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Abstract. We introduce Adaptive Extractors, which unlike traditional
randomness extractors, guarantee security even when an adversary
obtains leakage on the source after observing the extractor output. We
make a compelling case for the study of such extractors by demonstrat-
ing their use in obtaining adaptive leakage in secret sharing schemes.

Specifically, at FOCS 2020, Chattopadhyay, Goodman, Goyal, Kumar,
Li, Meka, Zuckerman, built an adaptively secure leakage resilient secret
sharing scheme (LRSS) with both rate and leakage rate being O(1/n),
where n is the number of parties. In this work, we build an adaptively
secure LRSS that offers an interesting trade-off between rate, leakage
rate, and the total number of shares from which an adversary can obtain
leakage. As a special case, when considering t-out-of-n secret sharing
schemes for threshold t = αn (constant 0 < α < 1), we build a scheme
with a constant rate, constant leakage rate, and allow the adversary leak-
age from all but t − 1 of the shares, while giving her the remaining t − 1
shares completely in the clear. (Prior to this, constant rate LRSS scheme
tolerating adaptive leakage was unknown for any threshold.)

Finally, we show applications of our techniques to both non-malleable
secret sharing and secure message transmission.

Keywords: Randomness extractors · Leakage resilient secret sharing ·
Information theoretic cryptography

1 Introduction

Randomness extractors [28] are a fundamental primitive in the world of theoret-
ical computer science, which have found widespread applications in derandom-
ization techniques, cryptography, and so on. A randomness extractor Ext is a
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function that takes as input an n-bit entropic source W , a uniformly random
d-bit string S (seed) and outputs Ext(W ;S) such that Ext(W ;S) “looks uni-
form” to an unbounded eavesdropper Eve even given the seed S. Unfortunately,
the standard notion of extractors offers no guarantees whatsoever if the adver-
sary Eve obtains some information about W , after observing, the output of the
extractor. In this work, we address this gap.

Does the security of extractors hold even after the adversary obtains some
information on W , “after the fact”?

Naturally, we have to be careful about what information Eve can learn about
W and S, after the fact. For instance, the function f , which on input w, s and
the extractor challenge y, outputs 1 if and only if y = Ext(w; s), is an after the
fact leakage function, which can break extractor security, with high probability,
with only 1 bit of leakage. Hence, one needs to define the leakage function family
carefully.

In this work, we introduce the notion of adaptive extractors with respect
to an after the fact leakage family F . Formally, we say that an extractor is
an adaptive extractor with respect to a function family F , if for each f ∈ F ,
an adversary cannot (statistically) distinguish (S, f(W,Ext(W ;S)),Ext(W ;S))
from (S, f(W,U), U). Our notion of adaptive extractors can be seen as a gener-
alization of exposure-resilient extractors introduced by Zimand [33] (Zimand’s
extractors allow the adversary to adaptively learn up to nδ bits of the source,
for some δ < 1 bits; the adversary can determine which bits to query based on
an arbitrary function of the extractor output.), and of the notion of adaptive
non-malleable extractors introduced by Aggarwal et al. in [2] (where adaptive
non-malleability particularly guarantees that the adversary cannot distibuish
between (S,Ext(W ; g(S,Ext(W ;S))),Ext(W ;S)) and (S,Ext(W ; g(S,U)), U)).
We then observe that every randomness extractor is also an adaptive extrac-
tor with respect to a leakage family depending arbitrarily on the source and the
output, with some loss in parameters. We note that this observation is similar
to how the authors in [2, Lemma 3.5] show that every non-malleable extractor
is adaptive non-malleable, with some loss in parameters. We demonstrate that,
in spite of the loss in parameters that adaptivity incurs, such extractors can
be powerful. In particular, we use them to build constant-rate secret sharing
schemes resilient to adaptive leakage. We now describe these contributions in
greater detail.

Secret Sharing. Secret sharing schemes [10,30] are a fundamental cryptographic
primitive and have many applications, such as in multi-party computation [7,14],
and leakage-resilient circuit compilers [19,23,29]. These are cryptographic prim-
itives that allow a dealer to distribute a secret to n parties, such that only an
authorized subset of parties can reconstruct the original secret and any unautho-
rized set of parties have no information about the underlying secret (privacy).
For instance, in a t−out-of-n threshold secret sharing scheme, there are n par-
ties, and any collection of t (t ≤ n) or more parties would correspond to an
authorized set, and any collection of less than t parties would be unauthorized.
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Note that an implicit assumption is that the unauthorized set of parties has
no information about secrets of the remaining shares. A rich study on leakage
attacks initiated by Kocher [24] tells us that this is an idealized assumption that
may not hold in practice. Such leakage can be dangerous and completely break
the security of the underlying primitive1.

Leakage Resilient Secret Sharing (LRSS). Dziembowski and Pietrzak in [17]
introduced the problem of leakage resilience in secret sharing schemes. This
problem has received much attention (for example, [1,3,9,12,15,18,20,25,27,31],
[11,13]), wherein researchers have strived to improve various parameters such as
its rate (defined as (message length)/(length of longest share)), leakage model
as well as leakage rate (defined as (number of bits of leakage allowed)/(the size
of a share)).

At a high level, in an LRSS, the adversary is allowed leakage on shares of the
secret. This is captured by permitting the adversary to specify functions �1, �2, . . . ,
and receive, in response, �i(shi) (where shi denotes the ith share). Informally, secu-
rity of an LRSS requires that privacy should hold even given this leakage. In our
work, we explore the stronger setting where the adversary specifies which share to
receive leakage from, in an adaptive manner - i.e., the adversary specifies i, �i and
upon learning �i(shi), it may make the next leakage query by specifying j, �j . In
this adaptive leakage setting2, the construction of [13] achieved a rate of O(1/n)
as well as a leakage rate of O(1/n). A consequence of this is that there currently
does not exist a scheme with constant rate and leakage rate for any threshold in
this strong leakage model, whereas we do know of such constructions for the non-
adaptive leakage model. Our work fills this gap precisely.

1.1 Our Results

Our first and main result on the LRSS scheme in the adaptive leakage model is
as follows. Here n denotes the number of parties, t denotes the threshold and l
denotes the message length.

Result 1: We build an LRSS scheme, tolerating ψ adaptive queries, each depen-
dent on X shares (with ψ · X ≤ n − t + 1) and the reveal of the remaining t − 1
shares, such that it achieves a rate of (XΘ(ψX/t))−1, while allowing Θ(l) bits of
leakage per query, for threshold access structures. In particular, for a constant
X and n = Θ(t), this gives the first constant-rate adaptive LRSS scheme for the
threshold access structure. Finally, we also generalize our constructions to the
first constant-rate adaptive LRSS for general access structures.
1 For example, Guruswami and Wooters [22] show that Shamir’s secret sharing scheme

is completely insecure when the adversary gets some t − 1 shares and just one-bit of
leakage from other shares.

2 We note that here we only compare in an adaptive leakage model, without any joint
leakage queries on multiple shares (which is called the bounded collusion protocols
(BCP) model), for ease of expostion, and discuss the joint model in the technical
section later.
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Further, in the full version of our paper, we also show the following applications
of our LRSS scheme.

Result 2: As an application of our LRSS, we show compilers to get a leak-
age resilient non-malleable secret sharing (LRNMSS) scheme (which are LRSS
schemes, additionally resilient to tampering attacks), and an information-
theoretic secure message transmission protocol (SMT), tolerant against leakage
and tampering attacks. The rates of both these schemes translate appropriately
from the rate of the LRSS. In particular, for a constant LRSS, we get constant-
rate schemes for both LRNMSS and SMTs.

1.2 Our Techniques

We begin by describing the leakage model for LRSS and then give a technical
overview of our scheme. For simplicity, we provide our technical overview for
threshold access structures (which we can extend to general access structures as
well). Let t denote the threshold and n, the number of parties.

Leakage Model. We allow the adversary to obtain adaptive leakage on n−(t−1)
shares and then reveal the full shares of the remaining t−1 shares. Each adaptive
query can be on a set of at most X shares (where X is some value between 1
and t − 1), and different queries must be on sets that are disjoint from the prior
queries. For the purposes of this exposition, we make the following restriction
to our model: we assume that the adversary makes adaptive queries but only
on a single share each time, i.e., it doesn’t make any leakage query on multiple
shares.

Warm-up Construction. To motivate our construction, we consider the fol-
lowing modification3 of a construction due to Srinivasan and Vasudevan in [31,
Section 3.2.1]. Take any t-out-of-n secret sharing scheme (MShare,MRec) and
then do as follows:

– Sample shares (m1, ..,mn) of the message m using MShare.
– Choose an extractor seed s and split s into (sd1, .., sdn) using a t-out-of-n

secret sharing scheme.
– Now, for every mi, choose an extractor source wi uniformly and compute

yi = mi ⊕ Ext(wi; s).
– Finally, output the final shares {shi} as {(wi, yi, sdi)}.

For now, consider a weak model, where the adversary obtains only non-adaptive
and independent leakage from a total of (say) t−1 shares, in addition to t−1 full
shares. The hope is to show that the t−1 leakage queries are independent of the
message shares mi, following which the privacy of MShare can be used to get the
t − 1 full shares. One might hope to show this independence of leakage from the
mi’s, using the security of the extractor as follows: Pick sdi uniformly at random
3 We note that the original construction of [31] only aimed to achieve non-adaptive

security, and we consider a modification, with the aim to expand to adaptive security.
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and independent of s; then the leakage function on {shi}, can be answered as
an auxiliary leakage query on the source wi. Once s is revealed in the extractor
security game, the reduction can pick the other sdj values in a consistent manner.
However, this proof strategy has a flaw. For extractor security, it is important
that the auxiliary leakage query on w is independent of s; however, there is
a dependence on s via yi. In other words, it is unclear how to prove that this
construction satisfies leakage resilience even in a weak model where the adversary
obtains leakage only independently and non-adaptively.

