
Improved Torsion-Point Attacks on SIDH
Variants

Victoria de Quehen1(B), Péter Kutas2, Chris Leonardi1, Chloe Martindale3,
Lorenz Panny4, Christophe Petit2,5, and Katherine E. Stange6

1 ISARA Corporation, Waterloo, Canada
chris.leonardi@isara.com

2 School of Computer Science, University of Birmingham, Birmingham, UK
P.Kutas@bham.ac.uk

3 Department of Computer Science, University of Bristol, Bristol, UK
chloe.martindale@bristol.ac.uk

4 Institute of Information Science, Academia Sinica, Taipei, Taiwan
lorenz@yx7.cc

5 Laboratoire d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
christophe.petit@ulb.be

6 Department of Mathematics, University of Colorado Boulder, Boulder, CO, USA
kstange@math.colorado.edu

Abstract. SIDH is a post-quantum key exchange algorithm based on
the presumed difficulty of finding isogenies between supersingular elliptic
curves. However, SIDH and related cryptosystems also reveal additional
information: the restriction of a secret isogeny to a subgroup of the curve
(torsion-point information). Petit [31] was the first to demonstrate that
torsion-point information could noticeably lower the difficulty of finding
secret isogenies. In particular, Petit showed that “overstretched” param-
eterizations of SIDH could be broken in polynomial time. However, this
did not impact the security of any cryptosystems proposed in the lit-
erature. The contribution of this paper is twofold: First, we strengthen
the techniques of [31] by exploiting additional information coming from
a dual and a Frobenius isogeny. This extends the impact of torsion-point
attacks considerably. In particular, our techniques yield a classical attack
that completely breaks the n-party group key exchange of [2], first intro-
duced as GSIDH in [17], for 6 parties or more, and a quantum attack for
3 parties or more that improves on the best known asymptotic complex-
ity. We also provide a Magma implementation of our attack for 6 parties.

Author list in alphabetical order; see https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf. Lorenz Panny was a PhD student at Technische Uni-
versiteit Eindhoven while this research was conducted. Péter Kutas and Christophe
Petit’s work was supported by EPSRC grant EP/S01361X/1. Katherine E. Stange was
supported by NSF-CAREER CNS-1652238. This work was supported in part by the
Commission of the European Communities through the Horizon 2020 program under
project number 643161 (ECRYPT-NET) and in part by NWO project 651.002.004
(CHIST-ERA USEIT). Date of this document: 2021-06-25. c©IACR 2021. This article
is the final version submitted by the author(s) to the IACR and to Springer-Verlag on
June 25, 2021. The version published by Springer-Verlag is available at <DOI>.”.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12827, pp. 432–470, 2021.
https://doi.org/10.1007/978-3-030-84252-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84252-9_15&domain=pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://doi.org/10.1007/978-3-030-84252-9_15

Improved Torsion-Point Attacks on SIDH Variants 433

We give the full range of parameters for which our attacks apply. Second,
we construct SIDH variants designed to be weak against our attacks; this
includes backdoor choices of starting curve, as well as backdoor choices
of base-field prime. We stress that our results do not degrade the security
of, or reveal any weakness in, the NIST submission SIKE [20].

1 Introduction

With the advent of quantum computers, commonly deployed cryptosystems
based on the integer-factorization or discrete-logarithm problems will need to
be replaced by new post-quantum cryptosystems that rely on different assump-
tions. Isogeny-based cryptography is a relatively new field within post-quantum
cryptography. An isogeny is a non-zero rational map between elliptic curves that
also preserves the group structure, and isogeny-based cryptography is based on
the conjectured hardness of finding isogenies between elliptic curves over finite
fields.

Isogeny-based cryptography stands out amongst post-quantum primitives
due to the fact that isogeny-based key-exchange achieves the smallest key sizes of
all candidates. Isogeny-based schemes also appear to be fairly flexible; for exam-
ple, a relatively efficient post-quantum non-interactive key agreement protocol
called CSIDH [8] is built on isogeny assumptions.

The Supersingular Isogeny Diffie–Hellman protocol, or SIDH, was the first
practical isogeny-based key-exchange protocol, proposed in 2011 by Jao and
De Feo [22]. The security of SIDH relies on the hardness of solving (a special
case of) the following problem:1

Problem 1 (Supersingular Isogeny with Torsion (SSI-T)). For a prime
p and smooth coprime integers A and B, given two supersingular elliptic curves
E0/Fp2 and E/Fp2 connected by an unknown degree-A isogeny ϕ : E0 → E, and
given the restriction of ϕ to the B-torsion of E0, recover an2 isogeny ϕ matching
these constraints.

SSI-T is a generalization of the “Computational Supersingular Isogeny problem”,
or CSSI for short, defined in [22]. Although the CSSI problem that appears in the
literature also includes torsion information, we use the name SSI-T to stress the
importance of the additional torsion information. Additionally, we consider more
flexibility in the parameters than CSSI to challenge the implicit assumption that
even with torsion information the hardness of the protocol always scales with
the degree of the isogenies and the characteristic p of the field.

The best known way to break SIDH by treating it as a pure isogeny problem is
a claw-finding approach on the isogeny graph having classical complexity O(

√
A·

1 See Sect. 2.2 for how the objects discussed are represented computationally.
2 These constraints do not necessarily uniquely determine ϕ, but any efficiently com-

putable isogeny from E0 to E is usually enough to recover the SIDH secret [18,37].
Moreover, ϕ is unique whenever B2 > 4A [28, § 4].

434 V. de Quehen et al.

polylog(p)) and no known quantum speedups viable in reality [23].3 However, it
is clear that SSI-T provides the attacker with more information than the “pure”
supersingular isogeny problem, where the goal is to find an isogeny between two
given supersingular elliptic curves without any further hints or restrictions.

The first indication that additional torsion-point information could be
exploited to attack a supersingular isogeny-based cryptosystem was an active
key-reuse attack against SIDH published in 2016 [18] by Galbraith, Petit, Shani,
and Ti. In [18] the attacker sends key-exchange messages with manipulated tor-
sion points and detects whether the key exchange succeeds. This allows recovery
of the secret key within O(log A) queries. To mitigate this attack, [18] proposes
using the Fujisaki–Okamoto transform, which generically renders a CPA-secure
public-key encryption scheme CCA-secure, and therefore thwarts those so-called
reaction attacks. The resulting scheme Supersingular Isogeny Key Encapsulation,
or SIKE [20] for short, is the only isogeny-based submission to NIST’s standard-
ization project for post-quantum cryptography [29], and is currently a Round 3
“Alternate Candidate”.

However, SSI-T can be easier than finding isogenies in general. Indeed, a line
of work [7,31] revealed a separation between the hardness of the supersingular
isogeny problem and SSI-T for some parameterizations. This is potentially con-
cerning because several similar schemes have been proposed that are based on
the more general SSI-T, and in particular, not clearly based on the CSSI prob-
lem as stated in [22] due to CSSI’s restrictions on A and B [2,5,11,14,17,34].
For example, for the security of the GSIDH n-party group key agreement [2,17],
SSI-T must hold for B ≈ An−1.

A particular choice made in SIKE is to fix the “starting curve” E0 to be a
curve defined over Fp that has small-degree non-scalar endomorphisms; these are
very rare properties within the set of all supersingular curves defined over Fp2 .
On its own, such a choice of starting curve does not seem to have any negative
security implications for SIKE. However, in addition to their active attack, [18]
shows that given an explicit description of both curves’ endomorphism rings, it is
(under reasonable heuristic assumptions) possible to recover the secret isogeny
in SIKE. The argument in [18] does not use torsion-point information, but only
applies if the curves are sufficiently close; recently [37] showed that if torsion-
point information is provided the two curves do not need to be close.

The approach for solving SSI-T introduced by Petit in 2017 [31] exploits
both torsion-point information and knowledge of the endomorphism ring of the
special starting curve. This attack is efficient for certain parameters, for which
the “pure” supersingular isogeny problem still appears to be hard. It uses the
knowledge of the secret isogeny restricted to a large torsion subgroup to recover
the isogeny itself, giving a passive heuristic polynomial-time attack on non-
standard variants of SIDH satisfying B > A4 > p4. However, in practice, for
all the SIDH-style schemes proposed in the literature so far, both A and B are

3 Note that the näıve meet-in-the-middle approach has prohibitively large memory
requirements. Collision finding à la van Oorschot–Wiener thus performs better in
practice, although its time complexity is worse in theory [1].

Improved Torsion-Point Attacks on SIDH Variants 435

taken to be divisors of p2 − 1, allowing torsion points to be defined over small
field extensions, which makes the resulting scheme more efficient. One of the
contributions of this work is extending torsion-point attacks to have a stronger
impact on parameterizations where A and B are divisors of p ± 1 or p2 − 1.

1.1 Our Contributions

We improve upon and extend Petit’s 2017 torsion-point attacks [31] in several
ways. Our technical results have the following cryptographic implications:

• We give an attack on n-party group key agreement [2,17], see Sect. 7.1 and
in particular Table 1. This attack applies to the GSIDH protocol of [17], not
to the SIBD procotol of [17]. Our attack yields, under Heuristic 2:

– A polynomial-time break for n ≥ 6.
– An improved classical attack for n ≥ 5.
– An improved quantum attack for n ≥ 3 (compared to the asymptotic

complexity for quantum claw-finding computed in [23]).
We provide a Magma [6] implementation of our attack on 6-party group key
agreement, see https://github.com/torsion-attacks-SIDH/6party.

• We give an attack on B-SIDH [11] that, under Heuristic 1, is asymptotically
better than quantum claw-finding (with respect to [23]), although it does not
weaken the security claims of [11] (see Sect. 7.2).

• We show that setting up a B-SIDH group key agreement in the natural way
would yield a polynomial-time attack for 4 or more parties (see Sect. 7.3).

• More generally, we solve Problem SSI-T (under plausible explicit heuristics)
in (Fig. 1):
1. Polynomial time when

– j(E0) = 1728, B > pA, p > A, A has (at most) O(log log p) distinct
prime factors, and B is at most polynomial in A (Proposition 9 and
Corollary 7).

– j(E0) = 1728, B >
√

pA2, p > A, A has (at most) O(log log p) distinct
prime factors, and B is at most polynomial in A (Proposition 11 and
Corollary 8).

– E0 is a specially constructed “backdoor curve”, B > A2, and A has
(at most) O(log log p) distinct prime factors (Theorem 15 and Algo-
rithm 3).

– j(E0) = 1728 and p is a specially constructed backdoor prime
(Sects. 5.3 and 5.4).

2. Superpolynomial time but asymptotically more efficient than meet-in-the-
middle on a classical computer when

– j(E0) = 1728, B > max
{√

pA
3
4 , A, p

}
, A has (at most) O(log log p)

distinct prime factors, and B is at most polynomial in A (Corol-
lary 26).

– j(E0) = 1728, B >
√

pA, A has (at most) O(log log p) distinct prime
factors, and B is at most polynomial in A (Corollary 28).

https://github.com/torsion-attacks-SIDH/6party

436 V. de Quehen et al.

– E0 is a specially constructed “backdoor curve” and A has (at most)
O(log log p) distinct prime factors (Proposition 31).

3. Superpolynomial time but asymptotically more efficient than quantum
claw-finding (with respect to [23]) when j(E0) = 1728, B >

√
p, A has

(at most) O(log log p) distinct prime factors, and B is at most polynomial
in A (Corollary 28).

Fig. 1. Performance of our attacks for j(E0) = 1728. Here A ≈ pα and B ≈ pβ . Param-
eters above the red, orange and yellow curves are parameters admitting a polynomial-
time attack, an improvement over the best classical attacks, and an improvement over
the best quantum attacks respectively. Parameters below the upper dashed line are
those allowing AB | (p2 − 1) as in [11]. Parameters below the lower dashed line are
those allowing AB | (p−1) as in [20,21]. The blue dot corresponds to SIKE parameters.
(Color figure online)

These cryptographic implications are consequences of the following new mathe-
matical results:

• In Sect. 3, we formalize the hardness assumption and reduction implicit in [31].
We call this hardness assumption the Shifted Lollipop Endomorphism (SLE)
Problem.

• In Sect. 4, we give two improved reductions to SLE (leading to our dual isogeny
attack and Frobenius isogeny attack).

• In Sect. 5, we:
– Introduce “backdoor” curves, which, when used as E0, allows us to solve

SSI-T in polynomial time if B > A2.
– Give a method to construct backdoor curves and study their frequency.
– Introduce “backdoor” primes, which, when used for p, allows us to solve

SSI-T in polynomial time.

Improved Torsion-Point Attacks on SIDH Variants 437

• In Sect. 6, we show how to extend both the dual isogeny attack and the
Frobenius isogeny attack to allow for superpolynomial attacks.

We emphasize that none of our attacks apply to the NIST candidate SIKE:
for each attack described in this paper, at least one aspect of SIKE needs to
be changed (e.g., the balance of the degrees of the secret isogenies, the starting
curve, or the base-field prime).

