-response” scheme works as
follows (details in Sect. 5). First, in the registration phase, the server sends a ran-
dom challenge to the security device through the client. In this phase, the device
signs the challenge using its long-term embedded attestation secret key, along
with a new public key credential to use in future interactions; the credential
is included in the response to the server. In the subsequent interactions, which
correspond to user authentication, the challenge sent by the server is signed by
the device using the secret key corresponding to the credential. In both cases,
the signature is verified by the server.

The other FIDO2 component, CTAP2, specifies the communication between
an authenticator device and the client (usually a browser). Its goal is to guar-
antee that the client can only use the authenticator with the user’s permission,
which the user gives by 1) entering a PIN when the authenticator powers up
and 2) directly using the authenticator interface (e.g., a simple push-button)
to authorize registration and authentication operations. CTAP2 specifies how to
configure an authenticator with a user’s PIN. Roughly speaking, its security goal
is to “bind” a trusted client to the set-up authenticator by requiring the user
to provide the correct PIN, such that the authenticator accepts only messages
sent from a “bound” client. We remark that, surprisingly, CTAP2 relies on the
(unauthenticated) Diffie-Hellman key exchange. The details are in Sect. 7.

Our Contributions. We perform the first thorough cryptographic analysis of the
authentication properties guaranteed by FIDO2 using the provable security app-
roach. Our analysis is conducted in a modular way. That is, we first analyze
WebAuthn and CTAP2 components separately and then derive the overall secu-
rity of a typical use of FIDO2. We note that our models, although quite differ-
ent, follow the Bellare-Rogaway model [10] that was proposed to analyze key
exchange protocols, which defines oracle queries to closely simulate the real-
world adversarial abilities. Its extensions (like ours) have been widely used to
analyze real-world protocols such as TLS 1.3 [13,19], Signal [14], etc.

Provable Security of WebAuthn. We start our analysis with the simpler base
protocol, WebAuthn. We define the class of passwordless authentication (PIA)
protocols that capture the syntax of WebAuthn. Our PlA model considers an
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authenticator and a server (often referred to as a relying party) communicating
through a client, which consists of two phases. The server is assumed to know
the attestation public key that uniquely identifies the authenticator. In the reg-
istration phase the authenticator and the server communicate with the intention
to establish some joint state corresponding to this registration session: this joint
state fixes a credential, which is bound to the authenticator’s attestation public
key vk and a server identity idg (e.g., a server domain name). The server gets
the guarantee that the joint state is stored in a specific authenticator, which is
assumed to be tamper-proof. The joint state can then be used in the authentica-
tion phase. Here, the authenticator and the server engage in a message exchange
where the goal of the server is to verify that it is interacting with the same
authenticator that registered the credential bound to (vk,idg).

Roughly speaking, a PIA protocol is secure if, whenever an authentica-
tion/registration session completes on the server side, there is a unique part-
nered registration/authentication session which completed successfully on the
authenticator side. For authentication sessions, we further impose that there is a
unique associated registration session on both sides, and that these registration
sessions are also uniquely partnered. This guarantees that registration contexts
(i-e., the credentials) are isolated from one another; moreover, if a server session
completes an authentication session with an authenticator, then the authentica-
tor must have completed a registration session with the server earlier. We use the
model thus developed to prove the security of WebAuthn under the assumption
that the underlying hash function is collision-resistant and the signature scheme
is unforgeable. Full details can be found in Sect. 5.

Provable Security of CTAP2. Next we study the more complex CTAP2 pro-
tocol. We define the class of PIN-based access control for authenticators (PACA)
protocols to formalize the general syntax of CTAP2. Although CTAP2 by its
name may suggest a two-party protocol, our PACA model involves the user as
an additional participant and therefore captures human interactions with the
client and the authenticator (e.g., the user typing its PIN into the browser win-
dow or rebooting the authenticator). A PACA protocol runs in three phases
as follows. First, in the authenticator setup phase, the user “embeds” its PIN
into the authenticator via a client and, as a result, the authenticator stores a
PIN-related long-term state. Then, in the binding phase, the user authorizes the
client to “bind” itself to the authenticator (using the same PIN). At the end of
this phase, the client and the authenticator end up with a (perhaps different)
binding state. Finally, in the access channel phase, the client is able to send
any authorized message (computed using its binding state) to the authentica-
tor, which verifies it using its own binding state. Note that the final established
access channel is unidirectional, i.e., it only guarantees authorized access from
the client to the authenticator but not the other way.

Our model captures the security of the access channels between clients and
authenticators. The particular implementation of CTAP2 operates as follows. In
the binding phase, the authenticator privately sends its associated secret called
pinToken (generated upon power-up) to the trusted client and the pinToken is
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then stored on the client as the binding state. Later, in the access channel phase,
that binding state is used by the bound client to authenticate messages sent to
the authenticator. We note that, by the CTAP2 design, each authenticator is
associated with a single pinToken per power-up, so multiple clients establish
multiple access channels with the same authenticator using the same pinToken.
This limits the security of CTAP2 access channels: for a particular channel from
a client to an authenticator to be secure (i.e., no attacker can forge messages
sent over that channel), none of the clients bound to the same authenticator
during the same power-up can be compromised.

Motivated by the above discussion, we distinguish between unforgeability
(UF) and strong unforgeability (SUF) for PACA protocols. The former corre-
sponds to the weak level of security discussed above. The latter, captures strong
fine-grained security where the attacker can compromise any clients except those
involved in the access channels for which we claim security. As we explain later
(Sect. 6), SUF also covers certain forward secrecy guarantees for authentication.
For both notions, we consider a powerful attacker that can manipulate the com-
munication between parties, compromise clients (that are not bound to the target
authenticator) to reveal the binding states, and corrupt users (that did not set
up the target authenticator) to learn their secret PINs.

Even with the stronger trust assumption (made in UF) on the bound clients,
we are unable to prove that CTAP2 realizes the expected security model: we
describe an attack that exploits the fact that CTAP2 uses unauthenticated
Diffie-Hellman. Since it is important to understand the limits of the protocol, we
consider a further refinement of the security models which makes stronger trust
assumptions on the binding phase of the protocol. Specifically, in the trusted
binding setting the attacker cannot launch active attacks against the client dur-
ing the binding phase, but it may try to do so against the authenticator, i.e., it
cannot launch man-in-the-middle (MITM) attacks but it may try to impersonate
the client to the authenticator. We write UF-t and SUF-t for the security levels
which consider trusted binding and the distinct security goals outlined above.
In summary we propose four notions: by definition SUF is the strongest security
notion and UF-t is the weakest one. Interestingly, UF and SUF-t are incom-
parable as established by our separation result discussed in Sect.7 and Sect. 8.
Based on our security model, we prove that CTAP2 achieves the weakest UF-
t security and show that it is not secure regarding the three stronger notions.
Finally, we identify a series of design flaws of CTAP2 and provide suggestions
for improvement.

Improving CTAP2 Security. CTAP2 cannot achieve UF security because in
the binding phase it uses unauthenticated Diffie-Hellman key exchange which is
vulnerable to MITM attacks. This observation suggests a change to the protocol
which leads to stronger security. Specifically, we propose a generic sSPACA proto-
col (for strong PACA), which replaces the use of unauthenticated Diffie-Hellman
in the binding phase with a password-authenticated key exchange (PAKE) pro-
tocol. Recall that PAKE takes as input a common password and outputs the
same random session key for both parties. The key observation is that the client
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and the authenticator share a value (derived from the user PIN) which can be
viewed as a password. By running PAKE with this password as input, the client
and the authenticator obtain a strong key which can be used as the binding state
to build the access channel. Since each execution of the PAKE (with different
clients) results in a fresh independent key, we can prove that SPACA is a SUF-
secure PACA protocol. Furthermore, we compare the performance of CTAP2 and
sPACA (with proper PAKE instantiations). The results show that our sPACA
protocol is also more efficient, so it should be considered for adoption.