Fortunately, with adaptive extractors, we can show that this construction
is secure not only in this weak model but also in a stronger model where the
adversary is allowed to leak from t−1 shares adaptively, before receiving t−1 full
shares. Furthermore, this construction even has a constant rate! The high-level
idea of security is as follows. We wish to reduce the adaptive leakage queries on
the shares to an adaptive extractor leakage query. Since the adaptive leakage
query on wj cannot depend on the seed, we need to first show that the share
sdj in the corresponding query is independent of the seed s. Indeed, using the
privacy of secret sharing4, we can show that for the first t−1 queries, the shares
sdj in shj can be replaced with shares of 0 (hence removing the dependence on
s). Then, using the adaptive extractor security, we can replace the yj ’s (for the
first t − 1 queries) with uniform, where the leakage can be asked on the wj ’s.
Now, the privacy of MShare can be invoked to get the t − 1 full shares.

Main Construction. Our next goal is to leverage adaptive extractors to go
beyond leaking from just t − 1 shares. The main bottleneck is that for any
subsequent leakage query (beyond t − 1), the sdj ’s will reveal s, and hence the
adaptive leakage query on subsequent wj ’s will no longer remain independent of
the seed s. Thus, extractor security fails. This is the challenge we must address
to achieve our main result where the adversary is allowed to obtain adaptive
leakage on n − (t − 1) shares (in total) and reveal t − 1 of the remaining shares.

One approach to facilitating leakage from more than t− 1 shares could be to
use independent extractor seeds to extract independent random masks. Consider
the following modification of the above construction: mask the share of a message
mi not just with one extractor output but with many. In particular, let yi =
mi ⊕ Ext(wi; s1) ⊕ Ext(wi; s2) . . . ⊕ Ext(wi; sh), for some parameter h, where
s1 . . . sh are independent seeds. We might hope that because we are using h
seeds, we could hope to leak from h(t − 1) shares and use the security of each
seed per batch of t− 1 shares. Unfortunately, this doesn’t work for the following
reason: reconstruction is only possible if we recover all h seeds. This means that
we ultimately need to somehow share all the seeds in a manner where they can
be reconstructed from t−1 shares. In other words, once we leak from t−1 shares,
we can no longer argue security by leveraging any of the seeds because they can
all be reconstructed from t − 1 shares. We overcome this challenge by carefully
using a multi-layered approach for both masking the message shares as well as
for reconstructing the seeds.
4 Since the leakage queries are adaptive, we require adaptive privacy of the underlying

secret sharing scheme, and we show instantiations of the same.
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Construction Overview:

1. Pick h extractor seeds s1, . . . , sh and hn extractor sources w1
1, . . . w

h
1 , . . . , w1

n,
. . . , wh

n.
2. Secret share each of the h seeds using a t-out-of-n secret sharing scheme to

obtain shares; let the share of sj be sdj
1, . . . , sd

j
n

3. Each share mj is masked using the h seeds in a layered manner as follows:
(a) In level h + 1: Set yh+1

j = mj .
(b) For every subsequent lower level i(i ≥ 1), compute xi

j = yi+1
j ⊕Exti(wi

j ; si)
and set yi

j = (xi
j ||sdi

j). [Note that we use a different extractor per-level
since the length of the extractor outputs (and the length of yi

js they mask)
increase with level.]
Finally set Shj = (w1

j , · · · , wh
j , y1

j ).
4. Output (Sh1, · · · , Shn)

A pictorial representation of the construction can be found in Fig. 1. In order to
give an overview of the proof, we first recall that we are in a setting where each
adaptive query of an adversary is a query on a single share – we can extend our
results to the case of joint leakage but, for the sake of simplicity, we don’t focus
on that for now.

Each entry of the layered maskings matrix appropriately uses the corresponding
entries of the sources, seeds and seed shares matrices. In addition, each entry yj

i

(j ≤ h) also depends on the subsequent value i.e., yj+1
i . Example:

yh
1 = m1 ⊕ Exth(wh

1 ; sh)||sdh1 (colored red)

Fig. 1. The main construction. (Color figure online)

At a high-level, the idea of the security proof is that we view the leakage
queries in batches of t − 1 queries. For the first set of t − 1 queries, we rely
on the adaptive security of the extractor outputs evaluated using seed s1 and,
in particular, all of these outputs can be replaced by uniform. (This also relies
on the adaptive privacy of the secret sharing scheme, a notion we define and
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instantiate.) For the second set of t − 1 queries, we can no longer assume that
s1 is hidden, since we can not use the privacy of the secret sharing scheme any
more. However, two things come to our rescue: first, the second batch of queries
helps unmask at most t−1 shares of s2 and therefore, adaptive extractor security
on seed s2 can be leveraged; second, the extractor outputs Ext(w1

j ; s1) (where j
was a share that was leaked from in the first batch) continue to remain uniform.
The reason for the latter is that all extractor sources are uniformly chosen, and
our model requires a disjoint set of indices to be leaked from across batches. In
short, for the first batch of queries, we use adaptive security of the extractor
outputs evaluated on the first seed and, for every subsequent batch, we move to
argue extractor security using the subsequent seed. Since we have h independent
seeds, we can do this h times and therefore answer h batches of queries, i.e., we
can obtain leakage on h(t − 1) shares.

1.3 Related Work

We first list out some of the parameters that are relevant to LRSS schemes:

– Rate: This is defined as messagelength
sharelength .

– Global Limit : This refers to the total number of shares on which the leakage
queries can depend on.

– Per-query Limit : This refers to the number of shares that a specific query
can depend on.

– Per-query Leakage Rate: This is the ratio of the total allowable leakage from
a single leakage query to the size of a share.

The problems of leakage resilient and non-malleable secret sharing have seen
a flurry of activity in recent times [1,5,9,11–13,18,20,25–27,31]. Here we com-
pare our work with only the most relevant works in this area. The only prior
LRSS schemes allowing for a joint and adaptive leakage model are [13,25]. While
our model allows adaptive queries on up to n − t + 1 shares, each dependent on
at most X shares (where X is some value between 1 and t − 1), before fully
revealing the remaining t− 1 shares, [13] allows adaptive queries on all n shares,
each dependent on at most t−1 shares before revealing t−1 full shares. Both the
schemes require the adaptive queries to be on disjoint sets of shares. However, our
scheme/analysis offers a more fine-grained trade-off between the various param-
eters and allows us to obtain better results for certain settings. In particular,
when we consider the instance where X is constant (and t = αn, for a constant
α < 1), we get a constant-rate adaptive LRSS achieving a constant leakage rate,
while [13] gets a rate and leakage rate of O(1/n) each, in all instances. To put
this in context, even if [13] makes independent adaptive leakage queries on all
shares, their rate is O(1/n) and the maximum number of bits they can leak is
at most a constant fraction of the size of a single share, while we can leak close
(n − t + 1) times a constant fraction of the size of a single share!

The work of [13] also consider a variant of joint leakage, allowing overlap
of the query sets, the detailed parameters of which are given in Table 1. We
give a detailed comparison of the parameters achieved by the various schemes in
Table 1, for the threshold setting with t = αn (for a constant α < 1).



602 N. Chandran et al.

Table 1. LRSS prior work

– *All works mentioned here are information-theoretic. We write all comparisons for
the threshold setting with threshold t = αn (where α < 1 is a constant and n
denotes the total number of parties).

– ** For our result, the unauthorized queries cannot overlap with the leakage queries.
– c is a small constant and lmsg is the message length.
– All schemes (except the joint overlapping schemes of [13] (threshold and n-out-of-

n) actually work for general access structures.
– Full Shares: Number of complete shares that an adversary can see (at the end of

all leakage queries, in the adaptive schemes).

Open Problems. We believe that it would be interesting to explore the direction
of building adaptive extractors against restricted classes of leakage families such
as those captured by computational/bounded depth circuits, local functions, etc.

1.4 Organization of the Paper

We provide the preliminaries and definitions in Sect. 2. Then, we define and
build adaptive extractors in Sect. 3. We define and build leakage resilient secret
sharing schemes in Sect. 4.

2 Preliminaries and Definitions

2.1 Notation

We denote the security parameter by κ. For any two sets S and S′, S\S′ denotes
the set of elements that are present in S, but not in S′. For any natural number n,
[n] denotes the set {1, 2, · · · , n} and [0] denotes a null set. s ∈R S denotes uniform
sampling from set S. x ← X denotes sampling from a probability distribution
X. The notation PrX [x] denotes the probability assigned by X to the value x.
x||y represents concatenation of two binary strings x and y. |x| denotes length
of binary string x. Ul denotes the uniform distribution on {0, 1}l. All logarithms
are base 2. If S is a subset of [n] :

– If x1, .., xn are some variables or elements, then xS denotes the set
{xi such that i ∈ S}.
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– For some function f outputting n values y1, · · · , yn on input x, f(x)S denotes
(yi)i∈S .

– If T1, .., Tn are sets, then TS denotes the union ∪i∈STi.