1.2 Comparison to Earlier Work

In [2], the authors estimated that the attack from [31] would render their scheme
insecure for 400 parties or more. In contrast, we give a complete break when there
are at least 6 parties.

The cryptanalysis done by Bottinelli et al. [7] also gave a reduction in the
same vein as Petit’s 2017 paper [31]. Our work overlaps with theirs (only) in
Corollary 8, and the only similarity in techniques is in the use of “triangu-
lar decomposition” [7, § 5.1], see the middle diagram in Fig. 4. Although their
improvement is akin to the one given by our dual isogeny attack, they require
additional (shifted lollipop) endomorphisms; unfortunately, we have not found a
way to combine the two methods. Moreover, our results go beyond [7] in several
ways: we additionally introduce the Frobenius isogeny attack (in particular giv-
ing rise to our attack on group key agreement). We consider multiple trade-offs
for both the dual and the Frobenius isogeny attacks by allowing for superpolyno-
mial attacks, as well as considering other starting curves and base-field primes.

1.3 Outline

In Sect. 2 we go over various preliminaries, including reviewing SIDH. In Sect. 3
we define the relevant hard isogeny problems and give a technical preview; we
also outline the idea behind our attacks and how they give rise to reductions
of the SSI-T Problem. In Sect. 4 we prove our reductions and give two new
algorithms to solve SSI-T in polynomial time for certain parameter sets. In
Sect. 5 we introduce backdoor curves E0 and backdoor primes p for which we
can solve SSI-T in polynomial time for certain parameter sets. In Sect. 6 we
extend the attacks of Sects. 4 and 5 to superpolynomial attacks. In Sect. 7 we
give the impact of our attacks on cryptographic protocols in the literature. In
Sect. 8 we pose an open question on constructing new reductions.

2 Preliminaries

2.1 The Supersingular Isogeny Diffie–Hellman Protocol Family

We give a somewhat generalized high-level description of SIDH [22]. Recall that
E[N] denotes the N -torsion subgroup of an elliptic curve E and [m] denotes
scalar multiplication by m. The public parameters of the system are two smooth
coprime numbers A and B, a prime p of the form p = ABf −1, where f is a small

438 V. de Quehen et al.

cofactor, and a supersingular elliptic curve E0 defined over Fp2 together with
points PA, QA, PB , QB ∈ E0 such that E0[A] = 〈PA, QA〉 and E0[B] = 〈PB , QB〉.
The protocol then proceeds as follows:

1. Alice chooses a random cyclic subgroup of E0[A] as GA = 〈PA +[xA]QA〉 and
Bob chooses a random cyclic subgroup of E0[B] as GB = 〈PB + [xB]QB〉.

2. Alice computes the isogeny ϕA : E0 → E0/〈GA〉 =: EA and Bob computes
the isogeny ϕB : E0 → E0/〈GB〉 =: EB .

3. Alice sends the curve EA and the two points ϕA(PB), ϕA(QB) to Bob. Simi-
larly, Bob sends

(
EB , ϕB(PA), ϕB(QA)

)
to Alice.

4. Alice and Bob use the given torsion points to obtain the shared secret curve
E0/〈GA, GB〉. To do so, Alice computes ϕB(GA) = ϕB(PA)+[xA]ϕB(QA) and
uses the fact that E0/〈GA, GB〉 ∼= EB/〈ϕB(GA)〉. Bob proceeds analogously.

The SIKE proposal [20] suggests various choices of (p,A,B) depending on
the targeted security level: All parameter sets use powers of two and three for A
and B, respectively, with A ≈ B and f = 1. For example, the smallest parameter
set suggested in [20] uses p = 2216 ·3137−1. Other constructions belonging to the
SIDH “family tree” of protocols use different types of parameters [2,11,17,34].

We may assume knowledge of End(E0): The only known way to construct
supersingular elliptic curves is by reduction of elliptic curves with CM by a
small discriminant (which implies small-degree endomorphisms: see [9,27]), or
by isogeny walks starting from such curves (where knowledge of the path reveals
the endomorphism ring, thus requiring trusted setup). A common choice when
p ≡ 3 (mod 4) is j(E0) = 1728 or a small-degree isogeny neighbour of that
curve [20]. Various variants of SIDH exist in the literature. We will call a variant
an SIDH-like protocol if its security can be broken by solving SSI-T for some
values of A and B.

In [2] the authors propose the following n-party key agreement, first intro-
duced as GSIDH in [17].4 The idea is to use primes of the form p = f

∏n
i=1 �ei

i −1
where �i is the i-th prime number, the i-th party’s secret isogeny has degree �ei

i ,
the i-th participant provides the images of a basis of the

∏n
j=1 �

ej

j /�ei
i torsion,

and f is a small cofactor. They choose the starting curve to be of j -invariant
1728 and choose the ei in such a way that all the �ei

i are of roughly the same
size. This is an example of an SIDH-like protocol; for this protocol to be secure
it is required that SSI-T be hard when A = �e1

1 and B = f
∏n

i=2 �ei
i . However,

we prove in Theorem 33 that SSI-T can be solved in polynomial time for 6 or
more parties; also see Table 1 for the complexity of our attack for any number
of parties.

Another example of a SIDH-like scheme is B-SIDH [11]. In B-SIDH, the
prime has the property that p2 − 1 is smooth (as opposed to just p − 1 being
smooth) and A ≈ B ≈ p. It would seem that choosing parameters this way one
has to work over Fp4 but in fact the scheme simultaneously works with the curve
and its quadratic twist (i.e., a curve which is not isomorphic to the original

4 [17] also proposes a different group key agreement, SIBD, to which our attack does
not apply.

Improved Torsion-Point Attacks on SIDH Variants 439

curve over Fp2 but has the same j -invariant) and avoids the use of extension
fields. The main advantage of B-SIDH is that the base-field primes used can be
considerably smaller than the primes used in SIDH. We discuss the impact of
our attacks of B-SIDH in Subsect. 7.2; although we give an improvement on the
quantum attack of [23] the parameter choices in [11] are not affected as they
were chosen with a significant quantum security margin.

The general concept of using primes of this form extends beyond the actual
B-SIDH scheme. As a final example of an SIDH-like scheme, consider the natural
idea of using B-SIDH in a group key agreement context. The reason that this
construction is a natural choice is that a large number of parties implies a large
base-field prime, which is an issue both in terms of efficiency and key size. Using a
B-SIDH prime could in theory enable the use of primes of half the size. However,
as we show in Corollary 35, such a scheme is especially susceptible to our attacks
and is broken in polynomial time for 4 or more parties.

2.2 Notation

Throughout this paper, we work with the field Fp2 for a prime p. In our analysis
we often want to omit factors polynomial in log p; as such, from this point on we
will abbreviate O(g ·polylog(p)) by O∗(g).5 Similarly, a number is called smooth,
without further qualification, if all of its prime factors are O∗(1). Polynomial
time without explicitly mentioning the variables means “polynomial in the rep-
resentation size of the input” — usually the logarithms of integers. An algorithm
is called efficient if its runs in polynomial time.

We let Bp,∞ denote the quaternion algebra ramified at p and ∞, for which
we use a fixed Q-basis 〈1,i,j,ij〉 such that j2 = −p and i is a nonzero endomor-
phism of minimal norm satisfying ij = −ji. Quaternions are treated symbolically
throughout; they are simply formal linear combinations of 1,i,j,ij.

For any positive integer N we write sqfr(N) for the squarefree part of N .

Representation of Elliptic-Curve Points and Isogenies. We will generally
require that the objects we are working with have “compact” representation
(that is, size polylog(p) bits), and that maps can be evaluated at points of
representation size polylog(p) in time polylog(p).

In the interest of generality, we will not force a specific choice of representa-
tion, but for concreteness, the following data formats are examples of suitable
instantiations:

• For an elliptic curve E defined over an extension of Fp and an integer N ,
a point in E[N] may be stored as a tuple consisting of one point in E[qei

i]
for each prime power qei

i in the factorization of N , each represented näıvely
as coordinates. This “CRT-style” representation has size polylog(p) when N
is powersmooth and polynomial in p. (In some cases, storing points in E[N]

5 Each occurrence of polylog(p) is shorthand for a concrete, fixed polynomial in log p.
(The notation is not meant to imply that all instances of polylog(p) be the same).

440 V. de Quehen et al.

näıvely may be more efficient, for instance in the beneficial situation that
E[N] ⊆ E(Fpk) for some small extension degree k.)

• A smooth-degree isogeny may be represented as a sequence (often of length
one) of isogenies, each of which is represented by an (often singleton) set of
generators of its kernel subgroup.

• Endomorphisms of a curve E0 with known endomorphism ring spanned by
a set of efficiently evaluatable endomorphisms may be stored as a formal Z-
linear combination of such “nice” endomorphisms. Evaluation is done by first
evaluating each basis endomorphism separately, then taking the appropriate
linear combination of the resulting points.

In some of our algorithms, we will deal with the restriction of an isogeny to
some N -torsion subgroup, where N is smooth. This object is motivated by the
auxiliary points ϕA(PB), ϕA(QB) given in the SIDH protocol (Sect. 2.1), and it
can be represented in the same way: The restriction of an isogeny ϕ : E → E′ to
the N -torsion subgroup E[N] is stored as a tuple of points (P,Q,ϕ(P), ϕ(Q)) ∈
E2 ×E′2, where {P,Q} forms a basis of E[N]. Then, to evaluate ϕ on any other
N -torsion point R ∈ E[N], we first decompose R over the basis {P,Q}, yielding
a linear combination R = [i]P + [j]Q. (This two-dimensional discrete-logarithm
computation is feasible in polynomial time as N was assumed to be smooth.)
Then, we may simply recover ϕ(R) as [i]ϕ(P)+ [j]ϕ(Q), exploiting the fact that
ϕ is a group homomorphism.

2.3 Quantum Computation Cost Assumptions

In the context of NIST’s post-quantum cryptography standardization pro-
cess [29], there is a significant ongoing effort to estimate the quantum cost of
fundamental cryptanalysis tasks in practice. In particular, while it seems well-
accepted that Grover’s algorithm provides a square-root quantum speedup, the
complexity of the claimed cube-root claw-finding algorithm of Tani [38] has been
disputed by Jaques and Schanck [23], and the topic is still subject to ongoing
research [24].

Several attacks we present in this paper use claw-finding algorithms as a sub-
routine, and the state-of-the-art algorithms against which we compare them are
also claw-finding algorithms. We stress, however, that the insight provided by
our attacks is independent of the choice of the quantum computation model. For
concreteness we chose the RAM model studied in detail by Jaques and Schanck
in [23], in which it is argued that quantum computers do not seem to offer a sig-
nificant speedup over classical computers for the task of claw-finding. Adapting
our various calculations to other existing and future quantum computing cost
models, in particular with respect to claw-finding, is certainly possible.

3 Overview

Standard attacks on SIDH follow two general approaches: they either solve the
supersingular isogeny problem directly, or they reduce finding an isogeny to

Improved Torsion-Point Attacks on SIDH Variants 441

computing endomorphism rings. However, SIDH is based on SSI-T introduced
above, where an adversary is also given the restriction of the secret isogeny to
the B-torsion of the starting curve E0. Exploiting this B-torsion information led
to a new line of attack as first illustrated in [31].

In Subsect. 3.1 we discuss the Supersingular Isogeny Problem and SSI-T.
Petit’s work was the first to show an apparent separation between the hardness
of SSI-T and the hardness of the Supersingular Isogeny Problem in certain set-
tings. In this work we introduce a new isogeny problem, the Shifted Lollipop
Endomorphism Problem (SLE). This problem was implicit in Petit’s work [31],
which contained a purely algebraic reduction from SSI-T to this new hard prob-
lem. We improve upon the work of [31] by giving two significantly stronger reduc-
tions. In Subsect. 3.2 we sketch the main idea behind the reduction obtained by
Petit. In Subsect. 3.3 we present a technical overview which covers the ideas
behind our two improved reduction variants.

In Sect. 4 we will present and analyze our two reductions, and give algorithms
to solve SLE for certain parameter sets. As we will see, the combination of our
reductions and our algorithms to solve particular parameter sets of SLE give rise
to two families of improvements on the torsion-point attacks of [31] on SIDH-like
protocols; these attacks will additionally exploit the dual of the secret isogeny
and the Frobenius isogeny.

3.1 Hard Isogeny Problems

We first review the most basic hardness assumption in isogeny-based cryptogra-
phy:

Problem 2 (Supersingular Isogeny). Given a prime p, a smooth integer A,
and two supersingular elliptic curves E0/Fp2 and E/Fp2 guaranteed to be A-
isogenous, find an isogeny ϕ : E0 → E of degree A.

In SIDH, we denote Alice’s secret isogeny ϕA : E0 → EA, but in general we
will denote some unknown isogeny by ϕ : E0 → E.

Recall that Alice’s public key contains not only the curve E but also the
points ϕ(P), ϕ(Q) for a fixed basis {P,Q} of E0[B]. Since B is smooth, knowing
ϕ(P) and ϕ(Q) allows us to efficiently compute the restriction of ϕ to the torsion
subgroup E0[B] [33]. Hence, it is more accurate to say that the security of SIDH
is based on SSI-T, which includes this additional torsion information.

