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Preface

The 41st International Cryptology Conference (Crypto 2021), sponsored by the
International Association of Cryptologic Research (IACR), was held during August
16–20, 2021. Due to the ongoing COVID-19 pandemic, and for the second consecutive
year, Crypto was held as an online-only virtual conference, instead of at its usual venue
of the University of California, Santa Barbara. In addition, six affiliated workshop
events took place during the days immediately prior to the conference.

The Crypto conference continues its substantial growth pattern: this year’s offering
received a record-high 430 submissions for consideration, of which 103 (also a record)
were accepted to appear in the program. The two program chairs were not allowed to
submit a paper, and Program Committee (PC) members were limited to two submis-
sions each. Review and extensive discussion occurred from late February through
mid-May, in a double-blind, two-stage process that included an author rebuttal phase
(following the initial reviews) and extensive discussion by reviewers. We thank the
58-person PC and the 390 external reviewers for their efforts to ensure that, during the
continuing COVID-19 pandemic and unusual work and life circumstances, we nev-
ertheless were able to perform a high-quality review process.

The PC selected four papers to receive recognition via awards, along with invita-
tions to the Journal of Cryptology, via a voting-based process that took into account
conflicts of interest (the program chairs did not vote).

– The Best Paper Award went to “On the Possibility of Basing Cryptography on EXP
≠ BPP” by Yanyi Liu and Rafael Pass.

– The Best Paper by Early Career Researchers Award, along with an Honorable
Mention for Best Paper, went to “Linear Cryptanalysis of FF3-1 and FEA” by Tim
Beyne.

– Honorable Mentions for Best Paper also went to “Efficient Key Recovery for all
HFE Signature Variants” by Chengdong Tao, Albrecht Petzoldt, and Jintai Ding;
and “Three Halves Make a Whole? Beating the Half-Gates Lower Bound for
Garbled Circuits” by Mike Rosulek and Lawrence Roy.

In addition to the regular program, Crypto 2021 included two invited talks, by
Vanessa Teague on “Which e-voting problems do we need to solve?” and Jens Groth
on “A world of SNARKs.” The conference also carried forward the long-standing
tradition of having a rump session, organized in a virtual format.

The chairs would also like to thank the many other people whose hard work helped
ensure that Crypto 2021 was a success:

– Vladimir Kolesnikov (Georgia Institute of Technology)—Crypto 2021 general
chair.

– Daniele Micciancio (University of California, San Diego), Thomas Ristenpart
(Cornell Tech), Yevgeniy Dodis (New York University), and Thomas Shrimpton
(University of Florida)—Crypto 2021 Advisory Committee.



– Carmit Hazay (Bar Ilan University)—Crypto 2021 workshop chair.
– Bertram Poettering and Antigoni Polychroniadou—Crypto 2021 rump session

chairs.
– Kevin McCurley, for his critical assistance in setting up and managing the HotCRP

paper submission and review system, conference website, and other technology.
– Kevin McCurley, Kay McKelly, and members of the IACR’s emergency pandemic

team for their work in designing and running the virtual format.
– Anna Kramer and her colleagues at Springer.

July 2021 Tal Malkin
Chris Peikert
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A Rational Protocol Treatment of 51%
Attacks

Christian Badertscher1 , Yun Lu2(B) , and Vassilis Zikas3

1 IOHK, Zurich, Switzerland
christian.badertscher@iohk.io

2 University of Edinburgh, Edinburgh, UK
Y.Lu-59@sms.ed.ac.uk

3 Purdue University, West Lafayette, USA
vzikas@cs.purdue.edu

Abstract. Game-theoretic analyses of cryptocurrencies and—more
generally—blockchain-based decentralized ledgers offer insight on their
economic robustness and behavior when even their underpinning cryp-
tographic assumptions fail. In this work we utilize the recently proposed
blockchain adaptation of the rational protocol design (RPD) framework
[EUROCRYPT ’18] to analyze 51% double-spending attacks against
Nakamoto-style proof-of-work based cryptocurrencies. We first observe
a property of the originally proposed utility class that yields an unnat-
ural conclusion against such attacks, and show how to devise a utility
that avoids this pitfall and makes predictions that match the observ-
able behavior—i.e., that renders attacking a dominant strategy in set-
tings where an attack was indeed observed in reality. We then propose
a generic remedy to the underlying protocol parameters that provably
deter adversaries controlling a majority of the system’s resources from
attacks on blockchain consistency, including the 51% double-spending
attack. This can be used as guidance to patch systems that have suffered
such attacks, e.g., Ethereum Classic and Bitcoin Cash, and serves as a
demonstration of the power of game-theoretic analyses.

1 Introduction

The classical cryptographic analysis of blockchain ledgers establishes worst-
case guarantees on their security either by proving central security proper-
ties [GKL15,PSs17], such as consistency/common-prefix—the stable parts of the
chains held by honest parties are prefixes of one-another—liveness—new blocks
with recent transactions keep being added–or by proving that the protocol real-
izes an ideal ledger functionality [BMTZ17]. Typically such analyses rely on
an assumed limitation on the adversary’s influence/presence in the system. In
particular, the majority of an underlying resource—e.g., hashing power for proof-
of-work (PoW)-based protocols such as Bitcoin [Nak08] and Ethereum [But13]

We refer to our full version [BLZ21] for the complete formal proofs and definitions.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12827, pp. 3–32, 2021.
https://doi.org/10.1007/978-3-030-84252-9_1
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(before version 2.0), or stake in Proof-of-Stake (PoS)-based protocols such as
Algorand, Ouroboros, and Snow White [KRDO17,BGK+18,CM19,DPS19]—is
owned/contributed by parties who honestly run the protocol.

Although such an analysis is instrumental for understanding the properties
and limitations of the analyzed ledgers and gaining confidence in their security,
it does not take into account a fundamental property of such systems, namely
that the ledger’s state is often associated with some monetary value and there-
fore the protocol’s security might rely on how profitable an attack might be.
Thus, in addition to the classical cryptographic analysis of such systems, it is
useful to analyze their so-called economic robustness, namely their level of pro-
tection or susceptibility to attacks by an incentive-driven (also called rational)
attacker. Such an analysis can fortify the security of these systems by prov-
ing a fallback rational assumption, e.g., assuming an incentives model of the
attacker, security is maintained even when certain cryptographic assumptions
fail, or indicate that the proven security is fragile by pointing out natural incen-
tives that lead to violating the security assumptions. Additionally, it can offer a
higher resolution picture of the systems guarantees—e.g., its tendency to decen-
tralize [BKKS20]—and/or more realistic estimates of the parameters associated
with its security properties—e.g., relation between the density of honest blocks
(that is, the chain-quality parameter [GKL15]) and the properties of the commu-
nication network [ES14,NKMS16]. Perhaps, even more interesting, it can offer
insight on the system’s behavior when the main (cryptographic) assumption
fails, e.g., when the attacker controls a 51% fraction of the underlying resource
of the blockchain protocol.

Motivated by the recent (repeated) 51% double-spending attacks that have
drained millions of dollars from popular blockchain-based cryptocurrencies, we
devise a game-theoretic analysis of such attacks for Nakamoto-style systems, e.g.,
Bitcoin, Bitcoin Cash/Gold, Ethereum (Classic), etc. We use the adaptation of
the rational protocol design (RPD) framework by Garay et al. [GKM+13] to
blockchains, which was recently proposed by Badertscher et al. [BGM+18], to
analyze the utility of an attacker against these systems as a function of their
basic parameters.

A central question to the relevance for practice of any game-theoretic analysis
is to what extent the model and assumed utilities capture the incentives of real
world attacks. Indeed, if the utilities are disconnected from reality, they can lead
to counter-intuitive statements. We demonstrate an instance of such an artifact
in [BGM+18] and propose a different class of utilities which is both natural and
avoids this artifact. We validate our utility against a range of security parameters
matching those of Ethereum Classic, a PoW-based system that fell victim to 51%
double-spending attacks. We observe that when the payoff for double-spending
is high, attacking is indeed a dominating strategy. That is, predictions of our
utility choice match reality. We then use our framework to devise a generic tuning
of one of the core parameters of such blockchains—namely, the number cutOff
of most-recent blocks needed to be dropped to achieve the so-called common-
prefix property with parameter cutOff (cf. [BMTZ17,BGM+18,GKL15])—to
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deter any attacks on consistency by a rational attacker with our utility. Stated
differently, we show how an incentive model can serve, possibly in addition to
cryptographic assumptions, to find a robust protocol parameterization. This
thereby demonstrates how our model and analysis can be used to improve the
economic robustness of such blockchains, and offers a guide to how to “patch”
such protocols to avoid future occurrences.

1.1 Related Literature

A number of works have focused on a rational analysis of decentral-
ized ledgers and cryptocurrencies (e.g., [Ros11,CKWN16,ES14,Eya15,SBBR16,
SSZ16,LTKS15,TJS16,NKMS16,PS17,GKW+16] to mention some). Typically,
these works abstract away the computational aspects of cryptographic tools (sig-
natures, hash-functions, etc.) and provide a game which captures certain aspects
of the execution that are relevant for the rational analysis. In contrast, RPD uses
a cryptographic simulation-based framework to incorporate these computational
considerations into the analyzed game, ensuring that predictions about attacker
behavior hold for the actual protocol and not only for an idealized version (unless
the idealization is obtained via a cryptographic composition argument such as
UC). Incorporating such computational considerations within a rational treat-
ment is highly non-trivial (see [GKM+13,CCWrao20] for a discussion). We dis-
cuss the RPD framework in more detail in the following section.

The term 51% (double-spending) attack is defined in [Inv] as an attack where
the adversary gains any majority (not necessarily just 51%) of mining power and
reverses transactions in order to double-spend its coins, often by creating a deep
fork in the chain. The site CoinDesk keeps track of news of 51% attacks [Coia],
of which there are quite many: most recently, Verge suffered an attack with
200 days worth of transactions erased in Feb, 2021. Also recently, Ethereum
Classic suffered three 51% attacks in the same month of August, 2020, prompting
a solution called MESS to mitigate such attacks which still may not provide
robust security [Coib]. Other recent victims of such attacks include well-known
coins such as Bitcoin Gold (Jan 2020), and Bitcoin Cash (May 2019). A major
avenue of 51% double-spending attacks is the use of rented hash power [For].
The site https://www.crypto51.app/ gives rough estimates on the vulnerability
of different coins, based on whether 51% of hashing power can be rented via a
service called Nicehash. In some cases, e.g. Bitcoin Gold, it is estimated to only
cost a few hundred dollars to have 51% of hashing power for 1 h.

Previous works have considered the ability of blockchain protocols to recover
from 51% attacks. In [AKWW19], conditioned on honest majority being satis-
fied on expectation, Bitcoin was proven to be resilient against a (temporary)
dishonest majority. In [BGK+20], no such condition is assumed and the authors
give concrete recovery bounds as a function of the actual power of the adversary
(captured as a budget to go over majority hashing power). We use the latter work
for our analysis of the blockchain’s security against incentive-driven attackers.

The profitability of 51% double-spending attacks have also been analyzed in
previous works. The work of [Bud18] explores these attacks through an economics

https://www.crypto51.app/


6 C. Badertscher et al.

perspective, and leaving the cost of the attack as a parameter that is computed
via simulations. The work of [JL20] computes probability of attack by modeling
attacks as random walk of two independent Poisson counting processes (PCPs).
In comparison, our rational analyses are done in the Rational Protocol Design
(RPD) framework, where a fork is formally defined as a command in a UC
ledger functionality. Another technique proposed is the Markov Decision Process
(MDP) model, which is used by both [GKW+16] and [HSY+21]. In this model,
the adversary takes a series of actions relevant to double-spending: adopting or
overriding the honest party’s chain, waiting, or stopping. Solving the MDP allows
these works to reason about the optimal double-spending adversary. While we do
not analyze an optimal double-spending adversary, our model is more general.
We do not restrict the actions of the adversary, which allows us to analyze
conditions under which the protocol is secure against attacks on consistency by
any incentive-driven adversary. Moreover, since standard MDP solvers cannot
solve infinite state MDPs, the MDP is restricted to only consider situations
where the chain length is less than some length c [GKW+16].

1.2 Our Results

We start by devising a utility in RPD which naturally captures the incentives of
an attacker to provoke a double-spending attack. To this direction, we observe
that the utility considered in [BGM+18] does not capture such an incentive.
Intuitively, the reason is that the utility in [BGM+18] essentially only consid-
ers incentives related to the consensus layer of the protocol. This means that
an attacker is rewarded when successfully mining a block, but is not rewarded
depending on the block contents—i.e. what kinds of transactions are in the
block. Their extension to a utility function to include transaction fees does not
apply to double-spending attacks. In this case, the (only) reason to attack the
blockchain stems from the existence of a super-polynomial transaction fee, and
assuming a moderate range of fees, no incentive to attack is present. We discuss
why super-polynomial quantities are generally problematic in Sect. 4. It follows
from [BGM+18] that the attacker with these utility functions (and assuming
moderate transaction fees) has no incentive to fork over mining honestly. Yet,
looking at real-life double-spending attacks, this is clearly not the case. To cap-
ture double-spending, we introduce a special payoff that the attacker receives
when successfully creating a deep-enough fork (i.e., orphans a sufficiently long
valid chain). Intuitively, this payoff corresponds to the utility that the attacker
receives when it double-spends by replacing the orphaned chain with his own.

Perhaps counter-intuitively, when analyzing Bitcoin1 with this extended util-
ity function, the attacker is still indifferent between forking and honest mining.
We demonstrate this artifact and pinpoint the reason for it: Intuitively, the utility
function from [BGM+18] (with or without the extra payoff for forking) rewards

1 Our analysis uses Bitcoin as a representative example of Nakamoto-style
blockchain ledgers, but similarly any blockchain protocol which realizes the ledger
from [BMTZ17,BGK+18] could be analyzed.
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the attacker by the same amount in all rounds in which it creates (mines) a
block. This means that given any adversary that provokes a fork, there is always
an honest-mining adversary who achieves more utility without forking by simply
accumulating block rewards over a longer period of time. We distill the source
of this issue in a property which we call unbounded incentives, and demonstrate
that any utility which satisfies this property will make any deviation from passive
mining a weakly dominated strategy.

We then devise a revision of this utility class which allows us to avoid the
above counter-intuitive artifact. This utility, which satisfies a property we term
limited horizons—a strong negation of unbounded incentives—has the property
that the (actual) rewards of an adversary mining a block diminish with time. This
is a natural way to avoid reasoning about extremely “long-lived” adversaries, i.e.,
that take decisions based on payoffs too far in the future, and captures features
which are well-known in utility theory [Ber54]—intuitively, earning $10 today is
more attractive than $1 million in 100 years, an example of the “St. Petersburg
Paradox”. We next turn in analyzing the profitability of 51% double-spending
attacks, by showing how our revised utility can actually capture them. We pro-
vide a range of payoffs for double-spending which would incentivize an attack.
Then we visualize our result using concrete parameters estimated from those of
Ethereum Classic, for which performing the attack is indeed a dominant strat-
egy. This demonstrates that the above result can explain, in a game-theoretic
framework, how recent victims of 51% attacks are vulnerable.

Finally, we discuss whether and how the blockchain protocol can be tuned
so that such 51% double-spending attacks are deterred. In fact, we provide a
much stronger tuning, which deters attacks on consistency by any incentive-
driven adversary. The tuning depends on the costs (e.g. electricity or cost to rent
hashing power), positive payoffs (e.g. block rewards and payoff for causing a fork,
from double-spending or otherwise), and protocol parameters (e.g. the difficulty
of creating a block). Intuitively, for any combination of these parameters, we
show how the window size of the underlying blockchain protocol can be adjusted
so that it is not rational for the attacker to perform this attack. At the core of
this results is a lemma that relates the incentive model to an attack pattern,
which coupled with the self-healing properties of Nakamoto-style PoW, leads to
the desired estimate of a safe parameter. We view this as a demonstration that
game theory can aid us in fortifying blockchains even when assumptions made
by the cryptographic analyses fail.

2 Preliminaries

2.1 The Bitcoin Backbone Protocol

The abstraction of the Bitcoin protocol that is used in the cryptographic litera-
ture is known as the Bitcoin backbone protocol [GKL15,PSs17,BMTZ17] which
we denote by ΠB. In this abstraction, Bitcoin is modeled as a round-based pro-
tocol, where a number of participants (the miners) are connected via a multicast
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network with bounded delay Δ (unknown to the protocol). In every round, each
party adopts the longest chain C = B0|| . . . ||Bk of block Bi (connected by hash-
pointers) it has received so far, where B0 is the unique genesis block of the
system. Each party tries to extend this longest chain an by additional block, via
running the PoW-lottery: an extension of chain C by a new block Bk+1 can only
be valid, if its hash H(Bk+1) belongs to a dedicated small portion of the output
domain of the function (typically, the hash must have a lot of leading zeros). In
such analyses, the hash function is modeled using a random-oracle functionality
FRO that returns uniform values upon each query. Therefore, when extending
the chain, each party makes a certain number of mining queries per round (that
is, RO-queries with candidate blocks Bk+1 containing a random nonce to obtain
the hash) and we call a mining query successful, if the output is below the thresh-
old. In the setting with fixed PoW difficulty, we can assign a success probability
p to each such mining query. Finally, if a miner is successful, it will send the new
chain over the multicast network to all other miners.

Cryptographic Security. The main security guarantee2 proven for the Bitcoin
protocol is eventual consistency: every block that is deep enough can be con-
sidered immutable and only the most recent, cutOff number of blocks might
be transient. This cutOff-consistency (where the cutoff parameter is often left
implicit if clear from context) guarantee states that at any point in time, the
prefix of C consisting of |C| − cutOff blocks is common to all honest miners:

Definition 1 (Consistency). Let C1 � C2 denote the prefix-of relation, then
the consistency guarantee (with parameter cutOff) states that at any two points
in time a ≤ b in an execution, where party P at round a holds chain C1 and party
P ′ at round b holds chain C2, we have that C1|cutOff � C2, where the notation C|k
denotes the prefix of C obtained by removing the most recent k blocks (and if k
exceeds the length of C, it is defined to correspond to the genesis block).

In the cryptographic setting (without incentives), such a guarantee only holds
if we restrict the adversary to have a minority of mining power. That is, given
n
(r)
a and n

(r)
h denote the numbers of adversarial and honest mining queries in

round r, respectively, then the protocol ΠB is secure if in any round r the
inequality n

(r)
a < θpow · n

(r)
h holds, with θpow := (1 − p)(2Δ+1)Tub being the

well-established security threshold for Bitcoin (often stated in its linear approx-
imation 1 − 2(Δ + 1)pTub) [GKL15,PSs17,BMTZ17], where the quantity Tub
denotes the upper bound on the number of mining queries per round. Through-
out this work, we work in the so-called flat model of Bitcoin for notational sim-
plicity [GKL15,BGM+18], where each miner gets one mining query per round
(and the adversary’s power is the number of corrupted miners). We note that
sometimes it is convenient to assume a lower bound Tlb on the number of mining
queries (a.k.a. participation) per round, in particular when arguing about the

2 While other security guarantees exist, such as chain quality, our focus in this paper
is consistency.
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guaranteed growth of the blockchain over time in combination with the security
threshold. Finally, we point out that even if there are no adversarial players, an
upper bound Tub on the number of queries is necessary for security in the fixed
difficulty setting, when aiming for a common prefix guarantee for some target
parameter cutOff. As the failure probability of Bitcoin becomes negligible as a
function of cutOff (more precisely, the relevant factor is of the order 2−Ω(cutOff)),
we often treat it as a (of course polynomial-bounded) function cutOff(κ) of a
security parameter κ, and (in symbolic notation) cutOff = ω(log(κ)) is at least
required to obtain a negligible probability of a failure.

Bitcoin Backbone and UC. The RPD framework is based on the UC framework.
As such, the above Bitcoin backbone protocol ΠB is seen as a UC protocol as
in [BMTZ17], where it is proven to UC-realize a strong transaction ledger func-
tionality Gledger under the honest majority assumption. We give here just the
explanation of how the ideal consistency guarantee looks like: the functionality
Gledger ensures that at any point in time, there is only one unique ledger state
(sequences of transactions packed in blocks), where the state is append-only (that
is, whatever appears as a block in the state is immutable). Furthermore, different
honest parties see different prefixes of this state, with the guarantee that these
views are increasing and within a window of windowSize (a ledger parameter)
blocks from the tip of the state. Note that the cut-off parameter of Bitcoin cor-
responds exactly to the size of that window in the realized ledger Gledger. More
precisely, whenever Bitcoin satisfies Definition 1, then the above mentioned cor-
respondence holds and the ledger state is a single chain of blocks [BMTZ17].

In UC, the protocol ΠB assumes a couple of hybrid functionalities. First, the
round-based structure is achieved using UC-synchronous tools (assuming a clock
functionality), a network, and a random oracle, where restrictions on the mining
queries can be captured by functionality wrappers restricting the number of RO
evaluations, e.g. [BMTZ17,GKO+20]. One extremely helpful aspect of UC in the
context of RPD is the compatibility with the composition theorem [GKM+13].
In this work this is leveraged as follows. The Bitcoin backbone ΠB admits a
modular structure that isolates the lottery aspect as a submodule of the system.
Technically, the proofs in [BMTZ17,PSs17] show that whenever the PoW-lottery
UC-realizes the state exchange functionality FStX (in [PSs17] the related concept
is called Ftree), the Nakamoto-style longest chain rule protocol (under the above
honest-majority security threshold) realizes the ledger. This intermediate step is
important due to two things: first, it models an idealized mining process where
each mining query is an independent Bernoulli trial with success probability
p (and hence abstracts away those real-life negligible probability events that
would destroy independence), and second it abstracts away the low-level details
of the chain structure (where e.g., “hash collisions” could cause disruptions). It
is proven in [BMTZ17] that the proof-of-work layer of Bitcoin (in the random
oracle model) UC-realizes FStX. Moreover, since it only abstracts the lottery
part of the system, this realization does not depend on any security threshold.
We can therefore leverage composition when analyzing the utilities of Bitcoin
and work with the idealized lottery directly.
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2.2 Rational Protocol Design

The Rational Protocol Design framework (RPD) allows us to analyze the security
of the blockchain without assuming honest majority. Although consistency and
other security properties are lost if an attacker can arbitrarily break honest
majority, assuming attackers are rational offers an alternate method of limiting
his actions. That is, although the attacker is free to act in any way (e.g. corrupt
more than majority hashing power), he will only do so if it is profitable. Building
on [BGM+18], our analysis is based on the Rational Protocol Design (RPD)
framework introduced in [GKM+13]. RPD analyzes the security of protocols,
such as Bitcoin, with respect to an incentive-driven adversary. In this model,
a protocol designer D plays an attack game G with an attacker A. First, the
designer D comes up with a protocol Π. Then, the attacker A—who is informed
about Π—comes up with an adversarial strategy A to attack Π. The utility of
the attacker (resp. designer) is then defined on the strategy profile (Π,A), and
is denoted uA(Π,A) (resp. uD(Π,A)). In this work, we focus on the attacker’s
utility uA(Π,A).

The game G is defined with respect to an attack model M = (F, 〈F〉, vA, vD).
F is the functionality which the designer would like to implement such as a
ledger that provides certain ideal guarantees as described above. However, when
certain assumptions, e.g. honest majority for Bitcoin, are not met (which as
stated above we explicitly do not want to demand a priori), we cannot hope
to get F. Instead, the designer D’s protocol Π (in our case, the Bitcoin proto-
col ΠB) only implements a weaker functionality. This weaker functionality that
Bitcoin implements when lifting the honest majority assumption is proven to be
GB
weak-ledger in [BGM+18] and provided in our full version [BLZ21] for complete-

ness. Intuitively, the weak ledger is derived from the stronger version [BMTZ17]
by introducing a few weaknesses. For example, it allows the adversary to fork
the ledger state and hence allows it to break consistency (this event corresponds
to a deep reorganization of the blockchain in the real world). This is allowed
by the fork command in GB

weak-ledger. Given the views of the simulator and
environment in an ideal world execution, the value functions vA and vD assign
payoffs to the attacker and designer respectively, when certain events happen
in the views, such as when the simulator forks the blockchain via GB

weak-ledger.
Finally, utilities uA and uD are functions of payoffs (defined with vA and vD) of
simulators that can simulate A in Π in the environment Z. Looking ahead,
the goal of RPD is to find conditions under which a rational attacker would not
invoke the weaknesses of GB

weak-ledger (e.g., it is too costly to perform an attack).
For example, if under a class of utilities, no rational attacker invokes the fork
command, then we essentially obtain a stronger ledger (i.e., the same except
that this command is absent and hence the ledger state remains a unique chain)
against attackers incentivized by this class of utilities.
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2.3 Utility of the Attacker From [BGM+18]

We detail the attacker’s utility in [BGM+18], which in the RPD framework
captures the expected payoff of a particular adversarial strategy A in a given
protocol Π (in our case Π = ΠB). This payoff is calculated based on different
events that occur in the real execution and the corresponding ideal experiment
where a black-box simulator is attempting to simulate this adversarial strategy.

Specifically, the work of [BGM+18] considers the following events:

1. Event W A
q,r, for each pair (q, r) ∈ N

2: The simulator simulates q mining queries
by the adversary in round r of the simulated execution.

2. Event IAb,r, for each pair (b, r) ∈ N
2: The simulator inserts b blocks into the

state of the ledger in round r, such that all these blocks were previously
queries to the (simulated) random oracle by the adversary. Informally, this
event occurs when an honest party views these blocks as “confirmed” (part
of his own ledger state).

A different payoff is associated with each event. In order to make q mining
queries and invoke event W A

q,r, the attacker must pay q · mcost, where mcost is
the cost of making a mining query (e.g. electricity cost per hash query). When b
blocks made by the adversary are inserted into the ledger and event IAb,r occurs,
the attacker receives payoff b · breward · CR. Here breward is the reward for
making a block in the currency of the blockchain (e.g. Bitcoins), and CR is an
exchange rate to the same currency used for mcost (e.g. USD).

Then, [BGM+18] defines the following attacker’s utility for a strategy profile
(Π,A). Let CA denote the set of simulators that can emulate an adversary A in
the ideal world with access to the weaker ledger functionality GB

weak-ledger, and Z
denote an environment. The real payoff of an adversary A attacking the protocol
is defined as the minimum payoff over all simulators in CA . If CA = ∅ (there are
no simulators that can simulate A) then uA(Π,A) = ∞ by definition. Then, the
utility uA(Π,A) is the real payoff, maximized over all possible environments Z
(we assume for simplicity that environments are closed and run in polynomial
time in the security parameter [Can01]).

uA(Π,A) := sup
Z∈ITM

{
inf

SA ∈CA

{ ∑
(b,r)∈N2

(
b · breward · CR · Pr[IAb,r]

)
(1)

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

}}
.

The work of [GKM+13] introduces the following notion of security against
incentive-driven adversaries: No matter the utility achieved by an adversary A
running the protocol Π in the real world, there exists an adversary A′ running
the dummy protocol with access to the ideal functionality F that achieves the
same or better utility. In other words, even the best adversary attacking Π,
cannot achieve better utility than one who does not invoke any of the “bad
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events” in 〈F〉. Note that here F can be any strengthening of its weaker version.
For example, the weak ledger without the option to break consistency would be
a strengthening of GB

weak-ledger in which case attack-payoff security implies that
there is no incentive (even for a majority-controlling adversary) to create a fork
(that is, a deep reorganization) even though he technically could be able to.

Strictly speaking, the utilities are also functions in the security parameter κ
(the environment obtains the parameter as input in UC) but we omit it for
notational simplicity. We note that as functions in the security parameter κ, the
asymptotic behavior of the involved functions is the relevant aspect.

Definition 2 (Attack payoff security [GKM+13]). Let M = (F, 〈F〉, vA, vD)
be an attack model inducing utility uA, and let ΦF be the dummy F-hybrid proto-
col. A protocol Π is attack-payoff secure for M if for all A, there is an A′ such
that uA(Π,A) ≤ uA(ΦF ,A′) + negl(κ)

This notion of attack-payoff security does not necessarily mean an incentive-
driven adversary will honestly follow the protocol—there is no restriction on the
honestly of the actions of A′ in the above definition. To capture this stronger
requirement in the context of Bitcoin, we also consider a stronger notion intro-
duced by [BGM+18]: the attacker is incentivized to always choose a front-
running, passive-mining adversary over any (potentially malicious) strategy.
Informally, this passive adversary behaves exactly like an honest party (min-
ing with all his hashing power and releasing a block he has found immediately),
except the adversary’s messages are always delivered before the honest par-
ties’ (front-running). Front-running gives the adversary an advantage since if an
adversary’s block is concurrently competing with an honest party’s block to be
appended to the longest chain, the adversary always wins.

Definition 3 (Front-running, passive-mining adversary [BGM+18]). The
front-running adversarial strategy A ∈ Afr is specified as follows: Upon activa-
tion in round r > 0, A activates in a round-robin fashion all its (passively)
corrupted parties, say p1, . . . , pt. When corrupt party pi generates some new
message to be sent through the network, A immediately delivers it to all its recip-
ients. In addition, upon any activation, any message submitted to the network
FN-MC by an honest party is maximally delayed.

ΠB was proved to be strongly attack-payoff in [BGM+18] for the utility in
Eq. 1. Informally, a protocol is strongly attack-payoff secure if there is always a
passive adversarial strategy that is at least as good as any malicious strategy.
In this work, we are also interested in the case where security does not hold:
we say an adversary A breaks strong attack-payoff security if uA(Π,A) exceeds
uA(Π,A′) for any A′ ∈ Afr, by a non-negligible amount.

Definition 4 (Strongly attack-payoff secure [BGM+18]). A protocol Π is
strongly attack-payoff secure for attack model M if there is a A′ ∈ Afr such that
for all A, uA(Π,A) ≤ uA(Π,A′) + negl(κ)
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In our work, we will follow the approach from [BGM+18] that simplifies the
proofs when analyzing the utilities from mining in the protocol ΠB by utiliz-
ing the composition theorem of RPD. As explained above, instead of analyzing
the probabilities of payoff-inducing events for ΠB which uses the random ora-
cle as the lottery, one can analyze probabilities for the modular ledger protocol
w.r.t. an idealized lottery that makes use of the state exchange functionality
FStX (for completeness, defined in full version [BLZ21]). In more detail: when
a party (or the adversary in the name of a corrupted party) wishes to extend a
chain, they would invoke FStX with a submit-new command, which performs
a coin toss and informs him whether he is successful. If the party is successful,
the functionality includes this new chain into a tree data structure and allows
the party to multicast this new chain with a send command; this multicasting is
done automatically for honest parties. Due to the correspondence of RO queries
in the Bitcoin protocol and the submit-new-commands in the modularized Bit-
coin protocol [BMTZ17], the events defined for uB

A (Π,A) (for the full Bitcoin
protocol) above remain valid and meaningful also in this hybrid world, because
the black-box simulator for the overall Bitcoin protocol simulates one RO-query
(as a reaction to an input by a corrupted party) whenever the (black-box) sim-
ulator for the modular ledger protocol simulates one submit-new-command, as
a reaction to the corresponding input by the same party [BGM+18].

3 Artifacts of Unbounded Incentives

In this section, we discuss an artifact of the utility function Eq. 1, which we
will eliminate in the next section. Concretely, we prove that this RPD utility is
inappropriate to capture the most realistic situation of attackers that attack the
system, e.g., attempt a fork to profit from double-spending. To do so, we prove
Lemma 1 and 2, which roughly show this surprising fact: if running the pro-
tocol (semi-)honestly is profitable in expectation, then there is no incentive for
an adversary to fork. The intuitive reason for this is clear: Any fixed payoff for
forking incurred by the adversary can be offset by an adversary who runs slightly
longer (and still polynomially long) but does not fork. This, however, is an arti-
fact of the asymptotic definition and does not reflect real-world incentive-driven
attack scenarios, where mining is anticipated to be profitable—otherwise no one
would mine—but attackers still perform forking attacks (in particular, in order
to double-spend coins). We distill a property of the utility from [BGM+18] that
is the reason this artifact, which we call unbounded incentives, and prove that
any utility satisfying this property will suffer from the same artifact. Looking
ahead to the following section, we will propose a natural adaptation of this util-
ity function that does not suffer from the above artifact (and where in particular
the duration of an attack actually starts to matter).

3.1 Demonstrating the Artifact

Let us first consider the straightforward adaptation of the utility from Eq. 1 to
model the payoff (e.g. double-spending) an adversary gains by forking the ledger.
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Define the event K as: There is a round r where the simulator uses the fork
command of the weak ledger functionality GB

weak-ledger (see [BLZ21] for formal
definition) that allows the simulator to invoke a fork. Let fpayoff be the payoff
for invoking the fork. Then, the utility uf becomes:

uf(Π,A) := sup
Z∈ITM

{
inf

SA ∈CA

{ ∑
(b,r)∈N2

b · breward · CR · Pr[IAb,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r] + fpayoff · Pr[K]

}}
. (2)

Below, we show that for the utility function uf above, the Bitcoin protocol ΠB

is strongly attack-payoff secure as long as mining is profitable. Our proof takes
advantage of the artifact of unbounded incentives: informally, first we show that
the payoff of any polynomial-run-time adversary A is bounded by a polynomial
p(κ) of the security parameter; then, we show that there is a passive, front-
running adversary whose run-time is also polynomial (albeit bigger than that of
A), and who achieves at least p(κ) utility.3

Lemma 1 (Attack payoff security with forking). Let Tub > 0 be the upper
bound on total number of mining queries per round, p ∈ (0, 1) be the proba-
bility of success of each mining query, and cutOff = ω(log(κ)) be the consis-
tency parameter. Let M be a model whose induced utility uf has parameters
fpayoff, breward, CR, mcost ≥ 0. The Bitcoin protocol ΠB is strongly attack-
payoff secure in M if p · breward · CR − mcost > 0.

3.2 A First Attempt to Eliminate the Artifact

Although we proved that Bitcoin is strongly attack payoff secure even with a
payoff for forking, this is actually not a good sign, as this result does not reflect
reality. In reality, attackers do fork blockchains to gain profit via e.g. double-
spending transactions. Thus, the fact that we can prove Lemma 1 means that
there must be a problem with our assumptions.

Why were we able to prove Lemma 1? It turns out the utility function we
used has the weakness that it considers an attacker who does not care about
the ephemeral payoff for forking—he can simply obtain more utility via block
rewards if he just put in a bit more hashing power for mining. Thus, somewhat
counter-intuitively, to model incentives for forking attacks, we must consider
utilities that limit the amount of mining an attacker can do.

A first natural instinct may be to incorporate in the utility the (often sub-
stantial) initial investment (e.g. cost of buying mining rigs) an attacker must
3 We note that for the simple utility function presented in [BGM+18] other proof tech-

niques could conclude attack-payoff security without the runtime-extension argu-
ment. The main point here is to demonstrate the importance of considering the
attack duration in the utility function.
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make before being able to participate in the blockchain protocol. This turns out
to be not only a natural extension, but also a very simple one. Concretely, we
capture this investment as cost of party corruption: in order to use party for
mining, the adversary needs to corrupt him, which corresponds to acquiring its
mining equipment. Formally, for each g ∈ N define CA

g as follows: The maximum
number of corrupted parties at any round is g. Let ccost(g) be the cost of event
CA

g , i.e. corrupting g parties. Then we define the utility function:

uf,c(Π,A) := sup
Z∈ITM

{
inf

SA ∈CA

{ ∑
(b,r)∈N2

b · breward · CR · Pr[IAb,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

+ fpayoff · Pr[K]

−
∑
g∈N

ccost(g) · Pr[CA
g ]

}}
. (3)

Interestingly, as we see below, this natural extension is still insufficient to
align the model with the reality that forking attacks occur. Indeed, even with
this additional cost, we can still prove a result similar Lemma 1. Concretely, the
following lemma shows that for uf,c above, we can prove the statement as the
one in Lemma 1 about ΠB being attack-payoff secure by again exploiting the
artifact of unbounded incentives.

Lemma 2 (Attack payoff security with forking, with cost of corrup-
tion). Let Tub > 0 be the upper bound on total number of mining queries
per round, p ∈ (0, 1) be the probability of success of each mining query,
and cutOff = ω(log(κ)) be the consistency parameter. Let M be the model
whose induced utility uf,c has parameters fpayoff, breward, CR, mcost ≥ 0,
ccost(·) : N → R

+. The Bitcoin protocol is strongly attack-payoff secure in
M if p · breward · CR − mcost > 0.

3.3 The Source of the Artifact: Unbounded Incentives

Distilling the issue in above lemmas, we observe that that as long as the adversary
keeps accumulating rewards as rounds are added to the protocol—i.e., mining
remains profitable—he does not care about the payoff for forking: there always
exists a polynomial-time, passively mining strategy that simply gains the same
amount of utility by mining a bit more. However, not only do real-life attackers in
fact profit from forks, even the assumption on the profitability of mining forever
is unrealistic: any attacker is at least limited in time by e.g. the anticipated age
of the universe, and cannot, in practice, keep accumulating utility in perpetuity.

Thus, to make accurate prediction about the attackability of a blockchain
protocol the utility function must exclude the eternal profitability of passive min-
ing. We generalize this intuition, by defining the notion of unbounded incentives:



16 C. Badertscher et al.

a utility function has unbounded incentives if there is an adversarial strategy
A ∈ Afr such that for any polynomial h(κ), A can gain better payoff than h(κ).
(Conversely, we will say that a utility has bounded incentives if there is no such
passive adversary.).

It is straighforward to verify that the utilities we have seen so far have
unbounded incentives, which explains the effect of the artifact exploited in the
above lemmas. In fact, in the following there is a simple argument for a generic
statement about the strong attack-payoff security of utility functions that have
unbounded incentives.

Lemma 3. Let M be a model inducing a utility function uA. Assume for any
adversary A, in any real execution of the protocol his payoff is polynomially-
bounded.4 If uA has unbounded incentives for a protocol Π, then Π is strongly
attack-payoff secure for M.

4 An RPD Analysis of Forks

In this section, we will tune our utility function to avoid the issue of unbounded
incentives isolated in the previous section. A straw man approach would be to
make fpayoff a super-polynomial function of the security parameter. But this
would imply a very unnatural assumption, which, intuitively, corresponds to
ensuring that the polynomially-bounded adversaries are always incentivized to
fork. This would have the opposite effect and introduce a different artifact: it
would make attack-payoff security impossible, and making a 51% attack always a
dominant strategy no matter the systems parameters, contradicting the observ-
able fact that many blockchains have not fallen to 51% attacks.

Instead, we make breward a function of time, which captures e.g., inflation,
or simply that the adversary only plans to stay in the system for a limited
amount of time. We refer to this adaptation of uf,c as ubuy:

ubuy(Π,A) := sup
Z∈ITM

{
inf

SA ∈CA

{ ∑
(b,r)∈N2

b · breward(r) · CR · Pr[IAb,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

+ fpayoff · Pr[K]

−
∑
g∈N

ccost(g) · Pr[CA
g ]

}}
. (4)

We also define a version of this utility urent (formally defined in full ver-
sion [BLZ21]), which models the attacker renting hashing queries by replacing

4 This is true for the utility function uB
A in Eq. 1 (as well as the utility functions we

will consider)—no adversary can get payoff that is superpolynomial in the run time
of the execution.
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mcost with parameter rcost (rent cost) and setting ccost(·) = 0. Renting espe-
cially has been observed in real attacks, such as the August 2020 attacks on
Ethereum Classic [For].

Note that while breward is a function of time, we let the cost of a mining
query, that is mcost/rcost, remain constant. We do so to model the attacker’s
anticipated monetary budget to launch and maintain an attack, such as the costs
for renting a certain amount of hashing power (which are generally paid up-
front), or cost of electricity (which realistically appears to be relatively stable).
Further, the parameter fpayoff should be seen as an abstract excess payoff
for the attacker arising from forking that is able to capture various use-cases.
In the prototypical (double-spend) example where the attacker sells some coins
for fiat currency and later tries to regain the coins with a successful attack, it
corresponds to this extra fiat inflow gained prior to attacking the blockchain.
We note that the utility functions could be tweaked to allow for all parameters
to be time-dependent without changing the results qualitatively as long as the
relations among the parameters required by the definitions and theorems (which
are time-dependent in our treatment already) still hold.

To capture realistic utilities, we restrict to instances of our utility function
which satisfy what we call limited horizons (Definition 5). Roughly, limited hori-
zons constrains utilities by requiring that passive mining eventually becomes
unprofitable. Recall that in light of the St. Petersburg Paradox discussed in
the introduction, rational parties become increasingly reluctant to invest some
monetary budget for potential rewards gained only later in a randomized process
(e.g. due to uncertainty about the future or other specific utility-relevant consid-
erations like relative inflation between several quantities). We cast this general
idea as a rather simple condition based on our utility function.

After defining limited horizons, in Sect. 4.1, we will first address a techni-
cal challenge imposed when payoff-parameters in the utility functions are non-
constant. Then, in Sect. 4.2 we show that limited horizons implies bounded
incentives (i.e., the opposite of unbounded incentives) through Lemma 5. More
precisely, limited horizon is a strong negation5 of unbounded incentives. Looking
ahead, we will prove that when utilities have limited horizons, there is always a
large enough payoff for forking such that (strong) attack-payoff security is bro-
ken. Informally, a utility function ubuy (resp. urent) has limited horizons if there
is a time limit after which passive mining becomes unprofitable.

Definition 5 (Limited Horizons). We say ubuy in Eq. 4 (resp. urent, for-
mally defined in our full version), parameterized by breward(·) : N → R≥0,
mcost, fpayoff ≥ 0, and non-decreasing function ccost(·) : N → R≥0 (resp.
breward(·) : N → R≥0, rcost, fpayoff ≥ 0) satisfies limited horizons (resp.
limited horizons with renting) if breward(·) is a non-increasing function such
that ∃x ∈ N : p · CR · breward(x) < mcost.

5 Note that the strong negation of an assertion A is one which implies ¬A, but is not
necessarily implied by ¬A.
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Remark. Technically, urent is a special case of the case of ubuy (since the utilities
are the same if we set mcost = rcost and set ccost(·) = 0); however seman-
tically they are different: rcost represents the cost of renting a hashing query,
which usually is much higher than mcost which represents the cost (e.g. elec-
tricity) of an adversary mining with his own equipment. Nevertheless, to reduce
redundancies in the technical sections, we will analyze the utility ubuy in Eq. 4
(with a general ccost(·), including when ccost(·) = 0), and state the results for
the renting case as corollaries.

4.1 Addressing Technical Issue of Non-constant Payoff for Block
Rewards

In this section, we address a technical issue with considering a non-constant
breward—recall that in limited horizons, breward is a non-increasing function
of time/round number. By our definition (which follows that of [BGM+18]),
the event IAb,r happens when b blocks are placed into the ledger of some honest
party. This is intuitive—the block reward should be given only when the block
is “confirmed” to be in the ledger. However, there is a delay between when
a block is broadcasted, and when it makes it into the common prefix of an
honest chain. This delay is a random variable which depends on the amount
of (honest and corrupt) hashing power in the protocol, the network delay, and
the adversary’s strategy. Fortunately, we can lower and upper bound such a
delay (which we denote by tlb, tub respectively), as we show in the following
lemma. This will in turn allow us to avoid the complication of analyzing when
blocks enter the ledger state and instead analyze when locks broadcasted by
the adversary to honest parties (whose events are easier to analyze). Note that
we choose to analyze time-of-block-broadcast, instead of time-of-block-creation,
since the adversary may choose to withhold successfully-mined blocks instead
of broadcasting them immediately, making time-of-broadcast more suitable for
incorporating such adversarial strategies.

We first define a useful quantity tΔδ (q). As we will see, this quantity, which
is derived from the chain growth property of Nakamoto-style blockchains, is the
maximum time for honest chains to grow by cutOff blocks, given that in each
round there are at least q honest mining queries.

Definition 6 (Maximum time to grow cutOff blocks). For network delay
Δ, and p, δ ∈ (0, 1), we denote tΔδ (q) := cutOff

(1−δ)γ , where γ := h
1+hΔ and h :=

1 − (1 − p)q.

Let tlb := 0 and tub := tΔδ (Tub). Let BA
b,r denote the event: At round r, the

adversary broadcasts b blocks made by parties that are corrupted at the time
of the blocks’ creation, and which are part of the longest chain at round r. Let
uh
buy be ubuy except

∑
(b,r)∈N2 b ·breward(r) ·CR ·Pr[IAb,r] (which considers time of

block confirmation) is replaced with
∑

(b,r)∈N2 b · breward(r + tlb) · CR · Pr[BA
b,r]

=
∑

(b,r)∈N2 b·breward(r)·CR·Pr[BA
b,r] (which considers time of block broadcast).
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Similarly, let ul
buy replace the same term in ubuy with

∑
(b,r)∈N2 b · breward(r +

tub) · CR · Pr[BA
b,r]. (See full version [BLZ21] for formal definitions.)

The following lemma tells us that instead of analyzing the utility function
defined on when a block is confirmed in the ledger we can instead approximate
by only analyzing when a block is broadcasted. This will be helpful in our proof
of Lemma 5 on the utility of the optimal front-running, passive adversary.

Lemma 4 (Translating time-of-block-confirmation to time-of-block-
broadcast: uh

buy and ul
buy). For any utility function satisfying limited horizons

(in fact, we only require that breward(·) is a non-increasing function), satisfies
the following: For all adversaries A, and front-running, passive A′,

ubuy(ΠB,A) ≤ uh
buy(Π

B,A) + negl(κ) and

ubuy(ΠB,A′) + negl(κ) ≥ ul
buy(Π

B,A′).

Proof. The first inequality is obvious: By limited horizons, giving block rewards
using time-of-block-broadcast (i.e., uh

buy) gives the attacker a higher payoff.
The second inequality: Let the environment be one which maintains Tub

parties in each round after r. The bound follows then from the chain-growth
lower bound which states the minimum chain length increase during a time
period, depending on the honest parties’ hashing power and the network delay
(cf. [BMTZ17,PSs17]). This concludes the proof. ��

4.2 Optimal Utility of Front-Running, Passive Adversaries

We show in this section if a utility satisfies limited horizons, then it also satis-
fies bounded incentives. We do so by proving the following optimal utility of a
passive, front-running adversary. We define uh

honest and ul
honest which, as we will

see in Lemma 5 below, are the upper and lower bounds on the optimal utility
obtained by a front running, passive adversary in ΠB.

Definition 7 (Bounds uh
honest and ul

honest for optimal front-running, pas-
sive adversary). We define the quantity

uh
honest(breward, CR, mcost, ccost)

:= g · p · CR ·
t∑

x=1

[breward(x + tlb) − mcost] − ccost(g)

with

t := arg max
x∈N

(p · CR · breward(x + tlb) ≥ mcost),

g := arg max
g∈[0,Tub]

(mg − ccost(g)) ,

for m :=
t∑

x=1

(p · CR · breward(x + tlb) − mcost) ,
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and the quantity

ul
honest(breward, CR, mcost, ccost)

:= g · p · CR ·
t∑

x=1

[breward(x + tub) − mcost] − ccost(g)

with

t := arg max
x∈N

(p · CR · breward(x + tub) ≥ mcost),

g := arg max
g∈[0,Tub]

(mg − ccost(g)) ,

for m :=
t∑

x=1

(p · CR · breward(x + tub) − mcost) .

We simplify the above upper and lower bounds on the optimal front-running,
passive adversaries as uh

honest and ul
honest, when the parameters to the utility

function are clear from context. As discussed before, although we prove the
optimal passive adversary for ubuy, the renting case for utility urent is a direct
corollary by setting ccost(·) = 0 and mcost = rcost.

Intuitively, the following lemma is established by proving that (1) due to
limited horizons, there is a fixed time t after which an optimal passive adversary
will not mine, and (2) it is optimal for a passive adversary to corrupt parties
statically. Then, we can re-write the utility of a front-running, passive adversary
as a function of his running time t, and the number of parties he corrupts g.
Optimizing for t and g gives us the optimal utility of this passive adversary.

Lemma 5 (Optimal utility of a front-running passive adversary, for
incentives with limited horizons). Let Tub > 0 be the upper bound on total
number of mining queries per round, p ∈ (0, 1) be the probability of success of
each mining query, and cutOff = ω(log(κ)) be the consistency parameter. Given
parameters such that ubuy satisfies limited horizons and protocol ΠB, for A the
optimal adversary in Afr, ubuy(ΠB,A) ≤ uh

honest + negl(κ) and ubuy(ΠB,A) +
negl(κ) ≥ ul

honest

This lemma directly implies that any utility with limited horizons also has
bounded incentives.

5 Analyzing 51% Attacks

We can now utilize our above framework to analyze one of the most common
types of forking attacks, known as 51% double-spending attack [Inv]. We analyze
a range of parameters for utility functions with limited horizons, for which a 51%
double-spending adversary breaks the strong attack-payoff security of protocol
ΠB (formalized by Theorem 1). In more detail, first we will show a general lemma
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relating the number of honest/adversarial hashes per round, to the time it takes
to fork with a 51% double-spending attack (Lemma 6). Then, in Theorem 1
we will show that if the payoff for a successful attack (fpayoff) satisfies certain
conditions, then an adversary performing a 51% double-spending attack achieves
better utility than any passive-mining strategy. This fpayoff is quantified as a
function of the parameters of the protocol and the utility function.

We call the following strategy a 51% double-spending attack: The adversary
obtains any majority fraction (“51%” is just a colloquial name) of the hashing
power, and uses it to secretly mine an extension of the currently longest chain
(i.e., keeping successful blocks private to himself), and which he will release after
some time. We say that a 51% double-spending attack is successful if, when
released, the adversary’s secret chain is at least as long as the honest chain, and
causes the ledger state of some honest party to fork (which in reality corresponds
to a roll-back of more than cutOff blocks, in order to adopt the released attack
chain). If this happens, some transactions on the reversed blockchain ledger
state may become orphaned (no longer part of the ledger state), thus allowing
the attacker to double-spend his coins.

5.1 Time to Fork

We start by showing a general lemma that relates the amount of honest and
adversarial hashing power in a system, to the time to cause a fork via a 51%
double-spending attack. That is, how long it takes for an adversary with majority
hashing power to secretly create a chain that, when released, would cause an
honest party to roll back, or discard, more than cutOff blocks of his own chain
in order to adopt the new one.

Definition 8. We say that an adversary A causes a fork in a protocol Π if,
except with negligible probability in κ, all simulators SA ∈ CA (i.e. those which
in fact simulate A according to UC emulation) use the fork command6.

The fork command, which allows forking the confirmed ledger state (and
hence corresponds to rolling back more than cutOff blocks in the real world), is
necessary and sufficient to simulate an adversary who succeeds in a 51% double-
spending attack. We compute the (upper bound) time for a 51% double-spending
adversary to fork, which is obtained by the time for honest parties to grow
their chain by cutOff blocks (for which we can use guaranteed chain-growth of
Nakamoto-style blockchains. Since the adversary has more hashing power (and
thus more random oracle queries that can be issued sequentially) than the honest
party, and since we assume cutOff = ω(log(κ)) and that the adversary does
not interfere with the honest parties’ mining, this implies that the adversary’s
secretly-mined chain will be longer than the honest parties’ chain, and be the
only source for a large rollback, with overwhelming probability in κ.

6 If CA = ∅, then in any case by definition the utility of A is infinite.
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Lemma 6 (Time to Fork with 51% Attack). Let cutOff = ω(log(κ)), [r, r+
t] be any time interval (starting from some round r ≥ 0) of t ≥ 1 rounds, Δ ≥ 1
be the network delay, p ∈ (0, 1) the success probability of one mining query.

Then for all δ, δ′ ∈ (0, 1), α ≥ 1+δ
1−δ , and q ≥ 1 such that t ≥ tΔδ′(q) (Defi-

nition 6) the following holds. Suppose in time interval [r, r + t], (1) the honest
parties make at least q mining queries per round, and (2) in total they make at
most qt queries. Then, the adversary A who performs a 51% double-spending
attack for at least αqt queries during the time interval and then releases his
secretly-mined chain, causes a fork in the protocol ΠB.7

A visualization. In Fig. 1, the (upper-bound) time to fork with exactly 51%
corruption, is graphed against the total number of rigs in the system. The graph
uses the formula from Lemma 6. We use current parameters for Ethereum Classic
as the source of the concrete parameters for this figure, and refer the reader to
our full version for more details.

Fig. 1. Time to create a fork via 51% attack, versus the total number of mining rigs.
Here the adversary corrupts exactly 51%.

5.2 Payoff of 51% Double-Spending Attacks

In this section, we prove Theorem 1 and its corollary Theorem 2, which quantify
the size of the payoff for double-spending, under which a 51% double-spending
attack can break strong attack-payoff security. That is, the attacker achieves
better utility than any passive mining strategy. While one may think that it is
always profitable to attack if there is no assumption on the honest majority of
hashing power, there are a few things that may deter an attacker. For example,
the costs of buying or renting mining equipment for the attack may become too
high compared to the diminished block rewards as time goes on. Our statement
below quantifies an amount of payoff for forking (e.g. how much an attacker

7 More concretely, he succeeds except with probability at most exp
(
− δ2αμ

2+δ

)
+

exp
(
− δ2μ

2

)
+ exp

(
− δ′2tγ

2+δ

)
.
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can double-spend) to incentivize a 51% double-spending attack. Intuitively, the
result below says that as long as the payoff for forking (fpayoff) is larger than
the loss of utility from withholding blocks and corrupting a large number of
parties to perform the attack, then there is a 51% attack strategy that is more
profitable than any front-running, passive adversary.

Theorem 1 (51% Double-Spending Attacks that Break (Strong)
Attack-Payoff Security (ubuy)). Let Tub > 2 be the upper bound on total
number of mining queries per round, p ∈ (0, 1) be the probability of success of
each mining query, and cutOff = ω(log(κ)) be the consistency parameter. Then,
the protocol ΠB is not attack-payoff secure/strongly attack-payoff secure in any
attack model M whose induced utility function ubuy satisfies limited horizons, if
for some δ ∈ (0, 1), α > 1 and g = Tub

1+α the following holds:

fpayoff > uh
honest − α · g · tΔ

δ (g)
(
p · CR · breward(tΔ

δ (g) + tub) − mcost
)

− ccost(αg).

We state the case where the adversary mines with rented equipment (and
uses utility function urent), as a direct corollary to Theorem 1.

Theorem 2 (51% Double-Spending Attacks that Break (Strong)
Attack-Payoff Security (urent)). Let Tub > 2 be the upper bound on total
number of mining queries per round, p ∈ (0, 1) be the probability of success of
each mining query, and cutOff = ω(log(κ)) be the consistency parameter. Then,
the protocol ΠB is not attack-payoff secure/strongly attack-payoff secure in any
attack model M whose induced utility function urent satisfies limited horizons,
if for any δ ∈ (0, 1), α > 1 and g = Tub

1+α the following holds:

fpayoff > uh
honest − α · g · tΔ

δ (g)
(
p · CR · breward(tΔ

δ (g) + tub) − mcost
)

.

5.3 Visualizations with Concrete Values

We will visualize Theorems 1 and 2 through Figs. 2 and 3. We consider two utility
functions, one where the adversary buys mining equipment, and one where the
adversary rents. We then graph the utilities of passive/non-passive adversaries,
against the maximum fraction of corrupted parties. The concrete parameters
are based on current (as of writing, Feb. 2021) parameters for Ethereum Classic.
The outline is given in our full version.

In Fig. 2, we consider the incentives of a 51% attacker who rents his hashing
power, using the price for renting of 1.96 BTC/TH/day (Bitcoin per terahash per
day), at $50, 000/BTC. In this case, it is in fact not profitable to mine passively
(and thus the optimal passive strategy is to not mine at all). However, when
the adversary corrupts more than majority of hashing power, it may become
profitable to mine in order to create a fork. It is less profitable for the adversary
to corrupt a larger fraction of the parties, as cost of renting becomes too high.
We remark that even when it is not profitable to mine (passively) using rented
rigs, this does not exclude incentivizing honest parties from mining with e.g.,
bought equipment.
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Fig. 2. Utility of the passive/51% double-spending attacker who rents hashing power,
versus the fraction of adversarial parties. Here we consider an expensive cost to rent
hashing power (1.96 BTC/TH/day, at $50, 000/BTC).

Fig. 3. Utility of the passive/51% double-spending attacker versus the fraction of adver-
sarial parties. We consider an attacker who runs for a short duration (1 week) and a
long duration (40 weeks).

In the next two examples in Fig. 3, we compare the utility of the attacker who
mines with purchased rigs, and one who mines with rented rigs. For the attack
who buys hashing power, each rig costs $3000, and mining (electricity) costs
$0.000047/s. For the attacker who rents, for more interesting comparisons we
consider a cheaper cost to rent hashing power (1.96 BTC/TH/day, at a cheaper
$22, 000/BTC). We consider two scenarios: the attacker either (1) only plans to
mine for a short duration of one week, or (2) plans to mine for a longer duration
of 40 weeks (time is expressed in seconds in the code). For the purposes of the
graphs, we account for the possible variance of Bitcoin-USD exchange rates by
using an average exchange rate over the relevant period of time. In either case,
to more closely model reality, we restrict the duration of the attack, where the
adversary may obtain a majority of hashing power, to 3 days (which, in the code,
simply means we do not show attacks that last longer than 3 days).

We see a big difference between the two scenarios. In the short duration case,
it is much more profitable to mine or attack with rented rigs. In fact, it is not
even profitable to fork using purchased rigs, as the cost of purchase is higher
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than the payoff for double-spending. The long duration case is the opposite.
Although it may be profitable to mine in both cases, it is vastly more profitable
to mine and attack with purchased rigs than rented rigs. This agrees with our
intuition and reality: the high initial investment of buying mining equipment is
offset in the long run by the lower cost of mining. Moreover, an attacker who is
only interested in mining in order to perform a 51% attack for a short time is
incentivized to use hash renting services.

6 Mitigating 51% Attacks

In previous sections, we studied utility functions with limited horizons, in which
an attacker is incentivized to perform a 51% double-spending attack and break
(strong) attack-payoff security. In this section, we turn to analyzing how to
defend against 51% attacks. Specifically, given an attacker’s utility function with
limited horizons, and a cut-off parameter cutOff that achieves security in the
honest majority setting, we show a way to amplify cutOff to obtain security
against a rational (and possibly dishonest majority) attacker.

To show attack payoff security, one must show that for any adversarial strat-
egy attacking the protocol, there is another adversary who attacks the dummy
protocol with access to the ideal ledger functionality Gledger

8, which achieves
the same or better utility.

Even more difficult, we place very few restrictions on the adversary: he may
corrupt any fraction of parties (e.g. more than majority) and perform any cur-
rently known (e.g. block withholding) or unknown strategy. The only restriction
we place on the attacker is that he is incentive-driven. Fortunately, a rational
attacker is limited by his utility function. As we show, given a utility func-
tion satisfying limited horizon, we are able to bound the amount of mining
an incentive-driven adversary will do, even in presence of a payoff for forking.
Then, by choosing a large enough consistency parameter cutOff, we ensure that
attackers are disincentivized from creating a fork.

More specifically: We first present in Sect. 6.1 a result that shows that if an
adversary’s hasing resources are limited by a budget B, then there is a bound
on the interval of rounds where the blockchain is at risk of a consistency failure
(Lemma 7). For this, we apply a result from [BGK+20] that, roughly, shows how
fast a blockchain’s consistency can recover after an attack by an adversary with
a given budget (the self-healing property of Bitcoin). Based on this fundamental
property, we present in Sect. 6.2, the main result of the section: Given a utility
function with limited horizons, we show a condition on the parameter cutOff,
depending only on the utility function and protocol parameters, such that ΠB is
attack-payoff secure. To do so, we show that an adversary who spends too much
budget will begin to lose utility (Lemma 8), and then combine this result with
that of Sect. 6.1.
8 Recall this is the ledger functionality that has consistency and liveness (following

from the liveness results in [BGK+20]), but since we will amplify the cut-off param-
eter cutOff, we achieve less good parameters.



26 C. Badertscher et al.

6.1 Budget to Vulnerability Period

Assume an instance of the Bitcoin backbone protocol with cut-off parameter �.
We distinguish here between � and cutOff for clarity, since we will eventually
amplify � to obtain our final cut-off parameter cutOff.

Under the honest majority condition, we know that a consistency failure
(expressed as the probability that blocks which are � deep in an honest par-
ties adopted chain can be reverted) appears with probability negligible in �
(and consequently also in any security parameter κ as long as � = ω(log(κ)).
We now recall (and state a simple corollary from) the result from [BGK+20],
which defines a relationship between an adversary’s violation of honest-majority
(measured as a so-called budget B by which it can violate the honest-majority
condition) and the time until Bitcoin (and more generally, Nakamoto-style PoW
chains) self-heals after the adversary returns to below 50% hashing power. That
is, until Bitcoin can again guarantee consistency for the part of the chain that is
at least � blocks deep in a longest chain held by an honest party. The self-healing
time depends on the budget and the parameter �. Recall that θpow is the usual
security threshold for Bitcoin as explained in Sect. 2.1.

Definition 9 ((θpow, ε, Tlb, Tub, B)-adversary [BGK+20]). Let θpow, ε ∈ (0, 1),
Tlb, Tub, B ∈ N. A (θpow, ε, Tlb, Tub, B)-adversary is an adversary9 satisfying the
following: At every round i, let ni

a and ni
h be the mining queries made by corrupt

and honest parties in this round. Then, (1) For all i, Tlb ≤ ni
a + ni

h ≤ Tub, and
(2) For all i, ni

a ≤ (1 − ε) · θpow · ni
h + Bi, where Bi ≥ 0 and

∑
i Bi = B.

We say the adversary attacks between rounds a < b if Bi = 0 for any i < a
or i > b (i.e. he spends all his budget between rounds a and b).

We say an adversary spends budget B over t rounds, if the adversary has
budget B, and only spends it in rounds r1 < r2 < · · · < rt, such that

∑
i Bri

= B.

The behavior of a blockchain protocol under an attack by an
(θpow, ε, Tlb, Tub, B)-adversary is described by a vulnerability period. The vulner-
ability period is an upper bound on number of rounds before and after an adver-
sary performs the attack, such that protocol is still at risk of a (non-negligible)
consistency failure.

Definition 10 (Consistency self-healing property and vulnerability
period [BGK+20]). A protocol is self-healing with vulnerability period (τl, τh)
with respect to consistency, and against a (θpow, ε, Tlb, Tub, B)-adversary who
attacks between rounds (a, b), if the consistency failure event ConsFail�(r) occurs
except with at most negligible probability unless r ∈ [ρα−τl, ρβ +τh]. ConsFail�(r)
is defined as the event that �-consistency is violated in an execution for rounds
(r, r′), w.r.t. some round r′ > r, and any two pairs of honest parties.

In other words, outside of these “dangerous” rounds [a − τl, b + τh], chains
adopted by honest parties are guaranteed to diverge by at the most recent �
blocks. Below, [BGK+20] gives a characterization of the vulnerability period in
terms of the budget B.
9 Here the environment is also included in this statement.



A Rational Protocol Treatment of 51% Attacks 27

Theorem 3 ([BGK+20]). A Nakamoto-style PoW blockchain with an upper
bound Tub of hashing queries per round, maximum network delay Δ, suc-
cess probability p, and cut-off parameter � satisfies the consistency self-healing
property with vulnerability period (τl, τh) = (O(B), O(B) + O(�)) against any
(θpow, ε, Tlb, Tub, B)-adversary, for any ε, Tlb > 0.

The vulnerability period only bounds the number of “bad” rounds before
the attack, and after all the budget is spent. For our treatment, we consider a
more applicable version of the vulnerability period. In Lemma 7, we show the
maximum number of consecutive rounds where ConsFail may occur, by applying
the above theorem in a piece-wise fashion. For example, if the adversary spends
his budget over a long period of time (e.g., spend a bit of the budget, wait for
2 years, then spend more of his budget), the theorem is not directly suitable for
our needs, but it is possible to isolate those “spending” rounds and applying the
theorem to each such region. Then, since the total hashing power in the system
is bounded, we can use this maximum consecutive “bad” rounds to bound the
maximum number of blocks that can be rolled back at any given round.

Lemma 7 (Max consecutive consistency failure rounds and associated
number of blocks and rollback). In the same setting as above in Theorem 3,
except with negligible probability the following holds: for any adversary with bud-
get B, spent over t rounds (that is, for t different rounds i it holds that Bi > 0),
there is a maximum number R(B, t, �) = O(B) + O(�t) of consecutive rounds rj

where ConsFail�(rj) occurs, during which at most W (B, t, �) = 2Tubp · R(B, t, �)
blocks are created.

Looking ahead, this means that at any point in time, prefixes of honest
parties’ chains must agree (except with negligible probability) when dropping
the most recent W (B, t, �)+� blocks. Here, we omit the dependency on p because
we treat it as a constant parameter of the protocol.

6.2 Attack-Payoff Security

In this section we will show the following: For any utility function with limited
horizons, we give a characterization of how to adjust the consistency parameter
(depending on the protocol parameters and those of the utility function) such
that ΠB is attack payoff secure. To do so, we will first upper bound the utility
of adversaries who spends a total budget B over some time t, given a utility
function ubuy with limited horizons (Lemma 8, and Corollary 1 for utility func-
tion urent). In Theorem 4, we then combine this lemma with the result of the
previous subsection, and present our characterization of parameters for which
ΠB is attack-payoff secure—i.e. for which forks are disincentivized.

Below, we quantify an upper bound uub
buy(B, t) on the utility of any adversary

spending budget of at least B over exactly t rounds, assuming the utility func-
tion satisfies limited horizons. Why are we interested in this quantity? Recall
W (B, t)—which informally represents an interval of blocks where consistency
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might fail—increases with B and t. Looking ahead, we will find a large enough
W (B, t) that disincentivizes attacks (i.e., uub

buy(B, t) < 0). To show that the
upper-bound uub

buy(B, t) is useful, later we will show that it is possible use it to
derive a maximum B, t, which we denote by B̄, t̄.

Lemma 8 (Upper bound utility of adversary spending budget at least
B, over time t).

Suppose ubuy(ΠB,A) satisfies limited horizons. Then an adversary A with
budget at least B > 0, and who spends it over exactly t ≥ B

Tub−n̄a
rounds, achieves

utility at most ubuy(ΠB,A) ≤ uub
buy(B, t) where

uub
buy(B, t) :=

th∑
x=1

Tub · (p · CR · breward(x) − mcost)

+
t∑

x=th+1

(n̄a + 1) · (p · CR · breward(x) − mcost)

− ccost

(
n̄a +

B

t

)
+ fpayoff

and where th := arg maxx∈N(p · CR · breward(x) ≥ mcost), n̄a := (1−ε)·θpow·Tlb
1+(1−ε)·θpow

.
If t < B

Tub−n̄a
(in this case it is not possible to spend budget B over t rounds)

or B ≤ 0, then uub
buy(B, t) is undefined.

As a corollary, by setting ccost(·) = 0 and mcost = rcost, we obtain an
upper bound on the utility of any adversary who spends at least budget B,
assuming the utility function satisfies limited horizons with renting.

Corollary 1. Suppose urent(ΠB,A) satisfies limited horizons with renting.
Then an adversary A who spends budget of at least B > 0 over exactly t ≥ B

Tub−n̄a

rounds, achieves utility at most urent(ΠB,A) ≤ uub
rent(B, t) where

uub
rent(B, t) :=

th∑
x=1

Tub · (p · CR · breward(x) − rcost)

+
t∑

x=th+1

(n̄a + 1) · (p · CR · breward(x) − rcost) + fpayoff

and where th := arg maxx∈N(p · CR · breward(x) ≥ rcost), n̄a := (1−ε)·θpow·Tlb
1+(1−ε)·θpow

.

A natural question is whether the upper bound uub
buy(B, t) and uub

rent(B, t) will
be useful for bounding B, t. We remark that it is not even trivially clear whether
they bounded, as the budget does not limit how many rounds (when honest
majority is satisfied) the adversary can mine. Below, we show that there indeed
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exist a maximum B, t for which uub
buy(B, t) ≥ 0 (resp. uub

rent(B, t) ≥ 0, which we
denote by B̄, t̄. In our full version, we give examples of B̄, t̄ using numbers from
Ethereum Classic, Feb. 2021 (same as our other graphs).

Lemma 9. B̄ := arg maxB>0

(
uub
buy(B, ·) ≥ 0

)
and t̄ := arg maxt>0

(
uub
buy(·, t) ≥ 0

)
exist, or ∀t > 0, uub

buy(·, t) < 0. The same is true when replacing uub
buy with uub

rent

in the statement.

Finally, we can make a general statement about the attack payoff security
of protocol ΠB for any utility function satisfying limited horizons. Informally:
our utility function limits how much budget B (spent over how many rounds t)
any incentive-driven attacker could reasonably have. Then, if the window size
is large enough to accommodate the largest of such budgets, the protocol is
attack-payoff secure. In the following, uub

buy(B, t), ul
honest, and W (B, t) are from

Lemma 8, Lemma 5, and Lemma 7 respectively. The equivalent statement for
utility function urent can be obtained by using the corollaries of the results above
for the case of renting.

Theorem 4. Let Tub, Tlb > 0 be the upper and lower bounds on total number of
mining queries per round and p ∈ (0, 1) be the probability of success of each min-
ing query and let � = ω(log(κ)). Then, ΠB with consistency parameter cutOff is
attack-payoff secure in any model M, whose induced utility ubuy satisfies limited
horizons, whenever the condition holds that

cutOff > � + max
(B,t):uub

buy(B,t)>ul
honest

W (B, t, �).

The same statement is true replacing ubuy with urent and uub
buy with uub

rent.

We remark the protocol is not strong attack-payoff secure: Recall a front-
running adversary always maximally delays honest parties’ messages. Intuitively,
this reduces the mining power in the system, which delays the time between a
block is broadcasted, and when it becomes part of the ledger. In effect, this
reduces the payoff for block rewards for utilities with limited horizons.
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Abstract. Applied cryptographic protocols have to meet a rich set of
security requirements under diverse environments and against diverse
adversaries. However, currently used security specifications, based on
either simulation [11,27] (e.g., ‘ideal functionality’ in UC) or games [8,
29], are monolithic, combining together different aspects of protocol
requirements, environment and assumptions. Such security specifications
are complex, error-prone, and foil reusability, modular analysis and incre-
mental design.

We present the Modular Security Specifications (MoSS) framework,
which cleanly separates the security requirements (goals) which a pro-
tocol should achieve, from the models (assumptions) under which each
requirement should be ensured. This modularity allows us to reuse indi-
vidual models and requirements across different protocols and tasks, and
to compare protocols for the same task, either under different assump-
tions or satisfying different sets of requirements. MoSS is flexible and
extendable, e.g., it can support both asymptotic and concrete definitions
for security.

So far, we confirmed the applicability of MoSS to two applications:
secure broadcast protocols and PKI schemes.

1 Introduction

Precise and correct models, requirements and proofs are the best way to ensure
security. Unfortunately, it is hard to write them, and easy-to-make subtle errors
often result in vulnerabilities and exploits; this happens even to the best cryp-
tographers, with the notable exception of the reader. Furthermore, ‘the devil
is in the details’; minor details of the models and requirements can be very
significant, and any inaccuracies or small changes may invalidate proofs.

Provable security has its roots in the seminal works rigorously proving secu-
rity for constructions of cryptographic primitives, such as signature schemes [18],
encryption schemes [17] and pseudorandom functions [16]. Provable security
under well-defined assumptions is expected from any work presenting a new
design or a new cryptographic primitive. With time, the expectation of a
c© International Association for Cryptologic Research 2021
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provably-secure design has also extended to applied cryptographic protocols,
with seminal works such as [4,7]. After repeated discoveries of serious vulner-
abilities in ‘intuitively designed’ protocols [15], proofs of security are expected,
necessary and appreciated by practitioners. However, provable security is noto-
riously challenging and error-prone for applied cryptographic protocols, which
often aim to achieve complex goals under diverse assumptions intended to reflect
real-world deployment scenarios. In response, we present the MoSS framework.

MoSS: Modular Security Specifications. In MoSS, a security specification
includes a set of models (assumptions) and specific requirements (goals); mod-
els and requirements are defined using predicates and probability functions. By
defining each model and requirement separately, we allow modularity, standard-
ization and reuse. This modularity is particularly beneficial for applied protocols,
due to their high number of requirements and models; see Fig. 1.

Execution process Models (assumptions) Requirements (goals)

Private channels ( 2.3)

- Sec-in

Corruptions ( 2.3)

- Get-State

- Set-State

- Set-Output

(others)

Confidentiality ( 4.3.1)

- Flip

- Challenge

- Guess

(others)

CS Compiler ( 7.1)

- Concrete security

- Polytime interactions

Adversary model (capabilities)

- MitM/Eavesdropper
- Byzantine/Honest-but-Curious/Fail-Stop
- Threshold [19] / proactive
- Polytime interactions (

(others)

Communication model

- Authenticated [19] / Unauthenticated

- Bounded [19] / Fixed delay

- Reliable / Unreliable

- FIFO / Non-FIFO

(others)

Clocks

- Bounded-drift ( 3.3)

- Δ-Wakeup [19]

- Synchronized

- (others)

Secure keys

initialization

- Shared [19]

- Public [25]

(others)

Generic requirements

- Indistinguishability ( 4.3.2)
- No false positive [19]
- Verifiable attribution [19]

(others)

PKI requirements [25]

- Revocation status accountability

- Accountability

- Transparency ( 6.2)

- Revocation status transparency

- Non-equivocation prevention / detection

- Privacy

(others)

Broadcast requirements ( 6.1)

- Authenticated broadcast [19]

- Confidential broadcast

(others)

7.3)

Fig. 1. The MoSS framework allows security to be specified modularly, i.e., ‘à la carte’,
with respect to a set of individually-defined models (assumptions), requirements (prop-
erties/goals) and even operations of the execution process. Models, requirements and
operations defined in this paper or in [19,25] are marked accordingly. Many models,
and some (‘generic’) requirements, are applicable to different types of protocols.

MoSS also includes a well-defined execution process (Fig. 2 and Algorithm 1),
as necessary for provable security. For simplicity, the ‘core’ execution process is
simple, and supports modular extensions, allowing support for some specific
features which are not always needed. Let us now discuss each of these three
components of MoSS in more detail.

Models are used to reflect different assumptions made for a protocol, such as
the adversary capabilities, communication (e.g., delays and reliability), synchro-
nization, initialization and more. For each ‘category’ of assumptions, there are
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multiple options available: e.g., MitM or eavesdropper for the adversary model;
threshold for the corruption model; asynchronous, synchronous, or bounded
delay for the communication delays model; or asynchronous, synchronous, syn-
tonized, or bounded drift for the clock synchronization model. Often, a model can
be reused in many works, since, in MoSS, each model is defined independently
of other models and of requirements, as one or more pairs of a small predicate
(‘program’) and a probability function. This approach facilitates the reuse of
models and also makes it easier to write, read and compare different works.
For example, many protocols, for different tasks, use the same clock and com-
munication models, e.g., synchronous communication and clocks. At the same
time, protocols for the same task may use different models, e.g., bounded delay
communication and bounded drift clocks.

Requirements refer to properties or goals which a protocol aims for. Protocols
for the same problem may achieve different requirements, which may be com-
parable (e.g., equivocation detection vs. equivocation prevention) or not (e.g.,
accountability vs. transparency). While many requirements are task specific,
some generic requirements are applicable across different tasks; e.g., a no false
positive requirement to ensure that an honest entity should never be considered
‘malicious’ by another honest entity.

Execution Process. MoSS has a well-defined execution process (see Fig. 2 and
Algorithm 1) which takes as input a protocol to execute, an adversary, parame-
ters and a set of execution operations. The execution operations allow customized
extensions of the execution process, i.e., they enhance the basic execution pro-
cess with operations which may not always be required. We use these additional
operations to define specifications such as indistinguishability, shared-key ini-
tialization and entity corruptions.

Related Work. A significant amount of work in applied cryptography is infor-
mally specified, with specifications presented as a textual list of assumptions
(models) and goals (requirements). Obviously, this informal approach does not
facilitate provable security. For provable security, there are two main approaches
for defining security specifications: simulation-based and game-based.

The simulation-based approach, most notably Universal Composability (UC)
[11,12], typically defines security as indistinguishability between executions of
the given protocol with the adversary, and executions of an ‘ideal functional-
ity’, which blends together the model and requirements, with a simulator. There
are multiple extensions and alternatives to UC, such as iUC, GNUC, IITM
and simplified-UC [10,21,23,30], and other simulation-based frameworks such
as constructive cryptography (CC) [26,27] and reactive systems [1]. Each of
these variants defines a specific, fixed execution model. An important reason for
the popularity of the simulation-based approach is its support for secure com-
position of protocols; another reason is the fact that some important tasks, e.g.,
zero-knowledge (ZK), seem to require simulation-based definitions. However, for
many tasks, especially applied tasks, game-based definitions are more natural
and easier to work with.
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Table 1. A comparison of different approaches to security specifications. An exe-
cution process defines executions (runs). A protocol aims to satisfy certain require-
ments assuming certain models. Simulation-based specifications, such as UC [12], ensure
provably-secure composition of protocols but do not allow one protocol to meet multi-
ple separately-defined specifications. Some tasks, e.g. zero-knowledge, may only have
simulation-based specifications.

Specifications
Approach

Exec Process Models Requirements

Multiple

specifications

Prov.-secure

composition

Informal - List List Yes No

Game-based Game per goal; models are part of game Yes No

Simulation-based Fixed Indistinguishable from Ideal Functionality No Yes

MoSS Extensible List List Yes No

The game-based approach [8,20,29] is also widely adopted, especially among
practitioners, due to its simpler, more intuitive definitions and proofs of security.
In this approach, each requirement is defined as a game between the adversary
and the protocol. The game incorporates the models, the execution process, and
the specific requirement (e.g., indistinguishability). However, the game-based
approach does have limitations, most notably, there is no composition theorem
for game-based specifications and it may be inapplicable to tasks such as zero-
knowledge proofs and multi-party computation.

Both ‘game-based’ and ‘simulation-based’ security specifications are mono-
lithic: an ideal functionality or a game, combining security requirements with
different aspects of the model and the execution process. Even though different
requirements and models are individually presented in their informal descrip-
tions, the designers and readers have to validate directly that the formal, mono-
lithic specifications correctly reflect the informal descriptions.

Such monolithic specifications are not a good fit for analysis of applied pro-
tocols, which have complex requirements and models, and it stands in sharp
contrast to the standard engineering approach, where specifications are gradu-
ally developed and carefully verified at each step, often using automated tools.
While there exist powerful tools to validate security of cryptographic proto-
cols [2], there are no such tools to validate the specifications.

We began this work after trying to write simulation-based as well as game-
based specifications for PKI schemes, which turned out to be impractical given
the complexity of realistic modeling aspects; this motivated us to develop mod-
ular security specification, i.e., MoSS.

In Table 1, we compare MoSS to game-based and simulation-based security
specifications. The advantage of MoSS is its modularity; a security specification
consists of one or more models, one or more requirements and, optionally, some
execution process operations. Each model and requirement is defined indepen-
dently, as one or more pairs of a small predicate (which is, typically, a simple
program) and a probability function. Models are often applicable to different
tasks, and some requirements are generic and apply to multiple tasks. This
modular approach allows to reuse models and requirements, which makes it eas-
ier to write, understand and compare specifications. For example, in the full
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version [19], we present a simplified instance of an authenticated-broadcast pro-
tocol assuming (well-defined) bounded delay and bounded clock drift models.
The same models are used for PKI schemes in [25].

The use of separate, focused models and requirements also allows a grad-
ual protocol development and analysis. To illustrate, we first analyze the
authenticated-broadcast protocol assuming only a secure shared-key initializa-
tion model, which suffices to ensure authenticity but not freshness. We then
show that the protocol also achieves freshness when we also assume bounded
clock drift. Lastly, we show that by additionally assuming bounded-delay com-
munication, we can ensure a bounded delay for the broadcast protocol. This
gradual approach makes the analysis easier to perform and understand (and to
identify any design flaws early on), especially when compared to proving such
properties using monolithic security specifications (all at once). Using MoSS is
a bit like playing Lego with models and requirements!

Concrete security [5] is especially important for protocols used in practice as it
allows to more precisely define security of a given protocol and to properly select
security parameters, in contrast to asymptotic security. Due to its modularity,
MoSS also supports concrete security in a way we consider simple and even
elegant; see Sect. 7.2.

Ensuring Polytime Interactions. As pointed out in [11,22], the ‘classical’ notion
of PPT algorithms is not sufficient for analysis of interactive systems, where
the same protocol (and adversary) can be invoked many times. This issue is
addressed by later versions of UC and in some other recent frameworks, e.g.,
GNUC [21]. The extendability of MoSS allows it to handle these aspects rela-
tively simply; see Sect. 7.3.

Modularity Lemmas. In Sect. 5, we present several asymptotic security modularity
lemmas, which allow combining ‘simple’ models and requirements into composite
models and requirements, taking advantage of MoSS’s modularity. We provide
proofs and corresponding Concrete security modularity lemmas in [19].

Limitations of MoSS. Currently, MoSS has two significant limitations: the
lack of computer-aided tools, available for both game-based and simulation-based
approaches [2,3,9,28], and the lack of composability, an important property
proven for most simulation-based frameworks, most notably UC [11].

We believe that MoSS is amenable to computer-aided tools. For example, a
tool may transform the modular MoSS security specifications into a monolithic
game or an ideal functionality, allowing to use the existing computer-aided tools.
However, development of such tools is clearly a challenge yet to be met. Another
open challenge is to prove a composability property directly for MoSS security
specifications, or to provide (MoSS-like) modular specifications for UC and other
simulation-based frameworks.

It is our hope that MoSS may help to bridge the gap between the theory
and practice in cryptography, and to facilitate meaningful, provable security for
practical cryptographic protocols and systems.
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Real-world Application of MoSS: PKI. Public Key Infrastructure (PKI)
schemes, a critical component of applied cryptography, amply illustrate the chal-
lenges of applying provable security in practice and serve as a good example of
how MoSS might benefit practical protocols. Current PKI systems are mostly
based on the X.509 standard [14], but there are many other proposals, most
notably, Certificate Transparency (CT) [24], which add significant goals and
cryptographic mechanisms. Realistic PKI systems have non-trivial requirements;
in particular, synchronization is highly relevant and needed to deal with even
such basic aspects as revocation.

Recently, we presented the first rigorous study [25] of practical1 PKI schemes
by using MoSS. Specifically, we defined model and requirement predicates for
practical PKI schemes and proved security of the X.509 PKI scheme. The analy-
sis uses the bounded-delay and bounded-drift model predicates; similarly, follow-
up work is expected to reuse these models and requirement predicates to prove
security for additional PKI schemes, e.g., Certificate Transparency.
Organization. Section 2 introduces Exec, the adversary-driven execution
process. Section 3 and Sect. 4 present models and requirements, respectively.
Section 5 presents modularity lemmas. Section 6 shows how to apply MoSS to
two different applications, a simplified authenticated broadcast protocol and PKI
schemes. Section 7 describes extensions of the framework to achieve concrete
security and to ensure polytime interactions. We conclude and discuss future
work in Sect. 8.

2 Execution Process

A key aspect of MoSS is the separation of the execution process from the model
M under which a protocol P is analyzed, and the requirements R that define P’s
goals. This separation allows different model assumptions using the same execu-
tion process, simplifying the analysis and allowing reusability of definitions and
results. In this section, we present MoSS’s execution process, which defines the
execution of a given protocol P ‘controlled’ by a given adversary A. We say that
it is ‘adversary-driven’ since the adversary controls all inputs and invocations of
the entities running the protocol.

2.1 ExecA,P : An Adversary-Driven Execution Process

The execution process ExecA,P(params), as defined by the pseudo-code in Algo-
rithm 1, specifies the details of running a given protocol P with a given adversary
A, both modeled as efficient (PPT) functions, given parameters params. Note
that the model M is not an input to the execution process; it is only applied
to the transcript T of the protocol run produced by ExecA,P , to decide if the
adversary adhered to the model, in effect restricting the adversary’s capabilities.
ExecA,P allows the adversary to have an extensive control over the execution;
the adversary decides, at any point, which entity is invoked next, with what
operation and with what inputs.
1 Grossly-simplified PKI ideal functionalities were studied, e.g., in [21], but without

considering even basic aspects such as revocation and expiration.
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Fig. 2. A high level overview of MoSS’s execution process showing the interactions
between the parties to the protocol and the adversary in ExecA,P . (Note: e, in the
final execution transcript T , is the total number of iterations of the loop.)

Notation. To allow the execution process to apply to protocols with multi-
ple functions and operations, we define the entire protocol P as a single PPT
algorithm and use parameters to specify the exact operations and their inputs.
Specifically, to invoke an operation defined by P over some entity i, we use the
following notation: P[opr](s, inp, clk), where opr identifies the specific ‘opera-
tion’ or ‘function’ to be invoked, s is the local state of entity i, inp is the set
of inputs to opr, and clk is the value of the local clock of entity i. The output
of such execution is a tuple (s′, out), where s′ is the state of entity i after the
operation is executed and out is the output of the executed operation, which
is made available to the adversary. We refer to P as an ‘algorithm’ (in PPT)
although we do not consider the operation as part of the input, i.e., formally,
P maps from the operations (given as strings) to algorithms; this can be inter-
preted as P accepting the ‘label’ as additional input and calling the appropriate
‘subroutine’, making it essentially a single PPT algorithm.

Algorithm 1 uses the standard index notation to refer to cells of arrays. For
example, out[e] refers to the value of the eth entry of the array out. Specifically,
e represents the index (counter) of execution events. Note that e is never given
to the protocol; every individual entity has a separate state, and may count
the events that it is involved in, but if there is more than one entity, an entity
cannot know the current value of e - it is not a clock. Even the adversary does
not control e, although, the adversary can keep track of it in its state, since it is
invoked (twice) in every round. Clocks and time are handled differently, as we
now explain.

In every invocation of the protocol, one of the inputs set by the adversary
is referred to as the local clock and denoted clk. In addition, in every event,
the adversary defines a value τ which we refer to as the real time clock. Thus,
to refer to the local clock value and the real time clock value of event e, the
execution process uses clk[e] and τ [e], respectively. Both clk and τ are included
in the transcript T ; this allows a model predicate to enforce different synchro-
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nization models/assumptions - or not to enforce any, which implies a completely
asynchronous model.

Algorithm 1. Adversary-Driven Execution Process ExecA,P(params)

1: (sA,N, params.P[·]) ← A[‘Init’](params) � Initialize A with params

2: ∀i ∈ N : si ← P[‘Init’] (⊥, params.P[i], ⊥) � Initialize entities’ local states

3: e ← 0 � Initialize loop’s counter

4: repeat

5: e ← e + 1 � Advance the loop counter

6: (ent[e], opr[e], inp[e], clk[e], τ [e]) ← A(sA) �

A selects entity ent[e], opera-
tion opr[e], input inp[e], clock
clk[e], and real time τ [e] for
event e

7: sIn[e] ← sent[e] � Save input state

8:
(
sent[e], out[e]

) ← P [opr[e]]
(
sent[e], inp[e], clk[e]

)

9: sOut[e] ← sent[e] � Save output state

10: (sA, outA, F) ← A (sA, out[e]) �
A decides when to terminate
the loop (outA �= ⊥), based on
out[e]

11: until outA �= ⊥

12: T ←
(

outA, e,N, F, ent[·], opr[·], inp[·], clk[·], τ [·], out[·], params.P[·], sIn[·], sOut[·]
)

13: Return T � Output transcript of run

Construction. The execution process (Algorithm 1) consists of three main
components: the initialization, main execution loop and termination.

Initialization (lines 1-3). In line 1, we allow the adversary to set their state
sA, to choose the set of entities N, and to choose parameters params.P[i] for
protocol initialization for each entity i ∈ N. The values of params.P[·] can
be restricted using models (see Sect. 3). In line 2, we set the initial state si

for each entity i by invoking the protocol-specific ‘Init’ operation with input
params.P[i]; note that this implies a convention where protocols are initialized
by this operation - all other operations are up to the specific protocol. The
reasoning behind such convention is that initialization is an extremely common
operation in many protocols; that said, protocols without initialization can use
an empty ‘Init’ operation and protocols with a complex initialization process
can use other operations defined in P in the main execution loop (lines 4-11), to
implement an initialization process which cannot be performed via a single ‘Init’
call. In line 3, we initialize e, which we use to index the events of the execution,
i.e., e is incremented by one (line 5) each time we complete one ‘execution loop’
(lines 4-11).

Main Execution Loop (lines 4-11). The execution process affords the adversary A
extensive control over the execution. Specifically, in each event e, A determines
(line 6) an operation opr[e], along with its inputs, to be invoked by an entity
ent[e] ∈ N. The adversary also selects τ [e], the global, real time clock value.
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Afterwards, the event is executed (line 8). The entity’s input and output states
are saved in sIn[e] and sOut[e], respectively (lines 7 and 9), which allows models
to place restrictions on the states of entities.

In line 10, the adversary processes the output out[e] of the operation opr[e].
The adversary may modify its state sA, and outputs a value outA; when outA �=
⊥, the execution moves to the termination phase; otherwise the loop continues.

Termination (lines 12-13). Upon termination, the process returns the execution
transcript T (line 13), containing the relevant values from the execution. Namely,
T contains the adversary’s output outA, the index of the last event e, the set
of entities N, and the set of faulty entities F (produced in line 10), the values
of ent[·], opr[·], inp[·], clk[·], τ [·] and out[·] for all invoked events, the protocol
initialization parameters params.P[·] for all entities in N, and the entity’s input
state sIn[·] and output state sOut[·] for each event. We allow A to output F to
accommodate different fault modes, i.e., an adversary model can specify which
entities are included in F (considered ‘faulty’) which then can be validated using
an appropriate model.

2.2 The Extendable Execution Process

In Sect. 2.1, we described the design of the generic ExecA,P execution process,
which imposes only some basic limitations. We now describe the extendable exe-
cution process ExecX

A,P , an extension of ExecA,P , which provides additional
flexibility with only few changes to ExecA,P . The extendable execution pro-
cess ExecX

A,P allows MoSS to (1) handle different kinds of entity-corruptions
(described next) and (2) define certain other models/requirements, e.g., indis-
tinguishability requirements (Sect. 4.3); other applications may be found.

The ExecX
A,P execution process, as defined by the pseudo-code in Algo-

rithm 1, specifies the details of running a given protocol P with a given adversary
A, both modeled as efficient (PPT) functions, given a specific set of execution
operations X and parameters params. The set2 X is a specific set of extra oper-
ations through which the execution process provides built-in yet flexible support
for various adversarial capabilities. For example, the set X can contain functions
which allow the adversary to perform specific functionality on an entity, func-
tionality which the adversary cannot achieve via the execution of P. We detail
and provide concrete examples of such functionalities in Sect. 2.3.

Changes to the ExecA,P Execution Process. In addition to the extensive
control the adversary had over the execution, the adversary now can decide not
only which entity is invoked next, but also whether the operation is from the set
X of execution operations, or from the set of operations supported by P; while
we did not explicitly write it, some default values are returned if the adversary
specifies an operation which does not exist in the corresponding set.

2 We use the term ‘set’, but note that X is defined as a single PPT algorithm, similarly
to how P is defined.
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To invoke an operation defined by P over some entity i, we use the same
notation as before, but the output of such execution contains an additional
output value sec-out, where sec-out[e][·] is a ‘secure output’ - namely, it contains
values that are shared only with the execution process itself, and not shared with
the adversary; e.g., such values may be used, if there is an appropriate operation
in X , to establish a ‘secure channel’ between parties, which is not visible to A.
In sec-out, the first parameter denotes the specific event e in which the secure
output was set; the second one is optional, e.g., may specify the ‘destination’ of
the secure output. Similarly, X is also defined as a single PPT algorithm and we
use a similar notation to invoke its operations: X [opr](sX , s, inp, clk, ent), where
opr, s, inp, clk are as before, and sX is the execution process’s state and ent is
an entity identifier.

Algorithm 2. Extendible Adversary-Driven Execution Process ExecX
A,P(params)

1: (sA,N, params.P[·]) ← A[‘Init’](params) � Initialize A with params

2: ∀i ∈ N : si ← P[‘Init’] (⊥, params.P[i], ⊥) � Initialize entities’ local states

3: sX ← X [‘Init’](params, params.P[·]) � Initial exec state

4: e ← 0 � Initialize loop’s counter

5: repeat

6: e ← e + 1 � Advance the loop counter

7: (ent[e], opr[e], type[e], inp[e], clk[e], τ [e]) ← A(sA) �

A selects entity ent[e], opera-
tion opr[e], input inp[e], clock
clk[e], and real time τ [e] for
event e

8: sIn[e] ← sent[e] � Save input state

9: if type[e] = ‘X ’ then � If A chose to invoke an oper-
ation from X .

10:
(
sX , se n t [e ], out[e], sec-out[e][·]) ← X [opr [e]]

(
sX , se n t [e ], inp[e], clk[e], ent[e]

)

11: else � A chose to invoke an opera-
tion from P.

12:
(
sent[e], out[e], sec-out[e][·]) ← P [opr[e]]

(
sent[e], inp[e], clk[e]

)

13: end if

14: sOut[e] ← sent[e] � Save output state

15: (sA, outA, F) ← A (sA, out[e]) �
A decides when to terminate
the loop (outA �= ⊥), based on
out[e]

16: until outA �= ⊥

17: T ←
(

outA, e, N, F, ent[·], opr[·], type[·], inp[·], clk[·], τ [·], out[·], params.P[·], sIn[·], sOut[·], sec-out[·][·]
)

18: Return T � Output transcript of run
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Construction. The extended execution process (Algorithm 2) consists of the
following modifications. The initialization phase (lines 1-4) has one additional
line (line 3), where we initialize the ‘execution operations state’ sX ; this state is
used by execution operations (in X ), allowing them to be defined as (stateless)
functions. Note that any set of execution operations X is assumed to contain an
‘Init’ operation, and we may omit the ‘Init’ operation from the notation when
specifying X ; if it is omitted, the ‘default’ ‘Init’ operation is assumed, which
simply outputs (params, params.P[·]). The rest of the initialization lines are
the same.

The main execution loop (lines 5-16) is as before, but with one difference,
where the adversary A determines in line 7 the type of operation type[e] to
be invoked by an entity ent[e] ∈ N. The operation type type[e] ∈ {‘X ’, ‘P’}
indicates if the operation opr[e] is protocol-specific (defined in P) or is it one of
the execution process operations (defined in X ). (If type[e] /∈ {‘X ’, ‘P’}, then the
execution process assumes that the operation is protocol-specific.) Afterwards,
the event is executed (lines 9-12) through the appropriate algorithm, based on
the operation type, either X , if type[e] = ‘X ’, or P otherwise.

The termination phase (lines 17-18) is the same as before, but also includes in
the transcript the type[·] values and the sec-out[·][·] for all invoked events. Private
values, such as entities’ private keys, are not part of the execution transcript
unless they were explicitly included in the output due to an invocation of an
operation from X that would allow it.

Note: We assume that X operations are always defined such that whenever X
is invoked, it does not run A and only runs P at most once (per invocation of
X ). Also, in lines 7 and 15, the operation to A is not explicitly written in the
pseudo-code. We assume that in fact nothing is given to A for the operation
(length 0) - this implies that A will not be re-initialized during the execution
process.

2.3 Using X to Define Specification and Entity-Faults Operations

The ‘default’ execution process is defined by an empty X set. This provides the
adversary A with Man-in-the-Middle (MitM) capabilities, and even beyond: A
receives all outputs, including messages sent, and controls all inputs, including
messages received; furthermore, A controls the values of the local clocks. A
non-empty set X can be used to define specification operations and entity-fault
operations; let us discuss each of these two types of execution process operations.

Specification Operations. Some model and requirement specifications require
a special execution process operation, possibly involving some information which
must be kept private from the adversary. One example are indistinguishability
requirements, which are defined in Sect. 4.3.1 using three operations in X : ‘Flip’,
‘Challenge’ and ‘Guess’, whose meaning most readers can guess (and confirm the
guess in Sect. 4.3.1).
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The ‘Sec-in’ X -Operation. As a simple example of a useful specification oper-
ation, we now define the ‘Sec-in’ operation, which allows the execution process
to provide a secure input from one entity to another, bypassing the adversary’s
MitM capabilities. This operation can be used for different purposes, such as
to assume secure shared-key initialization - for example, see [19]. We define the
‘Sec-in’ operation in Eq. 1.3

X [‘Sec-in’] (sX , s, e′, clk, ent) ≡ [sX ||P[‘Sec-in’] (s, sec-out[e′][ent], clk)] (1)

As can be seen, invocation of the ‘Sec-in’ operation returns the state sX
unchanged (and unused); the other outputs are simply defined by invoking the
‘Sec-in’ operation of the protocol P, with input sec-out[e′][ent] - the sec-out
output of the event e′ intended for entity ent.

Entity-fault Operations. It is quite easy to define X -operations that facili-
tate different types of entity-fault models, such as honest-but-curious, byzantine
(malicious), adaptive, proactive, self-stabilizing, fail-stop and others. Let us give
informal examples of three fault operations:
‘Get-state’: provides A with the entire state of the entity. Assuming no other

entity-fault operation, this is the ‘honest-but-curious’ adversary; note that
the adversary may invoke ‘Get-state’ after each time it invokes the entity, to
know its state all the time.

‘Set-output’: allows A to force the entity to output specific values. A ‘Byzan-
tine’ adversary would use this operation whenever it wants the entity to
produce specific output.

‘Set-state’: allows A to set any state to an entity. For example, the ‘self-
stabilization’ model amounts to an adversary that may perform a ‘Set-state’
for every entity (once, at the beginning of the execution).

See discussion in [19], and an example: use of these ‘fault operations’ to define
the threshold security model M|F|≤f , assumed by many protocols.

Comments. Defining these aspects of the execution in X , rather than having a
particular choice enforced as part of the execution process, provides significant
flexibility and makes for a simpler execution process.

Note that even when the set X is non-empty, i.e., contains some non-default
operations, the adversary’s use of these operations may yet be restricted for the
adversary to satisfy a relevant model. We present model specifications in Sect. 3.

The operations in X are defined as (stateless) functions. However, the exe-
cution process provides state sX that these operations may use to store values
across invocations; the same state variable may be used by different operations.
For example, the ‘Flip’, ‘Challenge’ and ‘Guess’ X -operations, used to define
indistinguishability requirements in Sect. 4.3.1, use sX to share the value of the
bit flipped (by the ‘Flip’ operation).

3 We use ≡ to mean ‘is defined as’.
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3 Models

The execution process, described in Sect. 2, specifies the details of running a
protocol P against an adversary A which has an extensive control over the
execution. In this section, we present two important concepts of MoSS: a model
M, used to define assumptions about the adversary and the execution, and
specifications (π, β). We use specifications4 to define both models (in this section)
and requirements (in Sect. 4).

A MoSS (model/requirement) specification is a pair of functions (π, β), where
π(T, params) is called the predicate (and returns � or ⊥) and β(params) is the
base (probability) function (and evaluates to values from 0 to 1). The predicate π
is applied to the execution-transcript T and defines whether the adversary ‘won’
or ‘lost’. The base function β is the ‘inherent’ probability of the adversary ‘win-
ning’; it is often simply zero (β(x) = 0), e.g., for forgery in a signature scheme,
but sometimes a constant such as half (for indistinguishability specifications) or
a function such as 2−l (e.g., for l-bit MAC) of the parameters params.

A MoSS model is defined as a set of (one or more) specifications, i.e., M =
{(π1, β1), . . .}. When the model contains only one specification, we may abuse
notation and write M = (π, β) for convenience.

For example, consider a model M = (π, 0). Intuitively, adversary A satisfies
model (π, 0), if for (almost) all execution-transcripts T of A, predicate π holds,
i.e.: π(T, params) = �, where params are the parameters used in the execution
process (Sect. 3.1). One may say that the model ensures that the (great) power
that the adversary holds over the execution is used ‘with great responsibility’.

The separation between the execution process and the model allows to use the
same - relatively simple - execution process for the analysis of many different
protocols, under different models (of the environment and adversary capabili-
ties). Furthermore, it allows to define multiple simple models, each focusing on
a different assumption or restriction, and require that the adversary satisfy all
of them.

As depicted in Fig. 1, the model captures all of the assumptions regarding the
environment and the capabilities of the adversary, including aspects typically
covered by the (often informal) communication model, synchronization model
and adversary model:
Adversary model: The adversary capabilities such as MitM vs. eavesdropper,

entity corruption capabilities (e.g., threshold or proactive security), compu-
tational capabilities and more.

Communication model: The properties of the underlying communication
mechanism, such as reliable or unreliable communication, FIFO or non-FIFO,
authenticated or not, bounded delay, fixed delay or asynchronous, and so on.

4 We use the term ‘specification’ to refer to a component of a model (or of a require-
ment - see Sect. 4). This is not to be confused with ‘security specification’, which we
use to mean a model, requirement, and specific execution process.
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Synchronization model: The availability and properties of per-entity clocks.
Common models include purely asynchronous clocks (no synchronization),
bounded-drift clocks, and synchronized or syntonized clocks.

The definitions of models and their predicates are often simple to write and
understand - and yet, reusable across works.

In Sect. 3.1, we define the concept of a specification. In Sect. 3.2, we define the
notion of a model-satisfying adversary. Finally, in Sect. 3.3, we give an example
of a model. For additional examples of models, see [19].

3.1 Specifications

We next define the specification, used to define both models and requirements.
A specification is a pair (π, β), where π is the specification predicate and β

is the base function. A specification predicate is a predicate whose inputs are
execution transcript T and parameters params. When π(T, params) = �, we
say that execution satisfies the predicate π for the given value of params. The
base function gives the ‘base’ probability of success for an adversary. For integrity
specifications, e.g. forgery, the base function is often either zero or 2−l, where
l is the output block size; and for indistinguishability-based specifications (see
Sect. 4.3), the base function is often 1

2 .
We next define the advantage5 of adversary A against protocol P for specifi-

cation predicate π using execution operations X , as a function of the parameters
params. This is the probability that π(T, params) = ⊥, for the transcript T of
a random execution: T ← ExecX

A,P(params).

Definition 1 (Advantage of adversary A against protocol P for speci-
fication predicate π using execution operations X ). Let A,P,X be algo-
rithms and let π be a specification predicate. The advantage of adversary A
against protocol P for specification predicate π using execution operations X is
defined as:

επ
A,P,X (params)

def
= Pr

[
π (T, params) = ⊥, where
T ← ExecX

A,P(params)

]

(2)

3.2 Model-Satisfying Adversary

Models are sets of specifications, used to restrict the capabilities of the adversary
and the events in the execution process. This includes limiting of the possible
faults, defining initialization assumptions, and defining the communication and
synchronization models. We check whether a given adversary A followed the
restrictions of a given model M in a given execution by examining whether a
random transcript T of the execution satisfies each of the model’s specification
predicates. Next, we define what it means for adversary A to poly-satisfy model
M using execution operations X .
5 Note that the advantage of A is the total probability of A winning, i.e., it does not

depend on a base function.
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Definition 2 (Adversary A poly-satisfies model M using execution
operations X ). Let A,X ∈ PPT , and let M be a set of specifications, i.e.,
M = {(π1, β1), . . .}. We say that adversary A poly-satisfies model M using

execution operations X , denoted A |=X
poly

M, if for every protocol P ∈ PPT ,
params ∈ {0, 1}∗, and specification (π, β) ∈ M, the advantage of A against
P for π using X is at most negligibly greater than β(params), i.e.:

A |=X
poly

M def
=

[
(∀ P ∈ PPT, params ∈ {0, 1}∗, (π, β) ∈ M) :

επ
A,P,X (params) ≤ β(params) + Negl(|params|)

]

(3)

3.3 Example: The Bounded-Clock-Drift Model MDrift
Δc lk

To demonstrate a definition of a model, we present the MDrift
Δclk

model, defined
as MDrift

Δclk
= (πDrift

Δclk
, 0). The predicate πDrift

Δclk
bounds the clock drift, by enforcing

two restrictions on the execution: (1) each local-clock value (clk[ê]) must be
within Δclk drift from the real time τ [ê], and (2) the real time values should
be monotonically increasing. As a special case, when Δclk = 0, this predicate
corresponds to a model where the local clocks are fully synchronized, i.e., there
is no difference between entities’ clocks. See Algorithm 3.

Algorithm 3. The πDrift
Δclk

(T , params) predicate, used by the MDrift
Δclk

≡ (πDrift
Δclk

, 0) model

1: return
(

2: ∀ê ∈ {1, . . . , T.e}: � For each event

3: |T.clk[ê] − T.τ [ê]| ≤ Δclk �
Local clock is within Δclk drift
from real time

4: and if ê ≥ 2 then T.τ [ê] ≥ T.τ [ê−1] �
In each consecutive event, the
real time difference is monoton-
ically increasing)

4 Requirements

In this section we define and discuss requirements. Like a model, a requirement
is a set of specifications R = {(π1, β1), . . .}. When the requirement contains only
one specification, we may abuse notation and write R = (π, β) for convenience.
Each requirement specification (π, β) ∈ R includes a predicate (π) and a base
function (β). A requirement defines one or more properties that a protocol aims
to achieve, e.g., security, correctness or liveness requirements. By separating
between models and requirements, MoSS obtains modularity and reuse; different
protocols may satisfy the same requirements but use different models, and the
same models can be reused for different protocols, designed to satisfy different
requirements.

The separation between the definition of the model and of the requirements
also allows definition of generic requirement predicates., which are applicable to
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protocols designed for different tasks, which share some basic goals. We identify
several generic requirement predicates that appear relevant to many security
protocols. These requirement predicates focus on attributes of messages, i.e.,
non-repudiation, and on detection of misbehaving entities (see [19]).

4.1 Model-Secure Requirements

We next define what it means for a protocol to satisfy a requirement under
some model. First, consider a requirement R = (π, β), which contains just one
specification, and let b be the outcome of π applied to (T, params), where T is
a transcript of the execution process (T = ExecX

A,P(params)) and params are
the parameters, i.e., b ← π(T, params); if b = ⊥ then we say that requirement
predicate π was not satisfied in the execution of P, or that the adversary won in
this execution. If b = �, then we say that requirement predicate π was satisfied
in this execution, or that the adversary lost.

We now define what it means for P to poly-satisfy R under model M using
execution operations X .

Definition 3 (Protocol P poly-satisfies requirement R under model M
using execution operations X ). Let P,X ∈ PPT , and let R be a set of spec-
ifications, i.e., R = {(π1, β1), . . .}. We say that protocol P poly-satisfies require-

ment R under model M using execution operations X , denoted P |=M, X
poly

R, if
for every PPT adversary A that poly-satisfies M using execution operations
X , every parameters params ∈ {0, 1}∗, and every specification (π, β) ∈ R,
the advantage of A against P for π using X is at most negligibly greater than
β(params), i.e.:

P |=M, X
poly

R def
=

[
(∀ A ∈ PPT s.t. A |=X

poly
M, params ∈ {0, 1}∗, (π, β) ∈ R) :

επ
A,P,X (params) ≤ β(params) + Negl(|params|)

]

(4)

4.2 Example: The No False Accusations Requirement RNFA

Intuitively, the No False Accusations (NFA) requirement RNFA states that a non-
faulty entity a �∈ F would never (falsely) accuse of a fault another non-faulty
entity, b �∈ F. It is defined as RNFA = (πNFA, 0). To properly define the πNFA

requirement predicate, we first define a convention for one party, say a ∈ N,
to output an Indicator of Accusation, i.e., ‘accuse’ another party, say iM ∈ N,
of a fault. Specifically, we say that at event êA of the the execution, entity
ent[êA] accuses entity iM, if out[êA] is a triplet of the form (IA, iM, x). The last
value in this triplet, x, should contain the clock value at the first time that
ent[êA] accused iM; we discuss this in [19] as the value x is not relevant for
the requirement predicate, and is just used as a convenient convention for some
protocols.

The No False Accusations (NFA) predicate πNFA checks whether the adver-
sary was able to cause one honest entity, say Alice, to accuse another honest
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entity, say Bob (i.e., both Alice and Bob are in N−F). Namely, πNFA(T, params)
returns ⊥ only if T.out[e] = (IA, j, x), for some j ∈ T.N, and both j and T.ent[e]
are honest (i.e., j, T.ent[e] ∈ T.N − T.F).

Algorithm 4. No False Accusations Predicate πNFA(T, params)

1: return ¬(

2: T.ent[T.e] ∈ T.N − T.F � T.ent[T.e] is an honest entity

3: and ∃j ∈ T.N − T.F, x s.t. (IA, j, x) ∈ T.out[T.e] � T.ent[T.e] accused an honest entity
)

4.3 Supporting Confidentiality and Indistinguishability

The MoSS framework supports specifications for diverse goals and scenarios.
We demonstrate this by showing how to define ‘indistinguishability game’-based
definitions, i.e., confidentiality-related specifications.

4.3.1 Defining Confidentiality-Related Operations
To support confidentiality, we define the set X to include the following three
operations: ‘Flip’, ‘Challenge’, ‘Guess’.
– ‘Flip’: selects a uniformly random bit sX .b via coin flip, i.e., sX .b

R← {0, 1}.
– ‘Challenge’: executes a desired operation with one out of two possible inputs,

according to the value of sX .b. Namely, when A outputs opr[e] = ‘Challenge’,
the execution process invokes:

P[inp[e].opr]
(
sent[e], inp[e].inp[sX .b], clk[e]

)

where inp[e].opr ∈ P (one of the operations in P) and inp[e].inp is an ‘array’
with two possible inputs, of which only one is randomly chosen via sX .b,
hence, the inp[e].inp[sX .b] notation.

– ‘Guess’: checks if a ‘guess bit’, which is provided by the adversary as input, is
equal to sX .b, and returns the result in sec-out[e]. The result is put in sec-out
to prevent the adversary from accessing it.
These three operations are used as follows. The ‘Flip’ operation provides

Exec with access to a random bit sX .b that is not controlled or visible to A.
Once the ‘Flip’ operation is invoked, the adversary can choose the ‘Challenge’
operation, i.e., type[e] = X and opr[e] = ‘Challenge’, and can specify any opera-
tion of P it wants to invoke (inp[e].opr) and any two inputs it desires (inp[e].inp).
However, Exec will invoke P[inp[e].opr] with only one of the inputs, according
to the value of the random bit sX .b, i.e., inp[e].inp[sX .b]; again, since A has
no access to sX .b, A neither has any knowledge about which input is selected
nor can influence this selection. (As usual, further assumptions about the inputs
can be specified using a model.) Then, A can choose the ‘Guess’ operation and
provide its guess of the value of sX .b (0 or 1) as input.
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4.3.2 The Generic Indistinguishability Requirement Rπ
IND and the

Message Confidentiality Requirement RπMsgConf

IND

To illustrate how the aforementioned operations can be used in practice, we
define the indistinguishability requirement Rπ

IND as Rπ
IND = (INDπ, 1

2 ), where
the INDπ predicate is shown in Algorithm 5. INDπ checks that the adversary
invoked the ‘Guess’ operation during the last event of the execution and exam-
ines whether the ‘Guess’ operation outputted � in its secure output and whether
the π model was satisfied. The adversary ‘wins’ against this predicate when it
guesses correctly during the ‘Guess’ event. Since an output of ⊥ by a predi-
cate corresponds to the adversary ‘winning’ (see, e.g., Definition 1), the INDπ

predicate returns the negation of whether the adversary guessed correctly during
the last event of the execution. The base function of the Rπ

IND requirement is
1
2 , because the probability that the adversary guesses correctly should not be
significantly more than 1

2 .

Algorithm 5. INDπ(T, params) Predicate

1: return ¬(

2: T.type[T.e] = ‘X ’

3: and T.opr[T.e] = ‘Guess’ and T.sec-out[T.e] = � �
The last event is a ‘Guess’ event
and A guessed correctly

4: and π(T, params) � The model predicate π was met

)

We can use INDπ to define more specific requirements; for example, we
use the πMsgConf predicate (Algorithm 6) to define RπMsgConf

IND = (INDπMsgConf , 1
2 ),

which defines message confidentiality for an encrypted communication protocol.
Namely, assume P is an encrypted communication protocol, which includes the
following two operations: (1) a ‘Send’ operation which takes as input a message
m and entity iR and outputs an encryption of m for iR, and (2) a ‘Receive’
operation, which takes as input an encrypted message and decrypts it.

The πMsgConf specification predicate (Algorithm 6) ensures that:
– A only asks for ‘Send’ challenges (since we are only concerned with whether

or not A can distinguish outputs of ‘Send’).
– During each ‘Send’ challenge, A specifies two messages of equal length and

the same recipient in the two possible inputs. This ensures that A does not
distinguish the messages based on their lengths.

– A does not use the ‘Receive’ operation at the challenge receiver receiving
from the challenge sender to decrypt any output of a ‘Send’ challenge.

5 Modularity Lemmas

MoSS models and requirements are defined as sets of specifications, so they
can easily be combined by simply taking the union of sets. There are some
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Algorithm 6. πMsgConf (T , params) Predicate

1: return
(

2: ∀ê ∈ {1, . . . , T.e} s.t. T.type[ê] = ‘X ’ and T.opr[ê] = ‘Challenge’:

3: T.inp[ê].opr = ‘Send’ �
Every ‘Challenge’ event is for
‘Send’ operation

4: and |T.inp[ê].inp[0].m| = |T.inp[ê].inp[1].m| � Messages have equal length

5: and ∃ iS, iR ∈ T.N s.t. �
There is one specific sender iS
and one specific receiver iR

6: T.inp[ê].inp[0].iR = T.inp[ê].inp[1].iR = iR �
iR is the recipient for both mes-
sages

7: and T.ent[ê] = iS � iS is the sender

8: and � ê′ s.t. T.opr[ê′] = ‘Receive’ � There is no ‘Receive’ event ê′

9:

and T.inp[ê′].c = T.out[ê].c

and T.ent[ê′] = iR

and T.inp[ê′].iS = iS

�
Where A uses decrypts the out-
put of the challenge

)

intuitive properties one expects to hold for such modular combinations of models
or requirements. In this section we present the model and requirement modularity
lemmas, which essentially formalize these intuitive properties. The lemmas can
be used in analysis of applied protocols, e.g., to allow a proof of a requirement
under a weak model to be used as part of a proof of a more complex requirement
which holds only under a stronger model. We believe that they may be helpful
when applying formal methods, e.g., for automated verification and generation
of proofs.

In this section, we present the asymptotic security lemmas; the (straightfor-
ward) proofs of the asymptotic security lemmas are in [19]. The concrete security
lemmas and their proofs are in [19].

In the following lemmas, we describe model M̂ as stronger than a model
M (and M as weaker than M̂) if M̂ includes all the specifications of M, i.e.,
M ⊆ M̂. Similarly, we say that a requirement R̂ is stronger than a requirement
R (and R is weaker than R̂) if R̂ includes all the specifications of R, i.e., R ⊆ R̂.
Basically, stronger models enforce more (or equal) constraints on the adversary
or other assumptions, compared to weaker ones, while stronger requirements
represent more (or equal) properties achieved by a protocol or scheme, compared
to weaker ones.

5.1 Asymptotic Security Model Modularity Lemmas

The model modularity lemmas give the relationships between stronger and
weaker models. They allow us to shrink stronger models (assumptions) into
weaker ones and to expand weaker models (assumptions) into stronger ones as
needed - and as intuitively expected to be possible.
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The first lemma is the model monotonicity lemma (asymptotic security). It
shows that if an adversary A satisfies a stronger model M̂, then A also satisfies
any model that is weaker than M̂.

Lemma 1 (Model monotonicity lemma (asymptotic security)).
For any set X of execution process operations, for any models M and M̂ such

that M ⊆ M̂, if an adversary A poly-satisfies M̂ using X , then A poly-satisfies
M using X , namely:

A |=X
poly

M̂ ⇒ A |=X
poly

M (5)

We next show the models union lemma (asymptotic security), which shows
that if an adversary satisfies two models M and M′, then A also satisfies the
stronger model that is obtained by taking the union of M and M′.

Lemma 2 (Models union lemma (asymptotic security)).
For any set X of execution process operations and any two models M,M′,

if an adversary A poly-satisfies both M and M′ using X , then A poly-satisfies
the ‘stronger’ model M̂ ≡ M ∪ M′ using X , namely:

(
A |=X

poly
M ∧ A |=X

poly
M′

)
⇒ A |=X

poly
M̂ (6)

We next show the requirement-model monotonicity lemma (asymptotic secu-
rity), which shows that if a protocol satisfies a requirement under a weaker
model, then it satisfies the same requirement under a stronger model (using the
same operations set X ). This is true, because if we are assuming everything that
is included in the stronger model, then we are assuming everything in the weaker
model (by Lemma 1), which implies that the protocol satisfies the requirement
for such adversaries.

Lemma 3 (Requirement-model monotonicity lemma (asymptotic
security)).

For any models M and M̂ such that M ⊆ M̂, if a protocol P poly-satisfies
requirement R under M using the execution process operations set X , then P
poly-satisfies R under M̂ using X , namely:

P |=M, X
poly

R ⇒ P |=M̂, X
poly

R (7)

5.2 Asymptotic Security Requirement Modularity Lemmas

The requirement modularity lemmas prove relationships between stronger and
weaker requirements, assuming the same model M and operations set X . They
allow us to infer that a protocol satisfies a particular weaker requirement given
that it satisfies a stronger one, or that a protocol satisfies a particular stronger
requirement given that it satisfies its (weaker) ‘sub-requirements’.

The requirement monotonicity lemma (asymptotic security) shows that if a
protocol satisfies a stronger requirement R̂, then it satisfies any requirement that
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is weaker than R̂ (under the same model M and using the same operations set
X ).

Lemma 4 (Requirement monotonicity lemma (asymptotic security)).

For any set X of execution process operations, any model M, and any require-
ments R and R̂ such that R ⊆ R̂, if a protocol P poly-satisfies the (stronger)
requirement R̂ under M using X , then P poly-satisfies R under M using X ,
namely:

P |=M, X
poly

R̂ ⇒ P |=M, X
poly

R (8)

Finally, the requirements union lemma (asymptotic security) shows that if
a protocol satisfies two requirements R and R′, then it satisfies the stronger
requirement that is obtained by taking the union of R and R′ (under the same
model M and operations set X ).

Lemma 5 (Requirements union lemma (asymptotic security)).
For any set X of execution process operations, any models M and M′, and

any two requirements R and R′, if a protocol P poly-satisfies R under M using
X and poly-satisfies R′ under M′ using X , then P poly-satisfies the ‘combined’
(stronger) requirement R̂ ≡ R∪R′ under model M̂ ≡ M∪M′ using X , namely:

(
P |=M, X

poly
R ∧ P |=M′, X

poly
R′

)
⇒ P |=M̂, X

poly
R̂ (9)

6 Using MoSS for Applied Specifications

In this section, we give a taste of how MoSS can be used to define applied security
specifications, with realistic, non-trivial models and requirements. In Sect. 6.1,
we discuss AuthBroadcast, a simple authenticated broadcasting protocol, which
we use to demonstrate the use of MoSS’s modularity lemmas. In Sect. 6.2 we
discuss PKI schemes, which underlie the security of countless real-world appli-
cations, and show how MoSS enables rigorous requirements and models for PKI
schemes. The definitions we show are only examples from [25], which present full
specification and analysis of PKI schemes. The AuthBroadcast protocol is also
not a contribution; we present it as an example.

6.1 AuthBroadcast: Authenticated Broadcast Protocol

In [19], we present the AuthBroadcast protocol, a simple authenticated broad-
cast protocol that we developed and analyzed to help us fine-tune the MoSS
definitions. AuthBroadcast enables a set of entities N to broadcast authenticated
messages to each other, i.e., to validate that a received message was indeed
sent by a member of N. The protocol uses a standard deterministic message
authentication scheme MAC which takes as input a tag length, key, and message
and outputs a tag. In this subsection, we present a few details as examples of
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the use of MoSS; in particular, AuthBroadcast addresses shared-key initializa-
tion, an aspect which does not exist in PKI schemes. We define MKeyShare

X [‘Sec-in’] and
MExclude

P[‘Sec-in’], two simple models for shared-key initialization. These models can
be reused for specifications of many other tasks.

The MoSS framework allows the analysis of the same protocol under dif-
ferent models, as we demonstrate here. Specifically, we present the analysis of
AuthBroadcast in several steps, where in each step, we prove that AuthBroadcast
satisfies a requirement - assuming increasingly stronger models:
1. We first show that AuthBroadcast ensures authentication of received messages

assuming that a key is shared securely once among all entities and valid n and
1κ parameters are given to the protocol. Namely, we show that AuthBroadcast
poly-satisfies RBroadcast

Auth∞ under MSecKeyInit using X -operations {‘Sec-in’}.
2. We then show that AuthBroadcast ensures authentication and freshness

of received messages under a stronger model that also assumes a weak-
level of clock synchronization (bounded clock drift). Namely, we show that
AuthBroadcast poly-satisfies RBroadcast

Authf(Δ)
under MSecKeyInit

DriftΔclk
using X -operations

{‘Sec-in’} for f(Δ) = Δ + 2Δclk, where Δclk is the assumed maximal clock
drift.

3. Finally, we show that AuthBroadcast ensures correct bounded-delay deliv-
ery/receipt of broadcast messages (which implies authenticity and freshness
as well) under an even stronger model which also assumes a bounded delay of
communication and a sufficiently large freshness interval given to the proto-
col. Specifically, we show that AuthBroadcast poly-satisfies RBroadcast

ReceiveΔcom
under

MSecKeyInit
DriftΔclk

,DelayΔcom
using X -operations {‘Sec-in’}, where Δclk is the assumed

maximal clock drift and Δcom is the assumed maximal communication delay.

6.2 Specifications for PKI Scheme

PKI schemes are an essential building block for protocols utilizing public key
cryptography. Unfortunately, there have been multiple incidents and vulnera-
bilities involving PKI, resulting in extensive research on improving security of
PKI. Provably-secure PKI schemes were presented in [13], however, these spec-
ifications did not cover aspects critical in practice, such as timely revocation
or transparency. We next briefly discuss one of the PKI security specifications
defined using MoSS.

Sample Model: MDrift
Δclk

. [25] defines several models covering assumptions regard-
ing the adversary capabilities, the environment (communication and synchro-
nization) and the initialization, assumed by different PKI protocols. The
bounded clock drift model MDrift

Δclk
(presented in Sect. 3.3) is an example of a

generic model which is common to many applied protocols and can be reused
among different works and tasks.

Sample Requirement: ΔTRA. PKI schemes have multiple security requirements,
from simple requirements such as accountability to more complex requirements
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such as equivocation detection and prevention as well as transparency. Intu-
itively, the Δ-transparency (ΔTRA) requirement specifies that a certificate
attested as Δ-transparent must be available to all ‘interested’ parties, i.e., mon-
itors, within Δ time of its transparency attestation being issued by a proper
authority, typically referred to as a logger. This requirement is defined as the
pair (πΔTRA, 0), where the πΔTRA predicate is defined in Algorithm 7, as a con-
junction of the simple sub-predicates, defined in [25].

Algorithm 7. The Δ-transparency (ΔTRA) predicate πΔTRA

πΔTRA(T, params) ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ψ, ρ, pk, ι, ιM ) ← T.outA;

return ¬

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

HonestEntity(T, params, ι) ∧
CorrectPublicKey(T, params, ι, pk, ρ.ι) ∧
ValidCertificateAttestation(T, params, {ΔTRA}, ψ, pk, ρ) ∧
HonestEntity(T, params, ιM ) ∧
IsMonitor(T, params, ιM , ρ.ι) ∧
HonestMonitorUnawareOfCertificate(T, params, ψ, ρ) ∧
WasNotAccused(T, params, ιM , ρ.ι)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Let us explain the operation of πΔTRA. This predicate ensures that for a cer-
tificate ψ and Δ-transparency attestation ρ as attested by an entity ρ.ι, there
is an honest entity ι ∈ N (HonestEntity), and ι confirmed that ρ.ι’s pub-
lic key is pk (CorrectPublicKey). Then, it verifies that ψ is a valid cer-
tificate attested as Δ-transparent using ρ (ValidCertificateAttestation).
However, there exists another honest entity ιM ∈ N (HonestEntity) which
monitors ρ.ι (IsMonitor) but is unaware of ψ (HonestMonitorUnaware
OfCertificate) - although it should, and yet, there was no accusation of mis-
behavior issued6 (WasNotAccused).

This design for a predicate as a conjuncture of sub-predicate is typical and
rather intuitive, and it illustrates another aspect of modularity: the sub-predicates
are easy to understand and validate, and are also reusable; for example, a predi-
cate to validate an entity’s public key (ValidCertificateAttestation) or that
an entity is honest (HonestEntity) can be useful for other, unrelated to PKI
protocols.

7 Concrete Security and Ensuring Polytime Interactions

In this section, we present the CS compiler (Sect. 7.1), which transforms the
adversary into an ‘equivalent’ algorithm, which provides three additional out-
puts: the total runtime of the adversary, the number of bit flips by the adversary,
and the initial size of the adversary’s state. We then use the CS compiler for two
applications. First, in Sect. 7.2, we extend MoSS to support concrete security.
6 Notice that ι, ιM are honest, but ρ.ι is not necessarily honest, and therefore,
WasNotAccused is needed, because ρ.ι might not cooperate in order for ιM to not
be aware of ψ.
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Finally, in Sect. 7.3, we show how the CS compiler allows to ensure polytime
interactions, and in particular, limit the adversary so that its runtime is poly-
nomial in the security parameter.

7.1 The CS Compiler

The extension that will allow us to give concrete security definitions (Sect. 7.2)
and to enforce polytime interactions (Sect. 7.3), is a compiler, denoted CS (which
stands for both ‘CtrSteps’ and ‘Concrete Security’).

The input to CS is an (adversary) algorithm A, and the output, CS(A), is an
algorithm which outputs the same output as A would produce, and three addi-
tional values, added to the final outA output of A: outA.CtrSteps, the number of
steps of A throughout the execution; outA.CtrBitF lips, the number of bit-flip
operations performed by A; and outA.LenInitState, the size of the initial state
output by A.

Now, instead of running the execution process directly over input adver-
sary A, we run ExecX

CS(A),P(params), i.e., we run the ‘instrumented’ adversary
CS(A). This way, in the execution transcript, we receive these three measured
values (outA.CtrSteps, outA.CtrBitF lips and outA.LenInitState). It remains
to describe the operation of CS.

Note that CS maintains its own state, which contains, as part of it, the state
of the adversary A. This creates a somewhat confusing situation, which may be
familiar to the reader from constructions in the theory of complexity, or, esp.
to practitioners, from the relation between a virtual machine and the program
it is running. Namely, the execution process received the algorithm CS(A) as
the adversary, while CS(A) is running the ‘real’ adversary A. Thus, the state
maintained by the execution process is now of CS(A); hence, we refer to this
state as sCS(A).

The state sCS(A) consists of four variables. The first variable contains the
state of the original adversary A. We denote this variable by sCS(A).sA; this
unwieldy notation is trying to express the fact that from the point of view of
the ‘real’ adversary A, this is its (entire) state, while it is only part of the state
sCS(A) of the CS(A) algorithm (run as the adversary by the execution process).

The other three variables in the state sCS(A) are invisible to A, since they are
not part of sCS(A).sA. These are: sCS(A).CtrSteps, a counter which the algorithm
CS(A) uses to sum up the total runtime (steps) of A; sCS(A).CtrBitF lips, a
counter which CS(A) uses to sum up the number of random bits flipped by A;
and, finally, sCS(A).LenInitState, which stores the size of the initial state output
by A.

Whenever the execution process invokes CS(A), then CS(A) ‘runs’ A on
the provided inputs, measuring the time (number of steps) until A returns its
response, as well as the number of random bits (coin flips) used by A. When
A returns a response, CS(A) increments the sCS(A).CtrSteps counter by the
run-time of A in this specific invocation and increments the sCS(A).CtrBitF lips
counter by the number of bit flips of A in this invocation. When A returns
a response (sA,N, params.P[·]) after being invoked by CS(A)[‘Init’](params)
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in line 1, then CS(A) additionally sets sCS(A).LenInitState ← |sA|. Finally,
CS(A) checks if A signaled termination of the execution process. When A
signals termination (by returning outA �= ⊥), then the CS(A) algorithm sets
outA.CtrSteps, outA.CtrBitF lips, and outA.LenInitState to sCS(A).CtrSteps,
sCS(A).CtrBitF lips, and sCS(A).LenInitState, respectively, i.e., adds to outA
the computed total runtime of A during this execution, the number of bit flips
of A during this execution, and the size of the initial state output by A7; of
course, we still have outA �= ⊥ and therefore the execution process terminates -
returning as part of outA the total runtime of A and the size of the initial state
output by A. Although these values are carried in outA, the adversary cannot
modify or view them.

7.2 Concrete Security

We new describe how we can use CS to support concrete security [6] in MoSS.
In concrete security, the adversary’s advantage is a function of the ‘adversary
resources’, which may include different types of resources such as the runtime (in
a specific computational model), length (of inputs, keys, etc.), and the number of
different operations that the adversary invokes (e.g., ‘oracle calls’). Notice that
since we explicitly bound the adversary’s runtime, we do not need to require the
adversary to be a PPT algorithm.

To be more specific, we provide bounds on adversary resources, including
runtime and number of coin-flips (random bits), as parameters in params; this
allows the adversary to limit its use of resources accordingly. We (next) define the
Concrete Security model MCS, which validates that the adversary, indeed, does
not exceed the bounds specified in params. To validate the bounds on the adver-
sary’s runtime and number of coin-flips (random bits), MCS uses outA.CtrSteps
and outA.CtrBitF lips, hence, this model should be applied to the transcript
T ← ExecX

CS(A),P(params), produced by running the ‘instrumented adversary’
CS(A).

7.2.1 The Concrete Security Model MCS and Resource Bounds
Concrete security defines the adversary’s advantage as a function of the
bounds on adversary resources, specified in params. Specifically, we adopt
the following conventions for the adversary resource parameters. First,
params includes an array params.bounds.maxCalls, where each entry
params.bounds.maxCalls[type][opr] contains the maximum number of calls that
A is allowed to make to operation opr of type type. Second, params includes the
field params.bounds.maxSteps, which is the maximum number of steps that the
adversary is allowed to take, and the field params.bounds.maxBitF lips, which
is the maximum number of bit flips that the adversary is allowed to use.

7 Note this would override any values that A may write on outA.CtrSteps,
outA.CtrBitF lips, and outA.LenInitState, i.e., we essentially forbid the use of
outA.CtrSteps, outA.CtrBitF lips, and outA.LenInitState by A.
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Algorithm 8. πCS(T , params) Predicate

1: return
(

2: ∀ type ∈ params.bounds.maxCalls:

3: ∀ opr ∈ params.bounds.maxCalls[type]: �
Maximum number of calls
to each operation with
bounds is not exceeded

4:

∣
∣
∣
∣
∣
∣
∣

⎧
⎪⎨

⎪⎩
ê

∣
∣
∣
∣
∣
∣
∣

ê ∈ {1, . . . , T.e} and

T.type[ê] = type and

T.opr[ê] = opr

⎫
⎪⎬

⎪⎭

∣
∣
∣
∣
∣
∣
∣

≤ params.bounds.maxCalls[type][opr]

and T.outA.CtrSteps ≤ params.bounds.maxSteps �
Maximum number of steps
taken by A is not exceeded

and T.outA.CtrBitF lips ≤ params.bounds.maxBitF lips �
Maximum number of bit
flips used by A is not
exceeded)

The Concrete Security model MCS validates that the adversary never exceeds
these bounds; it is defined as MCS =

{
(πCS, 0)

}
, i.e., we expect the adversary

to always limit itself to the bounds specified in params.bounds.
The πCS predicate (Algorithm 8) ensures that: (1) A does not exceed

the bounds in params.bounds.maxCalls on the number of calls to each
operation, (2) A does not exceed the bound params.bounds.maxSteps on
the number of steps it takes, and (3) A does not exceed the bound
params.bounds.maxBitF lips on the number of bit flips it uses.

7.2.2 Satisfaction of Concrete-Security Models and Requirements
When using MoSS for concrete security analysis, for a specification (π, β), the
function β(params) is a bound on the probability of the adversary winning.
Namely, there is no additional ‘negligible’ probability for the adversary to win,
as we allowed in the asymptotic definitions. When A satisfies M, for every spec-
ification in M, the probability of A winning is bounded by the base function β.
Similarly, when P satisfies R under some model M, for every A that satisfies
M and every specification in R, the probability of A winning is bounded by the
base function β.

This implies that the base function is likely to differ when using MoSS for
asymptotic analysis versus concrete security analysis; e.g., in asymptotic analy-
sis, a specification (π, 0) may be used, but in concrete security analysis, (π, β)
may be used instead, where β is a function that returns values in [0, 1], which
depend on the resources available to the adversary, e.g., maximal runtime (steps).
This difference should be familiar to readers familiar with concrete-security def-
initions and results, e.g., [5]. However, often we can use the same predicate π in
both types of analysis.

We now give the concrete definition of a model-satisfying adversary. Note
that the base function β(params) is a function of the parameters (params),
including the bounds on the adversary resources (params.bounds). To make
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these bounds meaningful, a model-satisfying adversary always has to satisfy
MCS (see Sect. 7.2.1).

Definition 4. (Adversary A CS-satisfies model M using execution oper-
ations X ). Let A,X be algorithms and let M be a set of specifications, i.e.,
M = {(π1, β1), . . .}. We say that adversary A CS-satisfies model M using execu-

tion operations X , denoted A |=X
CS

M, if for every protocol P, params ∈ {0, 1}∗,
and specification (π, β) ∈ M ∪ MCS, the advantage of CS(A) against P for π
using X is bounded by β(params), i.e.:

A |=X
CS

M def
=

[(∀ P, params ∈ {0, 1}∗, (π, β) ∈ M ∪ MCS
)

:

επ
CS(A),P,X (params) ≤ β(params)

]

(10)

We also give the concrete definition of requirement-satisfying protocol.

Definition 5 (Protocol P CS-satisfies requirement R under model M
using execution operations X ). Let P,X be algorithms, and let R be a
set of specifications, i.e., R = {(π1, β1), . . .}. We say that protocol P CS-satisfies

requirement R under model M using execution operations X , denoted P |=M, X
CS

R,
if for every adversary A that CS-satisfies M using execution operations X , every
parameters params ∈ {0, 1}∗, and every specification (π, β) ∈ R, the advantage
of CS(A) against P for π using X is bounded by β(params), i.e.:

P |=M, X
CS

R def
=

[
(∀ A s.t. A |=X

CS
M, params ∈ {0, 1}∗, (π, β) ∈ R) :

επ
CS(A),P,X (params) ≤ β(params)

]

(11)

Note that if adversary A CS-satisfies M using X for a model M =
{(π1, β1), . . .} where every base function is a positive negligible function in
the security parameter (i.e., |params|), then A poly-satisfies M′ using X for
M′ = {(π1, 0), . . .} - i.e., A satisfies a model with the same predicates as M
but with all zero-constant base functions in the asymptotic sense. Similarly, if
protocol P CS-satisfies R under M using X for a requirement R = {(π1, β1), . . .}
where every base function is a positive negligible function in |params|, then P
poly-satisfies R′ under M using X for R′ = {(π1, 0), . . .}.

7.3 Ensuring Polytime Interactions

We next discuss a very different application of the CS Compiler (Subsect. 7.1):
ensuring polytime interactions. Let us first explain the polytime interaction chal-
lenge. In most of this work, as in most works in cryptography, we focus on PPT
algorithms and asymptotically polynomial specifications. For instance, consider
Definition 2, where we require A,X ,P ∈ PPT and bound the advantage by the
base function plus a negligible function - i.e., a function which is smaller than
any positive polynomial in the length of the inputs, for sufficiently large inputs.

However, when analyzing interacting systems as facilitated by MoSS, there is
a concern: each of the algorithms might be in PPT, yet the total runtime can be



60 A. Herzberg et al.

exponential in the size of the original input. For example, consider an adversary
A, that, in every call, outputs a state which is twice the size of its input state.
Namely, if the size of the adversary’s state in the beginning was l, then after e
calls to the adversary algorithm A, the size of sA would be 2e · l, i.e., exponential
in the number of steps e.

For asymptotic analysis, we may want to ensure polytime interactions, i.e.,
to limit the total running time of A and P during the execution to be polyno-
mial. Let us first focus on the adversary’s runtime. To limit the adversary’s
total runtime by a polynomial in the length of its initial input, i.e., length
of params, we use the CS Compiler, i.e., consider the execution transcript of
ExecX

CS(A),P(params). Specifically, we use the fact that the transcript T includes
the size of the initial state output by A in T.sA.LenInitState, as well as the
total number of steps taken by A in T.sA.CtrSteps.

Define the model MpolyAdv as MpolyAdv = (πpolyAdv, 0), where the πpolyAdv

predicate, shown in Algorithm 9, verifies that T.sA.CtrSteps is bounded by
2·T.sA.LenInitState. When T is a transcript returned by ExecX

CS(A),P(params),
this means that the number of steps taken by A over the whole execution does
not exceed twice8 the size of the initial state output by A, which is bounded by a
polynomial in |params|. Hence, model MpolyAdv ensures that the total runtime
of the adversary, over the entire execution, is polynomial in the size of the input
parameters.

Algorithm 9. The πpolyAdv (T , params) Predicate

1: return
(
T.outA.CtrSteps ≤ 2 · T.outA.LenInitState

)

The MpolyAdv model ensures polynomial runtime of the adversary, and hence
also a polynomial number of invocations of the protocol. In some situations it is
also important to similarly restrict the protocols, e.g., when proving an impos-
sibility or lower-bound on protocols. Note that for most ‘real’ protocols, such
restrictions hold immediately from assuming the protocol is a PPT algorithm,
since such protocols use bounded-size state and messages (outputs); and total
runtime is polynomial even if we allow linear growth in state and outputs. We
can focus on such ‘reasonable’ protocols by including an appropriate requirement
in the specifications. See the full version [19] for more on this topic.

8 Conclusions and Future Work

The MoSS framework enables modular security specifications for applied cryp-
tographic protocols, combining different models and requirements, each defined

8 We allow the total runtime to be twice the length of the adversary’s initial state, to
give the adversary additional time so it can also output this initial state, and is left
with enough time for the execution.
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separately. As a result, MoSS allows comparison of protocols based on the
requirements they satisfy and the models they assume. Definitions of models, and
even some generic requirements, may be reused across different works. While,
obviously, it takes some effort to learn MoSS, we found that the rewards of
modularity and reusability justify the effort.

Future work includes the important challenges of (1) developing computer-
aided mechanisms that support MoSS, e.g., ‘translating’ the modular MoSS spec-
ifications into a form supported by computer-aided proof tools, or developing
computer-aided proof tools for MoSS specifically, possibly using the modularity
lemmas of Sect. 5, (2) extending the MoSS framework to support secure composi-
tion, and (3) exploring the ability to support MoSS-like modular specifications in
simulation-based frameworks such as UC, and the ability to support simulation-
based specifications in MoSS. Finally, we hope that MoSS will prove useful in
specification and analysis of applied protocols, and the identification and reuse
of standard and generic models and requirements.
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Abstract. Most efficient zero-knowledge arguments lack a concrete
security analysis, making parameter choices and efficiency comparisons
challenging. This is even more true for non-interactive versions of these
systems obtained via the Fiat-Shamir transform, for which the security
guarantees generically derived from the interactive protocol are often too
weak, even when assuming a random oracle.

This paper initiates the study of state-restoration soundness in the
algebraic group model (AGM) of Fuchsbauer, Kiltz, and Loss (CRYPTO
’18). This is a stronger notion of soundness for an interactive proof or
argument which allows the prover to rewind the verifier, and which is
tightly connected with the concrete soundness of the non-interactive
argument obtained via the Fiat-Shamir transform.

We propose a general methodology to prove tight bounds on state-
restoration soundness, and apply it to variants of Bulletproofs (Bootle
et al., S&P ’18) and Sonic (Maller et al., CCS ’19). To the best of our
knowledge, our analysis of Bulletproofs gives the first non-trivial concrete
security analysis for a non-constant round argument combined with the
Fiat-Shamir transform.

Keywords: Zero-knowledge proof systems · Concrete security ·
Fiat-Shamir transform · Algebraic group model · State-restoration
soundness

1 Introduction

The last decade has seen zero-knowledge proof systems [1] gain enormous pop-
ularity in the design of efficient privacy-preserving systems. Their concrete effi-
ciency is directly affected by the choice of a security parameter, yet concrete
security analyses are rare and, as we explain below, hit upon technical barri-
ers, even in ideal models (such as the random-oracle [2] or the generic-group
models [3,4]). This has led to parameter choices not backed by proofs, and to
efficiency comparisons across protocols with possibly incomparable levels of secu-
rity. This paper addresses the question of narrowing this gap for protocols whose
security can be analyzed in the Algebraic Group Model [5].
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A concrete example. It is convenient to start with an example to illustrate
the challenges encountered in proving concrete security of proof systems. We
focus on Bulletproofs [6], which are argument systems with applications across
the cryptocurrencies1 and in verifiably deterministic signatures [9], which in turn
optimize prior work [10]. The soundness2 analysis (of their interactive version)
is asymptotic, based on the hardness of the discrete logarithm problem (DLP).
Even when instantiated from 256-bit elliptic curves, due to the absence of a
tight, concrete, reduction, we have no formal guarantee on concrete security.
Indeed, recent work [11] gives concrete soundness bounds in the generic-group
model with somewhat unfavorable dependence on the size of the statement being
proved, and no better analysis is known.

Even more importantly, existing bounds are for the interactive version of the
protocol, but Bulletproofs are meant to be used non-interactively via the Fiat-
Shamir (FS) transform [12]. However, the (folklore) analysis of the FS transform
gives no useful guarantees: Namely, for a soundness bound ε on the interactive
ZK proof system, the resulting NIZK has soundness qrε, where q is the number
of random-oracle queries, and r is the number of challenges sent by the verifier.
For Bulletproofs, we have ε ě 2´256 (this is the probability of merely guessing
the discrete log), and if (say) r “ Θplogpnqq ě 16, we only get security for (at
best) q ď 216 queries, which is clearly insufficient.

Overview of this paper. This paper studies the concrete security of succinct
proof systems in the algebraic group model (AGM) [5], with the goal of devel-
oping (near-)exact security bounds. The AGM considers in particular algebraic
provers that provide representations of group elements to the reduction (or to
the extractor), and has been successful to study security in a variety of contexts.
More specifically, this work is the first to look at multi-round public-coin proto-
cols and their non-interactive version obtained via the Fiat-Shamir transform.
For the latter, we aim for bounds with linear degradation in the number of ran-
dom oracle queries q even for a large number of rounds r, as opposed to the
qr degradation obtained from näıve analyses. Prior work [5] has focused on the
simpler case of linear-PCP based SNARKs [13], which are built from two-move
interactive proofs and without the FS transform.

The soundness of non-interactive systems resulting from the FS transform is
tightly related to the state-restoration soundness [14,15] of the underlying inter-
active protocol, where the cheating prover can rewind the verifier as it pleases,
until it manages to complete a full accepting interaction with the verifier. No
non-trivial bounds on state-restoration soundness are currently known on any
non-constant round argument.

We propose a general framework to quantitatively study state-restoration
version of witness-extended emulation (wee) [16,17] (which implies both state-
restoration soundness and a proof-of-knowledge property) in the AGM. We then

1 In particular, Bulletproofs have been deployed in Monero [7] and Signal’s upcoming
MobileCoin [8].

2 In this introduction, security is with respect to soundness – usually the analysis of
zero-knowledge security is much more straightforward.
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and apply it to three case studies, which include two variants of Bulletproofs,
as well as Sonic [18]. These protocols have previously been analyzed only with
respect to plain soundness in the interactive setting. The analysis of Bulletproofs
relies in particular on the Forking Lemma of Bootle et al. [10], which was only
very recently made concrete [11]. We believe that our framework can be applied
to a number of other protocols, such as Hyrax [19], Dory [20] or pairing-based
instantiations of IOPs [21,22], and leave their analysis for future work.

Remark 1. We stress that our approach differs formally from prior and concur-
rent works (e.g., [18,22]) which use the AGM to give a heuristic validation of
the security of a component of a protocol, which is then however assumed to
satisfy extractability properties compatible with a standard-model proof (i.e.,
an AGM extractor is used as a standard-model extractor.) Here, we aim for full
analyses in the AGM, and as we point out in our technical overview below, these
approaches actually do not give a full-fledged proof in the AGM (beyond not
giving a proof in the standard model either).

Bulletproofs. We apply our framework to two instantiations of Bulletproofs –
the first is for range proofs, and the other is for general satisfiability of arithmetic
circuits. For example, in the former, a prover shows in Oplog nq rounds that for
a given Pedersen commitment C “ gvhr in a cyclic group G of prime order p we
have v P r0, 2nq. (Here, clearly, 2n ď p.)

For the final non-interactive protocol obtained via the FS transform, our
result implies that an (algebraic) t-time prover making q random-oracle queries
can break security as a Proof of Knowledge (when properly formalized) with
advantage roughly

εpt, qq ď Opqn{pq ` Advdl
G

ptq , (1)

where Advdl
G

ptq is the advantage of breaking the DLP within time t. In the generic
group model, this is roughly Opt2{pq, and this bound justifies the instantiation of
Bulletproofs from a 256-bit curve. For arithmetic circuit satisfiability, we obtain
a similar bound.

Tightness and discussion. Assuming Advdl
G

ptq „ t2{p (which is true in the
generic group model), the above bound implies in particular that for most values
of n,3 the term Opqn{pq is not leading. Still, we show that the dependence on
n is necessary – in particular, we show that there exist n, p for which we can
construct a cheating prover that can break soundness with probability Ωpqn{pq,
meaning that this part of the bound is tight. (Our argument can be extended
to all bounds claimed in the paper.) Also, the term Advdl

G
ptq is clearly necessary,

given that breaking the DLP would directly give us an attack. This makes our
bound essentially exact (up to small constants).

AGM and composition. A challenging aspect of our analysis is the difficulty of
dealing with composition. The core of the Bulletproofs is indeed its Oplogpnqq-
round inner-product argument. In the standard model, and in the interactive
3 For the circuit satisfiability version of our result, one should think of n “ 220 and

p “ 2256 as representative values.
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case, it is not hard to reduce the security (as a proof of knowledge) of the
full-fledged system using Bulletproofs to the analysis of the underlying inner-
product argument, but it is not that clear how to do this generically in the
AGM. In particular, in the AGM, the adversary provides representations of group
elements to the reduction (or the extractor), and these are as a function of all
priorly given group elements. The problem is that when analyzing a protocol
in isolation (such as the inner-product argument) the bases to which elements
are described are not necessarily the same as those that would be available to a
cheating algebraic prover against the full protocol. This makes it hard to use an
extractor for the inner-product argument in isolation as a sub-routine to obtain
an extractor for a protocol using it. Also, because we consider state-restoration
soundness, a sub-protocol can be initiated by a cheating prover several times,
with several choices of these basis elements.

The downside of this is that our analyses are not modular, at least not at
a level which considers sub-protocols are isolated building blocks – we give two
different analyses for two different instantiations of Bulletproofs, and the shared
modularity is at the algebraic level.

We discuss this further at the end of our technical overview below.

Sonic. As a second application, we study Sonic [18]. This is a constant-round
protocol, and in particular with 3M ` 2 challenges for some constant M ě 1.
In this case, the folklore analysis of the FS transform can be used to obtain a
non-trivial bound, incurring a multiplicative loss of q3M`2 from the soundness of
the interactive version. Here, we want to show that this loss is not necessary and
also obtain a bound which degrades linearly in q. Moreover, no concrete bound
on the concrete soundness of Sonic was given in the interactive setting.

We ignore the stronger requirement of updatable witness-extended emulation
because our pedagogical point here is that our framework can improve soundness
even for constant-round protocols.

We also note that Sonic’s proof already uses the AGM to justify security of
the underlying polynomial commitment scheme, but follows a (heuristic) pat-
tern described above where the resulting extractor is expected to behave as a
standard-model one, and is used within a standard-model proof.

Adaptive vs non-adaptive soundness. It is important to understand that
one can consider both adaptive and non-adaptive provers, where the former also
chooses the input for which it attempts to provide a proof. Clearly, one expects
adaptive provers to be harder to handle, but this is not necessarily true for alge-
braic provers – in particular, if the input contains group elements, the extractor
can obtain useful information (and, possibly, directly extract) from their group
representation. While this does not render the proof trivial at all, it turns out
that for non-adaptive security, the proof is even harder. In this paper, we deal
mostly with adaptive provers, but for the case of range proofs (where the inputs
are commitments in a group), we also give a proof for non-adaptive security –
the resulting bound is increased to the square root of the adaptive bound, due
to our limited use of rewinding.
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Related work: Proofs vs arguments. We clarify that state-restoration
soundness has been studied for several forms of interactive proofs [14,15,23,24],
also in its equivalent form of “round-by-round” soundness. Some proof sys-
tems satisfy it directly (such as those based on the sumcheck protocol [25]),
whereas any proof with non-trivial (plain) soundness can be amplified into one
with sufficient stare-restoration soundness (e.g., with parallel repetition). This is
because (similar to our statement about the Fiat-Shamir transform above) one
can näıvely infer that a concrete soundness bound ε implies a state-restoration
soundness bound qrε, where r is the number of challenges, and thus ε needs to
be smaller than q´r.

However, we do not know of any non-trivial bounds on state-restoration
soundness for multi-round arguments based on computational assumptions (as
opposed to, say, arguments in the ROM), and moreover, soundness amplification
(e.g., [26–29]) does not reduce soundness beyond the largest negligible function,
and this is insufficient to absorb the qr loss.

Beyond the AGM. Our results are inherently based on online extraction, which
is only meaningful in ideal models or using knowledge assumptions. One scenario
where ideal models are inherently used is in the compilation of IOPs into NIZKs
in the ROM via the BCS transform [14] – it is unclear whether our technique
can be used to give tight state-restoration soundness bounds for systems such as
Aurora [30] and STARK [31].

Concurrent Work. In a recently updated version of [32], Bünz et al. analyse
the soundness of the non-interactive inner-product argument of Bulletproofs in
the AGM. We provide a brief comparison with their result in the full version [34],
but note here that their analysis is asymptotic, and gives weaker concrete security
(insufficient for instantiations on 256-bit curves) when made concrete.

1.1 Overview of Our Techniques

We give a general framework to derive tight bounds on state-restoration sound-
ness in the AGM. In fact, we will target the stronger notion of witness-extended
emulation [16,17], which we adapt to state-restoration provers. Recall first that
the main characteristic of the AGM is that it allows the reduction, or in our
case the extractor, to access representations of group elements. A contribution
of independent interest is to set up a formal framework to define extraction in
the AGM.

Preface: Online Extraction in the AGM. In the AGM, the reduction
(or an extractor) obtains representations of each group element in terms of all
previously seen group elements. A useful feature of the AGM is that it often (but
not always) allows us to achieve online witness extraction, as already observed
in [5,33]. In other words, by looking at the representation of the group elements
provided by the prover in a single interaction, the extractor is able to extract a
witness, without the need of rewinding.
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Online extraction however immediately appears to be very useful to tame
the complexity of state-restoration provers. Indeed, one can visualize an inter-
action of an adversarial state-restoration prover P˚ with the verifier V as defin-
ing an execution tree. In particular, P˚ wins if it manages to create a path
in the execution tree associated with an accepting (simple) transcript τ “
pa1, c1, a2, . . . , cr, ar`1q, where a1, a2, . . . , ar`1 are P˚’s messages, and c1, . . . , cr

are the verifier’s challenges. (We focus on public-coin protocols here.) Online
extraction from a single transcript τ directly implies extraction here, because a
witness can directly be extracted locally from the path τ (and the corresponding
representations of group elements), disregarding what happened in the rest of
the execution tree. In particular, the probability that P˚ succeeds equals the
probability that a witness is extracted. Without online extraction, we would
have to use rewinding – but current techniques [10,11] do not seem to easily
extend to state-restoration provers.

However, this only holds for perfect online extraction – in general, we may be
able to generate transcripts which are accepting, but for which no witness can
be extracted. This is typically because of two reasons:

– Bad Challenges. A bad choice of challenges may prevent witness extraction.
– Violating an assumption. A transcript is accepting, but the resulting inter-

action corresponds to a violation of some underlying assumption (i.e., one can
extract a non-trivial discrete logarithm relation).

Our framework will exactly follow this pattern. For an r-challenge public-coin
protocol, we identify bad challenges, i.e., for each i P rrs, input x, and par-
tial transcript τ ′ “ pa1, c1, . . . , ai´1, ci´1, aiq, we define a set of bad challenges ci

which would make extraction impossible. Crucially, these sets are defined accord-
ing to a simple interaction transcript (i.e., not a state-restoration one) and can
be defined according to the representation of group elements in the transcript
so far. Then, given a transcript τ with no bad challenges, we show that:

– We can either extract a witness for x from τ (and the representations of the
group elements in τ).

– We can use τ (and the representation of the group elements in terms of the
public parameters) to break some underlying assumption.

To illustrate this, we give a non-trivial example next, which considers a simplified
instance of the inner product argument at the core of Bulletproofs, but which
already captures all subtleties of the model.

Inner-Product Argument of Bulletproofs. In the inner product argu-
ment the prover proves that a group element P P G is a well-formed commitment
to vectors a,b P Z

n
p and their inner-product xa,by.4 More precisely, the prover

wants to prove to the verifier that P “ gahbuxa,by where g P G
n,h P G

n, u P G

are independent generators of G.
4 We use boldface to denote vectors. For two vectors a “ pa1, . . . , anq,g “ pg1, . . . , gnq,

we use ga to denote
nś

i“1

gai
i .
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Here, we shall focus on the special case n “ 2 first, and below discuss chal-
lenges in scaling our analysis up to any n. The prover first sends to the verifier
group elements L,R where

L “ ga1
2 hb2

1 ua1b2 , R “ ga2
1 hb1

2 ua2b1 .

The verifier samples x uniformly at random from Zp̊ and sends it to the prover.
We then define

P ′ “ Lx2
PRx´2

, g′ “ gx´1

1 gx
2 , h′ “ hx

1h
x´1

2 .

The prover sends a′ “ a1x ` a2x
´1 and b′ “ b1x

´1 ` b2x to the verifier, which
in turns accepts if and only if

P ′ “ pg′qa′ph′qb′
ua′b′

.

Extraction for n “ 2. For this discussion, we focus in particular on the notion
of adaptive soundness – i.e., the prover provides P along with its representation,
i.e., we get a′ “ ppg1 , pg2q, b′ “ pph1 , ph2q and pu such that P “ ga′

hb′
upu . At

first, it looks like we are done – after all, we can just check whether xa′,b′y “ pu,
and if so, output pa′,b′q as our witness. Unfortunately, things are not that simple
– we need to ensure that no accepting transcript τ “ ppL,Rq, x, pa′, b′qq, i.e., such
that P ′ “ pg′qa′ph′qb′

ua′b′
, is ever produced if xa′,b′y ‰ pu, for otherwise our

näıve extraction would fail.
To this end, we will prove that if the cheating prover can produce an accept-

ing interaction such while xa′,b′y ‰ pu, then we can solve the discrete logarithm
problem in the group G. We construct an adversary A that takes as inputs
g1, g2, h1, h2, u and attempts to return a non-trivial discrete logarithm relation
between them. (Breaking this is tightly equivalent to breaking the discrete log-
arithm problem.) Concretely, the adversary A gives g1, g2, h1, h2, u as input to
the cheating prover P, which first returns an adaptively chosen input P P G,
along with is algebraic representation

P “ g
pg1
1 g

pg2
2 h

ph1
1 h

ph2
2 upu .

The adversary then simulates the execution of P with a honest verifier further,
and assumes it generates an accepting transcript τ “ ppL,Rq, x, pa′, b′qq – this
transcript contains the representations of L,R such that L “ g

lg1
1 g

lg2
2 h

lh1
1 h

lh2
2 ulu

and R “ g
rg1
1 g

rg2
2 h

rh1
1 h

rh2
2 uru and since it is an accepting transcript we have

Lx2
PRx´2 “ gx´1a′

1 gx1a′
2 hx1b′

1 hx´1b′
2 ua′b′

.

We can plug in the representations of L, R into the equality and obtain values
eg1 , eg2 , eh1 , eh2 , eu such that

g
eg1
1 g

eg2
2 h

eh1
1 h

eh2
2 ueu “ 1 . (2)

For example eg1 “ x´1a′ ´ lg1x
2 ´rg1x

´2 ´pg1 and eu “ a′b′ ´ lux2 ´rux´2 ´pu.
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The adversary A then simply outputs peg1 , eg2 , eh1 , eh2 , euq – it has found
a non-trivial discrete logarithm relation if peg1 , eg2 , eh1 , eh2 , euq ‰ p0, 0, 0, 0, 0q,
which we next show happens with very high probability if pu ‰ pg1ph1 ` pg2ph2 .

Suppose peg1 , eg2 , eh1 , eh2 , euq “ p0, 0, 0, 0, 0q. From eg1 “ 0, we have that
x´1a′´lg1x

2´rg1x
´2´pg1 “ 0. Since x ‰ 0, we get that a′ “ lg1x

3`rg1x
´1`pg1x.

Similarly from eg2 “ 0, we would get a′ “ lg2x ` pg2x
´1 ` rg2x

´3. With high
probability over the choice of x’s, by the Schwartz-Zippel Lemma, we can infer
by equating both right-hand sides that

a′ “ xpg1 ` x´1pg2 .

Similarly, from eh1 “ 0 and eh2 “ 0, we obtain that

b′ “ x´1ph1 ` xph2

for most x’s. Finally, from eu “ 0, we similarly learn that

a′b′ “ x2lu ` pu ` x´2ru .

Hence from the above

x2lu ` pu ` x´2ru “ pg1ph1 ` pg2ph2 ` pg1ph2x
2 ` pg2ph1x

´2 .

Since we have that pg1ph1 ` pg2ph2 ‰ pu, the above equality holds with very
small probability over the choice of x’s.

Hence we have shown that peg1 , eg2 , eh1 , eh2 , euq “ p0, 0, 0, 0, 0q with very
small probability. Therefore A succeeds with high probability.

Non-adaptive security. The above proof exploits the fact that the prover
provides a representation of P – this corresponds to the case of an adaptive
prover. But there are scenarios where the prover may be non-adaptive and not
be able to do that – for example, the input P has been generated by another
party, and the prover tries to prove knowledge with respect to this P . It turns
out that in this case, one needs a different proof. In fact, one could give an
extraction strategy which does not require knowing an initial representation for
P , but it is then hard to give a reduction to the discrete logarithm problem to
show correctness.

We stress that non-adaptive provers and adaptive provers are equivalent in
many applications – they only differ when the input includes group elements.
We give a formalization and a case study (for Bulletproofs range proofs) in
the full version [34]. There, we can actually give a reduction to the discrete
logarithm problem (to bound the probability of failing to extract), but this
requires rewinding once – this allows us to prove a bound which is the square
root of the bound for adaptive provers.

The recursive protocol for n “ 4. Scaling the protocol to an arbitrary n
proceeds via recursion. For concreteness, let us focus on the case n “ 4. The
prover first sends to the verifier group elements L,R where

L “ ga1
3 ga2

4 hb3
1 hb4

2 ua1b3`a2b4 , R “ ga3
1 ga4

2 hb1
3 hb2

4 ua3b1`a4b2 .
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The verifier samples x uniformly at random from Zp̊ and sends it to the prover.
The prover and the verifier both compute

P ′ “ Lx2
PRx´2

, g′
1 “ gx´1

1 gx
3 , g′

2 “ gx´1

2 gx
4 , h′

1 “ hx
1hx´1

3 , h′
2 “ hx

2h
x´1

4 .

The prover also computes a′
1 “ a1x ` a3x

´1, a′
2 “ a2x ` a4x

´1, b′
1 “ b1x

´1 ` b3x
and b′

2 “ b2x
´1 ` b4x. Observe that P ′ “ pg′

1qa′
1pg′

2qa′
2ph′

1qb′
1ph′

3qb′
2ua′

1b′
1`a′

2b′
2 .

Now, the prover and the verifier engage, recursively, in the protocol for n “ 2 with
inputs pg′

1, g
′
2q, ph′

1, h
′
2q, u, P ′, pa′

1, a
′
2q, pb′

1, b
′
2q. The difficulty in analyzing this is

that we would like our proof strategy to be recursive, i.e., given we analyzed the
protocol for n secure, we can now infer that the one for 2n also is secure. This will
not be so direct, unfortunately. One major technical issue is for example that the
recursive call uses different generators than the ones used for the calling protocol
– in our case, here, pg′

1, g
′
2q, ph′

1, h
′
2q – however, when looking at the combined

protocol in the AGM, all element representations would be with respect to the
generators g1, . . . , g4, h1, . . . , h4, and this makes it difficult to directly recycle the
above analysis.

The challenges with composition. The inability to leverage recursion to
simplify the approach from the previous paragraph is not an isolated incident.
We note that a non-trivial aspect of our analyses is due to the lack of easy compo-
sition properties in the AGM. In particular, we encounter the following problem
– if we have a protocol Π ′ (e.g., the inner-product argument) which is used as
a sub-protocol for Π (a Bulletproofs range proof), and we prove extractability
for Π ′, it is not clear we can infer extractability for Π in a modular way by
just calling the extractor for Π ′. This is because a stand-alone analysis of Π ′

may assume group elements output by a malicious prover P ′ are represented with
respect to some set of basis elements – say, the generators g1, . . . , gn, h1, . . . , hn, u
in the concrete example of inner-product argument described above. However,
when Π ′ is used within Π, the generators of the inner-product argument are
functions of different group elements. When studying a prover P attacking Π,
then, representations of group elements are with respect to this different set of
group elements, and this makes it hard to use an extractor for Π ′ directly, as it
assumes different representations.

This is a problem we encounter in our analyses, and which prevents us from
abstracting a theorem for the inner-product argument which we could use, in
a plug-and-play way, to imply security of higher-level protocols using it. The
flip side is that this lack of composability also comes to our advantage – our
extractors will in fact not even need to extract anything from the transcript of
an accepting execution of the inner-product argument, but only use the fact that
it is accepting to infer correctness of the extracted value.

The issue with prior AGM analyses. Composition issues seemingly affect
existing analyses of proof systems in the literature (e.g., [18,22]), whenever some
components are analyzed in the AGM (typically, a polynomial commitment
scheme), but the overall proof is expressed in the standard model. As far as
we can tell, unlike this work, one cannot directly extract a full AGM analysis
from these works – let us elaborate on this.



Tight State-Restoration Soundness in the Algebraic Group Model 73

Obviously, from a purely formal perspective, the standard model and the
algebraic group model cannot be quite mixed, as in particular the AGM extrac-
tor for the component cannot be used in the standard model – the only formally
correct way to interpret the analysis is as fully in the AGM, but part of the anal-
ysis does not leverage the full power of the model, and is effectively a standard-
model reduction. Yet, in order for composition to be meaningful, it is important
to verify that the basis elements assumed in the AGM analysis of the compo-
nents are the same available to a prover attacking the complete protocol. While
we cannot claim any issues (in fact, we give an analysis of Sonic in this paper
with a concrete bound), it does appear that all existing works do not attempt
to provide a formal composition – they use the existence of an AGM extractor
as a heuristic validation for the existence of a standard-model extractor, rather
than making formally correct use as an AGM extractor within an AGM proof.
Making this composition sound is potentially non-trivial. Having said this, for
pairing-based polynomial commitment schemes, the basis elements are generally
the same, and thus this can likely be made rigorous fairly easily (unlike the case
of inner-product arguments).

2 Preliminaries

Let N “ {0, 1, 2, . . .} represent the set of all natural numbers and let N` “ Nz{0}.
For N P N

`, let rN s “ {1, . . . , N}. We use Pr [G] to denote the probability that
the game G returns true. Let G be a cyclic group of prime order p with identity
1 and let G

˚ “ Gz{1} be the set of its generators. We use boldface to denote a
vector, e.g., g P G

n is a vector of n group elements with its ith element being gi,
i.e., g “ pg1, . . . , gnq. For two vectors a “ pa1, . . . , anq,g “ pg1, . . . , gnq, we use
ga to denote

śn
i“1 gai

i . We use python notation to denote slices of vectors:

gr:ls “ pg1, . . . , glq P G
l , grl:s “ pgl`1, . . . , gnq P G

n´l .

For z P Zp̊, we use zn to denote the vector p1, z, z2, . . . , zn´1q. Similarly, we use
z´n to denote the vector p1, z´1, z´2, . . . , z´n`1q. If Z is a variable, Zn represents
the vector p1, Z, Z2, . . . , Zn´1q. Our vectors are indexed starting from 1, so zn`1

r1:s
is the vector pz, z2, . . . , znq. The operator ˝ denotes the Hadamard product of
two vectors, i.e., a “ pa1, . . . , anq,b “ pb1, . . . , bnq,a ˝ b “ pa1b1, . . . , anbnq. We
use capitalized boldface letters to denote matrices, e.g., W P Z

nˆm
p is a matrix

with n rows and m columns.
We denote the inner product of two vectors a,b P Z

n
p using xa,by. We also

define vector polynomials, e.g., fpXq “ ∑d
i“0 fiX

i, where each coefficient fi is a
vector in Z

n
p .

The function bitpk, i, tq returns the bit ki where pk1, . . . , ktq is the t-bit rep-
resentation of k.

Schwartz-Zippel Lemma. The polynomial ring in variables X1, . . . , Xn over
the field F is denoted by FrX1, . . . , Xns.
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Fig. 1. The games used to define the advantage of a non-uniform adversary A “
{Aλ}λPN` against the discrete logarithm problem, the discrete logarithm relation prob-
lem and the q-DLOG problem in a family of cyclic groups G “ {Gλ}λPN` with prime
order p “ ppλq. The set Gλ

˚ is the set of generators of Gλ.

Lemma 1 (Schwartz-Zippel Lemma). Let F be a finite field and let f P
FrX1, . . . , Xns be a non-zero n variate polynomial with maximum degree d. Let
S be a subset of F. Then Pr [fpx1, . . . , xnq “ 0] ď d{|S|, where the probability is
over the choice of x1, . . . , xn according to xi Ð$ S.

In particular if p is a prime and f P ZprXs is a polynomial of degree d and x is
sampled uniformly at random from Zp̊, then Pr [fpxq “ 0] ď d{pp ´ 1q. Further
this implies that if gpXq “ fpXq{Xi for i P N and x is sampled uniformly at
random from Zp̊, then Pr [gpxq “ 0] “ Pr [fpxq “ 0] ď d{pp ´ 1q.
The Discrete logarithm problem. The game Gdl

G
in Fig. 1 is used for is used

for defining the advantage of a non-uniform adversary A “ {Aλ}λPN` against
the discrete logarithm problem in a family of cyclic groups G “ {Gλ}λPN` of
prime order p “ ppλq with identity 1 and set of generators G

˚ “ {Gλ̊}λPN` “
{Gλz{1}}λPN` . We define Advdl

G
pA, λq “ Pr

[
Gdl
G

pA, λq
]
.