Statistical Distance. Let X1,X2 be two probability distributions over some
set S. Their statistical distance is

SD (X1,X2)
def= max

T⊆S
{Pr[X1 ∈ T ] − Pr[X2 ∈ T ]} =

1
2

∑

s∈S

∣∣∣∣Pr
X1

[s] − Pr
X2

[s]
∣∣∣∣

(they are said to be ε-close if SD (X1,X2) ≤ ε and denoted by X1 ≈ε X2).
For an event E, SDE(A;B) denotes SD (A|E;B|E).

Entropy. The min-entropy of a random variable W is H∞(W ) =
− log(maxw Pr[W = w]).
For a joint distribution (W,Z), following [16], we define the (average) conditional
min-entropy of W given Z as

H̃∞(W | Z) = − log( E
e←Z

(2−H∞(W |Z=z)))

(here the expectation is taken over e for which Pr[E = e] is nonzero).
For any two random variable W,Z, (W |Z) is said to be an (n, t′)-average source
if W is over {0, 1}n and H̃∞(W |Z) ≥ t′.
We require some basic properties of entropy and statistical distance, which are
given by the following lemmata.

Lemma 1. [16] Let A,B,C be random variables. Then if B has at most 2λ

possible values, then H̃∞(A | B) ≥ H∞(A,B) − λ ≥ H∞(A) − λ and, more
generally, H̃∞(A | B,C) ≥ H̃∞(A,B | C) − λ ≥ H̃∞(A | C) − λ.

Lemma 2. [32] For any random variables A,B, if A ≈ε B, then for any func-
tion f, f(A) ≈ε f(B).

Lemma 3. For any random variables A,B over A, and events E,E′ with non-
zero probabilities,

SD (A ∧ E,B ∧ E′) ≤ |Pr[E] − Pr[E′]| + Pr[E′] · SD (A|E,B|E′)

where,

SD (A ∧ E,B ∧ E′) def=
1
2

∑

a∈A
|Pr[A = a ∧ E] − Pr[B = a ∧ E′]|

and
SD (A|E,B|E′) def=

1
2

∑

a∈A
|Pr[A = a|E] − Pr[B = a|E′]|

Lemma 4 [4] Let X,Y,X ′, Y ′ be random variables such that
SD ((X,Y ), (X ′, Y ′)) ≤ ε and S be any set such that Pr[Y ∈ S] > 0 and
Pr[Y ′ ∈ S] > 0, then

SD (X|Y ∈ S,X ′|Y ′ ∈ S) ≤ 2ε

Pr[Y ′ ∈ S]



604 N. Chandran et al.

2.2 Secret Sharing Schemes

Secret sharing schemes provide a mechanism to distribute a secret into shares
such that only an authorized subset of shares can reconstruct the secret and any
unauthorized subset of shares has “almost” no information about the secret. We
now define secret sharing schemes formally.

Definition 1. Let M be a finite set of secrets, where |M| ≥ 2 . Let [n] be a set of
identities (indices) of n parties. A sharing function Share : M → ({0, 1}l)n is a
(A, n, εs)- secret sharing scheme with respect to a monotone access structure5

A if the following two properties hold :

1. Correctness: The secret can be reconstructed by any set of parties that are
part of the access structure A. That is, for any set T ∈ A, there exists a
deterministic reconstruction function Rec : ({0, 1}l)|T | → M such that for
every m ∈ M,

Pr[Rec(Share(m)T ) = m] = 1

where the probability is over the randomness of the Share function and if
(sh1, .., shn) ← Share(m), then Share(m)T denotes {shi}i∈T . We will slightly
abuse the notation and denote Rec as the reconstruction procedure that takes
in T ∈ A and Share(m)T as input and outputs the secret.

2. Statistical Privacy: Any collusion of parties not part of the access struc-
ture should have “almost” no information about the underlying secret. More
formally, for any unauthorized set U /∈ A, and for every pair of secrets
m,m′ ∈ M,

Δ((Share(m))U ; (Share(m′))U ) ≤ εs

An access structure A is said to be (n, t)-threshold if and only if A contains all
subsets of [n] of size at least t.
Rate of a secret sharing scheme is defined as message size

share size (which would be equal
to log |M|

l ).

We now study a stronger privacy requirement, adaptive privacy (introduced by
Bellare and Rogaway [6]6).

2.2.1 Adaptive Privacy
Statistical privacy captures privacy against any non-adaptively chosen unautho-
rized set U . Adaptive privacy preserves privacy even when the choice of U to
be adaptive, which means the following. Let U = {i1, .., iq}. We say ij is chosen
adaptively, if its choice depended on {sharej}j∈{i1,..,ij−1}. The choice of which
share to query next depends on all the previously observed shares. We give the
formal definition below.
5 A is a monotone access structure if for all A, B such that A ⊂ B ⊆ [N ] and A ∈ A,

it holds that B ∈ A. Throughout this paper whenever we consider a general access
structure, we mean a monotone access structure.

6 In [6], the authors refer to adaptive privacy as privacy against dynamic adversaries.
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We say a (A, n, εs)-secret sharing scheme satisfies adaptive privacy with error
εadp if, for any distinguisher D, the advantage in the following game is at most εadp.
GameAd−Privacy : For any arbitrary distinct messages m0,m1 ∈ M
1. (share1, · · · , sharen) ← Share(mb) where b ∈R {0, 1}
2. For j = 1 to q 7

– D queries on a distinct index ij(such that i[j] /∈ A) and receives shareij

3. D outputs the guess b′ for b and wins if b = b′

While generally, any secret sharing scheme may not be adaptively private, we
can show that for the threshold setting, the scheme of [30] and for the general
access structures, the scheme of [8] are both adaptively private (which is proved
in the full version of our paper). We use them to instantiate our schemes.

Consistent Re-sampling. For any (A, n, εs)-secret sharing scheme (Share,
Rec), for any message m and a subset L ⊆ [n], when we say “(sh1, .., shn) ←
Share(m) consistent with sh∗

L on L” or “(sh1, .., shn) ← Share(m|sh∗
L)” we mean

the following procedure:

– Sample and output (sh1, .., shn) uniformly from the distribution Share(m)
conditioned on the event that shL = sh∗

L
– If the above event is a zero probability event then output a string of all zeroes

(of appropriate length).

We require the following consistent re-sampling feature8, which informally states
that for any (A, n, εs)-secret sharing scheme and any message m, the distribution
of shares which are re-sampled as shares of m, conditioned on some set T of shares
(which are also generated as shares of m) chosen adaptively, is identical to the
distribution of shares of m generated directly.

Lemma 5. For any (A, n, εs)-secret sharing scheme (Share,Rec) and for any
message m, the following two distributions are identical.

D1 :

– (sh′
1, .., sh

′
n) ← Share(m)

– (sh1, .., shn) ← Share(m|sh′
T )

– Output (sh1, .., shn)

D2 :

– (sh1, .., shn) ← Share(m)

– Output (sh1, .., shn)
Here, T ⊆ [N ] can be any subset chosen as: every index (except the first) depends
arbitrarily on the shares corresponding to all the previous indices.

We give a full proof of the above lemma in the full version of our paper.

7 q is arbitrary and chosen by D. It need not be chosen a-priori. We only use it to
denote the total number queries made by D

8 Note that we only use the re-sampling in proofs and do not require the procedure
to be efficient.
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3 Adaptive Extractors

Extractors (introduced by Nissan and Zuckerman [28]) output a near uniform
string y, from a source w that only has min-entropy, using a short uniform
string s, called the seed, as a catalyst. Average-case extractors are extractors
whose output remains close to uniform, even given the seed and some auxiliary
information (or leakage) about the source (independent of the seed), as long as
the source has enough average entropy given this leakage. We give their formal
definition below.

Definition 2. [16] Let Ext : {0, 1}η × {0, 1}d → {0, 1}l be a polynomial time
computable function. We say that Ext is an efficient average-case (η, μ, d, l, ε)-
strong extractor if for all pairs of random variables (W,Z) such that W is an
η-bit string satisfying H̃∞(W |Z) ≥ μ, we have

Ext(W ;Ud), Ud, Z ≈ε Ul, Ud, Z

3.1 Definition

Average-case extractors, unfortunately, provide no guarantees on the extractor
output being uniform when an adversary can obtain an ‘adaptive’ leakage on
the source, that is dependent on the extractor output and the seed. This is not
surprising, as if an adversary can obtain arbitrary adaptive leakage on the source,
then we cannot hope for the extractor output to remain uniform. For example,
given y = Ext(w, s), an adversary can distinguish the extractor output from uni-
form with high probability by querying a single bit of auxiliary information that
tells her whether Ext(w, s) = y. However, as we will see later, in many appli-
cations, the adaptive leakage that the adversary obtains comes from a specific
function family. Hence, by carefully defining this function family, we show how to
obtain useful notions of extractors that guarantee security even in the presence
of an adaptive auxiliary information. We introduce and call this notion adaptive
extractors and now proceed to formally define them.

Definition 3. An (η, μ, d, l, ε)- extractor Ext is said to be an (F , δ)-adaptive
extractor if for all pairs of random variables (W,Z) such that W is an η-bit
string satisfying H̃∞(W |Z) ≥ μ, and any function f in the function family F ,
it holds that

Z,Ud, f(W,Ext(W ;Ud), Ud),Ext(W ;Ud) ≈δ Z,Ud, f(W,Ul, Ud), Ul

We call δ, the adaptive error of the extractor.