One additional fact that is often overlooked is that the hardness of SIDH is
not based on a random instance of SSI-T, because the starting curve is fixed
and has a well-known endomorphism ring with small degree endomorphisms. It
is known that given an explicit description of both endomorphism rings End(E)
and End(E0), it is (under reasonable heuristic assumptions) possible to recover
the secret isogeny [18,37]. However, it is not clear if knowing only one of End(E)
and End(E0) makes the isogeny problem easier.

442 V. de Quehen et al.

Petit was the first to observe that knowing End(E0) could be
useful to show an apparent separation between the hardness of the
Supersingular Isogeny Problem and the hardness of SSI-T. In particular, in [31]
Petit gave a reduction from SSI-T to the following problem, which we will call
the Shifted Lollipop Endomorphism (SLE) Problem, where N = B.

Problem 3 (Shifted Lollipop Endomorphism (SLEN,λ)). Let p be a
prime, A and B be smooth coprime integers, and a supersingular elliptic curve
E0/Fp2 . Given a positive integer N , find the restriction of a trace-zero endomor-
phism θ ∈ End(E0) to E0[B], an integer d coprime to B, and a smooth integer
0 < e < λ such that

A2 deg θ + d2 = Ne. (1)

When λ is left unspecified we let SLEN denote SLEN,O∗(1).

Notice that SLEN only depends on the parameters (p,A,B,E0). It does not
depend on an unknown isogeny (it depends on A, which in practice will be the
degree of the unknown isogeny). Thus solving SLEN can be completed in a pre-
computation phase and applied to any unknown isogeny in a fixed SIDH protocol.
In [31], Petit was able to show solutions to SLEN where N = B in certain cases,
where End(E0) was known and has small-degree, non-scalar endomorphisms.

The goal of this work is to further investigate for which parameters there
exists a separation between SSI-T and the Supersingular Isogeny Problem. Intu-
itively, SLEN should become easier to solve as N increases, however, this is not
true in general and it is unclear how to find efficient reductions to SLEN for
most values of N . To this end, we will give two reductions: one reduction from
SSI-T to SLEN,λ where N = B2, and the other where N = B2p. Both reductions
run in O∗(λ

1
2), assuming A has only O(log log p) distinct prime factors, see The-

orems 3 and 5. We then investigate their impact on supersingular isogeny-based
protocols.

3.2 Petit’s Torsion-Point Attack

We begin this subsection by sketching Petit’s reduction from SSI-T to
SLEN where N = B. Suppose we are given an instance of SSI-T, that is,
(p,A,B,E0, E, ϕ|E[B]), where the goal is to recover the unknown isogeny ϕ.
We call an endomorphism on E that has the form ϕ ◦ θ ◦ ϕ̂ for some endomor-
phism θ on E0 a lollipop endomorphism, and an endomorphism of the form
ϕ ◦ θ ◦ ϕ̂ + [d] for d ∈ Z a shifted lollipop endomorphism; see Fig. 2 (this is
the motivation for the name of Problem SLE). We will now discuss how to find
a shifted lollipop endomorphism, as we will show in Lemma 4 how to use the
resulting shifted lollipop endomorphism to recover the secret isogeny.

The main idea of Petit’s original attack is that if (θ, d, e) forms a solution
to SLEB , then τ = ϕ ◦ θ ◦ ϕ̂ + [d] is a shifted lollipop endomorphism of degree
Be where e is smooth. Since deg τ = Be, it follows that τ also decomposes as
τ = η ◦ ϕ for two isogenies ϕ : E → E1 and η : E1 → E of degrees B and e; see
Fig. 3.

Improved Torsion-Point Attacks on SIDH Variants 443

E0

E

ϕ

θ

ϕ

E

ϕ◦θ◦ϕϕ◦θ◦ϕ+[d]

Fig. 2. Lollipop and Shifted Lollipop endomorphisms. The name “lollipop” endomor-
phism was inspired by the diagram on the left.

E τ=ϕ◦θ◦ϕ+[d]
E E1

deg=B

deg=e

Fig. 3. A decomposition of τ in Petit’s original attack

The restriction of ϕ to E0[B] given in Alice’s public key can be used to
construct the B-isogeny in the decomposition (the green arrow in Fig. 3), see [31]
for details. This can be done efficiently if θ is in a representation that can be
efficiently evaluated on E0[B]. As e is smooth, the e-isogeny in the decomposition
(the blue arrow) can be found via brute-force in time O∗(e

1
2). This gives us τ .

Subtracting [d] from τ gives ϕ ◦ θ ◦ ϕ̂.
Suppose the lollipop endomorphism ρ = ϕ ◦ θ ◦ ϕ̂ is cyclic. Then ker(ρ) ∩

E1[A] = ker ϕ̂. (The kernel of ρ can be calculated as A is smooth.) Once we have
found ϕ̂, it is easy to find the unknown isogeny ϕ. If ρ is not cyclic, then one can
still recover ϕ if A has O(log log p) distinct prime factors by using a technical
approach developed in [31, Section 4.3], for further details see Lemma 4. Thus
we have a reduction from SSI-T to SLEN where N = B, which is formalized in
the following theorem.

Theorem 1. Suppose we are given an instance of SSI-T where A has
O(log log p) distinct prime factors. Assume we are given the restriction of a
trace-zero endomorphism θ ∈ End(E0) to E0[B], an integer d coprime to B, and
a smooth integer e such that

deg(ϕ ◦ θ ◦ ϕ̂ + [d]) = Be.

Then we can compute ϕ in time O∗(
√

e) = O(
√

e · polylog(p)).

3.3 Technical Preview

Although the attack of [31] was the first to establish an apparent separation
between the hardness of SSI-T and the hardness of supersingular isogeny problem,
it did not affect the security of any cryptosystems that appear in the literature. In
this paper, we give two attacks improving upon [31] by additionally exploiting the
dual and the Frobenius conjugate of the secret isogeny respectively.

444 V. de Quehen et al.

The first attack, which we call the dual isogeny attack, corresponds to
reducing SSI-T to SLEN where N = B2.6 The second attack, which we call
the Frobenius isogeny attack, corresponds to reducing SSI-T to SLEN where
N = B2p. The run-time of each attack depends on the parametrization of the
cryptosystem, and one may perform better than the other for some choices of
parameters. We show the details in Theorem 3 and Theorem 5. We begin by
sketching the main ideas behind the reductions.

In the dual isogeny attack, finding a solution (θ, d, e) to SLEN with N = B2

corresponds to finding a shifted lollipop endomorphism τ = ϕ ◦ θ ◦ ϕ̂ + [d] on
E of degree B2e, with e smooth. Assume τ is cyclic (only for simplicity in this
overview; the general case is Theorem 3). Then since deg τ = B2e, it follows that
τ also decomposes as τ = ϕ′ ◦η ◦ϕ for three isogenies ϕ, η and ϕ′ of degrees B, e
and B, respectively: see the middle diagram in Fig. 4.

In the Frobenius isogeny attack, finding a solution (θ, d, e) to SLEN with
N = B2p corresponds to finding a shifted lollipop endomorphism τ = ϕ◦θ◦ϕ̂+[d]
that has degree B2pe, with e smooth. Assume τ is cyclic (only for simplicity in
this overview; the general case is Theorem 5). Since deg τ = B2pe, it follows that
τ also decomposes as τ = ϕ′ ◦η ◦π ◦ϕ for four isogenies ϕ, π, η and ϕ′ of degrees
B, p, e and B, respectively, where the isogeny of degree p is the Frobenius map
(x, y) → (xp, yp): see the right-hand diagram in Fig. 4.

E τ=ϕ◦θ◦ϕ+[d]
E

E1 E2

deg=B deg=B

deg=e

E

E1 E2

Eσ
1

deg=B deg=B

π deg=e

Fig. 4. A decomposition of τ in our two new attacks. Note: we take the dual of one
isogeny in the middle and right-hand diagrams to reverse its arrow. (Color figure online)

In both attacks we find τ by calculating each isogeny in the decomposition of
τ . In particular, we will use the restriction of ϕ to E0[B] given by Alice’s public
key to construct the two B-isogenies in the decomposition (the green arrows in
Fig. 4). Again this can be done efficiently if θ is in a representation that can be
efficiently evaluated on E0[B]. As e is smooth we can calculate the e-isogeny
in the decomposition (the blue arrow) via brute-force in time O∗(e

1
2). As we

can always construct the Frobenius map π (the purple arrow), this gives us τ .
The rest of the proof proceeds as with Petit’s original attack assuming A has
O(log log p) distinct prime factors, see Lemma 4 for details.

Remark 2. These methods are an improvement over Petit’s original attack, which
only utilized a shifted lollipop endomorphism τ of degree Be. There τ could only
be decomposed into two isogenies of degree B and e as in Fig. 3. Intuitively, Petit’s
original attack was less effective as a smaller proportion of τ could be calculated
6 See also [7] for a different reduction to SLEB2 , cf. Subsect. 1.2.

Improved Torsion-Point Attacks on SIDH Variants 445

directly, and hence a much larger (potentially exponential) proportion of the endo-
morphism needed to be brute forced. It is not clear how to find a better decompo-
sition with more computable isogenies than those given in Fig. 4 using the fixed
parameters and public keys given in SIDH protocols. Furthermore, we give reduc-
tions both to SLEB2 and SLEB2p, as increasing the degree of τ does not necessarily
make a shifted lollipop endomorphism τ easier to find.

Once an appropriate (θ, d, e) is found for a particular setting (that is, a
particular choice of p,A,B,E0), then the reduction outlines an algorithm that
can be run to find any unknown isogeny ϕ : E0 → E. In other words, there
is first a precomputation needed to solve SLEN and find a particular (θ, d, e).
Using this (θ, d, e), the above reduction gives a key-dependent algorithm to find
a particular unknown isogeny ϕ : E0 → E.

We now outline how to solve SLEN when N = B2p for a particular choice of
E0, see Algorithm 2 for details. A similar technique works when N = B2, see Algo-
rithm 1. In most supersingular isogeny-based protocols, the endomorphism ring of
E0 is known. A common choice of starting curve, in SIKE for example7, is where
E0 has j -invariant 1728. We show that in the Frobenius isogeny attack finding a
shifted lollipop endomorphism of degree B2pe reduces to finding a solution of

A2(a2 + b2) + pc2 = B2e. (2)

To proceed choose c and e such that pc2 = B2e modulo A2. The remaining
equation a2 + b2 = Be−pc2

A2 can be solved by Cornacchia’s algorithm a large
percentage of time; else the procedure is restarted with a new choice of e or c.

This method of solving SLEN can be used to attack the n-party group key
agreement [2]. We analyze this attack in Sect. 7.1, and show that it can be
expected, heuristically, to run in polynomial time for n ≥ 6. The results are
summarized in Table 1, and an implementation of this attack for n = 6 can be
found at https://github.com/torsion-attacks-SIDH/6party.

While we use the Frobenius isogeny attack to highlight vulnerabilities in
the isogeny-based group key agreement, we use the ideas from the dual isogeny
attack to investigate situations, namely different starting curves and base fields,
which would result in insecure schemes.

4 Improved Torsion-Point Attacks

In this section, we generalize and improve upon the torsion-point attacks from
Petit’s 2017 paper [31]; in our notation, Petit’s attack can be viewed as a
reduction of SSI-T to SLEB,λ together with O∗(1)-time algorithm to solve
SLEB,λ for certain parameter sets. In Subsect. 4.1, we introduce two new reduc-
tions from SSI-T to SLEN,λ, where N = B2 and N = B2p, respectively. The
runtime of both reductions is O∗(λ

1
2). The reductions exploit two new techniques:

a dual isogeny and the Frobenius isogeny.
7 Note that the newest version of SIKE [20] changed the starting curve to a 2-isogenous

neighbour of j = 1728, but this does not affect the asymptotic complexity of any
attack.

https://github.com/torsion-attacks-SIDH/6party

446 V. de Quehen et al.

In Subsect. 4.2 we give an algorithm to solve SLEN for N = B2 and N =
B2p, for specific starting curve8 E0 under explicit, plausible heuristics (Heuristic 1
and 2, respectively). For certain parameters these algorithms solve SLEN,λ forN =
B2 for λ = O∗(1) in polynomial time and SLEN for N = B2p for λ = O(log p) in
polynomial time. For these parameters, this solves SSI-T in time O∗(1).

4.1 Improved Torsion-Point Attacks

The main ingredient in Petit’s [31] attack can be viewed as a reduction of SSI-T
to SLEB . In this section we introduce our first extension of this attack: the
dual isogeny attack, which works by exploiting the dual isogeny of the (shifted
lollipop) endomorphism τ on E. We begin by giving the reduction for the dual
isogeny attack.

Theorem 3. Suppose we are given an instance of SSI-T where A has
O(log log p) distinct prime factors. Assume we are given the restriction of a
trace-zero endomorphism θ ∈ End(E0) to E0[B], an integer d coprime to B, and
a smooth integer e such that

deg(ϕ ◦ θ ◦ ϕ̂ + [d]) = B2e.