The Discrete logarithm relation problem. The game Gdl-rel
G,n in Fig. 1

is used for defining the advantage of a non-uniform adversary A “ {Aλ}λPN`

against the discrete logarithm relation problem in a family of cyclic groups G “
{Gλ}λPN` . We define A “ {Aλ}λPN` as Advdl-rel

G,n pA, λq “ Pr
[
Gdl-rel
G,n pA, λq

]
. The

following lemma shows that hardness of the discrete logarithm relation problem
in G is tightly implied by the hardness of discrete logarithm problem in a family
of cyclic groups G “ {Gλ}λPN` .

Lemma 2. Let n P N
`. Let G “ {Gλ}λPN` be a family of cyclic groups with

order p “ ppλq. For every non-uniform adversary A “ {Aλ}λPN` there exists a
non-uniform adversary B “ {Bλ}λPN` such that for all λ P N

`, Advdl-rel
G,n pA, λq ď

Advdl
G

pB, λq ` 1{p. Moreover, B is nearly as efficient as A.

We refer the reader to [11] for a proof of this lemma.

The q-DLOG problem. The game Gq-dl
G

in Fig. 1 is used for defining the advan-
tage of a non-uniform adversary A “ {Aλ}λPN` against the q-DLOG problem in
a family of groups G “ {Gλ}λPN` . We define Advq-dl

G
pA, λq “ Pr

[
Gq-dl
G

pA, λq
]
.
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Fig. 2. Definition of state-restoration soundness. The game SRS defines state-
restoration soundness for a non-uniform prover P and a public-coin interactive proof
IP. Here, IP has r “ rpλq challenges and the i-th challenge is sampled from Chi.

We note that there are other problems known as q-DLOG which are not
equivalent to the one we use here. We use the version stated above because it
was the version used in the analysis of Sonic [18] which we analyse in this paper.

3 Interactive Proofs and State-Restoration Soundness

We introduce our formalism for handling interactive proofs and arguments, which
is particularly geared towards understanding their concrete state-restoration
soundness.

Interactive proofs. An interactive proof [1] IP is a triple of algorithms: (1)
the setup algorithm IP.Setup which generates the public parameters pp, (2) the
prover IP.P and (3) the verifier IP.V. In particular, the prover and the verifier are
interactive machines which define a two-party protocol, where the prover does
not produce any output, and the verifier outputs a decision bit d P {0, 1}. We let
xIP.Ppxq, IP.Vpyqy denote the algorithm which runs an execution of the prover
and the verifier on inputs x and y, respectively, and outputs the verifier’s decision
bit. We say that IP is public coin if all messages sent from IP.V to IP.P are fresh
random values from some understood set (which we refer to as challenges).

Completeness. A relation R is (without loss of generality) a subset of {0, 1}˚ ˆ
{0, 1}˚ ˆ {0, 1}˚. We denote a relation R that uses specified public parameters
pp, instance x and witness w as {ppp, x, wq : fRppp, x, wq} where fRppp, x, wq is
a function that returns true if ppp, x, wq P R and false otherwise. For every
λ P N

` and every A, define the following experiment:

pp Ð$ IP.Setupp1λq , px,wq Ð$ Apppq , d Ð$ xIP.Pppp, x, wq, IP.Vppp, xqy .

Then, we say that IP is an interactive proof for the relation R if for all A and
all λ P N

`, in the above experiment the event pd “ 1q _ pppp, x, wq R Rq holds
with probability one.

State-restoration soundness. We target a stronger notion of soundness –
state-restoration soundness (SRS) [14,15] – which (as we show below) tightly
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reduces to the soundness of the non-interactive proof obtained via the Fiat-
Shamir transform. The SRS security game allows the cheating prover to rewind
the verifier as it pleases, and wins if and only if it manages to produce some
accepting interaction. We only consider an rpλq-challenge public-coin interac-
tive proof IP, and consider the case where challenges are drawn uniformly from
some sets Ch1, . . . ,Chr. We also assume that the verifier is described by an algo-
rithm which given pp, x, and a transcript τ “ pa1, c1, . . . , ar, cr, ar`1q, outputs
a decision bit d P {0, 1}. We overload notation and write IP.Vppp, x, τq for this
output.

Our definition considers a game SRSP
IPpλq (which is formalized in Fig. 2) that

involves a non-uniform cheating prover P “ {Pλ}λPN. (Henceforth, whenever we
have any non-uniform adversary A, it is understood A “ {Aλ}λPN – we shall
not specify this explicitly). The prover is initially responsible for generating the
input x on which it attempts to convince the verifier on some execution. Its
rewinding access to the verifier is ensured by an oracle Oext, to which it has
access. Roughly speaking, the oracle allows the prover to build an execution
tree, which is extended with each query to it by the prover. This execution tree
can be inferred from tr, which sequentially logs all (valid) queries to Oext by
the prover. For a partial transcript τ ′, we write τ ′ P tr to mean that a partial
execution corresponding to τ ′ can be inferred from tr.

We then associate the probability of winning the game with the srs advantage
metric, AdvsrsIP pP, λq “ Pr

[
SRSIPP pλq

]
. For notational convenience, we do not

restrict the input x not to have a witness. Therefore, if IP is an interactive
proof for a relation R, we cannot hope to show that AdvsrsIP pP, λq is small for
all P. Clearly, if P outputs px, aq such that ppp, x, aq P R, then a is a witness
and P can simply (honestly) convince the verifier. The classical notion of state-
restoration soundness is recovered by only considering P’s which output x such
that ppp, x, wq R R for any w.

4 Proofs of Knowledge in the AGM

The Algebraic Group Model. We start here with a brief review of the
AGM [5]. For an understood group G with prime order p, an algebraic algorithm
Aalg is an interactive algorithm whose inputs and outputs are made of distinct
group elements and strings. Furthermore, each (encoding) of a group element X
output by Aalg is accompanied by a representation pxA1 , xA2 , . . . , xAk

q P Z
k
p such

that X “ śk
i“1 A

xAi
i , where A1, . . . , Ak are all group elements previously input

and output by Aalg. Generally, we write [X] for a group element X enhanced
with its representation, e.g., [X] “ pX,xA1 , xA2 , . . . , xAk

q. In particular, when
we use a group element X output by Aalg, e.g. it is input to a reduction or used
in a cryptographic game, we write [X] to make explicit that the representation is
available, whereas write X only when the representation is omitted. The notation
extends to a mix of group elements and strings a – [a] enhances each group
element with its representation.
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Fig. 3. Definition of online srs-wee security in the AGM. The games
WEE-1,WEE-0 define online srs-wee security in the AGM for a non-uniform algebraic
prover Palg, a distinguisher D, an extractor E and a public-coin interactive proof IP.
We assume here that IP has r “ rpλq challenges and the i-th challenge is sampled from
Chi.

Defining AGM extraction. We formalize a notion of proof-of-knowledge
(PoK) security in the AGM, following the lines of witness-extended emula-
tion [16,17], which we extend to provers that can rewind the verifier.

We will be interested in cases where the AGM allows for online extraction, i.e.,
the additional group representations will allow for extraction without rewinding
the prover. We target an adaptive notion of security, where the input is generated
by the adversarial prover itself, depending on the public parameters pp, and can
contain group elements.

Online srs-wee security. The definition consists of two games – denoted
WEE-1Palg,D

IP and WEE-0E,Palg,D
IP,R , and described in Fig. 3. The former captures

the real game, lets our prover P “ {Pλ}λPN interact with an oracle O1
ext as in

the state-restoration soundness game defined above, which additionally stores
a transcript tr. The latter is finally given to a distinguisher D which outputs a
decision bit. In contrast, the ideal game delegates the role of answering P’s oracle
queries to a (stateful) extractor E . The extractor, at the end of the execution,
also outputs a witness candidate for w. The extractor in particular exploits here
the fact that P is algebraic by learning the representation of every input to the
oracle O0

ext. (This representation can be thought, without loss of generality, as
being in terms of all group elements contained in pp.) Here, the final output of
the game is not merely D’s decision bit – should the latter output 1, the output
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of the game is true only if additionally the extracted witness is correct assuming
the interaction with O0

ext resulted in an accepting execution – a condition we
capture via the predicate Accptrq.

For an interactive proof IP and an associated relation R, non-uniform alge-
braic prover Palg, a distinguisher D, and an extractor E , we define

Advsr-weeIP,R pPalg,D, E , λq “ Pr
[
WEE-1Palg,D

IP pλq
]

´ Pr
[
WEE-0E,Palg,D

IP,R pλq
]

. (3)

One can consider also scenarios where the prover may be non-adaptive – for
example, the input has been generated by another party, and the prover tries to
prove knowledge with respect to this input. For this reason, introduce the notion
of non-adaptive srs-wee in the full version [34].

4.1 The Basic Framework

We develop a general framework that we will use, via Theorem 1, to derive
concrete AGM bounds on srs-wee security. Our goal, in particular, is to give
conditions on single path executions – i.e., executions not involving any rewind-
ing of the verifier by the prover, which could be seen as root-to-leaf paths in an
execution tree generated by the interaction of a state-restoration prover.

Transcripts. From now on, let us fix an interactive public-coin proof IP “
pIP.Setup, IP.P, IP.Vq for a relation R. Assume further this protocol has exactly
r rounds of challenges. Then, we represent a (potential) single-execution tran-
script generated by an algebraic prover in different forms, depending on whether
we include the representations of group elements or not. Specifically, we let
the (plain) transcript be τ “ ppp, x, a1, c1, a2, c2, . . . , ar, cr, ar`1q, where pp
are the generated parameters, x is the input produced by Palg, ci P Chi for
all i P {1, . . . , r} are the challenges, and a1, . . . , ar`1 are the prover’s mes-
sages. The corresponding extended transcript with representations is denoted
as [τ ] “ ppp, [x] , [a1] , c1, [a2] , c2, . . . , [ar] , cr, [ar`1]q.

In particular, the representation of each group element contained in ai is
with respect to all elements contained in pp, x, a1, . . . , ai´1. We let T IP be the
set of all possible extended transcripts [τ ]. We also let T IP

Acc Ď T IP be the set of
accepting transcripts [τ ], i.e., IP.Vpτq “ 1.

Path Extraction. We now would like to define a function e which extracts a
witness from any accepting transcript [τ ] P T IP

Acc. For a particular function e we
now define the set of extended transcripts on which it succeeds in extracting a
valid witness, i.e.,

T IP,e,R
correct “ {

[τ ] “ ppp, [x] , . . .q P T IP
Acc : w ← ep[τ ]q, ppp, x, wq P R

}
.

Therefore, a natural extractor E just answers challenges honestly, and applies
e to a path in the execution tree which defines an accepting transcript, and
returns the corresponding witness w. The probability of this extractor failing can
be upper bounded näıvely by the probability that the prover generates, in its
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execution tree, a path corresponding to an extended transcript [τ ] P T IP
AcczT IP,e,R

correct .
This is however not directly helpful, as the main challenge is to actually estimate
this probability.

Bad Challenges. In all of our examples, the analysis of the probability of
generating a transcript in T IP

AcczT IP,e,R
correct will generally consist of an information-

theoretic and a computational part.
The information-theoretic part will account to choosing some bad challenges.

We capture such choices of bad challenges by defining, for any partial extended
transcript [τ ′] “ ppp, [x] , [a1] , c1, . . . , [ai]q, a set BadChpτ ′q Ď Chi of such bad
challenges. (Crucially, whether a challenge is bad or not only depends on the
extended transcript so far.) We now denote as T IP

BadCh the set of all extended
transcripts which contain at least one bad challenge. It turns out that the prob-
ability of generating such a bad challenge is easily bounded by q · ε for a prover
making q oracle queries, assuming |BadChpτ ′q| { |Chi| ď ε.

The only case that the extractor can now fail is if the execution tree contains
an extended transcript [τ ] in the set T IP,e,R

fail “ T IP
Acc z pT IP,e,R

correct YT IP
BadChq. We denote

the probability that this happens in SRS
Palg

IP pλq as pfailpIP,Palg, e, R, λq. Generally,
in all of our applications, upper bounding this probability for a suitably defined
extractor will constitute the computational core of the proof – i.e., we will prove
(generally tight) reductions to breaking some underlying assumption.

The Master Theorem. We are now ready to state our master theorem, which
assumes the formal set up.

Theorem 1 (Master Theorem). Let IP be an r “ rpλq-challenge public coin
interactive proof for a relation R. Assume there exist functions BadCh and e
for IP as described above, and let pfail be as defined above. Let τ ′ be a partial
transcript such that the challenge that comes right after is sampled from Chi.
Assume that for all i P {1, . . . , r}, we have |BadChpτ ′q| { |Chi| ď ε, for some
ε P r0, 1s. Then, there exists an extractor E that uses e such that for any non-
uniform algebraic prover Palg making at most q “ qpλq queries to its oracle, and
any (computationally unbounded) distinguisher D, for all λ P N

`,

Advsr-weeIP,R pPalg,D, E , λq ď qε ` pfailpIP,Palg, e, R, λq .

The time complexity of the extractor E is Opq · tV ` teq where tV is the time
required to run IP.V and te is the time required to run e.

The proof of this theorem is straightforward has been deferred to the full ver-
sion [34].

4.2 The Fiat-Shamir Transform

The Fiat-Shamir transform uses a family of hash functions H to convert
a r-challenge public coin interactive protocol (proof or argument) IP to a
non-interactive argument FSrIP,Hs. When H is modelled as a random ora-
cle, we denote the non-interactive argument using FSROrIPs. In FSrIP,Hs,
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Fig. 4. Definition of fs-ext-1 security in the AGM. The game FS-EXT-1 defines
fs-ext-1 security in the AGM for a non-uniform algebraic prover Palg, an extractor E
and a non-interactive argument obtained by applying the Fiat-Shamir transform to
an interactive protocol IP. Here, IP has r “ rpλq challenges where the ith challenge is
of length cLeni “ cLenipλq such that sLenpλq ď cLenipλq ď hLenpλq. The set ΩhLenpλq
contains all functions mapping {0, 1}˚ to {0, 1}hLenpλq.

a hash function H is first sampled from H. A proof on public parame-
ters pp and input x is π “ pa1, c1, a2, c2, . . . , ar, cr, ar`1q, such that ci “
Hppp, x, a1, c1, . . . , ai´1, ci´1, aiqr: cLenis for i P {1, . . . , r}, and IP.V returns 1
on input ppp, x, πq.
fs-ext-1 security. We formalize a notion of proof-of-knowledge (PoK) security
in the AGM for non-interactive arguments obtained by applying the Fiat-Shamir
transform to an interactive protocol IP. For simplicity, this notion just cap-
tures extractability instead of witness-extended emulation. We define a notion of
soundness called fs-ext-1 that captures the setting where the prover has to com-
mit to the instance beforehand. It is formally defined using the game FS-EXT-1
in Fig. 4.

For an interactive proof IP and an associated relation R, algebraic prover Palg,

and an extractor E , we define Advfs-ext-1FSROrIPs,RpPalg, E , λq “ Pr
[
FS-EXT-1Palg,E

IP,R pλq
]
.

The following theorem connects the online srs-wee security of a public-coin
protocol IP and the fs-ext-1 soundness of non-interactive protocol FSROrIPs,
obtained by applying the Fiat-Shamir transform using a random oracle.

Theorem 2. Let R be a relation. Let IP be a r “ rpλq-challenge public coin
interactive protocol for the relation R where the length of the ith challenge is
cLenipλq such that sLenpλq ď cLenipλq ď hLenpλq for i P {1, . . . , r}. Let E be an
extractor for IP. We can construct an extractor E˚ for FSROrIPs such that for
every non-uniform algebraic prover Pålg against FSROrIPs that makes q “ qpλq
random oracle queries, there exists a non-uniform algebraic prover Palg and D
such that for all λ P N

`,

Advfs-ext-1FSROrIPs,RpP˚
alg, E˚, λq ď Advsr-weeIP,R pPalg,D, E , λq ` pq ` 1q{2sLenpλq .

Moreover, Palg makes at most q queries to its oracle and is nearly as efficient as
Pålg. The extractor E˚ is nearly as efficient as E.

This proof of this theorem is deferred to the full version [34].
In the above theorem we considered challenges in IP to be bitstrings – how-

ever, this can be adapted to protocols where the challenges are from sets that



Tight State-Restoration Soundness in the Algebraic Group Model 81

Fig. 5. Definition of fs-ext-2 security in the AGM. The game FS-EXT-2 defines
fs-ext-2 security in the AGM for a non-uniform algebraic prover Palg, an extractor E
and a non-interactive argument obtained by applying the Fiat-Shamir transform to
an interactive protocol IP. Here, IP has r “ rpλq challenges where the ith challenge is
of length cLeni “ cLenipλq such that sLenpλq ď cLenipλq ď hLenpλq. The set ΩhLenpλq
contains all functions mapping {0, 1}˚ to {0, 1}hLenpλq.

are not bitstrings. The denominator of the fraction of the bound would become
the size of smallest set from which the challenges are sampled, e.g., if the chal-
lenges in the a protocol were all from the set Zp̊, the fraction would become
pq ` 1q{pp ´ 1q.

We can also consider an adaptive notion of soundness where the prover
can output the instance and proof together – we call this notion fs-ext-2. It
is formally defined using the game FS-EXT-2 in Fig. 5. Unlike fs-ext-1, here the
prover need not commit to the instance beforehand and can output the instance
and proof together. For an interactive proof IP and an associated relation R,
algebraic prover Palg, and an extractor E , we define Advfs-ext-2FSROrIPs,RpPalg, E , λq “
Pr

[
FS-EXT-2Palg,E

IP,R pλq
]
.

We assume that IP has BadCh, e functions as described previously. Further,
we assume T IP

BadCh is defined as above. We use pfail,FSpFSROrIPs,Palg, e, R, λq to
denote the probability that in FS-EXT-2Palg,E

IP,R , Palg outputs p[x] , [π]q, accept is
true, π �P T IP

BadCh but e on input p[x] , [π]q fails to produce a valid witness. The fol-
lowing theorem upper bounds the fs-ext-2 soundness of non-interactive protocol
FSROrIPs.
Theorem 3. Let IP be an r “ rpλq-challenge public coin interactive proof for a
relation R where the length of the ith challenge is cLenipλq such that sLenpλq ď
cLenipλq ď hLenpλq for i P {1, . . . , r}. Assume there exist functions BadCh and
e as described previously and let pfail,FS be as described above. Let τ ′ be a partial
transcript such that the challenge that comes right after is sampled from Chi.
Assume that for all i P {1, . . . , r}, we have that |BadChpτ ′q| { |Chi| ď ε for some
ε P r0, 1s. Then, there exists an extractor E˚ that uses e such that for any non-
uniform algebraic prover Pålg for FSROrIPs making at most q “ qpλq queries to
its random oracle, for all λ P N

`,

Advfs-ext-2FSROrIPs,RpP˚
alg, E˚, λq ď qε ` pfail,FSpFSROrIPs,P˚

alg, e, R, λq .

The time complexity of the extractor E˚ is Opq · tV ` teq where tV is the time
required to run IP.V and te is the time required to run e.
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Fig. 6. Bulletproofs inner-product argument InPrd.

The proof of this theorem is similar to Theorem 1 and has been omitted.

5 Online srs-wee Security of Bulletproofs

In this section, we shall apply our framework to prove online srs-wee security in
the AGM for two instantiations of Bulletproofs- range proofs (RngPf) and proofs
for arithmetic circuit satisfiability (ACSPf). We first introduce the Bulletproofs
inner product argument (InPrd) in Sect. 5.1 which forms the core of both RngPf
and ACSPf. Then, in Sects. 5.2 and 5.3 we introduce and analyze online srs-wee
security of RngPf and ACSPf respectively.

5.1 Inner Product Argument InPrd

We shall assume that InPrd “ InPrdrGs is instantiated on an understood family
of groups G “ {Gλ}λPN` of order p “ ppλq. Using InPrd, a prover can convince a
verifier that P P G is a well-formed commitment to vectors a,b P Z

n
p and their

inner-product xa,by. More precisely, the prover wants to prove to the verifier
that P “ gahbuxa,by where g P G

n,h P G
n, u P G are independent generators of

G. We assume that n is a power of 2 without loss of generality since if needed,
one can pad the input appropriately to ensure that this holds. The prover and
the verifier for InPrd is formally defined in Fig. 6.
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Fig. 7. Prover and Verifier for RngPf. The function BinReppv, nq outputs the n-bit
representation of v. The symbol ⇐⇒ denotes the interaction between InPrd.P and
InPrd.V with the output of the InPrd.V being b.

5.2 Online srs-wee Security of RngPf

We shall assume that RngPf “ RngPfrGs is instantiated on an understood family
of groups G “ {Gλ}λPN` of order p “ ppλq. The argument RngPf is an argument
of knowledge for the relation

R “
{(

pn P N, g, h P Gq, V P G, pv, γ P Zpq
)

: gvhγ “ V ^ v P r0, 2n ´ 1s
}

. (4)

Description of RngPf.RngPf.Setup returns g P G
n,h P G

n, g, h, u P G where
g,h are vectors of independent generators and g, h, u are other independent
generators of the group G. The prover and verifier for RngPf are defined in
Fig. 7.

In Theorem 4, we analyze the online srs-wee security for RngPf. Since RngPf
has a group element V in its input, the analysis of non-adaptive srs-wee security
would differ from the online srs-wee analysis. In the full version [34], we analyse
the non-adaptive srs-wee security of RngPf – it turns out that the proof is even
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harder for this case because the function e does not have the representation of
V . The resulting bound is increased to the square root of the adaptive bound,
due to our limited use of rewinding.

Theorem 4. Let G “ {Gλ}λPN` be a family of groups of order p “ ppλq. Let
RngPf “ RngPfrGs be the interactive argument as defined in Fig. 7, for the rela-
tion R in (4). We can construct an extractor E such that for any non-uniform
algebraic prover Palg making at most q “ qpλq queries to its oracle, there exists
a non-uniform adversary F with the property that for any (computationally
unbounded) distinguisher D, for all λ P N

`,

Advsr-weeRngPf,RpPalg,D, E , λq ď p14n ` 8qq{pp ´ 1q ` Advdl
G

pF , λq ` 1{p .

Moreover, the time complexity of the extractor E is Opq ·nq and that of adversary
F is Opq · nq.

We show that the bound above is tight in Theorem 5. Using Theorem 2, we
get the following corollary.

Corollary 1. Let G “ {Gλ}λPN` be a family of groups of order p “ ppλq. Let
RngPf “ RngPfrGs be the interactive argument as defined in Fig. 7, for the rela-
tion R in 4. Let FSROrRngPfs be the non-interactive argument obtained by apply-
ing the Fiat-Shamir transform to RngPf using a random oracle. We can construct
an extractor E such that for any non-uniform algebraic prover Palg making at
most q “ qpλq queries to the random oracle there exists a non-uniform adversary
F with the property that for all λ P N

`,

Advfs-ext-1FSROrRngPfs,RpPalg, E , λq ď pp14n ` 9qq ` 1q{pp ´ 1q ` Advdl
G

pF , λq ` 1{p .

Moreover, the time complexity of the extractor E is Opq ·nq and that of adversary
F is Opq · nq.
In order to prove Theorem 4, we invoke Theorem 1 by defining BadCh and e and
showing that ε ď p14n ` 8q{pp ´ 1q and there exists an adversary F such that
pfailpRngPf,Palg, e, R, λq ď Advdl

G
pFq`1{p. In more detail, we construct a function

h such that for an accepting transcript τ �P T RngPf
BadCh if ep[τ ]q fails to produce a

valid witness, then hp[τ ]q returns a non-trivial discrete logarithm relation with
respect to the generators. This h is used to construct an adversary H against
the discrete logarithm relation problem and we invoke Lemma 2 to transform
into adversary F against the discrete logarithm problem, thus upper bounding
pfailpRngPf,Palg, e, R, λq using Advdl

G
pFq.

Proof (Theorem 4). We extend the notation for representation of group elements
introduced in Sect. 4 for representation with respect to vector of group elements
like g. The representation of a group element A “ gaggag with respect to pg, gq
is [A] “ pA, ag, agq where ag “ pag1 , · · · , agn

q.
Defining BadCh and upper bounding ε. To start off, we define BadChpτ ′q for
all partial transcripts τ ′. Let Ch be the set from which the challenge that just
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follows τ ′ is sampled. We use a helper function CheckBad to define BadChpτ ′q.
The function CheckBad takes as input a partial extended transcript [τ ′] and a
challenge c P Ch and returns true if and only if c P BadChpτ ′q. For each verifier
challenge in RngPf, there is a definition of CheckBad in Fig. 8. Every CheckBad
function defines several bad conditions that depend on τ ′ – most of these bad
conditions are checked using the predicate SZ. This predicate takes as input
a vector of polynomials and a corresponding vector of points to evaluate the
polynomial on and returns true iff any of the polynomials is non-zero but its
evaluation at the corresponding point is zero. One can safely ignore the details
of the definitions of CheckBad functions for now – the rationale behind their
definitions shall become apparent later on.

The following lemma establishes an upper bound of p14n ` 8q{pp ´ 1q on
|BadChpτ ′q|{|Ch|.
Lemma 3. Let τ ′ be a partial transcript for RngPf. Let Ch be the set from which
the challenge that comes right after τ ′ is sampled. Then, |BadChpτ ′q|{|Ch| ď
p14n ` 8q{pp ´ 1q.
The proof of this lemma has been deferred to the full version [34].

Defining e. Let τ be a transcript of RngPf as defined below.

τ “(pn,g,h, u, g, hq, V ; pA,Sq, py, zq, pT1, T2q, x, pβx, μ, t̂q, w, pL1, R1q, x1,

pL2, R2q, x2, . . . , pLlog n, Rlog nq, xlog n, pa, bq) .
(5)

Let us represent using τ |c the prefix of τ just before the challenge c. For exam-
ple τ |py,zq “ (pn,g,h, u, g, hq, V, pA,Sq). The function e simply returns pvg, vhq
(Fig. 9). However, its output is a valid witness only if vg “ vh “ 0n, vu “ 0 and
vg P r0, 2n ´ 1s.
Proving an upper bound on pfailpRngPf,Palg, e, R, λq. We construct an adver-
sary H against the discrete logarithm relation problem that takes as input inde-
pendent generators g,h, g, h, u of the group G and works as follows. It simulates
the game SRSRngPf to Palg using public parameters n,g,h, g, h, u. If Palg manages
to produce an accepting transcript τ , H calls a helper function h on input [τ ] and
outputs whatever h outputs. We shall define h in such a way that for τ �P T RngPf

BadCh

if ep[τ ]q does not return a valid witness, then hp[τ ]q returns a non-trivial discrete
logarithm relation. In other words, we have that whenever ep[τ ]q fails to extract a
valid witness for an accepting transcript τ �P T RngPf

BadCh , H succeeds. So we have that
pfailpRngPf,Palg, e, R, λq ď Advdl-rel

G,2n`3pHq. Using Lemma 2 we would have that
there exists an adversary F such that pfailpRngPf,Palg, e, R, λq ď Advdl

G
pFq ` 1{p.

We also have that F is nearly as efficient as H.

Defining h. We next describe the h function. Let τ , as defined in 5, be an
accepting transcript. V z2

gδpy,zqT x
1 T x2

2 “ gt̂hβx . must hold since τ is an accepting
transcript.
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Fig. 8. The functions CheckBad function for the RngPf.

Fig. 9. The function e for RngPf.
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Fig. 10. The function h for RngPf.

The function h can plug in the representations of T1, T2, V into the above
equation and compute e

p1q
g , e

p1q
h , e

p1q
g , e

p1q
h , e

p1q
u such that gep1q

g he
p1q
h gep1q

g he
p1q
h uep1q

u “ 1.
If not all of these are zero, h returns e

p1q
g , e

p1q
h , e

p1q
g , e

p1q
h , e

p1q
u .

Again since τ is an accepting transcript, InPrd.V must have returned 1
and hence P plog nq “ pgplog nqqaphplog nqqbuab must hold. All the terms in the
above equality can be expressed in terms of g,h, g, h, u and one can compute
e

p2q
g , e

p2q
h , e

p2q
g , e

p2q
h , e

p2q
u such that gep2q

g he
p2q
h gep2q

g he
p2q
h uep2q

u “ 1. The function h com-
putes and returns e

p2q
g , e

p2q
h , e

p2q
g , e

p2q
h , e

p2q
u . We define the function h formally in

Fig. 10. It follows from the description of h that it runs in time Opnq. The run-
ning time of H consists of the time required to answers q queries, run RngPf.V
in at most q paths in the execution tree and the time required to run h. Hence
its time complexity is Opq ·nq. Using Lemma 2, time complexity of F is Opq ·nq.
Relating h, e. In order to complete the proof of Theorem 4, in the following
lemma we show that – for an accepting transcript τ such that τ �P T RngPf

BadCh if
ep[τ ]q does not return a valid witness, then hp[τ ]q returns a non-trivial discrete
logarithm relation. Proving this lemma would conclude the proof of Theorem 4.

Lemma 4. Let τ , as defined in 5, be an accepting transcript of RngPf such that
τ �P T RngPf

BadCh . If ep[τ ]q returns pv˚, γ˚q such that at least one of the following hold:
gv˚

hγ˚ ‰ V or v˚ �P r0, 2n ´1s, then hp[τ ]q returns a non-trivial discrete logarithm
relation.
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Proof (Lemma 4). For simplicity, we shall prove the contrapositive of the state-
ment, i.e., assuming hp[τ ]q returns a trivial discrete logarithm relation, then
gv˚

hγ˚ “ V and v˚ P r0, 2n ´ 1s.
In order to prove gv˚

hγ˚ “ V and v˚ P r0, 2n ´ 1s, it suffices to show that
vg “ vh “ 0n, vu “ 0 and vg P r0, 2n ´ 1s. Let us denote using τ |c the partial
transcript that is the prefix of τ just before the challenge c. For example τ |py,zq “(pn,g,h, u, g, hq, V, pA,Sq). Since we assumed that hp[τ ]q returns p0n,0n, 0, 0, 0q,
we have that for i “ 1, 2, pepiq

g , e
piq
h , e

piq
g , e

piq
h , e

piq
u q “ p0n,0n, 0, 0, 0q.

Writing out the expression for e
p1q
g we get vgz2 ` t1gx ` t2gx2 “ 0n. Since

τ �P T RngPf
BadCh , we have that x �P BadChpτ |xq. Therefore, SZpf1pXq, xq is false

where f1 is as defined in CheckBadpτ ′, xq. Since we have here that f1pxq “ 0,
the polynomial f1pXq is the zero vector polynomial. Since z ‰ 0 it follows that
vg “ 0n. Similarly using e

p1q
h “ 0n and e

p1q
u “ 0 we can show that vh “ 0n and

vu “ 0 respectively. Writing out the expression for e
p1q
g we have vgz

2 ` δpy, zq `
t1gx ` t2gx

2 ´ t̂ “ 0. Hence,

t̂ “ vgz
2 ` δpy, zq ` t1gx ` t2gx

2 . (6)

Using e
p2q
g “ 0n we get for all k P {0, . . . , n ´ 1}

p′
g1`k

`
log n∑

i“1

plig1`k
x2

i ` rig1`k
x´2

i q ´ a ·
log nź

i“1

x
p´1q1´bitpk,i,log nq
i “ 0 . (7)

Using e
p2q
h “ 0n we get for all k P {0, . . . , n ´ 1}

p′
h1`k

`
log n∑

i“1

plih1`k
x2

i ` rih1`k
x´2

i q ´ byp´pkqq ·
log nź

i“1

x
p´1qbitpk,i,log nq
i “ 0 . (8)

Using e
p2q
u “ 0 we get that

p′
u `

log n∑

i“1

pliux2
i ` riux´2

i q ´ w · ab “ 0 . (9)

We shall next use the following lemma which essentially says that if all of
e

p2q
g , e

p2q
h , e

p2q
u , e

p2q
g , e

p2q
h are zero and τ �P T RngPf

BadCh , then w · xp′
g, p′

h ˝ yny “ p′
u.

Lemma 5. Let τ , as shown in (5), be an accepting transcript of RngPf such
that τ �P T RngPf

BadCh . Let

p′
g “ ag ` xsg ´ z1n , p′

h “ ah ` xsh ` y´n ˝ pzyn ` z22nq , p′
u “ au ` xsu ` wt̂ .

Suppose, the for all k P {0, . . . , n ´ 1}

( log n∑

i“1

plig1`k
x2

i ` rig1`k
x´2

i q ` p′
g1`k

)
´ a ·

(
log nź

i“1

x
p´1q1´bitpk,i,log nq
i

)

“ 0 ,
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( log n∑

i“1

plih1`k
x2

i ` rih1`k
x´2

i q ` p′
h1`k

)
´ byp´pkqq ·

(
log nź

i“1

x
p´1qbitpk,i,log nq
i

)

“ 0 .

Also,

(
log n∑

i“1

pliux2
i ` riux´2

i q
)

` p′
u ´ w · ab “ 0. Then w · xp′

g, p′
h ˝ yny “ p′

u.

The proof of this lemma is a generalization of the proof that we gave for the
inner product argument for n “ 2 in the technical overview. We defer the proof
of Lemma 5 to the full version [34].

Since τ is an accepting transcript of RngPf and τ �P T RngPf
BadCh and (7) to (9)

hold, using Lemma 5, we get wxp′
g, p′

h ˝ yny “ p′
u. Plugging in the values of

p′
g, p′

h, p′
u we get

w · xag ` xsg ´ z1n, pah ` xsh ` z1nq ˝ yn ` z22ny “ au ` xsu ` wt̂ .

Since τ �P T RngPf
BadCh , we have that w �P BadChpτ |wq. Therefore, SZpfpW q, wq is false

where f is as defined in CheckBadpτ ′, wq. Since we have here that fpwq “ 0, the
polynomial fpW q must be the zero polynomial. In particular its W term must
be zero, i.e., xag ` xsg ´ z1n, pah ` xsh ` z1nq ˝ yn ` z22ny “ t̂. Plugging in
the value of t̂ obtained in (6) and using x �P BadChpτ |xq, we have that

vgz
2 ` δpy, zq ´ xag ´ z1n, pah ` z1nq ˝ yn ` z22ny “ 0 .

Plugging in the value of δpy, zq, rearranging and simplifying we get

z2pvg ´ xag,2nyq ´ zxag ´ ah ´ 1n,yny ´ xag ˝ ah,yny “ 0 .

Using py, zq �P BadChpτ |py,zqq, we get that vg ´ xag,2ny “ 0, ag ´ ah ´ 1n “ 0n,
ag ˝ ah “ 0n. Note that ag ´ ah ´ 1n “ 0n and ag ˝ ah “ 0n imply that
ag P {0, 1}n. Further vg ´ xag,2ny “ 0, i.e., vg “ xag,2ny. So, vg P r0, 2n ´ 1s.
Therefore, v˚, γ˚ output by ep[τ ]q satisfy V “ gv˚

hγ˚
and v˚ P r0, 2n ´ 1s. This

concludes the proof of Lemma 4 and Theorem 4. ��
Further for a prover Palg for FSROrRngPfs, and the e we define in the proof

of Theorem 4, we can upper bound pfail,FSpFSROrRngPfs,Palg, e, R, λq using tech-
niques very similar to those used in the proof of Theorem 4. This is because we
can prove that if the prover outputs an instance and an accepting proof and
e fails to produce a valid witness, then we can compute a non-trivial discrete
logarithm relation from the representation of the transcript and instance unless
one of the challenges in the transcript are bad which we can show happens with
small probability. Then using Theorem 3 we obtain a bound for the fs-ext-2
security of FSROrRngPfs similar to the one we obtained for fs-ext-1 security in
Corollary 1.

Tightness of Theorem 4. We next argue that the factor Opnq{pp ´ 1qq in
Theorem 4 is tight. We first note that the protocol RngPf can be used for the
following relation

R′ “
{

(n P N, g, V P G, v P Zp) : gv “ V ^ v P r0, 2n ´ 1s
}

, (10)

by fixing γ to 0.
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We shall construct a cheating prover P (that makes Opqq queries to Oext) for
the relation R′ that outputs an instance V “ gv such that v �P r0, 2n ´ 1s but can
still convince the RngPf verifier with probability Ωpnq{pp ´ 1qq if n divides p ´ 1.
This would imply that the bound in Theorem 4 is tight up to constant factors.

Theorem 5. Let G “ {Gλ}λPN` be a family of groups of prime order p “ ppλq.
Let RngPf “ RngPfrGs be the interactive argument for the relation R′ in (10)
obtained by setting γ “ 0 in the protocol defined in Fig. 7. If n divides p ´ 1, we
can construct a non-uniform prover P making at most q ` log n ` 1 queries to
its oracle, such that for all λ P N

`, AdvsrsRngPfpP, λq “ pn ´ 1qq{pp ´ 1q.
The proof of this theorem has been deferred to the full version [34].

5.3 Online srs-wee Security for ACSPf

In this section, we introduce ACSPf and apply our framework to prove online srs-
wee security. As shown in [10], any arithmetic circuit with n multiplication gates
can be represented using a constraint system that has three vectors aL,aR,aO P
Z

n
p representing the left inputs, right inputs, and outputs of multiplication gates

respectively, so that aL ˝ aR “ aO, with additional Q ď 2n linear constraints.
The linear constraints can be represented as aL ·WL `aR ·WR `aO ·WO “ c,
where WL,WR,WO P Z

Qˆn
p .

We shall assume that ACSPf “ ACSPfrGs is instantiated on an understood
family of groups G “ {Gλ}λPN` of order p “ ppλq. The argument ACSPf is an
argument of knowledge for the relation

R “
{(pn,Q P Nq, pWL,WR,WO P Z

Qˆn
p , c P Z

Q
p q, paL,aR,aO P Z

n
p q) :

aL ˝ aR “ aO ^ WL · aL ` WR · aR ` WO · aO “ c
}

.
(11)

The description of ACSPf is deferred to the full version [34]. We prove the follow-
ing theorem that gives an upper bound on the advantage against online srs-wee
security of ACSPf.
Theorem 6. Let G “ {Gλ}λPN` be a family of groups of order p “ ppλq.
Let ACSPf “ ACSPfrGs be the Bulletproofs interactive argument system for
arithmetic circuit satisfiability for the relation R in (11). We can construct an
extractor E such that for any non-uniform algebraic prover Palg making at most
q “ qpλq queries to its oracle, there exists a non-uniform adversary F with
the property that for any (computationally unbounded) distinguisher D, for all
λ P N

`, Advsr-weeACSPf,RpPalg,D, E , λq ď pp14n ` 8qqq{p ´ 1 ` Advdl
G

pF , λq ` 1{p.
Moreover, the time complexity of the extractor E is Opq · nq and that of

adversary F is Opq · nq.
We can show that the bound in Theorem 6 is tight by constructing a cheating
prover like we did in Theorem 5. Using Theorem 2, we can get a corollary about
fs-ext-1 security of FSROrACSPfs which we include in the full version [34]. Addi-
tionally, using techniques similar to those in the proof of Theorem 6, we can prove
a similar bound for fs-ext-2 security of FSROrACSPfs. The proof of Theorem 6 is
similar to the proof of Theorem 4 and has been deferred to the full version [34].
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6 Online srs-wee Security of Sonic

We apply our framework to prove srs-wee security of Sonic [18] which is an inter-
active argument for arithmetic circuit satisfiability based on pairings (we refer
to this argument as SnACSPf). The argument SnACSPf is again an argument of
knowledge for the relation 11. The description of SnACSPf has been deferred to
the full version [34]. We prove the following theorem that establishes an upper
bound on the advantage against online srs-wee security of SnACSPf.

Theorem 7. Let G “ {Gλ}λPN` be a family of groups with order p “ ppλq. Let
GT “ {GT,λ}λPN` be a family of groups such that there exists a bilinear map
e : G ˆ G → GT . Let SnACSPf “ SnACSPfrG,GT , es be the Sonic interactive
argument system for the relation R in (11). We can construct an extractor E such
that for any non-uniform algebraic prover Palg making at most q “ qpλq queries
to its oracle, there exist non-uniform adversaries F1,F2,F3 with the property
that for any (computationally unbounded) distinguisher D, for all λ P N

`,

Advsr-weeSnACSPf,RpPalg,D, E , λq ď 18nq

p ´ 1
`Adv4n-dl

G
pF1, λq`Advdl

G
pF2, λq`Advdl

G
pF3, λq.

Moreover, the time complexities of the extractor E and adversaries F1,F2,F3

are all Opq · nq.
We can show that the bound in Theorem 7 is tight by constructing a cheating
prover like we did in Theorem 5. Using Theorem 2, we can get a corollary
about fs-ext-1 security of FSROrSnACSPfs which we state in the full version [34].
Additionally, using techniques similar to those in the proof of Theorem 7, we
can prove a similar bound for fs-ext-2 security of FSROrSnACSPfs. The proof of
Theorem 7 has been deferred to the full version [34].
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Abstract. Streaming algorithms are algorithms for processing large
data streams, using only a limited amount of memory. Classical stream-
ing algorithms typically work under the assumption that the input
stream is chosen independently from the internal state of the algo-
rithm. Algorithms that utilize this assumption are called oblivious algo-
rithms. Recently, there is a growing interest in studying streaming algo-
rithms that maintain utility also when the input stream is chosen by an
adaptive adversary, possibly as a function of previous estimates given
by the streaming algorithm. Such streaming algorithms are said to be
adversarially-robust.

By combining techniques from learning theory with cryptographic
tools from the bounded storage model, we separate the oblivious stream-
ing model from the adversarially-robust streaming model. Specifically, we
present a streaming problem for which every adversarially-robust stream-
ing algorithm must use polynomial space, while there exists a classical
(oblivious) streaming algorithm that uses only polylogarithmic space.
This is the first general separation between the capabilities of these two
models, resolving one of the central open questions in adversarial robust
streaming.
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1 Introduction

Consider a scenario in which data items are being generated one by one, e.g., IP
traffic monitoring or web searches. Generally speaking, streaming algorithms aim
to process such data streams while using only a limited amount of memory, signifi-
cantly smaller than what is needed to store the entire data stream. Streaming algo-
rithms have become a central and crucial tool for the analysis of massive datasets.

A typical assumption when designing and analyzing streaming algorithms is
that the entire stream is fixed in advance (and is just provided to the streaming
algorithm one item at a time), or at least that the choice of the items in the stream
is independent of the internal state (and coin tosses) of the streaming algorithm.
We refer to this setting as the oblivious setting. Recently, there has been a grow-
ing interest in streaming algorithms that maintain utility even when the choice of
stream items depends on previous answers given by the streaming algorithm, and
can hence depend on the internal state of the algorithm [1,2,6,7,13,14,16,18,21,
26]. Such streaming algorithms are said to be adversarially robust.

Hardt and Woodruff [16] presented a negative result showing that, gener-
ally speaking, linear streaming algorithms cannot be adversarially robust.1 This
result does not rule out non-linear algorithms. Indeed, strong positive results
were shown by [6,18,26] who constructed (non-linear) adversarially robust algo-
rithms for many problems of interest, with small overhead compared to the
oblivious setting. This includes problems such as estimating frequency moments,
counting the number of distinct elements in the stream, identifying heavy-hitters
in the stream, estimating the median of the stream, entropy estimation, and
more. The strong positive results of [6,18,26] raise the possibility that adversar-
ial robustness can come “for free” in terms of the additional costs to memory,
compared to what is needed in the oblivious setting.

Question 1.1. Does adversarial streaming require more space than oblivious
streaming?

We provide a positive answer to this question. Specifically, we present a
streaming problem for which every adversarially-robust streaming algorithm
must use polynomial space, while there exists an oblivious streaming algorithm
that uses only polylogarithmic space.

1.1 Streaming Against Adaptive Adversaries

Before describing our new results, we define our setting more precisely. A stream
of length m over a domain X consists of a sequence of updates x1, . . . , xm ∈ X.
For i ∈ [m] we write �xi = (x1, . . . , xi) to denote the first i updates of the stream.

1 A streaming algorithm is linear if for some (possibly randomized) matrix A, its
output depends only on A and Af , where f is the frequency vector of the stream.
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Let g : X∗ → R be a function (for example, g might count the number of distinct
elements in the stream). At every time step i, after obtaining the next element
in the stream xi, our goal is to output an approximation for g(�xi). Throughout
the paper we use α for the approximation parameter and β for the confidence
parameter.

The adversarial streaming model, in various forms, was considered by [1,2,
6,7,13,14,16,18,21,26]. We give here the formulation presented by Ben-Eliezer
et al. [6]. The adversarial setting is modeled by a two-player game between a
(randomized) StreamingAlgorithm and an Adversary. At the beginning, we fix
a function g. Then the game proceeds in rounds, where in the ith round:

1. The Adversary chooses an update xi ∈ X for the stream, which can
depend, in particular, on all previous stream updates and outputs of
StreamingAlgorithm.

2. The StreamingAlgorithm processes the new update xi and outputs its cur-
rent response zi.

The goal of the Adversary is to make the StreamingAlgorithm output an
incorrect response zi at some point i in the stream, that is zi /∈ (1 ± α) · g(�xi).
For example, in the distinct elements problem, the adversary’s goal is that at
some step i, the estimate zi will fail to be a (1 + α)-approximation of the true
current number of distinct elements.

1.2 Our Results

Loosely speaking, we show a reduction from a problem in learning theory, called
adaptive data analysis (ADA), to the problem of adversarial streaming. Our
results then follow from known impossibility results for the adaptive data anal-
ysis problem. In the ADA problem, given a sample S containing n independent
samples from some unknown distribution D over a domain X, the goal is to pro-
vide answers to a sequence of adaptively chosen queries w.r.t. D. Importantly,
the answers must be accurate w.r.t. the (unknown) underlying distribution D;
not just w.r.t. the empirical sample S. In more detail, in the ADA problem, on
every time step i we get a query qi : X → {0, 1}, and we need to respond with
an answer ai that approximates qi(D) � Ex∼D[qi(x)]. Observe that if all of the
queries were fixed before the sample S is drawn, then we could simply answer
each query qi with its empirical average qi(S) � 1

n

∑
x∈S qi(x). Indeed, by the

Hoeffding bound, in such a case these answers provide good approximations to
the true answers qi(D). Furthermore, the number of queries � that we can sup-
port can be exponential in the sample size n. However, this argument breaks
completely when the queries are chosen adaptively based on previous answers
given by the mechanism, and the problem becomes much more complex. While,
information-theoretically, it is still possible to answer an exponential number of
queries (see [5,11]), it is known that every computationally efficient mechanism
cannot answer more than n2 adaptive queries using a sample of size n.

We show that the ADA problem can be phrased as a streaming problem,
where the first n elements in the stream are interpreted as “data points” and later
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elements in the stream are interpreted as “queries”. In order to apply existing
impossibility results for the ADA problem, we must overcome the following two
main challenges.

Challenge 1 and its Resolution. The difficulty in the ADA problem is to
maintain accuracy w.r.t. the unknown underlying distribution (and not just
w.r.t. the given input sample, which is easy). In the streaming setting, however,
there is no underlying distribution, and we cannot require a streaming algo-
rithm to be accurate w.r.t. such a distribution. Instead, we require the streaming
algorithm to give accurate answers only w.r.t. the input sample (i.e., w.r.t. the
dataset defined by the first n elements in the stream). We then show that if these
n elements are sampled i.i.d. from some underlying distribution, then we can
use compression arguments to show that if the streaming algorithm has small
space complexity, and if its answers are accurate w.r.t. the empirical sample,
then its answers must in fact be accurate also w.r.t. this underlying distribu-
tion. In other words, even though we only require the streaming algorithm to
give accurate answers w.r.t. the empirical sample, we show that if it uses small
space complexity then its answers must generalize to the underlying distribu-
tion. This allows us to formulate a link to the ADA problem. We remark that,
in the actual construction, we need to introduce several technical modifications
in order to make sure that the resulting streaming problem can be solved with
small space complexity in the oblivious setting.

Challenge 2 and its Resolution. The impossibility results we mentioned
for the ADA problem only hold for computationally efficient mechanisms.2 In
contrast, we aim for an information-theoretic separation. We therefore cannot
apply existing negative results for the ADA problem to our setting as is. Infor-
mally, the reason that the negative results for the ADA problem only hold for
computationally efficient mechanisms is that their constructions rely on the exis-
tence of an efficient encryption scheme whose security holds under computational
assumptions. We replace this encryption scheme with a different scheme with
information-theoretic security against adversaries with bounded storage capabil-
ities. Indeed, in our setting, the “adversary” for this encryption scheme will be
the streaming algorithm, whose storage capabilities are bounded.

We obtain the following theorem.

Theorem 1.2. For every w, there exists a streaming problem over domain of
size poly(w) and stream length O(w5) that requires at least w space to be solved
in the adversarial setting to within (small enough) constant accuracy, but can be
solved in the oblivious setting using space O(log2(w)).

1.2.1 Optimality of Our Results in Terms of the Flip-Number
The previous works of [6,18,26] stated their positive results in terms of the
following definition.
2 While there exist information theoretic impossibility results for the ADA problem,

they are too weak to give a meaningful result in our context.
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Definition 1.3 (Flip number [6]). Let g be a function defining a streaming
problem. The (α,m)-flip number of g, denoted as λ, is the maximal number of
times that the value of g can change (increase or decrease) by a factor of at least
(1 + α) during a stream of length m.

The works of [6,18,26] presented general frameworks for transforming an
oblivious streaming algorithm A into an adversarially robust streaming algo-
rithm B with space complexity (roughly)

√
λ · Space(A). That is, the results

of [6,18,26] showed that, generally, adversarial robustness requires space blowup
at most (roughly)

√
λ compared to the oblivious setting. For the streaming prob-

lem we present (see Theorem 1.2) it holds that the flip-number is O(w2). That
is, for every w, we present a streaming problem with flip-number λ = O(w2),
that requires at least w = Ω(

√
λ) space to be solved in the adversarial setting to

within (small enough) constant accuracy, but can be solved in the oblivious set-
ting using space O(log2(w)). This means that, in terms of the dependency of the
space complexity in the flip-number, our results are nearly tight. In particular,
in terms of λ, our results show that a blowup of Ω̃(

√
λ) to the space complexity

is generally unavoidable in the adversarial setting.

1.2.2 A Reduction from Adaptive Data Analysis
Informally, we consider the following streaming problem, which we call the
Streaming Adaptive Data Analysis (SADA) problem. On every time step i ∈ [m]
we get an update xi ∈ X. We interpret the first n updates in the stream
x1, . . . , xn as “data points”, defining a multiset S = {x1, . . . , xn}. This multiset
does not change after time n.

The next updates in the stream (starting from time i = n+1) define “queries”
q : X → {0, 1} that should be evaluated by the streaming algorithm on the
multiset S. That is, for every such query q, the streaming algorithm should
respond with an approximation of q(S) = 1

n

∑
x∈S q(x). A technical issue here

is that every such query is described using |X| bits (represented using its truth
table), and hence, cannot be specified using a single update in the stream (which
only consists of log |X| bits). Therefore, every query is specified using |X| updates
in the stream. Specifically, starting from time i = n+1, every bulk of |X| updates
defines a query q : X → {0, 1}. At the end of every such bulk, the goal of the
streaming algorithm is to output (an approximation for) the average of q on the
multiset S. On other time steps, the streaming algorithm should output 0.

As we mentioned, we use compression arguments to show that if the streaming
algorithm is capable of accurately approximating the average of every such query
on the multiset S, and if it uses small space, then when the “data points” (i.e.,
the elements in the first n updates) are sampled i.i.d. from some distribution
D on X, then the answers given by the streaming algorithm must in fact be
accurate also w.r.t. the expectation of these queries on D. This means that the
existence of a streaming algorithm for the SADA problem implies the existence
of an algorithm for the adaptive data analysis (ADA) problem, with related
parameters. Applying known impossibility results for the ADA problem, this
results in a contradiction. However, as we mentioned, the impossibility results we
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need for the ADA problem only hold for computationally efficient mechanisms.
Therefore, the construction outlined here only rules out computationally efficient
adversarially-robust streaming algorithms for the SADA problem. To get an
information-theoretic separation, we modify the definition of the SADA problem
and rely on cryptographic techniques from the bounded storage model.

Remark 1.4. In Sect. 6 we outline a variant of the SADA problem, which is
more “natural” in the sense that the function to estimate is symmetric. That is,
it does not depend on the order of elements in the stream. For this variant, we
show a computational separation (assuming the existence of a sub-exponentially
secure private-key encryption scheme).

2 Preliminaries

Our results rely on tools and techniques from learning theory (in particular
adaptive data analysis and compression arguments), and cryptography (in par-
ticular pseudorandom generators and encryption schemes). We now introduce
the needed preliminaries.

2.1 Adaptive Data Analysis

A statistical query over a domain X is specified by a predicate q : X → {0, 1}.
The value of a query q on a distribution D over X is q(D) = Ex∼D[q(x)]. Given
a database S ∈ Xn and a query q, we denote the empirical average of q on S as
q(S) = 1

n

∑
x∈S q(x).

In the adaptive data analysis (ADA) problem, the goal is to design a mecha-
nism M that answers queries w.r.t. an unknown distribution D using only i.i.d.
samples from it. Our focus is the case where the queries are chosen adaptively
and adversarially. Specifically, M is a stateful algorithm that holds a collec-
tion of samples (x1, . . . , xn), takes a statistical query q as input, and returns
an answer z. We require that when x1, . . . , xn are independent samples from D,
then the answer z is close to q(D). Moreover we require that this condition holds
for every query in an adaptively chosen sequence q1, . . . , q�. Formally, we define
an accuracy game Accn,�,M,A between a mechanism M and a stateful adversary
A (see Algorithm 1).

Definition 2.1 ([11]). A mechanism M is (α, β)-statistically-accurate for �
adaptively chosen statistical queries given n samples if for every adversary A

and every distribution D,

Pr
S∼Dn

Accn,�,M,A(S)

[

max
i∈[�]

|qi(D) − zi| ≤ α

]

≥ 1 − β. (1)

Remark 2.2. Without loss of generality, in order to show that a mechanism
M is (α, β)-statistically-accurate (as per Definition 2.1), it suffices to consider
only deterministic adversaries A. Indeed, given a randomized adversary A, if
requirement (1) holds for every fixture of its random coins, then it also holds
when the coins are random.
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Algorithm 1. The Accuracy Game Accn,�,M,A.
Input: A database S ∈ Xn.

1. The database S is given to M.

2. For i = 1 to �,

(a) The adversary A chooses a statistical query qi.

(b) The mechanism M gets qi and outputs an answer zi.

(c) The adversary A gets zi.

3. Output the transcript (q1, z1, . . . , q�, z�).

We use a similar definition for empirical accuracy:

Definition 2.3 ([11]). A mechanism M is (α, β)-empirically accurate for �
adaptively chosen statistical queries given a database of size n if for every adver-
sary A and every database S of size n,

Pr
Accn,�,M,A(S)

[

max
i∈[�]

|qi(S) − zi| ≤ α

]

≥ 1 − β.

2.2 Transcript Compressibility

An important notion that allows us to argue about the utility guarantees of an
algorithm that answers adaptively chosen queries is transcript compressibility,
defined as follows.

Definition 2.4 ([10]). A mechanism M is transcript compressible to b(n, �)
bits if for every deterministic adversary A there is a set of transcripts HA of size
|HA| ≤ 2b(n,�) such that for every dataset S ∈ Xn we have

Pr [Accn,�,M,A(S) ∈ HA] = 1.

The following theorem shows that, with high probability, for every query
generated throughout the interaction with a transcript compressible mechanism
it holds that its empirical average is close to its expectation.

Theorem 2.5 ([10]). Let M be transcript compressible to b(n, �) bits, and let
β > 0. Then, for every adversary A and for every distribution D it holds that

Pr
S∼Dn

Accn,�,M,A(S)

[∃i such that |qi(S) − qi(D)| > α] ≤ β,

where

α = O

(√
b(n, �) + ln(�/β)

n

)

.
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2.3 Pseudorandom Generators in the Bounded Storage Model

Our results rely on the existence of pseudorandom generators providing infor-
mation theoretic security against adversaries with bounded storage capabil-
ities. This security requirement is called the bounded storage model. This
model was introduced by Maurer [20], and has generated many interesting
results, e.g., [3,4,8,9,12,17,19,20]. We give here the formulation presented by
Vadhan [24].

The bounded storage model utilizes a short seed K ∈ {0, 1}b (unknown to
the adversary) and a long stream of public random bits X1,X2, . . . (known to all
parties). A bounded storage model (BSM) pseudorandom generator is a function
PRG : {0, 1}a × {0, 1}b → {0, 1}c, typically with b, c � a. Such a scheme is
to be used as follows. Initially, two (honest) parties share a seed K ∈ {0, 1}b

(unknown to the adversary). At time t ∈ [T ], the next a bits of the public
stream (X(t−1)a, . . . , Xta) are broadcast. The adversary is allowed to listen to this
stream, however, it cannot store all of it as it has bounded storage capabilities.
The honest parties apply PRG(·,K) to this stream obtain c pseudorandom bits,
denoted as Yt ∈ {0, 1}c.

We now formally define security for a BSM pseudorandom generator. Let ρa
be the bound on the storage of the adversary A (we refer to ρ as the storage rate
of the adversary). We write St ∈ {0, 1}ρa to denote the state of the adversary at
time t. We consider the adversary’s ability to distinguish two experiments—the
“real” one, in which the pseudorandom generator is used, and an “ideal” one, in
which truly random bits are used. Let A be an arbitrary function representing
the way the adversary updates its storage and attempts to distinguish the two
experiments at the end.

Real Experiment:

• Let X = (X1,X2, . . . , XTa) be a sequence of uniformly random bits, let K ←
{0, 1}b be the key, and let the adversary’s initial state by S0 = 0ρa.

• For t = 1, . . . , T :
– Let Yt = PRG

(
X(t−1)a+1, . . . , Xta,K

) ∈ {0, 1}c be the pseudorandom
bits.

– Let St = A (
Y1, . . . , Yt−1, St−1,X(t−1)a+1, . . . , Xta

) ∈ {0, 1}ρa be the
adversary’s new state.

• Output A (Y1, . . . , YT , ST ,K)

Ideal Experiment:

• Let X = (X1,X2, . . . , XTa) be a sequence of uniformly random bits, let K ←
{0, 1}b be the key, and let the adversary’s initial state by S0 = 0ρa.

• For t = 1, . . . , T :
– Let Yt ← {0, 1}c be truly random bits.
– Let St = A (

Y1, . . . , Yt−1, St−1,X(t−1)a+1, . . . , Xta

) ∈ {0, 1}ρa be the
adversary’s new state.

• Output A (Y1, . . . , YT , ST ,K) ∈ {0, 1}.
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Note that at each time step we give the adversary access to all the past Yi’s
“for free” (i.e. with no cost in the storage bound), and in the last time step, we
give the adversary the adversary the key K.

Definition 2.6 ([24]). We call PRG : {0, 1}a × {0, 1}b → {0, 1}c an ε-secure
BSM pseudorandom generator for storage rate ρ if for every adversary A with
storage bound ρa, and every T ∈ N, the adversary A distinguishes between the
real and ideal experiments with advantage at most Tε. That is,

∣
∣
∣
∣Pr
real

[A (Y1, . . . , YT , ST ,K) = 1] − Pr
ideal

[A (Y1, . . . , YT , ST ,K) = 1]
∣
∣
∣
∣ ≤ T · ε

Remark 2.7. No constraint is put on the computational power of the adversary
except for the storage bound of ρa (as captured by St ∈ {0, 1}ρa). This means
that the distributions of (Y1, . . . , YT , ST ,K) in the real and ideal experiments are
actually close in a statistical sense – they must have statistical difference at most
T · ε.

We will use the following result of Vadhan [24]. We remark that this is only
a special case of the results of Vadhan, and refer the reader to [24] for a more
detailed account.

Theorem 2.8 ([24]). For every a ∈ N, every ε > exp
(−a/2O(log∗ a)

)
, and every

c ≤ a/4, there is a BSM pseudorandom generator PRG : {0, 1}a × {0, 1}b →
{0, 1}c such that

1. PRG is ε-secure for storage rate ρ ≤ 1/2.
2. PRG has key length b = O(log(a/ε)).
3. For every key K, PRG(·,K) reads at most h = O(c + log(1/ε)) bits from the

public stream (nonadaptively).
4. PRG is computable in time poly(h, b) and uses workspace poly(log h, log b) in

addition to the h bits read from the public stream and the key of length b.

3 The Streaming Adaptive Data Analysis (SADA)
Problem

In this section we introduce a streaming problem, which we call the Streaming
Adaptive Data Analysis (SADA) problem, for which we show a strong positive
result in the oblivious setting and a strong negative result in the adversarial
setting.
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Let X = {0, 1}d × {0, 1}b be a data domain, let γ ≥ 0 be a fixed constant,
and let PRG : {0, 1}a × {0, 1}b → {0, 1}c be a BSM pseudorandom generator,
where c = 1. We consider the following streaming problem. On every time step
i ∈ [m] we get an update xi = (pi, ki) ∈ X. We interpret the first n updates in
the stream x1, . . . , xn as pairs of “data points” and their corresponding “keys”.
Formally, we denote by S the multiset containing the pairs x1, . . . , xn. For tech-
nical reasons,3 the multiset S also contains γn

1−γ copies of some arbitrary element
⊥. This multiset does not change after time n.

Starting from time j = n + 1, each bulk of (a + 1) · 2d updates re-defines a
“function” (or a “query”) that should be evaluated by the streaming algorithm
on the multiset S. This function is defined as follows.

1. For p ∈ {0, 1}d (in lexicographic order) do
(a) Let xp,1, . . . , xp,a ∈ X denote the next a updates, and let Γ p ∈ {0, 1}a be

the bitstring containing the first bit of every such update.
(b) Let xp,a+1 denote the next update, and let σp denote its first bit.
(c) For every k ∈ {0, 1}b, let Y p

k = PRG(Γ p, k) and define f(p, k) = σp ⊕Y p
k .

2. Also set f(⊥) = 1.

This defines a function f :
({0, 1}d × {0, 1}b

) ∪ {⊥} → {0, 1}.

Definition 3.1 (The (a, b, d, m, n, γ)-SADA Problem). At the end of
every such bulk, defining a function f , the goal of the streaming algorithm is
to output (an approximation for) the average of f on the multiset S. On other
time steps, the streaming algorithm should output 0.

Remark 3.2. In the definition above, m is the total number of updates (i.e.,
the length of the stream), n is the number of updates that we consider as “date
points”, γ is a small constant, and a, b, d are the parameters defining the domain
and the PRG.

4 An Oblivious Algorithm for the SADA Problem

In the oblivious setting, we can easily construct a streaming algorithm for the
SADA problem using sampling. Specifically, throughout the first phase of the
execution (during the first n time steps) we maintain a small representative
sample from the “data items” (and their corresponding “keys”) from the stream.
In the second phase of the execution we use this sample in order to answer
the given queries. Consider Algorithm ObliviousSADA, specified in Algorithm 2.
We now analyze its utility guarantees. We will assume that ObliviousSADA is
executed with a sampling algorithm SAMP that returns a uniformly random
sample. This can be achieved, e.g., using Reservoir Sampling [25].

3 Specifically, recall that the error in the ADA problem is additive while the error in
the streaming setting is multiplicative. We add a (relatively small) number of ⊥’s to
S in order to bridge this technical gap.
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Algorithm 2. ObliviousSADA
Setting: On every time step we obtain the next update, which is an element of X =
{0, 1}d × {0, 1}b.
Algorithm used: A sampling algorithm SAMP that operates on a stream of elements
from the domain X and maintains a representative sample.

1. Instantiate algorithm SAMP.

2. REPEAT n times
(a) Obtain the next update in the stream x = (p, k).

(b) Output 0.

(c) Feed the update x to SAMP.

3. Feed (one by one) γn
1−γ

copies of ⊥ to SAMP.

4. Let D denote the sample produced by algorithm SAMP.

5. REPEAT (each iteration of this loop spans over 2d(a + 1) updates that define a
query)

(a) Let v denote the multiplicity of ⊥ in D, and set F = v
|D| .

(b) For every p ∈ {0, 1}d in lexicographic order do
i. Denote Kp = {k : (p, k) ∈ D}. That is, Kp is the set of all keys k such

that (p, k) appears in the sample D.

ii. REPEAT a times
– Obtain the next update x

– For every k ∈ Kp, feed the first bit of x to PRG(·, k).

– Output 0.

iii. For every k ∈ Kp, obtain a bit Yk from PRG(·, k).

iv. Obtain the next update and let σ be its first bit (and output 0).

v. For every k ∈ Kp such that σ⊕Yk = 1: Let v(p,k) denote the multiplicity

of (p, k) in D, and set F ← F +
v(p,k)

|D| .

(c) Output F .

Theorem 4.1. Algorithm ObliviousSADA is (α, β)-accurate for the SADA
problem in the oblivious setting.

Proof. Fix the stream �xm = (x1, . . . , xm). We assume that ObliviousSADA
is executed with a sampling algorithm SAMP that returns a sample D
containing |D| elements, sampled uniformly and independently from S =
(x1, . . . , xn,⊥, . . . ,⊥). This can be achieved, e.g., using Reservoir Sampling [25].
As the stream is fixed (and it is of length m), there are at most m different queries
that are specified throughout the execution. By the Chernoff bound, assuming
that |D| ≥ Ω

(
1

α2γ ln(m
β )

)
, with probability at least 1 − β, for every query f

throughout the execution we have that f(D) ∈ (1 ± α) · f(S). The theorem now
follows by observing that the answers given by algorithm ObliviousSADA are
exactly the empirical average of the corresponding queries on D. �
Observation 4.2. For constant α, β, γ, using the pseudorandom generator from
Theorem2.8, algorithm ObliviousSADA uses space O

((
log(1ε ) + b + d

) · log(m)
)
.
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Algorithm 3. AnswerQueries
Input: A database P ∈ ({0, 1}d)n containing n elements from {0, 1}d.
Setting: On every time step we get a query q : {0, 1}d → {0, 1}.
Algorithm used: An adversarially robust streaming algorithm A for the SADA prob-
lem with (α, β)-accuracy for streams of length m. We abstract the coin tosses of A
using two random strings, r1 and r2, of possibly unbounded length. Initially, we exe-
cute A with access to r1, meaning that every time it tosses a coin it gets the next bit
in r1. At some point, we switch the random string to r2, and henceforth A gets its coin
tosses from r2.
Algorithm used: BSM pseudorandom generator PRG : {0, 1}a × {0, 1}b → {0, 1}, as
in the definition of the SADA problem.

1. For every p ∈ {0, 1}d sample kp ∈ {0, 1}b uniformly.

2. Sample r1 ∈ {0, 1}ν uniformly, and instantiate algorithm A with read-once access
to bits of r1. Here ν bounds the number of coin flips made by A.

3. For every p ∈ P , feed the update (p, kp) to A.

4. Sample r2 ∈ {0, 1}ν uniformly, and switch the read-once access of A to r2. (The
switch from r1 to r2 is done for convenience, so that after Step 3 we do not need
to “remember” the position for the next coin from r1.)

5. REPEAT � � m−n
(a+1)·2d times

(a) Obtain the next query q : {0, 1}d → {0, 1}.

(b) For every p ∈ {0, 1}d do

i. Sample Γ ∈ {0, 1}a uniformly.

ii. Feed a updates (one by one) to A s.t. the concatenation of their first
bits is Γ .

iii. Let Y = PRG(Γ, kp).

iv. Feed to A an update whose first bit is Y ⊕ q(p).

(c) Obtain an answer z from A.

(d) Output z.

Proof. The algorithm maintains a sample D containing O(log m) elements,
where each element is represented using b + d bits. In addition, the pseudo-
random generator uses O(log(1ε )) bits of memory, and the algorithm instantiates
at most |D| = O(log m) copies of it. �

5 An Impossibility Result for Adaptive Streaming

Suppose that there is an adversarially robust streaming algorithm A for the
SADA problem. We use A to construct an algorithm that gets a sample P con-
taining n points in {0, 1}d, and answers adaptively chosen queries q : {0, 1}d →
{0, 1}. Consider Algorithm AnswerQueries, specified in Algorithm 3.

By construction, assuming that A is accurate for the SADA problem, we
get that AnswerQueries is empirically-accurate (w.r.t. its input database P ).
Formally,
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Claim 5.1. If A is (α, β)-accurate for the SADA problem, then AnswerQueries

is
(

α
1−γ , β

)
-empirically-accurate for m−n

(a+1)·2d adaptively chosen statistical queries
given a database of size n. Here γ is a fixed constant (mentioned above).

Proof Sketch. Let q denote the query given at some iteration, and let f denote
the corresponding function specified to algorithm A during this iteration. The
claim follows from the fact that, by construction, for every (p, k) we have that
f(p, k) = q(p). Specifically, w.h.p., the answers given by A are α-accurate w.r.t.
P ∪ {⊥, . . . ,⊥}, and hence, α

1−γ -accurate w.r.t. P . �
We now show that algorithm AnswerQueries is transcript-compressible. To

that end, for every choice of �Γ ,�k, r1, r2 for the strings Γ , the keys k, and
the random bitstrings r1, r2 used throughout the execution, let us denote by
AnswerQueries�Γ ,�k,r1,r2

algorithm AnswerQueries after fixing these elements.

Claim 5.2. If algorithm A uses space at most w, then, for every �Γ ,�k, r1, r2, we
have that algorithm AnswerQueries�Γ ,�k,r1,r2

is transcript-compressible to w bits.

Proof Sketch. Assuming that the adversary who generates the queries q is deter-
ministic (which is without loss of generality) we get that the entire transcript is
determined by the state of algorithm A at the end of Step 3. �
Remark 5.3. The “switch” from r1 to r2 is convenient in the proof of Claim 5.2.
Otherwise, in order to describe the state of the algorithm after Step 3 we need
to specify both the internal state of A and the position for the next coin from r1.

Combining Claims 5.1 (empirical accuracy), and 5.2 (transcript-compression),
we get the following lemma.

Lemma 5.4. Suppose that A is (α, β)-accurate for the SADA problem for
streams of length m using memory w. Then for every β′ > 0, algorithm
AnswerQueries is

(
α

1−γ + α′, β + β′
)
-statistically-accurate for � = m−n

(a+1)·2d

queries, where

α′ = O

⎛

⎝

√
w + ln( �

β′ )

n

⎞

⎠ .

Proof. Fix a distribution D over {0, 1}d and fix an adversary A that generates
the queries qi. Consider the execution of the accuracy game Acc (given in Algo-
rithm1). By Claim 5.1,

Pr
S∼Dn

Accn,�,AnswerQueries,A(S)

[

∃i such that |qi(S) − zi| >
α

1 − γ

]

≤ β,

where the zi’s denote the answers given by the algorithm. In addition, by
Claim 5.2 and Theorem 2.5, for every fixing of �Γ ,�k, r1, r2 we have that

Pr
S∼Dn

Accn,�,AnswerQueries,A(S)

[
∃i such that |qi(S) − qi(D)| > α′

∣
∣
∣�Γ ,�k, r1, r2

]
≤ β′, (2)
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where

α′ = O

(√
w + ln(�/β′)

n

)

.

Since Inequality (2) holds for every fixing of �Γ ,�k, r1, r2, it also holds when sam-
pling them. Therefore, by the triangle inequality and the union bound,

Pr
S∼Dn

Accn,�,AnswerQueries,A(S)

[

∃i such that |zi − qi(D)| >
α

1 − γ
+ α′

]

≤ Pr
S∼Dn

Accn,�,AnswerQueries,A(S)

[

∃i such that |qi(S) − zi| >
α

1 − γ
or |qi(S) − qi(D)| > α′

]

≤ β + β′.

�
To obtain a contradiction, we rely on the following impossibility result for

the ADA problem. Consider an algorithm M for the ADA problem that gets an
input sample P = (p1, . . . , pn) and answers (adaptively chosen) queries q. The
impossibility result we use states that if M computes the answer to every given
query q only as a function of the value of q on points from P (i.e., only as a
function of q(p1), . . . , q(pn)), then, in general, M cannot answer more than n2

adaptively chosen queries. An algorithm M satisfying this restriction is called a
natural mechanism. Formally,

Definition 5.5 ([15]). An algorithm that takes a sample P and answers queries
q is natural if for every input sample P and every two queries q and q′ such that
q(p) = q′(p) for all p ∈ P , the answers z and z′ that the algorithm gives on
queries q and q′, respectively, are identical if the algorithm is deterministic and
identically distributed if the algorithm is randomized. If the algorithm is stateful,
then this condition should hold when the algorithm is in any of its possible states.

We will use the following negative result of Steinke and Ullman [23] (see
also [15,22]).

Theorem 5.6 ([23]). There exists a constant c > 0 such that there is no natural
algorithm that is (c, c)-statistically-accurate for O(n2) adaptively chosen queries
given n samples over a domain of size Ω(n).

We have already established (in Lemma5.4) that algorithm AnswerQueries
is statistically-accurate for � = m−n

(a+1)·2d adaptively chosen queries, where � can
easily be made bigger then n2 (by taking m to be big enough). We now want
to apply Theorem 5.6 to our setting in order to get a contradiction. However,
algorithm AnswerQueries is not exactly a natural algorithm (though, as we
next explain, it is very close to being natural). The issue is that the answers
produced by the streaming algorithm A can (supposedly) depend on the value
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Algorithm 4. AnswerQueriesOTP
Input: A database P ∈ ({0, 1}d)n containing n elements from {0, 1}d.
Setting: On every time step we get a query q : {0, 1}d → {0, 1}.
Algorithm used: An adversarially robust streaming algorithm A for the SADA prob-
lem with (α, β)-accuracy for streams of length m. We abstract the coin tosses of A
using two random strings, r1 and r2, of possibly unbounded length. Initially, we exe-
cute A with access to r1, meaning that every time it tosses a coin it gets the next bit
in r1. At some point, we switch the random string to r2, and henceforth A gets its coin
tosses from r2.
Algorithm used: BSM pseudorandom generator PRG : {0, 1}a × {0, 1}b → {0, 1}, as
in the definition of the SADA problem.

1. For every p ∈ {0, 1}d sample kp ∈ {0, 1}b uniformly.

2. Sample r1 ∈ {0, 1}ν uniformly, and instantiate algorithm A with read-once access
to bits of r1. Here ν bounds the number of coin flips made by A.

3. For every p ∈ P , feed the update (p, kp) to A.

4. Sample r2 ∈ {0, 1}ν uniformly, and switch the read-once access of A to r2. (The
switch from r1 to r2 is done for convenience, so that after Step 3 we do not need
to “remember” the position for the next coin from r1.)

5. REPEAT � � m−n
(a+1)·2d times

(a) Obtain the next query q : {0, 1}d → {0, 1}.

(b) For every p ∈ {0, 1}d do

i. Sample Γ ∈ {0, 1}a uniformly.

ii. Feed a updates (one by one) to A s.t. the concatenation of their first
bits is Γ .

iii. If p ∈ P then let Y = PRG(Γ, kp). Otherwise sample Y ∈ {0, 1} uni-
formly.

iv. Feed to A an update whose first bit is Y ⊕ q(p).

(c) Obtain an answer z from A.

(d) Output z.

of the given queries outside of the input sample. Therefore, we now tweak algo-
rithm AnswerQueries such that it becomes a natural algorithm. The modi-
fied construction is given in Algorithm AnswerQueriesOTP, where we marked
the modifications in red. Consider Algorithm AnswerQueriesOTP, specified in
Algorithm 4.

Lemma 5.7. Algorithm AnswerQueriesOTP is natural.

Proof Sketch. This follows from the fact that the value of the given queries out-
side of the input sample P are completely “hidden” from algorithm A (namely,
by the classic “one-time pad” encryption scheme), and by observing that the
answer z given by algorithm AnswerQueriesOTP on a query q is determined by
the state of algorithm A at the end of the corresponding iteration of Step 5. �

We now argue that the modification we introduced (from AnswerQueries
to AnswerQueriesOTP) has basically no effect on the execution, and hence,
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algorithm AnswerQueriesOTP is both natural and statistically-accurate. This
will lead to a contradiction.

Lemma 5.8. Suppose that A has space complexity w. Denote � = m−n
(a+1)·2d . If

PRG is an ε-secure BSM pseudorandom generator against adversaries with stor-
age O(w+ �+b ·2d), then for every input database P and every adversary A, the
outcome distributions of Accn,�,AnswerQueries,A(P ) and Accn,�,AnswerQueriesOTP,A(P )
are within statistical distance 2dmε.

Proof. Recall that the outcome of Accn,�,AnswerQueries,A(P ) is the transcript of
the interaction (q1, z1, . . . , q�, z�), where qi are the queries given by A, and where
zi are the answers given by AnswerQueries. We need to show that the dis-
tributions of (q1, z1, . . . , q�, z�) during the executions with AnswerQueries and
AnswerQueriesOTP are close. Without loss of generality, we assume that A is
deterministic (indeed, if the lemma holds for every deterministic A then it also
holds for every randomized A). Hence, the transcript (q1, z1, . . . , q�, z�) is com-
pletely determined by the answers given by the mechanism. So we only need to
show that (z1, . . . , z�) is distributed similarly during the two cases. Note that,
as we are aiming for constant accuracy, we may assume that each answer zi is
specified using a constant number of bits (otherwise we can alter algorithm A
to make this true while essentially maintaining its utility guarantees).

Now, for every g ∈ {0, 1, 2, . . . , 2d}, let AnswerQueriesg denote an algorithm
similar to algorithm AnswerQueries, except that in Step 5(b)iii, we set Y =
PRG(Γ, kp) if p ∈ P or if p ≥ g, and otherwise we sample Y ∈ {0, 1} uniformly.
Observe that AnswerQueries0 ≡ AnswerQueries and that AnswerQueries2d ≡
AnswerQueriesOTP. We now show that for every g it hods that the statistical
distance between Accn,�,AnswerQueriesg,A(P ) and Accn,�,AnswerQueriesg+1,A(P ) is at
most εm, which proves the lemma (by the triangle inequality).

Fix an index g ∈ {0, 1, . . . , 2d − 1}. Let Acc∗
g be an algorithm that simu-

lates the interaction between A and AnswerQueriesg on the database P , except
that during an iteration of Step 5b with p = g, algorithm Acc∗

g gets Γ and Y
as input, where Γ is sampled uniformly and where Y is either sampled uni-
formly from {0, 1} or computed as Y = PRG(Γ, k) for some key k sampled
uniformly from {0, 1}b (unknown to AnswerQueriesg). These two cases corre-
spond to Accn,�,AnswerQueriesg+1,A(P ) and Accn,�,AnswerQueriesg,A(P ), respectively.

Observe that Acc∗
g can be implemented with storage space at most Ŵ =

O(w+ �+ b ·2d), specifically, for storing the internal state of algorithm A (which
is w bits), storing all previous answers z1, z2, . . . , zi (which is O(�) bits), and
storing all the keys kp for p �= g (which takes at most b · 2d bits). Note that, as
we assume that A is deterministic, on every step we can compute the next query
from the previously given answers.

Now, when Acc∗
g is given truly random bits Y , then it can be viewed as

an adversary acting in the ideal experiment for PRG (see Sect. 2.3), and when
Acc∗

g is given pseudorandom bits then it can be viewed as an adversary acting
in the real experiment. By Theorem2.8, assuming that PRG is ε-secure against
adversaries with storage Ŵ , then the distribution on the storage of Acc∗

g in the
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two cases is close up to statistical distance εm. The lemma now follows from
the fact that the sequence of answers (z1, . . . , z�) is included in the storage of
Acc∗

g. �
Combining Lemma 5.4 (stating that AnswerQueries is statistically-accurate)

with Lemma 5.8 (stating that AnswerQueries and AnswerQueriesOTP are close)
we get that AnswerQueriesOTP must also be statistically-accurate. Formally,

Lemma 5.9. Suppose that A is (α, β)-accurate for the SADA problem for
streams of length m using memory w, and suppose that PRG is an ε-secure
BSM pseudorandom generator against adversaries with storage O(w + � + b ·
2d), where � = m−n

(a+1)·2d . Then for every β′, ε > 0, we have that algorithm

AnswerQueriesOTP is
(

α
1−γ + α′, β + β′ + 2dmε

)
-statistically-accurate for �

queries where

α′ = O

⎛

⎝

√
w + ln( �

β′ )

n

⎞

⎠ .

So, Lemmas 5.7 and 5.9 state that algorithm AnswerQueriesOTP is both nat-
ural and statistically-accurate. To obtain a contradiction to Theorem5.6, we
instantiate Lemma 5.9 with the pseudorandom generator from Theorem2.8. We
obtain the following result.

Theorem 5.10. For every w, there exists a streaming problem over domain of
size poly(w) and stream length O(w5) that requires at least w space to be solved
in the adversarial setting to within (small enough) constant accuracy, but can be
solved in the oblivious setting using space O(log2(w)).

Proof. To contradict Theorem 5.6, we want the (natural) algorithm
AnswerQueriesOTP to answer more than n2 queries over a domain of size Ω(n).
So we set � = m−n

(a+1)·2d = Ω(n2) and d = O(1) + log n. Note that with these
settings we have m = Θ(n3 · a).

By Lemma 5.9, in order to ensure that AnswerQueriesOTP’s answers are accu-
rate (to within some small constant), we set n = Θ(w + log(m)) (large enough).
We assume without loss of generality that w ≥ log(m), as we can always increase
the space complexity of A. So n = Θ(w), and m = Θ(w3 · a).

In addition, to apply Lemma5.9, we need to ensure that the conditions on
the security of PRG hold. For a small constant τ > 0, we use the pseudorandom
generator from Theorem 2.8 with ε = τ

m·2d = O( 1
mn ) = O( 1

mw ). To get security
against adversaries with storage O(w + � + b · 2d) = O(w2 + bw), we need to
ensure

a = Ω
(
w2 + bw

)
and b = Ω

(
log

(a

ε

))
= Θ(log(am)).

It suffices to take a = Θ(w2) and b = Θ(log(wm)) = Θ(log(w)). Putting every-
thing together, with these parameters, by Lemma 5.9, we get that algorithm
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AnswerQueriesOTP answers � = Ω(n2) adaptive queries over domain of size
Ω(n), which contradicts Theorem 5.6. This means that an algorithm with space
complexity w cannot solve the (a, b, d,m, n, γ)-SADA problem to within (small
enough) constant accuracy, where a = Θ(w2), and b = d = O(log(w)), and
m = Θ(w5), and n = Θ(w).

In contrast, by Observation 4.2, for constant α, β, γ, the oblivious algorithm
ObliviousSADA uses space O(log2(w)) in this settings. �
Remark 5.11. A natural requirement from a function g, defining a stream-
ing problem, is that the desired outcome does not change significantly from one
update to the next (such a function is said to be “insensitive”). In the SADA
problem, however, this is not the case. Nevertheless, our separation result can be
shown to hold also for such an insensitive function. For example, for a param-
eter k ∈ N, we could modify the definition of the SADA problem to ask for the
average of the last k given functions, instead of only the last function. This would
limit the changes to at most 1/k. Our separation continues to hold because in
the reduction from the ADA problem we could simply ask every query k times.

6 A Computational Separation

In the previous sections we presented a streaming problem that can be solved
in the oblivious setting using small space complexity, but requires large space
complexity to be solved in the adversarial setting. Even though this provides
a strong separation between adversarial streaming and oblivious streaming, a
downside of our result is that the streaming problem we present (the SADA
problem) is somewhat unnatural.

Question 6.1. Is there a “natural” streaming problem for which a similar sep-
aration holds?

In particular, one of the “unnatural” aspects of the SADA problem is that
the target function depends on the order of the elements in the stream (i.e., it
is an asymmetric function). Asymmetric functions can sometimes be considered
“natural” in the streaming context (e.g., counting the number of inversions in
a stream or finding the longest increasing subsequence). However, the majority
of the “classical” streaming problems are defined by symmetric functions (e.g.,
counting the number of distinct elements in the stream or the number of heavy
hitters).

Question 6.2. Is there a symmetric streaming problem that can be solved using
polylogarithmic space (in the domain size and the stream length) in the oblivious
setting, but requires polynomial space in the adversarial setting?

In this section we provide a positive answer to this question for computa-
tionally efficient streaming algorithms. That is, unlike our separation from the
previous sections (for the SADA problem) which is information theoretic, the
separation we present in this section (for a symmetric target function) is com-
putational. We consider Question 6.2 (its information theoretic variant) to be an
important question for future work.
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6.1 The SADA2 Problem

Let κ ∈ N be a security parameter, let m ∈ N denote the length of the stream,
and let d ∈ N and γ ∈ (0, 1) be additional parameters. Let (Gen,Enc,Dec)
be a semantically secure private-key encryption scheme, with key length κ and
ciphertext length ψ = poly(κ) for encrypting a message in {0, 1}. We consider
a streaming problem over a domain X = {0, 1}1+d+log(m)+ψ, where an update
x ∈ X has two possible types (the type is determined by the first bit of x):

Data update: x = (0, p, k) ∈ {0, 1} × {0, 1}d × {0, 1}κ,
Query update: x = (1, p, j, c) ∈ {0, 1} × {0, 1}d × {0, 1}log m × {0, 1}ψ.

We define a function g : X∗ → [0, 1] as follows. Let �x = {x1, . . . , xi} be
a sequence of updates. For p ∈ {0, 1}d, let xi1 = (0, p, ki1), . . . , xi�

= (0, p, ki�
)

denote all the “data updates” in �x with the point p, and let ki1 , . . . , ki�
denote

their corresponding keys (some of which may be identical). Now let kp = ki1 ∧
· · · ∧ ki�

. That is, kp is the bit-by-bit AND of all of the keys that correspond to
“data updates” with the point p. Now let S be the set that contains the pair
(p, kp) for every p such that there exists a “data update” in �x with the point p.
Importantly, S is a set rather than a multiset. Similarly to the previous sections,
we also add special symbols, ⊥1, . . . ,⊥γ2d , to S. Formally, S is constructed as
follows.

1. Initiate S = {⊥1, . . . ,⊥γ2d}.
2. For every p ∈ {0, 1}d:

(a) Let xi1=(0, p, ki1), . . . , xi�
=(0, p, ki�

) denote all the “data
updates” in �x (i.e., updates beginning with 0) that contain the
point p.

(b) If � > 0 then let kp = ki1 ∧ · · · ∧ ki�
and add (p, kp) to S.

We now define the query q that corresponds to �x. First, q(⊥1) = · · · =
q(⊥γ2d) = 1. Now, for p ∈ {0, 1}d, let

jmax
p = max

{
j : ∃c ∈ {0, 1}ψ such that (1, p, j, c) ∈ �x

}
.

That is, jmax
p denotes the maximal index such that (1, p, jmax

p , c) appears in �x for
some c ∈ {0, 1}ψ. Furthermore, let xi1 = (1, p, jmax

p , ci1), . . . , xi�
= (1, p, jmax

p , ci�
)

denote the “query updates” with p and jmax
p . Now let cp = ci1 ∧ · · · ∧ ci�

. That
is, cp is the bit-by-bit AND of all of the ciphertexts that correspond to “query
updates” with p and jmax

p . If the point p does not appear in any “query update”
then we set cp = �1 by default. The query q :

({0, 1}d × {0, 1}κ
) → {0, 1} is

defined as q(p, k) = Dec(cp, k).
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Algorithm 5. ObliviousSADA2
Setting: On every time step we obtain the next update, which is an element of X =
{0, 1}1+d+log(m)+ψ.

1. Let D be a sample (multiset) containing O( 1
α2γ2 ln(m

β
)) i.i.d. elements chosen

uniformly from {0, 1}d ∪{⊥1, . . . , ⊥γ2d}, and let D⊥ ← D ∩{⊥1, . . . , ⊥γ2d}, and
let DX ← D \ D⊥.

2. For every p ∈ DX , let inSp ← 0, let kp ← �1, let jp ← 0, and let cp ← �1.

3. REPEAT

(a) Obtain the next update in the stream x.

(b) If the first bit of x is 0 then
i. Denote x = (0, p, k).

ii. If p ∈ DX then let inSp ← 1 and let kp ← kp ∧ k.

(c) If the first bit of x is 1 then
i. Denote x = (1, p, j, c).

ii. If p ∈ DX and j = jp then set cp ← cp ∧ c.

iii. If p ∈ DX and j > jp then set cp ← c and jp ← j.

(d) Let v ← |{p ∈ DX : inSp = 1}| + |D⊥| and let z ← |D⊥|
v

.

(e) For every p ∈ DX such that inSp = 1 set z ← z +
Dec(cp,kp)

v
.

(f) Output z.

Finally, the value of the function g on the stream �x is defined to be

g(�x) = q(S) =
1

|S|

⎡

⎣γ2d +
∑

(p,kp)∈S

q(p, kp)

⎤

⎦ .

That is, g(�x) returns the average of q on S. Observe that g is a symmetric
function.

Definition 6.3 (The (d, m, κ, γ)-SADA2 Problem). At every time step
i ∈ [m], after obtaining the next update xi ∈ X, the goal is to approximate
g(x1, . . . , xi).

6.2 An Oblivious Algorithm for the SADA2 Problem

In this section we present an oblivious streaming algorithm for the SADA2 prob-
lem. The algorithm begins by sampling a multiset D containing a small number
of random elements from the domain {0, 1}d ∪ {⊥1, . . . ,⊥γ2d}. The algorithm
then proceeds by maintaining the set S and the query q (which are determined
by the input stream; as in the definition of the SADA2 problem) only w.r.t. ele-
ments that appear in the sample D. As we next explain, in the oblivious setting,
this suffices in order to accurately solve the SADA2 problem. Consider algorithm
ObliviousSADA2, given in Algorithm 5.
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Theorem 6.4. Assume that 2d = Ω( 1
γ ln(m

β )) and |D| ≥ Ω( 1
α2γ2 ln(m

β )). Then
ObliviousSADA2 is (α, β)-accurate for the SADA2 problem in the oblivious set-
ting.

Proof. Fix the stream �xm = (x1, . . . , xm). Fix a time step i ∈ [m], and consider
the prefix �xi = (x1, . . . , xi). Let Si = Si(�xi) be the set and let qi = qi(�xi) be
the query defined by �xi, as in the definition of the SADA2 problem. Consider
the multiset T = {(p, kp) : p ∈ DX and inSp = 1} ∪ D⊥. Let zi be the answer
returned in Step 3f after precessing the update xi. Observe that zi is exactly the
average of qi on the multiset T , that is, zi = qi(T ).

Recall that |Si| ≥ γ2d, and recall that every element in D is sampled uni-
formly from {0, 1}d ∪ {⊥1, . . . ,⊥γ2d}. Therefore, ED[|D ∩ Si|] ≥ |D| · γ2d

2d+γ2d =
|D| · γ

1+γ . By the Chernoff bound, assuming that 2d = Ω( 1
γ ln(m

β )), then with
probability at least 1 − β

m we have that |D ∩ Si| ≥ γ
2 |D|. We proceed with the

analysis assuming that this is the case.
Now, for every t ≥ γ

2 |D|, when conditioning on |D ∩ Si| = t we have that
T is a sample containing t i.i.d. elements from Si. In that case, again using the
Chernoff bound, with probability at least 1 − β

m we have that zi = qi(T ) ∈
(1 ± α) · qi(Si), assuming that t ≥ Ω( 1

α2γ ln(m
β )). This assumption holds when

|D| ≥ Ω( 1
α2γ2 ln(m

β )).
So, for every fixed i, with probability at least 1 − O( β

m ) we have that zi ∈
(1±α)·qi(Si). By a union bound, this holds for every time step i with probability
at least 1 − O(β). �
Observation 6.5. For constant α, β, γ, algorithm ObliviousSADA2 uses space
Õ (log(m) · log |X|), in addition to the space required by Dec.

6.3 A Negative Result for the SADA2 Problem

We now show that the SADA2 problem cannot be solved efficiently in the adver-
sarial setting. To that end, suppose we have an adversarially robust streaming
algorithm A for the SADA2 problem, and consider algorithm AnswerQueries2
that uses A in order to solve the ADA problem. Recall that in the SADA2 prob-
lem the collection of “data updates” is treated as a set, while the input to an
algorithm for the ADA problem is a multiset. In the following claim we show
that AnswerQueries2 is empirically-accurate w.r.t. its input (when treated as a
set).

Claim 6.6. Let P ∈ ({0, 1}d
)∗ be an input multiset, let P̃ be the set containing

every point that appears in P , and assume that |P̃ | = n. If A is (α, β)-accurate
for the SADA2 problem, then AnswerQueries2 (P ) is

(
α + γ·2d

n , β
)
-empirically-

accurate for m−n
2d adaptively chosen statistical queries w.r.t. the set P̃ .

Proof Sketch. Let q denote the query given at some iteration, and let q�x and S�x

denote the query and the dataset specified by the updates given to algorithm A.
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Algorithm 6. AnswerQueries2
Input: A database P containing n elements from {0, 1}d.
Setting: On every time step we get a query q : {0, 1}d → {0, 1}.
Algorithm used: An adversarially robust streaming algorithm A for the (d, m, κ, γ)-
SADA2 problem with (α, β)-accuracy for streams of length m. We abstract the coin
tosses of A using two random strings, r1 and r2, of possibly unbounded length. Initially,
we execute A with access to r1, meaning that every time it tosses a coin it gets the
next bit in r1. At some point, we switch the random string to r2, and henceforth A
gets its coin tosses from r2.
Algorithm used: Encryption scheme (Gen, Enc, Dec), as in the definition of the
SADA2 problem.

1. For every p ∈ {0, 1}d sample kp ← Gen(1κ) independently.

2. Sample r1 ∈ {0, 1}ν uniformly, and instantiate algorithm A with read-once access
to bits of r1. Here ν bounds the number of coin flips made by A.

3. For every p ∈ P , feed the update (0, p, kp) to A.

4. Sample r2 ∈ {0, 1}ν uniformly, and switch the read-once access of A to r2. (The
switch from r1 to r2 is done for convenience, so that after Step 3 we do not need
to “remember” the position for the next coin from r1.)

5. For j = 1 to � � m−n
2d do

(a) Obtain the next query qj : {0, 1}d → {0, 1}.

(b) For every p ∈ {0, 1}d do

i. Let cp = Enc(qj(p), kp).

ii. Feed the update (1, p, j, cp) to A.

(c) Obtain an answer z from A.

(d) Output z.

The claim follows from the fact that, by construction, for every p ∈ P̃ we have
that q(p) = q�x(p, kp). Therefore,

q�x(S�x) =
1

|S�x|

⎡

⎣γ · 2d +
∑

p∈P̃

q(p)

⎤

⎦ =
1

n + γ2d

⎡

⎣γ · 2d +
∑

p∈P̃

q(p)

⎤

⎦

=
γ·2d

n

1 + γ·2d

n

+
1

n + γ2d

∑

p∈P̃

q(p).

Therefore, q�x(S�x) ≤ γ·2d

n + q(P̃ ), and also q�x(S�x) ≥ 1
n+γ2d

∑
p∈P̃ q(p) which

means that q(P̃ ) ≤ n+γ2d

n · q�x(S�x) ≤ q�x(S�x) + γ2d

n . So, whenever the answers

given by A are α-accurate w.r.t. q�x(S�x), they are also
(
α + γ2d

n

)
-accurate w.r.t.

P̃ . �
We now show that algorithm AnswerQueries2 is transcript-compressible. To

that end, for every choice of �k, r1, r2, �rEnc for the keys k, the random bitstrings
r1, r2, and the randomness used by Enc at its different executions, let us denote
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by AnswerQueries2�k,r1,r2,�rEnc
algorithm AnswerQueries2 after fixing these ele-

ments.

Claim 6.7. If algorithm A uses space at most w, then, for every �k, r1, r2, we
have that algorithm AnswerQueries2�k,r1,r2,�rEnc

is transcript-compressible to w
bits.

Proof Sketch. Assuming that the adversary who generates the queries q is deter-
ministic (which is without loss of generality) we get that the entire transcript is
determined by the state of algorithm A at the end of Step 3. �

Similarly to our arguments from Sect. 5, since algorithm AnswerQueries2
is both empirically-accurate and transcript-compressible, we get that it is also
statistically-accurate. Since we only argued empirical-accuracy when treating
the input multiset as a set, we will only argue for statistical-accuracy w.r.t. the
uniform distribution, where we have that the difference between a random set
and a random multiset is small. Formally,

Lemma 6.8. Suppose that A is (α, β)-accurate for the SADA2 problem for
streams of length m using memory w. Then for every β′ > 0, algorithm
AnswerQueries2 is

(
α̃, β̃

)
-statistically-accurate for � = m−n

2d queries w.r.t. the

uniform distribution over {0, 1}d, where β̃ = O
(
β + β′ + exp

(
− n2

3·2d

))
and

α̃ = O

⎛

⎝α +
γ · 2d

n
+

n

2d
+

√
w + ln( �

β′ )

n

⎞

⎠ .

Proof Sketch. The proof is analogous to the proof of Lemma5.4, with the fol-
lowing addition. Let P be a multiset containing n i.i.d. uniform samples from
{0, 1}d, and let P̃ be the set containing every element of P . As we are considering
the uniform distribution on {0, 1}d, then by the Chernoff bound, with probabil-
ity at least 1 − exp(− n2

3·2d ), it holds that the set P̃ and the multiset P differ by
at most n2

2·2d points, i.e., by at most an n
2·2d -fraction of the points. In that case,

for every query q we have that |q(P ) − q(P̃ )| ≤ n
2·2d . �

So algorithm AnswerQueries2 is statistically-accurate. To obtain a contradic-
tion, we modify the algorithm such that it becomes natural. Consider algorithm
AnswerQueries2Natural. As before, the modifications are marked in red.

Observation 6.9. Algorithm AnswerQueries2Natural is natural.

Proof Sketch. This follows from the fact that the value of the given queries
outside of the input sample P are ignored, and are replaced with (encryptions
of) zero. �

The following lemma follows from the assumed security of the encryption
scheme.
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Algorithm 7. AnswerQueries2Natural
Input: A database P containing n elements from {0, 1}d.
Setting: On every time step we get a query q : {0, 1}d → {0, 1}.
Algorithm used: An adversarially robust streaming algorithm A for the (d, m, κ, γ)-
SADA2 problem with (α, β)-accuracy for streams of length m. We abstract the coin
tosses of A using two random strings, r1 and r2, of possibly unbounded length. Initially,
we execute A with access to r1, meaning that every time it tosses a coin it gets the
next bit in r1. At some point, we switch the random string to r2, and henceforth A
gets its coin tosses from r2.
Algorithm used: Encryption scheme (Gen, Enc, Dec), as in the definition of the
SADA2 problem.

1. For every p ∈ {0, 1}d sample kp ← Gen(1κ) independently.

2. Sample r1 ∈ {0, 1}ν uniformly, and instantiate algorithm A with read-once access
to bits of r1. Here ν bounds the number of coin flips made by A.

3. For every p ∈ P , feed the update (0, p, kp) to A.

4. Sample r2 ∈ {0, 1}ν uniformly, and switch the read-once access of A to r2. (The
switch from r1 to r2 is done for convenience, so that after Step 3 we do not need
to “remember” the position for the next coin from r1.)

5. For j = 1 to � � m−n
2d do

(a) Obtain the next query qj : {0, 1}d → {0, 1}.

(b) For every p ∈ {0, 1}d do

i. If p ∈ P then let cp = Enc(qj(p), kp). Otherwise let cp = Enc(0, kp).

ii. Feed the update (1, p, j, cp) to A.

(c) Obtain an answer z from A.

(d) Output z.

Lemma 6.10. Suppose that (Gen,Enc,Dec) is semantically secure private-key
encryption scheme with key length κ = κ(m) against adversaries with time
poly(m). Fix α ∈ (0, 1). Let A be a data analyst with running time poly(m).
For a mechanism M that answers queries, consider the interaction between M
and A, and let E denote the event that M failed to be α-statistically accurate
at some point during the interaction. Then, for an input database P sampled
uniformly from {0, 1}d it holds that

∣
∣
∣
∣ Pr
P,A,AnswerQueries2(P )

[E] − Pr
P,A,AnswerQueries2Natural(P )

[E]
∣
∣
∣
∣ ≤ negl(κ).

The proof of Lemma 6.10 is straightforward from the definition of security.
We give here the details for completeness. To that end, let us recall the formal
definition of security of an encryption scheme. Consider a pair of oracles E0

and E1, where E1(k1, . . . , kN , ·) takes as input an index of a key i ∈ [N ] and a
message M and returns Enc(M,ki), and where E0(k1, . . . , kN , ·) takes the same
input but returns Enc(0, ki). An encryption scheme (Gen,Enc,Dec) is secure if
no computationally efficient adversary can tell whether it is interacting with E0

or with E1. Formally,
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Algorithm 8. An adversary B for the encryption scheme
Algorithm used: An adversarially robust streaming algorithm A for the (d, m, κ, γ)-
SADA2 problem with (α, β)-accuracy for streams of length m.
Algorithm used: A data analyst A that outputs queries and obtains answers.
Algorithm used: Encryption scheme (Gen, Enc, Dec).
Oracle access: Eb(k1, . . . , kN , ·) where b ∈ {0, 1} and where N = 2d and k1, . . . , kN ←
Gen(1κ).

1. Let P be a multiset containing n uniform samples from {0, 1}d.

2. For every p ∈ P sample k̄p ← Gen(1κ) independently.

3. Instantiate algorithm A.

4. For every p ∈ P , feed the update (0, p, k̄p) to A.

5. Instantiate the data analyst A.

6. For j = 1 to � � m−n
2d do

(a) Obtain the next query qj : {0, 1}d → {0, 1} from the data analyst A.

(b) For every p ∈ {0, 1}d do

i. If p ∈ P then let cp = Enc(qj(p), k̄p). Otherwise let cp ← Eb(p, qj(p)).

ii. Feed the update (1, p, j, cp) to A.

(c) Obtain an answer z from A, and give z to A.

7. Output 1 if and only if event E occurs.

Definition 6.11. Let m : R → R be a function. An encryption scheme
(Gen,Enc,Dec) is m-secure if for every N = poly(m(κ)), and every poly(m(κ))-
time adversary B, the following holds.

∣
∣
∣
∣
∣
∣

Pr
k1,...,kN

B,Enc

[
BE0(k1,...,kN ,·) = 1

]
− Pr

k1,...,kN
B,Enc

[
BE1(k1,...,kN ,·) = 1

]
∣
∣
∣
∣
∣
∣
= negl(κ),

where the probabilities are over sampling k1, . . . , kN ← Gen(1κ) and over the
randomness of B and Enc.

Remark 6.12. When m is the identity function we simply say that
(Gen,Enc,Dec) is secure. Note that in this case, security holds against all adver-
saries with runtime polynomial in the security parameter κ. We will further
assume the existence of a sub-exponentially secure encryption scheme. By that
we mean that there exist a constant τ > 0 such that (Gen,Enc,Dec) is m-secure
for m(κ) = 2κτ

. That is, we assume the existence of an encryption scheme in
which security holds agains all adversaries with runtime polynomial in 2κτ

.

To prove Lemma 6.10 we construct an adversary B for (Gen,Enc,Dec) such
that its advantage in breaking the security of this scheme is exactly the difference
in the probability of event E between the execution with AnswerQueries2 or
with AnswerQueries2Natural. This implies that the difference between these
two probabilities is negligible.
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Proof of Lemma 6.10. Let A be a data analyst with running time poly(m), and
consider algorithm B. First observe that if A and A are computationally efficient
(run in time poly(m)) then so is algorithm B.

Now observe that when the oracle is E1 and when k1, . . . , kN are chosen
randomly from Gen(1κ) then BE1(k1,...,kN ,·) simulates the interaction between
A and AnswerQueries2 on a uniformly sampled database P . Similarly, when
the oracle is E0 and when k1, . . . , kN are chosen randomly from Gen(1κ) then
BE0(k1,...,kN ,·) simulates the interaction between A and AnswerQueries2Natural
on a uniformly sampled database P . Thus,

∣
∣
∣
∣ Pr
P,A,AnswerQueries2(P )

[E] − Pr
P,A,AnswerQueries2Natural(P )

[E]
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

Pr
k1,...,kN

B,Enc

[
BE1(k1,...,kN ,·) = 1

]
− Pr

k1,...,kN
B,Enc

[
BE0(k1,...,kN ,·) = 1

]
∣
∣
∣
∣
∣
∣
= negl(κ).

�
So, algorithm AnswerQueries2Natural is natural, and when A and A are

computationally efficient, then the probability that AnswerQueries2Natural
fails to be statistically-accurate is similar to the probability that
AnswerQueries2 fails, which is small. We therefore get the following lemma.

Lemma 6.13. Algorithm AnswerQueries2Natural is natural. In addition, if
(Gen,Enc,Dec) is an m-secure private-key encryption scheme with key length
κ = κ(m), and if A is an adversarially robust streaming algorithm for the
(d,m, κ, γ)-SADA2 problem with space w and runtime poly(m), then algorithm
AnswerQueries2Natural is

(
α̃, β̃

)
-statistically-accurate for � = m−n

2d queries

w.r.t. the uniform distribution over {0, 1}d, and w.r.t. a data analyst A with
running time poly(m), where β̃ = O

(
β + β′ + exp

(
− n2

3·2d

)
+ negl(κ)

)
and

α̃ = O

⎛

⎝α +
γ · 2d

n
+

n

2d
+

√
w + ln( �

β′ )

n

⎞

⎠ .

We now restate Theorem 5.6, in which we simplified the results of Steinke and
Ullman. In this section we use the stronger formulation of their results, given as
follows.

Theorem 6.14 ([23]). There exists a constant c > 0 such that no natural algo-
rithm is (c, c)-statistically-accurate for O(n2) adaptively chosen queries given n
samples over a domain of size Ω(n). Furthermore, this holds even when assum-
ing that the data analyst is computationally efficient (runs in time poly(n2)) and
even when the underlying distribution is the uniform distribution.

Combining Lemma 6.13 with Theorem 6.14 we obtain the following result.
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Theorem 6.15. Assume the existence of a sub-exponentially secure private-
key encryption scheme. Then, the (d = Θ(log m),m, κ= polylog(m), γ =Θ(1))-
SADA2 problem can be solved in the oblivious setting to within constant accuracy
using space polylog(m) and using polylog(m) runtime (per update). In contrast,
every adversarially robust algorithm for this problem with poly(m) runtime per
update must use space poly(m).
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Abstract. We carry out the first provable security analysis of the new
FIDO2 protocols, the promising FIDO Alliance’s proposal for a standard
for passwordless user authentication. Our analysis covers the core com-
ponents of FIDO2: the W3C’s Web Authentication (WebAuthn) specifi-
cation and the new Client-to-Authenticator Protocol (CTAP2).

Our analysis is modular . For WebAuthn and CTAP2, in turn, we
propose appropriate security models that aim to capture their intended
security goals and use the models to analyze their security. First, our
proof confirms the authentication security of WebAuthn. Then, we show
CTAP2 can only be proved secure in a weak sense; meanwhile, we iden-
tify a series of its design flaws and provide suggestions for improvement.
To withstand stronger yet realistic adversaries, we propose a generic pro-
tocol called sPACA and prove its strong security; with proper instantia-
tions, sPACA is also more efficient than CTAP2. Finally, we analyze the
overall security guarantees provided by FIDO2 and WebAuthn+sPACA
based on the security of their components.

We expect that our models and provable security results will help
clarify the security guarantees of the FIDO2 protocols. In addition, we
advocate the adoption of our sPACA protocol as a substitute for CTAP2
for both stronger security and better performance.

1 Introduction

Motivation. Passwords are pervasive yet insecure. According to some studies, the
average consumer of McAfee has 23 online accounts that require a password [17],
and the average employee using LastPass has to manage 191 passwords [22]. Not
only are the passwords difficult to keep track of, but it is well-known that achiev-
ing strong security while relying on passwords is quite difficult (if not impossi-
ble). According to the Verizon Data Breach Investigations Report [34], 81% of
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hacking-related breaches relied on either stolen and/or weak passwords. What
some users may consider an acceptable password, may not withstand sophis-
ticated and powerful modern password cracking tools. Moreover, even strong
passwords may fall prey to phishing attacks and identity fraud. According to
Symantec, in 2017, phishing emails were the most widely used means of infec-
tion, employed by 71% of the groups that staged cyber attacks [31].

An ambitious project which tackles the above problem is spearheaded by the
Fast Identity Online (FIDO) Alliance. A truly international effort, the alliance
has working groups in the US, China, Europe, Japan, Korea and India and
has brought together many companies and types of vendors, including Amazon,
Google, Microsoft, Apple, RSA, Intel, Yubico, Visa, Samsung, major banks, etc.

The goal is to enable user-friendly passwordless authentication secure against
phishing and identity fraud. The core idea is to rely on security devices (con-
trolled via biometrics and/or PINs) which can then be used to register and
later seamlessly authenticate to online services. The various standards defined
by FIDO formalize several protocols, most notably Universal Authentication
Framework (UAF), the Universal Second Factor (U2F) protocols and the new
FIDO2 protocols: W3C’s Web Authentication (WebAuthn) and FIDO Alliance’s
Client-to-Authenticator Protocol v2.0 (CTAP21).

FIDO2 is moving towards wide deployment and standardization with great
success. Major web browsers including Google Chrome and Mozilla Firefox have
implemented WebAuthn. In 2018, Client-to-Authenticator Protocol (CTAP)2

was recognized as international standards by the International Telecommuni-
cation Union’s Telecommunication Standardization Sector (ITU-T). In 2019,
WebAuthn became an official web standard. Also, Android and Windows Hello
earned FIDO2 Certification. Although the above deployment is backed-up by
highly detailed description of the security goals and a variety of possible attacks
and countermeasures, these are informal [21].

Our Focus. We provide the first provable security analysis of the FIDO2 proto-
cols. Our focus is to clarify the formal trust model assumed by the protocols, to
define and prove their exact security guarantees, and to identify and fix potential
design flaws and security vulnerabilities that hinder their widespread use. Our
analysis covers the actions of human users authorizing the use of credentials via
gestures and shows that, depending on the capabilities of security devices, such
gestures enhance the security of FIDO2 protocols in different ways. We concen-
trate on the FIDO2 authentication properties and leave the study of its arguably
less central anonymity goals for future work.

Related Work. Some initial work in this direction already exists. Hu and
Zhang [25] analyzed the security of FIDO UAF 1.0 and identified several vul-
nerabilities in different attack scenarios. Later, Panos et al. [32] analyzed FIDO
UAF 1.1 and explored some potential attack vectors and vulnerabilities. How-
ever, both works were informal. FIDO U2F and WebAuthn were analyzed using
the applied pi-calculus and ProVerif tool [23,27,33]. Regarding an older version

1 The older version is called CTAP1/U2F.
2 CTAP refers to both versions: CTAP1/U2F and CTAP2.
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of FIDO U2F, Pereira et al. [33] presented a server-in-the-middle attack and
Jacomme and Kremer [27] further analyzed it with a structured and fine-grained
threat model for malware. Guirat and Halpin [23] confirmed the authentication
security provided by WebAuthn while pointed out that the claimed privacy prop-
erties (i.e., account unlinkability) failed to hold due to the same attestation key
pair used for different servers.

However, none of the existing work employs the cryptographic provable secu-
rity approach to the FIDO2 protocols in the course of deployment. In particular,
there is no analysis of CTAP2, and the results for WebAuthn [27] are limited in
scope: as noted by the authors themselves, their model “makes a number of sim-
plifications and so much work is needed to formally model the complete protocol
as given in the W3C specification”. The analysis in [27] further uses the symbolic
model (often called the Dolev-Yao model [18]), which captures weaker adversar-
ial capabilities than those in computational models (e.g., the Bellare-Rogaway
model [10]) employed by the provable security approach we adopt here.

The works on two-factor authentication (e.g., [16,29]) are related to our work,
but the user in such protocols has to use the password and the two-factor device
during each authentication/login. With FIDO2, there is no password during user
registration or authentication. The PIN used in FIDO2 is meant to authorize a
client (e.g., a browser) access to an authenticator device (e.g., an authentication
token); the server does not use passwords at all.3 Some two-factor protocols can
also generate a binding cookie after the first login to avoid using the two-factor
device or even the password for future logins. However, this requires trusting
the client, e.g., a malicious browser can log in as the user without having the
two-factor device (or the password). FIDO2 uses the PIN to prevent an attacker
with a stolen device from authenticating to a server from a new client.

Our work is not directly applicable to federated authentication protocols such
as Kerberos, OAuth, or OpenID. FIDO2 allows the user to keep a single hardware
token that it can use to authenticate to multiple servers without having to use
a federated identity. The only trust anchor is an attestation key pair for the
token. To the best of our knowledge, there are no complete and formal security
models for federated authentication in the literature, but such models would
differ significantly from the ones we consider here. It is interesting to see how
FIDO2 and federated authentication can be used securely together; we leave this
as an interesting direction for future work. Our work could, however, be adapted
to analyze some second-factor authentication protocols like Google 2-step [2].

FIDO2 Overview. FIDO2 consists of two core components (see Fig. 1 for the
communication channels and Fig. 2 for the simplified FIDO2 flow).

WebAuthn is a web API that can be built into browsers to enable web appli-
cations to integrate user authentication. At its heart, WebAuthn is a password-
less “challenge-response” scheme between a server and a user. The user relies
on a trusted authenticator device (e.g., a security token or a smartphone) and
a possibly untrusted client (e.g., a browser or an operating system installed on
3 Some form of prior user authentication method is required for registration of a new

credential, but this is a set-up assumption for the protocol.
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the user’s laptop). Such a device-assisted “challenge-response” scheme works as
follows (details in Sect. 5). First, in the registration phase, the server sends a ran-
dom challenge to the security device through the client. In this phase, the device
signs the challenge using its long-term embedded attestation secret key, along
with a new public key credential to use in future interactions; the credential
is included in the response to the server. In the subsequent interactions, which
correspond to user authentication, the challenge sent by the server is signed by
the device using the secret key corresponding to the credential. In both cases,
the signature is verified by the server.

The other FIDO2 component, CTAP2, specifies the communication between
an authenticator device and the client (usually a browser). Its goal is to guar-
antee that the client can only use the authenticator with the user’s permission,
which the user gives by 1) entering a PIN when the authenticator powers up
and 2) directly using the authenticator interface (e.g., a simple push-button)
to authorize registration and authentication operations. CTAP2 specifies how to
configure an authenticator with a user’s PIN. Roughly speaking, its security goal
is to “bind” a trusted client to the set-up authenticator by requiring the user
to provide the correct PIN, such that the authenticator accepts only messages
sent from a “bound” client. We remark that, surprisingly, CTAP2 relies on the
(unauthenticated) Diffie-Hellman key exchange. The details are in Sect. 7.

Our Contributions. We perform the first thorough cryptographic analysis of the
authentication properties guaranteed by FIDO2 using the provable security app-
roach. Our analysis is conducted in a modular way. That is, we first analyze
WebAuthn and CTAP2 components separately and then derive the overall secu-
rity of a typical use of FIDO2. We note that our models, although quite differ-
ent, follow the Bellare-Rogaway model [10] that was proposed to analyze key
exchange protocols, which defines oracle queries to closely simulate the real-
world adversarial abilities. Its extensions (like ours) have been widely used to
analyze real-world protocols such as TLS 1.3 [13,19], Signal [14], etc.

Provable Security of WebAuthn. We start our analysis with the simpler base
protocol, WebAuthn. We define the class of passwordless authentication (PlA)
protocols that capture the syntax of WebAuthn. Our PlA model considers an
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authenticator and a server (often referred to as a relying party) communicating
through a client, which consists of two phases. The server is assumed to know
the attestation public key that uniquely identifies the authenticator. In the reg-
istration phase the authenticator and the server communicate with the intention
to establish some joint state corresponding to this registration session: this joint
state fixes a credential, which is bound to the authenticator’s attestation public
key vk and a server identity idS (e.g., a server domain name). The server gets
the guarantee that the joint state is stored in a specific authenticator, which is
assumed to be tamper-proof. The joint state can then be used in the authentica-
tion phase. Here, the authenticator and the server engage in a message exchange
where the goal of the server is to verify that it is interacting with the same
authenticator that registered the credential bound to (vk, idS).

Roughly speaking, a PlA protocol is secure if, whenever an authentica-
tion/registration session completes on the server side, there is a unique part-
nered registration/authentication session which completed successfully on the
authenticator side. For authentication sessions, we further impose that there is a
unique associated registration session on both sides, and that these registration
sessions are also uniquely partnered. This guarantees that registration contexts
(i.e., the credentials) are isolated from one another; moreover, if a server session
completes an authentication session with an authenticator, then the authentica-
tor must have completed a registration session with the server earlier. We use the
model thus developed to prove the security of WebAuthn under the assumption
that the underlying hash function is collision-resistant and the signature scheme
is unforgeable. Full details can be found in Sect. 5.

Provable Security of CTAP2. Next we study the more complex CTAP2 pro-
tocol. We define the class of PIN-based access control for authenticators (PACA)
protocols to formalize the general syntax of CTAP2. Although CTAP2 by its
name may suggest a two-party protocol, our PACA model involves the user as
an additional participant and therefore captures human interactions with the
client and the authenticator (e.g., the user typing its PIN into the browser win-
dow or rebooting the authenticator). A PACA protocol runs in three phases
as follows. First, in the authenticator setup phase, the user “embeds” its PIN
into the authenticator via a client and, as a result, the authenticator stores a
PIN-related long-term state. Then, in the binding phase, the user authorizes the
client to “bind” itself to the authenticator (using the same PIN). At the end of
this phase, the client and the authenticator end up with a (perhaps different)
binding state. Finally, in the access channel phase, the client is able to send
any authorized message (computed using its binding state) to the authentica-
tor, which verifies it using its own binding state. Note that the final established
access channel is unidirectional, i.e., it only guarantees authorized access from
the client to the authenticator but not the other way.

Our model captures the security of the access channels between clients and
authenticators. The particular implementation of CTAP2 operates as follows. In
the binding phase, the authenticator privately sends its associated secret called
pinToken (generated upon power-up) to the trusted client and the pinToken is
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then stored on the client as the binding state. Later, in the access channel phase,
that binding state is used by the bound client to authenticate messages sent to
the authenticator. We note that, by the CTAP2 design, each authenticator is
associated with a single pinToken per power-up, so multiple clients establish
multiple access channels with the same authenticator using the same pinToken.
This limits the security of CTAP2 access channels: for a particular channel from
a client to an authenticator to be secure (i.e., no attacker can forge messages
sent over that channel), none of the clients bound to the same authenticator
during the same power-up can be compromised.

Motivated by the above discussion, we distinguish between unforgeability
(UF) and strong unforgeability (SUF) for PACA protocols. The former corre-
sponds to the weak level of security discussed above. The latter, captures strong
fine-grained security where the attacker can compromise any clients except those
involved in the access channels for which we claim security. As we explain later
(Sect. 6), SUF also covers certain forward secrecy guarantees for authentication.
For both notions, we consider a powerful attacker that can manipulate the com-
munication between parties, compromise clients (that are not bound to the target
authenticator) to reveal the binding states, and corrupt users (that did not set
up the target authenticator) to learn their secret PINs.

Even with the stronger trust assumption (made in UF) on the bound clients,
we are unable to prove that CTAP2 realizes the expected security model: we
describe an attack that exploits the fact that CTAP2 uses unauthenticated
Diffie-Hellman. Since it is important to understand the limits of the protocol, we
consider a further refinement of the security models which makes stronger trust
assumptions on the binding phase of the protocol. Specifically, in the trusted
binding setting the attacker cannot launch active attacks against the client dur-
ing the binding phase, but it may try to do so against the authenticator, i.e., it
cannot launch man-in-the-middle (MITM) attacks but it may try to impersonate
the client to the authenticator. We write UF-t and SUF-t for the security levels
which consider trusted binding and the distinct security goals outlined above.
In summary we propose four notions: by definition SUF is the strongest security
notion and UF-t is the weakest one. Interestingly, UF and SUF-t are incom-
parable as established by our separation result discussed in Sect. 7 and Sect. 8.
Based on our security model, we prove that CTAP2 achieves the weakest UF-
t security and show that it is not secure regarding the three stronger notions.
Finally, we identify a series of design flaws of CTAP2 and provide suggestions
for improvement.

Improving CTAP2 Security. CTAP2 cannot achieve UF security because in
the binding phase it uses unauthenticated Diffie-Hellman key exchange which is
vulnerable to MITM attacks. This observation suggests a change to the protocol
which leads to stronger security. Specifically, we propose a generic sPACA proto-
col (for strong PACA), which replaces the use of unauthenticated Diffie-Hellman
in the binding phase with a password-authenticated key exchange (PAKE) pro-
tocol. Recall that PAKE takes as input a common password and outputs the
same random session key for both parties. The key observation is that the client



Provable Security Analysis of FIDO2 131

and the authenticator share a value (derived from the user PIN) which can be
viewed as a password. By running PAKE with this password as input, the client
and the authenticator obtain a strong key which can be used as the binding state
to build the access channel. Since each execution of the PAKE (with different
clients) results in a fresh independent key, we can prove that sPACA is a SUF-
secure PACA protocol. Furthermore, we compare the performance of CTAP2 and
sPACA (with proper PAKE instantiations). The results show that our sPACA
protocol is also more efficient, so it should be considered for adoption.

Composed Security of CTAP2 and WebAuthn. Finally, towards our main
goal of the analysis of full FIDO2 (by full FIDO2 we mean the envisioned usage
of the two protocols), we study the composition of PlA and PACA protocols (cf.
Sect. 9). The composed protocol, which we simply call PlA+PACA, is defined
naturally for an authenticator, user, client, and server. The composition, and the
intuition that underlies its security, is as follows. Using PACA, the user (via a
client) sets a PIN for the authenticator. This means that only clients that obtain
the PIN from the user can “bind” to the authenticator and issue commands that
it will accept. In other words, PACA establishes the access channel from the
bound client to the authenticator. Then, the challenge-response protocols of
PlA run between the server and the authenticator, via a PACA-bound client.
The server-side guarantees of PlA are preserved, but now the authenticator can
control client access to its credentials using PACA; this composition result is
intuitive and easy to prove given our modular formalization.

Interestingly, we formalize an even stronger property that shows that FIDO2
gives end-to-end mutual authentication guarantees between the server and the
authenticator when clients and servers are connected by an authenticated server-
to-client channel (e.g., a TLS connection). The mutual authentication guaran-
tees extend the PlA guarantees: authenticator, client, and server must all be
using the same registration context for authentication to succeed. We note that
Transport Layer Security (TLS) provides a server-to-client authenticated chan-
nel, and hence this guarantee applies to the typical usage of FIDO2 over TLS.
Our results apply to WebAuthn+CTAP2 (under a UF-t adversarial model) and
WebAuthn+sPACA (under a SUF adversarial model).

We conclude with an analysis of the role of user gestures in FIDO2. We first
show that SUF security offered by sPACA allows the user, equipped with an
authenticator that can display a simple session identifier, to detect and prevent
attacks from malware that may compromise the states of PACA clients previ-
ously bound to the authenticator. (This is not possible for the current version
of CTAP2.) We also show how simple gestures can allow a human user to keep
track of which server identity is being used in PlA sessions.

Summary. Our analyses clarify the security guarantees FIDO2 should provide
for the various parties involved in the most common usage scenario where: 1)
the user owns a simple hardware token that is capable of accepting push-button
gestures and, optionally, to display a session identifier code (akin to bluetooth
pairing codes); 2) the user configures the token with a PIN using a trusted
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machine; 3) the user connects/disconnects the token on multiple machines, some
trusted, some untrusted, and uses it to authenticated to multiple servers.

In all these interactions, the server is assured that during authentication it
can recognize if the same token was used to register a key, and that this token
was bound to the client it is talking to since the last power-up (this implies
entering the correct PIN recently). This guarantee assumes that the client is not
corrupted (i.e., the browser window where the user entered the PIN is isolated
from malicious code and can run the CTAP2 protocol correctly) and that an
active attack against the client via the CTAP2 API to guess the user entered
PIN is detected (we know this is the case on the token side, as CTAP2 defines
a blocking countermeasure).

Assuming a server-to-client authenticated channel, the user is assured that
while it is in possession of the PIN, no one can authenticate on her behalf,
except if she provides the PIN to a corrupted browser window. Moreover, the
scope of this possible attack is limited to the current power-up period. If we
assume that registration was conducted via an honest client, then we know that
all authentication sessions with honest clients are placed to the correct server.
Finally, if the token is stolen, the attacker still needs to guess the PIN (without
locking the token) in order to impersonate the user.

With our proposed modifications, FIDO2 will meet this level of security.
Without them, these guarantees will only hold assuming weaker client corruption
capabilities and more importantly, the attacker cannot perform active man-in-
the-middle attacks during all binding sessions, which may be unrealistic.

2 Preliminaries

In the full version of this paper [6], we recall the definitions of pseudorandom
functions (PRFs), collision-resistant hash function families, message authentica-
tion codes (MACs), signature schemes, the computational Diffie-Hellman (CDH)
problem and strong CDH (sCDH) problem, as well as the corresponding advan-
tage measures Advprf , Advcoll, Adveuf-cma, Adveuf-cma, Advcdh, Advscdh. There
we also recall the syntax for PAKE and its security of perfect forward secrecy
and explicit authentication.

3 Execution Model

The protocols we consider involve four disjoint sets of parties. Formally, the
set of parties P is partitioned into four disjoint sets of users U , authenticators
(or tokens for short) T , clients C, and servers S. Each party has a well-defined
and non-ambiguous identifier, which one can think of as being represented as
an integer; we typically use P , U , T , C, S for identifiers bound to a party in
a security experiment and id for the case where an identifier is provided as an
input in the protocol syntax.

For simplicity, we do not consider certificates or certificate checks but assume
the public key associated with a party is supported by a public key infrastructure
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(PKI) and hence certified and bound to the party’s identity. This issue arises
explicitly only for attestation public keys bound to authenticators in Sect. 4.

The possible communication channels are represented as double-headed
arrows in Fig. 1. In FIDO2, the client is a browser and the user-client chan-
nel is the browser window, which keeps no long-term state. The authenticator
is a hardware token or mobile phone that is connected to the browser via an
untrusted link that includes the operating system, some authenticator-specific
middleware, and a physical communication channel that connects the authenti-
cator to the machine hosting the browser. The authenticator exposes a simple
interface to the user that allows it to perform a “gesture”, confirming some
action; ideally the authenticator should also be able to display information to
the user (this is natural when using a mobile phone as an authenticator but
not so common in USB tokens or smartcards). Following the intuitive defini-
tions of human-compatible communications by Boldyreva et al. [12], we require
that messages sent to the user be human-readable and those sent by the user be
human-writable.4 The user PIN needs to be human-memorizable.

We assume authenticators have a good source of random bits and keep
volatile and static (or long-term) storage. Volatile storage is erased every time
the device goes through a power-down/power-up cycle, which we call a reboot.
Static storage is assumed to be initialized using a procedure carried out under
special setup trust assumptions; in the case of this paper we will consider the
setup procedures to generate an attestation key pair for the authenticator and
to configure a user PIN, i.e., to “embed” the PIN in the authenticator.

Trust Model. For each of the protocols we analyze in the paper we specify
a trust model, which justifies our proposed security models. Here we state the
trust assumptions that are always made throughout the paper. First, human
communications ( 1 2 ) are authenticated and private. This in practice captures
the direct human-machine interaction between the human user and the authen-
ticator device or the client terminal, which involves physical senses and contact
that we assume cannot be eavesdropped or interrupted by an attacker. Second,
client-authenticator communications ( 3 ) are not protected, i.e., neither authen-
ticated nor private. Finally, authenticators are assumed to be tamper-proof, so
our models will not consider corruption of their internal state.

Modeling Users and Their Gestures. We do not include in our protocol syn-
taxes and security models explicit state keeping and message passing for human
users, i.e., there are no session oracles for users in the security experiments. We
shortly explain why this is the case. The role of the user in these protocols is to
a) first check that the client is operating on correct inputs, e.g., by looking at
the browser window to see if the correct server identity is being used; b) possibly
(if the token has the capability to display information) check that the token and
client are operating on consistent inputs; and c) finally confirm to the token that
this is the case. Therefore, the user itself plays the role of an out-of-band secure

4 We regard understandable information displayed on a machine as human-readable
and typing in a PIN or rebooting an authenticator as human-writable.
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channel via which the consistency of information exchanged between the client
and the token can be validated.

We model this with a public gesture predicate G that captures the semantics
of the user’s decision. Intuitively, the user decision d ∈ {0, 1} is given by d =
G(x, y), where x and y respectively represent the information conveyed to the
user by the client and the token in step b) above. Note that x, y may not be input
by the user. Tokens with different user interface capabilities give rise to different
classes of gesture predicates. For example, if a user can observe a server domain
name id on the token display before pressing a button, then we can define the
gesture of checking that the token displayed an identifier id that matches the
one displayed by the client id∗ as G(id∗, id) = (id∗ ?= id).

User actions are hardwired into the security experiments as direct inputs to
either a client or a token, which is justified by our assumption that users interact
with these entities via fully secure channels. We stress that here G is a modeling
tool, which captures the sequence of interactions a), b), c) above. Providing a
gesture means physical possession of the token, so an attacker controlling only
some part of the client machine (e.g., malware) is not able to provide a gesture.
Moreover, requiring a gesture from the user implies that the user can detect
when some action is requested from the token.

4 Passwordless Authentication

We start our analysis with the simpler FIDO2 component protocol, WebAuthn.
In order to analyze the authentication security of WebAuthn we first define the
syntax and security model for password less authentication (PlA) protocols.

4.1 Protocol Syntax

A PlA protocol is an interactive protocol among three parties: a token (repre-
senting a user), a client, and a server. The token is associated with an attestation
public key that is pre-registered to the server. The protocol defines two types of
interactions: registration and authentication. In registration the server requests
the token to register some initial authentication parameters. If this succeeds, the
server can later recognize the same token using a challenge-response protocol.

The possible communication channels are as shown in Fig. 1, but we do not
include the user. Servers are accessible to clients via a communication channel
that models Internet communications.

The state of token T , denoted by stT , is partitioned into the following (static)
components: i) an attestation key pair (vkT , akT ) and ii) a set of registration
contexts stT .rct. A server S also keeps its registration contexts stS .rcs. Clients
do not keep long-term state.5 All states are initialized to the empty string ε.

A PlA protocol consists of the following algorithms and subprotocols:
5 Some two-factor protocols may have a “trust this computer” feature that requires

the client to store some long-term states. This is not included in our model as to the
best of our knowledge FIDO2 does not have that feature.
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Key Generation: This algorithm, denoted by Kg, is executed at most once for
each authenticator; it generates an attestation key pair (vk, ak).

Register: This subprotocol is executed among a token, a client, and a server. The
token inputs its attestation secret key akT ; the client inputs an intended server
identity îdS ; and the server inputs its identity idS (e.g., a server domain name)
and the token’s attestation public key vkT . At the end of the subprotocol, each
party that successfully terminates obtains a new registration context, and
sets its session identifier that can be used to uniquely name a (registration
or authentication) session. Note that the token may successfully complete the
subprotocol while the server may fail to, in the same run.

Authenticate: This subprotocol is executed between a token, a client, and a
server. The token inputs its registration contexts; the client inputs an intended
server identity īdS ; and the server inputs its identity idS and registration con-
texts. At the end of the subprotocol, the server accepts or rejects. Each party
on success sets its session identifier and updates the registration contexts.

Restricted class of protocols. For both Register and Authenticate, we focus on
2-pass challenge-response protocols with the following structure:

– Server-side computation is split into four procedures: rchallenge and rcheck
for registration, achallenge and acheck for authentication. The challenge algo-
rithms are probabilistic, which take the server’s input to the Register or
Authenticate subprotocol and return a challenge. The check algorithms get
the same input, the challenge, and a response. rcheck outputs the updated
registration contexts rcs that are later input by acheck; acheck outputs a bit
b (1 for accept and 0 for reject) and updates rcs.

– Client-side computation is modeled as two deterministic functions rcommand
and acommand that capture possible checks and translations performed by
the client before sending the challenges to the token. These algorithms output
commands denoted by Mr,Ma respectively, which they generate from the
input intended server identity and the challenge. The client may append some
information about the challenge to the token’s response before sending it to
the server, which is an easy step that we do not model explicitly.

– Token-side computation is modeled as two probabilistic algorithms rresponse
and aresponse that, on input a command and the token’s input to the Register
or Authenticate subprotocol, generate a response and update the registration
contexts rct. In particular, rresponse outputs the updated registration contexts
rct that are later input by aresponse; aresponse may also update rct.

Correctness. Correctness imposes that for any server identities idS , îdS , īdS the
following probability is 1:
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Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b = ((idS
?= îdS) ∧ (idS

?= īdS))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ak, vk)
$← Kg( )

cr
$← rchallenge(idS , vk)

Mr ← rcommand(îdS , cr)

(Rr, rct)
$← rresponse(ak, Mr)

rcs ← rcheck(idS , vk, cr, Rr)

ca
$← achallenge(idS , rcs)

Ma ← acommand(īdS , ca)

(Ra, rct)
$← aresponse(rct, Ma)

(b, rcs) ← acheck(idS , rcs, ca, Ra)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Intuitively, correctness requires that the server always accepts an authenti-
cation that is consistent with a prior registration, if and only if the client’s input
intended server identities match the server identity received from the server.
Note that the latter check is performed by the client rather than the human
user. It helps to prevent a so-called server-in-the-middle attack identified in [33].

4.2 Security Model

Trust Model. Before defining security we clarify that there are no security
assumptions on the communication channels shown in Fig. 1. Again, authentica-
tors are assumed to be tamper-proof, so the model will not consider corruption
of their internal state. (Note that clients and servers keep no secret state.) We
assume the key generation stage, where the attestation key pair is created and
installed in the token, is either carried out within the token itself, or performed
in a trusted context that leaks nothing about the attestation secret key.

Session Oracles. As with the Bellare-Rogaway model [10], to capture multiple
sequential and parallel PlA executions (or instances), we associate each party
P ∈ T ∪ S with a set of session oracles {πi,j

P }i,j , which models two types of
PlA instances corresponding to registration and authentication. We omit session
oracles for clients, since all they do can be performed by the adversary. For
servers and tokens, session oracles are structured as follows: πi,0

P refers to the i-th
registration instance of P , whereas πi,j

P for j ≥ 1 refers to the j-th authentication
instance of P associated with πi,0

P after this registration completed. A party’s
static storage is maintained by the security experiment and shared among all of
its session oracles.

Security Experiment. The security experiment is run between a challenger
and an adversary A. At the beginning of the experiment, the challenger runs
(akT , vkT ) $← Kg( ) for all T ∈ T to generate their attestation key pairs and
assign unique identities {idS}S∈S to all servers. The challenger also manages
the attestation public keys {vkT }T∈T and provides them to the server oracles as
needed. The adversary A is given all attestation public keys and server identities
and then allowed to interact with session oracles via the following queries:
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• Start(πi,j
S ). The challenger instructs a specified server oracle πi,j

S to execute
rchallenge (if j = 0) or achallenge (if j > 0) to start the Register or Authen-
ticate subprotocol and generate a challenge c, which is given to A.

• Challenge(πi,j
T ,M). The challenger delivers a specified command M to a spec-

ified token oracle πi,j
T , which processes the command using rresponse (if j = 0)

or aresponse (if j > 0) and returns the response to A.
• Complete(πi,j

S , T,R). The challenger delivers a specified token response R to
a specified server oracle πi,j

S , which processes the response using rcheck and
vkT (if j = 0) or acheck (if j > 0) and returns the result to A.

We assume without loss of generality that each query is only called once for
each instance and allow the adversary to get the full state of the server via Start
and Complete queries.

Partners. We follow the seminal work by Bellare et al. [9] to define partnership
via session identifiers. A server registration oracle πi,0

S and a token registration
oracle πk,0

T are each other’s partner if they agree on the same session identifier,
which indicates a “shared view” that must be defined by the analyzed protocol
and must be the same for both parties, usually as a function of the communica-
tion trace. A server authentication oracle πi,j

S (j > 0) and a token authentication
oracle πk,l

T (l > 0) are each other’s partner if: i) they agree on the session iden-
tifier and ii) πi,0

S and πk,0
T are each other’s partner.

We note that a crucial aspect of this definition is that the authentication
session partnership holds only if the token and the server are also partnered for
the associated registration sessions: a credential registered in a server should not
be used to authenticate a token using another credential.

Advantage Measure. Let Π be a PlA protocol. We define the passwordless
authentication advantage Advpla

Π (A) as the probability that a server oracle
accepts but it is not uniquely partnered with a token oracle. In other words,
a secure PlA protocol guarantees that, if a server oracle accepts, then there
exists a unique token oracle that has derived the same session identifier, and no
other server oracle has derived the same session identifier.

5 The W3C Web Authentication Protocol

In this section, we present the cryptographic core of W3C’s Web Authentication
(WebAuthn) protocol [15] of FIDO2 and analyze its security.

Protocol Description. We show the core cryptographic operations of WebAuthn
in Fig. 3 in accordance with PlA syntax.6 For WebAuthn, a server identity is
an effective domain (e.g., a hostname) of the server URL. The attestation key
pair is generated by the key generation algorithm Kg of a signature scheme
Sig = (Kg,Sign,Ver). (Note that WebAuthn supports the RSASSA-PKCS1-v1 5
and RSASSA-PSS signature schemes [30].) In Fig. 3, we use H to denote the
6 We do not include the WebAuthn explicit reference to user interaction/gestures at

this point, as this will be later handled by our PACA protocol.
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Authenticator T (akT , vkT ) Client C (idS) Server S (idS , vkT )

Register:
rchallenge :

rcommand : rs
$← {0, 1}≥λ, uid

$← {0, 1}4λ

(id, uid, r) ← cc
cc←−−− cc ← (idS , uid, rs)

rresponse : if id �= idS : halt
(idS , uid, hr) ← Mr

Mr←−−− Mr ← (idS , uid,H(r))

(pk, sk) $← Sig.Kg( )

n ← 0, cid
$← {0, 1}≥λ

ad ← (H(idS), n, cid, pk) rcheck :

σ ← Sig.Sign(akT , (ad, hr))
Rr = (ad, σ, r)

−−−−−−−−−−−−−−−−−−−−−−−−−−→ (h, n, cid, pk) ← ad
halt if r �= rs or h �= H(idS) or n �= 0

or Sig.Ver(vkT , (ad,H(r)), σ) = 0
rct.insert((idS , uid, cid, sk, n)) rcs.insert((uid, cid, pk, n))

Authenticate:
achallenge :

acommand : rs
$← {0, 1}≥λ

(id, r) ← cr
cr←−−− cr ← (idS , rs)

aresponse : if id �= idS : halt
(idS , hr) ← Ma

Ma←−−− Ma ← (idS ,H(r))
(uid, cid, sk, n) ← rct.get(idS)
n ← n + 1, ad ← (H(idS), n) acheck :

σ
$← Sig.Sign(sk, (ad, hr))

Ra = (cid, ad, σ, uid, r)
−−−−−−−−−−−−−−−−−−−−−−−−−−→ (uid′, pk, n) ← rcs.get(cid)

(h, nt) ← ad
reject if uid �= uid′ or r �= rs

or h �= H(idS) or nt ≤ n
or Sig.Ver(pk, (ad,H(r)), σ) = 0

rct.insert((idS , uid, cid, sk, n)) accept; rcs.insert((uid, cid, pk, nt))

Fig. 3. The WebAuthn protocol

SHA-256 hash function and λ to denote the default parameter 128 (in order to
accommodate potential parameter changes). WebAuthn supports two types of
operations: Registeration and Authentication (cf. Figure 1 and Fig. 2 in [15]),
respectively corresponding to the PlA Register and Authenticate subprotocols.
In the following description, we assume each token is registered at most once for
a server; this is without loss of generality since otherwise one can treat the one
token as several tokens sharing the same attestation key pair.

– In registration, the server generates a random string rs of length at least λ =
128 bits and a random 512-bit user id uid, forms a challenge cc with rs, uid
and its identity idS , and then sends it to the client. Then, the client checks
if the received server identity matches its input (i.e., the intended server),
then passes the received challenge (where the random string is hashed) to the
token. The token generates a key pair (pk, sk) with Sig.Kg, sets the signature
counter n to 0,7 and samples a credential id cid of length at least λ = 128
bits; it then computes an attestation signature (on H(idS), n, cid, pk and the
random string hash hr) and sends the signed (public) credential and signature
to the client as a response; the token also inserts the generated credential
into its registration contexts. Upon receiving the response, the server checks

7 The signature counter is mainly used to detect cloned tokens, but it also helps in
preventing replay attacks (if such attacks are possible).
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the validity of the attestation signature and inserts the credential into its
registration contexts.

– In authentication, the server also generates a random string rs, but no uid
is sampled; it then forms a challenge cr with rs and its identity idS , and
sends it to the client. Then, the client checks if the received idS matches its
input and passes the challenge (where the random string is hashed) to the
token. The token retrieves the credential associated with the authenticating
server idS from its registration contexts, increments the signature counter n,
computes an authentication signature (on H(idS), n and the random string
hash hr), and sends it to the client together with H(idS), n and the retrieved
credential id cid and user id uid; the token also updates the credential with
the new signature counter. Upon receiving the response, the server retrieves
the credential associated with the credential id cid and checks the validity
of the signature counter and the signature; if all checks pass, it accepts and
updates the credential with the new signature counter.

It is straightforward to check that WebAuthn is a correct PlA protocol.

WebAuthn Analysis. The following theorem (proved in the full version [6])
assesses PlA security of WebAuthn uses (ad,H(r)) as the session identifier.

Theorem 1. For any efficient adversary A that makes at most qS queries to
Start and qC queries to Challenge, there exist efficient adversaries B, C such that
(recall λ = 128):

Advpla
WebAuthn(A) ≤ Advcoll

H (B) + qSAdveuf-cma
Sig (C) + (q2

S + qC
2) · 2−λ.

The security guarantees for the WebAuthn instantiations follow from the results
proving RSASSA-PKCS1-v1 5 and RSASSA-PSS to be EUF-CMA in the ran-
dom oracle model under the RSA assumption [11,28] and the assumption that
SHA-256 is collision-resistant.

6 PIN-Based Access Control for Authenticators

In this section, we define the syntax and security model for PIN-based access
control for authenticators (PACA) protocols. The goal of the protocol is to ensure
that after PIN setup and possibly an arbitrary number of authenticator reboots,
the user can employ the client to issue PIN-authorized commands to the token,
which the token can use for access control, e.g., to unlock built-in functionalities
that answer client commands.

6.1 Protocol Syntax

A PACA protocol is an interactive protocol involving a human user, an authen-
ticator (or token for short), and a client. The state of token T , denoted by stT ,
consists of static storage stT .ss that remains intact across reboots and volatile
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storage stT .vs that gets reset after each reboot. stT .ss is comprised of: i) a pri-
vate secret stT .s and ii) a public retries counter stT .n, where the latter is used to
limit the maximum number of consecutive failed active attacks (e.g., PIN guess-
ing attempts) against the token. stT .vs consists of: i) power-up state stT .ps and
ii) binding states stT .bsi (together denoted by stT .bs). A client C may also keep
binding states, denoted by bsC,j . All states are initialized to the empty string ε.

A PACA protocol is associated with an arbitrary public gesture predicate G
and consists of the following algorithms and subprotocols, all of which can be
executed a number of times, except if stated otherwise:

Reboot: This algorithm represents a power-down/power-up cycle and it is
executed by the authenticator with mandatory user interaction. We use
stT .vs

$← reboot(stT .ss) to denote the execution of this algorithm, which
inputs its static storage and resets all volatile storage. Note that one should
always run this algorithm to power up the token at the beginning of PACA
execution.

Setup: This subprotocol is executed at most once for each authenticator. The
user inputs a PIN through the client and the token inputs its volatile storage.
In the end, the token sets up its static storage and the client (and through it
the user) gets an indication of whether the subprotocol completed successfully.

Bind: This subprotocol is executed by the three parties to establish an access
channel over which commands can be issued. The user inputs its PIN through
the client, whereas the token inputs its static storage and power-up state. At
the end of the subprotocol, each of the token and client that successfully
terminates gets a (volatile) binding state and sets the session identifier. In
either case (success or not), the token may update its static retries counter.8

We assume the client always initiates this subprotocol once it gets the PIN
from the user.

Authorize: This algorithm allows a client to generate authorized commands
for the token. The client inputs a binding state bsC,j and a command M .
We denote (M, t) $← authorize(bsC,j ,M) as the generation of an authorized
command.

Validate: This algorithm allows a token to verify authorized commands sent
by a client with respect to a user decision (where the human user inputs
the public gesture predicate G). The token inputs a binding state stT .bsi,
an authorized command (M, t), and a user decision d = G(x, y). We denote
b ← validate(stT .bsi, (M, t), d) as the validation performed by the token to
obtain an accept or reject indication.

Correctness. For an arbitrary public predicate G, we consider any token T and
any sequence of PACA subprotocol executions that includes the following (which
may not be consecutive): i) a Reboot of T ; ii) a successful Setup using PIN

8 When such an update is possible, the natural assumption often made in cryptography
requires that incoming messages are processed in an atomic way by the token, which
avoids concurrency issues. Note that Bind executions could still be concurrent.



Provable Security Analysis of FIDO2 141

fixing stT .ss via some client; iii) a Bind with PIN creating token-side binding
state stT .bsi and client-side binding state bsC,j at a client C; iv) authorization
of command M by C as (M, t) $← authorize(bsC,j ,M); and v) validation by T
as b ← validate(stT .bsi, (M, t), d). If no Reboot of T is executed after iii), then
correctness requires that b = 1 if and only if G(x, y) = 1 (i.e., d = 1) holds.

Remark. The above PACA syntax may seem overly complex but it is actually
difficult (if not impossible) to decompose. First, Setup and Bind share the same
power-up state generated by Reboot so cannot be separated into two independent
procedures. Then, although Authorize and Validate together can independently
model an access channel, detaching them from PACA makes it difficult to define
security in a general way: Bind may not establish random symmetric keys; it
could, for instance, output asymmetric key pairs.

6.2 Security Model

Trust Model. Before defining our security model, we first state the assumed
security properties for the involved communication channels, as shown in Fig. 1
excluding the client-server channel. We assume that Setup is carried out over an
authenticated channel where the adversary can only eavesdrop communications
between the client and authenticator; this is a necessary assumption, as there
are no pre-established authentication parameters between the parties.

Session Oracles. To capture multiple sequential and parallel PACA executions,
each party P ∈ T ∪ C is associated with a set of session oracles {πi

P }i, where
πi

P models the i-th PACA instance of P . For clients, session oracles are totally
independent from each other and they are assumed to be available throughout
the protocol execution. For tokens, the static storage and power-up state are
maintained by the security experiment and shared by all oracles of the same
token. Token oracles keep only binding states (if any). If a token is rebooted, its
binding states got reset and hence become invalid, i.e., those states will be no
longer accessible to anyone including the adversary.

Security Experiment. The security experiment is executed between a chal-
lenger and an adversary A. At the beginning of the experiment, the challenger
fixes an arbitrary distribution D over a PIN dictionary PIN associated with
PACA; it then samples independent user PINs according to D , denoted by
〈pinU

D← PIN〉U∈U . Without loss of generality, we assume each user holds only
one PIN. The challenger also initializes states of all oracles to the empty string.
Then, A is allowed to interact with the challenger via the following queries:

• Reboot(T ). The challenger runs Reboot for token T , marking all previously
used instances πi

T (if any) as invalid9 and setting stT .vs
$← reboot(stT .ss).

• Setup(πi
T , πj

C , U). The challenger inputs pinU through πj
C and runs Setup

between πi
T and πj

C ; it returns the trace of communications to A. After this

9 All queries are ignored if they refer to an oracle πi
P marked as invalid.
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query, T is set up, i.e., stT .ss is set and available, for the rest of the experiment.
Oracles created in this query, i.e., πi

T and πj
C , must never have been used

before and are always marked invalid after Setup completion.10

• Execute(πi
T , πj

C). The challenger runs Bind between πi
T and πj

C using the same
pinU that set up T ; it returns the trace of communications to A. This query
allows the adversary to access honest Bind executions in which it can only
take passive actions, i.e., eavesdropping. The resulting binding states on both
sides are kept as stT .bsi and bsC,j respectively.

• Connect(T, πj
C). The challenger asks πj

C to initiate the Bind subprotocol with
T using the same pinU that set up T ; it returns the first message sent by πj

C

to A. Note that no client oracles can be created for active attacks if Connect
queries are disallowed, since we assume the client is the initiator of Bind. This
query allows the adversary to launch an active attack against a client oracle.

• Send(πi
P ,m). The challenger delivers m to πi

P and returns its response (if any)
to A. If πi

P completes the Bind subprotocol, then the binding state is kept as
stT .bsi for a token oracle and as bsC,i for a client oracle. This query allows
the adversary to launch an active attack against a token oracle or completing
an active attack against a client oracle.

• Authorize(πj
C ,M). The challenger asks πj

C to authorize command M ; it
returns the authorized command (M, t) $← authorize(bsC,j ,M).

• Validate(πi
T , (M, t)). The challenger asks πi

T (that received a user deci-
sion d) to validate (M, t); it returns the validation result b ←
validate(stT .bsi, (M, t), d).

• Compromise(πj
C). The challenger returns bsC,j and marks πi

C as compromised.
• Corrupt(U). The challenger returns pinU and marks pinU as corrupted.

Partners. We say a token oracle πi
T and a client oracle πj

C in binding sessions
are each other’s partner if they have both completed their Bind executions and
agree on the same session identifier. As with our PlA model, session identifiers
must be properly defined by the analyzed protocol. Moreover, we also say πj

C is
T ’s partner (and hence T may have multiple partners). Note that, as mentioned
before, if a token is rebooted then all of its existing session oracles (if any) are
invalidated. A valid partner refers to a valid session oracle.

Security Goals. We define 4 levels of security for a PACA protocol Π. All
advantage measures define PAKE-like security: the adversary’s winning prob-
ability should be negligibly larger than that of the trivial attack of guessing
the user PIN (known as online dictionary attacks with more details in the full
version [6]).

Unforgeability (UF). We define Advuf
Π (A) as the probability that there exists a

token oracle πi
T that accepts an authorized command (M, t) for gesture G and

at least one of the following conditions does not hold:

10 Session oracles used for Setup are separated since they may cause ambiguity in
defining session identifiers for binding sessions.
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1) G approves M , i.e., G(x, y) = 1;
2) (M, t) was output by one of T ’s valid partners πj

C .

The adversary must be able to trigger this event without: i) corrupting pinU that
was used to set up T , before πi

T accepted (M, t); or ii) compromising any of T ’s
partners created after T ’s last reboot and before πi

T accepted (M, t).
The above captures the attacks where the attacker successfully makes a token

accept a forged command, without corrupting the user PIN used to set up the
token or compromising any of the token’s partners. In other words, a UF-secure
PACA protocol protects the token from unauthorized access even if it is stolen
and possessed by an attacker. Nevertheless, UF considers only weak security for
access channels, i.e., compromising one channel could result in compromising all
channels (with respect to the same token after its last reboot).

Unforgeability with Trusted Binding (UF-t). We define Advuf-t
Π (A) the same as

Advuf
Π (A) except that the adversary is not allowed to make Connect queries.

As mentioned before, the attacker is now forbidden to launch active attacks
against clients (that input user PINs) during binding; it can still, however,
perform active attacks against tokens. This restriction captures the minimum
requirement for proving the security of CTAP2 (using our model), which is the
main reason we define UF-t. Clearly, UF security implies UF-t security.

Strong Unforgeability (SUF). We define Advsuf
Π (A) as the UF advantage, with

one more condition captured:

3) πi
T and πj

C are each other’s unique valid partner.

More importantly, the adversary considered in this strong notion is allowed to
compromise T ’s partners, provided that it has not compromised πj

C . It is also
allowed to corrupt pinU used to set up T even before the command is accepted,
as long as πi

T has set its binding state.

SUF UF

SUF-t UF-t

\

Fig. 4. Relations between PACA security notions.

The above captures similar attacks considered in UF but in a strong sense,
where the attacker is allowed to compromise the token’s partners. This means
SUF considers strong security for access channels, i.e., compromising any channel
does not affect other channels. It hence guarantees a unique binding between
an accepted command and an access channel (created by uniquely partnered
token and client oracles running Bind), which explains condition 3). Finally, the
attacker is further allowed to corrupt the user PIN immediately after the access
channel establishment. This guarantees forward secrecy for access channels, i.e.,
once the channel is created its security will no longer be affected by later PIN
corruption. Note that SUF security obviously implies UF security.
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Strong Unforgeability with Trusted Binding (SUF-t). For completeness we can
also define Advsuf-t

Π (A), where the adversary is not allowed to make Connect
queries. Again, it is easy to see that SUF security implies SUF-t security.

Relations Between PACA Security Notions. Figure 4 shows the implica-
tion relations among our four defined notions. Note that UF and SUF-t do not
imply each other, for which we will give separation examples in Sects. 7 and 8.

Improving (S)UF-t Security with User Confirmation. Trusted binding
excludes active attacks against the client (during binding), but online dictionary
attacks are still possible against the token. Such attacks can be mitigated by
requiring user confirmation (e.g., pressing a button) for Bind execution, such that
only honest Bind executions will be approved when the token is possessed by an
honest user. We argue that the confirmation overhead is quite small for CTAP2-
like protocols since the user has to type its PIN into the client anyway; the
security gain is meaningful as now no online dictionary attacks (that introduce
non-negligible adversarial advantage) can happen to unstolen tokens.

A Practical Implication of SUF Security. We note that SUF security has a
practical meaning: an accepted command can be traced back to a unique access
channel. This means that an authenticator that allows a human user to confirm
a session identifier (that determines the channel) for a command can allow a
human user to detect rogue commands issued by an adversary (e.g., malware)
that compromised one of the token’s partners (e.g., browsers).

PACA Security Bounds. In our theorems for PACA security shown later, we
fix qS (i.e., the number of Setup queries) as one adversarial parameter to bound
the adversary’s success probability of online dictionary attacks (e.g., the first
bound term in Theorem 2 and the PAKE advantage term in Theorem 3), while
for PAKE security the number of Send queries qs is used (see [9] or the full
version [6] for example). This is because PACA has a token-side retries counter
to limit the total number of failed PIN guessing attempts (across reboots).

7 The Client to Authenticator Protocol V2.0

In this section, we present the cryptographic core of the FIDO Alliance’s CTAP2,
analyze its security using PACA model, and make suggestions for improvement.
Protocol Description. CTAP2’s cryptographic core lies in its authenticator API
11 which we show in Fig. 5 in accordance with PACA syntax. One can also
refer to its specification (Fig. 1, [1]) for a command-based description.12 The
11 The rest of CTAP2 does not focus on security but specifies transport-related behav-

iors like message encoding and transport-specific bindings.
12 There the command used for accessing the retries counter stT .n is omitted because

PACA models it as public state. Commands for PIN resets are also omitted and
left for future work, but capturing those is not hard by extending our analysis since
CTAP2 changes PIN by simply running the first part of Bind (to establish the
encryption key and verify the old PIN) followed by the last part of Setup (to set
a new PIN). Without PIN resets, our analysis still captures CTAP2’s core security
aspects and our PACA model becomes more succinct.
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Authenticator T Client C (pinU )

Reboot:

(a, aG) $← ECKGG,G( ), pt
$← {0, 1}kλ, m ← 3

stT .ps ← (a, aG, pt, m), stT .bs ← ε

Setup:
cmd = 2←−−−−−−−−

aG−−−−−−−−→ (b, bG) $← ECKGG,G( ), K ← H(baG.x)
cp ← CBC0.E(K, pinU )

tp ← HMAC′(K, cp)
K ← H(abG.x)

cmd = 3
bG, cp, tp

←−−−−−−−−
if tp �= HMAC′(K, cp): halts
pinU ← CBC0.D(K, cp)
if pinU NIP∈� : halt
stT .s ← H′(pinU ), stT .n ← 8 ok−−−−−−−−→
Bind:

cmd = 2←−−−−−−−−
if stT .n = 0: blocks access aG−−−−−−−−→ (b, bG) $← ECKGG,G( ), K ← H(baG.x)

cph ← CBC0.E(K,H′(pinU ))

K ← H(abG.x), stT .n ← stT .n − 1

cmd = 5
bG, cph←−−−−−−−−

if stT .s �= CBC0.D(K, cph):

m ← m − 1, (a, aG) $← ECKGG,G( )
halt (if m = 0: reboot)

m ← 3, stT .n ← 8
cpt ← CBC0.E(K, pt)

cpt−−−−−−−−→
stT .bsi ← pt bsC,j ← CBC0.D(K, cpt)

:ezirohtuA:etadilaV

if t �= HMAC′(stT .bsi, M):
M, t←−−−−−−−− t ← HMAC′(bsC,j , M)

m ← m − 1, reject
if m = 0: reboot

m ← 3, collects user decision d

accept if d = 1 uv = 1−−−−−−−−→

Fig. 5. The CTAP2 protocol (and CTAP2* that excludes the boxed contents).

PIN dictionary PIN of CTAP2 consists of 4∼63-byte strings.13 In Fig. 5, the
client inputs an arbitrary user PIN pinU ∈ PIN . We use ECKGG,G to denote
the key generation algorithm of the NIST P-256 elliptic-curve Diffie-Hellman
(ECDH) [26], which samples an elliptic-curve secret and public key pair (a, aG),
where G is an elliptic-curve point that generates a cyclic group G of prime order
|G| and a is chosen at random from the integer set {1, . . . , |G|−1}. Let H denote
the SHA-256 hash function and H′ denote SHA-256 with output truncated to
the first λ = 128 bits; CBC0 = (K,E,D) denotes the (deterministic) encryption
scheme AES-256-CBC [20] with fixed IV = 0; HMAC′ denotes the MAC HMAC-
SHA-256 [8] with output truncated to the first λ = 128 bits. Note that we use the
symbol λ to denote the block size in order to accommodate parameter changes
in future versions of CTAP2.

13 PINs memorized by users are at least 4 Unicode characters and of length at most 63
bytes in UTF-8 representation.
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– Reboot generates stT .ps by running ECKGG,G, sampling a kλ-bit pinToken pt
(where k ∈ N+ can be any fixed parameter, e.g., k = 2 for a 256-bit pt), and
resetting the mismatch counter m ← 3 that limits the maximum number of
consecutive mismatches. It also erases the binding state stT .bs (if any).

– Setup is essentially an unauthenticated ECDH followed by the client trans-
mitting the (encrypted) user PIN to the token. The shared encryption key is
derived from hashing the x-coordinate of the ECDH result. A HMAC′ tag of
the encrypted PIN is also attached for authentication; but as we will show this
is actually useless. The token checks if the tag is correct and if the decrypted
PIN pinU is valid; if so, it sets the static secret stT .s to the PIN hash and sets
the retries counter stT .n to the default value 8.

– Bind also involves an unauthenticated ECDH but followed by the transmission
of the encrypted PIN hash. First, if stT .n = 0, the token blocks further access
unless being reset to factory default state, i.e., erasing all static and volatile
state. Otherwise, the token decrements stT .n and checks if the decrypted
PIN hash matches its stored static secret. If the check fails, it decrements the
mismatch counter m, generates a new key pair, then halts; if m = 0, it further
requires a reboot to enforce user interaction (and hence user detectability).
If the check passes, it resets the retries counter, sends back the encrypted
pinToken, and uses its pinToken as the binding state stT .bsi; the client then
uses the decrypted pinToken as its binding state bsC,j .

– Authorize generates an authorized command by attaching a HMAC′ tag.
– Validate accepts the command if and only if the tag is correct and the user

gesture approves the command. The default CTAP2 gesture predicate G1

always returns true, since only physical user presence is required. The mis-
match counter is also updated to trigger user interaction.

It is straightforward to check that CTAP2 is a correct PACA protocol.

CTAP2 Analysis. The session identifier of CTAP2 is defined as the full commu-
nication trace of the Bind execution.

Insecurity of CTAP2. It is not hard to see that CTAP2 is not UF-secure
(and hence not SUF-secure). An attacker can query Connect to initiate the Bind
execution of a client oracle that inputs the user PIN, then impersonate the token
to get the PIN hash, and finally use it to get the secret binding state pt from the
token. CTAP2 is not SUF-t-secure either because compromising any partner of
the token reveals the common binding state pt used to access all token oracles.

UF-t Security of CTAP2. The following theorem (proved in the full ver-
sion [6]) confirms CTAP2’s UF-t security, by modeling the hash function H (with
fixed 256-bit input) and truncated HMAC HMAC′ as random oracles H1,H2.

Theorem 2. Let D be an arbitrary distribution over PIN with min-entropy
hD . For any efficient adversary A making at most qS, qE, qR, qV queries respec-
tively to Setup,Execute,Reboot,Validate, and qH random oracle queries to H2,
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there exist efficient adversaries B, C,D such that (recall λ = 128):

Advuf-t
CTAP2(A) ≤ 8qS · 2−hD + (qS + qE)Advscdh

G,G(B) + Advcoll
H′ (C)

+ 2(qS + qE)Advprf
AES-256(D) + qV · 2−kλ + qSqH · 2−2λ

+ (12qS + 2|U|qRqE + q2
RqE + (k + 1)2qE + qV) · 2−λ.

We remark that for conciseness the above theorem does not show what secu-
rity should be achieved by CBC0 for CTAP2’s UF-t security to hold, but directly
reduces to the PRF security of the underlying AES-256 cipher. Actually, the
proof of the above theorem also shows that it is sufficient for CBC0 to achieve a
novel security notion that we call indistinguishability under one-time chosen and
then random plaintext attack (IND-1$PA), which (defined in the full version [6])
we think would be of independent interest. We prove in the full version [6] that
the IND-1$PA security of CBC0 can be reduced to the PRF security of AES-256.

SUF-t 
=⇒ UF. Note that we can modify CTAP2 to achieve SUF-t security by
using independent pinTokens for each Bind execution, but this is not UF-secure
due to unauthenticated ECDH. This shows that SUF-t does not imply UF.

CTAP2 Improvement. Here we make suggestions for improving CTAP2 per
se, but we advocate the adoption of our proposed efficient PACA protocol with
stronger SUF security in Sect. 8.

Setup Simplification. First, we notice that the Setup authentication procedures
(boxed in Fig. 5) are useless, since there are no pre-established authentication
parameters between the token and client. In particular, a MITM attacker can
pick its own aG to compute the shared key K and generate the authentica-
tion tag. More importantly, CTAP2 uses the same key K for both encryption
and authentication, which is considered bad practice and the resulting security
guarantee is elusive; this is why we have to model HMAC′ as a random ora-
cle. Therefore, we suggest removing those redundant authentication procedures
(or using checksums), then the resulting protocol, denoted by CTAP2*, is also
UF-t-secure, with the proof in the full version [6] where HMAC′ is treated as
an EUF-CMA-secure MAC.14 Furthermore, one can use a simple one-time pad
(with appropriate key expansion) instead of CBC0 to achieve the same UF-t secu-
rity. This is because only one encryption is used in Setup and hence one-time
security provided by a one-time pad is sufficient.

Unnecessary Reboots. In order to prevent attacks that block the token without
user interaction, CTAP2 requires a token reboot after 3 consecutive failed bind-
ing attempts. Such reboots do not enhance security as the stored PIN hash is
not updated, but they could cause usability issues since reboots invalidate all
established access channels by erasing the existing binding states. We therefore
suggest replacing reboots with tests of user presence (e.g., pressing a button)
that do not affect existing bindings. Note that reboots are also introduced for
14 Note that HMAC-SHA-256 has been proved to be a PRF (and hence EUF-CMA)

assuming SHA-256’s compression function is a PRF [7].
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Authenticator T Client C (pinU )

Reboot:

(a, aG) $← ECKGG,G( ), m ← 3
stT .ps ← (a, aG, m), stT .bs ← ε

Setup:
bG←−−−−−−−− (b, bG) $← ECKGG,G( )

K ← H(abG.x) aG−−−−−−−−→ K ← H(baG.x)
pinU ← CBC0.D(K, cp)

cp←−−−−−−−− cp ← CBC0.E(K, pinU )
if pinU NIP∈� : halts
stT .s ← H′(pinU ), stT .n ← 8 ok−−−−−−−−→
Bind:
if stT .n = 0: blocks access
stT .n ← stT .n − 1

PAKE(H′(pinU ))
↼−−−−−−−−−−−−−−−−−−−−−−−−−−⇁

if PAKE outputs skT ∈ {0, 1}κ fi: PAKE outputs skC ∈ {0, 1}κ:
m ← 3, stT .n ← 8
stT .bsi ← skT bsC,j ← skC

otherwise:
m ← m − 1, halts
(if m = 0: tests user presence)

:ezirohtuA:etadilaV

reject if t �= HMAC′(stT .bsi, M)
M, t←−−−−−−−− t ← HMAC′(bsC,j , M)

collects user decision d

accept if d = 1 uv = 1−−−−−−−−→

Fig. 6. The sPACA protocol

user interaction in Validate executions; this however is completely useless when
CTAP2 already requires a test of user presence before accepting each command.

User Confirmation for Binding. As discussed at the end of Sect. 6, we suggest
CTAP2 require user confirmation for Bind executions to improve security. Note
that here user confirmation is used to detect and prevent malicious Bind execu-
tions rather than confirming honest ones.

8 The Secure PACA Protocol

In this section, we propose a generic PACA protocol that we call sPACA for
secure PACA, prove its SUF security, and compare its performance with CTAP2
when instantiating the underlying PAKE of sPACA with CPace [24].

Protocol Description. We purposely design our sPACA protocol following
CTAP2 such that the required modification is minimized if sPACA is adopted.
As shown in Fig. 6, sPACA employs the same PIN dictionary PIN and crypto-
graphic primitives as CTAP2 and additionally relies on a PAKE protocol PAKE
initiated by the client. Compared to CTAP2, sPACA does not have pinTokens,
but instead establishes independent random binding states in Bind executions
by running PAKE between the token and the client (that inputs the user PIN)
on the shared PIN hash; it also excludes unnecessary reboots. We also note that
the length of session keys skT , skC ∈ {0, 1}κ established by PAKE is determined
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by the concrete PAKE instantiation; typically κ ∈ {224, 256, 384, 512} when the
keys are derived with a SHA-2 hash function.

sPACA Analysis. The session identifier of sPACA is simply that of PAKE.

SUF Security of sPACA. The following theorem (proved in the full version [6])
confirms SUF security of sPACA by modeling H as a random oracle.

Theorem 3. Let PAKE be a 3-pass protocol where the client is the initia-
tor and let D be an arbitrary distribution over PIN with min-entropy hD .
For any efficient adversary A making at most qS, qC, qE queries respectively to
Setup,Connect,Execute, there exist efficient adversaries B, C,D, E ,F such that:

Advsuf
sPACA(A) ≤ qSAdvcdh

G,G(B) + Advcoll
H′ (C) + 2qSAdvprf

AEStext−256(D)

+ AdvPAKE(E , 16qS + 2qC, hD ) + (qC + qE)Adveuf-cma
HMAC′ (F) + 12qS · 2−λ.