Composed Security of CTAP2 and WebAuthn. Finally, towards our main
goal of the analysis of full FIDO2 (by full FIDO2 we mean the envisioned usage
of the two protocols), we study the composition of PIA and PACA protocols (cf.
Sect.9). The composed protocol, which we simply call PIA+PACA, is defined
naturally for an authenticator, user, client, and server. The composition, and the
intuition that underlies its security, is as follows. Using PACA, the user (via a
client) sets a PIN for the authenticator. This means that only clients that obtain
the PIN from the user can “bind” to the authenticator and issue commands that
it will accept. In other words, PACA establishes the access channel from the
bound client to the authenticator. Then, the challenge-response protocols of
PIA run between the server and the authenticator, via a PACA-bound client.
The server-side guarantees of P1A are preserved, but now the authenticator can
control client access to its credentials using PACA; this composition result is
intuitive and easy to prove given our modular formalization.

Interestingly, we formalize an even stronger property that shows that FIDO2
gives end-to-end mutual authentication guarantees between the server and the
authenticator when clients and servers are connected by an authenticated server-
to-client channel (e.g., a TLS connection). The mutual authentication guaran-
tees extend the PlA guarantees: authenticator, client, and server must all be
using the same registration context for authentication to succeed. We note that
Transport Layer Security (TLS) provides a server-to-client authenticated chan-
nel, and hence this guarantee applies to the typical usage of FIDO2 over TLS.
Our results apply to WebAuthn+CTAP2 (under a UF-t adversarial model) and
WebAuthn+sPACA (under a SUF adversarial model).

We conclude with an analysis of the role of user gestures in FIDO2. We first
show that SUF security offered by sPACA allows the user, equipped with an
authenticator that can display a simple session identifier, to detect and prevent
attacks from malware that may compromise the states of PACA clients previ-
ously bound to the authenticator. (This is not possible for the current version
of CTAP2.) We also show how simple gestures can allow a human user to keep
track of which server identity is being used in P1A sessions.

Summary. Our analyses clarify the security guarantees FIDO2 should provide
for the various parties involved in the most common usage scenario where: 1)
the user owns a simple hardware token that is capable of accepting push-button
gestures and, optionally, to display a session identifier code (akin to bluetooth
pairing codes); 2) the user configures the token with a PIN using a trusted
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machine; 3) the user connects/disconnects the token on multiple machines, some
trusted, some untrusted, and uses it to authenticated to multiple servers.

In all these interactions, the server is assured that during authentication it
can recognize if the same token was used to register a key, and that this token
was bound to the client it is talking to since the last power-up (this implies
entering the correct PIN recently). This guarantee assumes that the client is not
corrupted (i.e., the browser window where the user entered the PIN is isolated
from malicious code and can run the CTAP2 protocol correctly) and that an
active attack against the client via the CTAP2 API to guess the user entered
PIN is detected (we know this is the case on the token side, as CTAP2 defines
a blocking countermeasure).

Assuming a server-to-client authenticated channel, the user is assured that
while it is in possession of the PIN, no one can authenticate on her behalf,
except if she provides the PIN to a corrupted browser window. Moreover, the
scope of this possible attack is limited to the current power-up period. If we
assume that registration was conducted via an honest client, then we know that
all authentication sessions with honest clients are placed to the correct server.
Finally, if the token is stolen, the attacker still needs to guess the PIN (without
locking the token) in order to impersonate the user.

With our proposed modifications, FIDO2 will meet this level of security.
Without them, these guarantees will only hold assuming weaker client corruption
capabilities and more importantly, the attacker cannot perform active man-in-
the-middle attacks during all binding sessions, which may be unrealistic.

2 Preliminaries

In the full version of this paper [6], we recall the definitions of pseudorandom
functions (PRF's), collision-resistant hash function families, message authentica-
tion codes (MACs), signature schemes, the computational Diffie-Hellman (CDH)
problem and strong CDH (sCDH) problem, as well as the corresponding advan-
tage measures AdvP", Adv®", AdveTm Advetema Adved" Advd". There
we also recall the syntax for PAKE and its security of perfect forward secrecy
and explicit authentication.

3 Execution Model

The protocols we consider involve four disjoint sets of parties. Formally, the
set of parties P is partitioned into four disjoint sets of users U, authenticators
(or tokens for short) 7, clients C, and servers S. Each party has a well-defined
and non-ambiguous identifier, which one can think of as being represented as
an integer; we typically use P, U, T, C, S for identifiers bound to a party in
a security experiment and id for the case where an identifier is provided as an
input in the protocol syntax.

For simplicity, we do not consider certificates or certificate checks but assume
the public key associated with a party is supported by a public key infrastructure
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(PKI) and hence certified and bound to the party’s identity. This issue arises
explicitly only for attestation public keys bound to authenticators in Sect. 4.

The possible communication channels are represented as double-headed
arrows in Fig. 1. In FIDO2, the client is a browser and the user-client chan-
nel is the browser window, which keeps no long-term state. The authenticator
is a hardware token or mobile phone that is connected to the browser via an
untrusted link that includes the operating system, some authenticator-specific
middleware, and a physical communication channel that connects the authenti-
cator to the machine hosting the browser. The authenticator exposes a simple
interface to the user that allows it to perform a “gesture”, confirming some
action; ideally the authenticator should also be able to display information to
the user (this is natural when using a mobile phone as an authenticator but
not so common in USB tokens or smartcards). Following the intuitive defini-
tions of human-compatible communications by Boldyreva et al. [12], we require
that messages sent to the user be human-readable and those sent by the user be
human-writable.* The user PIN needs to be human-memorizable.

We assume authenticators have a good source of random bits and keep
volatile and static (or long-term) storage. Volatile storage is erased every time
the device goes through a power-down/power-up cycle, which we call a reboot.
Static storage is assumed to be initialized using a procedure carried out under
special setup trust assumptions; in the case of this paper we will consider the
setup procedures to generate an attestation key pair for the authenticator and
to configure a user PIN, i.e., to “embed” the PIN in the authenticator.

Trust Model. For each of the protocols we analyze in the paper we specify
a trust model, which justifies our proposed security models. Here we state the
trust assumptions that are always made throughout the paper. First, human
communications () (2)) are authenticated and private. This in practice captures
the direct human-machine interaction between the human user and the authen-
ticator device or the client terminal, which involves physical senses and contact
that we assume cannot be eavesdropped or interrupted by an attacker. Second,
client-authenticator communications ((3)) are not protected, i.e., neither authen-
ticated nor private. Finally, authenticators are assumed to be tamper-proof, so
our models will not consider corruption of their internal state.

Modeling Users and Their Gestures. We do not include in our protocol syn-
taxes and security models explicit state keeping and message passing for human
users, i.e., there are no session oracles for users in the security experiments. We
shortly explain why this is the case. The role of the user in these protocols is to
a) first check that the client is operating on correct inputs, e.g., by looking at
the browser window to see if the correct server identity is being used; b) possibly
(if the token has the capability to display information) check that the token and
client are operating on consistent inputs; and c) finally confirm to the token that
this is the case. Therefore, the user itself plays the role of an out-of-band secure

4 We regard understandable information displayed on a machine as human-readable
and typing in a PIN or rebooting an authenticator as human-writable.
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channel via which the consistency of information exchanged between the client
and the token can be validated.

We model this with a public gesture predicate G that captures the semantics
of the user’s decision. Intuitively, the user decision d € {0,1} is given by d =
G(z,y), where z and y respectively represent the information conveyed to the
user by the client and the token in step b) above. Note that x, y may not be input
by the user. Tokens with different user interface capabilities give rise to different
classes of gesture predicates. For example, if a user can observe a server domain
name id on the token display before pressing a button, then we can define the
gesture of checking that the token displayed an identifier id that matches the
one displayed by the client id* as G(id*,id) = (id* = id).

User actions are hardwired into the security experiments as direct inputs to
either a client or a token, which is justified by our assumption that users interact
with these entities via fully secure channels. We stress that here G is a modeling
tool, which captures the sequence of interactions a), b), ¢) above. Providing a
gesture means physical possession of the token, so an attacker controlling only
some part of the client machine (e.g., malware) is not able to provide a gesture.
Moreover, requiring a gesture from the user implies that the user can detect
when some action is requested from the token.

4 Passwordless Authentication

We start our analysis with the simpler FIDO2 component protocol, WebAuthn.
In order to analyze the authentication security of WebAuthn we first define the
syntax and security model for passwordless authentication (PIA) protocols.