3.2 Construction

Generic Relation. We show that every extractor is in fact an adaptive extractor
for the family of leakage functions where the adaptive leakage depends only on
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the source and the extractor output (i.e., it doesn’t depend on the seed except
via the extractor output), with some loss in security. This loss, in fact, depends
only on the number of bits of the extractor output that the adaptive leakage
function depends on. For ease of exposition, we omit auxiliary information z
that depends only on the source (but not on the extractor output or seed) from
the notation below. We now explicitly define this family below:

Fa,ζ ⊆ {f ′ : {0, 1}η × {0, 1}l → {0, 1}ζ}

such that for every f ′ ∈ Fa,ζ there exists two functions f : {0, 1}l → {0, 1}a and

g : {0, 1}η+a → {0, 1}ζ such that ∀w, y, f ′(w, y) = g(w, f(y))}

Here, ‘ζ’ denotes the number of bits of adaptive leakage and ‘a’ denotes the
number of bits of the extractor output (or the uniform string) that the adaptive
leakage depends on. This is captured by requiring that every function f ′ has
an equivalent representation in terms of some g and f such that f ′(w, y) =
g(w, f(y)) where f ’s output is only a bits long. w and y should be interpreted
as the source and the extractor output (or the uniform string) respectively.

The following theorem shows that any (η, μ, d, l, ε)- average case extractor can
be shown to be adaptive secure against the above family Fa,ζ , with an adaptive
error of 2a+2ε. Informally, we can reduce the adaptive security to the extractor
security (as in Definition 2) in the following way: to answer the adaptive leakage
query, the reduction makes a guess, v, for the extractor challenge dependent
value f(yb) (where, yb is the extractor challenge), which is of a-bits, and gets
the leakage g(w, v) from the source. Now, it gets the challenge yb from the
extractor challenger and if f(yb) matches the guess v, then the reduction can
successfully simulate the challenge and the adaptive leakage response, else it
cannot proceed (and aborts). Hence, the winning probability in the extractor
game is the probability of a correct guess (2−a), multiplied with the winning
probability of the adaptive extractor adversary. We formalize this proof in the
theorem below.

Theorem 1. Every (η, μ, d, l, ε)- average case extractor Ext is an (η, μ +
ζ, d, l, ε)- extractor that is (Fa,ζ , 2a+2ε)-adaptive, for any μ + ζ ≤ η and a ≤ l.

Proof. For simplicity, we omit the auxiliary information Z, that depends only
on the source (and not on the extractor output). Let W be the source of η bits,
such that H∞(W ) ≥ μ+ζ. Consider f ′ ∈ Fa,ζ , with the corresponding functions
(f, g) (recall f ′(w, y) = g(w, f(y)), where f outputs a bits and g outputs ζ bits).
To prove adaptive security (Definition 3), we need to show that:

Ud, f
′(W,Y ), Y ≈2a+2ε Ud, f

′(W,Ul), Ul,

where Y is the random variable Ext(W ;Ud). Expanding the description of f ′,
this gives:

Ud, g(W, f(Y )), Y ≈2a+2ε Ud, g(W, f(Ul)), Ul
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To prove this, we consider the following two sets B = {b : Pr[f(Y ) = b] >
0} and A = {0, 1}d+ζ+l. For each b ∈ B, we begin by using the statisti-
cal distance Lemma 3 with random variables A,B and events E,E′ set as
(Ud, g(W, f(Y )), Y ), (Ud, g(W, f(Ul)), Ul), f(Y ) = b and f(Ul) = b, respectively.
By use of law of total probability and Lemma 3, we get:

SD((Ud,g(W, f(Y )), Y ), (Ud, g(W, f(Ul)), Ul))

≤ Pr[f(Ul) 
∈ B] +
∑

b∈B
SD (A ∧ E,B ∧ E′)

≤ Pr[f(Ul) 
∈ B] +
∑

b∈B
((|Pr[E] − Pr[E′]|) + Pr[E′] · SD (A|E,B|E′))

But now, note that, by extractor security, since Y ≈ε Ul, by applying Lemma 2,
we have f(Y ) ≈ε f(Ul). Further, by the definition of statistical distance, we have
that, for each b ∈ B, |Pr[f(Y ) = b] − Pr[f(Ul) = b]| ≤ ε and Pr[f(Ul) /∈ B] ≤ ε
(since Pr[f(Y ) 
∈ B] = 0]). Applying this to above inequality, we get:

SD((Ud,g(W, f(Y )), Y ), (Ud, g(W, f(Ul)), Ul))

≤ ε +
∑

b∈B
(ε + Pr[E′] · SD (A|E,B|E′))

= (|B| + 1)ε +
∑

b∈B
Pr[E′] · SD(A|E, B|E′)

Finally, we apply the statistical distance Lemma 4 on the random variables
(A, f(Y )) and (B, f(Ul)) with set S = {b}. Note that, given events E and E′ the
value of f(Y ) and f(Ul) are fixed to a b, which means the leakage g(W, b) is only
a leakage on W . Thus, we can use extractor security to get: (Ud, g(W, b), Y ) ≈ε

(Ud, g(W, b), Ul). Hence, applying this to the above inequality, we get:

SD((Ud,g(W, f(Y )), Y ), (Ud, g(W, f(Ul)), Ul))

≤ (|B| + 1)ε +
∑

b∈B
Pr[E′] · 2ε

Pr[f(Ul) = b]

≤ 4|B|ε ≤ 2a+2ε

Concrete Instantiation. We show that the extractor due to Guruswami et al. [21]
is an adaptive extractor even when the leakage depends on the entire extractor
output. We state the result from [21] below.

Lemma 6. [21] For every constant ν > 0 all integers η ≥ μ and all ε ≥ 0,
there is an explicit (efficient) (η, μ, d, l, ε)−strong extractor with l = (1 − ν)μ −
O(log(η) + log(

1
ε
)) and d ≤ O(log(η) + log(

1
ε
)).

Let Fullζ (= Fl,ζ), denote the leakage function family which computes leakage
(of size ζ) dependent on the entire extractor output and the source. The following
lemma shows that one can appropriately set the parameters of the [21] extractor
to get negligible error, while extracting a constant fraction of the bits from the
source, and while adaptively leaking a constant fraction of bits from it.
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Lemma 7. For all positive integers l, ζ, every constant ν > 1 and ε ≥ 0, there
is an explicit (efficient) (η, μ+ ζ, d, l, ε)−extractor that is (Fullζ , δ)-adaptive with
d = O(log(η

ε )), μ = νl + O(log(η
ε )), any η ≥ μ + ζ and δ = ε · 2l+2.

On further implication, for any c > 1, there exists constants α, β such that
d ≤ αl, μ ≤ βl, η ≥ βl + ζ, ε = 2−cl and δ = 2(1−c)l+2 when l = ω(log η).

Proof. The proof of the first part of the lemma follows directly from Theorem 1
and Lemma 6 and the further implication can be obtained by simple substitution.

Further, we use the following generalization of adaptive extractors: for an adap-
tive extractor Ext, if we consider k independent sources W1, · · · ,Wk and a single
seed S, all the extractor outputs (Ext(Wi;S))i∈[k] look uniform, even given adap-
tive leakage on each Wi, dependent on not just Ext(Wi;S) (or uniform), but also
all the prior extractor outputs and adaptive leakages (queried before i). As the
sources are independent, this lemma can be proved using a simple hybrid argu-
ment (the detailed proof is given in our full version).

Lemma 8. Let k be an arbitrary positive integer, W1, · · · ,Wk be k independent
(η, μ + ζ) sources and S be the uniform distribution on {0, 1}d. Let Ext be an
(η, μ + ζ, d, l, δ′)-extractor that is (Fullζ , δ)-adaptive. For each i ∈ [k], let E0

i

denotes Ext(Wi;S), E1
i denotes uniform distribution on {0, 1}l. For b ∈ {0, 1},

we define AdLeakb as follows. Then for any stateful distinguisher D′ we have
AdLeak0 ≈kδ AdLeak1.
AdLeakb :

– Let Tr and S be a null string and null set respectively.
– For upto k times

• (j, gj) ← D′(Tr) where j ∈ [k]\S and gj : {0, 1}η+l → {0, 1}ζ .
• Append (j, gj , gj(wj , E

b
j ), E

b
j ) to Tr.

• Add j to S.
– Output Tr.

4 Leakage Resilient Secret Sharing

Leakage-resilience of a secret sharing scheme is defined specific to a leakage
model/ leakage family. We begin by formally defining leakage-resilience and then
describe the leakage model.

Definition 4. An (A, n, εs)-secret sharing scheme is said to be an (A, n, εs, εl)-
leakage resilient secret sharing scheme against a leakage fam-
ily F if for all functions f ∈ F and for any two messages
m,m′,SD (f(Share(m)), f(Share(m′))) ≤ εl.
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4.1 Leakage Models

We consider two leakage models in this paper. For now, we restrict our discussion
to an (n, t)-threshold access structure.

– Adaptive Leakage and Reveal Model: The adversary can adaptively
obtain leakage on individual shares for any n− t+1 shares. After this, he can
additionally even get all the remaining t − 1 shares in their entirety.

– Joint Leakage and Reveal Model: The adversary can ask any number of
joint leakage queries on disjoint sets of size X (a parameter). After this, he can
additionally get any (at most t − 1) of the remaining shares in their entirety.
While this model completely subsumes the adaptive leakage and reveal model,
the amount of leakage per share supported in the latter would be lesser.

We provide a formal description of the adaptive leakage and reveal model and
the joint leakage and reveal model in Sect. 4.1.1 and Sect. 4.5 respectively. We
give a construction that is leakage resilient with respect to both these models in
Sect. 4.2. We prove leakage resilience of this scheme in the adaptive leakage and
reveal model in Sect. 4.3. We provide a proof sketch of leakage resilience in the
joint adaptive and reveal model in Sect. 4.5.2.