Note that it is crucial for PAKE to guarantee explicit authentication, other-
wise, the token might not be able to detect wrong PIN guesses and then decre-
ment its retries counter to prevent exhaustive PIN guesses.15 Also note that
the PAKE advantage bound may itself include calls to an independent random
oracle. PAKE can be instantiated with variants of CPace [24] or SPAKE2 [3,5]
that include explicit authentication. Both protocols were recently considered by
the IETF for standardization and CPace was selected in the end.16 They both
meet the required security property, as they have been proved secure in the UC
setting which implies the game-based security notion we use [4,24].

UF 
=⇒ SUF-t. Note that one can easily transform sPACA into a protocol that
is still UF secure, but not SUF-t secure: similar to CTAP2, let the authenticator
generate a global pinToken used as binding states for all its partners and send
it (encrypted with the session key output by PAKE) to its partners at the end
of Bind executions. This shows that UF does not imply SUF-t.

Performance Comparison of CTAP2 and sPACA. It is straightforward
to see from Fig. 5 and Fig. 6 that CTAP2 and sPACA differ mainly in their
Bind executions, while sPACA has slightly better performance than CTAP2 in
other subprotocols. We therefore compare their performance for binding (where
sPACA is instantiated with CPace) in terms of message flows, computations
(for group exponentiations, hashes, AES) on both sides, and communication
complexity. Among these three factors, the number of flows reflects the net-
work latency cost that usually dominates the performance. Therefore, one can
observe that sPACA (with CPace) is more efficient than CTAP2 from the results
summarized in Table 1, which we explain as follows.

15 One does not actually need explicit token-to-client authentication in the proof, as
clients do not have long-term secret to protect. This would allow removing the server-
side authentication component from the PAKE instantiation for further efficiency.
We do not propose to do this and choose to rely on the standard mutual explicit
authentication property to enable direct instantiation of a standardized protocol.

16 https://mailarchive.ietf.org/arch/msg/cfrg/j88r8N819bw88xCOyntuw Ych-I.

https://mailarchive.ietf.org/arch/msg/cfrg/j88r8N819bw88xCOyntuw_Ych-I
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Table 1. Performance comparison of CTAP2 and sPACA for binding.

Protocol Flow Token Client Communication

Exp Hash AES Exp Hash AES (λ = 128)

CTAP2 4 2 1 2k 2 2 2k 4λ + 2kλ (e.g., k = 2)

sPACA[CPace] 3 2 4 0 2 5 0 4λ + 2κ (e.g., κ = 256)

First, CPace needs 3 flows when explicit authentication is required and hence
so does sPACA, while CTAP2 needs 4. Besides, if Bind is executed when the
client already has a command to issue, the last CPace message can be piggy-
backed with the authorized command, leading to a very efficient 2-flow binding.17

As shown in Fig. 5, CTAP2 requires two Diffie-Hellman group exponentiations
and 2k AES computations (for pt of k-block length) on both sides; the token com-
putes one hash while the client computes two (one for hashing PIN). For sPACA,
CPace requires two Diffie-Hellman group exponentiations and four hashes on
both sides; the client also needs to compute the PIN hash beforehand. In short,
sPACA incurs 3 more hashes while CTAP2 involves 2k more AES computations.
Note that the most expensive computations are group exponentiations, for which
both protocols have two. Regarding communication complexity, both protocols
exchange two group elements and two messages of the same length as the bind-
ing states, so they are equal if, say, κ = kλ = 256. Overall, sPACA (with CPace)
is more efficient than CTAP2 due to less flows.

Finally, we note that the cryptographic primitives in sPACA could be instan-
tiated with more efficient ones compared to those in CTAP2 without compro-
mising security. For instance, as mentioned before, one can use a very efficient
one-time pad (with appropriate key expansion) instead of CBC0 in Setup.

9 Composed Security of PlA and PACA

In this section we discuss the composed security of PlA and PACA and the
implications of this composition for FIDO2 and WebAuthn+sPACA. The com-
posed protocol, which we simply refer to as PlA+PACA, is defined in the natural
way, and it includes all the parties that appear in Fig. 1. We give a typical flow
for registration in Fig. 7, where we assume PACA Setup and Bind have been
correctly executed. The server’s role is purely that of a PlA server. The client
receives the server challenge via an authenticated channel (i.e., it knows the true
server identity idS when it gets a challenge from the server). It then authorizes
the challenge using the PACA protocol and sends it to the authenticator. The
authenticator first validates the PACA command (possibly using a user gesture)
and, if successful, it produces a PlA response that is conveyed to the server.

17 This piggy backing has the extra advantage of associating the end of the binding
state with a user gesture by default, which helps detect online dictionary attacks
against the token as stated in Sect. 6.
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User U

Authenticator T
b ← validate(stT .bsi, (Mr, tr), d)
If b = 1:
Rr ← rresponse(akT , Mr)

Client C
Mr ← rcommand(idS , cr)

(Mr, tr)
$← authorize(bsC,j , Mr)

Server S

c
$← rchallenge(idS , vk)

b ← rcheck(idS , vkT , cr, Rr)

Se
tup
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Fig. 7. Full PlA+PACA registration flow: black = PACA, blue = PlA, red = authen-
ticated (e.g., TLS), dashed = PACA algorithms/subprotocols. (Color figure online)

The flow for authentication looks exactly the same, apart from the fact that the
appropriate PlA authentication algorithms are used instead. The requirement
on the token is that it supports the combined functionalities of PlA and PACA
protocols and that it is able to validate the correct authorization of two types
of commands, (Mr, tr) and (Ma, ta), that correspond to PlA registration and
authentication. These commands are used to control access to the PlA registra-
tion and authentication functionalities. In the full version of this paper [6] we
formally give a syntax for such composed protocols.

A crucial aspect of our security results is that we convey the two-sided authen-
tication guarantees offered by PlA+PACA, and not only the server-side guar-
antees. In fact, the server-side guarantees given by the composed protocol are
almost those offered by PlA, as the server is simply a PlA server: if a token was
used to register a key, then the server can recognize the same token in authenti-
cation; furthermore, PACA security requires that the authentication must have
been carried by a PACA-bound client. But how do the client and user know
which server they are registering at? What guarantees does a user have such
that registered credentials cannot be used in a different server? What does a
user know about how client security affects the effectiveness of access control for
the token? We answer these questions next.

Security Model. We give a very short description of the security model here
(the details are in the full version [6]). We define a security property called user
authentication (UA) for the composed protocol. We analyze the PlA+PACA
composition in a trust model as with our PACA model but we further require a
server-to-client explicit authentication guarantee. This captures a basic guaran-
tee given by TLS, whereby the client knows the true identity of the server that
generates the challenge and is ensured the integrity of the received challenge; it
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allows formalizing explicit server authentication guarantees given to the token
and user by the composed protocol. We allow the adversary to create arbitrary
bindings between clients and tokens, used to deliver arbitrary commands to those
created token oracles. We model server-to-token interactions via a unified query:
the adversary can request challenges from server S, via client C aimed at a spe-
cific client-token PACA binding. We hardwire the server’s true identity to the
challenges, which is justified by our assumption of an authenticated channel from
server to client. The token oracles are modeled in the obvious way: if a PACA
command is accepted, then it is interpreted as in the PlA security experiment
and the response is given to the adversary. Compromise of binding states and
corruption of user PINs are modeled as in the PACA security experiment.

Security Guarantees. The security goal we define for the composed protocol
requires that a server oracle that accepts is uniquely partnered with a token
oracle, which is associated with a unique PACA-bound client oracle (that has
established an access channel), and these oracles agree on the exchanged mes-
sages in all passes of the challenge-response authentication session; this also holds
for the associated registration session. We show that such server-side security for
the composed protocol follows from security of its PlA and PACA components.
Then, it is not hard to see that PlA correctness guarantees the above token and
client oracles agree on the accepting server’s identity and that PlA correctness
and server-to-client explicit authentication (e.g., offered by TLS) guarantees that
user approval (i.e., d = 1) via an uncompromised access channel implies that only
the intended server can be authenticated to.

We now give a brief intuition on how the server-side result can be proved
assuming the underlying PlA and PACA components are secure. Suppose a
server authentication oracle πi,j

S (j > 0) accepts and its associated server regis-
tration oracle πi,0

S took as input the attestation public key of token T :

– PlA security guarantees a unique partner oracle in T , which determines two
partner token oracles: πk,0

T for registration and πk,l
T (l > 0) for authentication.

– Token oracles are, by construction, created on acceptance of PACA com-
mands. Therefore, token T must have accepted PACA commands to create
the above PlA partner token oracles.

– PACA security binds a PACA command accepted by the token to a unique
PACA partner client oracle (in the SUF/SUF-t corruption model) or to a set
of PACA partner client oracles (in the UF/UF-t corruption model).

– PlA security also guarantees unique server-side partnered oracles πi,0
S and πi,j

S

(which generated a challenge that is consistent with the token’s view); this
implies that the two accepted PACA commands are produced respectively by
unique PACA partner client oracles πm

C and πn
C (in either corruption model),

i.e., πm
C has a consistent view with πi,0

S and πk,0
T in registration and so does

πn
C with πi,j

S and πk,l
T in authentication.

The above argument guarantees that unique server, token and client oracles are
bound to the execution of PlA+PACA registration and authentication, as we
claimed before. If this does not hold, then either the PlA protocol or the PACA
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protocol can be broken (reduction to the PACA protocol security can be done
by considering the same corruption model as in PlA+PACA).

The details are in the full version of this paper [6].

Implications for FIDO2. The above result implies that FIDO2 components
WebAuthn and CTAP2 securely compose to achieve the UA security guarantees
under a weak corruption model UF-t: the protocol is broken if the adversary can
corrupt any client that has access to the target token since the last power-up, or
if the adversary can launch an active attack against an uncorrupted client (that
the target user inputs its PIN into) via the CTAP2 API (i.e., the user thinks it is
embedding the PIN into the token but it is actually giving it to the adversary).
Such attacks are excluded by the trust model assumed for the client platform.

Security in the SUF Model. The above result also implies that WebAuthn
composes with our sPACA protocol from Sect. 8 to give UA security in the
strongest corruption model we considered. Intuitively, no active attacks against
the Bind subprotocol can help the attacker beyond simply guessing the user
PIN. The corruption of clients (e.g., browsers) that have previously been bound
to the token may be detected with the help of the user.

User Gestures Can Upgrade Security. UA gives strong guarantees to the
server and client. However, it is not very clear what guarantees it gives to the
human user. Apparently, there is a guarantee that an attacker that does not
control the token cannot force an authentication, as it will be unable to provide
a gesture. Furthermore, an attacker that steals the token must still guess the
PIN in a small number of tries to succeed in impersonating the user.

One very important aspect of user awareness is to deal with malware attacks
that may corrupt clients that have been bound to the token. Here, assuming SUF
security has been established, the user can help prevent attackers from abusing
the binding, provided that the token supports gestures that permit identifying
the client-to-token access channel that is transmitting each command. In the
weaker UF model there is no way to prevent this kind of abuse, as corrupting
one access channel implies corrupting all access channels to the same token.

Gestures can also be used to give explicit guarantees to the user that the
server identity used in a PlA session is the intended one. For example, there
could be ambiguity with multiple (honest and malicious) client browser windows
issuing concurrent commands from multiple servers. Suppose gesture G permits
confirming which client session is issuing the registration and authentication
commands.18 In this case we get a strong guarantee that the token registered a
credential or authenticated via an honest client in the server with identifier id�

S ,
where id�

S was explicitly confirmed by the user on the client interface, provided
that the honest client session issued only one command to the token. Alterna-
tively, G can be defined to directly confirm the specific id�

S value that can be
displayed by the authenticator itself and we get the same guarantee.

18 Confirming a client session means that the client browser and token somehow display
a human-readable identifier that the user can crosscheck and confirm.
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If the gesture cannot confirm consistency between client and token, then the
user will not be able to distinguish which access channel is transmitting the PlA
command and know for sure which idS the command it is approving refers to.
However, our composition result does show that trivial gestures are sufficient
if the user establishes only one access channel with the token per power-up, as
then there is no ambiguity as to which access channel is used and only a single
client is provided with the intended server identity as input.

10 Conclusion

We performed the first provable security analysis of the new FIDO2 protocols for
a standard of passwordless user authentication. We identified several shortcom-
ings and proposed stronger protocols. We hope our results will help clarify the
security guarantees of the FIDO2 protocols and help the design and deployment
of more secure and efficient passwordless user authentication protocols.
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Abstract. Searchable Symmetric Encryption (SSE) enables a client to
outsource a database to an untrusted server, while retaining the ability
to securely search the data. The performance bottleneck of classic SSE
schemes typically does not come from their fast, symmetric cryptographic
operations, but rather from the cost of memory accesses. To address this
issue, many works in the literature have considered the notion of locality,
a simple design criterion that helps capture the cost of memory accesses
in traditional storage media, such as Hard Disk Drives. A common thread
among many SSE schemes aiming to improve locality is that they are
built on top of new memory allocation schemes, which form the technical
core of the constructions.

The starting observation of this work is that for newer storage media
such as Solid State Drives (SSDs), which have become increasingly com-
mon, locality is not a good predictor of practical performance. Instead,
SSD performance mainly depends on page efficiency, that is, reading
as few pages as possible. We define this notion, and identify a simple
memory allocation problem, Data-Independent Packing (DIP), that cap-
tures the main technical challenge required to build page-efficient SSE.
As our main result, we build a page-efficient and storage-efficient data-
independent packing scheme, and deduce the Tethys SSE scheme, the
first SSE scheme to achieve at once O(1) page efficiency and O(1) stor-
age efficiency. The technical core of the result is a new generalization of
cuckoo hashing to items of variable size. Practical experiments show that
this new approach achieves excellent performance.

1 Introduction

In Searchable Symmetric Encryption (SSE), a client holds a collection of docu-
ments, and wishes to store them on an untrusted cloud server. The client also
wishes to be able to issue search queries to the server, and retrieve all documents
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matching the query. Meanwhile, the honest-but-curious server should learn as
little information as possible about the client’s data and queries. Searchable
Encryption is an important goal in the area of cloud storage, since the ability to
search over an outsourced database is often a critical feature. The goal of SSE
is to enable that functionality, while offering precise guarantees regarding the
privacy of the client’s data and queries with respect to the host server.

Compared to other settings related to computation over encrypted data,
such as Fully Homomorphic Encryption, a specificity of SSE literature is the
focus on high-performance solutions, suitable for deployment on large real-world
datasets. To achieve this performance, SSE schemes accept the leakage of some
information on the plaintext dataset, captured in security proofs by a leakage
function. The leakage function is composed of setup leakage and query leakage.
The setup leakage is the total leakage prior to query execution, and typically
reveals the size of the index, and possibly the number of searchable keywords.
For a static scheme, the query leakage usually reveals the repetition of queries,
and the set of document indices matching the query. Informally, the security
model guarantees that the adversary does not learn any information about the
client’s data and queries, other than the previous leakages.

In particular, the allowed leakage typically reveals nothing about keywords
that have not yet been queried. Although this requirement may seem natural
and innocuous, it has deep implications about the storage and memory accesses
of SSE schemes. At Eurocrypt 2014, Cash and Tessaro [CT14] proved an impos-
sibility result that may be roughly summarized as follows. If an SSE scheme
reveals nothing about the number of documents matching unqueried keywords,
then it cannot satisfy the following three efficiency properties simultaneously:
(1) constant storage efficiency: the size of the encrypted database is at most
linear in the size of the plaintext data; (2) constant read efficiency: the amount
of data read by the server to answer a query is at most linear in the size of the
plaintext answer; (3) constant locality: the memory accesses made by the server
to answer a query consist of a constant number of contiguous accesses. Thus, a
secure SSE scheme with constant storage efficiency and read efficiency cannot
be local : it must perform a superconstant number of disjoint memory accesses.

In practice, many SSE schemes (e.g. [CGKO06,CJJ+13,Bos16]) make one
random memory access per entry matching the search query. As explained in
[CJJ+14,MM17], making many small random accesses hampers performance:
hard disks drives (HDD) were designed for large sequential accesses, and solid
state drives (SSD) use a leveled design that does not accommodate small reads
well. As discussed e.g. in [BMO17], this results in the fact that in many settings,
the performance bottleneck for SSE is not the cost of cryptographic operations
(which rely on fast, symmetric primitives), but the cost of memory accesses.

As a consequence, SSE scheme designers have tried to reduce the number
of disk accesses needed to process a search query, e.g. by grouping entries cor-
responding to the same keywords in blocks [CJJ+14,MM17], or by using more
complex allocation mechanisms [ANSS16,ASS18,DPP18]. However, no optimal
solution is possible, due to the previously mentioned impossibility result of Cash
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and Tessaro. In the static case, the first construction by Asharov et al. from
STOC 2016 achieves linear server storage and constant locality, at the cost of
logarithmic read efficiency (the amount of data read by the server to answer
a query is bounded by the size of the plaintext answer times O (logN ), where
N is the size of the plaintext database) [ANSS16]. The logarithmic factor was
reduced to logγ N for γ < 1 by Demertzis et al. at Crypto 2018 [DPP18].

An interesting side-effect of this line of research is that it has highlighted
the connection between Searchable Encryption and memory allocation schemes
with certain security properties. The construction from [ANSS16] relies on a two-
dimensional variant of the classic balls-and-bins allocation problem. Likewise, the
construction from [DPP18] uses several memory allocation schemes tailored to
different input sizes.

1.1 Overview of Contributions

As discussed above, memory accesses are a critical bottleneck for SSE perfor-
mance. This has led to the notion of locality, and the construction of many
SSE schemes aiming to improve locality, such as [CT14,ANSS16,MM17,DP17,
DPP18]. The motivation behind the notion of locality is that it is a simple crite-
rion that captures the performance of traditional storage media such as HDDs.
In recent years, other storage media, and especially SSDs, have become more and
more prevalent. To illustrate that point, the number of SSDs shipped worldwide
is projected to overtake HDD shipments in 2021 [Sta21].

However, locality as a design target, was proposed assuming an implemen-
tation on a HDD. The starting point of our work is that for SSDs, locality is
no longer a good predictor of practical performance. This raises two questions:
first, is there a simple SSE design criterion to capture SSD performance, similar
to locality for HDDs? And can we design SSE schemes that fulfill that criterion?

The answer to the first question is straightforward: for SSDs, performance is
mainly determined by the number of memory pages that are accessed, regardless
of whether they are contiguous. This leads us to introduce the notion of page
efficiency. The page efficiency of an SSE scheme is simply the number of pages
that the server must access to process a query, divided by the number of pages
of the plaintext answer to the query. Page efficiency is an excellent predictor
of SSD performance. This is supported by experiments in Sect. 5. Some of the
technical reasons behind that behavior are also discussed in the full version.

The main contribution of this work is to give a positive answer to the second
question, by building a page-efficiency SSE scheme, called Tethys. Tethys achieves
page efficiency O(1) and storage efficiency O(1), with minimal leakage. Here,
O(1) denotes an absolute constant, independent of not only the database size,
but also the page size. We also construct two additional variants, Pluto and
Nilust, that offer practical trade-offs between server storage and page efficiency.
An overview of these schemes is presented on Table 1, together with a comparison
with some relevant schemes from the literature.

Similar to local SSE schemes such as [ANSS16] and its follow-ups, the core
technique underpinning our results is a new memory allocation scheme. In order
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Table 1. Trade-offs between SSE schemes. Here, p is the number elements per page,
k is the number of keywords, and λ is the security parameter (assuming k ≥ λ). Page
cost aX + b means that in order to process a query whose plaintext answer is at most
X pages long, the server needs to access at most aX+b memory pages. Page efficiency
is page cost divided by X in the worst case. Client storage is the size of client storage,
where the unit is the storage of one element or address. Storage efficiency is the number
of pages needed to store the encrypted database, divided by the number of pages of
the plaintext database.

Schemes Client st. Page cost Page eff. Storage eff. Source

Πbas O(1) O(Xp) O(p) O(1) [CJJ+14]
Πpack, Π2lev O(1) O(X) O(1) O(p) [CJJ+14]
1-Choice O(1) ˜O(logN )X ˜O(logN ) O(1) [ANSS16]
2-Choice O(1) ˜O(log logN )X ˜O(log logN ) O(1) [ANSS16]
Tethys O(p log λ) 2X + 1 3 3 + ε Sect. 4
Pluto O(p log λ) X + 2 3 3 + ε Full version
Nilust O(p log λ) 2tX + 1 2t + 1 1 + (2/e)t−1 Full version

to build Tethys, we identify and extract an underlying combinatorial problem,
which we call Data-Independent Packing (DIP). We show that a secure SSE
scheme can be obtained generically from any DIP scheme, and build Tethys in
that manner.

Similar to standard bin packing, the problem faced by a DIP scheme is to
pack items of variable size into buckets of fixed size, in such a way that not too
much space is wasted. At the same time, data independence requires that a given
item can be retrieved by inspecting a few buckets whose location is independent
of the sizes of other items. That may seem almost contradictory at first: we want
to pack items closely together, in a way that does not depend on item sizes. The
solution we propose is inspired by a generalization of cuckoo hashing, discussed
in the technical overview below.

We note that the DIP scheme we build in this way has other applications
beyond the scope of this article. One side result is that it can also be used to
reduce the leakage of the SSE scheme with tunable locality from [DP17]. Also,
we sketch a construction for a length-hiding static ORAM scheme that only has
constant storage overhead.

Finally, we have implemented Tethys to analyze its practical performance.
The source code is publicly available (link in Sect. 5). The experiments show two
things. First, experimental observations match the behavior predicted by the
theory. Second, when benchmarked against various existing static SSE schemes,
Tethys achieves, to our knowledge, unprecedented performance on SSDs: without
having to rely on a very large ciphertext expansion factor (less than 3 in our
experiments), we are able to stream encrypted entries and decrypt them from a
medium-end SSD at around half the raw throughput of that SSD.
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1.2 Technical Overview

In single-keyword SSE schemes, the encrypted database is realized as an inverted
index. The index maps each keyword to the (encrypted) list of matching docu-
ment indices. The central question is how to efficiently store these lists, so that
accessing some lists reveals no information about the lengths of other lists.

Page efficiency asks that in order to retrieve a given list, we should have to
visit as few pages as possible. The simplest solution for that purpose is to pad all
lists to the next multiple of one page, then store each one-page chunk separately
using a standard hashing scheme. That padding approach is used in some classic
SSE constructions, such as [CJJ+14]. While the approach is page-efficient, it is
not storage-efficient, since all lists need to be padded to the next multiple of p.

In practice, with a standard page size of 4096 bytes, and assuming 64-bit
document indices, we have p = 512. Regardless of the size of the database,
if it is the case that most keywords match few documents, say, less than 10
documents, then server storage would blow up by a factor 50. More generally,
whenever the dataset contains a large ratio of small lists, padding becomes quite
costly, up to a factor p = 512 in storage in the worst case. Instead, we would like
to upper-bound the storage blowup by a small constant, independent of both
the input dataset, and the page size.

Another natural approach is to adapt SSE schemes that target locality. It
is not difficult to show that an SSE scheme with locality L and read efficiency
R has page efficiency O(L + R) (Theorem 2.1). However, due to Cash and Tes-
saro’s impossibility result, it is not possible for any scheme with constant storage
efficiency and locality O(1) (such as [ANSS16] and its follow-ups) to have read
efficiency O(1); and all such schemes result in superconstant page efficiency.

Ultimately, a new approach is needed. To that end, we first introduce the
notion of data-independent packing (DIP). A DIP scheme is a purely combina-
torial allocation mechanism, which assigns lists of variable size into buckets of
fixed size p. (Our definition also allows to store a few extra items in a stash.) The
key property of a DIP scheme is data independence: each list can be retrieved
by visiting a few buckets, whose locations are independent of the sizes of other
lists.

We show that a secure SSE scheme SSE(D) can be built generically from
any DIP scheme D. The page efficiency and storage efficiency of the SSE scheme
SSE(D) can be derived directly from similar efficiency measures for the underly-
ing DIP scheme D. All SSE schemes in this paper are built in that manner.

We then turn to the question of building an efficient DIP scheme. Combinato-
rially, what we want is a DIP scheme with constant page efficiency (the number
of buckets it visits to retrieve a list is bounded linearly by the number of buckets
required to read the list), and constant storage efficiency (the total number of
buckets it uses is bounded linearly by the number of buckets required to store
all input data contiguously). The solution we propose, TethysDIP, is inspired by
cuckoo hashing. For ease of exposition, we focus on lists of size at most one page.
Each list is assigned two uniformly random buckets as possible destinations. It
is required that the full list can be recovered by reading the two buckets, plus a
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stash. To ensure data independence, all three locations are accessed, regardless
of where list elements are actually stored. Since the two buckets for each list are
drawn independently and uniformly at random, data independence is immediate.

Once each list is assigned its two possible buckets, we are faced with two
problems. The first problem is algorithmic: how should each list be split between
its two destination buckets and the stash, so that the stash is as small as possible,
subject to the constraint that the assignment is correct (all list elements are
stored, no bucket receives more than p elements)? We prove that a simple max
flow computation yields an optimal solution to this optimization problem. To see
this, view buckets as nodes in a graph, with lists corresponding to edges between
their two destination buckets, weighted by the size of the list. Intuitively, if we
start from an arbitrary assignment of items to buckets, we want to find as many
disjoint paths as possible going from overfull buckets to underfull buckets, so
that we can “push” items along those paths. This is precisely what a max flow
algorithm provides.

The second (and harder) problem we face is analytic: can we prove that a valid
assignment exists with overwhelming probability, using only O(n/p) buckets (for
constant storage efficiency), and a stash size independent of the database size?
Note that a negligible probability of failure is critical for security, because the
probability of failure depends on the list length distribution, which we wish to
hide. Having a small stash size, that does not grow with the database size, is
also important, because in the final SSE scheme, we will ultimately store the
stash on the client side.

In the case of cuckoo hashing, results along those lines are known, see for
example [ADW14]. However, our situation is substantially different. Cuckoo
hashing with buckets of capacity p > 1 has been analyzed in the litera-
ture [DW05], including in the presence of a stash [KMW10]. Such results go
through the analysis of the cuckoo graph associated with the problem: similar to
the graph discussed earlier, vertices are buckets, and each item gives rise to one
edge connecting the two buckets where it can be assigned. A crucial difference
in our setting compared to regular cuckoo hashing with buckets of capacity p is
that edges are not uniformly distributed. Instead, each list of length x generates
x edges between the same two buckets.

Thus, we need an upper bound that holds for a family of non-uniform edge
distributions (those that arise from an arbitrary number of lists with an arbi-
trary number of elements each, subject only to the total number of elements
being equal to the database size n). Moreover, we want an upper bound that
holds simultaneously for all members of that family, since we want to hide the
length distribution. What we show is that the probability of failure for any such
distribution can be upper-bounded by the case where all lists have the maximum
size p, up to a polynomial factor. Roughly speaking, this follows from a convex-
ity argument, combined with a majorization argument, although the details are
intricate. We are then able to adapt existing analyses for the standard cuckoo
graph.
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In the end, TethysDIP has the following features: every item can be retrieved
by visiting 2 data-independent table locations (and the stash), the storage effi-
ciency is 2+ ε, and the stash size is pω(log λ). All those quantities are the same
as regular cuckoo hashing, up to a scaling factor p in the stash size, which is
unavoidable (see full version for more details). Since regular cuckoo hashing is a
special case of our setting, the result is tight.

In the full version, we present two other DIP schemes, PlutoDIP and NilusDIPt.
Both are variants of the main TethysDIP construction, and offer trade-offs of
practical interest between storage efficiency and page efficiency. In particular,
NilusDIP rests on the observation that our main analytical results, regarding the
optimality and stash size bound of TethysDIP, can be generalized to buckets of
size tp rather than p, for an arbitrary integer t. This extension yields a storage
efficiency 1 + (2/e)t−1, which tends exponentially fast towards the information
theoretical minimum of 1. The price to pay is that page efficiency is 2t, because
we need to visit two buckets, each containing t pages, to retrieve a list.

1.3 Related Work

Our work mainly relates to two areas: SSE and cuckoo hashing. We discuss each
in turn.

In [ANSS16], Asharov et al. were the first to explicitly view SSE schemes as an
allocation problem. That view allows for very efficient schemes, and is coherent
with the fact that the main bottleneck is the IO and not the cryptographic
overhead, as observed by Cash et al. [CJJ+13]. Our work uses the same approach,
and builds an SSE scheme on top of an allocation scheme.

As proved by Cash and Tessaro [CT14], no SSE scheme can be optimal simul-
taneously in locality, read efficiency, and storage efficiency (see also [ASS18]).
Since then, many papers have constructed schemes with constant locality and
storage efficiency, while progressively improving read efficiency: starting from
O(logN log logN) in [ANSS16] to O(logγ N) in [DPP18] for any fixed γ > 2/3,
and finally O(log logN log2 log logN) when all lists have at most N1−1/ log log N

entries [ANSS16], or O(log log logN) when they have at most N1−1/o(log log log N )

entries [ASS18]. On the other hand, some constructions achieve optimal read effi-
ciency, and sublinear locality, at the cost of increased storage, such as the family
of schemes by Papamanthou and Demertzis [DP17].

Contrary to the previous line of work, we aim to optimize page efficiency
and not locality. At a high level, there is a connection between the two: both
aim to store the data matching a query in close proximity. A concrete connec-
tion is given in Theorem 2.1. Nevertheless, to our knowledge, no previous SSE
scheme with linear storage has achieved page efficiency O(1). The Πpack scheme
from [CJJ+14] achieves page efficiency O (1) by padding all lists to a multiple
of the page size, and storing lists by chunks of one page. However, this approach
has storage efficiency p in the worst case. The Π2lev variant from [CJJ+14] incurs
the same cost, because it handles short lists in the same way as Πpack. In prac-
tice, such schemes will perform well for long lists, but will incur a factor up to
p when there are many small lists, which can be prohibitive, as a typical value
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of p is p = 512 (cf. Sect. 1.2). On the other hand, Πpack and its variants are
dynamic schemes, whereas Tethys is static.

TethysDIP is related to one of the allocation schemes from [DPP18], which
uses results by Sanders et al. [SEK03]. That allocation scheme can be gener-
alized to handle the same problem as TethysDIP, but we see no way of doing
so that would achieve storage and page efficiency O(1). Another notable differ-
ence is that we allow for a stash, which makes it possible to achieve a negligible
probability of failure (the associated analysis being the most technically chal-
lenging part of this work). An interesting relationship between our algorithm in
the algorithm from [SEK03] is discussed in Sect. 4.1.

As Data-Independent Packing scheme, TethysDIP is naturally viewed as a
packing algorithm with oblivious lookups. The connection between SSE and
oblivious algorithms is well-known, and recent works have studied SSE with
fully oblivious accesses [MPC+18,KMO18].

We now turn to cuckoo hashing [PR04]. As noted earlier, TethysDIP (resp.
NilusDIPt) includes standard cuckoo hashing with a stash (resp. with buckets of
size t > 1) as a special case, and naturally extends those settings to items of
variable size. Moreover, our proof strategy essentially reduces the probability of
failure of TethysDIP (resp. NilusDIPt) to their respective cuckoo hashing special
cases. As such, our work relies on the cuckoo hashing literature, especially works
on bounding stash sizes [KMW10,ADW14]. While TethysDIP generalizes some
of these results to items of variable size, we only consider the static setting.
Extending TethysDIP to the dynamic setting is an interesting open problem.

Finally, some aspects of TethysDIP relate to graph orientability. Graph ori-
entability studies how the edges of an undirected graph may be oriented in
order to achieve certain properties, typically related either to the in- or outde-
gree sequence of the resulting graph, or to k-connectivity. This is relevant to our
TethysDIP algorithm, insofar as its analysis is best formulated as a problem of
deleting the minimum number of edges in a certain graph, so that every vertex
has outdegree less than a given capacity p (cf. Sect. 4). As such, it relates to
deletion orientability problems, such as have been studied in [HKL+18]. Many
variants of this problem are NP-hard, such as minimizing the number of vertices
that must be deleted to achieve the same property, and most of the literature is
devoted to a more fine-grained classification of their complexity. In that respect,
it seems we are “lucky” that our particular optimization target (minimizing the
so-called overflow of the graph) can be achieved in only quadratic time. We did
not find mention of this fact in the orientability literature.

Organization of the Paper. Section 2 provides the necessary background and
notation, and introduces definitions of storage and page efficiency. Section 3
introduces the notion of data-independent packing (DIP), and presents a generic
construction of SSE from a DIP scheme. Section 4 gives an efficient construction
of DIP. Section 5 concludes with practical experiments.



SSE and SSD: Page-Efficient Searchable Symmetric Encryption 165

2 Background

2.1 Notation

Let λ ∈ N be the security parameter. For a distribution probability X, we
denote by x ← X the process of sampling a value x from the distribution. If X
is a set, x ← X denotes the process of sampling x uniformly at random from X .
Logarithm in base 2 is denoted by log(·). A function f(λ) is negligible in λ if it
is O(λ−c ) for every c ∈ N. If so, we write f = negl(λ).

Let W = {w1, . . . , wk} be the set of keywords, where each keyword wi is rep-
resented by a machine word, each of O(λ) bits, in the unit-cost RAM model, as
in [ANSS16]. The plaintext database is regarded as an inverted index. To each
keyword wi is associated a list DB(wi) = (ind1, . . . , ind�i) of document identi-
fiers matching the keyword, each of length O(λ) bits. The plaintext database is
DB = (DB(w1), . . . ,DB(wk)). Uppercase N denotes the total number of keyword-
document pairs in DB, N = |DB| = ∑k

i=1 �i, as is usual in SSE literature.
We now introduce multi-maps. A multi-map M consists of k pairs {(Ki, valsi) :

1 ≤ i ≤ k}, where valsi = (ei,1, . . . , ei,�i) consists of �i values ei,j . (Note that
in this context, a key is an identification key in a key-value store, and not a
cryptographic key.) We assume without loss of generality that the keys Ki are
distinct. Throughout, we denote by n the total number of values n = |M| :=
∑k

i=1 �i, following the convention of allocation and hashing literature. For the
basic TethysDIP scheme, n = N . We assume (without loss of generality) that
values ei,j can be mapped back unambiguously to the key of origin Ki. This
will be necessary for our SSE framework, and can be guaranteed by assuming
the values contain the associated key. As this comes with additional storage
overhead, we discuss some encoding variants in the full version (some of these
encodings result in n > N).

Throughout the article, the page size p is treated as a variable, independent
of the dataset size n. Upper bounds of the form f(n, p) = O(g(n, p)), where the
function f under consideration depends on both n and p, mean that there exist
constants C, Cn, Cp such that f(n, p) ≤ Cg(n, p) for all n ≥ Cn, p ≥ Cp.

2.2 Searchable Symmetric Encryption

At setup, the client generates an encrypted database EDB from the plaintext
database DB and a secret key K. The client sends EDB to the server. To issue
a search query for keyword w, the client sends a search token τw. The server
uses the token τw and the encrypted database EDB to compute DB(w). In some
cases, the server does not recover DB(w) directly; instead, the server recovers
some data d and sends it to the client. The client then recovers DB(w) from d.

Formally, a static Searchable Symmetric Encryption (SSE) scheme is a tuple
of algorithms (KeyGen,Setup,TokenGen,Search,Recover).

– K ← KeyGen(1λ): the key generation algorithm KeyGen takes as input the
security parameter λ in unitary notation and outputs the master key K.
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– EDB ← Setup(K,DB): the setup algorithm takes as input the master key K
and a database DB, and outputs an encrypted database EDB.

– (τ, ρ) ← TokenGen(K,w): the token generation algorithm takes as input the
master key K and a keyword w, and outputs a search token τ (to be sent to
the server), and potentially some auxiliary information ρ (to be used by the
recovery algorithm).

– d ← Search(EDB, τ): The search algorithm takes as input the token τ and the
encrypted database EDB and outputs some data d.

– s ← Recover(ρ, d): the recovery algorithm takes as input the output d of the
Search algorithm, and potentially some auxiliary information ρ, and outputs
the set DB(w) of document identifiers matching the queried keyword w.

The Recover algorithm is used by the client to decrypt the results sent by
the server. In many SSE schemes, the server sends the result in plaintext, and
Recover is a trivial algorithm that outputs s = d.

Security Definition. We use the standard semantic security notion for SSE. A
formal definition is given in [CGKO06]. Security is parametrized by a leakage
function L, composed of the setup leakage LSetup, and the search leakage LSearch.
Define two games, SSEReal and SSEIdeal. At setup, the adversary sends
a database DB. In SSEReal, the setup is run normally; in SSEIdeal, the
setup is run by calling a simulator on input LSetup(DB). The adversary can then
adaptively issue search queries for keywords w that are answered honestly in
SSEReal, and simulated by a simulator on input LSearch(DB, w) in SSEIdeal.
The adversary wins if it correctly guesses which game it was playing.

Definition 2.1 (Simulation-Based Security). Let Π be an SSE scheme, let
L be a leakage function. We say that Π is L-adaptively semantically secure if for
all PPT adversary A, there exists a PPT simulator S such that

|Pr[SSERealΠ,A(λ) = 1] − Pr[SSEIdealΠ,S,L,A(λ) = 1]| = negl(λ).

2.3 Locality and Page Efficiency

The notions of locality and read efficiency were introduced by Cash and Tes-
saro [CT14]. We recall them, followed by our new metrics of page cost and page
efficiency. We start with the definition of the read pattern. In the following def-
initions, the quantities EDB, τ are assumed to be computed according to the
underlying SSE scheme, i.e. given a query for keyword w on the database DB,
set K ← KeyGen(1λ), EDB ← EDBSetup(K,DB), τ ← TokenGen(K,w).

Definition 2.2 (Read Pattern). Regard server-side storage as an array of
memory locations, containing the encrypted database EDB. When processing the
search query Search(EDB, τ) for keyword w, the server accesses memory loca-
tions m1, . . . ,mh. We call these locations the read pattern and denote it with
RdPat(τ,EDB).
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Definition 2.3 (Locality). An SSE scheme has locality L if for any λ, DB,
and keyword w, RdPat(τ,EDB) consists of at most L disjoint intervals.

Definition 2.4 (Read Efficiency). An SSE scheme has read efficiency R if
for any λ, DB, and keyword w, |RdPat(τ,EDB)| ≤ R · P , where P is the number
of memory locations needed to store document indices matching keyword w in
plaintext (by concatenating indices).

Definition 2.5 (Storage Efficiency). An SSE scheme has storage efficiency
S if for any λ, DB, |EDB| ≤ S · |DB|.

Optimizing an SSE scheme for locality requires that each read query accesses
few non-contiguous memory locations, thus making this operation efficient for
HDDs. In the case of SSDs, it is sufficient to optimize for few page accesses (as
SSDs efficiently read entire pages of memory). For this reason, we introduce the
notions page cost and page efficiency to measure the efficiency of read queries
performed on SSDs. More background is provided in the full version, together
with experiments showing that page efficiency is an excellent predictor of SSD
read performance (this is also supported by the experiments of Sect. 5).

Definition 2.6 (Page Pattern). If server-side storage is regarded as an array
of pages, when searching for a keyword w, the read pattern RdPat(τ,EDB)
induces a number of page accesses p1, . . . , ph′ . We call these pages the page pat-
tern, denoted by PgPat(τ,EDB).

Definition 2.7 (Page Cost). An SSE scheme has page cost aX + b, where
a, b are real numbers, and X is a fixed symbol, if for any λ, DB, and keyword
w, |PgPat(τ,EDB)| ≤ aX + b, where X is the number of pages needed to store
documents indices matching keyword w in plaintext.

Definition 2.8 (Page Efficiency). An SSE scheme has page efficiency P if
for any λ, DB, and keyword w, |PgPat(τ,EDB)| ≤ P ·X, where X is the number
of pages needed to store documents indices matching keyword w in plaintext.

A scheme with page cost aX + b has page efficiency at most a+ b. Compared
to page efficiency, page cost is a more fine-grained measure that can be helpful
when comparing the performance of different SSE schemes. It is clear that page
efficiency is a direct counterpart of read efficiency, viewed at the page level, but
it is also related to locality: a scheme with good locality and read efficiency
immediately yields a scheme with good page efficiency, as formalized in the
following theorem.

Theorem 2.1. Any SSE scheme with read efficiency R and locality L has page
efficiency at most R + 2L.

The impossibility result of Cash and Tessaro [CT14] states (with some addi-
tional assumptions) that no SSE scheme can have simultaneously storage effi-
ciency, read efficiency and locality O(1). As a consequence, no scheme with stor-
age efficiency O(1) can have R + 2L = O(1). Nevertheless, our Tethys scheme
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has storage efficiency O (1) and page efficiency O (1). This shows that Theo-
rem 2.1, while attractive in terms of genericity and simplicity, is not the best
way to build a page-efficient scheme. In the full version, we show that the upper
bound from Theorem 2.1 is tight.

Proof of Theorem 2.1. View server-side storage as an array of pages, without
modifying the behavior of the scheme in any way. To process keyword w, the
scheme makes at most L contiguous memory accesses of lengths a1, . . . , aL. We
have

∑
ai ≤ Rx, where x denotes the amount of memory needed to store the

plaintext answer (concatenation of document indices matching the query). Each
memory access of length ai covers at most ai/p + 2 pages, where the two extra
page accesses account for the fact that the start and end points of the access
may not be aligned with server pages. Thus, the number of pages read is at
most

∑
(ai/p+2) ≤ Rx/p+2L. It remains to observe that the number of pages

needed to store the plaintext answer is at least x/p. Hence, the scheme has page
cost (at most) RX + 2L, and page efficiency R + 2L. ��

3 SSE from Data-Independent Packing

In this section, we define data-independent packing, and based on this notion,
provide a framework to construct SSE schemes. In Sect. 4, we will instantiate the
framework with an efficient data-independent packing scheme.

3.1 Data-Independent Packing

A data-independent packing (DIP) scheme takes as input an integer m (the num-
ber of buckets), and a multi-map M (mapping keys to lists of values). Informally,
it will assign the values of the multi-map into m buckets, each containing up to
p values, and a stash. It provides a search functionality Lookup that, for a given
key, returns the indices of buckets where the associated values are stored. In
this section, p denotes the size of a bucket. To ease notation, it is implicitly a
parameter of all methods. (In the concrete application to page-efficient SSE, p
is the size of a page.)

Definition 3.1 (Data-Independent Packing).
A DIP scheme is a triplet of algorithms (Size,Build, Lookup):

– m ← Size(n): Takes as input a number of values n. Returns a number of
buckets m.

– (B,S) ← Build(M): Takes as input a multi-map M = {(Ki, (ei,1, . . . , ei,�i)) :
1 ≤ i ≤ k}. Letting n = |M| = ∑

1≤i≤k �i and m ← Size(n), returns a pair
(B,S), where B is an m-tuple of buckets (B[1], . . . , B[m]), where each bucket
B[i] is a set of at most p multi-map values; and the stash S is another set of
multi-map values.

– I ← Lookup(m,K, �): Takes as input the total number of buckets m, a multi-
map key K, and a number of items �. Returns a set of bucket indices I ⊆
[1,m].
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Correctness asks that all multi-map values (ei,1, . . . , ei,�i) associated with key
Ki are either in the buckets whose indices are returned by Lookup(m,Ki, �i), or
in the stash. Later on, we will sometimes only ask that correctness holds with
overwhelming probability over the random coins of Build.

Definition 3.2 (Correctness). A DIP scheme is correct if for all multi-map
M = {(Ki, (ei,1, . . . , ei,�i)) : 1 ≤ i ≤ k}, the following holds. Letting m ←
Size(|M|), and (B,S) ← Build(M):

∀i ∈ [1, k] : M(Ki) ⊆ S ∪
⋃

j∈Lookup(m,Ki,�i)

B[j].

Intuitively, the definition of DIP inherently enforces data independence, in
two ways. The first is that the number of buckets m ← Size(n) used for storage
is solely a function of the number of values n in the multi-map. The second is that
Lookup only depends on the queried key, and the number of values associated
with that key. Thus, neither Size nor Lookup depend on the multi-map at the
input of Build, other than the number of values it contains. It is in that sense
that we say those two functions are data-independent : they do not depend on
the dataset M stored in the buckets, including the sizes of the lists it contains.
Looking ahead, when we use a DIP scheme, we will pad all buckets to their
maximum size p, and encrypt them, so that the output of Build will also leak
nothing more than the number of buckets m.

We supply Lookup with the number of values � associated to the queried
key. This is for convenience. If the number of values of the queried key was
not supplied as input, it would have to be stored by the DIP scheme. We have
found it more convenient to allow that information to be stored in a separate
structure in future constructions. Not forcing the DIP scheme to store length
information also better isolates the main combinatorial problem a DIP scheme is
trying to capture, namely how to compactly store objects of variable size, while
being data-independent. How to encode sizes introduces its own separate set of
considerations.

Efficiency Measures. Looking ahead to the SSE construction, a bucket will be
stored in a single page, and contain some document identifiers of the database.
The goal is to keep the total number of buckets m small (quantified by the notion
storage efficiency), and to ensure that Lookup returns small sets (quantified by
the notion lookup efficiency). Intuitively, those goals will imply good storage
efficiency (with a total storage of m pages, plus some auxiliary data), and good
page efficiency (reading from the database requires few page accesses) for the
resulting SSE scheme. Finally, the stash will be stored on the client side. Thus,
the stash size should be kept small. These efficiency measures are formally defined
in the following.

Definition 3.3 (Lookup Efficiency). A DIP scheme has lookup efficiency L
if for any multi-map M, any (m,B, S) ← Build(M) and any key K for which the
values M(K) require a minimal number of buckets x, we have |Lookup(m,K, �)| ≤
L · x.
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Definition 3.4 (Storage Efficiency). A DIP scheme has storage efficiency
E if for any multi-map M and any (m,B, S) ← Build(M), it holds that m ≤
E · (n/p).

Definition 3.5 (Stash Size). A DIP scheme has stash size C if for any multi-
map M and any (m,B, S) ← Build(M), it holds that the stash contains at most
C values.

It is trivial to build a DIP scheme that disregards one of these properties.
For example for good lookup and storage efficiency, we can store all values in
the stash. For good storage efficiency and small stash size, it suffices to store
all values in m = �n/p� buckets and return all bucket indices {1, · · · ,m} in
Lookup. Lastly, for good lookup efficiency and stash size, we can pad every list
to a multiple of p in size and subsequently split each list into chunks of size p.
Each chunk can be stored in a bucket fixed by a hash function. But this scheme
has a storage efficiency of p (this last approach is discussed in more detail in
Sect. 1.2).

Ensuring good performance with respect to all properties at the same time
turns out to be a hard problem. We refer to Sect. 4 for a concrete construction.

SSE from Data-Independent Packing. In this section, we give a framework to
build an SSE scheme SSE(D) generically from a DIP scheme D with a bucket size
p equal to the page size.

We now describe the construction in detail. Let PRF be a secure pseudo-
random function mapping to {0, 1}2λ+�log(N)�. Let Enc be an IND-CPA secure
symmetric encryption scheme (assimilated with its encryption algorithm in the
notation). We split the output of the PRF into a key of 2λ bits and a mask of
�log(N)� bits. Pseudo-code is provided in Algorithm 1.

Setup. The Setup algorithm takes as input a database DB, and the client’s
master secret key K = (KPRF,KEnc). For each keyword wi, we have a list DB(wi)
of �i indices corresponding to the documents that match wi. First, setup samples
(Ki,mi) ← PRFKPRF

(wi) which will serve as token for wi later on. To each list is
associated the key Ki and the DIP scheme D is then called on the key-list pairs.
Recall that D assigns the values to m buckets and a stash. Once that is done,
each bucket is padded with dummy values until it contains exactly p values.
Then, a table T with N entries is created which stores the length of each list in
an encrypted manner. Concretely, T maps Ki to �i⊕mi and is filled with random
elements until it contains N entries. Note that �i is encrypted with mask mi and
can be decrypted given mi. The padded buckets are then encrypted using Enc
with key KEnc, and sent to the server in conjunction with the table T . The stash
is stored on the client side.

Search. To retrieve all documents matching keyword wi, the client generates the
access token (Ki,mi) ← PRFKPRF

(wi) and forwards it to the server. The server
retrieves �i ← T [Ki]⊕mi and queries D to retrieve the indices I ← Lookup(Ki, �i)
of the encrypted buckets. The server sends the respective buckets back to the
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Algorithm 1. SSE(D)
KeyGen(1λ)

1: Sample keys KPRF, KEnc for PRF, Enc with security parameter λ
2: return K = (KPRF, KEnc)

Setup(K,DB)
1: Initialize empty set M, empty table T
2: N ← |DB|
3: for all keywords wi do
4: (Ki, mi) ← PRFKPRF(wi)
5: �i ← |DB(wi)|
6: T [Ki] ← �i ⊕ mi

7: M ← {Ki,DB(wi) : 1 ≤ i ≤ k}
8: m, B, S ← Build(M)
9: Fill T up to size N with random values

10: Store the stash S on the client
11: return EDB = (EncKEnc(B[1]), . . . ,EncKEnc(B[m]), T )

TokenGen(K, wi)

1: (Ki, mi) ← PRFKPRF(wi)
2: return τi = (Ki, mi)

Search(EDB, τi)

1: Initialize empty set R
2: Parse τi as (Ki, mi)
3: Set �i = T [Ki] ⊕ mi

4: I ← Lookup(m, Ki, �i)
5: for all j ∈ I do
6: Add encrypted buckets B[j] to R

7: return R

client, who decrypts them to recover the list elements. Finally, the client checks
its own stash for any additional elements matching wi.

Efficiency. The efficiency of SSE(D) heavily relies on the efficiency of D. The
server stores the encrypted database EDB consisting of a table of size N = |DB|
and m buckets. The concrete value of m depends on the storage efficiency S of
D. By definition, the scheme SSE(D) has storage efficiency S + 1. During the
search process, SSE(D) accesses one entry of table T and |I| buckets, where I
is the set of indices returned by Lookup. As each bucket is stored in a single
page, a bucket access requires a single page access. The access to T requires an
additional page access. In total, the page efficiency of SSE(D) is L+1, where L is
the lookup efficiency of D. Note that we assume that Lookup does not make any
additional page accesses, as is guaranteed by our construction. Lastly, the client
stores the key K and the stash S locally. Thus, the client storage is C + O(1),
where C is the stash size of D.

Security. The leakage profile of the construction is the standard leakage profile
of a static SSE scheme. Recall that xi is the minimal number of pages for the list
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of documents matching keyword wi. The leakage during setup is LSetup(DB) =
|DB| = N . The leakage during search is LSearch(DB, wi) = (�i, sp), where sp is
the search pattern, that is, the indices of previous searches for the same keyword
(a formal definition is given in [CGKO06]). Let L = (LSetup,LSearch).

Theorem 3.1 (SSE Security). Let D be a DIP scheme with storage efficiency
S, lookup efficiency L, and stash size C. Assume that Lookup does not make any
page accesses, Enc is an IND-CPA secure encryption scheme and PRF is a secure
pseudo-random function. Then SSE(D) is a L-adaptively semantically secure SSE
scheme with storage efficiency S + 1, page efficiency L + 1, and client storage
C + O(1).

The full proof is given in the full version. It is straightforward, and we sketch
it here. For Setup, the simulator creates the required number m of buckets,
derived from N = LSetup(DB), and fills each one with the encryption of arbitrary
data using Enc. Similarly, it creates a table T mapping N random values κ
to random entries χ. It then creates the simulated database EDB consisting of
the buckets and the table. The IND-CPA security of Enc guarantees that the
adversary cannot distinguish the simulated buckets from the real ones. Also, the
simulated table is indistinguishable from the real table, since the concrete values
�i are masked with a random mask mi. Thus, the unqueried table entries appear
random.

For a (new) search query, the simulator receives from the leakage function the
number �i, and simulates the token τi = (Ki, �i⊕T [Ki]) by choosing Ki uniformly
from the unqueried keys κ of table T . The PRF security of PRF guarantees that
the adversary cannot distinguish the simulated token from the real one. Note
that the adversary recovers the correct value �i = T [Ki] ⊕ (�i ⊕ T [Ki]). This
concludes the proof.

While the proof is simple, it relies heavily on the data independence of the
DIP scheme. Namely, Lookup does not take the database as input, but only its
size. As a consequence, the simulator need not simulate any of the Lookup inputs.
Another subtle but important point is that the security argument requires that
the correctness of the DIP scheme holds with overwhelming probability over the
random coins of Build. Indeed, the probability of a correctness failure may be
dependent on the dataset at the input of Build, and thus leak information. More-
over, if a correctness failure occurs, it is not acceptable to run Build again with
fresh random coins, as the random coins of Build would then become dependent
on the dataset. The same subtlety exists in the proofs of some Oblivious RAM
constructions, and has led to flawed proofs when overlooked, as well as concrete
distinguishing attacks exploiting this flaw [GM11, Appendix D], [FNO20].

4 Efficient Data-Independent Packing

In this section, we introduce an efficient DIP scheme. As a reminder, a DIP
scheme allocates the values of a multi-map into m buckets or a stash. Recall
that a multi-map consists of k keys Ki, where each key Ki maps to �i values
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(ei,1, . . . , ei,�i). At first, we restrict ourselves to at most p (one page) values per
key for simplicity, i.e. �i ≤ p. The restriction will be removed at the end of the
section.

The construction is parametrized by two hash functions H1, H2, mapping into
the buckets, i.e. mapping into {1, . . . , m}. H1 is uniformly random among func-
tions mapping into {1, . . . , m/2}, and H2 is uniformly random among functions
mapping into {m/2 + 1, . . . ,m}. (The distribution of H1 and H2, and the fact
they have disjoint ranges, is not important for the description of the algorithm;
it will only become relevant when bounding the stash size in Theorem 4.3.)

To the i-th key Ki are associated two possible destination buckets for its
values, H1(Ki) and H2(Ki). Not all values need to be allocated to the same
bucket, i.e. some values can be allocated to bucket H1(Ki), and other values to
bucket H2(Ki). If both destination buckets are already full, some values may also
be stored in the stash. In the end, for each key Ki, some a values are allocated
to bucket H1(Ki), b values to bucket H2(Ki), and c values to the stash, with
a + b + c = �i.

The goal of the TethysDIP algorithm is to determine, for each key, how many
values are assigned to each bucket, and how many to the stash, so that no bucket
receives more than p values in total, and the stash is as small as possible. We
shall see that the algorithm is optimal, in the sense that it minimizes the stash
size subject to the previous constraint.

Algorithm Description. Pseudo-code is provided in Algorithm 2. The algo-
rithm takes as input the number of buckets m, and the multi-map M =
{(Ki, (ei,1, . . . , ei,�i)) : 1 ≤ i ≤ k}. It outputs a dictionary B such that B[i]
contains the values ei,j that are stored in bucket number i, for i ∈ {1, . . . , m},
together with a stash S.

The algorithm first creates a graph similar to the cuckoo graph in cuckoo
hashing: vertices are the buckets, and for each value ei,j , an edge is drawn
between its two possible destination buckets H1(Ki) and H2(Ki). Note that
there may be multiple edges between any two given vertices. Edges are initially
oriented in an arbitrary way. Ultimately, each value will be assigned to the bucket
at the origin of its corresponding edge. This means that the load of a bucket is
the outdegree of the associated vertex.

Intuitively, observe that if we have a directed path in the graph, and we flip
all edges along this path, then the load of intermediate nodes along the path
is unchanged. Meanwhile, the load of the bucket at the origin of the path is
decreased by one, and the load of the bucket at the end of the path is increased
by one. Hence, in order to decrease the number of values sent to the stash, we
want to find as many disjoint paths as possible going from overfull buckets to
underfull buckets, and flip all edges along these paths. To find a maximal set
of such paths, TethysDIP runs a max flow algorithm (see full version for more
details). Then all edges along the paths are flipped. Finally, each value is assigned
to the bucket at the origin of its associated edge. If a bucket receives more than
p values, excess values are sent to the stash.
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Algorithm 2. TethysDIP
Build(m,M = {(Ki, (ei,1, . . . , ei,�i)) : 1 ≤ i ≤ k})
1: B ← m empty buckets, S ← empty stash
2: Create an oriented graph G with m vertices numbered {1, . . . , m}
3: for all values ei,j do
4: Create an oriented edge (H1(Ki), H2(Ki)) with label ei,j

5: Add separate source vertex s and sink vertex t
6: for all vertex v do
7: Compute its outdegree d.
8: if d > p then
9: Add d − p edges from the source s to v

10: else if d < p then
11: Add p − d edges from v to the sink t

12: Compute a max flow from s to t
13: Flip every edge that carries flow
14: for all vertex v ∈ {1, . . . , m} do
15: B[v] ← {ei,j : origin of edge ei,j is v}
16: for all vertex v ∈ {1, . . . , m} do
17: if |B[v]| > p then
18: |B[v]| − p values are moved from B[v] to S

19: return (B, S)

Lookup(m, K, � ≤ p)

1: returns {H1(K), H2(K)}

Efficiency. We now analyze the efficiency of TethysDIP. Note that each key
still maps to at most p values for now. In order to store a given multi-map
M, TethysDIP allocates a total number of m = (2 + ε)n/p buckets. Thus, it
has storage efficiency 2 + ε = O(1). For accessing the values associated to key
K, TethysDIP returns the result of the evaluation of the two hash functions
at point K. Hence, TethysDIP has lookup efficiency 2 = O(1). The analysis of
the stash size is much more involved. In Sect. 4.1, we show that a stash size
p · ω(log λ)/ log n suffices. In particular, the stash size does not grow with the
size of the multi-map M.

Handling Lists of Arbitrary Size. The previous description of the algorithm
assumes that all lists in the multi-map M are at most one page long, i.e. �i ≤ p
for all i. We now remove that restriction. To do so, we are going to preprocess
the multi-map M into a new multi-map M′ that only contains lists of size at
most p.

In more detail, for each key-values pair (Ki, (ei,1, . . . , ei,�i)), we split (ei,1, . . . ,
ei,�i) into xi = ��i/p� sublists (ei,1, . . . , ei,p), . . . , (ei,p(xi−1)+1, . . . , ei,pxi

) of size
p, plus one sublist of size at most p containing the remaining values (ei,pxi+1, . . . ,
ei,�i). We associate the j-th sublist to a new key Ki‖j (without loss of generality,
assume there is no collision with a previous key). The new multi-map M′ consists
of all sublists generated in this way, with the j-th sublist of key Ki associated
to key Ki ‖ j.
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The TethysDIP algorithm is then applied to the multi-map M′, which only
contains lists of size at most p. In order to retrieve the values associated to key
Ki in the original multi-map M, it suffices to query the buckets H1(Ki ‖ j),
H2(Ki ‖ j) for j ≤ ��i/p�. Correctness follows trivially. (This approach can be
naturally generalized to transform a DIP scheme for lists of size at most p into
a general DIP scheme.)

Note that the total number of values in M′ is equal to the total number of
values n in M, as we only split the lists into sublists. Hence the scheme retains
storage efficiency 2 + ε and stash size p · ω(log λ)/ log n. Similarly, for a list of
size �, we require at minimum x = ��/p� buckets. As we return x evaluations of
each hash function, the storage efficiency remains 2.

The Tethys SSE Scheme. We can instantiate the framework given in Sect. 3.1
with TethysDIP. This yields a SSE scheme Tethys := SSE(TethysDIP). As the
TethysDIP has constant storage and lookup efficiency, Tethys also has constant
storage and page efficiency and the same stash size. This is formalized in the
following theorem. Let LSetup(DB) = |DB| and LSearch(DB, wi) = (�i, sp), where
sp is the search pattern. Let L(LSetup,LSearch).

Theorem 4.1. Assume that Enc is an IND-CPA secure encryption scheme,
PRF is a secure pseudo-random function, and H1, H2 are random oracles. Then
Tethys is an L-adaptively semantically secure SSE scheme with storage efficiency
O(1), page efficiency O(1), and client storage O(p · ω(log λ)/ log n).

The TethysDIP scheme inside Tethys requires two hash functions H1 and
H2. The stash size bound analysis assumes those two functions are uniformly
random. In practice, standard hash functions can be used. Formally, to avoid an
unnecessary use of the Random Oracle Model, the hash functions can be realized
by a PRF, with the client drawing the PRF key and sending it to the server
together with the encrypted dataset. By standard arguments, the correctness
of TethysDIP still holds with overwhelming probability, assuming the PRF is
secure.

4.1 Stash Size Analysis

We now analyze the stash size of TethysDIP. We proceed by first showing that
the stash size achieved by TethysDIP is optimal, in the sense given below. We
then prove a stash size bound that holds for any optimal algorithm.

Optimality. Given the two hash functions H1 and H2, and the multi-map M
at the input of TethysDIP, say that an assignment of the multi-map values to
buckets is valid if every value associated to key K is assigned to one of its two
destination buckets H1(K) or H2(K), or the stash, and no bucket receives more
than p values. TethysDIP is optimal in the sense that the assignment it outputs
achieves the minimum possible stash size among all valid assignments. In other
words, TethysDIP optimally solves the optimization problem of minimizing the
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stash size, subject to the constraint that the assignment is valid. This holds
true regardless of the choice of hash functions (which need not be random as
far as this property is concerned), regardless of the number of buckets m, and
regardless of the initial orientation of the graph before the max flow is computed.
To formalize this, let us introduce some notation.

The problem solved by TethysDIP is naturally viewed as a graph orientability
problem (see related work in Sect. 1). The input of the problem is the graph built
in lines 2–4: vertices are buckets V = {1, . . . , m}, and each list i gives rise to �i

edges from vertex H1(Ki) to H2(Ki). Recall that the outdegree out(v) of a vertex
v is the load of the corresponding bucket. Define the overflow of the graph as
the quantity

∑
v∈V max(0, out(v)− p). Observe that this quantity is exactly the

number of values that cannot fit into their assigned bucket, hence the number of
values that are sent to the stash in line 18. The problem is to orient the edges of
the graph so as to minimize that quantity. In the following theorem, TethysDIP
is viewed as operating on graphs. Its input is the undirected graph G described
just above, and its output is a directed graph D arising from G by orienting its
edges according to Algorithm2.

Theorem 4.2 (Optimality of TethysDIP). Let G be an undirected graph. Let
D be the directed graph output by TethysDIP on input G. Then overflow(D) is
minimal among all directed graphs arising from G.

The proof of Theorem 4.2 is given in the full version. In short, the proof
uses the max-flow min-cut theorem to partition the vertices into two sets S
(containing the source) and T (containing the sink), such that after flipping the
direction of the flow in line 13, there is no edge going from S to T . Further, it is
shown that all overflowing values are in S, and all buckets in S are at capacity or
over capacity. Intuitively, the number of overflowing values cannot be decreased,
because flipping edges within S can only increase the overflow, and there is no
edge going from S to T . We refer to the full version for the full proof.

This shows that TethysDIP finds an optimal solution. Before continuing, we
note that the max flow approach of TethysDIP was inspired by a result of Sanders
et al. [SEK03], which uses a similar algorithm. The relationship between the algo-
rithm by Sanders et al. and TethysDIP is worth discussing. The two algorithms
have different optimization targets: the goal of the algorithm by Sanders et al. is
not to minimize the overflow, but to minimize the max load (the load of the most
loaded bucket). Another notable difference is that we allow for a stash, which
allows us to reach a negligible probability of failure (the associated analysis is
the most technically challenging part of this work). Nevertheless, if we disregard
the stash, the algorithm from [SEK03] can be reinterpreted in the light of our
own algorithm, as follows. Given an algorithm A that minimizes the overflow,
one can build an algorithm B that minimizes the max load, using a logarithmic
number of black-box calls to A. Indeed, A yields an overflow of zero if and only
if the capacity p of buckets is greater than or equal to the smallest attainable
max load. Hence, it suffices to proceed by dichotomy until the smallest possi-
ble value of the max load is reached. Although it is not presented in this way
in [SEK03], the algorithm by Sanders et al. can be reinterpreted as being built in
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that manner, with TethysDIP playing the role of algorithm A. (As a side effect,
our proof implies a new proof of Sanders et al.’s result.)

Stash Size Bound. The security of Tethys relies on the fact that memory accesses
are data-independent. Data independence holds because the two buckets where
a given list can be assigned are determined by the two hash functions, inde-
pendently of the length distribution of other lists. In practice, we want to fix
an upper bound on the size of the stash. If the bound were exceeded (so the
construction fails), we cannot simply draw new random hash functions and start
over. Indeed, from the perspective of the SSE security proof, this would amount
to choosing a new underlying DIP scheme when some aspect of the first DIP
scheme fails (namely, when the stash is too large). But the choice of DIP scheme
would then become data-dependent, invalidating the security argument. It fol-
lows that we want to find a bound on the stash size that guarantees a negligible
probability of failure in the cryptographic sense, and not simply a low probabil-
ity of failure. We prove that this can be achieved using only m = O(n) buckets,
and a stash size that does not grow with the size of the multi-map.

Theorem 4.3 (Stash size bound). Let ε > 0 be an arbitrary constant, and
let p, n ≥ p,m ≥ (2 + ε)n/p, s = no(1) be integers. Let L be an arbitrary vector
of integers such that maxL ≤ p and

∑
L = n.

Pr[Failm,p,s(L,H)] = O
(
p · n−s/(2p)

)
.

In particular, a stash of ω(log λ)/ log n pages suffices to ensure that TethysDIP
succeeds, except with negligible probability.

In that statement, the vector L represents a multi-map with keys mapping to
p or less values, H is the pair of hash functions (H1,H2), and s is the stash size.
Failm,p,s(L,H) denotes the probability that it is impossible to orient the edges
of the graph G discussed earlier in such a way that the overflow of the resulting
orientation is less than s. By Theorem 4.2, as long as such an orientation exists,
TethysDIP finds one, so Failm,p,s(L,H) is equal to the probability of failure of
TethysDIP. The bottom line is that, under mild assumptions about the choice
of parameters, a stash of ω(log λ)/ log n pages suffices to ensure a negligible
probability of failure. If n ≥ λ, log λ pages suffice.

Note that the probability of failure decreases with n. This behavior is reflected
in practical experiments, as shown in Sect. 5. The inverse dependency with n may
seem counter-intuitive, but recall that the number of buckets m > (2 + ε)n/p
increases with n. In practice, what matters is that the stash size can be upper-
bounded independently of the size n of the database, since it does not increase
with n. Ultimately, the stash will be stored on the client side, so this means that
client storage does not scale with the size of the database.

The factor 2+ε for storage efficiency matches the cuckoo setting. Our problem
includes cuckoo hashing as a special case, so this is optimal (see full version for
more details). The constant ε can be arbitrarily small. However, having non-zero
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ε has important implications for the structure of the cuckoo graph: there is a
phase transition at ε = 0. For instance, if we set ε = 0, the probability that
the cuckoo graph contains a component with multiple cycles (causing standard
cuckoo hashing to fail) degrades from O(1/n) to

√
2/3 + o(1) [DK12]. Beyond

cuckoo hashing, this phase transition is well-known in the theory of random
graphs: asymptotically, if a random graph has m vertices and n = cm edges for
some constant c, its largest component has size log n when c < 1/2 a.s., whereas
it blows up to Ω(n) as soon as c > 1/2 [Bol01, Chapter 5]. This strongly suggests
that a storage overhead factor of 2 + ε is inherent to the approach, and not an
artifact of the proofs.

The proof of Theorem 4.3 is given in the full version. In a nutshell, the idea
is to use a convexity argument to reduce to results on cuckoo hashing, although
the details are intricate. We now provide a high-level overview. The first step
is to prove that the expectancy of the stash size for an arbitrary distribution
of list lengths is upper-bounded by its expectancy when all lists have length
p (while n and m remain almost the same), up to a polynomial factor. The
core of that step is a convexity argument: we prove that the minimal stash size,
as a function of the underlying graph, is Schur-convex, with respect with the
natural order on graphs induced by edge inclusion. The result then follows using
some majorization techniques (inspired by the analysis of weighted balls-and-
bins problems in [BFHM08]). In short, the first step shows that, for expectancy
at least, the case where all lists have length p is in some sense a worst case (up to
a polynomial factor). The second step is to show that in that worse case, the
problem becomes equivalent to cuckoo hashing with a stash. The third and final
step is to slightly extend the original convexity argument, and combine it with
some particular features of the problem, to deduce a tail bound on the stash size,
as desired. The final step of the proof reduces to stash size bounds for cuckoo
hashing. For that purpose, we adapt a result by Wieder [Wie17].

5 Experimental Evaluation

All evaluations and benchmarks have been carried out on a computer with an
Intel Core i7 4790K 4.00GHz CPU with 4 cores (8 logical threads), running Linux
Debian 10.2. We used a 250GiB Samsung 850 EVO SSD and a 4TiB Seagate
IronWolf Pro ST4000NE001 HDD, both connected with SATA, and formatted in
ext4. The SSD page size is 4KiB. The HDD was only used for the benchmarks
(see full version), and we use the SSD for the following evaluation.

We chose the setting where document identifiers are encoded on 8 bytes and
tags on 16 bytes. This allows us to support databases with up to 264 documents
and 248 distinct keywords, with a probability of tag collision at most 2−32. A
page fits p = 512 entries.

5.1 Stash Size

Although the theory in Sect. 4.1 gives the asymptotic behavior of the size of
the stash in TethysDIP, concrete parameters are not provided. We implemented
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Fig. 1. Experimental evaluation of the stash size made over 6×106 worst-case random
TethysDIP allocations.

TethysDIP in Rust in order to run a large number of simulations, and evaluate
the required stash size in practice. We want an evaluation of the stash size for
page size p and an input multi-map with total value count N and bucket count
m. A multi-map MM that maps N/p keys to exactly p values is the worst-case
for the stash size (see Sect. 4.1). Thus, we evaluate the stash size of TethysDIP
on the input MM for given p,N,m.

In Fig. 1a, we fix the parameter ε = 0.1 and look at the maximum size of the
stash for various values of N . We can see that it fits a C/ logN curve (except
for low values of N , where the asymptotic behavior has not kicked in yet), as
predicted by the theory. This confirms that the stash size does not increase (and
in fact slightly decreases) with N , hence does not scale with the size of the
database. In Fig. 1b, for the same experiments, we plot the probability of having
a stash of a given size. As was expected from Theorem 4.3, we can see that this
probability drops exponentially fast with the size of the stash.

In the full version, we present data that clearly shows the transition phase
at ε = 0, also predicted by the theory. The code of these experiments is publicly
available [Bos21b].

5.2 Performance

We implemented Tethys in C++, using libsodium as the backend for crypto-
graphic operations (HMAC-Blake2 for PRF and ChaCha20 for Enc), and using
Linux’ libaio library for storage accesses. Using libaio makes it possible to
very efficiently parallelize IOs without having to rely on thread pools: although
it does bring a few constraints in the way we access non-volatile storage, it allows
for the performance to scale very cheaply, regardless of the host’s CPU. As a
consequence, our implementation uses only two threads: one for the submission
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Fig. 2. Throughput, inverse page efficiency, inverse read efficiency, and inverse storage
efficiency for various SSE schemes, in log scale. Higher is better. Πpack−n corresponds
to Πpack with n entries per block.

of the queries, and the other one to reap the completion queue, decrypt and
decode the retrieved buckets.

At setup, the running time of TethysDIP is dominated by a max flow com-
putation on a graph with n edges and m = (1 + ε)n/p vertices. We use a sim-
ple implementation of the Ford-Fulkerson algorithm [FF56], with running time
O(nf), where f ≤ n is the max flow. This yields a worst-case bound O(n2). Other
max flow algorithms, such as [GR98] have running time Õ(

n3/2
)
; because this is

a one-time precomputation, we did not optimize this step. We have experimented
on the English Wikipedia database, containing about 140 million entries, and 4.6
million keywords. TethysDIP takes about 90min to perform the full allocation.
This is much slower than other SSE schemes, whose setup is practically instant.
However, it is only a one-time precomputation. Using Pluto rather than Tethys
makes a dramatic difference: most of the database ends up stored in HT (see full
version), and TethysDIP completes the allocation in about 4 s.

Regarding online performance, comparing our implementation with avail-
able implementations of SSE schemes would be unfair: the comparison would
be biased in our favor, because our implementation is optimized down to low-
level IO considerations, whereas most available SSE implementations are not.
To provide a fair comparison, for each SSE scheme given in the comparison,
we analyzed its memory access pattern to deduce its IO workload. We then
replayed that workload using the highly optimized fio Flexible I/O Tester (ver-
sion 3.19) [Axb20]. While doing so, we have systematically advantaged the com-
petition. For example, we have only taken into account the IO cost, not the
additional cryptographic operations needed (which can be a significant overhead
for some schemes, e.g. the One/Two Choice Allocation algorithms). Also, we
have completely ignored the overhead induced by the storage data structure: for
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Πbas and Πpack, we assume a perfect dictionary, that only makes a single access
per block of retrieved entries. Although this is technically possible, it would very
costly, as it requires either a Minimal Perfect Hash Function, a very small load
factor, or a kind of position map that is small enough to fit into RAM (that
last option does not scale). Similarly, for the One-Choice Allocation (OCA) and
Two-Choice Allocation (TCA) algorithms, we used the maximum read through-
put achieved on our evaluation hardware, and assumed that this throughput
was attained when reading consecutive buckets of respective size Θ(logN) and
Θ(log logN) required by the algorithms. In practice, we fixed the read efficiency
of OCA to 3 logN log logN and the one of TCA to 8 log logN(log log logN)2,
following [ANSS16]. The code is OpenSource and freely accessible [Bos21a].

We also computed the expected performance of Tethys using the same work-
load replay technique. The resulting performance measures are very close to our
optimized full implementation (less than 0.1% difference on 220 queries over 219

distinct keywords). As that result illustrates, we argue that using simulated IO
workloads to compare the performance of SSE schemes is quite accurate. The
comparison between Tethys and other SSE schemes is given on Fig. 2, including
both the full implementation of Tethys, and its simulated workload.

We observe that Tethys compares very well with previous schemes. It vastly
outperforms the One-Choice and Two-Choice allocation algorithms, as well as
Πbas, with over 170 times higher throughput. It also competes with all the
Πpack variants, its throughput being only exceeded by Πpack−512 with a twofold
increase, due to the fact that Tethys needs to read two pages for every query.
However, Πpack incurs a huge storage cost in the worst case (up to a factor
p = 512), leaving Tethys as the only scheme that performs well in both metrics.
In addition, as explained earlier, our simulation of Πpack does not account for
the cost of the hash table implementation it relies on. For example, if we were to
choose cuckoo hashing as the underlying hash table in Πpack, the throughputs of
Πpack−512 and of Tethys would be identical. The Π2lev variant from [CJJ+14] is
not included in the comparison, because its worst-case storage efficiency is the
same as Πpack (it handles short lists in the same way), and its throughput is
slightly lower (due to indirections).

Our experiments show that Tethys is competitive even with insecure, plain-
text databases, as the throughput only drops by a factor 2.63, while increasing
the storage by a factor 4+2ε in the worst case (a database with lists of length 2
only, using the encoding EncodeSeparate from the full version). When sampling
lists length uniformly at random between 1 and the page size, the storage effi-
ciency is around 2.25 for ε = 0.1 and a database of size 227. For the encryption of
Wikipedia (4.6 million keywords and 140 million entries), the storage efficiency
is 3. (The extra cost beyond 2 + ε is mainly due to using the simpler, but sub-
optimal EncodeSeparate scheme from the full version.) In the full version, we
further present the end-to-end latency of a search query on Tethys.

Finally, we have also plotted inverse read efficiency and inverse page efficiency
for each scheme. As is apparent on Fig. 2, inverse page efficiency correlates very
strongly with throughput. When computing the correlation between the two
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across the various experiments in Fig. 2, we get a correlation of 0.98, indicating
a near-linear relationship. This further shows the accuracy of page efficiency as
a predictor of performance on SSDs.

6 Conclusion

To conclude, we point out some problems for future work. First, like prior work
on locality, Tethys only considers the most basic form of SSE: single-keyword
queries, on a static database. A generalization to the dynamic setting opens up
a number of interesting technical challenges. (A generic conversion from a static
to a dynamic scheme may be found in [DP17], but would incur a logarithmic
overhead in both storage efficiency and page efficiency.) A second limitation is
that the initial setup of our main DIP algorithm, TethysDIP, has quadratic time
complexity in the worst case. This is only a one-time precomputation, and prac-
tical performance is better than the worst-case bound would suggest, as shown in
Sect. 5. Nevertheless, a more efficient algorithm would be welcome. Lastly, when
querying a given keyword, Tethys returns entire pages of encrypted indices, some
of which might not be associated to the keyword. Using an appropriate encoding,
the matching keywords can be identified. While reducing volume leakage, this
induces an overhead in communication, unlike other schemes such as Πbas from
[CJJ+14], where only matching identifiers are returned. Due to the practical
relevance of page efficiency, the intent of this work is that the notion will spur
further research.
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Abstract. Proving the security of masked implementations in theoreti-
cal models that are relevant to practice and match the best known attacks
of the side-channel literature is a notoriously hard problem. The random
probing model is a promising candidate to contribute to this challenge,
due to its ability to capture the continuous nature of physical leakage
(contrary to the threshold probing model), while also being convenient to
manipulate in proofs and to automate with verification tools. Yet, despite
recent progress in the design of masked circuits with good asymptotic
security guarantees in this model, existing results still fall short when it
comes to analyze the security of concretely useful circuits under realistic
noise levels and with low number of shares. In this paper, we contribute
to this issue by introducing a new composability notion, the Probe Dis-
tribution Table (PDT), and a new tool (called STRAPS, for the Sampled
Testing of the RAndom Probing Security). Their combination allows us
to significantly improve the tightness of existing analyses in the most
practical (low noise, low number of shares) region of the design space.
We illustrate these improvements by quantifying the random probing
security of an AES S-box circuit, masked with the popular multiplica-
tion gadget of Ishai, Sahai and Wagner from Crypto 2003, with up to six
shares.

1 Introduction

Context. Modern cryptography primarily analyzes the security of algorithms
or protocols in a black-box model where the adversary has only access to their
inputs and outputs. Since the late nineties, it is known that real-world implemen-
tations suffer from so-called side-channel leakage, which gives adversaries some
information about intermediate computation states that are supposedly hidden.
In this work, we focus on an important class of side-channel attacks against
embedded devices, which exploits physical leakage such as their power consump-
tion [26] or electro-magnetic radiation [22]. We are in particular concerned with
the masking countermeasure [14], which is one of the most investigated solutions
to mitigate side-channel attacks. In this context, the main scientific challenge we
tackle is to find out security arguments that are at the same time practically
relevant and theoretically sound.
c© International Association for Cryptologic Research 2021
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Two Separated Worlds. In view of the difficulty to model side-channel
attacks, their practical and theoretical investigations have first followed quite
independent paths. On the practical side, the analysis of masked implemen-
tations as currently performed by evaluation laboratories is mostly based on
statistical testing. Approaches for this purpose range from detection-based test-
ing, which aims at identifying leakage independently of whether it can be
exploited [32], to attack-based testing under various adversarial assumptions,
which aims at approximating (if possible bounding) the concrete security level of
the implementation with actual (profiled or non-profiled) attacks such as [11,15]
and their numerous follow ups. On the theoretical side, the first model introduced
to capture the security of masked implementations is the t-threshold probing
model introduced by Ishai, Sahai and Wagner (ISW) [24]. In this model, leaky
computation is captured as the evaluation of an arithmetic circuit, and the adver-
sary may choose t wires of the circuit for which she receives the value they carry.
The adversary succeeds if she recovers a secret input variable of the circuit.

The pros and cons of both approaches are easy to spot. On the one hand,
statistical testing provides quantitative evaluations against concrete adversaries,
but the guarantees it offers are inherently heuristic and limited to the specific set-
ting used for the evaluations. On the other hand, theoretical models enable more
general conclusions while also having a good potential for automation [5], but
they may imperfectly abstract physical leakage. For some imperfections, tweak-
ing the model appeared to be feasible. For example, ISW’s threshold probing
model initially failed to capture physical defaults such as glitches that can make
masking ineffective [27,28]. Such glitches were then integrated in the model [21]
and automated [4,6,10]. Yet, it remained that the threshold probing model is
inherently unable to capture the continuous nature of physical leakage, and there-
fore the guarantees it provides can only be qualitative, as reflected by the notion
of probing security order (i.e., the number of shares that the adversary can
observe without learning any sensitive information). This also implies that so-
called horizontal attacks taking advantage of multiple leakage points to reduce
the noise of the implementations cannot be captured by this model [7].
An Untight Unifying Approach. As a result of this limitation, the noisy
leakage model was introduced by Prouff and Rivain [30]. In this model, each wire
in the circuit leaks independently a noisy (i.e., partially randomized) value to the
adversary. In an important piece of work, Duc et al. then proved that security in
the threshold probing model implies security in the noisy leakage model, for some
values of the model parameters [17]. This result created new bridges between the
practical and theoretical analyzes of masked implementations. In particular, it
made explicit that the security of this countermeasure depends both on a security
order (which, under an independence assumption, depends on the number of
shares) and on the noise level of the shares’ leakage. So conceptually, it implies
that it is sound to first evaluate the probing security order of an implementation,
next to verify that this security order is maintained in concrete leakages (e.g.,
using detection-based statistical testing) and finally to assess the noise level.
Yet, and as discussed in [18], such an analysis is still not tight: choosing security
parameters based on this combination of models and the reductions connecting



Towards Tight Random Probing Security 187

them would lead to overly expensive implementations compared to a choice based
on the best known (profiled) side-channel attacks.
A Tighter Middle-Ground. Incidentally, the reduction of Duc et al. also
considered an intermediate level of abstraction denoted as the random probing
model. In this model, each wire in the circuit independently leaks its value with
probability p (and leaks no information with probability 1 − p). Technically, it
turns out that the aforementioned tightness issue is mostly due to the reduction
from the threshold probing model to the random probing model, while there is
a closer relationship between the random probing model and the noisy leakage
model [19,29]. Since the random probing model remains relatively easy to manip-
ulate (and automate) in circuit-level proofs, it therefore appears as an interesting
candidate to analyze masking schemes with tight security guarantees.

Like the noisy leakage model, the random probing model captures the concept
of “noise rate”, which specifies how the noise level of an implementation must
evolve with the number of shares in order to remain secure against horizontal
attacks. As a result, different papers focused on the design and analysis of gadgets
with good (ideally constant) noise rate [1–3,20,23]. While these papers provide
important steps in the direction of asymptotically efficient masking schemes, the
actual number of shares they need to guarantee a given security level and/or
the noise level they require to be secure remain far from practical. To the best
of our knowledge, the most concrete contribution in this direction is the one
of Beläıd et al. [8,9], which introduced a compiler that can generate random
probing secure circuits from small gadgets satisfying a notion of “random probing
expandability”, together with a tool (called VRAPS) that quantifies the random
probing security of a circuit from its leakage probability. With this tool, they
reduce the level of noise required for security to practically acceptable values,
but the number of shares required in order to reach a given security level for
their (specialized) constructions is still significantly higher than expected from
practical security evaluations – we give an example below.
Our Contributions. In this paper, we improve the tightness of masking security
proofs in the most practical (low noise, low number of shares) region of the
design space, focusing on practical ISW-like multiplication gadgets, integrated
in an AES S-box design for illustration purposes. More precisely:

We first introduce STRAPS, a tool for the Sampled Testing of the RAndom
Probing Security of small circuits, which uses the Monte-Carlo technique for
probability bounding and is released under an open source license.1

Since this tool is limited to the analysis of small circuits and/or small security
orders due to computational reasons, we next combine it with a new composi-
tional strategy that exploits a new security property for masked gadgets, the
Probe Distribution Table (PDT), which gives tighter security bounds for com-
posed circuits and is integrated in the STRAPS tool. This combination of tool
and compositional strategy allows us analyzing significantly larger circuits and
security orders than an exhaustive approach, while also being able to analyze
any circuit (i.e., it does not rely on an expansion strategy [2]).
1 https://github.com/cassiersg/STRAPS.

https://github.com/cassiersg/STRAPS
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We finally confirm the practical relevance of our findings by applying them to
a masked AES S-box using ISW gadgets. We show how to use them in order to
discuss the trade-off between the security order and the noise level (i.e., leakage
probability) of concrete masked implementations on formal bases. As an illustra-
tion, we use our tools to compare the impact of different refreshing strategies for
the AES S-box (e.g., no refresh, simple refreshes or SNI refreshes) in function of
the noise level. We can also claim provable security levels for useful circuits that
are close to the worst-case attacks discussed in [18] which is in contrast to previ-
ous works. Precisely, we are able to prove the same statistical security order (i.e.,
the highest statistical moment of the leakage distribution that is independent of
any sensitive information) as in this reference, for realistic leakage probabilities
in the range [10−1; 10−4]. For example, our AES S-box with 6 shares and leakage
probability of ≈ 10−3 ensures security against an adversary with up to one billion
measurements. Beläıd et al. would need 27 shares to reach the same security.
Open Problems and Related Works. While providing tight results for a
masked AES S-box implementation with up to 6 shares, therefore opening the
way towards tight random probing security in general, we note that our com-
position results are not completely tight in certain contexts which (we discuss
in the paper and) could pop up in other circuits than the AES S-box. Hence,
generalizing our results to be tight for any circuit is an interesting open problem
and the same holds for optimizing the complexity of our verification techniques
in order to scale with even larger circuits and number of shares.

Besides, we illustrated our results with the popular ISW multiplications in
order to show their applicability to non-specialized gadgets, which are concretely
relevant for the number of shares and noise levels we consider. Yet, since one
of the motivations to use the random probing model is to capture horizontal
attacks, it would also be interesting to analyze multiplication algorithms that
provide improved guarantees against such attacks thanks to a logarithmic or
even constant noise rate and could not be proven so far (e.g., [7,13]).

2 Background

Notations. In this work, we consider Boolean or arithmetic circuits over finite
fields F2m and refer to the underlying additive and multiplicative operations
as ⊕ and �, respectively. For the sake of simplicity we also use these oper-
ations for a share-wise composition of vectors (vi)i∈[n] and (wi)i∈[n] with
[n] = {0, 1, . . . , n − 1} such that (vi)i∈[n] � (wi)i∈[n] := (vi � wi)i∈[n] and
(vi)i∈[n]⊕(wi)i∈[n] := (vi ⊕ wi)i∈[n]. Furthermore, we use the Kronecker product
to compose two real matrices A = (ai,j)i∈[m],j∈[n], B = (bi,j)i∈[k],j∈[l] such that

A ⊗ B = (ai,jB)i∈[m],j∈[n]. We also denote x
$←− X as choosing x uniformly at

random from the set X , and X (k) as the set of subsets of X of size k.

Masking. Masking is a well known countermeasure against side-channel attacks.
With an encoding scheme (Enc(·),Dec(·)), sensitive data x is split into n shares
(represented as a vector) (xi)i∈[n] ← Enc(x), and the decoding function takes as



Towards Tight Random Probing Security 189

input the n shares and recovers the unshared value x, i.e., x ← Dec((xi)i∈[n]).
For security we require that any subset of n − 1 shares does not reveal any
information about the sensitive data x. In this work, we focus on additive sharing
Dec((xi)i∈[n]) =

⊕n−1
i=0 xi, which is the most studied scheme.

Circuit Model. As common in masking scheme literature, we model computation
as arithmetic circuits operating over a finite field F2m . The circuit is represented
by a directed acyclic graph, where each node is a gate that has a fixed number
of input and output wires (incoming and outgoing edges) that carry arithmetic
values. We consider the following types of gates in our circuits: addition + and
multiplication · gates have two input wires and one output wire, and perform
the corresponding arithmetic operation. The copy gate C has one input and
two outputs, and is used to duplicate a value. Finally, the random gate R

has no input and one output, which carries a uniformly distributed value. The
constant gate a outputs a constant value a.

In a masked circuit the gates are represented by subcircuits called gadgets
G. These gadgets operate on encoded inputs and produce encoded outputs. The
gadgets contain: (1) A set of gates; (2) The set of wires that connect the inputs
and outputs of those gates named internal wires (W); (3) The set of wires only
connected with those gates’ input named input wires (I); (4) The set of output
gates Ô (which is the subset of its gates that output wires that are not connected
to another gate of the gadget). The gadgets, however, contain no output wires,
such that each wire in a circuit composed of multiple gadgets belongs to only
one of its composing gadgets. For convenience, we also write O for the set of
output wires of the gates in Ô, although these wires are not part of the gadget
but are the next gadgets input wires. We denote A = W ∪ I the set of all wires
in the gadget. The inputs and outputs of a gadget are partitioned in (ordered)
sets of n elements named sharings (and each element is a share). A gadget Gf

that implements the function f : Fl �→ F
k with n shares has l input sharings

and k output sharings. Let (y0
i )i∈[n], . . . , (yk−1

i )i∈[n] be the values of the output
sharings when the input sharings have the values (x0

i )i∈[n], . . . , (xl−1
i )i∈[n]. It

must hold that

f(Dec((x0
i )i∈[n]), . . . ,Dec((xl−1

i )i∈[n])) = (Dec((y0
i )i∈[n]), . . . ,Dec((yk−1

i )i∈[n])).

In this work, we use various gadgets. First, gadgets that implement lin-
ear operations (addition G⊕, copy G C , squaring G·2), which we implement
share-wise. Next, we use the ISW multiplication gadget [24]. Finally, we use
refresh gadgets G R which re-randomize a sharing (xi)i∈[n] to (yi)i∈[n] such
that Dec((xi)i∈[n]) = Dec((yi)i∈[n]). We consider two refresh gadget implemen-
tations: the simple refresh and the SNI, randomness-optimized refresh gadgets
from [12]. Their algorithmic description is given in the extended version of the
paper.

Leakage Model. In this work we consider the p-random probing model as orig-
inally introduced by Ishai, Sahai and Wagner [24]. This model defines the fol-
lowing random probing experiment. Let W be a set of wires in a circuit, Lp(W)
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is a random variable with Lp(W) ⊆ W, such that each wire w ∈ W is in Lp(W)
with probability p (independently for each wire). Following this notation, for a
gadget G, we denote by Lp(G) := Lp(W, I) := (Lp(W),Lp(I)), where W and I
are the set of internal and input wires of G, respectively.

For a gadget G, a set of probes is a successful attack for an input sharing
(xi)i∈[n] if the joint distribution of the values carried by the probes depends on
Dec((xi)i∈[n]) (assuming that the other input sharings are public). The security
level of G in the p-random probing model (or p-random probing security) with
respect to an input sharing (xi)i∈[n] is the probability (over the randomness in
Lp) that a set of probes Lp(G) is a successful attack. As a result, the security of
a gadget in bits is worth − log2(security level). We omit to mention the attacked
input sharing when the gadget has only one input sharing.

3 Random Probing Security of Small Circuits

In this section, we show how to efficiently compute an upper bound on the
random probing security level of relatively small gadgets, and we illustrate the
results on well-known masked gadgets. We also describe the high-level ideas that
will lead to the STRAPS tool that we describe in Sect. 5.3.

3.1 Derivation of a Random Probing Security Bound

We first derive a way to compute the security level of a gadget for various values
of p, using some computationally heavy pre-processing. Next, we explain a way
to use statistical confidence intervals to reduce the cost of the pre-processing.
Finally, we detail how these techniques are implemented in a practical algorithm.

A Simple Bound. We can obtain the security level of a small circuit by computing
first the statistical distribution of Lp(G) (i.e., Pr[Lp(A) = A′] for each subset
A′ ⊂ A). Then, for each possible set of probes A′, we do a dependency test in
order to determine if the set is a successful attack, denoted as δA′ = 1, while
δA′ = 0 otherwise [8]. There exist various tools that can be used to carry out
such a dependency test, such as maskVerif [4] or SILVER [25] (while such tools
are designed to prove threshold probing security, they perform dependency tests
as a sub-routine). A first naive algorithm to compute the security level ε is thus
given by the equation

ε =
∑

A′⊂A
s.t. δA′=1

Pr[Lp(A) = A′]. (1)

The computational cost of iterating over all possible probe sets grows expo-
nentially with |A|: for a circuit with |A| internal wires, one has to do 2|A| depen-
dency tests, for each value of p (e.g., we have |A| = 57 for the ISW multiplication
with three shares). To efficiently cover multiple values of p, we introduce a first
improvement to the naive algorithm given by Eq. (1). For each i ∈ {0, . . . , |A|},
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we compute the number ci of sets of probes of size i that are successful attacks
ci =

∣
∣
{A′ ∈ A(i) s.t. δA′ = 1

}∣
∣. Then, we can compute

ε =
|A|∑

i=0

pi(1 − p)|A|−ici, (2)

which gives us a more efficient algorithm to compute random probing security,
since it re-uses the costly computation of ci for multiple values of p.

The VRAPS tool [8] computes ci for small values of i by computing δA′ for
all A′ ∈ A(i). This is however computationally intractable for larger i values,
hence they use the bound ci ≤ ( |A|

i

)
in such cases.

A Statistical Bound. Let us now show how to improve the bound ci ≤ ( |A|
i

)

while keeping a practical computational cost. At a high level, we achieve this
by using a Monte-Carlo method whose idea is as follows: instead of computing
directly ε, we run a randomized computation that gives us information about ε
(but not its exact value). More precisely, the result of our Monte-Carlo method
is a random variable εU that satisfies εU ≥ ε with probability at least 1 − α
(the confidence level), where α is a parameter of the computation. That is,
PrMC

[
εU ≥ ε

] ≥ 1−α, where PrMC means the probability over the randomness
used in the Monte-Carlo method.2 In the rest of this work, we use α = 10−6

since we consider that it corresponds to a sufficient confidence level.3

Let us now detail the method. First, let ri = ci/
∣
∣A(i)

∣
∣. We remark that

ri can be interpreted as a probability: ri = Pr
A′ $←−A(i)

[δA′ = 1]. The Monte-

Carlo method actually computes rU
i such that rU

i ≥ ri with probability at least
1 − α/ (|A| + 1). Once the rU

i are computed, the result is

εU =
|A|∑

i=0

pi(1 − p)|A|−i

(|A|
i

)

rU
i , (3)

which ensures that εU ≥ ε for any p with confidence level 1 − α, thanks to the
union bound. Next, rU

i is computed by running the following experiment: take ti

samples A′ $←− A(i) uniformly at random (this sampling is the random part of the
Monte-Carlo method) and compute the number si of samples for which δA′ =
1. By definition, si is a random variable that follows a binomial distribution
B(ti, ri): the total number of samples is ti and the “success” probability is ri.
We can thus use the bound derived in [33]. If rU

i satisfies CDFbinom(si; ti, rU
i ) =

α/ (|A| + 1), then Pr[rU
i ≥ ri] = 1 − α/ (|A| + 1), which gives

rU
i =

{
1 if si = ti,

x s.t. Ix(si + 1, ti − si) = 1 − α/ (|A| + 1) otherwise,
(4)

2 In other words, [0, εU ] is a conservative confidence interval for ε with nominal cov-
erage probability of 1 − α.

3 This parameter is not critical: we can obtain a similar value for εU with higher
confidence level by increasing the amount of computation: requiring α = 10−12

would roughly double the computational cost of the Monte-Carlo method.
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where Ix(a, b) is the regularized incomplete beta function. We can similarly com-
pute a lower bound εL such that εL ≤ ε with confidence coefficient 1 − α, which
we compute by replacing rU

i with rL
i in Eq. (3), where:

rL
i =

{
0 if si = 0,

x s.t. Ix(si, ti − si + 1) = α/ (|A| + 1) otherwise.
(5)

A Hybrid Algorithm. Our Monte-Carlo method has a main limitation: when
ri = 0 the bound rU

i will not be null (it will be proportional to 1/ti). This
means that we cannot prove tightly the security of interesting gadgets when p
is small. For instance, let us take a fourth-order secure gadget (that is, r0 =
r1 = r2 = r3 = r4 = 0). If rU

1 �= 1, then εU scales like rU
1 p as p becomes

small (other, higher degree, terms become negligible). A solution to this problem
would be to set ti to a large number, such that, in our example, rU

1 would be
small enough to guarantee that rU

1 p � r5p
5 for all considered values of p. If

we care about p = 10−3, this means rU
1 � 10−12 · r5 ≤ 10−12. This is however

practically infeasible since the number of samples t1 is of the order of magnitude
1/rU

1 > 1012.
There exist another solution, which we call the hybrid algorithm: perform

a full exploration of A(i) (i.e., use the algorithm based on Eq. (2)) when it is
not computationally too expensive (i.e., when

∣
∣A(i)

∣
∣ is below some limit Nmax),

and otherwise use the Monte-Carlo method. The goal of this hybrid algorithm
is to perform a full exploration when ri = 0 (in order to avoid the limitation
discussed above), which can be achieved for gadgets with a small number n of
shares. Indeed, ri can be null only for i < n (otherwise there can be probes on all
the shares of the considered input sharing), and the number of cases for the full
exploration is therefore

∣
∣A(i)

∣
∣ =

( |A|
i

) ≤
(

|A|
n−1

)
, which is smaller than Nmax if

n and |A| are sufficiently small. The latter inequality holds if |A| ≥ 2(n − 1),
which holds for all non-trivial gadgets.

Algorithm 1 describes how we choose between full enumeration and Monte-
Carlo sampling, which is the basis of our STRAPS tool (see Sect. 5.3 for more
details). The algorithm adds a refinement on top of the above explanation: if we
can cheaply show that ri is far from zero, we do not perform full exploration
even if it would not be too expensive. It accelerates the tool, while keeping a
good bound. This optimization is implemented by always starting with a Monte-
Carlo sampling loop that takes at most Nmax samples, with an early stop if si

goes above the value of a parameter Nt (we typically use parameters such that
Nmax � Nt). The parameter Nt determines the relative accuracy of the bound
we achieve when we do the early stop: in the final sampling, we will have si ≈ Nt,
which means that the uncertainty on ri decreases as Nt increases. The parameter
Nmax has an impact when ri is small and we do not reach Nt successful attacks:
it limits both the maximum size of A(i) for which full exploration is performed,
and the number of samples used for the Monte-Carlo method.

Remark. The Monte-Carlo method is limited to the random probing model and
cannot be used to prove security in the threshold probing model since proving
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Algorithm 1. Random probing security algorithm: compute rU
i , rL

i for a given
A and i. The parameters are Nmax and Nt.

Require Nt ≤ Nmax

Nsets =
( |A|

i

)

ti ← 1, si ← 0 � ti: total number of samples, si: successful attacks
while ti ≤ Nmax ∧ si < Nt do � First Monte-Carlo sampling loop

A′ $←− A(i)

if δA′ = 1 then
si ← si + 1.

ti ← ti + 1

if Nsets ≤ ti then � Enumerate A(i) if it is cheaper than Monte-Carlo.
si ← 0
for all A′ ∈ A(i) do

if δA′ = 1 then
si ← si + 1

rUi ← si/Nsets, rLi ← si/Nsets

else � Re-run Monte-Carlo to avoid bias due to Nt early stopping.
si ← 0
Repeat ti times

A′ $←− A(i)

if δA′ = 1 then
si ← si + 1

Compute rUi and rLi using Equations (4) and (5).

security in this model means proving that ri = 0, which it cannot do. Our hybrid
algorithm, however, can prove threshold probing security for the numbers of
probes i where it does full enumeration of A(j) for all j ∈ {0, . . . , i}.

Dependency Test. We use the dependency test algorithm from maskVerif [4], as
it offers two important characteristics: (i) it gives the set of input shares on which
the probes depend, not only if there is a dependency to the unshared variable (the
reason for this appears in Sect. 5.1), and (ii) it is quite efficient. One drawback
of the maskVerif dependency test is that in some cases, it wrongly reports that
the adversary succeeds, which implies that the statistical lower bound is not
anymore a lower bound for the security level, and the statistical upper bound is
not completely tight (but it is still an upper bound for the true security level).
In this case, we refer to the statistical lower bound as the stat-only lower bound.
While the stat-only lower bound is not indicative of the security level, it remains
useful to quantify the statistical uncertainty and therefore to assess whether one
could improve the tightness of the upper bound by increasing the number of
samples in the Monte Carlo method.

3.2 Security of Some Simple Gadgets

We now present the results of random probing security evaluations using the
previously described tools. First, we discuss the sharewise XOR gadget and the
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ISW multiplication gadget with n shares. Next, we discuss the impact of the two
parameters of our algorithm (Nmax and Nt) on the tightness of the results and
on the computational complexity (i.e., the execution time) of the tool.

In Fig. 1 (left), we show the security level (with respect to one of the inputs)
of the addition gadget for n = 1, . . . , 6 shares. We can see that the security
level of the gadget is proportional to pn, which is expected. Indeed, the graph
of this share-wise gadget is made of n connected components (so-called “circuit
shares” [12]) such that each share of a given input sharing belongs to a dis-
tinct component, and the adversary needs at least one probe in each of them to
succeed. This trend can also be linked with the security order in the threshold
probing model. Since the gadget is n − 1-threshold probing secure, a successful
attack contains at least n probes, hence has probability proportional to pn.

We can observe a similar trend for the ISW multiplication gadget (Fig. 1,
right). Since the gadget is n−1-threshold probing secure, the security level scales
proportionally to pn for small values of p. For larger values of p, the security
level of this gadget is worse than pn, which is due to the larger number of wires,
and the increased connectivity compared to the addition gadgets. It implies that
there are many sets of probes of sizes n+1, n+2, . . . that are successful attacks
(which is usually referred to as horizontal attacks in the practical side-channel
literature [7]). These sets make up for a large part of the success probability
when p > 0.05 due to their large number, even though they individually have a
lower probability of occurring than a set of size n (for p < 0.5).

10−3 10−2 10−1 100
2−49

2−39

2−29

2−19

2−9

21

p

S
ec

u
ri
ty

le
ve

l

Sharewise XOR

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

10−3 10−2 10−1 100

p

ISW multiplication

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

Fig. 1. Security of masked gadgets (with respect to the input sharing x, assuming the
input sharing y is public). The continuous line is an upper bound, while the dashed
line is the stat-only lower bound. Nmax = 107, Nt = 1000.

Next, we discuss the impact of parameters Nmax and Nt in Algorithm 1 on
the tightness of the bounds we can compute. We first focus on the impact of Nt,
which is shown on Fig. 2. For Nt = 10, we have a significant distance between the
statistical upper and lower bounds, while the gap becomes small for Nt = 100
and Nt = 1000. This gap appears as a bounded factor between the upper and
lower bounds which, as discussed previously, is related to the accuracy of the
estimate of a proportion when we have about Nt positive samples.
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Fig. 2. Impact of the parameter Nt of Algorithm 1 on the security bounds of masked
ISW multiplication gadgets (w.r.t. the input sharing x). Nmax = 107.

We also look at the impact of Nmax on Fig. 3. We observe a gap between
the bounds for too low Nmax values, which gets worse as the number of shares
increases. Indeed, when Nmax is too small, we cannot do an enumeration of all
the sets of n − 1 probes, hence we cannot prove that the security order of the
gadget is at least n − 1, which means that the upper bound is asymptotically
proportional to pn′

, with n′ < n − 1.
We finally observed that the computational cost is primarily dependent on

Nmax and the circuit size, while Nt has a lower impact (for the values considered).
For instance, the execution time of the tool for the ISW multiplication with
n = 6, Nmax = 108 and Nt = 100 is about 33 h on a 24-core computer.
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Fig. 3. Impact of the parameter Nmax of Algorithm 1 on the security bounds of masked
ISW multiplication gadgets (w.r.t. the input sharing x). Nt = 1000.

4 New Composition Results

In the previous section, it became clear that the tool is limited if it directly
computes the security of complex circuits. This leads to the need to investigate
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composition properties. The existing definitions of random probing composabil-
ity and random probing expandability in [8] are based on counting probes at
the inputs and outputs of gadgets which are needed to simulate the leakage. We
have recognized that ignoring the concrete random distribution over the needed
input/output wires, and only counting the wires leads to a significant loss of
tightness. Therefore we introduce our new security notion, the PDT. Before we
define the PDT in Sect. 4.3 and present the composition results in Sect. 4.4,
we recall the idea of simulatability in the leakage setting. Refining the depen-
dency test of Sect. 3, we analyze the information a simulator needs to simulate
a gadget’s leakage in Sect. 4.2. In contrast to the previous section, we take into
account the output gates, which is needed for composition. Further, we recall
the definitions of parallel and sequential composition in Sect. 4.1, and present
formal definitions adapted for our PDTs.

4.1 Definitions

Given two gadgets G0 and G1 with n shares, we define in this section the gadgets
formed by their sequential composition written G = G1 ◦ G0 or their parallel
composition written G = G1||G0.

We first introduce notations that allows us to keep track of input wires,
output gates and internal wires in gadget compositions. We work with ordered
finite sets. That is, given a finite set A (e.g., one of the sets W, I or Ô of a gadget
G), we assign to each element of A a unique index in [|A|] = {0, 1, . . . , |A|}. Then,
given disjoint finite sets A and B, we denote by C = A||(k)B the union of A and
B ordered such that a wire with index i in A has index i in C, and a wire with
index i in B has index k + i in B. The ||(·) operator is right-associative, which
means that A2||(k1)A1||(k0)A0 = A2||(k1)

(
A1||(k0)A0

)
.

The sequential composition of gadgets allows implementing compositions of
functions and is formally defined next.

Definition 1 (Sequential composition). Let G0 and G1 two gadgets with n
shares, input wires Ii, output gates Ôi, and internal wires Wi, respectively, such
that |I1| = |Ô0|. The sequential composition of G0 and G1 is the gadget G denoted
as G1 ◦G0 whose set of input wires is I = I0 and set of output gates is Ô = Ô1.
The set of internal wires of G is W = W1||(k1)I1||(k0)W0 with k1 = |W0| + |I1|
and k0 = |W0|. The input wires of G1 are connected to the output gates of G0

such that for all i the input wire with index i is the output wire of the ith output
gate. If G0 (resp. G1) implements f0 (resp. f1), then G implements f1 ◦ f0.

The parallel composition of gadgets allows implementing a gadget for the func-
tion f(x, y) = (f0(x), f1(y)), using gadgets implementing f0 and f1.

Definition 2 (Parallel composition). Let G0 and G1 two gadgets with n
shares, input wires Ii, output gates Ôi, and internal wires Wi, respectively. The
parallel composition of G0 and G1 is the gadget G denoted as G1||G0 whose set
of input wires is I = I1||(|I0|)I0, set of output gates is Ô = Ô1||(|Ô0|)Ô0, and
set of internal wires is W = W1||(|W0|)W0.
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Figure 4 illustrates how to renumber the input wires and output gates in
the case of gadgets with three inputs wires and three output gates. Figure 4a
describes the sequential composition defined in Definition 1 and Fig. 4b describes
the parallel composition defined in Definition 2. For example, the input wire set
of G′ is I = {i5, i4, . . . , i0} which is the wire union I = I1||(|I0|)I0 of the input
wires I0 = {i02, i

0
1, i

0
0} and I1 = {i12, i

1
1, i

1
0} of the gadgets G0 and G1.

We emphasize that both compositions are a basis for dividing a circuit into
an arbitrary set of subcircuits. Therefore, if we have a masked gadget imple-
mentation of each gate type that appears in a circuit, we can build a masking
compiler for that circuit: first decompose the circuit in sequential and parallel
compositions down to subcircuits containing a single gate, then replace each
gate with the corresponding masked gadget, and finally compose those gadgets
according to the initial decomposition. As a case study, we depict a masked AES
S-box implementation in Fig. 6. The gadgets G0-G10 are a parallel composition of
the basis gadgets and GS-box is a sequential composition of the gadgets G0-G10.
The formal description of the S-box composition is given in Table 1.

G1G0

G = G1 ◦ G0

i02i2
i01i1
i00i0

i12o02
i11o01
i10o00

o12 o2
o11 o1
o10 o0

(a) Sequential Composition

G1

G0

G′ = G1||G0

i02i2
i01i1
i00i0

i12i5
i11i4
i10i3

o02 o2
o01 o1
o00 o0

o12 o5
o11 o4
o10 o3

(b) Parallel Composition

Fig. 4. Examples of sequential composition (4a) and parallel composition (4b).

4.2 Simulatability

So far, we described how to measure the amount of information leaked by a
circuit by analyzing it directly. As observed in previous works, the complex-
ity of such an approach rapidly turns out to be unrealistic. We now formalize
simulatability-based definitions following the ideas outlined in [5], which are use-
ful to analyze large circuits thanks to compositional reasoning.

Definition 3 (Simulatability). A set of wires W in a gadget G is simulatable
by a subset I ′ ⊂ I of its inputs if there exists a probabilistic simulator function
taking as input the values of the inputs I ′, and outputs a distribution of values
on wires. Conditioned on the values of the wires in I the distribution output
by the simulator is identical to the leakage from wires in W when the gadget is
evaluated (conditioned on I).

The simulatability of small circuits, and particularly gadgets, is well studied and
can be proven with tools such as maskVerif [4] and SILVER [25]. In this work
we use the distribution of the smallest set of input wires such that there exists a
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simulator whose output has the same distribution as the leakage. More precisely,
let W ′ be a subset of input and internal wires of a gadget G and O′ an arbitrary
subset of output wires, then we write I ′ = SG(W ′,O′) to define the smallest
subset I ′ of input wires of G by which (W ′,O′) is perfectly simulatable.

Definition 4 (Simulatability set). Let G be a gadget with input wire, internal
wire and output gate sets I, W, and Ô. Further, let O be the set of output wires
of Ô. The simulatability set of a subset W ′ ⊆ (W, I) and O′ ⊆ O, denoted
SG(W ′,O′), is the smallest subset of I by which W ′ and O′ can be simulated.

In the random probing model, W ′ = Lp(G) is a random variable, hence the
simulatability set SG (Lp(G),O′) is itself a random variable.

We now introduce rules for simulatability of parallel and sequential gadget
compositions. Indeed, it is not enough to give a simulator for each gadget, but
we also have to ensure that each individual simulator is consistent with the dis-
tribution generated by the other simulators, and that each simulator is provided
with correct values for the input shares.

Claim 1. For any parallel gadget composition G = G1||G0 with output gates
Ô = Ô1||(|Ô1|)Ô0 an its output wires O. It holds that

SG(Lp(G),O′) = SG1(Lp(G1),O′
1) ||(|I0|) SG0(Lp(G0),O′

0)

for any subset of output wires O′ = O′
1||(|O0|)O′

0 ⊆ O.

The proof is given in the extended version of the paper.

Claim 2. For any sequential gadget composition G = G1 ◦ G0 with output gates
Ô and its output wires O, it holds that

SG(Lp(G),O′) ⊆ SG0
(Lp(G0),SG1(Lp(G1),O′)

)

for any subset of output wires O′ ⊆ O.

The proof is given in the extended version of the paper (Fig. 5).

ŜGi
SGi(Lp(Gi),O′

i)
O′

iLp(Gi)

(a) Tight Simulator for Gadget Gi

used in the proof of Claim 1 and 2

ŜG1

ŜG0

ŜG

||I′

O′

Lp(G)

(b) Simulator for a serial gadget
compositions.

ŜG1

ŜG0

ŜG′

||

||

||I′

O′

Lp(G)

(c) Simulator for a parallel gadget
compositions.

Fig. 5. Simulators for the gadgets depicted in Fig. 4 to prove Claims 1 and 2.
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4.3 Probe Distributions

In this section, we introduce our new security properties, the PD (Probe Dis-
tribution) and the PDT (Probe Distribution Table). Intuitively, given a set of
wires W and a leakage process L (hence L(W) ⊆ W), the PD of L(W) is a
vector of size 2|W| that represents the statistical distribution of L(W). In more
detail, for each subset W ′ ⊆ W, there is a corresponding element of the PD with
value Pr [L(W) = W ′]. The PDT notion extends the idea in a way that makes
it useful for analyzing gadget compositions: it links the set of output probes on
the gadget to the distribution of the simulatability set of the gadget (i.e., to the
inputs needed to simulate the leakage). More precisely, for a gadget G, the PDT
is a matrix in [0, 1]|I|×|O|, such that each column is associated to a subset of
the outputs O′ ⊆ O. Each column is a PD that represents the distribution of
SG(L(G),O′) (viewed as a subset of the set of inputs I). The two main results
(Theorems 1 and 2) of the next section relate the PDT of a sequential (resp.,
parallel) gadget composition to the matrix (resp., tensor) product of the PDTs
of the composing gadgets. We first formalize the mapping between subsets of
wires and indices in vectors/matrices.

Definition 5 (Index representation of subsets of wires). For any set of
wires W of which each element has a unique index in [|W|], we associate to each
subset W ′ of W the index

W̃ ′ =
∑

i∈[|W|]
bi2i with

{
bi = 1 if element i of W belongs to W ′,
bi = 0 otherwise.

For example, the wire set W = {ω0, ω1} has 4 subsets W ′, that we represent
with their index below:

W ′ ∅ {ω0} {ω1} {ω0, ω1}
W̃ ′ 0 1 2 3

Let use now give the formal definition of the PD.

Definition 6 (Probe Distribution PD). Let L be a probabilistic process that
outputs subsets of a set of wires W. The probe distribution (PD) of L with
respect to W is p ∈ [0, 1]2

|W|
such that for all W ′ ⊂ W, pW̃′ = Pr [L(W) = W ′].

The PD of Lp(W) in the previous example is p =
(
(1 − p)2, p(1 − p),

p(1 − p), p2
)
.

We next give the definition of the PDT, which can be seen as the PDs of
SG(Lp(G),O′) conditioned on the set of output probes O′.

Definition 7 (Probe Distribution Table (PDT)). Let G be a gadget with
input wires I and output wires O. For any O′ ⊆ O, let pÕ′ be the PD of
SG(Lp(G),O′). The PDT of G (PDTG) is a [0, 1]2

|I|×2|O|
matrix with all the

pÕ′ as columns, that is
PDTG = (pj)j∈[2|O|] ,

with j = Õ′ for all subsets O′ ⊆ O. The notation PDTG(Ĩ ′, Õ′) refers to the
element of pÕ′ associated to I ′.
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PDTG(Ĩ ′, Õ′) = Pr
[SG(Lp(G),O′) = I ′]. Furthermore, the PDT of a gadget

is independent of its environment (i.e., of the PD of its output wires).
A first example of PDT is the one of the + and · gates (when viewed as

gadgets with one share). In the first column, no output has to be simulated, and
thus the only leakage comes from the two input wires. For the second column,
knowledge of both inputs is needed to simulate the output. This gives:

PDT + = PDT · =

PDT O′
= ∅ O′

= {0}
I′

= ∅ (1 − p
2
) 0

I′
= {0} p(1 − p) 0

I′
= {1} p(1 − p) 0

I′
= {0, 1} p

2
1

The second example is the simple refresh gadget Gr with two shares where a
random value is added to two different wires. The random value leaks three
times with probability p (one time in the C and two times in the + ). Thus
the leakage probability of the random value is q = 1 − (1 − p)3, and we get:

PDTGr
=

PDT O′
= ∅ O′

= {0} O′
= {1} O′

= {1, 0}
I′

= ∅ (1 − p)
2
(1 − q)(1 − p)

2
(1 − q)(1 − p)

2
0

I′
= {0} p(1 − p) (q + qp)(1 − p) (1 − q)p(1 − p) 0

I′
= {1} p(1 − p) (1 − q)p(1 − p) (q + (1 − q)p)(1 − p) 0

I′
= {0, 1} p

2
qp + (1 − q)p

2
qp + (1 − q)p

2
1

The PDT is related to the security level in the random probing model.

Claim 3. (Security level from PDT). Let G be a gadget and PDTG its Probe
Distribution Table. Let s be the the security level of G with respect to an input
sharing. If the set of shares of the considered input sharing is I ′, then

eT · PDTG · p∅ =
∑

I′′⊇I′
PDTG(Ĩ ′′, 0) ≥ s,

where p∅ = (1, 0, . . . , 0) is the PD corresponding to no output leakage and ei = 1
for all i = Ĩ ′′ with I ′′ ⊇ I ′, while ei = 0 otherwise.

Proof. Let A′ be a set of wires that is an attack, that is, that depends on the
considered unshared value which we denote Simulating A′ therefore requires at
least all the shares in I ′, hence

s ≤ Pr
A′←Lp(G)

[SG(A′, ∅) ⊆ I ′] .

Then, by definition of Lp(G) and of the PDT,

s ≤ Pr
[
SG(Lp(G), ∅) ⊆ I′

]
=

∑
I′′⊇I′

Pr
[
SG(Lp(G), ∅) = I′′

]
=

∑
I′′⊇I′

PDTG(Ĩ′′, 0).

This proves the inequality. The equality claim holds by construction of e. ��
We now give a few results that constitute the basis for the composition the-

orems of the next section. A first result links the PD of the input wires needed
to simulate the leakage of the gadget and some of its outputs to the PDT of the
gadget and the PD of its outputs. This claim is the foundation for the analysis
of sequential gadget composition.
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Claim 4. (PDT and PD). Let G be a gadget with output wire set O and input
wire set I. If a probabilistic process L′(O) has a PD p with respect to O, then
PDTG · p is the PD of SG(Lp(G),L′(O)) with respect to input wires I.

Proof. The solution can be directly derived from the definitions: Let (vi)i∈2|I| =
PDTG · p. For any I ′ ⊆ I, it holds that

vĨ′ =
∑

O′⊆O
PDTG(Ĩ ′, Õ′) · pÕ′

=
∑

O′⊆O
Pr

[SG(Lp(G),O′) = I ′] · Pr [L′(O) = O′]

=
∑

O′⊆O
Pr

[SG(Lp(G),O′) = I ′,L′(O) = O′]

= Pr
[SG(Lp(G),L′(O)) = I ′] .

The final equation gives the claim since it is exactly the ith entry of the PD of
SG(Lp(G),L′(O)) with i = Ĩ ′. ��

We next want to compare two probe distributions p, p′ to describe a par-
tial order for distributions “≤̇”. The high-level idea is that p is “larger” than
p′ (denoted p≥̇p′) if L gives more information than L′. In other words, p is
“larger” than p′ if we can simulate L′(W) with L(W), where L (resp., L′) is the
probabilistic process associated to p (resp., p′).

Definition 8 (Partial order for distributions). For a set of wires W, let
L and L′ be probabilistic processes with PDs p and p′. We say that p is larger
than p′ and write p≥̇p′ iff the L′ is simulatable by L, that is, if there exists a
probabilistic algorithm S that satisfies S(X ) ⊂ X such that the distribution of
L′(W) and S(L(W)) are equal.

On the one hand, it is clear that the definition is reflexive, antisymmetric, and
transitive. Let p, p′, p′′ three PDs, it holds:

– p≥̇p, since we can always use the identity as simulator.
– If we know p≥̇p′ and p≤̇p′, both PDs describe processes with the same

distribution, and we know p = p′.
– If it holds that p≥̇p′ and p′≥̇p′′, it exists a simulator S′ that simulates the

process defined by p′ with the process defined by p, and a simulator S′′ that
does the same for p′′ and p′. Hence, S := S′(S′′(·)) simulates the process
defined by p′′ with the process of p and it follows p≥̇p′′.

On the other hand, the order is only partial since it can happen that we have
two probabilistic processes such that for both processes there exist no simulator
to simulate the other.
The partial order for PDs is respected by linear combinations:

Claim 5. Let (pi)i∈[k], (p′
i)i∈[k] be PDs such that pi≥̇p′

i for all i. let (αi)i∈[k]

be such that 0 ≤ αi ≤ 1 for all i and
∑

i∈[k] αi = 1. If we denote p =
∑

i∈[k] αipi

and p′ =
∑

i∈[k] αip′
i, then p and p′ are PDs and furthermore, p≥̇p′.
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Proof. Let W be a set of wires such that the random processes (Li)i∈[k] (resp.
(L′

i)i∈[k]) have (pi)i∈[k] (resp. (p′
i)i∈[k]) as PDs. Further, let Si be such that

Si(Li(W)) has the same distribution as L′
i. Let L be such that

Pr [L(W) = W ′] =
∑

i∈[k]

αi Pr [Li(W) = W ′] ,

and similarly for L′. Firstly, L and L′ are well-defined: the probabilities given
above are non-negative and sum to 1. Next, the PD of L (resp. L′) is p (resp.
p′). Finally, we build the simulator S. Let L′′ be a random process that, on
input W, selects randomly i ∈ [k] (such that the probability of taking the value
i is αi), and outputs Si(Li(W)). Then, let S be a random process such that
Pr[S(W ′′) = W ′] = Pr[L′′ = W ′|L = W ′′] for all W ′,W ′′ ⊆ W. We observe that
for all W ′ ⊆ W,

Pr[S(L) = W ′] =
∑

W′′⊆W
Pr[S(W ′′) = W ′] ∗ Pr[L = W ′′]

=
∑

W′′⊆W
Pr[L′′ = W ′|L = W ′′] ∗ Pr[L = W ′′]

= Pr[L′′ = W ′].

Since L′′ has the same distribution as L′, this means that Pr[S(L) = W ′] =
Pr[L′ = W ′]. ��

The PDT has a partial structure. As described above each column i of the
PDT is the PD of SG(Lp(G),O′) with Õ′ = i. Since we know that the input
set required by a leakage simulator can only grow (or stay constant) if it has to
simulate additional (output) leakage, we get:

Claim 6. For any gadget with output wires O, the columns p· of the PDT have
the following property: pÕ′≥̇pÕ′′ for all O′′ ⊆ O′ ⊆ O.

Proof. It follows directly from Claim 4. It holds that SG(Lp(G),O′′) ⊆
SG(Lp(G),O′) and thus Pr

[SG(Lp(G),O′′) ⊆ SG(Lp(G),O′)
]

= 1. The last equa-
tion is the claim pÕ′≥̇pÕ′′ . ��

Finally, we want to extend the partial order of PDs to the whole PDT, with
the same meaning: if PDTG0≤̇PDTG1 , the amount of information leaked in G0

is less than the information leaked in G1:

Definition 9 (Partial order for PDT’s). Let A,B ∈ [0, 1]2
|I|×2|O|

be two
PDTs, we write

A≤̇B

if for any PD p ∈ [0, 1]2
|O|

it holds A · p≤̇B · p.

As shown in Claim 4, A · p and B · p are PDs, therefore the partial order of
PDTs is well defined.
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Corollary 1 (PDT order is column-wise). Let PDT and PDT′ be PDTs,
with columns (pi)i∈[|O|] and (p′

i)i∈[|O|] respectively. Then, PDT≥̇PDT′ iff
pi≥̇p′

i for all i ∈ [|O|.
Proof. If PDT≥̇PDT′, then for any i ∈ [|O|, let e be such that ej = 1 if i = j
and ej = 0 otherwise. Since e is a PD, we have pi = PDT · e≥̇PDT′ · e = p′

i.
In the other way, let use assume that pi≥̇p′

i, for all i. Then for any PD α
(whose elements are denoted αi), PDT · α is a linear combination of pi with
coefficients αi, for which Claim 5 applies. Therefore PDT · α≥̇PDT′ · α. ��
Another useful property is that we can merge the order of PDs and PDTs:

Claim 7. Let A,B ∈ [0, 1]2
|I|×2|O|

be two PDTs, and p,p′ ∈ [0, 1]2
|O|

be two
PDs. If A≤̇B and p≤̇p′, then A · p≤̇B · p′.

Proof. We prove the claim A·p≤̇B·p′ in two steps. First we show (i) A·p≤̇A·p′,
and then we show (ii) A · p′≤̇B · p′.

(i) By Definition 8, there exists W, L and L′ associated to p, p′, respectively,
with Pr[L(W) ⊂ L′(W)] = 1. Further, it holds Pr[AL(W)≤̇AL′(W)] = 1 with
Claim 6. Hence, A · p≤̇A · p′.

(ii) A · p′≤̇B · p′ follows from Definition 9 and A≤̇B. ��
This leads to the preservation of PDT ordering through matrix product.

Corollary 2. Let A, B, C, D be PDTs. If A≤̇B and C≤̇D, then A ·C≤̇B ·D.

Proof. Let us denote by X∗,i the (i + 1)-th column of a matrix X. Then, for all
i ∈ [|O|], (A · C)∗,i = A · C∗,i and (B · D)∗,i = B · D∗,i. Hence, by Corollary 1,
A ·C≤̇B ·D iff C∗,i≤̇D∗,i for all i. Using the same Corollary, we have C∗,i≤̇D∗,i.
Finally, using Claim 7, we get A · C∗,i≤̇B · D∗,i for all i. ��
Finally, we relate the partial order for PDs and PDTs to the security level.

Claim 8. (Security level bound from PDT bound). Let s be the security
level of a gadget G with respect to a set of input shares I ′. Let PDT be the PDT
of G and let PDT′ be a PDT. If PDT′≥̇PDT, then eT ·PDT′ ·p∅ ≥ s, where
e is defined as in Claim 3.

Proof. Using Claim 3, we know that eT ·PDT ·p∅ ≥ s. With Claim 7, we know
that PDT′ · p∅≥̇PDT · p∅. Let L (resp. L′) be the random process associated
to PDT′ · p∅ (resp. PDT · p∅), and let S be the simulator that simulates L
from L′. We have S (L′(I)) ⊆ L′(I), hence Pr [I ′ ⊆ S (L′(I))] ≤ Pr [I ′ ⊆ L′(I)].
Since S simulates L(I), Pr [I ′ ⊆ S (L′(I))] = Pr [I ′ ⊆ L(I)], which leads to
eT · PDT · p∅ = Pr [I ′ ⊆ L(I)] ≤ Pr [I ′ ⊆ L′(I)] = eT · PDT′ · p∅. ��
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4.4 Composition Rules

In this section, we give the two main composition theorems for the PDT of
parallel and sequential gadget compositions. Next, we show how the composi-
tions theorems can be used to compute PDTs for larger composite gadgets and
illustrate our results on the AES S-box example.

Theorem 1 (parallel composition). Let G1 and G2 be two gadgets with
PDTG0 and PDTG1 . Further let G = G1||G0 with PDTG. It holds that

PDTG = PDTG1 ⊗ PDTG0 .

Proof. Let I0, I1, O0, and O1 the input and output wires of G0 and G1, respec-
tively. Hence, I = I1||(n)I0, O = O1||(m)O0 are the input and output wires of G
with n = |I0| and m = |O0|. From Definition 2 follows for any I ′ = I ′

1||(n)I ′
0 ⊆ I

and O′ = O′
1||(m)O′

0 ⊆ O that Pr [S(Lp(G) ∪ O′) = I ′] is the matrix entry
(Ĩ ′, Õ′) of PDTG. Considering Claim 1, we get

PDTG(Ĩ ′, Õ′) = Pr
[SG(Lp(G),O′) = I ′]

= Pr
[SG1 (Lp(G1) ∪ O′

1) ||(n)SG0 (Lp(G0),O′
0) = I ′

1||(n)I ′
0

]

= Pr
[SG1 (Lp(G0),O′

0) = I ′
0,SG0 (Lp(G1),O′

1) = I ′
1

]

= Pr
[SG1(Lp(G0),O′

0) = I ′
0

] · Pr
[SG0(Lp(G1),O′

1) = I ′
1

]

= PDTG0(Ĩ ′
0, Õ′

0) · PDTG1(Ĩ ′
1, Õ′

1).

The last transformation of the formula uses the fact that the set of probes of
both gadgets are independent, and the resulting term is exactly the matrix entry
(Ĩ ′, Õ′) of PDTG1 ⊗ PDTG0 . ��

Remark. Theorem 1 can be generalized to any parallel composition of sub-
circuits, even if those sub-circuits are not gadgets. For instance, a share-wise
gadget with n shares is the parallel composition of n identical sub-circuits (a
single addition gate for the addition gadget). The PDT of the addition gate
PDT⊕ is given in Sect. 4.3, therefore PDTG⊕,n

can be computed as

PDTG⊕,n
= P

(
n−1⊗

i=0

PDT⊕

)

,

where P reorders the index of the input wires from (x0
0, x

1
0, x

0
1, x

1
1, . . . x

0
n−1, x

1
n−1)

to (x0
0, . . . , x

0
n−1, x

1
0, . . . , x

1
n−1) where x0

i and x1
i are the first and second input

wires of the ith addition gate, respectively.

Theorem 2 (sequential composition). Let G0 and G1 be two gadgets with
PDTG0 , PDTG1 , and with ni input wires and mi output wires, respectively
such that m0 = n1. Further let G = G1 ◦ G0 with PDTG. It holds that

PDTG≤̇PDTG0 · PDTG1 .
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Proof. Let PDT = PDTG0 · PDTG1 and I0, I1, O0, O1 the input and output
wire sets of G0 and G1, respectively. It also means that I0 and O1 are the input
and output wire sets of G. Considering the fact that PDT is the result of a matrix
multiplication of PDTG0 and PDTG1 , we get for any I ′ ⊆ I0 and O′ ⊆ O1

PDT(Ĩ ′′, Õ′) =
∑

O′′⊆O0

Pr
[SG0(Lp(G0),O′′) = I ′] · Pr

[SG1(Lp(G1),O′) = O′′]

=
∑

O′′⊆O0

Pr
[SG0(Lp(G0),O′′) = I ′,SG1(Lp(G1),O′) = O′′]

= Pr
[SG0

(Lp(G0),SG1(Lp(G1),O′)
)

= I ′] .

Further, PDTG(Ĩ ′, Õ′) = Pr
[SG(Lp(G),O′) = I ′], and thus for any O′ ⊆ O1

the columns PDTG(Õ′) and PDT(Õ′) are the PDs of SG(Lp(G),O′) and of
SG0

(Lp(G0),SG1(Lp(G1),O′)
)
, respectively. Because of Claim 2, it holds that

Pr
[SG(Lp(G),O′) ⊆ SG0

(Lp(G0),SG1(Lp(G1),O′)
)]

= 1.

The last equation proves that it exists a simulator that simulates the simulatabil-
ity set SG(Lp(G),O′) with SG0

(Lp(G0),SG1(Lp(G1),O′)
)
. Hence, it holds that

PDTG(Õ′)≤̇PDT(Õ′) for any column with O′ ⊆ O1. Since the inequality holds
for any column, the inequality is independent from the distribution of the output
wires O1. It follows that PDTGp≤̇PDTG0 ·PDTG1p for all PDs p. This results
in the claim of the theorem PDTG≤̇PDTG0 · PDTG1 . ��

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Gc

Gr

G·2
Gc

G⊗ Gc

G·4

Gr

Gc

G⊗ G·16
G⊗

G⊗

Fig. 6. AES S-box circuit (using the implementation from [31]) as a serial composi-
tion of gadgets. The symbols Gc, Gr, G⊗ and G·x are respectively copy, refresh and
exponentiation to the power of x gadgets.

Corollary 3. Let (Gi)i∈[k] be gadgets that can be sequentially composed to form
G = Gk−1 ◦ · · · ◦ G0. It holds that

PDTG≤̇PDTG0 · . . . · PDTGk−1 .

Proof. This is a direct consequence of Theorem 2 and Corollary 2. ��
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The PDT of the AES S-box depicted in Fig. 6 is bounded by PDTS-box

defined in Table 1. We compute the S-box with the gadgets G·2 , G⊗, Gr, and Gc.
In addition, we also use a identity gadget Gl

id as a placeholder for composition
results (this gadget does not leak and has as many inputs as outputs), whose
PDT is the identity matrix. As described in Table 1, the gadgets G0-G10 are a
parallel composition of the gadgets G·2 , G·4 , G·16 , G⊗, Gr, Gc, and Gl

id (we can
compute their PDTs using Theorem 1). Thus, GS-box is a sequential composition
of G0-G10. We can compute its PDT using Corollary 3, as shown in Table 1.

Table 1. Composition of the AES S-box and its approximated PDT.

G0 Gc PDTG0 = PDTGc

G1 Gr||G·2 PDTG1 = PDTGr ⊗ PDTG·2

G2 Gid||Gc PDTG2 = PDTGid ⊗ PDTGc

G3 G⊗||Gid PDTG3 = PDTG⊗ ⊗ PDTGid

G4 Gc||Gid PDTG4 = PDTGc ⊗ PDTGid

G5 G·4 ||Gr||Gid PDTG5 = PDTG·4 ⊗ PDTGr ⊗ PDTGid

G6 Gc||Gid||Gid PDTG6 = PDTGc ⊗ PDTGid ⊗ PDTGid

G7 Gid||G⊗||Gid PDTG7 = PDTGid ⊗ PDTG⊗ ⊗ PDTGid

G8 Gid||G·16 ||Gid PDTG8 = PDTGid ⊗ PDTG·16 ⊗ PDTGid

G9 G⊗||Gid PDTG9 = PDTG⊗ ⊗ PDTGid

G10 G⊗ PDTG10 = PDTG⊗

GS-box G10 ◦ G9 ◦ . . . ◦ G0 PDTS-box≤̇PDTG0 · PDTG1 · . . . · PDTG10

We conclude by noting that some well-known matrix product and tensor
product distributive and associative properties mirror the properties of the gad-
get compositions (when the operations are well-defined):

(A · B) · C = A · (B · C) (G0 ◦ G1) ◦ G2 = G0 ◦ (G1 ◦ G2)

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) (G0||G1) ||G2 = G0|| (G1||G2)

(A · B) ⊗ (C · D) = (A ⊗ C) · (B ⊗ D) (G0 ◦ G1) || (G2 ◦ G3) = (G0||G2) ◦ (G1||G3)

This means that our composition theorems give the same result independently
of the way we decompose a composite gadget. This gives us freedom to choose,
e.g., the most efficient way when we deal with relatively large computations.

5 Practical Security of Composite Circuits

In this section, we adapt the method of Sect. 3 to compute bounds for PDTs.
We then show how to turn those bounds into gadget security levels using the
PDT properties and composition theorems. We finally describe the tool that
implements our methodology and discuss its result for well-known gadgets.
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5.1 Bounding PDTs

We first describe how to adapt the method of Sect. 3 to bound PDTs. That
is, given a gadget G, we want to generate an upper bound PDTU such that
PDTU ≥ PDT with probability at least 1 − α (e.g., 1 − 10−6), and the ≥
operator defined for matrices and vectors as element-wise. We note that PDTU

is not a PDT: the sum of the elements in one of its columns may be ≥ 1.
There are two main differences with the bound of Sect. 3: (1) we have to

handle all possible cases for the probes on the output shares of the gadgets (i.e.,
all the columns of the PDT), and (2) we care about the full distribution of the
input probes, not only the probability of successful attack.

The upper bound PDTU can be computed by grouping probe sets by size
(similarly to Eq. (3)):

PDTU (Ĩ ′, Õ′) =
|W|∑

i=0

pi(1 − p)|W|−i ·
∣
∣
∣W(i)

∣
∣
∣ · RU

i (Ĩ ′, Õ′)

satisfies PDTU (Ĩ ′, Õ′) ≥ PDT(Ĩ ′, Õ′) if

RU
i (Ĩ ′, Õ′) ≥

∣
∣
{W ′ ⊆ W(i) s.t. SG(Lp(G),O′) = I ′}∣

∣
∣
∣W(i)

∣
∣ (6)

for all i ∈ {0, . . . , |W|}. Therefore, if Eq. (6) is satisfied for each (I ′,O′, i) tuple
with probability at least 1 − α/

(
(|W| + 1) 2|I|·|O|), then PDTU ≥ PDT with

probability at least 1 − α (by the union bound).
The computation of all the elements PU

i (Ĩ ′, Õ′) can be performed identi-
cally to the computation of rU

i in Sect. 3.1, except for changing the criterion
for a Monte-Carlo sample W ′ to be counted as positive (i.e., be counted in si):
S(W ′,O′) = I ′ (instead of δW′ = 1). Furthermore, the algorithm can be opti-
mized by running only one sampling for each (i,O′) pair: we take ti,O′ samples,
and we classify each sample W ′ according to S(W ′,O′). This gives sample counts
si,O′,I′ for all I ′ ⊆ I, and from there we can use Eq. (4).4

Finally, we use the hybrid strategy of Algorithm 1, with the aforementioned
modifications.5 The computation of a statistical-only lower bound PDTL is done
in the same way, except that Eq. (5) is used instead of Eq. (4).

5.2 From PDT Bound to Security Level Bound

Let us take positive matrices AU ≥ A and BU ≥ B. It always holds that AU ⊗
BU ≥ A ⊗ B and AU · BU ≥ A · B. Therefore, if we use PDT bounds in
4 The random variables si,O′,I′ for all I′ ⊆ I are not mutually independent, hence the

derived bounds are not independent from each other, but this is not an issue since
the union bound does not require independent variables.

5 And additionally the change of the condition si < Nt by si,O′I < Nt. The rationale
for this condition is that, intuitively, if we have many “worst-case” samples, then we

should have a sufficient knowledge of the distribution
(
Pi(Ĩ′, Õ′)

)

I′⊆I
.
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composition Theorem 1 (resp., Corollary 3), we get as a result – denoted PDT
U

and computed as AU · BU (resp., AU ⊗ BU ) – a corresponding bound for the
composite PDT – denoted PDT and computed as A·B (resp., A⊗B): PDT

U ≥
PDT≥̇PDT. Then, if we use PDT

U
in the formula for the computation of the

security level (Claim 8) instead of PDT, we get

sU = eT · PDT
U · p∅ ≥ eT · PDT · p∅ ≥ s.

We compute the statistical-only lower bound sL in a similar manner. One should
however keep in mind that sL ≤ s does not hold in general, since Claim 8 and the
sequential composition theorem only guarantee an upper bound (in addition to
the non-tightness coming from the maskVerif algorithm). Again, the statistical-
only lower bound is however useful for estimating the uncertainty on the security
level that comes from the Monte-Carlo method: if there is a large gap between
sL and sU , increasing the number of samples in the Monte-Carlo sampling can
result in a better sU (on the other hand, sL gives a limit on how much we can
hope to reduce sU by increasing the number of samples).

5.3 Tool

We implemented the computation of the above bounds in the open-source tool
STRAPS (Sampled Testing of the RAndom Probing Security). This tool con-
tains a few additional algorithmic optimizations that do not change the results
but significantly reduce the execution time (e.g., we exploit the fact that, in
some circuits, many wires carry the same value, and we avoid to explicitly com-
pute PDTs of large composite gadgets to reduce memory usage). Regarding
performance, for the computation of the security of the AES S-box (see Fig. 10),
almost all of the execution time goes into computing the PDT of the ISW mul-
tiplication gadgets. Computing the PDTs of the other gadgets is much faster as
they are smaller, and computing the composition takes a negligible amount of
time (less than 1%). The total running time for the AES S-box is less than 5 s
for 1, 2 and 3 shares, 30 s for 4 shares, 3 min for 5 shares, and 33 h for 6 shares
on a 24-core computer (dual 2.3 GHz Intel(R) Xeon(R) CPU E5-2670 v3).

STRAPS presents a few similarities with VRAPS [8]. While STRAPS mainly
computes PDT bounds and VRAPS computes random probing expandability
bounds, both metrics relate to the random probing security of a gadget, and
both tools are based on the maskVerif dependency test algorithm. The main
differences between these tools are twofold. First, STRAPS uses a mix of Monte-
Carlo sampling and full exploration of the sets of probes, whereas VRAPS does
only full exploration. Second, STRAPS computes and uses the simulatability
set for a given set of internal and output probes, while VRAPS only stores
whether the size of the simulatability set exceeds a given threshold. Thanks to
this weaker requirement, VRAPS is able to exploit the set exploration algorithm
of maskVerif, which accelerates the full exploration of the sets of probes by
avoiding an exhaustive enumeration of all subsets [4].
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5.4 Experiments and SOTA Comparison

In this final section, we illustrate how to use our PDT bounding tool and the
PDT composition theorems in order to bound the security of larger circuits, and
to extract useful intuitions about the trade-off between the number of shares and
level of noise required to reach a given security level. We also compare our results
with previous works by Dziembowski et al. [20] and Beläıd et al. [8,9].

We begin by evaluating the impact of using composition theorems instead of
a direct security evaluation. In Sect. 3.2, we concluded that directly analyzing
the security of even a single multiplication gadget in the random probing model
tightly is computationally intensive. On Fig. 7, we show the security of a slightly
more complex ISW(x,SNI-Ref(x2)) gadget evaluated as either the composition
of four gadgets (a split gadget, a squaring, an SNI refresh and an ISW multi-
plication), or as a single gadget (we call it integrated evaluation). We can see
that when the gadget becomes large (n = 5) and for a similar computational
complexity, the results for the PDT composition are statistically tighter thanks
to the lower size of its sub-gadgets. We also observe that, when upper and lower
bounds converge, the security level computed from PDT composition is close
to the one computed by the integrated evaluation, although the latter one is
slightly better. We conclude that the PDT composition technique can provide
useful results in practically relevant contexts where we build gadget compositions
for which the integrated evaluation is not satisfying.
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Fig. 7. Security of a cubing gadget ISW(x, SNI-Ref(x2)). The left plot comes from
PDT composition while the right plot is a direct security evaluation of the full circuit
as a single gadget. The continuous line is an upper bound, while the dashed line is the
stat-only lower bound. Nmax = 2 × 106, Nt = 1000.

Next, we investigate different refreshing strategies when computing the x3

operation with an ISW multiplication gadget. Namely, we compare the situa-
tion with no refreshing which is known to be insecure in the threshold probing
model [16], the simple refreshing with linear randomness complexity which does
not offer strong composability guarantees, and an SNI refresh gadget from [12].
The results are illustrated in Fig. 8. In the first case (with no refreshing), we
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observe the well-known division by two of the statistical security order (reflected
by the slope of the security curves in the asymptotic region where the noise is
sufficient and curves become linear): the security level is asymptotically propor-
tional to p(n−1)/2�. On the other side of the spectrum, the composition with
an SNI refresh guarantees a statistical security order of n − 1. Finally, the most
interesting case is the one of the simple refresh gadget, for which we observe a
statistical security order reduction for n ≥ 3, of which the impact may remain
small for low noise levels. For instance, we can see that for p ≥ 2 × 10−3, the
curves for the simple and the SNI refresh gadgets are almost the same, with the
security order reduction becoming more and more apparent only for lower values
of p. So this analysis provides us with a formal quantitative understanding of a
gadget’s security level which, for example, suggests that depending on the noise
levels, using SNI gadgets may not always be needed.
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Fig. 8. Security of the cubing ISW(x,Ref(x2)), where Ref is identity (no refreshing),
Simple-Ref, or SNI-Ref gadget. The continuous line is an upper bound, while the dashed
line is the stat-only lower bound. Nmax = 108, Nt = 100.

We extend this analysis of a simple gadget to the case of a complete AES
S-box in Fig. 9. All the previous observations remain valid in this case as well.
Furthermore, this figure confirms that our results get close to the ones reported
for concrete worst-case attacks in [18]. Namely, already for the (low) number of
shares and (practical) levels of noise we consider, we observe a statistical security
order of n − 1 for a practically relevant (AES S-box) circuit.6

Eventually, we compare our bounds with state-of-the-art results for the non-
linear part of the AES S-box in Fig. 10, in order to highlight that such tight
results were not available with existing solutions. Precisely, we compare our
results with the works that provide the best bounds in the low-noise region that
we consider: the Simple Refreshing (SR) strategy of Dziembowski et al. [20], and
the first (RPE1) [8] and second (RPE2) [9] sets of gadgets from the Random

6 To make the results more easily comparable, one can just assume connect the leakage
probability with the mutual information of [18] by just assuming that the mutual
information per bit (i.e., when the unit is the field element) equals p.
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Fig. 9. Security of the non-linear part of an AES S-box in F256, where Ref is either an
identity (no refreshing), the Simple-Ref gadget, or the SNI-Ref gadget. The continuous
line is an upper bound, while the dashed line is the stat-only lower bound. Nmax = 108,
Nt = 100.
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Fig. 10. Security of the non-linear part of an AES S-box in F256, based on the best
result of each paper. For the PDT, we take use a SNI refresh gadget. All the circuits
have a size O(n2).



212 G. Cassiers et al.

Probing Expansion strategy of Beläıd et al. We see that amongst the previous
works we consider here, RPE2 with 27 shares achieves the best maximum toler-
ated leakage probability and statistical security order. Our PDT-based analysis
of the SNI-refreshed AES S-box with the ISW multiplication achieves a similar
security level with only 6 shares. In this last experiment, the number of shares n
is an indicator for the circuit size since all schemes have a circuit size in O(n2).
So we conclude that our results enable a significant improvement of the provable
security claims of practical masked circuits in the random probing model.
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Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

16. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

17. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. J. Cryptol. 32(1), 151–177 (2019)

18. Duc, A., Faust, S., Standaert, F.: Making masking security proofs concrete (or how
to evaluate the security of any leaking device), extended version. J. Cryptol. 32(4),
1263–1297 (2019)

19. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 159–188.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 6
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Abstract. In this paper we describe the first improvement of the wire
shuffling countermeasure against side-channel attacks described by Ishai,
Sahai and Wagner at Crypto 2003. More precisely, we show how to get
worst case statistical security against t probes with running time O(t)
instead of O(t log t); our construction is also much simpler. Recall that
the classical masking countermeasure achieves perfect security but with
running time O(t2). We also describe a practical implementation for AES
that outperforms the masking countermeasure for t ≥ 6 000.

1 Introduction

The Masking Countermeasure. The study of circuits resistant against prob-
ing attacks was initiated by Ishai, Sahai and Wagner in [ISW03]. Their construc-
tion is based on the masking countermeasure, where each intermediate variable
x is shared into x = x1 ⊕ · · · ⊕ xn, and the shares xi are processed separately.
The ISW construction offers perfect security; this means that an adversary with
at most t < n/2 probes learns nothing about the secret variables. Rivain and
Prouff showed in [RP10] how to adapt the ISW construction to AES, by working
in F28 instead of F2; in particular, the non-linear part S(x) = x254 of the AES
SBox can be efficiently evaluated with only 4 non-linear multiplications over
F28 , and a few linear squarings. In the last few years, numerous variants and
improvements of the masking countermeasure have been described: for example,
high-order evaluation of any SBOX [CGP+12], high-order table re-computation
[Cor14], minimization of randomness usage [FPS17] and efficient implementa-
tions of high-order masking [JS17,GJRS18].

The main drawback of the masking countermeasure is that the circuit size
is quadratic in the maximum number of probes t in the circuit; namely in the
ISW construction and its variants every AND gate gets expanded into a gadget
of size O(t2); hence the initial circuit C gets expanded into a new circuit of
size O(|C| · t2). One can divide the new circuit into regions corresponding to
each gadget, and by appropriate mask refreshing one can let the adversary put t
probes per region, instead of t probes in the full circuit; the maximum number of
probes then becomes |C| · t instead of t. But the circuit size remains O(|C| · t2),
that is quadratic in the maximum number of probes t per region.

c© International Association for Cryptologic Research 2021
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Statistical Security. To improve the previous complexity, the ISW authors
introduced a weaker security model with statistical security only [ISW03]. In
this model the adversary can still put t probes wherever he wants in the circuit,
but he can now learn a secret variable with some non-zero probability (instead
of zero probability as in the perfect security model); this probability should be
a negligible function of the security parameter k. The authors described a con-
struction in this model with complexity O(|C| ·t log t) for at most t probes in the
circuit. This is only quasi-linear in the number of probes t, so much better than
the classical masking countermeasure. In this asymptotic complexity, a factor
poly(k) is actually hidden in the constant, where k is the security parameter;
namely, to achieve 2−Ω(k) statistical security, the size of the protected circuit in
[ISW03] is actually O(|C| · k10 · t log t).

The above result holds in the stateless model, in which the adversary must put
his t probes in a non-adaptive way, that is before the evaluation of the circuit. The
authors also considered the more useful stateful model, in which the adversary
can move its probes between successive executions of the circuit; however within
an execution the model is still non-adaptive. For the stateful model, the authors
described a construction with complexity O(|C|·t log t+s·t3 log t), where s is the
number of memory cells in the circuit that must be passed from one execution
to the other; for a block-cipher, s would be the number of key bits. Assuming
that the circuit size |C| is significantly larger than the key size s, this is again
better than the classical masking countermeasure with respect to the number of
probes t.

While the masking countermeasure used in the first part of [ISW03] is quite
practical and has been widely studied with numerous improvements, the con-
struction in the statistical model, which appears in the second part of [ISW03],
has never been investigated up to our knowledge. Our goal in this paper is to
describe an improved construction in the statistical model that is better asymp-
totically and moreover practical, while we argue that the original construction
from [ISW03] was essentially unpractical.

The Wire Shuffling Countermeasure from [ISW03]. To achieve the O(t ·
log t) complexity in the statistical model, the ISW paper proceeds in two steps.
First, it considers statistical security in the weaker random probing model, in
which the adversary gets the value of each variable with independent probability
p. This is easy to achieve from the classical masking countermeasure. Namely, if
we apply the masking countermeasure against t = k probes with 2k + 1 shares
(where k is the security parameter), we get a circuit where each gadget has size
at most c · k2 (for some constant c), and secure against k probes per gadget.
These k probes per gadget correspond to a fraction k/(c · k2) = 1/(c · k) of the
gadget wires. Hence if we let p = 1/(10 · c · k), then from Chernoff’s bound, the
probability that in a given gadget the adversary gets more than k probes becomes
a negligible function of k; this gives statistical security in the random probing
model. Starting from a circuit C, we can therefore obtain an intermediate circuit
C ′ of size O(|C| · k2) that is secure in the random probing model with leakage
probability p = Ω(1/k).
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In the second step, the ISW paper describes a construction where each wire i
of the intermediate circuit C ′ is expanded into � wires, such that only one of the �
wires contains the original signal value vi from C ′, while the other wires contain
only a dummy value $; see Fig. 1 for an illustration. We call this construction the
wire shuffling countermeasure, as it consists in randomly shuffling the position of
the signal among those � wires. More precisely, for each execution the position of
the signal vi in the expanded circuit C̃ is selected randomly and independently
among the � wires, for each original wire i of C ′.

vi
�

$

...

$

vi

$

$

Fig. 1. A wire with signal vi in C′ (left), and the corresponding � wires in C̃ (right); only
one of the � wires contain the signal vi, while the others contain the dummy value $.

Consider now a gate from the intermediate circuit C ′. If the two input wires
i and i′ from the intermediate circuit C ′ have their information located at index
j ∈ [1, �] and j′ ∈ [1, �] in the expanded circuit C̃, one must be able to process the
original gate from C ′ without leaking information on vi and vi′ in the process,
except with small probability. One cannot consider all possible index pairs (j, j′)
as the complexity would be quadratic in � (and eventually quadratic in t). Instead
the ISW paper describes a relatively complex construction based on sorting net-
works with complexity O(� log �); it then proves that with � = O(t/p7) wires,
the probability that each original value vi is learned by the adversary is at most
p. This means that the adversary does not learn more from the worst case prob-
ing of the final circuit C̃, than from the p-random probing of the intermediate
circuit C ′. This implies statistical security for C̃ with circuit size O(|C| · t log t),
so better than the classical masking countermeasure with complexity O(|C| · t2).
We stress that for this final circuit C̃, security holds in the worst case probing
model as well, where the adversary can freely choose the position of the t probes
in the circuit (as opposed to the random probing model where every variable
leaks with probability p).

Our Contribution. In this paper we describe a construction that achieves
worst-case statistical security against t probes in the stateless model with time
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complexity O(|C| · t) instead of O(|C| · t log t); our construction is also much
simpler. Our technique is as follows. As in [ISW03], we randomly shuffle the
position of the signal vi among the � wires, independently for each original wire
i of the intermediate circuit C ′. However, we now explicitly compute the index
position ji ∈ [1, �] of each signal vi among the � wires; whereas in ISW this
position was only implicitly determined by the value of the � wires, as one of
them would contain the signal vi while the others would get the dummy value $
(see Fig. 1).

Consider now two wires i and i′ in C ′, for which the signal is located at
positions j ∈ [1, �] and j′ ∈ [1, �] in the expanded circuit C̃. Since the positions j
and j′ of the signal are now explicitly computed, we don’t need to use a sorting
network as in [ISW03] anymore. Instead, we can simply generate a new random
index j′′ ∈ [1, �], and cyclically shift the information corresponding to wire i
by Δ = j′′ − j positions modulo �, and similarly by Δ′ = j′′ − j′ positions
for wire i′. For both inputs the signal is now located at the common position
j+Δ = j′+Δ′ = j′′, so now the signal will be processed at this position j′′. Such
cyclic shift can be computed in time O(�) instead of O(� log �), hence we can
get statistical security with time complexity O(|C| · t) instead of O(|C| · t log t).
Our construction is also much easier to implement in practice, as we can use a
simple table look-up for the cyclic shifts, instead of a complex sorting network.

The main difference between our construction and the original ISW is that
the index positions of the signal values are now explicitly computed in the final
circuit C̃. This means that those index positions can be probed by the adversary,
so we may as well assume that the adversary knows all those index positions.
Our proof of security crucially relies on the fact that as in [ISW03], the adversary
learns those positions only at the evaluation phase, that is after he has committed
his probes in the circuit. Therefore when the adversary learns the exact locations
it is actually too late: we show that he can only learn the signal values with
probability at most p. This means that as previously the adversary does not
learn more from the worst case probing of the final circuit C̃, than from the
p-random probing of the intermediate circuit C ′; this gives worst case statistical
security for our final circuit C̃.

For the stateful construction we must add some additional countermeasure,
because if the adversary knows the position of the signal vi at the end of one
execution, he can directly probe vi at the beginning of the next execution; this
holds for memory cells that must be transmitted from one execution to the next.
In ISW this is achieved by using a t-private encoding of a random cyclic shift
for each pack of � wires. Such t-private encoding has complexity O(t2), and
since for every memory cell this cyclic shift requires a circuit of size O(� log �),
the additional complexity is O(st2� log �), which gives a complexity Õ(st3) for
s memory cells. To get a better complexity we proceed as follows: for each
wire i from C ′ at the end of one execution, we perform a random permutation
of the � = O(t) corresponding wires in C̃, but without processing the index
location explicitly. For this we use a sequence of log2 � layers, where in each
layer the information in all wires of index j and j +2m is randomly swapped, for
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0 ≤ m < log2 �. The complexity is then O(s� log �) = O(st log t), and eventually
the circuit complexity is O(|C| · t log t). We summarize the time and circuit
complexities in Table 1. We see that asymptotically in the stateless model our
construction improves the time complexity but not the circuit complexity; in the
stateful model we improve both the time and circuit complexities.

Finally, we describe an AES implementation of our shuffling countermeasure,
which we compare with an AES implementation of the masking countermeasure.
In practice our shuffling construction outperforms the masking countermeasure
for t ≥ 6 000. We provide the source code in [Cor21].

Table 1. Time and circuit complexity of our new construction vs ISW, where s is the
number of memory cells that must be passed from one execution to the other.

Time complexity Circuit complexity

(RAM model)

Stateless model ISW, Theorem 3 O(|C| · t log t) O(|C| · t log t)
Theorem 6 O(|C| · t) O(|C| · t log t)

Stateful model ISW, Theorem 8 O(|C| · t log t+ s · t3 log t) O(|C| · t log t+ s · t3 log t)
Theorem 9 O(|C| · t+ s · t log t) O(|C| · t log t)

Software Probing Model. For a software implementation we will work in the
RAM model used in algorithmic analysis; see [MS08, Section 2.2]. In this model,
each memory access takes unit time, and every memory cell can store an integer
whose bit-size is logarithmic in the input size; for a polynomial-time algorithm,
this enables to store array indices in a single cell.

Moreover, in the software probing model, we assume that during the exe-
cution the adversary can only probe the input address and output value of a
RAM cell that is read during a table look-up, but not the content of the internal
wires of the circuit implementation of the RAM. This software probing model
was already used for example in the high-order table look-up countermeasure
from [Cor14]. For simplicity we will still describe our construction in terms of an
expanded circuit C̃ as in [ISW03]. For a software implementation our circuit C̃
is therefore augmented with a RAM unit, where the adversary can only probe
the input address and the input/output value, but not the internal wires of the
RAM. For completeness we also provide in the full version of this paper [CS21]
a pure circuit description of our countermeasure, with a proof of security in the
standard wire probing model.

Related Work. In practice, operation shuffling is often used in addition to the
masking countermeasure to improve the resistance against side-channel attacks.
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Operation shuffling consists in randomizing the execution order of the crypto-
graphic blocks when the operations are independent; we refer to [VMKS12] for
a comprehensive study. For example, for AES one can randomize the evaluation
of the 16 Sboxes. In [HOM06], the authors describe an 8-bit implementation of
first-order masking of AES, combined with SBOX shuffling with a random start-
ing index; the technique was extended to a 32-bit implementation in [THM07]. In
[RPD09], the authors investigate the combination of high-order SBOX masking
(but with resistance against first-order attacks only) and shuffling by a random
permutation. Namely the shuffling prevents a second-order DPA attack against
the SBOX masking countermeasure; the authors can then quantify the efficiency
of the main attack paths. The authors of [VMKS12] improve the software imple-
mentation of random permutation shuffling, with an efficient permutation gener-
ator; see also [VML16,Pap18] for a description of shuffling countermeasures with
low randomness usage. The main attack against the shuffling countermeasure is
the “integrated DPA” introduced in [CCD00]; it consists in summing the signal
over a sliding window. If the signal is spread in t positions, the signal will be
reduced by a factor

√
t only, instead of t without the integration; see [VMKS12]

for an improved security analysis.
In summary, operation shuffling has been used in numerous previous work

to improve the practical resistance of an implementation against side-channel
attacks, but not in provable way against t probes for large t. Conversely, the
second part of [ISW03] describes a theoretical construction with complexity
O(t log t) in the statistical model, but it has never been investigated. In this
paper, our goal is to describe an improved construction with provable security
in the same model, moreover with complexity O(t) only, and to compare its
performance in practice with the classical masking countermeasure.

2 Preliminaries

In this section we first recall the perfect privacy model and the masking-based
construction from the first part of [ISW03]. We then recall the statistical security
model and the wire shuffling construction from the second part of [ISW03].
For simplicity we first consider stateless circuits only; we will consider stateful
circuits in Sect. 4.

A deterministic circuit C is a directed acyclic graph whose vertices are gates
or input/output variables, and whose edges are wires. A randomized circuit is a
circuit augmented with gates which have fan-in 0 and output a random bit. The
size of a circuit is defined as the number of gates and its depth is the length of
the longest path from an input to an output.

2.1 The ISW Model for Perfect Security

In the ISW probing model [ISW03], the adversary is allowed to put at most t
probes in the circuit, and must learn nothing from those t probes. For stateless
circuits, both inputs and outputs are hidden in every invocation. For this one
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uses a randomized input encoder I and an output decoder O; the internal wires
of I and O cannot be probed by the adversary.

Definition 1 (Perfect privacy for stateless circuits.). Let T be an effi-
ciently computable deterministic function mapping a stateless circuit C to a
stateless circuit C ′, and let I, O be as above. We say that (T, I,O) is a t-private
stateless transformer if it satisfies:

1. Soundness. The input-output functionality of O ◦ C ′ ◦ I (i.e., the iterated
application of I, C ′, O in that order) is indistinguishable from that of C.

2. Privacy. We require that the view of any t-limited adversary, which attacks
O ◦ C ′ ◦ I by probing at most t wires in C ′, can be simulated from scratch,
i.e. without access to any wire in the circuit. The identity of the probed wires
has to be chosen in advance by the adversary.

2.2 The ISW Construction for Perfect Privacy

We recall the classical ISW construction for achieving perfect privacy. We first
consider the stateless model; we then explain how the construction can be
adapted to the stateful model in Sect. 4. For security against t probes, the con-
struction uses a simple secret-sharing scheme with n = 2t + 1 shares. The three
algorithms Encode, Decode, and Transform are defined as follow:

– Encode I. Each binary input x is mapped to n binary values. First, n − 1
random bits r1, . . . , rn−1 are independently generated. The encoding of x is
composed by these n−1 random values together with rn = x⊕r1⊕ . . .⊕rn−1.
The circuit I computes the encoding of each input bit independently.

– Decode O. The output returned by T (C) has the form y1, . . . , yn. The asso-
ciated output bit of C computed by O is y1 ⊕ . . . ⊕ yn.

– Transform T . Assume without loss of generality that the original circuit C
consists of only XOR and AND gates. The transformed circuit C ′ maintains
the invariant that corresponding to each wire in C will be n wires in C ′

carrying an n-sharing of the value on that wire of C. More precisely, the
circuit C ′ is obtained by transforming the gates of C as follows.
For a XOR gate with inputs a, b and output c, let in C ′ be the corresponding
wires a1, . . . , an and b1, . . . , bn. From c = a ⊕ b =

⊕n
i=1 ai ⊕ bi, we let ci =

ai ⊕ bi for 1 ≤ i ≤ n.
Consider an AND gate in C with inputs a, b and output c; we have c = a∧b =⊕

i,j aibj . In the transformation of this gate, intermediate values zi,j for i 	= j
are computed. For each 1 ≤ i < j ≤ n, zi,j is computed uniformly random,
while zj,i is set to (zi,j ⊕ aibj) ⊕ ajbi. Now, the output bits c1, . . . , cn in C ′

are defined to be the sequence ci = aibi ⊕ ⊕

j �=i

zi,j ; see the full version of this

paper [CS21] for an algorithmic description of the AND gadget.

In the transformed circuit C ′ = T (C), every XOR gate and AND gate in C
are therefore expanded to gadgets of size O(n) and O(n2) respectively, and the
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gadgets in C ′ are connected in the same way as the gates in C. This completes
the description of T .

Theorem 1 (Perfect privacy, stateless model [ISW03]). The above con-
struction is a perfectly t-private stateless transformer (T, I,O), such that T
maps any stateless circuit C of depth d to a randomized stateless circuit of size
O(|C| · t2) and depth O(d log t).

2.3 The Region Probing Model and t-SNI Security

The above privacy result holds in the worst case probing model, where the adver-
sary can freely chose the position of the t probes in the circuit. Alternatively
one can consider the weaker random probing model, where each wire leaks with
probability p. To prove security in the random probing model, we first need to
consider worst-case privacy in the region probing model, where the adversary
can put t probes per region [ADF16], instead of t probes in the full circuit.
Recall that a circuit C is a directed acyclic graph whose vertices are gates and
whose edges are wires. We partition the set of gates of the circuit into a num-
ber of regions, and a wire connecting two gates can therefore meet at most two
regions.

The region probing model was already considered in [ISW03], with one region
per gadget. The authors claimed that security in this model is achieved thanks to
the re-randomization property of the outputs of the AND gadget: for each original
output bit, the encoded outputs are (n − 1)-wise independent even given the
entire n-encoding of the inputs; this would imply security against a stronger type
of adversary who may observe at most t′ wires in each gadget, where t′ = Ω(t).
However we argue that this re-randomization property is actually not enough
to achieve security in the region probing model: we exhibit in the full version
of this paper [CS21] a simple counterexample, i.e. a gadget achieving the re-
randomization property but insecure in the region probing model.

The required property for achieving security in the region probing model is
actually the t-SNI notion introduced in [BBD+16]. The authors showed that the
notion allows for securely composing masked algorithms; i.e. the t-SNI of a full
construction can be proven based on the t-SNI of its component gadgets.

Definition 2 (t-SNI security [BBD+16]). Let G be a gadget taking as input
n shares (ai)1≤i≤n and n shares (bi)1≤i≤n, and outputting n shares (ci)1≤i≤n.
The gadget G is said to be t-SNI secure if for any set of t1 probed intermediate
variables and any subset O of output indices, such that t1 + |O| ≤ t, there exist
two subsets I and J of input indices which satisfy |I| ≤ t1 and |J | ≤ t1, such
that the t1 intermediate variables and the output variables c|O can be perfectly
simulated from a|I and b|J .

To achieve privacy in the region probing model, we consider the ISW con-
struction from Sect. 2.2, in which we additionally perform an (n − 1)-SNI mask
refreshing algorithm as inputs of each XOR and AND gadgets. Such mask
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refreshing can be based on the AND gadget, since as showed in [BBD+16], the
AND gadget achieves the (n − 1)-SNI security property (see the full version of
this paper [CS21] for a concrete mask refreshing algorithm). We define each
region as comprising an AND or XOR gadget, and the mask refreshing of the
corresponding output variable, so that each output z(j) is used only once in the
next region; see Fig. 2 for an illustration.

Theorem 2 (t-privacy in the region probing model). Let C be a circuit
of fan-out f . Let (I,O, T ) be the previous transformer with n = 2t + 1 shares,
where a (n − 1)-SNI mask refreshing is applied as input of each XOR and AND
gadgets. The transformed circuit is t-private secure where the adversary can put
at most t probes per regions, each of size O(f · t2).

∧

R

R

R

...

x
y

z(1)

z(2)

z(f)

Fig. 2. A region comprises the AND (or XOR) gadget, and the mask refreshing of the
output variable.

We provide the proof in the full version of this paper [CS21]. Note that any
circuit C can be converted into a circuit of fan-out f = 2; therefore we can
always obtain regions of size O(t2).

2.4 Security in the Random Probing Model

We recall below the privacy definition when the adversary learns each wire with
probability p (average-case security), instead of freely choosing the positions of
the probes as above (worst-case security); this is the random probing model
[ISW03].

Definition 3 (Random probing model [ISW03]). A circuit transformer
T = T (C, k) is said to be (statistically) p-private in the average case if C ′ =
T (C, k) is statistically private against an adversary which corrupts each wire in
C ′ with independent probability p. That is, the joint distribution of the random
set of corrupted wires and the values observed by the adversary can be simulated
up to a k−ω(1) statistical distance.
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From Theorem 2, the ISW circuit transformer from Sect. 2.2 with 2k + 1
shares is perfectly private with respect to any adversary corrupting k wires per
region. Since each region has size O(k2), it follows from Chernoff’s bound that
the view of an adversary corrupting each wire with probability p = Ω(1/k) can
be perfectly simulated, except with negligible failure probability. We provide the
proof of Lemma 1 in the full version of this paper [CS21].

Lemma 1 (Random probing security [ISW03]). There exists a circuit
transformer T (C, k) producing a circuit C ′ of size O(|C| · k2), such that T is
Ω(1/k)-private in the average case.

2.5 Worst-Case Statistical Security Model

The masking countermeasure recalled in Sect. 2.2 achieves perfect security
against t probes with complexity O(t2). To obtain a construction with com-
plexity O(t · log t) only, the authors of [ISW03] introduced a relaxation of the
security model, in which one tolerates a leakage of the secrets, albeit with a
negligible probability; this is called the statistical model of security. We stress
that with respect to the probes we are still working in the worst case model, in
which the adversary can freely chose the position of the t probes (as opposed
to the random probing model above in which every wire leaks with probability
p). The definition below is similar to the perfect privacy model, except that now
the simulation can fail with negligible probability. For this worst-case statistical
model, our main goal in this paper is to improve the wire shuffling countermea-
sure introduced in [ISW03], with a running time O(t) instead of O(t · log t).

Definition 4 (Statistical privacy for stateless circuits). Let T be an effi-
ciently computable deterministic function mapping a stateless circuit C to a
stateless circuit C̃, and let I, O be as above. We say that (T, I,O) is a statisti-
cally t-private stateless transformer if it satisfies:

1. Soundness. The input-output functionality of O ◦ C̃ ◦ I (i.e., the iterated
application of I, C̃, O in that order) is indistinguishable from that of C.

2. Privacy. We require that the view of any t-limited adversary, which attacks
O◦C̃◦I by probing at most t wires in C̃, can be simulated except with negligible
probability. The identity of the probed wires has to be chosen in advance by
the adversary.