4.1 Protocol Syntax

A PIA protocol is an interactive protocol among three parties: a token (repre-
senting a user), a client, and a server. The token is associated with an attestation
public key that is pre-registered to the server. The protocol defines two types of
interactions: registration and authentication. In registration the server requests
the token to register some initial authentication parameters. If this succeeds, the
server can later recognize the same token using a challenge-response protocol.

The possible communication channels are as shown in Fig. 1, but we do not
include the user. Servers are accessible to clients via a communication channel
that models Internet communications.

The state of token T', denoted by str, is partitioned into the following (static)
components: i) an attestation key pair (vkr,akr) and ii) a set of registration
contexts sty.rct. A server S also keeps its registration contexts stg.rcs. Clients
do not keep long-term state.” All states are initialized to the empty string e.

A PIA protocol consists of the following algorithms and subprotocols:

5 Some two-factor protocols may have a “trust this computer” feature that requires
the client to store some long-term states. This is not included in our model as to the
best of our knowledge FIDO2 does not have that feature.
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Key Generation: This algorithm, denoted by Kg, is executed at most once for
each authenticator; it generates an attestation key pair (vk, ak).

Register: This subprotocol is executed among a token, a client, and a server. The
token inputs its attestation secret key akr; the client inputs an intended server
identity id s; and the server inputs its identity idg (e.g., a server domain name)
and the token’s attestation public key vkr. At the end of the subprotocol, each
party that successfully terminates obtains a new registration context, and
sets its session identifier that can be used to uniquely name a (registration
or authentication) session. Note that the token may successfully complete the
subprotocol while the server may fail to, in the same run.

Authenticate: This subprotocol is executed between a token, a client, and a
server. The token inputs its registration contexts; the client inputs an intended
server identity idg; and the server inputs its identity idg and registration con-
texts. At the end of the subprotocol, the server accepts or rejects. Each party
on success sets its session identifier and updates the registration contexts.

Restricted class of protocols. For both Register and Authenticate, we focus on
2-pass challenge-response protocols with the following structure:

— Server-side computation is split into four procedures: rchallenge and rcheck
for registration, achallenge and acheck for authentication. The challenge algo-
rithms are probabilistic, which take the server’s input to the Register or
Authenticate subprotocol and return a challenge. The check algorithms get
the same input, the challenge, and a response. rcheck outputs the updated
registration contexts rcs that are later input by acheck; acheck outputs a bit
b (1 for accept and 0 for reject) and updates rcs.

— Client-side computation is modeled as two deterministic functions rcommand
and acommand that capture possible checks and translations performed by
the client before sending the challenges to the token. These algorithms output
commands denoted by M,., M, respectively, which they generate from the
input intended server identity and the challenge. The client may append some
information about the challenge to the token’s response before sending it to
the server, which is an easy step that we do not model explicitly.

— Token-side computation is modeled as two probabilistic algorithms rresponse
and aresponse that, on input a command and the token’s input to the Register
or Authenticate subprotocol, generate a response and update the registration
contexts rct. In particular, rresponse outputs the updated registration contexts
rct that are later input by aresponse; aresponse may also update rct.

Correctness. Correctness imposes that for any server identities idg, id g, idg the
following probability is 1:
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(ak,vk) & Kg()

¢r & rchallenge(ids, vk)

M, — rcommand(ids, ¢,)

A o (R, rct) < rresponse(ak, M,.)

Pr | b= ((ids = ids) A (ids = ids)) | rcs « rcheck(ids, vk, ¢, Ry)

Ca & achallenge(ids, rcs)

M, «— acommand(ids, ¢4 )
(Ra,rct) < aresponse(rct, M,)

(b, res) «— acheck(ids, rcs, ca, Ra) |

Intuitively, correctness requires that the server always accepts an authenti-
cation that is consistent with a prior registration, if and only if the client’s input
intended server identities match the server identity received from the server.
Note that the latter check is performed by the client rather than the human
user. It helps to prevent a so-called server-in-the-middle attack identified in [33].

4.2 Security Model

Trust Model. Before defining security we clarify that there are no security
assumptions on the communication channels shown in Fig. 1. Again, authentica-
tors are assumed to be tamper-proof, so the model will not consider corruption
of their internal state. (Note that clients and servers keep no secret state.) We
assume the key generation stage, where the attestation key pair is created and
installed in the token, is either carried out within the token itself, or performed
in a trusted context that leaks nothing about the attestation secret key.

Session Oracles. As with the Bellare-Rogaway model [10], to capture multiple
sequential and parallel PIA executions (or instances), we associate each party
P € T US with a set of session oracles {73}, ;j, which models two types of
PIA instances corresponding to registration and authentication. We omit session
oracles for clients, since all they do can be performed by the adversary. For
servers and tokens, session oracles are structured as follows: 71'3;0 refers to the i-th
registration instance of P, whereas 7rft’,j for j > 1 refers to the j-th authentication
instance of P associated with wﬁ;o after this registration completed. A party’s
static storage is maintained by the security experiment and shared among all of
its session oracles.

Security Experiment. The security experiment is run between a challenger
and an adversary A. At the beginning of the experiment, the challenger runs
(akp,vkr) < Kg() for all T € T to generate their attestation key pairs and
assign unique identities {ids}secs to all servers. The challenger also manages
the attestation public keys {vkr }rer and provides them to the server oracles as
needed. The adversary A is given all attestation public keys and server identities
and then allowed to interact with session oracles via the following queries:
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° Start(ﬂgj ). The challenger instructs a specified server oracle ng to execute
rchallenge (if j = 0) or achallenge (if j > 0) to start the Register or Authen-
ticate subprotocol and generate a challenge ¢, which is given to A.

e Challenge(m’, M). The challenger delivers a specified command M to a spec-
ified token oracle w;j , which processes the command using rresponse (if j = 0)
or aresponse (if j > 0) and returns the response to A.

e Complete(rg’, T, R). The challenger delivers a specified token response R to
a specified server oracle Wéij , which processes the response using rcheck and
vk (if j = 0) or acheck (if j > 0) and returns the result to A.

We assume without loss of generality that each query is only called once for
each instance and allow the adversary to get the full state of the server via Start
and Complete queries.

Partners. We follow the seminal work by Bellare et al. [9] to define partnership
via session identifiers. A server registration oracle 7rZS"O and a token registration
oracle 71"%’0 are each other’s partner if they agree on the same session identifier,
which indicates a “shared view” that must be defined by the analyzed protocol
and must be the same for both parties, usually as a function of the communica-
tion trace. A server authentication oracle 7¢” (j > 0) and a token authentication
oracle 71':];’[ (I > 0) are each other’s partner if: i) they agree on the session iden-
tifier and ii) Tgo and 7r§:0 are each other’s partner.

We note that a crucial aspect of this definition is that the authentication
session partnership holds only if the token and the server are also partnered for
the associated registration sessions: a credential registered in a server should not
be used to authenticate a token using another credential.

Advantage Measure. Let II be a PIA protocol. We define the passwordless
authentication advantage Adv%‘a(A) as the probability that a server oracle
accepts but it is not uniquely partnered with a token oracle. In other words,
a secure PlA protocol guarantees that, if a server oracle accepts, then there
exists a unique token oracle that has derived the same session identifier, and no

other server oracle has derived the same session identifier.

5 The W3C Web Authentication Protocol

In this section, we present the cryptographic core of W3C’s Web Authentication
(WebAuthn) protocol [15] of FIDO2 and analyze its security.