4.1.1 Adaptive Leakage and Reveal Model Fψ,τ
leak

The model allows for leakage on individual shares and then also reveals at most
t − 1 of the remaining shares in clear. We have two parameters in the model τ
and ψ where τ denotes the amount of leakage provided in each leakage query
and ψ captures the maximum number of leakage queries allowed. We allow ψ
ranging from 1 to n − t + 1. Though we allow ψ to be n − t + 1, we have it
as an explicit parameter because lower ψ would imply a weaker leakage model
and possibly have better constructions. In fact, our multi-layered construction
in Sect. 4.2 becomes compact (and offers better rate) as ψ decreases.

Leakm
Share:

– Initialize Z to be a null string and S to be a null set.
– (Sh1, · · · , Shn) ← Share(m)
– Leakage Phase:

For upto ψ times
• (j, fj) ← D(Z) where fj : {0, 1}γ → {0, 1}τ

• If j ∈ [n]\S, add j to S and append (j, fj , fj(Shj)) to Z
– Reveal phase

For upto t − 1 times
• j ← D(Z)
• If j ∈ [n]\S, append (j, Shj) to Z

– D updates Z with any relevant state information.
– Output Z.

Fig. 2. LRSS definition- LeakmShare distribution
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Let (Share,Rec) (where Share : {0, 1}l → ({0, 1}γ)n) be a t-out-of-n secret
sharing scheme. We formalize leakage obtained in this model on shares of a
message m as Leakm

Share in Fig. 2, where an arbitrary stateful distinguisher D
makes the queries. For any two messages m and m′, we require Leakm

Share ≈εlr

Leakm′
Share, for (Share,Rec) to be εlr leakage resilient against the adaptive leakage

and reveal model.

4.2 LRSS Construction for the Adaptive Leakage and Reveal Model

We refer the reader to the Introduction (Sect. 1.2) for a high-level overview of
the construction and proof. We proceed to describe the construction in detail in
Fig. 3 and prove its security in Sect. 4.3.

Let n be the number of parties and t be the reconstruction threshold. Let
h > 0 be a parameter guaranteed to be less than �n/(t − 1)�.
Building Blocks. Let (MShare,MRec) be an ((n, t), ε, ε)-adaptive secret
sharing scheme for messages in {0, 1}l with share space being {0, 1}l′ . For
i ∈ [h], let (SdSharei,SdReci) be an ((n, t), ε′

i, ε
′
i)-adaptive secret sharing

scheme for messages in {0, 1}di with share space being {0, 1}d
′
i . For i ∈ [h],

let Exti be an (ηi, μi + τ, di, �i, δ
′
i)-extractor that is (Fullτ , δi)-adaptive. We

set �1 = l′ and for i ∈ [h]\{1} we set li = li−1 + d′
i−1.

Shareh(m):

– (m1, · · · , mn) ← MShare(m).
– For i ∈ [h], pick seeds si ∈R {0, 1}di and compute their shares (sdi

1, · · · ,
sdi

n) ← SdSharei(si).
– For i ∈ [h] and j ∈ [n], pick sources wi

j ∈R {0, 1}ηi .
– For j ∈ [n]:

• Define yh+1
j = mj .

• For i ← h to 1, compute xi
j = yi+1

j ⊕Exti(wi
j ; s

i) and yi
j = (xi

j ||sdi
j).

– For j ∈ [n], define Shj = (w1
j , · · · , wh

j , y1
j ).

– Output (Sh1, · · · , Shn).

Rech(ShT ) : (where T is the reconstruction set)

– For j ∈ T , parse Shj as (w1
j , · · · , wh

j , y1
j ), where y1

j = x1
j ||sd1j .

– For i ← 1 to h:
• si = SdReci(sdi

T ).
• For each j ∈ T , yi+1

j = xi
j ⊕ Exti(wi

j ; s
i). For each i ∈ [h − 1], parse

yi+1
j as xi+1

j ||sdi+1
j .

– Parse yh+1
j as mj . Recover m = MRec(mT ).

– Output m.

Fig. 3. LRSS construction
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4.3 Proof of Leakage Resilience in the Adaptive Leakage and
Reveal Model

Theorem 2. For any ψ ≤ n− t+1 and l, τ > 0, (Shareh,Rech) is an ((n, t), ε)-
secret sharing scheme for l bit messages and is 2(ε + h(ε′ + (t − 1)δ))-leakage
resilient in the Adaptive Leakage and Reveal model Fψ,τ

leak where h = �ψ/(t− 1)�.
Further, there exists an instantiation of the scheme with rate is (2Θ(h)+hτ/l)−1.
When τ = Θ(l) and either n = Θ(t) or h is a constant, the scheme achieves
constant rate and constant leakage rate asymptotically.

Proof. The correctness of the scheme follows directly from the correctness of
underlying extractors and secret sharing schemes. The (adaptive) privacy of the
scheme is directly implied by the leakage resilience (against the adaptive leakage
and reveal model).

Leakage Resilience. For any message m we define the following the sequence
of hybrids. In these hybrids we assume that D always asks legitimate queries as
per the model and won’t write explicit checks for legitimacy (for example, we
assume that D doesn’t ask leakage on same share twice).

We analyze the leakage queries made by D as bunches of (t − 1) queries.
We now introduce some useful notation. Let S1, · · · ,Sh denote the sets of
indices queried by D, where Si contains the indices queried by D from the
((i − 1)(t − 1) + 1)th query to i(t − 1)th leakage queries (i.e., S1 contains the
first t − 1 queries, S2 the next t − 1 queries and so on). For i ∈ [h], we use S[i]

to denote
i⋃

j=1

Sj , which captures the set of indices queried in the first i(t − 1)

leakage queries. For i ∈ [h], let Z[i] denotes the set of leakage queries and the
corresponding responses to the first i(t − 1) leakage queries. Z[h+1] denotes Z[h]

together with the final reveal queries as well as any relevant state information. We
prove leakage resilience using a hybrid argument, with the following sequence of
hybrids, LeakBm

0 , {LeakAm
q , LeakBm

q }q∈[h] and LeakCm. The order of the hybrids
is LeakBm

0 , LeakAm
1 , LeakBm

1 , · · · , LeakAm
h , LeakBm

h , LeakCm, where we will show
that LeakCm is independent of m, and LeakBm

0 will correspond to the distribu-
tion Leakm

Shareh . This will allow us to show that Leakm
Shareh is indistinguishable

from Leakm′
Shareh . We begin by giving an informal description of these hybrids.

LeakAm
q : We start with q = 1. LeakAm

1 follows the actual leakage game i.e.,
Leakm

Shareh(≡ LeakBm
0 ) except for the following change: we replace the shares

sd1j , for each j ∈ S1 (the shares of s1 corresponding to the first t − 1 leakage
queries), with shares of a dummy seed s̃1 = 0d. In general, for each 1 < q ≤ h,
the only change we make in LeakAm

q (in comparison to the previous hybrid
LeakBm

q−1) is that we replace the shares sdq
j , for each j ∈ Sq (the shares of sq

corresponding to the q-th set of t − 1 leakage queries), with shares of a dummy
seed s̃q. After answering the leakage queries corresponding to Sq, shares of sq

are re-sampled consistent with the dummy seed shares used so far. The hybrid
is formally described in Fig. 4.
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LeakAm
q :

1. Initialize Z to be a null string and S1, · · · ,Sh to be null sets.
2. (m1, · · · , mn) ← MShare(m)
3. For i ∈ [h], choose si ∈R {0, 1}di

4. For i ∈ [h] and j ∈ [n], choose wi
j ∈R {0, 1}ηi

5. For i ∈ [h]\[q], compute (sdi
1, · · · , sdi

n) ← SdSharei(si)
6. For i ∈ [q], let s̃i = 0d

7. For j ∈ [n], define yh+1
j = mj

8. Leakage Phase:
(a) For c ← 1 to q

i. (s̃d
c

1, · · · , s̃d
c

n) ← SdSharec(s̃c)
ii. For up to (t − 1) times

A. (j, fj) ← D(Z)
B. If c < q,

∗ Choose xc
j ∈R {0, 1}lc and compute yc

j = (xc
j ||s̃d

c

j)
∗ For i ← c − 1 down to 1,
compute xi

j = yi+1
j ⊕ Exti(wi

j ; s
i) and yi

j = (xi
j ||sdi

j)
C. If c = q, for i ← h down to 1 compute{

xi
j = yi+1

j ⊕ Exti(wi
j ; s

i) and yi
j = (xi

j ||sdi
j) when i 	= q

xi
j = yi+1

j ⊕ Exti(wi
j ; s

i) and yi
j = (xi

j ||s̃d
i

j) when i = q

D. Define Shj = (w1
j , · · · , wh

j , y1
j )

E. Add j to Sc and append (j, fj , fj(Shj)) to Z

iii. (sdc
1, · · · , sdc

n) ← SdSharec(sc|s̃dc

Sc
)

(b) For j ∈ [n]\(S[q]) and i ← h down to 1,
compute xi

j = yi+1
j ⊕ Exti(wi

j ; s
i) and yi

j = (xi
j ||sdi

j)
(c) Define Shj = (w1

j , · · · , wh
j , y1

j )
(d) For c ← q + 1 to h

i. For upto t − 1 times
A. (j, fj) ← D(Z)
B. Add j to Sc and append (j, fj , fj(Shj)) to Z