2.6 The ISW Construction for Statistical Privacy

We now recall the statistically private construction from [ISW03] that achieves
complexity O(t · log t). For simplicity we first consider the case of stateless cir-
cuits; stateful circuits will be considered in Sect. 4. The construction proceeds
in two steps. First one applies the classical masking countermeasure, namely
the circuit transformer T (C, k) guaranteeing p-privacy in the average case, for
p = Ω(1/k) with security parameter k; see Lemma 1 from Sect. 2.4. Then one
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transforms its output C ′ into a larger circuit C̃, where only a fraction of the
computation is useful. Namely the circuit C̃ will perform the same computation
as C ′, but only on a small random subset of its wires; the remaining wires of C̃
will contain no useful information for the adversary.

The worst-case probing security of the final circuit C̃ will reduce to the p-
random probing security of C ′ as follows. In the stateless model the adversary
must commit its probes before the circuit evaluation. The subset of useful wires
in the final circuit C̃ will be only determined during the invocation of C̃, and
therefore it will be independent of the set of corrupted wires. This implies the
adversary in C̃ will be able to obtain information about the original wires in
C ′ with small probability only; hence the worst-case probing security of C̃ will
follow from the p-random probing security of C ′.

Thus, the author’s construction transforms the circuit C ′ = T (C, k) to a
circuit C̃ as follows. For each wire i of C ′ one considers � wires of C̃ labeled
(i, 1), . . . , (i, �). Every such wires can take a value from the set {0, 1, $}. For
every wire i in C ′ carrying a value vi ∈ {0, 1}, the wires (i, 1), . . . , (i, �) in C̃ will
carry the value vi in a random position (independently of other �-tuples), and
the value $ in the remaining � − 1 positions; see Fig. 1 for an illustration.

Formally we define the Encode’ and Decode’ algorithms for encoding the input
wires and decoding the output wires of the intermediate circuit C ′. Note that
these algorithms must eventually be composed with Encode and Decode from
Sect. 2.2.

– Encode’. To encode a value v, first generate at random an index j←$ [1, �]
and output an �-tuple in which v will be the j-th element, while the other
elements carry a dummy value $. That is, return ($, . . . , $, v, $, . . . , $), where
v is at the j-th position.

– Decode’. Given a �-tuple ($, . . . , $, v, $, . . . , $), return v.

We now describe the transformation applied to every gate of the intermediate
circuit C ′. Suppose that vi = vi1 ∗ vi2 , i.e., the value of wire i in C ′ is obtained
by applying a boolean operation ∗ to the values of wires i1, i2 in C ′. Such a gate
in C ′ is replaced with a 2�-input, �-output gadget in C̃. The gadget first puts
both values vi1 and vi2 in random but adjacent positions, and then combines
them to obtain the value vi1 ∗ vi2 in a randomly defined wire out of the � output
ones. For this the gadget makes use of sorting networks as a building block. A
sorting network is a layered circuit from � integer-valued input wires to � integer-
valued output wires, that outputs its input sequence in a sorted order1. More
technically, the gate is processed as follow:

– Preprocessing. Compute �+1 uniformly and independently random integers
r, r1, . . . , r� from the range [0, 2k], where k is the security parameter. For each
1 ≤ j ≤ �, use the values vi1,j , vi2,j (of wires (i1, j) and (i2, j)) to form a pair
(keyj , valj) such that:

1 The authors of [ISW03] use the AKS network [AKS83], which achieves the optimal
parameters of O(� log �) size and O(log �) depth.



226 J.-S. Coron and L. Spignoli

1. keyj is set to rj if vi1,j = vi2,j = $ and to r otherwise;
2. valj is set to $ if both vi1,j , vi2,j are $; to a bit value b if one of vi1,j ,vi2,j

is b and the other is $, and to b1 ∗ b2 if vi1,j = b1 and vi2,j = b2.
– Sorting. A sorting network is applied to the above �-tuple of pairs using key

as the sorting key. Let (u1, . . . , u�) denote the �-tuple of symbols valj sorted
according to the keys keyj .

– Postprocessing. The jth output vj is obtained by looking at uj , uj+1, uj+2:
if uj , uj+1 	= $ then vj = uj ∗ uj+1, if uj = uj+2 = $ and uj+1 	= $ then
vj = uj+1, and otherwise vj = $.

This terminates the description of the construction. The above transforma-
tion works because if the input signals vi1 and vi2 are initially located at positions
j1 and j2 for some j1 	= j2, then by definition keyj1 = keyj2 = r, and therefore
after sorting by keyj the signal values vi1 and vi2 will be contiguous; then at the
postprocessing phase the output signal vi1 ∗ vi2 will be computed, and located
at some random position j3.2 This gadget can be implemented by a circuit of
size O(k · � log �).

The following lemma proves the worst-case t-private security of the final cir-
cuit C̃, from the p-random probing security of the intermediate circuit C ′. A
minor difference is that we use � = O(t/p7) instead of � = O(t/p4) in [ISW03,
Lemma 2]. We claim that this is indeed the correct bound, as it comes from the
relative size of the maximal matching of a graph of degree 4, which is at most
1/7 (and not 1/4 as used in the proof of [ISW03, Lemma 2], see for example
[BDD+04]). Note that this technicality does not change the asymptotic behav-
ior with respect to the number of probes t which is still O(t · log t), only the
dependence with respect to the security parameter k.

Lemma 2. Suppose that C ′ is p-private in the average case. Then the circuit
C̃, constructed with � = O(t/p7), is statistically t-private in the worst case.

The following theorem proves the worst-case statistical t-privacy of the circuit
C̃. It is the same as [ISW03, Theorem 3], except that we make the dependence
of the circuit size in the security parameter k more explicit; this is to enable a
comparison with our new construction, which has an improved complexity not
only with respect to the number of probes t but also with respect to k.

Theorem 3. There exists a statistically t-private stateless transformer
(T̃ , Ĩ , Õ), such that T̃ (C, k) transforms a circuit C to a circuit C̃ of size
O(|C| · k10 · t · (log k + log t)).

Proof. The worst-case statistical t-privacy of C̃ follows from Lemma 2. The inter-
mediate circuit C ′ = T (C, k) has complexity O(|C| · k2). Then C ′ is expanded
by a factor O(k · � log �); from Lemma 2 and with p = Ω(1/k), one can take
� = O(t · k7); the expansion factor is therefore O(k · (t · k7) log(t · k7)) =
O(k8·t·(log t+log k)). The final complexity is therefore O(|C|·k10·t·(log k+log t)).

�
2 The same holds if j1 = j2.
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2.7 Random Gate-Probing Model

For proving the security of our new construction, it will be more efficient to work
in a slight variant of the random probing model for the intermediate circuit C ′,
in which we assume that every gate of the circuit leaks all its information with
probability p, instead of every wire. When a gate is leaking, all its input and
output wires are leaked (see Fig. 3 for an illustration); we call this variant the
random gate-probing model. We also assume that the input wires in C ′ are also
leaking with probability p; this is equivalent to considering a “copy gate” applied
to each input and also leaking with probability p. Given a circuit C and a set of
wires W , we define CW as the value of the wires in W .

a

b
c

p

p

p
(a)

(b)

(c)

a

b
c

p (a, b, c)

Fig. 3. Random probing model (left) vs random gate-probing model (right).

Definition 5 (Random gate-probing security). Consider a randomized
circuit C ′ and a random sampling W of its internal wires, where each gate Gi

of C ′ leaks with independent probability pi. The circuit C ′ is said (p, ε)-random
gate-probing secure if for any (pi)i with pi ≤ p, there exists a simulator SC′ such
that SC′(W ) id= C ′

W (Encode(�x)) for every plain input �x, except with probability
at most ε over the sampling of W .

Note that our above definition is slightly stronger than Definition 3 from
[ISW03]. Namely in Definition 3 the simulator produces both the random sam-
pling W and the leaking values, whereas in the above definition the simulator
is given W as input and must perfectly simulate the leaking values, except with
probability at most ε over the sampling of W . This slightly stronger defini-
tion will be more convenient for proving the security of our construction. As
in Lemma 1, the masking countermeasure is proven secure in the random gate-
probing model via the Chernoff’s bound.

Lemma 3. There exists a circuit transformer T (C, k) producing a circuit C ′ of
size O(k2|C|), such that T achieves (Ω(1/k), ε)-random gate-probing security,
where ε is a negligible function of the security parameter k.
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3 Our New Shuffling Countermeasure

In this section we describe our new construction that achieves worst-case probing
security with running time O(t) instead of O(t · log t) in [ISW03]. For simplicity
we consider stateless circuits only; we will consider stateful circuits in Sect. 4.

3.1 Description

Our construction proceeds in two steps, as in the ISW construction recalled in
Sect. 2.6. First we transform the original circuit C into an intermediate circuit
C ′ = T (C, k) with n = 2k + 1 shares, using Theorem 2 from Sect. 2.3. Then we
transform the circuit C ′ into a circuit C̃ as follows. The main difference with the
original ISW construction recalled in Sect. 2.6 is the usage of a “shuffling index”
storing the position of each signal wire from C ′ in the final circuit C̃.

Wires. For each wire of i of C ′ we consider � wires of C̃ labeled (i, 0), . . . , (i, �−1)
and an index ji. Let a0, . . . , a�−1 be the value of the � wires. The circuit C̃ will
make the invariant that if wire i in C ′ has value v, then this value appears at
position ji in C̃, that is aji = v, while the value of the over wires is arbitrary.

Encoding and Decoding. We define the Encode’ and Decode’ algorithms for
encoding the input wires and decoding the output wires of the intermediate cir-
cuit C ′. As in Sect. 2.6 these algorithms must be composed with Encode and
Decode from the masking countermeasure (Sect. 2.2). Note that the index posi-
tion of the signal is computed explicitly; therefore we don’t need the dummy
element $ as in Sect. 2.6 for the � − 1 other wires, and at the encoding phase we
can simply assign them to 0.

– Encode’. To encode a value v, first generate at random an index j←$ [0, � −
1] and output the encoding (j, (0, . . . , 0, v, 0, . . . , 0)), where v is at the j-th
position.

– Decode’. Given (j, (a0, . . . , a�−1)), return aj .

Algorithm 1. Gate ∗ processing
Input: Encodings (j, (a0, a1, . . . , a�−1)) and (j′, (b0, b1, . . . , b�−1))
Output: Index j′′ and array (c0, c1, . . . , c�−1) such that cj′′ = aj ∗ bj′

1: j′′←$ [0, �)
2: Δ = j′′ − j, Δ′ = j′′ − j′

3: For all 0 ≤ i < �, let a′
i ← ai−Δ and b′

i ← bi−Δ′ � a′
j′′ = aj , b′

j′′ = bj′ .
4: For all 0 ≤ i < �, let ci ← a′

i ∗ b′
i � cj′′ = aj ∗ bj′ .

5: return (j′′, (c0, c1, . . . , c�−1))
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Gates. We consider a gate G in C ′, taking as input a and b, and outputting
c = a∗b where ∗ ∈ {XOR,AND}. We provide a formal description in Algorithm 1
above, where all indices computations are performed modulo �; see also Fig. 4 for
an illustration. Let (ai)0≤i<� and (bi)0≤i<� be the corresponding input wires in C̃,
and let j and j′ be the corresponding indexes, with a = aj and b = bj′ the signal
values in C ′. To process the gate in C̃, one generates a random j′′ ← [0, � − 1]
and then cyclically shifts the �-array (ai) by j′′ − j positions modulo �; similarly
the �-array (bi) is cyclically shifted by j′′ − j′ positions. The input signals a
and b are then located at common position j′′, in which the gate G can now be
processed; the same gate G is also applied on the other positions that contain
arbitrary values; eventually the output signal c is located at position j′′.

Finally, a random gate r ← {0, 1} is expanded into a gadget outputting
(j, (r0, . . . , r�−1)) with ri ← {0, 1} for all 0 ≤ i < � and j ← [0, �). This termi-
nates the description of the construction.

a
b a ∗ b

a�−1

...

...

a0

a = aj
cyclic
shift

Δ=j′′−j

−j

j′′

j′′

b0 ...
b = bj′

...

b�−1

−j′

j′′

cyclic
shift

Δ′=j′′−j′

. . .

. . .

a′
0

b′
0

a′
j′′

b′
j′′

a′
�−1

b′
�−1

a0 ∗ b0
...

...

aj′′ ∗ bj′′ = a ∗ b

a�−1 ∗ b�−1

Fig. 4. Original gate in C′ (left) and shuffling gadget in C̃ (right). The bold wires
contain the original signal value from C′; the other wires contain only dummy values.

Theorem 4. The transform defined above achieves the soundness property.

Proof. The intermediate circuit C ′ = T (C, k) computes the same function as
C. Moreover every expanded gate in C̃ computes the same gate as C ′. Namely
consider the gate c = a ∗ b in C ′. In the final circuit C̃ we have cj′′ = a′

j′′ ∗ b′
j′′ =

aj′′−Δ∗bj′′−Δ′ = aj ∗bj′ = a∗b = c as required. Therefore C̃ = T̃ (C, k) computes
the same function as C. �
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Note that Algorithm 1 can be implemented via a table look-up. Namely the
� wires can be stored in an array T [i] for 0 ≤ i < �, with T [j] = v for the signal
index j, and the cyclic shift is performed as in Step 3, that is with the loop
T ′[i] ← T [i − Δ mod �] for each 0 ≤ i < �. The running time of Algorithm 1 is
O(�) per gadget.

3.2 Shuffling Security of a Gadget and Composition

As in [ISW03], our goal is to show that the adversary does not learn more from
the worst-case probing of the final circuit C̃ than from the p-random probing
of the intermediate circuit C ′. For this we proceed with a similar compositional
approach as in [BBD+16]: 1) we introduce a new security definition for a single
gadget in the expanded circuit C̃, 2) we prove that our shuffling gadget from
the previous section satisfies this definition, and 3) we show how to get security
for the full circuit C̃ by composition. The main benefit of this approach is that
3) only depends on 1), therefore we can later modify the shuffling gadget and
still get security for the full circuit, as long as the shuffling gadget satisfies the
security definition.

Definition 6 (Shuffling security). We say that a randomized gadget achieves
�-shuffling security if any set of t probes, excluding the input wires of the gadget,
can be perfectly simulated from scratch, except with probability at most t/�, where
the probability is taken over the randomness used by the gadget.

In the above definition we exclude the probing of the gadget input wires,
because in the composition the probing of the input wires of a gadget can be
handled by the probing of the output wires of a previous gadget (except for the
input wires of C̃ which we will handle separately).

Lemma 4. The gadget G̃ as described in Algorithm 1 is �-shuffling secure.

Proof. We must construct a simulator that can simulate any set of t probes,
with failure probability at most t/�. In the simulation the input indices j, j′

are fixed, as well as the input arrays (a0, . . . , a�−1) and (b0, . . . , b�−1). From
the definition the adversary cannot probe those input arrays; in particular, the
adversary cannot probe the signal a = aj and b = bj′ .

The proof is based on the fact that the adversary must commit to the position
of the probes before the execution of the gadget. Therefore in the simulation
the probes have fixed positions while the index j′′ is randomly and uniformly
distributed in [0, �). This implies that for a fixed i ∈ [0, �), the variable a′

i contains
the secret value a with probability at most 1/�; the same holds for the variables
b′
i and ci. This implies that the t probes can be perfectly simulated, except with

probability at most t/�. �



Secure Wire Shuffling in the Probing Model 231

a

b
c

p =
t

�

t

. . .

. . .

Fig. 5. A set of t probes in a shuffling gadget in C̃ (right) correspond to a gate-leaking
probability at most p = t/� in C′ (left).

Composition. We now prove the worst-case statistical t-privacy of the final
circuit C̃, from the p-random probing security of the intermediate circuit C ′; see
Fig. 5 for an illustration. We provide the proof in the full version of this paper
[CS21].

Lemma 5. Suppose that C ′ is (p, ε)-random gate probing secure. Then, the cir-
cuit C̃ ′ constructed as described above with � := t/p achieves ε-statistical security
in the worst case against t probes.

Eventually our construction has better running time O(|C| · t) but same
circuit complexity O(|C| · t · log t) as ISW.

Theorem 5. There exists a statistically t-private stateless transformer
(T̃ , Ĩ, Õ), such that T̃ (C, k) transforms a circuit C into a circuit C̃ of running
time O(|C| · k3 · t) and size O(|C| · k3 · t · (log k + log t)).

Proof. From Lemma 5, the circuit C̃ achieves statistical privacy in the stateless
worst-case model. The intermediate circuit C has size O(|C|k2), while the final
circuit has running time O(|C|k2�) and size O(|C|k2� log �). With p = t/� and
p = Ω(1/k) to achieve average-case privacy for C ′, we get running time O(|C| ·
k3 · t). and size O(|C| · k3 · t · (log k + log t)). �

3.3 Improved Time Complexity

From the proof of Lemma 5 the previous circuit C̃ is actually secure in the
region probing model where the adversary can put t probes per gadget in C̃. We
can however further optimize the circuit complexity if we only require security
against a total of t probes in the full circuit C̃. Namely in that case we can
consider that each gadget of C̃ has ti probes with the condition

∑
i ti ≤ t,

instead of ti ≤ t for all i in the proof of Lemma 5. This means that for each
corresponding gate in the intermediate circuit C ′, we can consider a leakage
probability pi = ti/� such that

∑
i pi ≤ μ over the full circuit C ′, with μ = t/�.

Note that this is a much looser condition than in Definition 5, where we required
pi ≤ p = t/� for all gates. In particular, if we take t/� > 1, we can tolerate a
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leakage probability pi = 1 for a fraction of the gates in C ′, as long as
∑

i pi ≤ t/�
over all gates of C ′; see Fig. 6 for an illustration. To handle this looser condition,
we modify the definition of random gate probing security as follows.

p2 =
t2
�

p1 =
t1
�

pi =
ti
�

∑

i

pi ≤ t

�

∑

i

ti ≤ t

t1

. . .

. . .

t2

. . .

. . .

ti

. . .

. . .

Fig. 6. A total of t probes in the final circuit C̃ (right) corresponds to a total of leaking
probabilities at most t/� in the intermediate circuit C′ (left).

Definition 7 (Random Σ-gate-probing security). Consider a randomized
circuit C ′ and a random sampling W of its internal wires, where each gate Gi

of C ′ leaks with independent probability pi. The circuit C ′ is said (μ, ε)-random
Σ-gate-probing secure if for any (pi)i with

∑
i pi ≤ μ, there exists a simulator

SC′ such that SC′(W ) id= C ′
W (Encode(x)) for every plain input x, except with

probability at most ε over the sampling of W .

Note that here
∑

i pi is the average number of leaking gates in the circuit
C ′. Thanks to the looser condition

∑
i pi ≤ μ, when applying Chernoff’s bound

on the intermediate circuit C ′ = T (C, k) secure against k probes, we can prove
random Σ-gate-probing security with μ = Ω(k) instead of Ω(1/k). Since we are
interested in a practical implementation of our countermeasure (see Sect. 6), we
now provide concrete values for μ(k) and ε(k) for the intermediate circuit C ′

based on the masking countermeasure; we provide the proof in the full version
of this paper [CS21].

Lemma 6. There exists a circuit transformer T (C, k) producing a circuit C ′ of
size O(k2|C|), such that T achieves (μ, ε)-random Σ-gate-probing security for
μ = Ω(k) and ε a negligible function of the security parameter k. In particular,
one can take μ = k/4 and ε = 2−k/(12 log 2).

Note that the above circuit C ′ does not need to be secure in the region
probing model with k probes per region; namely in the proof of Lemma 6 only
the total number of probes matters. Therefore we can use n = k + 1 shares with
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appropriate mask refreshing as in [BBD+16] (instead of n = 2k+1). Eventually,
we obtain a statistically t-private stateless transformer with complexity O(|C| ·
k · t), instead of O(|C| · k3 · t) in Theorem 5; as previously, we proceed by first
proving the worst-case security of C̃ from the average-case security of C ′.

Lemma 7. Suppose that C ′ is (μ, ε)-random Σ-gate-probing secure. Then, the
circuit C̃ constructed as described above with � := t/μ achieves ε-statistical secu-
rity in the worst case against t probes.

Proof. The proof is essentially the same as the proof of Lemma 5. Instead of
having each gadget G̃i simulator Si fail with probability pi ≤ p, the failure
probabilities are still independent but with the looser condition

∑
i pi ≤ μ = t/�.

This gives a sampling W of the gates Gi in C ′ with the same condition
∑

i pi ≤ μ.
Since C ′ is (μ, ε)-random Σ-gate-probing secure, we obtain that C̃ achieves ε-
statistical security in the worst case against t probes. �
Theorem 6. There exists a statistically t-private stateless transformer
(T̃ , Ĩ, Õ), such that T̃ (C, k) transforms a circuit C into a circuit C̃ of running
time O(|C| · k · t) .

Proof. From Lemma 7, the circuit C̃ achieves worst-case statistical t privacy in
the stateless model. Its running time is O(|C| ·k2 ·�). With � = t/μ and μ = k/4,
the running time is O(|C| · k · t). �

Note that with running time O(|C|·k ·t) instead of O(|C|·k10 ·t·(log k+log t))
for ISW (see Theorem 3), our construction has an improved complexity also with
respect to the security parameter k. In Sect. 6 we describe an implementation
for AES that is practical for large t compared to the masking countermeasure,
while the original ISW would be completely unpractical.

3.4 Pure Circuit Description

The construction described in Sect. 3.1 can be implemented using table look-ups
and is secure in the software probing model, where the adversary can only probe
the input address and input/output value of a RAM cell, but not the content
of the internal wires of the circuit implementation of the RAM (see Sect. 1).
However it is easy to obtain a pure circuit implementation of the construction,
using a circuit implementation of a cyclic shift, with complexity O(� · log �). The
construction achieves worst-case statistical privacy with complexity O(t log t), as
the original ISW construction. We refer to the full version of this paper [CS21]
for the description and security proof.

4 Statistical Security in the Stateful Model

In this section we consider the more useful stateful model, in which the adversary
can move its probes between successive executions of the circuit. We first recall
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the ISW construction for worst-case statistical security in the stateful model; we
will describe our improved construction in Sect. 5.

A stateful circuit is a circuit augmented with memory cells. A memory cell
is a stateful gate with fan-in 1: on any invocation the gate outputs its previous
input, and stores the current input for the next invocation. We denote by C[s0]
the circuit C with memory cells initialized with the initial state s0. A stateful
circuit can also have external input and output wires. For example, for a block-
cipher, the secret key is stored in the memory cells, while the input wires receive
the plaintext, and the output wires produce the ciphertext.

4.1 Perfect Privacy for Stateful Circuits

We recall the perfect privacy definition from [ISW03]. In the stateful case, we
consider the circuit inputs and outputs as public; only the internal state is kept
private. The adversary can now access the transformed circuit and invoke it
multiple times, choosing freely the new invocation inputs; the adversary may
choose the next input based on what it has observed in the previous execution.

Definition 8 (Perfect privacy for stateful circuits.). Let T be an effi-
ciently computable randomized algorithm mapping a stateful circuit C along with
an initial state s0 to a stateful circuit C ′ along with an initial state s′

0. We say
that T is a t-private stateful transformer if it satisfies:

1. Soundness. The input-output functionality of C initialized with s0 is indis-
tinguishable from that of C ′ initialized with s′

0. This should hold for any
sequence of invocations on an arbitrary sequence of inputs. In other words,
C[s0] and C ′[s′

0] are indistinguishable to an interactive distinguisher.
2. Privacy. We require that C ′ be private against a t-limited interactive adver-

sary. Specifically, the adversary is given access to C ′ initialized with s′
0 as its

internal state. Then, the adversary may invoke C ′ multiple times, adaptively
choosing the inputs based on the observed outputs. Prior to each invocation,
the adversary may fix an arbitrary set of t internal wires to which it will gain
access in that invocation. To define privacy against such a t-limited adversary,
we require the existence of a simulator which can simulate the adversary’s view
using only a black-box access to C ′, i.e., without having access to any internal
wires.

The ISW construction for perfect privacy in the stateful model proceeds as
follows; see Fig. 7 for an illustration. We use the stateless transformer T (C, t)
secure in the region probing model, with t probes per region. Let denote by
Et(x) the encoding used by the stateless transformer, where x is the input being
encoded. The initial state s0 of C is encoded as s′

0 = Et(s0).3 At the i-th
invocation, the circuit C ′ = T (C, t) takes as input an encoded state s′

i and
outputs an encoded state s′

i+1 that is passed to the next circuit execution. Note

3 Here we can use Et instead of E2t in [ISW03] because we consider a circuit C′ already
secure in the region probing model.
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Fig. 7. Illustration of the stateful model. The initial encoding s′
0 used in the first exe-

cution gets refreshed into s′
1 before getting passed to the next execution. The adversary

can put t probes per region within each execution, where the position of the probes
can be changed between executions.

that the encoded state s′
i must be refreshed after each execution; otherwise

the adversary could recover the internal state by probing the encoded state t
probes at a time; in the circuit C ′ this is done by using a (n − 1)-SNI mask
refreshing R as output. For a block-cipher, the internal state corresponds to the
key whose encoding must be refreshed after each execution. The regular input
in of C is unprotected, and need not be encoded before getting fed into C ′; for
each execution of C ′, this input is first encoded using Et and the output out is
decoded using the corresponding Dt. This implies that these inputs and outputs
are known to the adversary, so that they can be given for free to the simulator.

Perfect privacy in the stateful model follows from perfect privacy in the state-
less case, thanks to the region probing model. Namely, a sequence of invocations
of the stateful circuit C ′ can be unwound into a larger stateless circuit C ′′; in the
unwound circuit, the adversary can corrupt up to t wires in each region of each
circuit produced by the stateless transformation. This means that every new cir-
cuit execution corresponds to adding more regions in the unwound circuit (see
Fig. 7). However the adversary can move its probes between circuit executions;
therefore in the unwound circuit C ′′, the probes corresponding to the i-th exe-
cution must be simulated without knowing the position of the probes from the
(i + 1)-th execution. To perform these successive simulations we must consider
a slightly stronger definition than t-SNI security for mask refreshing between
successive executions, where in a given gadget the set of input variables I that
must be known for the simulation, does not depend on the set of output vari-
ables O to be simulated; we refer to the full version of this paper [CS21] for the
definition, and a proof that the AND-based mask refreshing algorithm satisfies
this stronger definition.

Theorem 7 (Perfect privacy, region stateful model). There exists a per-
fectly t-private stateful circuit transformer secure in the region probing model
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which maps any stateful circuit C of size |C| and depth d to a randomized state-
ful circuit of size O(|C| · t2) and depth O(d log t).

4.2 Worst-Case Statistical Privacy in the Stateful Model and the
ISW Construction

The definition of worst-case statistical privacy in the stateful model is the same
as for perfect privacy, except that the simulator can now fail with negligible
probability ε; we recall the definition in the full version of this paper [CS21]. We
now recall the ISW construction. As for the stateless case, one proceeds in two
steps, with each wire in the intermediate circuit C ′ being expanded into � wires
in the final circuit C̃, such that only one of the � wires contains the original
signal vi from C ′, while the other wires contain only the dummy value $.

However for the stateful construction we must add some additional counter-
measure, because the adversary can move its probes between executions, and
therefore could accumulate knowledge about the locations of the signal in C̃.
This is easy to see in our stateless construction from Sect. 3.1: since the adver-
sary can probe the index location j of a signal v at the end of an execution,
he could directly probe v at the beginning of the next execution; this holds for
memory cells that must be transmitted from one execution to the next. In ISW
this is prevented by using a perfectly t-private encoding of a random cyclic shift
for each pack of � wires, for each signal vi from C ′ that must be transmitted from
one execution to the other. Such t-private encoding has complexity O(t2), and
since for every memory cell this cyclic shift requires a circuit of size O(� log �),
the additional complexity is O(st2� log �), which gives a complexity Õ(st3) for s
memory cells. We recall below the theorem from [ISW03].

Theorem 8 (Worst-case statistical privacy, stateful model). There
exists a statistically t-private stateful transformer T̃ , such that T̃ (C, k) maps
a circuit C with s memory cells to a circuit C̃ of size O(|C| · t log t + s · t3 log t).
The depth of C̃ is the same as that of C, up to polylog factors.

5 Our Construction in the Statistical Stateful Model

In this section we describe two constructions in the worst-case statistical state-
ful model that achieve a better complexity bound than the ISW construction
recalled in the previous section. Recall that in our stateless construction from
Sect. 3.1, the position j ∈ [0, �−1] of the signal vi among the � wires is explicitly
computed; we can therefore assume that it is known to the adversary at the
end of a given execution. For the stateful model, this means that without any
additional countermeasure, the adversary could directly probe the signal vi at
the beginning of the next execution; this holds for the hidden state that must
be transmitted from one execution to the other.

To handle the adaptive case of the stateful model, we extend Definition 6 by
requiring that even after having observed t probes in the gadget, any set O of
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output probes can be simulated from scratch, except with probability at most
2t/�. Note that the construction of Fig. 4 from the stateless case cannot satisfy
this definition, since the adversary could directly probe the output position j′′

of the signal.

Definition 9 (Strong �-shuffling security). We say that a randomized gate
G achieves strong �-shuffling security if any set S of t probes (excluding the input
wires) and any set O of output probes, can be perfectly simulated from scratch,
except with probability at most 2t/�, where the set O is chosen adaptively from
the value of the probes in S.

As recalled in the previous section the authors of [ISW03] used a perfectly
t-private random cyclic shift; this construction satisfies Definition 9, since from
the t-privacy the adversary gets no information about the position of the output
signal, and therefore for a total of 2t probes the probability to recover the signal
is at most 2t/�; the complexity of the ISW construction for a single gadget is
Õ(�t2).

In the following we describe two improved constructions achieving the strong
�-shuffling security defined above. We then show that any construction satisfying
Definition 9 enables to obtain worst-case statistical security in the stateful model.

5.1 First Construction: Iterated Cyclic Shifts

i�

...

i2

i1

...
...

· · ·

· · ·
· · ·

...
o�

...

o2

o1

Δ1 Δ2 Δt+1

Cyclic Shift Cyclic Shift Cyclic Shift
#1 #2 #(t+ 1)

Fig. 8. First construction: sequence of t + 1 random cyclic shifts.

Our first construction consists of a sequence of t + 1 random cyclic shifts with
uniformly and independently distributed shifts Δ1, . . . , Δt+1 ← [0, � − 1]; see
Fig. 8 for an illustration. As in [ISW03], the construction is used as output for
every hidden state bit that must be transmitted from one execution to the next.
As opposed to our stateless construction described in Fig. 4, the index position
of the signal is not explicitly computed in the cyclic shifts; the position of the
signal is only implicitly determined by the value of the wires in {0, 1, $}, where $
is the dummy value. At the end of a given execution, we must therefore convert
from a representation with explicit signal index j to a representation with wire
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values in {0, 1, $}; this can be done with complexity O(�). The index position of
the signal is computed again explicitly as the beginning of the next execution.

The construction satisfies the strong �-shuffling security (Definition 9), since
with at most t internal probes, one of the t+1 random cyclic shifts is not probed,
and therefore the adversary does not get information about the position of the
output signal. We refer to the full version of this paper [CS21] for the proof
of the following lemma. The cost of this first construction is Õ(�t), instead of
Õ(�t2) for the ISW construction with the perfectly t-private random cyclic shift.

Lemma 8. The gadget described above is strong �-shuffling secure.

5.2 Second Construction: Randomizing Network

Our second construction consists of a network of log2 � layers, where in the m-th
layer for 0 ≤ m < log2 � the information in all wires of index i and i + 2m is
swapped with independent probability 1/2; see Fig. 9 for an illustration; note
that for simplicity we assume that � is a power of 2. Letting j′ ∈ {0, . . . , � − 1}
be the index position of the signal before the randomizing network, at layer m
the m-th bit of the signal position is therefore randomly flipped. Since this is
done for all layers 0 ≤ m < log2 �, at the end the output index of the signal is
randomly distributed in {0, . . . , � − 1}.

As in the previous construction, the index position j′ is only known as input
and not computed explicitly during the swaps: the position of the signal is only
implicitly determined by the value of the wires in {0, 1, $}; the index position of
the signal is computed again explicitly as the beginning of the next execution;
see Fig. 10 for an illustration. For a single gadget, our second construction has
complexity Õ(�), instead of Õ(�t) in our first construction and Õ(�·t2) in [ISW03].
Moreover, our second construction has depth polylogarithmic in t, instead of
linear in t in our first construction.

Finally, to satisfy the strong �-shuffling security (Definition 9), we must
prepend a random cyclic shift; otherwise, since in Definition 9 the input index
j is fixed, the adversary could directly probe the j-th wire after the first layer,
and learn the signal with probability 1/2. We provide the proof of Lemma 9 in
the full version of this paper [CS21].

Lemma 9. The gadget described above is strong �-shuffling secure, with circuit
complexity O(� · log �).

5.3 Composition in the Statistical Stateful Model

As in the stateless case, we show that the worst-case statistical privacy of C̃
in the stateful model follows from the p-random gate-probing security of C ′,
based on the �-shuffling security (Definition 6) and strong �-shuffling security
(Definition 9) of the gadgets. We provide the proof in the full version of this
paper [CS21].
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Fig. 9. Second construction: random cyclic shift and randomizing network for � = 8.

Lemma 10. Suppose that C ′ is (p, ε)-random gate probing secure. Then, the
circuit C̃ constructed as described above with � := 3t/(2p) achieves stateful ε-
statistical security in the worst case against t probes per execution.

Eventually, thanks to the randomizing network construction with complex-
ity O(� log �), the complexity of the final circuit C̃ is O(|C| · t log t) instead of
O(|C|t log t + s · t3) in [ISW03]. Therefore as opposed to ISW our construction
has quasi-linear complexity even for a large number s of memory cells. Moreover
the construction applies without the RAM model as well, see the full version of
this paper [CS21].

Theorem 9. There exists a statistically t-private stateful transformer T̃ , such
that T̃ (C, k) maps a circuit C with s memory cells to a circuit C̃ with complexity
O(|C| · t · log t). The depth of C̃ is the same as that of C, up to polylog factors.

Proof. From Lemma 10, the circuit C̃ achieves statistical privacy in the stateful
worst-case model, with circuit complexity O(|C| · � log �). With � = O(t), the
circuit complexity is finally O(|C| · t · log t). �

6 Implementation

Security Parameters. We consider the implementation of our stateless con-
struction from Sect. 3.1 under the model from Sect. 3.3, that is worst-case statisti-
cal security against a total of t probes in the circuit. Recall that the construction
proceeds in two steps. Starting from the original circuit C, we first construct an
intermediate circuit C ′ based on the classical masking countermeasure with per-
fect security against k probes, where k is the security parameter. From Chernoff
bound, the intermediate circuit C ′ is also secure in the random probing model;
more precisely, according to Lemma 6, the circuit C ′ achieves the (μ, ε)-random
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Fig. 10. Thanks to a strong �-shuffling gadget, the adversary does not get information
about the index position of the signal at the end of an execution.

Σ-gate-probing security with parameters μ(k) = k/4 and ε(k) = 2−k/(12 log 2).
Here μ(k) = k/4 denotes the number of gates that are probed on average, and
ε(k) = 2−k/(12 log 2) the probability of simulation failure (for the unlucky case
when the number of leaking gates in C ′ is too large). Therefore, to get ε = 2−80

security, we must fix k = 668. For the intermediate circuit C ′ we use n = k + 1
shares with appropriate mask refreshing, as in [BBD+16].

In the second step, every wire from the intermediate circuit C ′ must be
expanded into � wires in the final circuit C̃, where according to Lemma 7 we
must take � = �t/μ� = �4t/k� to get security against t probes. This implies
that we get security against t = k · �/4 probes as a function of �. For ε = 2−80

and k = 668, this gives security against t = 167 · � probes as a function of the
parameter �.4 Since the running time of our construction is O(�), the running
time is O(t) for security against t probes, instead of O(t2) for the masking
countermeasure.

Number of Operations. We compare the concrete number of operations
between the masking countermeasure and our construction. For simplicity we
consider a single AND gadget. From the gadget description in the full version
of this paper [CS21], the AND gadget in the intermediate circuit C ′ performs
a total of n · (7n − 5)/2 operations, with n = t + 1 shares for perfect security
against t probes. This includes n · (n− 1)/2 random generations, and n · (3n− 2)
boolean operations. This gives Nm = (t + 1) · (7t + 2)/2 � 7t2/2 operations as a
function of the maximum number of probes t.

We now consider the circuit C̃ corresponding to the expansion of the AND
gadget in C ′. Every random generation in the intermediate circuit C ′ requires
�+1 operations in C̃. From Algorithm 1, every boolean operation in C ′ requires

4 We see that it would not make sense to use � ≤ 4, since the intermediate circuit C′

already provides perfect security against k = 668 probes.
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5� + 3 operations in C̃. The total number of operations is therefore:

Ns = n · (n − 1)/2 · (� + 1) + n · (3n − 2) · (5� + 3) � 31
2

· n2 · �

With n = k + 1 and � = 4t/k, we get Ns � 62 · k · t. Finally, with k = 668, the
number of operations is therefore Ns � 41 416 · t for worst-case security against
t probes. We refer to Table 2 for a summary of the operation count.

Since the masking countermeasure has complexity 7t2/2 and our shuffling
countermeasure has complexity 41 416 · t, the two countermeasures have equal
complexity for 7t2/2 = 41 416 · t, which gives t � 12 · 103. Therefore we expect
our shuffling countermeasure to beat the masking countermeasure for a number
of probes t ≥ 12 · 103.

Table 2. Number of operations for worst-case security against t probes, where n =
t + 1 for the masking countermeasure, and n = k + 1 and � = 4t/k for the shuffling
countermeasure, with k = 668; we only keep the high-order terms.

Masking countermeasure Shuffling countermeasure

#rand n2/2 1
2

· n2 · �

#bool 3n2 15n2 · �

#op 7n2/2 31
2

· n2 · �

#op 7t2/2 41416 · t

AES Implementation. We have performed an AES implementation of our
shuffling countermeasure, which we compare with an AES implementation of the
masking countermeasure, using the same parameters as above. We summarize
the timings in Table 3; see also Fig. 11. We see that our shuffling construction
outperforms the masking countermeasure for a number of probes t ≥ 6 000, with
a running time of approximately 2 min for t � 6 000. We provide the source code
in [Cor21].

Table 3. Running time of AES implementation, as a function of the number of probes
t. We use n = t + 1 for the masking countermeasure, and � = 4t/k for the shuffling
countermeasure. Implementation on a 3,2 GHz Intel processor, running on a single core.

t 668 2004 3340 4676 6012 7348 8684 10020

Masking (s) 1.4 12 34 70 111 187 235 310

Shuffling (s) 52 63 78 91 102 119 134 141
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Fig. 11. Running time (in seconds) of the masking and shuffling countermeasure for
AES, to get security against t probes. Implementation on a 3,2 GHz Intel processor,
running on a single core.

7 Conclusion

We have described the first improvement of the wire shuffling countermeasure
against side-channel attacks described by Ishai, Sahai and Wagner at Crypto
2003, with running time O(t) instead of O(t log t) for worst-case security against
t probes, and O(t2) for the classical masking countermeasure. Our construction
is somehow practical in that for an AES implementation we can beat the classical
masking countermeasure for a reasonable running time. However the crossover
point occurs for t � 6 000, so our countermeasure is probably unpractical for
embedded implementations.
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authors were supported by the ERC Advanced Grant no. 787390.
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Abstract. The differential-linear cryptanalysis is an important crypt-
analytic tool in cryptography, and has been extensively researched since
its discovery by Langford and Hellman in 1994. There are nevertheless
very few methods to study the middle part where the differential and linear
trail connect. In this paper, we study differential-linear cryptanalysis from
an algebraic perspective. We first introduce a technique called Differential
Algebraic Transitional Form (DATF) for differential-linear cryptanalysis,
then develop a new theory of estimation of the differential-linear bias and
techniques for key recovery in differential-linear cryptanalysis.

The techniques are applied to the CAESAR and LWC finalist Ascon, the
AES finalist Serpent, and the eSTREAM finalist Grain v1. The bias of the
differential-linear approximation is estimated for Ascon and Serpent. The
theoretical estimates of the bias are more accurate than that obtained by
the Differential-Linear Connectivity Table (Bar-On et al., EUROCRYPT
2019), and the techniques can be applied with more rounds. Our general
techniques can also be used to estimate the bias of Grain v1 in differential
cryptanalysis, and have a markedly better performance than the Differ-
ential Engine tool tailor-made for the cipher. The improved key recovery
attacks on round-reduced variants of these ciphers are then proposed. To
the best of our knowledge, they are thus far the best known cryptanalysis
of Serpent, as well as the best differential-linear cryptanalysis of Ascon

and the best initialization analysis of Grain v1. The results have been fully
verified by experiments. Notably, security analysis of Serpent is one of the
most important applications of differential-linear cryptanalysis in the last
two decades. The results in this paper update the differential-linear crypt-
analysis of Serpent-128 and Serpent-256 with one more round after the
work of Biham, Dunkelman and Keller in 2003.
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Authenticated cipher, Block cipher, Stream cipher
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1 Introduction

Differential cryptanalysis and linear cryptanalysis are the two best-known
techniques for cryptanalysis of block ciphers. Differential-linear attack [LH94,
BDK02] is a chosen plaintext two-stage technique of cryptanalysis in which the
first stage is covered by differential cryptanalysis, which ensures propagation of
useful properties midway through the block cipher. The second stage is then
performed from the middle of the cipher to the ciphertext using linear crypt-
analysis. The technique was discovered by Langford and Hellman [LH94] and
demonstrated on the example of 8-round DES.

Theoretically, the differential-linear attack can be considered as a truncated
differential or a multidimensional linear attack, but is an extreme case for both
types, which is usually measured by the differential-linear bias. Recently, in
2017, Blondeau, Leander and Nyberg [BLN17] gave an exact expression of the
bias under an assumption that the two parts of the cipher are independent, and
revisited the previous treatments of differential-linear bias by Biham et al. in
2002–2003 [BDK02,BDK03], Liu et al. in 2009 [LGZL09], and Lu in 2012 [Lu12],
and formulated assumptions under which a single differential-linear characteristic
gives a close estimate of the bias.

More recently, at EUROCRYPT 2019, Bar-On et al. [BDKW19] showed that
in many cases, dependency between two parts of the cipher significantly affects
the complexity of the differential-linear attack, and might be exploited to make
the attack more efficient. The authors of [BDKW19] presented the Differential-
Linear Connectivity Table (DLCT) which allows to take into account the depen-
dency between the two subciphers, and to choose the differential characteristic
and the linear approximation in a way that takes advantage of this dependency.
They then showed that the DLCT can be constructed efficiently using the Fast
Fourier Transform, and demonstrated the strength of the DLCT by using it to
improve differential-linear attacks on ICEPOLE and on 8-round DES, and to
explain published experimental results on Serpent and on the CAESAR finalist
Ascon which did not comply with the standard differential-linear framework.

In this paper, we study differential-linear cryptanalysis from an algebraic
point of view. In theory, the bias of a differential-linear approximation can be
determined by the algebraic normal forms of the output bits, with input bits
as variables. Nevertheless, this is computationally infeasible for a cipher. In
Sect. 3, we introduce an algebraic and feasible technique called Differential Alge-
braic Transitional Form (DATF) for differential-linear cryptanalysis, and then
develop a new theory of estimation of the differential-linear bias and techniques
for key recovery in differential-linear cryptanalysis. The algebraic transitional
form (ATF) is similar to the algebraic normal form (ANF), but an algebraic
expression in the ANF can be replaced by a transitional variable in the ATF.
This ensures the feasibility of calculating the ATF by iteration. With the DATF
technique, the ATF of the difference of output bits can be computed round by
round, rather than from the derivative of the output function with respect to
the input difference. Based on the DATF algorithm, we describe two feasible
frameworks for estimating the differential-linear bias. One is efficient and has
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a moderate accuracy. The other is less efficient, but more accurate. Further we
exploit an algorithm for key recovery. Unlike the convention, it is an organic com-
bination of distinguisher searching and key guessing, and thus has an advantage
over the existing techniques. We stress that our techniques are purely algebraic
and quite different from the previous methods, including the DLCT [BDKW19]
and its subsequent work [CKW19,CKL+19] as well as the techniques proposed
for ARX ciphers [Leu16,BLT20].

As illustrations, we apply our theory and techniques to three different types
of ciphers, the authenticated cipher Ascon [DEMS16], the block cipher Serpent
[ABK98], and the stream cipher Grain v1 [HJMM08], respectively in Sect. 4,
Sect. 5 and Sect. 6.

Ascon is a family of authenticated encryption and hashing algorithms
designed by Dobraunig et al. [DEMS16,DEMS19] that has been selected as the
primary choice for lightweight authenticated encryption in the final portfolio of
the CAESAR competition and is currently competing in the NIST Lightweight
Cryptography competition. In [DEMS15], Dobraunig et al. presented practi-
cal differential-linear attacks on up to 5 rounds of Ascon, including a 4-round
differential-linear distinguisher. The authors of [DEMS15] stated that while the
overall bias of the approximation is expected to be 2−20 by the theory of the
classical differential-linear framework, experiments show that the bias is 2−2

which is significantly higher. Bar-On et al. [BDKW19] recomputed the bias of
the distinguisher using the DLCT and obtained a theoretical bias of 2−5.

The theory in this paper shows that the bias of this differential-linear approx-
imation is estimated to be 2−2.365. This value is extremely close to the experi-
mentally obtained bias of 2−2, and much higher than the theoretical bias of 2−5

obtained in [BDKW19] using the DLCT. We also show a 5-round differential-
linear approximation with a theoretical bias of 2−5.415 by imposing 9 conditions.
Our experiments show that the bias is 2−4.54, when these conditions are satisfied.

We further propose in Sect. 4 a key recovery attack on 5-round Ascon-128,
which is also applicable to Ascon-128a. The attack benefits from the above
differential-linear approximation with an experimental bias of 2−5.5 using less
conditions. The data complexity of the attack is on average 226, and the expected
time complexity is about 226. This attack improves the existing differential-linear
attack on 5-round Ascon-128 with complexity 236 [DEMS15].

Serpent is a 128-bit block cipher designed by Anderson, Biham and Knudsen.
It is a finalist in the Advanced Encryption Standard (AES) competition. In the
past 20 years, there have been tremendous efforts devoted to cryptanalysis of
Serpent, e.g., [BDK03,DIK08,Lu12,Lu15,BLN17,BDKW19]. In 2003, Biham,
Dunkelman and Keller [BDK03] presented the first differential-linear attack on
11-round Serpent, using a 9-round differential-linear distinguisher with bias of
2−60. An improved attack was presented by Dunkelman et al. in [DIK08]. The
authors of [DIK08] performed experiments with 4 rounds of Serpent, obtained
the bias 2−13.75 for the 4-round approximation rather than 2−15, and concluded
that the actual bias of the 9-round approximation is 2−57.75 and not 2−60. In
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[BDKW19], Bar-On et al. recomputed the bias of the 4-round differential-linear
distinguisher using the DLCT and obtained the value 2−13.68.

In Sect. 5, we revisit the analysis of the bias of this distinguisher by our
theory, and show an estimate of 2−13.736. This value is closer to the experimental
value even than that of [BDKW19]. We conjecture that the gap between the
experimental value and our estimate is a statistical error. We further apply
the DATF with one more round, and obtain the bias 2−17.736 for the 5-round
distinguisher.

For an 11-round variant of Serpent from round 4 to round 14, we propose
in Sect. 5 a key recovery attack with improved time complexities. The data com-
plexity of the attack is 2125.7 chosen ciphertexts, the time complexity is 2125.7

memory accesses, and the memory complexity is 299 bytes. The success proba-
bility of the attack is expected to be more than 99%. As far as we know, this is
the first differential-linear attack on 11-round Serpent-128, through nearly 20
years of community efforts since the publication of its first 10-round attack of
the same kind in 2003 [BDK03].

As mentioned in [BDKW19], the differential-linear technique yields the best
known attacks on the AES finalist Serpent [DIK08,Lu15]. In Sect. 5.3, we nev-
ertheless find that there is a same flaw in the attacks on 12-round Serpent-256
in [DIK08,Lu15] which leads to underestimated time complexity, up to a factor
of 216 or 220 by our analysis, and the existing 12-round attacks are thus worse
than a brute-force attack.

In Sect. 5.3, we extend the chosen ciphertext attack on 11-round Serpent
to 12 rounds (starting from round 4 and ending at round 15). The attack on
12-round Serpent-256 has the data complexity of 2127 chosen ciphertexts, time
complexity of 2251 memory accesses, and memory complexity of 299 bytes. The
success probability of the attack is expected to be more than 77%. To the best of
our knowledge, this is the first correct attack on 12-round Serpent as well as the
best known cryptanalysis on Serpent, almost 20 years after Biham, Dunkelman
and Keller presented the first 11-round attack of different kind in 2001 [BDK01]
and the first 11-round attack of the same kind in 2003 [BDK03].

The stream cipher Grain v1, proposed by Hell et al. [HJMM08], is an
eSTREAM finalist in the hardware profile. At ASIACRYPT 2010, Knellwolf
et al. [KMN10] proposed conditional differential attacks on NFSR-based cryp-
tosystems, and applied the attack to Grain v1 with 104 rounds. Since the sem-
inal work of [KMN10], there are a lot of efforts working towards the conditional
differential attacks on Grain v1, e.g., [Ban14,Ban16,MTQ17,LG19]. In the lit-
erature, the largest number of initialization rounds of Grain v1 that can be
attacked is 120, proposed by Li and Guan [LG19] using a conditional differential
approximation with an experimental bias 2−12.8.

In Sect. 6, we apply our theory and techniques to conditional differential
attacks on the initialization of Grain v1, and finding an optimized key recovery
attack on round-reduced Grain v1. Using the DATF, we revisit the analysis of
the bias of the 120-round differential approximation of [LG19], and obtain an
estimate of 2−13.39. This is very close to the experimental value 2−12.8, and much
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higher than the estimate of 2−18.13 obtained by the method called Differential
Engine proposed by Banik [Ban14]. Further, a new differential with a theoretical
bias 2−20.77 in the output difference of 125 rounds is found for Grain v1, by an
exhaustive search over all the input differences up to 4 bits using the DATF.
We have verified by experiments that the bias is 2−17.4. Our estimate of the
bias is smaller than the experimental value, but much higher than the estimate
2−24.78 by the Differential Engine tool. By imposing 13 equations on the key
bits and initial value, where 18 expressions of the key bits need to be guessed,
we can mount a chosen IV attack to recover 20 key-bit information on 125-
round Grain v1, with time complexity of about 257, data complexity of 252 and
negligible memory. The success probability of the attack is expected to be more
than 92.5%. To the best of our knowledge, this is thus far the best key recovery
attack in practical complexity as well as the best initialization analysis of Grain
v1, in the single key setting.

Table 1. The differential-linear and differential bias

Cipher Type Rounds Experimental Theoretical estimate

value [BDK03] DLCT [BDKW19] DATF

Ascon DL 4/12 2−2 [DEMS15] 2−20 2−5 2−2.365

CDL 5/12 2−4.54 (Sect. 4) - - 2−5.415

Serpent DL 4/32 2−13.75 [DIK08] 2−15 2−13.68 2−13.736

DL 5/32 2−17.75 [DIK08] 2−19 - 2−17.736

Differential Engine [Ban14] DATF

Grain v1 CD 120/160 2−12.8 [LG19] 2−18.13 2−13.39

CD 125/160 2−17.4 (Sect. 6) 2−24.78 2−20.77

The results on the differential-linear bias of Ascon and Serpent and the dif-
ferential bias of Grain v1 are summarized in Table 1, with the comparisons of
the previous results, where CDL means conditional differential-linear (DL) and
CD means conditional differential. Compared with the DLCT tool, the DATF
techniques can be applied with more rounds for Ascon and Serpent, and pro-
vide more accurate estimation of the DL bias. Besides, our techniques can also
be applied to differential cryptanalysis. Compared with the Differential Engine
method tailor-made for Grain-like ciphers, our techniques are more general and
have a much better performance. Compared with the experimental approach, the
algebraic techniques are more formalized and intelligent for conditional attacks
and, in particular, much faster when the bias is low. This helps us find better
conditional approximations for Ascon and Grain v1.

Our cryptanalytic results of Ascon, Serpent and Grain v1 are summarized
in Table 2, with comparisons of the previous attacks. For Ascon, our attack
outperforms the previous differential-linear one but not the cube-like attack
[LDW17]. For Serpent, to the best of our knowledge, we provide the first correct
attack on its 12-round variant, and the first differential-linear attack on its 11-
round variant with 128-bit key. The best known theoretical attack on Grain v1



252 M. Liu et al.

Table 2. Key recovery attacks on Ascon, Serpent, and Grain v1

Cipher Key size Type Rounds Time Data Space Source

Ascon 128 diff.-linear 5/12 236 236 bits neg. [DEMS15]

diff.-linear 5/12 226 226 bits neg. Section 4.2

cube-like 7/12 2103.9 277.2 words - [LDW17]

Serpent 192/256 diff.-linear 11/32 2139.2 En 2125.3 CP 260 B [BDK03]

192/256 diff.-linear 11/32 2135.7 En 2121.8 CP 276 B [DIK08]

192/256 diff.-linear 11/32 2137.7 MA 2113.7 CC 299 B [DIK08]

all diff.-linear 11/32 2125.7 MA 2125.7 CC 299 B Section 5.3

256 diff.-linear 12/32 2251 MA 2127 CC 299 B Section 5.3

Grain v1 80 differential 104/160 279 235 neg. [KMN10]

differential 120/160 268 - neg. [LG19]

differential 125/160 260 252 neg. Section 6.2

fast corr. full 276.7 275.1 269 [TIM+18]

is the fast correlation attack on its full version proposed in [TIM+18], with time
complexity of 276.7, data complexity of 275.1 and memory1 of about 269. This
attack targets at state recovery in the keystream generator, while our attack
targets at key recovery in the initialization. Moreover, our attack on Grain v1
has practical complexities and has been fully verified by experiments on the real
cipher, compared with the impractical complexities of the fast correlation attack
which was verified on a toy cipher in [TIM+18].

2 Differential-Linear Cryptanalysis

Differential-linear cryptanalysis consists of two stages. The first stage ensures
propagation of useful properties in the middle of the cipher, which is covered by

P P ′ Δin

W W ′ Δout

λin λin

C C ′
λout λout

E0 E0

E1 E1

p

1
2 +q 1

2 +q

Fig. 1. Differential-linear cryptanalysis

1 The space complexity of the attack was not provided in [TIM+18] and is assessed
by our analysis.
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differential cryptanalysis. The second stage is performed from the middle of the
cipher to the ciphertext using linear cryptanalysis.

Let E be a cipher which can be described as a cascade of two subciphers E0

and E1, i.e., E = E1 ◦E0. Let Δin and Δout be respectively the input and output
differences of the differential characteristic for E0, and λin and λout respectively
the input and output masks of the linear characteristic for E1, as shown in Fig. 1.

Assume that the differential Δin → Δout is satisfied with probability p,
and the linear approximation λin → λout with probability 1/2 + q (or with
bias q). In case the differential is not satisfied (probability 1 − p) we assume a
random behavior of the parities of the output subset. The probability that a
pair with input difference Δin will satisfy λout · C = λout · C ′ is in that case
p(1/2+2q2)+(1−p) ·1/2 = 1/2+2pq2. The data complexity of the differential-
linear attack/distinguisher is O(p−2q−4).

3 Algebraic Perspective of Differential-Linear
Cryptanalysis

In this section, from an algebraic perspective, we discuss the estimation of the
differential-linear bias as well as techniques for key recovery in differential-linear
cryptanalysis, starting from some basic concepts and facts.

3.1 Basic Concepts and Facts

Let F2 denote the binary field and F
n
2 the n-dimensional vector space over F2.

An n-variable Boolean polynomial is a mapping from F
n
2 into F2, which can be

uniquely represented as a multivariate polynomial over F2,

f(x1, x2, · · · , xn) =
⊕

c=(c1,··· ,cn)∈Fn
2

ac

n∏

i=1

xci
i , ac ∈ F2,

called the algebraic normal form (ANF).
A variable is called isolated if it appears and only appears in the linear part

of the ANF of f . For example, x1 is an isolated variable in x1 ⊕ x2x3 ⊕ x4x5.
For a variable xi, the Boolean polynomial f(x1, x2, · · · , xn) can uniquely be

represented as f = f ′′xi ⊕ f ′ with f ′ and f ′′ independent of xi, which implies
f ′ = f |xi=0 and f ′′ = f |xi=1 ⊕f |xi=0. The partial derivative of f with respect to
the variable xi is the polynomial f ′′, denoted by Dxi

f . For example, Dx2(x1 ⊕
x2x3 ⊕ x4x5) = x3.

For Δ ∈ F
n
2 and an n-variable Boolean polynomial f on X, the derivative of

f with respect to Δ is the polynomial

DΔf(X) = f(X) ⊕ f(X ⊕ Δ),

and the polynomial fΔ is defined as

fΔ(X,x) = f(X ⊕ xΔ),
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where x is a binary variable that we introduce. Note that fΔ is a Boolean poly-
nomial on n + 1 variables. From the above definitions, it is clear that

DxfΔ = DΔf.

Example 1. Let f(x1, x2, x3) = x1 ⊕ x2x3 ⊕ x3 and Δ = (1, 1, 0). On one hand,
the derivative of f with respect to Δ is

DΔf = f(X) ⊕ f(X ⊕ Δ) = f(x1, x2, x3) ⊕ f(x1 ⊕ 1, x2 ⊕ 1, x3)
= (x1 ⊕ x2x3 ⊕ x3) ⊕ ((x1 ⊕ 1) ⊕ (x2 ⊕ 1)x3 ⊕ x3) = x3 ⊕ 1.

On the other hand, by the definition of fΔ we have

fΔ = f(x1⊕x, x2⊕x, x3) = (x1⊕x)⊕(x2⊕x)x3⊕x3 = (x3⊕1)x⊕x1⊕x2x3⊕x3

and the partial derivative of fΔ with respect to x is DxfΔ = x3 ⊕ 1 = DΔf .

Given a Boolean polynomial f on X = (x1, x2, · · · , xn), if the polynomial f
can be represented as a polynomial g on (y1, y2, · · · , ym), where each yi can
be seen as a polynomial on X, to say, yi = φi(X), then the ANF of g is
called in this paper an algebraic transitional form (ATF) of f . The variables
y1, y2, · · · , ym are called transitional variables. Note that the ATF of a Boolean
polynomial is not unique. Actually, the polynomial f is a composition of g and
Φ = (φ1, φ2, · · · , φm), that is, f(X) = g(Φ(X)), denoted by f = g ◦ Φ.

Each polynomial φi can also be represented in terms of the ATF. From this
point of view, an iterated cipher can be iteratively represented by the ATF in
practical time if it is feasible to compute the ANF of its round function. It can
be extended to iteratively computed the ATF of the difference of a cipher. To
this end, we further introduce the following notations and basic facts.

For an input difference Δ ∈ F
n
2 , φi(X ⊕xΔ) = φi ⊕ (DΔφi)x. By introducing

transitional variables αi’s and βi’s, we represent φi(X ⊕xΔ) as αi ⊕xβi. Denote
α = (α1, α2, · · · , αm) and β = (β1, β2, · · · , βm). Then the polynomial fΔ =
f(X ⊕ xΔ) can be represented as

g(α ⊕ xβ) = g(α1 ⊕ xβ1, α2 ⊕ xβ2, · · · , αm ⊕ xβm),

which is called a differential algebraic transitional form (DATF) of f with respect
to Δ. More exactly, we have

fΔ = f(X ⊕ xΔ) = g(Φ(X ⊕ xΔ)) = g(Φ ⊕ (DΔΦ)x) = g(α ⊕ xβ) ◦ Ψ,

where Ψ = (Φ,DΔΦ). Since Ψ is independent of x, we obtain

DΔf = DxfΔ = Dx(g(α ⊕ xβ) ◦ Ψ) = (Dxg(α ⊕ xβ)) ◦ Ψ.

Proposition 1. If an n-variable Boolean polynomial f is a composition of an m-
variable Boolean polynomial g and a function Φ from F

n
2 into F

m
2 , i.e., f = g ◦Φ,

then the derivative of f with respect to Δ is a composition of the partial derivative
of the DATF g(α ⊕ xβ) with respect to x and the function Ψ = (Φ,DΔΦ), i.e.,
DΔf = (Dxg(α ⊕ xβ)) ◦ Ψ , where α and β are m-variable vectors and x is a
binary variable.
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Example 2. Let Δ = (1, 1, 0, 0, 0) and f = g◦Φ with g(y1, y2, y3) = y1⊕y2y3⊕y3,
Φ(x1, x2, x3, x4, x5) = (x1 ⊕x2x3 ⊕x3, x2 ⊕x3x4 ⊕x4, x3 ⊕x4x5 ⊕x5). The ANF
of f is f(X) = x1 ⊕ x2x4x5 ⊕ x2x5 ⊕ x4x5 ⊕ x5.

On one hand, the derivative of f with respect to Δ is

DΔf = f(X) ⊕ f(X ⊕ Δ) = x4x5 ⊕ x5 ⊕ 1.

On the other hand, we have

Dxg(α ⊕ xβ) = Dxg(α1 ⊕ xβ1, α2 ⊕ xβ2, α3 ⊕ xβ3)
= Dx((α1 ⊕ xβ1) ⊕ (α2 ⊕ xβ2)(α3 ⊕ xβ3) ⊕ (α3 ⊕ xβ3))
= Dx((β1 ⊕ β2(α3 ⊕ β3) ⊕ α2β3 ⊕ β3)x ⊕ α1 ⊕ α2α3 ⊕ α3)
= β1 ⊕ β2(α3 ⊕ β3) ⊕ α2β3 ⊕ β3.

Computing DΔΦ = (x3 ⊕ 1, 1, 0) and substituting (α, β) with Ψ = (Φ,DΔΦ),
e.g., β1 = x3 ⊕ 1, β2 = 1, β3 = 0 and α3 = x3 ⊕ x4x5 ⊕ x5, it gives

Dxg(α ⊕ xβ) ◦ Ψ = (x3 ⊕ 1) ⊕ (x3 ⊕ x4x5 ⊕ x5) = x4x5 ⊕ x5 ⊕ 1 = DΔf.

3.2 Calculation of the Differential-Linear Bias

In theory, the differential-linear bias can be determined by the algebraic normal
forms (ANFs) of the output bits, with input bits as variables. Nevertheless, it is
computationally infeasible to compute the ANFs of the output bits of a cipher.
To make it feasible, we compute their algebraic transitional forms (ATFs) rather
than the ANFs. More exactly, we compute the differential algebraic transitional
forms (DATFs) of internal bits as well as output bits of a cipher, and then
estimate the differential-linear bias.

For a cipher E, we consider it as a function from F
n
2 into F

m
2 . The differential-

linear bias corresponding to (Δin, λout) describes the bias of differential-linear
approximation λout ·C ⊕λout ·C ′ = 0, that is, λout ·E(P )⊕λout ·E(P ⊕Δin) = 0.
Denoting f = λout · E gives f(X) ⊕ f(X ⊕ Δin) = 0. The bias is determined
by the Hamming weight of the partial derivative of fΔin

= f(X + xΔin) with
respect to x. By Proposition 1 we know the derivative of f with respect to Δin

can be computed from its DATF.
Now we show how to compute the DATF for an iterated cipher. Given the

round function R of the cipher and an input difference Δin, the procedure for
computing the DATF of the output bits is depicted in Algorithm 1. Note that
we only concern the nonlinear operation and thus the first (last resp.) linear
layer can be omitted in the procedure if it is performed before (after resp.) the
nonlinear operation, and that the key and round keys can be taken as a part of
the state that is treated as a vector of variables or polynomials.

For an input binary variable vector X, we first initialize Y (0) = X ⊕ xΔin

where x is a binary variable. Any instance of (Y (0)|x=0, Y
(0)|x=1) corresponds

to a pair with difference Δin in the convention. Next we compute the algebraic
normal form of the output of the first rounds, i.e., Y (1) = R(Y (0)). We then
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rewrite Y (i−1) as Y ′(i−1) ⊕ xY ′′(i−1) with both Y ′(i−1) and Y ′′(i−1) independent
of x, introduce new variable vectors α(i−1) and β(i−1), and record the expressions
α(i−1) = Y ′(i−1) and β(i−1) = Y ′′(i−1) in an equation set Q. Noting that in this
step we use the “Transitional Rule” described below as the rule for introducing
transitional variable. That is, α(i−1) ⊕ xβ(i−1) = ATF(Y (i−1), x). After this we
compute the ATF of the output of the i-th round Y (i) = R(α(i−1) ⊕ xβ(i−1)).
Finally, we obtain the ATF of the output Y (r) together with an expression set
Q. A diagram of the procedure is depicted in Fig. 2.

Transitional Rule: For a Boolean polynomial u = u′′x ⊕ u′ with u′ and
u′′ independent with the variable x, if u′ involves two or more variables,
then replace u′ with a new transitional variable; if u′′ involves two or more
variables, then replace u′′ with another new transitional variable. The new
expression derived from u is denoted by ATF(u, x), or ATF(u) for short. In
other words, for any polynomial w not involving the variable x, we have

ATF(w) =

{
varw, if w involves two or more variables
w, otherwise

where varw is a transitional variable identified by w, and thus ATF(w) is a
constant or a variable up to a constant. By the rule, we know ATF(u, x) =
ATF(u′′)x⊕ATF(u′) has at most three variables including x. For a polynomial
vector, ATF operates on each component of the vector. This rule ensures that
ATF(f, x) is an ATF of f in a very simplified way that keeps x unchanged.

Remark 1. Our experiments show that the DATF techniques perform best when
the Transitional Rule is applied before the nonlinear operations. Hereinafter,
the rule is thus used before the nonlinear operations by default.

Algorithm 1: Differential Algebraic Transitional Form (DATF)
Input: An input difference Δin, the round function R of an iterated cipher,
and the number r of rounds.
Output: Expressions (Y (r), Q).

1: Initialize the input variable vector Y (0) = X ⊕ xΔin, and set Q = ∅;

2: Compute the ANF of the first round, Y (1) = R(Y (0));
3: for i from 2 to r do
4: Y ′(i−1) ← Y (i−1)|x=0;
5: Y ′′(i−1) ← DxY (i−1);

6: α(i−1) ← ATF(Y ′(i−1));

7: β(i−1) ← ATF(Y ′′(i−1)); // each component of α(i) and β(i) is a variable

up to a constant or a constant

8: Add the expressions α(i−1) = Y ′(i−1) and β(i−1) = Y ′′(i−1) to Q;

9: Compute the ATF of the i-th round, Y (i) = R(α(i−1) ⊕ xβ(i−1));

10: Return (Y (r), Q).
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X ⊕ xΔin

R

α(1) ⊕ xβ(1)

R

α(2) ⊕ xβ(2)

R

...

Y ′(1) ⊕ xY ′′(1)

Y ′(2) ⊕ xY ′′(2)

Y ′(3) ⊕ xY ′′(3)

Y (0)

Y (1)

Y (2)

Y (3)

ATF

ATF(Y (1), x)

ATF

ATF(Y (2), x)

Fig. 2. Differential algebraic transitional form (Algorithm 1)

The polynomial Y (r) is a DATF of E = Rr with respect to Δin, and thus
λout · Y (r) is a DATF of f = λout · E. As analyzed previously, DΔin

f can be
computed from Dx(λout · Y (r)) = λout · DxY (r) and Q.

The Complexity of Algorithm 1. Let tR be the complexity of computing the
ANF of the round function R, and d the algebraic degree of R. The dominant step
is Line 9 in the loop. Usually, after a few rounds, all the components of Y ′(i) and
Y ′′(i) involve at least two variables due to the propagation of both the value and
difference. By the transitional rule, each component of the vectors α(i) and β(i)

is set to a transitional variable. Then the complexity for computing the ATF of
R(α(i) ⊕ xβ(i)) is at most 2dtR. So the complexity of Algorithm 1 is O(2drtR) in
the worst case. Taking d and r as small constants, the complexity is then O(tR).
It is feasible to compute the algebraic expression of R(α(i) ⊕xβ(i)) if it is feasible
to compute the ANF of the round function R with small degree. This is the case
for most iterated ciphers without addition operations.

Next we show how to estimate the differential-linear bias. Given the ATF of
the output Y (r) and the expression set Q generated by Algorithm 1, we target
at estimating the differential-linear bias of the parity of the output pair with
linear mask λout. First we compute the ATF of the parity e = λout ·Y ′′(r), where
Y ′′(r) = DxY (r) is the partial derivative of Y (r) with respect to x. Note that
the bias will be 0 if there is an isolated variable in the ATF of e, assuming that
all the variables follow uniform distribution and are independent of each other.
Therefore, we compute the bias of the polynomial obtained by removing all the
isolated variables from the ATF of e. For the sum of the isolated variables, we
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substitute the expressions Q and obtain a new polynomial. Then we update e
with this new polynomial, and deal with this polynomial iteratively until it is
zero. By the piling-up lemma, we finally obtain the bias ε. The whole procedure
is depicted as Algorithm 2.

Algorithm 2: Estimation of the Differential-Linear Bias
Input: Linear mask λout and the expressions (Y (r), Q).
Output: A bias ε.

1: Calculate the partial derivative of Y (r): Y ′′(r) ← DxY (r);

2: Compute the ATF of the parity e = λout · Y ′′(r), and set ε = 1
2
;

3: while e �= 0 do

4: Select the isolated variables in the ATF of e, and sum them to el;

5: Compute the bias of e∗ = e − el by ε∗ = Bias(e∗), and calculate ε = 2 · ε∗ · ε;

6: Substitute the expressions Q into el, and update e with this new polynomial;

7: Return ε.

/* The procedure for computing the bias from the ATF of f */

8: procedure Bias(f)

9: (f1, f2, · · · , fm) ←Separate(f);

10: ε ← 1
2
;

11: for i from 1 to m do

12: if the number of variables in the expression of fi is small then

13: Compute the bias εi of fi according to its Hamming weight;

14: else

15: Select a variable v minimizing the maximum cardinality of the variable

sets of the polynomials in Separate(fi|v=0) and Separate(fi|v=1);

16: Compute the bias of fi by εi = 1
2
Bias(fi|v=0) + 1

2
Bias(fi|v=1);

17: ε ← 2 · ε · εi;

18: if ε = 0 then

19: break

20: return ε.

/* The procedure for Separating the ATF of f */

21: procedure Separate(f)

22: Separate the Boolean polynomial f as a sum of m polynomials fi whose

variable sets are mutually disjoint, and sort f1, f2, · · · , fm in ascending order

according to the number of terms in their ANFs;

23: return (f1, f2, · · · , fm).

In Algorithm 2, we use a procedure Bias() to compute the bias given an
algebraic expression in binary variables, in which another procedure Separate()
is used to separate the expression as a sum of m polynomials that have no
common variables. For a polynomial that could not be separated, if it involves
a small number of variables, e.g., 20, we can easily compute the bias from its
Hamming weight; otherwise, we guess the values of the variables one by one,
and apply Bias() repeatedly until all the polynomials have a small number of
variables.
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Lemma 2. Given the ATF of f , if the variables are independent and identically
distributed, then the output of Bias(f) gives the bias of f .

Proof. Let εf be the bias of f , and it needs to prove εf = Bias(f). Since
f =

∑m
i=1 fi after the first step Separate(f) and fi’s are independent (because

their variables are disjoint and independent), we have εf = 2m−1εf1εf2 · · · εfm
by

the piling-up lemma. This is calculated by 2m−1Bias(f1)Bias(f2) · · · Bias(fm)
in Line 17 of the procedure. Therefore, it is sufficient to prove εf = Bias(f) for
the case m = 1. This is clearly true when the number n of variables is small.
The rest can be proved by induction. Suppose that it is true that εf = Bias(f)
for any f with at most n − 1 variables. Let v be a variable of f . Since 1

2 + εf =
Pr(v = 0) · (12 + εf |v=0) + Pr(v = 1) · ( 12 + εf |v=1), we have

εf = Pr(v = 0) · εf |v=0 + Pr(v = 1) · εf |v=1 (3.1)

and according the variable distribution and the inductive assumption it implies

εf =
1
2
εf |v=0 +

1
2
εf |v=1 =

1
2
Bias(f |v=0) +

1
2
Bias(f |v=1) = Bias(f).

Since the ATF of the parity with respect to the output linear mask λout is
e = e∗ + el with e∗ = e − el and el sharing no common variables, where el

is the sum of the isolated variables of e, the bias of e is twice the product of
the biases of e∗ and el. Substituting the expressions in Q into el gives a new
Boolean polynomial, and its bias can be computed in a similarly way. From this
observation, the following statement can be derived.

Theorem 3. Assuming that all the variables of e∗’s in Algorithm 2 are inde-
pendent and identically distributed, the output ε of Algorithm 2 is the bias of the
differential-linear approximation Δin → λout.

Proof. As the previous analysis of Algorithm 1, we know Y (i) is a DATF of Ri

with respect to Δin, and thus λout·Y (r) is a DATF of f = λout·Rr. By Proposition
1, Dx(λout · Y (r)) = λout · DxY (r) = e is an ATF of DΔin

f . Suppose that Line 5
executes t and only t times in the algorithm. Let e

(i)
l be the polynomial el after

i executions of Line 5, and e(i) the polynomial obtained by substituting the
expressions Q into e

(i)
l . Then DΔin

f can be represented as e∗ +
∑t−1

i=1 e∗(i) +e(t),
where e∗ = e − e

(1)
l and e∗(i) = e(i) − e

(i+1)
l . Since Line 5 repeates only t times,

we have e(t) = 0 and thus DΔin
f is represented as e∗ +

∑t−1
i=1 e∗(i), in which the

expressions e∗ and e∗(i)’s have independent variables under the assumption of
the theorem. By the piling-up lemma and Lemma 2, the bias of DΔin

f is equal
to 2t−1Bias(e∗)

∏t−1
i=1 Bias(e

∗(i)), which is the output ε of Algorithm 2.

The Complexity of Algorithm 2. The complexity of Line 5 in the loop dom-
inates the complexity, that is, the computation of Bias(e∗). The complexity of
Bias(e∗) is at most 2m∗

, where m∗ is the maximum cardinality of the variable
sets of the polynomials in Separate(e∗). So the complexity of Algorithm 2 is
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O(2m) in the worst case, where m is the maximum of m∗. In the case for most
iterated ciphers without addition operations, especially for lightweight ciphers
using small S-boxes, m is small so that the algorithm is practical. In particular,
when Line 5 executes only once, m is at most twice the size of S-boxes, since the
algorithm treat the output of the last nonlinear operation as the output of the
cipher.

In the following we propose a refined method for estimating the differential-
linear bias. It follows the main framework of Algorithm 1 and Algorithm 2.
The difference is that the assumption of uniform distribution of the transitional
variables is removed and replaced by auxiliary computation. The procedure is
depicted as Algorithm 3, and the different parts include Line 2, Line 6 and
Line 12 (in blue). In Line 2, the probability distribution of each input variable
is set. In Line 6, the probability distribution of each transitional variable is
computed according to the probability distribution of previous variables. In Line
12 of the algorithm, each estimation of bias takes the probability distribution
of transitional variables into account. This refined method usually gives a more
accurate estimation of the bias, while it requires more computations.

With a probability distribution set D = {Pr(Xi = 0) = 1
2 + εi|Xi ∈ X, 1 ≤

i ≤ n}, if Xi’s are independent, then the probability that f(X) equals zero is

Pr(f(X) = 0) =
∑

C∈{X|f(X)=0}

n∏

i=1

(
1
2

+ (−1)Ciεi). (3.2)

According to (3.2), we execute Step 6 of the algorithm. Adapting the procedure
Bias() with (3.2) and (3.1), we execute Step 12. The complexity of the adapted
procedure is about n times the complexity of Bias(). Combining Algorithm 1
and Algorithm 2 with these steps, we obtain Algorithm 3.

Similarly as Theorem 3 for Algorithm 2, we conclude the following statement
for Algorithm 3. Since the probability distribution of each transitional variable
is calculated in the algorithm, the assumption of their distribution is removed.

Theorem 4. Assuming that the variables of the DATF, i.e., Y (i), at each round
are independent, the output ε of Algorithm 3 is the bias of the differential-linear
approximation Δin → λout.

Proof. Since the variables of each round are independent, it can proved by induc-
tion on the number i of rounds that all the probability distributions in D are
correct according to (3.2). Then under the independence assumption of the vari-
ables of the last round, the theorem is proved by the correctness of the modified
procedure that adjusts Bias() with (3.2) and (3.1).

The Complexity of Algorithm 3. Let T1 and T2 respectively be the complex-
ity of Algorithm 1 and Algorithm 2, and n the state size. Then the complexity of
Algorithm 3 is at most T1+2nT2, since the main difference between Algorithm 3
and the combination of Algorithm 1 and Algorithm 2 is generated by (3.2).
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Algorithm 3: Refined Estimation of the Differential-Linear Bias
Input: An input difference Δin, output linear mask λout, the round function R

of an iterated cipher, and the number r of rounds.
Output: A bias ε.

1: Initialize the input variable vector Y (0) = X ⊕ xΔin, and set Q = ∅;

2: Initialize a probability distribution set D = {Pr(Xi = 0) = 1
2
|Xi ∈ X};

3: Compute the ANF of the output of the first round Y (1) = R(Y (0));

4: for i from 2 to r do
5: Write Y (i−1) = Y ′(i−1) ⊕ xY ′′(i−1) with Y ′(i−1) and Y ′′(i−1) independent of x,

introduce new variable vectors α(i−1) and β(i−1), and add the expressions
α(i−1) = Y ′(i−1) and β(i−1) = Y ′′(i−1) to Q;

6: With D, compute the probabilities that α
(i−1)
j and β

(i−1)
j are respectively zero

for all j, and add to D;

7: Compute the ATF of the output of the i-th round Y (i) = R(α(i−1) ⊕ xβ(i−1));
8: Calculate the partial derivative of Y (r): Y ′′(r) ← DxY (r);

9: Compute the ATF of the parity e = λout · Y ′′(r), and set ε = 1
2
;

10: while e �= 0 do
11: Select the isolated variables in the ATF of e, and sum them to el;

12: With D, compute the bias ε∗ of e∗ = e − el, and calculate ε = 2 · ε∗ · ε;
13: Substitute the expressions Q into el, and update e with this new polynomial;
14: Return ε.

3.3 Key Recovery in Differential-Linear Cryptanalysis

To convert a differential-linear distinguisher to a key recovery attack, for a block
cipher, we usually guess some key bits, perform partial encryption or decryp-
tion, and apply the distinguisher. In the previous work, the distinguisher and the
process of key guessing are separately treated. Here we show an algebraic app-
roach to deal with these two processes simultaneously. The approach also applies
to iterated ciphers of other types, including stream ciphers and authenticated
encryption ciphers.

A crucial stage of this approach is to impose some conditions on the inter-
nal bits of the cipher to make uncertain differences determined in the first
rounds. Similar techniques were used in conditional differential cryptanalysis
[BB93,KMN10] and conditional linear cryptanalysis [BP18], and a similar idea
called the partitioning technique was applied to differential-linear cryptanalysis
in [Leu16] with an application to Chaskey.

Our precomputation for the key recovery follows the main framework of esti-
mating the differential-linear bias in Algorithm 3. The procedure is depicted as
Algorithm 4. For the sake of brevity, here we only explain its differences with
Algorithm 3, marked blue in the procedure. The main difference is that some
conditions I are imposed in the first r1 rounds. Note that in each computation
of the ANFs and ATFs we reduce the polynomials over the ideal of I, denoted
by “mod I”.

After precomputation for the key recovery as shown in Algorithm 4, we obtain
a set of expressions QI and a differential-linear bias ε. Then a system of equa-
tions S = {f = 0|f ∈ QI} is derived. Assume that the equations in S are
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Algorithm 4: Key Recovery in Differential-Linear Cryptanalysis
Input: An input difference Δin, output linear mask λout, the round function R

of an iterated cipher, the number r of rounds, and a parameter r1.
Output: A set QI of expressions in key bits and a bias ε.

1: Initialize the input variable vector Y (0) = X ⊕ xΔin, and set Q = ∅ and I = ∅;

2: Initialize a probability distribution set D = {Pr(Xi = 0) = 1
2
|Xi ∈ X};

3: Compute the ANF of the first round Y (1) = R(Y (0)) mod I;

4: for i from 2 to r do

5: Write Y (i−1) = Y ′(i−1) ⊕ xY ′′(i−1) with Y ′(i−1) and Y ′′(i−1) independent of x;
6: if i ≤ r1 and Y ′′(i−1) �∈ {0, 1} then
7: Add Y ′′(i−1) to I, impose Y ′′(i−1) = 0, and set Y ′(i−1) = Y ′(i−1) mod I;
8: Introduce new variable vectors α(i−1) and β(i−1), and add the expressions

α(i−1) = Y ′(i−1) and β(i−1) = Y ′′(i−1) to Q;

9: With D, compute the probabilities that α
(i−1)
j and β

(i−1)
j are zeros for j, and

add to D;

10: Compute the ATF of the i-th round Y (i) = R(α(i−1) ⊕ xβ(i−1)) mod I;

11: Calculate the partial derivative of Y (r): Y ′′(r) ← DxY (r);
12: Compute the ATF of the parity e = λout · Y ′′(r) mod I, and set ε = 1

2
;

13: while e �= 0 do
14: Select the isolated variables in the ATF of e, and sum them to el;

15: With D, compute the bias of e − el, denoted by ε∗, and calculate ε = 2 · ε∗ · ε;

16: Substitute the expressions Q into el, and update e with this new polynomial
(mod I);

17: Deal with I, and obtain a set of expressions in input bits, denoted by QI ;
18: Return QI , ε.

independently and they are always consistent for an arbitrary fixed key. Denote
by n the number of equations in S and by m the number of independent expres-
sions of key bits in S. In the key recovery attack, the key is unknown, and thus
we need to guess the values of the expressions that involve the key bits. For each
guess of these expressions, O( 1

ε2 ) pairs of plaintexts with input difference Δin is
sufficient to mount a distinguisher. We assume a random behavior of the parities
of the output subset for a wrong key. Then the data complexity of the attack is
D = O(2

n

ε2 ). There are 2m values for the m expressions that need to be guessed
in the attack, so the attack time is T = O(2

m

ε2 ).
The success probability of the attack is calculated according to analytical

results of the success probability of linear attacks (also applicable to differential-
linear attacks) in [Sel08, Theorem 2] as below.

Theorem 5. ([Sel08]) Denote by Φ the cumulative distribution functions of the
standard normal distribution. Let PS be the probability that a linear attack on
an m-bit subkey, with a linear approximation of probability p, with N known
plaintext blocks, delivers an a-bit or higher advantage. Assuming that the linear
approximation’s probability to hold is independent for each key tried and is equal
to 1/2 for all wrong keys, we have, for sufficiently large m and N ,
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PS = Φ(2
√

N |p − 1/2| − Φ−1(1 − 2−a−1)). (3.3)

The Complexity of Algorithm 4. Excluding the cost of computing the ATF
and bias that is almost the same as Algorithm 3, the running time of Algorithm 4
mainly depends on the cost tI of each computation of mod I. The former is
computed as T3 = T1 + 2nT2 as previously. Then the complexity of Algorithm 4
is O(T3 + nrtI). Therefore Algorithm 4 is practical when Algorithm 3 is feasible
and the size of I is small.

We have implemented Algorithm 4 in SageMath for Ascon, Serpent, and
Grain v1. Our experiments show that the algorithm performs well when r1 is
small enough (such that the number of independent expressions in I is small),
though it is slower than Algorithm 2 and Algorithm 3. It is a good choice to use
Algorithm 2 and Algorithm 3 to screen differential-linear approximations. Espe-
cially for input difference and output linear mask with small Hamming weights,
we can use Algorithm 2 to exhaust all possible differential-linear approximations,
and use Algorithm 3 to further screen candidates. In the applications in condi-
tional attacks, we can equip Algorithm 4 with Algorithm 2 for fast computation.
As a general method, the algorithm can also be applied with a DL distinguisher
obtained by other approaches, in particular when it can not detect a reasonable
bias.

4 Applications to Ascon

In this section, we apply our techniques to Ascon for estimating the differential-
linear bias, and then propose a key recovery attack to a 5-round variant. Ascon
is a family of authenticated encryption and hashing algorithms designed by
Dobraunig et al. [DEMS16,DEMS19]. It has been selected as the primary choice
for lightweight authenticated encryption in the final portfolio of the CAESAR
competition (2014–2019) and is currently competing in the NIST Lightweight
Cryptography competition. The analysis in this paper is focused on Ascon-128,
and the results are also applicable to Ascon-128a. Note that given the 64 bits of
the output, one can invert the last linear layer. Hereinafter we thus consider the
cipher without the last linear layer.

4.1 Differential-Linear Bias of Ascon

In [DEMS15], Dobraunig et al. presented practical differential-linear attacks on
up to 5 rounds of the Ascon permutation, based on a 4-round differential-linear
distinguisher. The authors of [DEMS15] stated that while the overall bias of
the approximation is expected to be 2−20 by the theory of the differential-linear
attack, experiments show that the bias is 2−2 which is significantly higher.

Recently, at EUROCRYPT 2019, Bar-On et al. [BDKW19] recomputed
the bias of the distinguisher using the Differential-Linear Connectivity Table
(DLCT) and obtained a higher bias of 2−5. This value is significantly higher
than the value 2−20 which follows from the classical differential-linear frame-
work. On the other hand, it is still much lower than the experimentally obtained



264 M. Liu et al.

bias of 2−2. The authors of [BDKW19] conjectured that it may be explained by
the effect of other differentials and linear approximations.

In the following, we exploit the two algorithms, Algorithm 2 and Algorithm 3,
as shown in Sect. 3 to estimate the differential-linear bias for Ascon.

Before applying Algorithm 2, we have to compute the DATF of Ascon by
Algorithm 1. We divide the S-box of Ascon into two parts, pSL

and pSN
, and

the permutation of Ascon is then divided into two parts, pA = pSL
◦ pC and

pB = pL ◦ pSN
. The first part of the S-box, pSL

, is actually a linear transform,
as shown below.

In Algorithm 1, we compute the ANF of a half round of p, i.e., R
1
2 = pA,

instead of the entire first round. We then set R = pA ◦ pB , and for the last round
set R = pSN

. A function of r rounds pr without the last linear layer is exactly
pSN

◦Rr−1 ◦pA. The 128-bit key and 128-bit nonce are set to 256 binary variables,
and the IV is set to a constant defined by the cipher.

For the input difference Δin with differences in bit 63 of x3 and x4, by
performing Algorithm 1 with r = 4, we obtain the ATF of the output Y (4)

together with an expression set Q. Note that in Line 3 of Algorithm 1 the
number i of rounds ranges from 1 to r = 4. Applying Algorithm 2 to a single-bit
linear mask in bit 9 then gives a differential-linear bias ε = 2−3.

Similarly as done in Algorithm 1, in Algorithm 3 we set R
1
2 = pA, R =

pA ◦ pB, and for the last round R = pSN
. With the same input difference and

output mask, applying Algorithm 3 to 4 rounds of Ascon permutation gives a
bias ε = 2−2.365. This result slightly improves the estimate of 2−3 obtained by
Algorithm 2, at cost of computations of the probability distribution. It is very
close to the experimentally obtained bias of 2−2, and much higher than the
theoretical bias of 2−5 obtained in [BDKW19] using the DLCT.

4.2 Differential-Linear Cryptanalysis of Ascon

Now we apply the key recovery algorithm, Algorithm 4, to 5-round Ascon-128.
By performing Algorithm 4 with r1 = 2 and r = 5 over all possible single-bit
or two-bit input differences and all possible single-bit output masks, we obtain a
differential-linear bias ε = 2−5.415 for the input difference Δin with differences in
bit 63 of x3 and x4 and the output mask λout in bit 36. The R function is the same
as defined previously, and in Line 4 of Algorithm 4 the number i of rounds ranges
from 1 to 5. The set of expressions QI has 9 polynomials, with algebraic degree at
most 2. Among these 9 polynomials, 6 of them involve both the key and nonce bits,
2 polynomials involve only a single key bit (bit 63 and 127 respectively), and one
involves only two nonce bits (bit 63 XOR bit 127). We impose bit 63 and bit 127 of
the nonce to be equal, and run all the possible cases for the other 8 polynomials by
experiments on random 228 samples for each case. We then derive a bias of 2−4.5

when all the polynomials equals zero and a reasonable high bias of 2−5.5 when 5
of them equals zero. The 5 equations are listed as follows, where ki means bit i of
the key and vi means bit i of the nonce.



Differential-Linear Cryptanalysis from an Algebraic Perspective 265

k63 = 0;
k127 = 0;
v52 = k12v76 + k12 + k35v99 + k42v106 + k45 + k52 + k99 + k109 + k116

+ v12 + v42 + v45 + v76 + v106 + v109 + v116 + 1;
v74 = k10k74 + k10v10 + k10 + k32k96 + k32v32 + k32 + k35k99 + k35v35 + k35

+ k74v10 + k74 + k96v32 + k96 + k99v35 + k99

+ v10 + v32 + v35 + v96 + v99 + 1;
v83 = k19k83 + k19v19 + k19 + k41k105 + k41v41 + k41 + k44k108 + k44v44 + k44

+ k83v19 + k83 + k105v41 + k105 + k108v44 + k108

+ v19 + v41 + v44 + v105 + v108.

Our experiments show that the differential-linear bias is significantly smaller
than 2−5.5 when one or more equations of the above equations are not satisfied.
Fixing the values of Vfix = {v10, v19, v32, v35, v41, v44, v76, v99, v106}, 215.3+3 sam-
ples with v52, v74, v83 running over possible values are sufficient to distinguish
k63 = k127 = 0 from the other cases. For the case k63 = k127 = 0, we can also
recover 3 extra expressions on key bits. More exactly, in this case, we are able
to derive the above 5 equations. We can further set up 9 more equations by
flipping the values of Vfix bit by bit. By elimination of nonlinear terms in key
bits and after simplification, we obtain 12 linear equations on key bits, that is,
k63 = 0, k127 = 0, k12 = c0, k35 = c1, k42 = c2, k99 = c3, k10+k74 = c4, k19+k83 =
c5, k32 + k96 = c6, k41 + k105 = c7, k44 + k108 = c8, k45 + k52 + k109 + k116 = c9.
Since we know the value c4 of the sum k10 + k74, we can linearize the quadratic
term k10k74 to k10(1 + k10 + k74) = (1 + c4)k10. By a similar way, the two non-
linear equations can be linearized, and they are linearly independent with the
previous equations with a high probability.

Noting that the characteristics of Ascon are rotation-invariant within the
64-bit words, the same method can be used to set up other equations by placing
differences in bit i of x3, x4 and observing the bias at position (i + 37) mod 64.
For each i, we can detect whether ki = ki+64 = 0 is satisfied, and then set up 14
linear equations. We can obtain on average 16 i’s with ki = ki+64 = 0, and thus
derive 16 × 14 = 224 linear equations on key bits, which is sufficient to recover
the correct key. We have verified by experiments on thousands of keys that for
most cases the linear system has at least 104 linearly independent equations.

The data complexity of the attack is on average 64 × 219.3 + 16 × 9 × 217.3 ≈
226 bits, and the expected time complexity is about 226, for most of the keys.
The complexity has been practically verified. This attack significantly improves
the existing differential-linear attack on 5-round Ascon-128 with complexity 236

[DEMS15]. Our results are summarized in Table 3, with the comparisons of the
previous differential-linear attacks.

Remark 2. We have made a lot of efforts to apply the method to Ascon for 6
and more rounds, e.g., performing an exhaustive search over all the possible
DL approximations with low-weight differences and linear masks, but we did
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Table 3. Differential-linear cryptanalysis on Ascon-128

Type Rounds Time Data Source

key recovery 4/12 218 218 [DEMS15]

key recovery 5/12 236 236 [DEMS15]

key recovery 5/12 226 226 Section 4.2

not find any approximation with bias larger than 2−64. This probably enhances
confidence that there does not exist valid DL approximation for 6-round Ascon,
at least for low-weight differences and linear masks.

5 Applications to Serpent

In this section, we first give a brief description of the cipher Serpent [ABK98],
as well as revisit the estimation of the differential-linear bias in [BDK03] by our
techniques, and then propose key recovery attacks to round-reduced Serpent.

5.1 A Brief Description of Serpent

In [ABK98] Anderson, Biham and Knudsen presented the block cipher Serpent.
Serpent is an AES finalist. Serpent has a block size of 128 bits and supports a
key size of 128, 192 or 256 bits. The cipher is a 32-round SP-network operating
on a block of four 32-bit words. Each round is composed of key mixing, a layer
of S-boxes and a linear transformation.

In the following, we adopt the notations of [ABK98,BDK03] in the bitsliced
version. The intermediate value of the round i is denoted by B̂i (which is a 128-
bit value). The rounds are numbered from 0 to 31. Each B̂i is composed of four
32-bit words X0,X1,X2,X3. Serpent has 32 rounds, and a set of eight 4-bit to 4-
bit S-boxes. Each round function Ri(i ∈ {0, · · · , 31}) uses a single S-box 32 times
in parallel. For example, R0 uses S0, 32 copies of which are applied in parallel.
Thus, the first copy of S0 takes the least significant bits from X0,X1,X2,X3

and returns the output to the same bits. This can be implemented as a Boolean
expression of the 4 words. The set of eight S-boxes is used four times. S0 is used
in round 0, S1 is used in round 1, etc. After using S7 in round 7, S0 is used
again in round 8, then S1 in round 9, and so on. In the last round (round 31)
the linear transformation is omitted and another key is XORed.

5.2 Differential-Linear Bias of Serpent

One of the first applications of the differential-linear cryptanalysis is an attack
on the AES finalist Serpent presented by Biham et al. in [BDK03]. The attack
is based on a 9-round differential-linear distinguisher with bias of 2−60 and tar-
gets an 11-round variant of the cipher. In [DIK08], Dunkelman et al. performed



Differential-Linear Cryptanalysis from an Algebraic Perspective 267

experiments with reduced round variants of Serpent, and concluded that the
actual bias of the approximation is 2−57.75 and not 2−60. In [BDKW19], Bar-On
et al. recomputed the bias of the distinguisher using the DLCT and obtained
the value 2−57.68.

In this section, we revisit the analysis of the bias of this distinguisher by
DATF techniques, and show an estimate of 2−57.736. This value is extremely
close to the experimental value.

Before showing our results, we recall the analysis of [BDK03]. In the following,
we adopt the notations of [BDKW19,BDK03], and refer the reader to [BDK03]
for the exact difference and mask values. The differential-linear distinguisher of
[BDK03] targets a 9-round reduced variant of Serpent that starts with round
2 of the cipher. This variant is denoted by E and decomposed as E = E1 ◦ E0,
where E0 consists of rounds 2–4 and E1 consists of rounds 5–10. For E0, the
distinguisher uses a differential characteristic of the form

Δ0
p0=2−5

−−−−−→
LT ◦S2

Δ1
p1=2−1

−−−−−→
LT ◦S3

Δ2
p2=1−−−−→

LT ◦S4
Δ3,

where Δ2,Δ3 are truncated differences. For E1, the distinguisher uses a linear
approximation of the form

λ0
q0=2−5

−−−−−→
LT ◦S5

λ1
q1=2−3

−−−−−→
LT ◦S6

λ2
q1=2−21

−−−−−→
R4

λ6,

where all nonzero bits of the mask λ0 are included in the bits that are known to
be zero in Δ3. The authors of [BDK03] found out by experiments that there are
other differentials which also predict the difference in the bits of λ0. Summing
all the differentials, they got that the probability that λ0 · Δ3 = 0 is 1/2 + 2−7,
and hence used p = 2−7 in their analysis. Using the complexity analysis of the
classical differential-linear framework, the authors of [BDK03] concluded that
the overall bias of the approximation is 2 × 2−7 × (2−27)2 = 2−60.

The authors of [DIK08] checked experimentally the first 4 rounds of the
differential-linear distinguisher of [BDK03] (that is, a 4-round distinguisher
which starts with the difference Δ0 and ends with the mask λ1) and found
that its bias is 2−13.75, instead of the estimate 2 · 2−7 · (2−5)2 = 2−16. They
concluded that the bias of the 9-round distinguisher is 2−57.75 instead of 2−60.

The authors of [BDKW19] considered a 3-round variant of Serpent that
starts at round 3, denoted it by E′, and found that its bias is 2−8.68. Hence
they concluded that the bias of the 4-round distinguisher examined in [DIK08]
is 2−5 · 2−8.68 = 2−13.68.

We apply Algorithm 3 to the 3-round variant of Serpent E′ considered in
[BDKW19], with the input difference Δin = Δ1 and output mask λout = λ1,
and obtain a bias ε = 2−8.736. Therefore we conclude that the bias of the 4-
round distinguisher examined in [DIK08] is 2−5 · 2−8.736 = 2−13.736. This value
is extremely close to the experimental value, and slightly more accurate than
that of [BDKW19]. Note that the gap is 2−20.4 while the standard deviation of
the bias was 2−18.87 in the experiment of [DIK08]. We conjecture that the gap
between the experimental value and our estimate is a statistical error.
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We further apply Algorithm 3 to a 4-round variant of Serpent that starts
at round 3, with the input difference Δin = Δ1 and output mask λout = λ2,
and obtain a bias ε = 2−12.736. We thus conclude that the bias of the 5-round
distinguisher is 2−5 · 2−12.736 = 2−17.736.

5.3 Differential-Linear Cryptanalysis of 11-Round and 12-Round
Serpent

In this section, we first point out the flaws in the previous attacks on 12-round
Serpent, and then show our improved attack by applying Algorithm 4.

Comments on the Attacks on 12-round Serpent in [DIK08,Lu15]. The
authors of [DIK08] found that the S-boxes 2, 3, 19, and 23 do not affect the active
bits of LT−1(Δ0), and used this property to extend the 11-round attack to 12
rounds by partially encrypting plaintexts for one more round. Nevertheless, in
Step 3(b) of the 11-round attack, the bits input to the 5 active S-boxes in round
1 are partially encrypted, and thus not only the differences but also the values of
these bits must be taken into account. Our experiment shows that the S-boxes 2,
3, 19, and 23 affect their values, though they do not affect their differences. This
implies that the attack on 12-round Serpent in [DIK08] has an underestimated
time complexity, up to a factor of 216. The same issue exists in the 12-round
attack on Serpent in [Lu15] with time complexity of 2244.9 encryptions. Instead,
they used the property that the S-boxes 1, 8, 10, 30, and 14 of Round 0 do not
affect the difference corresponding to the S-boxes 18, 22, 24 and 25 of Round 1,
but our experiment shows that all the S-boxes of Round 0 affect their values. This
means that the complexity was underestimated by a factor of 220. We therefore
conclude that these attacks are thus worse than a brute-force attack.2

The Improved Attacks on 11-round Serpent. First, we consider a 6-round
variant of Serpent that starts at round 1, using Algorithm 4. The input dif-
ference is set to Δin = {11, 14, 18, 31, 46, 49, 50, 75, 78, 81, 82, 95, 107, 114, 127},
and the output mask λout = λ2. With r1 = 2, performing Algorithm 4, we
obtain a bias ε = 2−12.736. The set of expressions QI has 16 independent poly-
nomials, 11 of which are generated in round 1. The remaining 5 polynomials
are produced in round 2, and the probability that all of these 5 polynomials
equal zeros is 2−5. If we impose the 11 polynomials in round 1 to be zeros,
which are all linear, then we obtain a differential-linear distinguisher with a
bias of 2−5 · 2−12.736 = 2−17.736, for 6-round Serpent. By assuming the piling-
up lemma to hold for the linear approximation from round 7 to round 10
2 The authors of [DIK08] have confirmed the issue with the attacks after a long-

time effort to find solution for fixing it. We are grateful to them for their helpful
discussions and precious feedback on the issue. The flaw was found when we tried
to apply our techniques to Serpent. We believe that the techniques can improve
the 12-round attacks in [DIK08], but the “improved” attack is even worse than a
brute-force attack. We were then aware that this is a contradiction.
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(λ2
q1=2−21

−−−−−→
R4

λ6), we can obtain a 10-round differential-linear distinguisher with

a bias 4 · 2−17.736 · 2−21 · 2−21 = 2−57.736, by imposing 11 linear equations on
the input bits and key bits in round 1. This is because imposing these equations
makes the differential characteristic Δin

LT ◦S1−−−−→ Δ0 hold with probability one.
Nevertheless, the technique of Sect. 3.3 can not be adopted directly, since the
required data exceeds 2128. As a trade off, the data complexity can be cut down
by imposing less equations, at cost of increasing the attack time.

Based on the above observation, we improve the differential-linear attack on
11-round Serpent as follows.

In the attack, we use an input difference with 3 active S-boxes 11, 14, 18:

Δin = {11, 14, 18, 46, 50, 75, 78, 82, 107, 114},

and impose the following 6 equations:

v11 = k11;
v14 = k14 ⊕ k78 ⊕ v78 ⊕ 1;
v18 = k18 ⊕ k50 ⊕ v50;
v43 = k43 ⊕ k107 ⊕ v107 ⊕ 1;
v46 = k46 ⊕ k78 ⊕ v78 ⊕ 1;
v82 = v50 ⊕ k50 ⊕ k82 ⊕ 1,

(5.1)

where vi and ki respectively denote bit i of plain-text input to round 1 and the
128-bit subkey K1 of round 1.

The attack is described by the following procedure.

1. Select N = 2125.6 pairs of plaintexts with difference Δin, consisting of 2111.6

structures, each is chosen by selecting:

(a) Any pairs of plaintexts (P0, P0 ⊕ Δin).
(b) The pairs of plaintexts (Pi, Pi ⊕ Δin) for 1 ≤ i ≤ 214 − 1, where

P1, · · · , P214−1 differ from P0 by all the 214 − 1 possible (non-empty) sub-
sets of the 6 bits {11, 14, 18, 43, 46, 82}, S-box 17 (bits {17, 49, 81, 113}) and
S-box 31 (bits {31, 63, 95, 127}) in round 1.

2. Request the ciphertexts of these plaintext structures (encrypted under the
unknown key K).

3. For each value of the 6 expressions of K1, choose the 2119.6 pairs of plaintexts
(P, P ⊕Δin) with P satisfying (5.1), and perform the following steps for each
value of the 8 bits of K1 entering S-box 17 and S-box 31:

(a) Initialize an array of 256 counters to zeros.
(b) Partially encrypt for each plaintext the S-boxes 17 and 31 in round 1, and

find the pairs which satisfy the difference Δ0 before round 2.
(c) Given those 2119.6 pairs, perform for each ciphertext pair: count over all

pairs how many times each of the 256 possibilities of the 56 bits entering the
7 active S-boxes in round 11 occurs.
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(d) For each guess of the subkey entering these S-boxes, find how many pairs
agree on the output subset parity, and how many disagree.

(e) The highest entry in the array should correspond to the 28 bits of K12

entering the 7 active S-boxes in round 11.

4. Each trial of the key gives us 42 bits of the subkeys (14 bits in round 1 and
28 bits in round 11), along with a measure for correctness. The correct value
of the 40 bits is expected to be the most frequently suggested value.

5. The rest of the key bits are then recovered by auxiliary techniques.

The data complexity of the attack is 2126.6 chosen plaintexts, the time com-
plexity of the attack is 2120.6 · 214 · 2

352 = 2127.1 encryptions, and the memory
complexity is 260 bytes for the 11-round attack. Using the formula (3.3), the suc-
cess probability of the attack is expected to be about 85%. As far as we know,
this is the first differential-linear cryptanalysis on 11-round Serpent-128.

Further Improvements on the Attacks on Serpent. In [DIK08], Dunkel-
man et al. presented a 9-round differential-linear approximation in the inverse
direction with a bias of 2−54, starting from round 13 and ending at round 5, and
showed an attack on 11-round Serpent with data complexity of 2113.7 chosen
ciphertexts, time complexity of 2137.7 memory accesses, and memory complexity
of 299 bytes.

With the help of Algorithm 4, we can improve the attack on 11-round
Serpent in the setting of chosen ciphertext attack, using the techniques as dis-
cussed previously. By imposing 12 linear equations on the ciphertext and the bits
of subkey K15 that are XORed with the 6 active S-boxes in round 14, the 9-round
differential-linear approximation in the inverse direction can be extended to 10
rounds with the same bias 2−54, starting from round 14 and ending at round
5. Then the time complexity can be cut down by a factor of about 2−12. The
improved attack on 11-round Serpent has the data complexity of 2125.7 chosen
ciphertexts, time complexity of 2125.7 memory accesses, and memory complexity
of 299 bytes. Using the Formula (3.3), the success probability of the attack is
expected to be more than 99%.

Our experiment shows that there is one S-box in round 15 that does not
affect either the differences or the values of the 6 active S-boxes in round 14.
Based on this observation, we can extend the chosen ciphertext attack on 11-
round Serpent to 12 rounds (starting from round 15 and ending at round 4), by
guessing the bits of the subkey K16 that are XORed with the other 31 S-boxes.
The attack on 12-round Serpent-256 has the data complexity of 2127 chosen
ciphertexts, time complexity of 2127 · 2124 = 2251 memory accesses, and memory
complexity of 299 bytes. The success probability of the attack is expected to be
more than 77%. To the best of our knowledge, this is the first correct attack on
12-round Serpent.

The cryptanalytic results are summarized in Table 4, with the comparisons
of the previous differential-linear attacks.
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Table 4. Differential-linear cryptanalysis on Serpent

Key size Rounds Time Data Memory Source

192 & 256 11/32 2139.2 En 2125.3 CP 260 B [BDK03]

192 & 256 2135.7 En 2121.8 CP 276 B [DIK08]

192 & 256 2137.7 MA 2113.7 CC 299 B [DIK08]

all 11/32 2127.1 En 2126.6 CP 260 B Section 5.3

all 2125.7 MA 2125.7 CC 299 B Section 5.3

256 12/32 2251 MA 2127 CC 299 B Section 5.3

6 Applications to Grain v1

As mentioned earlier, an extreme case of the differential-linear attack can be
theoretically considered as a truncated differential attack, see also [BLN17]. The
techniques we propose for differential-linear attack can also be used in a (trun-
cated) differential attack. In this section, we apply the previous techniques to
differential cryptanalysis of the stream cipher Grain v1, propose key recovery
attacks to a round-reduced variant of the cipher, and also revisit the previous
differential attacks.

Grain v1 is an NFSR-based stream cipher proposed by Hell et al. [HJMM08].
The cipher is one of the finalists which has been selected in the eSTREAM
hardware profile. Grain v1 uses an 80-bit secret key K = (k0, k1, . . . , k79) and a
64-bit initial value V = (v0, v1, . . . , v63). It consists of three main building blocks:
an 80-bit LFSR, an 80-bit NFSR and a non-linear output function. In this paper,
round-reduced variants of Grain v1 with r initialization rounds means the cipher
outputs keystream after r rounds and the first keystream bit is zr.

At ASIACRYPT 2010, Knellwolf et al. [KMN10] proposed conditional differen-
tial attacks on NFSR-based cryptosystems, with applications to 104-round Grain
v1. The framework of this attack is as follows: First, in a chosen plaintext attack
scenario, the authors choose a suitable difference that controls difference propa-
gation as many rounds as possible. Second, they impose conditions to prevent the
propagation of the difference to the newly generated state bits at first few rounds.
Since the bias of the keystream is wanted to be tested, there is an important trade-
off between the number of imposed conditions and the number of inputs that can
be derived. Finally, depending on whether the conditions involve the initial value
only, or also key variables, they obtain distinguishing and partial key recovering
attacks. In the literature, the largest number of initialization rounds of Grain v1
that can be attacked is 120, proposed by Li and Guan [LG19] using a conditional
differential approximation with an experimental bias 2−12.8.

6.1 Searching the Differences of Round-Reduced Grain v1

In this section, we exploit the two algorithms, Algorithm 1 and Algorithm 2, as
shown in Sect. 3 to estimate the differential-linear bias as well as search for good
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differences for Grain v1. We use Algorithm 2 rather than Algorithm 3 because of
its efficiency. By an exhaustive search over all the differences in at most 4 bits of
the initial value, the algorithms find a differential approximation with a theoretical
bias 2−20.77 for 125-round Grain v1. For purposes of comparison, we have applied
the existing method called Differential Engine proposed by Banik in [Ban14] to
analyzing the bias of the same approximation, and detect a bias of 2−24.78, which
is much smaller. The found input difference is a 2-bit difference, with differences
in bit 21 and 46 of the initial value. The output linear mask is located in the first
bit of the keystream. Note here that we use modified Algorithm 1 and Algorithm 2
which partially adopt the key recovery techniques of Algorithm 4 with r1 = 50.
From the algorithms we obtain 6 equations represented by the ATFs of the internal
bits of Grain v1. The ANFs of the internal bits on the key and initial value are
very complicated. Instead of directly converting the ATF into the ANF, we analyze
these equations specifically one by one manually.

Using the same method, we revisit the analysis of the conditional differential
bias of 120 rounds in [LG19], and obtain a theoretical estimate of 2−13.39. This is
very close to the experimental value 2−12.8, and much higher than the estimate
of 2−18.13 obtained by the Differential Engine method.

6.2 Analysis of 125-Round Grain v1

Imposing the appropriate conditions is the crucial part of conditional differential
attack. It has a trade-off between the two aims: one is to prevent a maximum
number of propagation, the other is to find enough IVs that satisfy the condi-
tions. A condition that we assign a certain IV bit to fixed value 0 or 1 is called
Type 0 condition, and a condition which is a function of IV bits and key bits is
called Type 1 condition.

We now introduce the strategy of our conditions analysis. Since the updated
symbolic expressions of Grain v1 are rather complicated after few rounds, it is
not easy to analyze conditions. A new variable is used to compute the updated
expression and we store the original complex one and factor the condition expres-

sion as f +
n∑

i=1

figi. Thus it is easier to analyze expressions and impose simple

conditions. To obtain enough IVs that satisfy the conditions, we allow Type 1
conditions to have the term

∑
i,j

kivj and we guess the value of each ki when

we attack 125-round Grain v1. We finally impose 10 Type 0 conditions and 13
Type 1 conditions.

We have performed for 8 random keys each with 240 pairs of initial values
that satisfy the above equations, and observed a bias of 2−17.4 with standard
deviation of 2−20.5. Hence we use the bias 2−17.4 in our attack.

In the above equations, there are in total 20 independent expressions of key
bits that need to be guessed in the attack. A primary analysis of the attack
gives a data complexity of 2 · 213 · 238 = 252 chosen IVs and a time complexity of
220 ·239 = 259. Since 20 expressions of key bits are recovered, the full key recovery
attack runs in time 260. Using the Formula (3.3), the success probability of the
attack is expected to be more than 87.7%.
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By imposing two extra bits of IV to be zeros, e.g., v47 = v50 = 0, two less
expressions of the key need to be guessed, and the time complexity of the attack
can be cut down to 218 · 239 = 257, keeping the data complexity unchanged.
After recovering the 18 expressions of the key, we can recover the other two
key expressions, at cost of additional but negligible time and data. The success
probability of the attack is expected to be more than 92.5%. To the best of
our knowledge, this is the best known initialization analysis of Grain v1 in the
single key setting. The results are summarized in Table 5, with the comparisons
of the previous differential attacks. Note here that this table does not include
the distinguishing, related key or weak-key attacks.

Table 5. Differential cryptanalysis on Grain v1 in the single key setting

Type Rounds Time Data Gain Source

partial key recovery 104/160 235 235 1 bit [KMN10]

full key recovery 105/160 271 - 9 bits [Ban16]

partial key recovery 110/160 247 - 15 bits [MTQ17]

partial key recovery 120/160 242.75 - 12 bits [LG19]

partial key recovery 125/160 257 252 20 bits Section 6.2

full key recovery 125/160 260 252 20 bits Section 6.2

7 Discussions and Open Problems

Here we would like to discuss why our theoretical value is more accurate than
that of the DLCT tool [BDKW19] and why the gap behaves different for Ascon,
Serpent and Grain v1. As a general case, it has been proven in Theorem 4 that
the theoretical value given by Algorithm 3 is accurate, under the assumption that
the variables of each round are independent. The number of transitional variables
in each round is at most twice the number of updated bits. Thus the assumption
is competitive with the traditional assumption of differential-linear cryptanalysis,
i.e., round independence within E0 and E1 (see also [BLN17,BDKW19]). For a
concrete case, especially in the case of low-weight differences and linear masks, a
much weaker assumption might be required in the DATF techniques. Compared
with round independence assumption, our assumption for Ascon and Serpent is
weaker, which leads to more accurate estimation.

When applying Algorithm 3 to 3- and 4-round Serpent, we have two observa-
tions: (1) there are no isolated variables in the ATF of the parity e, that is, Line
12 of Algorithm 3 runs only once; (2) the number of transitional variables is small.
The property (1) avoids using the piling-up lemma in Line 12 of Algorithm 3 and
makes the assumption become a weaker one. The property (2) makes the assump-
tion easy to be satisfied. They are the reasons that our value is extremely close to
the experimental value and why we conjecture that the gap between the experi-
mental value and our estimate is generated by the statistical error.
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For the approximation of 4-round Ascon, Line 12 of Algorithm 3 runs twice, and
the number of transitional variables is relatively small. This makes the assumption
more valid, because a transitional variable in e − el relies on the transitional vari-
ables of the expression obtained by substituting Q into el. This may produce an
inaccurate estimation when using the piling-up lemma in Line 12. We conjecture
this is the reason why there is still a gap in the case of Ascon.

For the application to Grain v1, it is much more complicated. Algorithm 2
rather than Algorithm 3 is applied in the key-dependent setting. For 120 rounds,
Line 5 of Algorithm 2 runs twice, that is, the piling-up lemma in Line 5 is used
once. For 125 rounds, Line 5 of Algorithm 2 runs three times, that is, the piling-up
lemma in Line 5 is used twice. These produce a bigger gap between the assumption
and the truth. Moreover, a significant difference between the theoretical analysis
and experimental evaluation of the 125-round bias is the number of conditional
equations, i.e., 6 equations on the internal bits for the former and 23 conditions in
the key and IV bits for the latter.

To conclude, the less the frequency of using the piling-up lemmaand the smaller
the number of transitional variables related to the approximation, the more accu-
rate the theoretical estimation of its bias would be.

Usage and Limitation. The underlying idea of the DATF techniques is simple
and easy implemented in symbolic computation software, e.g., SageMath. All the
algorithms are practical for almost iterated cipher without using addition opera-
tions reduced to a moderate number of rounds, e.g., Ascon reduced to 4–5 out of 12
rounds, Serpent reduced to 4–6 out of 32 rounds, and Grain v1 reduced to 125 out
of 160 rounds. The running time ranges from a few seconds to dozens of minutes,
for calculating the bias of one differential-linear or differential trail in SageMath.
The techniques are superior to the DLCT in both the accuracy and the length of
the trail, which has at least been illustrated in the above instances, and the new
techniques proposed in this paper thus can be seen, at least, as a complementary
analytical tool to the existing theory of differential-linear cryptanalysis as well as
differential cryptanalysis. It seems that the DATF techniques are suitable for anal-
ysis of low-weight differential-linear or differential trails and not suitable for linear
trails. Thus using the DATF together with the classical differential-linear crypt-
analytic methods might be a good choice.

Open Problems and Future Work. In the future, it is worthy of working on
the applications of the DATF techniques to more cryptographic primitives. The
techniques can be applied to most iterated ciphers but not to ARX ciphers that
use addition operations. A natural question is how to adjust the techniques appli-
cable to a cipher using additions. It is also worthy of comparative study between
the DLCT and DATF techniques. A main question raised is whether the DATF
techniques are more efficient and more accurate than the DLCT tool in the gen-
eral case. Though our estimates of the bias in the differential-linear approximation
are close to the experimental values, there are still some gaps in some cases. These
cases happen when the assumption is not satisfied. It is worthy of further study
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of the DATF techniques as well as exploration of new methods, for analysis of the
differential-linear bias under weaker assumptions or without assumptions.

8 Conclusion

In this paper, we have shown a new theory of differential-linear cryptanalysis from
an algebraic perspective, including the estimation of the differential-linear bias and
techniques for key recovery. As illustrations, we applied it to the CAESAR finalist
Ascon, the AES finalist Serpent, and the eSTREAM finalist Grain v1, and gained
themost accurate estimation of the bias aswell as the best knowndifferential-linear
or differential attacks. In particular, the results in this paper update the cryptanal-
ysis of Serpent with one more round. Our technique for key recovery is an organic
combination of distinguisher searching and key guessing, and thus outperforms the
previous key recovery in differential-linear cryptanalysis. We believe that this new
cryptanalytic tool is useful in both cryptanalysis and design of symmetric cryp-
tosystems.
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1 Introduction

The meet-in-the-middle (MITM) approach is a generic technique for cryptanaly-
sis of symmetric-key primitives, which was first introduced by Diffie and Hellman
in 1977 for attacking block ciphers [18]. Many variants of this technique can be
found in the literature [10,19–21,25]. Its basic idea is best illustrated by per-
forming an MITM attack on a block cipher deliberately made susceptible to this
type of attacks. Let EK(·) be a block cipher whose block size is n-bit such that
C = EK(P ) = FK2(FK1(P )), where K = K1||K2, and K1 and K2 are inde-
pendent key materials. Therefore, for a given pair of plaintext-ciphertext pair
(P,C), the intermediate value V can be computed independently as FK1(P ) and
F−1

K2
(C) with independent guesses of K1 and K2. The correct key guess nec-

essarily satisfies FK1(P ) = F−1
K2

(C). Therefore, by searching collisions on the
intermediate values computed from P and C, one can reduce the search space
from 2|K| = 2|K1|+|K2| to 2|K1|+|K2|−n with time complexity 2|K1| + 2|K2|. The
remaining key space with 2|K1|+|K2|−n candidates can be tested against several
known plaintext-ciphertext pairs to identify the unique secret key.

However, in practice, it is rare that a target cipher can be clearly separated
into two independent halves as the above doubly cascaded F with indepen-
dent key materials. When a clear separation into two independent chunks is not
possible, a variant of the basic MITM strategy (known as three-subset MITM
attack) is available. This method was originally proposed by Bogdanov and Rech-
berger [12], applied to many ciphers [12,35,47,51], and was well summarized by
Isobe [33]. Again, let us briefly demonstrate this technique on an ill-designed
example with respect the three-subset MITM attack. Let EK(·) be a block
cipher whose block size is n-bit such that it can be divided into three chunks
as C = EK(P ) = HK3||K2(GK1||K2||K3(FK1||K2(P ))), where K = K1||K2||K3

and K1, K2, K3 are independent. Moreover, some m-bit (m < n) information
of a state value inside G can be partially computed along the forward direction
from FK1||K2(P ) without the knowledge of K3, or computed along the back-
ward direction from H−1

K3||K2
(C) without the knowledge of K1. The three-subset

MITM attack partitions the search space with 2|K| = 2|K1|+|K2|+|K3| elements
into 2|K2| subspaces of equal size according to the value of |K2|. For each sub-
space, where the value of |K2| is fixed, one can perform the basic MITM attack
with partial match to reduce the size of the search space from 2|K1|+|K3| to
2|K1|+|K3|−m with time complexity 2|K1| + 2|K3|. Under our terminology, which
will be introduced in Sect. 2, one run of the basic version of the MITM attack
with a fixed K2 is called one MITM episode. To identify the correct key, 2|K2|

episodes have to be performed. Therefore, the overall time complexity can be
estimated as 2|K2|(2|K1| +2|K3| +2|K1|+|K3|−m). This technique has been applied
to many block ciphers [10,12,33,34,47,51].

Although the MITM technique was originally introduced for attacking block
ciphers, its development seems to be largely cultivated and promoted in the
cryptanalysis of hash functions. In 2008, Sasaki and Aoki successfully achieved
preimage attacks on several full versions of HAVAL by combining the MITM
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approach with the local collision technique [48]. From then on, many MITM
preimage attacks together with their enhancements and improvements targeting
various hash functions emerged in the literature [1,2,4,6,30,31,40,46,49,56,57].
Along the way, several important techniques arise which significantly enhance
and enrich the MITM methodology, including the splice-and-cut technique [3],
the concept of initial structure [49], (indirect-)partial matching [3,49], sieve-in-
the-middle [15] and match-box technique [27]. Some techniques are formalized
as bicliques [11,39] and further perceived from differential views [26,40]. These
developments in the context of cryptanalysis of hash functions were finally found
to be applicable in the MITM attacks on block ciphers. In [58], Wei et al. first
applied the splice-and-cut technique to the MITM attacks on block ciphers by
connecting the plaintext and ciphertext states with encryption or decryption
oracles.

Despite that the principle of how to combine all these techniques in MITM
attacks is quite clear, to actually apply them in practice effectively and efficiently
is complicated, tedious, and error-prone. Recently, (semi) automatic tools are
developed to explore the configuration space of MITM attacks in a more sys-
tematic approach. In [47], Sasaki proposed an MILP-based method to search
for optimal independent key bits used in the three-subset MITM key-recovery
attacks on GIFT [5]. However, Sasaki’s model is not general enough and the pos-
sible positions of neutral words are prefixed. At EUROCRYPT 2021, the MITM
preimage attacks on AES-like hashing was throughly modeled as constrained
optimization problems which were solved with MILP techniques [6]. This app-
roach outperforms previous work done manually, and many attacks on AES-like
hashing [41,46,59] are shown to have room to be further improved. However, this
method is described in a way specific to preimage attacks and do not translate
directly to MITM-based key-recovery or collision attacks.

Our Contribution. We describe the MITM attacks1 in a unified way as MITM
attacks on the so-called closed computation path. This view has been long known
to our community. Nevertheless, we believe that our treatment is more formal
and general. In particular, by introducing some new concepts, we make the
description of MITM attacks more expressive and accurate.

Then, we focus our attention on MITM key-recovery and collision attacks
on block ciphers and hash functions. We identify the peculiarities specific to
these scenarios and show how to deal with them automatically. For the MITM
characteristics employed in key-recovery attacks, the degrees of freedom orig-
inated from the states in the key schedule data path must not be depleted,
while the degrees of freedom originated from the encryption data path must
be used up. Also, when searching for candidate configurations for the MITM
key-recovery attacks, we should avoid those configurations that lead to attacks
requiring the full codebook. We apply our methods to concrete block ciphers
SKINNY and ForkSkinny. and we identify the first 23-round attack on SKINNY-n-
3n in the single-key model, penetrating one more round than the designers have
1 We do not consider the Demirci-Selçuk MITM attacks [16,17,24,54] in this paper,

which is a quite different technique.
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expected: We conclude that meet-in-the-middle attack may work up to at most
22 rounds [9, Sect. 4.2, page 22]. Interestingly, the characteristics we employed
in these attacks impose nontrivial constraints on the neutral words from the key
states, which has not been seen before. For collision attacks, they are based on a
generalized version of the t-cell partial target preimage attacks, where the words
of the target value fulfill t (word-oriented) equations.

Finally, we perform MITM preimage and collision attacks on concrete hash
functions (e.g., Romulus-H [36], Saturnin [14], WHIRLPOOL [8], and Grøstl [28]).
In the attacks on certain hash functions, we encounter some special MITM char-
acteristics where the neutral words are nonlinearly constrained. In previous work,
the neutral words are linearly constrained and thus the solution space of the
neutral words can be obtained efficiently by solving the corresponding system
of linear equations. For nonlinear equations, this approach would significantly
increase the complexities. We propose a technique that is applicable to both the
non-linearly and linearly constrained neutral words, overcoming this difficulty
without increasing the time complexity of the attacks. Based on this technique,
we improve the (pseudo) preimage attacks on round-reduced Grøstl-256 and
its output transformation by one round. For collision attacks, the first 6-round
classical collision attack on WHIRLPOOL is provided, breaking a 10-year record
for collision attacks on WHIRLPOOL in the classical setting. Also, we give the first
6-round collision attack and 8-round collision attack on the output transforma-
tions of Grøstl-256 and Grøstl-512, respectively. Interestingly, we notice that
all competitive collision attacks on these AES-like hashings are based on the
rebound technique [44]. In addition, we offer the first third-party cryptanalysis
of Saturnin-Hash [14], a second round candidate of the NIST LWC project. A
summary of our results on concrete primitives is given in Table 1 and Table 2.
The source code of the paper is available at https://github.com/siweisun/mitm-
attacks-revisited.

Table 1. Single-key attacks (SK) on SKINNY-n-3n and ForkSkinny-n-3n, where ID and
DS-MITM denote impossible differential and Demirci-Selçuk MITM attacks, respec-
tively.

SKINNY

Version Rounds Data Time Memory Attack Setting Ref.

64-192 22 247.84 2183.97 274.84 ID SK [55]

23 252 2188 24 MITM SK Sect. 4

128-384 22 296 2382.46 2330.99 DS-MITM SK [54]

22 292.22 2373.48 2147.22 ID SK [55]

23 2104 2376 28 MITM SK Sect. 4

ForkSkinny

64-192 24 252 2188 24 MITM SK Full Ver. [22]

128-384 24 2104 2376 28 MITM SK Full Ver. [22]

128-256 24 2122.5 2124.5 297.5 ID RK [7]

26 2127 2250.3 2160 ID RK [7]

https://github.com/siweisun/mitm-attacks-revisited
https://github.com/siweisun/mitm-attacks-revisited
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Table 2. A Summary of the results. Note that we only consider preimage and collision
attacks. Distinguishing attacks [13,37,42,50] are not included. Also, note that the com-
plexity of the preimage attack on Romulus-H is 2248. This attack does not break 23-round
Romulus-H since the designers only claim 128-bit security. However, this complexity is
better than an exhaustive search, whose complexity is 2256. Similarly, Saturnin claims
only 224-bit security.

WHIRLPOOL

Target Attack Rounds Time Memory Setting Ref.

Hash function Collision 4 2120 216 Classic [44]

5 2120 264 Classic [29,42]

6 2228 - Quantum [32]

6 2248 2248 Classic Sect. 6.2

Preimage 5 2504 28 Classic [46]

5 2481.5 264 [59]

6 2481 2256 [52]

Compression function (Semi-) free-start 5 2120 216 Classic [44]

7 2184 28 [42]

8 2120 28 [52]

Grøstl-256

Hash function Collision 3 264 - Classic [53]

5 2120 264 [45]

Pseudo preimage 5 2244.8 2230 Classic [59]

6 2252 2251 Full Ver. [22]

Compression function Semi-free-start 6 2112 264 Classic [53]

Output transformation Preimage 5 2206 248 Classic [59]

6 2240 2152 Full Ver. [22]

Collision 6 2124 2124 Classic Full Ver. [22]

Grøstl-512

Hash function Collision 5 2240 264 Quantum [23]

Compression function 7 2152 256 Classic [50]

Output transformation 8 2248 2248 Classic Full Ver. [22]

Hash function Pseudo preimage 8 2507.3 2507 Classic [59]

Saturnin-Hash

Compression function Preimage 7 2208 248 Classic Full Ver. [22]

Hash function 7 2232 248

SKINNY-128-384, Romulus-H, and AES hashing mode

SKINNY-128-384-DM/MMO Preimage 23 2120 28 Classic Full Ver. [22]

Romulus-H 23 2248 28 Full Ver. [22]

AES-256 9 2120 28 [6]

AES-256 10 2120 256 Full Ver. [22]

Romulus-H compression function Free-start 23 2124 2124 Full Ver. [22]
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Key schedule
Encryption

#SENC

Match
#E+ #E−

Public or Oracle computation

#SKSA

Fig. 1. A high-level overview of the MITM attacks

2 A Formal Description of the MITM Technique

We now formally describe the MITM attacks with the notations introduced by
Bao et al.’s work [6] in a more unified way. We encourage the readers to carefully
go through this section since it not only serves as a recall of Bao et al.’s work,
but also introduces some new terminologies that enhance the expressiveness and
accuracy of the descriptions of MITM attacks.

Given a computation path that forms a “closed loop”, the ultimate goal
of the meet-in-the-middle attack is to find a particular value for some inter-
mediate states with which the values for all the states involved in the compu-
tation path can be determined, such that the values are compatible with the
whole computation path (there are no conflicts between the values due to the
involved computation). Let us descend from the abstract highland and consider
the closed computation path shown in Fig. 1. The upper segment of the compu-
tation path constitutes an iterative block cipher with an iterative key schedule,
and we assume that the states involved in the encryption data path and key
schedule data path contains n and n̄ w-bit words respectively, which are typi-
cally visualized as rectangles with n and n̄ cells, respectively. The lower segment
of the computation path can be arbitrary. In our context, it can be an oracle of
the block cipher appearing in the upper segment of the computation path when
we consider an MITM key-recovery attack, or a simple exclusive-or of a given tar-
get value when we consider preimage attacks. Before we can perform an MITM
attack on the computation path, a configuration or an MITM characteristic has
to be identified.

MITM Characteristics and Their Visualization. The MITM attack entails
the identification of several special states: the starting state #SENC (see Fig. 1)
in the encryption data path, the starting state #SKSA in the key schedule data
path, the ending state #E+ for the forward computation (the computation path
starting from (#SENC,#SKSA) leading to #E+), and the ending state #E− for
the backward computation (the computation path starting from (#SENC,#SKSA)
leading to #E−). Moreover, the cells of (#SENC,#SKSA) are partitioned into
different subsets with different meanings. Let BENC, BKSA, RENC, RKSA, M+, and
M− be some ordered subsets of N = {0, 1, · · · , n − 1} or N = {0, 1, · · · , n̄ − 1}
such that BENC ∩ RENC = ∅, BKSA ∩ RKSA = ∅, GENC = N − BENC ∪ RENC and
GKSA = N − BKSA ∪ RKSA. We will use these index sets to reference the cells of
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the states. For example, for a 16-cell state #S and M+ = [0, 1, 3], we have
#S[M+] = #S[0, 1, 3] = (#S[0],#S[1],#S[3]).

The cells (#SENC[BENC],#SKSA[BKSA]), visualized as cells, are called neutral
words of the forward computation, and the cells (#SENC[RENC],#SKSA[RKSA]),
visualized as cells, are called neutral words of the backward computation.
The initial degrees of freedom for the forward and backward computation are
defined as λ+ = |BENC|+ |BKSA| and λ− = |RENC|+ |RKSA| respectively, that is, the
numbers of cells and cells in the starting states. In addition, E+[M+] are
visualized as cells, and E−[M−] are visualized as cells. Finally, #SENC[GENC]
and #SKSA[GKSA] are visualized as cells.

We then define a sequence of l+ functions π+ = (π+
1 , · · · , π+

l+) whose values
can be computed with the knowledge of the cells (#SENC[GENC],#SKSA[GKSA])
and cells (#SENC[BENC],#SKSA[BKSA]) in the starting states, where

π+
i : Fw·(|GENC|+|GKSA|+|BENC|+|BKSA|)

2 → F
w
2

is a function mapping (#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]) to a
w-bit word π+

i (#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]). Similarly, we
define a sequence of l− functions π− = (π−

1 , · · · , π−
l−) whose values can be

computed with the knowledge of the cells (#SENC[GENC],#SKSA[GKSA]) and
cells (#SENC[RENC],#SKSA[RKSA]). π+ and π− will be used to represent certain
constraints on the neutral words of the forward and backward computations,
respectively. A valid MITM characteristic satisfies the following property.

Property 1. For any fixed c+ = (a1, · · · , al+) ∈ F
w·l+
2 and c− = (b1, · · · , bl−) ∈

F
w·l−
2 , when the cells (#SENC[GENC],#SKSA[GKSA]) are fixed to an arbitrary con-

stant, and the neutral words for the forward computation and backward com-
putation paths fulfill the following systems of equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π+
1 (#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]) = a1

π+
2 (#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]) = a2

· · · · · ·
π+

l+(#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]) = al+

(1)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π−
1 (#SENC[GENC],#SKSA[GKSA],#SENC[RENC],#SKSA[RKSA]) = b1

π−
2 (#SENC[GENC],#SKSA[GKSA],#SENC[RENC],#SKSA[RKSA]) = b2

· · · · · ·
π−

l−(#SENC[GENC],#SKSA[GKSA],#SENC[RENC],#SKSA[RKSA]) = bl−

(2)

respectively, then the values of the cells #E+[M+] can be derived from the
starting states (#SENC,#SKSA) along the forward computation path without the
knowledge of the neutral words for the backward computation, and the values of
the cells #E−[M−] can be derived from the starting states (#SENC,#SKSA) along
the backward computation path without the knowledge of the neutral words for
the forward computation. In short, computations for deriving #E−[M+] and
#E−[M−] can be carried out independently.
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Let us talk more about Property 1. For any given (#SENC[GENC],#SKSA[GKSA])
and c+ = (a1, · · · , al+), the solution space of (#SENC[BENC],#SKSA[BKSA]) induced
by Eq. (1) is denoted by

B(#SENC[GENC],#SKSA[GKSA], c+).

Since there are λ+ = |BENC| + |BKSA| w-bit variables and l+ equations, we expect
2w·(λ+−l+) solutions, and we call DoF+ = λ+ − l+ the degrees of freedom for the
forward computation. Similarly, the solution space of (#SENC[RENC],#SKSA[RKSA])
induced by Eq. (2) is denoted by R(#SENC[GENC],#SKSA[GKSA], c−). Since there are
λ− = |RENC| + |RKSA| w-bit variables and l− equations, we expect 2w·(λ−−l−)

solutions, and we call DoF− = λ− − l− the degrees of freedom for the backward
computation.

Let F+ be the function computing #E+[M+] from (#SENC,#SKSA), that is,
#E+[M+] can be computed as

F+(#SENC[GENC], #SKSA[GKSA], #SENC[BENC],#SKSA[BKSA],#SENC[RENC],#SKSA[RKSA]),

and similarly, #E−[M−] can be computed as

F−(#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA],#SENC[RENC],#SKSA[RKSA).

Property 1 implies that

F−(α, x,#SENC[RENC],#SKSA[RKSA]) = F−(α, y,#SENC[RENC],#SKSA[RKSA])

for any given x, y ∈ B(#SENC[GENC],#SKSA[GKSA], c+) and α ∈ F
|GENC|+|GKSA|
2 . Simi-

larly, for any u, v ∈ R(#SENC[GENC],#SKSA[GKSA], c−), we have

F+(α,#SENC[BENC],#SKSA[BKSA], u) = F+(α,#SENC[BENC],#SKSA[BKSA], v).

Consequently, for any given (#SENC[GENC],#SKSA[GKSA]) = α, and c+, and c−, we
can perform a matching process given in Algorithm 1.

In real MITM attacks, Algorithm 1 will be performed multiple times for many
different α, c+, and c−, each time is called one MITM episode. Variables that
remain constant within each episode are called episodic constants, and variables
remain constant in the whole life cycle of an attack (remaining constant across
different episodes) are called global constants. Thus global constants are always
episodic constants. The cells used in [6] and this work capture the episodic
constants, whose values can change across different episodes.

Within each episode, (2w)DoF+
times of forward computation are carried out,

and (2w)DoF−
times of backward computations are carried out, which are referred

to as forward threads and backward threads. Each forward thread and backward
thread within the same episode gives a pair of values for (#E+[M+],#E−[M−])
which are computed along the forward and backward computation paths from a
common value of the starting states (#SENC,#SKSA), and thus can be tested for
match according to the computation connecting #E+ and #E− in the closed
loop. Note that testing pairs computed from different values of the starting point
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Algorithm 1: One MITM episode
1 Fix (#SENC[GENC], #SKSA[GKSA]) to a constant α
2 Fix c+, and c− to some constants
3 Fix x∗ to be an element in B(#SENC[GENC], #SKSA[GKSA], c+)
4 Fix u∗ to be an element in R(#SENC[GENC], #SKSA[GKSA], c−)
5 L ← [ ]

6 for all (#SENC[BENC], #SKSA[BKSA]) ∈ B(#SENC[GENC], #SKSA[GKSA], c+) do
7 E+[M+] ← F+(α, #SENC[BENC], #SKSA[BKSA], u∗)
8 Insert E+[M+] into L

9 for all (#SENC[RENC], #SKSA[RKSA]) ∈ R(#SENC[GENC], #SKSA[GKSA], c−) do
10 E−[M−] ← F −(α, x∗, #SENC[RENC], #SKSA[RKSA])
11 for E+[M+] in L matching with E−[M−] do
12 Test for full match between E+[M+] and E−[M−]

(e.g., pairs formed from different episodes) is meaningless. In each episode, we
have (2w)DoF++DoF−

paired threads. If the computation connecting #E+[M+]
and #E−[M−] forms an m-cell filter, then there are about (2w)DoF++DoF−−m

paired threads will pass the filter and be tested for a full match. We call DoM =
m the degrees of match or the strength of the filter. Finally, we emphasize again
that the MITM procedure given in Algorithm 1 is performed for some fixed
(#SENC[GENC],#SKSA[GKSA], c+, c−), and we say (#SENC[GENC],#SKSA[GKSA], c+, c−)
defines the context of the MITM episode.

Automatic Search for MITM Characteristics. For a given closed compu-
tation path shown in Fig. 1, a configuration of the states #SENC, #SKSA, #E+,
#E−, and the parameters BENC, BKSA, RENC, RKSA, M+, M−, DoF+, DoF−, π+,
π−, and DoM satisfying Property 1 is called an MITM characteristic. At EURO-
CRYPT 2021, Bao et al. presented an MILP-based method for finding optimal
MITM characteristics for preimage attacks, and we refer the reader to [6] for
more details. Here, we only mention that an MILP characteristic can be visual-
ized with the following coloring scheme on the states of the closed computation
path and the ith cell of a state #S is encoded with a pair of 0-1 variables
(x#S

i , y#S
i ) in the MILP models according to the following rule:

Gray (G), (x#S
i , y#S

i ) = (1, 1): known episodic constants.
Red (R), (x#S

i , y#S
i ) = (0, 1): neutral words for backward computation or

dependent on cells and neutral words for backward computation.
Blue (B), (x#S

i , y#S
i ) = (1, 0): neutral words for forward computation or

dependent on cells and neutral words for forward computation.
White (W), (x#S

i , y#S
i ) = (0, 0): dependent on cells in the backward

computation or dependent on cells in the forward computation.
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3 Automatic MITM Key-Recovery Attacks

We describe the MITM key-recovery attack on a block cipher based on Fig. 1 with
the lower segment being an encryption or decryption oracle. Before going any
further, we introduce some new notations. The initial degrees of freedom from the
encryption and key schedule data paths for the forward computation are defined
as λ+

ENC = |BENC| and λ+
KSA = |BKSA|, respectively. Similarly, The initial degrees

of freedom from the encryption and key schedule data paths for the backward
computation are defined as λ−

ENC = |RENC| and λ−
KSA = |RKSA|, respectively. Under

these notations, we have λ+ = λ+
ENC + λ+

KSA and λ− = λ−
ENC + λ−

KSA.
For an MITM characteristic, we say that the degrees of freedom from the

encryption data path for the forward computation is used up if for any given
(#SENC[GENC],#SKSA[GKSA], c+), we partition the solution space

B(#SENC[GENC],#SKSA[GKSA], c+)

of (#SENC[BENC],#SKSA[BKSA]) due to Eq. (1) into subspaces according to the value
of #SKSA[BKSA], then each space contains exactly one element. That is, the values
of the cells in #SENC can be fully determined by the cells in #SKSA for a given
(#SENC[GENC],#SKSA[GKSA], c+). Similarly, we say that the degrees of freedom from
the encryption data path for the backward computation is used up if the values
of the cells in #SENC can be fully determined by the cells in #SKSA for a given
(#SENC[GENC],#SKSA[GKSA], c−).

Now, Let us recall from Sect. 2 that the goal of the MITM attack is to find
a particular value for some intermediate states in the closed computation path
shown in Fig. 1 with which the values for all the states involved in the computa-
tion path can be determined, such that the values derived are compatible with
the whole computation path. Specifically, in the context of MITM key-recovery
attacks, our goal can be formulated as follows.

Goal 1. Identify a value K for the key register hosting the master key, and a
value for one full state in the encryption data path, with which we can derive
the values of all states involved. We require that the values for all states are
compatible and K equals to the secret key hiding in the oracle.

The above goal indicates that in the MITM key-recovery attack, the full key
space must be (implicitly) tested, since a compatible assignment of values to
the states is not enough (unlike MITM preimage attacks), and we must identify
the unique secret key. Secondly, in the key-recovery attack, we prefer not to
exhaust the full codebook of the targeted cipher. These particularities result in
the following requirements for the MITM characteristic:

I. The degrees of freedom for the forward computation or backward computa-
tion from #SKSA cannot be depleted (i.e., DoF+ > 0 and DoF− > 0), while
the degrees of freedom for both the forward computation and backward com-
putation from #SENC should be used up.
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II. In the MITM characteristic, we require that there is at least one cell
(episodic constant) in the plaintext state, which will be set to global constant
in the actual attack to avoid using the full codebook.

To ensure (I), we require the corresponding systems of equations of the MITM
characteristic given in Eqs. (1) and (2) to satisfy the following conditions. For
Eq. (1), there are l+KSA equations (without loss of generality, we assume these are
the first l+KSA equations) do not involve #SENC[GENC] and SENC[BENC]. The remaining
l+−l+KSA equations are used to exhaust the degrees of freedom from the encryption
data path, and thus |λ+

ENC| = |BENC| = l+ − l+KSA. Under this, we have DoF+ =
λ+
KSA−l+KSA. In addition, for each constant (#SENC[GENC],#SKSA[GKSA], c+), and each

solution for #SKSA[BKSA] of the first l+KSA equations, we can derive one and only one
solution for #SENC[BENC] by solving the remaining equations. For Eq. (2), there
are l−KSA equations (without loss of generality, we assume these are the first l−KSA
equations) do not involve #SENC[GENC] and SENC[RENC]. The remaining l− − l−KSA
equations are used to exhaust the degrees of freedom from the encryption data
path, and thus |λ−

ENC| = |RENC| = l−−l−KSA. Under this, we have DoF− = λ−
KSA−l−KSA.

In addition, for each constant (#SENC[GENC],#SKSA[GKSA], c−), and each solution
for #SKSA[RKSA] of the first l−KSA equations, we can derive one and only one solution
for #SENC[RENC] by solving the remaining equations.

Requirement (I) may be less obvious than (II), and we will explain it by
looking into the algorithmic framework given in Algorithm 2. But before we go
into the details, we emphasize that due to these peculiarities, almost all MITM
characteristics found by the the method presented in [6] are useless in the context
of key-recovery attacks.

From now on, we use |#S| denote the number of cells in a state #S. In
Line 1 of Algorithm 2, we set |#SENC| gray cells, including all the gray cells in
the plaintext state to global constants, where |#SENC| denotes the number of cells
in #SENC. Since the gray cells in the plaintext states are set to global constant,
the attack will not use the full codebook. These |#SENC| gray cells are not neces-
sarily within one single state along the computation path. Instead, they can be
distributed over multiple states. Moreover, we require that the values of these
cells can be set independently to arbitrary values without leading to a conflict
along the computation path (excluding the computations connecting the ending
states). When these constants are set, for any given key, we can derive the values
of all the states (including #SENC), along the computation path (excluding the
computation connecting the ending states), which indicates that if the degrees
of freedom of #SENC are not exhausted, this constant setting process may lead
to conflicts, which is equivalent to setting more than |#SENC| cells of #SENC to
constants. Then, each MITM episode is performed within the context defined by
the outer loops surrounding the code segment from Line 8 to Line 15.

Complexity Analysis. In Line 2 of Algorithm 2, suppose there are ε gray cells
in the plaintext state, then the data complexity (2w)n−ε. Suppose the states in
the encryption data and key schedule data paths contains n and n̄ cells, respec-
tively, and the matching part forms an m-cell filter. According Algorithm 2, there
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Algorithm 2: The MITM key-recovery attack on block ciphers
1 Set |#SENC| independent gray cells to constants, which should contain all the

gray cells in the plaintext state
2 Collecting a structure of plaintext-ciphertext pairs and store them in a table H,

which traverses the non-constant cells in the plaintext

3 for #SKSA[GKSA] ∈ F
w·|GKSA|
2 do

4 for c+KSA = (a1, · · · , a
l+KSA

) ∈ F
w·l+KSA
2 do

5 for c−KSA = (b1, · · · , b
l−KSA

) ∈ F
w·l−KSA
2 do

6 Derive the the value of #SENC[GENC]
7 L ← [ ]

8 for #SKSA[BKSA] ∈ B
KSA(#SKSA[GKSA], c+KSA) do

9 Derive the the value of #SENC[BENC] and compute E+[M+] along
the forward computation path

10 Insert #SKSA[BKSA] into L indexed by E+[M+]

11 for #SKSA[RKSA] ∈ R
KSA(#SKSA[GKSA], c−KSA) do

12 Derive the the value of #SENC[RENC] and Compute E−[M−]
along the backward computation path by accessing H

13 for #SKSA[BKSA] ∈ L[E−[M−]] do
14 Reconstruct the (guessed) key value K′ from #SKSA[BKSA],

#SKSA[RKSA], and #SKSA[GKSA]
15 Test K′ against several plaintext-ciphertext pairs

are (2w)n̄−λ+
KSA−λ−

KSA ·(2w)l+KSA ·(2w)l−KSA = (2w)n̄−(DoF++DoF−) MITM episodes, and in
each episode (2w)DoF++DoF−

different keys are tested, where (2w)DoF++DoF−−m

of them will pass the m-cell filter. Therefore, the overall time complexity can
be estimated as (2w)n̄−DoF+−DoF+

((2w)DoF+
+ (2w)DoF−

+ (2w)DoF++DoF−−m),
which is approximately

(2w)n̄−min{DoF+,DoF−,m}. (3)

4 MITM Attacks on SKINNY and ForkSkinny

SKINNY is a family of lightweight block ciphers designed by Beierle et al. [9]
based on the TWEAKEY framework [38]. In this section, we apply our method to
SKINNY-n-3n (The version with an n-bit block size, a 3n-bit key, and a 0-bit
tweak) with n ∈ {64, 128}. The overall structure of SKINNY-n-3n and its round
function are given in Fig. 2.

The internal state is viewed as a 4 × 4 square with 16 cells. In each round,
the state is updated with five operations: SubCells (SC), AddConstants (AC),
AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC). The key reg-
ister is arranged into three 4 × 4 squares denoted as TK1, TK2, and TK3
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TK

XOR C0 XOR C1

. . .

. . .

. . .

XOR C2

. . .

XOR Cr−1 XOR Cr

8 9 10 11

4 5 6 7

0 1 2 3

12 13 14 15

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 2. The hight-level structure of SKINNY-n-3n and its round function (Thanks to
https://www.iacr.org/authors/tikz/).

respectively. Note that the in each round only the first two rows of the inter-
nal state are affected by ART, and the MC operation is non-MDS and thus quite
different from the AES-like structures analyzed in [6]. Specifically, we have

MC

⎛

⎜
⎜
⎝

a
b
c
d

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

a ⊕ c ⊕ d
a

b ⊕ c
a ⊕ c

⎞

⎟
⎟
⎠ and MC−1

⎛

⎜
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⎝

α
β
γ
δ

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

β
β ⊕ γ ⊕ δ

β ⊕ δ
α ⊕ δ

⎞

⎟
⎟
⎠ . (4)

4.1 Programming the MITM Attacks on SKINNY-n-3n with MILP

Based on the analysis of Sect. 3, we show how to build the MILP model for
finding MITM characteristics of SKINNY-n-3n in the context of key-recovery
attacks. We employ the same encoding scheme from [6], where the ith cell of
a state #S is encoded with a pair of 0-1 variables (x#S

i , y#S
i ) according to the

rule given in Sect. 2. Firstly, due to the complexity estimation given by Eq. (3),
min{DoF+,DoF−,DoM} should be maximized in our model. To this end, we
introduce an auxiliary variable vObj, impose the constraints

{vObj ≤ DoF+, vObj ≤ DoF−, vObj ≤ DoM}

and set the objective function to maximize vObj. In what follows, we describe the
constraints for the starting states, ending states, and the states in the compu-
tation paths with a special focus on what is different from Bao et al.’s work [6].
First of all, the tweakey schedule algorithm of SKINNY-n-3n only involves in-cell
operations and permutations changing the positions of the cells in the tweakey
register, which will not alter the color of a cell in our model (only their positions
are changed). Therefore, we will not discuss the constraints imposed solely by
the tweakey schedule algorithm in the following.

Constraints for the Starting States. As discussed in Sect. 3, we distinguish
the sources of degrees of freedom from the encryption data path (denoted by λ+

ENC

https://www.iacr.org/authors/tikz/
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and λ−
ENC) and the key schedule data path (denoted by λ+

KSA and λ−
KSA), and the

initial degrees of freedom satisfies λ+ = λ+
ENC + λ+

KSA and λ− = λ−
ENC + λ−

KSA, where
λ+
ENC = |BENC|, λ+

KSA = |BKSA|, λ−
ENC = |RENC|, and λ−

KSA = |RKSA|. We introduce two
variables αi and βi for each cell in (#SENC,#SKSA), where αi = 1 if and only if
(x#S

i , y#S
i ) = (1, 0) and βi = 1 if and only if (x#S

i , y#S
i ) = (0, 1). Then we have

the following constraints:

λ+
ENC =

∑

i
αENC

i , λ+
KSA =

∑

i
αKSA

i , λ−
ENC =

∑

i
βENC

i , λ−
KSA =

∑

i
βKSA

i ,

and
⎧
⎪⎨

⎪⎩

x#SENC

i − αENC
i ≥ 0

y#SENC

i − x#SENC

i + αENC
i ≥ 0

y#SENC

i + αENC
i ≤ 1

,

⎧
⎪⎨

⎪⎩

y#SENC

i − βENC
i ≥ 0

x#SENC

i − y#SENC

i + βENC
i ≥ 0

x#SENC

i + βENC
i ≤ 1

,

⎧
⎪⎨

⎪⎩

x#SKSA

i − αKSA
i ≥ 0

y#SKSA

i − x#SKSA

i + αKSA
i ≥ 0

y#SKSA

i + αKSA
i ≤ 1

,

⎧
⎪⎨

⎪⎩

y#SKSA

i − βKSA
i ≥ 0

x#SKSA

i − y#SKSA

i + βKSA
i ≥ 0

x#SKSA

i + βKSA
i ≤ 1

.

Constraints for the Ending States. We assume that the matching only hap-
pens at the MixColumns. Let (#E+[4j],#E+[4j+1],#E+[4j+2],#E+[4j+3])T

and (#E−[4j],#E−[4j + 1],#E−[4j + 2],#E−[4j + 3])T be the jth column of
the ending states #E+ and #E− linked by the MC operation. Since MC is non-
MDS, its constraints are quite different from Bao et al.’s model for MDS matrix,
where there is a (Σ − 4)-cell filter if and only if Σ ≥ 5 out of 8 cells of the two
columns are or cells (see [6, Property 1, page 14]).

For the MC operation of SKINNY, there may exist an m-cell (m > 0) filter even
if Σ < 5. For example, according to Eq. (4), if #E+[4j] = , #E−[4j + 1] =
and all other cells are , we still get a 1-cell filter due to #E+[4j] = #E−[4j+1].
We can enumerate all possible patterns and convert these local constraints into
linear inequalities using the convex hull computation method. In Fig. 3, we list
some of the possible matching patterns with their filtering strength measured in
cells. We introduce a variable γj ≥ 0 for the j-th columns of #E+ and #E−

such that there is a γj-cell filter due to the coloring patterns of #E+ and #E−,
then we get a DoM-cell filter at the matching point, where DoM =

∑
j γj and

should be positive according to the complexity analysis given by Eq. (3).

MC

+1

MC

+1

MC

+1

MC

+1

MC

+1

MC

+1

MC

+1

MC

+1

MC

+1

MC

+2

MC

+2

MC

+2

MC

+2

MC

+3

MC

+2

MC

+2

MC

+2

Fig. 3. Some possible coloring patterns at the matching point
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Constraints Imposed by the Computation Paths. Along the computa-
tion paths leading to the ending states, the initial degrees of freedom are con-
sumed according to the MITM characteristic. Forward computation consumes
the degrees of freedom of the neutral words for backward computation while
backward computation consumes the degrees of freedom of the neutral words for
the forward computation. The consumption of degrees of freedom is counted in
cells. Let σ+

ENC, σ+
KSA and σ−

ENC, σ−
KSA be the accumulated degrees of freedom that

have been consumed in the backward and forward computation in the encryption
and key schedule data paths. Since the degrees of freedom from the encryption
data paths for both directions should be used up and the degrees of freedom
originated from the key schedule data path should not be exhausted, we require

{
λ+
ENC − σ+

ENC = 0, λ−
ENC − σ−

ENC = 0
DoF+ = λ+

KSA − σ+
KSA ≥ 1, DoF− = λ−

KSA − σ−
KSA ≥ 1

.

According to the semantics of the colors, how a coloring pattern of the input
and output states of an operation consumes the degrees of freedom should be
be different for the forward and the backward computation paths. Therefore, we
will give two sets of rules for different directions of the computation.

XOR. The XOR operations exist in the ART and MC, and we can reuse the
XOR-RULE+ (for forward computation) and XOR-RULE− (for backward compu-
tation) rules gvien in [6]. The coloring patterns and how the degrees of freedom
are consumed are visualized in Fig. 4.

⊕ ⊕

(-1 )

⊕ ⊕

⊕ ⊕ ⊕
*

⊕

(a) Forward computation (XOR+-RULE) (b) Backward computation (XOR−-RULE)

⊕ ⊕

(-1 )

⊕ ⊕

⊕ ⊕ ⊕
*

⊕

Fig. 4. Rules for XOR, where a “*” means that the cell can be any color

AddRoundTweakey. ART is the operation that the first two rows of the three
tweakey states are XORed into the encryption data path. There are three XOR
operations and four input cells (three from the tweakey state and one from the
encryption data path) involved to produce an output cell. Certainly, we can use
the XOR-RULE three times to get the constraints. However, this approach misses
some important coloring patterns that may lead to better attacks. We take the
forward computation for example as shown in Fig. 5. If we use XOR+-RULE three
times successively as shown in Fig. 5(a), when the and are the input cells
of the XOR, the output cell will be , eventually leading to a output cell.
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However, if we change the order of the XOR operations as shown in Fig. 5(b),
then ⊕ may produce a cell by consuming one degree of freedom, leading
to a output cell. To take this into account, we model the rule for three XORs
as a whole, named as 3-XOR+-RULE, with Fig. 5(c) as an example.

⊕

⊕

⊕

(-1 )
⊕

⊕

⊕

⊕

(-1 )

(a) three XORs successively (b) change the three XORs’s order (c) 3-XOR+-RULE

Fig. 5. The inaccuracy of modeling 3-XOR+ by applying XOR+ successively

For the 3-XOR operation in the forward computation, we have the following
set of rules (denoted by 3-XOR+-RULE):

� 3-XOR+-RULE-1. If there are cells but no and cells in the input,
the output cell is or (partially cancel the impacts of the input cells by
consuming λ−

ENC or λ−
KSA).

� 3-XOR+-RULE-2. If there are and cells but no cells in the input, the
output cell is or (partially cancel the impacts from on by consuming
λ−
ENC or λ−

KSA).
� 3-XOR+-RULE-3. If there are cells but no and cells in the input, the
output cell is .
� 3-XOR+-RULE-4. If all the input cells are , then the output cell is .
� 3-XOR+-RULE-5. If there is at least one cell in the input, the output is .

We introduce variables δ−
ENC and δ−

KSA to denote the consumed degrees of free-
dom due to 3-XOR+-RULE. For example, δ−

ENC = 1 means that we consume one
degree of freedom from λ−

ENC by applying the rule. In order to use up all the
degrees of freedom from #SENC, we should consume λ−

ENC first whenever possi-
ble. As shown in Fig. 6, when there are degrees of freedom in the encryption
path, i.e., cells, the consumption of degree of freedom is always from λ−

ENC, i.e.,
δ−
ENC = 1 and δ−

KSA = 0.
Let #a, #b, #c, #d be the input cells and #e be the output cell. Then, the set

of rules 3-XOR+-RULE restricts (x#a, y#a, x#b, y#b, x#c, y#c, x#d, y#d, x#e, y#e,
δ−
ENC) and (x#a, y#a, x#b, y#b, x#c, y#c, x#d, y#d, x#e, y#e, δ−

KSA) to subsets of
F
11
2 , which can be described by a system of linear inequalities by using the con-

vex hull computation method. Some valid coloring patterns due to 3-XOR+-RULE
are given in Fig. 6. Note that 3-XOR−-RULE can be obtained from 3-XOR+-RULE
by exchanging the cells and cells, since the meanings of and are dual for
the forward and backward computations.

MixColumn. Since MC contains only XOR operations, we can use XOR-RULE to
generate the set of rules MC-RULE for MC. According to Eq. (4), there exists one
equation that XORs three cells together to get one cell. We use a similar approach
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KSA

ENC

⊕

δ
−
ENC

=0

δ
−
KSA

=0

⊕
-1

δ
−
ENC

=1

δ
−
KSA

=0

⊕
-1

δ
−
ENC

=1

δ
−
KSA

=0

⊕

δ
−
ENC

=0

δ
−
KSA

=0

⊕
-1

δ
−
ENC

=0

δ
−
KSA

=1

⊕ ⊕
-1

δ
−
ENC

=0

δ
−
KSA

=1

⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
-1

δ
−
ENC

=0

δ
−
KSA

=1

⊕ ⊕
-1

δ
−
ENC

=0

δ
−
KSA

=1

⊕ ⊕ ⊕
-1

δ
−
ENC

=0

δ
−
KSA

=1

⊕ ⊕ ⊕ ⊕
-1

δ
−
ENC

=1

δ
−
KSA

=0

*

*

*
⊕

Fig. 6. 3-XOR+-RULE, where a “*” means that the cell can be any color

MC

-0

MC

-0

MC

-0

MC

-0

MC

-0

MC

-1

MC

-0

MC

-1

MC

-1

MC

-2

MC-1

-0

MC-1

-0

MC-1

-0

MC-1

-0

MC-1

-0

MC-1

-1

MC-1

-0

MC-1

-1

MC-1

-1

MC-1

-2

(a) Forward computation (MC+-RULE) (b) Backward computation (MC−-RULE)

Fig. 7. MC-RULE

we employed for 3-XOR+-RULE and 3-XOR−-RULE to handle this special equation.
Finally, we get the valid propogations of the coloring patterns and list some of
them in Fig. 7. Note that there are no key additions involved in MC, and thus all
the consumed degrees of freedom are from λ+

ENC and λ−
ENC.

4.2 The MITM Key-Recovery Attack on SKINNY-n-3n

Solving the model built in Sect. 4.1, we identify a 23-round MITM characteristic
as shown in Fig. 8. The starting states are #SENC = Y1 and the three tweakey
words #SKSA = (TK

(1)
1 , TK

(1)
2 , TK

(1)
3 ). The matching process happens at the

MC operation between the ending states #E+ = Z12 and #E− = X13. There
are 3 cells and 3 cells in #SKSA, providing λ−

KSA = λ+
KSA = 3 cells of initial

degrees of freedom originated from the key schedule data path. For #SENC, Y1

provides λ−
ENC = 8 and λ+

ENC = 1 cells of initial degrees of freedom from the
encryption data path. The λ+

ENC = 1 cells of degrees of freedom is used up when
computing X1 from Y1 by XORing the subtweakey. In the forward computation,
the λ−

ENC = 8 cells of degrees of freedom are used up when computing Y4 from
Y1. For the forward computation, we require TK

(6)
1 [7]⊕TK

(6)
2 [7]⊕TK

(6)
3 [7] and

TK
(8)
1 [1] ⊕ TK

(8)
2 [1] ⊕ TK

(8)
3 [1] to be constants, consuming σ−

KSA = 2 cells of
degrees of freedom originated from the key schedule data path. Hence, we get
DoF− = λ−

KSA − σ−
KSA = 1. Similarly, we get DoF+ = λ+

KSA − σ+
KSA = 1. At the

matching point, we have DoM = 2 from the first two column of #E+ and #E−

with Eq. (4). The 23-round key-recovery attack is given in Algorithm 3. The data
and memory complexity is bounded by Line 2, which is 2104 for SKINNY-128-384
and 252 for SKINNY-64-192. According to Eq. (3), the time complexity is about
2376 for SKINNY-128-384 and 2188 for SKINNY-64-192.
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Algorithm 3: The MITM key-recovery attack on SKINNY-n-3n

1 X0[3, 9, 13] ← 0, X1[0, 2, 8, 10, 13] ← 0, X2[1, 3, 9, 11] ← 0, Y2[5] ← 0,
X3[0, 8] ← 0, Y4[3] ← 0

2 Collecting structure of plaintext-ciphertext pairs and store them in table H,
which traverses the non-constant 16-3=13 cells in the plaintext

3 for All possilbe values of the cells in (TK
(0)
1 , TK

(0)
2 , TK

(0)
3 ) do

4 for (a1, a2, b1, b2) ∈ F
4w
2 do

5 Y0[3] ← TK
(0)
1 [3] ⊕ TK

(0)
2 [3] ⊕ TK

(0)
3 [3], Y0[9, 13] ← X0[9, 13],

Z0[3, 11, 12] ← Y0[3, 9, 13], X1[12] ← X1[0] ⊕ Z0[12], X1[7] ← Z0[3],
X1[15] ← Z0[3] ⊕ Z0[11], X2[15] ← X2[3] ⊕ Z1[15], X3[4] ← Z2[0]

6 Derive the solution space of the cells in the TK by

{
TK

(6)
1 [7] ⊕ TK

(6)
2 [7] ⊕ TK

(6)
3 [7] = a1

TK
(8)
1 [1] ⊕ TK

(8)
2 [1] ⊕ TK

(8)
3 [1] = a2

.

7 Derive the solution space of the cells in the TK by

{
TK

(19)
1 [4] ⊕ TK

(19)
2 [4] ⊕ TK

(19)
3 [4] = b1

TK
(21)
1 [6] ⊕ TK

(21)
2 [6] ⊕ TK

(21)
3 [6] = b2

.

8 Initialize L to be an empty hash table
9 for the value in the solution space of cells in TK do

10 Compute X13[8] along the backward computation path:
X4 → X0 → EK(X0) → X13 by accessing H

11 Insert relative information into L indexed by X13[8]

12 for the value in the solution space of cells in TK do
13 Compute Z12[4] and Z12[8] along the forward computation path:

X1 → Z12

14 for Candidate keys in L[Z12[4] ⊕ Z12[8]] do
15 Test the guessed key with several plaintext-ciphertext pairs

Remark. The designers of SKINNY claimed that: “We conclude that meet-in-the-
middle attack may work up to at most 22 rounds (see [9], Sect. 4.2, page 22)”.
Our attack penetrates one more round than expected and is the first 23-round
single-key attack on SKINNY-128-384 and SKINNY-64-192. Using the same method,
we also analyze ForkSkinny (see the full version of the paper). In addition, we
report on some results on Romulus-H as a by-product of the analysis of SKINNY
(see the full version of the paper).
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5 Exploiting Nonlinearly Constrained Neutral Words in
MITM Attacks and Its Applications

According to Property 1 in Sect. 2, in order to compute the allowable values
for the neutral words, one has to solve two systems of equations, i.e., Eq. (1)
and (2). In previous MITM preimage attacks [6,46], the two systems of equa-
tions are linear (or can be reduced to linear equations involving certain cells not
from the starting states that implicitly define the spaces of the neutral words).
Hence, it is easy to derive the solution spaces B(#SENC[GENC],#SKSA[GKSA], c+)
and R(#SENC[GENC],#SKSA[GKSA], c−) by solving the systems of equations, whose
cost can be ignored compared with the overall complexity. However, in practice,
we encounter many interesting MITM characteristics with nonlinear constrained
neutral words, and there is no efficient method for solving them. We present a
table based technique in Algorithm 4 which can be applied in attacks relying
on such MITM characteristics without solving the equations or increasing the
overall time complexities.

Algorithm 4: Computing the solution spaces of the neutral words

Input: (#SENC[GENC], #SKSA[GKSA]) ∈ F
w·(|GENC|+|GKSA|)
2

Output: V , U

1 V ← [ ], U ← [ ]

2 for (#SENC[BENC], #SKSA[BKSA]) ∈ F
w·(|BENC|+|BKSA|)
2 do

3 v ← π+(#SENC[GENC], #SKSA[GKSA], #SENC[BENC], #SKSA[BKSA]) by Equation 1
4 Insert (#SENC[BENC], #SKSA[BKSA]) into V at index v

5 for (#SENC[RENC], #SKSA[RKSA]) ∈ F
w·(|RENC|+|RKSA|)
2 do

6 u ← π−(#SENC[GENC], #SKSA[GKSA], #SENC[RENC], #SKSA[RKSA]) by Equation 2
7 Insert (#SENC[RENC], #SKSA[RKSA]) into U at index u

Algorithm 4 obtains the solution spaces of the neutral words for all possible
c+ and c− under a given value of (#SENC[GENC],#SKSA[GKSA]) with time complex-
ity (2w)λ+

+ (2w)λ−
and memory complexity (2w)λ+

+ (2w)λ−
. After running

Algorithm 4, V [v] stores the solution space of

π+(#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]) = v,

which consists about 2w·(λ+−l+) = 2w·DoF+
values for the neutral words for

the forward computation. Similarly, under each index u of U , there are about
2w·(λ−−l−) = 2w·DoF−

values for the neutral words for the backward compu-
tation. Algorithm 4 can be plugged into the procedure for MITM attacks to
deal with MITM characteristics with nonlinearly constrained neutral words. For
example, applying the technique to the MITM preimage attack gives Algorithm
5. Next, we show the time complexity is not increased.
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Algorithm 5: The framework of the MITM preimage attack on AES-like
hashing with non-linearly constrained neutral words

1 for (#SENC[GENC], #SKSA[GKSA]) ∈ G ⊆ F
w·(|GENC|+|GKSA|)
2 do

2 Call Algorithm 4 to build V , U

3 for c+ = (a1, · · · , al+) ∈ F
w·l+
2 do

4 for c− = (b1, · · · , bl−) ∈ F
w·l−
2 do

5 L ← [ ]
6 for (#SENC[BENC], #SKSA[BKSA]) ∈ V [c+] do
7 Compute E+[M+] along the forward computation path
8 Insert (#SENC[BENC], #SKSA[BKSA]) into L indexed by E+[M+]

9 for (#SENC[RKSA], #SKSA[RKSA]) ∈ U [c−], do
10 Compute E−[M−] along the backward computation path

11 for (#SENC[BENC], #SKSA[BKSA]) ∈ L[E−[M−]] do
12 Reconstruct the (candidate) message X
13 if X is a preimage then
14 Output X and Stop.

Complexity Analysis. In each MITM episode within the context defined by the
“For” loops surrounding the code segment from Line 6 to Line 14 of Algorithm 5,
we test 2w·(DoF++DoF−) messages and we expect 2w·(DoF++DoF−−m) of them to
pass the m-cell filter, and averagely, there are about 2w·(DoF++DoF−−h) preimages
passing the check at Line 13 for each episode. The time complexity to perform
one MITM episode is

(2w)DoF+
+ (2w)DoF−

+ (2w)DoF++DoF−−m. (5)

Then, we estimate the size of G in Line 1 of Algorithm 5, which determines
the number of MITM episodes performed. Suppose |G| = (2w)x, to produce
one preimage, we require that (2w)x · (2w)l++l− · (2w)DoF++DoF−

= (2w)h or
x = h − (λ+ + λ−). Hence, we consider two situations depending on λ+ + λ−.