Protocol Description. We show the core cryptographic operations of WebAuthn
in Fig.3 in accordance with PIA syntax.® For WebAuthn, a server identity is
an effective domain (e.g., a hostname) of the server URL. The attestation key
pair is generated by the key generation algorithm Kg of a signature scheme
Sig = (Kg, Sign, Ver). (Note that WebAuthn supports the RSASSA-PKCS1-v1_5
and RSASSA-PSS signature schemes [30].) In Fig.3, we use H to denote the

5 We do not include the WebAuthn explicit reference to user interaction/gestures at
this point, as this will be later handled by our PACA protocol.
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Authenticator T (akr, vkr) Client ¢ (ds) _ _ _ _ _ _ _ _ _ __ Server S (ids, vkr).
Register:
rchallenge :
rcommand : ce rs & {0,1}2*, uid & {0,1}**
(id, wid, r) < cc — cc «— (idg, uid, rs)
rresponse : M if id # idg: halt
(ids, uid, hy) «— M, — M, « (idg, uid, H(r))

(pk, sk) & Sig.Kg()
n — 0,cid & {0,1}2*
ad — (H(idg), n, cid, pk) rcheck :

R, = (ad, o, .
o — Sig.Sign(akr, (ad, h,)) (ad,0,7) (h,n, cid, pk) — ad

halt if r # rs or h # H(idg) or n # 0
or Sig.Ver(vkr, (ad,H(r)),o) =0

rct.insert((id s, wid, cid, sk, n)) res.insert((uid, cid, pk, n))
Authenticate:
achallenge:
acommand : or rs & {0,1}=*
(id,r) < cr s cr «— (idg, rs)
aresponse : if id # idg: halt

(ids, hr) — M, Ma

(uid, cid, sk, n) < rct.get(idg)
n«<—n+1, ad — (H(dg),n acheck:

5 o o (H(ids),m) R, = (cid, ad, o, uid, r)
o < Sig.Sign(sk, (ad, h;))

M, «— (idg,H(r))

(uid’, pk,n) « rcs.get(cid)
(h,n¢) < ad

reject if uid # wid or r # rs
or h # H(idg) or ny <n

or Sig.Ver(pk, (ad,H(r)),0) =0
rct.insert((id s, wid, cid, sk, n)) accept; rcs.insert((uid, cid, pk,n))

Fig. 3. The WebAuthn protocol

SHA-256 hash function and A to denote the default parameter 128 (in order to
accommodate potential parameter changes). WebAuthn supports two types of
operations: Registeration and Authentication (cf. Figurel and Fig.2 in [15]),
respectively corresponding to the P1A Register and Authenticate subprotocols.
In the following description, we assume each token is registered at most once for
a server; this is without loss of generality since otherwise one can treat the one
token as several tokens sharing the same attestation key pair.

— In registration, the server generates a random string rs of length at least A =
128 bits and a random 512-bit user id uid, forms a challenge cc with rs, uid
and its identity idg, and then sends it to the client. Then, the client checks
if the received server identity matches its input (i.e., the intended server),
then passes the received challenge (where the random string is hashed) to the
token. The token generates a key pair (pk, sk) with Sig.Kg, sets the signature
counter n to 0,7 and samples a credential id cid of length at least A\ = 128
bits; it then computes an attestation signature (on H(idg),n, cid, pk and the
random string hash h,.) and sends the signed (public) credential and signature
to the client as a response; the token also inserts the generated credential
into its registration contexts. Upon receiving the response, the server checks

" The signature counter is mainly used to detect cloned tokens, but it also helps in
preventing replay attacks (if such attacks are possible).



Provable Security Analysis of FIDO2 139

the validity of the attestation signature and inserts the credential into its
registration contexts.

— In authentication, the server also generates a random string rs, but no uid
is sampled; it then forms a challenge cr with rs and its identity idg, and
sends it to the client. Then, the client checks if the received idg matches its
input and passes the challenge (where the random string is hashed) to the
token. The token retrieves the credential associated with the authenticating
server idg from its registration contexts, increments the signature counter n,
computes an authentication signature (on H(ids),n and the random string
hash h,.), and sends it to the client together with H(idg),n and the retrieved
credential id cid and user id wid; the token also updates the credential with
the new signature counter. Upon receiving the response, the server retrieves
the credential associated with the credential id cid and checks the validity
of the signature counter and the signature; if all checks pass, it accepts and
updates the credential with the new signature counter.

It is straightforward to check that WebAuthn is a correct P1A protocol.

WebAuthn Analysis. The following theorem (proved in the full version [6])
assesses PIA security of WebAuthn uses (ad,H(r)) as the session identifier.

Theorem 1. For any efficient adversary A that makes at most qs queries to
Start and qc queries to Challenge, there exist efficient adversaries B,C such that
(recall A = 128):

AV, o (A) < AdVE"(B) + gsAdvET ™ (C) + (g2 + qc?) - 27

The security guarantees for the WebAuthn instantiations follow from the results
proving RSASSA-PKCS1-v1_5 and RSASSA-PSS to be EUF-CMA in the ran-
dom oracle model under the RSA assumption [11,28] and the assumption that
SHA-256 is collision-resistant.

6 PIN-Based Access Control for Authenticators

In this section, we define the syntax and security model for PIN-based access
control for authenticators (PACA) protocols. The goal of the protocol is to ensure
that after PIN setup and possibly an arbitrary number of authenticator reboots,
the user can employ the client to issue PIN-authorized commands to the token,
which the token can use for access control, e.g., to unlock built-in functionalities
that answer client commands.

6.1 Protocol Syntax

A PACA protocol is an interactive protocol involving a human user, an authen-
ticator (or token for short), and a client. The state of token T', denoted by str,
consists of static storage str.ss that remains intact across reboots and volatile
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storage str.vs that gets reset after each reboot. sty.ss is comprised of: i) a pri-
vate secret sty.s and ii) a public retries counter str.n, where the latter is used to
limit the maximum number of consecutive failed active attacks (e.g., PIN guess-
ing attempts) against the token. sty.vs consists of: i) power-up state sty.ps and
ii) binding states sty.bs; (together denoted by str.bs). A client C may also keep
binding states, denoted by bsc ;. All states are initialized to the empty string €.

A PACA protocol is associated with an arbitrary public gesture predicate G
and consists of the following algorithms and subprotocols, all of which can be
executed a number of times, except if stated otherwise:

Reboot: This algorithm represents a power-down/power-up cycle and it is
executed by the authenticator with mandatory user interaction. We use
str.vs < reboot(str.ss) to denote the execution of this algorithm, which
inputs its static storage and resets all volatile storage. Note that one should
always run this algorithm to power up the token at the beginning of PACA
execution.

Setup: This subprotocol is executed at most once for each authenticator. The
user inputs a PIN through the client and the token inputs its volatile storage.
In the end, the token sets up its static storage and the client (and through it
the user) gets an indication of whether the subprotocol completed successfully.

Bind: This subprotocol is executed by the three parties to establish an access
channel over which commands can be issued. The user inputs its PIN through
the client, whereas the token inputs its static storage and power-up state. At
the end of the subprotocol, each of the token and client that successfully
terminates gets a (volatile) binding state and sets the session identifier. In
either case (success or not), the token may update its static retries counter.®
We assume the client always initiates this subprotocol once it gets the PIN
from the user.

Authorize: This algorithm allows a client to generate authorized commands
for the token. The client inputs a binding state bsc; and a command M.
We denote (M,t) < authorize(bsc j, M) as the generation of an authorized
command.

Validate: This algorithm allows a token to verify authorized commands sent
by a client with respect to a user decision (where the human user inputs
the public gesture predicate G). The token inputs a binding state str.bs;,
an authorized command (M,t), and a user decision d = G(z,y). We denote
b « validate(str.bs;, (M,t),d) as the validation performed by the token to
obtain an accept or reject indication.

Correctness. For an arbitrary public predicate G, we consider any token 7' and
any sequence of PACA subprotocol executions that includes the following (which
may not be consecutive): i) a Reboot of T ii) a successful Setup using PIN

8 When such an update is possible, the natural assumption often made in cryptography
requires that incoming messages are processed in an atomic way by the token, which
avoids concurrency issues. Note that Bind executions could still be concurrent.
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fixing sty.ss via some client; iii) a Bind with PIN creating token-side binding
state stp.bs; and client-side binding state bsc ; at a client C; iv) authorization
of command M by C as (M,t) < authorize(bsc ;, M); and v) validation by T
as b « validate(str.bs;, (M, t),d). If no Reboot of T is executed after iii), then
correctness requires that b = 1 if and only if G(z,y) =1 (i.e., d = 1) holds.

Remark. The above PACA syntax may seem overly complex but it is actually
difficult (if not impossible) to decompose. First, Setup and Bind share the same
power-up state generated by Reboot so cannot be separated into two independent
procedures. Then, although Authorize and Validate together can independently
model an access channel, detaching them from PACA makes it difficult to define
security in a general way: Bind may not establish random symmetric keys; it
could, for instance, output asymmetric key pairs.

6.2 Security Model

Trust Model. Before defining our security model, we first state the assumed
security properties for the involved communication channels, as shown in Fig. 1
excluding the client-server channel. We assume that Setup is carried out over an
authenticated channel where the adversary can only eavesdrop communications
between the client and authenticator; this is a necessary assumption, as there
are no pre-established authentication parameters between the parties.