Then we can compute ϕ in time O∗(
√

e) = O(
√

e · polylog(p)).

We first state a technical lemma which mostly follows from [31, Section 4.3].

Lemma 4. Let A be a smooth integer with O(log log p) distinct prime factors,
and let E0/Fp2 and E/Fp2 be two supersingular elliptic curves connected by an
unknown degree-A isogeny ϕ. Suppose we are given the restriction of some τ ∈
End(E) to E[A], where τ is of the form τ = ϕ◦θ◦ϕ̂+[d] such that if E[m] ⊆ ker τ
then m | 2. Then we can compute ker ϕ in time O∗(1).

Proof. See the full version [13, Appendix A.1].

Proof (of Theorem 3). Suppose we have d, e and the restriction of θ to E[B] satisfy-
ing the conditions above. We wish to find an explicit description of τ = ϕ◦θ◦ϕ̂+[d].
Let m be the largest integer dividing B such that E[m] ⊆ ker τ . Since the degree
of τ is B2e, there exists a decomposition of the form τ = ψ′ ◦ η ◦ ψ ◦ [m], where ψ
and ψ′ are isogenies of degree B/m, ψ is cyclic, and η is an isogeny of degree e.

We proceed by deriving the maps in this decomposition. Since τ factors
through [m], this implies m divides tr(τ) = 2d. As we chose d coprime to B, this
shows m ∈ {1, 2}.

To compute ψ and ψ′, we start by finding the restriction of τ to the B-torsion.
This can be computed from what we are given: the restrictions of θ, [d], ϕ, hence
ϕ̂, to the B-torsion of the relevant elliptic curves. This also allows us to compute
m explicitly, as the largest integer dividing B such that E[m] ⊆ ker τ ∩ E[B].

Let τ ′ = ψ′ ◦ η ◦ ψ. The isogeny ψ can now be computed from the restriction
of τ to E[B]via
8 More generally, these attacks apply for any “special” starting curve in the sense of [26].

Improved Torsion-Point Attacks on SIDH Variants 447

ker ψ = ker τ ′ ∩ ([m] · E[B]) = (ker τ ∩ E[B])/E[m].

From the cyclicity of ψ, we can also deduce that ker ψ̂′ = τ(E[B]), which gives
ψ′ explicitly.

Finally, we recover the isogeny η by a generic meet-in-the-middle algorithm,
which runs in time O∗(

√
e) since e is smooth. Note that if e = O∗(1), then the

entire algorithm runs in time polylog(p). In this way we have found τ explicitly,
and by Lemma 4 can compute ϕ. ��

Next we give the reduction for the Frobenius isogeny attack, which works by
exploiting the Frobenius isogeny on E to improve, or at least alter, the dual
attack.

Theorem 5. Suppose we are given an instance of SSI-T where A has at most
O(log log p) distinct prime factors. Assume we are given the restriction of a
trace-zero endomorphism θ ∈ End(E0) to E0[B], an integer d coprime to B, and
a smooth integer e such that

deg(ϕ ◦ θ ◦ ϕ̂ + [d]) = B2pe .

Then we can compute ϕ in time O∗(
√

e) = O(
√

e · polylog(p)).

Proof. Let τ = ϕ ◦ θ ◦ ϕ̂ + [d]. As in the proof of Theorem 3, we can decompose
τ as ψ′ ◦ η ◦ ψ ◦ [m], where η has degree pe, and compute ψ and ψ′ efficiently.

We are left to recovering η. Instead of using a generic meet-in-the-middle
algorithm, we observe that η has inseparable degree p (since we are in the super-
singular case). Thus, η = η′ ◦ π, where π is the p-power Frobenius isogeny, and
η′ is of degree e. We use the meet-in-the-middle algorithm on η′ and recover the
specified runtime. ��
Remark 6. It is a natural question why we stick to the p-power Frobenius and
why the attack doesn’t give a better condition for a higher-power Frobenius
isogeny. The reason is that for supersingular elliptic curves defined over Fp2 ,
the p2-power Frobenius isogeny is just a scalar multiplication followed by an
isomorphism (since every supersingular j-invariant lies in Fp2), and hence would
already be covered by the method of Theorem 3.

More generally, see Sect. 8 for a more abstract viewpoint that subsumes both
of the reductions given above (but has not led to the discovery of other useful
variants thus far).

The complexity of both attacks relies on whether one can find a suitable
endomorphism θ with e as small as possible. In the next subsection we will
establish criteria when we can find a suitable θ when the starting curve has
j-invariant 1728.

4.2 Solving Norm Equations

In Subsect. 4.1 we showed two reductions (Theorem 3 and Theorem 5)
from SSI-T to SLEN where N = B2 and N = B2p. To complete the description

448 V. de Quehen et al.

of our attacks, we discuss how to solve SLEN in these two cases; that is, we want
to find solutions (θ, d, e) to

deg(ϕ ◦ θ ◦ ϕ̂ + [d]) = A2 deg θ + d2 = Ne,

where N = B2 or N = B2p.
The degree of any endomorphism of E0 is represented by a quadratic form

that depends on E0. To simply our exposition we choose E0/Fp : y2 = x3 + x
(having j = 1728), where p is congruent to 3 (mod 4). In this case the endomor-
phism ring End(E0) has a particularly simple norm form. To complete the dual
isogeny attack, it suffices to find a solution to the norm Eq. (3):

Corollary 7. Let p ≡ 3 (mod 4) and j(E0) = 1728. Consider coprime smooth
integers A,B such that A has (at most) O(log log p) distinct prime factors and
suppose that we are given an integer solution (a, b, c, d, e), with e smooth, to the
equation

A2(pa2 + pb2 + c2) + d2 = B2e . (3)

Then we can solve SSI-T with the above parameters in time O∗(
√

e).

Proof. Let ι ∈ End(E0) be such that ι2 = [−1] and let π be the Frobenius
endomorphism of E0. Let ϕ be as in Theorem 3. The endomorphism θ = aιπ +
bπ + cι and the given choice of d satisfies the requirements of Theorem 3. ��
To complete the Frobenius isogeny attack, we find a solution to the norm Eq.
(8):

Corollary 8. Let p ≡ 3 (mod 4) and j(E0) = 1728. Consider coprime smooth
integers A,B such that A has (at most) O(log log p) distinct prime factors and sup-
pose that we are given an integer solution (a, b, d, e), with e smooth, to the equation

A2(a2 + b2) + pd2 = B2e . (4)

Then we can solve SSI-T with the above parameters in time O∗(
√

e).

Proof. With ι and π as in the proof of Corollary 7, and ϕ as in Theorem 5,
the endomorphism θ = aιπ + bπ, together with the choice c = 0 satisfies the
requirements of Theorem 5 (to see this, multiply (4) through by p). ��

Now we present two algorithms for solving each norm Eq. (3) and (4). The
algorithms are similar in nature but they work on different parameter sets. See
Algorithms 1 and 2.

4.3 Runtime and Justification for Algorithms 1 and 2

The remainder of this section is devoted to providing justification that the algo-
rithms succeed in polynomial time.

Improved Torsion-Point Attacks on SIDH Variants 449

Algorithm 1: Solving norm equation 3.
Input: SIDH parameters p,A,B.
Output: A solution (a, b, c, d, e) to (3).

1 Set e := 2.
2 If e is a quadratic non-residue mod A2 then
3 Set e := e + 1 and go to Step 2.

4 Compute d such that d2 ≡ eB2 (mod A2).
5 If eB2 − d2 is a quadratic non-residue mod p then
6 Set e := e + 1 and go to Step 2.

7 Compute c as the smallest positive integer such that c2A2 ≡ eB2 − d2

(mod p).
8 If eB2 > d2 + c2A2 then
9 If eB2−d2−c2A2

A2p is prime then

10 If eB2−d2−c2A2

A2p ≡ 1 (mod 4) then

11 Find a, b ∈ Z such that a2 + b2 = eB2−d2−c2A2

A2p .
12 Return (a, b, c, d, e).

13 Set e := e + 1 and go to Step 2.

14 else
15 Return Failure.

Algorithm 2: Solving norm equation 4.
Input: SIDH parameters p,A,B.
Output: A solution (a, b, c, e) to (4).

1 Set e := 1.
2 While eB2

p is a quadratic non-residue mod A2 do
3 Set e := e + 1.

4 Compute c such that eB2 ≡ pc2 (mod A2).
5 If eB2 > pc2 then
6 If eB2−pc2

A2 is prime then
7 If eB2−pc2

A2 ≡ 1 (mod 4) then
8 Find a, b ∈ Z such that a2 + b2 = eB2−pc2

A2 .
9 Return (a, b, c, e).

10 Set e := e + 1 and go to Step 2.

11 else
12 Return Failure.

450 V. de Quehen et al.

Heuristic 1. Let p,A,B be SIDH parameters. Note that for each e, the equation

eB2 = d2 + c2A2 (mod A2p), (5)

may or may not have a solution (c, d). We assert two heuristics:

1. Amongst invertible residues e modulo A2p, which are quadratic residues mod-
ulo A2, the probability of the existence of a solution is approximately 1/2.

2. Amongst those e for which there is a solution, and for which the resulting
integer

B2e − d2 − c2A2

A2p
(6)

is positive, the probability that (6) is a prime congruent to 1 modulo 4 is
expected to be approximately the same as the probability that a random integer
of the same size is prime congruent to 1 modulo 4.

Justification. By the Chinese remainder theorem, solving (5) amounts to solving
eB2 ≡ d2 (mod A2) and eB2 ≡ d2 + c2A2 (mod p). If e is a quadratic residue
modulo A2, then the first of these equations has a solution d. Using this d,
the second equation has either no solutions or two, with equal probability. This
justifies the first item.

For the second item, this is a restriction of the assertion that the values of
the quadratic function B2e−d2 − c2A2, in terms of variables e, c and d, behave,
in terms of their factorizations, as if they were random integers. In particular,
the conditional probability that the value has the form A2pq for a prime q ≡ 1
(mod 4), given that it is divisible by A2p, is as for random integers.

Proposition 9. Let ε > 0. Under Heuristic 1, if B > pA and p > A, but B is
at most polynomial in A, then Algorithm 1 returns a solution (a, b, c, d, e) with
e = O(log2+ε(p)) in polynomial time.

Proof. Checking that a number is a quadratic residue modulo p can be accom-
plished by a square-and-multiply algorithm. Checking that a certain number is
prime can also be accomplished in polynomial-time. Representing a prime as a
sum of two squares can be carried out by Cornacchia’s algorithm. Suppose one
iterates e a total of X times.

For the algorithm to succeed, we must succeed in three key steps in reasonable
time: first, that e such that e is a quadratic residue modulo A2 (Step 2) and
second, that eB2 − d2 is a quaratic residue modulo p (Step 5), and third, that
eB2−d2−c2A2

A2p is a prime congruent to 1 modulo 4 (Step 9–10). Suppose we check
values of e up to size X.

For Step 2, it suffices to find e an integer square, which happens 1/
√

X of
the time. When this is satisfied, the resulting d can be taken so d < A2. For Step
5, under Heuristic 1 Part 1, the probability that a corresponding c exists is 1/2.
Such a c can be taken with c < p. Under the given assumption that B > pA and
p > A, then

eB2 ≥ 2B2 > 2p2A2 > p2A2 + A4 > c2A2 + d2.

Improved Torsion-Point Attacks on SIDH Variants 451

So the quantity in Heuristic 1 Part 2 is positive. We can bound it by eB2/pA2.
Since B is at worst polynomial in A, the quantity B2/pA2 is at worst polynomial
in p, say pk. Hence, for Step 9–10, one expects at a proportion 1/ log(pkX) of
successes to find a prime congruent to 1 modulo 4. Such a prime is a sum of two
squares, and the algorithm succeeds.

Finally, we set X = log2+ε(p) to optimize the result. If one iterates e at most
log2+ε(p) times, one expects to succeed at Step 2 at least log1+ε(p)) times, to
succeed at Step 5 half of those times, and to succeed at Steps 9 and 10 at least
1/ log(pk log2+ε(p)) of those times. This gives a total probability of success, at
any one iteration, of 1/4k log2+ε(p). Hence we expect to succeed with polynomial
probability.

For the analysis of Algorithm 2, the following technical lemma is helpful.

Lemma 10. Let M be an integer. Let r be an invertible residue modulo M . Then
the pattern of e such that re is a quadratic residue repeats modulo N = 4 sqfr(M),
four times the squarefree part of M . Among residues modulo 4 sqfr(M), a pro-
portion of 1/2� of them are solutions, where � is the number of distinct primes
dividing M .

Proof. Suppose M has prime factorization M =
∏

i lei
i . A residue x modulo M

is a quadratic residue if and only if it is a quadratic residue modulo lei
i for every

i. For odd li, a residue modulo lei
i is a quadratic residue if and only if it is a

quadratic residue modulo li, by Hensel’s lemma. And a residue modulo 2e, e ≥ 3,
is a quadratic residue if and only if it is a quadratic residue modulo 8. By the
Chinese remainder theorem, re is a quadratic residue modulo M if and only if
re is a quadratic residue modulo 4 sqfr(M).