• λ+ + λ− ≥ h: In this case, we set x = 0, then |G| = 1. At Line 3 and
Line 4 of Algorithm 5, we only need to traverse (2w)h−(DoF++DoF−) values of
(c+, c−)∈ F

w·l++w·l−
2 , where h−(DoF++DoF−) ≤ l++l− due to λ++λ− ≥ h,

to find the preimage. Then, together with Eq. (5), we have the overall time
complexity: (2w)λ+

+ (2w)λ−
+ (2w)h−min(DoF+, DoF−, m).

• λ+ + λ− < h: Set x = h − (λ+ + λ−), and we need to build 2x V and U in
Line 2 of Algorithm 5. Hence, we get the overall complexity:

(2w)h−λ+
+ (2w)h−λ−

+ (2w)h−min(DoF+, DoF−, m). (6)

Moreover, the memory complexity for both situations is

(2w)λ+
+ (2w)λ−

+ (2w)min(DoF+, DoF−). (7)
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We apply Algorithm 5 to Grøstl-256, Saturnin-Hash, and AES-256 hash-
ing and improved cryptanalytic results are obtained (see the full version of the
paper). In particular, employing the new representation of the AES key schedule
due to Leurent and Pernot (EUROCRYPT 2021), we identify the first preimage
attack on 10-round AES-256 hashing.

6 MITM-Based Collision Attacks and Its Applications

Suppose that there is an algorithm that can produce a different t-cell partial
target preimage. Then we expect to find a collision by running the algorithm
2w·(h−t)/2 times to identify a collision on the h-cell hash value. At FSE 2012 [43],
Li, Isobe, and Shibutani employed this strategy to convert the MITM-based
partial target preimage attacks into pseudo collision attacks. First, we consider
a generalization of partial target preimage attacks.

Let T be the space of all possible values of the output of the hash function.
For a predefined partition of T into (2w)t subspaces with an equal size. We call
an algorithm a t-cell partial target preimage attack if it can produce a message
whose hash value is a random element in a given subspace. For example, an algo-
rithm generating a message such that the first word of its hash value is always
0 is a 1-cell partial target preimage attack. An algorithm generating a message
such that the XOR of the first and second words of its hash value is always 0 is
also a 1-cell partial target preimage attack. Given an MITM characteristic, the
framework for a collision attack is described in Algorithm 6. Note that the call to
Algorithm 6 can be replaced by an ordinary equation solving procedure to save
the memory if the involved equations are linear or easy to solve. To be clear on
how to set the objective functions in our MILP models, we need to understand
how the complexity of the attack is related to the parameters specified in the
MITM characteristic.

Complexity Analysis. In the MITM t-cell partial target preimage attack, if
the matching process results in an m-cell filter, then we have m ≤ t, because
the matching information is derived from the known cells of the target T . To
determine the overall complexity of the algorithm, we need to determine how
many MITM episodes (Line 9 to 18 of Algorithm 6) are required. According
to the analysis of Algorithm 4 in Sect. 5, the time complexity for building U
and V is (2w)λ+

+ (2w)λ−
. In each MITM episode within the context defined

by the “For” loops surrounding the code segment from Line 9 to Line 18, we
test 2w·(DoF++DoF−) messages and we expect 2w·(DoF++DoF−−m) of them to pass
the m-cell filter, and averagely, there are about 2w·(DoF++DoF−−t) messages are
inserted into the hash table H. Therefore, we need about (2w)

h−t
2 −(DoF++DoF−−t)

episodes to produce one collision. The time to perform one MITM episode is

(2w)DoF+
+ (2w)DoF−

+ (2w)DoF++DoF−−m + (2w)DoF++DoF−−t. (8)

Suppose in Line 3 of Algorithm 6 we have G = 2w·x. Then, (2w)x · (2w)l+ · (2w)l−

matching episodes are performed. Hence, we have
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Algorithm 6: The framework of the MITM collision attack on AES-like
hashing with non-linearly constrained starting states
1 Setting the selected t cells of #T to constants
2 H ← [ ]

3 for (#SENC[GENC], #SKSA[GKSA]) ∈ G ⊆ F
w·(|GENC|+|GKSA|)
2 do

4 V ← [ ], U ← [ ]
5 Call Algorithm 4 to populate V and U

6 for c+ = (a1, · · · , al+) ∈ F
w·l+
2 do

7 for c− = (b1, · · · , bl−) ∈ F
w·l−
2 do

8 L ← [ ]

9 for (#SENC[BENC], #SKSA[BKSA]) ∈ V [c+] do
10 Compute E+[M+] along the forward computation path
11 Insert (#SENC[BENC], #SKSA[BKSA]) into L indexed by E+[M+]

12 for (#SENC[RKSA], #SKSA[RKSA]) ∈ U [c−], do
13 Compute E−[M−] along the backward computation path

14 for (#SENC[BENC], #SKSA[BKSA]) ∈ L[E−[M−]] do
15 Reconstruct the (candidate) message X
16 if X is a t-cell partial target preimage then
17 Insert X into H indexed by the hash value of X
18 Stop when there is a collision

(2w)x · (2w)l+ · (2w)l− = (2w)
h−t
2 −(DoF++DoF−−t).

We get x = h
2 − (λ+ + λ− − t

2 ). Hence, we consider two situations:

• λ+ + λ− ≥ h+t
2 : In this case, we set x = 0. At Line 6 and Line 7 of

Algorithm 6, we only need to traverse (2w)
h−t
2 −(DoF++DoF−−t) values of

(c+, c−)∈ F
w·l++w·l−
2 , where h−t

2 − (DoF+ + DoF− − t) ≤ l+ + l− due to
λ+ + λ− ≥ h+t

2 , to find the collision. Then, together with Eq. 8, we have the
overall time complexity:

(2w)λ+
+ (2w)λ−

+ (2w)
h
2 −min{DoF+− t

2 , DoF−− t
2 , m− t

2 , t
2}. (9)

• λ+ + λ− < h+t
2 : Set x = h

2 − (λ+ + λ− − t
2 ), and we need to build 2x V and

U in Line 5 of Algorithm 6. Hence, we get the overall complexity:

(2w)
h
2 −(λ+− t

2 )+(2w)
h
2 −(λ−− t

2 )+(2w)
h
2 −min{DoF+− t

2 , DoF−− t
2 , m− t

2 , t
2}, (10)

which is approximately (2w)
h
2 −min{DoF+− t

2 , DoF−− t
2 , m− t

2 , t
2}, since we always

have DoF+ ≤ λ+ and DoF− ≤ λ−.
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The memory complexity in both situations is

(2w)λ+
+ (2w)λ−

+ (2w)min{DoF+,DoF−} + (2w)
h−t
2 . (11)

where the (2w)
h−t
2 is to store the t-cell partial target preimages in H. Con-

sequently, for an attack efficient than the trivial birthday attack, we have
min{DoF+ − t

2 , DoF− − t
2 , m − t

2 , t
2} > 0, λ+ < h

2 and λ− < h
2 , or

⎧
⎪⎨

⎪⎩

DoF+ > t
2 , DoF− > t

2
t
2 < m ≤ t

λ+ < h
2 , λ− < h

2

.

6.1 Automatic Search for MITM-Based Collision Attacks

First of all, The objective function of the model is to maximize

min(DoF+ − t

2
,DoF+ − t

2
,m − t

2
,
t

2
)

according to Eq. (10). In what follows, we only discuss the main particularity
of MITM-based collision attacks, which lies in the matching part. To be more
specific, the degree of match (DoM) is derived differently from other attacks dis-
cussed in the work. To be concrete, we consider AES-like hashings like WHIRLPOOL
and Grøstl, which includes the MixColumn(MC) or MixRows(MR) operation in
their last rounds. To determine the degree of match, we consider two situations
according to the position where the match happens.

The Matching Point is Placed at the Last Round. Suppose that the MDS
matrix of the MC operation at the matching point operates on k cells, which
links the state Z in the last round to the XOR sum of the input state X of
the first round and the target T , i.e., MC(Z) = X ⊕ T . Suppose that from the
forward and backward computation α cells and β cells are known. Without
loss of generality, we assume (Z[0], · · · , Z[α − 1])T of Z is known as , and
(X[0], · · · ,X[β − 1])T of X is known as . From

MC ·

⎛

⎜
⎜
⎜
⎝

Z[0]

.

.

.
Z[α − 1]

.

.

.
Z[k − 1]

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

X[0] ⊕ T [0]
X[1] ⊕ T [1]

.

.

.
X[β − 1] ⊕ T [β − 1]

.

.

.

⎞

⎟
⎟
⎟
⎠

,

we get β linear equations with k variables Z[0], Z[1], · · · , Z[k−1] on the left, and
2β variables X[0], · · · ,X[β − 1], T [0], · · · , T [β − 1] on the right. There are k − α
unknowns Z[α], · · · , Z[k − 1] on the left. Hence, if β > k − α, we can represent
the k − α unknowns by other variables by consuming k − α linear equations. At
last, we have Σ = β − (k − α) linear equations left:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζ1(Z[0], · · · , Z[α − 1]) = φ1(X[0], · · · , X[β − 1]) ⊕ ϕ1(T [0], · · · , T [β − 1]),
ζ2(Z[0], · · · , Z[α − 1]) = φ2(X[0], · · · , X[β − 1]) ⊕ ϕ2(T [0], · · · , T [β − 1]),

.

.

.
ζΣ(Z[0], · · · , Z[α − 1]) = φΣ(X[0], · · · , X[β − 1]) ⊕ ϕΣ(T [0], · · · , T [β − 1]),

(12)
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where ζi(·), φi(·), ϕi(·) are linear equations. By assigning t ≤ Σ = β + α − k
conditions on the target T in the Eq. (12):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ1(T [0], · · · , T [β − 1]) = τ1,
ϕ2(T [0], · · · , T [β − 1]) = τ2,

.

.

.
ϕt(T [0], · · · , T [β − 1]) = τt,

(13)

where τ = (τ1, · · · , τt) ∈ F
w·t
2 , we get a t-cell filter:

⎧
⎪⎨

⎪⎩

ζ1(Z[0], · · · , Z[α − 1]) = φ1(X[0], · · · , X[β − 1]) ⊕ τ1,
ζ2(Z[0], · · · , Z[α − 1]) = φ2(X[0], · · · , X[β − 1]) ⊕ τ2,

.

.

.
ζτt (Z[0], · · · , Z[α − 1]) = φΣ(X[0], · · · , X[β − 1]) ⊕ τt.

In summary, we have the constraints DoF = t ≤ Σ = β + α − k and β + α ≥ k.
Therefore, in the MILP model for this case, we can ignore the coloring infor-
mation of T . After identifying an MITM characteristic with configurations for
(α, β,m, t), the t conditions on T can be derived accordingly with Eq. (13).

forward backward constant uncertain prefixed

X

Z

MC−1

MC−1

⊕

TMC−1(T )

(b): Generating T is covered in the backward computation
X

Z W

MC ⊕

T

(a): Generating T is covered in the forward computation

Fig. 9. The matching point is not placed at the last round.

The Matching Point is not at the Last Round. In this case, the XOR of
the target T can happen in the forward computation (see Fig. 9(a)) or in the
backward computation (see Fig. 9(b)). The yellow cells are prefixed constants,
which can be represented as 0-1 variables in the same way as the Gray (G) cells:
If the ith cell of T is yellow, then (xT

i , yT
i ) = (1, 1). Other cells of T are White

(W), encoded as (xT
j , yT

j ) = (0, 0).
In the case shown in Fig. 9(a), the rules of xoring the tag T is the same to the

XOR+-RULE by regarding the cells as cells. Moreover, we require that the
cells in T align with the cells in X as shown in Fig. 9(a). Hence, the constraint
xT

i ≤ xX
i is added to avoid the transition ⊕ → . Therefore, for the number

t of conditions imposed on T , we have t =
∑

i xT
i .

In the case of Fig. 9(b), we consider the positions of cells in MC−1(T ). The
rules of xoring the tag T is the same to the XOR+-RULE by regarding the cells
as cells. In addition, we require that the cells in MC−1(T ) align with the
cells in Z. Hence, the constraint y

MC−1(T )
i ≤ yZ

i is added to avoid the transition
⊕ → . Therefore, for the number t of conditions imposed on T , we have
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Fig. 10. An MITM attack on 6-round WHIRLPOOL

t =
∑

i y
MC−1(T )
i .

6.2 Collision Attacks on WHIRLPOOL and Grøstl

The WHIRLPOOL hash function, designed by Barreto and Rijmen, is an ISO/IEC
standard. Its compression function is built by plug an AES-like cipher into the
Miyaguchi-Preneel construction . During the last 20 years, WHIRLPOOL has with-
stood extensive cryptanalysis [32,44,52] and the best collision attack in the clas-
sical setting reaches 5 rounds [29,42]. Recently, Hosoyamada and Sasaki intro-
duced a quantum collision attack on 6-round WHIRLPOOL [32].

We give the first 6-round collision attack on WHIRLPOOL in the classical set-
ting, breaking the 10-year record for collision attacks on WHIRLPOOL. Apply-
ing the automatic model of MITM collision attack to WHIRLPOOL, we find a
new 6-round MITM characteristic shown in Fig. 10. We apply Algorithm 6 to
WHIRLPOOL based on this MITM characteristic. The starting state is X3. Then,
we have λ+ = 10 and λ− = 20, w = 8. According to Property 1, we have
l+ = 8 and c+ = (a1, · · · , a8) ∈ F

8×8
2 ; l− = 16 and c− = (b1, · · · , b16) ∈ F

8×16
2 .

Then we build similar equations in the attack on Grøstl (See Section D in
the full version of the paper). Therefore, we call Algorithm 4 to build V and U .
DoF+ = λ+−l+ = 2, DoF− = λ−−l− = 4, t = m = 2 and h = 64. The time com-
plexity is (28)

64
2 −(10− 2

2 ) + (28)
64
2 −(20− 2

2 ) + (28)
64
2 −min{2− 2

2 , 4− 2
2 , 2− 2

2 , 2
2} ≈ 2248

according to Eq. (10), and the memory complexity is about 2248. We also apply
the method to Grøstl, and the results are given in Section F of the full version
of the paper.

7 Conclusion and Open Problems

We formulate the MITM attacks in a more formal, expressive, and accurate
way. Based on this formulation, we investigate the peculiarities of MITM-based



304 X. Dong et al.

key-recovery attacks on block ciphers and collision attacks on AES-like hash
functions and model them in the constraint programming paradigm. Now, we
have a fairly powerful tool for finding exploitable MITM characteristics in key-
recovery, (pseudo) preimage, and collision attacks on word oriented designs.
Moreover, we present a generic procedure for dealing with nonlinearly con-
strained neutral words without increasing the overall time complexities of the
attacks relying on them. We apply our method to concrete keyed and unkeyed
primitives, leading to attacks improving the state-of-the-art. At this point, we
would like propose an open problem: Is it possible to search for bit-level MITM
characteristics automatically, and to what extent it can improve the current
cryptanalytic results? For bit-oriented models, we think the work from Fuhr,
Minaud, and Yu [27,47] is good starting point.
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44. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced WHIRLPOOL and Grøstl. FSE 2009, 260–276 (2009)
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Abstract. Double-block Hash-then-Sum (DbHtS) MACs are a class of
MACs that aim for achieving beyond-birthday-bound security, includ-
ing SUM-ECBC, PMAC Plus, 3kf9 and LightMAC Plus. Recently Datta
et al. (FSE’19), and then Kim et al. (Eurocrypt’20) prove that DbHtS
constructions are secure beyond the birthday bound in the single-user
setting. However, by a generic reduction, their results degrade to (or
even worse than) the birthday bound in the multi-user setting.

In this work, we revisit the security of DbHtS MACs in the multi-
user setting. We propose a generic framework to prove beyond-birthday-
bound security for DbHtS constructions. We demonstrate the usability
of this framework with applications to key-reduced variants of DbHtS
MACs, including 2k-SUM-ECBC, 2k-PMAC Plus and 2k-LightMAC Plus.
Our results show that the security of these constructions will not degrade
as the number of users grows. On the other hand, our results also indicate
that these constructions are secure beyond the birthday bound in both
single-user and multi-user setting without additional domain separation,
which is used in the prior work to simplify the analysis.

Moreover, we find a critical flaw in 2kf9, which is proved to be secure
beyond the birthday bound by Datta et al. (FSE’19). We can successfully
forge a tag with probability 1 without making any queries. We go further
to show attacks with birthday-bound complexity on several variants of
2kf9.

Keywords: Message authentication codes · Beyond-birthday-bound
security · Multi-user security

1 Introduction

Message Authentication Code (MAC) is a fundamental symmetric-key primitive
to ensure the authenticity of data. A MAC is typically built from a blockcipher
(e.g., CBC-MAC [6], OMAC [22], PMAC [11], LightMAC [27]), or from a hash
function (e.g., HMAC [5], NMAC [5], NI-MAC [1]). At a high level, many of these
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constructions generically follow the Hash-then-PRF paradigm. Firstly, a message
is mapped by a universal hash function into an n-bit string. Then, the string is
processed by a fixed-input-length Pseudo-Random Function (PRF) to produce
the tag. This paradigm is simple and easy to analyze because (i) it does not
require nonce or extra random coins, and hence is deterministic and stateless;
(ii)the produced tag is a random string as long as the input to PRF is fresh. The
security of this method is usually capped at the so-called birthday bound 2n/2,
since a collision at the output of the universal hash function typically results
in a forgery for the construction. However, the birthday-bound security margin
might not be enough in practice, especially when a MAC is instantiated with a
lightweight blockcipher such as PRESENT [12], PRINCE [13], and GIFT [2] whose
block size is small. In such case, the birthday bound becomes 232 as n = 64
and is vulnerable in certain practical applications. For example, Bhargavan and
Leurent [9] have demonstrated two practical attacks that exploit collision on
short blockciphers.

Double-block Hash-then-Sum Construction. To go beyond the birthday
bound, a series of blockcipher-based MACs have been proposed, including SUM-
ECBC [33], PMAC Plus [34], 3kf9 [35] and LightMAC Plus [30]. Interestingly, all of
these MACs use a similar paradigm called Double-block Hash-then Sum (short-
hand for DbHtS), where a message is first mapped into a 2n-bit string by a
double-block hash function and then the two encrypted values of each n-bit half
are xor-summed to generate the tag. Datta et al. [17] abstract out this paradigm
and divide it into two classes: (i) three-key DbHtS constructions, where apart
from the hash key, two blockcipher keys are used in the finalization phase (includ-
ing SUM-ECBC, PMAC Plus, 3kf9 and LightMAC Plus); (ii) two-key DbHtS con-
structions, where apart from the hash key, only one single blockcipher key is used
in the finalization phase (including all the two-key variants, i.e., 2k-SUM-ECBC,
2k-PMAC Plus, 2k-LightMAC Plus and 2kf9). Under a generic framework, they
prove that both three-key and two-key DbHtS constructions can achieve beyond-
birthday-bound security with a bound q3/22n where q is the number of MAC
queries. Leurent et al. [25] show attacks on all three-key DbHtS constructions
with query complexity 23n/4. Very recently, Kim et al. [24] give a tight provable
bound q4/3/2n for three-key DbHtS constructions.

Multi-user security. All the above beyond-birthday-bound results only con-
sider a single user. Yet, as one of the most commonly used cryptographic prim-
itives in practice, MACs are typically deployed in contexts with a great number
of users. For instance, they are a core element of real-world security protocols
such as TLS, SSH, and IPSec, which are used by major websites with billions
of daily active users. A natural question is to what extent the number of users
will affect the security bound of DbHtS constructions, or more specifically, can
DbHtS constructions still achieve beyond-birthday-bound security in the multi-
user setting?

The notion of multi-user (mu) security is introduced by Biham [10] in sym-
metric cryptanalysis and by Bellare, Boldyreva, and Micali [4] in the context
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of public-key encryption. Attackers can adaptively distribute its queries across
multiple users with independent key. It considers attackers who succeed as long
as they can compromise at least one user among many. As evident in a series
of works [3,8,14,19–21,26,29,32], evaluating how security degrades as the num-
ber of users grows is a challenging technical problem even when the security is
known in the single-user setting. Unfortunately, until now research on provable
mu security for MACs has been somewhat missing. The notable exceptions are
the works of Chatterjee et al. [15], very recently Andrew et al. [28], and Bellare
et al. [3]. The first two consider a generic reduction for MACs and by using which
the mu security of DbHtS constructions will be capped at (or even worse than)
the birthday bound, which will be discussed below. The last considers a hash-
function-based MAC which is quite different from our focus on blockcipher-based
MACs.

Let us explain why the generic reduction does not help DbHtS constructions
to go beyond the birthday bound in the mu setting. Suppose the number of
users is u. By using the generic reduction [15,28] from single-user (su) security to
mu security, the above beyond-birthday bound for two-key DbHtS constructions
becomes

uq3

22n

in the mu setting. If the adversary only issues one query per user, then the
security bound becomes

uq3

22n
≤ q4

22n
, (1)

which is still capped at the worrisome birthday bound. Even for three-key DbHtS
constructions with a better bound q4/3/2n1 in the su setting, the mu security
via generic reduction becomes

uq4/3

2n
≤ q

7
3

2n
,

which is worse than the birthday bound 2n/2. Thus it is worth directly ana-
lyzing the mu security of DbHtS constructions instead of relying on the generic
reduction.

Our contributions. We revisit the security of DbHtS constructions in the mu
setting, with a focus on two-key DbHtS constructions. Two-key DbHtS construc-
tions such as 2k-PMAC Plus, 2k-LightMAC Plus and 2kf9, only use two block-
cipher keys in total. Assume the length of each key is k = n, then to resist
a similar attack like Biham’s key-collision attack on DES [10], two keys is the
minimal number of keys to potentially achieve beyond-birthday-bound security.

We give a generic framework to prove beyond-birthday-bound security for
two-key DbHtS constructions in the mu setting. Our framework is easy to use,

1 This term is mainly due to the usage of Markov inequality and appears in all security
bounds of three-key DbHtS constructions [24].
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and can achieve much better security bound comparing with prior generic reduc-
tion method. Under this framework, one only needs to show that the abstracted
double-block hash function satisfies two properties, namely ε1-regular and ε2-
almost universal. The first property implies that for a message, the probability
that the hashed value equals to any fixed string is small when the hash key is
uniformly chosen from the key space. The second one implies that for any two
distinct messages, the probability that the two hashed values collide is small
when the hash key is uniformly chosen from the key space. These two properties
are typically inherent in the hash part of DbHtS constructions.

We demonstrate the usability of this framework with applications to two-key
DbHtS constructions. More specifically, we prove that all of 2k-SUM-ECBC, 2k-
PMAC Plus and 2k-LightMAC Plus are still secure beyond the birthday bound in
the mu setting. Our bounds are independent of the number of users, and imply
that the security of two-key DbHtS constructions will not degrade as the number
of users grows. On the other hand, during the proof of these three constructions,
we do not rely on domain separating functions, which are used to simplify the
su analysis while at the meantime complicate these constructions [17]. Thus our
results also indicate these three constructions are secure beyond the birthday
bound in both su and mu setting without additional domain separating functions.

Moreover, we find a critical flaw in 2kf9 in the su setting. Datta et al. [17]
prove that 2kf9 without domain separating functions is secure beyond the birth-
day bound, and then based on it they claim that the other three two-key DbHtS
constructions can also achieve the same security level without domain separation.
However, we can successfully forge a tag with probability 1 without making any
queries. The flaw is that any short message M that will become a single block
after padding, the output of 2kf9 without domain separation is always zero.
One may think that if we resume domain separation in 2kf9, then it can recover
beyond-birthday-bound security. However, we go further to show that even with
domain separation, 2kf9 cannot be secure beyond the birthday bound. We also
investigate whether the common tricks help 2kf9 by modifying a blockcipher-
based MAC to go beyond the birthday bound. Unfortunately, a similar attack
with birthday-bound complexity always exists for these variants of 2kf9.

Our bound. Our bound is interesting for beyond-birthday-bound security with
practical interest. We show that for any adversary making q MAC queries and p
ideal-cipher queries, the advantage of breaking DbHtS’s mu security in the main
theorem is of the order2

qp�

2k+n
+

q3

22n
+

q2p + qp2

22k

by assuming H is 1/2n-regular and 1/2n-almost universal, where n and k are
the length of the blockcipher block and key respectively, and � is the maximal
block length among these MAC queries. Note that our bound does not depend
on the number of users u, which can be adaptively chosen by the adversary, and
can be as large as q.
2 Here we omit lower-order terms and small constant factors.
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When the number of MAC queries q equals to the birthday bound, i.e.,
q = 2n/2, the bound (1) obtained via the generic reduction will become moot.
On the contrary, our bound becomes

p�

2k+n
2

+
1

2
n
2

+
p

22k−n
+

p2

22k− n
2

which is still reasonably small. More concretely, if for instance n = 64, k =
128, q = 232, then this requires the adversary to query at least 238 bits = 235

bytes ≈ 32GB online data, yet the terms related to the local computation of the
adversary become p�

2160 + p
2192 + p2

2224 .

Ideal cipher model. The proofs of this paper are done in the ideal cipher
model, which is common in most analyses for the mu security. In the mu setting,
we are particularly concerned about how local computation (that is captured by
the number of ideal cipher queries) affects security, which is a fundamental part
of the analysis, and the standard model that regarding a blockcipher as a PRP is
not helpful in this estimation. Moreover, in the ideal model, to break the security
of DbHtS constructions, attackers must find key collisions among these keys (at
least two) at the same time. While in the standard model, inherently we have
an isolated term AdvmuPRP

E (A), for which one key collision among these keys
would solely make this term meaningless. Thus to prove beyond-birthday-bound
security in the standard model, it may require longer keys, which is somewhat
overly pessimistic.

Outline of this paper. We introduce basic notions and security definitions
in the multi-user setting in Sect. 2. We propose a generic framework to prove
beyond-birthday-bound security for DbHtS constructions in Sect. 3. Then, we
show the usability of this framework with applications to key-reduced variants
of DbHtS MACs in Sect. 4. Finally in Sect. 5, we discuss the flaw in the security
proof of 2kf9, and show forgery attacks on it.

2 Preliminaries

Notation. Let ε denote the empty string. For an integer i, we let 〈i〉m denote the
m-bit representation of i. For a finite set S, we let x ←$ S denote the uniform
sampling from S and assigning the value to x. Let |x| denote the length of
the string x. Let |S| denote the size of the set S. If A is an algorithm, we let
y ← A(x1, . . . ; r) denote running A with randomness r on inputs x1, . . . and
assigning the output to y. We let y ←$ A(x1, . . .) be the result of picking r at
random and letting y ← A(x1, . . . ; r). For a domain Dom and a range Rng,
let Func(Dom,Rng) denote the set of functions f : Dom → Rng. For integers
1 ≤ a ≤ N , let (N)a denote N(N − 1) . . . (N − a + 1).

Multi-user PRF. Let F : K×M → {0, 1}n be a function. For an adversary A,
let

AdvprfF (A) = 2Pr[Gprf
F (A)] − 1 ,
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Fig. 1. Game Gprf
F defining multi-user PRF security of a function F .

be the advantage of the adversary against the multi-user PRF security of F ,
where game Gprf

F is defined in Fig. 1. Note that for any function F of key length
k, the PRF advantage is at least pq/2k+2 by adapting Biham’s key-collision
attack on DES [10], where q is the number of queries and p is the number of
calls to F .

The H-coefficient Technique. Following the notation from Hoang and Tes-
saro [19], it is useful to consider interactions between an adversary A and an
abstract system S which answers A’s queries. The resulting interaction can then
be recorded with a transcript τ = ((X1, Y1), . . . , (Xq, Yq)). Let pS(τ) denote the
probability that S produces τ . It is known that pS(τ) is the description of S and
independent of the adversary A. We say that a transcript is attainable for the
system S if pS(τ) > 0.

We now describe the H-coefficient technique of Patarin [16,31]. Generically,
it considers an adversary that aims at distinguishing a “real” system S1 from
an “ideal” system S0. The interactions of the adversary with those systems
induce two transcript distributions X1 and X0 respectively. It is well known
that the statistical distance SD(X1,X0) is an upper bound on the distinguishing
advantage of A.

Lemma 1. [16,31] Suppose that the set of attainable transcripts for the ideal
system can be partitioned into good and bad ones. If there exists ε ≥ 0 such that
pS1 (τ)

pS0(τ)
≥ 1 − ε for any good transcript τ , then

SD(X1,X0) ≤ ε + Pr[X0 is bad] .

Regular and AU hash function. Let H : Kh × X → Y be a hash function
where Kh is the key space, X is the domain and Y is the range. Hash function
H is said to be ε1-regular if for any X ∈ X and Y ∈ Y,

Pr [Kh ←$ Kh : HKh
(X) = Y ] ≤ ε1

and it is said to be ε2-almost universal if for any two distinct strings X,X ′ ∈ X ,

Pr [Kh ←$ Kh : HKh
(X) = HKh

(X ′) ] ≤ ε2 .
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Sum of Two Identical Permutations. We will use the following result in
some proofs, which is a special case of [18, Theorem 2] by setting the conditional
set to be empty.

Lemma 2. For any tuple (T1, . . . , Tq) such that each Ti 
= 0n, let U1, . . . , Uq,
V1, . . . , Vq be 2q random variables sampled without replacement from {0, 1}n and
satisfying Ui ⊕ Vi = Ti for 1 ≤ i ≤ q. Denote by S the set of tuples of these 2q
variables. Then

|S| ≥ (2n)2q

2nq
(1 − μ) ,

where μ = 6q3

22n and assuming q ≤ 2n−2.

3 Multi-user Security Proof Framework for DbHtS MACs

In this section, we propose a generic proof framework for DbHtS MACs. We begin
with the description of DbHtS constructions. Here we focus on two-key DbHtS
constructions, including 2k-SUM-ECBC, 2k-LightMAC Plus and 2k-PMAC Plus.

The DbHtS construction. Let H : Kh × M → {0, 1}n × {0, 1}n be a 2n-
bit hash function with key space Kh and message space M. We will always
decompose H into two n-bit hash functions H1 and H2 for convenience, and
thus have HKh

(M) = (H1
Kh,1

(M),H2
Kh,2

(M)) where Kh = (Kh,1,Kh,2). Given a
blockcipher E : K × {0, 1}n → {0, 1}n and a hash function H as defined above,
one can define the DbHtS construction as follows

DbHtS[H,E](Kh,K,M) = EK(H1
Kh,1

(M)) ⊕ EK(H2
Kh,2

(M)) .

In blockcipher-based MACs, the hash function H is typically built from an n-
bit blockcipher E. The message M (after padding) is always split into n-bit
blocks without being more specific, namely M = M [1] ‖ M [2] ‖ . . . ‖ M [�] where
|M [i]| = n. For message M , we denote by X[i] the i-th input to the underlying
blockcipher E of H.

Security analysis of DbHtS construction. Given that H is a good 2n-bit
hash function and the underlying blockcipher E is ideal, we have the following
result.

Theorem 1. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we model
as an ideal blockcipher. Suppose that each n-bit hash function of H = (H1,H2)
is ε1-regular and ε2-almost universal. Then for any adversary A that makes at
most q evaluation queries and p ideal-cipher queries,

AdvprfDbHtS(A) ≤ 2q

2k
+

q(3q + p)(6q + 2p)
22k

+
2qp�

2n+k
+

2qpε1
2k

+
4qp

2n+k

+
4q2ε1
2k

+
2q2�ε1

2k
+ 2q3(ε1 + ε2)2 +

8q3(ε1 + ε2)
2n

+
6q3

22n
,

where � is the maximal block length among these evaluation queries and assuming
p + q� ≤ 2n−1.
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Fig. 2. The DbHtS construction. Here H is a 2n-bit hash function from Kh × M to
{0, 1}n × {0, 1}n, and E is a n-bit blockcipher from K × {0, 1}n to {0, 1}n.

Fig. 3. Game Gprf
DbHtS defining multi-user prf security of the construction DbHtS.

Proof. Our proof is based on the H-coefficient technique. We will consider a com-
putationally unbounded adversary, and without loss of generality assume that
the adversary is deterministic and never repeats a prior query. Assume further
that the adversary never makes a redundant query: if it queries y ← E(J, x)
then it won’t query E−1(J, y) and vice versa. The security game is detailed in
Fig. 3. The real system corresponds to game Gprf

DbHtS with challenge bit b = 1,
and the ideal system corresponds to game Gprf

DbHtS with challenge bit b = 0.

Setup. In both of the two worlds, after the adversary finishes querying, it obtains
the following information:

– Ideal-cipher queries: for each query Prim(J, (x,+)) with answer y, we
associate it with an entry (prim, J, x, y,+). For each query Prim(J, (y,−))
with answer x, we associate it with an entry (prim, J, x, y,−).

– Evaluation queries: for each query T ← Eval(i,M), we associate it with
an entry (eval, i,M, T ).
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We denote by (eval, i,M i
a, T i

a) the entry obtained when the adversary makes the
a-th query to user i. Denote by �i

a the block length of M i
a and denote by � the

maximal block length among these q evaluation queries. During the computation
of entry (eval, i,M i

a, T i
a), we denote by Σi

a and Λi
a the internal outputs of hash

function H, namely Σi
a = H1

Kh,1
(M i

a) and Λi
a = H2

Kh,2
(M i

a) respectively, and
denote by U i

a and V i
a the outputs of blockcipher E with inputs Σi

a and Λi
a

respectively, namely U i
a = E(Ki, Σ

i
a) and V i

a = E(Ki, Λ
i
a) respectively. For a key

J ∈ {0, 1}k, let P (J) be the set of entries (prim, J, x, y, ∗), and let Q(J) be the set
of entries (eval, i,M i

a, T i
a) such that Ki = J . In the real world, after the adversary

finishes all its queries, we will further give it: (i) the keys (Ki
h,Ki) where Ki

h =
(Ki

h,1,K
i
h,2) and (ii) the internal values U i

a and V i
a . In the ideal world, we will

instead give the adversary truly random strings (Ki
h,Ki) ←$ Kh×K, independent

of its queries. In addition, we will give the adversary dummy values U i
a and

V i
a computed as follows: for each set Q(J), the simulation oracle Sim(Q(J))

(depicted in Fig. 4) will be invoked and return corresponding values U i
a and V i

a

to the adversary. These additional information can only help the adversary. Thus
a transcript consists of the revealed keys (Ki

h,Ki), the internal values U i
a and V i

a ,
the ideal-cipher queries and evaluation queries. On the other hand, the internal
values Σi

a and Λi
a during the computation of Sim are uniquely determined by

message M i
a and key (Ki

h,Ki).

Defining bad transcripts. We now give the definition of bad transcripts.
The goal of defining bad transcripts is to ensure that (i) for each user, at least
one of its two keys is fresh, namely either the key of the blockcipher is fresh or
the key of the hash function is fresh; (ii) for queries to the same user, at least
one of two inputs to blockcipher E is fresh; (iii) for queries to different users, if
the key of blockcipher E collides with that of other users or ideal-cipher queries,
then the input to E should be fresh. We say a transcript is bad if one of the
following happens:

1. There is an entry (eval, i,M i
a, T i

a) such that Ki = Ki
h,d for d ∈ {1, 2}.

2. There is an entry (eval, i,M i
a, T i

a) such that both Ki and Ki
h,d for d ∈ {1, 2}

have been used in other entries, namely either in entries (eval, j,M j
b , T j

b ) or
entries (prim, J, x, y, ∗).
Conditions (1) and (2) are to guarantee that at least one of two keys of any
user i is fresh. Note that in blockcipher-based MACs, hash function H is
usually built from blockcipher E.

3. There is an entry (eval, i,M i
a, T i

a) such that Ki
h,d = J for d ∈ {1, 2} and

x = Xi
a[j] for some entry (prim, J, x, y,−) and some 1 ≤ j ≤ �i

a.
Condition (3) is to prevent that the adversary can somehow control the
(partial) output of HKh

(M i
a) by using its backward ideal-cipher queries for

some 1 ≤ j ≤ �i
a where M i

a = M i
a[1] ‖ . . . ‖ M i

a[�i
a] and Xi

a[j] is the j-th
corresponding input to the underlying blockcipher E of H.

4. There is an entry (eval, i,M i
a, T i

a) such that Ki = J , and either Σi
a = x or

Λi
a = x for some entry (prim, J, x, y, ∗).



318 Y. Shen et al.

5. There is an entry (eval, i,M i
a, T i

a) such that Ki = J , and either U i
a = y or

V i
a = y for some entry (prim, J, x, y, ∗).

Conditions (4) and (5) are to remove the case that either the inputs or
outputs of EKi

collide with those in the ideal-cipher queries when Ki = J .
6. There is an entry (eval, i,M i

a, T i
a) such that Ki = Kj , and either Σi

a = Σj
b

or Σi
a = Λj

b for some entry (eval, j,M j
b , T j

b ).
7. There is an entry (eval, i,M i

a, T i
a) such that Ki = Kj , and either Λi

a = Λj
b

or Λi
a = Σj

b for some entry (eval, j,M j
b , T j

b ).
Conditions (6) and (7) are to guarantee that when the key Ki collides with
the key Kj , then all the inputs of EKi

are distinct from those of EKj
.

8. There is an entry (eval, i,M i
a, T i

a) such that Ki = Kj
h,1 and Σi

a = Xj
b [k], or

Ki = Kj
h,2 and Λi

a = Xj
b [k] for some entry (eval, j,M j

b , T j
b ) and 1 ≤ k ≤ �j

b.
Condition (8) is to guarantee that when there is a collision between Ki and
Kj

h,d for d ∈ {1, 2}, then the inputs to EKi
do not collide with the inputs in

the hash part with key Kj
h,d, and thus keep the freshness of the final output.

9. There is an entry (eval, i,M i
a, T i

a) such that either Σi
a = Σi

b or Σi
a = Λi

b, and
either Λi

a = Λi
b or Λi

a = Σi
b for some entry (eval, i,M i

b , T
i
b ).

Condition (9) is to guarantee that for any pair of entries (eval, i,M i
a, T i

a) and
(eval, i,M i

b , T
i
b ) of the same user, at least one of Σi

a and Λi
a is fresh.

10. There is an entry (eval, i,M i
a, T i

a) such that either Σi
a = Σi

b or Σi
a = Λi

b, and
either V i

a = V i
b or V i

a = U i
b for some entry (eval, i,M i

b , T
i
b ).

11. There is an entry (eval, i,M i
a, T i

a) such that either Λi
a = Λi

b or Λi
a = Σi

b, and
either U i

a = U i
b or U i

a = V i
b for some entry (eval, i,M i

b , T
i
b ).

Conditions (10) and (11) are to guarantee that the outputs of ΦKi
in the

ideal world are compatible with a permutation, namely when the inputs are
distinct, then the corresponding outputs should also be distinct.

12. There is an entry (eval, i,M i
a, T i

a) such that either Σi
a = Σi

b or Σi
a = Λi

b,
and either Λi

a = Λi
c or Λi

a = Σi
c for some entries (eval, i,M i

b , T
i
b ) and

(eval, i,M i
c , T

i
c).

Condition (12) is to guarantee that for any triple of entries (eval, i,M i
a, T i

a),
(eval, i,M i

b , T
i
b ) and (eval, i,M i

c , T
i
c), at least one of Σi

a and Λi
a is fresh.

13. There is an entry (eval, i,M i
a, T i

a) such that either Σi
a = Σi

b or Σi
a = Λi

b,
and either V i

a = V i
c or V i

a = U i
c for some entries (eval, i,M i

b , T
i
b ) and

(eval, i,M i
c , T

i
c).

14. There is an entry (eval, i,M i
a, T i

a) such that either Λi
a = Λi

b or Λi
a = Σi

b,
and either U i

a = U i
c or U i

a = V i
c for some entries (eval, i,M i

b , T
i
b ) and

(eval, i,M i
c , T

i
c).

Conditions (13) and (14) are to guarantee that the outputs of ΦKi
in the

ideal world are compatible with a permutation, namely when the inputs are
distinct, then the corresponding outputs should also be distinct.

If a transcript is not bad then we say it’s good. Let X1 and X0 be the random
variables for the transcript distributions in the real and ideal system respectively.

Probability of bad transcripts. We now bound the chance that X0 is bad
in the ideal world. Let Badi be the event that X0 violates the i-th condition. By
the union bound,
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Pr[X0 is bad] = Pr[Bad1 ∨ · · · ∨ Bad14]

≤
3∑

i=1

Pr[Badi] +
8∑

i=4

Pr[Badi | Bad2] +
14∑

i=9

Pr[Badi] .

We first bound the probability Pr[Bad1]. Recall that in the ideal world, Ki and
Ki

h,d are uniformly random, independent of each other and those entries. Thus
the chance that Ki = Ki

h,d is at most 1/2k. Summing over at most q evaluation
queries and d ∈ {1, 2},

Pr[Bad1] ≤ 2q

2k
.

Next, we bound the probability Pr[Bad2]. Recall that in the ideal world, Ki and
Ki

h,d are uniformly random, independent of each other and those entries. Thus
the probability that Ki = Kj or Ki = Kj

h,d′ for at most q − 1 other users and
d′ ∈ {1, 2}, or Ki = J for at most p ideal-cipher queries, is at most (3q + p)/2k.
For d ∈ {1, 2}, the probability that Ki

h,d = Kj or Ki
h,d = Kj

h,d′ for at most q − 1
other users and d′ ∈ {1, 2}, or Ki

h,d = J for at most p ideal-cipher queries, is
also at most (3q + p)/2k. Since Ki and Ki

h,d are independent of each other, and
summing over at most q evaluation queries,

Pr[Bad2] ≤ q(3q + p)(6q + 2p)
22k

.

Next, we bound the probability Pr[Bad3]. Recall that in the ideal world, Ki
h,d is

uniformly random, independent of those entries. Thus the chance that Ki
h,d = J

for at most p ideal-cipher queries is at most p/2k. On the other hand, for each
ideal-cipher entry (prim, J, x, y,−), the probability that x = Xi

a[j] is at most
1/(2n − p − q�) ≤ 2/2n by assuming p + q� ≤ 2n−1. Summing over at most q
evaluation queries and 1 ≤ j ≤ �i

a ≤ �,

Pr[Bad3] ≤ 2qp�

2k+n
.

Next, we bound the probability Pr[Bad4 | Bad2]. Recall that in the ideal world,
Ki is uniformly random, independent of those entries. Thus for each entry
(prim, J, x, y, ∗), the chance that Ki = J is 1/2k. On the other hand, condi-
tioned on Bad2, the key Ki

h,d is fresh for d ∈ {1, 2}. The event that Σi
a = x or

Λi
a = x is the same as

H1
Ki

h,1
(M i

a) = x ∨ H2
Ki

h,2
(M i

a) = x ,

which holds with probability at most 2ε1 by the assumption that H1 and H2 are
both ε1-regular. Summing over at most q evaluation queries and p ideal-cipher
queries,

Pr[Bad4 | Bad2] ≤ 2qpε1
2k

.
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Bounding the probability Pr[Bad5 | Bad2] is similar to handling Pr[Bad4 | Bad2],
but now the event U i

a = y or V i
a = y is the same as ΦKi

(Σi
a) = y or ΦKi

(Λi
a) = y.

The probability that ΦKi
(Σi

a) = y is at most 1/(2n −p−q�) ≤ 2/2n by assuming
p+q� ≤ 2n−1. Similarly, the probability that ΦKi

(Λi
a) = y is at most 2/2n. Thus,

summing over at most q evaluation queries and p ideal-cipher queries

Pr[Bad5 | Bad2] ≤ 4qp

2n+k
.

We now bound the probability Pr[Bad6 | Bad2]. Recall that in the ideal world,
Ki is uniformly random, independent of those entries. Thus the chance that
Ki = Kj is 1/2k. On the other hand, conditioned on Bad2, the key Ki

h,1 is fresh.
The event that Σi

a = Σj
b is the same as

H1
Ki

h,1
(M i

a) = H1
Kj

h,1
(M j

b )

which holds with probability at most ε1 by the assumption that H1 is ε1-regular.
Similarly, the event that Σi

a = Λj
b holds with probability at most ε1. Summing

over at most q2 pairs of i and j,

Pr[Bad6 | Bad2] ≤ 2q2ε1
2k

.

Bounding Pr[Bad7 | Bad2] is similar to handling Pr[Bad6 | Bad2], and thus

Pr[Bad7 | Bad2] ≤ 2q2ε1
2k

.

Next, we bound the probability Pr[Bad8]. Recall that in the ideal world,
Ki is uniformly random, independent of those entries. Thus the chance that
Ki = Kj

h,1 for some other j is at most 1/2k. On the other hand, for each entry
(eval, j,M j

b , T j
b ), the probability that Σi

a = Xj
b [k] is at most ε1 by the assump-

tion that H1 is ε1-regular. Hence the chance that Ki = Kj
h,1 and Σi

a = Xj
b [k] is

at most ε1/2k. Similarly, the probability that Ki = Kj
h,2 and Λi

a = Xj
b [k] is at

most ε1/2k. Summing over at most q2 pairs of evaluation queries and 1 ≤ k ≤ �,

Pr[Bad8] ≤ 2q2�ε1
2k

.

Next, we bound the probability Pr[Bad9]. The event Σi
a = Σi

b or Σi
a = Λi

b is the
same as

H1
Ki

h,1
(M i

a) = H1
Ki

h,1
(M i

b) ∨ H1
Ki

h,1
(M i

a) = H2
Ki

h,2
(M i

b) ,

which holds with probability at most ε1 + ε2 by the assumption that H1 is ε1-
regular and ε2-almost universal. Similarly, the probability of the event Λi

a = Λi
b

or Λi
a = Σi

b is at most ε1 + ε2. Note that for each user i, there are at most q2i
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pairs of (a, b). By the assumption that Ki
h,1 and Ki

h,2 are two independent keys,
and summing among u users,

Pr [ Bad9 ] ≤
u∑

i=1

q2i (ε1 + ε2)2 ≤ q2(ε1 + ε2)2 .

Next, we bound the probability Pr[Bad10]. The event Σi
a = Σi

b or Σi
a = Λi

b is
the same as

H1
Ki

h,1
(M i

a) = H1
Ki

h,1
(M i

b) ∨ H1
Ki

h,1
(M i

a) = H2
Ki

h,2
(M i

b) ,

which holds with probability at most ε1 + ε2. On the other hand, the event
V i

a = V i
b or V i

a = U i
b is the same as

T i
a ⊕ U i

a = V i
b ∨ T i

a ⊕ U i
a = U i

b ,

which holds with probability at most 2/2n since T i
a is a random string and

independent of these entries. Summing among u users,

Pr [ Bad10 ] ≤
u∑

i=1

2q2i (ε1 + ε2)
2n

≤ 2q2(ε1 + ε2)
2n

.

Bounding the probability Pr[Bad11] is similar to handling Pr[Bad10], and thus

Pr [ Bad11 ] ≤ 2q2(ε1 + ε2)
2n

.

Bounding the probability Pr[Bad12] is similar to handling Pr[Bad9], except that
now for each user i, there are at most q3i tuples of (a, b, c). Hence summing among
these u users,

Pr [ Bad12 ] ≤
u∑

i=1

q3i (ε1 + ε2)2 ≤ q3(ε1 + ε2)2 .

Bounding the probability Pr[Bad13] is similar to handling Pr[Bad10], except that
now for each user i, there are at most q3i tuples of (a, b, c). Hence summing among
these u users,

Pr [ Bad13 ] ≤
u∑

i=1

2q3i (ε1 + ε2)
2n

≤ 2q3(ε1 + ε2)
2n

.

Bounding the probability Pr[Bad14] is similar to handling Pr[Bad13], and thus

Pr[Bad14] ≤ 2q3(ε1 + ε2)
2n

.

Summing up,

Pr[X0 is bad] ≤ 2q

2k
+

q(3q + p)(6q + 2p)
22k

+
2qp�

2k+n
+

2qpε1
2k

+
4qp

2n+k

+
4q2ε1
2k

+
2q2�ε1

2k
+ 2q3(ε1 + ε2)2 +

8q3(ε1 + ε2)
2n

. (2)
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Transcript ratio. Let τ be a good transcript. Note that for any good tran-
script, at least one of Σi

a and Λi
a is fresh. Hence the set R(J) in Fig. 4 is empty

and the procedure will not abort. Recall that |S| denotes the size of the set
S. Among the set H(J), there are exactly |Q(J)| + |F (J)| fresh values, and
|Q(J)|− |F (J)| non-fresh values. For the entries in G(J), suppose that there are
g classes among the values Σi

a and Λi
a: the elements in the same class either

connected by a value T i
a such that Σi

a ⊕ Λi
a = T i

a, or connected by the equation
such that Σi

a = Σj
b or Σi

a = Λj
b, or Λi

a = Λj
b or Λi

a = Σj
b . Note that each class

contains at least three elements, and only has one sampled value in Sim of Fig. 4.
Since τ is good, the corresponding samples U i

a and V i
a of these g distinct classes

are compatible with the permutation, namely these g outputs are sampled in a
manner such that they are distinct and do not collide with other values during
the computation of the set F (J).

Suppose that this transcript contains exactly u users. Then in the ideal world,
since τ is good,

Pr[X0 = τ ]

= 2−2uk · 2−qn
∏

J∈{0,1}k

⎛

⎝ 1

|S(J)| ·
1

(2n − 2 |F (J)|)g
·

|P (J)|−1∏

i=0

1

2n − 2 |F (J)| − g − i

⎞

⎠ .

On the other hand, in the real world, the number of permutation outputs that
we need to consider for each J ∈ {0, 1}k is exactly |Q(J)| + |F (J)| + g. The
reason is that, we have |Q(J)| + |F (J)| fresh input-output tuples in total, and
for each class in G(J), we have one additional input-output tuple. Thus,

Pr[X1 = τ ]

= 2−2uk
∏

J∈{0,1}k

⎛

⎝ 1
(2n)|Q(J)|+|F (J)|+g

·
|P (J)|−1∏

i=0

1
2n − |Q(J)| − |F (J)| − g − i

⎞

⎠ .

Hence,

Pr[X1 = τ ]
Pr[X0 = τ ]

≥ 2qn
∏

J∈{0,1}k

|S(J)| · (2n − 2 |F (J)|)g

(2n)|Q(J)|+|F (J)|+g

≥
∏

J∈{0,1}k

2|Q(J)|n(2n − 2 |F (J)|)g(2n)2|F (J)|
(2n)|Q(J)|+|F (J)|+g · 2|F (J)|n · (1 − 6 |F (J)|3

22n
)

≥
∏

J∈{0,1}k

2n(|Q(J)|−|F (J)|)

(2n − 2 |F (J)| − g)|Q(J)|−|F (J)|
· (1 − 6 |F (J)|3

22n
)

≥ 1 − 6q3

22n
, (3)

where the second inequality comes from Lemma 2.
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Wrapping up. From Lemma 1 and Eqs. (2) and (3), we conclude that

AdvprfDbHtS(A) ≤ 2q

2k
+

q(3q + p)(6q + 2p)
22k

+
2qp�

2k+n
+

2qpε1
2k

+
4qp

2n+k

+
4q2ε1
2k

+
2q2�ε1

2k
+ 2q3(ε1 + ε2)2 +

8q3(ε1 + ε2)
2n

+
6q3

22n
.

Remark 1. In some applications, the amount of data processed by each user
may be bounded by a threshold B. That is, when the amount of data exceeds
the threshold B, the user may refresh its key. We leave it as an open problem to
analyzing DbHtS constructions in this setting. On the other hand, in nonce-based
authenticated encryption, it is useful to analyze the mu security in d-bounded
model, namely each nonce can be re-used by at most d users in the encryption
phase. This model is natural for nonce-based AE, as in practice such as TLS 1.3,
AES-GCM is equipped with nonce randomization technique to improve nonce
robustness [8,21]. While for DbHtS constructions, they do not require nonce.
Thus analyzing DbHtS constructions in d-bounded model is not helpful here.

Remark 2. It would be interesting to consider the relation between the multi-
user framework and universal composability, as pointed out by a reviewer. That
is, defining an ideal functionality to capture either a single user and then compose
to get the multi-user security, or starting with an ideal functionality that handles
multiple users. It is unclear how to define such ideal functionality for DbHtS
constructions, as there exist some bad events that only occur in the mu setting;
we leave it as an open problem.

4 Multi-user Security of Three Constructions

In this section, we demonstrate the usability of multi-user proof framework
with applications to key-reduced DbHtS MACs, and prove that 2k-SUM-ECBC,
2k-LightMAC Plus and 2k-PMAC Plus are secure beyond the birthday bound in
the mu setting.

4.1 Security of 2k-SUM-ECBC

We begin with the description of 2k-SUM-ECBC. The 2n-bit hash function used
in 2k-SUM-ECBC is the concatenation of two CBC MACs with two independent
keys Kh,1 and Kh,2. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. For
a message M = M [1] ‖ M [2] ‖ . . . ‖ M [�] where |M [i]| = n, the CBC MAC
algorithm CBC[E](K,M) is defined as Y�, where

Yi = EK(M [i] ⊕ Yi−1)

for i = 1, . . . , � and Y0 = 0n. Then 2k-SUM-ECBC is defined as DbHtS[H,E],
where

HKh
(M) = (H1

Kh,1
(M),H2

Kh,2
(M)) = (CBC[E](Kh,1,M),CBC[E](Kh,2,M)) ,
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Fig. 4. Offline oracle in the ideal world. For each J , ΦJ is a partial function that
used to simulate a random permutation. The domain and range of ΦJ are initialized
to be the domain and range of EJ respectively.

and Kh,1 and Kh,2 are two independent keys. The specification of 2k-SUM-ECBC
is illustrated in Fig. 5. For any two distinct messages M1 and M2 of at most
� ≤ 2n/4 blocks, Bellare et al. [7] and Jha and Nandi [23] show that

Pr [CBC[E](K,M1) = CBC[E](K,M2) ] ≤ 2
√

�

2n
+

16�4

22n
.

This directly implies that CBC MAC is ε2-almost universal where ε2 = 2
√

�
2n +

16�4

22n .
Below we prove that CBC MAC is ε1-regular, where ε1 = ε2 = 2

√
�

2n + 16�4

22n .

Lemma 3. For any X ∈ {0, 1}�n and Y ∈ {0, 1}n, we have

Pr [CBC[E](K,X) = Y ] ≤ 2
√

�

2n
+

16�4

22n
.
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Fig. 5. The 2k-SUM-ECBC construction. It is built from a blockcipher E. Here the
hash key is HKh = (L, J).

Proof. Let M1 = X ‖Y and M2 = 0n. Then the event CBC[E](K,X) = Y is the
same as CBC[E](K,M1) = CBC[E](K,M2). Hence

Pr [CBC[E](K,X) = Y ] = Pr [CBC[E](K,M1) = CBC[E](K,M2) ]

≤ 2
√

�

2n
+

16�4

22n
,

where the last inequality comes from the fact that CBC MAC is ε2-almost uni-
versal.

By using Theorem 1, we obtain the following result.

Theorem 2. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we model
as an ideal blockcipher. Assume that � ≤ 2n/4. Then for any adversary A that
makes at most q evaluation queries and p ideal-cipher queries,

Advprf2k-SUM-ECBC(A) ≤ 2q

2k
+

q(3q + p)(6q + 2p)
22k

+
6qp�

2k+n
+

64q2

2n+k
+

36qp

2n+k

+
44q2�

3
2

2n+k
+

576q3�

22n
+

2304q3

22n
,

where p + q� ≤ 2n−1 by the assumption.

4.2 Security of 2k-LightMAC Plus

The 2n-bit hash function H used in 2k-LightMAC Plus is the concatenation of two
n-bit functions H1 and H2 where H1 and H2 are both based on a blockcipher E
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with the same key, namely Kh,1 = Kh,2 = L. For a message M = M [1]‖ . . . ‖M [�]
where M [i] is a (n − m)-bit block, H1

L(M) and H2
L(M) are defined as follows

H1
L(M) = EL(Y1) ⊕ · · · ⊕ EL(Y�) ,

H2
L(M) = 2� · EL(Y1) ⊕ 2�−1 · EL(Y2) ⊕ · · · ⊕ 2 · EL(Y�)

where Yi = 〈i〉m‖M [i] and 〈i〉m is the m-bit encoding of integer i. The description
of hash function H is illustrated at the top of Fig. 6. Then 2k-LightMAC Plus is
defined as DbHtS[H,E] and is illustrated at the bottom of Fig. 6. To prove that
H1 and H2 are both ε1-regular and ε2-almost universal, we will use the following
algebraic result, the proof of which can be found in [18].

Lemma 4. [18] Let Z = (Z1, . . . , Z�) be � random variables that sampled from
{0, 1}n without replacement. Let A be a matrix of dimension s × � defined over
GF(2n). Then for any given column vector c of dimension s × 1 over GF(2n),

Pr[A · ZT = c] ≤ 1
(2n − � + r)r

,

where r is the rank of the matrix A.

We first show that H1 is ε1-regular. Note that for any message M and any n-bit
string Y ∈ {0, 1}n, the rank of equation

EL(Y1) ⊕ · · · ⊕ EL(Y�) = Y

is 1 since Y1, . . . , Y� are all distinct from each other. Hence by Lemma 4, the
equation H1

L(M) = Y holds with probability at most 1/(2n − � + 1) ≤ 2/2n by
assuming � ≤ 2n−2, namely H1 is 2/2n-regular. Similarly, we can prove that H2

is 2/2n-regular.
Next, we will show that H1 is ε2-almost universal. Note that for any two

distinct messages M1 and M2, the equation H1
L(M1) = H1

L(M2) can be written
as

EL(Y 1
1 ) ⊕ · · · ⊕ EL(Y 1

�1) = EL(Y 2
1 ) ⊕ · · · ⊕ EL(Y 2

�2) ,

where Y 1
i = 〈i〉m ‖ M1[i] and Y 2

i = 〈i〉m ‖ M2[i]. Without loss of generality, we
assume �1 ≤ �2. If �1 = �2, then there must exist some i such that M1[i] 
= M2[i].
If �1 < �2, then Y 2

�2
must be different from the values Y 1

1 , . . . , Y 1
�1

. So in either
of these two cases, the rank of above equation is exactly 1. By Lemma 4, the
equation H1

L(M1) = H1
L(M2) holds with probability at most 1/(2n−�1−�2+1) ≤

2/2n by assuming �1, �2 ≤ 2n−2. Hence H1 is 2/2n-almost universal. Similarly,
we can prove that H2 is 2/2n-almost universal.

However, we cannot directly apply Theorem 1 at this stage since the two hash
keys Kh,1 and Kh,2 are identical in 2k-LightMAC Plus while it is assumed that
Kh,1 and Kh,2 are two independent keys in Theorem 1. The only problematic
term in Theorem 1 is (ε1 + ε2)2 since only this term relies on the independence
of these two keys (i.e., condition 9 and condition 12 in the proof of Theorem 1).
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To handle this issue, for condition 9, we should consider for any two distinct
messages M1 and M2, the probability of equations

{
EL(Y 1

1 ) ⊕ · · · ⊕ EL(Y 1
�1

) = EL(Y 2
1 ) ⊕ · · · ⊕ EL(Y 2

�2
)

2�1 · EL(Y 1
1 ) ⊕ · · · ⊕ 2 · EL(Y 1

�1
) = 2�2 · EL(Y 2

1 ) ⊕ · · · ⊕ 2 · EL(Y 2
�2

) .

Note that since M1 and M2 are two distinct messages, by using the result in [30,
Case A], we can always find two random variables EL(Y a

i ) and EL(Y b
j ) where

a, b ∈ {1, 2}, 1 ≤ i ≤ �a, 1 ≤ j ≤ �b such that the rank of above two equations is
2. By Lemma 4, the above two equations hold with probability at most 1/(2n −
�1−�2+2)2 ≤ 4/22n by assuming �1, �2 ≤ 2n−2. For other three cases in condition
9, we can analyze them similarly. Hence condition 9 holds with probability at
most 16q2/22n. For condition 12, we should consider for three distinct messages
M1, M2 and M3 such that

{
EL(Y 1

1 ) ⊕ · · · ⊕ EL(Y 1
�1

) = EL(Y 2
1 ) ⊕ · · · ⊕ EL(Y 2

�2
)

2�1 · EL(Y 1
1 ) ⊕ · · · ⊕ 2 · EL(Y 1

�1
) = 2�3 · EL(Y 3

1 ) ⊕ · · · ⊕ 2 · EL(Y 3
�3

) .

Similarly, it holds with probability at most 16q3/22n.
Therefore, by using Theorem 1 and combined with above analysis, we can

obtain the multi-user security of 2k-LightMAC Plus.

Theorem 3. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we model
as an ideal blockcipher. Assume that � ≤ 2n−3. Then for any adversary A that
makes at most q evaluation queries and p ideal-cipher queries,

Advprf2k-LightMAC Plus(A) ≤ 2q

2k
+

q(3q + p)(6q + 2p)
22k

+
2qp�

2k+n
+

8qp

2k+n

+
8q2

2k+n
+

4q2�

2k+n
+

70q3

22n
,

where p + q� ≤ 2n−1 by the assumption.

4.3 Security of 2k-PMAC Plus

The 2n-bit hash function H used in 2k-PMAC Plus is the concatenation of two n-
bit functions H1 and H2 where H1 and H2 are both based a blockcipher E with
the same key, namely Kh,1 = Kh,2 = L. For a message M = M [1] ‖ . . . ‖ M [�]
where M [i] is a n-bit block, H1

L(M) and H2
L(M) are defined as follows

H1
L(M) = EL(Y1) ⊕ · · · ⊕ EL(Y�) ,

H2
L(M) = 2 · EL(Y1) ⊕ · · · ⊕ 2� · EL(Y�)

where Yi = M [i] ⊕ 2i · Δ0 ⊕ 22i · Δ1, Δ0 = EL(0), and Δ1 = EL(1). The
detailed code description of hash function H is illustrated at the top of Fig. 7.
Then 2k-PMAC Plus is defined as DbHtS[H,E] and is illustrated at the bottom
of Fig. 7.
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Fig. 6. Top. The 2n-bit hash function used in 2k-LightMAC Plus. Here the hash key
is Kh = (Kh,1, Kh,2) where Kh,1 = Kh,2 = L. Bottom. The 2k-LightMAC Plus con-
struction built from a blockcipher E.

We now show that both H1 and H2 are ε1-regular and ε2-almost universal.
For any message M = M [1] ‖ . . . ‖M [�], we denote by E1 the event that Yi = Yj

for 1 ≤ i, j ≤ � and i 
= j. Note that the rank of equation

M [i] ⊕ M [j] ⊕ (2i ⊕ 2j) · Δ0 ⊕ (22i ⊕ 22j) · Δ1 = 0

is 1. Hence by Lemma 4,

Pr[E1] ≤
(

�
2

)

2n − 2 + 1
≤ �2

2n
.

For any n-bit string Y ∈ {0, 1}n, the rank of equation

EL(Y1) ⊕ · · · ⊕ EL(Y�) = Y

is 1 when event E1 does not happen. Hence by Lemma 4, the equation H1
L(M) =

Y holds with probability at most

Pr
[
H1

L(M) = Y
]

= Pr
[
H1

L(M) = Y ∧ E1

]
+ Pr

[
H1

L(M) = Y ∧ E1

]

≤ Pr
[
H1

L(M) = Y | E1

]
+ Pr [E1 ]

≤ 1
2n − � + 1

+
�2

2n
≤ 2�2

2n
,

by assuming � ≤ 2n−1. Thus H1 is 2�2/2n-regular. Similarly, we can prove that
H2 is 2�2/2n-regular.
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Next, we will show that H1 is ε2-almost universal. For any two distinct
messages M1 = M1[1] ‖ . . . ‖ M1[�1] and M2 = M2[1] ‖ . . . ‖ M2[�2], we denote
by E2 the event that Y a

i = Y b
j for a, b ∈ {1, 2} and 1 ≤ i ≤ �a, 1 ≤ j ≤ �b, i 
= j.

Then similar to the analysis of event E1, we have Pr [E2 ] ≤ 4�2/2n. Hence the
rank of equation

EL(Y 1
1 ) ⊕ · · · ⊕ EL(Y 1

�1) = EL(Y 2
1 ) ⊕ · · · ⊕ EL(Y 2

�2)

is 1 when event E2 does not happen. By Lemma 4, the equation H1
L(M1) =

H1
L(M2) holds with probability at most 1/(2n − 2� + 1) + 4�2/2n ≤ 6�2/2n by

assuming � ≤ 2n−2. This implies that H1 is 6�2/2n-almost universal. By using
similar argument, we can prove that H2 is 6�2/2n-almost universal.

Since H1 and H2 use the same key, similar to the case of 2k-LightMAC Plus,
we should handle the problematic term (ε1+ε2)2 in Theorem 1 before applying it.
This term arises from condition 9 and condition 12. Denote by E3 the event that
among q evaluation queries, there exits some message M such that EL(Yi) = 0
for 1 ≤ i ≤ �. It is easy to see that Pr [E3 ] ≤ q�/(2n − q�) ≤ 2q�/2n by assuming
q� ≤ 2n−1. We proceed to analyze condition 9 and condition 12 when E3 does
not occur. For condition 9, we should consider for any two distinct messages M1

and M2, the probability of equations
{

EL(Y 1
1 ) ⊕ · · · ⊕ EL(Y 1

�1
) = EL(Y 2

1 ) ⊕ · · · ⊕ EL(Y 2
�2

)
2 · EL(Y 1

1 ) ⊕ · · · ⊕ 2�1 · EL(Y 1
�1

) = 2 · EL(Y 2
1 ) ⊕ · · · ⊕ 2�2 · EL(Y 2

�2
) .

Since M1 and M2 are two distinct messages, by using the result in [34, Case D],
we can always find two random variables EL(Y a

i ) and EL(Y b
j ) where a, b ∈ {1, 2}

and 1 ≤ i ≤ �a, 1 ≤ j ≤ �b such that the rank of above two equations is 2 when
E2 does not happen. On the other hand, if E2 happens, then it is easy to see
that the rank of above two equations is at least 1. By Lemma 4, the above two
equations hold with probability at most

1
(2n − 2� + 2)2

+
4�2

2n
· 1
2n − 2� + 1

≤ 12�2

22n
.

For other three cases in condition 9, we can analyze them similarly. Hence con-
dition 9 holds with probability at most 48q2�2/22n + 4q�/2n. For condition 12,
we should consider for any there distinct messages M1, M2 and M3

{
EL(Y 1

1 ) ⊕ · · · ⊕ EL(Y 1
�1

) = EL(Y 2
1 ) ⊕ · · · ⊕ EL(Y 2

�2
)

2 · EL(Y 1
1 ) ⊕ · · · ⊕ 2�1 · EL(Y 1

�1
) = 2 · EL(Y 3

1 ) ⊕ · · · ⊕ 2�3 · EL(Y 3
�3

) .

Denote by E4 the event that Y a
i = Y b

j for a, b ∈ {1, 2, 3} and 1 ≤ i ≤ �a,
1 ≤ j ≤ �b, i 
= j. Then similar to the analysis of E2, we have Pr [E4 ] ≤ 9�2/2n.
By using the result in [34, Case D], we can always find two random variables
EL(Y a

i ) and EL(Y b
j ) where a, b ∈ {1, 2, 3} and 1 ≤ i ≤ �a, 1 ≤ j ≤ �b such that

the rank of above two equations is 2 when E4 dose not occur. On the other hand,
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Fig. 7. Top. The 2n-bit hash function used in 2k-PMAC Plus. Here the hash key is
Kh = (Kh,1, Kh,2) where Kh,1 = Kh,2 = L. Bottom. The 2k-PMAC Plus construction
built from a blockcipher E.eps

if E4 happens, then it is easy to see that the rank of above two equations is at
least 1. By Lemma 4, the above two equations hold with probability at most

1
(2n − 3� + 2)2

+
9�2

2n
· 1
2n − 3� + 1

≤ 22�2

22n
,

by assuming � ≤ 2n−3. For other three cases in condition 12, we can analyze them
similarly. Thus, condition 12 holds with probability at most 88q3�2/22n+4q�/2n.

Therefore, by using Theorem 1 and combined with above analysis, we can
obtain the multi-user security of 2k-PMAC Plus.

Theorem 4. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we model
as an ideal blockcipher. Assume that � ≤ 2n−3. Then for any adversary A that
makes at most q evaluation queries and p ideal-cipher queries,

Advprf2k-PMAC Plus(A) ≤ 2q

2k
+

q(3q + p)(6q + 2p)
22k

+
6qp�2

2n+k
+

4qp

2n+k
+

20q2�3

2n+k

+
200q3�2

22n
+

8q�

2n
+

6q3

22n
,

where p + q� ≤ 2n−1 by the assumption.
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Fig. 8. The 2kf9[E] construction. It is built on top of a blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n. Here fix0 and fix1 are two domain separating functions that fix the
least significant bit of an n-bit string to 0 and 1 respectively.

5 Attack on 2kf9 Construction

In this section, we will show attacks on several variants of the 2kf9 construction,
which is proposed by Datta et al. [17] to achieve beyond-birthday-bound security.
We begin with the description of 2kf9 construction.

The 2kf9 construction. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher.
The 2kf9 construction is based on a blockcipher E with two keys L and K.
Let fix0 and fix1 be two separating functions that fix the least significant bit of
an n-bit string to 0 and 1 respectively. The specification of 2kf9 with domain
separation is illustrated in Fig. 8.

5.1 Attack on 2kf9 Without Domain Separation

Datta et al. [17] prove that 2kf9 without domain separation can achieve beyond-
birthday-bound security. In the proof, they claim that the collision probability
between Σ and Λ (without fix0 and fix1) is small for any message M , namely
2/2n. However, this claim is essentially incorrect. For any short-block message M
that will become a single block after 10∗ padded, i.e., |M | < n, the probability
of Σ colliding with Λ is exactly 1, since they are both the outputs of blockcipher
EL with the same input M . Hence, for any short-block message M , (M, 0n) is
always a valid forgery for this construction.
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5.2 Attack on 2kf9 with Domain Separation

One may think that if we resume the domain separation in 2kf9 (Fig. 8), then
it can recover beyond-birthday-bound security. However, our attack shows that
even with domain separation, 2kf9 cannot be secure beyond the birthday bound.
The attack is as follows.

For any two-block messages M1 = x ‖ z and M2 = y ‖ z ⊕ 0n−11 where
x, y ∈ {0, 1}n, if EL(x) ⊕ EL(y) = 0n−11, then T1 = T2 for any z ∈ {0, 1}n. The
reason is as follows. For M1 = x ‖ z, we have

Σ1 = fix0(EL(z ⊕ EL(x)))
Λ1 = fix1(EL(x) ⊕ EL(z ⊕ EL(x))) .

Similarly, for M2 = y ‖ z ⊕ 0n−11, we have

Σ2 = fix0(EL(z ⊕ 0n−11 ⊕ EL(y)))
Λ2 = fix1(EL(y) ⊕ EL(z ⊕ 0n−11 ⊕ EL(y))) .

If EL(x) ⊕ EL(y) = 0n−11, then

EL(z ⊕ EL(x)) = EL(z ⊕ 0n−11 ⊕ EL(y))
EL(x) ⊕ EL(z ⊕ EL(x)) = EL(y) ⊕ EL(z ⊕ 0n−11 ⊕ EL(y)) ⊕ 0n−11 .

Obviously it holds that Σ1 = Σ2. On the other hand, due to one-bit fixing
function fix1, it also holds that Λ1 = Λ2. Hence EK(Σ1) ⊕ EK(Λ1) = EK(Σ2) ⊕
EK(Λ2), namely T1 = T2.

The detailed attack procedure is as follows. The adversary first chooses 2n/2+1

distinct n-bit strings x1, . . . , x2n/2 , y1, . . . , y2n/2 from the set {0, 1}n. Fixing z1 ∈
{0, 1}n, it then makes queries xi ‖z1 and yi ‖z1⊕0n−11 to construction 2kf9, and
receives the corresponding answers T 1

i and T 2
i for 1 ≤ i ≤ 2n/2. One can expect

on average that there exists a pair of (xi, yj), such that EL(xi)⊕EL(yj) = 0n−11
for 1 ≤ i, j ≤ 2n/2. The adversary can check it by looking at whether T 1

i = T 2
j .

To remove the case that T 1
i = T 2

j is not caused by EL(xi) ⊕ EL(yj) = 0n−11,
when T 1

i = T 2
j is found, the adversary will make two additional queries xi‖z2 and

yj ‖ z2 ⊕ 0n−11 to see whether the corresponding answers are identical. Finally,
as soon as a desired pair (xi, yj) is obtained, the adversary makes query xi ‖ z3
to receive T . Then (M,T ) where M = yj ‖ z3 ⊕ 0n−11 is a valid forgery. The
complexity of this attack is O(2n/2).

Remark 1. If Λ is multiplied by 2 before applying fix1 function as is done in
2k-LightMAC Plus and 2k-PMAC Plus, then a similar birthday-bound attack as
above still works. Instead of searching for a pair of (x, y) such that EL(x) ⊕
EL(y) = 0n−11 for two-block messages M1 = x ‖ z and M2 = x ‖ z ⊕ 0n−11,
here we need to find a pair of (x, y) such that EL(x) ⊕ EL(y) = d for two-block
messages M1 = x ‖ z and M2 = x ‖ z ⊕ d, where d is the inverse of 2 in the finite
field.
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Remark 2. Even if using more complicated multiplication in Λ, e.g. Λ = 2� ·
Y1 ⊕ · · · ⊕ 2 · Y� as is used in 2k-LightMAC Plus (or Λ = 2 · Y1 ⊕ · · · ⊕ 2� · Y� as
is used in 2k-PMAC Plus), we can also propose a similar attack as above. The
core idea of the attack is to find a pair of (x, y) such that EL(x) ⊕ EL(y) = u
for two-block messages M1 = x ‖ z and M2 = y ‖ z ⊕ u, where u is the inverse of
4 in the finite field.

Remark 3. The reason behind this flaw is that for 2kf9, we can always find a
relation between variables Σ and Λ, regardless of the usage of field multiplication.
By utilizing this relation, if there is a collision on Σ, then it will lead to another
collision on Λ. So to forge a tag, we only need to search for a collision on Σ, which
requires only birthday-bound complexity. While for other three two-key DbHtS
constructions (i.e., 2k-SUM-ECBC, 2k-LightMAC Plus and 2k-PMAC Plus), there
does not exist such relation or the chance that such relation occurs is negligible.
For SUM-ECBC, the two variables Σ and Λ are produced by using two inde-
pendent keys, thus being independent from each other. For 2k-LightMAC Plus
and 2k-PMAC Plus, we can always prove that the probability of such relation
occurrence is small, thus Σ and Λ are somewhat independent due to the usage
of field multiplication.
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1 Université Grenoble Alpes, Grenoble, France
nicolas.bordes@univ-grenoble-alpes.fr

2 Radboud University, Nijmegen, The Netherlands
{joan.daemen,Daniel.Kuijsters}@ru.nl
3 STMicroelectronics, Diegem, Belgium

gilles-iacr@noekeon.org

Abstract. Designing a block cipher or cryptographic permutation can
be approached in many different ways. One such approach, popularized
by AES, consists in grouping the bits along the S-box boundaries, e.g., in
bytes, and in consistently processing them in these groups. This aligned
approach leads to hierarchical structures like superboxes that make it pos-
sible to reason about the differential and linear propagation properties
using combinatorial arguments. In contrast, an unaligned approach avoids
any such grouping in the design of transformations. However, without hier-
archical structure, sophisticated computer programs are required to inves-
tigate the differential and linear propagation properties of the primitive.
In this paper, we formalize this notion of alignment and study four primi-
tives that are exponents of different design strategies. We propose a way to
analyze the interactions between the linear and the nonlinear layers w.r.t.
the differential and linear propagation, and we use it to systematically
compare the four primitives using non-trivial computer experiments. We
show that alignment naturally leads to different forms of clustering, e.g.,
of active bits in boxes, of two-round trails in activity patterns, and of trails
in differentials and linear approximations.

Keywords: Symmetric cryptography · Permutations · Block ciphers ·
Round functions

1 Introduction

Modern block ciphers and cryptographic permutations consist of the iteration
of a round function. In many cases this round function consists of a layer of
nonlinear S-boxes, a mixing layer, a shuffle layer (AKA a bit transposition or bit
permutation), and the addition of a round key (in block ciphers) or constant (in
cryptographic permutations).
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Many papers investigate S-boxes and try to find a good compromise between
implementation cost and propagation properties or provide a classification of all
invertible S-boxes of a given width, see, e.g., [27,34]. Similarly, there is a rich
literature on certain types of mixing layers. In particular, there have been many
papers written about finding maximum-distance separable (MDS) mappings or
near-MDS mappings with minimum implementation cost according to some met-
ric, see, e.g., [28,37]. Building a good cipher starts with taking a good S-box and
mixing layer and the rich cryptographic literature on these components provides
us with ample choice. However, how these building blocks are combined in a
round function and the resulting propagation properties has received much less
systematic attention.

A standard way for designing a good round function from an S-box and
an MDS mapping is the one followed in the Advanced Encryption Standard
(AES) [32] and is known as the wide trail strategy [14,20]. This strategy gives
criteria for the shuffle layer and comes with easy-to-verify bounds for the differen-
tial probability (DP) of differential trails (also known as characteristics) and the
linear potential (LP) of linear trails. These bounds and its simplicity have made
it one of the most applied design strategies, and AES has inspired a plethora of
primitive designs, including lightweight ones. By adopting 4-bit S-boxes instead
of 8-bit ones and modern lightweight MDS layers in a smart structure, multi-
ple lightweight ciphers have been constructed. Many lessons were learned and
this line of design has culminated in the block cipher of the NIST lightweight
competition candidate Saturnin [12], a truly modern version of AES.

Naturally, there are alternative design approaches. A popular design approach
is the one underlying the 64-bit lightweight block cipher Present [10]. Its round
function has no MDS layer and simply consists of an S-box layer, a bit shuffle, and
a key addition. It gets its diffusion from the combination of a smart choice of the
bit shuffle and specific propagation criteria from its well-chosen S-box and doing
many rounds. The Present line of design has also been refined in the form of the
Gift (64- and 128-bit) block ciphers [1] and the cryptographic permutations of
the Spongent lightweight hash function [9] that is used in Elephant [7].

Another distinctive design approach is that of the cryptographic permutation
of the SHA-3 standard [33], Keccak-f . Unlike Present, its round function does
have a mixing layer, and it actually has all ingredients that AES has. Specifically,
in their rationale, the designers also refer to the wide trail design strategy [6].
However, this wide-trail flavor does not appear to come with the simple bounds
as in the case of AES, and designers have to resort to tedious and time-consuming
programming efforts to obtain similar bounds. This is related to the fact that
AES operates on bytes and Keccak-f on bits. The Keccak-f designers have
discussed the difference between these two design approaches in [18]. In that
paper, they have coined the term alignment to characterize this difference and
supported it with some propagation experiments on Keccak-f . The Keccak-f
line of design has also been refined and led to the 384-bit permutation that is used
in Xoodyak [15], namely Xoodoo [16], a truly modern version of Keccak-f .

This treatment is not exhaustive and other distinctive design strategies exist.
Some of them do not even use S-boxes or mixing layers, but they are based on
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alternating Additions with Rotations and XOR (ARX) such as Salsa [3], or
they iterate very simple round functions many times such as Simon [2].

In this paper we systematically analyze the impact of alignment on the differ-
ential and linear propagation properties of ciphers. We show that certain design
choices regarding how the S-box and mixing layers are combined have a pro-
found impact on the propagation properties. We identify and name a number
of effects that are relevant in this context. Furthermore, we believe that this
makes it possible to give a meaningful and non-ambiguous definition of the term
alignment.

To illustrate this, we study the four primitives Rijndael-256 [22], Saturnin,
Spongent-384, and Xoodoo. They have comparable width and all have a non-
linear layer consisting of equally-sized S-boxes that have the lowest known max-
imum DP and LP for their dimensions, see Sect. 2. They represent the three
different design strategies, where we include both Rijndael-256 and Saturnin
to illustrate the progress made in the last twenty years. We investigate their
difference propagation and correlation properties, where for multiple rounds we
adopt a fixed-key perspective. This, combined with the choice of relatively wide
primitives, is geared towards their usage in permutation-based cryptography, but
most findings are also relevant for the key-alternating block cipher case.

1.1 Outline and Contributions

After discussing notation and conventions, we review the notions of differential
and linear cryptanalysis in Sect. 2. In Sect. 3 we show how the nonlinear layer
defines a so-called box partition, and we present a non-ambiguous definition of
alignment. In Sect. 4 we present our four ciphers from the perspective of align-
ment and compare the costs of their round functions. Surprisingly, Spongent,
despite being specified at bit level like Keccak-f , turns out to be aligned.

In Sect. 5 we recall the notions of bit and box weight as a measure of the
mixing power of a linear layer. We report on this mixing power by means of
histograms of states by their weight before and after the linear layer, rather
than the usual branch number criterion. For all ciphers we observe a decay in
mixing power from bit to box weight and describe and name the effect that causes
this: huddling. This effect is more pronounced in aligned ciphers. This translates
directly to the two-round differential and linear trail weight distributions, and we
list them for all four ciphers. For the two most competitive proposals, we include
histograms for three-round trails and a comparison for four rounds. Remarkably,
despite the fact that Saturnin has a more expensive S-box layer and a mixing
layer with better bit-level mixing power, Xoodoo has better differential and
linear trail histograms for more than two rounds.

In Sect. 6, we show that trails that cluster necessarily share the same activity
pattern, and we introduce the cluster histogram as a quantitative tool for the
relation between the linear layer and the clustering of two-round trails in ciphers.
We see that there is more clustering in the aligned than in the unaligned ciphers.
We present the cluster histogram of the four primitives and, for three of them,
we also analyze their two-round trail weight histograms. We conclude with a
discussion on the clustering of trails in two and three rounds, and show that, at
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least up to weight 50, differentials over three rounds of Xoodoo admit only one
trail, hence they do not cluster.

Finally, in Sect. 7 we study the independence of round differentials in trails.
We show that, again at least up to weight 50, three-round differentials of
Xoodoo are independent.

The generation of our histograms was non-trivial and the computation meth-
ods could be considered a contribution in themselves. Due to space restrictions
we could not treat them in the paper but we have added their description in the
supplementary material A after the paper. The related software is available at
https://github.com/ongetekend/ThinkingOutsideTheSuperbox under the CC0
license (public domain).

1.2 Notation and Conventions

In this paper, we use the following conventions and notation. We write Z≥0 for
the nonnegative integers and Z>0 for the positive integers. We write k with k ∈
Z≥0 for nonnegative integer variables. In other words, k is used as a placeholder
for any nonnegative integer value.

Whenever we use indices, they always begin at 0. We define [0, K −1] = {i ∈
Z≥0 : 0 ≤ i ≤ k−1}. Given a set S and an equivalence relation ∼ on S, we write
[a]∼ for the equivalence class of a ∈ S. We denote the cardinality of S by #S.

We study permutations f : Fb
2 → F

b
2. Any block cipher is transformed into a

permutation by fixing the key, e.g., we fix all of its bits to 0.
We use the term state for a vector of b bits. It is either a vector that the

permutation is applied to, a difference, or a linear mask (See Sect. 2). Given a
state a ∈ F

b
2, we refer to its ith component as ai. In this paper, we consider index

sets Bi ⊆ [0, B − 1] that form an ordered partition. We write Pi(a) : Fb
2 → F

#Bi

2

for the projection onto the bits of a indexed by Bi.
We write ek

i for the ith standard basis vector in F
k
2 , i.e., for j ∈ [0, K − 1] we

have that ek
ij = 1 if i = j and 0 otherwise. We write + for vector addition in F

k
2 .

Permutations are typically built by composing a number of lightweight round
functions, i.e., f = Rr−1 ◦ · · · ◦ R1 ◦ R0 for some r ∈ Z>0. We write f [r] =
Rr−1◦· · ·◦R0 and define f [0] = id with id the identity function. A round function
is composed of step functions, i.e., Ri = ιi ◦Li ◦Ni, where Ni is a nonlinear map,
Li is a linear map, and ιi is addition of a round constant. Apart from the round
constant addition, these round functions are often, but not always, identical. For
this reason, we will often simply write N or L, without reference to an index if
the context allows for this, and we call N the nonlinear layer of f and L the
linear layer of f . We write n for the number of S-boxes of N and denote their
size by m. In this context, we suppose that Bj = {jm, . . . , (j + 1)m − 1}.

Permutations of the index space are written as τ : [0, b − 1] → [0, b − 1]. By
shuffle (layer), we mean a linear transformation π : Fb

2 → F
b
2 given by π(a) =

Pτa, where Pτ is the permutation matrix associated with some τ , i.e., obtained
by permuting the columns of the (b × b) identity matrix according to τ .

Given a linear transformation L: Fb
2 → F

b
2, there exists a matrix M ∈ F

b×b
2

such that L(a) = Ma. We define its transpose L� : Fb
2 → F

b
2 by L�(a) = M�a

and we denote the inverse of L�, when it exists, by L−�.

https://github.com/ongetekend/ThinkingOutsideTheSuperbox
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2 Differential and Linear Cryptanalysis

A major motivation behind the tools developed in this paper is better under-
standing of the interplay between the linear and nonlinear layer in relation to
differential and linear cryptanalysis. We want to be able to use the associated
language freely when discussing these tools. Therefore, in this section, we go over
the basic notions to make sure they are on hand when needed.

2.1 Differential Cryptanalysis

Differential cryptanalysis [8] is a chosen-plaintext attack that exploits the non-
uniformity of the distribution of differences at the output of a permutation when
it is applied to pairs of inputs with a fixed difference. We call an ordered pair of
an input and output difference (Δin,Δout) ∈ (Fb

2)
2 a differential.

Definition 1. Let f : Fb
2 → F

b
2 be a permutation and define Uf (Δin,Δout) =

{x ∈ F
b
2 : f(x) + f(x + Δin) = Δout}. We call Uf (Δin,Δout) the solution set of

the differential (Δin,Δout).

Definition 2. The differential probability (DP) of a differential (Δin,Δout)
over the permutation f : Fb

2 → F
b
2 is defined as DPf (Δin,Δout) = #Uf (Δin,Δout)

2b
.

If there exists an ordered pair (x, x + Δin) with x ∈ Uf (Δin,Δout), then it is
said to follow the differential (Δin,Δout). In this case, we say that the input
difference Δin is compatible with the output difference Δout through f and call
(Δin,Δout) a valid differential.

Definition 3. A sequence Q = (q(0), q(1), . . . , q(k)) ∈ (
F

b
2

)k+1 that satisfies
DPRi

(q(i), q(i+1)) > 0 for 0 ≤ i ≤ k − 1 is called a k-round differential trail.

Sometimes we specify a trail as Q = (b−1, a0, b0, . . . , ak, bk) by giving the
intermediate differences between Ni and Li as well, where bi = Li(ai) = qi+1.
We write DT(Δin,Δout) for the set of all differential trails in the differential
(Δin,Δout), so with q(0) = Δin and q(k) = Δout. We call (Δin,Δout) the envelop-
ing differential of the trails in DT(Δin,Δout). If #DT(Δin,Δout) > 1, then we
say that trails cluster together in the differential (Δin,Δout).

By deleting the initial difference Δin and final difference Δout of a differential
trail (Δin, q

(1), . . . , q(k−1),Δout) we are left with a differential trail core. A differ-
ential trail core obtained in this way is said to be in the differential (Δin,Δout).
Note that a differential trail core actually defines a set of differential trails with
the same inner differences.

We now define the DP of a differential trail. Each round differential
(q(i), q(i+1)) has a solution set URi

(q(i), q(i+1)). Consider the transformed set
of points Ui = f [i]−1(URi

(q(i), q(i+1))) at the input of f . For an ordered pair
(x, x + q(0)) to follow the differential trail, it is required that x ∈ Uf (Q) =
⋂k−1

i=0 Ui. The fraction of states x that satisfy this equation is the DP of the
trail.
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Definition 4. The DP of a differential trail is defined as DPf (Q) = #Uf (Q)
2b

.

Definition 5. The round differentials are said to be independent if

DPf (Q) =
k−1∏

i=0

DPRi
(q(i), q(i+1)) .

Any given ordered pair (x, x + Δin) follows exactly one differential trail.
Hence, the DP of the differential (Δin,Δout) is the sum of the DPs of all differ-
ential trails with initial difference Δin and final difference Δout.

DPf (Δin,Δout) =
∑

Q∈DT(Δin,Δout)

DPf (Q) .

Given any differential (Δin,Δout) over a round function R, it is easy to com-
pute its DP value. By specifying the intermediate differences we obtain a differ-
ential trail (Δin, b, c,Δout). Thanks to the linearity of L, we have c = L(b) and
due to the fact that a difference is invariant under addition of a constant, all
valid such differential trails are of the form (Δin,L−1(Δout),Δout,Δout). There-
fore, the differential (Δin,Δout) contains only a single trail and its DP is the DP
of the differential (Δin,L−1(Δout)) over the S-box layer:

DPR(Δin,Δout) =
∏

0≤j<n

DPSj
(Pj(Δin), Pj(L−1(Δout))) .

Hence, the DP of a round differential is the product of the DP values of its
S-box differentials.

Definition 6. The restriction weight of a differential (Δin,Δout) that satisfies
DPf (Δin,Δout) > 0 is defined as wr(Δin,Δout) = − log2 DPf (Δin,Δout).

For a differential trail, we sum the weights of the round differentials.

Definition 7. The restriction weight of a differential trail Q = (q(0),
q(1), . . . , q(k)) is defined as

wr(Q) =
k−1∑

i=0

wr(q(i), q(i+1)) .

If the round differentials are independent in the sense of Definition 5, then
we have that DPf (Q) = 2−wr(Q).

2.2 Linear Cryptanalysis

Linear cryptanalysis [29] is a known-plaintext attack. It exploits large correla-
tions (in absolute value) between linear combinations of input bits and linear
combinations of output bits of a permutation.
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Definition 8. The (signed) correlation between the linear mask u ∈ F
b
2 at the

input and the linear mask v ∈ F
b
2 at the output of a function f : Fb

2 → F
b
2 is

defined as

Cf (u, v) =
1
2b

∑

x∈Fb
2

(−1)u�x+v�f(x) .

If Cf (u, v) �= 0, then we say that u is compatible with v. We call the ordered
pair of linear masks (u, v) a linear approximation. We note that in the literature
(e.g., in the linear cryptanalysis attack by Matsui [29]) the term linear approx-
imation has several meanings. It should not be confused with what we call a
linear trail.

Definition 9. A sequence Q = (q(0), q(1), . . . , q(k)) ∈ (
F

b
2

)k+1 that satisfies
CRi

(q(i), q(i+1)) �= 0 for 0 ≤ i ≤ k − 1 is called a linear trail.

We write LT(u, v) for the set of all linear trails in the linear approximation
(u, v), so with q(0) = u and q(k) = v. We call (u, v) the enveloping linear approx-
imation of the trails in LT(u, v). If #LT(u, v) > 1, then we say that trails cluster
together in the linear approximation (u, v).

By deleting the initial linear mask u and final linear mask v of a linear
trail (u, q(1), . . . , q(k−1), v) we are left with a linear trail core. A linear trail core
obtained in this way is said to be in the linear approximation (u, v). Note that a
linear trail core actually defines a set of linear trails with the same inner linear
masks.

Definition 10. The correlation contribution of a linear trail Q over f equals

Cf (Q) =
k−1∏

i=0

CRi
(q(i), q(i+1)) .

From the theory of correlation matrices [14], it follows that

Cf (u, v) =
∑

Q∈LT(u,v)

Cf (Q) .

Given any linear approximation (u, v) over a round function R, it is easy to
compute its correlation. By specifying the intermediate linear masks we obtain
a linear trail (u, b, c, v). Thanks to the linearity of L, we have b = L�(c) and due
to the fact that a linear mask is invariant under addition of a constant, all valid
such linear trails are of the form (u,L�(v), v, v). Hence the linear approximation
(u, v) contains only a single trail and its correlation contribution is the correlation
of the linear approximation (u,L�(v)) over the S-box layer, where the round
constant addition affects the sign:

CR(u, v) = (−1)v�ι(0)
∏

0≤j<n

CSj
(Pj(u), Pj(L�(v)) .
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Definition 11. The linear potential (LP) of a linear approximation (u, v) is
defined as LPf (u, v) = Cf (u, v)2.

Analogous to the differential cryptanalysis case, we define a weight metric.

Definition 12. The correlation weight of a linear approximation (u, v) with
LPf (u, v) �= 0 is given by wc(u, v) = − log2 LPf (u, v).

Definition 13. The correlation weight of a linear trail Q = (q(0), q(1), . . . , q(k))
is defined as

wc(Q) =
k−1∑

i=0

wc(q(i), q(i+1)) .

3 Box Partitioning and Alignment

In this section, we consider the partition of the index space defined by the non-
linear layer N. The alignment properties of the other step functions with respect
to this partition have an important impact on the propagation properties of the
round function.

The nonlinear layer N consists of the parallel application of n S-boxes of size
m to disjoint parts of the state, indexed by Bi. Formally, this means that we can
write N as S0 × · · · × Sn−1 and that it is characterized by

Pi ◦ (S0 × · · · × Sn−1) = Si ◦ Pi for 0 ≤ i ≤ n − 1 .

Hence, N defines a unique ordered partition ΠN = (B0, . . . ,Bn−1) of the index
space [0, b − 1]. We call ΠN the box partition defined by N and the Bi N-boxes.
If there is no ambiguity, we call the box partition Π and its members boxes.

Besides the box partition, it is clearly possible to define other partitions of
the index space as well. We call a partition non-trivial if it has at least two
members. Between any two partitions of the index space there may be a relation
that we denote as refinement.

Definition 14. We call Π a refinement of Π ′ and write Π ≤ Π ′ if for every
(i,Bi) ∈ Π there exists a (j,B′

j) ∈ Π ′ such that Bi ⊆ B′
j.

Let Π be a partition of the index space consisting of k boxes, each of size l.
We call a shuffle layer a Π-shuffle if the associated permutation matrix can be
partitioned into k identity matrices of dimension (l × l). If this is the case, then
bit index permutation can be specified as a box index permutation.

Definition 15. We call φ : Fb
2 → F

b
2 aligned to Π if we can decompose it as

φ0 × · · · × φk−1 :
k−1×
i=0

F
l
2 →

k−1×
i=0

F
l
2,

In this case, we call the φi box functions.
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Definition 16. Given a round function that is composed of the parallel appli-
cation N of equally-sized S-boxes, a linear layer L, and the addition ι of a round
constant, we say it is aligned if it is possible to decompose the linear layer L as
L = π ◦ M in such a way that

– π is a ΠN-shuffle;
– M is aligned to a non-trivial partition ΠM that satisfies ΠN ≤ ΠM.

We assume that the split between the linear and nonlinear layer is chosen so as
to maximize the number of S-boxes in N.

Note that ι does not play a role in the alignment properties. If all of the
round functions of a primitive are aligned, then we call the primitive aligned. If
the primitive is not aligned, then we call it unaligned.

Any aligned primitive has a superbox structure [35], that is helpful when
investigating distributions and bounds on the DP of two-round differentials and
the LP of two-round trails. We explain what this means. Consider a two-round
structure: π ◦M◦N◦π ◦M◦N. The final two linear steps π and M have no effect
on the distributions, so we can simplify this expression to N ◦ π ◦ M ◦ N. Clearly,
N ◦π = π ◦N′, with N′ := π−1 ◦N ◦π. Hence, this is equivalent to π ◦N′ ◦M ◦N.
Discarding the shuffle layer at the end gives N′ ◦ M ◦ N. Since ΠN′ = ΠN ≤ ΠM,
we can view this as the parallel application of a number of superboxes. We call
this a superbox layer. In a sequence of two rounds, N′ ◦ M ◦ N is a (composite)
nonlinear layer and π ◦M ◦π is a (composite) linear layer. If the latter is aligned
to a non-trivial partition Π such that ΠM ≤ Π, then we call this two-round
structure aligned to ΠM.

4 The Ciphers We Investigate

In this section we describe the round functions of the ciphers we investigate in
this paper, their alignment properties, and compare their implementation cost.

4.1 Rijndael

Rijndael [22] is a block cipher family supporting all block and key lengths of
b = 32k bits, with 4 ≤ k ≤ 8, i.e., ranging from 128 up to and including 256 bits.
The case b = 128 is of great importance as Rijndael with that block length is
the ubiquitous AES [32]. In this paper we investigate Rijndael-256, the instance
with b = 256, a width closer to those of the other ciphers we investigate. In the
remainder of this paper we will write Rijndael for Rijndael-256.

The Rijndael round function consists of four steps: a nonlinear layer
SubBytes, a box shuffle ShiftRows, a mixing layer MixColumns, and round key
addition AddRoundKey. As its name suggest, ΠSubBytes partitions the state in
bytes and ShiftRows is a ΠSubBytes-shuffle. The mixing layer, MixColumns, is
aligned to a non-trivial partition ΠMixColumns that corresponds to the 8 columns,
each containing 4 bytes, and we have ΠSubBytes ≤ ΠMixColumns. It follows that
Rijndael is aligned. Figure 1 shows Rijndael-128 that is easier to draw due to
its dimensions, but the alignment properties for Rijndael-256 are the same.
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ΠMixColumns

ΠSubBytes

S S S S S S S S S S S S S S S S

MixColumns MixColumns MixColumns MixColumns

...
...

...
...

Fig. 1. Alignment properties of Rijndael.

4.2 Saturnin

The Saturnin [12] block cipher has a 256-bit key and block length. The state has
several representations: three-dimensional, two-dimensional, and flat. In three
dimensions, the 256-bit state is represented as a 4 × 4 × 4 cube of 4-bit nibbles.
Nibbles in the cube are indexed by triples (x, y, z). A slice is a subset of the
nibbles with z constant. A sheet is a subset of the nibbles with x constant. A
column is a subset of the nibbles with x and z constant.

The Saturnin permutation is composed of a number of so-called super-
rounds and a super-round consists of two consecutive rounds with indices 2r
and 2r + 1. Round 2r is composed as MC ◦ S, where MC is a mixing layer and
S is a nonlinear layer. There are two different rounds with odd indices. Round
4r + 1 is composed as follows: RC ◦ RK ◦ SR−1

slice ◦ MC ◦ SRslice ◦ S. Round 4r + 3
consists of RC ◦ RK ◦ SR−1

sheet ◦ MC ◦ SRsheet ◦ S. Here, RC denotes addition of
a round constant, RK denotes addition of a round key, and SRslice and SRsheet

shuffle nibbles. The partition ΠS divides the state into 64 nibbles. The shuffles
SRslice and SRsheet are ΠS-shuffles. The mixing layer MC is aligned to a non-
trivial partition ΠMC that divides the state into 16 columns, each consisting of
4 nibbles, and that satisfies ΠS ≤ ΠMC. It follows that Saturnin is aligned.
In a super-round we identify the sequence S ◦ MC ◦ S as a superbox layer with
partition ΠMC and the linear layer of such a round is SR−1

slice ◦MC ◦SRslice. This
is a mixing layer that is aligned to a non-trivial partition Πslice that divides
the state into 4 slices, each containing 4 columns, and we have ΠMC ≤ Πslice.
Similarly, for the other type of super-round, the mixing layer is aligned to a
non-trivial partition Πsheet that divides the state into 4 sheets, and we have
ΠMC ≤ Πsheet. It follows that the super-rounds of Saturnin are aligned and
hence have their own superboxes. These have width 64 bits and we call them
hyperboxes. Figure 2 shows the alignment properties of the steps.

4.3 Spongent

Spongent [9] is a sponge-based hash function family that uses a Present-like
permutation. The permutation is defined for any b that is a multiple of 4. In this
paper, we only consider the case b = 384, to match the state size of the largest
of the other permutations that we investigate, Xoodoo. The round function of
Spongent consists of three steps: a round constant addition lCounter, a 4-bit
S-box layer sBoxLayer, and a bit shuffle pLayer.
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Fig. 2. Alignment properties of Saturnin.

The index permutation of the bit shuffle pLayer is:

pLayer(j) =

{
96j mod 383, if j ∈ [0, 382]
383, if j = 383

As indicated by the Spongent designers in [9], we can decompose it into a
mixing layer, followed by a box shuffle:

1. SpongentMixLayer applies the same mixing function SpongentMix in paral-
lel to the 24 subgroups (following the terminology of [9]). It is a bit shuffle
associated with the index permutation τsubgroup : [0, 15] → [0, 15]:

τsubgroup(j) =

{
4j mod 15, if j ∈ [0, 14]
15, if j = 15

2. SpongentBoxShuffle is a box shuffle that is associated with the box index
permutation τbox : [0, 95] → [0, 95] defined by:

τbox(j) =
⌊

j

4

⌋
+ 24(j mod 4).

The sBoxLayer defines a box partition ΠsBoxLayer corresponding to the 96 4-
bit boxes. The box shuffle SpongentBoxShuffle is a ΠsBoxLayer-shuffle. The bit
shuffle SpongentMixLayer is aligned to a non-trivial partition ΠSpongentMixLayer

that divides the state into 96 16-bit subgroups, each grouping four consecutive
boxes, and we have ΠsBoxLayer ≤ ΠSpongentMixLayer. It follows that Spongent is
aligned. Figure 3 shows these steps and their alignment properties.
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Fig. 3. Alignment properties of Spongent.

Πχ Πρeast

Fig. 4. Alignment properties of Xoodoo.

4.4 Xoodoo

Xoodoo [16] is a permutation with b = 384. The state consists of 3 equally sized
horizontal planes, each one consisting of 4 parallel 32-bit lanes. Alternatively, the
state can be seen as a set of 128 columns of 3 bits, arranged in a 4 × 32 array.

The round function of Xoodoo consists of the following five steps: a mixing
layer θ, a bit shuffle ρeast, round constant addition ι, a nonlinear layer χ, and a
bit shuffle ρwest. The χ step applies the same 3-bit S-box to the columns of the
state. The nonlinear layer χ defines a box partition Πχ that corresponds to the
128 columns. The bit shuffles ρeast and ρwest perform translations of planes and
are not aligned to Πχ. The mixing layer θ defines no non-trivial box partition at
all. Due to the properties of the ρ steps and θ it is impossible to split the linear
layer in a column shuffle and a mixing layer that is aligned to a partition that Πχ

is a refinement of. In other words, Xoodoo is unaligned. See Section E of the
supplementary material for a more formal proof. Figure 4 shows the alignment
properties of the steps.

4.5 Round Cost

In this section, we compare the implementation complexity of the round func-
tions of the four ciphers. This depends on the platform and the requirements.
Platforms may range from low-end 8-bit CPUs to multi-core high-end work-
station CPUs, FPGAs, and even dedicated hardware. Requirements include
throughput, latency, usage of resources such as power and energy consump-
tion, area in hardware, and RAM/ROM usage in software. Moreover, protection
against fault attacks and/or side channel attacks may be required.

In our comparison of the round functions we let their three layers guide us:
the S-box layer, the mixing layer (if any), and the shuffle layer. We also discuss
the presence of key addition in block ciphers and its relative cost.
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Table 1. S-box computational cost comparison.

operations in F2 2-layer nand circuit

max # operations # nand gates per # inputs totals

cipher DP/LP ref xor and/or not 2-in 3-in 4-in 5-in 6-in 7-in gates inp

Rijndael 2−6 [11,36] 81 32 4 ?

Saturnin 2−2 [12] 6 6 - 4 5 6 1 - - 16 52

Spongent 2−2 ? - 6 8 - 3 1 18 75

Xoodoo 2−2 [16] 3 3 3 3 6 - - - - 9 24

S-Box Layer. Given that our ciphers have invertible S-boxes with lowest known
maximum DP and LP values that can be achieved for their width, their imple-
mentation cost increases with width.

We report on the implementations with minimum number of binary XOR,
binary AND/OR, and unary NOT operations that we found in the literature.
For Spongent we found no such numbers. We have also determined a mini-
mal sum-of-products (SOP) form in Boolean algebra of the S-boxes using the
Espresso algorithm [30] for two-level logic optimization. For Rijndael, finding
the minimal SOP was infeasible. We refer to Section B of the supplementary
material for the SOP expressions. Using De Morgan’s laws, the SOP form can
be implemented by two layers of nand gates. Table 1 lists the number of nand
gates per bit for each of the S-boxes.

We can see in Table 1 that the cost of the Saturnin and Spongent S-boxes
is comparable. The cost of the Xoodoo S-box is roughly half of that, but is
only 3 bits wide instead of 4. The Rijndael S-box is a roughly a factor 10 more
costly than that of Saturnin and Spongent, a very high price for its better
max DP/LP value. These numbers give an indication for the size of a hardware
circuit and the number of cycles in bit-sliced software implementations. The
number of and/or operations is related to the cost of masking countermeasures.

Mixing Layer. Spongent has no mixing layer, so there is no cost. Xoodoo-θ
requires 2 binary xor operations per bit, while Saturnin’s MC can be imple-
mented with 2.25 binary xor operations per bit [12]. The circuit depth for these
computations is in both cases 4 xor gates. Despite the difference in design phi-
losophy, their computational costs are almost the same.

A simple implementation of Rijndael’s MixColumns takes 3.875 binary xor
operations per bit and has a circuit depth of 3 xor gates. This was reduced to
97/32 ≈ 3 additions per bit [25] at the expense of a higher circuit depth. Despite
the fact that both MixColumns and Saturnin’s MC implement an MDS mapping
operating on 5 boxes, their costs diverge. The main difference between the two
is that MixColumns operates on bytes while MC operates on nibbles. However,
this is not the reason for the higher cost per bit of MixColumns. The reason is
that there have been significant advances in building efficient MDS mappings
and MC reaps the benefits of that.
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Table 2. The cost of a round in cycles per byte on the ARM Cortex-M4.

Cipher # cycles/byte

Rijndael [38] 10.0

Saturnin [13] 2.7

Spongent ?

Xoodoo [5] 1.1

Shuffle Layer. Rijndael, Spongent, and Xoodoo consist of the iteration of a
single round function. In a hardware architecture that implements the full round
in combinatorial logic, a bit shuffle consists of wiring between gates. Saturnin
has three different rounds, so this is more complex in a hardware architecture in
which a single round is implemented in combinatorial logic. However, in a combi-
natorial block that implements a sequence of four rounds, the shuffle operations
do correspond to wiring.

We compare software implementation on a particular platform: the ARM
Cortex-M4 processor. We choose this because it is a popular lightweight platform
for benchmarks and for three of our ciphers there is assembly code available. On
this platform, it is difficult to assess the cost of the shuffle layer in isolation due to
the barrel shifter. This feature of the ARM architecture allows applying (cyclic)
shift operations to one of the two operands in arithmetic and bitwise Boolean
instructions at no additional cost. To compare, we measure the number of cycles
of the entire round function, revealing the marginal cost of the shuffle layer.
Table 2 lists the performance of the round functions of our four ciphers expressed
in number of cycles per byte as measured on a Cortex-M4 processor. In addition,
it includes references to the bit-sliced implementations that we have used in
order to measure the cycle counts. In Rijndael and Saturnin we removed
any operations related to the key addition to make a fair comparison possible
and in Saturnin we measured the number of cycles for 4 rounds and divided
that by 4. We have not included Spongent because we do not have access to
any (optimized) assembly code. However, considering that it was designed with
hardware in mind, we do not believe it is competitive in software.

5 Huddling

In this section, we describe a phenomenon that we call huddling. We present
the bit and box weight histograms as natural extensions of the bit and box
branch numbers, respectively. Using these histograms, we analyze the huddling
properties of the ciphers described in Sect. 4. We see that these properties are
more pronounced in ciphers that are aligned. Finally, we look at the relation
between huddling and the distribution of trail weights.
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5.1 Definitions of Bit Weight, Box Weight and Their Histograms

The weight of a two-round trail (qin, a, b, qout) over N ◦ L ◦ N can be bounded
from below by the sum of the number of active boxes at the input and output
of L. This number is fully determined by a as b = L(a) in differential trails and
a = L�(b) in linear trails. The distribution of states a according to this number
determines the mixing power of the linear layer with respect to ΠN.

First, we formally define what it means for a box to be active. To this end,
we define an indicator function 1i : Fb

2 → F2 with respect to a box partition Π
by 1i(a) = 0 if Pi(a) = 0 and 1i(a) = 1 otherwise. We call the box Bi active
in the difference or linear mask a ∈ F

b
2 if 1i(a) = 1 and passive otherwise. The

natural metric associated with box activity is the box weight of a, defined by
wΠ(a) = #{i ∈ [0, n − 1] : 1i(a) �= 0}. Clearly, a box is active in a difference or
linear mask if at least one of the bits in that box is non-zero. We call the bit i
active in a if ai = 1 and passive otherwise. The number of active bits is given by
the bit weight of a, i.e., w2(a) = #{i ∈ [0, b − 1] : ai �= 0}. The activity pattern
of a is defined by rΠ(a) =

∑n−1
i=0 1Bi

(a)en
i . It is the vector whose ith component

is one if box Bi is active and zero otherwise.
In order to quantify the mixing power of a linear transformation L, we con-

sider the weight distribution of (a,L(a)) over all differences or linear masks
a ∈ F

b
2 and embed it in a histogram. This is a well-known concept in coding

theory, where weight distributions are embedded in so-called weight enumerator
polynomials that classify the code [23].

Definition 17. The weight histogram of a linear transformation L: Fb
2 → F

b
2

is a function N·,L : Z≥0 → Z≥0 given by

N·,L(k) = #{a ∈ F
b
2 : w·(a) + w·(L(a)) = k} .

The cumulative version on the same domain and codomain is given by

C·,L(k) =
∑

l≤k

NL(l) .

Here, · denotes either 2 or Π.

The tail of the histogram consists of the left-most values that correspond to low
weight.

If the primitive is aligned, then π is a box shuffle and this implies that the
box weight histograms of L = M◦π and M are the same. The superbox structure
of an aligned primitive makes it possible to use a divide-and-conquer approach
to compute the weight histograms. Indeed, let S(w) = {v ∈ Z

s
≥0 :

∑s−1
i=0 vi = w}

with s the number of superboxes.Then we can compute the weight histograms
of M by convolving the weight histograms of its box functions:

N·,M(w) =
∑

v∈S(w)

s−1∏

i=0

N·,Mi
(vi) . (1)
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Fig. 5. Cumulative bit weight and box weight histograms.

We note that the differential branch number [14] is simply the smallest non-
zero entry of this histogram, i.e., min{w > 0 : N·,L(w) > 0}. The linear branch
number is the smallest non-zero entry in the corresponding histogram of L�

and can be different from its differential counterpart. This is not the case for
the mappings in this paper and we will omit the qualifier in the remainder.
A higher branch number typically implies higher mixing power. However, the
weight histogram is more informative than just the branch number. The number
of differences or linear masks meeting the branch number is valuable information
as well. In general, the weight histogram allows a more nuanced comparison of
mixing layers than the branch number.

The box weight histogram is the relevant histogram in the context of the wide
trail design strategy [20]. A linear layer that systematically has lower values in
the tail of its box weight histogram than the other does typically has fewer
two-round trails with low weight, given equal nonlinear layers.

5.2 Bit and Box Weight Histograms

We discuss the cumulative bit and box weight histograms for the linear layers
of our four ciphers, given in Fig. 5. We include the histogram for the identity
function, assuming 4-bit S-boxes for the box weight to allow for comparison
with Spongent and Saturnin.

The bit weight histogram for Spongent coincides with that of the identity
permutation. This is because its linear layer is a bit shuffle. As the identity
permutation maps inputs to identical outputs, it has only non-zero entries for
even bit weights. Its bit branch number is 2. In conclusion, its mixing power is
the lowest possible.

The bit branch number of the mixing layer of Rijndael, MixColumns, is 6,
that of Saturnin-MC is 5, and that of Xoodoo-θ is 4.

Similar to Spongent, the bit weight histograms of Rijndael and Xoodoo
have only non-zero entries at even bit weights. This is because both Xoodoo-θ
and Rijndael-MixColumns can be modeled as a 
→ (I + M)a for some matrix
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M ∈ F
b×b
2 with the property that the bit weight of Ma is even for all a ∈ F

b
2.

Saturnin-MC cannot be modeled in that way and does have non-zero entries
at odd bit weights.

The bit weight histograms of Rijndael and Saturnin are very close and
that of Xoodoo is somewhat higher. The ranking per bit weight histogram
reflects the computational resources invested in the mixing layer: Rijndael uses
3.5 additions per bit, Saturnin 2.25, Xoodoo 2, and Spongent 0.

In the box weight histograms we see the following. For Spongent the box
branch number is 2, the same as the bit branch number. However, the box weight
histogram of Spongent has a lower tail than the identity permutation. What it
shows is the mixing power of SpongentMixLayer in our factorization of pLayer,
operating on 4-box superboxes.

The box branch number of the linear layers of Rijndael, MixColumns, and
of Saturnin-MC are both 5, while for Xoodoo it is 4.

The discrepancy between the bit and box weight histogram brings us to the
notion of bit huddling : many active bits huddle together in few active boxes. We
say that the bit huddling in a linear layer is high if the concentration is high and
we say that the bit huddling is low otherwise.

Huddling has an effect on the contribution of states a to the histogram, i.e.,
by definition we have that wΠ(a)+wΠ(L(a)) ≤ w2(a)+w2(L(a)). In words, from
bit to box weight, huddling moves states to the left in the histogram, thereby
raising the tail. Huddling therefore results in the decay of mixing power at box
level as compared to bit level. In the absence of huddling, the bit and box weight
histogram would be equal. However, huddling cannot be avoided altogether as
states do exist with multiple active bits in a box (note that m ≥ 2).

We see Rijndael has high bit huddling. In moving from bit weights to box
weights, the branch number decreases from 6 to 5 and the tail rises from being
the lowest of the four to the highest. This is a direct consequence of the large
width of the Rijndael S-boxes, namely 8, and the byte alignment. Indeed,
MixColumns only mixes bits within the 32-bit columns. We call this the superbox
huddling effect. Of course, there is a reason for these large S-boxes: they have low
maximum DP/LP values. They were part of a design approach assuming table-
lookup implementations where the main impact of the S-box size is the size
of the lookup tables. Unfortunately table-lookups are expensive in dedicated
hardware and on modern CPUs lookup tables are kept in cache making such
implementations susceptible to cache-timing attacks [4].

Saturnin, with its Rijndael-like structure also exhibits the superbox hud-
dling effect, though less pronounced than Rijndael. From bits to boxes the
branch number does not decrease and the tail rises less than for Rijndael.
Clearly, its smaller S-box size, namely 4, allows for less bit huddling. Due to its
alignment, Spongent exhibits the superbox huddling effect, but less so than
Saturnin. The reason for this is the already high tail in the bit weight his-
togram, due to the absence of bit-level diffusion in the mixing layer.
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Finally, Xoodoo has the lowest bit huddling of the four primitives studied.
This is the consequence of two design choices: having very small S-boxes (3-bit)
and the absence of alignment, avoiding the superbox huddling effect altogether.

5.3 Two-Round Trail Weight Histograms

We define the trail weight histogram analogous to Definition 17 with the change
that N·(k) = # {trails Q : w·(Q) = k}, where · is either r for differential trails
or c for linear trails. Like for the other diagrams, the lower the tail, the lower
the number of states with small weights, the better.

Figure 6 reports on the distribution of the weight of two-round differential
and linear trails of our four ciphers. To compute the trail weight histograms of
the aligned ciphers, we convolved the histograms of the superbox structures (See
Eq. 1). The distribution of the linear trails for Rijndael is an approximation
that was obtained by first taking the integer part of the correlation weights of
its S-box to allow for integer arithmetic. The other distributions are exact.

While Rijndael performed the worst with respect to the box weight metric,
we see that it performs the best with respect to the trail weights. The reasons
are the low maximum DP/LP value of its S-box and its high branch number.
However, as seen in Sect. 4.5, one pays a price in terms of the implementation
cost. The relative ranking of the other ciphers does not change in moving from
box weight to trail weights. Still, Xoodoo loses some terrain due to its more
lightweight S-box layer.

Despite the difference in design approach, Xoodoo and Saturnin have quite
similar two-round trail weight histograms. It is therefore interesting how the trail
weight histograms compare for three and four rounds.

5.4 Three-Round Trail Weight Histograms

We have computed the three-round differential and linear trail weight histograms
for Saturnin and Xoodoo and give them in Fig. 7. We did not do it for
Rijndael due to the prohibitively high cost of its round function and neither
for Spongent due to its non-competitive bounds for multiple-round trails as
reported in [9]. Hence, we focus on Saturnin and Xoodoo as exponents of the
aligned and unaligned wide-trail design approaches. Computing the three-round
Saturnin trail histograms turned out to be very computationally intensive for
higher weights (see Subsect. A.3 for more details) and we were forced to stop
at weight 36. Still, the diagrams show the big difference in histograms between
Saturnin and Xoodoo.

Despite the fact that the box branch number of Xoodoo is 4 and that
of Saturnin is 5, we see that for three-round trails, Xoodoo performs much
better than Saturnin. In particular, Xoodoo has no trails with weight below
36, whereas Saturnin has about 243 linear trails with weight below 36, starting
from weight 18. Moreover, it has about 247 differential trails with weight below
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Fig. 6. Two rounds: cumulative differential and linear trail weight histograms.

Fig. 7. Three rounds: cumulative differential and linear trail weight histograms.

36, starting from weight 19. This confirms the idea that branch number alone
does not paint the whole picture and that these histograms prove to be very
useful in comparing the different design approaches.

5.5 Four Rounds and Beyond

We did not conduct experiments for four or more rounds, but can make use of
available information. According to [15], there exist no differential or linear trails
over four rounds of Xoodoo with weight below 74. In contrast, Saturnin has
roughly 282 four-round differential trails with 25 active S-boxes and it has more
than 294.5 such linear trails. See Section C for a derivation of this estimate. Since
each S-box has a weight of 2 or 3, this implies many four-round differential trails
with weights in the range [50, 75]. The linear trails have weights in the range
[50, 100] due to the fact that active S-boxes have weight 2 or 4. Naturally, in
both cases there are also trails with 26, 27, . . . active S-boxes and their number
grows quickly with the box weight due to the additional degrees of freedom in
building them. It follows that the trend we see in three-round trails persists for
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four-round trails: unaligned Xoodoo has a significantly lower tail than aligned
Saturnin, despite its lighter round function and lower branch number.

For trails over five rounds and more we report on the known lower bounds
on weight in Table 6 in Section D of the supplementary material. We see that
up to 6 rounds Xoodoo remains ahead of Saturnin. For higher weights the
trail scan programs in Xoodoo reach their computational limit and Saturnin
overtakes Xoodoo. Advances in trail scanning are likely to improve the bounds
for Xoodoo while for Saturnin the currently known bounds are much more
tight. For the whole range Rijndael is well ahead and Spongent is invisible
with its weight of 28 for 6 rounds.

6 Clustering

In this section, we investigate clustering of differential trails and of linear trails.
The occurrence of such clustering in two-round differentials and linear approx-
imations requires certain conditions to be satisfied. In particular, we define an
equivalence relation of states with respect to a linear layer and an S-box partition
that partitions the state space in candidate two-round trail cores and the size of
its equivalence classes upper bounds the amount of possible trail clustering. This
is the so-called cluster partition. We present the partitions of our four ciphers
by means of their cluster histograms. For all four ciphers, we report on two-
round trail clustering and for Xoodoo in particular we look at the three-round
case. With its unaligned structure, we found little clustering in Xoodoo. How-
ever, the effects of clustering are apparent in the aligned primitives Rijndael,
Saturnin, and Spongent, with them being most noticeable in Rijndael.

6.1 The Cluster Histogram

To define the cluster histogram we need to define two equivalence classes.

Definition 18. Two states are box-activity equivalent if they have the same
activity pattern with respect to a box partition Π:

a ∼ a′ if and only if rΠ(a) = rΠ(a′) .

We denote the set of states that are box-activity equivalent with a by [a]∼ and
call it the box-activity class of a.

Box-activity equivalence has an application in the relation between trail cores
and differentials and linear approximations.

Lemma 1. Two trail cores (a0, b0 . . . , ar−2, br−2) and (a∗
0, b

∗
0 . . . a∗

r−2, b
∗
r−2) over

a function f = Nr−1 ◦Lr−2 ◦Nr−2 ◦ · · · ◦L0 ◦N0 that are in the same differential
(or linear approximation) satisfy a0 ∼ a∗

0 and br−2 ∼ b∗
r−2.
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[L(a)]∼[a]∼

L

L

[a]≈

L

Fig. 8. Partitions of Fb
2 defined by ∼ and ≈.

Proof. Let (Δin,Δout) be the differential over f that the trail cores are in. Since
N0 and Nr−2 preserve activity patterns, we have that Δin ∼ a0, and Δin ∼ a∗

0,
and Δout ∼ br−2, and Δout ∼ b∗

r−2. From the symmetry and transitivity of ∼ it
follows that a0 ∼ a∗

0 and br−2 ∼ b∗
r−2. �

Considering the case r = 2 in Lemma 1 immediately gives rise to a refinement
of box-activity equivalence.

Definition 19. Two states are cluster-equivalent with respect to a linear map-
ping L : Fb

2 → F
b
2 and a box partition Π if they are box-activity equivalent before

L and after it (See Fig. 8):

a ≈ a′ if and only if a ∼ a′ and L(a) ∼ L(a′) .

We denote the set of states that are cluster-equivalent with a by [a]≈ and call it
the cluster class of a. The partition of F

b
2 according to these cluster classes is

called the cluster partition.

Corollary 1. If two two-round trail cores (a,L(a)) and (a∗,L(a∗)) over f =
N ◦ L ◦ N are in the same differential, then a ≈ a∗.

Proof. If we apply Lemma 1 to the case r = 2, we have a ∼ a∗ and L(a) ∼ L(a∗).
It follows that a ≈ a∗. �

Corollary 1 shows that the defining differences of any two-round trail cores
that cluster together are in the same cluster class. It follows that if these cluster
classes are small, then there is little clustering.

For all a′ ∈ [a]≈ the box weight wΠ(a′) + wΠ(L(a′)) is the same. We denote
this weight by w̃([a]≈).

Definition 20. Let L : Fb
2 → F

b
2 be a linear transformation. Let ≈ be the equiva-

lence relation given in Definition 19. The cluster histogram NΠ,L : Z≥0×Z≥0 →
Z≥0 of L with respect to the box partition Π is given by

NΠ,L(k, c) = #{[a]≈ ∈ F
b
2/≈ : w̃([a]≈) = k ∧ #[a]≈ = c} .

For a fixed box weight, the cluster histogram shows the distribution of the
sizes of the cluster classes with that box weight. Ideally, for small box weights,
the cluster classes are all very small. Large cluster classes of small weight may
lead to two-round trails with a large DP or LP.
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Table 3. The cluster histograms of Rijndael and Saturnin.

N × Cm,n

w̃ Rijndael superbox Saturnin superbox Saturnin hyperbox

m = 8, n = 4 m = 4, n = 4 m = 16, n = 4

5 (56× 255) (56× 15) (56× 65535)

6 (28× 64005)) (28× 165) (28× 4294574085)

7 (8× 16323825) (8× 2625) (8× 281444913315825)

8 (1× 4162570275) (1× 39075) (1× 18444492394151280675)

Table 4. The cluster histogram of
SpongentMix of Spongent.

w̃ N × C

2 (16× 1)

3 (48× 1)

4 (32× 1) (36× 7)

5 (8× 1) (48× 25)

6 (12× 79) (16× 265)

7 (8× 2161)

8 (1× 41503)

Table 5. Partial cluster histogram (up to trans-
lation equivalence) of Xoodoo.

w̃ N × C

4 (3× 1)

7 (24× 1)

8 (600× 1)

9 (2× 1)

10 (442× 1)

11 (10062× 1)

12 (80218× 1)

13 (11676× 1)

14 (228531× 1) (3× 2)

15 (2107864× 1) (90× 2)

16 (8447176× 1) (702× 2)

.

.

.
.
.
.

6.2 The Cluster Histograms of Our Ciphers

Next, we present the cluster histograms of the superboxes of Rijndael, Sat-
urnin, and Spongent and of the Saturnin hyperbox. Moreover, we present a
partial cluster histogram of Xoodoo. The results for Rijndael and Saturnin
are found in Table 3, for Spongent in Table 4, and for Xoodoo in Table 5. In
these tables, C denotes the cardinality of a cluster class and N denotes the num-
ber of cluster classes with that cardinality. For instance, an expression such as
(32 × 1) (36 × 7) means that there are 32 cluster classes of cardinality 1 and 36
classes of cardinality 7. Looking at w̃ = 8 across the three tables, we see that
Rijndael, Saturnin, and Spongent have only a single cluster class containing
all the states with wΠ(a) + wΠ(L(a)) = 8. In contrast, for Xoodoo, each state
a sits in its own cluster class. This means that L(a) is in a different box activity
class than L(b) for any b ∈ [a]∼ and b �= a.

Thanks to the fact that the mixing layers of Rijndael and Saturnin have
the MDS property, the entries of their cluster histograms are combinatorial
expressions of m, the box size, and n, the number of boxes. We describe these
methods in detail in Subsection A.2 of the supplementary material.
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Table 4 gives the cluster histogram of Spongent’s superbox. For weights
above 4 we see large cluster equivalence classes.

Now, consider the cluster histogram of Xoodoo in Table 5. We see that
up to and including box weight 13, we have #[a]≈ = 1. For box weight 14, 15,
and 16, we see that #[a]≈ ≤ 2. Due to its unaligned structure, it is less likely
that equal activity patterns are propagated to equal activity patterns. Therefore,
many cluster classes contain only a single state.

6.3 Two-Round Trail Clustering

Two-round trail clustering in the keyed Rijndael superbox was investigated
in [19]. In that paper the expected DP values of trails and differentials are studied,
where expected means averaged over all keys. We see considerable clustering in
differentials with 5 active S-boxes. For these, the maximum expected DP of
differentials is more than a factor 3 higher than the maximum expected DP of
2-round trails, with differentials containing up to 75 trails. For more active S-
boxes the number of trails per differential is much higher and hence clustering is
worse, but their individual contributions to the expected DP are much smaller
and all differentials have expected DP very close to 2−32. For fixed keys or in an
unkeyed superbox these differentials and trails have a DP that is a multiple of
2−31. For trails this effect was studied in [21].

In this section we report on our experiments on the other three of our
ciphers where we compare two-round differentials with differential trails and lin-
ear approximations with linear trails. Figure 9 shows the number of differentials
and differential trails up to a given weight of the Saturnin and the Spongent
superboxes. In both cases, we see that for low weight the histograms are close and
as the weight grows, these histograms diverge. For Saturnin there are roughly
50 times more differentials with weight 15 or less than differential trails with
weight 15 or less. For Spongent this ratio is roughly 20. This divergence is due
to two reasons: clustering and what we call clipping. Due to the large number of
differential trails and the limited width of the superbox, the trails cluster. This
effect is especially strong for trails with almost all S-boxes active and would give
rise to many differentials with DP close to 2−16 as the superbox has width 16.
What we observe is a majority of differentials with DP equal to 2−15. This is
the result of the fact that any differential over a superbox has an even number
of ordered pairs and hence the minimum DP is 2−15, yielding weight 15. We call
this effect clipping: the weight of differentials cannot be strictly greater than 15.
A trail over a k-bit superbox with weight w > k − 1 cannot have a DP = 2−w

as this would imply a fractional number of pairs. This effect has been studied in
AES and we refer to Sect. 7 for a discussion.

Figure 10 shows the weight histograms for two-round differentials and linear
approximations. The full-state correlation weight histogram of Saturnin was
obtained from that of any of its columns by first rounding the correlation weights
to the nearest integer to make integer arithmetic possible. The full-state corre-
lation weight histogram of Spongent was obtained in a similar manner. The
remainder of the histograms is exact. Table 5 shows that in Xoodoo almost all
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Fig. 9. Differentials and differential trails in the superboxes of Saturnin and Spon-
gent.

Fig. 10. Two rounds: cumulative restriction and correlation weight histograms.

differentials contain only a single trail. This means that the clustering is neg-
ligible. Therefore, there is no difference between Figs. 6 and 10 for Xoodoo.
For Saturnin the clustering is the most striking. For linear trails we observe
a similar effect. For Spongent the clustering is less outspoken due to the fact
that the trail weight histogram is quite bad to start with.

The effect of clustering in four-round (or two super-round) Saturnin is inter-
esting. Four-round Saturnin consists of the parallel application of four 64-bit
hyperboxes. The consequence is that for a fixed key, the roughly 2127 ·4 differen-
tials that are active in a single hyperbox and have non-zero DP, all have weight
below 63. When computing expected DP values averaging the DP over all round
keys, this is closer to 64.

The cluster classes also determine the applicability of the very powerful trun-
cated differential attacks [24]. These attacks exploit sets of differentials that share
the same box activity pattern in their input difference and the same box activity
pattern in their output difference. Despite the fact that the individual trails in
these truncated differentials may have very low DP, the joint probability can be
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significant due to the massive numbers. For two-round differentials the cluster
classes are exactly the trail cores in a given truncated differential. In Table 3 we
see that the cluster classes for the Rijndael superbox and Saturnin hyperbox
are very large. This clustering leads to powerful distinguishers for e.g., 4-round
AES and 8-round Saturnin. The latter can be modeled as 4 hyperboxes fol-
lowed by an MDS mixing layer followed by 4 hyperboxes and an input difference
with a single active hyperbox will have 4 active hyperboxes after 8 rounds, with
probability 1. In contrast, if the cluster classes are small, as in the case of the
unaligned Xoodoo permutation, it is very unlikely that truncated differential
attacks would have an advantage over ordinary differential attacks.

6.4 Three-Round Trail Clustering in XOODOO

Recall that for Xoodoo, no 4-round trails exist with weight below 74 and Table 5
showed that trail clustering in two-round differentials in Xoodoo is negligible,
as expected because of its unaligned design. We investigate the conjecture that
it is also the case for three rounds.

First, we present a generic technique to find all trails that have an envelop-
ing differential compatible with a given three-round trail core. We apply the
technique to Xoodoo, for which it is very efficient.

Given the trail core (a∗
1, b

∗
1, a

∗
2, b

∗
2), Lemma 1 shows that we can restrict our-

selves to those (a1, b1, a2, b2) with a1 ∼ a∗
1 and b2 ∼ b∗

2. The difference a∗
1 defines

a vector space A′ of all the states in which a box is passive whenever it is passive
in a∗

1. If a1 ∈ [a∗
1]∼, then a1 ∈ A′. Similarly, b∗

2 defines a vector space B′. If
b2 ∈ [b∗

2]∼, then b2 ∈ B′. The vector space B = L(A′) contains the candidate
values for b1. Similarly, the vector space A = L−1(B′) contains candidate values
for a2. Because it preserves activity patterns, N restricts the set of candidate
values to those satisfying b1 ∼ a2. Hence, we can limit the search to those x ∈ B
and y ∈ A with x ∼ y.

To find all valid trails of the form (Δin, a1, b1, a2, b2,Δout), we first reduce
the size of the space of all trail cores (a1, b1, a2, b2) using a necessary condition.
When this space is small enough, we exhaustively search for a valid trail.

We write B for a basis of B and A for a basis of A. To reduce the dimension
of the spaces, we will apply an algorithm directly on their bases. First, we need
the notion of isolated active bit.

Definition 21. A bit i of b ∈ B is said to be an isolated active bit if bi = 1 and
b′
i = 0 for all b′ ∈ B \ {b}.

A basis vector having an isolated active bit determines the box activity of
any linear combination that includes it.

Lemma 2. If b ∈ B has an isolated active bit in position i, then any vector in
the affine space b + span(B \ {b}) has the corresponding box activated.

Proof. If b has an isolated active bit in position i, then the ith bit of any vector
in b+span(B \{b}) is active. As a result, the box containing this bit is active. �
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Similar to how an isolated active bit always activates the corresponding box,
a box is never activated if no basis vector activates it.

Lemma 3. If the ith box is passive in every vector of A, then the ith box is
passive in all vectors of A. We say that box i is passive in A.

We define a condition that makes it possible to remove a basis vector from
the basis without excluding potentially valid trails.

Condition 1 (reduction condition). We say that a basis vector b ∈ B sat-
isfies the reduction condition if and only if it has an isolated active bit in a box
that is passive in A. The same is true when swapping the role of B and A.

The following lemma shows that the reduction condition is sufficient to reduce
the dimension of the vector space we consider.

Lemma 4. If a basis vector b ∈ B satisfies Condition 1, then all valid differences
before the N in the middle are in span(B \{b}). The same is true when swapping
the role of B and A.

Proof. As a consequence of Lemma 2 and Lemma 3, a valid difference before the
nonlinear layer cannot be constructed from b(i) because it would contradict the
fact that the activity pattern is preserved through the nonlinear layer. �

The algorithm now consists in repeatedly removing basis vectors from B and
A that satisfy Condition 1 until this is no longer possible. This can be done
efficiently by searching for pivots for a Gaussian elimination among indices of
vectors from A′ (respectively B′) that correspond to never activated boxes in
B′ (respectively A′). Indeed, these pivots can be used to row-reduce the corre-
sponding basis along them, thus revealing an isolated active bit.

If the algorithm sufficiently decreased the dimensions, then we can exhaus-
tively test all pairs (b1, a2) ∈ B × A (after reduction) according to the following
criteria:

– (b1, a2) is a valid differential over N;
– There exists a Δin such that both (Δin, a

∗
1) and (Δin, a1) are valid differentials

over N;
– There exists a Δout such that both (b∗

2,Δout) and (b2,Δout) are valid differ-
entials over N.

Applying our method to all three-round trail cores of Xoodoo up to weight
50 [17] shows that there exists no cluster for all these trails.

7 Dependence of Round Differentials

In this section we study the dependence of round differentials in the sense of
Definition 5 in Sect. 2.1. It has been found in [21] that the vast majority of
trails over the Rijndael superbox have dependent round differentials. We will
investigate this for differential trails over three-round Xoodoo. We expect that
the dependence effects observed in Rijndael disappear in an unaligned cipher.
Hence, we now investigate this for differential trails over three-round Xoodoo.
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7.1 Masks for Differentials over Nonlinear Components

We note VN(Δin,Δout) the set of output states that follow the differential
(Δin,Δout) over N, i.e. VN (Δin,Δout) = N(UN(Δin,Δout)). From [21], we have
that UN(Δin,Δout) and VN(Δin,Δout) are affine if #USi

(Pi(Δin), Pi(Δout)) ≤
4 for each S-box. Since this assumption holds for our four ciphers, both
UN(Δin,Δout) and VN(Δin,Δout) are affine and can be described by a system of
affine equations on the bits of the state x. Each affine equation can be written
as u�x + c with u a b-bit vector called mask and c a bit.

Given a three-round differential trail Q = (Δin, a1, b1, a2, b2,Δout), one can
define four sets of masks:

– A1, the masks that come from VN(Δin, a1);
– B1, the masks that come from UN(b1, a2);
– A2, the masks that come from VN(b1, a2);
– B2, the masks that come from UN(b2,Δout).

These masks are said to be all independent if

#UN◦L◦N◦L◦N(Q) = 2b−(#A1+#B1+#B2) = 2b−(#A1+#A2+#B2) .

which is, per Definition 5, equivalent to the independence of round differentials.
We first present an efficient generic method for determining whether three-

round trail masks are independent. Then we apply this method to Xoodoo.
Since L is linear, A1 can be linearly propagated through it to obtain a set of
masks A′

1 at the input of the second nonlinear layer. Similarly, we can propagate
B2 through the inverse linear layer to obtain a set of masks B′

2 at the output of
the second nonlinear layer.

7.2 Independence of Masks over a Nonlinear Layer

B1 and A′
1 form sets of masks at the input of the second nonlinear layer. If the

rank of C1 = B1 ∪ A′
1 is the sum of the ranks of B1 and A′

1, then C1 contains
independent masks. The same strategy can be used to test for dependence of
masks in C2 = A2 ∪ B′

2.
As for the independence of masks of the complete trail, we need to check

for dependence between C1 and B′
2 or between A′

1 and C2. We will apply an
algorithm similar to the one we used in Sect. 6.4 to reduce bases. However, here
we use it to reduce the cardinalities of the mask sets.

The following lemma makes this possible.

Lemma 5. Let C1 and B′
2 be two sets of masks before and after an S-box layer.

If a mask u in C1 satisfies Condition 1, then the number of states that satisfy
the equations associated with the masks in both C1 \ {u} and B′

2 is exactly two
times the number of states before removing u. The same is true by swapping the
role of C1 and B′

2.
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Proof. Since u satisfies Condition 1, let i be the index of the isolated bit, j be the
index of the corresponding S-Box and k the number of masks in B′

2. No mask in
B′

2 is putting a constraint on any of the m bits of the jth S-Box, thus the 2b−k

solutions can be seen as 2b−k−m groups of 2m different states that only differ in
the m bits of the jth S-box. Since the S-box is invertible, the application of the
inverse of the nonlinear layer to a whole group of 2m vectors results in a group
of 2m different states that, again, only differ on the value of the jth S-box.

We can further divide those 2b−k−m groups each into 2m−1 subgroups of
2 different states that only differ in the value of the ith bit. By definition on
an isolated bit, either both or none of the two states inside a subgroup satisfy
all equations associated with the masks in C1 \ {u}. Finally, inside a subgroup
exactly one of the two states will satisfy the equation associated with mask u.
Thus, the number of solutions by removing u is multiplied by exactly two. �

We first check for linear dependence inside C1 by computing its associated
rank. Then, we recursively check if some mask in either C1 or B′

2 satisfies Con-
dition 1 and if it is the case we remove them from the sets of masks.

There are three possible outcomes when applying this process to a three-
round differential trail:

– If C1 is not full rank, we can conclude that masks in B1 and A′
1 are dependent;

– Else, if either set is empty, Lemma 5 applied at each step guarantees us
that the number of states satisfying the equations associated with the masks
in both C1 and B′

2 is equal to 2b−(#C1+#B′
2), that is to say the masks are

independent;
– If none of the two conditions above are met, we cannot directly conclude

about (in)dependence between remaining masks but we can apply the same
method to A1 and C2 and hope for a better outcome.

7.3 Application to Xoodoo

This process is used to check for independence in differential trails over three
rounds of Xoodoo. It has been applied to the same differential trails as pro-
cessed in Sect. 6.4. In all cases, the masks, and thus round differentials, were
found to be independent. This was not obtained by sampling, but instead by
counting the number of solutions, hence this independence is exact in the sense
of Definition 5. As a result, the DP of each such trail is the product of the DP
values of its round differentials, which implies that DP(Q) = 2−wr(Q).

8 Conclusion

We put forward alignment as a crucial property that characterizes the interac-
tions between linear and nonlinear layers w.r.t. the differential and linear prop-
agation properties. We conducted experiments on four S-box based primitives
that otherwise represent different design approaches. We precisely defined what
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it means for a primitive to be aligned and showed that Rijndael, Saturnin, and
Spongent are aligned, whereas Xoodoo is unaligned. Through these examples,
we highlighted and analyzed different effects of alignment on the propagation
properties.
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Abstract. In this paper, we revisit the difference enumeration tech-
nique for LowMC and develop new algebraic techniques to achieve effi-
cient key-recovery attacks. In the original difference enumeration attack
framework, an inevitable step is to precompute and store a set of inter-
mediate state differences for efficient checking via the binary search. Our
first observation is that Bar-On et al.’s general algebraic technique devel-
oped for SPNs with partial nonlinear layers can be utilized to fulfill the
same task, which can make the memory complexity negligible as there is
no need to store a huge set of state differences any more. Benefiting from
this technique, we could significantly improve the attacks on LowMC
when the block size is much larger than the key size and even break
LowMC with such a kind of parameter. On the other hand, with our
new key-recovery technique, we could significantly improve the time to
retrieve the full key if given only a single pair of input and output mes-
sages together with the difference trail that they take, which was stated
as an interesting question by Rechberger et al. at ToSC 2018. Combin-
ing both techniques, with only 2 chosen plaintexts, we could break 4
rounds of LowMC adopting a full S-Box layer with block size of 129, 192
and 255 bits, respectively, which are the 3 recommended parameters for
Picnic3, an alternative third-round candidate in NIST’s Post-Quantum
Cryptography competition. We have to emphasize that our attacks do
not indicate that Picnic3 is broken as the Picnic use-case is very differ-
ent and an attacker cannot even freely choose 2 plaintexts to encrypt
for a concrete LowMC instance. However, such parameters are deemed
as secure in the latest LowMC. Moreover, much more rounds of seven
instances of the backdoor cipher LowMC-M as proposed by Peyrin and
Wang in CRYPTO 2020 can be broken without finding the backdoor by
making full use of the allowed 264 data. The above mentioned attacks
are all achieved with negligible memory.
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1 Introduction

LowMC [5], a family of flexible Substitution-Permutation-Network (SPN) block
ciphers aiming at achieving low multiplicative complexity, is a relatively new
design in the literature and has been utilized as the underlying block cipher
of the post-quantum signature scheme Picnic [3], which is an alternative third-
round candidate in NIST’s Post-Quantum Cryptography competition [1]. The
feature of LowMC is that users can independently choose the parameters to
instantiate it, from the number of S-boxes in each round to the linear layer, key
schedule function and round constants.

To achieve a low multiplicative complexity, the construction adopting a par-
tial S-box layer (only partial state bits will pass through the S-boxes and an
identity mapping is applied for the remaining state bits) together with a random
dense linear layer is most used. As such a construction is relatively new, novel
cryptanalysis techniques are required. Soon after its publication, the higher-order
differential attack and interpolation attack on LowMC were proposed [14,16],
both of which required many chosen plaintexts. To resist these attacks, LowMC
v2 was proposed, i.e. new formulas were used to determine the secure number of
rounds. To analyse one of the most useful settings, namely a few S-boxes in each
round with low allowable data complexities, the so-called difference enumera-
tion technique [29], which we call difference enumeration attack, was proposed,
which directly made LowMC v2 move to LowMC v3. The difference enumera-
tion attack is a chosen-plaintext attack. The basic idea is to encrypt a pair (or
more) of chosen plaintexts and then recover the difference evolutions between the
plaintexts through each component in each round, i.e. to recover the differential
trail. Finally, the secret key is derived from the recovered differential trail. As a
result, the number of the required plaintexts can be as small as 4. For simplicity,
LowMC represents LowMC v3 in the remaining part of this paper.

Recently, Picnic3 [21] has been proposed and alternative parameters have
been chosen for LowMC. Specifically, different from Picnic2 where a partial S-
box layer is adopted when instantiating LowMC, a full S-box layer is used when
generating the three instances of LowMC in Picnic3. By choosing the number
of rounds as 4, the designers found that the cost of signing time and verifying
time can be reduced while the signature size is almost kept the same with that of
Picnic2 [3]. By increasing the number of rounds to 5 for a larger security margin,
the cost is still lower than that of Picnic2. Consequently, 4-round LowMC is
recommended and 5-round LowMC is treated as an alternative choice.

As can be found in the latest source code [2] to determine the secure number
of rounds, the 3 instances of 4-round LowMC used in Picnic3 are deemed as
secure. However, there is no thorough study for the constructions adopting a
full S-box layer and low allowable data complexities (as low as 2 plaintexts1).

1 In the security proof of Picnic, 2 plaintexts are required, which can be found at
footnote 11 in Page 10 in [10]. This is also our motivation to analyze such instances
with only 2 allowed plaintexts. In the security proof, the parameters with 2 allowed
plaintexts are treated as secure.
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Therefore, it is meaningful to make an investigation in this direction. It should
be mentioned that a recent guess-and-determine attack with 1 plaintext can
only reach 2 rounds for the constructions with a full S-box layer [7]. Moreover, a
parallel work [12] also shows that 2 out of 3 instances of the 4-round LowMC in
the Picnic3 setting can be broken, though it requires a huge amount of memory.

Moreover, a family of tweakable block ciphers called LowMC-M [27] was
proposed in CRYPTO 2020, which is built on LowMC and allows to embed a
backdoor in the instantiation. It is natural to ask whether the additional available
degrees of freedom of the tweak can give more power to an attacker. Based on
the current cryptanalysis [14,16,29], the designers claim that all the parameters
of LowMC-M are secure even if the tweak is exploitable by an attacker.

Related Techniques. For the SPNs with partial nonlinear layers, Bar-On et al.
have described an efficient algebraic approach [8] to search for differential trails
covering a large number of rounds, given that the predefined number of active
S-boxes is not too large. First, the attacker introduces intermediate variables to
represent the state difference after the first round. Then, traverse all possible
differential patterns where the number of active S-boxes is below a predefined
value. For each pattern, in the following consecutive rounds, introduce again
intermediate variables to represent the output differences of all active S-boxes,
whose positions have already been fixed. Finally, set up equations in terms of
these variables according to the positions of the inactive S-boxes as their
input and output differences must be 0 and all of them can be written as linear
expressions in these variables. Such a strategy has been successfully applied to
full Zorro [17].

For algebraic techniques, they seem to be prominent tools to analyze designs
using low-degree S-boxes. The recent progress made in the cryptanalysis of
Keccak is essentially based on algebraic techniques, including the preimage
attacks [19,22,25], collision attacks [13,18,28,30] and cube attacks [15,20,23].

A pure algebraic attack is to construct a multivariate equation system to
describe the target problem and then to solve this equation system efficiently.
When the equation system is linear, the well-known gaussian elimination can be
directly applied. However, when the equation system is nonlinear, solving such
an equation system is NP-hard even if it is quadratic. For the design of block
ciphers, there may exist undesirable algebraic properties inside the design which
can simplify the equation system and can be further exploitable to accelerate
the solving of equations. Such an example can be found in the recent cryptanal-
ysis of the initial version of MARVELLOUS [6] using Gröbner basis attacks [4].
Indeed, there was once a trend to analyze the security of AES against alge-
braic attacks [11,26]. In the literature, the simple linearization and guess-and-
determine methods are also common techniques to solve a nonlinear multivariate
equation system.

Recently at CRYPTO 2020, a method is proposed to automatically verify
a specified differential trail [24]. The core technique is to accurately capture
the relations between the difference transitions and value transitions. We are
inspired from such an idea and will further demonstrate that when the relations
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between the two transitions are special and when the difference transitions are
special, under the difference enumeration attack framework [29], it is possible to
utilize algebraic techniques to efficiently recover the differential trail for a single
pair of (plaintext, ciphertext) and then to efficiently retrieve the full key from
the recovered differential trail.

Our Contributions. This work is based on the difference enumeration attack
framework and we developed several non-trivial techniques to significantly
improve the cryptanalysis of LowMC. Our results are detailed as follows:

1. Based on Bar-On et al.’s general algebraic technique [8], it is feasible to effi-
ciently check the compatibility of differential trails in the difference enumer-
ation attack [29] by solving a linear equation system, which directly leads to
negligible memory complexity. Moreover, it can be found that this technique
will be more effective for LowMC due to a special property of the 3-bit S-box,
especially when the partial nonlinear layer is close to a full nonlinear layer.

2. By studying the S-box of LowMC, we develop an efficient algebraic technique
to retrieve the full key if given only a single pair of (plaintext, ciphertext)
along with the corresponding differential trail that they take, which was stated
as an interesting question by Rechberger et al. at ToSC 2018.

3. We further develop a new difference enumeration attack framework to ana-
lyze the constructions adopting a full S-box layer and low allowable data
complexities.

4. Combining our techniques, we could break the 3 recommended parameters
of 4-round LowMC used in Picnic3, which are treated as secure against the
existing cryptanalysis techniques, though it cannot lead to an attack on Pic-
nic3. In addition, much more rounds of 7 instances of LowMC-M can be
broken without finding the backdoor, thus violating the security claim of the
designers.

All our key-recovery attacks on LowMC only require 2 chosen plaintexts
and negligible memory. For the attacks on LowMC-M, we will make full use of
the allowed data to achieve more rounds. More details are displayed in Table 1,
Table 2 and Table 3. To advance the understanding of the secure number of
rounds for both LowMC and LowMC-M, we focus on the attacks reaching the
largest number of rounds with the complexity below the exhaustive search.

Organization. A brief introduction of LowMC and LowMC-M is given in Sect. 2.
We then revisit the difference enumeration attack framework in Sect. 3. In Sect. 4,
we make a study on the S-box of LowMC. The techniques to reduce the memory
complexity and to reduce the cost to retrieve the secret key from a differential
trail are detailed in Sect. 5 and Sect. 6, respectively. The application of the two
techniques to LowMC with a partial S-box layer and LowMC-M can be referred
to Sect. 7. The attack on LowMC with a full S-box layer is explained in Sect. 8.
The experimental results are reported in Sect. 9. Finally, we conclude the paper
in Sect. 10.
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2 Preliminaries

2.1 Notation

As there are many parameters for both LowMC [5] and LowMC-M [27], we use
n, k, m and R to represent the block size in bits, the key size in bits, the number
of S-boxes in each round and the total number of rounds, respectively. Besides,
the number of allowed data under each key is denoted by 2D. In addition, the
following notations will also be used:

1. Pr[ω] represents the probability that the event ω happens.
2. Pr[ω|χ] represents the conditional probability, i.e. the probability that ω hap-

pens under the condition that χ happens.
3. x >> y represents that x is much larger than y.

2.2 Description of LowMC

LowMC [5] is a family of SPN block ciphers proposed by Albrecht et al. in
Eurocrypt 2015. Different from conventional block ciphers, the instantiation
of LowMC is not fixed and each user can independently choose parameters to
instantiate LowMC.

LowMC follows a common encryption procedure as most block ciphers.
Specifically, it starts with a key whitening (WK) and then iterates a round
function R times. The round function at the (i + 1)-th (0 ≤ i ≤ R − 1) round
can be described as follows:

1. SBoxLayer (SB): A 3-bit S-box S(x0, x1, x2) = (x0⊕x1x2, x0⊕x1⊕x0x2, x0⊕
x1 ⊕ x2 ⊕ x0x1) will be applied to the first 3m bits of the state in parallel,
while an identity mapping is applied to the remaining n − 3m bits.

2. MatrixMul (L): A regular matrix Li ∈ F
n×n
2 is randomly generated and the

n-bit state is multiplied with Li.
3. ConstantAddition (AC): An n-bit constant Ci ∈ F

n
2 is randomly generated

and is XORed to the n-bit state.
4. KeyAddition (AK): A full-rank n×k binary matrix Mi+1 is randomly gener-

ated. The n-bit round key Ki+1 is obtained by multiplying the k-bit master
key with Mi+1. Then, the n-bit state is XORed with Ki+1.

The whitening key is denoted by K0 and it is also calculated by multiplying the
master key with a random n × k binary matrix M0.

It has been studied that there is an equivalent representation of LowMC by
placing (AK) between (SB) and (L). In this way, the size of the round key
Ki (i > 0) becomes 3m, which is still linear in the k-bit master key and can
be viewed as multiplying the master key with a 3m × k random binary matrix.
Notice that K0 is still an n-bit value. We will use this equivalent representation
throughout this paper for simplicity.

Moreover, for convenience, we denote the plaintext by p and the ciphertext
by c. The state after WK is denoted by A0. In the (i + 1)-th round, the input
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state of SB is denoted by Ai and the output state of SB is denoted by AS
i , as

shown below:

p
WK−→ A0

SB−→ AS
0

AK−→ L−→AC−→ A1 → · · · → AR−1
SB−→ AS

R−1
AK−→ L−→AC−→ AR.

In addition, we also introduce the notations to represent the xor difference
transitions, as specified below:

Δp
WK−→ Δ0

SB−→ ΔS
0

AK−→ L−→AC−→ Δ1 → · · · → ΔR−1
SB−→ ΔS

R−1
AK−→ L−→AC−→ ΔR.

Specifically, in the (i + 1)-th round, the difference of the input state of SB is
denoted by Δi and the difference of the output state of SB is denoted by ΔS

i .
The difference of plaintexts is denoted by Δp, i.e. Δp = Δ0.

Definition 1. A differential trail Δ0 → Δ1 → · · · → Δr is called a r-round
compact differential trail when all (Δj ,Δ

S
j ) (0 ≤ j ≤ r − 1) and Δr are

known.

LowMC-M [27] is a family of tweakable block ciphers built on LowMC, which
was introduced by Peyrin and Wang at CRYPTO 2020. The feature of LowMC-
M is that backdoors can be inserted in the instantiation. The only difference
between LowMC and LowMC-M is that there is an addition operation AddSub-
Tweak (AT) after AK and WK where the sub-tweaks are the output of an
extendable-output-function (XOF) function by setting the tweak as the input.
A detailed description can be referred to Appendix A.

3 The Difference Enumeration Techniques

In this section, we briefly revisit the difference enumeration techniques in [29].
The overall procedure can be divided into three phases, as depicted in Fig. 1.

Phase 1: Determine an input difference Δ0 such that it will not activate any
S-boxes in the first t0 rounds, i.e. Pr[Δ0 → Δt0 ] = 1.

Phase 2: Compute the corresponding Δt0 from Δ0 obtained at Phase 1. Then,
enumerate the differences forwards for t1 consecutive rounds and collect all
reachable values for Δt0+t1 . Store all possible values of Δt0+t1 in a table
denoted by Df .

Phase 3: Encrypt a pair of plaintexts whose difference equals Δ0 and compute the
difference Δr of the corresponding two ciphertexts. Enumerate all reachable
differences of Δt0+t1 backwards for t2 = r − t0 − t1 rounds staring from Δr

and check whether it is in Df .

For convenience, suppose the reachable differences of Δt0+t1 obtained by com-
puting backwards are stored in a table denoted by Db, though there is no need to
store them. To construct a distinguisher, one should expect that |Df |×|Db| < 2n.
In this way, one could only expect at most one solution that can connect the dif-
ference transitions in both directions. Since there must be a solution, the solution
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Fig. 1. The framework of the difference enumeration techniques

found with the above difference enumeration techniques is the actual solution.
After the compact differential trail is determined, i.e. the difference transitions
in each round are fully recovered, the attacker launches the key-recovery phase.

To increase the number of rounds that can be attacked, the authors exploited
the concept of d-difference2 [31], which can increase the upper bound for |Df |×
|Db|, i.e. |Df | × |Db| < 2nd and max(|Df |, |Db|) < 2k. The constraint |Df | ×
|Db| < 2nd can ensure there is only one valid d-differential trail left since there
are in total 2nd possible values for the n-bit d-difference. The remaining two
constraints are used to ensure the time complexity to enumerate d-differences
cannot exceed that of the brute-force attack. It should be noted that |Df | = λmt1

d

and |Db| = λmt2
d , where λd denotes the average number of reachable output d-

differences over the S-box for a uniformly randomly chosen input d-difference.
For the 3-bit S-box used in LowMC, λ1 ≈ 3.62 ≈ 21.86 and λ2 ≈ 6.58 ≈ 22.719.
Therefore, a larger number of rounds can be covered with d-differences (d > 1)
when k ≥ n. As for n > k, it is thus more effective to use the standard difference
(d = 1) rather than the d-difference (d > 1). This paper is irrelevant to the
concept of d-difference [31] and hence we omit the corresponding explanation.

It is claimed in [29] that to efficiently recover the secret key based on the
recovered compact differential trail, a few pairs of plaintexts are required to
identify the unique secret key. As our key-recovery technique is quite different,
we refer the interested readers to [29] for details.

3.1 The Extended Framework

It is stated in [29] that the above framework can be extended to more rounds
if the allowed data are increased. Specifically, as depicted in Fig. 2, when the
allowed data complexity is 2D, after choosing a good starting input d-difference
in the plaintexts, the attacker could construct � 2D

d+1	 different tuples of plaintexts
satisfying the chosen input d-difference. For each tuple of plaintexts, the attacker
can obtain the corresponding d-difference in the ciphertexts and check whether
it will activate the S-boxes in the last r3 rounds.

2 For a tuple of (d + 1) values (u0, u1, . . . , ud), its d-difference is defined as
(δ0, δ1, . . . , δd−1) = (u0 ⊕ u1, u0 ⊕ u2, . . . , u0 ⊕ ud).
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Fig. 2. The extended framework of the difference enumeration techniques

From now on, as shown in Fig. 2, it is assumed that there is a probability-1
differential trail covering the first r0 rounds, and that the difference enumeration
in the forward and backward directions will cover r1 and r2 rounds, respectively.

A simple extension of the original difference enumeration attack [29] is to
consider larger r1 and r2. In this case, there will be much more candidates for
compact differential trails, i.e. the number of which is λr1+r2

1 × 2−n for the
standard xor difference. Then, it is essential to efficiently retrieve the full key
from each compact differential trail, which is indeed an interesting question
raised in [29].

Based on the method mentioned in [29], when only 2 plaintexts are allowed,
the cost to retrieve the full key from each compact differential trail is lower
bounded by 2k/3 as each non-zero difference transition through the 3-bit S-box
will suggest two solutions and the master key is a k-bit value. The reason why
it is a lower bound is that there may exist inactive S-boxes in the differential
trails and the attacker has to try all the 8 values. Thus, an efficient method to
retrieve the full key will allow us to enlarge λ

m(r1+r2)
1 × 2−n, thus increasing the

number of rounds that can be attacked.
Apart from the high cost of key recovery, in the original difference enumera-

tion attack, it seems to be inevitable that the attacker needs to store a huge set of
Δr0+r1 , whose size is about λmr1

1 for the standard xor difference. We believe that
attacks with negligible memory are more effective and meaningful if compared
with a pure exhaustive key search.

4 Observations on the S-Box

Before introducing our linearization-based techniques for LowMC, it is necessary
to describe our observations on the 3-bit S-box used in LowMC. Denote the 3-bit
input and output of the S-box by (x0, x1, x2) and (z0, z1, z2), respectively. Based
on the definition of the S-box, the following relations hold:

z0 = x0 ⊕ x1x2, z1 = x0 ⊕ x1 ⊕ x0x2, z2 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1.

Therefore, for the inverse of the S-box, there will exist

x0 = z0 ⊕ z1 ⊕ z1z2, x1 = z1 ⊕ z0z2, x2 = z0 ⊕ z1 ⊕ z2 ⊕ z0z1.
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According to the specification of the 3-bit S-box, we observed the following
useful properties of the S-box.

Observation 1. For each valid non-zero difference transition (Δx0,Δx1,
Δx2) → (Δz0,Δz1,Δz2), the inputs conforming to such a difference transition
will form an affine space of dimension 1. In addition, (z0, z1, z2) becomes linear
in (x0, x1, x2), i.e. the S-box is freely linearized for a valid non-zero difference
transition. A similar property also applies to the inverse of the S-box.

Observation 2. For each non-zero input difference (Δx0,Δx1,Δx2), its valid
output differences form an affine space of dimension 2. A similar property also
applies to the inverse of the S-box.

Observation 3. For an inactive S-box, the input becomes linear in the output
after guessing two output bits. If guessing two input bits, the output also becomes
linear in the input. The same property holds for its inverse.

Example. The last observation is trivial and let us make a short explanation
for the remaining observations. For example, when (Δx0,Δx1,Δx2) = (0, 0, 1)
and (Δz0,Δz1,Δz2) = (0, 0, 1), it can be derived that x0 = 0 and x1 = 0.
Therefore, the expressions of (z0, z1, z2) become z0 = 0, z1 = 0 and z2 = x2.
When the input difference is (0, 1, 1), the corresponding valid output differences
satisfy Δz1 ⊕Δz2 = 1. When the output difference is (0, 1, 1), the corresponding
valid input differences satisfy Δx1 ⊕Δx2 = 1. A full list of all the valid non-zero
difference transitions along with the corresponding conditions on (x0, x1, x2) as
well as the updated expressions for (z0, z1, z2) is given in Table 4 in AppendixD.

Generalization. It is easy to identify Observation 1 since it is a 2-differentially
uniform 3-bit S-box. However, it is surprising that such a property has never
been exploited in the cryptanalysis of LowMC. To generalise our results, we
prove that the above 3 observations hold for all 3-bit almost perfect nonlinear
(APN) S-boxes. Observation 3 is trivial and we only focus on the remaining 2
observations, especially on Observation 2.

To save space, we simply explain what a 3-bit APN S-box is. For sim-
plicity, we still denote the input and output of the S-box by (x0, x1, x2) and
(z0, z1, z2) = S′(x0, x1, x2), respectively. Formally, for a 3-bit APN S-box, for any
valid nonzero difference transition (Δx0,Δx1,Δx2) → (Δz0,Δz1,Δz2), there are
only 2 solutions of (x0, x1, x2) to the following equation:

S′(x0 ⊕ Δx0, x1 ⊕ Δx1, x2 ⊕ Δx2) ⊕ S′(x0, x1, x2) = (Δz0,Δz1,Δz2).

For a 3-bit APN S-box, its algebraic degree must be 2. Hence, the S-box can
be defined in the following way:

z0 = ϕ0(x0, x1, x2) ⊕ κ0x0x1 ⊕ κ1x0x2 ⊕ κ2x1x2 ⊕ ε0,

z1 = ϕ1(x0, x1, x2) ⊕ κ3x0x1 ⊕ κ4x0x2 ⊕ κ5x1x2 ⊕ ε1,

z2 = ϕ2(x0, x1, x2) ⊕ κ6x0x1 ⊕ κ7x0x2 ⊕ κ8x1x2 ⊕ ε2,
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where ϕi(x0, x1, x2) (0 ≤ i ≤ 2) are linear boolean functions and κj ∈ F2

(0 ≤ j ≤ 8), εi ∈ F2 (0 ≤ i ≤ 2). For a specific 3-bit APN S-box, all ϕi(x0, x1, x2),
κj and εi will be fixed.

First, consider the case when (Δx0,Δx1,Δx2) = (0, 0, 1). It can be found that
there are four assignments to (x0, x1) that will influence the output difference, as
shown below, where Δϕi (0 ≤ i ≤ 2) represents the xor difference of the outputs
of the linear function ϕi(x0, x1, x2).

(x0, x1) → (Δz0,Δz1,Δz2)
(0, 0) → (Δϕ0,Δϕ1,Δϕ2),
(0, 1) → (Δϕ0 ⊕ κ2,Δϕ1 ⊕ κ5,Δϕ2 ⊕ κ8),
(1, 0) → (Δϕ0 ⊕ κ1,Δϕ1 ⊕ κ4,Δϕ2 ⊕ κ7),
(1, 1) → (Δϕ0 ⊕ κ1 ⊕ κ2,Δϕ1 ⊕ κ4 ⊕ κ5,Δϕ2 ⊕ κ7 ⊕ κ8).

As the S-box is APN, the above four possible values of the output difference
(Δz0,Δz1,Δz2) are the actual 4 distinct output differences for the input differ-
ence (Δx0,Δx1,Δx2) = (0, 0, 1). As the set

{(0, 0, 0), (κ2, κ5, κ8), (κ1, κ4, κ7), (κ1 ⊕ κ2, κ4 ⊕ κ5, κ7 ⊕ κ8)}
forms a linear subspace of dimension 2 over F3

2, the 4 possible output differences
for the input difference (0, 0, 1) form an affine subspace of dimension 2. For each
of the 4 valid difference transitions, there will be 2 linear conditions on the input
bits and hence the S-box is always freely linearized, i.e. each output bit can be
written as a linear expression in the input bits. Due to the symmetry of the
expressions, the same holds for the input differences (1, 0, 0) and (0, 1, 0).

When (Δx0,Δx1,Δx2) = (0, 1, 1), we can write the accurate 4 distinct out-
put differences in a similar way, as listed below:

(x0, x1 ⊕ x2) → (Δz0, Δz1, Δz2)

(0, 0) → (Δϕ0 ⊕ κ2, Δϕ1 ⊕ κ5, Δϕ2 ⊕ κ8),

(0, 1) → (Δϕ0, Δϕ1, Δϕ2),

(1, 0) → (Δϕ0 ⊕ κ0 ⊕ κ1 ⊕ κ2, Δϕ1 ⊕ κ3 ⊕ κ4 ⊕ κ5, Δϕ2 ⊕ κ6 ⊕ κ7 ⊕ κ8),

(1, 1) → (Δϕ0 ⊕ κ0 ⊕ κ1, Δϕ1 ⊕ κ3 ⊕ κ4, Δϕ2 ⊕ κ6 ⊕ κ7).

Therefore, for each valid difference transition, there are 2 linear conditions on
the input bits and the S-box is freely linearized. In addition, it can be found
that the set

{(0, 0, 0), (κ2, κ5, κ8),
(κ0 ⊕ κ1, κ3 ⊕ κ4, κ6 ⊕ κ7), (κ0 ⊕ κ1 ⊕ κ2, κ3 ⊕ κ4 ⊕ κ5, κ6 ⊕ κ7 ⊕ κ8)}

forms a linear subspace of dimension 2 over F
3
2, thus resulting in the fact that

the 4 output differences form an affine subspace of dimension 2. Due to the
symmetry, the same conclusion also holds for the input differences (1, 1, 0) and
(1, 0, 1).
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When (Δx0,Δx1,Δx2) = (1, 1, 1), the 4 distinct output differences can be
written as follows:

(x0 ⊕ x1, x1 ⊕ x2) → (Δz0,Δz1,Δz2)
(0, 0) → (ϕ0 ⊕ κ0 ⊕ κ1 ⊕ κ2, ϕ1 ⊕ κ3 ⊕ κ4 ⊕ κ5, ϕ2 ⊕ κ6 ⊕ κ7 ⊕ κ8),
(0, 1) → (ϕ0 ⊕ κ0, ϕ1 ⊕ κ3, ϕ2 ⊕ κ6),
(1, 0) → (ϕ0 ⊕ κ2, ϕ1 ⊕ κ5, ϕ2 ⊕ κ8),
(1, 1) → (ϕ0 ⊕ κ1, ϕ1 ⊕ κ4, ϕ2 ⊕ κ7).

Therefore, for each valid difference transition, there are 2 linear conditions on
the input bits and the S-box is freely linearized. Moreover, since the set

{(0, 0, 0), (κ1 ⊕ κ2, κ4 ⊕ κ5, κ7 ⊕ κ8),
(κ0 ⊕ κ1, κ3 ⊕ κ4, κ6 ⊕ κ7), (κ0 ⊕ κ2, κ3 ⊕ κ5, κ6 ⊕ κ8)}

forms a linear subspace of dimension 2 over F3
2, the 4 distinct output differences

must also form an affine subspace of dimension 2.
As the inverse of an APN S-box is also APN, Observation 1 and Observation

2 hold for all 3-bit APN S-boxes, thus completing the proof.

5 Reducing the Memory Complexity

As mentioned in the previous section, it seems to be inevitable to use a suffi-
ciently large amount of memory to store some reachable differences to achieve
efficient checking for the reachable differences computed backwards. It is com-
monly believed that attacks requiring too much memory indeed cannot compete
with a pure exhaustive key search. Therefore, our first aim is to significantly
reduce the memory complexity in both the original and extended frameworks.

The main underlying strategy in Bar-On et al.’s algorithm [8] is to introduce
intermediate variables to represent the output differences of S-boxes. Then, each
intermediate state difference can be written as linear expressions in terms of
these variables. It is obvious that such a strategy can be used to efficiently
check whether the reachable differences computed backwards can be matched.
Specifically, for each reachable difference computed in the backward direction,
we can construct an equation system whose solutions can correspond to the
difference transitions in the forward direction.