Session Oracles. To capture multiple sequential and parallel PACA executions,
each party P € 7 UC is associated with a set of session oracles {m%};, where
7% models the i-th PACA instance of P. For clients, session oracles are totally
independent from each other and they are assumed to be available throughout
the protocol execution. For tokens, the static storage and power-up state are
maintained by the security experiment and shared by all oracles of the same
token. Token oracles keep only binding states (if any). If a token is rebooted, its
binding states got reset and hence become invalid, i.e., those states will be no
longer accessible to anyone including the adversary.

Security Experiment. The security experiment is executed between a chal-
lenger and an adversary A. At the beginning of the experiment, the challenger
fixes an arbitrary distribution 2 over a PIN dictionary PZN associated with
PACA; it then samples independent user PINs according to 2, denoted by
(pin; & PIN)yey. Without loss of generality, we assume each user holds only
one PIN. The challenger also initializes states of all oracles to the empty string.
Then, A is allowed to interact with the challenger via the following queries:

e Reboot(T'). The challenger runs Reboot for token T, marking all previously
used instances 74, (if any) as invalid® and setting str.vs < reboot(sty.ss).

. Setup(w},wé,U). The challenger inputs ping through 7% and runs Setup
between 7% and Wé; it returns the trace of communications to A. After this

9 All queries are ignored if they refer to an oracle 7% marked as invalid.
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query, 1" is set up, i.e., sty.ss is set and available, for the rest of the experiment.
Oracles created in this query, i.e., 7 and 7, must never have been used
before and are always marked invalid after Setup completion.10

e Execute(rd, 7). The challenger runs Bind between 7. and T, using the same
ping; that set up 7'; it returns the trace of communications to .A. This query
allows the adversary to access honest Bind executions in which it can only
take passive actions, i.e., eavesdropping. The resulting binding states on both
sides are kept as sty.bs; and bsc ; respectively.

e Connect(T, 7730) The challenger asks 7% to initiate the Bind subprotocol with
T using the same ping; that set up T; it returns the first message sent by 7%
to A. Note that no client oracles can be created for active attacks if Connect
queries are disallowed, since we assume the client is the initiator of Bind. This
query allows the adversary to launch an active attack against a client oracle.

e Send(m’, m). The challenger delivers m to 7% and returns its response (if any)
to A. If 7%, completes the Bind subprotocol, then the binding state is kept as
sty.bs; for a token oracle and as bsc; for a client oracle. This query allows
the adversary to launch an active attack against a token oracle or completing
an active attack against a client oracle. _

e Authorize(w},, M). The challenger asks 77, to authorize command M; it
returns the authorized command (M, t) < authorize(bsc ;, M).

e Validate(n}., (M,t)). The challenger asks 7l (that received a user deci-
sion d) to validate (M,t); it returns the validation result b «—
validate(sty.bs;, (M, t),d).

e Compromise(7Z,). The challenger returns bsc ; and marks 7, as compromised.

e Corrupt(U). The challenger returns pin;; and marks ping; as corrupted.

Partners. We say a token oracle 7/ and a client oracle ﬂé in binding sessions
are each other’s partner if they have both completed their Bind executions and
agree on the same session identifier. As with our PIA model, session identifiers
must be properly defined by the analyzed protocol. Moreover, we also say 77, is
T’s partner (and hence T' may have multiple partners). Note that, as mentioned
before, if a token is rebooted then all of its existing session oracles (if any) are
invalidated. A walid partner refers to a valid session oracle.

Security Goals. We define 4 levels of security for a PACA protocol II. All
advantage measures define PAKE-like security: the adversary’s winning prob-
ability should be negligibly larger than that of the trivial attack of guessing
the user PIN (known as online dictionary attacks with more details in the full
version [6]).

Unforgeability (UF). We define Adv}(A) as the probability that there exists a
token oracle 7% that accepts an authorized command (M, t) for gesture G and
at least one of the following conditions does not hold:

10 Qegsion oracles used for Setup are separated since they may cause ambiguity in
defining session identifiers for binding sessions.
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1) G approves M, i.e., G(z,y) =1; ‘
2) (M,t) was output by one of T’s valid partners m7..

The adversary must be able to trigger this event without: i) corrupting pin;; that
was used to set up 7', before 7}, accepted (M, t); or ii) compromising any of Ts
partners created after T7s last reboot and before 74 accepted (M, t).

The above captures the attacks where the attacker successfully makes a token
accept a forged command, without corrupting the user PIN used to set up the
token or compromising any of the token’s partners. In other words, a UF-secure
PACA protocol protects the token from unauthorized access even if it is stolen
and possessed by an attacker. Nevertheless, UF considers only weak security for
access channels, i.e., compromising one channel could result in compromising all
channels (with respect to the same token after its last reboot).

Unforgeability with Trusted Binding (UF-t). We define Adv%™*(A) the same as
Advif(A) except that the adversary is not allowed to make Connect queries.

As mentioned before, the attacker is now forbidden to launch active attacks
against clients (that input user PINs) during binding; it can still, however,
perform active attacks against tokens. This restriction captures the minimum
requirement for proving the security of CTAP2 (using our model), which is the
main reason we define UF-t. Clearly, UF security implies UF-t security.

Strong Unforgeability (SUF). We define Adv$if(A) as the UF advantage, with
one more condition captured:

3) mi and 7% are each other’s unique valid partner.

More importantly, the adversary considered in this strong notion is allowed to
compromise T’s partners, provided that it has not compromised 77,. It is also
allowed to corrupt ping; used to set up 1" even before the command is accepted,
as long as 7k has set its binding state.

SUF =——— UF

I =1

SUF-t == UF-t

Fig. 4. Relations between PACA security notions.

The above captures similar attacks considered in UF but in a strong sense,
where the attacker is allowed to compromise the token’s partners. This means
SUF considers strong security for access channels, i.e., compromising any channel
does not affect other channels. It hence guarantees a unique binding between
an accepted command and an access channel (created by uniquely partnered
token and client oracles running Bind), which explains condition 3). Finally, the
attacker is further allowed to corrupt the user PIN immediately after the access
channel establishment. This guarantees forward secrecy for access channels, i.e.,
once the channel is created its security will no longer be affected by later PIN
corruption. Note that SUF security obviously implies UF security.
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Strong Unforgeability with Trusted Binding (SUF-t). For completeness we can
also define Adv§i™*(A), where the adversary is not allowed to make Connect
queries. Again, it is easy to see that SUF security implies SUF-t security.

Relations Between PACA Security Notions. Figure4 shows the implica-
tion relations among our four defined notions. Note that UF and SUF-t do not
imply each other, for which we will give separation examples in Sects.7 and 8.

Improving (S)UF-t Security with User Confirmation. Trusted binding
excludes active attacks against the client (during binding), but online dictionary
attacks are still possible against the token. Such attacks can be mitigated by
requiring user confirmation (e.g., pressing a button) for Bind execution, such that
only honest Bind executions will be approved when the token is possessed by an
honest user. We argue that the confirmation overhead is quite small for CTAP2-
like protocols since the user has to type its PIN into the client anyway; the
security gain is meaningful as now no online dictionary attacks (that introduce
non-negligible adversarial advantage) can happen to unstolen tokens.

A Practical Implication of SUF Security. We note that SUF security has a
practical meaning: an accepted command can be traced back to a unique access
channel. This means that an authenticator that allows a human user to confirm
a session identifier (that determines the channel) for a command can allow a
human user to detect rogue commands issued by an adversary (e.g., malware)
that compromised one of the token’s partners (e.g., browsers).

PACA Security Bounds. In our theorems for PACA security shown later, we
fix gs (i.e., the number of Setup queries) as one adversarial parameter to bound
the adversary’s success probability of online dictionary attacks (e.g., the first
bound term in Theorem 2 and the PAKE advantage term in Theorem 3), while
for PAKE security the number of SEND queries ¢, is used (see [9] or the full
version [6] for example). This is because PACA has a token-side retries counter
to limit the total number of failed PIN guessing attempts (across reboots).