9. Reveal phase
(a) For upto t − 1 times

i. j ← D(Z)
ii. Append (j, Shj) to Z

10. D updates Z with any relevant state information.
11. Output Z.

Fig. 4. Hybrid LeakAm
q
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LeakBm
q : For q = 1, LeakBm

1 follows the hybrid LeakAm
1 except for the following

change: in LeakBm
1 , we replace the values x1

j , for each j ∈ S1 with random, instead
of evaluating the h layers of masking to get x1

j (and hence x1
j ’s for j ∈ S1 are

independent of mS1 , si and the shares of si, for each 1 < i ≤ h). Note that in
LeakAm

1 , the shares Shj corresponding to S1 no longer depend on the seed s1.
We carefully use the adaptive extractor security of Ext1 to move to LeakBm

1 . In
general, for each 1 < q ≤ h, the only change we make in LeakBm

q (in comparison

LeakBm
q

1. Initialize Z to be a null string and S1, · · · ,Sh to be null sets.
2. (m1, · · · , mn) ← MShare(m)
3. For i ∈ [h], choose si ∈R {0, 1}di

4. For i ∈ [h] and j ∈ [n], choose wi
j ∈R {0, 1}ηi

5. For i ∈ [h]\[q], compute (sdi
1, · · · , sdi

n) ← SdSharei(si)
6. For i ∈ [q], let s̃i = 0d

7. For j ∈ [n], define yh+1
j = mj

8. Leakage Phase:
(a) For c ← 1 to q

i. (s̃d
c

1, · · · , s̃d
c

n) ← SdSharec(s̃c)
ii. For upto (t − 1) times

A. (j, fj) ← D(Z)
B. Choose xc

j ∈R {0, 1}lc and compute yc
j = (xc

j ||s̃d
c

j)
C. For i ← c − 1 down to 1

compute xi
j = yi+1

j ⊕ Exti(wi
j ; s

i) and yi
j = (xi

j ||sdi
j)

D. Define Shj = (w1
j , · · · , wh

j , y1
j )

E. Add j to Sc and append (j, fj , fj(Shj)) to Z

iii. (sdc
1, · · · , sdc

n) ← SdSharec(sc|s̃dc

Sc
)

(b) For j ∈ [n]\S[q] and i ← h to 1, (S[q] denotes a null set when q = 0)
compute xi

j = yi+1
j ⊕ Exti(wi

j ; s
i) and yi

j = (xi
j ||sdi

j)
(c) Define Shj = (w1

j , · · · , wh
j , y1

j )
(d) For c ← q + 1 to h

i. For upto t − 1 times
A. (j, fj) ← D(Z)

B. Add j to Sc and append (j, fj , fj(Shj)) to Z
9. Reveal phase

(a) For upto t − 1 times
i. j ← D(Z)
ii. Append (j, Shj) to Z

10. D updates Z with any relevant state information.
11. Output Z.

Fig. 5. Hybrid LeakBm
q
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to the previous hybrid LeakAm
q ) is that we replace the values xq

j , for each j ∈ Sq

with random, instead of evaluating the h − (q − 1) layers of masking to get xq
j

(and hence, for these queries in Sq, si and the shares of si, for each q < i ≤ h,
and the shares m are not used to evaluate xq

j). Further, we continue the steps
of masking to evaluate xq−1

j , xq−2
j , · · · , x1

j , for each j ∈ Sq as in the previous
hybrid. The hybrid is formally described in Fig. 5.

LeakCm: In the hybrid LeakBm
h , all the shares used in the leakage phase are

independent of the shares of the message m. Hence, the only part of the view
of D that depends on the shares of m corresponds to the reveal phase. In the
final hybrid LeakCm, we replace the t − 1 shares of m used in the reveal phase
by shares of 0l. This hybrid is formally described in Fig. 6.

The formal descriptions of all hybrids are given below with the change from
the prior hybrid highlighted in red color.

LeakCm

1. Initialize Z to be a null string and S1, · · · ,Sh to be null sets.
2. Let m̃ = 0l and (m̃1, · · · , m̃n) ← MShare(m̃)
3. For i ∈ [h], choose si ∈R {0, 1}di

4. For i ∈ [h], let s̃i = 0d

5. For i ∈ [h] and j ∈ [n], choose wi
j ∈R {0, 1}ηi

6. Leakage Phase:
(a) For c ← 1 to h

i. (s̃d
c

1, · · · , s̃d
c

n) ← SdSharec(s̃c)
ii. For upto (t − 1) times

A. (j, fj) ← D(Z)
B. Choose xc

j ∈R {0, 1}lc and compute yc
j = (xc

j ||s̃d
c

j)
C. For i ← c − 1 down to 1

compute xi
j = yi+1

j ⊕ Exti(wi
j ; s

i) and yi
j = (xi

j ||sdi
j)

D. Define Shj = (w1
j , · · · , wh

j , y1
j )

E. Add j to Sc and append (j, fj , fj(Shj)) to Z

iii. (sdc
1, · · · , sdc

n) ← SdSharec(sc|s̃dc

Sc
)

7. Reveal phase
(a) For upto t − 1 times

i. j ← D(Z)
ii. Define yh+1

j = m̃j

iii. For i ← h to 1, compute xi
j = yi+1

j ⊕ Exti(wi
j ; s

i) and yi
j =

(xi
j ||sdi

j)
iv. Define Shj = (w1

j , · · · , wh
j , y1

j )
v. Append (j, Shj) to Z

8. D updates Z with any relevant state information.
9. Output Z.

Fig. 6. Hybrid LeakCm. (Color figure online)
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We begin by proving the statistical closeness of LeakAm
q and LeakBm

q−1, for
each q ∈ [h], which follows from adaptive privacy of SdShareq, as atmost only
t − 1 dummy seed shares are used.

Claim 1. For q ∈ [h], if SdShareq is ε′
q-adaptively private against (n, t)-threshold

access structures, then LeakAm
q ≈ε′

q
LeakBm

q−1.

Proof. Answering the first (q − 1) sets of leakage queries (when q > 1):
Observe that the hybrids are identical up to answering the first (q−1)(t−1) leak-
age queries and differ in answering the remaining queries. For any k ∈ [q−1] and,

j ∈ Sk the leakage response only depends on s̃d
k

j , w1
j , · · · , wh

j and {si, sdi
j}1≤i<k

(as xk
j is chosen uniformly). We let Pre denote the union of these random vari-

ables upon which the leakage responses to j ∈ S[q−1] depend.

Answering the qth Set of Leakage Queries: Consider j ∈ Sq. To answer this
leakage query, it suffices to compute Shj = (w1

j , · · · , wh
j , y1

j ). The hybrids only
differ in computation of y1

j (particularly in computation of yq
j , which is used to

compute y1
j ) and the distribution of extractor sources is identical in both. We

highlight the differences here. LeakAm
q (Step 8-(a)-ii-C), iteratively computes

yh
j , · · · , yq

j , · · · , y1
j as follows.

– (yh
j , · · · , yq+1

j ) are computed using yh+1
j and {wi

j , sd
i
j , s

i}i∈[h]\[q]. Note that
the distribution of yh

j , · · · , yq+1
j is identical in both hybrids.

– xq
j is computed using yq+1

j , wq and sq. xq
j is also identical in both hybrids.

– yq
j is computed as xq

j ||s̃d
q

j (where s̃d
q

[n] are shares of a dummy seed s̃q which
are generated before answering any queries in Sq in Step 8-(a)-i (when c = q)).
Whereas in LeakBm

q−1, yq
j = xq

j ||sdq
j (where sdq

[n] are shares of sq)

– (yq−1
j , · · · , y1

j ) are computed using yq
j and {sdi

j , w
i
j , s

i}i∈[q−1]. The computa-
tion of (yq−1

j , · · · , y1
j ) given the later random variables is again identical to

LeakBm
q−1.

– Now LeakAm
q defines Shj = (w1

j , · · · , wh
j , y1

j )

For convenience, in this proof we distinguish (whenever necessary) the random
variables that have same literal in both the hybrids but are distributionally
different with subscripts A and B respectively. For example, yq

j,A and yq
j,B denote

the distributions of yq
j in LeakAm

q and, LeakBm
q−1 respectively.

Let Pre′ = ({wq
j , {sdi

j , w
i
j , s

i}i∈[h]\{q}}j∈[n]\S[q−1]
). Pre′ captures the informa-

tion required to answer all queries after the first q − 1 sets of leakage queries,
except for any information regarding sq, s̃q and their shares. Note that Pre′ is
identical in both hybrids9. Since, |Sq| ≤ t − 1, with a reduction to adaptive
privacy of SdShareq we have

9 Pre′ possibly repeats some information already there in Pre. For example for q = 2,
s1 is there in both Pre and Pre′. It is for the ease of exposition that we have this
repetition.
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Pre,Pre′, sq, s̃q, {s̃d
q

j}j∈Sq,A
≈ε′

q
Pre,Pre′, sq, s̃q, {sdq

j}j∈Sq,B

as (Pre,Pre′) is independent of the randomness used to generate the shares of s̃q

and sq. Note that the information on LHS suffices to answer the first q sets of
queries as per LeakAm

q . Similarly, RHS suffices to answer queries in S[q] as per
LeakBm

q−1. Therefore, we have,

Pre,Pre′, sq, s̃q, {s̃d
q

j}j∈Sq,A
, Z[q],A ≈ε′

q
Pre,Pre′, sq, s̃q, {sdq

j}j∈Sq,B
, Z[q],B (1)

Answering the Leakage and Reveal Queries Made After the qth Set of
Leakage Queries: After all the qth set leakage queries are answered, LeakAm

q

computes (sdq
1, · · · , sdq

n) ← SdShareq(sq|s̃dq

Sq,A
). Given (sdq

1, · · · , sdq
n), sq,Pre

and Pre′, for any j ∈ [n]\Sq, Shj is easily computed (Steps 8-(b) and 8-(c)).
With this, any further queries can be correctly answered as per LeakAm

q . Let

(ŝd
q

1, · · · , ŝd
q

n) ← SdShareq(sq|sdq
Sq,B

). By Lemma 2, we have

Pre,Pre′, sq, s̃q, Z[q],A, sdq
[n],A ≈ε′

q
Pre,Pre′, sq, s̃q, Z[q],B , ŝd

q

[n],B

Note that ŝd
q

[n] is identical to sdq
[n],B (of LeakBm

q−1) even given sq and {sdq
j}j∈Sq

by the property of consistent resampling in Claim 5. Therefore, we have,

Pre,Pre′, sq, Z[q],A, sdq
[n],A ≈ε′

q
Pre,Pre′, sq, Z[q],B , sdq

[n],B

Since the above LHS and RHS are sufficient to answer any further queries, we
have

Z[h+1],A ≈ε′
q

Z[h+1],B

which proves the claim.