As illustrated in Fig. 3, after we determine the differential trail in the first r0
rounds, Δr0 is known and there should be at least one active S-box when taking
two inputs with Δr0 as difference to the (r0 + 1)-th round, otherwise we could
extend the deterministic differential trail for one more round.

As in [8], we can introduce at most 3m variables (d0, · · ·, d3m−1) to denote
the output difference of the m S-boxes for the input difference Δr0 . However,
by exploiting Observation 2, it is sufficient to introduce at most 2m variables.
Specifically, for an inactive S-box, the output difference is (0, 0, 0), i.e. three
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Fig. 3. Constructing the affine subspace of reachable differences

linear relations can be derived for these variables. When there is an active S-
box, the valid output differences form an affine space of dimension 2 according to
Observation 2, i.e. 1 linear relation can be obtained. In other words, we only need
to introduce at most 3m − m = 2m variables to denote the output differences
for Δr0 . For the next l − 1 rounds, since the input difference of the S-box is
uncertain due to the diffusion of a random linear layer, we directly introduce
3m(l−1) variables (d3m, · · ·, d3ml−1) to represent the output differences for each
S-box. In this way, Δr0+l is obviously linear in the introduced 3m(l − 1)+2m =
3ml − m = m(3l − 1) variables. In other words, Δr0+l can be written as linear
expressions in terms of the introduced m(3l − 1) variables.

Then, for the difference enumeration in the backward direction, after we
obtain the output difference of the S-box for Δr0+l, we start to construct the
equation system to connect the output difference. If we directly use the idea in [8],
at least n−3m linear equations can be constructed as there are m S-boxes in the
nonlinear layer. However, according to Observation 2, once the output difference
of the m S-boxes becomes known, it will leak at least m linear relations for the
input difference. Specifically, when the S-box is inactive, the input difference is
0, i.e. three linear relations. When the S-box is active, according to Observation
2, one linear relation inside the input difference can be derived. In other words,
we could collect at least m+(n− 3m) = n− 2m linear equations in terms of the
introduced m(3l − 1) variables. When

m(3l − 1) ≤ n − 2m → n ≥ m(3l + 1), (1)

we can expect at most one solution of the equation system.
Once a solution is found, all output differences of the S-box in the middle

l rounds become known and we can easily check whether the difference transi-
tions are valid by computing forwards. If the transitions are valid, a connection
between the difference transitions in both directions are constructed. Otherwise,
we need to consider another enumerated output difference of the S-box for Δr0+l

in the backward direction. We have to stress that when enumerating the differ-
ences backwards for r2 rounds, there are indeed l + 1 + r2 rounds in the middle,
i.e. r1 = l + 1 if following the extended framework as shown in Fig. 2.
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However, in some cases where m is large, there is no need to make such a
strong constraint as in Eq. 1. Even with n < m(3l+1), at the cost of enumerating
all the solutions of the constructed linear equation system, more rounds can
be covered. In this way, the time complexity to enumerate differences becomes
21.86mr2+m(3l+1)−n. Thus, the constraint becomes

1.86mr2 + m(3l + 1) − n < k. (2)

As l = r1 − 1, it can be derived that

m(1.86r2 + 3r1 − 2) < n + k (3)

In addition, the following constraint on r2 should hold as well.

1.86mr2 < k (4)

Therefore, when r1+r2 is to be maximized, the above two inequalities should be
taken into account. In this way, the time complexity of difference enumeration
becomes

max(21.86mr2 , 2m(1.86r2+3r1−2)−n). (5)

Comparison. Due to Observation 2, we can introduce fewer variables and con-
struct more equations to efficiently compute the compact differential trails if
comparing our algorithm with the general algorithm in [8]. The advantage of
such an optimized algorithm may be not evident when m is much smaller than
n. However, as the nonlinear layer is closer to a full nonlinear layer, our algo-
rithm will become more and more effective and may allow us to break one more
round, which is essential to break the 4-round LowMC with a full S-box layer
discussed in Sect. 8.

6 Efficient Algebraic Techniques for Key Recovery

In this section, we describe how to retrieve the full key from a compact differential
trail with an algebraic method. Following the extended framework, we assume
that there is no active S-box in the last r3 rounds. As illustrated in Fig. 4, we
could introduce 3mr3 variables to represent all the input bits of the S-boxes in the
last r3 rounds. Although Ar is the known ciphertext, the round key used in AK
is unknown in the r-th round. Therefore, the input of the S-box is unknown in the
r-th round and is quadratic in terms of the unknown secret key. By introducing
variables (v0, · · ·, v3m−1) to represent the expressions of the inputs of the S-box
when reversing the S-box, we could write Ar−1 as linear expressions in terms of
these variables3. Similarly, it can be derived that Ar−r3 can be written as linear
expressions in terms of all the introduced 3mr3 variables (v0, · · ·, v3mr3−1).
3 If we use the equivalent representation of LowMC, such a statement is correct. If we

do not use it, Ar−1 can be written as linear expressions in terms of (v0, · · ·, v3m−1)
and the key bits, which will not affect our attack as our final goal is to construct a
linear equation system in terms of the 3mr3 variables and the key bits. For simplicity,
we consider the equivalent representation.
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Fig. 4. Linearizing the last r3 rounds

6.1 Exploiting the Leaked Linear Relations

Since all the S-boxes in the last r3 rounds are inactive, we have to introduce
3mr3 variables to achieve linearization. However, we have not yet obtained any
linear equations in terms of these variables. Therefore, we will focus on how to
construct a sufficiently large number of linear equations such that there will be
a unique solution of these introduced variables.

It should be noticed that the difference enumeration starts from Δr−r3 in
the backward direction. For a valid r2-round differential propagation (Δr−r3 →
Δr−r3−1 → ··· → Δr−r3−r2) enumerated in the backward direction, there should
be one valid r1-round differential propagation (Δr0 → Δr0+1 → · · · → Δr0+r1)
enumerated in the forward direction such that Δr0+r1 = Δr−r3−r2 . Once such
a sequence is identified, i.e. (Δr0 → · · · → Δr−r3) is fully known, we start
extracting linear equations from the difference transitions inside the S-boxes in
the middle r1 + r2 rounds.

Specifically, for each active S-box, there will be two linear equations inside
the 3-bit output according to Observation 1. In addition, the 3-bit S-box is freely
linearized once it is active according to Observation 1, i.e. the 3-bit input can
be written as linear expressions in terms of the 3-bit output. Note that Ar−r3 is
linear in (v0, · · ·, v3mr3−1).

As depicted in Fig. 5, denote the equivalent round key bits used in the (r−r3)-
th round by (e0, · · ·, e3m−1). For simplicity, assume that all the S-boxes are
active when going back b rounds starting from Ar−r3 . The case when there are
inactive S-boxes will be discussed later. Under such an assumption, we could
derive 2m linear equations in terms of (v0, · · ·, v3mr3−1, e0, · · ·, e3m−1) based
on Observation 1. In addition, since the input becomes linear in the output
for each active S-box, Ar−r3−1 becomes linear in (v0, · · ·, v3mr3−1, e0, · · ·, e3m−1).
Similarly, denote the equivalent round key bits used in the (r−r3−i)-th round by
(e3mi, ···, e3mi+3m−1) (0 ≤ i ≤ b−1). Then, one could derive 2m linear equations
in terms of (v0, · · ·, v3mr3−1, e0, · · ·, e3mi+3m−1) in the (r − r3 − i)-th round and
Ar−r3−i−1 will be linear in (v0, · · ·, v3mr3−1, e0, · · ·, e3mi+3m−1). Repeating such a
procedure for b rounds backwards, we could collect in total 2mb linear equations
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Fig. 5. Extract linear equations from the inactive S-boxes

in terms of 3mr3 + 3mb variables (v0, · · ·, v3mr3−1, e0, · · ·, e3mb−1). Since each
equivalent round key bit is linear in the k-bit master key according to the linear
key schedule function, we indeed succeed in constructing 2mb linear equations
in terms of (v0, · · ·, v3mr3−1) and the k-bit master key. To ensure that there is a
unique solution to the equation system, the following constraint should hold:

2mb ≥ k + 3mr3. (6)

As 2m linear equations will be leaked when going back 1 round, there may exist
redundant linear equations, i.e. 2mb > k + 3mr3. Indeed, only

h = 
 (k + 3mr3) − 2m(b − 1)
2

� (7)

active S-boxes are needed in the (r − r3 − b)-th round. In this way, we only need
in total

H = h + m(b − 1) (8)

S-boxes to ensure that there exists a unique solution of the constructed equation
system.

6.2 Linearizing the Inactive S-Boxes

After discussing the case when all the S-boxes are active when going back b
rounds starting from Ar−r3 , consider the case when there are q inactive S-boxes
among the required H S-boxes in these b rounds (0 ≤ q ≤ H). Specifically, we
aim to compute the time complexity to recover the full key for such a case.

While 2 linear equations can be freely derived from the output of an active
S-box and the input becomes freely linear in the output for an active S-box as
explained previously, linearizing the inactive S-box will require additional cost
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when going backwards. For an inactive S-box, it can be linearized by guessing
two bits of its input or output according to Observation 3. In other words, even
for an inactive S-box, we could guess 2 linear equations for its output and then
the input still becomes linear in the output. Therefore, the number of equations
remain the same as in the case when all the S-boxes are active. The only cost
is that we need to iterate 22q times of guessing. If Eq. 6 holds, for each time of
guessing, one could only expect 1 unique solution of the k-bit master key.

Assuming there are N valid compact differential trails left in the extended
framework, we can expect there are N × ∑H

q=0(
7
8 )H−q × ( 18 )q × (

H
q

)
differential

trails where there are q inactive S-boxes in the key-recovery rounds. Recovering
the full key from each of these trails will require time complexity 22q. After the
full key is recovered, we need to further verify it via the plaintext-ciphertext
pair. Hence, the expected time to recover the full key from one random compact
differential trail can be evaluated as follows:

T0 =
H∑

q=0

(
7
8
)H−q × (

1
8
)q ×

(
H

q

)

× 22q =
H∑

q=0

(
7
8
)H−q × (

1
2
)q ×

(
H

q

)

= 1.375H .

Therefore, the total time complexity to recover the correct master key is

T1 = N × 1.375H = N × 20.46H . (9)

Similar to the above method, we could also give a formula to compute the
expected time to recover the correct key if following the simple method as dis-
cussed in [29]. It should be noted that there is no extra strategy used in the
key-recovery phase in [29] if with only 2 plaintexts. Specifically, when the S-box
is active, the attacker needs to try the two possible values. When the S-box is
inactive, the attacker needs to try all the 8 possible values. However, since the
attacker could always derive 3-bit information of the master key from one S-box
in this way, he only needs to go back b′ = 
k−mr3

3m � rounds and the number of
required S-boxes is H ′ = 
k

3 � − mr3 in these b′ rounds. Thus, the expected time
T2 can be formalized as follows:

T2 = N × 8mr3 ×
H′
∑

q=0

(
7
8
)H

′−q × (
1
8
)q ×

(
H ′

q

)

× 8q × 2H
′−q

= N × 23mr3 ×
H′
∑

q=0

(
7
8

× 2)H
′−q × (

1
8

× 8)q ×
(

H ′

q

)

= N × 23mr3 × (
7
4

+ 1)H
′
.

To explain the significant improvement achieved by our linearization tech-
niques to recover the master key, we make a comparison between T1 and T2 as
shown below:

T2

T1
=

23mr3( 74 + 1)H
′

1.375H
.
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Since H = 
k+3mr3
2 � and H ′ = 
k

3 � − mr3, we have

T2

T1
=

23mr3( 74 + 1)H
′

1.375H
≈ 23mr3+1.46( k

3 −mr3)

20.46(0.5k+1.5mr3)
≈ 20.256k+0.85mr3 .

Obviously, our new key-recovery technique is much faster if compared with the
method in [29].

6.3 Further Improvement

Indeed, one could further reduce the cost to retrieve the full key from a compact
differential trail. Specifically, we first lower bound b as in Eq. 6. Then, when
going back r3 + b − 1 rounds from the ciphertext, there will be 2m(b − 1) leaked
equations and the last r3 + b− 1 rounds are fully linearized. Since only k +3mr3
equations are needed and each active S-box will leak 2 equations, we only need
to use

h = 
 (k + 3mr3) − 2m(b − 1)
2

�

active S-boxes in the (r − r3 − b)-th round.
Therefore, in the (r − r3 − b)-th round, when there are more than h active S-

boxes, there is no need to guess extra equations but we still need to construct the
equation system. However, when there are i (i < h) active S-boxes, it is necessary
to guess 2h − 2i extra equations. Therefore, the expected time complexity can
be refined as:

T3 = N × T4 ×
h∑

i=0

(
m

i

)

× (
7
8
)i × (

1
8
)m−i × 22h−2i

+ N × T4 ×
m∑

i=h+1

(
m

i

)

× (
7
8
)i × (

1
8
)m−i

≈ N × T4 × 22h ×
h∑

i=0

(
m

i

)

× (
7
32

)i × (
1
8
)m−i

+ N × T4 × (1 −
h∑

i=0

(
m

i

)

× (
7
8
)i × (

1
8
)m−i)

< N × T4 × (1 + 22h ×
h∑

i=0

(
m

i

)

× (
7
32

)i × (
1
8
)m−i)

where

T4 =
m(b−1)∑

q=0

(
7
8
)m(b−1)−q × (

1
8
)q ×

(
m(b − 1)

q

)

× 22q = 20.46m(b−1).
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There is no simple approximation for T3 and we therefore provide a loose upper
bound which can be easily calculated, as specified below:

T3 < N × T4 × (1 + 22h ×
m∑

i=0

(m
i

)
× (

7

32
)i × (

1

8
)m−i) = N × T4 × (1 + 22h−1.54m).

Hence, in general, we can use the following formula Eq. 10 to calculate the
time complexity to retrieve the full key from N compact differential trails.

T3 ≈ N × 20.46m(b−1) × (1 + 22h−1.54m). (10)

It is not surprising that one could go back more than b+ r3 rounds to obtain
more leaked linear equations if b ≤ r1 + r2. However, the cost of linearization
cannot be neglected, i.e. it is necessary to introduce more variables to represent
the 3 input bits of an inactive S-box. In other words, although more linear
equations can be derived, more variables are involved into the equation system.
Note that we need to introduce 3 extra variables to linearize an inactive S-box
and only 2 linear equations can be derived from an active S-box. For such a case,
it is difficult to give a simple formula describing the expected time complexity to
retrieve the full key. Thus, the formula Eq. 10 can be viewed as an upper bound.

7 Applications

The above two algebraic techniques can be utilized to further understand the
security of LowMC as well as LowMC-M. LowMC is the underlying block cipher
used in Picnic, which is an alternative third-round candidate in NIST’s post-
quantum cryptography competition. For LowMC-M, it is a family of block
ciphers based on LowMC which allows to insert a backdoor.

7.1 Applications to LowMC with a Partial S-Box Layer

In this section, we describe how to apply our techniques to instantiations with a
partial S-box layer. The results are summarized in Table 1. All these attacks only
require 2 chosen plaintexts and negligible memory. For better understanding,
we take the attack on the parameter (n, k,m,D,R) = (128, 128, 10, 1, 20) for
instance.

When (n, k,m,D) = (128, 128, 10, 1), as explained in the extended frame-
work, r3 = 0 as there are only two allowed plaintexts for each instantiation
and r0 = � 128

30 	 = 4. According to Eq. 6, b = 7. Therefore, the time complex-
ity to retrieve the master key becomes T3 ≈ 21.86m(r1+r2)−128 × 20.46m(b−1) =
218.6(r1+r2)−81.8 < 2128 based on Eq. 10. The time complexity to enumerate dif-
ferences is max(1.86mr2,m(1.86r2 +3r1 −2)−n) = max(18.6r2, 18.6r2 +30r1 −
148) < 2128 based on Eq. 5 while 18.6r2 < 128 (Eq. 4) and 18.6r2 + 30r1 < 276
(Eq. 3) should hold. Therefore, we have r1+r2 ≤ 11, r2 ≤ 6, 18.6r2+30r1 ≤ 276.
To maximize r1 + r2 and minimize the total time complexity, we can choose
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r1 = 5 and r2 = 6. In this way, the time complexity to recover the master key is
2122.8 while the time complexity to enumerate differences is max(2111.6, 2111.8) =
2111.8. Therefore, we could break 15 (out of 20) rounds of LowMC taking the
parameter (n, k,m,D) = (128, 128, 10, 1) with time complexity 2122.8 and only
2 chosen plaintexts.

Remark. It is not surprising to further extend r1 by using a huge amount of
memory when n = k for some parameters. However, such attacks are indeed less
effective compared with a pure exhaustive search. Therefore, we omit the simple
extension of how to attack more rounds using huge memory.

On the other hand, when n >> k, we could significantly improve r1 as the
constraint becomes 3r1 < n when using our efficient technique to reduce the
memory complexity, while the constraint is λr1

1 < min(2nd, 2k) in the extended
framework. For example, when attacking (n, k,m,D) = (1024, 128, 1, 1), r1 can-
not reach 342 without our technique to reduce the memory complexity since
21.86r1 < 2128 has to be satisfied if simply enumerating the reachable differences.

Table 1. The results for LowMC with a partial S-box layer

n k m D R r0 r1 r2 r3 r Data Time Memory Success Pro.

128 128 1 1 182 42 43 67 0 152 2 2124.62 negligible 1

128 128 10 1 20 4 5 6 0 15 2 2122.8 negligible 1

192 192 1 1 273 64 64 101 0 229 2 2187.86 negligible 1

192 192 10 1 30 6 7 10 0 23 2 2186 negligible 1

256 256 1 1 363 85 86 137 0 306 2 2254.82 negligible 1

256 256 10 1 38 8 9 13 0 30 2 2241.8 negligible 1

1024 128 1 1 776 341 342 66 0 749 2 2122.76 negligible 1

1024 256 1 1 819 341 342 136 0 819 2 2253 negligible 1

7.2 Applications to LowMC-M

The only difference between LowMC and LowMC-M is that there is an additional
operation after the key addition, i.e. the sub-tweak addition. Since the sub-
tweaks are generated with an XOF function, the attacker loses the capability to
directly control the difference of the sub-tweaks. However, the additional degree
of freedom provided by the tweak can still be utilized to further extend r0.

Maximizing r0 based on [9]. A very recent work [9] shows how to compute the
maximal value of r0 with a birthday search method. In a word, one could con-
struct a probability-1 differential trail for the first r0 rounds with time complexity
2

3mr0−n
2 and negligible memory in an offline phase. Therefore, r0 should satisfy

the following constraint:

3mr0 − n

2
< k. (11)
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A detailed description can be referred to Appendix B. We will use this method
to maximize r0 in our attacks.

Since the allowed data complexity is 264 for all instances of LowMC-M, we
can also construct a differential trail in the last r3 rounds where no active S-
boxes exist with 23mr3+1 attempts, i.e. 3mr3 ≤ 63. Similar to the cryptanalysis
of LowMC, we could compute (r0, r1, r2, r3) and the corresponding total time
complexity, as summarized in Table 2. It should be mentioned that LowMC-M
has moved to LowMC-M v2 by taking our attacks into account.

Table 2. The results for LowMC-M

n k m D R r0 r1 r2 r3 r Data Time Memory Success Pro.

128 128 1 64 208 122 43 64 21 250 264 2120 negligible 1

128 128 2 64 104 61 22 32 10 125 261 2120 negligible 1

128 128 3 64 70 40 15 21 7 83 264 2118.18 negligible 1

128 128 10 64 23 12 5 6 2 25 261 2118 negligible 1

256 256 1 64 384 253 86 136 21 496 264 2252.96 negligible 1

256 256 3 64 129 83 29 45 7 164 264 2250.1 negligible 1

256 256 20 64 21 12 5 6 1 24 261 2232 negligible 1

Comparison. Compared with the differential-linear attacks [9] on LowMC-M,
our attacks are always better. As we utilized the idea in [9] to find a weak tweak
pair, with the same time complexity to find a weak tweak pair, r0 is always
the same in their attacks and our attacks. Then, r1 is also almost the same in
their attacks and our attacks, though sometimes we will have a slightly larger r1
according to Eq. 5. The most evident advantage of our attacks exists in r2 and r3.
With the same data, there are extra r3 rounds in our attacks while r3 is always
zero in differential-linear attacks [9]. For r2, it is bounded by 1.86mr2 < n in
our attacks while it is bounded by 3mr2 < n in [9] as 3m key bits are all guessed
to reverse one round. Consequently, with the same data and the same time to
find a weak tweak pair, our attacks are always better than the differential-linear
attacks in [9], i.e. a larger number of rounds can be attacked.

8 A Refined Attack Framework for the Full S-Box Layer

The above two techniques are quite general and therefore they can be applied
to arbitrary instances of LowMC. However, when it comes to a full S-Box layer,
we need to make extra efforts to improve the extended attack framework devel-
oped by the designers of LowMC. Specifically, it is impossible to construct a
probability-1 differential trail anymore in the first few rounds. On the other
hand, the cost of difference enumeration becomes rather high as a full S-box
layer is applied.
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To overcome the obstacle that there is no probability-1 differential trail, we
turn to consider how to choose a desirable input difference such that it will acti-
vate a small number of S-boxes as possible in the first two rounds. However,
since the linear layer is randomly generated, it is difficult to provide an accurate
answer. Thus, similar to the method to calculate the time complexity to retrieve
the full key, the general case is taken into account and we calculate the expec-
tation of the number of inactive S-boxes in the first two rounds and verify it via
experiments.

To reduce the cost of the difference enumeration, we will demonstrate that
it is possible to reduce the problem of enumerating differences to the problem of
enumerating the solutions of a linear equation system by exploiting our obser-
vations on the S-box.

8.1 Maximizing the Number of Inactive S-Boxes

To maximize the number of inactive S-boxes in the first two rounds, we con-
sider the case when there is only one active S-box in the first round, which can
obviously reduce the total number of reachable differences after two rounds.

First, consider a simple related problem. Suppose there are two boolean vec-
tors μ = (μ0, μ1, μ2) ∈ F

3
2 and γ = (γ0, γ1, γ2) ∈ F

3
2. For a random binary matrix

M of size 3 × 3 satisfying

γ = M × μ,

it can be calculated that

Pr[(γ0, γ1, γ2) = (0, 0, 0)|(μ0, μ1, μ2) �= (0, 0, 0)] = 2−3.

Note that Δ1 = L0 × ΔS
0 , where Δ1 and ΔS

0 are two Boolean vectors of size
n and L0 is a n × n invertible binary matrix. When there is only one active
S-box in the first round, we can know that there is only one non-zero triple
(ΔS

0 [3i],ΔS
0 [3i + 1],ΔS

0 [3i + 2]) (0 ≤ i < n
3 ).

Consider a randomly generated L0 and a fixed value of ΔS
0 with only one

non-zero triple (ΔS
0 [3i],ΔS

0 [3i + 1],ΔS
0 [3i + 2]). Denote the event by α that

(ΔS
0 [3i],ΔS

0 [3i + 1],ΔS
0 [3i + 2]) �= (0, 0, 0). Denote by IA the number of inactive

S-boxes in the second round. In this way, we could calculate the conditional prob-
ability that there are q inactive S-boxes under α happens, as specified below:

Pr[IA = q|α] =
(n

3

q

)

× 2−3q × (
7
8
)

n
3 −q,

Since that there are 7 assignments for a non-zero triple (ΔS
0 [3i],ΔS

0 [3i +
1],ΔS

0 [3i + 2]) and there are n
3 such triples, there are in total 7 × n

3 assign-
ments for ΔS

0 satisfying that there is only one active S-box in the first round.
Hence, we can expect to find

V (n, q) =
n

3
× 7 × Pr[IA = q|α]. (12)
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required assignments for ΔS
0 which can ensure q inactive S-boxes in the second

round. In other words, when V (n, q) > 1, it is expected to find more than 1
assignments for ΔS

0 such that there are q inactive S-boxes in the second round.

8.2 Enumerating Differences via Solving Equations

Assuming Δi and ΔS
i+1 are fixed and known, our aim is to enumerate all the

solutions for ΔS
i such that they can reach ΔS

i+1.
First, consider the case where all the S-boxes in the (i + 1)-th and (i + 2)-th

rounds are active. In this case, there are 4
n
3 possible reachable differences for

Δi+1 and each reachable difference of Δi+1 can reach ΔS
i+1 with probability 2−n

3

as each output difference can correspond to 4 different input differences through
the 3-bit S-box of LowMC. Thus, it is expected to find the valid 2

n
3 solutions of

Δi+1 in 4
n
3 time using the simple difference enumeration.

However, similar to our technique to reduce the memory complexity, based
on Observation 2, we could introduce 2 × n

3 variables to represent the possible
values of ΔS

i . In this way, Δi+1 will be linear in these variables. Furthermore,
based on Observation 2, there will be n

3 linear constraints on Δi+1. Therefore,
an equation system of size n

3 in terms of 2 × n
3 variables is constructed and each

solution of the equation system will correspond to a valid connection between
Δi and ΔS

i+1. Thus, we could find the valid 2
n
3 solutions in only 2

n
3 time.

After discussing the case where all the S-boxes are active, we consider the
general case. Specifically, assume there are w random pairs (Δi,Δ

S
i+1). The

expected time complexity to enumerate all the valid difference transitions Δi →
ΔS

i+1 for these w random pairs using our techniques can be formalized as follows.

T5 = (

�0.5m�∑

t=0

(m
t

)
× (

1

8
)t × (

7

8
)m−t ×

�0.5m�−t∑

j=0

(m
j

)
× (

1

8
)j × (

7

8
)m−j × 2m−2j−2t)w

+ (1 −
�0.5m�∑

t=0

(m
t

)
× (

1

8
)t × (

7

8
)m−t ×

�0.5m�−t∑

j=0

(m
j

)
× (

1

8
)j × (

7

8
)m−j)w

≈ (

�0.5m�∑

t=0

(m
t

)
× (

1

8
)t × (

7

8
)m−t ×

�0.5m�−t∑

j=0

(m
j

)
× (

1

8
)j × (

7

8
)m−j × 2m−2j−2t)w + w.

Specifically, when there are t and j inactive S-boxes in the (i + 2)-th round and
(i+1)-th round, respectively, the equation system is of size 3t+(m− t) = m+2t
and in terms of 2(m − j) variables. Thus, for the case 2(m − j) − (m + 2t) =
m − 2j − 2t < 0 → 2j + 2t > m, there is no need to enumerate the solutions and
we only need to construct the equation system with time 1. However, for the
case 2j +2t ≤ m, we need to construct the equation system as well as enumerate
the 2m−2j−2t solutions.

As m > 1, a loose upper bound for T5 can be as follows:

T5 < w + w × 2m × (
29
32

)m × (
29
32

)m ≈ w × 20.716m (13)
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A fixed random ΔS
i+1. We also feel interested in that ΔS

i+1 takes a fixed random
value while Δi takes w random values, which is exactly the case in our attack
on 4-round LowMC with a full S-box layer.

When there are t ≤ �0.5m	 inactive S-boxes in the (i+2)-th round, the time
complexity T5 to enumerate all the valid difference transitions can be refined as
below:

T5 = (
�0.5m�−t∑

j=0

(
m

j

)

× (
1
8
)j × (

7
8
)m−j × 2m−2j−2t)w

+ (1 −
�0.5m�−t∑

j=0

(
m

j

)

× (
1
8
)j × (

7
8
)m−j)w

= (
�0.5m�−t∑

j=0

(
m

j

)

× (
1
8
)j × (

7
8
)m−j × 2m−2j−2t)w + w.

Similarly, a bound for T5 can be as follows:

T5 < w + w × 2m−2t × (
29
32

)m ≈ w + w × 20.858m−2t. (14)

When there are t > �0.5m	 inactive S-boxes in the (i+2)-th round, the time
complexity T5 to enumerate all the valid difference transitions can be refined as
below:

T5 = (
m∑

j=0

(
m

j

)

× (
1
8
)j × (

7
8
)m−j)w = w (15)

Combining Eq. 14 and Eq. 15, we can know that whatever value t takes, the
following bound for T5 holds

T5 < w + w × 20.858m−2t. (16)

8.3 Applications to 4-Round LowMC with a Full S-Box Layer

As can be found in the latest released Picnic3 document, three recommended
parameters (n, k,m,D) ∈ {(129, 129, 43, 1), (192, 192, 64, 1), (255, 255, 85, 1)}
with R = 4 are adopted to achieve the required security. By increasing the
number of rounds by 1, i.e. R = 5, the designers claim that Picnic3 will pro-
vide stronger security. Anyway, 4-round LowMC with a full S-box layer is the
recommended instance and such three parameters are deemed as secure against
the existing attacks [2]. In the following, we explain how to break such 3 param-
eters with our linearization techniques under the difference enumeration attack
framework.
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Fig. 6. The attack framework for 4-round LowMC with a full S-box layer

As depicted in Fig. 6, our attack procedure consists of 4 steps:

Step 1: According to Eq. 12, we find a suitable assignment for ΔS
0 such that the

number of inactive S-boxes in the 2nd round can be maximized and there
is only one active S-box in the first round. Denote the number of inactive
S-boxes in the 2nd round by q.

Step 2: Choose a value for Δ0 such that it can reach ΔS
0 and encrypt two arbitrary

plaintexts whose difference equals Δ0. Collect the corresponding ciphertexts
and compute ΔS

3 .
Step 3: Enumerate 4m−q possible difference transitions from Δ1 to Δ2. For each

possible difference transition, move to Step 4.
Step 4: For each obtained Δ2, we enumerate the possible difference transitions

from Δ2 to ΔS
3 via solving a linear equation system, as detailed above. For

each solution of the equation system, a compact differential trail is obtained
and we retrieve the full key from it using our linearization techniques.

Although the formula to calculate the time complexity to retrieve the full
key has been given, we should refine it for the attack on 4-round LowMC with a
full S-box layer. As can be observed in our attack procedure, once guessing ΔS

0

from its 4 possible values, we already collect two linear equations in terms of the
master key and the plaintexts which can ensure that Δ0 → ΔS

0 is deterministic
based on Observation 1.

On the other hand, due to a sufficiently large number of S-boxes in each
round, for the last round, we can introduce extra variables to represent the
output bits of the inactive S-boxes. In this way, it is required to extract more than
k−2 linear equations when a compact differential trail is confirmed. Specifically,
assuming that there are t inactive S-boxes in the 4th round, the required number
of equations becomes 3t + k − 2. Therefore, we try to extract linear equations
from the active S-boxes in the 3rd round and 2nd round, which requires that all
the S-boxes in the 3rd are linearized. Therefore, the following formula can be



392 F. Liu et al.

used to estimate the expected time complexity to retrieve the full key from all
compatible differential trails:

T6 = 4m−q × (
� 6m−k+2−2q

5 �∑

t=0

(
m

t

)

× (
1
8
)t × (

7
8
)m−t

×
m∑

j=0

(
m

j

)

× (
1
8
)j × (

7
8
)m−j × 22j × 2m−2j−2t

+
m∑

t=� 6m−k+2−2q
5 �+1

(
m

t

)

× (
1
8
)t × (

7
8
)m−t

×
m∑

j=0

(
m

j

)

× (
1
8
)j × (

7
8
)m−j × 22j

× 2(3t+k−2)−(2(m−t)+2m+2(m−q)) × 2m−2j−2t)

Specifically, when there are t and j inactive S-boxes in the 4th and 3rd round,
respectively, the equation system used to retrieve the master key will be of size
2 + 2(m − t) + 2m + 2(m − q) and in terms of 3t + k variables. More specifically,
from the assumed difference transition Δ0 → ΔS

0 , two linear equations in terms
of the master key and the plaintext can be obtained. From the 4th round, as
there are (m − t) active S-boxes, 2(m − t) equations are obtained. For the 3rd
round, we linearize all the j inactive S-boxes by guessing two extra equations
based on Observation 3, i.e. guessing two output bits of each inactive S-box. In
this way, there will always be 2m equations derived from the 3rd round. For the
2nd round, as the 4th round and 3rd round are fully linearized and there are
(m−q) active S-boxes, we can obtain 2(m−q) linear equations in the 2nd round.
Thus, if 3t+k−(2+2(m−t)+2m+2(m−q)) < 0 → 5t < 6m−k+2−2q, the cost
is to establish the equation system. When 5t ≥ 6m − k + 2 − 2q, it is necessary
to enumerate all the 2(3t+k−2)−(2(m−t)+2m+2(m−q)) solutions and check them via
the plaintext-ciphertext pair.

ΔS
3 is a fixed random value. In our attack using only two chosen plaintexts,

ΔS
3 is a random fixed value while ΔS

2 behaves randomly. Similar to computing the
upper bound for the time complexity to enumerate differences for this case, i.e.
Eq. 14 and Eq. 15, we also try to deal with the time complexity T6 to retrieve the
master key for this case. Similarly, we assume that there are t inactive S-boxes
in the 4th round.

When t ≤ � 6m−k+2−2q
5 	, we have

T6 = 4m−q ×
m∑

j=0

(
m

j

)

× (
1
8
)j × (

7
8
)m−j × 22j × 2m−2j−2t = 23m−2q−2t (17)
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When t > � 6m−k+2−2q
5 	, we have

T6 = 4m−q ×
m∑

j=0

(
m

j

)

× (
1
8
)j × (

7
8
)m−j × 22j

× 2−6m+k−2+2q+5t × 2m−2j−2t = 2−3m+3t+k−2

As k = 3m for the construction using a full s-box layer, when t > � 6m−k+2−2q
5 	,

we indeed have

T6 = 23t−2. (18)

Remark. Indeed, when t ≤ � 6m−k+2−2q
5 	, Eq. 17 is an overestimation of the

time complexity to retrieve the key. Specifically, when there are a sufficient
number of active S-boxes in the 3rd round, there is no need to linearize the
nonactive S-boxes in the 3rd round. Formally, assuming that there are j inactive
S-boxes in the 3rd round, when 2 × (m − j + m − t) + 2 ≥ k + 3 × t, i.e.
5t ≤ 4m−k+2−2j < 6m−2q−k+2, the time complexity to retrieve the key is
1 rather than 22j . Therefore, Eq. 17 is an overestimation of the time complexity
in order to achieve a simple approximation of the time complexity.

Attacks on (129, 129, 43, 1, 4). For (n, k,m,D,R) = (129, 129, 43, 1, 4), we have
V (129, 11) > 1 based on Eq. 12, i.e. we can expect to find an assignment to ΔS

0

such that there will be q = 114 inactive S-boxes in the 2nd round. After such a
ΔS

0 is chosen, we randomly choose Δ0 such that Δ0 → ΔS
0 is valid. There are

4 different values of ΔS
0 for such a Δ0 and one of ΔS

0 is expected to inactivate
11 S-boxes in the second round.

The time complexity to retrieve the master key from all valid 4-round com-
pact differential trails is related to the value of (t, q). As t ∼ B(m, 1

8 ) where B
represents the binomial distribution, we can expect t = 5. In this way, we have
5t = 25 < 6m − k + 2 − 2q = 131 − 2q whatever value q (0 ≤ q ≤ m) takes.
In other words, for the expected case q = 11, the time complexity to retrieve
the master key is 23m−2q−2t = 297 based on Eq. 17. By taking the remaining 3
different possible values of ΔS

0 into account, even for the worst case (q = 0), the
total time complexity to retrieve the master key for all 4 possible values of ΔS

0

will not exceed 3 × 23m−2t = 2120.6, i.e. less than exhaustive key search.
For the time complexity to enumerate the difference, for the expected case

q = 11, we have T5 < 22m−2q ×(1+20.858m−2t) = 22.858m−2q−2t+22m−2q = 290.9

based on Eq. 16. For the worst case q = 0, we have T5 < 22.858m−2t = 2112.9.
Therefore, the total time complexity to enumerate the difference will not exceed
3 × 2112.9 ≈ 2114.5. i.e. less than exhaustive key search.

As t increases, T5 will become smaller. However, when 5t ≥ 6m−k+2−2q =
132 − 2q, we need to use another formula to calculate the time complexity to
retrieve the master key, i.e. T6 = 23t−2 as shown in Eq. 18. As 3t < 3m = k must

4 Experiments show that it is better to choose q = 11, though V (129, 12) > 1.
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holds, it means that the time complexity T6 is always smaller than that of the
exhaustive search.

As Pr[t ≥ 4] ≈ 0.62 and Pr[42 ≤ t ≤ 43] ≈ 0, we conclude that with
success probability 0.62, the total time complexity to retrieve the master key
will be max(3 × 23m−2t, 4 × 23×41−2) = 2122.6 and the total time complexity
to enumerate differences will not exceed 3 × 22.858m−2t < 2117.5. Thus, we can
break the parameter (n, k,m,D,R) = (129, 129, 43, 1, 4) with time complexity
less than 2122.6 and success probability 0.62.

As Pr[t ≥ 2] ≈ 0.97 and Pr[36 ≤ t ≤ 43] ≈ 0, if further reducing the success
probability to 0.97 × 0.25 = 0.24, i.e. Δ0 → ΔS

0 is assumed to be deterministic
and we expect q = 11, the time complexity to enumerate the difference will not
exceed 22m−2q + 22.858m−2q−2t ≈ 296.9 and the time complexity to retrieve the
master key be max(23m−2q−2t, 23t−2) < 2104.

A similar detailed description of our attacks on another two parameters can
be referred to Appendix C. All the results are summarized in Eq. 3. We remark
that for the construction with a full S-box layer, if more data is allowed, our tech-
nique may not be competitive with the higher-order differential attack. Indeed,
as the number of allowed data increases, such a construction will have much
more rounds [2].

Table 3. The results for 4-round LowMC with a full S-box layer

n k m D R Data Time Memory Success Pro.

129 129 43 1 4 2 2122.6 negligible 0.62

129 129 43 1 4 2 2104 negligible 0.24

192 192 64 1 4 2 2187.6 negligible 0.99

192 192 64 1 4 2 2180 negligible 0.82

192 192 64 1 4 2 2156 negligible 0.247

255 255 85 1 4 2 2246.6 negligible 0.986

255 255 85 1 4 2 2236.6 negligible 0.848

255 255 85 1 4 2 2208 negligible 0.2465

9 Experiments

To confirm the correctness of our methods, we performed experiments5 on two
toy LowMC instances with parameters (n, k,m,D,R) = (20, 20, 1, 1, 23) and
(n, k,m,D,R) = (21, 21, 7, 1, 4), respectively.

For the first parameter, R = 23 is the largest number of rounds that can be
attacked, i.e. r0 = 6, r1 = 7 and r2 = 10. The expected number of iterations to
enumerate the differences is estimated as 21.86r2 ≈ 397336. The expected number
5 See https://github.com/LFKOKAMI/LowMC Diff Enu.git for the code.

https://github.com/LFKOKAMI/LowMC_Diff_Enu.git
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of valid compact differential trails is 21.86(r1+r2)−n ≈ 3147. Experimental results
indeed match well with the estimated values6. As the guessing times to recover
the key is affected by the number of inactive S-boxes, for each valid compact
differential trail obtained in the experiments, we counted the number of inactive
S-boxes in the last 10 rounds, which will dominate the time to recover the key
as each S-box will give us 2 equations and there are 10 S-boxes in the last 10
rounds. The distribution of the number of inactive S-boxes is somewhat better
than expected, thus resulting that the guessing times to recover the key is better
than the estimated guessing times 3147 × 20.46×10 ≈ 76319. Anyway, the total
time complexity is dominated by the backward difference enumeration.

For the parameter (n, k,m,D,R) = (21, 21, 7, 1, 4), we constrained that the
difference transition in the first round follows our expectation by checking Δs

0

when encrypting two plaintexts, i.e. the number of inactive S-boxes in the second
round will be maximized. Based on the generated matrix L0, there will be 3
inactive S-boxes in the second round. Then, the output difference of the first
round is fixed and we enumerate the output differences of the second round and
compute all possible compact differential trails by solving an equation system. In
several experiments with 10000 tests each, the number of iterations to enumerate
all compact differential trails is smaller than the upper bound computed based
on Eq. 16 with probability higher than 0.99 and they are almost the same in the
remaining tests. Then, the guessing times to recover the key is computed based
on the number of active S-boxes in the last 3 rounds for each valid compact
differential trail by summing the costs of guesses7 or enumerating solutions. It
is found that the obtained value is almost the same with the theoretical value
computed based on Eq. 17 or Eq. 18.

10 Conclusion

Benefiting from the low-degree S-box and the linear key schedule function of
LowMC, we developed an efficient algebraic technique to solve a general prob-
lem of how to retrieve the key if given a single pair of (plaintext, ciphertext)
along with its compact differential trail. Such a technique is quite meaningful as
much more differential trail candidates are allowed to exist under the difference
enumeration attack framework. As a result, we could significantly extend the
number of attacked rounds even with only 2 chosen plaintexts.

On the other hand, based on Bar-On et al.’s algorithm and our observation
on the property of the 3-bit S-box in LowMC, the difference enumeration in the
original difference enumeration attack is optimized and can be achieved with
negligible memory. The new strategy to enumerate differences performs quite
well for the cases when the block size is much larger and when a full S-box layer
is adopted. Especially for the latter case, much more invalid difference transitions
6 In several experiments with 1000 random tests each, the average number of iterations

to enumerate differences is 392500±12500 and the average number of valid compact
differential trails is 3425 ± 125.

7 The S-boxes in the 3rd round will be fully linearized, though it is an overestimation.
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can be filtered out in advance as all valid difference transitions are constrained
by a linear equation system.

Combining all our techniques, we violate the security claim for some instances
of LowMC. Especially, the 3 recommended parameters of LowMC used in Picnic3
are shown to be insecure against our attacks. As the backdoor cipher LowMC-M
is built on LowMC, making progress in the cryptanalysis of LowMC directly
threatens the security claim for 7 instances of LowMC-M even without finding
the backdoor.
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A Description of LowMC-M

LowMC-M [27] is a family of tweakable block ciphers built on LowMC, which is
introduced by Peyrin and Wang at CRYPTO 2020. The feature of LowMC-M is
that backdoors can be inserted in the instantiation. The only difference between
LowMC and LowMC-M is that there is an addition operation AddSubTweak
(AT) after AK and WK. In other words, the round function in the (i + 1)-
round (0 ≤ i ≤ R − 1) can be described as follows:

1. SBoxLayer (SB): Same with LowMC.
2. LinearLayer (L): Same with LowMC.
3. ConstantAddition (AC): Same with LowMC.
4. KeyAddition (AK): Same with LowMC.
5. AddSubTweak (AT): Add an n-bit sub-tweak TWi+1 to the n-bit state.

For the state after WK, it will also be XORed with an n-bit sub-tweak TW0.
To strengthen the security of the backdoors, TWi (0 ≤ i ≤ R) are generated

via an extendable-output-function (XOF) function. SHAKE-128 and SHAKE-
256 are used as the XOF functions in LowMC-M for 128-bit and 256-bit security
respectively. Specifically, the tweak TW is the input of the XOF function and
the corresponding n(R+1)-bit output will be split into (R+1) sub-tweaks TWi,
i.e. (TW0, TW1, · · ·, TWR) ← XOF(TW ).
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B Exploiting the Tweak to Maximize r0 for LowMC-M

In brief, when there is no active S-box in the first r0 rounds, an attacker can
construct a linear equation system of size 3mr0 and in terms of Δ0 as well as the
difference of the sub-tweaks (ΔTW0, · · ·,ΔTWr0−1). When the sub-tweaks are
fixed, the equation system is thus only in terms of Δ0, i.e. n variables. Therefore,
when 3mr0 > n, the equation system is consistent with probability 2n−3mr0 .
Thus, the attacker needs to find an assignment for (ΔTW0, · · ·,ΔTWr0−1) such
that the constructed equation system is consistent.

To achieve this goal, the equation system will be first re-organized by placing
(ΔTW0, · · ·,ΔTWr0−1) on the right-hand of the equation system and placing
Δ0 on the left-hand of the equation system. In other words, the equation system
becomes

A · Δ0 = B · (ΔTW0, · · ·,ΔTWr0−1),

where A is a binary matrix of size 3mr0 × n and B is a binary matrix of size
3mr0 ×nr0. To ensure that there is a solution to Δ0, one can derive an equation
system of size 3mr0−n and only in terms of (ΔTW0, · · ·,ΔTWr0−1). Specifically,
apply a transform A′

3mr0×3mr0 to both A and B such that the first n rows of A′ ·A
is an identity matrix and the remaining (3mr0 −n) rows of A′ ·A are all zero. In
this way, we only need to focus on the last (3mr0 −n) rows of A′ ·B, i.e. a linear
equation system of size 3mr0 − n and in terms of (ΔTW0, · · ·,ΔTWr0−1) can
be derived to ensure that there is always a solution to Δ0. Thus, with a parallel
collision search [32], it is expected to find (ΔTW0, · · ·,ΔTWr0−1) with time
complexity 2

3mr0−n
2 and negligible memory satisfying such an equation system.

Therefore, the constraint for r0 becomes

3mr0 − n

2
< k. (19)

In this way, one could find the desirable pair of tweaks as well as the plaintext
difference Δ0 with time complexity 2

3mr0−n
2 . This is the method given in [9] to

maximize r0.

C Explanation of the Attacks on LowMC with a Full
S-box Layer

Attacks on (192, 192, 64, 1, 4). Similar to the above analysis, we first confirm q.
As V (192, 15) > 1 based on Eq. 12, we can expect to always find an assignment
to ΔS

0 such that there will be q = 158 inactive S-boxes in the 2nd round.
As Pr[t ≥ 3] ≈ 0.99 and Pr[62 ≤ t ≤ 64] ≈ 0, based on Eq. 17 and Eq. 18, the

time complexity to retrieve the master key will be max(3× 23m−2t, 4× 23t−2) <

8 It can be found that V (192, 16) is only slightly greater than 1. Experiments show
that it is better to choose q = 15.



398 F. Liu et al.

2187.6. Based on Eq. 16, the time complexity to enumerate the difference is less
than 3× (22m +22m−2t+0.858m) = 3× (22m +22.858m−2t) < 2178.5. Therefore, we
could break (n, k,m,D,R) = (192, 192, 64, 1, 4) with time complexity less than
2187.6 and success probability 0.99.

As Pr[t ≥ 6] = 0.82 and Pr[61 ≤ t ≤ 64] ≈ 0, the time complexity to
retrieve the master key will be max(3×23m−2t, 4×23t−2) = 2180, while the time
complexity to enumerate the differences will not exceed 3× (22m +22.858m−2t) <
2170.9. Therefore, we could break (n, k,m,D,R) = (192, 192, 64, 1, 4) with time
complexity less than 2180 and success probability 0.82.

To further reduce the success probability, we focus on the expected case
q = 15 and 3 ≤ t ≤ 52. As Pr[t ≥ 3] ≈ 0.99 and Pr[53 ≤ t ≤ 64] ≈ 0,
we have Pr[3 ≤ t ≤ 52] ≈ 0.99. The time complexity to retrieve the master
key becomes max(23m−2t−2q, 23t−2) < 2156. The time complexity to enumerate
the difference is less than 22m−2q + 22.858m−2t−2q < 2146.9. Therefore, we could
break (n, k,m,D,R) = (192, 192, 64, 1, 4) with time complexity less than 2156

and success probability 0.99 × 0.25 = 0.247.

Attacks on (255, 256, 85, 1, 4). For (n, k,m,D,R) = (255, 255, 85, 1, 4), we have
V (255, 19) > 1 based on Eq. 12, i.e. we can expect to always find an assignment
to ΔS

0 such that there will be q = 199 inactive S-boxes in the 2nd round.
As Pr[t ≥ 5] ≈ 0.986 and Pr[79 ≤ t ≤ 85] ≈ 0, based on Eq. 17 and Eq. 18,

the time complexity to retrieve the master key will be max(3 × 23m−2t, 4 ×
23t−2) < 2246.6. Based on Eq. 16, the time complexity to enumerate the differ-
ence is less than 3 × (22m + 22m−2t+0.858m) = 3 × (22m + 22.858m−2t) < 2234.53.
Therefore, we could break (n, k,m,D,R) = (255, 255, 85, 1, 4) with time com-
plexity less than 2246.6 and success probability 0.986.

As Pr[t ≥ 8] = 0.848 and Pr[79 ≤ t ≤ 85] ≈ 0, the time complexity to
retrieve the master key will be max(3×23m−2t, 4×23t−2) < 2240.6, while the time
complexity to enumerate the differences will not exceed 3× (22m +22.858m−2t) <
2228.53. Therefore, we could break (n, k,m,D,R) = (255, 255, 85, 1, 4) with time
complexity less than 2240.6 and success probability 0.848.

To further reduce the success probability, we focus on the expected case
q = 19 and 5 ≤ t ≤ 85. As Pr[t ≥ 5] ≈ 0.986 and Pr[70 ≤ t ≤ 85] ≈ 0,
we have Pr[5 ≤ t ≤ 69] ≈ 0.986. The time complexity to retrieve the master
key becomes max(23m−2t−2q, 23t−2) < 2208. The time complexity to enumerate
the difference is less than 22m−2q + 22.858m−2t−2q < 2194.93. Therefore, we could
break (n, k,m,D,R) = (255, 255, 85, 1, 4) with time complexity less than 2208

and success probability 0.986 × 0.25 = 0.2465.

9 It can be found that V (255, 20) is only slightly greater than 1. Experiments show
that it is better to choose q = 19.
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D A Table

Table 4. The full list for all valid non-zero difference transitions

(Δx0, Δx1, Δx2) (Δz0, Δz1, Δz2) Conditions z0 z1 z2

(0,0,1)

(0,0,1) x0 = 0, x1 = 0 0 0 x2

(0,1,1) x0 = 1, x1 = 0 1 1 ⊕ x2 1 ⊕ x2

(1,0,1) x0 = 0, x1 = 1 x2 1 1 ⊕ x2

(1,1,1) x0 = 1, x1 = 1 1 ⊕ x2 x2 1 ⊕ x2

(0,1,0)

(0,1,0) x0 = 1, x2 = 0 1 x1 + 1 1
(0,1,1) x0 = 0, x2 = 0 0 x1 x1

(1,1,0) x0 = 1, x2 = 1 1 ⊕ x1 x1 0
(1,1,1) x0 = 0, x2 = 1 x1 x1 1 ⊕ x1

(1,0,0)

(1,0,0) x1 = 1, x2 = 1 1 ⊕ x0 1 0
(1,0,1) x1 = 0, x2 = 1 x0 0 1 ⊕ x0

(1,1,0) x1 = 1, x2 = 0 x0 1 ⊕ x0 1
(1,1,1) x1 = 0, x2 = 0 x0 x0 x0

(0,1,1)

(0,0,1) x1 = x2 ⊕ 1, x0 = 1 1 0 x1

(0,1,0) x1 = x2 ⊕ 1, x0 = 0 0 x1 1
(1,0,1) x1 = x2, x0 = 1 1 ⊕ x1 1 1 ⊕ x1

(1,1,0) x1 = x2, x0 = 0 x1 x1 0

(1,1,0)

(0,1,0) x0 = x1 ⊕ 1, x2 = 1 1 x1 0
(0,1,1) x0 = x1, x2 = 1 0 x1 1 ⊕ x1

(1,0,0) x0 = x1 ⊕ 1, x2 = 0 x1 1 1
(1,0,1) x0 = x1, x2 = 0 x1 0 x1

(1,0,1)

(0,0,1) x1 = 1, x0 = x2 0 1 1 ⊕ x2

(1,0,0) x1 = 0, x0 = x2 x2 0 0
(0,1,1) x1 = 1, x0 = x2 ⊕ 1 1 1 ⊕ x2 1 ⊕ x2

(1,1,0) x1 = 0, x0 = x2 ⊕ 1 1 ⊕ x2 1 ⊕ x2 1

(1,1,1)

(0,0,1) x1 = x2, x0 = x2 ⊕ 1 1 1 x0

(0,1,0) x1 = x2, x0 = x2 0 x0 0
(1,0,0) x1 = x2 ⊕ 1, x0 = x2 ⊕ 1 x0 0 1
(1,1,1) x1 = x2 ⊕ 1, x0 = x2 x0 1 ⊕ x0 1 ⊕ x0
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Abstract. This work presents a detailed study of the classical security of
the post-quantum supersingular isogeny key encapsulation (SIKE) pro-
tocol using a realistic budget-based cost model that considers the actual
computing and memory costs that are needed for cryptanalysis. In this
effort, we design especially-tailored hardware accelerators for the time-
critical multiplication and isogeny computations that we use to model an
ASIC-powered instance of the van Oorschot-Wiener (vOW) parallel col-
lision search algorithm. We then extend the analysis to AES and SHA-3
in the context of the NIST post-quantum cryptography standardization
process to carry out a parameter analysis based on our cost model. This
analysis, together with the state-of-the-art quantum security analysis of
SIKE, indicates that the current SIKE parameters offer higher practical
security than currently believed, closing an open issue on the suitabil-
ity of the parameters to match NIST’s security levels. In addition, we
explore the possibility of using significantly smaller primes to enable
more efficient and compact implementations with reduced bandwidth.
Our improved cost model and analysis can be applied to other cryp-
tographic settings and primitives, and can have implications for other
post-quantum candidates in the NIST process.

Keywords: Cost model · Cryptanalysis · SIKE · Efficient hardware
and software implementations

1 Introduction

The post-quantum cryptography (PQC) standardization process organized by
the National Institute of Standards and Technology (NIST) has recently entered
its third round with the selection of 15 key encapsulation mechanisms (KEM)
and digital signature schemes [29]. Among them, the Supersingular Isogeny Key
Encapsulation (SIKE) protocol [3] stands out by featuring the smallest public
key sizes of all of the encryption and KEM candidates and by being the only
isogeny-based submission. In its second round status report, NIST highlights that
it sees SIKE “as a strong candidate for future standardization with continued
improvements” [30].
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SIKE’s Security History. SIKE is the actively-secure version of Jao-De
Feo’s Supersingular Isogeny Diffie-Hellman (SIDH) key exchange proposed in
2011 [16]. SIDH, in contrast to preceding public-key isogeny-based proto-
cols [9,37,40], bases its security on the difficulty of computing an isogeny between
two isogenous supersingular elliptic curves defined over a field of characteristic
p. This problem continues to be considered hard, as no algorithm is known to
reduce its classical and quantum exponential-time complexity. More precisely,
SIDH and SIKE are based on a problem—called the computational supersin-
gular isogeny (CSSI) problem in [10]—that is more special than the general
problem of constructing an isogeny between two supersingular curves. In these
protocols, the degree of the isogeny is smooth and public, and both parties in
the key exchange each publish two images of some fixed points under their cor-
responding secret isogenies. However, so far no passive attack has been able to
advantageously exploit this extra information. Hence, it is still the case that the
CSSI problem can be seen as an instance of the general claw problem, as origi-
nally suggested by the SIDH authors back in 2011. The black-box claw problem,
and thus CSSI, can be solved with asymptotic exponential complexities O(p1/4)
and O(p1/6) on classical and quantum computers, respectively [16].

SIKE’s Parameter Selection. Since 2011, parameters for SIDH, and later for
SIKE, have been selected following the above classical and quantum complexi-
ties [3,7,16]. Accordingly, the initial SIKE submission to the NIST PQC effort
in 2017 [3] included the parameter sets SIKEp503, SIKEp751 and SIKEp964,1

to match or exceed the computational resources required for key searches on
AES128, AES192 and AES256, respectively. These, in turn, correspond to
NIST’s security levels 1, 3 and 5 [31]. Levels 2 and 4 are defined by match-
ing or exceeding the computational resources required for collision searches on
SHA3-256 and SHA3-384, respectively. It was not until 2019 that Adj, Cervantes-
Vázquez, Chi-Domı́nguez, Menezes and Rodŕıguez-Henŕıquez [1] showed that the
van Oorschot-Wiener (vOW) parallel collision finding algorithm [43] is the best
classical algorithm for CSSI in practice. This was based on the observation that
the vOW algorithm allows a time-memory trade-off that enables the reduction of
the significant memory requirements (also of O(p1/4)) of the meet-in-the-middle
attack against the claw problem. Shortly afterwards, after studying the best
known quantum algorithms for CSSI, Jaques and Schank [18] confirmed that
the classical vOW algorithm should be used to establish the post-quantum secu-
rity of SIKE and to choose its parameters; see [8] for a posterior study with recent
cryptanalytic results. Accordingly, the SIKE team updated their parameter selec-
tion for Round 2 of the NIST PQC process, proposing SIKEp434, SIKEp503,
SIKEp610 and SIKEp751 for levels 1, 2, 3 and 5, respectively [3].2

One problem that arises, and pointed out by NIST in [30, pp. 14], is that the
studies mentioned above arbitrarily limit the total amount of memory available
to an attacker. In [1,8], that memory limit is set to 280 memory units, while in [18]

1 The name of the parameter set is assembled by concatenating “SIKEp” and the
bitlength of the underlying prime p.

2 We note that there were no parameter changes for Round 3.
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it is set to 296 bits. Moreover, in some cases the security estimates from these
works either match exactly or even fall below the classical gate requirements of
the NIST levels (see [3, Table 5.1]).3 This is justified in the SIKE specification
document by conjecturing that “the corresponding conversion to gate counts
would see these parameters comfortably exceed NIST’s requirements”. But no
further explanation is provided.

Cost Models for Cryptographic Schemes. There are several approaches in
the literature to assess the security of cryptographic schemes. A standard and
platform-independent method is the random access machine (RAM) model. A
simplistic abstraction of this model estimates security directly from the query
complexity of the corresponding attacks, while refined versions incorporate algo-
rithmic time complexity, instruction or cycle counts corresponding to an imple-
mentation of the atomic operations in the cryptanalysis. For example, in the case
of SIKE, Adj et al. [1] derived security directly from the query complexity of the
vOW algorithm, assuming 2e/2-isogenies as the unit of time. Later refinements
by Jaques and Schank [18] and Costello et al. [8] incorporated estimates of the
algorithmic complexity of the half-degree isogeny computation in the first case,
and the number of x64 instructions to implement the same computation in the
second case. One main drawback of these approaches based on the RAM model
is that they ignore the cost of memory and do not capture the significant cost
of memory access of algorithms with large shared-memory requirements, as is
the case of SIKE. It is also unclear how precisely counting the number of gates,
instructions or cycles relates to actual attacks.

Wiener [46] gave a step forward by considering a 3-dimensional machine
model and analyzing its cost in terms of the processing, storage and wiring
(communication) components that are required by an attack. This approach is
slightly more complex but gives a more precise approximation of the actual secu-
rity of a given cryptosystem. A positive side-effect of this more holistic approach
is that, for example, it permits to identify parallel attacks that are practically
more efficient than the serial versions.4 This, in general, motivates cryptogra-
phers to use the most efficient attacks when evaluating security.

We note, however, that Wiener was only “concerned with asymptotics”. In
his model, the different components (processors, memory, wires) are assigned
the same cost or “weight”. Moreover, an algorithm’s total cost is estimated by
multiplying the total number of components by the number of steps that are
executed per processing unit, giving both sides an equal weight.5

Some works in the literature apply an even more realistic budget-based cost
model that avoids the issues above and is still relatively simple (e.g., see van

3 The issue is particularly problematic for level 5 for which the gap between the
security estimates for SIKEp751 and AES256 is relatively large.

4 A point emphasized by Bernstein [4], for example, is that some studies focus on serial
attacks and their improvement, ignoring the existence of better parallel attacks.

5 Wiener’s approach is unable to identify the best attack if, for example, an algorithm
takes O(n1/2) steps per processor and O(n1/2) components, while another algorithm
takes O(n2/3) steps per processor and O(n1/3) components.
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Oorschot and Wiener [42,43]): Assume a fixed budget for the attacker and then
let her/him allocate the money to get all the necessary hardware in such a way
that the time it takes to break a scheme is minimized. The strength of the scheme
is determined by such a lower bound for the attack time.

This approach has several advantages. First, it motivates searching for the
most cost-effective solution for a problem to help establish a good practical
approximation of the security of a scheme (expressed in terms of the time it
takes to break it). Thus, it promotes the use of the most efficient algorithms
in practice, in place of slower ones (e.g., parallel versus serial attacks). Eco-
nomically, it motivates the use of the most cost-efficient hardware to achieve a
successful break in the least amount of time. More to the point, most effective
cryptanalytic efforts aimed at breaking cryptographically strong schemes are
expected to use application-specific integrated circuits (ASICs), which demand
high non-recurring engineering expenses but are the best alternative in large pro-
duction volumes. Establishing lower bounds for security using ASICs guarantees
that any other approach taken by an attacker (e.g., using an army of hijacked
PCs over the Internet or renting cloud infrastructure or using GPUs) is going to
take either more time or money (or both).

As Wiener [46] argued, one potential disadvantage of considering the cost of
the various hardware components required in an attack is the risk of overestimat-
ing security if new cryptanalytic attacks are discovered that are able to reduce
the memory and communication requirements without increasing the number of
processing steps. However, by not including all the large costs in the analysis
of the best known attacks, one is left chasing “future” attacks that could never
materialize in practice. In our opinion, if our understanding of the underlying
hardness problem of a scheme is mature enough, it is preferable to estimate the
actual cost of the best known attacks and then decide on the security margin
we want to add on top—one can argue that this is actually the role of having
different security levels—, instead of disregarding some costs and assuming this
provides a security margin.

Contributions. In this paper, taking advantage of the relatively stable his-
tory of SIKE’s underlying hardness problem, we analyze its security under a
budget-based cost model. Compared to previous work on cryptanalytic costs,
the robustness of the model is strengthened by carrying out an analysis of his-
torical price data of semiconductors and memory, and by making simple yet
informative projections to the future.

To determine actual hardware costs for the model, we design especially-
tailored, ASIC-friendly hardware accelerators for the multiplication in Fp2 and
the large-degree isogeny computation, which are the most critical operations in
the cryptanalysis of SIKE. The architectures, which are of independent interest
for constructive purposes, are optimized for area-time (AT) product, matching
the requirements in a real cryptanalytic setup. Using ASIC synthesis results, we
estimate the cost of running the vOW algorithm on SIKE and produce security
estimates for the SIKE Round 3 parameters and for a set of new parameters
that we introduce.
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To verify the soundness of our design, we implemented a proof-of-concept
hardware/software co-design of the vOW algorithm on FPGA, leveraging the
software developed by Costello, Longa, Naehrig, Renes and Virdia [8]. We hope
that this implementation serves as basis for real-world, large-scale cryptanalytic
efforts intended to assess the security of isogeny-based cryptosystems.

The cost model is also applied to AES [33] and SHA-3 [34], yielding more
realistic security estimates for these primitives that are relevant for the ongoing
NIST PQC process. A comparison with our SIKE estimates—complemented by
the state-of-the-art results for quantum attacks—leads us to conclude that the
current SIKE parameters are conservative and exceed the security required by
their intended NIST levels by wide margins. This solves an open issue about the
practical security of the SIKE parameters.

In addition, to explore the potential of using parameters that match more
closely the NIST security targets, we generate the following three new alternative
parameters:

– SIKEp377, with p = 21913117 − 1 (Level 1),
– SIKEp546, with p = 22733172 − 1 (Level 3),
– SIKEp697, with p = 23563215 − 1 (Level 5).

Finally, we report optimized implementations of these parameters for x64
platforms that show the potential improvement in performance. For example,
SIKEp377, which is intended for level 1, is roughly 1.4× faster than the Round
3 parameter SIKEp434 on an x64 Intel processor. In addition, the public key
size is reduced by roughly 13%. Even smaller key sizes would be possible with
compressed variants of the parameters [3,28,35].

All our implementations and scripts have been publicly released and can be
found at https://github.com/microsoft/vOW4SIKE on HW and https://caslab.
csl.yale.edu/code/sikehwcryptanalysis.

Outline. After giving some preliminary background about SIKE and the vOW
algorithm in Sect. 2, we describe the details of our improved budget-based cost
model in Sect. 3. In Sect. 4, we describe the attack setup of the vOW algorithm
on SIKE, present the design of our cryptanalysis hardware accelerators, as well
as the hardware/software co-design of vOW, and summarize the synthesis results
that are used to determine the cost of attacking SIKE. In Sect. 5, we revisit the
cost analysis of attacking AES and SHA-3. Finally, the comparative security
analysis of SIKE, AES and SHA-3 appears in Sect. 6, together with an analysis
of SIKE parameters and their optimized implementations on x64 platforms.

2 Preliminaries

2.1 SIKE and the CSSI Problem

SIKE is a key encapsulation mechanism that is an actively-secure variant of
the SIDH protocol [3], i.e., it offers resistance against indistinguishability under
adaptive chosen ciphertext (IND-CCA2) attacks. In practice, this means that
SIDH keys are ephemeral while SIKE’s do not need to be.

https://github.com/microsoft/vOW4SIKE_on_HW
https://caslab.csl.yale.edu/code/sikehwcryptanalysis
https://caslab.csl.yale.edu/code/sikehwcryptanalysis
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Fix a prime p = 2e23e3 − 1 with 2e2 ≈ 3e3 . The protocol works with the
roughly p/12 isomorphism classes of supersingular elliptic curves that exist in
characteristic p and that are all defined over Fp2 . Each of these classes is uniquely
identified by its Fp2 -rational j-invariant. If we define an isogeny as a separable
non-constant rational map between two elliptic curves, its degree is assumed to
be equal to the number of elements in its kernel. Let E be a (supersingular)
elliptic curve defined over Fp2 , for which #E = (p+1)2, and G be any subgroup
of E. Then, there is a one-to-one correspondence (up to isomorphism) between
subgroups G ⊂ E and isogenies φ : E → E/G whose kernel are G. Vélu’s
formulas can be used to compute these isogenies [44].

SIKE has as public parameters the two positive integers e2 and e3 that define
p and the finite field Fp2 , a starting supersingular elliptic curve E0/Fp2 , and bases
{P2, Q2} and {P3, Q3} for the 2e2 - and 3e3 -torsion groups E0[2e2 ] and E0[3e3 ],
respectively. A simplified version of the computational supersingular isogeny
(CSSI) problem can then be described as follows [1].

Definition 1. (CSSI). Let (�, e) ∈ {(2, e2), (3, e3)}. Given the public parameters
e2, e3, E0/Fp2 , P�, Q� and the elliptic curve E0/G defined over Fp2 , where G is
an order-�e subgroup of E0[�e], compute the degree-�e isogeny φ : E0 → E0/G
with kernel G or, equivalently, find a generator for G.

2.2 The vOW Parallel Collision Finding Algorithm

Let f : S → S be a (pseudo-)random function on a finite set S. The van Oorschot-
Wiener (vOW) algorithm finds collisions f(r) = f(r′) for distinct values r, r′ ∈ S.

Define distinguished points as elements in S that have a distinguishing prop-
erty that is easy to test, and denote by θ the proportion of points of S that are
distinguished. The vOW algorithm proceeds by executing collision searches in
parallel, where each search starts at a freshly chosen point x0 ∈ S and produces
a trail of points ri = f(ri−1), for i = 1, 2, . . ., until a distinguished point rd is
reached. Let a shared memory have capacity to collect up to w triples of the form
(r0, rd, d), where each triple represents a distinguished point and its correspond-
ing trail. Also assume that a given triple is stored at a memory address that is
a function of its distinguished point. Every time in a search that a distinguished
point is reached, two cases arise: (i) if the respective memory address is empty
or holds a triple with a distinct distinguished point, the new triple (r0, rd, d) is
added to memory and a new search is launched with a new starting point r0,
or (ii) if the distinguished point in the respective address is a match, a collision
was detected. Note that it is possible that trails fall into loops that do not lead
to distinguished points. To handle these cases, [43] suggests to abandon trails
that exceed certain maximum length (e.g., 20/θ). The expected length d of the
trails is 1/θ on average.

In [43], van Oorschot and Wiener classified different cryptanalytic applica-
tions according to whether collision searches are required to find a small or a
large number of collisions. Relevant to this work is that the first case matches
collision-search on SHA-3 while the second one applies to golden collision-search
for SIKE; see Sect. 5.2 and Sect. 4 for the application of each case.
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Finding One (or a Small Number of) Collision(s). In this case, since√
π|S|/2 points are expected to be produced before one trail touches another,

the work required by each search engine is
√

π|S|/2/m when m search engines
are running in parallel. If we add to this the cost to reach a distinguished point
after a useful collision has been detected (i.e., 1/θ steps) and the cost of locating
the initial point of collision (i.e., 1.5/θ steps),6 the total runtime to locate the
first useful collision with probability close to 1 is [43]

T =
(

1
m

√
π|S|/2 +

2.5
θ

)
t, (1)

where t is the time for one run of f .

Finding a Large Number of Collisions. For the case where a large number
of collisions exist, we follow convention and call golden collision to the unique
collision that leads to solving the targeted cryptanalytic problem. In this case,
since the number of collisions for f is approximately |S|/2, one would expect
to have to detect this same number of collisions on average before finding the
golden collision. However, the golden collision might have a low probability of
detection for a given f . This suggests that the best performance on average
should be achieved by using different function versions, each one running for a
fixed period of time, until the golden collision is found. In the remainder, we
denote the different function versions by fn, with n ∈ Z

+.
Assisted by a heuristic analysis, van Oorschot and Wiener determined that

the total runtime of the algorithm is minimized when fixing w ≥ 210 and
θ = 2.25

√
w/|S|, and the total number of distinguished points generated by

each function version is set to 10w, where, as before, w represents the number
of memory units that are available to store the triples (r0, rd, d). Under these
conditions, the total runtime to find a golden collision is estimated as

T =
(

2.5
m

√
|S|3/w

)
t (2)

where t is the time for one run of fn and m is the number of search engines that
are run in parallel.

3 Budget-Based Cost Model

In this section, we describe the budget-based cost model that we use to estimate
the security of SIKE in Sect. 4 and the security of AES and SHA-3 in Sect. 6.

The basic idea under this model is that the attacker is assigned a fixed
budget that he/she then uses to get computing and storage resources.7 The
specific amount of each of these two resources is determined such that the time to
6 As pointed out in [43], some applications such as discrete logarithms do not require

locating the initial point of collision of two colliding trails. In these cases, it suffices
to detect that the trails merged.

7 We use U.S. dollars (USD) as currency, without loss of generality.
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successfully break the targeted scheme is minimized. The security of the scheme
is given by the time it takes to break it.8

While our model is inspired by the analysis in [42,43], we expand it by consid-
ering historical price information of semiconductors and memory components.
As we argue later on, an analysis of technological and economic trends gives
confidence to using this data to help determine the strength of cryptographic
schemes.

The Cost Model. The time in years that it takes to break a cryptographic
scheme, under a budget of B dollars, is given by

Y =
(

#par ops

m
+ #ser ops

)
· 1
ct

, (3)

where:

– m represents the number of processing engines,
– ct is the computing throughput expressed in terms of the number of operations

computed per year by one processing engine,
– #par ops is the total number of operations that can be perfectly parallelized,

and
– #ser ops is the total number of serial operations.

The number of processing engines (m) and memory units (w) are constrained
according to

B = m · cm + w · cw, (4)

where cm and cw represent the cost (in dollars) of one processing engine and
one memory unit, respectively.

The Cost of Computation Power and Memory. The inclusion of the costs
of memory and computing resources is a key ingredient to better reflect the
true cost of cryptanalysis. This is particularly relevant for memory-intensive
cryptanalytic attacks (such as the vOW-based attack against SIKE), especially
when analyzed in relation to attacks that require negligible use of memory (such
as brute-force attacks against AES).

An important aspect commonly overlooked is how these computing/memory
costs have behaved historically and how they are expected to behave in the
future. Most analyses in the literature use costs that correspond to one specific
point in history (typically, the “present time” for a certain study). But providing
security estimates for different security levels involves an attempt at predicting
the future looking at lifespans of 10, 15, 20 years or more. Thus, a natural
question that arises is how a budget-based estimate could vary or is expected to
vary over time.9

8 We use “years” as the unit of security strength, without loss of generality.
9 More generally, the question is how the security of a given cryptosystem is expected

to change over time due to technological advances and increases in capital, which is
an aspect that is frequently ignored.
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Fig. 1. Historical release prices of Intel and AMD MPUs in terms of number of gates
per dollar, and prices of memory in terms of bytes per dollar. The prices are scaled
by dividing the values by 7.4 (see [23, App. A]). Data corresponds to the lowest price
found for each category (MPU, HDD, DRAM or SSD) per year from 2000 to 2020.
Refer to Appendix A for the original price values and their respective sources. To
estimate the number of gates, we use the standard assumption that each gate consists
of four transistors. The (forecast) values by the Linley Group and the ITRS are taken
from [14].

One imperfect but practical approach to predict such a future is to observe
the historical evolution of transistors and memory prices. Specifically, we use
the public release prices of microprocessor units (MPUs) from Intel and AMD,
together with their corresponding transistor counts, to derive an approximation
of the cost an attacker would have to pay to fabricate his/her own ASIC chips.
As is standard, to get gate counts we assume that a so-called gate equivalent
(GE) represents a 2-input NAND gate in CMOS technology, and that in turn
each of these gates consists of four transistors. Similarly, we use the public prices
of memory technologies that are most suitable for the task, including hard disk
drive (HDD), dynamic random-access memory (DRAM) and solid-state drive
(SSD), to get memory costs per byte. These costs are depicted in Fig. 1. It
is important to note that to deal with the relatively small gap between release
prices and the actual production cost of fabricating a chip at very large scale, we
apply a scaling factor to the transistor and memory prices, which was calculated
from the estimates in [20]; see the full paper version [23, App. A] for the exact
derivation of the factor value.

It can be observed that, historically, the bytes to gates cost ratio has been
quite stable, which highlights the strong correlation between the cost of tran-
sistors (gates) and memory (bytes). This is not surprising since, in general,
semiconductors—including transistors for logic and memory means such as
DRAM—have evolved under the same economic and technological stress forces,
and have followed the same fundamental projections such as those dictated by
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Moore’s law [27] and Dennard scaling [11]. Over time the development of the
different processes involved in the fabrication of semiconductor devices has been
coordinated under the umbrella of so-called “technological roadmaps” [13,15,39].
These large coordination efforts—in part responsible for the meteoric progress
of semiconductors—have led to a steady and uniform progress in the miniatur-
ization of transistors and other related components that, in turn, has led to a
steady and uniform reduction in the cost of semiconductors overall [14].10

Figure 1 also includes a forecast of the transistor prices for “high-performance
MPUs” done by the ITRS in 2007 for the years between 2000 and 2020 (see
Tables 7a and 7b of the “Executive Summary”, 2007 edition [14]), and includes
the costs of transistors reported by the Linley Group for the years between 2002
and 2012 and its forecast for the years 2014 and 2015 (see §8 in the “More
Moore – ITRS 2.0” white paper [14]). Overall, the stability of the data and its
consistency across different sources suggest that the adjusted prices of MPUs for
logic and HDDs for memory can be used as good approximations to the lower
bounds of the costs a real attacker would encounter in practice.

4 Cost of Attacking SIKE

In this section, we describe and adapt the vOW attack to Round-3 SIKE, and
produce operation counts corresponding to the different parameter sets. Then,
we describe the cryptanalysis design strategy, introduce our hardware imple-
mentation that covers efficient accelerators for the multiplication in Fp2 and
the isogeny computation, and describe the proof-of-concept HW/SW co-design
of vOW on SIKE. The synthesis results that we produce are used in combina-
tion with our operation counts to give area/time estimates that are later used
in Sect. 6 to estimate the cost of breaking SIKE on ASICs.

4.1 vOW on SIKE

We start by adapting the attack setup in [8] to Round-3 SIKE for the most com-
monly found scenario, i.e., � = 2 with even e2. Refer to the full paper version [23,
App. B] for the details for the cases � = 2 with odd e2, and � = 3 with odd e3.

The SIKE Round 3 specification sets the Montgomery curve E6/Fp2 : y2 =
x3 + 6x2 + x with j(E6) = 287496 as the starting curve of the protocol. Fix
� = 2 and assume e2 is even. Let the final curve be defined as E = E6/G, where
G is an order-2e2 subgroup of E6[2e2 ]. Taking into account the use of E6 and
the savings in the final step of the large-degree isogeny computation [8, §3.1],
attackers are left with the task of finding the isogeny of degree 2e2−2 between
E6 and a certain challenge curve EA.

Let S = {0, 1, . . . , 2e2/2−1 − 1}. In an efficient version of the attack, the
attacker can fix bases {P,Q} and {U, V } for E6[2e2/2] and EA[2e2/2−2], where
10 Although the core technology behind HDDs is not based on semiconductors, they

have also followed a similar pattern of growth and cost reduction, arguably because
of being under similar economic and technological forces.



412 P. Longa et al.

π(P ) = −P and π(Q) = Q with π representing the Frobenius endomorphism.
We use the efficient instantiation for fn proposed in [8]. They define fn : S → S
by fn(r) = gn(h(r)), where gn is a hash function with index n and h is given by

h : r �→
{

j, if lsb(b) = 0 for j = a + b · i ∈ Fp2

j, otherwise
,

where

j =

{
j(E6/〈P + [r >> 1]Q〉), if lsb(r) = 0
j(EA/〈U + [r >> 1]V 〉), if lsb(r) = 1

.

As can be seen, the function h uses a canonical representation of the conjugate
classes in Fp2 , such that it is always the case that we land on a j-invariant
where the least significant bit of the imaginary part is 0. Note that >> represents
the right shift operator. Thus, the least significant bit of r is used to select
whether we compute an isogeny from E6 or from EA and, therefore, we have
that r ∈ {0, 1, . . . , 2e2/2−2 − 1}.

The kernels P + [r]Q determine degree-2e2/2 isogenies from E6. However, by
exploiting the Frobenius endomorphism [8, §3.1], it follows that the search space
reduces to 2e2/2−1 distinct equivalence classes of j-invariants. The kernels U +[r]V
determine degree-2e2/2−2 isogenies from EA, leading to 2e2/2−2 distinct equiva-
lence classes of j-invariants. In the remainder, we slightly underestimate the attack
cost and only consider the use of 2e2/2−2-isogenies as the core operation that is
needed to approximate the cost of f . This also means that we ignore the cost of
the hash function gn, in an effort to be conservative in our security estimates.

Another crucial ingredient to estimate the cost of attacking SIKE is the mem-
ory required to store distinguished point triples (Sect. 2.2). For a triple (r0, rd, d)
the starting and distinguished points have a length of log |S| = e2/2−1 bits. How-
ever, if we apply van Oorschot and Wiener’s recommendation of defining a fixed
number of top 0 bits as the distinguishing property [43, §4.1], distinguished points
can be efficiently stored using only log |S|+log θ bits, where θ is the distinguished
point rate. If we fix the maximum length of the trails to 20/θ then the counter d
can be represented with log (20/θ) bits. Thus, a memory unit in a vOW attack
against SIKE requires approximately the following number of bytes


(2 log |S| + log 20)/8�. (5)

Operation Counts. The two operations that make up the computation of
a full large-degree isogeny as described above are the construction of kernels
with the form P + [r]Q and the computation of the half-degree isogeny itself.
Hence, estimating their computing time and plugging the total “t” into Eq. (2) is
expected to give a good approximation to a practical lower bound of the attack
runtime.

For the kernel computation, it is standard to use the efficient Montgomery
ladder, which computes χ(P + [r]Q) given input values χ(P ), χ(Q), χ(Q − P )
for elliptic curve points P,Q,Q − P , where χ(·) represents the x-coordinate of
a given point. We note that the vOW implementation reported in [8] makes use
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Table 1. Operation counts for the isogeny and elliptic curve operations in the kernel
and isogeny tree traversal computations corresponding to a 2e2/2−2-isogeny for even
exponent (resp. 2(e2−3)/2-isogeny for odd exponent, omitting single 2-isogenies). Tree
traversal uses an optimal strategy consisting of point quadrupling and 4-isogeny steps;
ADD denotes a differential point addition, DBL a point doubling, 4-get a 4-isogeny
computation, and 4-eval a 4-isogeny evaluation. Round 3 parameters appear at the
top, while the new parameters proposed in this work are at the bottom.

Kernel Tree traversal

ADD DBL 4-get 4-eval

SIKEp434 106 282 53 166

SIKEp503 123 352 61 187

SIKEp610 151 434 75 255

SIKEp751 184 548 92 334

SIKEp377 94 236 47 147

SIKEp546 135 394 67 211

SIKEp697 176 516 88 318

of the 3-point Montgomery ladder for variable input points proposed by Faz
et al. [12]. However, for cryptanalysis one can employ the ladder version that
exploits precomputations [12, Alg. 3], since the input points are fixed in this
case. This algorithm speeds up the kernel computation by roughly 2 times at
the expense of storing about e2/2 points.

Recall that � ∈ {2, 3}. For the case of the half-degree isogeny itself, the
computation can be visualized as traversing a tree, from top to bottom, doing
point multiplications by � and �-isogeny computations which are guided by a
so-called optimal strategy [10, §4.2.2]. This optimal strategy is derived by using
the relative cost of point multiplication by � and �-isogeny evaluation.

Table 1 summarizes the operation counts for a full large-degree isogeny oper-
ation as required for cryptanalysis. The table only includes the 2-power torsion
case which is the preferable option for cryptanalysis as it is more efficient than
the 3-power torsion case for all the SIKE parameters under study. For the kernel,
we take into account the optimization using a fixed-point Montgomery ladder.
In contrast to [8, §5], we include the cost of the kernel computation as well as
the costs of both the �-isogeny computation and the �-isogeny evaluation when
assessing the cost of the full isogeny.

4.2 Hardware Implementation of the Attack

“Ideal” Cryptanalysis Design. Here we discuss our idealized design of a
full attack, under the assumption that the main goal of the analysis is to help
define conservative lower bounds for the cost of cryptanalyzing SIKE on ASICs.
Likewise, with the budget-based cost model in mind, the main optimization goal
for a hardware implementation of the attack is the minimization of the area-time
(AT) product.
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One core aspect of setting up a real-world, large-scale attack on SIKE using
vOW is the configuration of the shared memory that stores the distinguished
points. Each of the standard options, e.g., the use of a centralized database or a
peer-to-peer system, has its advantages and disadvantages, and introduces non-
negligible bottlenecks (see [8, App. C] for a discussion). In our analysis of the
attack runtime, we abstract away from these engineering complexities and only
consider the CPU time (i.e., we ignore communication costs for memory access).

A second core aspect is related to the hardware implementation of the “pro-
cessing engine” that runs vOW on SIKE. While the critical part of this vOW
engine is the isogeny step in the random function iteration for searching distin-
guished points and in the collision detection mechanism (a.k.a. backtracking),
other associated costs include, for example, the pseudorandom sampling of start-
ing points and the hashing of the j-invariants. There is also the cost associated
to all the control circuitry to manage the algorithm flow outside the isogeny
step (e.g., see [8, App. C] for a discussion about the synchronization of function
versions across engines). Thus, by focusing the area and timing analysis on the
isogeny function only, one can safely produce lower bounds for the attack cost.

It remains to discuss parallelization opportunities for the isogeny computa-
tion itself. In a typical setup that facilitates synchronization across engines, the
pre-fixed number of distinguished points per function version can be evenly split
between those engines, which then get to work to collect them. Beyond that,
the parallel searches hardly stay in-sync at the arithmetic level, which makes
difficult to save area by using controllers that manage multiple isogeny engines
simultaneously, or by batching elliptic curve and small-degree isogeny operations
from different engines (e.g., using Montgomery’s inversion batching trick).

Internally, one can try to parallelize operations in the kernel computation P +
[r]Q and the isogeny tree traversal operation. However, existing approaches offer
poor area utilization, which conflicts with our goal of minimizing the AT product.
In contrast, we note that the elliptic curve and small-degree isogeny formulas,
as well as the underlying arithmetic over Fp2 , do offer good opportunities for
parallelization of multiplications in Fp2 and Fp.

Following this discussion, we designed a flexible and efficient hardware accel-
erator for the cost-intensive large-degree isogeny computation. This includes the
hardware acceleration of the kernel construction as well as the isogeny compu-
tation itself. In turn, this accelerator is built on top of an efficient multiplier
architecture that exploits a novel approach to optimize and exploit internal par-
allelism in the multiplication over Fp2 in hardware.

We describe our accelerators next, starting with the critical Fp2 multiplica-
tion.

Multiplier Core. The basic idea of our design is to merge the inner multi-
plications in a schoolbook-like computation of the Fp2 multiplication using a
radix-r Montgomery multiplication algorithm. This allows us to parallelize digit
multiplications while saving a full Montgomery reduction. Thus, the method can
be seen as an application of lazy reduction to radix-r multiplication algorithms.
While it is possible to apply the approach to most of the several radix-r variants
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Algorithm 1. Modified FIOS algorithm for Montgomery multiplier in Fp2

� for computing: c0 = (a0 · b0 − a1 · b1) mod p, where p is a SIKE prime.

Require: operands a0, a1, b0, b1, each of n digits, each digit ∈ [0, 2r) for radix of r
bits; m = p + 1 and λ represents the number of 0 digits in m.

Ensure: [t0, . . . , tn−1] ← MontRed(a0 · b0 − a1 · b1)

1: ti = 0 for i = 0, . . . , n − 1
2: for i = 0, . . . , n − 1 do
3: (C, S) = a0,0 · b0,i − a1,0 · b1,i + t0
4: mm = S
5: for j = 1, . . . , n − 1 do
6: if j < λ then // optimization for 0 digits in m
7: (C, S) = a0,j · b0,i − a1,j · b1,i + tj + C
8: else // mult. integrated with reduction
9: (C, S) = a0,j · b0,i − a1,j · b1,i + mm · mj + tj + C

10: tj−1 = S

11: tn−1 = C

of the Montgomery multiplication, in our application we use the finely integrated
operand scanning (FIOS) algorithm [22]. In hardware, this algorithm allows us
to maximize the number of parallel multiplications, while minimizing the control
circuitry.

The proposed algorithm is depicted in Algorithm 1. We assume that, given
inputs a = (a0, a1) and b = (b0, b1) in Fp2 , a ·b is computed as (a0 ·b0−a1 ·b1, a0 ·
b1 + a1 · b0). We only show the computation of the left-half of the result (the
right-half computation easily follows). The algorithm also includes an additional
optimization to save multiplications when the corresponding digit of the modulus
is 0, as first noted by Costello et al. [7] in the context of SIDH. Ignoring this
optimization, the method reduces the number of digit multiplications in one Fp2

multiplication from 2 · 2 · (2n2 − n) = 8n2 − 4n (using the standard approach
on a SIKE prime) to 2 · (3n2 − n) = 6n2 − 2n. We note that, in comparison,
the Karatsuba method is able to trade one Fp multiplication with a few much
cheaper Fp additions and subtractions, roughly matching the number of digit
multiplications of our method. However, as discussed in [24], when mapping the
Karatsuba algorithm to hardware, there are more data dependencies that can
easily lead to complex data scheduling in pipelined architectures.

A simplified diagram depicting our hardware multiplier core Fp2 Multiplier
is presented in Fig. 2a. The input operands a0, a1, b0, b1 as well as the constant
value m are all stored in memory blocks of width r and depth n, where r is the
size of the radix and n is the number of digits per operand. Two separate modules
step sub and step add are implemented for realizing the two inner loop variants
in Algorithm 1, which gives a total of six digit multipliers and two digit adders
for optimal parallel execution. Finally, a Controller module is responsible for
coordinating the memory accesses as well as the interactions between the memory
blocks and the computation units. Since our design is fully pipelined, step sub
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(a) Diagram of the Fp2 multiplier core. (b) Diagram of the isogeny hardware
accelerator.

Fig. 2. Simplified diagrams of the Fp2 Multiplier and the isogeny hardware accelerator.

and step add execute their computations in one cycle on average, which means
that a full Fp2 multiplication is completed in approximately n2 cycles.

As desired for the cryptanalysis application, our approach gives great flexi-
bility to balance area and computing time by tuning the value of the radix.

Isogeny Hardware Accelerator. Figure 2b shows the diagram of our isogeny
hardware accelerator. A lightweight Top Controller module sitting at the top
of the design contains a state machine that implements the kernel and isogeny
computations as described in the subsection “Operation counts” (Sect. 4.1).
Accordingly, it supports all the necessary elliptic curve and small-degree isogeny
computations for the 2-power torsion case, including doubling, differential addi-
tion, 4-isogeny evaluation and 4-isogeny computation. Separate compact state
machines (called xDBL FSM, xADD FSM, get 4 isog FSM and eval 4 isog FSM)
were designed for accelerating the respective operations above. As shown in the
figure, these computations are carried out by the accelerator depending on the
value of the cmd signal.

In our design, the Fp2 -level arithmetic underlying these sub-modules is sup-
ported by two parallel blocks of our novel Fp2 Multiplier core, as well as two
parallel Fp2 Adder blocks. This setup is optimal to minimize the AT product
when using the Montgomery formulas for the small-degree isogeny and elliptic
curve operations. As shown in Fig. 2b, the Top Controller can also directly
trigger Fp2 multiplications and additions using the cmd signal. This is done in
order to accelerate these functions when invoked outside the elliptic curve and
isogeny computations.

Comparison with Other Implementations. A relevant task for our analysis
is to determine the suitability of using the proposed isogeny hardware acceler-
ator for analyzing the security of SIKE under a realistic cost model. The main
challenge that we face is that our implementation appears to be the first one
intended for ASICs for cryptanalytic purposes. Nevertheless, we exploit the fact
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that a large-degree isogeny operation is also the main part of a typical hard-
ware implementation of SIKE to carry out a first-order comparison between our
isogeny accelerator and the most efficient open-source FPGA implementations of
SIKE in the literature: the area-efficient implementation by Massolino et al. [24]
and the speed-oriented implementation by Koziel et al. [21]. While ours is not
a full SIKE implementation we argue that the resources and timing information
it provides only introduce a small error. The isogeny function is by far the most
resource and time-consuming operation in SIKE, and implementations like the
ones from [21,24] only incorporate a specialized, lightweight controller to pro-
vide the rest of the functionality. Note that to have a more fair comparison we
eliminated the SHAKE circuitry from the implementations of both works.

Another issue is that the implementations above are specialized for FPGA
and, hence, make use of the internal digital signal processors (DSPs). However,
what matters for our security analysis is the performance on ASICs. Therefore,
to make the results more comparable to what would be observed on an ASIC,
we have synthesized the implementations without DSPs.

Table 2 summarizes the resource utilization and encapsulation timing results
for our and the aforementioned SIKE implementations.11 As can be seen, our
accelerator using radix 232 achieves the lowest values for the slices/time product
in comparison with [21] and [24]. More importantly, we achieve so for both the
smallest and the largest SIKE Round 3 parameter sets, while the competing
implementations do not scale as efficiently for different parameters. This is due
to the efficiency and flexibility of our multiplier and isogeny designs, which have
been especially tailored to achieve a low area-time product. We remark that this
first-order comparison is conservative because it ignores some costly resources
like Block RAMs.12

Synthesis Results. We now proceed to obtain area and timing synthesis results
for our isogeny accelerator, which are used in Sect. 6 to determine the cost and
performance of a “processing engine” to run vOW on SIKE.

We use Synopsis version Q-2019.12-SP1 with the NanGate 45 nm open-cell
library v1.3 (v2010.12) [38]. Table 3 summarizes the cycle counts obtained for
each of the individual elliptic curve and small-degree isogeny operations. To
estimate conservative lower bounds for the computing cost of the full isogeny, we
treat the individual accelerators (xDBL FSM, xADD FSM, get 4 isog FSM, and
eval 4 isog FSM) as independent units, ignoring the controller computation cost
and the timing overhead due to data communication. That is, the cycle counts
from Table 3 are multiplied with the operation counts in Table 1 to calculate the
total cycle counts for a full isogeny (see Table 4). The total time (msec) is then
calculated by multiplying the isogeny cycle count by the clock period. Table 4
also reports the area (kGEs) occupied by our isogeny hardware accelerator.

11 We only compare the encapsulation operation, as this is the only high-level function
in SIKE that fully works on the 2e2 -torsion subgroup, as in our isogeny accelerator.

12 Each Block RAM on the Virtex-7 consists of 36Kb which our accelerator uses very
scarcely (see Table 2).
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Table 2. Comparison of our isogeny HW accelerator with SIKE implementations
(encapsulation function Enc only, w/o SHAKE) on a Xilinx Virtex 7 690T FPGA of
partname XC7VX690TFFG1157-3. Synthesis results were obtained with Vivado Soft-
ware Version 2018.3. The use of FPGA DSPs was disallowed during synthesis.

Resources Freq Enc Slices ×
Design log p Slices LUTs FFs RAMs (MHz) (msec.) Time

This work (radix = 232) 434 6260 22347 4023 6.5 164.00 19.70 123.7

This work (radix = 264) 19120 69636 8808 12.5 116.84 10.51 200.9

[21] 20620 64553 21064 37.0 146.91 6.33 130.5

[24], 128-bit ALU 7472 24855 8477 23.5 162.20 22.88 171.0

[24], 256-bit ALU 24400 82143 18509 20.5 163.85 10.21 249.0

This work (radix = 232) 751 6031 21745 3273 19.5 161.00 94.31 568.8

This work (radix = 264) 18587 67699 6925 38.5 115.92 40.36 750.1

[21] 52941 151411 46095 45.5 116.88 18.91 1001.1

[24], 128-bit ALU 7472 24855 8477 23.5 162.20 81.09 605.9

[24], 256-bit ALU 24400 82143 18509 20.5 163.85 25.38 619.3

Fig. 3. Diagram of the HW/SW co-design for SIKE cryptanalysis based on Murax SoC.
Blue box represents the user-defined logic, including the dedicated isogeny hardware
accelerator and the APB bridge module ApbController.

HW/SW Co-design Prototype. To validate the soundness of our cryptan-
alytic design as well as the hardware accelerators, we devised a hardware proto-
type of the vOW algorithm on SIKE using HW/SW co-design based on the pop-
ular RISC-V platform [36]. An approach based on HW/SW co-design facilitates
prototyping and analyzing cryptanalytic targets by combining the flexibility and
portability of a processor like RISC-V with the power of rapidly-reprogrammable
hardware acceleration on FPGA. The design uses as basis the software implemen-
tation of vOW by Costello, Longa, Naehrig, Renes and Virdia [8,26]. Since their
software targets SIKE Round 1 parameters, our first task was to adapt it to the
Round 3 parameters and to the parameters proposed in this work, as described
in Sect. 4.1. The HW/SW co-design is based on an open-source RISC-V platform,
namely, VexRiscv [45]. It supports the RV32IM instruction set and implements a
5-stage in-order pipeline. The VexRiscv ecosystem also provides a complete prede-
fined processor setup called “Murax SoC” that has a compact and modular design
and aims at small resource usage. Due to the modularity of the VexRiscv imple-
mentation, dedicated hardware modules can be easily integrated to the system as
an APB peripheral before synthesis of the System-on-a-Chip (SoC).

Figure 3 depicts the high-level view of the HW/SW co-design. As we can see,
the dedicated isogeny hardware accelerator was integrated to the Murax SoC
as an APB peripheral, and the communication between the two was realized by
implementing a dedicated memory-mapped bridge module ApbController.
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Table 3. Cycle results from synthesis for the isogeny and elliptic curve operations in
the kernel and tree traversal computations using our hardware accelerators based on
two Fp2 parallel multipliers. The parallel formula for ADD costs 3M + 3add + 3sub,
for DBL it costs 3M + 2add + 2sub, for 4-get it costs 2M + 4add + 1sub, and for
4-eval it costs 4M+ 3add+ 3sub, where M denotes multiplication, add addition and
sub subtraction in Fp2 . Each case reports the results for the radix that achieves the
lowest AT product.

Kernel Tree traversal

Radix ADD DBL 4-get 4-eval

SIKEp434 232 874 841 598 1105

SIKEp503 232 1088 1051 742 1383

SIKEp610 264 518 496 360 649

SIKEp751 264 684 658 472 863

SIKEp377 232 684 655 470 859

SIKEp546 232 1326 1288 904 1697

SIKEp697 264 634 610 438 800

5 Cost of Attacking Symmetric Primitives

In this section, we revisit the cost of cryptanalyzing AES and SHA-3 using effi-
cient ASIC implementations from the literature. The analysis results are applied
in Sect. 6 to produce estimates for the security of these primitives using the
budget-based cost model.

5.1 Cost of Attacking AES

We revisit the problem of how costly it is for an attacker to find a secret key
k that was used to encrypt a plaintext P as C = Ek(P ) using a block cipher
E, assuming knowledge of the plaintext/ciphertext pair (P,C). In this scenario,
one of the most efficient key-extraction algorithms is the rainbow chains method
by Oechslin [32]. Herein, we treat E as a black box since the attack applies
generically to block ciphers.

Let fn(r) = gn(h(r)) define a function where h(r) = Er(P ) for a fixed
plaintext P and gn is a function with index n that produces (pseudo-)random
values. The attack works as follows. In the precomputation stage, the attacker
first chooses a random value k0, then generates a rainbow chain of values ki+1 =
fi(ki) for i = 0, . . . , t − 2 (the term “rainbow” precisely originates from the use
of distinct function versions at each step of the chain generation), and finally
stores the starting and ending values k0 and kt−1. This process is repeated to
create a table with l entries, corresponding to l rainbow chains of length t each.

In the online stage, the attacker tries to determine if the key k used to encrypt
P as C = Ek(P ) is among all the keys ki used during the precomputation stage.
To do so, he/she generates a new chain of length t starting from gn(C), and
proceeds to compare the intermediate key values with the ending values kt−1
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Table 4. Area and timing synthesis results for a full 2e2/2−2-isogeny (for even expo-
nent) and a full 2(e2−3)/2-isogeny (for odd exponent; omitting single 2-isogenies), using
NanGate 45 nm technology. The estimated computing time ignores the controller com-
putation and the data communication overhead. Total cycles are estimated using the
operation counts from Table 1 and the cycle counts for each individual elliptic curve
and small-degree isogeny operation (Table 3). The total time (msec) is calculated by
multiplying the total cycle count by the clock period. Total area (kGEs) corresponds to
the full isogeny hardware accelerator. For each case, results are reported for the radix
that achieves the lowest AT product.

Area Freq Period Speed

Radix (kGE) (MHz) (nsec) Cycles msec

SIKEp434 232 372.2 167.5 5.97 544930 3.253

SIKEp503 232 409.5 167.8 5.96 807659 4.814

SIKEp610 264 748.0 83.75 11.94 485977 5.803

SIKEp751 264 822.3 84.32 11.86 818106 9.703

SIKEp377 232 341.3 156.5 6.39 367239 2.347

SIKEp546 232 441.1 155.8 6.42 1105117 7.095

SIKEp697 264 798.9 83.68 11.95 719288 8.595

stored in the table. If one of those values was indeed used to construct the table,
a collision with one of the ending values kt−1 will be detected and the attacker
can proceed to reconstruct the stored chain using its corresponding starting value
k0. The key k is expected to be found in the step right before computing the
value gn(C).

To implement the function gn one can exploit that the block cipher itself can
be used to generate pseudo-random values. Let β be a value chosen randomly.
Since each execution of gn is preceded by a computation of the form Er(P ), we
can use the pair (β, i) to represent the index n, for i = 1, . . . , t − 2, and set
gβ,i(x) = x ⊕ (β || i) using a simple logical XOR operation.

The probability of finding k with the rainbow chains method is roughly l·t/2b,
where b is the cipher key bitlength. To increase this probability efficiently (i.e.,
without increasing the memory requirement excessively), the attacker can repeat
the procedure above as many times as required, each time with a new table and
a fresh value for β.

Cost of Parallel Attack. The precomputation and online key search stages can
be perfectly parallelized and distributed across multiple processors with minimal
communication. The sorting process for collision search of the precomputed and
online key values can be done serially using some efficient sorting algorithm.
The cost of this part can be made negligible in comparison to the rest of the
computation for suitably chosen parameters.

The regeneration of the chain after a collision is detected needs to be executed
serially. Therefore, to guarantee that this cost is relatively negligible we need
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Table 5. Area and timing synthesis results for the AES implementation by Ueno
et al. [41] and the Keccak-f [1600] implementation by Akin et al. [2] using 45 nm tech-
nology. InvThr represents the inverse throughput given in nanoseconds per operation
(nsec/op). The latency for the Keccak-f [1600] (90 nm) implementation is scaled using
the factor 1.5 · (45/90)2 = 0.375 to approximate it to SHA-3 on 45 nm. The area is
scaled by the factor 1.2.

Area Freq Latency InvThr

(kGE) (GHz) (nsec) (nsec/op)

AES128 11.59 787.40 13.97 12.70

AES192 13.32 757.58 17.16 15.84

AES256 13.97 775.19 19.35 18.06

SHA-3 12.60 – 20.61 20.61

t  l·t
m to hold or, equivalently, m  l, for m key-search engines. In this case,

the time to find k with probability close to 1 using m engines is approximately

T =
2b

m
· t, (6)

where t denotes the time to compute one iteration of E.

Hardware Cost. The main building block in the attack is the targeted cipher
itself. In the case of AES, there is a plethora of implementations in the litera-
ture ranging in scope from low-power/low-area to high-throughput/low-latency
applications. As explained before, in a budget-based cost model trying to repli-
cate a real-world setup the focus shifts instead to implementations that minimize
the area-time product and are efficient on ASICs.

In that direction, we use the efficient round-based AES implementation by
Ueno et al. [41]. A summary of their results for AES128/192/256, using the exact
same Synopsis synthesis tool with the NanGate 45 nm library that we use for
the case of SIKE in Sect. 4.2, is given in Table 5.

5.2 Cost of Attacking SHA-3

Finding hash collisions in SHA-3 can be done efficiently using the vOW algorithm
in the scenario targeting a small number of collisions [43, 4.1]; see Sect. 2.2. In this
case, the total runtime to locate the first useful collision with probability close to
1 using m collision-search engines is given by Eq. (1). However, this estimate is
slightly optimistic since it does not consider that in a real setting an attacker runs
out of memory at some point and new distinguished points need to replace old ones.
See [43, §6.5] for an analysis for MD5 that also applies to SHA-3.

Hardware Cost. Similar to the case of AES, the main building block of
the attack is the targeted primitive itself. For our analysis, we use the effi-
cient, ASIC-friendly implementation of Keccak by Akin, Aysu, Can Ulusel and
Savaş [2]. Their single-message hash (SMH) approach takes one cycle per round
and achieves, to our knowledge, the lowest AT product on ASIC in the literature.
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Akin et al. only report synthesis results for the Keccak-f [1600] permutation
function with rate r = 1088—which corresponds to the standardized instance
SHA3-256—on 90 nm technology. Table 5 presents the timing results scaled to
45 nm using the factor (45/90)2 = 0.25 and scaled with a factor 1.5 to account for
the initialization and absorb stages not considered by Akin et al. To account for
the extra area required by the standardized instances SHA3-256 and SHA3-384,
we scale the results by the factor 1.2.

6 Security Estimation: A Comparative Analysis

We now proceed to put all the pieces together and estimate the security strength
of SIKE, AES and SHA-3 using the budget-based cost model described in Sect. 3.

To get security estimates we set fixed budgets of ten million, one hundred
million and one billion dollars. Arguably, these choices apply to the vast majority
of scenarios that involve sufficiently motivated actors.13

To estimate the security provided by SIKE, AES and SHA-3, we first proceed
to calculate the cost of one processing engine using the area information (in GEs)
from Tables 4 and 5 and multiplying it by the adjusted cost per gate of a given
year (Tables 8 and 9 in Appendix A). We proceed to do a similar calculation
to get the cost of one memory unit; in the case of SIKE we use Eq. (5). Our
setup for the attacks against AES and SHA-3 guarantees that the total cost of
memory is significantly smaller than the cost of computing power.

Recall that the operation complexity for SIKE, AES and SHA-3 is given by
Eqs. (2), (6) and (1), respectively (after setting t = 1). The security strength
in terms of years is then estimated as follows. We fix B to a given budget
value in Eq. (4) and determine the optimal values for the number of processing
engines and memory units that minimize Eq. (3) using the respective operation
complexity and the costs for the processing and memory units established above.
The minimal value found for Eq. (3), in years, is set as our security estimate.

In a first calculation, we use the yearly historical prices of MPUs and HDDs
from 2000 to 2020 to determine the costs of processing and memory units. In each
case we consider the lowest price per component (dollar/GE and dollar/byte)
that we found per year. The exact prices as well as the respective sources are
detailed in Table 8, Appendix A.

In a second calculation, we make projections of the prices of MPUs and
HDDs for the years 2025, 2030, 2035 and 2040 by assuming a constant reduction
rate starting at year 2020 and estimated from data for the latest 5-year period,
i.e., 2015–2020. Specifically, the reduction rate for MPUs is taken as the ratio
between a gate cost in 2015 and its cost in 2020. Similarly, for HDDs it is taken
as the ratio between the cost of a byte of SSD memory in 2015 and its cost in
2020.14 The projected prices that we derived are detailed in Table 9, Appendix A.
13 As a relevant point of reference, the annual budget of the NSA in 2013 was estimated

at US$10.8 billion https://en.wikipedia.org/wiki/National Security Agency.
14 The use of SSD memory for calculating the cost reduction rate is to be conservative

in our estimates: HDD memory is currently cheaper, but SSD is expected to become
more cost-effective in the next years.

https://en.wikipedia.org/wiki/National_Security_Agency
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(b) Budget = US$10 million

(c) Budget = US$100 million

(d) Budget = US$1 billion

Fig. 4. Security estimates using historical GEs/HDDs prices from 2000 to 2020 and
using projections of the same prices from 2025 to 2040, at intervals of five years. Secu-
rity estimates are expressed as the base-2 logarithms of the number of years required
to break a given primitive under a fixed budget. AES is depicted in red, SHA-3 in
brown and SIKE in blue. SIKEp377 (new) and SIKEp434 (Round 3) are intended for
level 1 (AES128), SIKEp546 (new) and SIKEp610 (Round 3) are intended for level
3 (AES192), and SIKEp697 (new) and SIKEp751 (Round 3) are intended for level
5 (AES256). SIKEp503 (Round 3) is for level 2 (SHA3-128). SHA3-384 determines
level 4.



424 P. Longa et al.

Table 6. Quantum security estimates in terms of gate (G) and depth-width (DW)
costs. Results correspond to key-search on AES [17], collision-search on SHA-3 [6,19]
and golden collision-search on SIKE. The displayed values for SIKE are the lowest
achieved for the respective circuit Maxdepth (MD) assumption and cost metric by
either Jaques-Schanck [18] (Grover and Tani), Jaques-Schrottenloher [19] (parallel local
prefix-based walk and parallel local multi-Grover) or Biasse-Pring [5] (improved Grover
oracle). Estimates for the alternative SIKE parameters were obtained using Jaques-
Schrottenloher’s script.

AES key-search SHA-3 coll. SIKE collisions

Security level Security level log p log p (This work)

Metric MD 1 3 5 2 4 434 503 610 751 377 546 697

G-cost ∞ 83 116 148 124 184 109 124 147 178 96 133 166

296 83 126 191 134 221 110 134 179 234 96 152 213

264 93 157 222 148 268 145 181 235 307 116 203 279

240 117 181 246 187 340 184 219 274 345 155 241 318

DW-cost ∞ 87 119 152 134 201 126 148 170 211 116 159 198

296 87 130 194 145 239 131 158 189 244 116 169 223

264 97 161 225 159 285 163 198 252 322 134 219 295

240 121 185 249 198 357 187 222 276 346 158 243 319

The estimates for the various budget options for the years 2000–2020, as well
as the estimates using projected data for the years 2025–2040, are depicted in
Fig. 4 (refer to the full paper version [23, App. D] for extreme budget scenarios
of up to one trillion dollars).

Quantum Security. Initially, SIDH and SIKE proposals used Tani’s algorithm
(of O(p1/6) time and memory complexity) to establish the quantum security of
their parameters [3,7,16]. In 2019, Jaques and Schanck [18] established that the
complexity of this algorithm is expected to actually achieve a time complexity
of O(p1/4) due to costly random memory accesses in the quantum circuit model.
More recently, Jaques and Schrottenloher [19] proposed efficient parallel golden
collision finding algorithms that use Grover searches and a quantum analogue of
vOW to achieve lower gate complexities, also in the quantum circuit model.

In Table 6, we summarize the gate (G-cost) and depth-width (DW-cost) com-
plexities corresponding to all the SIKE parameters under analysis, as well as the
respective complexities for AES and SHA-3 taken from [17] and [6,19], respec-
tively. We present the lowest values achieved by either Jaques and Schanck [18]
using Grover or Tani’s algorithm, Jaques and Schrottenloher’s parallel local
prefix-based walk or parallel local multi-Grover method [19], or Biasse and
Pring’s improved Grover oracle for very deep maxdepths (beyond 2115) [5]. Note
that the maxdepth values suggested by NIST in [31] are 240, 264 and 296. The
estimates for our newly proposed parameters use the same procedure followed
in [19, §6] and were obtained with Jaques and Schrottenloher’s script.

Security Levels. We now have the tools to assess the security of the various
SIKE parameters under our model. After observing the estimates in Fig. 4 and
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Table 7. Performance results comparing SIKE Round 3 parameters and the alterna-
tive parameters proposed in this work. The speed results (rounded to 105 cycles) were
obtained on a 3.4GHz Intel Core i7-6700 (Skylake) processor for the three SIKE opera-
tions: key generation (Gen), encapsulation (Enc), and decapsulation (Dec). Public keys
are measured in bytes B.

Round 3 SIKE [3,25] Proposed (this work)

NIST log p PK Speed (× 106 cc) log p PK Speed (× 106 cc)

sec level Gen Enc Dec Gen Enc Dec

1 434 330B 5.9 9.7 10.3 377 288B 3.9 7.3 7.2

2 503 378B 8.2 13.5 14.4 – – – – –

3 610 462B 14.9 27.3 27.4 546 414B 11.5 19.9 19.9

5 751 564B 25.2 40.7 43.9 697 528B 19.8 33.3 35.0

Table 6 (also see the summary of results in Table 10, Appendix B), we can con-
clude that the SIKE Round 3 parameters achieve higher security than previously
assumed. For example, if we look at the calculation for year 2040 with a billion
dollar budget (worst case analyzed in Table 10), the security margin is of at least
215 years (case between SIKEp751 and AES256 at level 5) and as high as 248

years (case between SIKEp503 and SHA3-256 at level 2).
When we examine the case of our alternative parameters it can be seen that

they approximate levels 1, 3 and 5 more closely. For example, the classical and
quantum security of SIKEp377 meets the requirements for level 1, even when
considering our most stringent budget scenarios. If we assume the case for the
year 2020 with a billion dollar budget, SIKEp377 achieves a security estimate
of 240 years, which is above the estimate of 233 for AES128. For the year 2040,
AES128 is projected to provide a security of 228 years, while SIKEp377 would
achieve 232. Similar observations hold for SIKEp546 and SIKEp697 with respect
to levels 3 (AES192) and 5 (AES256), respectively. SIDHp503 appears to hold
its Round 3 position (i.e., level 2), although with a very large margin.15

Our results show that the gap between SIKE and AES reduces over time
and with larger budgets. Nevertheless, security estimates for the Round 3 and
our alternative parameters stay above or virtually match the corresponding AES
estimates even for unrealistic budgets [23, App. D] and taking into account that
our approach is still conservative and favors SIKE attackers.

Benchmarking Results. To assess the potential impact of using the alternative
smaller parameters, we wrote hand-optimized x64 assembly implementations of
the field arithmetic for p377, p546 and p697, and integrated them into the SIDH
library, version 3.4 [25]. The implementations are written in constant time, i.e.,
there are no secret memory accesses and no secret data branches. Therefore, the
software is protected against timing and cache attacks.

15 The classical security of SIKEp503 is actually closer to that of AES192 and SHA3-
384. It would be interesting to investigate if further analysis can reduce or eliminate
the small gap.
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The results on a 3.4 GHz Intel Core i7-6700 (Skylake) processor are shown in
Table 7. Following standard practice, TurboBoost was disabled during the tests.
For compilation we used clang v3.8.0 with the command clang -O3.

Our results show that the new parameters introduce large speedups in the
range 1.25–1.40 (comparing the total costs), in addition to reductions in the
public key and ciphertext sizes. For example, SIKEp377 is shown to be about
1.4× faster than SIKEp434, while reducing the public key size by ∼ 13%.

A Price Data

Table 8 summarizes the price information that we collected per year for memory
(HDD, DRAM and SSD) and Intel/AMD MPUs. For our security estimates,
we used the lowest prices available per byte, which in all the cases considered
correspond to HDDs. To estimate the cost per gate we considered the MPU (Intel
or AMD) that provided the cheapest cost per transistor for a given year. We used
the standard assumption that one gate equivalent consists of four transistors.
The rows with the “adjusted” costs per byte or gate are obtained by dividing
the corresponding costs by the factor 7.40 which approximates the release prices
to the chip production cost, as described in the full paper version [23, App. A].

Table 9 summarizes our projections of HDD memory and gate costs for the
years between 2025 and 2040. To obtain these values we used a constant cost
reduction rate applied starting at the year 2020’s prices. Specifically, the reduc-
tion rate that we used for MPUs is taken as the ratio between a gate cost in
2015 and its cost in 2020. Similarly, for HDDs it is taken as the ratio between
the cost of a byte on SSD memory in 2015 and its cost in 2020. The use of data
from SSD memory in this case is to derive conservative estimates, so that SSD
is expected to become more cost-effective than HDD in the next years.

The “adjusted” costs were used to calculate the costs of the memory and
processing units that are needed to set up the cryptanalytic attacks against
SIKE, AES and SHA-3 (see Sect. 6).

Sources. We used the following sources for data collection:

– https://en.wikipedia.org/wiki/List of Intel Core 2 microprocessors
– https://en.wikipedia.org/wiki/List of Intel Core i3 microprocessors
– https://en.wikipedia.org/wiki/List of Intel Core i5 microprocessors
– https://en.wikipedia.org/wiki/List of Intel Celeron microprocessors
– https://en.wikipedia.org/wiki/List of Intel Pentium D microprocessors
– https://en.wikipedia.org/wiki/List of AMD Athlon microprocessors
– https://en.wikipedia.org/wiki/List of AMD Ryzen microprocessors
– https://en.wikichip.org
– https://www.cpu-world.com
– https://www.newegg.com
– http://jcmit.net/memoryprice.htm
– http://jcmit.net/diskprice.htm
– http://jcmit.net/flashprice.htm

And other several chip manufacturer websites.

https://en.wikipedia.org/wiki/List_of_Intel_Core_2_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Core_i3_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Core_i5_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Celeron_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Pentium_D_microprocessors
https://en.wikipedia.org/wiki/List_of_AMD_Athlon_microprocessors
https://en.wikipedia.org/wiki/List_of_AMD_Ryzen_microprocessors
https://en.wikichip.org
https://www.cpu-world.com
https://www.newegg.com
http://jcmit.net/memoryprice.htm
http://jcmit.net/diskprice.htm
http://jcmit.net/flashprice.htm
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Table 9. Projected prices for HDD memory and gates for 2025–2040, at 5-year inter-
vals. The values were obtained by applying a constant reduction factor starting at the
adjusted cost in 2020. For MPUs the factor (2.47) is computed by diving a gate cost
in 2015 by its cost in 2020. For HDDs the factor (3.16) is computed by dividing the
cost of an SSD byte in 2015 by its cost in 2020.

2025 2030 2035 2040

“Adjusted” cost (US$)/byte (×10−13) 6.95 2.20 0.70 0.22

“Adjusted” cost (US$)/gate (×10−9) 2.66 1.08 0.44 0.18

Bytes/gate 3822.5 4886.9 6247.7 7987.4

B Security Estimates

Table 10. Security estimates in terms of years produced by the budget-based cost
model and following the procedure from Sect. 6. The estimates are expressed as the
base-2 logarithms of the number of years required to break a given primitive under
a fixed budget. Results correspond to key-search on AES using Oechslin’s rainbow
chains, collision-search on SHA-3 using vOW (case of small number of collisions) and
golden collision-search on SIKE using vOW (case of large number of collisions). The
hardware (computing power and memory) costs used for the analysis can be found in
Appendix A.

AES key-search SHA-3 coll. SIKE collisions

Security level Security level log p log p (This work)

Budget Year 1 3 5 2 4 434 503 610 751 377 546 697

US$10 mill. 2020 39 104 168 41 105 69 95 139 189 50 114 177

2030 37 101 166 38 102 65 91 134 185 46 110 173

2040 34 99 163 35 99 60 87 130 181 42 106 168

US$100 mill. 2020 36 101 165 37 105 64 90 134 184 45 109 172

2030 33 98 162 35 99 60 86 129 180 41 105 168

2040 31 95 160 32 96 55 82 125 176 37 101 163

US$1 billion 2020 33 97 162 34 98 59 85 129 179 40 104 167

2030 30 95 159 31 95 55 81 124 175 36 100 163

2040 28 92 156 29 93 51 77 120 171 32 96 158
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Abstract. SIDH is a post-quantum key exchange algorithm based on
the presumed difficulty of finding isogenies between supersingular elliptic
curves. However, SIDH and related cryptosystems also reveal additional
information: the restriction of a secret isogeny to a subgroup of the curve
(torsion-point information). Petit [31] was the first to demonstrate that
torsion-point information could noticeably lower the difficulty of finding
secret isogenies. In particular, Petit showed that “overstretched” param-
eterizations of SIDH could be broken in polynomial time. However, this
did not impact the security of any cryptosystems proposed in the lit-
erature. The contribution of this paper is twofold: First, we strengthen
the techniques of [31] by exploiting additional information coming from
a dual and a Frobenius isogeny. This extends the impact of torsion-point
attacks considerably. In particular, our techniques yield a classical attack
that completely breaks the n-party group key exchange of [2], first intro-
duced as GSIDH in [17], for 6 parties or more, and a quantum attack for
3 parties or more that improves on the best known asymptotic complex-
ity. We also provide a Magma implementation of our attack for 6 parties.
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We give the full range of parameters for which our attacks apply. Second,
we construct SIDH variants designed to be weak against our attacks; this
includes backdoor choices of starting curve, as well as backdoor choices
of base-field prime. We stress that our results do not degrade the security
of, or reveal any weakness in, the NIST submission SIKE [20].

1 Introduction

With the advent of quantum computers, commonly deployed cryptosystems
based on the integer-factorization or discrete-logarithm problems will need to
be replaced by new post-quantum cryptosystems that rely on different assump-
tions. Isogeny-based cryptography is a relatively new field within post-quantum
cryptography. An isogeny is a non-zero rational map between elliptic curves that
also preserves the group structure, and isogeny-based cryptography is based on
the conjectured hardness of finding isogenies between elliptic curves over finite
fields.

Isogeny-based cryptography stands out amongst post-quantum primitives
due to the fact that isogeny-based key-exchange achieves the smallest key sizes of
all candidates. Isogeny-based schemes also appear to be fairly flexible; for exam-
ple, a relatively efficient post-quantum non-interactive key agreement protocol
called CSIDH [8] is built on isogeny assumptions.

The Supersingular Isogeny Diffie–Hellman protocol, or SIDH, was the first
practical isogeny-based key-exchange protocol, proposed in 2011 by Jao and
De Feo [22]. The security of SIDH relies on the hardness of solving (a special
case of) the following problem:1

Problem 1 (Supersingular Isogeny with Torsion (SSI-T)). For a prime
p and smooth coprime integers A and B, given two supersingular elliptic curves
E0/Fp2 and E/Fp2 connected by an unknown degree-A isogeny ϕ : E0 → E, and
given the restriction of ϕ to the B-torsion of E0, recover an2 isogeny ϕ matching
these constraints.

SSI-T is a generalization of the “Computational Supersingular Isogeny problem”,
or CSSI for short, defined in [22]. Although the CSSI problem that appears in the
literature also includes torsion information, we use the name SSI-T to stress the
importance of the additional torsion information. Additionally, we consider more
flexibility in the parameters than CSSI to challenge the implicit assumption that
even with torsion information the hardness of the protocol always scales with
the degree of the isogenies and the characteristic p of the field.

The best known way to break SIDH by treating it as a pure isogeny problem is
a claw-finding approach on the isogeny graph having classical complexity O(

√
A·

1 See Sect. 2.2 for how the objects discussed are represented computationally.
2 These constraints do not necessarily uniquely determine ϕ, but any efficiently com-

putable isogeny from E0 to E is usually enough to recover the SIDH secret [18,37].
Moreover, ϕ is unique whenever B2 > 4A [28, § 4].
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polylog(p)) and no known quantum speedups viable in reality [23].3 However, it
is clear that SSI-T provides the attacker with more information than the “pure”
supersingular isogeny problem, where the goal is to find an isogeny between two
given supersingular elliptic curves without any further hints or restrictions.

The first indication that additional torsion-point information could be
exploited to attack a supersingular isogeny-based cryptosystem was an active
key-reuse attack against SIDH published in 2016 [18] by Galbraith, Petit, Shani,
and Ti. In [18] the attacker sends key-exchange messages with manipulated tor-
sion points and detects whether the key exchange succeeds. This allows recovery
of the secret key within O(log A) queries. To mitigate this attack, [18] proposes
using the Fujisaki–Okamoto transform, which generically renders a CPA-secure
public-key encryption scheme CCA-secure, and therefore thwarts those so-called
reaction attacks. The resulting scheme Supersingular Isogeny Key Encapsulation,
or SIKE [20] for short, is the only isogeny-based submission to NIST’s standard-
ization project for post-quantum cryptography [29], and is currently a Round 3
“Alternate Candidate”.

However, SSI-T can be easier than finding isogenies in general. Indeed, a line
of work [7,31] revealed a separation between the hardness of the supersingular
isogeny problem and SSI-T for some parameterizations. This is potentially con-
cerning because several similar schemes have been proposed that are based on
the more general SSI-T, and in particular, not clearly based on the CSSI prob-
lem as stated in [22] due to CSSI’s restrictions on A and B [2,5,11,14,17,34].
For example, for the security of the GSIDH n-party group key agreement [2,17],
SSI-T must hold for B ≈ An−1.

A particular choice made in SIKE is to fix the “starting curve” E0 to be a
curve defined over Fp that has small-degree non-scalar endomorphisms; these are
very rare properties within the set of all supersingular curves defined over Fp2 .
On its own, such a choice of starting curve does not seem to have any negative
security implications for SIKE. However, in addition to their active attack, [18]
shows that given an explicit description of both curves’ endomorphism rings, it is
(under reasonable heuristic assumptions) possible to recover the secret isogeny
in SIKE. The argument in [18] does not use torsion-point information, but only
applies if the curves are sufficiently close; recently [37] showed that if torsion-
point information is provided the two curves do not need to be close.

The approach for solving SSI-T introduced by Petit in 2017 [31] exploits
both torsion-point information and knowledge of the endomorphism ring of the
special starting curve. This attack is efficient for certain parameters, for which
the “pure” supersingular isogeny problem still appears to be hard. It uses the
knowledge of the secret isogeny restricted to a large torsion subgroup to recover
the isogeny itself, giving a passive heuristic polynomial-time attack on non-
standard variants of SIDH satisfying B > A4 > p4. However, in practice, for
all the SIDH-style schemes proposed in the literature so far, both A and B are

3 Note that the näıve meet-in-the-middle approach has prohibitively large memory
requirements. Collision finding à la van Oorschot–Wiener thus performs better in
practice, although its time complexity is worse in theory [1].
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taken to be divisors of p2 − 1, allowing torsion points to be defined over small
field extensions, which makes the resulting scheme more efficient. One of the
contributions of this work is extending torsion-point attacks to have a stronger
impact on parameterizations where A and B are divisors of p ± 1 or p2 − 1.

1.1 Our Contributions

We improve upon and extend Petit’s 2017 torsion-point attacks [31] in several
ways. Our technical results have the following cryptographic implications:

• We give an attack on n-party group key agreement [2,17], see Sect. 7.1 and
in particular Table 1. This attack applies to the GSIDH protocol of [17], not
to the SIBD procotol of [17]. Our attack yields, under Heuristic 2:

– A polynomial-time break for n ≥ 6.
– An improved classical attack for n ≥ 5.
– An improved quantum attack for n ≥ 3 (compared to the asymptotic

complexity for quantum claw-finding computed in [23]).
We provide a Magma [6] implementation of our attack on 6-party group key
agreement, see https://github.com/torsion-attacks-SIDH/6party.

• We give an attack on B-SIDH [11] that, under Heuristic 1, is asymptotically
better than quantum claw-finding (with respect to [23]), although it does not
weaken the security claims of [11] (see Sect. 7.2).

• We show that setting up a B-SIDH group key agreement in the natural way
would yield a polynomial-time attack for 4 or more parties (see Sect. 7.3).

• More generally, we solve Problem SSI-T (under plausible explicit heuristics)
in (Fig. 1):
1. Polynomial time when

– j(E0) = 1728, B > pA, p > A, A has (at most) O(log log p) distinct
prime factors, and B is at most polynomial in A (Proposition 9 and
Corollary 7).

– j(E0) = 1728, B >
√

pA2, p > A, A has (at most) O(log log p) distinct
prime factors, and B is at most polynomial in A (Proposition 11 and
Corollary 8).

– E0 is a specially constructed “backdoor curve”, B > A2, and A has
(at most) O(log log p) distinct prime factors (Theorem 15 and Algo-
rithm 3).

– j(E0) = 1728 and p is a specially constructed backdoor prime
(Sects. 5.3 and 5.4).

2. Superpolynomial time but asymptotically more efficient than meet-in-the-
middle on a classical computer when

– j(E0) = 1728, B > max
{√

pA
3
4 , A, p

}
, A has (at most) O(log log p)

distinct prime factors, and B is at most polynomial in A (Corol-
lary 26).

– j(E0) = 1728, B >
√

pA, A has (at most) O(log log p) distinct prime
factors, and B is at most polynomial in A (Corollary 28).

https://github.com/torsion-attacks-SIDH/6party
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– E0 is a specially constructed “backdoor curve” and A has (at most)
O(log log p) distinct prime factors (Proposition 31).

3. Superpolynomial time but asymptotically more efficient than quantum
claw-finding (with respect to [23]) when j(E0) = 1728, B >

√
p, A has

(at most) O(log log p) distinct prime factors, and B is at most polynomial
in A (Corollary 28).

Fig. 1. Performance of our attacks for j(E0) = 1728. Here A ≈ pα and B ≈ pβ . Param-
eters above the red, orange and yellow curves are parameters admitting a polynomial-
time attack, an improvement over the best classical attacks, and an improvement over
the best quantum attacks respectively. Parameters below the upper dashed line are
those allowing AB | (p2 − 1) as in [11]. Parameters below the lower dashed line are
those allowing AB | (p−1) as in [20,21]. The blue dot corresponds to SIKE parameters.
(Color figure online)

These cryptographic implications are consequences of the following new mathe-
matical results:

• In Sect. 3, we formalize the hardness assumption and reduction implicit in [31].
We call this hardness assumption the Shifted Lollipop Endomorphism (SLE)
Problem.

• In Sect. 4, we give two improved reductions to SLE (leading to our dual isogeny
attack and Frobenius isogeny attack).

• In Sect. 5, we:
– Introduce “backdoor” curves, which, when used as E0, allows us to solve

SSI-T in polynomial time if B > A2.
– Give a method to construct backdoor curves and study their frequency.
– Introduce “backdoor” primes, which, when used for p, allows us to solve

SSI-T in polynomial time.
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• In Sect. 6, we show how to extend both the dual isogeny attack and the
Frobenius isogeny attack to allow for superpolynomial attacks.

We emphasize that none of our attacks apply to the NIST candidate SIKE:
for each attack described in this paper, at least one aspect of SIKE needs to
be changed (e.g., the balance of the degrees of the secret isogenies, the starting
curve, or the base-field prime).

1.2 Comparison to Earlier Work

In [2], the authors estimated that the attack from [31] would render their scheme
insecure for 400 parties or more. In contrast, we give a complete break when there
are at least 6 parties.

The cryptanalysis done by Bottinelli et al. [7] also gave a reduction in the
same vein as Petit’s 2017 paper [31]. Our work overlaps with theirs (only) in
Corollary 8, and the only similarity in techniques is in the use of “triangu-
lar decomposition” [7, § 5.1], see the middle diagram in Fig. 4. Although their
improvement is akin to the one given by our dual isogeny attack, they require
additional (shifted lollipop) endomorphisms; unfortunately, we have not found a
way to combine the two methods. Moreover, our results go beyond [7] in several
ways: we additionally introduce the Frobenius isogeny attack (in particular giv-
ing rise to our attack on group key agreement). We consider multiple trade-offs
for both the dual and the Frobenius isogeny attacks by allowing for superpolyno-
mial attacks, as well as considering other starting curves and base-field primes.

1.3 Outline

In Sect. 2 we go over various preliminaries, including reviewing SIDH. In Sect. 3
we define the relevant hard isogeny problems and give a technical preview; we
also outline the idea behind our attacks and how they give rise to reductions
of the SSI-T Problem. In Sect. 4 we prove our reductions and give two new
algorithms to solve SSI-T in polynomial time for certain parameter sets. In
Sect. 5 we introduce backdoor curves E0 and backdoor primes p for which we
can solve SSI-T in polynomial time for certain parameter sets. In Sect. 6 we
extend the attacks of Sects. 4 and 5 to superpolynomial attacks. In Sect. 7 we
give the impact of our attacks on cryptographic protocols in the literature. In
Sect. 8 we pose an open question on constructing new reductions.

2 Preliminaries

2.1 The Supersingular Isogeny Diffie–Hellman Protocol Family

We give a somewhat generalized high-level description of SIDH [22]. Recall that
E[N ] denotes the N -torsion subgroup of an elliptic curve E and [m] denotes
scalar multiplication by m. The public parameters of the system are two smooth
coprime numbers A and B, a prime p of the form p = ABf −1, where f is a small
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cofactor, and a supersingular elliptic curve E0 defined over Fp2 together with
points PA, QA, PB , QB ∈ E0 such that E0[A] = 〈PA, QA〉 and E0[B] = 〈PB , QB〉.
The protocol then proceeds as follows:

1. Alice chooses a random cyclic subgroup of E0[A] as GA = 〈PA +[xA]QA〉 and
Bob chooses a random cyclic subgroup of E0[B] as GB = 〈PB + [xB ]QB〉.

2. Alice computes the isogeny ϕA : E0 → E0/〈GA〉 =: EA and Bob computes
the isogeny ϕB : E0 → E0/〈GB〉 =: EB .

3. Alice sends the curve EA and the two points ϕA(PB), ϕA(QB) to Bob. Simi-
larly, Bob sends

(
EB , ϕB(PA), ϕB(QA)

)
to Alice.

4. Alice and Bob use the given torsion points to obtain the shared secret curve
E0/〈GA, GB〉. To do so, Alice computes ϕB(GA) = ϕB(PA)+[xA]ϕB(QA) and
uses the fact that E0/〈GA, GB〉 ∼= EB/〈ϕB(GA)〉. Bob proceeds analogously.

The SIKE proposal [20] suggests various choices of (p,A,B) depending on
the targeted security level: All parameter sets use powers of two and three for A
and B, respectively, with A ≈ B and f = 1. For example, the smallest parameter
set suggested in [20] uses p = 2216 ·3137−1. Other constructions belonging to the
SIDH “family tree” of protocols use different types of parameters [2,11,17,34].

We may assume knowledge of End(E0): The only known way to construct
supersingular elliptic curves is by reduction of elliptic curves with CM by a
small discriminant (which implies small-degree endomorphisms: see [9,27]), or
by isogeny walks starting from such curves (where knowledge of the path reveals
the endomorphism ring, thus requiring trusted setup). A common choice when
p ≡ 3 (mod 4) is j(E0) = 1728 or a small-degree isogeny neighbour of that
curve [20]. Various variants of SIDH exist in the literature. We will call a variant
an SIDH-like protocol if its security can be broken by solving SSI-T for some
values of A and B.

In [2] the authors propose the following n-party key agreement, first intro-
duced as GSIDH in [17].4 The idea is to use primes of the form p = f

∏n
i=1 �ei

i −1
where �i is the i-th prime number, the i-th party’s secret isogeny has degree �ei

i ,
the i-th participant provides the images of a basis of the

∏n
j=1 �

ej

j /�ei
i torsion,

and f is a small cofactor. They choose the starting curve to be of j -invariant
1728 and choose the ei in such a way that all the �ei

i are of roughly the same
size. This is an example of an SIDH-like protocol; for this protocol to be secure
it is required that SSI-T be hard when A = �e1

1 and B = f
∏n

i=2 �ei
i . However,

we prove in Theorem 33 that SSI-T can be solved in polynomial time for 6 or
more parties; also see Table 1 for the complexity of our attack for any number
of parties.

Another example of a SIDH-like scheme is B-SIDH [11]. In B-SIDH, the
prime has the property that p2 − 1 is smooth (as opposed to just p − 1 being
smooth) and A ≈ B ≈ p. It would seem that choosing parameters this way one
has to work over Fp4 but in fact the scheme simultaneously works with the curve
and its quadratic twist (i.e., a curve which is not isomorphic to the original

4 [17] also proposes a different group key agreement, SIBD, to which our attack does
not apply.
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curve over Fp2 but has the same j -invariant) and avoids the use of extension
fields. The main advantage of B-SIDH is that the base-field primes used can be
considerably smaller than the primes used in SIDH. We discuss the impact of
our attacks of B-SIDH in Subsect. 7.2; although we give an improvement on the
quantum attack of [23] the parameter choices in [11] are not affected as they
were chosen with a significant quantum security margin.

The general concept of using primes of this form extends beyond the actual
B-SIDH scheme. As a final example of an SIDH-like scheme, consider the natural
idea of using B-SIDH in a group key agreement context. The reason that this
construction is a natural choice is that a large number of parties implies a large
base-field prime, which is an issue both in terms of efficiency and key size. Using a
B-SIDH prime could in theory enable the use of primes of half the size. However,
as we show in Corollary 35, such a scheme is especially susceptible to our attacks
and is broken in polynomial time for 4 or more parties.

2.2 Notation

Throughout this paper, we work with the field Fp2 for a prime p. In our analysis
we often want to omit factors polynomial in log p; as such, from this point on we
will abbreviate O(g ·polylog(p)) by O∗(g).5 Similarly, a number is called smooth,
without further qualification, if all of its prime factors are O∗(1). Polynomial
time without explicitly mentioning the variables means “polynomial in the rep-
resentation size of the input” — usually the logarithms of integers. An algorithm
is called efficient if its runs in polynomial time.

We let Bp,∞ denote the quaternion algebra ramified at p and ∞, for which
we use a fixed Q-basis 〈1,i,j,ij〉 such that j2 = −p and i is a nonzero endomor-
phism of minimal norm satisfying ij = −ji. Quaternions are treated symbolically
throughout; they are simply formal linear combinations of 1,i,j,ij.

For any positive integer N we write sqfr(N) for the squarefree part of N .

Representation of Elliptic-Curve Points and Isogenies. We will generally
require that the objects we are working with have “compact” representation
(that is, size polylog(p) bits), and that maps can be evaluated at points of
representation size polylog(p) in time polylog(p).

In the interest of generality, we will not force a specific choice of representa-
tion, but for concreteness, the following data formats are examples of suitable
instantiations:

• For an elliptic curve E defined over an extension of Fp and an integer N ,
a point in E[N ] may be stored as a tuple consisting of one point in E[qei

i ]
for each prime power qei

i in the factorization of N , each represented näıvely
as coordinates. This “CRT-style” representation has size polylog(p) when N
is powersmooth and polynomial in p. (In some cases, storing points in E[N ]

5 Each occurrence of polylog(p) is shorthand for a concrete, fixed polynomial in log p.
(The notation is not meant to imply that all instances of polylog(p) be the same).
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näıvely may be more efficient, for instance in the beneficial situation that
E[N ] ⊆ E(Fpk) for some small extension degree k.)

• A smooth-degree isogeny may be represented as a sequence (often of length
one) of isogenies, each of which is represented by an (often singleton) set of
generators of its kernel subgroup.

• Endomorphisms of a curve E0 with known endomorphism ring spanned by
a set of efficiently evaluatable endomorphisms may be stored as a formal Z-
linear combination of such “nice” endomorphisms. Evaluation is done by first
evaluating each basis endomorphism separately, then taking the appropriate
linear combination of the resulting points.

In some of our algorithms, we will deal with the restriction of an isogeny to
some N -torsion subgroup, where N is smooth. This object is motivated by the
auxiliary points ϕA(PB), ϕA(QB) given in the SIDH protocol (Sect. 2.1), and it
can be represented in the same way: The restriction of an isogeny ϕ : E → E′ to
the N -torsion subgroup E[N ] is stored as a tuple of points (P,Q,ϕ(P ), ϕ(Q)) ∈
E2 ×E′2, where {P,Q} forms a basis of E[N ]. Then, to evaluate ϕ on any other
N -torsion point R ∈ E[N ], we first decompose R over the basis {P,Q}, yielding
a linear combination R = [i]P + [j]Q. (This two-dimensional discrete-logarithm
computation is feasible in polynomial time as N was assumed to be smooth.)
Then, we may simply recover ϕ(R) as [i]ϕ(P )+ [j]ϕ(Q), exploiting the fact that
ϕ is a group homomorphism.

2.3 Quantum Computation Cost Assumptions

In the context of NIST’s post-quantum cryptography standardization pro-
cess [29], there is a significant ongoing effort to estimate the quantum cost of
fundamental cryptanalysis tasks in practice. In particular, while it seems well-
accepted that Grover’s algorithm provides a square-root quantum speedup, the
complexity of the claimed cube-root claw-finding algorithm of Tani [38] has been
disputed by Jaques and Schanck [23], and the topic is still subject to ongoing
research [24].

Several attacks we present in this paper use claw-finding algorithms as a sub-
routine, and the state-of-the-art algorithms against which we compare them are
also claw-finding algorithms. We stress, however, that the insight provided by
our attacks is independent of the choice of the quantum computation model. For
concreteness we chose the RAM model studied in detail by Jaques and Schanck
in [23], in which it is argued that quantum computers do not seem to offer a sig-
nificant speedup over classical computers for the task of claw-finding. Adapting
our various calculations to other existing and future quantum computing cost
models, in particular with respect to claw-finding, is certainly possible.

3 Overview

Standard attacks on SIDH follow two general approaches: they either solve the
supersingular isogeny problem directly, or they reduce finding an isogeny to
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computing endomorphism rings. However, SIDH is based on SSI-T introduced
above, where an adversary is also given the restriction of the secret isogeny to
the B-torsion of the starting curve E0. Exploiting this B-torsion information led
to a new line of attack as first illustrated in [31].

In Subsect. 3.1 we discuss the Supersingular Isogeny Problem and SSI-T.
Petit’s work was the first to show an apparent separation between the hardness
of SSI-T and the hardness of the Supersingular Isogeny Problem in certain set-
tings. In this work we introduce a new isogeny problem, the Shifted Lollipop
Endomorphism Problem (SLE). This problem was implicit in Petit’s work [31],
which contained a purely algebraic reduction from SSI-T to this new hard prob-
lem. We improve upon the work of [31] by giving two significantly stronger reduc-
tions. In Subsect. 3.2 we sketch the main idea behind the reduction obtained by
Petit. In Subsect. 3.3 we present a technical overview which covers the ideas
behind our two improved reduction variants.

In Sect. 4 we will present and analyze our two reductions, and give algorithms
to solve SLE for certain parameter sets. As we will see, the combination of our
reductions and our algorithms to solve particular parameter sets of SLE give rise
to two families of improvements on the torsion-point attacks of [31] on SIDH-like
protocols; these attacks will additionally exploit the dual of the secret isogeny
and the Frobenius isogeny.

3.1 Hard Isogeny Problems

We first review the most basic hardness assumption in isogeny-based cryptogra-
phy:

Problem 2 (Supersingular Isogeny). Given a prime p, a smooth integer A,
and two supersingular elliptic curves E0/Fp2 and E/Fp2 guaranteed to be A-
isogenous, find an isogeny ϕ : E0 → E of degree A.

In SIDH, we denote Alice’s secret isogeny ϕA : E0 → EA, but in general we
will denote some unknown isogeny by ϕ : E0 → E.

Recall that Alice’s public key contains not only the curve E but also the
points ϕ(P ), ϕ(Q) for a fixed basis {P,Q} of E0[B]. Since B is smooth, knowing
ϕ(P ) and ϕ(Q) allows us to efficiently compute the restriction of ϕ to the torsion
subgroup E0[B] [33]. Hence, it is more accurate to say that the security of SIDH
is based on SSI-T, which includes this additional torsion information.

One additional fact that is often overlooked is that the hardness of SIDH is
not based on a random instance of SSI-T, because the starting curve is fixed
and has a well-known endomorphism ring with small degree endomorphisms. It
is known that given an explicit description of both endomorphism rings End(E)
and End(E0), it is (under reasonable heuristic assumptions) possible to recover
the secret isogeny [18,37]. However, it is not clear if knowing only one of End(E)
and End(E0) makes the isogeny problem easier.
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Petit was the first to observe that knowing End(E0) could be
useful to show an apparent separation between the hardness of the
Supersingular Isogeny Problem and the hardness of SSI-T. In particular, in [31]
Petit gave a reduction from SSI-T to the following problem, which we will call
the Shifted Lollipop Endomorphism (SLE) Problem, where N = B.

Problem 3 (Shifted Lollipop Endomorphism (SLEN,λ)). Let p be a
prime, A and B be smooth coprime integers, and a supersingular elliptic curve
E0/Fp2 . Given a positive integer N , find the restriction of a trace-zero endomor-
phism θ ∈ End(E0) to E0[B], an integer d coprime to B, and a smooth integer
0 < e < λ such that

A2 deg θ + d2 = Ne. (1)

When λ is left unspecified we let SLEN denote SLEN,O∗(1).

Notice that SLEN only depends on the parameters (p,A,B,E0). It does not
depend on an unknown isogeny (it depends on A, which in practice will be the
degree of the unknown isogeny). Thus solving SLEN can be completed in a pre-
computation phase and applied to any unknown isogeny in a fixed SIDH protocol.
In [31], Petit was able to show solutions to SLEN where N = B in certain cases,
where End(E0) was known and has small-degree, non-scalar endomorphisms.

The goal of this work is to further investigate for which parameters there
exists a separation between SSI-T and the Supersingular Isogeny Problem. Intu-
itively, SLEN should become easier to solve as N increases, however, this is not
true in general and it is unclear how to find efficient reductions to SLEN for
most values of N . To this end, we will give two reductions: one reduction from
SSI-T to SLEN,λ where N = B2, and the other where N = B2p. Both reductions
run in O∗(λ

1
2 ), assuming A has only O(log log p) distinct prime factors, see The-

orems 3 and 5. We then investigate their impact on supersingular isogeny-based
protocols.

3.2 Petit’s Torsion-Point Attack

We begin this subsection by sketching Petit’s reduction from SSI-T to
SLEN where N = B. Suppose we are given an instance of SSI-T, that is,
(p,A,B,E0, E, ϕ|E[B]), where the goal is to recover the unknown isogeny ϕ.
We call an endomorphism on E that has the form ϕ ◦ θ ◦ ϕ̂ for some endomor-
phism θ on E0 a lollipop endomorphism, and an endomorphism of the form
ϕ ◦ θ ◦ ϕ̂ + [d] for d ∈ Z a shifted lollipop endomorphism; see Fig. 2 (this is
the motivation for the name of Problem SLE). We will now discuss how to find
a shifted lollipop endomorphism, as we will show in Lemma 4 how to use the
resulting shifted lollipop endomorphism to recover the secret isogeny.

The main idea of Petit’s original attack is that if (θ, d, e) forms a solution
to SLEB , then τ = ϕ ◦ θ ◦ ϕ̂ + [d] is a shifted lollipop endomorphism of degree
Be where e is smooth. Since deg τ = Be, it follows that τ also decomposes as
τ = η ◦ ϕ for two isogenies ϕ : E → E1 and η : E1 → E of degrees B and e; see
Fig. 3.
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E0

E

ϕ

θ

ϕ

E

ϕ◦θ◦ϕϕ◦θ◦ϕ+[d]

Fig. 2. Lollipop and Shifted Lollipop endomorphisms. The name “lollipop” endomor-
phism was inspired by the diagram on the left.

E τ=ϕ◦θ◦ϕ+[d]
E E1

deg=B

deg=e

Fig. 3. A decomposition of τ in Petit’s original attack

The restriction of ϕ to E0[B] given in Alice’s public key can be used to
construct the B-isogeny in the decomposition (the green arrow in Fig. 3), see [31]
for details. This can be done efficiently if θ is in a representation that can be
efficiently evaluated on E0[B]. As e is smooth, the e-isogeny in the decomposition
(the blue arrow) can be found via brute-force in time O∗(e

1
2 ). This gives us τ .

Subtracting [d] from τ gives ϕ ◦ θ ◦ ϕ̂.
Suppose the lollipop endomorphism ρ = ϕ ◦ θ ◦ ϕ̂ is cyclic. Then ker(ρ) ∩

E1[A] = ker ϕ̂. (The kernel of ρ can be calculated as A is smooth.) Once we have
found ϕ̂, it is easy to find the unknown isogeny ϕ. If ρ is not cyclic, then one can
still recover ϕ if A has O(log log p) distinct prime factors by using a technical
approach developed in [31, Section 4.3], for further details see Lemma 4. Thus
we have a reduction from SSI-T to SLEN where N = B, which is formalized in
the following theorem.

Theorem 1. Suppose we are given an instance of SSI-T where A has
O(log log p) distinct prime factors. Assume we are given the restriction of a
trace-zero endomorphism θ ∈ End(E0) to E0[B], an integer d coprime to B, and
a smooth integer e such that

deg(ϕ ◦ θ ◦ ϕ̂ + [d]) = Be.

Then we can compute ϕ in time O∗(
√

e) = O(
√

e · polylog(p)).

3.3 Technical Preview

Although the attack of [31] was the first to establish an apparent separation
between the hardness of SSI-T and the hardness of supersingular isogeny problem,
it did not affect the security of any cryptosystems that appear in the literature. In
this paper, we give two attacks improving upon [31] by additionally exploiting the
dual and the Frobenius conjugate of the secret isogeny respectively.
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The first attack, which we call the dual isogeny attack, corresponds to
reducing SSI-T to SLEN where N = B2.6 The second attack, which we call
the Frobenius isogeny attack, corresponds to reducing SSI-T to SLEN where
N = B2p. The run-time of each attack depends on the parametrization of the
cryptosystem, and one may perform better than the other for some choices of
parameters. We show the details in Theorem 3 and Theorem 5. We begin by
sketching the main ideas behind the reductions.

In the dual isogeny attack, finding a solution (θ, d, e) to SLEN with N = B2

corresponds to finding a shifted lollipop endomorphism τ = ϕ ◦ θ ◦ ϕ̂ + [d] on
E of degree B2e, with e smooth. Assume τ is cyclic (only for simplicity in this
overview; the general case is Theorem 3). Then since deg τ = B2e, it follows that
τ also decomposes as τ = ϕ′ ◦η ◦ϕ for three isogenies ϕ, η and ϕ′ of degrees B, e
and B, respectively: see the middle diagram in Fig. 4.

In the Frobenius isogeny attack, finding a solution (θ, d, e) to SLEN with
N = B2p corresponds to finding a shifted lollipop endomorphism τ = ϕ◦θ◦ϕ̂+[d]
that has degree B2pe, with e smooth. Assume τ is cyclic (only for simplicity in
this overview; the general case is Theorem 5). Since deg τ = B2pe, it follows that
τ also decomposes as τ = ϕ′ ◦η ◦π ◦ϕ for four isogenies ϕ, π, η and ϕ′ of degrees
B, p, e and B, respectively, where the isogeny of degree p is the Frobenius map
(x, y) → (xp, yp): see the right-hand diagram in Fig. 4.

E τ=ϕ◦θ◦ϕ+[d]
E

E1 E2

deg=B deg=B

deg=e

E

E1 E2

Eσ
1

deg=B deg=B

π deg=e

Fig. 4. A decomposition of τ in our two new attacks. Note: we take the dual of one
isogeny in the middle and right-hand diagrams to reverse its arrow. (Color figure online)

In both attacks we find τ by calculating each isogeny in the decomposition of
τ . In particular, we will use the restriction of ϕ to E0[B] given by Alice’s public
key to construct the two B-isogenies in the decomposition (the green arrows in
Fig. 4). Again this can be done efficiently if θ is in a representation that can be
efficiently evaluated on E0[B]. As e is smooth we can calculate the e-isogeny
in the decomposition (the blue arrow) via brute-force in time O∗(e

1
2 ). As we

can always construct the Frobenius map π (the purple arrow), this gives us τ .
The rest of the proof proceeds as with Petit’s original attack assuming A has
O(log log p) distinct prime factors, see Lemma 4 for details.

Remark 2. These methods are an improvement over Petit’s original attack, which
only utilized a shifted lollipop endomorphism τ of degree Be. There τ could only
be decomposed into two isogenies of degree B and e as in Fig. 3. Intuitively, Petit’s
original attack was less effective as a smaller proportion of τ could be calculated
6 See also [7] for a different reduction to SLEB2 , cf. Subsect. 1.2.
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directly, and hence a much larger (potentially exponential) proportion of the endo-
morphism needed to be brute forced. It is not clear how to find a better decompo-
sition with more computable isogenies than those given in Fig. 4 using the fixed
parameters and public keys given in SIDH protocols. Furthermore, we give reduc-
tions both to SLEB2 and SLEB2p, as increasing the degree of τ does not necessarily
make a shifted lollipop endomorphism τ easier to find.

Once an appropriate (θ, d, e) is found for a particular setting (that is, a
particular choice of p,A,B,E0), then the reduction outlines an algorithm that
can be run to find any unknown isogeny ϕ : E0 → E. In other words, there
is first a precomputation needed to solve SLEN and find a particular (θ, d, e).
Using this (θ, d, e), the above reduction gives a key-dependent algorithm to find
a particular unknown isogeny ϕ : E0 → E.

We now outline how to solve SLEN when N = B2p for a particular choice of
E0, see Algorithm 2 for details. A similar technique works when N = B2, see Algo-
rithm 1. In most supersingular isogeny-based protocols, the endomorphism ring of
E0 is known. A common choice of starting curve, in SIKE for example7, is where
E0 has j -invariant 1728. We show that in the Frobenius isogeny attack finding a
shifted lollipop endomorphism of degree B2pe reduces to finding a solution of

A2(a2 + b2) + pc2 = B2e. (2)

To proceed choose c and e such that pc2 = B2e modulo A2. The remaining
equation a2 + b2 = Be−pc2

A2 can be solved by Cornacchia’s algorithm a large
percentage of time; else the procedure is restarted with a new choice of e or c.

This method of solving SLEN can be used to attack the n-party group key
agreement [2]. We analyze this attack in Sect. 7.1, and show that it can be
expected, heuristically, to run in polynomial time for n ≥ 6. The results are
summarized in Table 1, and an implementation of this attack for n = 6 can be
found at https://github.com/torsion-attacks-SIDH/6party.

While we use the Frobenius isogeny attack to highlight vulnerabilities in
the isogeny-based group key agreement, we use the ideas from the dual isogeny
attack to investigate situations, namely different starting curves and base fields,
which would result in insecure schemes.

4 Improved Torsion-Point Attacks

In this section, we generalize and improve upon the torsion-point attacks from
Petit’s 2017 paper [31]; in our notation, Petit’s attack can be viewed as a
reduction of SSI-T to SLEB,λ together with O∗(1)-time algorithm to solve
SLEB,λ for certain parameter sets. In Subsect. 4.1, we introduce two new reduc-
tions from SSI-T to SLEN,λ, where N = B2 and N = B2p, respectively. The
runtime of both reductions is O∗(λ

1
2 ). The reductions exploit two new techniques:

a dual isogeny and the Frobenius isogeny.
7 Note that the newest version of SIKE [20] changed the starting curve to a 2-isogenous

neighbour of j = 1728, but this does not affect the asymptotic complexity of any
attack.

https://github.com/torsion-attacks-SIDH/6party
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In Subsect. 4.2 we give an algorithm to solve SLEN for N = B2 and N =
B2p, for specific starting curve8 E0 under explicit, plausible heuristics (Heuristic 1
and 2, respectively). For certain parameters these algorithms solve SLEN,λ forN =
B2 for λ = O∗(1) in polynomial time and SLEN for N = B2p for λ = O(log p) in
polynomial time. For these parameters, this solves SSI-T in time O∗(1).

4.1 Improved Torsion-Point Attacks

The main ingredient in Petit’s [31] attack can be viewed as a reduction of SSI-T
to SLEB . In this section we introduce our first extension of this attack: the
dual isogeny attack, which works by exploiting the dual isogeny of the (shifted
lollipop) endomorphism τ on E. We begin by giving the reduction for the dual
isogeny attack.

Theorem 3. Suppose we are given an instance of SSI-T where A has
O(log log p) distinct prime factors. Assume we are given the restriction of a
trace-zero endomorphism θ ∈ End(E0) to E0[B], an integer d coprime to B, and
a smooth integer e such that

deg(ϕ ◦ θ ◦ ϕ̂ + [d]) = B2e.

Then we can compute ϕ in time O∗(
√

e) = O(
√

e · polylog(p)).

We first state a technical lemma which mostly follows from [31, Section 4.3].

Lemma 4. Let A be a smooth integer with O(log log p) distinct prime factors,
and let E0/Fp2 and E/Fp2 be two supersingular elliptic curves connected by an
unknown degree-A isogeny ϕ. Suppose we are given the restriction of some τ ∈
End(E) to E[A], where τ is of the form τ = ϕ◦θ◦ϕ̂+[d] such that if E[m] ⊆ ker τ
then m | 2. Then we can compute ker ϕ in time O∗(1).

Proof. See the full version [13, Appendix A.1].

Proof (of Theorem 3). Suppose we have d, e and the restriction of θ to E[B] satisfy-
ing the conditions above. We wish to find an explicit description of τ = ϕ◦θ◦ϕ̂+[d].
Let m be the largest integer dividing B such that E[m] ⊆ ker τ . Since the degree
of τ is B2e, there exists a decomposition of the form τ = ψ′ ◦ η ◦ ψ ◦ [m], where ψ
and ψ′ are isogenies of degree B/m, ψ is cyclic, and η is an isogeny of degree e.

We proceed by deriving the maps in this decomposition. Since τ factors
through [m], this implies m divides tr(τ) = 2d. As we chose d coprime to B, this
shows m ∈ {1, 2}.

To compute ψ and ψ′, we start by finding the restriction of τ to the B-torsion.
This can be computed from what we are given: the restrictions of θ, [d], ϕ, hence
ϕ̂, to the B-torsion of the relevant elliptic curves. This also allows us to compute
m explicitly, as the largest integer dividing B such that E[m] ⊆ ker τ ∩ E[B].

Let τ ′ = ψ′ ◦ η ◦ ψ. The isogeny ψ can now be computed from the restriction
of τ to E[B]via
8 More generally, these attacks apply for any “special” starting curve in the sense of [26].
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ker ψ = ker τ ′ ∩ ([m] · E[B]) = (ker τ ∩ E[B])/E[m].

From the cyclicity of ψ, we can also deduce that ker ψ̂′ = τ(E[B]), which gives
ψ′ explicitly.

Finally, we recover the isogeny η by a generic meet-in-the-middle algorithm,
which runs in time O∗(

√
e) since e is smooth. Note that if e = O∗(1), then the

entire algorithm runs in time polylog(p). In this way we have found τ explicitly,
and by Lemma 4 can compute ϕ. ��

Next we give the reduction for the Frobenius isogeny attack, which works by
exploiting the Frobenius isogeny on E to improve, or at least alter, the dual
attack.

Theorem 5. Suppose we are given an instance of SSI-T where A has at most
O(log log p) distinct prime factors. Assume we are given the restriction of a
trace-zero endomorphism θ ∈ End(E0) to E0[B], an integer d coprime to B, and
a smooth integer e such that

deg(ϕ ◦ θ ◦ ϕ̂ + [d]) = B2pe .

Then we can compute ϕ in time O∗(
√

e) = O(
√

e · polylog(p)).

Proof. Let τ = ϕ ◦ θ ◦ ϕ̂ + [d]. As in the proof of Theorem 3, we can decompose
τ as ψ′ ◦ η ◦ ψ ◦ [m], where η has degree pe, and compute ψ and ψ′ efficiently.

We are left to recovering η. Instead of using a generic meet-in-the-middle
algorithm, we observe that η has inseparable degree p (since we are in the super-
singular case). Thus, η = η′ ◦ π, where π is the p-power Frobenius isogeny, and
η′ is of degree e. We use the meet-in-the-middle algorithm on η′ and recover the
specified runtime. ��
Remark 6. It is a natural question why we stick to the p-power Frobenius and
why the attack doesn’t give a better condition for a higher-power Frobenius
isogeny. The reason is that for supersingular elliptic curves defined over Fp2 ,
the p2-power Frobenius isogeny is just a scalar multiplication followed by an
isomorphism (since every supersingular j-invariant lies in Fp2), and hence would
already be covered by the method of Theorem 3.

More generally, see Sect. 8 for a more abstract viewpoint that subsumes both
of the reductions given above (but has not led to the discovery of other useful
variants thus far).

The complexity of both attacks relies on whether one can find a suitable
endomorphism θ with e as small as possible. In the next subsection we will
establish criteria when we can find a suitable θ when the starting curve has
j-invariant 1728.

4.2 Solving Norm Equations

In Subsect. 4.1 we showed two reductions (Theorem 3 and Theorem 5)
from SSI-T to SLEN where N = B2 and N = B2p. To complete the description
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of our attacks, we discuss how to solve SLEN in these two cases; that is, we want
to find solutions (θ, d, e) to

deg(ϕ ◦ θ ◦ ϕ̂ + [d]) = A2 deg θ + d2 = Ne,

where N = B2 or N = B2p.
The degree of any endomorphism of E0 is represented by a quadratic form

that depends on E0. To simply our exposition we choose E0/Fp : y2 = x3 + x
(having j = 1728), where p is congruent to 3 (mod 4). In this case the endomor-
phism ring End(E0) has a particularly simple norm form. To complete the dual
isogeny attack, it suffices to find a solution to the norm Eq. (3):

Corollary 7. Let p ≡ 3 (mod 4) and j(E0) = 1728. Consider coprime smooth
integers A,B such that A has (at most) O(log log p) distinct prime factors and
suppose that we are given an integer solution (a, b, c, d, e), with e smooth, to the
equation

A2(pa2 + pb2 + c2) + d2 = B2e . (3)

Then we can solve SSI-T with the above parameters in time O∗(
√

e).

Proof. Let ι ∈ End(E0) be such that ι2 = [−1] and let π be the Frobenius
endomorphism of E0. Let ϕ be as in Theorem 3. The endomorphism θ = aιπ +
bπ + cι and the given choice of d satisfies the requirements of Theorem 3. ��
To complete the Frobenius isogeny attack, we find a solution to the norm Eq.
(8):

Corollary 8. Let p ≡ 3 (mod 4) and j(E0) = 1728. Consider coprime smooth
integers A,B such that A has (at most) O(log log p) distinct prime factors and sup-
pose that we are given an integer solution (a, b, d, e), with e smooth, to the equation

A2(a2 + b2) + pd2 = B2e . (4)

Then we can solve SSI-T with the above parameters in time O∗(
√

e).

Proof. With ι and π as in the proof of Corollary 7, and ϕ as in Theorem 5,
the endomorphism θ = aιπ + bπ, together with the choice c = 0 satisfies the
requirements of Theorem 5 (to see this, multiply (4) through by p). ��

Now we present two algorithms for solving each norm Eq. (3) and (4). The
algorithms are similar in nature but they work on different parameter sets. See
Algorithms 1 and 2.

4.3 Runtime and Justification for Algorithms 1 and 2

The remainder of this section is devoted to providing justification that the algo-
rithms succeed in polynomial time.
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Algorithm 1: Solving norm equation 3.
Input: SIDH parameters p,A,B.
Output: A solution (a, b, c, d, e) to (3).

1 Set e := 2.
2 If e is a quadratic non-residue mod A2 then
3 Set e := e + 1 and go to Step 2.

4 Compute d such that d2 ≡ eB2 (mod A2).
5 If eB2 − d2 is a quadratic non-residue mod p then
6 Set e := e + 1 and go to Step 2.

7 Compute c as the smallest positive integer such that c2A2 ≡ eB2 − d2

(mod p).
8 If eB2 > d2 + c2A2 then
9 If eB2−d2−c2A2

A2p is prime then

10 If eB2−d2−c2A2

A2p ≡ 1 (mod 4) then

11 Find a, b ∈ Z such that a2 + b2 = eB2−d2−c2A2

A2p .
12 Return (a, b, c, d, e).

13 Set e := e + 1 and go to Step 2.

14 else
15 Return Failure.

Algorithm 2: Solving norm equation 4.
Input: SIDH parameters p,A,B.
Output: A solution (a, b, c, e) to (4).

1 Set e := 1.
2 While eB2

p is a quadratic non-residue mod A2 do
3 Set e := e + 1.

4 Compute c such that eB2 ≡ pc2 (mod A2).
5 If eB2 > pc2 then
6 If eB2−pc2

A2 is prime then
7 If eB2−pc2

A2 ≡ 1 (mod 4) then
8 Find a, b ∈ Z such that a2 + b2 = eB2−pc2

A2 .
9 Return (a, b, c, e).

10 Set e := e + 1 and go to Step 2.

11 else
12 Return Failure.
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Heuristic 1. Let p,A,B be SIDH parameters. Note that for each e, the equation

eB2 = d2 + c2A2 (mod A2p), (5)

may or may not have a solution (c, d). We assert two heuristics:

1. Amongst invertible residues e modulo A2p, which are quadratic residues mod-
ulo A2, the probability of the existence of a solution is approximately 1/2.

2. Amongst those e for which there is a solution, and for which the resulting
integer

B2e − d2 − c2A2

A2p
(6)

is positive, the probability that (6) is a prime congruent to 1 modulo 4 is
expected to be approximately the same as the probability that a random integer
of the same size is prime congruent to 1 modulo 4.

Justification. By the Chinese remainder theorem, solving (5) amounts to solving
eB2 ≡ d2 (mod A2) and eB2 ≡ d2 + c2A2 (mod p). If e is a quadratic residue
modulo A2, then the first of these equations has a solution d. Using this d,
the second equation has either no solutions or two, with equal probability. This
justifies the first item.

For the second item, this is a restriction of the assertion that the values of
the quadratic function B2e−d2 − c2A2, in terms of variables e, c and d, behave,
in terms of their factorizations, as if they were random integers. In particular,
the conditional probability that the value has the form A2pq for a prime q ≡ 1
(mod 4), given that it is divisible by A2p, is as for random integers.

Proposition 9. Let ε > 0. Under Heuristic 1, if B > pA and p > A, but B is
at most polynomial in A, then Algorithm 1 returns a solution (a, b, c, d, e) with
e = O(log2+ε(p)) in polynomial time.

Proof. Checking that a number is a quadratic residue modulo p can be accom-
plished by a square-and-multiply algorithm. Checking that a certain number is
prime can also be accomplished in polynomial-time. Representing a prime as a
sum of two squares can be carried out by Cornacchia’s algorithm. Suppose one
iterates e a total of X times.

For the algorithm to succeed, we must succeed in three key steps in reasonable
time: first, that e such that e is a quadratic residue modulo A2 (Step 2) and
second, that eB2 − d2 is a quaratic residue modulo p (Step 5), and third, that
eB2−d2−c2A2

A2p is a prime congruent to 1 modulo 4 (Step 9–10). Suppose we check
values of e up to size X.

For Step 2, it suffices to find e an integer square, which happens 1/
√

X of
the time. When this is satisfied, the resulting d can be taken so d < A2. For Step
5, under Heuristic 1 Part 1, the probability that a corresponding c exists is 1/2.
Such a c can be taken with c < p. Under the given assumption that B > pA and
p > A, then

eB2 ≥ 2B2 > 2p2A2 > p2A2 + A4 > c2A2 + d2.
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So the quantity in Heuristic 1 Part 2 is positive. We can bound it by eB2/pA2.
Since B is at worst polynomial in A, the quantity B2/pA2 is at worst polynomial
in p, say pk. Hence, for Step 9–10, one expects at a proportion 1/ log(pkX) of
successes to find a prime congruent to 1 modulo 4. Such a prime is a sum of two
squares, and the algorithm succeeds.

Finally, we set X = log2+ε(p) to optimize the result. If one iterates e at most
log2+ε(p) times, one expects to succeed at Step 2 at least log1+ε(p)) times, to
succeed at Step 5 half of those times, and to succeed at Steps 9 and 10 at least
1/ log(pk log2+ε(p)) of those times. This gives a total probability of success, at
any one iteration, of 1/4k log2+ε(p). Hence we expect to succeed with polynomial
probability.

For the analysis of Algorithm 2, the following technical lemma is helpful.

Lemma 10. Let M be an integer. Let r be an invertible residue modulo M . Then
the pattern of e such that re is a quadratic residue repeats modulo N = 4 sqfr(M),
four times the squarefree part of M . Among residues modulo 4 sqfr(M), a pro-
portion of 1/2� of them are solutions, where � is the number of distinct primes
dividing M .

Proof. Suppose M has prime factorization M =
∏

i lei
i . A residue x modulo M

is a quadratic residue if and only if it is a quadratic residue modulo lei
i for every

i. For odd li, a residue modulo lei
i is a quadratic residue if and only if it is a

quadratic residue modulo li, by Hensel’s lemma. And a residue modulo 2e, e ≥ 3,
is a quadratic residue if and only if it is a quadratic residue modulo 8. By the
Chinese remainder theorem, re is a quadratic residue modulo M if and only if
re is a quadratic residue modulo 4 sqfr(M).

Heuristic 2. Let p,A,B be SIDH parameters. Let � be the number of distinct
prime divisors of A. Note that for each e, the equation

eB2 = pc2 (mod A2) (7)

may or may not have solutions c. We assert two heuristics:

1. As e varies, the probability that it has solutions is 1/2�.
2. Amongst those e for which there is a solution, and for which the resulting

integer
B2e − pc2

A2
(8)

is positive, the probability that (8) is a prime congruent to 1 modulo 4 is
expected to be approximately the same as the probability that a random integer
of the same size is prime congruent to 1 modulo 4.

Justification. Consider the first item. Modulo each prime dividing A2, the
quadratic residues vs. non-residues are expected to be distributed “randomly”,
resulting in a random distribution modulo 4 sqfr(A), by Lemma 10.
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For the second item, this is a restriction of the assertion that the values of the
quadratic function B2e − pc2, in terms of variables e and c, behave, in terms of
their factorizations, as if they were random integers. In particular, the conditional
probability that the value has the form A2q for a prime q ≡ 1 (mod 4), given
that it is divisible by A2, is as for random integers.

Proposition 11. Under Heuristic 2, if B >
√

pA2, A has O(log log p) distinct
prime factors, B is at most polynomial in A, and9 p > A, then Algorithm 2
returns a solution (a, b, c, e) with e = O(log p) in polynomial time.

Proof. Checking that a number is a quadratic residue can be accomplished by
a square-and-multiply algorithm. Checking that a certain number is prime can
also be accomplished in polynomial-time. Representing a prime as a sum of two
squares can be carried out by Cornacchia’s algorithm.