7 The Client to Authenticator Protocol V2.0

In this section, we present the cryptographic core of the FIDO Alliance’s CTAP2,
analyze its security using PACA model, and make suggestions for improvement.
Protocol Description. CTAP2’s cryptographic core lies in its authenticator API
1 which we show in Fig.5 in accordance with PACA syntax. One can also
refer to its specification (Fig.1, [1]) for a command-based description.’? The

1 The rest of CTAP2 does not focus on security but specifies transport-related behav-
iors like message encoding and transport-specific bindings.

There the command used for accessing the retries counter str.n is omitted because
PACA models it as public state. Commands for PIN resets are also omitted and
left for future work, but capturing those is not hard by extending our analysis since
CTAP2 changes PIN by simply running the first part of Bind (to establish the
encryption key and verify the old PIN) followed by the last part of Setup (to set
a new PIN). Without PIN resets, our analysis still captures CTAP2’s core security
aspects and our PACA model becomes more succinct.

12
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Authenticator T Client C (ping;)
Reboot:
(a,aG) & ECKGz (), pt & {0,1}*, m — 3
str.ps < (a,aG, pt,m), sty.bs «— &
Set
etup cmd =
oG, (b,bG) & ECKGo.¢( ), K — H(baG.x)
cmd = ¢p — CBCy.E(K, ping)
bG, cp,|t ’ .
K — H(abG.x) ’tp — HMAC'(K, cp)\
[if t, # HMAC' (K, c,): halts]
ping «— CBCo.D(K, cp)
if ping, € PZN: halt K
str.s < H'(piny), str.n < 8 °
Bind
cmd = 2
if st.n = 0: blocks access aG (b, bG) & ECKGg,¢ (), K < H(baG.x)
cmd = cpn +— CBCo.E(K, H'(ping,))
bG, cpn
K «— H(abG.x), stp.n < stp.n — 1
if stp.s # CBCo.D(K, cpp):
m «— m — 1, (a,aG) & ECKGg,c ()
halt (if m = 0: reboot)
m «— 3, str.n «— 8 ¢
cpt «— CBCo.E(K, pt) et
str.bs; < pt bsc,; « CBCo.D(K, cpt)
Validate: M.t Authorize:
if t # HMAC (str.bs;, M): PR L t — HMAC (bsc.;, M)
m «— m — 1, reject
if m = 0: reboot
m < 3, collects user decision d -1
accept if d = 1 =

Fig. 5. The CTAP2 protocol (and CTAP2* that excludes the boxed contents).

PIN dictionary PZN of CTAP2 consists of 4~63-byte strings.'® In Fig.5, the
client inputs an arbitrary user PIN pin;, € PZN. We use ECKGg ¢ to denote
the key generation algorithm of the NIST P-256 elliptic-curve Diffie-Hellman
(ECDH) [26], which samples an elliptic-curve secret and public key pair (a, aG),
where G is an elliptic-curve point that generates a cyclic group G of prime order
|G| and a is chosen at random from the integer set {1,...,|G|—1}. Let H denote
the SHA-256 hash function and H' denote SHA-256 with output truncated to
the first A = 128 bits; CBCy = (K, E, D) denotes the (deterministic) encryption
scheme AES-256-CBC [20] with fixed IV = 0; HMAC' denotes the MAC HMAC-
SHA-256 [8] with output truncated to the first A = 128 bits. Note that we use the
symbol X to denote the block size in order to accommodate parameter changes
in future versions of CTAP2.

13 PINs memorized by users are at least 4 Unicode characters and of length at most 63
bytes in UTF-8 representation.
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— Reboot generates str.ps by running ECKGg, ¢, sampling a kA-bit pinToken pt
(where k € Ny can be any fixed parameter, e.g., k = 2 for a 256-bit pt), and
resetting the mismatch counter m «— 3 that limits the maximum number of
consecutive mismatches. It also erases the binding state sty.bs (if any).

— Setup is essentially an unauthenticated ECDH followed by the client trans-
mitting the (encrypted) user PIN to the token. The shared encryption key is
derived from hashing the x-coordinate of the ECDH result. A HMAC' tag of
the encrypted PIN is also attached for authentication; but as we will show this
is actually useless. The token checks if the tag is correct and if the decrypted
PIN ping; is valid; if so, it sets the static secret str.s to the PIN hash and sets
the retries counter str.n to the default value 8.

— Bind also involves an unauthenticated ECDH but followed by the transmission
of the encrypted PIN hash. First, if sty.n = 0, the token blocks further access
unless being reset to factory default state, i.e., erasing all static and volatile
state. Otherwise, the token decrements stp.n and checks if the decrypted
PIN hash matches its stored static secret. If the check fails, it decrements the
mismatch counter m, generates a new key pair, then halts; if m = 0, it further
requires a reboot to enforce user interaction (and hence user detectability).
If the check passes, it resets the retries counter, sends back the encrypted
pinToken, and uses its pinToken as the binding state sty.bs;; the client then
uses the decrypted pinToken as its binding state bsc ;.

— Authorize generates an authorized command by attaching a HMAC tag.

— Validate accepts the command if and only if the tag is correct and the user
gesture approves the command. The default CTAP2 gesture predicate G
always returns true, since only physical user presence is required. The mis-
match counter is also updated to trigger user interaction.

It is straightforward to check that CTAP2 is a correct PACA protocol.

CTAP2 Analysis. The session identifier of CTAP2 is defined as the full commu-
nication trace of the Bind execution.

Insecurity of CTAP2. It is not hard to see that CTAP2 is not UF-secure
(and hence not SUF-secure). An attacker can query Connect to initiate the Bind
execution of a client oracle that inputs the user PIN, then impersonate the token
to get the PIN hash, and finally use it to get the secret binding state pt from the
token. CTAP2 is not SUF-t-secure either because compromising any partner of
the token reveals the common binding state pt used to access all token oracles.

UF-t Security of CTAP2. The following theorem (proved in the full ver-
sion [6]) confirms CTAP2’s UF-t security, by modeling the hash function H (with
fixed 256-bit input) and truncated HMAC HMAC' as random oracles Hy, Ha.

Theorem 2. Let 2 be an arbitrary distribution over PIN with min-entropy
hg. For any efficient adversary A making at most gs, qe, qr, Qv queries respec-
tively to Setup, Execute, Reboot, Validate, and qx random oracle queries to Ho,
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there exist efficient adversaries B,C, D such that (recall A = 128):

AdvEEypo(A) < 8gs - 27" + (gs + ge) AdVET(B) + Adv'(C)
+ 2(gs + CIE)AdV?;fEs-Qsa(D) +qv- 27" 4 s - 27
+ (12gs + 2[U|qrae + gage + (k + 1)%qe + qv) - 27

We remark that for conciseness the above theorem does not show what secu-
rity should be achieved by CBCy for CTAP2’s UF-t security to hold, but directly
reduces to the PRF security of the underlying AES-256 cipher. Actually, the
proof of the above theorem also shows that it is sufficient for CBCy to achieve a
novel security notion that we call indistinguishability under one-time chosen and
then random plaintext attack (IND-1$PA), which (defined in the full version [6])
we think would be of independent interest. We prove in the full version [6] that
the IND-1$PA security of CBCy can be reduced to the PRF security of AES-256.

SUF-t =& UF. Note that we can modify CTAP2 to achieve SUF-t security by
using independent pinTokens for each Bind execution, but this is not UF-secure
due to unauthenticated ECDH. This shows that SUF-t does not imply UF.

CTAP2 Improvement. Here we make suggestions for improving CTAP2 per
se, but we advocate the adoption of our proposed efficient PACA protocol with
stronger SUF security in Sect. 8.

Setup Simplification. First, we notice that the Setup authentication procedures
(boxed in Fig.5) are useless, since there are no pre-established authentication
parameters between the token and client. In particular, a MITM attacker can
pick its own aG to compute the shared key K and generate the authentica-
tion tag. More importantly, CTAP2 uses the same key K for both encryption
and authentication, which is considered bad practice and the resulting security
guarantee is elusive; this is why we have to model HMAC' as a random ora-
cle. Therefore, we suggest removing those redundant authentication procedures
(or using checksums), then the resulting protocol, denoted by CTAP2*, is also
UF-t-secure, with the proof in the full version [6] where HMAC' is treated as
an EUF-CMA-secure MAC.'* Furthermore, one can use a simple one-time pad
(with appropriate key expansion) instead of CBCy to achieve the same UF-t secu-
rity. This is because only one encryption is used in Setup and hence one-time
security provided by a one-time pad is sufficient.