Heuristic 2. Let p,A,B be SIDH parameters. Let � be the number of distinct
prime divisors of A. Note that for each e, the equation

eB2 = pc2 (mod A2) (7)

may or may not have solutions c. We assert two heuristics:

1. As e varies, the probability that it has solutions is 1/2�.
2. Amongst those e for which there is a solution, and for which the resulting

integer
B2e − pc2

A2
(8)

is positive, the probability that (8) is a prime congruent to 1 modulo 4 is
expected to be approximately the same as the probability that a random integer
of the same size is prime congruent to 1 modulo 4.

Justification. Consider the first item. Modulo each prime dividing A2, the
quadratic residues vs. non-residues are expected to be distributed “randomly”,
resulting in a random distribution modulo 4 sqfr(A), by Lemma 10.

452 V. de Quehen et al.

For the second item, this is a restriction of the assertion that the values of the
quadratic function B2e − pc2, in terms of variables e and c, behave, in terms of
their factorizations, as if they were random integers. In particular, the conditional
probability that the value has the form A2q for a prime q ≡ 1 (mod 4), given
that it is divisible by A2, is as for random integers.

Proposition 11. Under Heuristic 2, if B >
√

pA2, A has O(log log p) distinct
prime factors, B is at most polynomial in A, and9 p > A, then Algorithm 2
returns a solution (a, b, c, e) with e = O(log p) in polynomial time.

Proof. Checking that a number is a quadratic residue can be accomplished by
a square-and-multiply algorithm. Checking that a certain number is prime can
also be accomplished in polynomial-time. Representing a prime as a sum of two
squares can be carried out by Cornacchia’s algorithm.

For the algorithm to succeed, we must succeed in two key steps in reasonable
time: first, that e such that eB2/p is a quadratic residue (Step 2) and second,
that eB2−pc2

A2 is a prime congruent to 1 modulo 4 (Step 6–7). Suppose we check
values of e up to size X.

By Heuristic 2 Part 1, we expect to succeed at Step 2 with probability 1/2�,
where � is the number of distinct prime divisors of A.

When this is satisfied, the resulting c can be taken so c < A2. Under the
given assumption that B >

√
pA, then

eB2 ≥ B2 > pA4 > pc2.

So the quantity in Heuristic 2 Part 2 is positive. We can bound it above by
eB2/A2, and using the assumption that B is at most polynomial in A, we bound
this by < pkX for some k. So we expect to succeed in Step 6–7 with probability
1/2 log(pkX). The resulting prime is a sum of two squares, and the algorithm
succeeds. Thus, taking X = O(log p) suffices for the statement.

Remark 12. In practice, in Algorithm 2 it may be more efficient to increment c
by multiples of A2 in place of incrementing e. This however makes the inequalities
satisfied by A, B, and p slightly less tight so for the sake of cleaner results we
opted for incrementing only e.

Remark 13. If parameters A and B are slightly more unbalanced (i.e., B >
rA2√p for some r > 100), then instead of increasing e it is better to fix e and
increase c by A2 in each step.

5 Backdoor Instances

In this section we give a method to specifically create instantiations of the SIDH
framework for which we can solve SSI-T more efficiently. So far all of our results
were only considering cases where the starting curve E0 has j -invariant 1728.
9 In the proof, it suffices to take pk > A for any k.

Improved Torsion-Point Attacks on SIDH Variants 453

In Sect. 5.1 we explore the question: For given A,B can we construct starting
curves for which we can solve SSI-T with a better balance? We will call such
curves backdoor curves (see Definition 14), and quantify the number of backdoor
curves in Sect. 5.2. In Sects. 5.3 and 5.4, we also consider backdoored choices of
(p,A,B), for which we can solve SSI-T more efficiently even when starting from
the curve with j -invariant 1728.

5.1 Backdoor Curves

This section introduces the concept of backdoor curves and how to find such
curves. Roughly speaking, these are specially crafted curves which, if used as
starting curves for the SIDH protocol, are susceptible to our dual isogeny attack
by the party which chose the curve, under only moderately unbalanced param-
eters A,B; in particular, the imbalance is independent of p. In fact, when we
allow for non-polynomial time attacks we get an asymptotic improvement over
meet-in-the-middle for balanced SIDH parameters (but starting from a backdoor
curve). These curves could potentially be utilized as a backdoor, for example by
suggesting the use of such a curve as a standardized starting curve. We note
that it does not seem obvious how backdoored curves, such as those generated
by Algorithm 3, can be detected by other parties: The existence of an endo-
morphism of large degree which satisfies Eq. 3 does not seem to be detectable
without trying to recover such an endomorphism, which is hard using all cur-
rently known algorithms. The notion of backdoor curves is dependent on the
parameters A,B, which motivates the following definition:

Definition 14. Let A,B be coprime positive integers. An (A,B)-backdoor
curve is a tuple (E0, θ, d, e), where E0 is a supersingular elliptic curve defined
over some Fp2 , an endomorphism θ ∈ End(E0) in an efficient representation,
and two integers d, e such that Algorithm 5 solves SSI-T for that particular E0

in time polynomial in log p when given (θ, d, e).

The main result of this section is Algorithm 3 which computes (A,B)-
backdoor curves in heuristic polynomial time, assuming we have a factoring
oracle (see Theorem 15).

Theorem 15. Given an oracle for factoring, if A has (at most) O(log log p)
distinct prime factors, then Algorithm 3 can heuristically be expected to succeed
in polynomial time.

Remark 16. The imbalance B > A2 is naturally satisfied for a group key agree-
ment in the style of [2] with three or more participants; we can break (in poly-
nomial time) such a variant when starting at an (A,B)-backdoor curve.

Before proving Theorem 15 we need the following easy lemma:

Lemma 17. Let p be a prime congruent to 3 modulo 4. Let D be a positive
integer. Then the quadratic form Q(x1, x2, x3, x4) = px2

1 + px2
2 + x2

3 − Dx2
4 has

a nontrivial integer root if and only if D is a quadratic residue modulo p.

454 V. de Quehen et al.

Algorithm 3: Generating (A,B)-backdoor curves.

Input: A prime p ≡ 3 (mod 4) and smooth coprime integers A,B with
B > A2.

Output: An (A,B)-backdoor curve (E0, θ, d, e) with E0/Fp2 .
1 Set e := 1.
2 While true do
3 Find an integer d such that d2 ≡ B2e (mod A2).
4 If d is coprime to B then
5 If B2e−d2

A2 is square modulo p then
6 Find rational a, b, c such that pa2 + pb2 + c2 = B2e−d2

A2 .
7 break

8 Set e to the next square.

9 Set ϑ = aij + bj+ci∈ Bp,∞.
10 Compute a maximal order O ⊆ Bp,∞ containing θ.
11 Compute an elliptic curve E0 whose endomorphism ring is isomorphic to

O.
12 Construct an efficient representation of the endomorphism θ of E0

corresponding to ϑ.
13 Return (E0, θ, d, e).

Proof. The proof is essentially a special case of [36, Proposition 10], but we
give a brief sketch of the proof here. If D is a quadratic residue modulo p, then
px2

1 + px2
2 + x2

3 − Dx2
4 has a solution in Qp by setting x1 = x2 = 0 and x4 = 1

and applying Hensel’s lemma to the equation x2
3 = D. The quadratic form Q

also has local solutions everywhere else (the 2-adic case involves looking at the
equation modulo 8 and applying a 2-adic version of Hensel’s lemma). If on the
other hand D is not a quadratic residue modulo p, then one has to choose x3

and x4 to be divisible by p. Dividing the equation Q(x1, x2, x3, x4) = 0 by p and
reducing modulo p yields x2

1 + x2
2 ≡ 0 (mod p). This does not have a solution as

p ≡ 3 (mod 4). Finally, one can show that this implies that Q does not have a
root in Qp. ��
Proof (of Theorem 15). The main idea is to apply Theorem 3 in the following
way: using Algorithm 3, we find integers D, d, and e, with e polynomially small
and D a quadratic residue mod p, such that A2D + d2 = B2e, and an element
θ ∈ Bp,∞ of trace zero and such that θ2 = −D. We then construct a maximal
order O ⊆ Bp,∞ containing θ and an elliptic curve E0 with End(E0) ∼= O.

Most steps of Algorithm 3 obviously run in polynomial time, although some
need further explanation. We expect d2 ≈ A4 since we solved for d modulo B2,
and we expect e to be small since heuristically we find a quadratic residue after a
small number of tries. Then the right-hand side in step 6 should be positive since
B > A2, so by Lemma 17, step 6 returns a solution using Simon’s algorithm [36],

Improved Torsion-Point Attacks on SIDH Variants 455

assuming an oracle for factoring B2e−d2

A2 . For step 10, we can apply either of the
polynomial-time algorithms [19,39] for finding maximal orders containing a fixed
order in a quaternion algebra, which again assume a factoring oracle. Steps 11
and 12 can be accomplished using the heuristically polynomial-time algorithm
from [16,32] which returns both the curve E0 and (see [16, § 5.3, Algorithm 5])
an efficient representation of θ. ��
Remark 18. The algorithm uses factorization twice (once in solving the
quadratic form and once in factoring the discriminant of the starting order).
In the full version [13, Appendix C] we discuss how one can ensure in practice
that the numbers to be factored have an easy factorization.

Remark 19. Denis Simon’s algorithm [36] is available on his webpage.10 Fur-
thermore, it is implemented in MAGMA [6] and PARI/GP [3]. The main con-
tribution of Simon’s paper is a polynomial-time algorithm for finding nontrivial
zeroes of (not necessarily diagonal) quadratic forms which does not rely on an
effective version of Dirichlet’s theorem. In our case, however, we only need a
heuristic polynomial-time algorithm for finding a nontrivial zero (x, y, z, u) of a
form px2 + py2 + z2 − Du2. We sketch an easy way to do this: Suppose that
D is squarefree, and pick a prime q ≡ 1 (mod 4) such that −pq is a quadratic
residue modulo every prime divisor of D. It is then easy to see that the quadratic
equations px2 + py2 = pq and Du2 − z2 = pq both admit a nontrivial rational
solution which can be found using [12].

There are two natural questions that arise when looking at Theorem 15:

• Why are we using the dual attack and not the Frobenius attack?
• Why do we get a substantially better balance than we had before?

The answer to the first question is that we get a better result in terms of
balance. In the Frobenius version we essentially get the same bound for back-
door curves as for the curve with j -invariant 1728. The answer to the second
question is that by not restricting ourselves to one starting curve we only have
the condition that pa2+pb2+c2 is an integer and a, b, c can be rational numbers.

Remark 20. Backdoor curves also have a constructive application: An improve-
ment on the recent paper [14] using Petit’s attack to build a one-way function
“SÉTA”. In this scheme, the secret key is a secret isogeny to a curve Es that
starts from the elliptic curve with j -invariant 1728 and the message is the end
point of a secret isogeny from Es to some curve Em, together with the image of
some torsion points. The reason for using j -invariant 1728 is in order to apply
Petit’s attack constructively. One could instead use a backdoor curve; this pro-
vides more flexibility to the scheme as one does not need to disclose the starting
curve and the corresponding norm equation is easier to solve.

10 https://simond.users.lmno.cnrs.fr/.

https://simond.users.lmno.cnrs.fr/

456 V. de Quehen et al.

5.2 Counting Backdoor Curves

Having shown how to construct backdoor curves and how to exploit them, a
natural question to ask is how many of these curves we can find using the methods
of the previous section. Recall that the methods above search for an element
ϑ ∈ Bp,∞ with reduced norm D. Theorem 21 below suggests they can be expected
to produce exponentially (in log D) many different maximal orders, and using
Lemma 22 we can prove this rigorously for the (indeed interesting) case of (A,B)-
backdoor curves with AB ≈ p and A2 < B < A3 (cf. Theorem 15).

We first recall some notation from [30]. The set ρ(E��(O)) consists of the
reductions modulo p of all elliptic curves over Q with complex multiplication
by O. Each curve E = E mod p in this set comes with an optimal embed-
ding ι : O ↪→ End(E), referred to as an “orientation” of E, and conversely, [30,
Prop. 3.3] shows that — up to conjugation — each oriented curve (E, ι) defined
over Fp is obtained by the reduction modulo p of a characteristic-zero curve; in
other words, either (E, ι) or (E(p), ι(p)) lies in ρ(E��(O)). The following theorem
was to our knowledge first explicitly stated and used constructively in [10] to
build the “OSIDH” cryptosystem. The proof was omitted,11 but later published
by Onuki [30], whose formulation we reproduce here:

Theorem 21. Let K be an imaginary quadratic field such that p does not split
in K, and O an order in K such that p does not divide the conductor of O. Then
the ideal class group cl(O) acts freely and transitively on ρ(E��(O)).