For the algorithm to succeed, we must succeed in two key steps in reasonable
time: first, that e such that eB2/p is a quadratic residue (Step 2) and second,
that eB2−pc2

A2 is a prime congruent to 1 modulo 4 (Step 6–7). Suppose we check
values of e up to size X.

By Heuristic 2 Part 1, we expect to succeed at Step 2 with probability 1/2�,
where � is the number of distinct prime divisors of A.

When this is satisfied, the resulting c can be taken so c < A2. Under the
given assumption that B >

√
pA, then

eB2 ≥ B2 > pA4 > pc2.

So the quantity in Heuristic 2 Part 2 is positive. We can bound it above by
eB2/A2, and using the assumption that B is at most polynomial in A, we bound
this by < pkX for some k. So we expect to succeed in Step 6–7 with probability
1/2 log(pkX). The resulting prime is a sum of two squares, and the algorithm
succeeds. Thus, taking X = O(log p) suffices for the statement.

Remark 12. In practice, in Algorithm 2 it may be more efficient to increment c
by multiples of A2 in place of incrementing e. This however makes the inequalities
satisfied by A, B, and p slightly less tight so for the sake of cleaner results we
opted for incrementing only e.

Remark 13. If parameters A and B are slightly more unbalanced (i.e., B >
rA2√p for some r > 100), then instead of increasing e it is better to fix e and
increase c by A2 in each step.

5 Backdoor Instances

In this section we give a method to specifically create instantiations of the SIDH
framework for which we can solve SSI-T more efficiently. So far all of our results
were only considering cases where the starting curve E0 has j -invariant 1728.
9 In the proof, it suffices to take pk > A for any k.



Improved Torsion-Point Attacks on SIDH Variants 453

In Sect. 5.1 we explore the question: For given A,B can we construct starting
curves for which we can solve SSI-T with a better balance? We will call such
curves backdoor curves (see Definition 14), and quantify the number of backdoor
curves in Sect. 5.2. In Sects. 5.3 and 5.4, we also consider backdoored choices of
(p,A,B), for which we can solve SSI-T more efficiently even when starting from
the curve with j -invariant 1728.

5.1 Backdoor Curves

This section introduces the concept of backdoor curves and how to find such
curves. Roughly speaking, these are specially crafted curves which, if used as
starting curves for the SIDH protocol, are susceptible to our dual isogeny attack
by the party which chose the curve, under only moderately unbalanced param-
eters A,B; in particular, the imbalance is independent of p. In fact, when we
allow for non-polynomial time attacks we get an asymptotic improvement over
meet-in-the-middle for balanced SIDH parameters (but starting from a backdoor
curve). These curves could potentially be utilized as a backdoor, for example by
suggesting the use of such a curve as a standardized starting curve. We note
that it does not seem obvious how backdoored curves, such as those generated
by Algorithm 3, can be detected by other parties: The existence of an endo-
morphism of large degree which satisfies Eq. 3 does not seem to be detectable
without trying to recover such an endomorphism, which is hard using all cur-
rently known algorithms. The notion of backdoor curves is dependent on the
parameters A,B, which motivates the following definition:

Definition 14. Let A,B be coprime positive integers. An (A,B)-backdoor
curve is a tuple (E0, θ, d, e), where E0 is a supersingular elliptic curve defined
over some Fp2 , an endomorphism θ ∈ End(E0) in an efficient representation,
and two integers d, e such that Algorithm 5 solves SSI-T for that particular E0

in time polynomial in log p when given (θ, d, e).

The main result of this section is Algorithm 3 which computes (A,B)-
backdoor curves in heuristic polynomial time, assuming we have a factoring
oracle (see Theorem 15).

Theorem 15. Given an oracle for factoring, if A has (at most) O(log log p)
distinct prime factors, then Algorithm 3 can heuristically be expected to succeed
in polynomial time.

Remark 16. The imbalance B > A2 is naturally satisfied for a group key agree-
ment in the style of [2] with three or more participants; we can break (in poly-
nomial time) such a variant when starting at an (A,B)-backdoor curve.

Before proving Theorem 15 we need the following easy lemma:

Lemma 17. Let p be a prime congruent to 3 modulo 4. Let D be a positive
integer. Then the quadratic form Q(x1, x2, x3, x4) = px2

1 + px2
2 + x2

3 − Dx2
4 has

a nontrivial integer root if and only if D is a quadratic residue modulo p.
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Algorithm 3: Generating (A,B)-backdoor curves.

Input: A prime p ≡ 3 (mod 4) and smooth coprime integers A,B with
B > A2.

Output: An (A,B)-backdoor curve (E0, θ, d, e) with E0/Fp2 .
1 Set e := 1.
2 While true do
3 Find an integer d such that d2 ≡ B2e (mod A2).
4 If d is coprime to B then
5 If B2e−d2

A2 is square modulo p then
6 Find rational a, b, c such that pa2 + pb2 + c2 = B2e−d2

A2 .
7 break

8 Set e to the next square.

9 Set ϑ = aij + bj+ci∈ Bp,∞.
10 Compute a maximal order O ⊆ Bp,∞ containing θ.
11 Compute an elliptic curve E0 whose endomorphism ring is isomorphic to

O.
12 Construct an efficient representation of the endomorphism θ of E0

corresponding to ϑ.
13 Return (E0, θ, d, e).

Proof. The proof is essentially a special case of [36, Proposition 10], but we
give a brief sketch of the proof here. If D is a quadratic residue modulo p, then
px2

1 + px2
2 + x2

3 − Dx2
4 has a solution in Qp by setting x1 = x2 = 0 and x4 = 1

and applying Hensel’s lemma to the equation x2
3 = D. The quadratic form Q

also has local solutions everywhere else (the 2-adic case involves looking at the
equation modulo 8 and applying a 2-adic version of Hensel’s lemma). If on the
other hand D is not a quadratic residue modulo p, then one has to choose x3

and x4 to be divisible by p. Dividing the equation Q(x1, x2, x3, x4) = 0 by p and
reducing modulo p yields x2

1 + x2
2 ≡ 0 (mod p). This does not have a solution as

p ≡ 3 (mod 4). Finally, one can show that this implies that Q does not have a
root in Qp. ��
Proof (of Theorem 15). The main idea is to apply Theorem 3 in the following
way: using Algorithm 3, we find integers D, d, and e, with e polynomially small
and D a quadratic residue mod p, such that A2D + d2 = B2e, and an element
θ ∈ Bp,∞ of trace zero and such that θ2 = −D. We then construct a maximal
order O ⊆ Bp,∞ containing θ and an elliptic curve E0 with End(E0) ∼= O.

Most steps of Algorithm 3 obviously run in polynomial time, although some
need further explanation. We expect d2 ≈ A4 since we solved for d modulo B2,
and we expect e to be small since heuristically we find a quadratic residue after a
small number of tries. Then the right-hand side in step 6 should be positive since
B > A2, so by Lemma 17, step 6 returns a solution using Simon’s algorithm [36],
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assuming an oracle for factoring B2e−d2

A2 . For step 10, we can apply either of the
polynomial-time algorithms [19,39] for finding maximal orders containing a fixed
order in a quaternion algebra, which again assume a factoring oracle. Steps 11
and 12 can be accomplished using the heuristically polynomial-time algorithm
from [16,32] which returns both the curve E0 and (see [16, § 5.3, Algorithm 5])
an efficient representation of θ. ��
Remark 18. The algorithm uses factorization twice (once in solving the
quadratic form and once in factoring the discriminant of the starting order).
In the full version [13, Appendix C] we discuss how one can ensure in practice
that the numbers to be factored have an easy factorization.

Remark 19. Denis Simon’s algorithm [36] is available on his webpage.10 Fur-
thermore, it is implemented in MAGMA [6] and PARI/GP [3]. The main con-
tribution of Simon’s paper is a polynomial-time algorithm for finding nontrivial
zeroes of (not necessarily diagonal) quadratic forms which does not rely on an
effective version of Dirichlet’s theorem. In our case, however, we only need a
heuristic polynomial-time algorithm for finding a nontrivial zero (x, y, z, u) of a
form px2 + py2 + z2 − Du2. We sketch an easy way to do this: Suppose that
D is squarefree, and pick a prime q ≡ 1 (mod 4) such that −pq is a quadratic
residue modulo every prime divisor of D. It is then easy to see that the quadratic
equations px2 + py2 = pq and Du2 − z2 = pq both admit a nontrivial rational
solution which can be found using [12].

There are two natural questions that arise when looking at Theorem 15:

• Why are we using the dual attack and not the Frobenius attack?
• Why do we get a substantially better balance than we had before?

The answer to the first question is that we get a better result in terms of
balance. In the Frobenius version we essentially get the same bound for back-
door curves as for the curve with j -invariant 1728. The answer to the second
question is that by not restricting ourselves to one starting curve we only have
the condition that pa2+pb2+c2 is an integer and a, b, c can be rational numbers.

Remark 20. Backdoor curves also have a constructive application: An improve-
ment on the recent paper [14] using Petit’s attack to build a one-way function
“SÉTA”. In this scheme, the secret key is a secret isogeny to a curve Es that
starts from the elliptic curve with j -invariant 1728 and the message is the end
point of a secret isogeny from Es to some curve Em, together with the image of
some torsion points. The reason for using j -invariant 1728 is in order to apply
Petit’s attack constructively. One could instead use a backdoor curve; this pro-
vides more flexibility to the scheme as one does not need to disclose the starting
curve and the corresponding norm equation is easier to solve.

10 https://simond.users.lmno.cnrs.fr/.

https://simond.users.lmno.cnrs.fr/
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5.2 Counting Backdoor Curves

Having shown how to construct backdoor curves and how to exploit them, a
natural question to ask is how many of these curves we can find using the methods
of the previous section. Recall that the methods above search for an element
ϑ ∈ Bp,∞ with reduced norm D. Theorem 21 below suggests they can be expected
to produce exponentially (in log D) many different maximal orders, and using
Lemma 22 we can prove this rigorously for the (indeed interesting) case of (A,B)-
backdoor curves with AB ≈ p and A2 < B < A3 (cf. Theorem 15).

We first recall some notation from [30]. The set ρ(E��(O)) consists of the
reductions modulo p of all elliptic curves over Q with complex multiplication
by O. Each curve E = E mod p in this set comes with an optimal embed-
ding ι : O ↪→ End(E), referred to as an “orientation” of E, and conversely, [30,
Prop. 3.3] shows that — up to conjugation — each oriented curve (E, ι) defined
over Fp is obtained by the reduction modulo p of a characteristic-zero curve; in
other words, either (E, ι) or (E(p), ι(p)) lies in ρ(E��(O)). The following theorem
was to our knowledge first explicitly stated and used constructively in [10] to
build the “OSIDH” cryptosystem. The proof was omitted,11 but later published
by Onuki [30], whose formulation we reproduce here:

Theorem 21. Let K be an imaginary quadratic field such that p does not split
in K, and O an order in K such that p does not divide the conductor of O. Then
the ideal class group cl(O) acts freely and transitively on ρ(E��(O)).

Thus, it follows from well-known results about imaginary quadratic class
numbers [35] that asymptotically, there are h(−D) ∈ Ω(D

1
2−ε) many backdoor

elliptic curves counted with multiplicities given by the number of embeddings
of O. However, it is not generally clear that this corresponds to many distinct
curves (or maximal orders). As an (extreme) indication of what could go wrong,
consider the following: there seems to be no obvious reason why in some cases
the entire orbit of the group action of Theorem 21 should not consist only of one
elliptic curve with lots of independent copies of O in its endomorphism ring.

We can however at least prove that this does not always happen. In fact, in
the case that D is small enough relative to p, one can show that there cannot
be more than one embedding of O into any maximal order in Bp,∞, implying
that the h(−D) oriented supersingular elliptic curves indeed must constitute
h(−D) ≈ √

D distinct quaternion maximal orders:

Lemma 22. Let O be a maximal order in Bp,∞. If D ≡ 3, 0 (mod 4) is a posi-
tive integer smaller than p, then there exists at most one copy of the imaginary
quadratic order of discriminant −D inside O.

Proof. This follows readily from Theorem 2′ of [25].

This lemma together with Theorem 15 shows that there are Θ(h(−D)) many
(A,B)-backdoor maximal orders under the restrictions that B > A2 and D < p.

11 In [10] the theorem was referred to as a classical result, considered to be folklore.
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Consider the case (of interest) in which AB ≈ p: Following the same line of
reasoning as in the proof of Theorem 15 we have that B2/A2 − A2 ≈ D, which
if D < p ≈ AB implies that B � A3. Hence, as advertised above, Lemma 22
suffices to prove that there are Θ(h(−D)) many (A,B)-backdoor maximal orders
under the restriction that AB ≈ p and roughly A2 < B < A3. For larger choices
of B, it is no longer true that there is only one embedding of O into a quaternion
maximal order: indeed, at some point h(−D) will exceed the number Θ(p) of
available maximal orders, hence there must be repetitions. While it seems hard
to imagine cases where the orbit of cl(Z[θ]) covers only a negligible number of
curves (recall that θ was our endomorphism of reduced norm D), we do not
currently know how (and under which conditions) to rule out this possibility.

Remark 23. Having obtained any one maximal order O that contains θ, it is
efficient to compute more such orders (either randomly or exhaustively): For any
ideal a in Z[θ], another maximal order with an optimal embedding of Z[θ] is the
right order of the left ideal I = Oa. (One way to see this: a defines a horizontal
isogeny with respect to the subring O; multiplying by the full endomorphism ring
does not change the represented kernel subgroup; the codomain of an isogeny
described by a quaternion left ideal has endomorphism ring isomorphic to the
right order of that ideal. Note that this is similar to a technique used by [9] in
the context O ⊆ Q(π).)

5.3 Backdoored p for Given A and B with Starting Vertex j = 1728

Another way of constructing backdoor instances of an SIDH-style key exchange
is to keep the starting vertex as j = 1728 (or close to it), keep A and B smooth
or powersmooth (but not necessarily only powers of 2 and 3 as in SIKE), and
construct the base-field prime p to turn j = 1728 into an (A,B)-backdoor curve.
In this section, let E0 denote the curve E0 : y2 = x3 + x.

An easy way of constructing such a p is to perform steps 1 and 3 of Algo-
rithm 3, and then let D := B2e−d2

A2 . Then we can solve

D = p(a2 + b2) + c2

in variables a, b, c, p ∈ Z, p prime, as follows. Factor D − c2 for small c until the
result is of the form pm where p is a large prime congruent to 3 modulo 4 and m
is a number representable as a sum of squares.12

Then, with θ = aιπ + bπ + cι the tuple (E0, θ, d, e) is (A,B)-backdoor. (Note
that, in this construction, we cannot expect to satisfy a relationship such as
p = ABf − 1 with small f ∈ Z.)

As an (unbalanced) example, let us choose A = 2216 and B = 3300 and set
e = 1. Then we can use d = B mod A2. Let D = B2−d2

A2 , for which we will now
produce two primes: First, pick c = 53, then D − c2 is a prime number (i.e.,

12 Some choices of A and B result in D ≡ 2 (mod 4) which is an obstruction to this
method.
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a = 1, b = 0). Second, pick c = 355, then D − c2 is 5 times a prime number (i.e.,
a = 2, b = 1). Both of these primes are congruent to 3 modulo 4.

For a powersmooth example, let A be the product of every other prime from
3 up through 317, and let B be the product of all remaining odd primes ≤ 479.
With e = 4, we can again use d = B mod A2 and compute D as above. Then
D − 1532 is prime and congruent to 3 modulo 4 (i.e., a = 1, b = 0).

5.4 Backdoored p for Given A ≈ B with Starting Vertex j = 1728

For A ≈ B, finding (A,B)-backdoor curves seems difficult. However, in this
section we show that certain choices of (power)smooth parameters A and B
allow us to find f such that j = 1728 can be made insecure over any Fp2 with
p = ABf − 1.

One approach to this is to find Pythagorean triples A2 + d2 = B2 where A
and B are coprime and (power)smooth; then E0 : y2 = x3 + x is a backdoor
curve with θ = ι, the d value from the Pythagorean triple, and e = 1. With this
construction, we can then use any p ≡ 3 (mod 4), in particular one of the form
p = ABf − 1.

Note that given the isogeny degrees A,B, it is easy for anyone to detect if
this method has been used by simply checking whether B2 − A2 is a square;
hence, an SIDH key exchange using such degrees is simply weak and not just
backdoored.13

Problem 4. Find Pythagorean triples B2 = A2 + d2 such that A and B are
coprime and smooth (or powersmooth).

Pythagorean triples can be parameterized in terms of Gaussian integers. To
be precise, primitive integral Pythagorean triples a2 = b2 + c2 are in bijection
with Gaussian integers z = m + ni with gcd(m,n) = 1 via the correspondence
(a, b, c) =

(
N(z),Re(z2), Im(z2)

)
. The condition that m and n are coprime is

satisfied if we take z to be a product of split Gaussian primes, i.e., z =
∏

i wi

where N(w) ≡ 1 (mod 4) is prime, taking care to avoid simultaneously includ-
ing a prime and its conjugate. Thus the following method applies provided that
B is taken to be an integer divisible only by primes congruent to 1 modulo 4,
and B > A.

In order to guarantee that B = N(z) is powersmooth, one may take many
small wi. In order to guarantee that B is smooth, it is convenient to take z = wk

for a single small Gaussian prime w, and a large composite power k.
It so happens that the sequence of polynomials Re(zk) in variables n and m

(recall z = n + mi) factors generically into relatively small factors for composite
k, so that, when B2 = A2 + d2, we can expect that A is frequently smooth or
powersmooth. In practice, running a simple search using this method, one very
readily obtains example insecure parameters:

13 We resist the temptation of referring to such instantiations as “door” instead of
“backdoor”.
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B = 5105

A = 22 · 11 · 19 · 29 · 41 · 59 · 61 · 139 · 241 · 281 · 419 · 421 · 839 · 2381 · 17921
· 21001 · 39761 · 74761 · 448139 · 526679 · 771961 · 238197121

d = 32 · 13 · 79 · 83 · 239 · 307 · 2801 · 3119 · 3361 · 3529 · 28559 · 36791 · 53759
· 908321 · 3575762705759 · 23030958433523039

For this example, if we take p = 105AB − 1, we obtain a prime which is 3
modulo 4. Note that here B ≈ 2244 and A ≈ 2238. Many other primes can easily
be obtained (replacing 105 with 214, 222, etc.).

Remark 24. When choosing parameter sets to run B-SIDH [11], if the user is
very unlucky, they could hit an instance of such a weak prime. With this in
mind, it would be prudent to check that a given combination of A, B, and p
does not fall into this category before implementing such a B-SIDH instance.

6 Non-polynomial-time Attacks

So far we focused on polynomial-time algorithms both for the starting curve
E0 with j -invariant 1728 and for backdoor curves, which required the integer e
occuring in the attack to be polynomial in log p. However, the attack still works
when e is bigger, with decent scaling behaviour. Hence, we may (and will in
this section) consider algorithms which are exponential-time, yet improve on the
state of the art. The best known classical and quantum attacks for retrieving
an isogeny of degree A take time O∗(A

1
2 ); recall that we discussed quantum

claw-finding in Subsect. 2.3. We will adapt both the dual and the Frobenius
isogeny attacks of Sect. 4 to allow for some brute-force in order to attack balanced
parameters. We will also adapt the definition of backdoor curves to include curves
for which there exists an exponential dual isogeny attack that improves on the
state of the art, thus increasing the pool of backdoor curves.

6.1 Non-polynomial Time Dual Isogeny Attack for E0 : y2 = x3 + x

Recall from Sect. 4 that the dual isogeny attack consists of a “precomputation”
phase and a “key-dependent” phase. The precomputation phase (Algorithm 1)
was to find a solution to Eq. (3) — notably, this depends only on the parameters
(p,A,B) and not on the concrete public key under attack. The “key-dependent”
phase utilized said solution to recover the secret isogeny via Theorem 3 for a
specific public key. Our modifications to the dual isogeny attack come in three
independent guises, and the resulting algorithm is shown in Algorithm 6:

• Precomputation phase:
– Larger d: When computing a solution to Eq. (3), we fix e and then try

up to Aδ values for d until the equation has solutions. This allows us
to further relax the constraints between A, B, and p, at the price of an
exhaustive search of classical cost O∗(Aδ) or quantum cost O∗(A

δ
2 ) using

Grover’s algorithm.
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• Key-dependent phase:
– Larger e: We search for a solution to Eq. (3) where e is any smooth

number ≤ Aε with ε ∈ [0, 1], whereas in [31] the integer e was required
to be polynomial in log p. This relaxes the constraints on A and B, at
a cost of a O∗(e

1
2 ) = O∗(A

ε
2 ) computation, both classically and quan-

tumly, via a meet-in-the-middle or claw-finding algorithm (to retrieve the
endomorphism η defined in the proof of Theorem 3).

– Smaller A: We first näıvely guess part of the secret isogeny and then
apply the dual isogeny attack only on the remaining part for each guess;
see Fig. 5. More precisely, we iterate through isogenies of degree Aγ | A,
with γ ∈ [0, 1], and for each possible guess we apply the dual isogeny
attack to SSI-T with A′ := A1−γ in place of A. The Diophantine equation
to solve thus turns into

A′2(pa2 + pb2 + c2) + d2 = B2e . (9)

The cost of using A′ in place of A is the cost of iterating over the isogenies
of degree Aγ multiplied by the cost T of running the dual isogeny attack
(possibly adapted as above to allow for larger e). This is an exhaustive
search of cost O∗(Aγ ·T ) = O∗(Aγ+ ε

2 ) classically or O∗(A
γ
2 ·T ) = O∗(A

γ+ε
2 )

quantumly using Grover’s algorithm.14

degA = A1−γ degAγ

E0 E

Fig. 5. Brute-force guessing the degree Aγ part of Alice’s isogeny ϕ from Alice’s curve
E and the dual isogeny attack to find the remaining degree A′ part of ϕ from E0.

Proposition 25. Define α and β by setting A = pα and B = pβ and fix 0 <
α ≤ β. Under Heuristic 1, if

2β + αε ≥ max {4α + 2αδ − 4αγ, 2 + 2α − 2αδ − 2αγ} ,
14 For the reader who is wondering exactly how to apply Grover’s algorithm in this

context: Let 〈PA, QA〉 = E0[A
γ ]. The input for Grover’s algorithm here is an integer

n < Aγ and all of the input of Algorithm 5. Attempt Steps 2 and 3 for ϕg such that
ker(ϕg) = 〈PA + nQA〉; the output will be success or failure. Every subroutine of
Steps 2 and 3 can be broken down into basic elliptic curve arithmetic for which there
are known quantum algorithms of similar complexity to their classical counterparts.
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Algorithm 4: Solving the norm equation; precomputation.

Input: • SIDH parameters p,A = pα, B = pβ .
• Attack parameters δ, γ, ε ∈ [0, 1], with Aγ | A.

Output: A solution (a, b, c, d, e) to (9) with A′ = A1−γ and e ≤ Aε

smooth.
1 Pick a smooth number e ≤ Aε which is a square modulo A′2.
2 Compute d0 such that d20 ≡ eB2 (mod A′2).
3 For d′ = 1, 2, ..., �Aδ� such that d0 + A′2d′ <

√
eB do

4 Let d = d0 + A′2d′.
5 Find the smallest positive integer c such that c2A′2 = eB2 − d2

(mod p), or continue if no such c exists.
6 If eB2 > d2 + c2A′2 then
7 Try finding (a, b) such that a2 + b2 = eB2−d2−c2A′2

A′2p .
If a solution is found, return (a, b, c, d, e).

Algorithm 5: Recovering the secret isogeny; key-dependent phase.
Input: • All the inputs of Algorithm 4.

• An instance of SSI-T with those parameters, namely a curve E
and points P,Q ∈ E[B] where there exists a degree-A isogeny ϕ : E0 → E
such that P,Q are the images by ϕ of a canonical basis of E0[B].

• θ ∈ End(E0) and d, e ∈ Z such that deg(A′θ + d) = B2e with
e ≤ Aε smooth.
Output: An isogeny ϕ matching the constraints given by the input.

1 For ϕg : E → E′ an Aγ-isogeny do
2 Compute P ′ = [A−γ mod B]ϕg(P ) and Q′ = [A−γ mod B]ϕg(Q).
3 Use Theorem 3 to compute ϕ′ : E0 → E′ of degree A′ = A1−γ ,

assuming that P ′ and Q′ are the images by ϕ′

of the canonical basis of E0[B],
or conclude that no such isogeny exists.

4 If ϕ′ is found then
5 Return ϕ = ϕ̂g ◦ ϕ′.

Algorithm 6: Solving SSI-T.

1 Invoke Algorithm 4, yielding a, b, c, d, e ∈ Z, and then Algorithm 5 with
θ = aιπ + bπ + cι.
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A has (at most) O(log log p) distinct prime factors, and B is at most polynomial
in A, then Algorithm 6 solves SSI-T in time O∗(AΓ ) on a classical computer and
time O∗(AΓ/2) on a quantum computer, where

Γ := max
{1 + 3α − 2β

3α
,

2α − β

2α
,

1 + α − β

2α

}
.

Proof. See the full version [13, Appendix A.2]. ��
Corollary 26. Suppose that B is at most polynomial in A and that A has
(at most) O(log log p) distinct prime factors. When run on a classical com-
puter, Algorithm 6 is asymptotically more efficient than meet-in-the-middle—
disregarding memory concerns, so more efficient than O∗(A

1
2 )—whenever

B > max
{√

pA
3
4 , A, p

}
.

When run on a quantum computer, Algorithm 6 is asymptotically more efficient
than quantum claw-funding—according to the model in [23], so more efficient
than O∗(A

1
2 )—whenever

B > max
{√

p,A−1p
}

.

6.2 Non-polynomial Time Frobenius Isogeny Attack for
E0 : y2 = x3 + x

Recall the Frobenius isogeny attack from Sect. 4. In a similar way to the previous
section, we allow for some brute-force to improve the balance of our parameters.
More precisely, we consider again:

• Smaller A: Iterate through isogenies of degree Aγ |A; in the precomputation
we solve instead

A′2(a2 + b2) + pc2 = B2e, (10)

where A′ = A1−γ .

Algorithm 7 describes how to adapt the Frobenius isogeny attack of Sect. 4 in
this way.

Algorithm 7: Solving SSI-T.

1 (Precomputation) Invoke Algorithm 2 with inputs p,A′, B, yielding
a, b, c, e ∈ Z.

2 (Key-dependent) Run Algorithm 5 except that θ = aιπ + bπ ∈ End(E0)
instead satisfies the equation deg(A′θ + c) = B2ep and we use Theorem 5
in place of Theorem 3.

Proposition 27. Define α and β by A = pα and B = pβ, fix B ≥ A and B at
most polynomial in A, and suppose that A′ = A1−γ has (at most) O(log log p)
distinct prime factors. Under Heuristic 2, Algorithm 7 has complexity O∗ (Aγ) =
O∗

(
A

1+4α−2β
4α

)
classically and O∗(

A
γ
2
)

= O∗
(
A

1+4α−2β
8α

)
quantumly. Moreover,

the precomputation step runs in time O∗(1).
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Proof. See the full version [13, Appendix A.3].

Corollary 28. Suppose that B is at most polynomial in A and that A has
(at most) O(log log p) distinct prime factors. When run on a classical com-
puter, Algorithm 7 is asymptotically more efficient than meet-in-the-middle—
disregarding memory concerns, so more efficient than O∗(A

1
2 )—whenever B >√

pA. When run on a quantum computer, Algorithm 7 is asymptotically more
efficient than quantum claw-funding—according to the model in [23], so more
efficient than O∗(A

1
2 )—whenever B >

√
p.

Remark 29. It may seem natural to also allow for larger e as in the dual isogeny
attack. However, this limits how small A′ can be, and the gain from reducing
A′ is strictly better than the gain from increasing e. Intuitively this is because
A′ appears in Eq. 10 as a square, which doubles the gain compared to gain from
increasing e.

6.3 Non-polynomial Time Dual Isogeny Attack for Backdoor
Curves

Recall the definition of an (A,B)-backdoor curve (E0, θ, d, e) from Definition 14;
we now extend this to define backdoor curves that give rise to a torsion-point
attack of complexity O∗(AC ). In this section we explain how to modify Algo-
rithm 3 to compute these more general backdoor curves, and apply Algorithm 6
with such a backdoored starting curve E0 by replacing the precomputation step
with the modified Algorithm 3.

Definition 30. Let A,B be coprime positive integers and 0 ≤ C ≤ 1/2. An
(A,B,C )-backdoor curve is a tuple (E0, θ, d, e) of a supersingular elliptic curve
E0 over some Fp2 , an endomorphism θ ∈ End(E0) in an efficient representation,
and two integers d, e, such that Algorithm 5 solves SSI-T for that particular E0

in time O∗(AC ) when given (θ, d, e). An (A,B, 0)-backdoor curve is then an
(A,B)-backdoor curve in the sense of Definition 14.

To construct (A,B,C )-backdoor curves, we modify Algorithm 3 as follows:

• Use A′ = A1−γ instead of A, namely we will guess part of the isogeny with
degree Aγ | A.

• Instead of starting from e = 1, choose Aε′
random values of A′4B−2 < e ≤ Aε

(note e is not necessarily an integer square) until there exists d such that
d2 = B2e mod (A′)2,

B2e − d2 > 0 (11)

and B2e − d2 is a square modulo p. Once these values of d and e are found,
continue like in Algorithm 3, Step 6.

Proposition 31. Heuristically, if A has (at most) O(log log p) distinct prime
factors:
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• Let C ∈ [0, 0.4]. For A, B such that B > A2− 5
2 ·C , Algorithm 3 modified as

above constructs a (A,B,C )-backdoor curve in time O∗(AC ) on a classical
computer, assuming an oracle for factoring.

• Let C ∈ [0, 0.25]. For every A, B such that B > A2−4·C , Algorithm 3 con-
structs a (A,B,C )-backdoor curve in polynomial time on a quantum com-
puter.

Proof. See the full version [13, Appendix A.4].

Corollary 32. When A ≈ B (e.g. as in SIKE [21]), the modified Algorithm 3
computes a (A,B, 2

5 )-insecure curve in time O∗(A
2
5 ) on a classical computer and

computes a (A,B, 1
4 )-insecure curve in polynomial time on a quantum computer.

In particular, when A ≈ B ≈ √
p, there exist backdoor curves E0 for which we

can solve SSI-T on a classical computer in time O∗(p
1
5 ) and for which we can

solve SSI-T on a quantum computer in time O∗(p
1
8 ).

7 Impact on Unbalanced SIDH, Group Key Agreement,
and B-SIDH

We summarize how the results of Sects. 4, 6.1, and 6.2 impact unbalanced
SIDH with p ≈ AB, the GSIDH multiparty group key agreement [2,17], and
B-SIDH [11].

7.1 Frobenius Isogeny Attack on Group Key Agreement and
Unbalanced SIDH

Let us consider unbalanced SIDH with p ≈ AB. More precisely, we study
instances of SSI-T with p = AB · f − 1, where f is a small cofactor and where
A has (at most) O(log log p) distinct prime factors. Then by Proposition 11 and
Theorem 5, under Heuristic 2, the Frobenius isogeny attack of Sect. 4 gives a
polynomial-time attack on SSI-T when B >

√
pA2. Since in this section we

restrict to the case p ≈ AB, this inequality simplifies to B ≥ A5. In particular,
this gives us one of our main results:

Theorem 33. Under Heuristic 2, the Frobenius isogeny attack presented in
Sect. 4 breaks the GSIDH n-party group key agreement protocol presented
in [2,17] in time polynomial in log p for all n ≥ 6.

Proof. Recall from Subsect. 2.1 that the cryptanalytic challenge underlying the
n-party group key agreement as presented in [2,17] can be modelled as an
instance of SSI-T with A = �e1

1 , B = �e2
2 · · · �en

n , and p = AB · f − 1, where
�1, . . . , �n are primes such that for all i, j we have �ei

i ≈ �
ej

j and f is a small
cofactor chosen such that p is prime. Thus the security of the n-party group
key agreement is similar to that of unbalanced SIDH with the same p,A,B.
Suppose n ≥ 6. Since A is a prime power (hence has 1 = O(log log p) prime
divisors) and B ≥ A5, the Frobenius isogeny attack on the group key agreement
is polynomial-time when there are 6 or more parties. ��
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We have implemented this attack in Magma [6] for 6 parties, see the code
at https://github.com/torsion-attacks-SIDH/6party. The code is written to
attack the power-of-3 torsion subgroup, when p + 1 is powers of the first 6
primes, and uses cryptographically large parameters.

We know the Frobenius isogeny attack is polynomial on unbalanced SIDH
when B ≥ A5 (and the n-party group key agreement when n ≥ 6); it remains
to investigate the non-polynomial analogue. To this end, consider the attack
presented in Subsect. 6.2. As above, suppose given an instance of SSI-T with
p = AB ·f −1, where f is a small cofactor, such that A has (at most) O(log log p)
distinct prime factors, and now additionally suppose that B ≈ A1+ε, where 0 <
ε < 4. To apply this attack to n-party group key agreement with n = 2, 3, 4, 5,
just set ε = n − 2.

Proposition 34 demonstrates an improvement on the asymptotic complexity
for quantum claw-finding as analyzed in [23] for any level of imbalance (i.e.,
for any ε > 0). However, note that the only quantum subroutine used in our
Frobenius isogeny attack is Grover’s algorithm, so our complexity computation is
independent of the choice of quantum computation model used for claw-finding.
As such, using a more nuanced model working with concrete complexities, such
as the one presented in [24], will make our quantum attack start to “improve on
the state of the art” at different levels of imbalance. As our work currently only
presents asymptotic complexities, we are leaving an analysis of this for future
work.

Proposition 34. Let A,B be coprime smooth numbers where B > A1+ε, and let
p be a prime congruent to 3 (mod 4). Furthermore, suppose that p = ABf−1 for
some small cofactor f , and that the number of distinct prime factors of A is (at
most) O(log log p). Let E0/Fp be the supersingular elliptic curve with j-invariant
1728. Algorithm 7 solves SSI-T with these parameters in time O∗(

A1− ε
4
)

when

run on a classical computer and time O∗
(
A

1
2− ε

8

)
when run on a quantum com-

puter.

Proof. Let α = 1
2+ε and β = 1+ε

2+ε . Proposition 27 proves that Algorithm 7 runs
classically in time

O∗
(
A

1+4α−2β
4α

)
= O∗

(
A

(2+ε)+4−2(1+ε)
4

)
= O∗(

A1− ε
4
)
.

Similarly, Proposition 27 proves that Algorithm 7 runs quantumly in time

O∗
(
A

1+4α−2β
8α

)
= O∗

(
A

(2+ε)+4−2(1+ε)
8

)
= O∗

(
A

1
2− ε

8

)
.

��
As stated above, akin to the polynomial-time attack, substituting n = ε+2 in

Proposition 34 gives us the complexity of the non-polynomial Frobenius isogeny
attack on n-party group key agreement for n = 2, 3, 4, 5 parties, see Table 1.

https://github.com/torsion-attacks-SIDH/6party
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Table 1. Asymptotic complexities of our Frobenius isogeny attack on n-party key
agreement and comparison with the state of the art, i.e., meet-in-the-middle and claw-
finding. (As justified above, we take [23] for the “state-of-the-art” numbers for quantum
claw-finding here rather than [24]). Numbers given are the logarithm to base A of the
complexity, ignoring factors polynomial in log p.

# parties This work (classical) This work (quantum) MitM (classical) [23] (quantum)

2 1 1/2

3 3/4 3/8 | |
4 1/2 1/4 1/2 1/2

5 1/4 1/8 | |
≥ 6 0 0

7.2 Dual Isogeny Attack Applied to B-SIDH

A recent proposal called B-SIDH [11] consists of instantiating SIDH with param-
eters where AB is a divisor of p2−1. By Proposition 25, under Heuristic 1, when
A ≈ B ≈ p (that is, α ≈ β ≈ 1), Algorithm 6 yields a quantum attack on these
parameters of complexity O∗(A

1
3 ) = O∗(p

1
3 ). This compares to other attack com-

plexities in the literature as follows:

• Tani’s quantum claw-finding algorithm [38] was claimed to have com-
plexity O∗(p

1
3 ), but [23] argues that the complexity is actually no lower

than O∗(p
2
3 ) when the cost of data-structure operations is properly accounted

for.
• A quantum algorithm due to Biasse, Jao, and Sankar [4] finds some isogeny

between the start and end curve in time O∗(p
1
4 ). While there is a heuristic

argument for “standard” SIDH/SIKE that any isogeny suffices to find the
correct isogeny [18], this argument relies on the fact that the isogeny sought
in SIKE has relatively small degree compared to p, which is was not believed
to be true for B-SIDH. The B-SIDH paper [11] conservatively views [4] as the
best quantum attack. Since the publication of B-SIDH, it has been shown [37]
that [4] does in fact apply, so this is currently the best known quantum attack
against B-SIDH.

• The cost of known classical attacks is no lower than O∗(A
1
2 ), which is achieved

by meet-in-the-middle techniques (using exponential memory) and potentially
memoryless by Delfs and Galbraith [15] when A ≈ p assuming a sufficiently
efficient method to produce the isogeny from some isogeny.

Thus, assuming Heuristic 1 holds, Algorithm 6 is asymptotically better than
quantum claw-finding but is not the best known quantum attack against B-
SIDH at the moment.

Note that for 1/2 < α ≈ β < 1, the (quantum) attack cost in terms of p may
be lower than O∗(p

1
3 ), but it does not get smaller than O∗(p

1
4 ) and hence does

not improve on [4] for α ≈ β.
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7.3 Impact on B-SIDH Group Key Exchange

As an example of how care should be taken when constructing new SIDH-style
schemes, we also include a scheme that does not exist in the literature: group
key agreement instantiated with B-SIDH parameters. This is a natural scheme
to consider: The size of the base-field prime used in group key agreement grows
with the number of parties, and optimally chosen B-SIDH parameters (with
respect to efficiency) halves the bit-length of the base-field prime. Corollary 35
shows that such an instantiation is insecure for 4 or more parties:

Corollary 35. Let A,B be coprime smooth numbers and let p be a prime con-
gruent to 3 (mod 4). Furthermore, suppose that p2 − 1 = ABf for some small
cofactor f and that B > A3. Let E0 be the supersingular elliptic curve with j-
invariant 1728. Then, assuming Heuristic 1, SSI-T can be solved in polynomial
time.

Proof. The result follows from Proposition 9.

Finally, in Corollary 36 we give the complexity of our dual isogeny attack on an
instantiation of B-SIDH 3-party group key agreement with minimal base-field
prime:

Corollary 36. Let A,B be coprime smooth numbers and let p be a prime con-
gruent to 3 (mod 4). Furthermore, suppose that p2 − 1 = ABf for some small
cofactor f and that B > A2. Let E0 be the supersingular elliptic curve with j-
invariant 1728. Then, assuming Heuristic 1, Algorithm 6 solves SSI-T in time
O∗(A

1
4 ) = O∗(p

1
6 ) when run on a classical computer and time O∗(A

1
8 ) = O∗(p

1
12 )

when run on a quantum computer.

Proof. This follows from plugging α = 2/3 and β = 4/3 into Proposition 25.

8 Open Question

The two attack variants given in Theorems 3 and 5 may seem somewhat ad hoc
at first. In this Section, we describe a common abstraction for both variants and
discuss potential generalizations.

The core idea is to relax the choice of τ as an endomorphism of E, instead
allowing τ to be an isogeny from E to another curve E′:

Theorem 37. Suppose given an instance of SSI-T where A has O(log log p) dis-
tinct prime factors. Let ω : E → E′ be a known isogeny to some curve E′. Fur-
thermore, assume we are given the restriction to E0[B] of an isogeny ψ : E0 →
E′, and an integer d ∈ Z such that the isogeny τ = ψϕ̂ + dω ∈ Hom(E,E′) has
degree B2e, where e is smooth. Then, we can compute a matching isogeny ϕ in
time O∗(

√
e).

Proof. The proof is completely analogous to Theorems 3 and 5.
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The specific instantiations obtained as special cases earlier can be recovered as
follows:

• For Theorem 3, we simply use E′ = E, the map ω is the identity morphism
on E, and the isogeny ψ is an element of the set M ′ = ϕM ⊆ Hom(E0, E),
where M ≤ End(E0) is the subgroup of trace-zero endomorphisms of E0.

• For Theorem 5, we use the Galois conjugate E′ = Eσ of E, the map ω : E →
Eσ is the p-power Frobenius isogeny, and the isogeny ψ is an element of
the set M ′ = ϕσM ⊆ Hom(E0, E

σ), where M ≤ End(E0) is the subgroup
orthogonal to Frobenius π ∈ End(E0).15

In both cases, the choice of M ′ and ω is such that the resulting degree form for
the subgroup M ′ + ωZ of Hom(E0, E

′) has a sufficiently nice shape to be solved
efficiently using techniques such as those shown in Subsect. 4.2.

It is unclear whether there are any other choices of M ′ and ω which lead to an
efficiently solvable norm equation and potentially improved attacks. However, so
far we have not found any other ways to exploit this viewpoint beyond using ϕ
itself or its Galois conjugate. Finding other useful generalizations is an interesting
open problem.

Acknowledgements. Thanks to Daniel J. Bernstein for his insight into estimating
sizes of solutions to Eq. 3, to John Voight for answering a question of ours concerning
Subsect. 5.2, and to Boris Fouotsa for identifying errors in Proposition 34 and its proof.
We would also like to thank Filip Pawlega and the anonymous reviewers for their careful
reading and helpful feedback.
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Abstract. Learning parity with noise (LPN) is a notorious (average-
case) hard problem that has been well studied in learning theory, cod-
ing theory and cryptography since the early 90’s. It further inspires the
Learning with Errors (LWE) problem [Regev, STOC 2005], which has
become one of the central building blocks for post-quantum cryptog-
raphy and advanced cryptographic primitives. Unlike LWE whose hard-
ness can be reducible from worst-case lattice problems, no corresponding
worst-case hardness results were known for LPN until very recently. At
Eurocrypt 2019, Brakerski et al. [BLVW19] established the first feasi-
bility result that the worst-case hardness of nearest codeword problem

(NCP) (on balanced linear code) at the extremely low noise rate log2 n
n

implies the quasi-polynomial hardness of LPN at the high noise rate
1/2 − 1/poly(n). It remained open whether a worst-case to average-case
reduction can be established for standard (constant-noise) LPN, ideally
with sub-exponential hardness.

We start with a simple observation that the hardness of high-noise LPN
over large fields is implied by that of the LWE of the same modulus, and
is thus reducible from worst-case hardness of lattice problems. We then
revisit [BLVW19], which is the main focus of this work. We first expand
the underlying binary linear codes (of the NCP) to not only the balanced
code considered in [BLVW19] but also to another code (with a minimum
dual distance). At the core of our reduction is a new variant of smooth-
ing lemma (for both binary codes) that circumvents the barriers (inherent
in the underlying worst-case randomness extraction) and admits tradeoffs
for a wider spectrum of parameter choices. In addition to similar worst-
case hardness result obtained in [BLVW19], we show that for any con-

stant 0 < c < 1 the constant-noise LPN problem is (T = 2Ω(n1−c), ε =

2−Ω(nmin(c,1−c)), q = 2Ω(nmin(c,1−c)))-hard assuming that the NCP at the
low-noise rate τ = n−c is (T ′ = 2Ω(τn), ε′ = 2−Ω(τn), m = 2Ω(τn))-hard
in the worst case, where T , ε, q and m are time complexity, success rate,
sample complexity, and codeword length respectively. Moreover, refut-
ing the worst-case hardness assumption would imply arbitrary polynomial
speedups over the current state-of-the-art algorithms for solving the NCP

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12827, pp. 473–501, 2021.
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(and LPN), which is a win-win result. Unfortunately, public-key encryp-
tions and collision resistant hash functions need constant-noise LPN with
(T = 2ω(

√
n), ε′ = 2−ω(

√
n), q = 2

√
n)-hardness (Yu et al. CRYPTO 2016

& ASIACRYPT 2019), which is almost (up to an arbitrary ω(1) factor in
the exponent) what is reducible from the worst-case NCP when c = 0.5.
We leave it as an open problem whether the gap can be closed or there is
a separation in place.

Keywords: Foundations of cryptography · Worst-case to average-case
reduction · Learning parity with noise · Smoothing lemma

1 Introduction

1.1 Learning Parity with Noise

Learning parity with noise (LPN) [12] represents a noisy version of the “parity
learning problem” in machine learning as well as the “decoding random linear
codes” in coding theory. The conjectured hardness of the LPN problem implies
various cryptographic applications, such as symmetric encryption and authen-
tication [4,19,22,33,38–40,43], zero-knowledge proof for commitment schemes
[37], oblivious transfer [21], public-key cryptography [1] and collision resistant
hash functions [18,52]. Regev [46] introduced the problem of learning with errors
(LWE) by generalizing LPN to larger moduli and to a broader choice of noise
distributions. Both LPN and LWE are believed to be hard problems not suc-
cumbing to quantum algorithms and thus constitute promising candidates for
post-quantum cryptography. For the past fifteen years LWE has shown great suc-
cess in founding upon worst-case hard lattice problems [17,45,46] and as a ver-
satile building block for advanced cryptographic algorithms (such as fully homo-
morphic encryption [28] and attribute-based encryption [14,32]). In contrast,
its twelve-year elder cousin LPN remains much less understood. For instance,
it was not until recently did we get the first feasibility result about its root of
worst-case hardness [18].

The computational version of the Learning Parity with Noise (LPN) problem
with secret size n ∈ N and noise rate 0 < μ < 1/2 asks to recover the random

secret x given (A, A · x + e), where x $←− F
n
2 , A is a random q×n Boolean

matrix, e follows the q-fold Bernoulli distribution with parameter μ (i.e., taking
the value 1 with probability μ and the value 0 with probability 1 − μ), ‘·’ and
‘+’ denote (matrix-vector) multiplication and addition modulo 2 respectively.1

The decisional version of LPN challenges to distinguish (A, A ·x+e) from uni-
form randomness. In terms of hardness, the two LPN versions are polynomially
equivalent [6,27,39].

1 Another equivalent formulation is to find out s given as many (up to one’s resource
capacity) random noisy inner product 〈ai, s〉 + ei as possible. In this paper we use
the Ax + e representation that is consistent with that of the decoding problems.
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LPN has been extensively studied in learning theory, and it was shown in
[26] that an efficient algorithm for LPN would allow to learn several important
function classes such as 2-DNF formulas, juntas, and any function with a sparse
Fourier spectrum. Typically, the noise rate μ of LPN is constant (i.e., indepen-
dent of secret size n). The BKW (Blum, Kalai and Wasserman) algorithm [13]
solves LPN in time/sample complexity 2O(n/ log n). Lyubashevsky [42] introduced
“sample amplification” trick to obtain a variant of the BKW attack with time
complexity 2O(n/ log log n) and sample complexity q = n1+ε. If further restricted
to linearly many samples (i.e., q = O(n)) then the best attacks run in exponential
time. Alekhnovich’s work [1] implies an interesting variant of LPN (referred to
as low-noise LPN) in the noise regime of μ = 1/

√
n (or more generally μ = n−c

for 1/2 ≤ c < 1) that can be used to construct public-key crypto-systems. More
recently, Brakerski et al. [18] shows that LPN for noise rate μ = log2 n

n (called
extremely low-noise LPN) implies collision resistant hash functions. Note that
the best solvers for low-noise LPN runs in time poly(n) · eμn [7,10,41], so the
LPN at noise rate μ = log2 n

n is still polynomially hard despite the existence of
quasi-polynomial attacks. Alternatively, public-key encryption [51] and collision
resistant hash functions [52] can be constructed under the assumption that the
constant-noise LPN problem is 2ω(

√
n)-hard given 2

√
n samples, known as the

sub-exponential LPN assumption.

1.2 Nearest Codeword Problem and Worst-Case Hardness

Quite naturally, the worst-case decoding problem considered in [18] and this
work is the worst-case analogue of the LPN problem, known as the promise
version of the Nearest Codeword Problem (NCP). Informally, the problem is
about finding out sT ∈ F

n
2 given a generator matrix C ∈ F

n×m
2 for some [m,n]

binary linear code (m > n) and a noisy codeword tT = (sTC + xT) ∈ F
m
2 with

the promise that the error vector x ∈ F
m
2 has exact Hamming weight |x| = w,

as opposed to the general requirement |x| ≤ w. Note that the difference is not
substantial since having smaller weight can only make the problem easier (seen
by a simple reduction), and one can enumerate all possible values for w and
invoke the corresponding solver (for the exact weight). The non-promise version
of the NCP problem is known to be NP-hard even to approximate [7] and the
promise version is also NP-hard in the high-noise regime where the Hamming
weight of error vector |x| ≥ (1/2+ε)d for minimal distance d of the code and any
arbitrarily small constant ε [25]. As for the algorithms, Berman and Karpinski
[9] showed how to search for the O(n/ log n)-approximate nearest codeword in
polynomial time and Alon, Panigrahy and Yekhanin [2] gives a deterministic
algorithm with the same parameters, which is the current state-of-the-art for
solving NCP.

1.3 Worst-Case to Average-Case Reductions for LPN

We start with the “sample amplification” technique [42] that bears some resem-
blance to the smoothing lemma in [18]. The idea is to use polynomially many
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LPN samples, say (C, tT = (sTC+xT)), as a basis to generate much more sam-
ples (with a higher noise), which enables meaningful tradeoff between sample and
time complexities for the BKW algorithm. In more details, a “sample amplifi-
cation” oracle take as input (C, tT) and responds with (Cri, tTri = sTCri+
xTri) as the i-th re-randomized LPN sample, where ri ← R and (C, Cri, xTri)
is statically close to (C, Un, xTri) by the leftover hash lemma. Preferably dis-
tribution R should be maximized with min-entropy (of more than n bits) while
keeping as small Hamming weight as possible (to make xTri biased) at the same
time, so a natural candidate can be a random length-m-weight-d distribution or
similar (e.g., m-fold Bernoulli distribution for parameter d

m ), where d � m is a
tunable parameter. Döttling [23] used a computational version of this technique
which yields better parameters by relying on the dual-LPN assumption (in place
of the leftover hash lemma) for pseudorandomness generation.

In the context of reducing worst-case hard promise-NCP to average-case hard
LPN [18], let (C, tT = (sTC + xT)) be an NCP instance, where C ∈ F

n×m
2 ,

s ∈ F
n
2 , x ∈ F

m
2 with |x| = w are all fixed values, and the goal to generate

randomized LPN sample (Cri, tTri+uTCri = (sT+uT)Cri+ xTri) with random

u $←− F
n
2 and each ri drawn from a random weight-d distribution2. The difference

is that C is a generator matrix for a specific code (instead of being sampled from
uniform), and s is masked by random u. Brakerski et al. [18] showed that if C
belongs to a β-balanced code for β = O(

√
n/m), i.e., the Hamming distance

lies in between (1/2 − β)m and (1/2 + β)m, then (Cri, xTri) is 2
n
2 · ( 2w

m + β)d

close to (Un, xTri), where Pr[xTri = 1] = 1/2 − e−Θ( w
m d) is noise rate of the

LPN. As a main result3, the worst-case hardness of the NCP on balanced code
of noise rate w

m = log2 n
n implies the average-case hardness of LPN of noise

rate μ = 1/2 − 1/poly(n). This was the only known result for basing LPN on
worst-case hardness assumptions. It mainly establishes the feasibility result, i.e.,
assuming polynomial hardness for extremely low-noise NCP (for which quasi-
polynomial attacks are known) only to reach the conservative conclusion that
extremely high-noise LPN is quasi-polynomially hard. Therefore, it remained
open whether worst-hardness guarantee can be secured for LPN of a lower noise,
such as constant-noise LPN with sub-exponential hardness shown in this paper.

Curiously, one can investigate existentially (using probabilistic method) the
possibility of extending the reduction to constant-noise LPN. Think of a uni-
formly random C $←− F

n×m
2 , and by the leftover hash lemma (C,Cr,xTr) is

2−n-close to (C,Un,xTr) provided that the random m-choose-d distribution r
has sufficient min-entropy d log(m/d) = Ω(n). It follows by Markov inequality
that there exists at least a (1−2−n/2)-fraction of “good” C satisfying (Cr,xTr)
is 2−n/2-close to (Un,xTr). Take into account that x has

(
m
w

)
possible values,

the fraction of “bad” C amounts up to
(
m
w

)
2− n

2 . In terms of parameters, we set
w
md = Θ(1) for constant-noise LPN, noise rate w

m = ω( log n
n ) is necessary for the

2 Strictly speaking, ri is sampled from Rd,m whose definition is deferred to Sect. 2.1.
3 More generally, as an end result [18] proves the nO(λ)-hardness of LPN at noise rate

1/2 − 2−Ω(λ) for tunable parameter λ = ω(1), see Remark 2 for discussions.
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hardness assumption to hold and recall the entropy condition d log(m/d) = Ω(n),
which implies d = o( n

log n ) and thus

log
(

m

w

)
≈ w log(m/w) = Ω(

m

d
log d) = 2Ω(n/d) log d = nω(1) .

This means the upper bound
(
m
w

)
2−O(n) on the fraction of “bad” C is useless (i.e.,

greater than 1). In other words, we don’t have a straightforward non-constructive
proof that the worst-case hardness of NCP problem (on any binary linear codes)
implies the hardness of constant-noise LPN, and solving this problem needs new
ideas to beat the union bound.

1.4 Our Contributions

Prior to our main work, we give a worst-case hardness result for LPN over large
fields, which was introduced in [35] and used in various works, e.g., [3,5,15,
16,24,29,36,50]. Informally, the large-field LPN extends the original LPN to
a prime field Fp with a generalized Bernoulli distribution Br,p, which samples
a random element from Fp with probability r and sets to 0 with probability
1 − r. We show that the hardness of large-field LPN with noise r = 1 − Ω(1/αp)
is implied by that of LWE with the same dimension n and modulus p and
parameter αp for the discrete Gaussian distribution. In composition with known
worst-case to average-case reductions for LWE, this ensures worst-case hardness
for LPN with field size p ≥ poly(n) and high noise rate r = 1 − Ω(1/

√
n). To

our best knowledge, this result doesn’t seem to be known previously despite a
simple proof. However, similar to the end result of [18], it establishes worst-case
hardness guarantee only for LPN whose noise is inversely polynomial (Ω(1/

√
n)

more precisely) close to uniform.
Next we start our investigation on the original LPN (over the binary field).

We consider the promise version of NCP on two classes of binary linear codes,
i.e., balanced code considered in [18] and (a relaxed form of) independent code.
Informally, a β-balanced [m,n] code is a strengthened form of [m,n,m(1/2−β)]
code with maximal distance m(1/2 + β), and a k-independent [m,n] code is
dual to a [m,m − n, k + 1] code. Instead of sampling r from a random weight-
d distribution, we let r follow Bernoulli distribution Bm

d
m

(i.e., with expected
Hamming weight d). While this looks like a weakening of the distribution (r is
now only 2−Ω(d)-close to a random weight-roughly-d distribution), the condition
that all bits of r are independent is crucial for proving a tighter version of
smooth lemma that avoids the accumulative loss due to union bound. For proper
parameter choice that guarantees: (1) r is 2−Ω(d)-close to having min-entropy
d log(m/d) = Ω(n) and (2) the code exists in overwhelming abundance, we prove
for each code a corresponding smooth lemma that (Cr,xTr) is 2−Ω(d)

1−2μ -close to

(Un,xTr), where μ
def= Pr[xTr = 1] = 1/2 − 2−Θ( w

m d) is the noise rate of the
LPN. Compared to the unconditional case where (it can be shown that) Cr
is 2−Ω(d)-close to Un, the result is worsened by only a factor of 1

1−2μ , rather
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than suffering from the multiplicative factor
(
m
w

)
in the aforementioned non-

constructive analysis. The result of [18] falls into a corollary by setting w
m =

log2 n
n , m = poly(n), d = 2n/ log n such that μ = 1/2 − 1/poly(n). Furthermore,

our smoothing lemma allows to transform sub-exponential worst-case hardness
of NCP into the sub-exponential average-case hardness for constant-LPN, where
the underlying NCP lies in the low-noise regime w

m = n−c (0 < c < 1). In
particular, we assume there exists some constant 0 < ε < 1 such that NCP
problem is 2ε w

m n-hard on either code of codeword length, say4 m = 2
ε
8

w
m n. To

our best knowledge, the state-of-the-art algorithms [2,9] solve the worst-case
NCP with complexity poly(n,m)e

w
m n, and we are not aware of any algorithms

with additional accelerations for the balanced/independent codes. In fact, we
don’t even know a much better algorithm for its average-case analogue, i.e., the
LPN problem of noise rate μ = n−c (0 < c < 1) needs time poly(n)eμn to solve
with overwhelming success [41, Appendix C]. Falsifying our assumption would
imply arbitrary polynomial speedups over the current state-of-the-art, i.e., for
every constant ε > 0 there exists an algorithm that runs in time 2ε w

m n and solves
the problem in worst case (for at least infinitely many values of n), which is a
win-win situation.

Theorem 1 (main result, informal). Assume that the NCP problem at
noise rate w

m = n−c, on either balanced code or independent code, is (T =
2Ω(n1−c),m = 2Ω(n1−c))-hard. Then,

(1) for 0 < c < 1/2, the constant-noise LPN is (T = 2Ω(n1−c), ε = 2−Ω(nc), q =
2Ω(nc))-hard;

(2) for 1/2 ≤ c < 1, the constant-noise LPN is (T = 2Ω(n1−c), ε =
2−Ω(n1−c), q = 2Ω(n1−c))-hard.

Here the (T ,ε,q)-hardness of LPN refers to that no algorithm of time T
can solve LPN of q samples with probability better than ε. The constant-
noise LPN with sub-exponential hardness already implies efficient symmetric-key
cryptographic applications, and we further discuss possibilities of going beyond
minicrypt5. Unfortunately, for whatever reason that could be interesting, public-
key cryptography and collision resistant hash functions require constant-noise
LPN with (T = 2ω(n0.5), ε = 2−ω(n0.5), q = 2n0.5

)-hardness [51,52], in con-
trast to the (T = 2Ω(n0.5), ε = 2−Ω(n0.5), q = 2Ω(n0.5

)-hardness we established
for LPN when c = 0.5, where ω(·) omits a (arbitrarily small) super-constant
(see more discussions in Sect. 3.7). One might try to set c = 0.5 − δ to obtain
(T = 2Ω(n0.5+δ), ε = 2−Ω(n0.5−δ), q = 2Ω(n0.5−δ

)-hard LPN, and then rebalance T
and 1/ε to be of the same order (as in a typical hardness assumption). However,
we don’t know if such a time/success-rate tradeoff for LPN can be obtained in

4 We just need T ≥ poly(m, n). One may replace m = 2
ε
8

w
m

n with m = 2δε w
m

n for
any small constant δ. In general, the hardness of NCP (resp., LPN) is insensitive to
codeword length m (resp., sample complexity q).

5 minicrypt is Impagliazzo’s [34] hypothetical world where one-way functions exist but
public-key cryptography does not.
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general (without sacrificing q). We leave it as an open problem whether such a
gap can be closed with tighter proofs or there’s in a strict hierarchy in place.
On the other hand, the attempt to use our reduction for cryptanalysis, i.e., to
turn the BKW algorithm (for LPN) into a worst-case solver for constant-noise
NCP (i.e., w

m = O(1)), is not successful again due to some small gap. We refer
to Sect. 3.7 for further details.

2 Preliminaries

2.1 Notations, Definitions and Inequalities

Column vectors are represented by bold lower-case letters (e.g., s), row vectors
are denoted as their transpose (e.g., sT), and matrices are denoted by bold
capital letters (e.g., A). |s| refers to the Hamming weight of bit string s. We use
notations for sets and distributions as follows.

– Rm
d : the uniform distribution over set Rm

d
def= {r ∈ F

m
2 : |r| = d}.

– Rd,m: the distribution that first samples t1, · · · , tm uniformly and indepen-
dent from Rm

1 and then produces as output their XOR sum
⊕m

i=1 ti.
– Bq

μ
def= Bμ × · · · × Bμ︸ ︷︷ ︸

q

, where Bμ is Bernoulli distribution with parameter μ.

We use e for the natural constant and log(·) for binary logarithm. x $←− X
refers to drawing x from set X uniformly at random, and x ← X means drawing
x according to distribution X. X ∼ Y denotes that X and Y are identically
distributed. The collision probability of Y is defined as Col(Y ) def=

∑
y Pr[Y = y]2.

We denote by H∞(Y ) the min-entropy of random variable Y . poly(·) refers to
a certain polynomial. The statistical distance between X and Y , denoted by
SD(X,Y ) def= 1

2

∑
x |Pr[X = x] − Pr[Y = x]| . We say that X and Y are ε-close

if SD(X,Y ) ≤ ε. We refer to Appendix A for proofs omitted in the main body
and Appendix B for the inequalities, lemmas and theorems used in this paper.

2.2 Binary Linear Codes

Coding theory terminology typically refers to a linear code as [n, k]-code or
[n, k, d]-code, but we choose to use [m,n]-code (m > n) in order to be more
compatible with the LPN problem and [18], where n is the size of message
(secret to be decoded) and m is codeword length.

Definition 1 (binary linear code). A binary (m,n)-code is a set of codewords
C ⊂ F

m
2 with |C| = 2n (n < m), and a binary linear [m,n]-code C is a binary

(m,n)-code that is the row span of some generator matrix C ∈ F
n×m
2 , i.e., C def=

{sTC ∈ F
m
2 |sT ∈ F

n
2}.

Definition 2 (dual code/distance). The dual code of a binary linear [m,n]-
code C, denoted by C⊥, is a binary [m,m − n]-code C⊥ def= {d ∈ F

m
2 |∀c ∈ C : dTc =

0}. The dual distance of C, denoted by d⊥, is the minimum distance of C⊥.
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Definition 3 (minimum/maximum distance). The minimum (resp., max-
imum) distance of a binary linear code C refers to minx�=y∈C{|x − y|} (resp.,
maxx,y∈C{|x − y|}). A linear [m,n]-code with minimum distance d is called a
[m,n,d]-code.

A β-balanced code is a [m,n, 12 (1−β)m] code with maximal distance bounded
by 1

2 (1 + β)m. A binary linear code is k-independent if and only if its minimum
dual distance is at least k + 1 (i.e., its generator matrix has k-wise independent
columns). In the extreme case k = n, k-independent [m,n] code becomes a
maximum distance separable (MDS) code, but since binary MDS codes are trivial
we use k < n with further relaxed conditions.

Definition 4 (balanced code). A binary linear [m,n] code C ⊆ F
m
2 is β-

balanced if its minimum distance is at least 1
2 (1 − β)m and maximum distance

is at most 1
2 (1 + β)m.

Definition 5 (independent code). For a binary linear [m,n] code C ⊆ F
m
2 ,

– C is k-independent iff. every k columns of its generator matrix C are linearly
independent, i.e., ∀i ∈ [1, . . . , k] : Pr[Cr = 0 : r ← Rm

i ] = 0.
– C is (k,ζ)-independent iff. ∀i ∈ {k

2 , k
2 + 1, . . . , k} : Pr[Cr = 0 : r ← Rm

i ] ≤
2−n(1 + ζ).

The latter relaxes the independence condition by only enforcing it for i ∈ [k/2, k]
(instead of for all i ∈ (0, k]) and even for i ∈ [k/2, k] a slackness of ζ is allowed,
in the spirit of almost universal hash functions [48]. Note that there is nothing
special with the cut-off point k/2, which can be replaced with δk for any constant
0 < δ < 1 without affecting our results asymptotically.

The following lemmas assert that balanced code and independent code exist
in abundance and they both account for an overwhelming portion of linear code
(for the parameter choices of this paper). In other words, it is very likely that a
random matrix is both balanced and independent at the same time. The proof
of Lemma 1 follows a simple probabilistic argument (already given in [18]) while
as for the proof of Lemma 2 we exploit the pairwise independence in order to
apply the Chebyshev’s inequality. We refer interested readers to Appendix A
and Remark 3 for its proof and discussions. A similar result with k ≈ n/2 was
stated in [20, Theorem 6].

Lemma 1 (Existence of balanced code [18]). A random binary linear [n,m]-

code is β-balanced with probability at least 1−2n+1e− β2m
4 . In particular, for β ≥

2
√

n/m the random binary linear code is β-balanced with probability 1−2−Ω(n).

Remark 1 (existence vs. abundance). Lemma 1 states that β ≥ 2
√

n/m ensures
the overwhelming abundance rather than the mere existence of balanced codes.
We remark that the difference is not substantial, e.g., for any arbitrarily small
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ε > 0 by setting β ≥
√

4(n+1+ε log(e))
(log e)m ≈ 1.66

√
n/m we derive a corollary of

Lemma 1 that β-balanced [n,m]-code exists with a fraction of at least

1 − 2n+1e− β2m
4 ≥ 1 − e−ε ≈ ε .

The above is essentially the Gilbert-Varshamov bound that asserts the existence
of certain codes6, and it is almost tight for binary linear codes [11].

Lemma 2 (Existence of independent code). A random binary linear [m,n]

code C is (k, ζ)-independent with probability at least (1 − k2n+ log m
2 − k

2 log m
k

ζ2 ). In
particular, for k log(m/k) ≥ 16n and log m = o(n) the random binary linear
code is (k, 2−n)-independent with probability at least 1 − 2−4n.

2.3 The NCP and LPN Problem

Throughout, n is the main security parameter, and other parameters, e.g., μ =
μ(n), q = q(n), m = m(n) and T = T (n), can be seen as functions of n.

Definition 6 (Nearest Codeword Problem (NCP)). The nearest codeword
problem NCPn,m,w for n,m,w ∈ N refers to that given the input of a matrix
C ∈ F

n×m
2 of a binary linear code C and a noisy codeword tT = sTC + xT for

some s ∈ F
n
2 and x ∈ Rm

w , and the challenge is to find out a solution s′ such
that sTC + xT = s′TC + x′T for some x′ ∈ Rm

w . In particular, we consider the
NCP on the following codes:

– (Balanced NCP). The balanced nearest codeword problem, referred to as
balNCPn,m,w,β, is the NCPn,m,w on β-balanced linear [m,n]-code.

– (Independent NCP). The independent nearest codeword problem, denoted
by indNCPn,m,w,k,ζ , refers to the NCPn,m,w on (k, ζ)-independent linear
[m,n]-code.

Similar to one-way function, an instance of the NCP is considered solved as
long as a decoding algorithm comes up with any legitimate solution x′, which
does not necessarily equal the original x. In general, linear codes have unique
solutions except for a 2−m+n+2w log m fraction (see Lemma 3), which is super-
exponentially small for our parameter setting w log m = O(n) and m = Ω(n1+ε).
Moreover, balNCPn,m,w,β has unique solution for w < 1

4 (1 − β)m. Decisional
and computational LPN are polynomially equivalent even for the same sample
complexity [6].

6 Strictly speaking, Gilbert-Varshamov bound concerns with the existence of a code
with minimum distance m(1/2 − β) while the balanced code we consider requires
minimum/maximum distance m(1/2∓β) at the same time, where the difference can
be omitted due to the symmetry of binomial coefficient

(
m

m(1/2∓β)

)
centered on m/2.
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Definition 7 (Learning Parity with Noise (LPN)). The (computational)
LPN problem with secret length n, noise rate μ ∈ (0, 1/2) and sample complexity
q, denoted by LPNn,μ,q, asks to find out x given (A, A·x+e); and the decisional
LPN problem DLPNn,μ,q challenges to distinguish (A, A·x+e) and (A, Uq),

where matrix A $←− F
q×n
2 , x $←− F

n
2 , y $←− F

q
2, and e ← Bq

μ.

Computational hardness. We say that a computational/decisional problem
is (T ,ε)-hard, if every probabilistic algorithm running in time T solves it with
probability/advantage at most ε. We say that NCP (resp., LPN) is (T ,ε,q)-hard if
the problem is (T ,ε)-hard when the codeword length (resp., sample complexity)
does not exceed q. When the success-rate term ε = 1/T we often omit ε. Recall
that standard polynomial hardness requires that T > poly(n) and ε < 1/poly(n)
for every poly and all sufficiently large n’s.

Lemma 3 (Unique decoding of binary LPN). For w/m < 1/4,

Pr
C

$←−F
m×n
2

[
∃s1 �= s2 ∈ F

n
2 ,∃x1,x2 ∈ F

m
2 : |x1|, |x2| ≤ w∧

(
sT1C+xT

1 = sT2C+xT
2

)]

is upper bounded by 2−m+n+2w log m.

3 Worst-Case to Average-Case Reductions for LPN

3.1 Worst-Case Hardness for Large-Field LPN

Denote with LWEn,p,α and LPNn,r(Fp) the LWE problem and the large-field LPN
problem respectively, both of dimension n and over prime modulus p, where
the LWE’s noise follows the discrete Gaussian distribution DZ,αp of standard
deviation parameter αp, and the LPN’s noise distribution returns a random
element over Fp with probability r, and is set to 0 otherwise.

Lemma 4 (LWE implies high-noise LPN over Fp). Assume that LWEn,p,α

with prime p, α = o(1), αp = ω(log n) is hard, then LPNn,r(Fp) with r =
1 − Ω( 1

αp ) is hard.

Proof. Every LWE sample (ai,〈ai, s〉 + ei) can be transformed into an LPN

sample (a′
i,〈a′

i, s〉+e′
i) (over the same field) by multiplying with a random mi

$←−
Fp\{0}, where a′

i is the scalar-vector product miai, and e′
i = miei. For any ei �= 0

we have (a′
i,e

′
i) is uniformly distributed over Fn

p × (Fp \ {0}), and for ei = 0 it is
uniform over F

n
p × {0}. Thus, overall (a′

i,e
′
i) is an LPNn,r(Fp) sample with

1 − r = Pr[ei = 0] − 1 − Pr[ei = 0]
p − 1

≥ Ω(1/αp) − 2
p

≥ Ω(1/αp) .

Lemma 4 puts no lower bounds on the size of p, and recall that the LPN problem
becomes a special case of LWE for p = 2 (for which no reductions are needed).
However, in order for the LWE to be quantumly reducible from worst-case lattice
problems, we need q = poly(n) and αp = Ω(

√
n). The reduction can be made

classical at the cost of either a much larger modulus q ≥ 2n/2 or relying on a
non-standard variant of GapSVP [45].
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Theorem 2 ([46]). For any p ≤ poly(n), any αp ≥ 2
√

n and 0 < α < 1,
solving the (decisional) LWEn,p,α problem is at least as hard as quantumly solving
GapSVPγ and SIVPγ on arbitrary n-dimensional lattices, for some γ = Õ(n/α).

To summarize, based on the (quantum or even classical) worst-case hardness of
lattice problems, we establish up to 2O(n)-(average-case)-hardness of large-field
LPN for modulus p ≥ poly(n) and noise rate r = 1 − Ω(1/

√
n). Next, we will

revisit [18] and show worst-case to average-case reductions for constant-noise
LPN (over the binary field), which is the main focus of this work.

3.2 The Worst-Case to Average-Case Reduction from [18]

Brakerski et al. [18] showed that the worst-case hardness of the extremely low-
noise NCP problem on balanced code implies the (average-case) hardness of
extremely high-noise LPN.

Theorem 3 ([18]). Assume that balNCPn,m,w,β is hard in the worst case for
noise rate w

m = log2 n
n , m = 4n2, β = 1/

√
n then LPNn,μ,q is hard (in the

average case) for μ = 1/2 − 1
nO(1) and any q = poly(n).

As detailed in Algorithm 1, the idea is to convert an NCP instance (C, tT) into
LPN samples. By Theorem 4, the conversion produces q LPN samples of noise
rate μ up to error qδ, where

μ =
1
2

− 1
2
(1 − 2w

m
)d, qδ = O(q)2

n
2 · (

2w

m
+ β)d .

Thus, the conclusion follows by setting w
m = log2 n

n , β = 2
√

n/m = 1/
√

n,
d = 2n/ log n such that μ = 1/2 − 1/nO(1) and qδ = negl(n).

Remark 2 (possibilities and limitations). Other possible parameter choices are
also discussed in [18], e.g., assume that balNCPn,m,w,β is 2Ω(

√
n)-hard for w

m = 1√
n

(while keeping β = 1√
n

and d = 2n/ log n) then LPNn,μ,q is 2Ω(
√

n)-hard for

noise μ = 1/2 − 2−√
n/ log n and q = 2Ω(

√
n). This result is non-trivial since

the noise rate μ (although quite close to uniform already) isn’t high enough for
the conclusion to hold statistically. However, it does not seem to yield efficient
(a.k.a. polynomial-time) cryptographic applications due to the high noise rate.
In fact, the barriers are inherent in its smoothing lemma Theorem 4. Informally,
assume that NCP at noise rate w

m = log n·λ
n is nO(λ)-hard7 on β-balanced code,

then the LPN of noise rate μ = 1
2 − 1

2 (1− 2w
m )d is (at most) nO(λ)-hard provided

that (2w
m + β)d < 2−n/2. Therefore, we need to set λ = ω(1) for the worst-case

hardness assumption to hold. Further, regardless of the value of β it requires
d = Ω(n/ log n) to make ( 2w

m +β)d < 2−n/2. This lower bounds the noise rate of
LPN, i.e., μ = 1

2 − 1
2 (1− 2w

m )d = 1/2−2−Ω(λ). Raising the value of λ brings better

7 We recall the known attacks [2,9] of time complexity 2O( w
m

n) on NCP of noise rate
w
m

.
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hardness, but at the same time it makes the noise of LPN closer to uniform (and
hence renders the result less interesting). A reasonable compromise seems to let
λ = log n which was the main choice of [18].

Algorithm 1. Converting an NCP instance to LPN samples.
Input: (C, tT = sTC + xT), where C ∈ F

n×m
2 , s ∈ F

n
2 , x ∈ Rm

w

u
$←− F

n
2

Sample R
def
= [r1, . . . , rq] ∈ F

m×q
2 , where every column ri ← Rd,m (1 ≤ i ≤ q)

Output: (CR, tTR + uTCR) = (CR, (sT + uT)CR + xTR)

Theorem 4 (W/A-case reduction via code smoothing [18]). Assume that
balNCPn,m,w,β is T -hard in the worst case, then LPNn,μ,q is (T−O(nmq), 1T +qδ)-
hard (in the average case) for any w, d ≤ m, any q and

δ = max
x∈Rm,w

SD
(
(Cr,xTr) , (Un,xTr)

)
≤ 2

n+1
2 · (

2w

m
+ β)d , (1)

μ = max
x∈Rm,w

Pr[xTr = 1] =
1
2

− 1
2
(1 − 2w

m
)d . (2)

where r ← Rd,m, C ∈ F
n×m
2 is a generator matrix of any β-balanced [m,n] code

and O(mnq) accounts for the complexity of Algorithm 1.

The authors of [18] proved the above smoothing lemma using harmonic anal-
ysis. We give an alternative proof via Vazirani’s XOR lemma [30,49]. We stress
that the approach serves to simplify the presentation to readers by establishing
the proof under a well-known theorem. In other words, the proof below is not
essentially different from that in [18] after unrolling out the proof of the XOR
lemma.

Lemma 5 (Vazirani’s XOR lemma [30,49]). For any r.v. v ∈ F
n
2 , we have

SD(v,Un) ≤
√ ∑

0 �=a∈Fn
2

SD(aTv,U1)2 .

A simplified proof for Theorem 4. We denote with Cx ∈ F
n×(m−w)
2 and

rx ∈ F
m−w
2 be the submatrix and substring of C and r respectively by keeping

columns and bits that correspond to the positions of 0’s in xT. Recall that r ←
Rd,m refers to r := ⊕d

i=1ti for random weight-1 strings t1, · · · , td ∈ F
m
2 . Similarly,

let tx̄i denote ti’s w-bit substring corresponding to the positions of 1’s in xT.
Further, let Ej denote the event that the Hamming weight sum

∑d
i=1 |tx̄i | = j,

and thus rx conditioned on Ej , denoted by rx,j , follows distribution Rd−j,m−w.
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SD
(
(Cr,xTr) , (Un,xTr)

)

≤ SD
(
(Cxrx, tx̄1 , . . . , tx̄d) , (Un, tx̄1 , . . . , tx̄d)

)

≤
d∑

j=0

Pr[Ej ] ·
√√√√
∑

0 �=a∈Fn
2

SD
(

aTCxrx,j , U1

)2

≤
d∑

j=0

Pr[Ej ] ·

√√√√2n ·
(

(
w + βm

m − w
)d−j

)2

= 2
n
2

d∑

j=0

(
d

j

)
(
w

m
)j(1 − w

m
)d−j

︸ ︷︷ ︸
Pr[Ej ]

·(w + βm

m − w
)d−j = 2

n
2 (β +

2w

m
)d ,

where the first inequality is due to that xTr is implied by tx̄1 , . . . , tx̄d (i.e., xTr
is the parity bit of ⊕d

i=1t
x̄
i ), the second inequality follows from Vazirani’s XOR

lemma and the third inequality is due to Piling-up lemma, in particular, aTC ∈
F

m
2 is a balanced string with (1±β)m

2 1’s and thus its substring aTCx ∈ F
m−w
2 has

(m−w
2 ) ± (w+βm

2 ) 1’s and each bit 1 of rx,j hits the 1’s in aTCx with probability
1
2 ± w+βm

2(m−w) . Finally, we compute noise rate μ by the following:

1 − 2μ = Pr[xTr = 0] − Pr[xTr = 1] =
d∑

i=0

(
d

i

)
(
−w

m
)i(1 − w

m
)d−i = (1 − 2w

m
)d .

3.3 On the Non-triviality of Code Smoothing

As discussed in Remark 2, the worst-case to average-case reduction in [18] may
only give rise to the nO(λ)-hardness of LPN on noise rate μ = 1/2 − 2−Ω(λ).
Ideally, the dependency of μ on λ would be removed such that the noise rate
of LPN μ can be kept constant while assigning a large value to λ to enjoy sub-
exponential hardness for LPN. This will be goal of this paper.

Before we proceed, it is worth to repeat what we pointed out in the intro-
duction that a better smoothing lemma is non-trivial without new ideas. The
possibilities of smoothing linear binary codes can be investigated existentially
using a probabilistic argument. The code smoothing lemma, as stated in Eq. 1,
can be seen as deterministic randomness extractor from Bernoulli-like distribu-
tions. Consider C to be uniform over ∈ F

n×m
2 instead of a fixed one, then r has

average min-entropy roughly d log(m/d) even given the single bit leakage xTr,
and thus by the leftover hash lemma SD

(
(C,Cr,xTr), (C,Un,xTr)

)
≤ 2−n for

d log(m/d) = 3n. It follows by Markov inequality that there exists at least a
(1 − 2−n/2)-fraction of “good” C satisfying SD

(
(Cr,xTr), (Un,xTr)

)
≤ 2−n/2.

This seemingly opens new possibilities especially in the sub-exponential hardness
regime. For example, assume the NCP problem on a “good” code is 2Ω(

√
n)-hard
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(in the worst case) for noise rate w
m = 1√

n
, d = O(

√
n), and m = 2O(

√
n) then

LPNn,μ,q is 2Ω(
√

n)-hard against constant noise (see Eq. 2). However, so far we
only consider a specific value of x for which there is a 2−n/2 fraction of C that
fails the randomness extraction, and by summing over all the possible x ∈ Rm

w

the fraction of “bad” C amounts up to
(
m
w

)
2−n/2, which is useless since

(
m
w

)
is

super-exponential for w = O(2
√

n/
√

n). To summarize, the existence of more
meaningful smoothing lemma for binary linear code crucially relies on tighter
proof techniques and better exploitation of the actual code/distribution in con-
sideration to beat the union bound (so that “bad” C for different values of x
mostly coincide and they jointly constitute only a negligible fraction).

3.4 Worst-Case Sub-exponential Hardness for LPN

We obtain the following worst-case to average-case reductions for LPN, where
d log(m/d) = Ω(n) is a necessary entropy condition (which is implicit in Eq. 1
of Theorem 4) and the values of β, k, and ζ are chosen to ensure the existence
of respective codes (Lemma 1 and Lemma 2).

Theorem 5 (W/A-reduction for β-balanced codes). Assume that the
balNCPn,m,w,β is (T ,ε)-hard in the worst case for β = 2

√
n/m, then LPNn,μ,q is

(T −O(nmq), ε+ q·2−Ω(d)

1−2μ )-hard for μ = 1
2 − 1

2 (1− 2d
m )w, any m and d satisfying

d log(m/d) ≥ 4n.

Theorem 6 (W/A-reduction for independent codes). Assume that the
indNCPn,m,w,k,ζ is (T ,ε)-hard in the worst case for k = 16d

7 and ζ = 2−n, then

LPNn,μ,q is (T −O(nmq), ε+ q·2−Ω(d)

1−2μ )-hard for μ = 1
2 − 1

2 (1− 2d
m )w, any m and

d satisfying d log(m/d) ≥ 7n.

Proof Sketch. The proofs of Theorem 5 and Theorem 6 use the NCP instance to
LPN sample conversion as described in Algorithm 1 except for sampling every
ri ← B d

m
instead of ri ← Rd,m. The conclusions follow from the respective

smoothing lemmas (Lemma 9 and Lemma 12). While replacing Rd,m with B d
m

seems equivalent in terms of the resulting noise rate μ (almost same as Eq. 2
except that d and w are swapped), the fact that bits of ri are all independent
is crucial in obtaining more generic security bounds for δ that allow for a wider
range of parameter choices. �

A Comparison with [18]. With appropriate parameter assignment to Theo-
rem 5, we obtain comparable results to [18] (see Theorem 3). Following [18],
we consider balanced code with noise rate w/m = log2 n/n. As explained
in Remark 1, while β ≥ 2

√
n/m ensures the overwhelming abundance of

the balanced code, the existence condition does not impose much less, i.e.,
β ≥ 1.66

√
n/m. It is convenient to fix β = 2

√
n/m as larger values for β

can only lead to larger d and renders LPN’s noise μ closer to uniform. We give
the comparison in Table 1 with various values for m ≥ n1+ε. Note that the NCP
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is hard up to T = nO(log n) due to known attacks, and the reduction requires
T ′ = T − O(nmq) > 0, so here we let m = poly(n), and q = poly(n). In [18] the
constraint on d is implied by Eq. 1, i.e.,

2
n+1
2 · (

2w

m
+ β)d = 2

n+1
2 · (

2 log2 n

n
+ β)d = negl(n) (3)

while Theorem 5 explicitly sets d log(m/d) = 4n. Substituting d into the noise
rate of LPN, which is roughly μ ≈ 1/2 − e− 2w

m d+O(1) in both cases, yields

μ ≈
{

1/2 − n
−2.88 log n

(log m−log n) for n3

log4 n
> m ≥ n1+ε

1/2 − n−1.44 for m ≥ n3

log4 n

for [18], and μ ≈ 1/2−n
−11.54 log m
(log m−log n) for m ≥ n1+ε in our case. As we can see from

Table 1, our result is slightly (by a factor of 4 in the exponent) worse than [18]
for m < n3, and the gap decreases from m ≥ n3. Our result starts to show its
advantage for m ≥ n9. In other words, [18] stays at μ ≈ 1/2 − n−1.4 and ceases
to improve for m ≥ n3. This is because for m ≥ n3 it is 2 log2 n/n (instead of
β ≤ 2
√

n/m ≤ 2/n) that dominates the term in Eq. 3, and thus one can no
longer trade β for better μ regardless how small β is.

Table 1. Restate Theorem 5 and its analogue in [18] as “T -wc-hardness of
“NCP(n, m, w

m
) on β-balanced code implies T ′-ac-hardness of LPN(n, q, μ)” for m ∈

{n1.2, n2, . . . , 100}, where w
m

= log2 n
n

, β = 2
√

n/m, T ′ = T − O(nmq), q = poly(n).

m LPN’s noise rate μ from
[18] (see Theorem 3)

LPN’s noise rate μ from
our Theorem 5

n1.2 1
2

− n−14 1
2

− n−58

n2 1
2

− n−3 1
2

− n−12

n3 1
2

− n−1.4 1
2

− n−6

n6 1
2

− n−1.4 1
2

− n−2.3

n9 1
2

− n−1.4 1
2

− n−1.4

n10 1
2

− n−1.4 1
2

− n−1.3

n100 1
2

− n−1.4 1
2

− n−0.1

Our result admits a wider range of trade-offs between m and μ. More impor-
tantly, when m goes beyond poly(n) it enables to guarantee sub-exponential
hardness for constant-noise LPN. In particular, we now assume that there exists
constant ε such that the NCP problem is is 2ε w

m n-hard at noise rate w
m and

codeword length m = 2
ε
8

w
m n. Note that refuting this assumption means that we

can do arbitrary polynomial speedup over the current best known algorithms in
solving the respective NCPs, which is a win-win situation.
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Theorem 7 (Sub-exponential hardness for LPN). Assume that either (1)
balNCPn,m,w,β with β = 2

√
n/m, or (2) indNCPn,m,w,k,ζ with k = 16d

7 and ζ =
2−n, is 2Ω(n1−c)-hard at noise rate w

m = n−c and codeword size m = 2Ω(n1−c),
then depending on the value of c we have

Case 0 < c < 1/2: LPNn,μ,q is (2Ω(n1−c), 2−Ω(nc))-hard for 0 < μ = O(1) < 1/2
and q = 2Ω(nc);

Case 1/2 ≤ c < 1: LPNn,μ,q is 2Ω(n1−c)-hard for 0 < μ = O(1) < 1/2 and
q = 2Ω(n1−c).

Proof Sketch. This is a corollary of Theorem 5 and Theorem 6 (from the respec-
tive assumptions) for w

m = n−c, μ = O(1) (s.t. w
md = O(1)), d log(m/d) = O(n)

and T = Ω(n1−c). Note that 1/T +q2−Ω(d) = 2−Ω(n1−c) +2−Ω(nc), which is why
the value of c is considered. �

3.5 Smoothing Balanced Codes

Our smoothing lemma benefits from Lemma 7 which tightly relates the bound on
the conditional case SD

(
(Cr,xTr), (Un,xTr)

)
to that of the unconditional case

SD(Cr,Un), regardless of which x is used. Note that this would not have been
possible if r were not sampled from the Bernoulli distribution that is coordinate-
wise independent. We first introduce Lemma 6 based on which Lemma 7 is built.

Lemma 6. Let p be a random variable over Fn
2 , and let c be any constant vector

over F
n
2 . Then, we have

SD(p ⊕ (e1c),Un) ≥ (1 − 2a) · SD(p,Un) ,

where e1
$←− Ba (0 ≤ a ≤ 1/2) and e1c denotes scalar vector multiplication

between e1 and c.

Proof. We use the shorthand px
def= Pr[p = x] − 2−n for any x ∈ F

n
2 . Observe

that any non-zero c divides F
n
2 into two disjoint equal-size subsets S1, S2 ⊂ F

n
2

such that every p ∈ S1 implies (p + c) ∈ S2 and vice versa. Therefore,

SD
(
p ⊕ (e1c),Un

)
=

1
2

∑

x∈Fn
2

∣∣∣px(1 − a) + px⊕ca
∣∣∣

≥ 1
2

∑

x∈Fn
2

(
|px|(1 − a) − |px⊕c|a

)

=
1
2

∑

x∈Fn
2

(
|px|(1 − 2a)

)
= (1 − 2a) · SD(x,Un) .
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Lemma 7. For any matrix C ∈ F
n×m
2 , any x ∈ Rm

w and any 0 ≤ a ≤ 1/2 we
have

SD(Cxrx,Un) ≤ SD(Cr,Un)
(1 − 2a)w

,

where r ← Bm
a , Cx ∈ F

n×(m−w)
2 (resp., rx ∈ F

m−w
2 ) denotes the submatrix of C

(resp., subvector of r) by keeping only columns (resp., bits) corresponding to the
positions of bit-0 in x respectively.

Proof. We have Cr = Cxrx+
⊕w

i=1 eici where ei ← Ba and ci is the i-th column
vector of C\Cx (i.e., the columns of C that are excluded from Cx). By applying
Lemma 6 w times we get

SD(Cr,Un) ≥ (1 − 2a)w · SD(Cxrx,Un) .

We need the following corollary of two-source extractors to prove the smooth-
ing lemma. Recall that two-source extractor distills almost uniform randomness
from pair-wise independent sources bT and r, while Corollary 1 shows that the
result holds even when bT is fixed (has no entropy at all) as long as certain
conditioned are met.

Lemma 8 (Two-source extraction via inner product). For independent
random variables bT, r ∈ F

m
2 with H∞(bT) = kb and H∞(r) = kr we have

SD
(

(bT,bTr), (bT, U1)
)

≤ 2−(
kb+kr−m

2 +1) .

Corollary 1. For random variable r and distribution D defined over F
m
2 and

F2 respectively, define set BD,r
def= {bT : bTr ∼ D}, where H∞(r) = kr, and

|BD,r| ≥ 2kb . Then, for any bT ∈ BD,r it holds that

SD(bTr, U1) ≤ 2−(
kb+kr−m

2 +1) .

Proof. Fix an arbitrary bT ∈ BD,r, and let b′T be a random variable that is
uniform over BD,r, we have

SD(bTr, U1) = SD(D,U1) = SD
(

(b′T,b′Tr), (b′T, U1)
)

≤ 2−(
kb+kr−m

2 +1) ,

where the equalities are simply by the definitions of BD,r and b′T, and the
inequality follows from the two source extractor lemma below.

Lemma 9 (Smoothing lemma for balanced codes). Let β ≤ 2
√

n/m,
d log(m/d) ≥ 4n, d = O(n), and let C ∈ F

n×m
2 be any generator matrix for

a β-balanced [m,n]-linear code, then for every x ∈ Rm
w and r ← Bm

d
m

it holds

that μ = Pr[xTr = 1] = 1
2 − 1

2 (1 − 2d
m )w and

δC,x = SD
(
(Cr,xTr) , (Un,xTr)

)
≤ 2−Ω(d)

1 − 2μ
.



490 Y. Yu and J. Zhang

Proof. The noise rate μ directly follows from the Piling-up lemma.

SD(Cr,Un )
≤ SD(Cr′,Un) + 2−Ω(d)

≤
√√√√
∑

0 �=a∈Fn
2

SD
(

aTC︸︷︷︸
bT

r′, U1

)2
+ 2−Ω(d)

≤
√√√√
∑

0 �=a∈Fn
2

SD
(

(b′T,b′Tr′), (b′T,U1)
)2

+ 2−Ω(d)

≤ 2
n
2 · 2

(log e)β2
2 m+ log m

2 −d(1−δ) log( m
d(1−δ) )

2 + 2−Ω(d)

= 2−Ω(d)

where the first inequality follows from a Chernoff bound that r is 2−Ω(d)-close to
some r′ that is a convex combination of Rm

d(1−δ), Rm
d(1−δ)+1, · · · , Rm

d(1+δ) for any
small constant δ > 0, the second is due to Vazirani’s XOR lemma. By the defini-
tion of balanced code bT def= aTC ∈ F

m
2 satisfies (1−β)m

2 ≤ |bT| ≤ (1+β)m
2 and we

assume WLOG |bT| = (1−β)m
2 so that bTr′ is maximally biased. The third and

fourth inequalities follow from Corollary 1 based on two-source extractors. In
particular, let b′T be a random variable uniformly drawn from Rm

(1−β)m
2

, i.e., the

set of all values with the same Hamming weight as bT. We observe that r′ ∼ Rm
j

implies that every bT
1 and bT

2 with |bT
1 | = |bT

2 | must satisfy bT
1 r

′ ∼ bT
2 r

′ and
therefore SD(bTr′, U1) = SD

(
(b′T,b′Tr′), (b′T, U1)

)
. This allows to apply

the strong two-source extractor, where Fact 2 is used to estimate the entropy
of b′T, i.e., log

( m
(1−β)m

2

)
. Finally, we set β = 2

√
n/m, d log(m/d) = 4n and

sufficiently small δ to complete the proof. Following the proof of Theorem 4,
let Cx ∈ F

n×(m−w)
2 and Cx̄ ∈ F

n×w
2 denote the submatrices of C by keeping

columns corresponding to the 0’s and 1’s in xT respectively, and let rx ∈ F
m−w
2

and rx̄ ∈ F
w
2 denote the subvectors of r that correspond to the positions of 0’s

and 1’s in xT respectively. This allows to complete the proof by

SD
(
(Cr,xTr) , (Un,xTr)

)
≤ SD
(
(Cxrx, rx̄) , (Un, rx̄)

)

= SD(Cxrx,Un) ≤ SD(Cr,Un)
(1 − 2d

m )w
=

2−Ω(d)

(1 − 2d
m )w

.

where the first inequality is due to that (Cr,xTr) is implied by (Cxrx, rx̄), i.e.,
Cr = Cxrx + Cx̄rx̄ and xTr = 〈1w, rx̄〉, and so is (Un,xTr) by (Un, rx̄), the
equality is due to the independence of rx and rx̄, and the last inequality follows
from Lemma 7.

As stated in Lemma 10, it is not hard to see a lower bound on smoothing any
binary linear code (i.e., not just the balanced code considered above) with respect
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to r ← Bm
d
m

. This means that our smoothing lemmas (Lemma 9 and Lemma 12)

are optimal (up to some constant factor in the exponent) for μ ≤ 1/2−2−O(d).

Lemma 10 (Lower bound on code smoothing). For any C ∈ F
n×m
2 , for

any x ∈ F
m
2 and r ← Bm

d
m

with d
m = o(1) it holds that

SD
(
(Cr,xTr) , (Un,xTr)

)
≥ 2−O(d) .

Proof. Denote the first row of C by cT1

SD
(
(Cr,xTr) , (Un,xTr)

)
≥ SD(cT1 r,U1) =

(1 − 2d
m )|cT

1 |

2
≥ 2−O(d) ,

where the equality is the piling-up lemma, and the last inequality is due to
|cT1 | ≤ m and 1 − x = 2−O(x) for x = o(1).

3.6 Smoothing Independent Codes

The proof of the smoothing lemma relies on following Lemma 11, which is
abstracted out from the leftover hash lemma (see Appendix A for its proof).

Lemma 11 (Generalized Hash Lemma). For any function h : F
m
2 → F

n
2

and any random variable r over F
m
2 we have

SD
(
h(r), Un

)
≤ 1

2

√
2n · Col(h(r)) − 1 .

Lemma 12 (Smoothing lemma for independent codes). Let d log(m/d) ≥
7n and log m = o(n), and let C ∈ F

n×m
2 be any generator matrix for a (k = 16d

7 ,
2−n)-independent [m,n]-linear code C ∈ F

m
2 , then for every x ∈ Rm,w and r ←

Bm
d
m

it holds that

δC,x = SD
(
(Cr,xTr) , (Un,xTr)

)
≤ 2−Ω(d)

(1 − 2d
m )w

,

μ = Pr[xTr = 1] =
1
2

− 1
2
(1 − 2d

m
)w .

Proof. For any constant 0 < δ < 1, r is 2−Ω(d)-close to some convex combination
of Rm

d(1−δ), Rm
d(1−δ)+1, · · · , Rm

d(1+δ), which is denoted by r′. By Lemma 11,

SD(Cr , Un) ≤ 2−Ω(d) +
√

2n · Col(Cr′) − 1 .

We assume WLOG r′ ← Rm
d(1−δ) and consider i.i.d. r1, r2 ← Rm

d(1−δ) such that

Col(Cr′) = Pr[Cr1 = Cr2] = Pr[Cr̈]
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where for constant 0 < Δ < 1 variable r̈ def= r1 − r2 follows a convex combination
of Rm

2d(1−δ)(1−Δ), Rm
2d(1−δ)(1−Δ)+1, . . ., Rm

2d(1−δ) whose weights lie in between8

k/2 = 2d(1 − δ)(1 − Δ) ≤ weight ≤ 2d(1 + δ) = k

for δ = 1/7 and Δ = 1/3 except with error

d(1−δ)∑

i=d(1−δ)Δ

(
d(1−δ)

i

)(
m−d(1−δ)
d(1−δ)−i

)

(
m

d(1−δ)

) ≤ 2
d(1−δ)(1−Δ) log m

d(1−δ)(1−Δ)

2
d(1−δ) log m

d(1−δ)
≤ 2

−d(1−δ)Δ log m
d(1−δ) .

The error is upper bounded by 2−2n (for δ = 1/7 and Δ = 1/3). Thus,
√

2n · Col(Cr′) − 1 ≤
√

2n · (2−n(1 + 2−n) + 2−2n) − 1 = 2−Ω(n) .

and SD(Cr , Un) ≤ 2−Ω(d). The rest follow the same steps as in the proof of
Lemma 9.

3.7 Discussions

We conclude that the constant-noise LPN problem is (T = 2Ω(n1−c), ε =
2−Ω(nmin(c,1−c)), q = 2Ω(nmin(c,1−c)))-hard assuming that the NCP (on the bal-
anced/independent code) at the low-noise rate τ = n−c is (T ′ = 2Ω(τn),
ε′ = 2−Ω(τn), m = 2Ω(τn))-hard in the worst case. Unfortunately, we need
(T = 2ω(n0.5), ε = 2−ω(n0.5), q = 2Ω(n0.5))-hardness for constructing collision
resistant hash functions and public-key encryptions [51,52], where the super-
constant omitted by ω(·) (representing the gap between what we prove for c = 0.5
and what is needed for PKE/CRH) can be arbitrarily small.9 We explain in
details below.

Theorem 8 ([52]). Let n be the security parameter, and let μ = μ(n), k = k(n),
q = q(n), t = t(n) and T = T (n) such that t2 ≤ q ≤ T = 2

8μt
ln 2(1−2μ) . For each

A ∈ F
n×q
2 , define compressing function hA : Flog( q

t )t
2 → F

n
2 with log( q

t )t > n by
hA(x) = A · Expand(x), where Expand expands any string of length log( q

t )t into
one of length q with Hamming weight no greater than t, and hA is computable
in time O(q log q) (see [52, Construction 3.1] for concrete instantiation of hA).
Assume that the DLPNn,μ,q is T -hard, then for every probabilistic adversary A
of running time T ′ = 2

4μt
ln 2(1−2μ)−1

Pr
A

$←−F
n×q
2

[ (y,y′) ← A(A) : y �= y′ ∧ hA(y) = hA(y′) ] ≤ 1
T ′ .

8 For up limit on |r̈| we need to consider the other extreme case r′ ← Rm
d(1+δ), where

the corresponding r̈ is a convex combination of Rm
2d(1+δ)(1−Δ), Rm

2d(1+δ)(1−Δ)+1, . . .,
Rm

2d(1+δ) up to small error.
9 The difference between decisional and computational LPN is omitted since 2p-hard
LPNn,μ,q implies 2Ω(p)-hard DLPNn,μ,q for any p = ω(log n), μ = O(1) and q ≥
poly(n) due to the sample-preserving reduction [6].
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Note that the above theorem does not state “hA is a T ′-hard collision resis-
tant hash (CRH)” as it is computable in time O(q log q) while q = 2Ω(

√
n) is not

polynomial in the security parameter n. In particular, length requirement q ≤ T
(any adversary making q queries runs in time at least q) implies, by taking a
logarithm, log(q) = O(t) (recall that μ is constant). Since the compressing condi-
tion requires log( q

t )t > n we need to set q and t to be at least 2Ω(
√

n) and Ω(
√

n)
respectively. The authors of [52] offers a remedy to solve this problem. Switch
to a new security parameter λ = q, and let t = log λ · ω(1) for any arbitrarily
small ω(1). This ensures that hA is computable in time poly(λ) while remain-
ing λω(1)-collision resistant. Therefore, we need (T = 2ω(n0.5), ε = 2−ω(n0.5),
q = 2Ω(n0.5))-hardness for constant-noise LPN to construct collision resistant
hash functions, where ω(·) omits an arbitrary super constant.

Neither can we construct public-key encryptions from (T = 2Ω(n0.5), ε =
2−Ω(n0.5), q = 2Ω(n0.5))-hard LPN due to the same ω(1) gap factor (see Theo-
rem 9). The reason is essentially similar to the case of CRH. In fact, in some
extent CRH and PKE are dual to each when being constructed from LPN. The
authors of [51] already minimized the hardness needed for LPN to construct
PKE, and also used the parameter switching technique. We restate the main
results of [51] below.

Theorem 9 ([51]). Assume that DLPNn,μ,q is (T = 2ω(n0.5), ε = 2−ω(n0.5),
q = 2n0.5

)-hard for any constant 0 < μ ≤ 1/10, there exist IND-CCA secure
public-key encryption schemes.

We also mention that our result fails to transform the BKW algorithm (for
LPN) into a worst-case solver for constant-noise NCP (i.e., w

m = O(1)) again
due to some small gap. In particular, we recall the variant of BKW algorithm
in Theorem 10 below, and we informally state our reduction results (Theorem 5
and Theorem 6) in Lemma 13. In order for Lemma 13 to compose with The-
orem 10, we need q = n1+ε and d = O(log n) to make q·2−Ω(d)

1−2μ < 1 and thus
μ = 1

2 − e−O( w
m d) = 1

2 − 2−O(log n), which does not meet the noise rate needed
by Theorem 10, i.e., μ = 1/2 − 2−(log n)δ

for any constant 0 < δ < 1.

Theorem 10 ([42]). Let q = n1+ε and μ = 1/2−2−(log n)δ

for any constants ε >
0 and 0 < δ < 1. LPNn,μ,q can be solved in time 2O(n/ log log n) with overwhelming
probability.

Lemma 13 (Our reduction, informal). Any algorithm that solves LPNn,μ,q

in time T with success rate p, implies another worst-case algorithm (for the
NCP considered in Theorem 5 and Theorem 6) of running time T + O(nmq)
with success rate p − q·2−Ω(d)

1−2μ , where μ = 1
2 − e−O( w

m d).

4 Concluding Remarks

We first show that the hardness of high-noise large-field LPN is reducible from
the worst-case hardness of lattice problems via a simple reduction from LWE to



494 Y. Yu and J. Zhang

LPN over the same modulus. We then show that constant-noise LPN is (T =
2Ω(n1−c), ε = 2−Ω(nmin(c,1−c)), q = 2Ω(nmin(c,1−c)))-hard assuming that the NCP
(on the balanced/independent code) at the low-noise rate τ = n−c is (T ′ =
2Ω(τn), ε′ = 2−Ω(τn), m = 2Ω(τn))-hard in the worst case, improving upon the
work of [18]. However, the result is not strong enough to imply collision resistant
hash functions or public-key encryptions due to the ω(1) gap term. We leave it
as an open problem whether the gap can be closed.
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A Proofs Omitted

Proof of Lemma 2. For C $←− F
n×m
2 and every r ∈ F

m
2 define

zC,r
def=
{

1, if C · r = 0
0, otherwise C · r �= 0

For every r �= 0, the expectation E
C

$←−F
n×m
2

[zC,r] = 2−n, and for every two

distinct r1 �= r2 variables zC,r1 and zC,r2 are pair-wise independent. For any
k/2 ≤ i ≤ k,

Pr
C

$←−F
n×m
2

[
∑

r∈Rm
i

zC,r ≥ N · 2−n(1 + ζ)

]

≤ Pr
C

$←−F
n×m
2

[ ∣∣∣
∑

r∈Rm
i

zC,r − N · 2−n
∣∣∣ ≥ N2−nζ

]

≤
V ar

[
∑

r∈Rm
i

zC,r

]

(N2−nζ)2

=
N2−n(1 − 2−n)

(N2−nζ)2
≤ 1

N2−nζ2
≤ 2n+ log m

2 − k
2 log(m/k)

ζ2
,

where N
def= |Rm

i | ≥ ( m
k/2

)
, the second inequality is by Chebyshev, and the

equality is due to the following: denote z =
∑

r∈Rm
i

zC,r and μ = E[z] and
therefore
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V ar[z] = E[(z − μ)2]
= E[z2] − 2μE[z] + μ2

= E[z2] − μ2

= E[z2] − N22−2n ,

E[z2] = E

[
(z1 + z2 + . . . + zN )2

]

= E

[∑

u�=v

zu · zv

]
+ E

[∑

u

z2u

]

=
∑

u�=v

E[zu] · E[zv] +
∑

u

2−n

= 2−2n(N2 − N) + N2−n = N22−2n + N2−n(1 − 2−n) .

We complete the proof by a union bound on all possible values of i. �

Remark 3 (Why not i ∈ (0, k/2)). Note that the above considers only i ≥ k/2.
As we can see from the above proof, this is because log N = log |Rm

i | = log
(
m
i

)

needs to be Ω(n) to make the bound meaningful. For small values of i, it is not
possible since m is only sub-exponential.

Proof of Lemma 3. Let s def= s1 − s2 and x def= x1 −x2. For any s �= 0 the random
variable sTC is uniform over F

m
2 and thus it hits {x ∈ F

m
2 : |x| ≤ 2w} with

probability at most
∑2w

i=0

(
m
i

)
/2m. The conclusion follows by a union bound on

all possible s ∈ F
n
2 . �

Proof of Lemma 11. We denote S def= F
n
2 and ps = Pr[h(r) = s].

SD
(
h(r), Un

)

=
1
2

∑

s∈S
|ps − 1

|S| |

=
1
2

∑

s∈S

√
1

|S| ·
(√

|S| ·
∣∣∣∣ps − 1

|S|
∣∣∣∣
)

≤ 1
2

√∑

s∈S
(

1
|S| ) ·
∑

s∈S
|S|(ps − 1

|S| )
2

=
1
2

√
2n(
∑

s∈S
p2s) − 1

=
1
2

√
2n · Col(h(r)) − 1 ,

where the first inequality is Cauchy-Schwartz, i.e., |∑i aibi| ≤√
(
∑

i a2
i ) · (
∑

i b2i ). �
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B Inequalities, Theorems and Lemmas

Lemma 14 (Piling-up lemma). For 0 < μ < 1/2 and � ∈ N
+ we have

Pr
[ �⊕

i=1

Ei = 0 : E1, . . . , E� ← Bμ

]
=

1
2
(1 + (1 − 2μ)�) .

Lemma 15 (Chebyshev’s inequality). Let Y be any random variable (taking
real values) with expectation μ and standard deviation σ (i.e., V ar[Y ] = σ2 =
E[(Y − μ)2]). Then, for any δ > 0 we have Pr[ |Y − μ| ≥ δσ] ≤ 1/δ2.

Lemma 16 (Chernoff bound). Let X1, . . ., Xn be independent random vari-
ables and let X̄ =

∑n
i=1 Xi, where Pr[0≤ Xi ≤ 1] = 1 holds for every 1 ≤ i ≤ n.

Then, for any Δ1 > 0 and 0 < Δ2 < 1,

Pr[ X̄ > (1 + Δ1) · E[X̄] ] < e− min(Δ1,Δ2
1)

3 E[X̄] ,

Pr[ X̄ < (1 − Δ2) · E[X̄] ] < e− Δ2
2

2 E[X̄] .

Fact 1. For any 0 ≤ x ≤ 1, log(1 + x) ≥ x; and for any x > −1 we have
log(1 + x) ≤ x/ ln 2.

Fact 2. For k = o(m) we have log
(
m
k

)
= (1 + o(1))k log m

k ; and for β = o(1),
log
(

m
m
2 (1−β)

)
= m(1 − β2

2 (log e + o(1))) − log m
2 + O(1).

Proof of Fact 2. The first inequality follows from the approximation log(n!) =
log
(
O(

√
n(n

e )n)
)

= 1
2 log n + n log n − n log e + O(1) and for the second one we

have

log
(

m
m
2 (1 − β)

)
= log

m!
(

m
2 (1 − β)

)
!
(

m
2 (1 + β)

)
!

= m log m − m

2
(1 − β) log

(m
2

(1 − β)
)

−m

2
(1 + β) log

(m
2

(1 + β)
)

− 1
2

log m + O(1)

= m
(
1 − log e

2
(1 − β)

(− β − 1
2
β2 + o(β2)

)

− log e

2
(1 + β)

(
β − 1

2
β2 + o(β2)

))− 1
2

log m + O(1)

= m(1 − log e

2
β2 + o(β2)) − 1

2
log m + O(1) ,

where we use the approximation of log(n!) and for x = o(1), log(1 + x) =
log e(x − 1

2x2 + o(x2)). �
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Lemma 17 (Sample-preserving reduction [6]). Any distinguisher D of run-
ning time T with

Pr
A

$←−F
q×n
2 ,s←S,e←E

[D(A,As + e) = 1] − Pr[D(A,Un) = 1] ≥ ε

implies another algorithm D′ of running time T + O(nq) such that

Pr
A

$←−F
q×n
2 ,s←S,e←E

[D′(A,As + e, rT) = rTs] ≥ 1
2

+
ε

2
,

where S and E are any distributions over F
n
2 and F

q
2 respectively.

Lemma 18 (Goldreich-Levin Theorem [31]). Any algorithm D of running
time T with

Pr[D(f(s), rT) = rTs] ≥ 1
2

+ ε

implies algorithm A of running time O(n2

ε2 T ) such that Prs←S [A(f(s)) =

f−1(f(s)))] = Ω(ε3)
n , where f is any function on input s ← S ∈ F

n
2 and r $←− F

n
2 .
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Abstract. We put forth new protocols for oblivious transfer extension
and vector OLE, called Silver, for SILent Vole and oblivious transfER.
Silver offers extremely high performances: generating 10 million random
OTs on one core of a standard laptop requires only 300 ms of computation
and 122KB of communication. This represents 37% less computation and
∼1300× less communication than the standard IKNP protocol, as well
as ∼4× less computation and ∼14× less communication than the recent
protocol of Yang et al. (CCS 2020). Silver is silent : after a one-time
cheap interaction, two parties can store small seeds, from which they
can later locally generate a large number of OTs while remaining offline.
Neither IKNP nor Yang et al. enjoys this feature; compared to the best
known silent OT extension protocol of Boyle et al. (CCS 2019), upon
which we build up, Silver has 19× less computation, and the same com-
munication. Due to its attractive efficiency features, Silver yields major
efficiency improvements in numerous MPC protocols.

Our approach is a radical departure from the standard paradigm for
building MPC protocols, in that we do not attempt to base our construc-
tions on a well-studied assumption. Rather, we follow an approach closer
in spirit to the standard paradigm in the design of symmetric primitives:
we identify a set of fundamental structural properties that allow us to
withstand all known attacks, and put forth a candidate design, guided by
our analysis. We also rely on extensive experimentations to analyze our
candidate and experimentally validate their properties. In essence, our
approach boils down to constructing new families of linear codes with
(plausibly) high minimum distance and extremely low encoding time.
While further analysis is of course welcomed in order to gain total con-
fidence in the security of Silver, we hope and believe that initiating this
approach to the design of MPC primitives will pave the way to new
secure primitives with extremely attractive efficiency features.
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1 Introduction

Secure multiparty computation (MPC) allows n parties to jointly evaluate a
function f , while leaking no information on their own input beyond the output
of the function. It is a fundamental problem in cryptography, which has received
considerable attention since its introduction in the seminal works of Yao [Yao86],
and Goldreich, Micali, and Wigderson [GMW87b,GMW87a]. While early feasi-
bility results for MPC were mainly of theoretical interest, MPC protocols have
enjoyed tremendous improvements in the past decade.

Oblivious transfers (OT) are perhaps the most fundamental building block
for MPC protocols. In a random OT, two parties receive respectively (s0, s1) and
(sb, b), where (s0, s1) are two random strings, and b is a random selection bit.
Random OT is a complete primitive for secure computation [Kil88] , and modern
MPC protocols rely on it. Efficiency improvements in protocols for generating
OTs directly translate into improvements for a plethora of MPC protocols.

OT Extension. A long line of work, initiated with the breakthrough work
of [IKNP03], has therefore sought to develop increasingly efficient protocols for
generating a large number of random OTs. At a high level, OT extension proto-
cols [IKNP03,KOS15,KKRT16,OOS17] turns a small number of base OTs into
a near-arbitrary number of OTs, using only cheap operations. The latest gener-
ation of these protocols, initiated in [BCG+17], leverages the notion of pseudo-
random correlation generators (PCGs) [BCGI18,BCG+19b] to enable the con-
struction of extremely efficient OT extension protocols. This line of work recently
culminated with the protocols of [BCG+19a,SGRR19,WYKW20,YWL+20].

Silent OT Extension. While PCGs allow for very efficient constructions of OT
extension, this is not their main claim to fame: perhaps their most remarkable
feature is that they allow the construction of silent OT extension protocols. A
silent protocol has the property that: after a short interaction, with communi-
cation and computation essentially independent of the target number of OTs,
the parties can locally store small correlated seeds. Then, the parties can later
retrieve these seeds, and without any further interaction stretch them into a very
large number of OTs. Unfortunately, while the protocols of [BCG+19a] enjoy the
silent feature, the running time improvements in [SGRR19,WYKW20,YWL+20]
were achieved at the cost of sacrificing this crucial property.

1.1 Our Results

In this work, we design new protocols for silent oblivious transfer extension
and silent vector oblivious linear evaluation (VOLE). The latter is defined over
a field F and allows a receiver with input x ∈ F to obtain x · a + b from a
sender with input vectors (a,b) over F. VOLE is another important building
block in some of the most prominent secure computation tasks; e.g. the current
most efficient private set intersection [RS21]. We call our (family of) protocols
Silver, which stands for SILent Vole and oblivious transfER. In addition its silent
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feature, Silver exhibits extremely good performances, significantly outperforming
the most efficient OT extension protocols [IKNP03,YWL+20] on all fronts.

At the heart of our results is a radical departure from previous works on
secure computation. To put it bluntly, we decidedly give up on provable security
reductions to any well-studied assumption. Instead, our protocols are based on
the conjectured hardness of decoding new, heuristically designed linear codes (or,
equivalently, the hardness of a new learning parity with noise (LPN) variant).
Our approach for building these new linear codes is much closer in spirit to the
de facto standard approach for building efficient block ciphers and hash func-
tions in symmetric cryptography: using a general framework that encompasses
essentially all known attacks on LPN and syndrome decoding, we identify the
core properties that guarantee resistance of our new assumptions against existing
attacks. Then, we extract a number of fundamental design criteria which guide
the design of codes with these properties. Eventually, we rely on these design
criteria together with extensive simulations to experimentally identify, with good
confidence, the codes that exhibit the best properties for our constructions, while
plausibly leading to very hard instances of the syndrome decoding problem.

1.2 Philosophy of Our Approach

The construction of a cryptographic primitive or protocol can follow two com-
plementary design strategies: a top-down approach, which starts from well-
established cryptographic assumptions and aims at finding the most efficient
construction whose security provably reduces to these assumptions, or a bottom-
up approach, which tries to find the minimal construction that resists all known
attacks, and relies on heuristic design criteria to build an intuition about the
concrete security. Traditionally, secure computation has focused on the former,
while symmetric cryptography (e.g. block cipher design) followed the latter.

The top-down approach has many attractive features – it deepens our the-
oretical understanding of the feasibility of cryptographic primitives, enlightens
their relation to other primitives, and allows us to spend cryptanalytic efforts
on a small set of assumptions. However, this sometimes comes at a huge cost in
terms of efficiency: there is often a large gap between the best efficiency which can
be achieved from well-established assumptions, and the efficiency which can be
achieved with heuristic designs (consider the efficiency gap between SHA-256 and
discrete-logarithm-based hash functions). When (our theoretical understanding
of) a cryptographic primitive reaches a sufficient level of maturity, it is natural
to envision the alternative bottom-up approach, in order to achieve real-world
efficiency. This is the position that we advocate for in this work.

In the same way that symmetric cryptography has identified core families
of attacks (e.g. linear and differential) and extracted a set of design princi-
ples for constructing primitives which plausibly resists them (e.g. substitution-
permutation networks), our aim is to initiate the study of the most fundamental
MPC primitives, oblivious transfer and its variants, under this angle. Pursuing
this approach has the potential of yielding considerable efficiency improvements
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for MPC and strikes us as a natural next step for putting the efficiency of MPC
primitives on par with that of symmetric primitives.

Our work being the first (to our knowledge) to study OT under the lens of
heuristic cryptographic design, our constructions should of course be treated with
the necessary caution. We invested a considerable effort in developing a rigorous
understanding of which design criteria are likely to yield secure and efficient
constructions, and relied on extensive experimental simulations to validate that
our candidates satisfy these criteria; however, further study is welcomed in order
to gain total confidence in their security. Given that Silver withstands the test
of time, it will allow for significant improvements for numerous MPC protocols.
And if not, we are confident that our analysis will motivate further constructions
and analyses from which secure and efficient candidates will emerge.

1.3 Overview of Our Methodology

Our starting point is the recent line of work on pseudorandom correlation gen-
erators (PCG) [BCG+17,BCGI18,BCG+19b]. PCGs allow to securely generate
long, pseudorandom correlated strings, using minimal communication. Among
the most remarkable achievements of this line of work is silent oblivious trans-
fer extensions (SOT extension) [BCG+19a,SGRR19]. These protocols have two
phases: (1) the two parties interact to distributively generate short correlated
seeds with communication/computation essentially independent of the target
number of OTs; (2) the parties locally expand the seeds, without any interaction,
into a large number of pseudorandom OTs. Afterwards, these OTs can be con-
verted into chosen-input OTs using standard methods. Very recently, efficiency
improvements were obtained by [YWL+20,WYKW20]. However, this came at
the cost of sacrificing the silent feature. In practice, the ability to confine the
bulk of the computation to an entirely offline phase, is a crucial efficiency feature.

The SOT Protocol of [BCG+19a]. Our approach builds upon the protocol
of [BCG+19a]. Let us briefly recall its high level intuition:

1. the parties generate additive shares of x · e, where x ∈ F is known to the
sender, and e ∈ F

n is a random sparse vector, known to the receiver.
2. they multiply the shares of x · e with a public matrix G, obtaining shares of

x · a, for a = e · Gᵀ. Given a uniform G, a is pseudorandom under LPN.
3. Optionally, the shares can be hashed to generate pseudorandom OTs.

Generating additive shares of x · e is extremely efficient, requiring merely
two calls to AES for each entry of the vector. The matrix-vector multiplication,
however, is the bulk of the computation: in [BCG+19a], G is a matrix over
F
k×n
2 , where k is the target number of OTs and n = c ·k for some small constant

c > 1. MPC protocols commonly require a number of OTs in the millions (if not
more), making this step impractical unless G has some structure that allows for
fast matrix-vector multiplication. This leads to a tradeoff between efficiency and
confidence in the security: when H is a truly random matrix, the multiplication
is impractical, but security reduces to the standard syndrome decoding/LPN
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assumption. Structured matrices give better efficiency, but security reduces to
syndrome decoding variants which are less well-understood.

[BCG+19a] settled for a reasonable middle ground, by letting G be a random
matrix with a quasi-cyclic structure. On the one hand, this structure allows for
matrix-vector multiplication in quasilinear time using fast Fourier transform; on
the other hand, the underlying assumption (hardness of decoding quasi-cyclic
linear codes) has been used in candidate post-quantum code-based cryptographic
primitives submitted to the NIST competition, and are therefore relatively well
studied. While this choice leads to a reasonably efficient construction, it remains
somewhat unsatisfying: it seems very likely that there exists alternative choices
for G which have significantly better efficiency, yet still are secure.

However, the particular set of constraints of silent OT extension is very dif-
ferent from all previous coding theory primitives: typically the dimension of the
code is minimized, allow high noise rate, and rely on codes with a hidden struc-
ture to enable efficient decoding given a secret. In contrast, in the SOT applica-
tion, the code dimension scales with the target number of OTs (hence typically
millions), the noise rate must remain very low, and no hidden structure or effi-
cient decoding property is required. As a result, there exists no well-established
assumption regarding codes tailored for our unusual set of constraints.

Our Approach: A Design Methodology for Constructing G. In this work,
we choose to approach the problem differently. Let us call a public matrix G ∈
F
k×n
2 SOT-friendly if it satisfies the following two properties:

– Security: it is infeasible to distinguish e · Gᵀ from uniform (for sparse e).
– Efficiency: the mapping x → x · Gᵀ can be computed in strict linear time.

We develop a methodology for constructing SOT-friendly matrices by directly
identifying some core structural properties of G which guarantee that distin-
guishing e · Gᵀ from random cannot be done using essentially all known attacks
on LPN and code-based cryptographic primitives. Yet the mapping x → x · Gᵀ

can be computed in strict linear time. Our methodology does not “start from
zero”: it builds upon well-known results related to breaking these assumptions.

1.4 Our Design Criteria

The first property can be stated in one sentence: G should generate a code with
large minimum distance. For the second property, we focus on the following
sufficient condition: we restrict our attention to matrices G which have a sparse
parity-check matrix H (i.e., H is a sparse matrix in F

m×n
2 such that HᵀG = 0)

such that H are in approximate lower triangular form.

Large Minimum Distance and Security. Given a matrix G, the problem of
distinguishing e·Gᵀ from random (for a random sparse vector e) is the decisional
syndrome decoding problem with respect to Gᵀ. The name LPN is commonly used
to denote the syndrome decoding assumption in the cryptographic community.
As such, we will use both terms interchangeably. It is well-known that distin-
guishing e · Gᵀ reduces to the following problem: given a parity-check matrix
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H of G, distinguish the distribution {b = x · H + e} (where x is a uniformly
random vector over F

m
2 and e is a random length-n sparse vector) from the

uniform distribution (indeed, if b is indistinguishable from random, then so is
b ·Gᵀ = (x ·H +e) ·Gᵀ = e ·Gᵀ), which is the learning parity with noise assump-
tion, with dimension n and number of samples m, for the code matrix H. Both
LPN and the syndrome decoding problem have been heavily studied in the past
decades, and many attacks have been developed. A core observation (which is
folklore, and was made explicitly e.g. in [BCG+20]) is that essentially all known
attacks share a common high level structure: the distinguisher computes a linear
function in the samples b (but can depend arbitrarily on the matrix H). But if
the code generated by G has large minimum distance d, the distribution H · x
for random x must be d-wise independent, which implies that no weight-t ≤ d
linear function vᵀ · b of b = x · H + e can possibly distinguish it from random.
However, if v has high weight, then the distribution of vᵀ ·e for a random sparse
vector e is close to uniform, and so is vᵀ · b. In this work, we formalize this
folklore observation, and use it to derive a concrete heuristic for choosing the
parameters of an SOT-friendly matrix. Our concrete heuristic is the following:

If two codes have the same minimum distance & dimensions, their decision
syndrome decoding problems likely have the same level of security.

Therefore, when choosing concrete parameters, we will use as a baseline the codes
underlying well-studied syndrome decoding variants (e.g. random linear codes in
syndrome decoding, or LDPC codes in Alekhnovich’s assumption [Ale03]) and
set parameters to achieve the same minimum distance that these codes exhibit.
We make two additional comments before moving on to the second property:

– In practice, it is generally very hard to compute the minimum distance of a
family of codes. We will provide some efficient concrete choices where provable
bounds exists. However, in our most efficient instantiations, we will instead
rely on extensive simulations to analyze the minimum distance of the code
family using an optimized minimum distance estimator, from which we will
heuristically derive the minimum distance on large dimensions.

– In existing attacks against LPN/syndrome decoding, the number of noisy
coordinates plays a crucial role. However, it has a small impact on the overall
efficiency of the SOT: scaling the noise by some factor increases the (very
small) amount of communication and computation in the first phase, but has
no impact on the second phase. Therefore, even if our hypothesis turns out
to be too aggressive, we can actually significantly increase the security level,
by increasing the number of coordinates, at a minor cost.

Linear-Time Encodable LDPC Codes. Low-density parity-check codes
(LDPC) have a sparse parity-check H, were introduced in the seminal work
of Gallagher [Gal62], and are among the most well-studied objects in coding
theory. Certain random LDPC codes are known to exhibit a good minimum dis-
tance [Gal62] and can be decoded efficiently. On the other hand, their encoding
time (i.e., the time to evaluate the mapping x → x · G) grows quadratically
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with the dimension in general. Due to the transposition principle (Sect. 4), our
linear map x → x · Gᵀ is efficient if and only if LDPC encoding x → x · G is.
Hence, finding LDPC codes whose generating matrix is SOT-friendly boils down
to finding linear-time LDPC codes with large distance.

Achieving Fast Encoding and High Minimum Distance. Guided by the
above, we therefore seek to construct new families of structured LDPC codes
which simultaneously appear to achieve high minimum distance, yet can be
encoded extremely efficiently with (our optimized variant of) the g-ALT encoder
of Richardson and Urbanke [RU01] as presented in Sect. 4. Here, we use as a
starting point the Tillich-Zémor (TZ) family of codes [TZ06]. TZ codes have
appealing features in our setting: they provably achieve almost linear minimum
distance, and can be encoded in linear time. However, their structure is also sub-
optimal in our specific setting: their code is not cache friendly and has sublinear
distance due to degree-2 variable nodes. In [TZ06], the presence of these degree-
2 variable nodes is motivated by the fact that they allow for high performance
iterative decoding. In contrast, our application does not require any decoding
property whatsoever. Hence, in Sect. 6 we refine the TZ codes to tailor them to
our setting, improving the concrete minimum distance and encoding time.

We achieve this by iteratively refining our design, using extensive simulations
to track the presence of bad local structures which, when they show up, lead to
worse minimum distance guarantees. We fine-tune the structure of the matrix to
minimize the number of cache misses in the encoding algorithm, which have a
significant performance impact. To fine-tune the best possible choices of param-
eters in the low cache-misses setting, we compute, for many randomly generated
choices of parameters, the average minimum distance and worst-case minimum
distance over 10,000+ random samples of the code matrix.

1.5 Efficiency

After performing this iterative sequence of refinements, we end up with a variety
of candidate new LDPC codes, which we call Silver codes. We use our Silver codes
to instantiate the code matrix in the silent OT extension protocol of [BCG+19a],
which we also generalize to the setting of VOLE. We implemented Silver, our
protocol for SILent Vole and oblivious transfER, using our most optimized code;
our implementation is available at libOTe [Rin]. We compare Silver to the best
existing OT extension protocols: the standard IKNP protocol [IKNP03], which
remains to date the most efficient protocol in the “unlimited bandwidth” setting,
the recent protocol of Yang et al. [YWL+20], which provides the best concrete
performance in natural bandwidth settings (from 10 Mbps to 5 Gbps), and the
silent OT extension protocol of Boyle et al. [BCG+19a], which is the most effi-
cient protocol that enjoys the silent feature. When generating 107 OTs on one
core of a standard laptop, our protocol requires only 300 ms of computation and
122 KB of communication. In comparison, IKNP requires 58% more computa-
tion and ∼1300× more communication, [YWL+20] requires ∼4× more com-
putation and ∼14× more communication, and [BCG+19a] requires 19× more
computation (since our protocol is essentially their SOT with a Silver code, the

https://github.com/osu-crypto/libOTe
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communication is identical). In a setting with 100 Mbps of bandwidth, Silver is
at least 50 times more efficient than IKNP even when ignoring all costs beyond
those of communication, and at least 4× and 19× more efficient than [YWL+20]
and [BCG+19a] respectively, even when ignoring all communication costs.

2 Preliminaries

Throughout the work we will using [a, b] to denote the set {a, ..., b}. [n] is short-
hand for [1, n]. = will denote mathematical equality while x := y denotes defining
x to be equal to y. |v| denotes the Hamming weight of vector v. Matrix and vector
horizontal concatenation is denoted as [X|Y ]. Due to space restriction, we defer
preliminaries on the silent OT extension protocol of [BCG+19a] to Appendix A
of the Supplementary Material.

2.1 Preliminaries on Bias

Definition 1 (Bias of a Distribution). Given a distribution D over F
n and

a vector u ∈ F
n, the bias of D with respect to u, denoted biasu(D), is equal to

biasu(D) = |Ex∼D[uᵀ · x] − Ex∼Un
[uᵀ · x]| =

∣
∣
∣
∣
Ex∼D[uᵀ · x] − 1

|F|
∣
∣
∣
∣
,

where Un denotes the uniform distribution over F
n. The bias of D, denoted

bias(D), is the maximum bias of D with respect to any nonzero vector u.

Given t distributions (D1, · · · ,Dt) over Fn
2 , we denote by

⊕

i≤t Di the distri-
bution obtained by independently sampling vi

$← Di for i = 1 to t and outputting
v ← v1⊕· · ·⊕vt. We will use the following bias of the exclusive-or (cf. [Shp09]).

Lemma 2. Let t ∈ N be an integer, and let (D1, · · · ,Dt) be t independent dis-
tributions over F

n
2 . Then bias(

⊕

i≤t Di) ≤ 2t−1 ·∏t
i=1 bias(Di) ≤ mini≤tbias(Di).

Eventually, let Berr(F2) denote the Bernoulli distribution that outputs 1
with probability r, and 0 otherwise. More generally, we denote by Berr(F) the
distribution that outputs a uniformly random element of F with probability r,
and 0 otherwise. We will use a standard simple lemma for computing the bias
of a XOR of Bernoulli samples:

Lemma 3 (Piling-up lemma). For any 0 < r < 1/2 and any integer n, given
n random variables X1, · · · ,Xn i.i.d. to Berr(F2), it holds that Pr[

⊕n
i=1 Xi =

0] = 1/2 + (1 − 2r)n/2.

2.2 Syndrome Decoding and Learning Parity with Noise

Our constructions will rely on new variants of the learning parity with noise
(LPN) assumption (more accurately, a variant of the syndrome decoding assump-
tion). The LPN assumption over a field F states, informally, that no adversary
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can distinguish (A,A · s + e) from (A,b), where A is sampled from the set of
generating matrices of some linear code ensemble, s is a uniform secret vector
over F, e is a noise vector sampled from some distribution over F-vectors and
typically sparse. b is a uniform vector over F. More formally, we define the LPN
assumption over a ring R with dimension k, number of samples n, w.r.t. a code
generation algorithm C, and a noise distribution D:

Definition 4 (Primal LPN). Let D(R) = {Dk,n(R)}k,n∈N denote a family of
efficiently sampleable distributions over a ring R, such that for any k, n ∈ N,
Im(Dk,n(R)) ⊆ Rn. Let C be a probabilistic code generation algorithm such
that C(k, n,R) outputs a matrix A ∈ Rn×k. For dimension k = k(λ), num-
ber of samples (or block length) n = n(λ), and ring R = R(λ), the (primal)
(D,C,R)-LPN(k, n) assumption states that

{(A,b) | A
$← C(k, n,R), e $← Dk,n(R), s $← F

k,b ← A · s + e}
c≈ {(A,b) | A

$← C(k, n,R),b $← Rn}.

The above definition is very general, and captures in particular not only the
standard LPN assumption and its variants, but also assumptions such as LWE
or the multivariate quadratic assumption. However, we will typically restrict our
attention to assumptions where the noise distribution outputs sparse vectors
with high probability. The standard LPN assumption with dimension k, noise
rate r, and n samples is obtained by setting A to be a uniformly random matrix
over F

n×k
2 , and the noise distribution to be the Bernoulli distribution Bernr (F2),

where each coordinate of e is independently set to 1 with probability r and
to 0 with probability 1 − r. The term “primal” in the above definition comes
from the fact that the assumption can come in two equivalent form: the primal
form as above, but also a dual form: viewing A as the transpose of the parity
check matrix H of a linear code generated by G a matrix, i.e. A = Hᵀ, the
hardness of distinguishing Hᵀ · x + e from random is equivalent to the hardness
of distinguishing G · (Hᵀ ·x+e) = G ·e = e ·Gᵀ from random (since Gᵀ ·H = 0).

3 On the Hardness of LPN for Structured LDPC Codes

The learning parity with noise assumption is one of the most fundamental
assumptions of cryptography, introduced in the work of [BFKL94]; related prob-
lems were used even earlier [McE78]. The hardness of syndrome decoding and
its variants (which is equivalent to LPN under our definition – see above) has
also been intensely studied in coding theory, starting with the seminal work of
Prange [Pra62] (under the name the of syndrome decoding), in learning theory
(see e.g. [FGKP09] and references therein), and in random CSP theory (starting
with the seminal work of Feige [Fei02]) – all with many follow ups.

Over the past few decades, a tremendous number of attacks against LPN have
been proposed. These attacks include, but are not limited to, attacks based on
Gaussian elimination and the BKW algorithm [BKW00,Lyu05,LF06,EKM17]
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and variants based on covering codes [ZJW16,BV16,BTV16,GJL20], informa-
tion set decoding attacks [Pra62,Ste88,FS09,BLP11,MMT11,BJMM12,MO15,
EKM17,BM18], statistical decoding attacks [AJ01,FKI06,Ove06,DAT17], gen-
eralized birthday attacks [Wag02,Kir11], linearization attacks [BM97,Saa07],
attacks based on finding low weight code vectors [Zic17], or on finding corre-
lations with low-degree polynomials [ABG+14,BR17].

A Unified Framework for Attacks Against LPN. In light of this situation,
it would be excessively cumbersome, when introducing a new variant of LPN, to
go over the entire literature of existing attacks and analyze their potential impact
on the new variant. The crucial observation, however, is that this is not necessary,
as all the above attacks (and more generally, essentially all known attacks against
LPN and its variants) fit in a common framework, usually denoted the linear test
framework. Furthermore, the asymptotic resistance of any LPN variant against
any attack from the linear test framework can be deduced from two simple
properties of the underlying code ensemble and noise distribution. Informally, if

– the code generated by G has high minimum distance, and
– for any large enough subset S of coordinates, with high probability over the

choice of e ← D, at least one of the coordinates in S of e will be nonzero,

then the LPN assumption with code matrix G and noise distribution D cannot
be broken by any attack from the linear test framework. We will formalize this
and build on it to analyze the asymptotic security of our new LPN variants.

We stress that this crucial observation is not new to our work: a similar
observation was explicitly made in previous works [ADI+17,BCG+20], where
it was also used to analyze the security of new LPN variants. Even long before
these works, distributions whose outputs look random to linear tests, called low-
bias sample spaces, have been the subject of a rich and fruitful line of work which
was initiated in the seminal work of Naor and Naor [NN90], and the relevance
of linear tests to the security analysis LPN assumptions seems to have been at
least somewhat folklore. Still, we believe that it will be beneficial and instructive
to the reader to present this argument in a unified way with explicit bounds.

3.1 The Linear Test Framework

The common feature of essentially all known attacks against LPN and its variants
is that the distinguisher can be implemented as a (nonzero) linear function of
the samples (the linear test), where the coefficients of the linear combination
can depend arbitrarily on the code matrix. Therefore, all these attacks can be
formulated as distinguishing LPN samples from random samples by checking
whether the output of some linear test (with coefficients depending arbitrarily
on the code matrix) is biased away from the uniform distribution. Formally,

Definition 5 (Security against Linear Test). Let F be an arbitrary finite
field, and let D = {Dm,n}m,n∈N denote a family of noise distributions over F

n.
Let C be a probabilistic code generation algorithm such that C(m,n) outputs
a matrix A ∈ F

n×m. Let ε, δ : N 
→ [0, 1] be two functions. We say that the
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(D,C,F)-LPN(m,n) assumption with dimension m = m(λ) and n = n(λ) sam-
ples is (ε, δ)-secure against linear tests if for any (possibly inefficient) adversary
A which, on input a matrix A ∈ F

n×m, outputs a nonzero v ∈ F
n, it holds that

Pr[A $← C(m,n),v $← A(A) : biasv(DA) ≥ ε(λ)] ≤ δ(λ),

where DA denotes the distribution induced by sampling s $← F
m
2 , e ← Dm,n,

and outputting the LPN samples A · s + e.

The following observation is folklore, and was made explicitly e.g.
in [BCG+20]:

Observation 1. Existing attacks against LPN (as listed above) can be cast as
instances of the linear test framework. Therefore, none of these attacks can pro-
vide a polynomial-time distinguisher against any LPN assumption that is prov-
ably (ε, δ)-secure against linear tests, for any negligible functions (ε, δ).

[ADI+17] went even further and explicitly conjectured that for any LPN
variant with a sparse code matrix, the runtime of the best possible attack against
LPN is essentially poly(1/ε), i.e., the number of times a linear test attack must
be repeated until the bias becomes noticeable. See Assumption 1.

3.2 Dual Distance and Security Against Linear Tests

Following [ADI+17], we call dual distance of a matrix M , and write dd(M), the
largest integer d such that every subset of d rows of M is linearly independent.
The name “dual distance” stems from the fact that the dd(M) is also the mini-
mum distance of the dual of the code generated by M (i.e., the code generated
by the left null space of M). The following lemma is folklore:

Lemma 6. Let D = {Dm,n}m,n∈N denote a family of noise distributions over
F
n. Let C be a probabilistic code generation algorithm s.t. C(m,n) → A ∈ F

n×m.
Then for any d ∈ N, the (D,C,F)-LPN(m,n) assumption with dimension m =
m(λ) and n = n(λ) samples is (εd, δd)-secure against linear tests, where

εd = max
|v|>d

biasv(Dm,n), and δd = Pr
A

$←C(m,n)

[dd(A) ≥ d].

Proof. The proof is straightforward: fix any integer d. Then with probability at
least δd, dd(A) ≥ d. Consider any (possibly unbounded) adversary A outputting
v. Two cases can occur:

– Either |v| ≤ d ≤ dd(A). In this case, the bias with respect to v of the distri-
bution {A · s | s $← F

m} is 0 (since this distribution is d-wise independent).
Since the bias of the XOR of two distribution is at most the smallest bias
among them (see Lemma 2; the same holds for the bias with respect to any
fixed v), we get bias(DA) = 0.

– Or |v| > d; in which case, applying Lemma 2 again, bias(DA) ≤ bias(Dm,n).
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Security of LPN with Random Codes. An instructive example is to consider
the case of LPN with a uniformly random code matrix over F2, and a Bernoulli
noise distribution Dm,n = Bernr (F2), for some noise rate r. The probability that
d random vectors over F

m
2 are linearly independent is at least

d−1∏

i=0

2m − 2i

2m
≥ (1 − 2d−1−m)d ≥ 1 − 22d−m.

Therefore, by a union bound, the probability that a random matrix A
$← F

n×m
2

satisfies dd(A) ≥ d is at least 1 − (
n
d

) · 22d−m ≥ 1 − 2(2+log n)d−m. On the other
hand, for any d and any v with |v| > d, we have by Lemma 3:

Pr[e ← Bernr (F2) : vᵀ · e = 1] =
1 − (1 − 2r)d

2
,

hence biasv(Bernr (F2)) = (1−2r)d ≤ e−2rd. In particular, setting d = O(m/ log n)
suffices to guarantee that with probability at least δd = 1 − 2−O(m), the LPN
samples will have bias (with respect to any possible nonzero vector v) εd at most
e−O(rm/ logn). Hence, any attack that fits in the linear test framework against
the standard LPN assumption with dimension m and noise rate r requires of
the order of eO(rm/ logn) iterations. Note that this lower bound still leaves a gap
with respect to the best known linear attacks, which require time of the order
of eO(rm), eO(rm/ log logm), and eO(rm/ logm) when n = O(m), n = poly(m), and
n = 2O(m/ logm) respectively [BKW00,Lyu05,EKM17].

3.3 SOT from Asymptotically Good Linear-Time Encodable Codes

Abstracting out the unnecessary details, recall that the construction of silent
oblivious transfer extension introduced in [BCG+19b,BCG+19a] and recalled
in Appendix A, relies on the following assumption: given a large public matrix
G ∈ F k×n

2 , is such that n = c · k for some small constant c > 1 (e.g. c = 2), it
should be infeasible to distinguish e · Gᵀ from random, where e is a uniformly
random weight-t vector. This corresponds to the dual-LPN assumption, which
is equivalent to the primal-LPN assumption with matrix H ∈ Fm×n

2 , where H
is the parity check for generator G; i.e., Gᵀ · H = 0.

A Selection Principle for LPN with Structured Code. Based on the previ-
ous discussions, for any linear code ensemble C which outputs matrices H

$← C
having a large distance w.h.p., it is reasonable to conjecture that the corre-
sponding primal-LPN assumption will hold (since a contradiction would imply a
fundamentally different type of attack than existing ones). This conjecture was
formally stated in [ADI+17] for the case of all sparse code ensembles:

Assumption 1 (Assumption 6 in [ADI+17]). For every prime-order field
F, every polynomial m(λ), n(λ), every constant t, every real r ∈ (0, 1/2), and
every t-sparse matrix A ∈ F

n×m, the following holds: Any circuit of size T =
exp(Ωr(dd(A))) cannot distinguish (A · s + e) for s $← F

m
2 , e ← Berr(F) from
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the uniform distribution with advantage better than 1/T (Ωr(x) denotes Ω(x),
where the hidden constant may depend on the noise rate r).

Noise Weight versus Minimum Distance. The above discussions allows to
make a simple, yet powerful observation: for typical noise distributions, including
the Bernoulli distribution with parameter t/n, the regular noise distribution
(concatenations of t length-n/t unit vectors), and the exact noise distribution
(random t-sparse vectors), the running time of linear attacks is lower bounded
by a term of the form ec·rd for some constant c, where r = t/n is the noise rate
and d is the minimum distance. This suggests the following safeguard : if a SOT
code exhibits a much worse typical minimum distance behavior than estimated
(which in our case would be very surprising but theoretically possible), say, the
true distance d is v times shorter than estimated, then same conjectured security
level as before can be obtained by scaling the number of noisy coordinates t by a
factor v. Crucially, in our SOT construction, the impact of this scaling vanishes
when the number of OTs is large: it only impacts the complexity of distributing
the seed (which increases by a factor v), but has no influence whatsoever, neither
on the matrix multiplication part (which is the bulk of the computation) nor on
the sparse vector expansion (which is the only other component whose cost scales
with the target number of OTs).

Our Approach: Structured LDPC Codes. Asymptotically good families of
linear-time encodable codes have been studied in the literature, with probabilis-
tic constructions given in [GDP73,Spi96]. However, these works only targeted
asymptotic efficiency. Our aim, on the other hand, is to focus on concrete effi-
ciency, and to find codes with a large concrete minimum distance, and extremely
efficient encoding. We choose to focus on structured families of LDPC codes (i.e.,
codes whose parity-check matrix is sparse), which have been widely studied in
the coding theory literature. Our rationale is based on the following observations:

– Most LDPC codes have linear minimum distance;
– Some structured families of LDPC codes admit efficient encoding algorithms;
– Some structured families of LDPC codes provably achieve both fast linear

time encoding and almost linear minimum distance;
– Structured families of LDPC codes in the literature which do not exhibit lin-

ear or close-to-linear minimum distance typically satisfy a specific constraint:
their Tanner graph contains a large number of degree-2 variable nodes. In
contrast, we suggest candidates which admit extremely fast encoding, but do
not exhibit this structural weakness, and can be experimentally verified to
exhibit a very good minimum distance growth.

– For random LDPC codes, the corresponding assumption (primal LPN with
a random sparse code matrix) is the Alekhnovich assumption [Ale03], an
important and well-studied assumption.

3.4 Most Sparse Matrices Have Linear Dual Distance

In this section, we show that for any integer t > 2, most matrices in F
n×m
2 with

rows of Hamming weight t have dual distance linear in m; more precisely, the
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fraction of such matrices with dual distance at least γ ·k (for some constant γ) is
at least 1 − m2.1−t. In coding-theoretic terms, it says that most column-regular
LDPC codes have linear minimum distance, where the parity check matrix has
fixed column weight. Let Wt(Fm

2 ) denote the set of all vectors in F
m
2 with Ham-

ming weight exactly t; we also denote by Wt(Fn×m
2 ) the set of all matrices in

F
n×m
2 with exactly t ones per column.

Theorem 7 (Most sparse matrices have dual distance O(m)). For any
constant c > 1 and integer t > 2, there is a constant γ = γ(c, t) such that for
any large enough m, denoting n = c · m,

Pr
[

A
$← Wt(Fn×m

2 ) :
dd(A)

m
< γ

]

≤ 1 − m2.1−t.

For completeness, we provide the proof in Appendix C of the Supplementary
Material; the proof is a direct adaptation to our setting of the analysis of [MST03,
Section 5.3]. Building upon our analysis, we also make a key observation: random
LDPC codes over large fields have linear minimum distance with high probability,
even when their parity-check matrix is randomly sampled with {0, 1} entries. We
discuss the implications of this observation for one of our applications, as well
as its relation to previous assumptions from the literature, in Appendix C.

4 Fast LDPC Encoding

We begin with an overview of how to perform fast encoding of LDPC codes by
leveraging the sparsity/structure of H. Let us first review the naive encoding
method. Recall H defines the code C = {c | Hcᵀ = 0}. As such, define the
systematic form H ′ for the same code by performing elementary row operations
on H to obtain H ′ = [−PT |In−k]. Since elementary row operations do not
change the null-space, we have C = {c | Hcᵀ = 0} = {c | H ′cᵀ = 0}. Although
H is sparse, P ∈ F

k×m is likely dense. Let G := [Ik|P ] be the symmetric form
generator and then encoding can be achieved by computing c := xG for x ∈ F

k.
The cost of this is O(n3) time to compute P and O(n2) time to compute xP .

However, we can also use the fact that Hcᵀ = 0 to encode x into c. Recall
that c = xG = [x|c′] for c′ := xP . Therefore we can rewrite this as

0 = Hcᵀ = H[x|c′]ᵀ = Txᵀ + Sc′ᵀ ⇐⇒ −Txᵀ = Sc′ᵀ

where H = [T |S] and T ∈ F
m×k, S ∈ F

m×m. Given x, we can compute y :=
−Txᵀ in O(k) time since T is sparse. We then solve the sparse system y = Sc′ᵀ.
Using Gaussian elimination, this would naively require O(m3) = O(n3) time.
However, we can try to leverage the sparsity of H to achieve better efficiency.

Our starting point is the somewhat standard LDPC solving technique known
as g-Approximate Lower Triangularization (g-ALT) [RU01,DP15,KS12]. The
basic intuition is that this system can be solved in linear time if S is a lower
triangular matrix. In particular, the entries along the diagonal should all be set
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to one. Later we will discuss how to ensure this is the case. The system can be
solved by solving each row “independently” starting with row 1 and working
down. This idea can be generalized to allow all but the last g rows of H to be
triangular (see Fig. 9 in Appendix D). The last g rows are said to be part of the
gap. As discussed in Appendix D, a parity check matrix with this form allows for
encoding x as c = xG in O(n + g2) time. Therefore, this remains linear so long
as g = O(

√
n). Additionally, we present an optimization in Appendix E which

reduces this to O(n) at the expense of O(g) communication in the protocol.
Recall that in dual LPN we wish to compute u := e · Gᵀ which is equivalent

to primal LPN where u := x · H + e. Yet, the encoding algorithm described
above is for computing x ·G. By the transposition principle [Bor57,IKOS08], we
can achieve our goal at effectively the same cost. Roughly, the transformation
works by first expressing the circuit which computes x · G as a series of matrix
multiplication, s1 := M1 ·x, s2 := M2 ·s1, ..., e := Mn ·sn−1 such that e is the final
output. Any circuit can be expressed in this way. Then e · Gᵀ can be computed
as sn−1 := Mᵀ

n · e, sn−2 := Mᵀ
n−1 · sn−1, ...,x := Mᵀ

1 · s1. Refer to Appendix D
for a detailed description of all the algorithms discussed in this section.

5 Estimating the Minimum Distance Empirically

Crucial to our construction is the ability to accurately determine the minimum
distance of the LDPC matrix H that is employed. Computing the exact minimum
distance is known to be NP-Complete [Var97] and typically infeasible for our
parameter region, e.g. n = 220. For some LDPC distributions, it is possible to
derive an asymptotic bound on the minimum distance; however, many of these
have drawbacks in efficiency or distance.

To overcome this, we resort to computational approaches for estimating the
minimum distance of an LDPC code ensemble. For relatively small values of n,
say less than 200, we compute the exact minimum distance using the approach
presented in [HIQO19]. For larger n, say less than 4000, we fall back to a stan-
dard heuristic, the noisy impulse method of [BVJD02], for upper bounding the
minimum distance (which we have verified does in fact closely agree with exact
minimum distance for smaller values of n). We then extrapolate the asymptotic
behavior of the minimum distance for larger values of n.

5.1 Exact Minimum Distance

For computing the exact minimum distance we make use of the so-called
Brouwer-Zimmerman algorithm as described in [Gra06], and implemented
in [HIQO19]. Loosely speaking, this approach iteratively refines a lower and
upper bound until they are equal. First, the generator matrix G is placed in
systematic form G′ = [Ik|P ]. Recall that for all x ∈ F

k \ {0}, the corresponding
codeword is c = [x|xP ] and therefore clearly |c| ≥ |x|. Using this observation,
the algorithm proceeds by initializing the lower bound � = 1 and upper bound
u = m + 1. All x with |x| = � are encoded as c = xG and the upper bound u is
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replaced as the minimum weight over all codewords considered. While u �= �, �
is incremented and the process is repeated. See [Gra06,HIQO19] for details.

The running time remains exponential in the size of the code. With care-
ful optimizations, the implementation of [HIQO19] is capable of computing the
minimum distance up to about n = 160. Since this is relatively small compared
to the codes our protocol employs, this approach is primarily used to validate
the accuracy of the so-called noisy impulse method which we describe next.

5.2 Upper Bounding the Minimum Distance

Our second approach for evaluating the minimum distance of a LDPC family
is known as the noise impulse method [BVJD02]. Very roughly speaking, this
approach tries to decode the zero codeword when one or more of the bits have
been flipped. The intuition is that if the right bits are flipped, then the next
closest codeword will correspond to a close-to-minimum weight codeword.

In more details, and including improvements from [XFE04], this approach
considers all vectors c ∈ {0, 1}n with |c| ≤ w for some small constant w, e.g.
1 or 2. Each c is input into a belief propagation decoder, typically Min-Sum,
which output the decoders estimates on the likelihood that each bit of c should
be error corrected to zero or one. Since at most w bits in c are one and the
actually minimum distance d is almost certainly more than twice w, the most
likely codeword will in fact be the original all zero codeword.

However, the likelihood information contained in the decoder output can be
leveraged to aid in the search of nearby non-zero codewords. Loosely speaking,
belief propagation (BP) decoders work by assigning each bit of c a likelihood
of being zero or one and updating these likelihoods in an iterative process. The
initial likelihood values could be that the decoder is 95% certain that each bit
is as specified by c, i.e. an error rate of 0.05. Intuitively, at each iteration the
likelihood information for each bit of c is updated based on how many of the
corresponding parity checks pass or fail. An interpretation of this is that it
reduces the likelihood values for the zero positions of c when they are closely
related to the positions of c which were set to one.

The idea is then to sort the positions of c such that the positions which are
most confidently zero are to the right. The same permutation is applied to the
columns of G. Partial Gaussian elimination is applied to G s.t. the left k × k
submatrix is lower triangular with ones along the diagonal. Some of the first
k columns are likely linearly dependent, preventing us from making the left k
columns of G lower diagonal. In this case, the dependent columns are permuted
right and replaced with the next left most column of G. We then consider all
(permuted) codewords with the form c∗ = [c1|c2|0n−k−t] where c2 ∈ {0, 1}t
has some maximum weight u, e.g. t = 50, u = 10. For each choice of c2, it is
possible to compute c1 ∈ {0, 1}k via the left lower diagonal submatrix of G. The
estimated upper bound the distance as the minimum weight over all c∗ (Table 1).
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Table 1. The minimum dmin, average davg and maximum dmax minimum distance
obtained over 100 trials for weight 5 uniform LDPC codes.

m method w dmin davg dmax

20
impulse 1 2 5 6

exact - 2 5 6

40
impulse 1 4 8.3 10

exact - 4 8.3 10

60
impulse 1 8 11.44 14

impulse 2 8 11.38 14

exact - 8 11.38 14

80
impulse 1 12 16.48 20

impulse 2 12 14.86 18

exact - 12 14.86 18

100
impulse 1 16 22.28 26

impulse 2 14 18.2 20

6 Code Design

Designing an efficient LDPC code for large dimension LPN offers many unique
challenges. Our primary two design goals are to achieve large minimum distance,
ideally linear in n, and linear time encoding. However, unlike many existing codes
from the coding community, we do not care about its decoding performance or
other error correcting properties. All our codes have rate 1/2, i.e. n/2 = m = k.

In this section we review two existing LDPC codes, namely uniform and
Tillich-Zémor Codes. After describing various benefits and drawbacks of each,
we design a new highly efficient LDPC code which achieves an extremely fast
linear encoding time and plausibly linear minimum distance.

6.1 Uniform LDPC

As described in Sect. 3.4, the family Wt(Fn×m
2 ) of uniform LDPC codes with

fixed column weight t are known to have linear minimum distance with good
probability. We consider the family of codes parameters by t ∈ {5, 11}. While the
theoretical bound applies to all t > 2, we observe that t = 3 experiences very poor
concrete minimum distance performance and often do not correspond to a code
that can be made systematic. For t = 5 we observe a concrete linear minimum
distance growth rate of davg = 0.28m, dmin = 0.19m over 100 trials. These growth
rates were obtained for n ∈ [200, 800]. Since we are interested in the worse case
performance, we are mostly interested in dmin. By increasing the weight to t = 11
we obtain a minimum distance growth rate of davg = 0.38m, dmin = 0.36m.

The hardness of syndrome decoding for uniform LDPC codes was the basis
of recent proposals [BCGI18,YWL+20], and corresponds to the well-established
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Alekhnovich assumption [Ale03]. While these codes turn out to be inappropriate
efficiency-wise in our setting (see below), we will rely on the following heuristic to
select the concrete parameters of our new codes: when we experimentally observe,
with high confidence, that a distribution over codes achieves a similar average
minimum distance, with a similar variance, compared to uniform LDPC codes,
we heuristically estimate that the corresponding assumptions should provide a
comparable level of hardness. We note that, if it turns out that this heuristic
is too optimistic (which would intuitively require finding new attacks radically
different from all known attacks), increasing the noise (as described in Sect. 3.3,
Noise weight versus minimum distance) can be used to adjust the hardness level
of the underlying assumption without significantly harming efficiency.

Shortcoming of Uniform LDPC Codes. The choice of basing security
on the hardness of decoding uniform LDPC codes was motivated in previous
works [BCGI18,YWL+20] by the fact that they correspond to the relatively well-
established Alekhnovich assumption. However, they turn out to be a relatively
poor choice in our setting. At a high level, the reason is that for distributions
over random LDPC codes which do not enforce any particular structure beyond
guaranteeing some conditions on the number of ones per row and column (i.e.,
which sample the parity-check matrix uniformly conditioned on constraints on
the fractions of variable and check nodes from the Tanner graph which must
have a given degree), having a high minimum distance with good probability,
and being linear-time encodable with the g-approximate lower triangularization
algorithm, appear to be at odd, according to a conjecture of Richardson and
Urbanke [RU01] (we will discuss this conjecture in more details in Sect. 6.2).
This effectively justifies moving towards structured ensembles of LDPC codes,
which also enforce some structure on the shape of the parity-check matrix. A
prime example of codes achieving a sweet spot between having high minimum
distance with good probability, and very fast encoding, is given by the Tillich-
Zémor code ensemble.

6.2 Tillich-Zémor Codes

As discussed before, in order to design codes that have efficient encoders as well
as good minimum distance, one must move away from random codes and con-
sider more structured codes. As such, structured codes would offer an immediate
handle on efficient encoding purely by design. On the other hand, this approaches
leaves much for the desire of a more rigorous theoretical understanding of the
minimum distance of such structured codes. Such questions have been posed in
the past amongst the members of the coding theory and communications com-
munities. One such work is that of Tillich and Zémor [TZ06]. They investigate
the minimum distance of structured LDPC codes with two variable nodes of
degree-2 per parity-check equation. In the design of LDPC codes with high iter-
ative decoding performance the variable nodes of degree-2 play a very important
role, and this is their motivation for investigating the minimum distance of such
codes. Concretely, they investigate codes with m × n parity check matrices of
the form H = [L|R], where R is the m × m matrix defined by
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R =

⎛
⎜⎜⎜⎜⎜⎝

1 1
1 1

. . .
. . .

1 1
1 1

⎞
⎟⎟⎟⎟⎟⎠

and L is an m×k matrix such that all of its columns/rows have weight constant
t. As such, H is in g-ALT form for g = 1. Tillich and Zémor prove that if
H was generated at random subject to these structural constraints, then the
minimum distance of the corresponding code is at most αn1− 2

t with probability
O(n

2
t −1) + O(α

t
2 ) for even t, and O(n

2
t −1) + O(αt) for odd t. In fact, they also

show that for any H that has the aforementioned structure, the corresponding
code will have minimum distance upper bounded by a quantity of order O(n1− 1

t ).
Thus, such codes always have sub-linear distance.

Looking at the structure of H, there are a few observations we can make.
Let n2 denote the number of variable nodes of degree 2. A principal quantity of
interest is the ratio n2/m. It can be shown that if n2/m > 1, then the minimum
distance of the corresponding LDPC code cannot be larger than a logarithmic
function of n. If n2/m < 1, then it is possible for the minimum distance to
be a linear function of n. The codes considered by Tillich and Zémor achieve
n2/m = 1 (for t �= 2) and offer readily a simple linear-time encoding algorithm
for the corresponding code. Yet, as mentioned before, these codes always have
sub-linear (albiet, close to linear) minimum distance. In the next section we will
empirically verify that the sub-linear growth is in fact the case.

Other works, e.g. [OTA07,DRU06], have looked at the sub-graph G2 of the
Tanner graph formed by only the degree-2 variable nodes (columns of H with
weight 2) and certain structural properties can lead to poor minimum distance.
For example, it is a common practice to ensure that there are no cycles in the
Tanner graph involving only variable nodes of degree 2. Also, Otmani, Tillich
and Andriyanova [OTA07] proved that if G2 is slightly dense (has average degree
greater than 2), then the minimum distance is only at most logarithmic in n.
They also consider several other conditions for ensuring sub-linear distance.

Another work regarding G2 is that of Di, Richardson and Urbanke [RU01,
DRU06] and regard the quantity Q = λ′(0)ρ′(1) (λ and ρ are polynomials
describing specific weight distributions of the rows/columns respectively) and
how it impacts the minimum distance. λ′(0) is the fraction of edges in the Tan-
ner graph connecting to degree-2 variable nodes. They show that if Q > 1,
then the minimum distance grows sub-linearly with n and linear time encoding.
A question that is left open and remains to be answered is whether a linear
encoding complexity necessarily implies sub-linear minimal distance.

We end this section with a few concluding remarks regarding our new codes
and how they compare against the several techniques laid out in this section.
Firstly, our codes have designed to ensure fast/linear encoding complexity while
also having high (potentially linear) minimum distance. However, the approach
to ensure linear encoding complexity is different from the works described in
this section, since we actually have zero columns with weight 2. Thus, none the
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sufficient conditions for sub-linear minimal distance described above are satisfied
by our codes. Based on these observations, we conclude that our codes do not
provably have sub-linear minimal distance. We leave open the task of formally
proving claims regarding the minimum distance of our codes.

6.3 LDPC Silver Codes

We now present our new LDPC constructions, which we dub Silver Codes (codes
for SILent Vole and oblivious transfER). The goal of these codes is to obtain
(plausible) linear minimum distance and extremely efficient encoding. Unlike in
the traditional setting, our codes need to perform well (encoding-wise) when n
is on the order of millions (but do not need to admit efficient decoding algo-
rithms). Ideally our code would have a very compact representation. If a large
preprocessing/sampling procedure must be performed, then the codes will likely
need to be stored in memory, possibly requiring more memory than the rest of
the protocol. Therefore we aim to design codes with a very succinct description.

Our second goal is to have a very efficient memory access structure. Recall
that the encoding algorithm will have to access “memory locations” j and i
whenever there is a 1 located at Hj,i. Therefore we would ideally like H to have
some additional structure which maintains some memory locality. For example,
having a bounded distance between sequential memory accesses. In the case of
TZ codes, for example, the left matrix is uniformly distributed, which signifi-
cantly harms the performances in terms of memory access. When n is on the
order of millions, performing random access into an array of length n can quickly
dominate the running time as we will see in Sect. 7.

Despite this shortcoming, we take TZ as our starting point and iteratively
improve it (sacrificing decoding performance, but trying to optimize minimum
distance and encoding time) with the (heuristic) guidance of our minimum dis-
tance estimators. It will be useful to partition H into left and right halves
[L|R] := H which are each of size m × m. For TZ, L is therefore a uniform
column/row weight t matrix while R has column/row weight 2 where all ones
are effectively on a diagonal band. Recall that we only consider rate 1/2 codes
where k = m = n/2.

It is also a well known phenomenon that odd column weight t LDPC codes
achieve better minimum distance performance (for examples, the bounds on the
minimum distance achieved in [TZ06] are much better for odd t). Hence, we
restrict ourselves to odd values of t. In particular, we focus on t ∈ {5, 11}.

Slv1. Our first observations is that the structure of R in TZ plays a crucial role
in the proof of sub-linear distance. For TZ, this structure was desirable as it
enables a very efficient linear time encoder. However, using the more general
g-ALT encoder we are still able to have linear time encoding for any g = O(

√
n).

Our first alteration is then to increase the gap g and ensure all columns of R have
weight t. There are several possible values for g and we experimentally settle on
g ∈ {24, 32} as they will provide good concrete performance.

The next question is how should the ones be distributed in R. Our g-ALT
encoder require ones along the diagonal which leaves t − 1 degrees of freedom



522 G. Couteau et al.

per column. While one could distribute these uniformly over the lower half of
R, we opt to place them uniformly in the g positions below the main diagonal.
An example of g = 2, t = 2 is shown in Fig. 1a. We consider two choices of these
parameters, (g, t) ∈ {(24, 5), (32, 11)}, which are respectively used in our weight
5 and 11 codes. We note that other parameter choices are possible and that we
settled on these as a good trade off between efficiency and distance.

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 1 1

. . .
. . .

. . .
0 0 1

1 1 1
0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(a) Sample R matrix
for Slv1 with g = t = 2.
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(b) Average minimum distance of weight t = 5 codes.

Fig. 1. Example of R and distance of Slv1, uniform, TZ for weight t = 5.

We denote this code family as Slv1-t. Slv1 immediately gives a significant
improvement over TZ as shown in Fig. 1b. Consider the structure of minimum
codewords in TZ: They are often composed of several columns from L which
when added together result in small distances between the non-zero elements,
e.g. 1001000...000100010 which has distances 3, 4 between the ones. The small
distances can then be “bridged” by including the corresponding columns of R,
e.g. 7 columns in the case above. However, this strategy does not work for our
codes due to R having larger column weight which are randomly distributed.

Moreover, this code performs remarkably similar to uniform of the same
column weight t = 5. With m = n/2 = 200 rows, the average (estimated)
minimum distance over 100 trials of this code is 35 while uniform is 45.

Although this code represents a significant improvement over TZ for our
particular application, we observe that some samples of the Slv1 code have sig-
nificantly lower distance that others. In particular, the variance in this code can
result in samples with as low as dmin ≈ 0.55davg while uniform has a much smaller
variance, with dmin ≈ 0.95davg over 100 samples.

Slv2. Through experimentation and inspecting the Slv1 instances which perform
unusually poorly, we identified that key contributors are bad local structures in
the main diagonal of R which can at times result in low weight codewords. To
prevent this, we observed that adding additional weight one diagonals below the
main diagonal prevents these structures. Intuitively they work by increasing the
expanding property of each column by guaranteeing they span more than g rows.
Moreover, these structures add almost no computational overhead.

Additionally, we remove the first g columns of R such that its a m × m − g
matrix and the portion of the band which wraps around is removed. In Appendix
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E we will use a different technique to restore R to being square. An example of
the Slv2 distribution of R is in Fig. 2a with g = t = 2 and a single diagonal.

Fig. 2. The alterations in Slv2 along with the minimum distance performance.

Through experimentation we observe that adding two weight 1 diagonal
bands at distances 5 and 31 below the main diagonal significantly reduces the
variance and improves the average distance. As shown in Fig. 2b the perfor-
mance of the second code which we denote as Slv2. We note that the uniform
code also had the n dimension reduced by g in order to maintain a fair com-
parison. Remarkably, the Slv2 code has average performance almost identical to
that of uniform codes. Moreover, the variance of Slv2 is significantly reduced,
with dmin = 0.88davg compared to dmin = 0.91davg for uniform over 100 trials.

Slv3. Next we turn our attention to the distribution of L after which we will
further optimize R. While the current distribution of L gives good minimum
distance, its memory locality properties are extremely poor since it is uniform.
For each non-zero Li,j , the g-ALT encoder must access two arrays at i, j respec-
tively. This effectively means one of them is always a cache miss and can quickly
dominate the running time as see in Fig. 5 of Sect. 7.

We investigated numerous methods of improving the memory locality of L.
For instances, an L consisting of random non-zero submatrixes with various
dimensions. However, for the most part this line of thinking was ineffective. Core
to a high performing L is an expanding property. In particular, each column of
L should have non-zero locations which are somewhat unique and spread out.
This is particularly important since the distribution of R is more or less a single
band along the diagonal. If both L and R consists of clumps of ones, then it is
more likely that cancellation can occur.

However, we identified a surprisingly simple and highly efficient structure
which can possess the exact properties we desire. In particular, we will distribute
L such that each column is a cyclic shift of exactly one over the previous. This
effectively results in t weight one diagonals wrapping around L.

We observe that the exact distribution of the diagonal plays a very cru-
cial role in the minimum distance performance of L. For instance, if they are
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sampled uniformly, then with some noticeable probability the diagonals can be
clumped together. In these cases the code can perform extremely poorly due to
L and R being too similarly distributed. One also might think that to achieve
a good expanding property that distributing the diagonals evenly over L would
be optimal. However, in this case it is possible for two columns of L to equal.

We have experimentally identified that a compromise between these two
extremes achieves very good minimum distance performance (both in terms of
average distance and variance). In particular, the diagonals should be somewhat
evenly distributed while still being irregularly spaced. To identify such distri-
butions we sampled many L at random and evaluate the resulting minimum
distance over hundreds of trials and various values of n. An instances of a well
performing L with weight t = 5 is to distribute the ones of the first column
as {0m, 0.049m, 0.43m, 0.60m, 0.73m}. Other well performing instances have a
similar distribution where some diagonals are relatively close while overall they
are evenly distributed over the range.

Our methodology for selecting the exact parameters was to evaluate 10,000
random choices at m ∈ {40, 60, 80, 100, 150, 200, 300, 400} and select the top 100
best performing. Out of these, we then ran 100 trials for each m ∈ [40, 400]
with independently sampled R and selected the parameters which maximized
dmin/davg for each m. As such, our selection didn’t achieve the highest average
distance davg but instead was “consistently well performing.” We note that one
has to be careful with the selection of L as a poorly chosen one can result in
bad/erratic minimum distance performance. That being said, we observed that
most randomly sampled chooses performed well.

The minimum distance performance of this code is depicted in Fig. 3a. Inter-
estingly, this code out performs uniform with an average (estimated) minimum
distance of davg = 94 at m = 400 compared to davg = 91 for uniform. Moreover,
the variance of this code is quite low, with dmin = 0.94davg at m = 400 compared
to dmin = 0.91davg for uniform over 100 trials.

Fig. 3. Performance of Slv3 and Slv4 with p ∈ {1, 2, 3} vs uniform.