Unnecessary Reboots. In order to prevent attacks that block the token without
user interaction, CTAP2 requires a token reboot after 3 consecutive failed bind-
ing attempts. Such reboots do not enhance security as the stored PIN hash is
not updated, but they could cause usability issues since reboots invalidate all
established access channels by erasing the existing binding states. We therefore
suggest replacing reboots with tests of user presence (e.g., pressing a button)
that do not affect existing bindings. Note that reboots are also introduced for

4 Note that HMAC-SHA-256 has been proved to be a PRF (and hence EUF-CMA)
assuming SHA-256’s compression function is a PRF [7].
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Authenticator T' Client C (ping;)
Reboot
(a,aG) & ECKGe ¢ (), m — 3
str.ps — (a,aG, m), stp.bs «— ¢
Setup G
— (b,bG) & ECKGg ()

K « H(abG.z) R K « H(baG.2)
ping «— CBCo.D(K, ¢p) ? ¢p «— CBCo.E(K, ping;)
if piny; € PZN': halts K
sty.s < H'(ping ), str.n — 8 . SN
Bind:
if st7.n = 0: blocks access PAKE(H’ (pin,, ))
stp.n «— stp.n — 1 e ———————
if PAKE outputs sk € {0,1}": if PAKE outputs skc € {0,1}":

m «— 3, str.n «— 8

str.bs; «— skt bsc,; < skc
otherwise:

m «<— m — 1, halts

(if m = 0: tests user presence)
Validate: M.t Authorize:
reject if t £ HMAC' (str.bs;, M) — t «— HMAC' (bsc,;, M)
collects user decision d -1
accept if d =1 =

Fig. 6. The sPACA protocol

user interaction in Validate executions; this however is completely useless when
CTAP2 already requires a test of user presence before accepting each command.

User Confirmation for Binding. As discussed at the end of Sect.6, we suggest
CTAP2 require user confirmation for Bind executions to improve security. Note
that here user confirmation is used to detect and prevent malicious Bind execu-
tions rather than confirming honest ones.

8 The Secure PACA Protocol

In this section, we propose a generic PACA protocol that we call sSPACA for
secure PACA, prove its SUF security, and compare its performance with CTAP2
when instantiating the underlying PAKE of sSPACA with CPace [24].

Protocol Description. We purposely design our sPACA protocol following
CTAP2 such that the required modification is minimized if sSPACA is adopted.
As shown in Fig. 6, sSPACA employs the same PIN dictionary PZN and crypto-
graphic primitives as CTAP2 and additionally relies on a PAKE protocol PAKE
initiated by the client. Compared to CTAP2, sSPACA does not have pinTokens,
but instead establishes independent random binding states in Bind executions
by running PAKE between the token and the client (that inputs the user PIN)
on the shared PIN hash; it also excludes unnecessary reboots. We also note that
the length of session keys skr, sk € {0,1}" established by PAKE is determined
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by the concrete PAKE instantiation; typically « € {224,256, 384,512} when the
keys are derived with a SHA-2 hash function.

sPACA Analysis. The session identifier of SPACA is simply that of PAKE.

SUF Security of SPACA. The following theorem (proved in the full version [6])
confirms SUF security of sSPACA by modeling H as a random oracle.

Theorem 3. Let PAKE be a 3-pass protocol where the client is the initia-
tor and let 9 be an arbitrary distribution over PIN with min-entropy hg.
For any efficient adversary A making at most gs,qc,qe queries respectively to
Setup, Connect, Execute, there exist efficient adversaries B,C,D,E, F such that:

AdvE A (A) < gsAAVE (B) + AdvE" (C) + 20s AdVR L enr—256(D)
+ Advpake(E,16gs + 2qc, ha) + (gc + ge) AdVETAR? (F) + 12¢s - 27

Note that it is crucial for PAKE to guarantee explicit authentication, other-
wise, the token might not be able to detect wrong PIN guesses and then decre-
ment its retries counter to prevent exhaustive PIN guesses.'® Also note that
the PAKE advantage bound may itself include calls to an independent random
oracle. PAKE can be instantiated with variants of CPace [24] or SPAKE2 [3,5]
that include explicit authentication. Both protocols were recently considered by
the IETF for standardization and CPace was selected in the end.'® They both
meet the required security property, as they have been proved secure in the UC
setting which implies the game-based security notion we use [4,24].

UF =& SUF-t. Note that one can easily transform sPACA into a protocol that
is still UF secure, but not SUF-t secure: similar to CTAP2, let the authenticator
generate a global pinToken used as binding states for all its partners and send
it (encrypted with the session key output by PAKE) to its partners at the end
of Bind executions. This shows that UF does not imply SUF-t.

Performance Comparison of CTAP2 and sPACA. It is straightforward
to see from Fig.5 and Fig.6 that CTAP2 and sPACA differ mainly in their
Bind executions, while sSPACA has slightly better performance than CTAP2 in
other subprotocols. We therefore compare their performance for binding (where
sPACA is instantiated with CPace) in terms of message flows, computations
(for group exponentiations, hashes, AES) on both sides, and communication
complexity. Among these three factors, the number of flows reflects the net-
work latency cost that usually dominates the performance. Therefore, one can
observe that SPACA (with CPace) is more efficient than CTAP2 from the results
summarized in Table 1, which we explain as follows.

5 One does not actually need explicit token-to-client authentication in the proof, as
clients do not have long-term secret to protect. This would allow removing the server-
side authentication component from the PAKE instantiation for further efficiency.
We do not propose to do this and choose to rely on the standard mutual explicit
authentication property to enable direct instantiation of a standardized protocol.

16 https://mailarchive.ietf.org/arch/msg/cfrg/i88r8N819bw88xCOyntuw_Ych-1I.


https://mailarchive.ietf.org/arch/msg/cfrg/j88r8N819bw88xCOyntuw_Ych-I

150 M. Barbosa et al.

Table 1. Performance comparison of CTAP2 and sPACA for binding.

Protocol Flow Token Client Communication
Exp | Hash | AES | Exp | Hash | AES (A =128)
CTAP2 4 201 T2k 2] 2 | 2 | 4AN+2k)(eg, k=2)
sPACA[CPace] | 3 2 4 0 2 5 0 |4X+2k (e.g., k = 256)

First, CPace needs 3 flows when explicit authentication is required and hence
so does sPACA, while CTAP2 needs 4. Besides, if Bind is executed when the
client already has a command to issue, the last CPace message can be piggy-
backed with the authorized command, leading to a very efficient 2-flow binding.'”
As shown in Fig. 5, CTAP2 requires two Diffie-Hellman group exponentiations
and 2k AES computations (for pt of k-block length) on both sides; the token com-
putes one hash while the client computes two (one for hashing PIN). For sPACA,
CPace requires two Diffie-Hellman group exponentiations and four hashes on
both sides; the client also needs to compute the PIN hash beforehand. In short,
sPACA incurs 3 more hashes while CTAP2 involves 2k more AES computations.
Note that the most expensive computations are group exponentiations, for which
both protocols have two. Regarding communication complexity, both protocols
exchange two group elements and two messages of the same length as the bind-
ing states, so they are equal if, say, kK = kA = 256. Overall, SPACA (with CPace)
is more efficient than CTAP2 due to less flows.

Finally, we note that the cryptographic primitives in sSPACA could be instan-
tiated with more efficient ones compared to those in CTAP2 without compro-
mising security. For instance, as mentioned before, one can use a very efficient
one-time pad (with appropriate key expansion) instead of CBCy in Setup.

9 Composed Security of PIA and PACA

In this section we discuss the composed security of PIA and PACA and the
implications of this composition for FIDO2 and WebAuthn+sPACA. The com-
posed protocol, which we simply refer to as PIA+PACA, is defined in the natural
way, and it includes all the parties that appear in Fig. 1. We give a typical flow
for registration in Fig.7, where we assume PACA Setup and Bind have been
correctly executed. The server’s role is purely that of a PIA server. The client
receives the server challenge via an authenticated channel (i.e., it knows the true
server identity idg when it gets a challenge from the server). It then authorizes
the challenge using the PACA protocol and sends it to the authenticator. The
authenticator first validates the PACA command (possibly using a user gesture)
and, if successful, it produces a PlA response that is conveyed to the server.