Thus, it follows from well-known results about imaginary quadratic class
numbers [35] that asymptotically, there are h(−D) ∈ Ω(D

1
2−ε) many backdoor

elliptic curves counted with multiplicities given by the number of embeddings
of O. However, it is not generally clear that this corresponds to many distinct
curves (or maximal orders). As an (extreme) indication of what could go wrong,
consider the following: there seems to be no obvious reason why in some cases
the entire orbit of the group action of Theorem 21 should not consist only of one
elliptic curve with lots of independent copies of O in its endomorphism ring.

We can however at least prove that this does not always happen. In fact, in
the case that D is small enough relative to p, one can show that there cannot
be more than one embedding of O into any maximal order in Bp,∞, implying
that the h(−D) oriented supersingular elliptic curves indeed must constitute
h(−D) ≈ √

D distinct quaternion maximal orders:

Lemma 22. Let O be a maximal order in Bp,∞. If D ≡ 3, 0 (mod 4) is a posi-
tive integer smaller than p, then there exists at most one copy of the imaginary
quadratic order of discriminant −D inside O.

Proof. This follows readily from Theorem 2′ of [25].

This lemma together with Theorem 15 shows that there are Θ(h(−D)) many
(A,B)-backdoor maximal orders under the restrictions that B > A2 and D < p.

11 In [10] the theorem was referred to as a classical result, considered to be folklore.

Improved Torsion-Point Attacks on SIDH Variants 457

Consider the case (of interest) in which AB ≈ p: Following the same line of
reasoning as in the proof of Theorem 15 we have that B2/A2 − A2 ≈ D, which
if D < p ≈ AB implies that B � A3. Hence, as advertised above, Lemma 22
suffices to prove that there are Θ(h(−D)) many (A,B)-backdoor maximal orders
under the restriction that AB ≈ p and roughly A2 < B < A3. For larger choices
of B, it is no longer true that there is only one embedding of O into a quaternion
maximal order: indeed, at some point h(−D) will exceed the number Θ(p) of
available maximal orders, hence there must be repetitions. While it seems hard
to imagine cases where the orbit of cl(Z[θ]) covers only a negligible number of
curves (recall that θ was our endomorphism of reduced norm D), we do not
currently know how (and under which conditions) to rule out this possibility.

Remark 23. Having obtained any one maximal order O that contains θ, it is
efficient to compute more such orders (either randomly or exhaustively): For any
ideal a in Z[θ], another maximal order with an optimal embedding of Z[θ] is the
right order of the left ideal I = Oa. (One way to see this: a defines a horizontal
isogeny with respect to the subring O; multiplying by the full endomorphism ring
does not change the represented kernel subgroup; the codomain of an isogeny
described by a quaternion left ideal has endomorphism ring isomorphic to the
right order of that ideal. Note that this is similar to a technique used by [9] in
the context O ⊆ Q(π).)

5.3 Backdoored p for Given A and B with Starting Vertex j = 1728

Another way of constructing backdoor instances of an SIDH-style key exchange
is to keep the starting vertex as j = 1728 (or close to it), keep A and B smooth
or powersmooth (but not necessarily only powers of 2 and 3 as in SIKE), and
construct the base-field prime p to turn j = 1728 into an (A,B)-backdoor curve.
In this section, let E0 denote the curve E0 : y2 = x3 + x.

An easy way of constructing such a p is to perform steps 1 and 3 of Algo-
rithm 3, and then let D := B2e−d2

A2 . Then we can solve

D = p(a2 + b2) + c2

in variables a, b, c, p ∈ Z, p prime, as follows. Factor D − c2 for small c until the
result is of the form pm where p is a large prime congruent to 3 modulo 4 and m
is a number representable as a sum of squares.12

Then, with θ = aιπ + bπ + cι the tuple (E0, θ, d, e) is (A,B)-backdoor. (Note
that, in this construction, we cannot expect to satisfy a relationship such as
p = ABf − 1 with small f ∈ Z.)

As an (unbalanced) example, let us choose A = 2216 and B = 3300 and set
e = 1. Then we can use d = B mod A2. Let D = B2−d2

A2 , for which we will now
produce two primes: First, pick c = 53, then D − c2 is a prime number (i.e.,

12 Some choices of A and B result in D ≡ 2 (mod 4) which is an obstruction to this
method.

458 V. de Quehen et al.

a = 1, b = 0). Second, pick c = 355, then D − c2 is 5 times a prime number (i.e.,
a = 2, b = 1). Both of these primes are congruent to 3 modulo 4.

For a powersmooth example, let A be the product of every other prime from
3 up through 317, and let B be the product of all remaining odd primes ≤ 479.
With e = 4, we can again use d = B mod A2 and compute D as above. Then
D − 1532 is prime and congruent to 3 modulo 4 (i.e., a = 1, b = 0).

5.4 Backdoored p for Given A ≈ B with Starting Vertex j = 1728

For A ≈ B, finding (A,B)-backdoor curves seems difficult. However, in this
section we show that certain choices of (power)smooth parameters A and B
allow us to find f such that j = 1728 can be made insecure over any Fp2 with
p = ABf − 1.

One approach to this is to find Pythagorean triples A2 + d2 = B2 where A
and B are coprime and (power)smooth; then E0 : y2 = x3 + x is a backdoor
curve with θ = ι, the d value from the Pythagorean triple, and e = 1. With this
construction, we can then use any p ≡ 3 (mod 4), in particular one of the form
p = ABf − 1.

Note that given the isogeny degrees A,B, it is easy for anyone to detect if
this method has been used by simply checking whether B2 − A2 is a square;
hence, an SIDH key exchange using such degrees is simply weak and not just
backdoored.13

Problem 4. Find Pythagorean triples B2 = A2 + d2 such that A and B are
coprime and smooth (or powersmooth).

Pythagorean triples can be parameterized in terms of Gaussian integers. To
be precise, primitive integral Pythagorean triples a2 = b2 + c2 are in bijection
with Gaussian integers z = m + ni with gcd(m,n) = 1 via the correspondence
(a, b, c) =

(
N(z),Re(z2), Im(z2)

)
. The condition that m and n are coprime is

satisfied if we take z to be a product of split Gaussian primes, i.e., z =
∏

i wi

where N(w) ≡ 1 (mod 4) is prime, taking care to avoid simultaneously includ-
ing a prime and its conjugate. Thus the following method applies provided that
B is taken to be an integer divisible only by primes congruent to 1 modulo 4,
and B > A.

In order to guarantee that B = N(z) is powersmooth, one may take many
small wi. In order to guarantee that B is smooth, it is convenient to take z = wk

for a single small Gaussian prime w, and a large composite power k.
It so happens that the sequence of polynomials Re(zk) in variables n and m

(recall z = n + mi) factors generically into relatively small factors for composite
k, so that, when B2 = A2 + d2, we can expect that A is frequently smooth or
powersmooth. In practice, running a simple search using this method, one very
readily obtains example insecure parameters:

13 We resist the temptation of referring to such instantiations as “door” instead of
“backdoor”.

Improved Torsion-Point Attacks on SIDH Variants 459

B = 5105

A = 22 · 11 · 19 · 29 · 41 · 59 · 61 · 139 · 241 · 281 · 419 · 421 · 839 · 2381 · 17921
· 21001 · 39761 · 74761 · 448139 · 526679 · 771961 · 238197121

d = 32 · 13 · 79 · 83 · 239 · 307 · 2801 · 3119 · 3361 · 3529 · 28559 · 36791 · 53759
· 908321 · 3575762705759 · 23030958433523039

For this example, if we take p = 105AB − 1, we obtain a prime which is 3
modulo 4. Note that here B ≈ 2244 and A ≈ 2238. Many other primes can easily
be obtained (replacing 105 with 214, 222, etc.).

Remark 24. When choosing parameter sets to run B-SIDH [11], if the user is
very unlucky, they could hit an instance of such a weak prime. With this in
mind, it would be prudent to check that a given combination of A, B, and p
does not fall into this category before implementing such a B-SIDH instance.

6 Non-polynomial-time Attacks

So far we focused on polynomial-time algorithms both for the starting curve
E0 with j -invariant 1728 and for backdoor curves, which required the integer e
occuring in the attack to be polynomial in log p. However, the attack still works
when e is bigger, with decent scaling behaviour. Hence, we may (and will in
this section) consider algorithms which are exponential-time, yet improve on the
state of the art. The best known classical and quantum attacks for retrieving
an isogeny of degree A take time O∗(A

1
2); recall that we discussed quantum

claw-finding in Subsect. 2.3. We will adapt both the dual and the Frobenius
isogeny attacks of Sect. 4 to allow for some brute-force in order to attack balanced
parameters. We will also adapt the definition of backdoor curves to include curves
for which there exists an exponential dual isogeny attack that improves on the
state of the art, thus increasing the pool of backdoor curves.

6.1 Non-polynomial Time Dual Isogeny Attack for E0 : y2 = x3 + x

Recall from Sect. 4 that the dual isogeny attack consists of a “precomputation”
phase and a “key-dependent” phase. The precomputation phase (Algorithm 1)
was to find a solution to Eq. (3) — notably, this depends only on the parameters
(p,A,B) and not on the concrete public key under attack. The “key-dependent”
phase utilized said solution to recover the secret isogeny via Theorem 3 for a
specific public key. Our modifications to the dual isogeny attack come in three
independent guises, and the resulting algorithm is shown in Algorithm 6:

• Precomputation phase:
– Larger d: When computing a solution to Eq. (3), we fix e and then try

up to Aδ values for d until the equation has solutions. This allows us
to further relax the constraints between A, B, and p, at the price of an
exhaustive search of classical cost O∗(Aδ) or quantum cost O∗(A

δ
2) using

Grover’s algorithm.

460 V. de Quehen et al.

• Key-dependent phase:
– Larger e: We search for a solution to Eq. (3) where e is any smooth

number ≤ Aε with ε ∈ [0, 1], whereas in [31] the integer e was required
to be polynomial in log p. This relaxes the constraints on A and B, at
a cost of a O∗(e

1
2) = O∗(A

ε
2) computation, both classically and quan-

tumly, via a meet-in-the-middle or claw-finding algorithm (to retrieve the
endomorphism η defined in the proof of Theorem 3).

– Smaller A: We first näıvely guess part of the secret isogeny and then
apply the dual isogeny attack only on the remaining part for each guess;
see Fig. 5. More precisely, we iterate through isogenies of degree Aγ | A,
with γ ∈ [0, 1], and for each possible guess we apply the dual isogeny
attack to SSI-T with A′ := A1−γ in place of A. The Diophantine equation
to solve thus turns into

A′2(pa2 + pb2 + c2) + d2 = B2e . (9)

The cost of using A′ in place of A is the cost of iterating over the isogenies
of degree Aγ multiplied by the cost T of running the dual isogeny attack
(possibly adapted as above to allow for larger e). This is an exhaustive
search of cost O∗(Aγ ·T) = O∗(Aγ+ ε

2) classically or O∗(A
γ
2 ·T) = O∗(A

γ+ε
2)

quantumly using Grover’s algorithm.14

degA = A1−γ degAγ

E0 E

Fig. 5. Brute-force guessing the degree Aγ part of Alice’s isogeny ϕ from Alice’s curve
E and the dual isogeny attack to find the remaining degree A′ part of ϕ from E0.

Proposition 25. Define α and β by setting A = pα and B = pβ and fix 0 <
α ≤ β. Under Heuristic 1, if

2β + αε ≥ max {4α + 2αδ − 4αγ, 2 + 2α − 2αδ − 2αγ} ,
14 For the reader who is wondering exactly how to apply Grover’s algorithm in this

context: Let 〈PA, QA〉 = E0[A
γ]. The input for Grover’s algorithm here is an integer

n < Aγ and all of the input of Algorithm 5. Attempt Steps 2 and 3 for ϕg such that
ker(ϕg) = 〈PA + nQA〉; the output will be success or failure. Every subroutine of
Steps 2 and 3 can be broken down into basic elliptic curve arithmetic for which there
are known quantum algorithms of similar complexity to their classical counterparts.

Improved Torsion-Point Attacks on SIDH Variants 461

Algorithm 4: Solving the norm equation; precomputation.

Input: • SIDH parameters p,A = pα, B = pβ .
• Attack parameters δ, γ, ε ∈ [0, 1], with Aγ | A.

Output: A solution (a, b, c, d, e) to (9) with A′ = A1−γ and e ≤ Aε

smooth.
1 Pick a smooth number e ≤ Aε which is a square modulo A′2.
2 Compute d0 such that d20 ≡ eB2 (mod A′2).
3 For d′ = 1, 2, ..., �Aδ� such that d0 + A′2d′ <

√
eB do

4 Let d = d0 + A′2d′.
5 Find the smallest positive integer c such that c2A′2 = eB2 − d2

(mod p), or continue if no such c exists.
6 If eB2 > d2 + c2A′2 then
7 Try finding (a, b) such that a2 + b2 = eB2−d2−c2A′2

A′2p .
If a solution is found, return (a, b, c, d, e).

Algorithm 5: Recovering the secret isogeny; key-dependent phase.
Input: • All the inputs of Algorithm 4.