Now, we prove the statistical closeness of LeakAm
q and LeakBm

q , for each q ∈ [h]
using the adaptive extractor security. The high-level idea behind the reduction
is that in hybrid LeakAm

q , the shares corresponding to the first q(t − 1) queries
(i.e., S[q]) no longer depend on the seed sq and hence, we can use the adaptive
extractor security of Extq to move to LeakBm

q .

Claim 2. For q ∈ [h], if Extq is an (ηq, μq + τ, dq, lq, δ
′
q)- extractor that is

(Fullτ , δq)-adaptive, then LeakAm
q ≈(t−1)δq LeakBm

q

Proof. Observe that the hybrids are identical up to answering the first (q−1)(t−
1) leakage queries and differ in answering the qth set of queries. Further, after
answering the qth set of leakage queries, the responses to all remaining leak-
age/reveal queries are answered identically in both hybrids.

Answering the first (q − 1) Sets of Leakage Queries (when q > 1):

For any k ∈ [q − 1] and j ∈ Sk the leakage response only depends on s̃d
k

j ,
w1

j , · · · , wh
j , {si, sdi

j}1≤i<k and xk
j , where the latter is uniformly chosen. We let
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Pre denote the leakage responses Z[q−1] and the union of these random variables
upon which the leakage responses to j ∈ S[q−1] depend.

Answering the qth Set of Leakage Queries:
Consider j ∈ Sq and fj be the corresponding leakage function. To answer this
leakage query, we require computing fj(Shj) where Shj = (w1

j , · · · , wh
j , y1

j ). The
hybrids only differ in computation of y1

j (particularly in computation of xq
j , which

is used to compute y1
j ) and the distribution of extractor sources is identical in

both. The hybrids iteratively computes yq
j , · · · , y1

j as follows.

– xq
j is chosen uniformly from {0, 1}lq in LeakBm

q . In contrast, xq
j of LeakAm

q

depended on Extq(wq
j ; s

q) and yq+1
j .

– (yq
j , · · · , y1

j ) is determined given xq
j , s̃d

q

j and {sdi
j , w

i
j , s

i}i∈[q−1] in both the
hybrids.

– Both hybrids define Shj = (w1
j , · · · , wh

j , y1
j )

Let Pre′ = {wi
j , sd

i
j , s

i, yh+1
j , s̃d

q

j}i∈[h]\{q},j∈[n]\S[q−1]
.We capture Pre′ as the

information which along with {wq
j , s

q}j∈Sq
is sufficient to answer any leakage

queries on j ∈ Sq. Also, Pre′ is identical in both hybrids.
Let j1, · · · , jt−1 be the order of indices in which leakage queries are made in Sq.
Firstly, we prove that (Pre,Pre′, fj1(Shj1)) of both hybrids are statistically close.
After that we proceed to show that (Pre,Pre′, fj1(Shj1), · · · , fj(t−1)(Shj(t−1))) of
both the hybrids are statistically close, which implies that the hybrids are sta-
tistically close up to answering first q sets of queries. For convenience, in this
proof we distinguish (whenever necessary) the random variables that have same
literal in the hybrids but are distributionally different with subscripts A and B
respectively. For example, xq

j,A and xq
j,B denote the distributions of xq

j in LeakAm
q

and LeakBm
q respectively.

Firstly, in both hybrids the distribution of (j1, fj1) only depends on Z[q−1]

(and any internal randomness of D) and hence are identical. Note that given Pre′,
fj1(Shj1) in LeakAm

q , can be captured as Fullτ -adaptive leakage on the extractor
source wq

j1
and (xq

j1,A=) Extq(wq
j1

; sq) ⊕ yq+1
j1

. This is because (yq+1
j1

,Pre′) are
independent of (wq

j1
, sq). Let g1 be a function that takes Pre′, wq

j1
and xq

j1,A(or
xq

j1,B) as input, computes y1
j1,A (or y1

j1,B) and outputs fj(w1
j1

, · · · , wh
j1

, y1
j1,A) (or

fj(w1
j1

, · · · , wh
j1

, y1
j1,B)). With a reduction to adaptive security of Extq we have

Pre,Pre′, sq, g1(Pre′, wq
j1

,Extq(wq
j1

; sq) ⊕ yq+1
j )

≈δq Pre,Pre′, sq, g1(Pre′, wq
j1

, Ulq ⊕ yq+1
j )

≡ Pre,Pre′, sq, g1(Pre′, wq
j1

, xq
j1,B)

Therefore

Pre,Pre′, sq, fj1(Shj1,A) ≈δq Pre,Pre′, sq, fj1(Shj1,B)

With this, we showed that the hybrids are statistically close up to responding
to the first query in the qth set. Although, superficially, it may seem that all the
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leakage responses corresponding to j ∈ Sq can be captured as adaptive extractor
leakage on the source wq

j , but it’s not the case because of the following subtlety.
The extractor sources used in each query are independent of each other, but
the seed is the same. For example, one cannot directly capture fj2(Shj2) as
Fullτ -adaptive leakage (as we did with fj1(Shj1)). This is because the choice of
j2, fj2 depends on fj1(Shj1) which in turn depends on Extq(wq

j ; s
q), and hence is

not independent of the seed sq. We observe in Lemma 8 that adaptive extractors
allow us to handle even such (stronger) form of adaptive leakages across different
sources with same seed.

Proceeding, with a reduction to Lemma 8 with k = (t − 1), {Wi = W q
ji

:
i ∈ [k]}, S = sq and Ext = Extq and the ith leakage function being gi such
that gi (hardwired with Pre′, yq+1

ji
) takes wq

ji
and Extq(wq

ji
; sq) (resp. Ulq ) as

input, computes y1
ji,A

(resp. y1
ji,B

) and outputs fji(w
1
ji

, · · · , wh
ji

, y1
ji,A

) (resp.
fji(w

1
ji

, · · · , wh
ji

, y1
ji,B

)).

Pre,Pre′, sq, {fji , fji(Shji,A)}ji∈Sq,A
,Sq,A

≈(t−1)δq Pre,Pre′, sq, {fji , fji(Shji,B)}ji∈Sq,B
,Sq,B

This shows that the hybrids are statistically close up to answering the first q
sets of leakage queries.

Answering the Leakage and Reveal Queries Made After the qth

Set of Leakage Queries: After all the qth set of leakage queries are
answered, both hybrids compute (sdq

1, · · · , sdq
n) ← SdShare(sq|s̃dq

Sq
). Let Pre′′ =

{wq
j , sd

q
j , s

q}j∈[n]\Sq
. Note that Pre′ in conjunction with Pre′′ completely defines

Shj for any j ∈ [n]\S[q]. Since Pre′′ corresponding to LeakAm
q (resp. LeakBm

q ) is

only correlated to Sq, s
q and s̃d

q

Sq
(which is in Pre′) of the respective hybrids, we

have

Pre,Pre′,Pre
′′
A, sq, {fji , fji(Shji,A)}ji∈Sq,A

,Sq,A

≈(t−1)δq Pre,Pre′,Pre
′′
B , sq, {fji , fji(Shji,B)}ji∈Sq,B

,Sq,B

Since responses to leakage/reveal queries after the qth set are can be derived
from the LHS and RHS respectively depending on the hybrid, we have

Z[h+1],A ≈(t−1)δq Z[h+1],B

This proves the claim.

Finally, we use the adaptive security of MShare to show that LeakCm is statisti-
cally close to LeakBm

h .

Claim 3. If MShare is ε-adaptively private against (n, t)-threshold access struc-
tures, then LeakCm ≈ε LeakB

m
h .
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Proof. The hybrids answer the leakage queries identically and differ only in
answering the reveal queries.

Answering the Leakage Queries:

For any k ∈ [h] and j ∈ Sk the leakage response only depends on s̃d
k

j , w1
j , · · · , wh

j ,
{si, sdi

j}1≤i<k and xk
j , where the latter is uniformly chosen. We let Pre denote

the leakage responses Z[h] and the union of these random variables upon which
the leakage responses to j ∈ S[h] depend.

Answering the Reveal Queries: Let Pre′ = {wi
j , sd

i
j , s

i}i∈[h],j∈[n]\S[h]
. Note

that given yh+1
j for all j queried in the reveal phase, (Pre,Pre′) has sufficient

information to answer all the reveal queries.