7 This piggy backing has the extra advantage of associating the end of the binding
state with a user gesture by default, which helps detect online dictionary attacks
against the token as stated in Sect. 6.
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Reboot
VRN
v o
Authenticator T' . Client C
ff‘; validate(str.bs;, (M, tr), d) ¢ 3.(Mr, t) M, + rcommand(ids, ¢;)
b =1: $ L
R, « rresponse(akr, M,.) (M., tr) < authorize(bsc,;, M)

A
Tee____--7 l.c,
Bind(ping)

Server S

(sent Vig Clie c& rchallenge(idg, vk)
at) b « rcheck(idg, vkr, ¢y, Ry)

Fig. 7. Full PIA4+PACA registration flow: black = PACA, blue = PIA, red = authen-
ticated (e.g., TLS), dashed = PACA algorithms/subprotocols. (Color figure online)

The flow for authentication looks exactly the same, apart from the fact that the
appropriate PIA authentication algorithms are used instead. The requirement
on the token is that it supports the combined functionalities of PIA and PACA
protocols and that it is able to validate the correct authorization of two types
of commands, (M,,t.) and (M,,t,), that correspond to PIA registration and
authentication. These commands are used to control access to the PIA registra-
tion and authentication functionalities. In the full version of this paper [6] we
formally give a syntax for such composed protocols.

A crucial aspect of our security results is that we convey the two-sided authen-
tication guarantees offered by PIA4+PACA, and not only the server-side guar-
antees. In fact, the server-side guarantees given by the composed protocol are
almost those offered by P1A, as the server is simply a P1A server: if a token was
used to register a key, then the server can recognize the same token in authenti-
cation; furthermore, PACA security requires that the authentication must have
been carried by a PACA-bound client. But how do the client and user know
which server they are registering at? What guarantees does a user have such
that registered credentials cannot be used in a different server? What does a
user know about how client security affects the effectiveness of access control for
the token? We answer these questions next.

Security Model. We give a very short description of the security model here
(the details are in the full version [6]). We define a security property called user
authentication (UA) for the composed protocol. We analyze the PIA+PACA
composition in a trust model as with our PACA model but we further require a
server-to-client explicit authentication guarantee. This captures a basic guaran-
tee given by TLS, whereby the client knows the true identity of the server that
generates the challenge and is ensured the integrity of the received challenge; it
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allows formalizing explicit server authentication guarantees given to the token
and user by the composed protocol. We allow the adversary to create arbitrary
bindings between clients and tokens, used to deliver arbitrary commands to those
created token oracles. We model server-to-token interactions via a unified query:
the adversary can request challenges from server S, via client C' aimed at a spe-
cific client-token PACA binding. We hardwire the server’s true identity to the
challenges, which is justified by our assumption of an authenticated channel from
server to client. The token oracles are modeled in the obvious way: if a PACA
command is accepted, then it is interpreted as in the PlA security experiment
and the response is given to the adversary. Compromise of binding states and
corruption of user PINs are modeled as in the PACA security experiment.

Security Guarantees. The security goal we define for the composed protocol
requires that a server oracle that accepts is uniquely partnered with a token
oracle, which is associated with a unique PACA-bound client oracle (that has
established an access channel), and these oracles agree on the exchanged mes-
sages in all passes of the challenge-response authentication session; this also holds
for the associated registration session. We show that such server-side security for
the composed protocol follows from security of its PIA and PACA components.
Then, it is not hard to see that PIA correctness guarantees the above token and
client oracles agree on the accepting server’s identity and that PlA correctness
and server-to-client explicit authentication (e.g., offered by TLS) guarantees that
user approval (i.e., d = 1) via an uncompromised access channel implies that only
the intended server can be authenticated to.

We now give a brief intuition on how the server-side result can be proved
assuming the underlying PIA and PACA components are secure. Suppose a
server authentication oracle w¢” (j > 0) accepts and its associated server regis-

tration oracle ﬂ'go took as input the attestation public key of token T

— PI1A security guarantees a unique partner oracle in 7', which determines two
partner token oracles: 7T!1€J0 for registration and ﬂ];ﬂ’l (I > 0) for authentication.

— Token oracles are, by construction, created on acceptance of PACA com-
mands. Therefore, token 7" must have accepted PACA commands to create
the above PlA partner token oracles.

— PACA security binds a PACA command accepted by the token to a unique
PACA partner client oracle (in the SUF/SUF-t corruption model) or to a set
of PACA partner client oracles (in the UF/UF-t corruption model). N

— PIA security also guarantees unique server-side partnered oracles 7rg0 and ¢’
(which generated a challenge that is consistent with the token’s view); this
implies that the two accepted PACA commands are produced respectively by
unique PACA partner client oracles 7% and 7% (in either corruption model),
i.e., 74 has a consistent view with Wgo and w:];’o in registration and so does

mg, with 7¢7 and 7T,/1€~’l in authentication.

The above argument guarantees that unique server, token and client oracles are
bound to the execution of PIA+PACA registration and authentication, as we
claimed before. If this does not hold, then either the P1A protocol or the PACA
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protocol can be broken (reduction to the PACA protocol security can be done
by considering the same corruption model as in PIA+PACA).
The details are in the full version of this paper [6].

Implications for FIDO2. The above result implies that FIDO2 components
WebAuthn and CTAP2 securely compose to achieve the UA security guarantees
under a weak corruption model UF-t: the protocol is broken if the adversary can
corrupt any client that has access to the target token since the last power-up, or
if the adversary can launch an active attack against an uncorrupted client (that
the target user inputs its PIN into) via the CTAP2 API (i.e., the user thinks it is
embedding the PIN into the token but it is actually giving it to the adversary).
Such attacks are excluded by the trust model assumed for the client platform.

Security in the SUF Model. The above result also implies that WebAuthn
composes with our sPACA protocol from Sect.8 to give UA security in the
strongest corruption model we considered. Intuitively, no active attacks against
the Bind subprotocol can help the attacker beyond simply guessing the user
PIN. The corruption of clients (e.g., browsers) that have previously been bound
to the token may be detected with the help of the user.

User Gestures Can Upgrade Security. UA gives strong guarantees to the
server and client. However, it is not very clear what guarantees it gives to the
human user. Apparently, there is a guarantee that an attacker that does not
control the token cannot force an authentication, as it will be unable to provide
a gesture. Furthermore, an attacker that steals the token must still guess the
PIN in a small number of tries to succeed in impersonating the user.

One very important aspect of user awareness is to deal with malware attacks
that may corrupt clients that have been bound to the token. Here, assuming SUF
security has been established, the user can help prevent attackers from abusing
the binding, provided that the token supports gestures that permit identifying
the client-to-token access channel that is transmitting each command. In the
weaker UF model there is no way to prevent this kind of abuse, as corrupting
one access channel implies corrupting all access channels to the same token.

Gestures can also be used to give explicit guarantees to the user that the
server identity used in a PlA session is the intended one. For example, there
could be ambiguity with multiple (honest and malicious) client browser windows
issuing concurrent commands from multiple servers. Suppose gesture G permits
confirming which client session is issuing the registration and authentication
commands.'® In this case we get a strong guarantee that the token registered a
credential or authenticated via an honest client in the server with identifier idg,
where id§ was explicitly confirmed by the user on the client interface, provided
that the honest client session issued only one command to the token. Alterna-
tively, G can be defined to directly confirm the specific idg value that can be
displayed by the authenticator itself and we get the same guarantee.

18 Confirming a client session means that the client browser and token somehow display
a human-readable identifier that the user can crosscheck and confirm.
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If the gesture cannot confirm consistency between client and token, then the
user will not be able to distinguish which access channel is transmitting the P1A
command and know for sure which idg the command it is approving refers to.
However, our composition result does show that trivial gestures are sufficient
if the user establishes only one access channel with the token per power-up, as
then there is no ambiguity as to which access channel is used and only a single
client is provided with the intended server identity as input.

10 Conclusion

We performed the first provable security analysis of the new FIDO2 protocols for
a standard of passwordless user authentication. We identified several shortcom-
ings and proposed stronger protocols. We hope our results will help clarify the
security guarantees of the FIDO2 protocols and help the design and deployment
of more secure and efficient passwordless user authentication protocols.
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