• An instance of SSI-T with those parameters, namely a curve E
and points P,Q ∈ E[B] where there exists a degree-A isogeny ϕ : E0 → E
such that P,Q are the images by ϕ of a canonical basis of E0[B].

• θ ∈ End(E0) and d, e ∈ Z such that deg(A′θ + d) = B2e with
e ≤ Aε smooth.
Output: An isogeny ϕ matching the constraints given by the input.

1 For ϕg : E → E′ an Aγ-isogeny do
2 Compute P ′ = [A−γ mod B]ϕg(P) and Q′ = [A−γ mod B]ϕg(Q).
3 Use Theorem 3 to compute ϕ′ : E0 → E′ of degree A′ = A1−γ ,

assuming that P ′ and Q′ are the images by ϕ′

of the canonical basis of E0[B],
or conclude that no such isogeny exists.

4 If ϕ′ is found then
5 Return ϕ = ϕ̂g ◦ ϕ′.

Algorithm 6: Solving SSI-T.

1 Invoke Algorithm 4, yielding a, b, c, d, e ∈ Z, and then Algorithm 5 with
θ = aιπ + bπ + cι.

462 V. de Quehen et al.

A has (at most) O(log log p) distinct prime factors, and B is at most polynomial
in A, then Algorithm 6 solves SSI-T in time O∗(AΓ) on a classical computer and
time O∗(AΓ/2) on a quantum computer, where

Γ := max
{1 + 3α − 2β

3α
,

2α − β

2α
,

1 + α − β

2α

}
.

Proof. See the full version [13, Appendix A.2]. ��
Corollary 26. Suppose that B is at most polynomial in A and that A has
(at most) O(log log p) distinct prime factors. When run on a classical com-
puter, Algorithm 6 is asymptotically more efficient than meet-in-the-middle—
disregarding memory concerns, so more efficient than O∗(A

1
2)—whenever

B > max
{√

pA
3
4 , A, p

}
.

When run on a quantum computer, Algorithm 6 is asymptotically more efficient
than quantum claw-funding—according to the model in [23], so more efficient
than O∗(A

1
2)—whenever

B > max
{√

p,A−1p
}

.

6.2 Non-polynomial Time Frobenius Isogeny Attack for
E0 : y2 = x3 + x

Recall the Frobenius isogeny attack from Sect. 4. In a similar way to the previous
section, we allow for some brute-force to improve the balance of our parameters.
More precisely, we consider again:

• Smaller A: Iterate through isogenies of degree Aγ |A; in the precomputation
we solve instead

A′2(a2 + b2) + pc2 = B2e, (10)

where A′ = A1−γ .

Algorithm 7 describes how to adapt the Frobenius isogeny attack of Sect. 4 in
this way.

Algorithm 7: Solving SSI-T.

1 (Precomputation) Invoke Algorithm 2 with inputs p,A′, B, yielding
a, b, c, e ∈ Z.

2 (Key-dependent) Run Algorithm 5 except that θ = aιπ + bπ ∈ End(E0)
instead satisfies the equation deg(A′θ + c) = B2ep and we use Theorem 5
in place of Theorem 3.

Proposition 27. Define α and β by A = pα and B = pβ, fix B ≥ A and B at
most polynomial in A, and suppose that A′ = A1−γ has (at most) O(log log p)
distinct prime factors. Under Heuristic 2, Algorithm 7 has complexity O∗ (Aγ) =
O∗

(
A

1+4α−2β
4α

)
classically and O∗(

A
γ
2
)

= O∗
(
A

1+4α−2β
8α

)
quantumly. Moreover,

the precomputation step runs in time O∗(1).

Improved Torsion-Point Attacks on SIDH Variants 463

Proof. See the full version [13, Appendix A.3].

Corollary 28. Suppose that B is at most polynomial in A and that A has
(at most) O(log log p) distinct prime factors. When run on a classical com-
puter, Algorithm 7 is asymptotically more efficient than meet-in-the-middle—
disregarding memory concerns, so more efficient than O∗(A

1
2)—whenever B >√

pA. When run on a quantum computer, Algorithm 7 is asymptotically more
efficient than quantum claw-funding—according to the model in [23], so more
efficient than O∗(A

1
2)—whenever B >

√
p.

Remark 29. It may seem natural to also allow for larger e as in the dual isogeny
attack. However, this limits how small A′ can be, and the gain from reducing
A′ is strictly better than the gain from increasing e. Intuitively this is because
A′ appears in Eq. 10 as a square, which doubles the gain compared to gain from
increasing e.

6.3 Non-polynomial Time Dual Isogeny Attack for Backdoor
Curves

Recall the definition of an (A,B)-backdoor curve (E0, θ, d, e) from Definition 14;
we now extend this to define backdoor curves that give rise to a torsion-point
attack of complexity O∗(AC). In this section we explain how to modify Algo-
rithm 3 to compute these more general backdoor curves, and apply Algorithm 6
with such a backdoored starting curve E0 by replacing the precomputation step
with the modified Algorithm 3.

Definition 30. Let A,B be coprime positive integers and 0 ≤ C ≤ 1/2. An
(A,B,C)-backdoor curve is a tuple (E0, θ, d, e) of a supersingular elliptic curve
E0 over some Fp2 , an endomorphism θ ∈ End(E0) in an efficient representation,
and two integers d, e, such that Algorithm 5 solves SSI-T for that particular E0

in time O∗(AC) when given (θ, d, e). An (A,B, 0)-backdoor curve is then an
(A,B)-backdoor curve in the sense of Definition 14.

To construct (A,B,C)-backdoor curves, we modify Algorithm 3 as follows:

• Use A′ = A1−γ instead of A, namely we will guess part of the isogeny with
degree Aγ | A.

• Instead of starting from e = 1, choose Aε′
random values of A′4B−2 < e ≤ Aε

(note e is not necessarily an integer square) until there exists d such that
d2 = B2e mod (A′)2,

B2e − d2 > 0 (11)

and B2e − d2 is a square modulo p. Once these values of d and e are found,
continue like in Algorithm 3, Step 6.

Proposition 31. Heuristically, if A has (at most) O(log log p) distinct prime
factors:

464 V. de Quehen et al.

• Let C ∈ [0, 0.4]. For A, B such that B > A2− 5
2 ·C , Algorithm 3 modified as

above constructs a (A,B,C)-backdoor curve in time O∗(AC) on a classical
computer, assuming an oracle for factoring.

• Let C ∈ [0, 0.25]. For every A, B such that B > A2−4·C , Algorithm 3 con-
structs a (A,B,C)-backdoor curve in polynomial time on a quantum com-
puter.

Proof. See the full version [13, Appendix A.4].

Corollary 32. When A ≈ B (e.g. as in SIKE [21]), the modified Algorithm 3
computes a (A,B, 2

5)-insecure curve in time O∗(A
2
5) on a classical computer and

computes a (A,B, 1
4)-insecure curve in polynomial time on a quantum computer.

In particular, when A ≈ B ≈ √
p, there exist backdoor curves E0 for which we

can solve SSI-T on a classical computer in time O∗(p
1
5) and for which we can

solve SSI-T on a quantum computer in time O∗(p
1
8).

7 Impact on Unbalanced SIDH, Group Key Agreement,
and B-SIDH

We summarize how the results of Sects. 4, 6.1, and 6.2 impact unbalanced
SIDH with p ≈ AB, the GSIDH multiparty group key agreement [2,17], and
B-SIDH [11].

7.1 Frobenius Isogeny Attack on Group Key Agreement and
Unbalanced SIDH

Let us consider unbalanced SIDH with p ≈ AB. More precisely, we study
instances of SSI-T with p = AB · f − 1, where f is a small cofactor and where
A has (at most) O(log log p) distinct prime factors. Then by Proposition 11 and
Theorem 5, under Heuristic 2, the Frobenius isogeny attack of Sect. 4 gives a
polynomial-time attack on SSI-T when B >

√
pA2. Since in this section we

restrict to the case p ≈ AB, this inequality simplifies to B ≥ A5. In particular,
this gives us one of our main results:

Theorem 33. Under Heuristic 2, the Frobenius isogeny attack presented in
Sect. 4 breaks the GSIDH n-party group key agreement protocol presented
in [2,17] in time polynomial in log p for all n ≥ 6.

Proof. Recall from Subsect. 2.1 that the cryptanalytic challenge underlying the
n-party group key agreement as presented in [2,17] can be modelled as an
instance of SSI-T with A = �e1

1 , B = �e2
2 · · · �en

n , and p = AB · f − 1, where
�1, . . . , �n are primes such that for all i, j we have �ei

i ≈ �
ej

j and f is a small
cofactor chosen such that p is prime. Thus the security of the n-party group
key agreement is similar to that of unbalanced SIDH with the same p,A,B.
Suppose n ≥ 6. Since A is a prime power (hence has 1 = O(log log p) prime
divisors) and B ≥ A5, the Frobenius isogeny attack on the group key agreement
is polynomial-time when there are 6 or more parties. ��

Improved Torsion-Point Attacks on SIDH Variants 465

We have implemented this attack in Magma [6] for 6 parties, see the code
at https://github.com/torsion-attacks-SIDH/6party. The code is written to
attack the power-of-3 torsion subgroup, when p + 1 is powers of the first 6
primes, and uses cryptographically large parameters.

We know the Frobenius isogeny attack is polynomial on unbalanced SIDH
when B ≥ A5 (and the n-party group key agreement when n ≥ 6); it remains
to investigate the non-polynomial analogue. To this end, consider the attack
presented in Subsect. 6.2. As above, suppose given an instance of SSI-T with
p = AB ·f −1, where f is a small cofactor, such that A has (at most) O(log log p)
distinct prime factors, and now additionally suppose that B ≈ A1+ε, where 0 <
ε < 4. To apply this attack to n-party group key agreement with n = 2, 3, 4, 5,
just set ε = n − 2.

Proposition 34 demonstrates an improvement on the asymptotic complexity
for quantum claw-finding as analyzed in [23] for any level of imbalance (i.e.,
for any ε > 0). However, note that the only quantum subroutine used in our
Frobenius isogeny attack is Grover’s algorithm, so our complexity computation is
independent of the choice of quantum computation model used for claw-finding.
As such, using a more nuanced model working with concrete complexities, such
as the one presented in [24], will make our quantum attack start to “improve on
the state of the art” at different levels of imbalance. As our work currently only
presents asymptotic complexities, we are leaving an analysis of this for future
work.

Proposition 34. Let A,B be coprime smooth numbers where B > A1+ε, and let
p be a prime congruent to 3 (mod 4). Furthermore, suppose that p = ABf−1 for
some small cofactor f , and that the number of distinct prime factors of A is (at
most) O(log log p). Let E0/Fp be the supersingular elliptic curve with j-invariant
1728. Algorithm 7 solves SSI-T with these parameters in time O∗(

A1− ε
4
)

when

run on a classical computer and time O∗
(
A

1
2− ε

8

)
when run on a quantum com-

puter.

Proof. Let α = 1
2+ε and β = 1+ε

2+ε . Proposition 27 proves that Algorithm 7 runs
classically in time

O∗
(
A

1+4α−2β
4α

)
= O∗

(
A

(2+ε)+4−2(1+ε)
4

)
= O∗(

A1− ε
4
)
.

Similarly, Proposition 27 proves that Algorithm 7 runs quantumly in time

O∗
(
A

1+4α−2β
8α

)
= O∗

(
A

(2+ε)+4−2(1+ε)
8

)
= O∗

(
A

1
2− ε

8

)
.

��
As stated above, akin to the polynomial-time attack, substituting n = ε+2 in

Proposition 34 gives us the complexity of the non-polynomial Frobenius isogeny
attack on n-party group key agreement for n = 2, 3, 4, 5 parties, see Table 1.

https://github.com/torsion-attacks-SIDH/6party

466 V. de Quehen et al.

Table 1. Asymptotic complexities of our Frobenius isogeny attack on n-party key
agreement and comparison with the state of the art, i.e., meet-in-the-middle and claw-
finding. (As justified above, we take [23] for the “state-of-the-art” numbers for quantum
claw-finding here rather than [24]). Numbers given are the logarithm to base A of the
complexity, ignoring factors polynomial in log p.

parties This work (classical) This work (quantum) MitM (classical) [23] (quantum)

2 1 1/2

3 3/4 3/8 | |
4 1/2 1/4 1/2 1/2

5 1/4 1/8 | |
≥ 6 0 0

7.2 Dual Isogeny Attack Applied to B-SIDH

A recent proposal called B-SIDH [11] consists of instantiating SIDH with param-
eters where AB is a divisor of p2−1. By Proposition 25, under Heuristic 1, when
A ≈ B ≈ p (that is, α ≈ β ≈ 1), Algorithm 6 yields a quantum attack on these
parameters of complexity O∗(A

1
3) = O∗(p

1
3). This compares to other attack com-

plexities in the literature as follows:

• Tani’s quantum claw-finding algorithm [38] was claimed to have com-
plexity O∗(p

1
3), but [23] argues that the complexity is actually no lower

than O∗(p
2
3) when the cost of data-structure operations is properly accounted

for.
• A quantum algorithm due to Biasse, Jao, and Sankar [4] finds some isogeny

between the start and end curve in time O∗(p
1
4). While there is a heuristic

argument for “standard” SIDH/SIKE that any isogeny suffices to find the
correct isogeny [18], this argument relies on the fact that the isogeny sought
in SIKE has relatively small degree compared to p, which is was not believed
to be true for B-SIDH. The B-SIDH paper [11] conservatively views [4] as the
best quantum attack. Since the publication of B-SIDH, it has been shown [37]
that [4] does in fact apply, so this is currently the best known quantum attack
against B-SIDH.