– LeakBm
h samples (m1, · · · ,mn) ← MShare(m) and sets yh+1

j = mj for all j
queried in the reveal phase.

– LeakCm samples (m̃0, · · · , m̃) ← MShare(m̃) and sets yh+1
j = m̃j for all j

queried in the reveal phase.

Let RevealB and RevealC denote the sets of indices queried in the reveal phase of
LeakBm

h and LeakCm respectively. As reveal queries are at most t− 1 in number,
we now invoke adaptive privacy of MShare and get

Pre,Pre′, m̃,m, {mj}j∈RevealB ≈ε Pre,Pre
′, m̃,m, {m̃j}j∈RevealC

Note that (Pre,Pre′) is independent of the randomness used in generating shares
of m and m̃, therefore adaptive privacy of MShare can be invoked even given
these random variables.

Since Shj for j queried in reveal phase of LeakBm
h (resp. LeakCm) is deter-

mined by the above LHS (resp. RHS) we have

Z[h+1]︸ ︷︷ ︸
of LeakBm

q

≈ε Z[h+1]︸ ︷︷ ︸
of LeakCm

With the above claims and use of triangle inequality we know that for any
message m, Leakm

Shareh ≈ε+
∑

i∈[h]((t−1)δi+ε′
i)

LeakCm. Note that the descrip-
tion of LeakCm is independent of m. Hence for any message m 
= m′, we have
LeakCm ≡ LeakCm′

. Since, Leakm′
Shareh ≈hε′+h(t−1)δ+ε LeakC

m′
we get

Leakm
Shareh ≈2ε+2

∑
i∈[h]((t−1)δi+ε′

i)
Leakm′

Shareh

4.4 Parameters

For i ∈ [h], we instantiate SdSharei on seeds of length di with the (adaptively)
private Shamir secret sharing scheme, which results in individual seed share
length being di. We instantiate MShare on messages of length li with the (adap-
tively) private Shamir secret sharing scheme, which results in individual seed
share length being li.
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Recall Lemma 7 which states that for any c > 1, there exists constants α, β
such that d ≤ αl, μ ≤ βl, η ≥ βl + τ , ε = 2−cl and δ = 2−(c−1)l+2 when
l = ω(log η). Fix any c > 1, and constants α, β corresponding to this c given by
Lemma 7. For each i ∈ [h], we instantiate (ηi, μi +τ, di, li, δ

′
i)-extractor Exti that

is (Fullτ , δi)-adaptive as per this lemma as follows.

– We set l1 = l, δ′
1 = 2−cl, δ1 = 2−Ω(l), d1 ≤ αl1, μ1 ≤ βl1 and η1 = βl1 + τ .

– For i > 1, we set li = li−1 + di−1, δ′
i = 2−cli , δi = 2−Ω(li), di ≤ αli, μi ≤ βli

and ηi = βli + τ .

With this setting, individual share length of Shareh is lh + dh +
∑

i∈[h] ηi =
hτ +Θ((1+α)hl). Therefore, Shareh acheives constant rate and constant leakage
rate whenever τ = O(l) and either n = Θ(t) or h is a constant.

As our instantiations of SdSharei’s and MShare are perfectly adaptively pri-
vate, we have Shareh to be a perfectly adaptively private secret sharing scheme
which is t ·2−Ω(l)-leakage resilient against the adaptive leakage and reveal model.

4.5 LRSS for Joint Leakage and Reveal Model

4.5.1 Joint Leakage and Reveal Model J X,ψ,τ

The model allows for ψ number of joint leakage queries on disjoint sets where
each query depends on X number of shares and additionally also reveals t− 1 of
the remaining shares (on which leakage isn’t queried) in clear. The parameter τ
captures the amount of leakage provided in each leakage query.

Let (Share,Rec) (where Share : {0, 1}l → ({0, 1}γ)n) be a secret sharing
scheme for an (n, t)- threshold access structure. We formalize leakage obtained in
this model on shares of a message m as JLeakm

Share in Fig. 7, where an arbitrary
stateful distinguisher D makes the queries. For any two messages m and m′, we
require JLeakm

Share ≈εlr JLeakm′
Share, for (Share,Rec) to be εlr leakage resilient

against this model.

JLeakm
Share:

– Initialize Z be a null string and S to be a null set.
– (Sh1, · · · , Shn) ← Share(m)
– Leakage Phase:

For upto ψ times
• (Qj , fj) ← D(Z) where Qj ⊆ [n] and fj : {0, 1}|Qj |γ → {0, 1}τ

• If Qj ∈ [n]\S and |Qj | ≤ X,
add elements of Qj to S and append (Qj , fj , fj(ShQj

)) to Z
– Reveal phase

For upto t − 1 times
• j ← D(Z)
• If j ∈ [n]\S, append (j, Shj) to Z

– D updates Z to include any relevant state information.
– Output Z

Fig. 7. Joint LRSS definition- JLeakmShare distribution
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4.5.2 Leakage Resilience of (Shareh,Rech) in J X,ψ,τ Model

Theorem 3. For any ψ,X > 0 such that ψ · X ≤ n − t + 1 and l, τ > 0,
(Shareh,Rech) is an ((n, t), ε)-secret sharing scheme for l bit messages and is
εlr-leakage resilient in the joint leakage and reveal model J X,ψ,τ where h =
� ψ


(t−1)/X�� and εlr = 2(ε + hε′ + (t − 1)
∑

i∈[h] 2
Xliδ′

i)).
Further, there exists an instantiation of the scheme with rate is (XΘ(h) +

hτ/l)−1. When τ = Θ(l), X is a constant and when either n = Θ(t) or h is a
constant, the scheme achieves constant rate and leakage rate asymptotically.

The proof for the joint leakage setting is very similar to the proof of Theorem 2
for the adaptive setting (on single shares). We give a complete proof of this in
our full version.

Further, we can also extend our construction to get LRSS for general access
structures as well, the details of which are given in the full version of our paper.

Acknowledgement. We thank all the anonymous reviewers who provided their valu-
able comments on an earlier version of this manuscript.
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14. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988, pp.
11–19. ACM (1988). https://doi.org/10.1145/62212.62214

15. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: 7th Interna-
tional Conference on Security and Cryptography for Networks, SCN 2010 (2010).
https://doi.org/10.1007/978-3-642-15317-4 9

16. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008), arXiv:cs/0602007

17. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: Proceedings
of the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2007 (2007). https://doi.org/10.1109/FOCS.2007.35

18. Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting:
adaptive tampering, noisy-leakage resilience, and improved rate. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 448–479. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 16

19. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 7

20. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018 (2018).
https://doi.org/10.1145/3188745.3188872

21. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. In: IEEE Conference on Computational
Complexity, pp. 96–108 (2007)

22. Guruswami, V., Wootters, M.: Repairing reed-solomon codes. In: Proceedings of
the Forty-eighth Annual ACM Symposium on Theory of Computing. STOC 2016.
ACM, New York (2016). https://doi.org/10.1145/2897518.2897525

https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/978-3-319-96884-1_18
https://doi.org/10.1007/978-3-319-96884-1_18
https://doi.org/10.1007/978-3-030-56877-1_5
https://doi.org/10.1007/978-3-030-36033-7_8
https://doi.org/10.1007/978-3-030-36033-7_8
https://doi.org/10.1109/FOCS46700.2020.00117
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-642-15317-4_9
http://arxiv.org/abs/cs/0602007
https://doi.org/10.1109/FOCS.2007.35
https://doi.org/10.1007/978-3-030-26951-7_16
https://doi.org/10.1007/978-3-642-13190-5_7
https://doi.org/10.1145/3188745.3188872
https://doi.org/10.1145/2897518.2897525


624 N. Chandran et al.

23. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

24. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

25. Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing against colluding
parties. In: 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019 (2019). https://doi.org/10.1109/FOCS.2019.00045

26. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Non-malleable
secret sharing against affine tampering. CoRR abs/1902.06195 (2019). http://
arxiv.org/abs/1902.06195

27. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

28. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–53 (1996)

29. Rothblum, G.N.: How to compute under AC0 leakage without secure hardware. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 552–569.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 32

30. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
31. Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications.

In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp.
480–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 17

32. Vadhan, S.: Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science. Now Publishers (2012). http://people.seas.harvard.edu/∼salil/
pseudorandomness/

33. Zimand, M.: Exposure-resilient extractors. In: 21st Annual IEEE Conference on
Computational Complexity (CCC 2006). IEEE Computer Society (2006). https://
doi.org/10.1109/CCC.2006.19

https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1109/FOCS.2019.00045
http://arxiv.org/abs/1902.06195
http://arxiv.org/abs/1902.06195
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-642-32009-5_32
https://doi.org/10.1007/978-3-030-26951-7_17
http://people.seas.harvard.edu/~salil/pseudorandomness/
http://people.seas.harvard.edu/~salil/pseudorandomness/
https://doi.org/10.1109/CCC.2006.19
https://doi.org/10.1109/CCC.2006.19

	Adaptive Extractors and Their Application to Leakage Resilient Secret Sharing
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work
	1.4 Organization of the Paper

	2 Preliminaries and Definitions
	2.1 Notation
	2.2 Secret Sharing Schemes

	3 Adaptive Extractors
	3.1 Definition
	3.2 Construction

	4 Leakage Resilient Secret Sharing
	4.1 Leakage Models
	4.2 LRSS Construction for the Adaptive Leakage and Reveal Model
	4.3 Proof of Leakage Resilience in the Adaptive Leakage and Reveal Model
	4.4 Parameters
	4.5 LRSS for Joint Leakage and Reveal Model

	References