• The cost of known classical attacks is no lower than O∗(A
1
2), which is achieved

by meet-in-the-middle techniques (using exponential memory) and potentially
memoryless by Delfs and Galbraith [15] when A ≈ p assuming a sufficiently
efficient method to produce the isogeny from some isogeny.

Thus, assuming Heuristic 1 holds, Algorithm 6 is asymptotically better than
quantum claw-finding but is not the best known quantum attack against B-
SIDH at the moment.

Note that for 1/2 < α ≈ β < 1, the (quantum) attack cost in terms of p may
be lower than O∗(p

1
3), but it does not get smaller than O∗(p

1
4) and hence does

not improve on [4] for α ≈ β.

Improved Torsion-Point Attacks on SIDH Variants 467

7.3 Impact on B-SIDH Group Key Exchange

As an example of how care should be taken when constructing new SIDH-style
schemes, we also include a scheme that does not exist in the literature: group
key agreement instantiated with B-SIDH parameters. This is a natural scheme
to consider: The size of the base-field prime used in group key agreement grows
with the number of parties, and optimally chosen B-SIDH parameters (with
respect to efficiency) halves the bit-length of the base-field prime. Corollary 35
shows that such an instantiation is insecure for 4 or more parties:

Corollary 35. Let A,B be coprime smooth numbers and let p be a prime con-
gruent to 3 (mod 4). Furthermore, suppose that p2 − 1 = ABf for some small
cofactor f and that B > A3. Let E0 be the supersingular elliptic curve with j-
invariant 1728. Then, assuming Heuristic 1, SSI-T can be solved in polynomial
time.

Proof. The result follows from Proposition 9.

Finally, in Corollary 36 we give the complexity of our dual isogeny attack on an
instantiation of B-SIDH 3-party group key agreement with minimal base-field
prime:

Corollary 36. Let A,B be coprime smooth numbers and let p be a prime con-
gruent to 3 (mod 4). Furthermore, suppose that p2 − 1 = ABf for some small
cofactor f and that B > A2. Let E0 be the supersingular elliptic curve with j-
invariant 1728. Then, assuming Heuristic 1, Algorithm 6 solves SSI-T in time
O∗(A

1
4) = O∗(p

1
6) when run on a classical computer and time O∗(A

1
8) = O∗(p

1
12)

when run on a quantum computer.

Proof. This follows from plugging α = 2/3 and β = 4/3 into Proposition 25.

8 Open Question

The two attack variants given in Theorems 3 and 5 may seem somewhat ad hoc
at first. In this Section, we describe a common abstraction for both variants and
discuss potential generalizations.

The core idea is to relax the choice of τ as an endomorphism of E, instead
allowing τ to be an isogeny from E to another curve E′:

Theorem 37. Suppose given an instance of SSI-T where A has O(log log p) dis-
tinct prime factors. Let ω : E → E′ be a known isogeny to some curve E′. Fur-
thermore, assume we are given the restriction to E0[B] of an isogeny ψ : E0 →
E′, and an integer d ∈ Z such that the isogeny τ = ψϕ̂ + dω ∈ Hom(E,E′) has
degree B2e, where e is smooth. Then, we can compute a matching isogeny ϕ in
time O∗(

√
e).

Proof. The proof is completely analogous to Theorems 3 and 5.

468 V. de Quehen et al.

The specific instantiations obtained as special cases earlier can be recovered as
follows:

• For Theorem 3, we simply use E′ = E, the map ω is the identity morphism
on E, and the isogeny ψ is an element of the set M ′ = ϕM ⊆ Hom(E0, E),
where M ≤ End(E0) is the subgroup of trace-zero endomorphisms of E0.

• For Theorem 5, we use the Galois conjugate E′ = Eσ of E, the map ω : E →
Eσ is the p-power Frobenius isogeny, and the isogeny ψ is an element of
the set M ′ = ϕσM ⊆ Hom(E0, E

σ), where M ≤ End(E0) is the subgroup
orthogonal to Frobenius π ∈ End(E0).15

In both cases, the choice of M ′ and ω is such that the resulting degree form for
the subgroup M ′ + ωZ of Hom(E0, E

′) has a sufficiently nice shape to be solved
efficiently using techniques such as those shown in Subsect. 4.2.

It is unclear whether there are any other choices of M ′ and ω which lead to an
efficiently solvable norm equation and potentially improved attacks. However, so
far we have not found any other ways to exploit this viewpoint beyond using ϕ
itself or its Galois conjugate. Finding other useful generalizations is an interesting
open problem.

Acknowledgements. Thanks to Daniel J. Bernstein for his insight into estimating
sizes of solutions to Eq. 3, to John Voight for answering a question of ours concerning
Subsect. 5.2, and to Boris Fouotsa for identifying errors in Proposition 34 and its proof.
We would also like to thank Filip Pawlega and the anonymous reviewers for their careful
reading and helpful feedback.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domı́nguez, J.-J., Menezes, A., Rodŕıguez-
Henŕıquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: Cid, C., Jacobson Jr, M. (eds.) SAC 2018. LNCS, vol. 11349, pp. 322–
343. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7 15

2. Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: Practical supersingular
isogeny group key agreement. IACR Cryptology ePrint Archive 2019/330 (2019)

3. Batut, C., Belabas, K., Bernardi, D., Cohen, H., Olivier, M.: User’s Guide to
PARI-GP. Université de Bordeaux I. https://pari.math.u-bordeaux.fr/

4. Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for computing isoge-
nies between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 25

5. Boneh, D., Kogan, D., Woo, K.: Oblivious pseudorandom functions from isogenies.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp.
520–550. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 18

6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997). https://magma.maths.
usyd.edu.au/

15 The way Theorem 5 is presented differs from Theorem 37 here; this is merely a
change in notation.

https://doi.org/10.1007/978-3-030-10970-7_15
https://pari.math.u-bordeaux.fr/
https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1007/978-3-030-64834-3_18
https://magma.maths.usyd.edu.au/
https://magma.maths.usyd.edu.au/

Improved Torsion-Point Attacks on SIDH Variants 469

7. Bottinelli, P., de Quehen, V., Leonardi, C., Mosunov, A., Pawlega, F., Sheth, M.:
The dark SIDH of isogenies. IACR Cryptology ePrint Archive 2019/1333 (2019)

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIA-
CRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03332-3 15

9. Castryck, W., Panny, L., Vercauteren, F.: Rational isogenies from irrational endo-
morphisms. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS,
vol. 12106, pp. 523–548. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45724-2 18

10. Colò, L., David, K.: Orienting supersingular isogeny graphs. J. Math. Cryptology
14(1), 414–437 (2020)

11. Costello, C.: B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp.
440–463. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 15

12. Cremona, J., David, R.: Efficient solution of rational conics. Math. Comput.
72(243), 1417–1441 (2003)

13. de Quehen, V., et al.: Improved torsion-point attacks on SIDH variants. Full version
of this article. IACR Cryptology ePrint Archive 2020/633 (2021). https://ia.cr/
2020/633

14. Delpech de Saint Guilhem, C., Kutas, P., Petit, C., Silva, J.: SÉTA: supersingu-
lar encryption from torsion attacks. IACR Cryptology ePrint Archive 2019/1291
(2019)

15. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Crypt. 78(2), 425–440 (2016)

16. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 329–
368. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 11

17. Furukawa, S., Kunihiro, N., Takashima, K.: Multi-party key exchange protocols
from supersingular isogenies. In: ISITA, pp. 208–212. IEEE (2018)

18. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
I. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 3

19. Ivanyos, G., Rónyai, L.: Finding maximal orders in semisimple algebras over Q.
Comput. Complex. 3(3), 245–261 (1993)

20. Jao, D., et al.: Supersingular isogeny key encapsulation. Updated version of [21]
for round 3 of [29] (2020)

21. Jao, D., et al.: Supersingular isogeny key encapsulation. Submission to [29] (2017).
https://sike.org

22. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

23. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I.
LNCS, vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26948-7 2

24. Jaques, S., Schrottenloher, A.: Low-gate quantum golden collision finding. In: SAC
2020. Springer (2020)

https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/978-3-030-64834-3_15
https://ia.cr/2020/633
https://ia.cr/2020/633
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://sike.org
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2

470 V. de Quehen et al.

25. Kaneko, M.: Supersingular j-invariants as singular moduli mod p. Osaka J. Math.
26(4), 849–855 (1989)

26. Kohel, D., Lauter, K., Petit, C., Tignol, J.-P.: On the quaternion �-isogeny path
problem. LMS J. Comput. Math. 17A, 418–432 (2014)

27. Love, J., Boneh, D.: Supersingular curves with small non-integer endomorphisms.
In: Galbraith, S. (ed.) ANTS XIV: Proceedings of the Fourteenth Algorithmic
Number Theory Symposium (2020)

28. Martindale, C., Panny, L.: How to not break SIDH. In: CFAIL 2019 (2019)
29. National Institute of Standards and Technology: Post-quantum cryptography

standardization, December 2016. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization

30. Onuki, H.: On oriented supersingular elliptic curves. Finite Fields Appl. 69, 101777
(2021)

31. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp.
330–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

32. Petit, C., Lauter, K.E.: Hard and easy problems for supersingular isogeny graphs.
IACR Cryptology ePrint Archive 2017/962 (2017)

33. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance (corresp.). IEEE Trans. Inf. Theory 24(1),
106–110 (1978)

34. Sahu, R.A., Gini, A., Pal, A.: Supersingular isogeny-based designated verifier blind
signature. IACR Cryptology ePrint Archive 2019/1498 (2019)

35. Siegel, C.L.: Über die Classenzahl quadratischer Zahlkörper. Acta Arithmetica, pp.
83–86 (1935)

36. Simon, D.: Quadratic equations in dimensions 4, 5 and more. Preprint (2005).
https://simond.users.lmno.cnrs.fr/maths/Dim4.pdf

37. Tako, B.F., Kutas, P., Merz, S.-P.: On the isogeny problem with torsion point
information. IACR Cryptology ePrint Archive 2021/153

38. Tani, S.: An improved claw finding algorithm using quantum walk. In: Kučera, L.,
Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 536–547. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74456-6 48

39. Voight, J.: Identifying the matrix ring: algorithms for quaternion algebras and
quadratic forms. In: Alladi, K., Bhargava, M., Savitt, D., Tiep, P. (eds.) Quadratic
and Higher Degree Forms, pp. 255–298. Springer, New York (2013). https://doi.
org/10.1007/978-1-4614-7488-3 10

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/978-3-319-70697-9_12
https://simond.users.lmno.cnrs.fr/maths/Dim4.pdf
https://doi.org/10.1007/978-3-540-74456-6_48
https://doi.org/10.1007/978-1-4614-7488-3_10
https://doi.org/10.1007/978-1-4614-7488-3_10

	Improved Torsion-Point Attacks on SIDH Variants
	1 Introduction
	1.1 Our Contributions
	1.2 Comparison to Earlier Work
	1.3 Outline

	2 Preliminaries
	2.1 The Supersingular Isogeny Diffie–Hellman Protocol Family
	2.2 Notation
	2.3 Quantum Computation Cost Assumptions

	3 Overview
	3.1 Hard Isogeny Problems
	3.2 Petit's Torsion-Point Attack
	3.3 Technical Preview

	4 Improved Torsion-Point Attacks
	4.1 Improved Torsion-Point Attacks
	4.2 Solving Norm Equations
	4.3 Runtime and Justification for Algorithms 1 and 2

	5 Backdoor Instances
	5.1 Backdoor Curves
	5.2 Counting Backdoor Curves
	5.3 Backdoored TEXT for Given TEXT and TEXT with Starting Vertex TEXT
	5.4 Backdoored p for Given TEXT with Starting Vertex TEXT

	6 Non-polynomial-time Attacks
	6.1 Non-polynomial Time Dual Isogeny Attack for E0: y2=x3+x
	6.2 Non-polynomial Time Frobenius Isogeny Attack for E0: y2 = x3 + x
	6.3 Non-polynomial Time Dual Isogeny Attack for Backdoor Curves

	7 Impact on Unbalanced SIDH, Group Key Agreement, and B-SIDH
	7.1 Frobenius Isogeny Attack on Group Key Agreement and Unbalanced SIDH
	7.2 Dual Isogeny Attack Applied to B-SIDH
	7.3 Impact on B-SIDH Group Key Exchange

	8 Open Question
	References