Slv4. We now return our attention to improving the distribution of R. Generating
R is effectively sampling O(m) random sets of

(
g
t

)

, which correspond to the
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location of the ones on the main diagonal. While linear time, this sampling can
be quite expensive. We therefore experiment with the idea of letting the diagonal
repeat ever p columns. While one has to be careful with repeated structures
in a code, for a sufficiently large p we conjecture and experimentally confirm
that it should not harm the minimum distance. We consider a repeat of p ∈
{1, 2, 3, ..., g} and observe the repeating structure only introduces a weakness for
p ∈ {1, 2}. The case of p = 1 is clearly problematic due to R now effectively
being t + 2 diagonal lines of width one which structurally is too similar to L.
Our experiments reflect this with minimum distances being effectively upper
bounded by 12 as seen in Fig. 4. For p = 2 we observe a similar trend with the
distance being upper bounded by 40. However, for p ≥ 3 we observe no negative
effects over all of the trials. To be slightly conservative, we opt to set p = g
which for our weight 5 code results in p = 24.

We further propose selecting a concrete instance of the diagonal, and vali-
dating its performance on the range of experimentally testable values of n. This
can in turn give us confidence that the repeating structure does not happen to
correspond to a weak instances, e.g. a p = 1 instance. Moreover, by selecting a
concrete instance, it is possible to hardcode the indices into the program and
get a very significant performance improvement.

Slv5. This leads us to our final modification. For the case of p = g we restrict our
selection of R such that each row1 and column has fixed weight t−1 with respect
to these random indices. The reason for this alteration is purely to improve
the computational efficiency of computing xGᵀ via the transposed circuit. In
particular, the encoding algorithm will process R in a row by row manner. This
alteration allows the weight of each row to be not be hard coded improved the
performance of the branch predictor, etc. We observe that restricting R to be
row regular does not decrease the minimum distance performs. See Appendix F
for a detailed description.

Eventually, we further consider a variant of Slv5, called Slv5’. This variant
is entirely identical, with the sole exception that the parity-check matrix is now
viewed as the parity-check matrix over a field F which might not be equal to
F2 – while the parity-check matrix still has {0, 1} entries. We do not use this
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Fig. 4. Average minimum distance of uniform, Slv5 and TZ for weight t ∈ {5, 11}.

1 Excluding edge cases for the first and last set of g rows.
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variant in our main application to silent OT, but it can be used to provide strong
efficiency improvements for VOLE over larger fields. We provide support for this
modification in Appendix C of the Supplementary Material.

7 Performance Evaluation

We now evaluate the concrete running times of our LDPC codes along with our
Silent OT and Vole implementations (available at [Rin]). With respect to our
OT protocol we compare with [IKNP03,BCG+19a,YWL+20]. We also compare
our Vole implementation (a direct generalization of [BCG+19a] with our LDPC
code) with the implementation of [WYKW20]. All implementations target κ =
128 bits of computational security and λ = 40 bits of statistical security.

All performance evaluations were perform on a single consumer laptop with
an i7 9750H CPU and 16 GB of RAM. Networking is performed via localhost.
Each party is restricted to a single thread. We note that due to silent property of
our protocol, it is very conducive to a multi-threaded implementation but that
we only consider single thread performing for simplicity. All numbers reported
exclude a setup phase where 128 base OTs are perform.

LDPC Encoding Performance. In previous protocols for silent OT and Vole,
the running time was dominated by the compression of the noisy vectors gener-
ated in the setup. We now compare our new algorithms with the bit polynomial
multiplication encoding used in [BCG+19a].

For n = 220, our most optimized code is 31× faster than [BCG+19a,
CCK+18]. This improved running time is not merely due to using an LDPC
code as demonstrate by the running time of TZ, which is only between 1.1 and
2× faster than [BCG+19a,CCK+18]. Moreover, the initial strengthening of the
TZ minimum distance by the Slv1 code results in a significant running time
increase of 1.5×.

The first major performance improvement is achieved by the Slv3 code which
changes the distribution of L to have an extremely efficient memory access struc-
ture. This change reduces the running time of the L encoding by around 25×.
The Slv5 code then optimizes the distribution of R to have a repeating struc-
ture along with ensuring that it is row regular. These changes allow for very
significant memory and system level optimization.

Oblivious Transfer Performance. We now turn our attention to analysing the
concrete performance of our OT protocol in comparison to [BCG+19a,YWL+20,
IKNP03] as shown in Fig. 7. All protocols output m instances of correlated OT
where the receiver obtains a per instance bit b and message mb ∈ {0, 1}128
while the sender obtains a global Δ ∈ {0, 1}128 and a per instance message
m0 ∈ {0, 1}128 such that mb = m0 + bΔ. Random and chosen message OTs
can then be obtained via standard techniques. Our protocol is based on that of
[BCG+19a] and we inherit their O(log m) communication overhead.
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Fig. 5. Running times (ms) of encoding algorithms for LPN with n length vector.

We observe that both our weight 5 and 11 Slv5 codes out perform all exist-
ing protocol in terms of computational overhead while matching the best com-
munication overhead of [BCG+19a]. In particular, our protocol is as much as
1.5× faster than the highly optimized [IKNP03,Rin] protocol which has stood
as the most computationally efficient protocol for almost two decades. All this
is achieved while communicating exponentially less data. We argue that this is
a landmark achievement given the central role OT plays in countless protocols.

The next most efficient protocol is that of Yang et al. [YWL+20] which also
achieves a sub-linear (but not logarithmic) communication overhead. This proto-
col is based on Primal LPN and therefore requires a one time setup sub-protocol
in which correlated randomness is constructed. Given this, their protocol can
then generate correlated OTs on demand. In Fig. 7 we distinguish their setup
and online protocols as x + y respectively. However, even if only the online
protocol is considered, our protocol is more than 4× more efficient in terms of
running time and communication. If their setup phase is included then our pro-
tocol requires 13× less communication for m = 107. What is more, their setup
phase requires a relatively complicated parameter select procedure which lim-
ited us to only performing m = 107 OTs with their implementation. One reason
their only implement this size is that their setup phase has a relatively fixed cost
regardless of m. On the other hand, our protocol can easily be executed with
any value of m with running times that scales proportionally (Fig. 6).

Vole Performance. We implement the generalization of [BCG+19a] for per-
forming vole. The protocol is largely the same as the OT variant except that f
more OTs on strings of length O(κf) need to be performed where f is the log of
the field size, i.e. f = 128. For our protocol we use the binary Slv5 code while the
noise vector is distributed over the while field. The security of this optimization
is discussed in Section C.2. We compare with the vole protocol of [WYKW20]
(a generalization of [YWL+20]) which is based on Primal LPN and therefore
requires a one time setup sub-protocol. We also compare to the 1-out-of-N OT
protocol of [OOS17] due to vole also supporting this functionality via hashing.
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Fig. 6. Single thread running time (ms) and communication (KB) to perform m cor-
related oblivious transfers in the LAN setting.

We observe that our protocol significantly out performs both of these works.
Moreover, [WYKW20] performs a vole over a field of size 261 − 1 while our
implementation is for the Galois field of size 2128. As such, this effectively
halves their communication. Similarly, [OOS17] has an analogous field size of
279. Despite working over a larger field, the running time of our protocol 4×
faster than [WYKW20] at m = 4 × 107 and 22× faster than [OOS17]. Similarly,
at m = 4× 107 our protocols requires between 5 to 8× less communication than
[WYKW20] depending on if their setup is include and 6200× less than [OOS17].

Fig. 7. Single thread running time (ms) and communication (KB) to perform m voles
(or 1-out-of-N OTs for [OOS17]) in the LAN setting.

Applications. The applications of our new protocol are extremely broad. Two
of the most compelling are binary triple generation for the GMW[GMW87b] pro-
tocol and private set intersection. The former allows generic secure computation
of binary circuit at the expense of performing 2|C| OTs and sending 2|C| bits
where |C| is the number of AND gates in the circuit. Due to the extreme effi-
ciency of our protocol, the cost of the OTs is like dominated by the other costs
in the GMW protocol, i.e. simply sending the bits. More generally, since our
OT protocol is faster than all prior works in effectively all metrics, our protocol
should be the de facto choice for generating OTs and binary triples.

The recent semi-hones/malicious secure PSI protocol of [RS21] directly builds
on vole and achieved the lowest communication and very fast running times
compared to all prior works. This protocol performs a vole of size 2.4n where
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the sets are of size n. Their implementation makes use of the vole protocol of
[SGRR19] along with optimizations of [WYKW20]. As such, integrating our vole
protocol gives a good example of the speed ups that can be obtained.

For sets of size n = 216 to n = 224 we observe that our vole protocol improves
the running time of [RS21] by between 40 and 45% and 25 to 1% reduction in
communication. Concretely, the semi-honest variant of their PSI protocol for
n = 220 with our vole implementation would require 3.1 s compared to 2.4 s of
[KKRT16] while at the same time sending 2.5× less data than [KKRT16]. As
such, in effectively all real world situation the PSI protocol of [RS21] with our
vole is the optimal protocol to use. Moreover, the malicious variant of [RS21]
with our vole achieves the fastest running time and lowest communication by a
factor of 1.7× and 4× respectively compared to then next most efficient protocol
[PRTY20].
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Abstract. Non-malleable codes allow one to encode data in such a way
that once a codeword is being tampered with, the modified codeword
is either an encoding of the original message, or a completely unrelated
one. Since the introduction of this notion by Dziembowski, Pietrzak, and
Wichs (ICS ’10 and J. ACM ’18), there has been a large body of works
realizing such coding schemes secure against various classes of tampering
functions. It is well known that there is no efficient non-malleable code
secure against all polynomial size tampering functions. Nevertheless, no
code which is non-malleable for bounded polynomial size attackers is
known and obtaining such a code has been a major open problem.

We present the first construction of a non-malleable code secure
against all polynomial size tampering functions that have bounded par-
allel time. This is an even larger class than all bounded polynomial size
functions. In particular, this class includes all functions in non-uniform
NC (and much more). Our construction is in the plain model (i.e.,
no trusted setup) and relies on several cryptographic assumptions such
as keyless hash functions, time-lock puzzles, as well as other standard
assumptions. Additionally, our construction has several appealing prop-
erties: the complexity of encoding is independent of the class of tampering
functions and we can obtain (sub-)exponentially small error.
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1 Introduction

A non-malleable code is a fascinating concept that (informally) allows one to
encode messages such that it is impossible to modify the underlying message of a
given codeword without decoding it first. More precisely, the operation applied to
the codeword is called the tampering function, and the guarantee is that,with “high
probability”, decoding a tampered codeword results in either the original message
or an unrelated one. We refer to the probability that the attacker succeeds in com-
ing up with a tampered codeword of a related messages as its distinguishing advan-
tage, and we typically require this advantage to be negligible (i.e., smaller than
the inverse of any polynomial). Note that in contrast to standard error-correcting
(or detecting) codes, non-malleable codes can achieve security against tampering
functions that modify every part of a codeword.

Non-malleable codes have proven to be a fundamental concept, giving rise
to many beautiful connections and results, both in complexity theory (e.g., two-
source extractors [23,26,57,58] and additive combinatorics [2,3]) as well as in
cryptography (e.g., non-malleable encryption and commitments [31,32,47]).

In the paper that introduced non-malleable codes, Dziembowski, Pietrzak,
and Wichs [37,38], observed that it is impossible to construct a non-malleable
code secure against arbitrary tampering functions, since a tampering function
which first decodes the codeword and then re-encodes a related message breaks
security. By the same principle, it is impossible to construct a code with polynom-
ial-time decoding which is secure against all polynomial-time tampering func-
tions.1 Therefore, the class of tampering functions has to be limited in some
way—either in terms of computational power or in the way the functions can
access the codeword. One natural limitation is by restricting the available com-
putational complexity resources (e.g., running time, space, etc.).

Already in the original work of Dziembowski et al. [38] (see also [27] for a
followup), it was shown that (with high probability) a random function is a non-
malleable code secure against all circuits of size (say) 2n/2, where n is the size
of a codeword. However, the code is clearly inefficient. Faust et al. [42] gave an
efficient version of that result, but it is still not an explicit construction: For any
polynomial bound S, there is an efficiently samplable family of codes such that
(with high probability) a random member of the family is a non-malleable code
secure against all functions computable by a circuit of size S. Stated differently,
the result can be seen as an explicit construction (i.e., a single code) assuming an
untamperable common reference string (CRS) which is longer than the running
time of the tampering function. In the random oracle model (which can be
thought of as an exponential size common random string), Faust et al. [41]
constructed non-malleable codes secure against space-bounded tampering. Ball
et al. [7] constructed a non-malleable code secure against bounded depth circuits
with constant fan-in (which includes NC0). Several works were able to get non-

1 Here is the attack: the tampering function can decode the codeword and if it contains
some pre-defined message (say all 0 s), then it replaces it with garbage (which might
not even correspond to a valid codeword), and otherwise it does not change the input.
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malleable codes secure against AC0 tampering functions [5,8,11,25] (actually
even circuits of depth O(log n/ log log n)).

Arguably, the holy grail in this line of works is to construct an explicit non-
malleable code which is secure against all tampering functions from the class of
bounded polynomial-size circuits. Specifically, for a size bound S, we would like
to get an efficient code which is non-malleable for all tampering functions that
can be described by an arbitrary circuit of size S. Ideally, only decoding should
require running-time greater than S and encoding should run in some a-priori
fixed polynomial-time, independent of S.

Does there exist an explicit construction (in the plain model) of an efficient
non-malleable code which is secure against all bounded polynomial-size

attackers?

Ball et al. [8] made an important step towards this goal by using computa-
tional assumptions. Concretely, using public-key encryption and non-interactive
zero-knowledge (NIZK), they gave a generic way to construct non-malleable
codes secure against tampering classes F using sufficiently strong average-case
hardness for F . This construction, however, still requires a CRS (for the pub-
lic key of the encryption scheme and the CRS of the NIZK) albeit it is short
(polynomial in the the security parameter and independent of the class F).

In a recent follow-up work, Ball et al. [6] managed to get rid of the CRS, but
at the cost of (a) using non-standard assumptions, and (b) limiting the class of
attacks and the level of security. In more detail, they showed a construction of
an efficient non-malleable codes secure against all (uniform) tampering functions
computable in an a-priori fixed polynomial-time. But:

– Their construction relies (amongst other assumptions) on sub-exponentially
sound P-certificates2 which is a very strong and non-standard assumption.
In particular, the only known instantiation requires assuming soundness of
a non-trivial argument system (Micali’s CS proofs [67]), which is true in the
Random Oracle model.

– Their scheme is non-malleable only with respect to uniform polynomial-time
tampering as opposed to the standard model of polynomial-size tamper-
ing. In other words, the tampering attacker is restricted to being a uniform
polynomial-time algorithm, in contrast to the standard model of non-uniform
polynomial-time attackers.

– Their scheme achieves only a-priori bounded inverse polynomial-
distinguishing advantage, as opposed to achieving “full” security (i.e.,
negligble distinguishing advantage).

– Finally, both their encoding procedure, as well as the decoding procedure, run
longer than the allowed tampering functions (i.e., the adversary can neither
encode nor decode). In contrast, as mentionned, in principle encoding could
be “efficient” in the sense that it is independent of the size/running-time of
the tampering attacker.

2 These are “succinct” one-message arguments for languages in P, with proof length
which is a fixed polynomial, independent of the time it takes to decide the lan-
guage [28].
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To summarize, despite several beautiful steps towards resolving the above
question, the answer is still largely unknown. Known partial solutions either
require a CRS or strong and non-standard cryptographic assumptions that are
only known to be instantiated in the Random Oracle model (and even then only
achieve a weaker form of non-malleability).

1.1 Our Results

We give the first full affirmative answer to the aforementioned question. Specif-
ically, we construct an efficient non-malleable code that is (computationally)
secure against tampering functions computable by any bounded polynomial-size
circuit. Our construction is in the plain model and relies on several generic
and well-studied cryptographic building blocks: a time-lock puzzle [77], a non-
interactive non-malleable commitment [20,49,52,63], and a non-interactive SPS
(super-polynomial-time simulatable) zero-knowledge protocol [14,20] (all in the
plain model). While we cannot use the aforementioned primitives in their most
general form, we identify certain additional properties from them that will be
needed in our construction; additionally, we note that particular known con-
structions of them satisfy the additional desired properties; see below and in
Sect. 2 for more details.

Our construction actually captures an even larger class of tampering func-
tions. Specifically, we give a non-malleable code secure against all tampering
functions that can be computed by arbitrary (unbounded) polynomial-size cir-
cuit of bounded polynomial-depth. We emphasize that while the circuit depth of
the tampering function is bounded a priori by some fixed polynomial in the secu-
rity parameter, the size of the circuit is unbounded and can be any polynomial
in the security parameter.

Theorem 1 (Informal Meta Theorem). Assume the existence of a “special-
purpose” time-lock puzzle, one-message non-malleable commitment, and one-
message SPS zero-knowledge protocol. For any T ∈ poly(λ), there exists an
explicit code where encoding takes time poly(λ), decoding takes time poly(T , λ),
and it is non-malleable against all tampering functions computable by a non-
uniform arbitrary polynomial-size (in λ) circuit of depth T .

Our result is the first to handle all bounded polynomial-size tampering func-
tions (and in fact much more). In particular, as a special case, we capture all
tampering functions in non-uniform NC (while previously there was no con-
struction even for NC1). We emphasize that our scheme is efficiently encod-
able, namely, encoding time depends only on the security parameter and not on
the (depth) complexity of the decoder. Furthermore, our construction readily
extends to withstand (sub-)exponential size tampering functions (of depth T )
without affecting the complexity of neither encoding nor decoding. Lastly, we
note that the distinguishing advantage of any tampering function in our scheme
can be made sub-exponentially small in λ at essentially no cost (since in any case
we need to rely on sub-exponential hardness of the underlying building blocks).
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In comparison, as mentioned, prior to this work, even dealing with just
bounded polynomial-size tampering was not known. The only approach towards
polynomial-size tampering [6] captured only uniform polynomial-time tamper-
ing, but as mentioned above, even for this restricted class of tampering, their
result has additional drawbacks: (1) it relies on a strong non-standard assump-
tion (P-certificates) that we only know how to satisfy in the random oracle
model, and (2) it only gives inverse-polynomial distinguishing advantage (as
opposed to negligible distinguishing advantage).

We instantiate the time-lock puzzle using the construction of Rivest et al. [77]
and we show how to further use results of Bitansky and Lin [20] and Lin et al. [63]
to instantiate the required non-malleable commitment and zero-knowledge pro-
tocol. Thus, assuming the repeated squaring assumption [77] (i.e., there is no
way to significantly speed-up repeated squarings in a hidden-order group), a key-
less multi-collision resistant hash function [19] (i.e., a single function for which
any PPT attacker with �(λ) bits of non-uniform advice cannot find more than
�(λ)c collisions for a constant c ∈ N),3 as well as other standard assumptions,
we obtain the following theorem.

Theorem 2 (Informal). Assume a keyless multi-collision resistant hash func-
tion, the repeated squaring assumption, an injective one-way function, and non-
interactive witness-indistinguishable proofs,4 all being sub-exponentially secure.
Then, for any T ∈ poly(λ), there exists an explicit code where encoding takes
time poly(λ), decoding takes time poly(T , λ), and it is non-malleable against all
tampering functions computable by a non-uniform arbitrary polynomial-size (in
λ) circuit of depth T .

We refer to Sect. 1.2 for more details about the above assumptions.

Non-malleable Time-Lock Puzzle. Our non-malleable code construction is
secure for all bounded polynomial-depth tampering functions and additionally it
is efficiently encodable, meaning that encoding time is fixed as a function of the
security parameter, but is otherwise independent of the time it takes to decode.
We observe that the combination of these two properties actually implies a time-
lock puzzle which is additionally non-malleable.5 In other words, under the same
assumptions as in Theorems 1 and 2, we get a non-malleable time-lock puzzle.
3 While keyless multi-collision resistance is a relatively new assumption, it is a natu-

ral and simple security property for keyless cryptographic hash functions, which in
particular is satisfies by a random function.

4 Non-interactive witness-indistinguishable proofs are known to exist based on various
assumptions: trapdoor permutations and a particular derandomization-type assump-
tion [13], cryptographic bilinear maps [48], or indistinguishability obfuscation and
one-way permutations [21].

5 Recall that time-lock puzzles are a cryptographic mechanism for sending messages
“to the future”, by allowing a sender to quickly generate a puzzle with an underlying
message that remains hidden until a receiver spends a moderately large amount
of time solving it. Non-malleability guarantees that not only the puzzle hides the
underlying message, but actually it is hard to “maul” it into a puzzle with a different
“related” message.
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We emphasize that the non-malleable time-lock puzzle that we obtain here is in
the plain model, i.e., does not require any trusted setup.

Related Followup or Concurrent Work. We mention the following related
followup or concurrent work [15,16,40,50]. Katz et al. [50] construct non-
malleable non-interactive timed-commitments relying in the security proof on
the algebraic group model [44] and on trusted setup. Ephraim et al. [40] focus
on efficiency and applications; specifically, they give a more efficient construction
than the one given in this work (which is proven secure in the auxiliary-input
random oracle model) and further show how to use it to obtain desirable crypto-
graphic protocols such as fair multiparty coin flipping. Lastly, Baum et al. [15,16]
construct UC-secure time-lock puzzles while relying on a programmable random
oracle, which they show to be necessary. Most recently, Ball et al. [10] (see [4,
Theorem 32]) showed that the derandomization assumption that there is a lan-
guage that can be computed in exponential deterministic time and requires expo-
nential size nondeterministic circuits implies explicit codes for bounded polyno-
mial size circuits (without any setup assumptions) with inverse polynomial secu-
rity. The construction of [10] requires an encoding procedure that runs in time
larger than the a priori polynomial upper bound on the size of the tampering
circuit.

1.2 Related Work

Since the work of Dziembowski, Pietrzak, and Wichs [37,38] which introduced
non-malleable codes, there has been a quite a significant amount of works on this
subject in various different directions (for example, [1–3,22,23,25,34,53,59,60]
to mention only a few in addition to the ones we mentioned earlier). Notably,
various different classes of tampering functions were considered. The original
work of [37] presented a construction of non-malleable codes against bit-wise
tampering functions. Also, Liu and Lysyanskaya [65] were the first to consider
the class of split state tampering functions, where left and right halves of a
codeword may be tampered arbitrarily, but independently. There has been a
very long line of works on getting optimal constructions against such tampering
functions (see the references above).

Next, we give more information about the building blocks used in our con-
structions and mention relevant related work.

Time-Lock Puzzles. These are puzzles that can be solved by “brute-force”
in time T , but cannot be solved significantly faster even using parallel pro-
cessors. This concept was proposed by Rivest, Shamir, and Wagner [77] (fol-
lowing May’s work [66] on timed-release cryptography), and they have been
used quite extensively studied since. The most popular instantiation relies on
the repeated squaring assumption that postulates that T repeated squarings
mod N , where N = pq is a product of two secret primes, require “roughly”
T parallel time/depth. Bitansky et al. [18] gave a construction of a time-lock
puzzle from (strong) assumptions related to program obfuscation.
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Our construction requires a “weak” notion of (sub-exponential) security that
guarantees that the puzzle cannot be solved by sub-exponential size attackers
that have depth T

ε
. Therefore, using the instantiation that relies on repeated

squarings, we only need to assume that there are no huge improvements in the
parallel complexity of repeated squaring algorithms even for very large attackers.
It is worth mentioning that there are known algorithms for factoring that run in
sub-exponential time. The best known algorithm has running time roughly 2n1/3

,
where n is the input size (see [35,78]). In contrast, our assumption stipulates
that there is no algorithm with running time 2nε

for any ε > 0 (for concreteness,
think about ε = 0.001). This is similar to the assumption being made in any
construction that relies on sub-exponential factoring or discrete log.

Non-malleable Commitments. Non-malleable commitments, introduced by
Dolev, Dwork and Naor [36], guarantee hiding (the committed value is kept secret
from the receiver), binding (“opening” can yield only a single value determined
in the commit phase), and non-malleability (guaranteeing that it is hard to
“maul” a commitment to a given value into a commitment to a related value).
Non-malleable commitments are extremely well studied with huge body of works
trying to pin down the exact round complexity and minimal assumptions needed
to obtain them [12,29,30,45–47,49,51,52,61–64,71,73–75,79].

We need a non-interactive (i.e., one-message) non-malleable commitment,
of which relatively few constructions are known. Pandey et al. [71] formu-
lated a concrete property of a random oracle and showed that it suffices for
non-interactive non-malleable commitments. This is a non-standard and non-
falsifiable (Naor [68]) assumption. Lin et al. [63] showed a construction that
satisfies non-malleability against uniform attackers assuming a keyless collision
resistant hash function, time-lock puzzles, non-interactive commitments, and
NIWI proofs, all with sub-exponential hardness. Bitansky and Lin [20] were
able to get non-malleability against all attackers (i.e., even non-uniform ones)
by either replacing the keyless collision resistant hash function with a keyless
multi-collision resistant hash function,6 or using a new assumption regarding
sub-exponentially secure one-way functions admitting some strong form of hard-
ness amplification. Most recently, Kalai and Khurana [49] gave a construction
of a non-interactive non-malleable commitment from sub-exponential hardness
of factoring or discrete log, and sub-exponential quantum hardness of Learning
With Errors (LWE) or Learning Parity with Noise (LPN).

We will use the construction of Bitansky and Lin [20] and Lin et al. [63] both
of which rely on time-lock puzzles. Various properties of their non-malleable
commitments will be crucial for our construction.

6 Actually, Bitansky and Lin [20] formulate an assumption about incompressible func-
tions which is implied by keyless multi-collision resistant hash functions..



542 D. Dachman-Soled et al.

One-Message SPS Zero-Knowledge. This is a one-message proof system for
every language in NP in the plain model and without any setup assumptions that
satisfies a relaxed notion of zero-knowledge referred to as super-polynomial-time
simulation (SPS) zero-knowledge [72]. This concept was introduced by Barak
and Pass [14] who also gave a construction assuming a keyless collision resis-
tance hash function,7 non-interactive commitments, and NIWI proofs, all with
sub-exponential hardness. Their construction however satisfies soundness only
against uniform attackers. Bitansky and Lin [20] showed how to overcome this
limitation using keyless multi-collision resistant hash functions,8 at the cost of
obtaining a weaker soundness (allowing any attacker to output some bounded
number of convincing proofs for false statements).

Non-malleable Codes vs. Commitments. (Non-interactive) non-malleable
commitments and codes seem very similar. The only difference is that in the
latter decoding should be efficient, while in the former it should be hard. There
has been some evidence that the objects are not only syntactically related. For
instance, non-malleable codes were used to construct non-malleable commit-
ments [22,47]. In the reverse direction, some works used ideas from the (vast) lit-
erature on non-malleable commitments to get new non-malleable codes [6,24,70].
Our work continues the latter line of works and shows yet again that the notions
are intimately related.

Lower Bounds for Non-malleability. We mentioned that there cannot be a
non-malleable code secure against a class of tampering functions that includes
the decoding procedures. In a very recent work, Ball et al. [9] gave various new
lower bounds. The most related lower bound to this work is the one regarding
(in)existence of non-malleable codes for NC1 (⊆ NC) in the standard model
(a class that our construction captures). Their result introduces a notion of black-
box reductions tailored for the setting of non-malleable codes and rules out such
reductions for certain classes of tampering functions F . Importantly, their impos-
sibility results hold for constructions that rely only on the minimal assumption
that there exists a distributional problem that is hard for the tampering class
F , but easy for P. Our result bypasses the impossibility since we—in addition
to an assumption of the above type (i.e. time-lock puzzles)—rely on standard
cryptographic assumptions such as keyless multi-collision resistant hash func-
tions, injective one-way functions, and non-interactive witness-indistinguishable
proofs.

The Magic of the Repeated Squaring Assumption. In the past several
years the repeated squaring assumption has played an important role in many
works. In addition to the work about non-malleable commitments [63] that we
have already mentioned and the current work, this assumption was also used in

7 Actually, Barak and Pass [14] formulate an assumption regarding the existence of a
language in P which is hard to sample in slightly super-polynomial-time but easy to
sample in a slightly larger super-polynomial-time. The existence of a keyless collision
resistance hash function with sub-exponential hardness implies such a language.

8 See Footnote 6.
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several constructions of verifiable delay functions [39,76,80]. These functions are,
roughly speaking, a publicly verifiable version of time-lock puzzles. The reason
why this assumption has been so successful is that it brings a new dimension
of hardness to the table, i.e., parallel-time, which is different from the type of
hardness that standard cryptographic assumptions give.

(Multi-)collisions Resistance. Collision resistant hash functions are (a fam-
ily of) compressing functions where no efficient attacker can find a colliding
pair in a random function from the family. The existence of such a family is a
standard cryptographic assumption which is implied by many of the most clas-
sical assumptions such as factoring, discrete log, and more. A keyless collision
resistant hash function is a single function where the above is hard for uniform
attackers. Such functions exist in the random oracle model and may be heuristi-
cally instantiated using common constructions of cryptographic hash functions,
such as SHA-3, where collisions are simply not known.

Multi-collision resistance [17,19,54,55] is a relaxation of collision resistance
where the goal of the attacker is to find a collection of many inputs (rather than
just two) to a random function in the family that collide. The keyless version,
introduced by [19], is again a single function but now the security guarantee
can be formulated so that it holds for all efficient attackers, even non-uniform
ones. Concretely, the security guarantee is that while an attacker of size s can
find about s inputs that collide, it cannot find many more, say s5 (i.e., multi-
collisions cannot be compressed). Again, such functions exist in the random
oracle model and may be heuristically instantiated using common constructions
of cryptographic hash functions, such as SHA-3.

2 Technical Overview

At a very high level, as in several previous related works (e.g., [6,8]), we follow
the Naor-Yung [69] paradigm that achieves CCA security of encryption by con-
catenating two instances of a CPA secure public key encryption scheme, followed
by a (non-interactive) zero-knowledge proof of the equality of encrypted values.
The novelty in this work stems from the way we instantiate and prove soundness
of this approach in the context of non-malleable codes.

Concretely, the three main components in our construction are: a time-lock
puzzle, a non-malleable commitment, and a one-message SPS zero-knowledge
proof of consistency. As we will see later, these building blocks need to be
instantiated in a very careful way to guarantee security. The construction
NMCode = (NMCode.E,NMCode.D) for a message space {0, 1}λ and depth
bound T is informally described in Algorithm 1.

Let us provide some intuition and state some simple observations. Recall that
a time-lock puzzle can be solved by “brute-force” in depth T , but cannot be
solved in depth � T . However, time-lock puzzles may be malleable (in fact, the
construction based on repeated squaring [77] is easily malleable). Non-malleable
commitments are, by definition, non-malleable but as opposed to time-lock puz-
zles, cannot be “brute-force” opened in polynomial time. Intuitively, adding the
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NMCode.E(m):

1. Let Z be a time-lock puzzle with hard-
ness T and underlying message m.

2. Let c be a non-malleable commitment
to m.

3. Let π be a zero-knowledge proof of
consistency between Z and c.

4. Output Ẑ := (Z, c, π).

NMCode.D(Z, c, π):

1. Verify the proof π.

2. If verifies, solve the puzzle Z and out-
put the underlying message. Other-
wise, output 0.

Algorithm 1: Our non-malleable code (Informal).

zero-knowledge proof of consistency in the above construction ties the hands
of the attacker and achieves the desired properties of each of the primitives.
The scheme inherits non-malleability from the non-malleable commitment while
preserving the ability of solving the time-lock puzzle in polynomial time, which
allows extraction of the underlying message and thereby decoding in polynomial
time.

For efficiency, time-lock puzzles have a built-in trapdoor that allows one
to generate puzzles very fast (while solving them requires many sequential
resources). Thus, the running time of step 3 (generation of the zero-knowledge
proof) takes fixed polynomial time (in the security parameter), independent of
the depth bound T . This is why NMCode.E has a fixed running time, polyno-
mial in the security parameter, independent of T . Negligible soundness of our
construction, at a high level, is inherited from the security of the underlying
primitives. Lastly, as we will explain shortly, we use the non-interactive non-
malleable commitments of Lin et al. [63] and Bitansky and Lin [20] both of
which are based on time-lock puzzles (and keyless collision resistant hash func-
tions or keyless multi-collision resistant hash functions, respectively) and so this
will work nicely with our usage of the time-lock puzzle in our construction.

While the intuition described above is rather solid, proving that the above
construction satisfies non-malleability turns out to be challenging. We explain
the high-level approach next.

2.1 Overview of the Proof

We will first explain the high-level approach when considering only uniform
tampering functions and later explain how to handle non-uniform ones.

Since we only handle uniform tampering functions (for now), it will suffice
to rely (in addition to time-lock puzzles) on a non-malleable commitment for
uniform tampering functions and a one-message SPS zero-knowledge proof which
satisfies uniform soundness. For the commitment scheme we will use the one of
Lin, Pass, and Soni [63] and for the zero-knowledge we will use the one of Barak
and Pass [14]. We remark again that while the scheme of Lin et al. [63] is also
based on a time-lock puzzle, it will be convenient to use it not only in terms of
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assumptions, but to actually use specific properties of the scheme that will help
us carry out the proof.

The proof is, naturally, by a hybrid argument where we start with the stan-
dard non-malleability game with a message m0 and in the last hybrid we will play
the non-malleability game with a message m1. Recall that the non-malleability
game (a.k.a. Man-In-Middle game) consists of two stages. In the first stage, the
adversary gets a codeword and it tries to maul it into a code with a related mes-
sage. Then, roughly, the distribution of the underlying message in that tampered
codeword should be simulatable without knowing the message itself.

In a high level, here are the sequence of hybrids that we consider. We describe
the changes incrementally, namely, each hybrid starts with the scheme from the
previous hybrid and makes a modification.

– Hybrid 0: The original scheme.
– Hybrid 1: Instead of using the zero-knowledge prover, we use the simulator.
– Hybrid 2: Instead of committing to m, we commit to 0.
– Hybrid 3: Instead of decoding by solving the time-lock puzzle, we decode by

extracting from the commitment.
– Hybrid 4: Instead of using m as the underlying message in the time-lock

puzzle, use 0.

Showing that hybrids 0, 1, and 2 are indistinguishable is simple. Hybrids 0
and 1 are indistinguishable due to the zero-knowledge property, and hybrids 1
and 2 are indistinguishable due to the hiding of the commitment scheme. The
most challenging part is showing that hybrids 2 and 3 and hybrids 3 and 4 are
indistinguishable.

Hybrids 2 and 3. The modification in this transition is from decoding via
brute-force opening the time-lock puzzle, to decoding via extraction from the
non-malleable commitment. To prove indistinguishability, we show that the dis-
tribution of the underlying value in the right commitment does not change
throughout the hybrids when considering both methods of decoding.

A careful inspection of the schemes in each hybrid reveals that in order for
the proof to go through, we need to satisfy two conditions simultaneously:

1. The extractor of the commitment scheme (whose size is SExt) cannot break
zero-knowledge (which holds for all attackers of size at most SZK). That is,

SExt � SZK.

2. The simulator of the zero-knowledge scheme (whose size is SSim) cannot break
non-malleability of the commitment (which holds for all attackers of size at
most SNMCom). That is,

SSim � SNMCom.

It also holds that SNMCom � SExt since the commitment extractor can definitely
break non-malleability (by extracting and re-committing to a related value).
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Therefore, the only way to satisfy the above two inequalities is if SSim � SZK,
namely, a one-message zero-knowledge scheme where the simulator runs faster
than the distinguisher!9 Unfortunately, no such scheme is known as in all known
schemes the simulator needs to “break” the underlying cryptographic primitives
and so it has to have more resources than the distinguishers.

Our idea to make this go through is to introduce another axis of hardness
which will allow us to satisfy both “inequalities” simultaneously—the axes of
total size and depth. Namely, we think of algorithms as parallelizable machines
and measure their complexity by counting their total size and parallel time (size
and time/depth, in short). We will set the complexities of the above procedures as
follows, where λ denotes the security parameter and where 0 < c1 < c2 < c3 < 1:

– SExt (extraction from the non-malleable commitment): in quasi-polynomial
size and depth.

– SZK (zero-knowledge security): for all 2λc1 size (and depth) attackers.
– SSim (ZK simulator complexity): in 2λc2 size but fixed polynomial depth.
– SNMCom (non-malleability): for all 2λc3 size attackers with arbitrary polyno-

mial depth.

With this choice of parameters, it is evident that the commitment extrac-
tor cannot break zero-knowledge and also the zero-knowledge simulator can-
not break non-malleability. It is also not too hard to instantiate the primitives
with the above properties. The zero-knowledge scheme of Barak and Pass [14]
readily satisfies the above properties if it is sub-exponentially hard. To get the
required non-malleable commitment, we need to slightly adjust the scheme of
Lin et al. [63] (as they did not consider such tampering functions), but the
changes are relatively minor.

Hybrids 3 and 4. In this hybrid, we change the time-lock puzzle’s underlying
value and we want to use its hiding property. While seemingly being a relatively
simple hybrid, it turns out that some complications arise. Specifically, to reduce
to the underlying security of the time-lock puzzle, we need to come up with
a bounded time attacker while there are two procedures that we need to run
which seem to be of arbitrary depth. Specifically, in the reduction we need to
simulate the whole experiment and use the distinguisher to break the security
of the time-lock puzzle. The two procedures that seem to require arbitrary large
depth are:

– The distinguisher itself, denoted D from now on.
– The extraction procedure of the non-malleable commitment (which we should

execute as part of decoding).

We have no control over the depth (or size) of the distinguisher D, except
that it is of arbitrary polynomial size and depth. However, we do know that its

9 This kind of zero-knowledge simulation is known as strong super-polynomial simu-
lation. Recently, Khurana and Sahai [52] managed to obtain it in two rounds, but
we need a non-interactive scheme.
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input, the message underlying the tampered code, is of bounded length. So, we
modify the distinguisher and write it as a truth table which has hardcoded all
of D’s outputs on every possible input. Call this distinguisher D̃. Observe that
D̃ (1) has the same input-output functionality as that of D (and so it serves as
a good distinguisher), and (2) while D̃’s size is now exponential in the security
parameter, its depth is some fixed polynomial in the security parameter!

For the extraction procedure, we intuitively make a similar modification. We
rely on the fact that there is another brute-force extractor that requires expo-
nential size but only fixed polynomial time. Note that for this to go through, the
size of the extraction procedure has to smaller than the hardness of the time-
lock puzzle (and this can be achieved by making the time-lock puzzle sufficiently
long and using sub-exponential security). So, we switch to this alternate extrac-
tor. Now, we can simulate the whole experiment in fixed polynomial depth and
reduce to the security game of the underlying time-lock puzzle.

The Non-uniform Case. Extending to handle non-uniform tampering func-
tions is challenging in the fully non-interactive setting and in the plain model.
While it is relatively straight-forward to replace the non-malleable commitment
scheme of Lin et al. [63] (which is uniformly non-malleable) with the one of Bitan-
sky and Lin [20], the challenge stems from finding an appropriate non-uniform
analogue for the uniformly sound one-message zero-knowledge scheme of Barak
and Pass [14]. Indeed, in the plain model and allowing only one message there
is no non-uniformly sound zero-knowledge scheme (as accepting proofs for false
statements just exist).

The closest candidate is the one of Bitansky and Lin [20] who constructed
a non-uniformly weakly sound one-message zero-knowledge scheme. This notion
captures all non-uniform attackers but the soundness guarantee is weak: every
attacker can output some number of accepting proofs for false statements but
not too many of those. Unfortunately, if we use this scheme directly in our
construction instead of the current zero-knowledge scheme, the above proof out-
line fails. Specifically, when we switch to alternate decoding (which extracts
from the commitment rather than breaks the time-lock puzzle), if the adversary
uses such a maliciously crafted proof (which verifies), it can easily distinguish
the two hybrids (as their outputs will be different). Another thing that makes
the situation even harder is that the bad set of proofs is not global but actu-
ally attacker-dependent so we cannot just “black-list” some set of proofs in the
decoding procedure.

To this end, we observe that in the security reduction, the attacker is fixed
and so the set of “bad” proofs is non-uniformly known. Therefore, we can modify
the alternate decoding procedure to check whether the tampered proof is one
of some (polynomial size) non-uniformly hardcoded set of bad proofs—the ones
that the given attacker can find. If it is one of these bad proofs, we output
a fixed message, the one underlying the time-lock puzzle that corresponds to
the false statement. In this way, we are guaranteed that even when switch to
alternate decoding, for those maliciously crafted proofs, the attacker will not see
any difference between the two hybrids.
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3 Preliminaries

Model of Computation. We consider uniform and non-uniform algorithms
and we distinguish between their size and parallel time. The amount of non-
uniformity is usually denoted by κ, the parallel time by T , and the size by
S. We think of those algorithms as (possibly probabilistic) Turing machines
with multiple heads that can operate in parallel. A non-uniform algorithm A is
described by a family of of algorithms {Aλ}λ∈N, one per security parameter λ.
Each Aλ corresponds to an algorithm that has input size n(λ) for some function
n : N → N. We say that A is T -time, denoted Time [A] = T (λ), if for every
λ ∈ N, the parallel running time of Aλ is at most T (λ). We say that A is S-size,
denoted Size [A] = S(λ), if for every λ ∈ N, the total work that the algorithm
Aλ does is at most S(λ). Lastly, the mount of non-uniformity κ is chosen such
that κ(λ) is an upper bound on the size of advice used per λ.

Additional necessary but standard preliminaries appear in the full ver-
sion [33]. There, the reader can find standard notation that we use and stan-
dard definitions related to non-malleable commitments (following Lin, Pass, and
Soni [63]), one-message zero-knowledge proofs (following Barak and Pass [14]),
and time-lock puzzles (following Rivest, Shamir, and Wagner [77]).

4 Definition of Non-Malleable Codes

In this section we give our definition of non-malleable codes. Our definition
follows closely the definition of [8]. One difference though is that, rather than
defining non-malleability for an abstract class of tampering functions, we define
non-malleability directly for the class of tampering functions that we consider
in this work .

Let Σ and Σ′ be sets of strings. A coding scheme consists of two algo-
rithms NMCode = (NMCode.E,NMCode.D) such that NMCode.E : Σ → Σ′ and
NMCode.D : Σ′ → Σ. In words, NMCode.E (“encoding”) maps messages to code-
words and NMCode.D (“decoding”) maps codewords to messages. The algorithm
NMCode.E can be randomized and NMCode.D is assumed to be deterministic.
For correctness, we require that for every message m ∈ Σ, it holds that

Pr
NMCode.E

[NMCode.D(NMCode.E(m)) = m] = 1.

NMCode.E may also accept as an explicit input a security parameter in unary
(in which case the syntax is NMCode.E(1λ,m)).

Non-malleability. Intuitively, this notion requires that given a codeword, as
long as one cannot decode it, it is hard to generate a codeword with a differ-
ent related underlying message. A function that takes a codeword and tries to
generate a codeword for a related message out of it is called a tampering func-
tion. As mentioned, we have to limit the possible tampering functions in some
way. Otherwise, a tampering function could decode a codeword and re-encode a
related message.
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Definition 1 (Tampering Experiment). For an algorithm A = {Aλ}λ∈N,
a security parameter λ ∈ N, and a string s ∈ {0, 1}λ, define the tampering
experiment:

TamperNMCode
A,s (λ) =

{
Z ← NMCode.E(1λ, s); Z̃ = Aλ(Z); s̃ = NMCode.D(Z̃)

Output: s̃

}
,

where the randomness of the above experiment comes from the randomness of
NMCode.E.

Definition 2 ((S, T, κ)-Non-malleability). We say that a code NMCode is
(S, T, κ)-non-malleable if for every S-size T -time algorithm A = {Aλ}λ∈N with
κ bits of non-uniformity, there exists a (uniform) probabilistic polynomial-time
simulator Sim such that

{TamperNMCode
A,s (λ)}λ ≈ {IdealSim,s(λ)}λ,

where

IdealSim,s(λ) =

{
s̃ ∪ {same} ← SimAλ(1λ)

Output: s if output of Sim is same and otherwise s̃

}
.

Medium Non-malleability. We next define a different notion of non-
malleability, referred to as medium non-malleability, which implies the one above
(Definition 2) but is slightly easier to work with [6,56]. The difference between
the definitions is that the medium non-malleability experiment allows to out-
put same∗ only when some predicate g evaluated on an original codeword and a
tampered one is satisfied. On the other hand, plain non-malleability (as defined
above) does not impose restrictions on when the experiment is allowed to output
same∗.

Definition 3 ((S, T, κ)-Medium Non-malleability). We say that a code
NMCode is (S, T, κ)-medium non-malleable if there exists a function g such that
for every s0, s1 ∈ {0, 1}λ and every S-size T -time algorithm A = {Aλ}λ∈N with
κ bits of non-uniformity, it holds that

{MedTamperNMCode
A,s0

(λ)}λ∈N ≈ {MedTamperNMCode
A,s1

(λ)}λ∈N,

where the tampering experiment (whose randomness comes from the randomness
of NMCode.E) is defined as follows:

MedTamperNMCode
A,s (λ) =

{
Z ← NMCode.E(1λ, s); Z̃ = Aλ(Z); s̃ = NMCode.D(Z̃)

Output: same∗ if g(Z, Z̃) = 1, and s̃ otherwise

}
,

and where g(·, ·) is a predicate such that for every A as above, λ ∈ N, and
s ∈ {0, 1}λ,

Pr
Z←NMCode.D(1λ,s)

[g(Z,Aλ(Z)) = 1 ∧ NMCode.D(Aλ(Z)) 
= s] ≤ negl(λ).
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5 The Building Blocks

5.1 Time-Lock Puzzle

Theorem 3. Assuming the sub-exponential hardness of the repeated squaring
assumption, there exists a time-lock puzzle which is (STL, ε)-hard for a fixed
ε ∈ (0, 1) and where STL = 23λ.

We need a time-lock puzzle which, when instantiated with difficulty param-
eter t, is hard for machines that have parallel time at most tε for some fixed
ε ∈ (0, 1), even if their total size is 23λ. We instantiate this primitive by relying on
the repeated squaring assumption with sub-exponential hardness. The latter says
that for some ε, ε′ ∈ (0, 1) and any large enough t the following holds: any 2λε′

-
size tε-time algorithm cannot distinguish (g,N, t, g2

t

mod N) from (g,N, t, g′)
for uniform g, g′ ∈ Z∗

p·q, where p and q are two random λ-bit primes. Note
that it is common to assume the above assumption even for ((1 − ε) · t)-time
algorithms–our assumption is much weaker.

To generate a puzzle Z with difficulty t and a message m, one does the fol-
lowing (we assume here for simplicity that m is short enough but it is easy to
extend this): Sample an RSA modulus N = pq to be a product of two ran-
dom poly(λ)-bit primes (with some large enough polynomial; see below), and
computes Z = (g,N, t,m + g2

t

mod N), where g is a randomly chosen element
in Z∗

N . Note that using p and q it is possible to compute g2
t

mod N in fixed
polynomial time in λ (and log t which is absorbed by the poly(λ) term) by first
computing a = 2t mod φ(N) (where φ(N) = (p− 1)(q − 1)) and then computing
Z = ga mod N .

Assuming the sub-exponential hardness of the repeated squaring assumption,
we want a time-lock puzzle whose guarantee is that the underlying value is
completely hidden as long as the attacker has size less than 23λ size and tε time.
To achieve this, the bit-length of p and q needs to be large enough. That is,
we need to instantiate our primes with say λ̃ = (3λ)1/ε bits which would give
security for attackers of size 23λ and tε time.

5.2 Non-malleable Commitment

Theorem 4. Assume that there is a keyless multi-collision resistant hash func-
tion, the repeated squaring assumption, NIWI proof for all NP, and injec-
tive one-way functions, all with sub-exponential hardness. Then, there exists
a non-interactive commitment which is (SNMCom, TNMCom)-hiding, (SNMCom

Ext1
,

TNMCom
Ext1

)-extractable via NMCom.Ext1 and (SNMCom
Ext2

, TNMCom
Ext2

)-extractable via
NMCom.Ext2, and (SNMCom

NM , TNMCom
NM )-non-malleable for all polynomial functions

TNMCom and TNMCom
NM , and where SNMCom(λ) = 2λη′′

for an appropriate constant
η′′, SNMCom

Ext1
(λ) = TNMCom

Ext1
(λ) = 2log

2 λ, SNMCom
Ext2

(λ) = 22λ, TNMCom
Ext2

(λ) = λ3, and
SNMCom

NM = 2λ.
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Theorem 5. Assume that there is a keyless collision resistant hash func-
tion, the repeated squaring assumption, NIWI proof for all NP, and injec-
tive one-way functions, all with sub-exponential hardness. Then, there exists
a non-interactive commitment which is (SNMCom, TNMCom)-hiding, (SNMCom

Ext1
,

TNMCom
Ext1

)-extractable via NMCom.Ext1 and (SNMCom
Ext2

, TNMCom
Ext2

)-extractable via
NMCom.Ext2, and (SNMCom

NM , TNMCom
NM , κNMCom

NM )-non-malleable for all polynomial
functions TNMCom and TNMCom

NM , and where SNMCom(λ) = 2λη′′
for an appro-

priate constant η′′, SNMCom
Ext1

(λ) = TNMCom
Ext1

(λ) = 2log
2 λ, SNMCom

Ext2
(λ) = 22λ,

TNMCom
Ext2

(λ) = λ3, SNMCom
NM = 2λ, and κNMCom

NM = 0.

The difference between the two theorems are that in the former we obtain
non-malleability for non-uniform attackers but using a keyless multi-collision
resistant hash, while in the latter we obtain non-malleability only for uniform
attackers but we are using a keyless (plain) collision resistant hash.

We need a one-message non-malleable tag-based commitment scheme which
is hiding for all (non-uniform) polynomial-size distinguishers, extractable either
in size and time 2log

2 λ or in 2λ-size and λ3-time, and non-malleable for all
exponential size and polynomial time tampering functions.

The Uniform Scheme. To get the scheme satisfying the properties listed in
Theorem 5 we use the scheme of Lin et al. [63]. Let us review their scheme
and explain why and how it satisfies the above properties. In a high-level, they
use two types of commitment scheme, each with a different “axis” of hardness.
From sub-exponentially secure injective one-way functions, they obtain a sub-
exponentially secure commitment scheme Coms. By instantiating Coms with
different security parameters, one can obtain a family of γ commitment schemes
{Coms

i }i∈[γ] such that Coms
i+1 is harder than Coms

i for all 1 ≤ i ≤ γ − 1 in the
axis of size. Namely, using size which is sufficient to extract from Coms

i it is still
hard to break Coms

i+1. Also, the extraction procedure is essentially a brute force
algorithm that “tries all option” and so it is highly parallelizable and requires
fixed parallel time (depth).

A similar trick is performed using time-lock puzzles. They are used to obtain
a family of γ commitment schemes {Comt

i}i∈[γ] such that Comt
i+1 is harder than

Comt
i for all 1 ≤ i ≤ γ −1 in the axis of time. Namely, in time which is sufficient

to extract from Comt
i it is still hard to break Comt

i+1. The extraction procedure
is highly sequential and requires very small total size. In particular, in size which
is sufficient to extract from any Comt it is still hard to break any Coms.

To construct a non-malleable commitment scheme NMCom, their key idea is
to combine a Coms and Comt scheme with opposite strength. That is,

NMCom(1λ,m, tag) = Coms
tag(1

λ, s)‖Comt
γ−tag(1

λ, s ⊕ m) , where s ← {0, 1}|m|.

The hiding and non-malleability proofs are the same as in [63]. Hiding is
immediate from hiding of the two underlying commitments, and we sketch the
main idea behind the proof of non-malleability next. Non-malleability holds by
considering two cases. First, if the left tag i is smaller than the right tag j,
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the Comt
j commitment on the right remains hiding for attackers of size and time

enough for extracting from both Comt
i and Coms

j . Therefore the right committed
value remains hidden, while the right is extracted. Otherwise, if the left tag i
is larger than the right commitment j, then the Coms

i commitment on the left
remains hiding for attackers of size and time enough for extracting from both
Coms

j and Comt
γ−j . Thus, the left committed value remains hidden, while the

right is extracted.
Lastly, we explain how to implement the two extraction procedures that

we need. Recall that we need one extraction procedure that works in quasi-
linear size and time and another procedure that works in exponential size and
fixed polynomial time. The former is implemented by extracting from the right
commitment (by breaking the time-lock puzzles) and the latter is implemented
by breaking the left commitment (by checking in parallel all possible openings).

Of course, the above construction is not the final construction of [63] as it
supports only a small number of tags (while our goal is to support an exponential
number of tags). To get around this they present a tag-amplification technique
that is based on a tree-like structure and the way they avoid blow-up in the
commitment size is by using a (keyless) collision resistant hash function (which
causes the final construction to be non-malleable only with respect to uniform
attackers). We refer to [63] for the precise details.

The Non-uniform Scheme. To get the scheme satisfying the properties listed
in Theorem 4 we use the scheme of Bitansky and Lin [20] (which in turns is based
on the scheme of [63]). Here, they present a new tag-amplification technique,
inspired by a interactive tag-amplification technique of Khurana and Sahai [52],
where they make it non-interactive using their one-message zero-knowledge pro-
tocol (which is based on keyless multi-collision resistant hash functions).

For our purposes, the details of this transformation are not very relevant—the
only thing that is important is the structure of thier final commitment. Indeed, it
consists of the same time or space hard commitments of [63] (along with various
proofs). These are extractable in the same manner, either in quasi-linear time
or in exponential size and polynomial time.

5.3 One-Message Zero-Knowledge

Theorem 6. Assume the existence of a one-way permutation, a NIWI proof
systems for all NP, a keyless multi-collision resistant hash function, all sub-
exponentially secure. Then, there exists a one-message SPS zero-knowledge
argument system satisfying (SP ,K)-weak-soundness and (SD, SSim, TSim)-zero-
knowledge for all polynomials SP (λ), and where K ∈ poly(λ) is a fixed polyno-
mial, SD(λ) = 2λη

and SSim(λ) = 2λη′
for some constants η, η′ ∈ (0, 1), and

TSim(λ) = λ2.

Theorem 7. Assume the existence of a one-way permutation, a NIWI proof
systems for all NP, a collision resistant hash function secure against uniform
polynomial-time algorithms, all sub-exponentially secure. Then, there exists a



Non-malleable Codes for Bounded Parallel-Time Tampering 553

one-message SPS zero-knowledge argument system satisfying (SP , κ)-soundness
and (SD, SSim, TSim)-zero-knowledge for all polynomial SP (λ), and where κ(λ) =
0, SD(λ) = 2λη

and SSim(λ) = 2λη′
for some constants η, η′ ∈ (0, 1), and

TSim(λ) = λ2.

The difference between the two theorems are that in the former we obtain
weak-soundness for non-uniform attackers but using a keyless multi-collision
resistant hash, while in the latter we obtain (plain) soundness only for uniform
attackers but we are using a keyless (plain) collision resistant hash.

Barak and Pass [14] showed that a one-message zero-knowledge system exists
assuming a collection of sub-exponentially hard primitives: a one-way permuta-
tion, a NIWI for all NP, and a keyless collision resistant hash function. Intu-
itively, their construction follows the Feige-Lapidot-Shamir paradigm [43] where
the protocol consists of a commitment to 0 and a WI argument for the state-
ment that either the prover knows a witness for the given instance, or it used a
commitment to a special (hard to guess) value. The special value which is hard
to guess is, intuitively, a collision in an appropriately chosen hash function and
this is why soundness only applies to uniform malicious provers. The simula-
tor is a parallel machine that can find such a collision by brute force using a
super-polynomial size procedure which has only fixed polynomial time (it tries
all possibilities in parallel). Their construction gives Theorem 7.

Bitansky and Lin [20] constructed a one-message zero-knowledge argument
system by replacing the uniform hash function used by Barak and Pass with
a keyless multi collision resistant hash function [19]. Their construction gives
Theorem 6.

6 The Non-malleable Code

In this section, we present a construction of a non-malleable code that satisfies
non-malleability against all (non-uniform) polynomial size attackers that have
bounded polynomial depth. In other words, the only way to maul a codeword is
by having high depth.

Our construction relies on several building blocks on which we elaborate next.

1. A time-lock puzzle (Theorem 3) TL = (TL.Gen,TL.Sol) which, for all large
enough difficulty parameters t, allows to generate puzzles which are hard for
any (non-uniform) machine whose parallel time/depth is at most tε, even it
has size 23λ.
More precisely, for a difficulty parameter t, it is (STL, ε)-hard for a fixed
ε ∈ (0, 1) and for STL(λ) = 23λ.

2. A one-message SPS zero-knowledge argument system (Theorem 6) ZK =
(ZK.P,ZK.V) which is weakly sound w.r.t. all (non-uniform) polynomial-size
attackers, there is a (uniform) simulator that requires sub-exponential size
and fixed polynomial time, and zero-knowledge holds w.r.t. sub-exponential
size adversaries.
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More precisely, it is (SZK
P ,KZK)-sound and (SZK

D , SZK
Sim, T ZK

Sim)-zero-knowledge
for all polynomial functions SZK

P and where KZK ∈ poly(λ) is a fixed polyno-
mial, SZK

D (λ) = 2λη

, SZK
Sim(λ) = 2λη′

, and T ZK
Sim(λ) = λ2.

3. A one-message non-malleable tag-based commitment scheme (Theorem 4)
NMCom = (NMCom.C,NMCom.O) which is hiding for all (non-uniform)
polynomial-size distinguishers, extractable either in size and time 2log

2
λ or in

2λ size and λ3 time, and non-malleable for all exponential size and polynomial
time tampering functions.
More precisely, it is (SNMCom, TNMCom)-hiding, (SNMCom

Ext1
, TNMCom

Ext1
)-extractable

via NMCom.Ext1 and (SNMCom
Ext2

, TNMCom
Ext2

)-extractable via NMCom.Ext2, and
(SNMCom

NM , TNMCom
NM )-non-malleable for all polynomial functions TNMCom and

TNMCom
NM , and where SNMCom(λ) = 2λη′′

where η′′ > η′, SNMCom
Ext1

(λ) =
TNMCom
Ext1

(λ) = 2log
2 λ, SNMCom

Ext2
(λ) = 22λ, TNMCom

Ext2
(λ) = λ3, and SNMCom

NM = 2λ.
4. Sig = (Sig.G,Sig.S,Sig.V). A one-time signature scheme, unforgeable for

polynomial-size attackers.

We show that assuming the existence of the above primitives, there is a code
which is non-malleable for all polynomial-size attackers that run in bounded
polynomial depth. We denote the latter T . Our main result is summarized in
the following theorem.

Theorem 8. Assume a time-lock puzzle TL, a one-message SPS zero knowledge
system ZK, a one-message non-malleable commitment scheme NMCom, and a
one-time signature scheme Sig, as above. Then, there exist constants α, β, γ ∈
N such that for any large enough polynomial T , there is a code NMCode =
(NMCode.E,NMCode.D) (described below in Algorithms 2, 3, and 4) with the
following properties:

1. The input of NMCode.E is a message from {0, 1}λ and it outputs a codeword
in {0, 1}λα

.
2. The running time of NMCode.E is λβ and the running time of NMCode.D is

(T · λ)γ .
3. It is (S, T )-non-malleable for all polynomials S(λ).

The Construction. Fix T , the upper bound on the depth of the tampering
function. The high level idea of the construction is to combine the hardness
for parallel machines that comes from a time-lock puzzle together with non-
malleability that comes from a non-malleable commitment. Specifically, the way
we combine them is so that an encoding of a message m consists of a time-lock
puzzle for m, a non-malleable commitment for m, and a zero-knowledge proof
that ties them together and asserts that they have the same underlying message.
The construction is described formally in Algorithms 2, 3, and 4

Sub-exponential Security. The theorem extends to show that the resulting
non-malleable code cannot be mauled in depth better than T even if the total
size of the solver is exponential in λ. For that, we need to make all of our
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Algorithm NMCode.E(1λ, m) for m ∈ {0, 1}λ:

1. (vk, sk) ← Sig.G(1λ).

2. Z ← TL.Gen(1λ, T
2/ε

, m; rTL) with uniformly random rTL.
3. (c, rNMCom) ← NMCom.C(1λ, m, tag = vk).
4. Compute a ZK proof π ← ZK.P(·, ·, 1λ) for the relation Ru from Algorithm 4

using (vk, Z, c) as the instance and (rTL, m, rNMCom) as the witness.
5. σ ← Sig.S(sk, (Z, c, π)).
6. Output Ẑ = (vk, Z, c, π, σ).

Algorithm 2: The encoding procedure NMCode.E.

Algorithm NMCode.D(vk, Z, c, π, σ):

1. Verify the signature σ:

Sig.V(vk, (Z, c, π), σ)
?
= 1.

2. Verify the proof π:

ZK.V((vk, Z, c), π)
?
= 1.

3. If both accept, output TL.Sol(Z). Otherwise, output 0λ.

Algorithm 3: The decoding procedure NMCode.D.

underlying building blocks sub-exponentially secure (in particular, they have to
remain secure in the presence of an exponential size adversary). We focus on the
polynomial regime for simplicity.

Organization. The proof of Theorem 8 consists of two parts: (1) efficiency
analysis showing that the encoding and decoding procedures can be implemented
with the required complexities and (2) showing that the code is non-malleable.
Part (1) is proven in Sect. 6.1 and Part (2) is proven in Sect. 6.2.

6.1 Efficiency Analysis

Fix a security parameter λ ∈ N and a message m ∈ {0, 1}λ. The encoding
(i.e., the output of NMCode.E(1λ,m) consists of a verification key of a signa-
ture scheme, a time-lock puzzle, a non-malleable commitment scheme, a zero-
knowledge proof, and a signature. All of these are of fixed polynomial size in λ.

The procedure NMCode.E, on input (1λ, s), runs in time poly(log T , λ).
Indeed, steps 1,3, and 5 are independent of T and take poly(λ) time. Step 2, by
definition of time-lock puzzles, takes time poly(log T , λ). Finally, step 4 takes time
poly(log T , λ) due to the running time of the verification procedure of the under-
lying language. The procedure NMCode.D can be computed in time T

2/ε ·poly(λ).
Indeed, verifying the proof and the signature both take fixed polynomial time
poly(λ) and the last step takes time T

2/ε · poly(λ), by definition.
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Relation Ru ((vk, Z, c), (rTL, m, rNMCom)):

– Instance: a verification key vk, a puzzle generated by TL.Gen(1λ, T
2/ε

, m), and a
commitment c.

– Witness: a string tTL ∈ {0, 1}∗, a string m ∈ {0, 1}λ, and a string rNMCom ∈ {0, 1}∗.

– Statement: TL.Gen(1λ, T
2/ε

, m; rTL) = Z and NMCom.O(c, m, rNMCom, tag = vk) =
1.

Algorithm 4: The Relation Ru.

6.2 Proof of Non-malleability

In what follows, we prove that the coding scheme from Algorithms 2 and 3 is
medium-non-malleable for all polynomial-size S and bounded polynomial-time
T tampering functions. Let g(Z,Z ′) be the procedure defined in Algorithm 5.

g(Z, Z′):

1. Parse Z as (vk, Z, c, π, σ) and Z′ as (vk′, Z′, c′, π′, σ′).
2. If vk = vk′ and σ′ verifies (that is, Sig.V(vk′, (Z, c′, π′), σ′)=1), output 1. Otherwise

output 0.

Running time: The procedure g has fixed polynomial size (and time) in its input size.

Algorithm 5: The procedure g.

Claim 9. For every non-uniform polynomial-size tampering function A =
{Aλ}λ∈N, every difficulty parameter t, and every m ∈ {0, 1}λ, it holds that

Pr
Ẑ←NMCode.E(1λ,m)

[
g(Ẑ,Aλ(Ẑ)) = 1 ∧ NMCode.D(Aλ(Ẑ)) 
= m

]
≤ negl(λ).

Proof. Let Ẑ = (vk, Z, c, π, σ) and Aλ(Ẑ) = Ẑ ′ = (vk′, Z ′, c′, π′, σ′). If
g(Ẑ, Ẑ ′) = 1, then vk = vk′ and Sig.V(vk′, Z ′, c′, π′), σ′)= 1. Also, recall that
Z is a puzzle with underlying message m. Thus, if NMCode.D(Ẑ ′) 
= m, it means
that (Z, c, π) 
= (Z ′, c′, π′). Thus, Aλ can be used to create (in polynomial-time)
a valid signature σ′ w.r.t. verification key vk for a new statement which is a
contradiction to the security of the one-time signature.

We next show that w.r.t. the above g (Algorithm 5), for any polynomial-size
algorithm A = {Aλ}λ∈N such that Time [A] ≤ T and any m0,m1 ∈ {0, 1}λ, it
holds that

{MedTamperNMCode
A,m0

(λ)}λ∈N ≈ {MedTamperNMCode
A,m1

(λ)}λ∈N,
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where

MedTamperNMCode
A,m (λ) =

{
Ẑ ← NMCode.E(1λ, m); m̃ = NMCode.D(Aλ(Ẑ))

Output: same∗ if g(Z, Aλ(Z)) = 1, and m̃ otherwise

}
.

We do so by defining a sequence of hybrid experiments where we slowly
change how NMCode.E and NMCode.D work and showing that every two
consecutive hybrids are indistinguishable. For consistency of notation with
what follows, we denote the non-malleable code from Algorithms 2 and 3
used in the original scheme by NMCode0 = (NMCode0.E,NMCode0.D), where
NMCode0.E ≡ NMCode.E and NMCode0.D ≡ NMCode.D. The first experiment
that we define corresponds to the experiment {MedTamperNMCode0

A,m0
(λ)}λ∈‘N and

the last one corresponds to an experiment where we encode m1. From that
point, one can “reverse” the sequence of experiment to reach the experiment
{MedTamperNMCode0

A,m1
(λ)}λ∈N. We omit this part to avoid repetition.

Throughout the following sequence of hybrids, we treat A and m0,m1 as
fixed. Some of the proofs are deferred to the full version [33].

Experiment H0(λ). This is the original experiment, where we encode m0

under NMCode0 (see Algorithms 2 and 3) and execute the experiment
{MedTamperNMCode0

A,m0
(λ)}λ∈N.

Experiment H1(λ). This experiment is the same as Experiment H0(λ) except
that we use the simulator of the ZK proof to generate π. This gives rise
to the scheme NMCode1 = (NMCode1.E,NMCode0.D), where NMCode1.E
is describer in Algorithm 6. Using this scheme we execute the experiment
{MedTamperNMCode1

A,m0
(λ)}λ∈N. By the zero-knowledge property of ZK, this hybrid

is indistinguishable from H0(λ).

Algorithm NMCode1.E(m) for m ∈ {0, 1}λ:

1. (vk, sk) ← Sig.G(1λ).

2. Z ← TL.Gen(1λ, T
2/ε

, m).
3. (c, r) ← NMCom.C(1λ, m, tag = vk).
4. Use the simulator Sim to simulate a proof for the relation Ru using (vk, Z, c)

as the instance.
5. σ ← Sig.S(sk, (Z, c, π)).
6. Output Ẑ = (vk, Z, c, π, σ).

Algorithm 6: The encoding procedure NMCode1.E used in H1(λ).

Claim 10. It holds that

{MedTamperNMCode0
A,m0

(λ)}λ∈N ≈ {MedTamperNMCode1
A,m0

(λ)}λ∈N.
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Experiment H2(λ). This experiment is the same as Experiment H1(λ) except
that instead of committing to m0 with a non-malleable commitment, we com-
mit to 0λ. This gives rise to the scheme NMCode2 = (NMCode2.E,NMCode0.D)
which is described in Algorithm 6. Using this scheme we execute the experiment
{MedTamperNMCode2

A,m0
(λ)}λ∈N. By the hiding property of NMCom, this hybrid is

indistinguishable from H1(λ).

Algorithm NMCode2.E(m) for m ∈ {0, 1}λ:

1. (vk, sk) ← Sig.G(1λ).

2. Z ← TL.Gen(1λ, T
2/ε

, m).
3. (c, r) ← NMCom.C(1λ, 0λ, tag = vk).
4. Use the simulator Sim to simulate a proof for the relation Ru using (vk, Z, c)

as the instance.
5. σ ← Sig.S(sk, (Z, c, π)).
6. Output Ẑ = (vk, Z, c, π, σ).

Algorithm 7: The encoding procedure NMCode2.E used in H2(λ).

Claim 11. It holds that

{MedTamperNMCode1
A,m0

(λ)}λ∈N ≈ {MedTamperNMCode2
A,m0

(λ)}λ∈N.

Experiment H3(λ). This experiment is the same as Experiment H2(λ) except
that we use an alternate decoding procedure. The alternate decoding procedure
does not solve the time-lock puzzle in order to decode the secret m, but rather
it “breaks” the commitment scheme and extracts m from it using NMCom.Ext1
unless the (tampered) proof is one of a fix set of “bad” proofs.

Concretely, recall that by weak-soundness of ZK, every algorithm (and in
particular A) can come up with some small bounded number of proofs that are
verified yet are for false statements. If the proof on the right size is one of those
proofs, we will output a hard coded value instead of trying to extract the value
from the commitment.

More precisely, the adversary A can find a set Z ′ (that depends on the
adversary and the hybrid) of size at most K � KZK(|Aλ| + O(1)) ∈ poly(λ)
of proofs that are verified yet are for false statements. We denote by Z the
augmented set of proofs (for false statements) together with the instance and
with the values underlying the time-lock puzzle in each such statements. Namely,
Z is a set that consists of tuples of the form (π, vk, Z, c, m̃), where π is a proof
from Z ′ for the instance (vk, Z, c) and m̃ is the message underlying Z.

This gives rise to the scheme NMCode3 = (NMCode2.E,NMCode1.D) which
is described in Algorithm 8. Using this scheme we execute the experiment
{MedTamperNMCode3

A,m0
(λ)}λ∈N.
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Algorithm NMCode1.D(vk, Z, c, π, σ):

1. Verify the signature σ:

Sig.V(vk, (Z, c, π), σ)
?
= 1.

2. Verify the ZK proof π:

ZK.V((vk, Z, c), π)
?
= 1.

3. If either test from Steps 1 or 2 does not pass or c = ⊥, output 0λ and terminate.

4. If π is a proof which is in Z, output the corresponding message m̃ and terminate.

5. Otherwise (both tests pass, c �= ⊥, and π /∈ Z′), use the extractor NMCom.Ext1(c)

to get the underlying value m̃. Output m̃ (if extraction fails, m̃ = ⊥).

Algorithm 8: The decoding procedures NMCode1.D used in H3(λ).

Claim 12. It holds that

{MedTamperNMCode2
A,m (λ)}λ∈N ≈ {MedTamperNMCode3

A,m (λ)}λ∈N.

Experiment H4(λ). This experiment is the same as Experiment H3(λ)
except that we modify the alternate decoding procedure to use the extrac-
tor NMCom.Ext2 instead of NMCom.Ext1. Namely, we execute the experi-
ment {MedTamperNMCode4

A,m1
(λ)}λ∈N. This gives rise to the scheme NMCode4 =

(NMCode2.E,NMCode2.D) which is described in Algorithm 9. Using this scheme
we execute the experiment {MedTamperNMCode4

A,m0
(λ)}λ∈N.

Algorithm NMCode2.D(vk, Z, c, π, σ):

1. Verify the signature σ:

Sig.V(vk, (Z, c, π), σ)
?
= 1.

2. Verify the ZK proof π:

ZK.V((vk, Z, c), π)
?
= 1.

3. If either test from Steps 1 or 2 does not pass or c = ⊥, output 0λ and terminate.

4. If π is a proof which is in Z, output the corresponding message m̃ and terminate.

5. Otherwise (both tests pass, c �= ⊥, and π /∈ Z′), use the extractor NMCom.Ext2(c)

to get the underlying value m̃. Output m̃ (if extraction fails, m̃ = ⊥).

Algorithm 9: The decoding procedures NMCode2.D used in H4(λ).

Claim 13. It holds that {MedTamperNMCode3
A,m0

(λ)}λ∈N and {MedTamperNMCode4
A,m0

(λ)}λ∈N

are identically distributed.

Experiment H5(λ). This experiment is the same as Experiment H4(λ) except
that we use m1 as the underlying message for TL.Gen (rather than m0), namely,
we execute the experiment {MedTamperNMCode4

A,m1
(λ)}λ∈N.
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Claim 14. It holds that

{MedTamperNMCode4
A,m0

(λ)}λ∈N ≈ {MedTamperNMCode4
A,m1

(λ)}λ∈N.

7 The Case of Uniform Tampering

In Sect. 6 we gave a construction of a non-malleable code secure against all tam-
pering functions that can be described as non-uniform polynomial size algorithm
with bounded polynomial depth. In this section we focus on the natural class of
tampering functions that consists of uniform polynomial size algorithm with
bounded polynomial parallel running time. This is the class that was considered
in the work of Ball et al. [6].

The construction is essentially the same as the one for non-uniform tampering
functions and the main differences are in how we instantiate the building blocks
and how the security proof goes through. Let us precisely list the building blocks
with which we use the scheme from Sect. 6 (Algorithms 2, 3, and 4). We note
that the time-lock puzzle and the signature scheme that we use (Items 1. and 4.
below) are the same as the one we used in Sect. 6.

1. A time-lock puzzle (Theorem 3) TL = (TL.Gen,TL.Sol) which, for all large
enough difficulty parameters t, allows to generate puzzles which are hard for
any (non-uniform) machine whose parallel time is at most tε, even it has size
23λ.
More precisely, for a difficulty parameter t, it is (STL, ε)-hard for a fixed
ε ∈ (0, 1) and for STL(λ) = 23λ.

2. A one-message zero-knowledge argument system (Theorem 7) ZK = (ZK.P,
ZK.V) which is sound w.r.t. all uniform polynomial-size attackers, there is a
(uniform) simulator that requires sub-exponential size and fixed polynomial
time, and zero-knowledge holds w.r.t. sub-exponential size adversaries.
More precisely, it is (SZK

P , κZK)-sound and (SZK
D , SZK

Sim, T ZK
Sim)-zero-knowledge for

all polynomial functions SZK
P and where κZK = 0, SZK

D (λ) = 2λη

, SZK
Sim(λ) =

2λη′
, and T ZK

Sim(λ) = λ2.
3. A one-message non-malleable tag-based commitment scheme (Theorem 5)

NMCom = (NMCom.C,NMCom.O) which is hiding for all (non-uniform)
polynomial-size distinguishers, extractable either in size and time 2log

2
λ or in

2λ size and λ3 time, and non-malleable for all uniform exponential size and
polynomial time tampering functions.
More precisely, it is (SNMCom, TNMCom)-hiding, (SNMCom

Ext1
, TNMCom

Ext1
)-extractable

via NMCom.Ext1 and (SNMCom
Ext2

, TNMCom
Ext2

)-extractable via NMCom.Ext2,
and (SNMCom

NM , TNMCom
NM , κNMCom

NM )-non-malleable for all polynomial functions
TNMCom and TNMCom

NM , and where SNMCom(λ) = 2λη′′
for η′′ > η′, SNMCom

Ext1
(λ) =

TNMCom
Ext1

(λ) = 2log
2 λ, SNMCom

Ext2
(λ) = 22λ, TNMCom

Ext2
(λ) = λ3, SNMCom

NM = 2λ, and
κNMCom

NM = 0.
4. Sig = (Sig.G,Sig.S,Sig.V). A one-time signature scheme, unforgeable for

polynomial-size attackers.
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Overview of the Proof. The proof works by defining a sequence of hybrid
experiments, where in the first the Man-In-the-Middle game is played with a
message m0 and in the last with a message m1. The sequence of experiments
is analogous to the one described in Sect. 6 except that we do not need worry
about “weak-soundness” of the ZK scheme and so some transitions follow due
to slightly different reasons. We refer to the full version [33] for details.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: TCC, pp. 393–417
(2016)

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: STOC, pp. 459–468 (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. SIAM J. Comput. 47(2), 524–546 (2018)

4. Ball, M.: On Resilience to Computable Tampering. Ph.D. thesis, Columbia Univer-
sity (2021). https://academiccommons.columbia.edu/doi/10.7916/d8-debr-bw49

5. Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.: Non-malleable codes
for small-depth circuits. In: FOCS, pp. 826–837 (2018)

6. Ball, M., Dachman-Soled, D., Kulkarni, M., Lin, H., Malkin, T.: Non-malleable
codes against bounded polynomial time tampering. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 501–530. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 17

7. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 31

8. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tamper-
ing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
618–650. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 20

9. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Limits to non-malleability.
In: ITCS, pp. 80:1–80:32 (2020)

10. Ball, M., Dachman-Soled, D., Loss, J.: Explicit non-malleable codes for polynomial
size circuit tampering. (unpublished manuscript)

11. Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 413–434. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 15

12. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: FOCS, pp. 345–355 (2002)

13. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J.
Comput. 37(2), 380–400 (2007)

14. Barak, B., Pass, R.: On the possibility of one-message weak zero-knowledge. In:
TCC, pp. 121–132 (2004)

15. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: Craft: composable
randomness and almost fairness from time. Cryptology ePrint Archive, Report
2020/784 (2020)

https://academiccommons.columbia.edu/doi/10.7916/d8-debr-bw49
https://doi.org/10.1007/978-3-030-17653-2_17
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-319-78372-7_20
https://doi.org/10.1007/978-3-030-26948-7_15


562 D. Dachman-Soled et al.

16. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: a founda-
tion of time-lock puzzles in UC. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-
CRYPT 2021. LNCS, vol. 12698, pp. 429–459. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77883-5 15

17. Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi-collision resis-
tant hash functions and their applications. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 133–161. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 5

18. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: ITCS, pp. 345–356 (2016)

19. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. In: STOC, pp. 671–684 (2018)

20. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-
ments. In: TCC, pp. 209–234 (2018)

21. Bitansky, N., Paneth, O.: Zaps and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: TCC, pp. 401–427 (2015)

22. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. In: ICALP, pp. 31:1–31:14 (2016)

23. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. Electron. Colloq. Comput. Complex. (ECCC) 22,
75 (2015)

24. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: STOC, pp. 285–298 (2016)

25. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: STOC, pp. 1171–1184 (2017)

26. Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient
functions. In: STOC, pp. 670–683 (2016)

27. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. IEEE Trans.
Inf. Theory 62(3), 1097–1118 (2016)

28. Chung, K., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from
P-certificates. In: FOCS, pp. 50–59 (2013)

29. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 10

30. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-
malleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 127–157. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 5

31. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: sim-
pler, shorter, stronger. In: TCC, pp. 306–335 (2016)

32. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: TCC, pp. 532–560 (2015)

33. Dachman-Soled, D., Komargodski, I., Pass, R.: Non-malleable codes for bounded
polynomial depth tampering. IACR Cryptol. ePrint Arch. 2020, 776 (2020)

34. Dachman-Soled, D., Liu, F., Shi, E., Zhou, H.: Locally decodable and updatable
non-malleable codes and their applications. In: TCC, pp. 427–450 (2015)

35. Dixon, J.D.: Asymptotically fast factorization of integers. Math. Comput. 36(153),
255–260 (1981)

36. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC, pp. 542–552 (1991)

https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.1007/978-3-319-78375-8_5
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-319-63715-0_5
https://doi.org/10.1007/978-3-319-63715-0_5


Non-malleable Codes for Bounded Parallel-Time Tampering 563

37. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–
452 (2010)

38. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4),
20:1–20:32 (2018)

39. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay
functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 125–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 5

40. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Non-malleable time-lock puz-
zles and applications. IACR Cryptol. ePrint Arch. 2020, 779 (2020)
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Abstract. Recent exciting breakthroughs have achieved the first two-
source extractors that operate in the low min-entropy regime. Unfortu-
nately, these constructions suffer from non-negligible error, and reducing
the error to negligible remains an important open problem. In recent
work, Garg, Kalai, and Khurana (GKK, Eurocrypt 2020) investigated a
meaningful relaxation of this problem to the computational setting, in
the presence of a common random string (CRS). In this relaxed model,
their work built explicit two-source extractors for a restricted class of
unbalanced sources with min-entropy nγ (for some constant γ) and neg-
ligible error, under the sub-exponential DDH assumption.

In this work, we investigate whether computational extractors in the
CRS model be applied to more challenging environments. Specifically, we
study network extractor protocols (Kalai et al., FOCS 2008) and extrac-
tors for adversarial sources (Chattopadhyay et al., STOC 2020) in the
CRS model. We observe that these settings require extractors that work
well for balanced sources, making the GKK results inapplicable.

We remedy this situation by obtaining the following results, all of
which are in the CRS model and assume the sub-exponential hardness
of DDH.

– We obtain “optimal” computational two-source and non-malleable
extractors for balanced sources: requiring both sources to have only
poly-logarithmic min-entropy, and achieving negligible error. To
obtain this result, we perform a tighter and arguably simpler analysis
of the GKK extractor.

– We obtain a single-round network extractor protocol for poly-
logarithmic min-entropy sources that tolerates an optimal number of
adversarial corruptions. Prior work in the information-theoretic set-
ting required sources with high min-entropy rates, and in the com-
putational setting had round complexity that grew with the number
of parties, required sources with linear min-entropy, and relied on
exponential hardness (albeit without a CRS).

– We obtain an “optimal” adversarial source extractor for poly-
logarithmic min-entropy sources, where the number of honest sources
is only 2 and each corrupted source can depend on either one of the
honest sources. Prior work in the information-theoretic setting had
to assume a large number of honest sources.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12827, pp. 566–594, 2021.
https://doi.org/10.1007/978-3-030-84252-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84252-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-84252-9_19


Improved Computational Extractors and Their Applications 567

1 Introduction

Randomness is fundamental in the design of algorithms and cryptographic sys-
tems. For many problems (such as Polynomial Identity Testing), the fastest
known algorithms use randomness. The role of randomness is more pronounced
in the design of cryptographic systems such as bit commitment, encryption, etc.,
as one needs unbiased random bits to achieve security [DOPS04].

Most sources of randomness found in nature are not perfect. The
amount of randomness in a source is usually formalized via the notion
of min-entropy. The min-entropy of a random source X is defined as the
maxx∈Supp(X) log 1/Pr[X = x]. A natural, fundamental question is: Can we
extract uniform random bits out of these weak sources? The answer is: Yes,
and this is achieved by a tool called as randomness extractors. However, it is
well-known that it is impossible to extract uniform random bits given only a
single weak source. To side step this impossibility, two notions have been con-
sidered. One is the seeded setting where you assume the existence of a uniform
short seed that is independent of the weak source. The other setting is the inde-
pendence source setting. The independence setting is weaker than the seeded
setting as it only needs independent sources X1, . . . , Xp such that each have
sufficient min-entropy. In this work, we are interested in the independent source
setting.

Independent Source Extractor. Starting with the seminal work of Chor and Gol-
dreich [CG88], there has been a long line of work on constructing better inde-
pendent source extractors.1 A recent breakthrough work of Chattopadhyay and
Zuckerman [CZ16] gave a construction of two-source extractor for poly loga-
rithmic min-entropy sources. However, the error of the extractor was inverse
polynomial. Even though the subsequent works [Li16,Coh16a,Coh16b,Coh16c,
Coh16d,Li17,BADTS16] improved the min-entropy of the sources to nearly log-
arithmic, none of these works achieved negligible error (which is important for
cryptographic applications).

A recent work of Garg, Kalai, and Khurana [GKK20] considered the problem
of constructing two-source computational extractors with negligible error. They
additionally assumed the existence of a common random string that is sampled
once and for all, and the weak sources can depend on the CRS. This precludes
constructions where the common random string can be used as a seed to extract
uniform random bits from these weak sources. They provided a construction of
a computational two-source extractor with negligible error in the CRS model
for sources with min-entropy Ω(nγ) (for some constant γ ∈ (0, 1)) under the
sub-exponential hardness of the DDH assumption.

1 The quality of an independent source extractor is determined by three parameters,
(i) the number of independent sources, (ii) the min-entropy of these sources, and
(iii) the error which is the statistical distance between the output of the extractor
and the uniform distribution.
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Challenges. The independent source setting makes two crucial assumptions.
First, it assumes that each of the sources X1, . . . , Xp are independently gener-
ated. Second, it assumes that each of these sources have sufficient min-entropy.
However, neither of these assumptions may be true in general for many sources
found in nature. For instance, it could be possible that one or more of these
weak sources are biased and have little or no min-entropy. It could also be the
case that some of these sources are adversarially corrupted so as to introduce
an artificial dependence between them. Hence, it is only safe to assume that
some of these sources have sufficient min-entropy and are independent whereas
other sources might have low min-entropy and might also depend on these hon-
est sources. The main challenge is that we do not know a-priori which sources
are honest and which ones are corrupted.

Can we nevertheless construct an extractor that outputs uniform random bits
given a sample from such sources?

This question is not new and has already been previously investigated in two
types of contexts: network extractor protocols [DO03,GSV05,KLRZ08,KLR09]
and extractors for adversarial sources [CGGL20].

Network Extractor Protocols. Consider a setting where there are multiple par-
ties and each party has an independent weak random source. The parties want
to communicate with each other over a public channel and at the end of the
protocol, each party outputs uniform random bits. These random bits could be
used to run a distributed computation protocol or for securely computing a mul-
tiparty functionality. The challenge, however, is that some of these parties may
be corrupted by a malicious adversary that may instruct them to deviate arbi-
trarily from the protocol. Can honest parties still end up with uniform random
bits under such an adversarial attack? This is precisely what is achieved by a
network extractor protocol [DO03,GSV05,KLRZ08,KLR09].

Here, the key barrier is that adversarial messages may be derived from sources
that have little or no min-entropy and furthermore, these messages may depend
on the messages from the honest parties. In the information-theoretic setting,
the work of Kalai et al. [KLRZ08] provided constructions of network extractor
protocol for sources that have min-entropy of 2log

β n (for some constant β < 1).
However, the main drawback is that they could guarantee that only a fraction
of the honest parties end up with uniform random bits. In a recent work, Goyal
et al. [GSZ21] gave a protocol that did not have this limitation, but their pro-
tocol only works in a setting where the min-entropy of the sources was very
high. Specifically, they required that for any p number of parties, there exists a
constant γ such that min-entropy was n(1 − γ). In the computational setting,
the work of Kalai et al. [KLR09] gave a protocol for sources with min-entropy
Ω(n) but relied on exponential hardness of one-way permutations and the round
complexity of the protocol grew with the number of parties.

Extractors for Adversarial Sources. In this setting, we consider a distribution
of p sources (X1, . . . , Xp) where some them are guaranteed to be independent
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and have sufficient min-entropy (called as honest sources) and the others are
adversarially generated and could depend on the honest sources in some limited
ways (called as corrupt sources). Given a sample from this distribution, we need
to extract bits that are close to the uniform distribution. Of course, the main
challenge here is that we do not know apriori which sources are honest and which
sources are corrupt and how the corrupt sources depend on the honest sources.
The work of Chattopadhyay et al. [CGGL20] formally studied this primitive2

and gave constructions (in the information-theoretic setting) where the number
of honest sources K is at least p1−γ (for some contant γ), their min-entropy is
poly logarithmic and each corrupted source could depend on at most Kγ honest
sources.

Our Work. We continue the line of work initiated by Garg et al. [GKK20]
on constructing computational extractors in the CRS model and provide new
constructions that extract uniform bits in the setting of network extractors and
from adversarial sources.

1.1 Our Results

The key technical tool that allows us to obtain the above applications is a better
construction of computational two-source extractor in the CRS model.

The construction from [GKK20] had two drawbacks: first, it required sources
that have min-entropy of Ω(nγ) (for some constant γ ∈ (0, 1)) and second, it
worked only for sources that were heavily imbalanced: requiring that one of the
sources have entropy equal to the size of the other source.

Our first result is a much cleaner analysis of this construction. Our improved
analysis essentially shows, somewhat surprisingly, that the extractor from
[GKK20] actually does not suffer from either of the limitations stated above.
That is, it works for balanced sources that are each only required to have poly
logarithmic min-entropy, and achieves negligible error.

Informal Theorem 1. Let λ denote the security parameter. Assuming the sub-
exponential hardness of DDH, there exists a constant c > 1 such that for any
λ ≤ n1, n2 ≤ poly(λ), there exists a construction of a negligible error, two-
source computational extractor in the CRS model where sources have lengths
n1, n2 respectively and min-entropy O(logc n).

Our tighter analysis is also arguably simpler than the one in [GKK20]. As a
corollary, we use the transformation from [GKK20] to obtain a construction of

2 In a work that is concurrent and independent to Chattopadhyay et al., Aggarwal
et al. [AOR+20b] studied another model of adversarial sources called as SHELA
sources. They showed that it is impossible to extract uniform random bits from
SHELA sources and gave constructions of extractors whose output is somewhere
random. In another work, Dodis et al. [DVW20] studied a notion of extractor depen-
dent sources which arise in the setting where the source sampler could depend on
the output of the previous invocations of the extractor using the same seed.
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a negligible-error, non-malleable two-source extractor for balanced sources with
polylogarithmic min-entropy, where one source can be tampered an arbitrary
polynomial number of times (this is called a one-sided non-malleable extractor).
Specifically, in the one-sided setting, the adversary gets access to a tampering
oracle and can specify any efficiently computable tampering function on one of
the sources. The oracle responds with the output of the extractor computed on
the first source and the tampered second source.

Informal Theorem 2. Let λ denote the security parameter. Assuming the sub-
exponential hardness of the DDH assumption, there exists a constant c > 1 such
that for any λ ≤ n1, n2 ≤ poly(λ), there exists a construction of a negligible
error, two-source, one-sided computational non-malleable extractor in the CRS
model where both sources have lengths n1, n2 respectively and have min-entropy
O(logc n).

We then use the above non-malleable extractor as the main building block
and give a construction of network extractor protocol that has a single round
of communication, works with poly logarithmic min-entropy sources and can
tolerate an optimum number of malicious corruptions.

Informal Theorem 3. Let λ be the security parameter. Assuming sub-
exponential hardness of the DDH assumption, there exists a constant c > 1
s.t. for any λ ≤ n ≤ poly(λ), there exists a construction of a single round, negli-
gible error, computational network extractor protocol in the CRS model for any
p (which is a polynomial in the security parameter) number of parties each hav-
ing an independent source of length n and min-entropy O(logc n). The protocol
tolerates p − 2 corruptions by a malicious adversary (which is optimum). Fur-
thermore, all the honest parties end up with an output that is computationally
indistinguishable to the uniform distribution given the view of the adversary.

We also give a construction of an adversarial source extractor that works in
the extreme setting where there are only two honest sources and every corrupted
source can depend on either one of the honest sources. This construction uses
our computational two-source extractor as the main building block.

Informal Theorem 4. Let p ∈ N be fixed and let λ be the security parameter.
Assuming that sub-exponential hardness of DDH assumption, there exists some
constant c > 1 s.t. for Ω(λ) ≤ n ≤ poly(λ), there exists a construction of
negligible error adversarial source extractor in the CRS model that works for an
arbitrary adversarial p-source distribution where (i) each source has length n,
(ii) there are two honest independent sources with min-entropy O(logc λ), and
(iii) every other source is the output of an (efficient) function of either one of
the two honest sources.

Comparison with [AOR+20a]. We now compare our results with the prior work
of Aggarwal et al. [AOR+20a]. While both papers build on [GKK20] and obtain
new types of computational non-malleable extractors, there are some impor-
tant differences in the results. In the setting where only one of the sources is
tamperable and the number of tamperings is unbounded,
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– Techniques in [AOR+20a] give non-malleable extractors for linear min-
entropy (min-entropy greater than 0.46n) based on quasi-polynomial DDH.
To achieve poly-logarithmic min-entropy, they additionally assume the exis-
tence of near optimal (exponentially hard) collision-resistant hash functions.

– Our work gives a construction for poly-logarithmic min-entropy based on
sub-exponential DDH.

We remark that [AOR+20a] also (primarily) considers a setting where both
sources can be tampered but the number of tamperings is bounded. Among
other results, they provide new constructions in this setting for linear min-
entropy (min-entropy greater than 0.46n) based on quasi-polynomial DDH and
for poly-logarithmic min-entropy based on near-optimal (exponential) hardness
of collision-resistant hash functions.

An important objective of our work is to achieve new applications: these
applications require a setting where the number of tamperings is unbounded,
with only one source being tampered. For this setting, as discussed above,
our work shows that the [GKK20] construction achieves poly-logarithmic min-
entropy for balanced sources from sub-exponential DDH.

2 Technical Overview

In this section, we provide an overview of our results.

2.1 Improved Two-Source and Non-malleable Extractors

We start with an overview of our improved two-source and non-malleable extrac-
tors. The key technical bulk of this part of our work is an improved two-source
extractor, and plugging in the resulting extractor into the work of [GKK20]
also immediately yields an improved non-malleable extractor, as we will discuss
below.

Background: The Blueprints of [BHK11,BACD+17,GKK20]. As a first
step, we recall the construction of two-source extractors in [GKK20], which itself
combines the blueprint of [BHK11] with that of [BACD+17]. As discussed above,
we will show that essentially the same construction serves as a strong compu-
tational extractor even for balanced sources, and even in settings where sources
have only polylogarithmic min-entropy. In contrast, the techniques in [GKK20]
limited them to highly unbalanced sources and required λε min-entropy

At a high level, [GKK20] obtain two-source extractors with low error via two
steps.

Step 1. Following a blueprint suggested in [BHK11,GKK20] build a computa-
tional non-malleable extractor in the CRS model, in a setting where one of the
sources has min entropy rate larger than 1/2. We use the same blueprint in this
work also, and therefore we describe it below.
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First, start with any 2-source extractor

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m,

with negligible error (e.g., [Bou05,Raz05]), min-entropy (poly log n1) for one of
the sources and min-entropy rate of about 1/2 for the other.

The construction makes use of the following cryptographic primitives, which
can be obtained based on the (sub-exponential) hardness of DDH.

1. A collision resistant function family H, where for each h ∈ H, h : {0, 1}n2 →
{0, 1}k, where k is significantly smaller than the min-entropy of the second
source of 2Ext.

2. A family of lossy functions F , where for each f ∈ F , f : {0, 1}n1 → {0, 1}n1 .
A lossy function family consist of two types of functions: injective and lossy.
Each lossy function loses most of the information about the input (i.e., image
size is very small). It is hard to distinguish between a random injective and
a random lossy function in the family.

The actual construction is as follows. The CRS consists of a random func-
tion h ← H from the collision-resistant hash family, and consists of 2k random
family F , denoted by

f1,0, f2,0, . . . , fk,0

f1,1, f2,1, . . . , fk,1

where for a randomly sampled b ← {0, 1}k, for all i ∈ [k], fi,bi
are injective, and

fi,1−bi
are lossy.

The computational non-malleable extractor (in the CRS model) is defined
by

cnm-Ext(x, y, crs) := 2Ext(fcrs,h(y)(x), y),

where
fcrs,s(x) := f1,s1 ◦ . . . ◦ fk,sk

(x)

Consider any polynomial size adversary A that obtains either (cnm-Ext(x, y),
y, crs) or (U, y, crs), together with an oracle O that has (x, y, crs) hardwired, and on
input y′ outputs ⊥ if y′ = y, and otherwise outputs nm-Ext(x, y′, crs). By the colli-
sion resistance property of h, A queries the oracle on input y′ s.t. h(y′) = h(y) only
with negligible probability. Therefore, the oracle O can be replaced by a different
oracle, that only hardwires (crs, h(y), x) and on input y′ outputs ⊥ if h(y′) = h(y),
and otherwise outputs cnm-Ext(x, y′).

It is observed in [BHK11,GKK20] that access to this oracle can be sim-
ulated entirely given only crs, h(y) and (Z1, . . . Zk), where for every i, Zi =
f1,1−h(y)1(f2,1−h(y)2(. . . fi,h(y)i

, (. . . fk,h(y)k
(x))). Now suppose that the functions

{fi,1−h(y)i
}i∈[k] were all lossy – then it is easy to see that (for small enough k),

Y has high min-entropy conditioned on h(y) and Z = (Z1, . . . , Zk). At the
same time, as long as the functions {fi,h(y)i

}i∈[k] are all injective, the output
fcrs,h(y)(x) continues to have high entropy conditioned on h(y) and Z. Then one
could use the fact that 2Ext is a (strong) 2-source extractor, to argue that the
output of our non-malleable extractor is close to uniform.
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Moreover, since the adversary A cannot distinguish between random injec-
tive functions and random lossy ones, it should be possible to (indistinguish-
ably) change the CRS to ensure that functions f1,h(y)1 , . . . , fk,h(y)k

are injective,
whereas the functions f1,1−h(y)1 , . . . , fk,1−h(y)k

are all lossy.
This intuition is converted into a formal proof by [BHK11,GKK20]. In sum-

mary, these works show that the resulting non-malleable extractor (very roughly)
inherits the entropy requirements of the underlying two-source extractor. More-
over, the resulting extractor is non-malleable w.r.t. arbitrarily many tampering
functions (this is impossible to achieve information theoretically).

Looking ahead, this transformation appears to be fairly tight, and is not
why [GKK20] are limited to unbalanced sources and λε min-entropy. These
restrictions appear to be a result of the next transformation, which converts
non-malleable extractors with high entropy for one source, to two-source extrac-
tos with low min-entropy for both sources. We describe this next.

Step 2. Next, [GKK20] convert the resulting non-malleable extractor (for a set-
ting where one source has high min-entropy rate) to a two-source extractor for
a setting where both sources have low min-entropy, by following a blueprint
of [BACD+17].

An important difference between [BACD+17] and [GKK20] is that the reduc-
tion in [BACD+17] is not efficient: specifically, even given an efficient adver-
sary that contradicts the security of the 2-source extractor, [BACD+17] obtain
an inefficient adversary that contradicts the security of the underlying non-
malleable extractor.

To better understand this issue, we briefly summarize the transformation
of [BACD+17]. Their transformation uses a disperser as a building block.

A (K,K ′) disperser is a function

Γ : {0, 1}n2 × [t] → {0, 1}d

such that for every subset A of {0, 1}n2 that is of size ≥ K, it holds that the size
of the set of neighbors of A under Γ is at least K ′.

The [BACD+17]-transformation starts with a seeded non-malleable extractor
nm-Ext : {0, 1}n1 ×{0, 1}d → {0, 1}m and a disperser Γ : {0, 1}n2 ×[t] → {0, 1}d,
and constructs the following 2-source extractor 2Ext : {0, 1}n1 × {0, 1}n2 →
{0, 1}m, defined by

2Ext(x1, x2) =
⊕

y:∃i s.t. Γ (x2,i)=y

nm-Ext(x1, y)

Intuitively, by the definition of an (information-theoretic) t-non-malleable
extractor nm-Ext, for a random y ∈ {0, 1}d, for all y′

1, . . . , y
′
t that are distinct

from y, it holds that

(nm-Ext(X1, y),nm-Ext(X1, y
′
1), . . . ,nm-Ext(X1, y

′
t))

≡ (U,nm-Ext(X1, y
′
1), . . . ,nm-Ext(X1, y

′
t)) .
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This means that for “most” y, nm-Ext(X1, y) is statistically close to uniform,
even given nm-Ext(X1, Γ (x2, j)) for every j ∈ [t] \ {i} such that Γ (x2, j) 
= y,
which in turn implies that the XOR of these (distinct) values is close to uniform,
which implies that 2Ext(X1, x2) is close to uniform.

But to formally prove that the resulting extractor is a strong (information-
theoretic) non-malleable extractor, one would need to construct a reduction R
that breaks the non-malleable extractor, given any adversary A that breaks the
two-source extractor. In the computational setting, R is required to be efficient,
which causes the bulk of the technical difficulty in [GKK20].

In more detail, R obtains input (α, ŷ), where ŷ is a random seed for the non-
malleable extractor and where α is either chosen according to cnm-Ext(X1, ŷ) or
is chosen uniformly at random. In addition, R obtains an oracle that outputs
cnm-Ext(X1, y

′) on input y′ 
= ŷ. R must efficiently distinguish between the case
where α ← cnm-Ext(X1, ŷ) and the case where α is chosen uniformly at random.
In order to use the (two-source extractor adversary) A, R needs to generate a
challenge for A that corresponds either to the output of the 2-source extractor
(if α was the output of cnm-Ext) or uniform (if α was uniform). In addition, the
reduction R must generate a corresponding x2 for A, that is sampled according
to X2. This is easy to do in unbounded time by simply sampling x2 ← X2

conditioned on the existence of i such that Γ (x2, i) = y.
To enable a reduction in the computational setting, [GKK20] view the ineffi-

cient computation involved; i.e. sampling x2 ← X2 conditioned on the existence
of i such that Γ (x2, i) = y; as the output of a leakage function. They simulate
this leakage by running in time exponential in the length of the leakage. Unfor-
tunately, this means that the running time of the reduction grows as 2|x2|, which
restricts |x2| to being extremely small, in fact much smaller than the size of the
first source. This also restricts the sources in such a way that the min-entropy
in the first source is required to be larger than the size of the second source. As
discussed above, the highly asymmetric state of affairs does not bode well for
many natural applications of two-source and non-malleable extractors.

Our Key Ideas. To remedy this situation, we develop a completely different
analysis for essentially the same construction. In contrast with [GKK20], our
analysis is arguably simpler, does not impose any artificial restrictions on the
size of each source, and leads to significantly improved min-entropy parameters.

First, we do not split the analysis of the resulting two-source extractor into
two steps as described above. In other words, unlike [GKK20], we do not attempt
to prove that the [BACD+17] template as described in Step 2, when applied to
any computational non-malleable extractor, yields a good two-source extractor
with low min-entropy and low error.

Instead, we apply the [BHK11] transform to an information-theoretic two-
source extractor with low error but min-entropy rate of 1/2 for one of the sources
(e.g., [Bou05,Raz05]). Next, we consider the [BACD+17] transform applied to
the result of this extractor. We then give a monolithic proof that the result
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of applying these transformations one after the other, results in a two-source
extractor for balanced sources, polylogarithmic min-entropy and negligible error.

At a very high level, this monolithic approach enables us to strip off all
computational components one by one, to eventually end up with a purely infor-
mation theoretic experiment. This allows us to sidestep the need to invert the
disperser in any of our computational reductions; limiting our use of inefficient
reductions to the information-theoretic step in the proof.

We now discuss our proof strategy in additional detail. We will start with
an experiment where the adversary obtains either the output of the (final) two-
source extractor, which we will denote by c2Ext(x1, x2) or a uniformly random
value (in each case the adversary also obtains the sample x2). As discussed
above, we will modify this experiment in steps, slowly stripping off computa-
tional assumptions until we end up in an experiment that does not require any
assumptions.

Discarding Hash Collisions. Recall that the [BHK11] blueprint uses z = h(y)
to choose a subset of functions fi,zi

to apply to the first source. As a first
step, we will modify the experiment so that if in the process of computing
c2Ext(x1, x2), a hash collision is encountered, then we simply outputs a uni-
formly random sample instead of c2Ext(x1, x2). In more detail, the output of the
two-source extractor c2Ext is replaced by a slightly modified c2Ext′. The replace-
ment c2Ext′(x1, x2) first checks if ∃(i1, i2) such that Γ (x2, i1) 
= Γ (x2, i2) but
h(Γ (x2, i1)) = h(Γ (x2, i2)). If such (i1, i2) exist, then c2Ext′ outputs a uniformly
random value.

At the same time, the oracle O is replaced with O′ that is identical to O,
except that on input any y′ such that h(y′) = h(y), O′ outputs ⊥.

We rely on the collision resistance of the hash function family to argue that
as long as the sources are efficiently sampleable, this experiment is statistically
indistinguishable from the previous one. This argument will allow us to simply
discard hash collisions throughout the rest of this overview. The other remaining
assumption is that of the lossy function family.

Working Around Lossy Functions. Recall that the approach in [GKK20] is to
(indistinguishably) switch the crs so that the functions {fi,1−h(y)i

}i∈[k] are all
lossy, and the rest are injective. This ‘nicely distributed’ CRS allows them to
efficiently “simulate” the output of the oracle O, and prove that the result-
ing construction is a non-malleable extractor3 But this approach runs into the
barriers described above, as the eventual two-source extractors do not support
balanced sources or poly-logarithmic min-entropy.

In this work, as a first stab, we attempt to make statistical arguments about
the sources in an (imagined) experiment where the CRS is assumed to be ‘nicely

3 There are many other subtleties involved, most importantly, a circularity: the CRS
must be programmed according to h(y), but y is sampled as a function of the CRS.
The work of [GKK20] develops techniques to avoid these subtleties, but we do not
discuss them here as they are less relevant to the current approach.
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distributed’. In more detail, we say that the random variable y takes a “bad”
value if it becomes possible for an oracle-aided unbounded adversary to distin-
guish the output of the [BHK11] non-malleable extractor from uniform, when
conditioned on the CRS being ‘nicely distributed’ for y. That is, for a function
ε = ε(λ), we define the set BAD-seedε (roughly) as the set of y, for which the
following holds: conditioned on the CRS being such that functions at positions
indexed by h(y) are injective and the others are lossy, the output of the non-
malleable extractor is at least ε-statistically distinguishable from a uniformly
random value in presence of the oracle O′.

Bounding BAD-seedε. We prove that for large enough (but still negligible) ε, the
size of the set BAD-seedε is negligibly small. Fortunately, since the definition of
BAD-seedε already conditions on the CRS being nicely distributed, this argument
does not involve any computational assumptions, and follows by a reduction to
the underlying information-theoretic two-source extractor of [Bou05,Raz05], as
long as the number of tampering queries is polynomially bounded. Intuitively,
conditioned on the CRS being nice, we can establish that the sources (for the non-
malleable extractor) retain high entropy even in the presence of the oracle O′,
and therefore, the output of the two-source extractor, applied to (fcrs,h(y)(x), y) is
statistically indistinguishable from uniform. Then a simple averaging argument
allows us to prove that BAD-seedε is small.

From Non-malleable to Two-Source Extractors. Next, we aim to use the defini-
tion of BAD-seedε to derive a meaningful (statistical) conclusion about the final
two-source extractor. Specifically, we fix a (large enough, but still negligible) ε.

We consider a game that samples sources (x1, x2) for the final two-source
extractor, and samples i ← [t], conditioned on y = Γ (x2, i) lying outside the
set BAD-seedε. By definition of the set BAD-seedε, for any y outside this set,
the output of the non-malleable extractor is statistically indistinguishable from
uniform, even given (polynomial-query) access to the tampering oracle. Recall
that the output of the two-source extractor is

2Ext(x1, x2) =
⊕

y:∃i s.t. Γ (x2,i)=y

nm-Ext(x1, y)

This means that for y 
∈ BAD-seedε, for all y′
1, . . . , y

′
t that are distinct from

y, it holds that

(nm-Ext(X1, y),nm-Ext(X1, y
′
1), . . . ,nm-Ext(X1, y

′
t)) and

(U,nm-Ext(X1, y
′
1), . . . ,nm-Ext(X1, y

′
t))

are at most ε-statistically distinguishable.
This means that for such y, nm-Ext(X1, y) is statistically close to uniform,

even given nm-Ext(X1, Γ (x2, j)) for every j ∈ [t] \ {i} such that Γ (x2, j) 
= y,
which in turn implies that the XOR of these (distinct) values is close to uniform,
which implies that 2Ext(X1, x2) statistically is close to uniform.
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Because we carefully conditioned on y = Γ (x2, i) 
∈ BAD-seedε, we are able
to (again, statistically) argue that the output of the two-source extractor in this
game will be statistically indistinguishable from uniform, even given x2.

At this point, we have argued that in an idealized game where the CRS is
conditioned on being nicely distributed, the output of the (strong) two-source
extractor will be indistinguishable from uniform. But the in the actual construc-
tion, the CRS is distributed in such a way that for a random b ← {0, 1}k the
functions fi,1−bi

are lossy, and the others are injective. This only very rarely
matches the idealized game (where we essentially condition on b = h(y)). At
this point, we would like to use the fact that lossy functions are indistinguish-
able from injective ones, to argue that the adversary cannot distinguish an actual
game from the idealized game. Formalizing this intuition runs into a few subtle
issues, that we briefly describe next.

The Computational Argument. Note that in the idealized game described above,
(x2, i) are sampled conditioned on:

– The crs being such that functions indexed by Γ (x2, i) are injective and the
others are lossy.

– Γ (x2, i) 
∈ BAD-seed, and

We begin by removing the first requirement, and moving to a game where we
only condition on Γ (x2, i) 
∈ BAD-seed. We prove that removing the first condi-
tioning does not (significantly) affect a PPT distinguisher’s ability to distinguish
between the output of the extractor and uniform. The proof of this makes careful
use of Chernoff bounds and the leakage lemma [GW11,JP14,CLP15], to show
that if the two games are different, then one can guess which functions in the
CRS are injective and which ones are lossy, with advantage better than what is
allowed by the security of the lossy function family.

At this point, we have moved to a game where (x2, i) are sampled only subject
to the restriction that Γ (x2, i) 
∈ BAD-seed. Next, we prove that this restriction
can also be removed without (significantly) affect an unbounded distinguisher’s
ability to distinguish between the output of the extractor and uniform. Intu-
itively, this follows because of the disperser and because the set BAD − seedε is
small. Recall that the disperser maps every “large enough” set of x2’s to a “large
enough” set of y’s. This implies that if the set of y’s for which y ∈ BAD−seedε is
small, their inverses (under the disperser) are also small. We show that as long
as the source x2 has polylogarithmic min-entropy, the probability that x2 is such
that Γ (x2, i) 
∈ BAD-seed for any i will be negligibly small.

This allows us to argue that the output of the strong two-source extractor is
indistinguishable from uniform. A careful separation of the information-theoretic
and computational components allows us to set parameters so that the entropy
loss from the first source is only polylogarithmic. As discussed above, existing
dispersers (e.g., from [GUV09]) already suffice in a setting where the second
source also has polylogarithmic min-entropy.

Here, we clarify that the exact min-entropy loss depends on our compu-
tational assumptions. In more detail, we assume that there exists a constant
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0 < ε < 1 such that DDH with security parameter λ is hard against poly(2λε

)-size
machines. The exact polylogarithmic min-entropy requirement on our sources
then depends on ε.

This completes a high-level picture of our new proof strategy. For the sake of
conceptual simplicity, we swept a few details under the rug. We refer the reader
to the full version for a detailed formal proof.

From Two-Source to Non-malleable Extractors. Once we obtain two-
source extractors as discussed above, we directly invoke a theorem from [GKK20]
(that builds on the [BHK11] blueprint) to bootstrap our low entropy, low error
two-source extractors to low entropy, low error non-malleable extractors. Since
this follows almost immediately from prior work (modulo a few parameter
choices), we omit details in this overview.

2.2 Network Extractor Protocol

In the network extractor setting, there are p parties and each party Pi for i ∈ [p]
has an independent weak random source Xi. There is a centralized adversary that
controls an arbitrary subset M ⊂ [p] of the parties. This adversary is malicious,
which means that it can instruct the corrupted parties to deviate arbitrarily
from the protocol specification and is rushing which means that in each round of
the protocol, it can wait until it receives all the messages from the honest parties
before sending its own message on behalf of the corrupted parties. We consider
the parties to be connected via public channels and the adversary can view all
the communication sent by honest parties. At the end of the protocol, we want
all the honest parties to output uniform random bits that are independent of
the view of the adversary.

In the computational setting, we restrict the adversary to be computationally
bounded and independence mentioned above is required to hold in the compu-
tational sense. The quality of the network extractor protocol is determined by
three parameters, (i) the number of corrupted parties |M |, (ii) the min-entropy
of the weak random source available with the parties H∞(Xi), and (iii) the num-
ber of rounds of the protocol. It is easy to observer that if |M | = p − 1, then we
cannot construct a network extractor protocol as this task amounts to extract-
ing uniform random bits from a single weak random source. So, the best we can
hope for is the case where |M | ≤ p − 2. In this work, we give a construction
of network extractor protocol in the computational setting in the CRS model
that tolerates |M | ≤ p − 2 corruptions, runs in a single round, and works with
polylogarithmic min-entropy for each i ∈ [p].

Key Challenge. To understand the key challenge, let us first weaken the require-
ments from the network extractor protocol. Let us assume for now that the first
party P1 is never corrupted but the identity of the other honest party is not
known at the beginning of the protocol. Furthermore, we only require the out-
put of honest P1 to be uniform and independent of the view of the adversary.
Can we construct a single round protocol for this weaker setting?
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We observe that the techniques developed in the work of Goyal et al. [GSZ21]
gives such a protocol based on any two-source non-malleable extractor. Specif-
ically, we ask every party to send its source in the clear to the first party P1.
For every j 
= 1, P1 applies the two-source non-malleable extractor on its source
and the source received from Pj and outputs the XOR of all such computations.
We now argue that the output of P1 is uniform and independent of the view of
the adversary if the non-malleable extractor is strong and is multi-tamperable.
Let us assume that Pi for some i 
= 1 is the other honest party. Now, the mes-
sages sent by the adversarial parties are an efficiently computable function of
Pi’s source. Thus, one can view the messages from the adversarial parties as
a tampering of the honest source. The security of the non-malleable extractor
guarantees that the output of the extractor on the good source is close to uni-
form even conditioned on its output on the tampered sources. This allows us to
argue that the output of P1 is close to uniform given the view of the adversary
(which includes the other honest source and that is why we require the extractor
to be strong).

However, we quickly run into trouble if we want to extend this to the setting
where we require the outputs of two honest parties to be uniform and indepen-
dent of the view of the adversary. Indeed, if P1 were to send its source in the
clear, then we cannot use the security of the non-malleable extractor to argue
that the output of P1 is close to uniform. In the “very high” min-entropy setting,
the work of [GSZ21] gave a method to overcome this barrier. Specifically, party
Pi divides its source into p slices, retains the i-th slice with itself and broad-
casts the rest of the slices. It now uses the i-th slice received from the other
parties along with its own slice to compute the output as mentioned above. It
was argued in their work that if the min-entropy source was “very high”, then
the outputs of the all honest parties are close to uniform and independent of the
view of the adversary. However, we cannot extend their argument to the setting
where the min-entropy of each weak source δ · n for some universal constant δ.

Our Approach. In order to overcome this barrier, we rely on computational tools
(namely, lossy functions) to artificially create independence between the mes-
sages transmitted by each party and the sources used to compute their outputs.
We now elaborate on this.

For each i ∈ [p] and b ∈ {0, 1}, we sample fi,b uniformly in the injective
mode and include the descriptions of these functions as part of the CRS. In the
protocol, party Pi first computes fi,b(Xi) for each b ∈ {0, 1} and broadcasts
fi,1(Xi) and retains fi,0(Xi) with itself. To compute the output, it evaluates
the non-malleable extractor with one source as fi,0(Xi) and the other source as
fj,1(Xj) for each j 
= i. It then outputs the XOR of these evaluations. We now
show how to use the security of lossy functions to argue that the joint distribution
of the outputs of the honest parties are close to uniform conditioned on the view
of the adversary.

We consider a sequence of hybrids where the first hybrid in the sequence
consists of the outputs of the honest parties as computed in the protocol along
with the view of the adversary and last hybrid is the distribution where the
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outputs of all the honest parties are replaced with uniform and independent bits.
In the i-th intermediate hybrid, we replace the outputs of the first i uncorrupted
parties with uniform. By a standard averaging argument, it is sufficient to show
that the i-th hybrid in this sequence is computationally indistinguishable to the
(i− 1)-th hybrid. Let us assume that the i-th honest party is ki and the identity
of the other honest party is k′

i.
We first consider an intermediate distribution where we sample fki,1 and fk′

i,0

in the CRS using the lossy mode instead of the injective mode. It follows from the
computational indistinguishability of the injective and the lossy modes that this
intermediate distribution is indistinguishable to the (i−1)-th hybrid. Since fki,1

and fk′
i,0

are sampled in the lossy mode, we can view these as bounded leakages
from the source Xki

and Xk′
i
. Now, conditioned on these leakages, we can argue

that fki,0(Xki
) and fk′

i,1
(Xk′

i)
are independent and have sufficient min-entropy

(since fki,0 and fk′
i,1

are sampled in the injective mode). Now, we can rely on
the argument sketched above and view the adversarial messages as tamperings of
the honest source fk′

i,1
(Xk′

i
) and use the security of the non-malleable extractor

to replace the output of Pki
with uniform bits independent of the view of the

adversary. To show this distribution is indistinguishable to the i-th hybrid, we
again rely on the indistinguihability of the lossy and injective modes and switch
sampling fki,1 and fk′

i,0
in the CRS to the injective mode. This allows us to

show that the (i − 1)-th hybrid is computationally indistinguishable to the i-th
hybrid.

2.3 Extractors for Adversarial Sources

An adversarial source distribution [CGGL20] is a sequence of p random variables
(X1, . . . , Xp) such that a subset of them are independent and have sufficient min-
entropy (called as the honest sources) and the rest can depend on the honest
sources in a limited way (called as the corrupt sources). The goal is to construct
an extractor such that given a sample from the adversarial source distribution,
it outputs a string that is close to random. Here, the parameters of interest are
the (i) number of honest sources in the distribution, and (ii) the min-entropy of
the honest sources. We are interested in constructing extractors that work in the
extreme setting where the number of honest sources is only 2 and every corrupted
source is an (efficiently computable) function of either one of the honest sources.

Challenge with the Prior Approaches. The works of Chattopadhyay et al.
[CGGL20] and Goyal et al. [GSZ21] gave a method of constructing such an
extractor using a non-malleable extractor that satisfies an additional security
property. Specifically, the adversary is allowed to specify a set of tampering
functions {(fi, gi)}i∈[t] as well as a sequence of bits {bi}i∈[t]. If bi = 0, then the
adversary receives the output of the non-malleable extractor applied on fi(X)
and gi(Y ). Otherwise, it receives the output of the extractor on gi(Y ) and fi(X).
Unfortunately, we do not know how to show that the non-malleable extractor
constructions in the works of [GKK20,AOR+20a] satisfy this additional prop-
erty. Hence, in this work, we take new approach towards this problem that is
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partly inspired by our network extractor construction and relies only on a com-
putational two-source extractor (rather than a non-malleable extractor).

Our Construction. We first explain why a network extractor protocol doesn’t
directly give rise to an extractor for adversarial source distribution. In the case
of a network extractor protocol, only the messages sent by the corrupted parties
depend on the honest party’s messages whereas in the case of the adversarial
sources, the corrupted source could depend on the honest source. This difference
precludes a direct construction. However, we use the techniques developed for the
network extractor construction to construct an extractor for adversarial sources.

Our extractor for adversarial sources is similar to our network extractor con-
struction except that we replace the non-malleable extractor with a computa-
tional two-source extractor. Specifically, we consider p parties and provide the
i-th source Xi to party Pi and run the network extractor construction described
above using a two-source extractor. Once we have obtained the outputs of each
of the parties, we XOR them together to output a single string. We now argue
that the distribution of the output string is close to the uniform distribution.

To show this, it is sufficient to show that the output of one of the honest
parties is close to uniform and is independent of the outputs of every other
party. Let us assume that Xi and Xj are honest sources. We first consider an
intermediate distribution where we sample fk,b for every (k, b) 
∈ {(i, 0), (j, 1)} in
the lossy mode. It again follows from the indistinguishability of the injective and
the lossy modes that this distribution is computationally close to the original
output. Now, for every corrupted source k that is derived from Xi, we can
view {fk,b(Xk)}b∈{0,1} as bounded leakage from the honest source Xi. Similarly,
for every source k that is derived from Xj , we can view {fk,b(Xk)}b∈{0,1} as
bounded leakage from the honest source Xj . We can additionally leak fi,1(Xi)
and fj,0(Xj). This allows us to argue that conditioned on these leakages, the
sources fi,0(Xi) and fj,1(Xj) are independent and have sufficient min-entropy.
We can now invoke the two-source extractor security to argue that the output
of the i-th party is close to uniform even conditioned on the outputs of every
other party.4

This completes an overview of our techniques.

Roadmap. We list some preliminaries in Sect. 3, and defer standard definitions
of collision-resistant hash functions, lossy functions, the leakage lemma and dis-
persers, as well as their standard instantiations, to the full version. We recall
definitions of computational extractors in Sect. 3.1. In Sect. 4 we derive theo-
rems and corollaries for improved two-source and non-malleable extractors. Due
to space constraints, we defer their proofs to the full version. Finally, in Sects. 5
and 6, we describe improved constructions of network and adversarial source

4 The reason why two-source extractor is sufficient in this case but non-malleable
extractor was needed in the previous case is that the parties here can be thought of
as following the protocol whereas in the previous case, they could deviate arbitrarily
from the protocol specification.
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extractors respectively. The proofs of these constructions are deferred to the full
version.

3 Preliminaries

In this section, we discuss some preliminaries needed for the later sections. This
includes facts about min-entropy, lossy functions and dispersers. Many parts of
this section are taken from [GKK20].

Definition 5. A distribution X over a domain D is said to have min-entropy
k, denoted by H∞(X) = k, if for every z ∈ D,

Pr
x←X

[x = z] ≤ 2−k.

In this paper, we consider sources with average conditional min entropy, as
defined in [DORS08] (and also in the quantum information literature). This
notion is less restrictive than worst case conditional min-entropy (and therefore
this strengthens our results), and is sometimes more suitable for cryptographic
applications.

Definition 6. [DORS08] Let X and Y be two distributions. The average con-
ditional min-entropy of X conditioned on Y , denoted by H∞(X|Y )5 is

H∞(X|Y ) = − log Ey←Y max
x

Pr[X = x|Y = y] = − log(Ey←Y [2−H∞(X|Y =y)])

Note that 2−H∞(X|Y ) is the highest probability of guessing the value of the random
variable X given the value of Y .

We will rely on the following useful claims about average conditional min-
entropy.

Claim 1 [DORS08]. Let X,Y and Z be three distributions, where 2b is the
number of elements in the support of Y . Then,

H∞(X|Y,Z) ≥ H∞(X,Y |Z) − b

Claim 2 ([GKK20]). Let X, Y and Z be three (arbitrary) distributions, then

H∞(X|Y ) ≥ H∞(X|Y,Z)

We defer the standard definitions of collision-resistant hash functions, lossy
functions, the leakage lemma and dispersers, as well as their standard instanti-
ations, to the full version.

5 This is often denoted by ˜H∞(X|Y ) in the literature.
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3.1 Computational Extractors: Definitions

In this section, we recall definitions of extractors in the computational setting
with a CRS. We define both a 2-source extractor and a non-malleable extractor
in this setting.

Like [GKK20], in both defintions, we allow the min-entropy sources to depend
on the CRS, but require that they are efficiently sampleable conditioned on
the CRS (where the efficiency is specified by a parameter T ). We also allow
each source to partially leak, as long as the source has sufficient min-entropy
conditioned on the CRS and the leakage.

As discussed in [GKK20], it may seem that there is no need to consider
leakage explicitly. However, in general a source conditioned on fixed leakage
may not be efficiently sampleable. Therefore, in the definions below we consider
leakage explicitly. More specifically, for two sources X and Y we allow leakage
on Y , which we will denote by Linit; and then allow leakage on X (that can also
depend on Linit), which we will denote by Lfinal. Moreover, both Linit and Lfinal

can depend on the CRS.
For technical reasons, and specifically to enable a proof of security for their

two-source extractor, [GKK20] included an additional source of auxiliary infor-
mation, AUX, that could be sampled jointly with Y . We do not require this
auxiliary source in any of our applications or proofs. The following definitions
are essentially identical to [GKK20], except we omit AUX for notational conve-
nience.

Definition 7 (T -Admissible Leaky (n1, n2, k1, k2) Source Distribution).
A T -admissible leaky (n1, n2, k1, k2) source distribution with respect to a CRS
distribution {CRSλ}λ∈N consists of an ensemble of sources X = {Xλ}λ∈N, Y =
{Yλ}λ∈N, and leakage L = {Lλ}λ∈N, such that ∀λ ∈ N, the following holds:

– For every crs ∈ Supp(CRSλ), Supp(Xλ|crs) ⊆ {0, 1}n1(λ) and Supp(Yλ|crs) ⊆
{0, 1}n2(λ).

– The leakage Lλ consists of two parts, Linit and Lfinal, such that for every
crs ∈ Supp(CRS), (Y,Linit|crs) is sampleable in time poly(T ), and for every

init ∈ Supp(Linit|crs), (X,Lfinal|crs, 
init) is sampleable in time poly(T ).

– H∞(Xλ|CRSλ, Lλ) ≥ k1 and H∞(Yλ|CRSλ, Lλ) ≥ k2.
– For every crs ∈ CRSλ and 
 ∈ Supp(Lλ|crs), the distributions (Xλ|crs, 
) and

(Yλ|crs, 
) are independent.6

Definition 8 (Computational Strong 2-source Extractors). For func-
tions n1 = n1(λ), n2 = n2(λ), c = c(λ), and m = m(λ), a function ensemble
2Ext = {2Extλ}λ∈N, where

2Extλ : {0, 1}n1(λ) × {0, 1}n2(λ) × {0, 1}c(λ) → {0, 1}m(λ),

is said to be a (n1, n2, k1, k2) strong T -computational 2-source extractor in the
CRS model if there is an ensemble {CRSλ}λ∈N where CRSλ ∈ {0, 1}c(λ), such
that the following holds:
6 This condition follows from the way X and Y are sampled, and like [GKK20], we

add it only for the sake of being explicit.
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For every T -admissible leaky (n1, n2, k1, k2) source distribution (X,Y, L) with
respect to CRS, for every polynomial p, there exists a negligible function ν(·) s.t.
for every λ and every p(T (λ))-size adversary A,

∣∣∣∣ Pr
[
A (2Extλ(x, y, crs), y, crs, 
) = 1

]

− Pr
[
A (U, y, crs, 
) = 1

]∣∣∣∣ = ν(T (λ)),

where the probabilities are over the randomness of sampling (crs, x, y, 
) ←
(CRSλ,Xλ, Yλ, Lλ), and over U which is uniformly distributed over {0, 1}m(λ)

independent of everything else.

Definition 9 (Computational Strong Non-malleable Extractors). For
functions n1 = n1(λ), n2 = n2(λ), c = c(λ), and m = m(λ), a function ensemble
cnm-Ext = (cnm-Extλ)λ∈N, where

cnm-Extλ : {0, 1}n1(λ) × {0, 1}n2(λ) × {0, 1}c(λ) → {0, 1}m(λ)

is said to be a (n1, n2, k1, k2) strong T -computational non-malleable extractor
in the CRS model if there is an ensemble {CRSλ}λ∈N, where CRSλ ∈ {0, 1}c(λ),
such that the following holds:

For every T -admissible leaky (n1, n2, k1, k2) source distribution (X,Y, L) with
respect to CRS, for every polynomial p, there exists a negligible function ν(·)
such that for every λ and every p(T (λ))-size adversary A,

∣∣∣∣Pr
[
AOy

x,crs (cnm-Ext(x, y, crs), y, crs, 
) = 1
]

−Pr
[
AOy

x,crs (U, y, crs, 
) = 1
] ∣∣∣∣ = ν(T (λ)),

where the oracle Oy
x,crs on input y′ 
= y outputs cnm-Ext(x, y, crs), and other-

wise outputs ⊥; and where the probabilities are over the randomness of sampling
(crs, x, y, 
) ← (CRSλ,Xλ, Yλ, Lλ), and over U which is uniformly distributed
over {0, 1}m(λ) independent of everything else.

We will occasionally need to impose a different requirement on the error
distribution. In such cases we specify the error requirement explicitly. Specifi-
cally, we say that a (n1, n2, k1, k2) strong T -computational two source (or non-
malleable) extractor has error neg(γ(λ)) if it satisfies Definition 8 (or Definition
9), where the adversary’s distinguishing advantage is required to be at most
negligible in γ(λ).

We will also rely on the following theorem from [Raz05] (simplified to our
setting). This is a statistical 2-source extractor; i.e., one that considers sources
that are sampled in unbounded time, and fools adversaries with unbounded
running time.
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Theorem 10. [Raz05] There exists a (n1, n2, k1, k2) strong statistical 2-source
extractor with output length O(k2) according to Definition 8 where n2 =
ω(log n1), k1 ≥ log n1, and k2 ≥ αn2 for any constant α > 1

2 , and error
exp−Θ(min{k1,k2}).

Finally, we recall the following result from [GKK20] that transforms any
two-source extractor in the CRS model to a non-malleable extractor.

Theorem 11 ([GKK20]). Let T, T ′, n1, n2, k1, k2, k3, w : N → N be functions
of the security parameter where T ≥ 2k3 , such that the following primitives exist.

– A (n1, n2, k1, k2) strong T -computational 2-source extractor in the CRS
model.

– A (T, n1, n1, w)-lossy function family.
– T ′-secure collision resistant hash functions mapping {0, 1}n2 → {0, 1}k3 .

Then, there exists a (n1, n2,K1,K2) strong T ′-computational non-malleable
extractor satisfying Definition 9 where K1 = k1 + k3(n1 − w + 1) + 1 and
K2 = k2 + k3 + 1.

4 Computational Strong Two-Source Extractors in the
CRS Model

In this section, we describe our construction of computational two-source extrac-
tors in the CRS model. We have the following theorem.

Theorem 12. Let T, T ′, n1, n2, k1, k2, k3, d, t, w,K1,K2 : N → N be functions of
the security parameter, where T ≥ 2k3 , and such that the following primitives
exist.

– A (n1, d, k1, d−k3−1) strong information-theoretic 2-source extractor denoted
by:

2Extλ : {0, 1}n1(λ) × {0, 1}d(λ) × {0, 1}c(λ) → {0, 1}m(λ)

– A (T, n1, n1, w)-lossy function family F = {Fλ}λ∈N , where w = n1 − nγ
1 for

some constant γ ∈ (0, 1).
– A T ′-secure family of collision resistant hash functions H = {Hλ}λ∈N with

h : {0, 1}d → {0, 1}k3 .
– A

(
2K2/2

T ′ log T ′ , 2d−1
)

disperser

Γ : {0, 1}n2 × [t] → {0, 1}d

Then there exists a (n1, n2,K1,K2) strong T ′-computational two-source
extractor, satisfying Definition 9, where K1 = k1 + k3(n − w) + k3 + 1.

Corollary 13. Assuming the sub-exponential hardness of DDH, there exists
constants c0 > 1 and c′ such that for all c > c0, for every Ω(λ) ≤
n1 ≤ poly(λ), Ω(log λ) ≤ n2 ≤ poly(λ), there exists an (n1, n2,K1,K2)
λ-computational strong two-source extractor in the CRS model, with K1 =
O(log λ)c, K2 = O(log λ)c and output length O(log λ)c′

.
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Proof. The sub-exponential hardness of DDH implies that there exists a constant
0 < ε < 1 such that DDH with security parameter λ is hard against poly(2λε

)-
sized adversaries.

– This implies that for all c1 ≥ 1
ε , there exist lossy functions with equal domain

and co-domain, where w = n1 − (log λ)c1 , and where no T = poly(2log λc1·ε
)-

sized adversary can distinguish the lossy mode from the injective mode. This
follows by setting, e.g., log q = (log λ)c1 in the construction of lossy functions
from DDH in [BHK11].

– This also implies that for all c2 ≥ 1
ε , there exist collision-resistant hash func-

tions with range k3 = (log λ)c2 , and where no T ′ = poly(2log λc2·ε
)-sized

adversary can find collisions.

Setting c2 = 1
ε , c1 = 1

ε2 , we get T ′ = λ, k3 = (log λ)
1
ε and T = (2log λ

1
ε ).

By the disperser construction in [GUV09], there exists a polynomial t =
poly(λ) for which there exists a

(
2K2/2

T ′(log T ′) , 2d−1
)

disperser

Γ : {0, 1}n1 × [t] → {0, 1}d

for any d, k2, T
′ that satisfy

K2 ≥ 4d + 2 log2 T ′ (1)

Set d = (log λ)
1

ε2 . By Theorem 10, there exists a (n1, d, k1, d − k3 −
1) strong statistical 2-source extractor for k1 = (log λ)

1
ε2 , with error

exp−Θ(min(k1,d−k3−1)) = neg(2k3). In particular, this extractor is a (n1, d, k1, d −
k3 −1) strong T -computational 2-source extractor in the CRS model (where the
CRS is empty), with error neg(2k3).

Setting d = (log λ)
1

ε2 and T ′ = λ in Eq. (2), we have K2 ≥ 4(log λ)
1

ε2 +
2 log2 λ. Fixing K2 to be 5(log λ)

1
ε2 satisfies this inequality. From Theorem 12,

we have K1 ≥ k1+k3(n−w)+k3+1 ≥ (log λ)
1

ε2 +(log λ)
1
ε ·(log λ)

1
ε2 +(log λ)

1
ε +1.

Fixing K1 ≥ 2(log λ)
1

ε3 satisfies this inequality.
This completes the proof.

Corollary 14. Assuming the sub-exponential hardness of DDH, there exists
constants c0 > 1 and c′ such that for all c > c0, for every Ω(λ) ≤
n1 ≤ poly(λ), Ω(log λ) ≤ n2 ≤ poly(λ), there exists an (n1, n2,K1,K2) λ-
computational non-malleable extractor in the CRS model, with K1 = O(log λ)c,
K2 = O(log λ)c and output length O(log λ)c′

.

Proof. This corollary can be obtained by combining Theorem 12 with 11, as
follows.

– First, we apply Theorem 12 but with somewhat scaled-up parameters than
in the previous corollary, to obtain an (n1, n2, k1, k2) T -computational non-
malleable extractor in the CRS model, with error neg(2k3). This extractor
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will be parameterized by a (small enough) constant 0 < ε < 1. It will have
T = 2(log λ1/ε), and k3 = log λ1/ε.
The sub-exponential hardness of DDH implies that there exists a constant
0 < ε < 1 such that DDH with security parameter λ is hard against poly(2λε

)-
sized adversaries.

• This implies that for all c1 ≥ 1
ε , there exist (T, n1, n1, w)-lossy functions

with equal domain and co-domain, where w = n1−(log λ)c1 , and where no
poly(T ) for T = (2log λc1·ε

) sized adversary can distinguish the lossy mode
from the injective mode. This follows by setting, e.g., log q = (log λ)c1 in
the construction of lossy functions from DDH in [BHK11].

• This also implies that for all c2 ≥ 1
ε , there exist collision-resistant hash

functions with range k3 = (log λ)c2 , and where no poly(T ′) for T ′ =
2log λc2·ε

-sized adversary can find collisions.
Setting c2 = 1

ε2 , c1 = 1
ε3 , we get T ′ = 2log λ

1
ε , k3 = (log λ)

1
ε2 and T =

(2log λ
1

ε2 ).
By the disperser construction in [GUV09], there exists a polynomial t =
poly(λ) for which there exists a

(
2K2/2

T ′(log T ′) , 2d−1
)

disperser

Γ : {0, 1}n1 × [t] → {0, 1}d

for any d, k2, T
′ that satisfy

K2 ≥ 4d + 2 log2 T ′ (2)

Set d = (log λ)
1

ε3 . By Theorem 10, there exists a (n1, d, k1, d − k3 −
1) strong statistical 2-source extractor for k1 = (log λ)

1
ε3 , with error

exp−Θ(min(k1,d−k3−1)) = neg(2k3). In particular, this extractor is a
(n1, d, k1, d − k3 − 1) strong T -computational 2-source extractor in the CRS
model (where the CRS is empty), with error neg(2k3).

Setting d = (log λ)
1

ε3 and T ′ = 2log λ
1
ε in Eq. (2), we can set K2 ≥

4(log λ)
1

ε3 + 2(log λ)
2
ε . Fixing K2 ≥ 5(log λ)

1
ε3 satisfies the above inequal-

ity. From Theorem 12, we can set K1 ≥ k1 + k3(n − w) + k3 + 1 or
K1 ≥ (log λ)

1
ε3 + (log λ)

1
ε · (log λ)

1
ε3 + (log λ)

1
ε2 + 1. Fixing K1 ≥ 2(log λ)

1
ε4

satisfies the above inequality.
– Re-defining some variables, we say that previous step results in a T -strong

computational (n1, n2, k1, k2) non-malleable extractor in the CRS model,
with Ω(λ) ≤ n1 ≤ poly(λ), Ω(log λ) ≤ n2 ≤ poly(λ), T = 2log λ1/ε

,

k1 = 2(log λ)
1

ε4 , k2 ≥ 5(log λ)
1

ε3 , and error neg(T ) = neg(2(log λ)
1
ε ). Next,

we apply Theorem 11 to this extractor.
As before, the subexponential hardness of DDH implies that for all c′

1 ≥ 1
ε ,

there exist (T, n1, n1, w)-lossy functions with equal domain and co-domain,
where w = n1 − (log λ)c′

1 , and where no poly(T ) for T = (2log λc′
1·ε

) sized
adversary can distinguish the lossy mode from the injective mode. We will
set c′

1 = 1
ε2 . We also set k3 = (log λ)

1
ε , and by subexponential DDH,
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there exists a T ′-secure family of collision resistant hash functions mapping
{0, 1}n2 → {0, 1}k3 for T ′ = λ.
Then, by Theorem 11, there exists an (n1, n2,K1,K2) strong T ′-
computational non-malleable extractor satisfying Definition 9 where K1 =
k1+k3(n1−w+1)+1 = 2(log λ)

1
ε4 +(log λ)

1
ε ·(log λ)

1
ε2 +1, or K1 ≥ 3(log λ)

1
ε4

and K2 = k2 + k3 + 1 = 5(log λ)
1

ε3 + (log λ)
1
ε + 1, or K2 ≥ 6(log λ)

1
ε3 .

This completes the proof.

4.1 Construction

As discussed above, we will prove that the construction of two-source extrac-
tors in [GKK20] is a strong non-malleable extractor for balanced sources, and
additionally only requires polylogarithmic min-entropy. We first recall the con-
struction in [GKK20], and begin by defining the CRS distribution.

Generating the Common Reference String (CRS). For a given security parameter
λ ∈ N, the common reference string is generated as follows.

1. Sample h ← Hλ.
2. Sample b = (b1, . . . , bk3) ← {0, 1}k3 .
3. Sample independently k3 pairs of random injective functions from Fλ,

f1,b1 , f2,b2 , . . . , fk3,bk3
← Geninj(1λ).

4. Sample independently k3 pairs of random lossy functions from Fλ,

f1,1−b1 , f2,1−b2 , . . . , fk3,b1−k3
← Genloss(1λ).

Output

crs =
(

h,
f1,0, f2,0, . . . , fk3,0

f1,1, f2,1, . . . , fk3,1

)

The (Computational) Two-Source Extractor: Construction.
The computational two-source extractor c2Ext = {c2Extλ}λ∈N is defined as
follows.
For any λ ∈ N, denote by c = c(λ) = |crs|, then

c2Extλ : {0, 1}c × {0, 1}n1 × {0, 1}n2 → {0, 1}m,

where ∀(crs, x1, x2) ∈ {0, 1}c × {0, 1}n1 × {0, 1}n2 ,

c2Extλ(crs, x1, x2) =
⊕

y:∃i s.t. Γ (x2,i)=y

cnm-Extλ(crs, x1, y)

where Γ : {0, 1}n2 ×[t] → {0, 1}d is a ( 2k2

T ′ log T ′ , 2d−1) disperser, and ∀(crs, x1, y) ∈
{0, 1}c × {0, 1}n1 × {0, 1}d, and crs parsed as

(
h,

f1,0, f2,0, . . . , fk3,0

f1,1, f2,1, . . . , fk3,1

)
,

cnm-Extλ(crs, x1, y) = 2Extλ

(
f1,h(y)1 ◦ f2,h(y)2 ◦ . . . ◦ fk3,h(y)k3

(x1), y
)

Due to space constraints, we defer the proof to the full version.
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5 Network Extractor Protocol in the CRS Model

We start with the definition of the T -admissible leaky (p, n, k)-source
distribution.

Definition 15 (T -Admissible Leaky (p, n, k) Source Distribution). A T -
admissible leaky (p, n, k) source distribution with respect to a CRS distribution
{CRSλ}λ∈N consists of an ensemble of sources X = {Xi,λ}i∈[p],λ∈N, and leakage
L = {Li,λ}i∈[p],λ∈N such that for every λ ∈ N, the following holds:

– For every crs ∈ Supp(CRSλ), Supp(Xi,λ|crs) ⊆ {0, 1}n(λ) for every i ∈ [p].
– For every crs ∈ Supp(CRSλ), (Xi,λ, Li,λ|crs) is sampleable in time poly(T (λ))

for every i ∈ [p].
– For every i ∈ [p], H∞(Xi,λ|CRSλ, Lλ) ≥ k(λ) where Lλ = {Li,λ}i∈[p].
– For every crs ∈ CRSλ, 
 ∈ Supp(Lλ|crs) and for every distinct i, j ∈ [p], the

distributions (Xi,λ|crs, 
) and (Xj,λ|crs, 
) are independent.7

We now provide the definition of network extractor protocol in the CRS
model adapting the definitions from [KLRZ08,KLR09].

Definition 16. A protocol for p processors is a (T, t, g) network extractor with
respect to CRS distribution {CRSλ}λ∈N with source length n(λ), min-entropy
k(λ) and output length m(λ) if for any T -admissible leaky (p, n, k) source distri-
bution (X,L) w.r.t. {CRSλ}λ∈N (see Definition 15) and any choice M of t faulty
processors, after running the protocol, there exists a set G ∈ [p] \ T of size at
least g such that

|CRS, B, {Xi}i�∈G, {Li}i∈[p], {Zi}i∈G−CRS, B, {Xi}i�∈G, {Li}i∈[p], Ugm| < negl(λ)

Here, (CRS, {Xi, Li}i∈[p]) ← (CRSλ, {Xi,λ, Li,λ}i∈[p]), B is the transcript of the
protocol and Zi denote the output of the i-th party in the protocol, Ugm is the
uniform distribution on gm bits independent of B, {Xi}i�∈G and {Li}i∈[p].

5.1 Building Blocks

We use the following building blocks in the construction.

1. A (n, n1, w)-lossy function family F = {Fλ : {0, 1}n(λ) → {0, 1}n1(λ)}λ∈N.
2. A (n1, k1) T -strong computational non-malleable extractor in the CRS model

denoted by

NMExtλ : {0, 1}n1(λ) × {0, 1}n1(λ) × {0, 1}c(λ) → {0, 1}m(λ)

5.2 Construction

We give the construction of the network extractor protocol in Fig. 1.
7 This condition follows from the way X and Y are sampled, and we add it only for

the sake of being explicit.
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– CRSGen(1λ):
1. Sample CRSNMExt for the non-malleable extractor NMExt.
2. For each i ∈ [p] and b ∈ {0, 1}, sample fi,b ← Geninj(1λ).
3. Output CRS := (CRSNMExt, {fi,b}i∈[p],b∈{0,1}).

– Description of the Protocol. Party Pi on input xi ∈ {0, 1}n does the
following:
1. For each b ∈ {0, 1}, it computes fi,b(xi) and broadcasts fi,1(xi).
2. It receives {fj,1(xj)}j �=i from the other parties.
3. It outputs

⊕
j �=i NMExt(fi,0(xi) ◦ i, fj,1(xj) ◦ j,CRSNMExt).

Fig. 1. Network extractor protocol in the CRS model

Theorem 17. Let γ ∈ (0, 1) be a fixed constant and let k(λ) be an arbitrary
polynomial larger than n1(λ) − w(λ). Assuming the existence of the following
primitives:

– A (n, n1, w)-lossy function family F = {Fλ : {0, 1}n(λ) → {0, 1}n1(λ)}λ∈N,
where w(λ) = n1(λ) − (n1(λ))γ .

– A (n1, k1) T -strong computational non-malleable extractor in the CRS model
denoted by

NMExtλ : {0, 1}n1(λ) × {0, 1}n1(λ) × {0, 1}c(λ) → {0, 1}m(λ)

where k1(λ) ≥ k(λ) − (n1(λ) − w(λ)).

Then, the construction given in Fig. 1 is a (T, p − 2, 2, negl) network extractor
with respect to the CRS distribution in Fig. 1 and min-entropy k(λ).

Due to space constraints, we defer the proof of Theorem 17 to the full version.

5.3 Instantiation

We instantiate the non-malleable extractor from Corollary 14 and the lossy func-
tions from [PW08,BHK11] Specifically, we set the constant c of the non-malleable
extractor to be max(c0, c1) (where c1 is the parameter for the lossy functions).
Thus, we obtain the following corollary.

Corollary 18. Assuming the sub-exponential hardness of the DDH assumption,
there exist constants c > 1 and c′ such that for any p number of players, there
exists a construction of (λ, p−2, 2) network extractor protocol in the CRS model
with sources of length Ω(λ) ≤ n(λ) ≤ poly(λ), min-entropy O(log λ)c and output
length O(log λ)c′

.
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6 Extractor for Adversarial Sources in the CRS Model

We start with the definition of the adversaial source distribution.

Definition 19. A T -admissible leaky (p, n, k) adversarial sources with respect to
CRS distribution {CRSλ}λ is a tuple (i, j, (X,Y, L), I, {xk}k∈I , Ii, Ij , {fk}k∈Ii∪Ij

)
where i, j ∈ [p], (X,Y, L) is T -admissible leaky (n, k)-source distribution w.r.t.
{CRSλ}λ∈N, I ∪ Ii ∪ Ij = [p] and fk : {0, 1}n → {0, 1}n are T -time computable
functions.

We now give the definition of the extractor for adversarial sources below.

Definition 20. For any p ∈ N, and functions n = n(λ), c = c(λ) and m =
m(λ), a function ensemble AdvExt = {AdvExtλ}λ∈N, where

AdvExtλ : ({0, 1}n(λ))p × {0, 1}c(λ) → {0, 1}m(λ)

is said to be a (p, n, k) T -computational adversarial source extractor in the CRS
model if there exists an ensemble {CRSλ}λ∈N such that the following holds:

For every T -admissible leaky (p, n, k) adversarial sources
(i, j, (X,Y, L), I, {xk}k∈I , Ii, Ij , {fk}k∈Ii∪Ij

) wrt CRS, the following two distribu-
tions are computationally indistinguishable:

{AdvExtλ((x′
1, . . . , x

′
p), crs), crs, 
} ≈c {Um, crs, 
}

where crs ← CRSλ, (xi, xj , 
) ← (X,Y, L|crs), for every k ∈ I, x′
k = xk, for

every k ∈ Ii, x′
k = fk(xi), and for every k ∈ Ij, x′

k = fk(xj).

6.1 Building Blocks

We use the following building blocks in the construction.

1. A (n, n1, w)-lossy trapdoor function family F = {Fλ : {0, 1}n(λ) →
{0, 1}n1(λ)}λ∈N.

2. A (n1, k1) T -strong computational 2-source extractor in the CRS model
denoted by

cExtλ : {0, 1}n1(λ) × {0, 1}n1(λ) × {0, 1}c(λ) → {0, 1}m(λ)

6.2 Construction

We give the construction of our extractor for adversarial sources in Fig. 2.

Theorem 21. Let p ∈ N be fixed and let m(·) be an arbitrary polynomial. Let
k(·) be an arbitrary polynomial such that for every λ ∈ N, k(λ) ≥ (2p−1)(n1(λ)−
w(λ)) + m(λ). Let n(·) be another polynomial such that n(λ) ≥ k(λ) for every
λ ∈ N. Assuming the existence of the following primitives:

– A (n, n1, w)-lossy function family F = {Fλ : {0, 1}n(λ) → {0, 1}n1(λ)}λ∈N.
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– CRSGen(1λ):
1. Sample CRScExt for the non-malleable extractor cExt.
2. For each i ∈ [p] and b ∈ {0, 1}, sample fi,b ← Geninj(1λ).
3. Output CRS := (CRScExt, {fi,b}i∈[p],b∈{0,1}).

– Description of the Extractor. On input (x1, . . . , xp) ∈ ({0, 1}n)p, the
extractor does the following:
1. For each j ∈ [p] and b ∈ {0, 1}, it computes fj,b(xj).
2. For each i ∈ [p], it computes

ri :=
⊕

j �=i cExt(fi,0(xi) ◦ i, fj,1(xj) ◦ j,CRScExt).
3. It outputs

⊕
i∈[p] ri.

Fig. 2. Extractor for adversarial sources

– A (n1, k1) T -strong computational non-malleable extractor in the CRS model
denoted by

cExtλ : {0, 1}n1(λ) × {0, 1}n1(λ) × {0, 1}c(λ) → {0, 1}m(λ)

where k1(λ) ≥ k(λ) − (2p − 1)(n1(λ) − w(λ)) − m(λ).

Then, the construction given in Fig. 2 is a (p, n, k) adversarial source extractor
with respect to the CRS distribution described in Fig. 2.

Due to space constraints, we defer the proof of this theorem to the full version.

6.3 Instantiation

We instantiate the two-source extractor from Corollary 13 and the lossy functions
from [PW08,BHK11]. Specifically, for any fixed p, we set c for the two-source
extractor to be large enough such that min-entropy of the two source extractor
(2p−1)O(logc1 λ) < logc λ. We set m(λ) < logc λ. We, thus, obtain the following
corollary.

Corollary 22. Fix any p ∈ N. Assuming the sub-exponential hardness of
DDH assumption, there exists constants c > 1 and c′ < c such that for any
Ω(λ) ≤ n(λ) ≤ poly(λ), k(λ) = O(logc λ) and m(λ) ≤ O(k(λ)), there exists a
construction of a (p, n, k) λ-computational adversarial two-source extractor in
the CRS model with output length O(log λ)c′

.
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Abstract. We introduce Adaptive Extractors, which unlike traditional
randomness extractors, guarantee security even when an adversary
obtains leakage on the source after observing the extractor output. We
make a compelling case for the study of such extractors by demonstrat-
ing their use in obtaining adaptive leakage in secret sharing schemes.

Specifically, at FOCS 2020, Chattopadhyay, Goodman, Goyal, Kumar,
Li, Meka, Zuckerman, built an adaptively secure leakage resilient secret
sharing scheme (LRSS) with both rate and leakage rate being O(1/n),
where n is the number of parties. In this work, we build an adaptively
secure LRSS that offers an interesting trade-off between rate, leakage
rate, and the total number of shares from which an adversary can obtain
leakage. As a special case, when considering t-out-of-n secret sharing
schemes for threshold t = αn (constant 0 < α < 1), we build a scheme
with a constant rate, constant leakage rate, and allow the adversary leak-
age from all but t − 1 of the shares, while giving her the remaining t − 1
shares completely in the clear. (Prior to this, constant rate LRSS scheme
tolerating adaptive leakage was unknown for any threshold.)

Finally, we show applications of our techniques to both non-malleable
secret sharing and secure message transmission.

Keywords: Randomness extractors · Leakage resilient secret sharing ·
Information theoretic cryptography

1 Introduction

Randomness extractors [28] are a fundamental primitive in the world of theoret-
ical computer science, which have found widespread applications in derandom-
ization techniques, cryptography, and so on. A randomness extractor Ext is a
c© International Association for Cryptologic Research 2021
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function that takes as input an n-bit entropic source W , a uniformly random
d-bit string S (seed) and outputs Ext(W ;S) such that Ext(W ;S) “looks uni-
form” to an unbounded eavesdropper Eve even given the seed S. Unfortunately,
the standard notion of extractors offers no guarantees whatsoever if the adver-
sary Eve obtains some information about W , after observing, the output of the
extractor. In this work, we address this gap.

Does the security of extractors hold even after the adversary obtains some
information on W , “after the fact”?

Naturally, we have to be careful about what information Eve can learn about
W and S, after the fact. For instance, the function f , which on input w, s and
the extractor challenge y, outputs 1 if and only if y = Ext(w; s), is an after the
fact leakage function, which can break extractor security, with high probability,
with only 1 bit of leakage. Hence, one needs to define the leakage function family
carefully.

In this work, we introduce the notion of adaptive extractors with respect
to an after the fact leakage family F . Formally, we say that an extractor is
an adaptive extractor with respect to a function family F , if for each f ∈ F ,
an adversary cannot (statistically) distinguish (S, f(W,Ext(W ;S)),Ext(W ;S))
from (S, f(W,U), U). Our notion of adaptive extractors can be seen as a gener-
alization of exposure-resilient extractors introduced by Zimand [33] (Zimand’s
extractors allow the adversary to adaptively learn up to nδ bits of the source,
for some δ < 1 bits; the adversary can determine which bits to query based on
an arbitrary function of the extractor output.), and of the notion of adaptive
non-malleable extractors introduced by Aggarwal et al. in [2] (where adaptive
non-malleability particularly guarantees that the adversary cannot distibuish
between (S,Ext(W ; g(S,Ext(W ;S))),Ext(W ;S)) and (S,Ext(W ; g(S,U)), U)).
We then observe that every randomness extractor is also an adaptive extrac-
tor with respect to a leakage family depending arbitrarily on the source and the
output, with some loss in parameters. We note that this observation is similar
to how the authors in [2, Lemma 3.5] show that every non-malleable extractor
is adaptive non-malleable, with some loss in parameters. We demonstrate that,
in spite of the loss in parameters that adaptivity incurs, such extractors can
be powerful. In particular, we use them to build constant-rate secret sharing
schemes resilient to adaptive leakage. We now describe these contributions in
greater detail.

Secret Sharing. Secret sharing schemes [10,30] are a fundamental cryptographic
primitive and have many applications, such as in multi-party computation [7,14],
and leakage-resilient circuit compilers [19,23,29]. These are cryptographic prim-
itives that allow a dealer to distribute a secret to n parties, such that only an
authorized subset of parties can reconstruct the original secret and any unautho-
rized set of parties have no information about the underlying secret (privacy).
For instance, in a t−out-of-n threshold secret sharing scheme, there are n par-
ties, and any collection of t (t ≤ n) or more parties would correspond to an
authorized set, and any collection of less than t parties would be unauthorized.
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Note that an implicit assumption is that the unauthorized set of parties has
no information about secrets of the remaining shares. A rich study on leakage
attacks initiated by Kocher [24] tells us that this is an idealized assumption that
may not hold in practice. Such leakage can be dangerous and completely break
the security of the underlying primitive1.

Leakage Resilient Secret Sharing (LRSS). Dziembowski and Pietrzak in [17]
introduced the problem of leakage resilience in secret sharing schemes. This
problem has received much attention (for example, [1,3,9,12,15,18,20,25,27,31],
[11,13]), wherein researchers have strived to improve various parameters such as
its rate (defined as (message length)/(length of longest share)), leakage model
as well as leakage rate (defined as (number of bits of leakage allowed)/(the size
of a share)).

At a high level, in an LRSS, the adversary is allowed leakage on shares of the
secret. This is captured by permitting the adversary to specify functions �1, �2, . . . ,
and receive, in response, �i(shi) (where shi denotes the ith share). Informally, secu-
rity of an LRSS requires that privacy should hold even given this leakage. In our
work, we explore the stronger setting where the adversary specifies which share to
receive leakage from, in an adaptive manner - i.e., the adversary specifies i, �i and
upon learning �i(shi), it may make the next leakage query by specifying j, �j . In
this adaptive leakage setting2, the construction of [13] achieved a rate of O(1/n)
as well as a leakage rate of O(1/n). A consequence of this is that there currently
does not exist a scheme with constant rate and leakage rate for any threshold in
this strong leakage model, whereas we do know of such constructions for the non-
adaptive leakage model. Our work fills this gap precisely.

1.1 Our Results

Our first and main result on the LRSS scheme in the adaptive leakage model is
as follows. Here n denotes the number of parties, t denotes the threshold and l
denotes the message length.

Result 1: We build an LRSS scheme, tolerating ψ adaptive queries, each depen-
dent on X shares (with ψ · X ≤ n − t + 1) and the reveal of the remaining t − 1
shares, such that it achieves a rate of (XΘ(ψX/t))−1, while allowing Θ(l) bits of
leakage per query, for threshold access structures. In particular, for a constant
X and n = Θ(t), this gives the first constant-rate adaptive LRSS scheme for the
threshold access structure. Finally, we also generalize our constructions to the
first constant-rate adaptive LRSS for general access structures.
1 For example, Guruswami and Wooters [22] show that Shamir’s secret sharing scheme

is completely insecure when the adversary gets some t − 1 shares and just one-bit of
leakage from other shares.

2 We note that here we only compare in an adaptive leakage model, without any joint
leakage queries on multiple shares (which is called the bounded collusion protocols
(BCP) model), for ease of expostion, and discuss the joint model in the technical
section later.
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Further, in the full version of our paper, we also show the following applications
of our LRSS scheme.

Result 2: As an application of our LRSS, we show compilers to get a leak-
age resilient non-malleable secret sharing (LRNMSS) scheme (which are LRSS
schemes, additionally resilient to tampering attacks), and an information-
theoretic secure message transmission protocol (SMT), tolerant against leakage
and tampering attacks. The rates of both these schemes translate appropriately
from the rate of the LRSS. In particular, for a constant LRSS, we get constant-
rate schemes for both LRNMSS and SMTs.

1.2 Our Techniques

We begin by describing the leakage model for LRSS and then give a technical
overview of our scheme. For simplicity, we provide our technical overview for
threshold access structures (which we can extend to general access structures as
well). Let t denote the threshold and n, the number of parties.

Leakage Model. We allow the adversary to obtain adaptive leakage on n−(t−1)
shares and then reveal the full shares of the remaining t−1 shares. Each adaptive
query can be on a set of at most X shares (where X is some value between 1
and t − 1), and different queries must be on sets that are disjoint from the prior
queries. For the purposes of this exposition, we make the following restriction
to our model: we assume that the adversary makes adaptive queries but only
on a single share each time, i.e., it doesn’t make any leakage query on multiple
shares.

Warm-up Construction. To motivate our construction, we consider the fol-
lowing modification3 of a construction due to Srinivasan and Vasudevan in [31,
Section 3.2.1]. Take any t-out-of-n secret sharing scheme (MShare,MRec) and
then do as follows:

– Sample shares (m1, ..,mn) of the message m using MShare.
– Choose an extractor seed s and split s into (sd1, .., sdn) using a t-out-of-n

secret sharing scheme.
– Now, for every mi, choose an extractor source wi uniformly and compute

yi = mi ⊕ Ext(wi; s).
– Finally, output the final shares {shi} as {(wi, yi, sdi)}.

For now, consider a weak model, where the adversary obtains only non-adaptive
and independent leakage from a total of (say) t−1 shares, in addition to t−1 full
shares. The hope is to show that the t−1 leakage queries are independent of the
message shares mi, following which the privacy of MShare can be used to get the
t − 1 full shares. One might hope to show this independence of leakage from the
mi’s, using the security of the extractor as follows: Pick sdi uniformly at random
3 We note that the original construction of [31] only aimed to achieve non-adaptive

security, and we consider a modification, with the aim to expand to adaptive security.
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and independent of s; then the leakage function on {shi}, can be answered as
an auxiliary leakage query on the source wi. Once s is revealed in the extractor
security game, the reduction can pick the other sdj values in a consistent manner.
However, this proof strategy has a flaw. For extractor security, it is important
that the auxiliary leakage query on w is independent of s; however, there is
a dependence on s via yi. In other words, it is unclear how to prove that this
construction satisfies leakage resilience even in a weak model where the adversary
obtains leakage only independently and non-adaptively.

Fortunately, with adaptive extractors, we can show that this construction
is secure not only in this weak model but also in a stronger model where the
adversary is allowed to leak from t−1 shares adaptively, before receiving t−1 full
shares. Furthermore, this construction even has a constant rate! The high-level
idea of security is as follows. We wish to reduce the adaptive leakage queries on
the shares to an adaptive extractor leakage query. Since the adaptive leakage
query on wj cannot depend on the seed, we need to first show that the share
sdj in the corresponding query is independent of the seed s. Indeed, using the
privacy of secret sharing4, we can show that for the first t−1 queries, the shares
sdj in shj can be replaced with shares of 0 (hence removing the dependence on
s). Then, using the adaptive extractor security, we can replace the yj ’s (for the
first t − 1 queries) with uniform, where the leakage can be asked on the wj ’s.
Now, the privacy of MShare can be invoked to get the t − 1 full shares.

Main Construction. Our next goal is to leverage adaptive extractors to go
beyond leaking from just t − 1 shares. The main bottleneck is that for any
subsequent leakage query (beyond t − 1), the sdj ’s will reveal s, and hence the
adaptive leakage query on subsequent wj ’s will no longer remain independent of
the seed s. Thus, extractor security fails. This is the challenge we must address
to achieve our main result where the adversary is allowed to obtain adaptive
leakage on n − (t − 1) shares (in total) and reveal t − 1 of the remaining shares.

One approach to facilitating leakage from more than t− 1 shares could be to
use independent extractor seeds to extract independent random masks. Consider
the following modification of the above construction: mask the share of a message
mi not just with one extractor output but with many. In particular, let yi =
mi ⊕ Ext(wi; s1) ⊕ Ext(wi; s2) . . . ⊕ Ext(wi; sh), for some parameter h, where
s1 . . . sh are independent seeds. We might hope that because we are using h
seeds, we could hope to leak from h(t − 1) shares and use the security of each
seed per batch of t− 1 shares. Unfortunately, this doesn’t work for the following
reason: reconstruction is only possible if we recover all h seeds. This means that
we ultimately need to somehow share all the seeds in a manner where they can
be reconstructed from t−1 shares. In other words, once we leak from t−1 shares,
we can no longer argue security by leveraging any of the seeds because they can
all be reconstructed from t − 1 shares. We overcome this challenge by carefully
using a multi-layered approach for both masking the message shares as well as
for reconstructing the seeds.
4 Since the leakage queries are adaptive, we require adaptive privacy of the underlying

secret sharing scheme, and we show instantiations of the same.
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Construction Overview:

1. Pick h extractor seeds s1, . . . , sh and hn extractor sources w1
1, . . . w

h
1 , . . . , w1

n,
. . . , wh

n.
2. Secret share each of the h seeds using a t-out-of-n secret sharing scheme to

obtain shares; let the share of sj be sdj
1, . . . , sd

j
n

3. Each share mj is masked using the h seeds in a layered manner as follows:
(a) In level h + 1: Set yh+1

j = mj .
(b) For every subsequent lower level i(i ≥ 1), compute xi

j = yi+1
j ⊕Exti(wi

j ; si)
and set yi

j = (xi
j ||sdi

j). [Note that we use a different extractor per-level
since the length of the extractor outputs (and the length of yi

js they mask)
increase with level.]
Finally set Shj = (w1

j , · · · , wh
j , y1

j ).
4. Output (Sh1, · · · , Shn)

A pictorial representation of the construction can be found in Fig. 1. In order to
give an overview of the proof, we first recall that we are in a setting where each
adaptive query of an adversary is a query on a single share – we can extend our
results to the case of joint leakage but, for the sake of simplicity, we don’t focus
on that for now.

Each entry of the layered maskings matrix appropriately uses the corresponding
entries of the sources, seeds and seed shares matrices. In addition, each entry yj

i

(j ≤ h) also depends on the subsequent value i.e., yj+1
i . Example:

yh
1 = m1 ⊕ Exth(wh

1 ; sh)||sdh1 (colored red)

Fig. 1. The main construction. (Color figure online)

At a high-level, the idea of the security proof is that we view the leakage
queries in batches of t − 1 queries. For the first set of t − 1 queries, we rely
on the adaptive security of the extractor outputs evaluated using seed s1 and,
in particular, all of these outputs can be replaced by uniform. (This also relies
on the adaptive privacy of the secret sharing scheme, a notion we define and
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instantiate.) For the second set of t − 1 queries, we can no longer assume that
s1 is hidden, since we can not use the privacy of the secret sharing scheme any
more. However, two things come to our rescue: first, the second batch of queries
helps unmask at most t−1 shares of s2 and therefore, adaptive extractor security
on seed s2 can be leveraged; second, the extractor outputs Ext(w1

j ; s1) (where j
was a share that was leaked from in the first batch) continue to remain uniform.
The reason for the latter is that all extractor sources are uniformly chosen, and
our model requires a disjoint set of indices to be leaked from across batches. In
short, for the first batch of queries, we use adaptive security of the extractor
outputs evaluated on the first seed and, for every subsequent batch, we move to
argue extractor security using the subsequent seed. Since we have h independent
seeds, we can do this h times and therefore answer h batches of queries, i.e., we
can obtain leakage on h(t − 1) shares.

1.3 Related Work

We first list out some of the parameters that are relevant to LRSS schemes:

– Rate: This is defined as messagelength
sharelength .

– Global Limit : This refers to the total number of shares on which the leakage
queries can depend on.

– Per-query Limit : This refers to the number of shares that a specific query
can depend on.

– Per-query Leakage Rate: This is the ratio of the total allowable leakage from
a single leakage query to the size of a share.

The problems of leakage resilient and non-malleable secret sharing have seen
a flurry of activity in recent times [1,5,9,11–13,18,20,25–27,31]. Here we com-
pare our work with only the most relevant works in this area. The only prior
LRSS schemes allowing for a joint and adaptive leakage model are [13,25]. While
our model allows adaptive queries on up to n − t + 1 shares, each dependent on
at most X shares (where X is some value between 1 and t − 1), before fully
revealing the remaining t− 1 shares, [13] allows adaptive queries on all n shares,
each dependent on at most t−1 shares before revealing t−1 full shares. Both the
schemes require the adaptive queries to be on disjoint sets of shares. However, our
scheme/analysis offers a more fine-grained trade-off between the various param-
eters and allows us to obtain better results for certain settings. In particular,
when we consider the instance where X is constant (and t = αn, for a constant
α < 1), we get a constant-rate adaptive LRSS achieving a constant leakage rate,
while [13] gets a rate and leakage rate of O(1/n) each, in all instances. To put
this in context, even if [13] makes independent adaptive leakage queries on all
shares, their rate is O(1/n) and the maximum number of bits they can leak is
at most a constant fraction of the size of a single share, while we can leak close
(n − t + 1) times a constant fraction of the size of a single share!

The work of [13] also consider a variant of joint leakage, allowing overlap
of the query sets, the detailed parameters of which are given in Table 1. We
give a detailed comparison of the parameters achieved by the various schemes in
Table 1, for the threshold setting with t = αn (for a constant α < 1).
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Table 1. LRSS prior work

– *All works mentioned here are information-theoretic. We write all comparisons for
the threshold setting with threshold t = αn (where α < 1 is a constant and n
denotes the total number of parties).

– ** For our result, the unauthorized queries cannot overlap with the leakage queries.
– c is a small constant and lmsg is the message length.
– All schemes (except the joint overlapping schemes of [13] (threshold and n-out-of-

n) actually work for general access structures.
– Full Shares: Number of complete shares that an adversary can see (at the end of

all leakage queries, in the adaptive schemes).

Open Problems. We believe that it would be interesting to explore the direction
of building adaptive extractors against restricted classes of leakage families such
as those captured by computational/bounded depth circuits, local functions, etc.

1.4 Organization of the Paper

We provide the preliminaries and definitions in Sect. 2. Then, we define and
build adaptive extractors in Sect. 3. We define and build leakage resilient secret
sharing schemes in Sect. 4.

2 Preliminaries and Definitions

2.1 Notation

We denote the security parameter by κ. For any two sets S and S′, S\S′ denotes
the set of elements that are present in S, but not in S′. For any natural number n,
[n] denotes the set {1, 2, · · · , n} and [0] denotes a null set. s ∈R S denotes uniform
sampling from set S. x ← X denotes sampling from a probability distribution
X. The notation PrX [x] denotes the probability assigned by X to the value x.
x||y represents concatenation of two binary strings x and y. |x| denotes length
of binary string x. Ul denotes the uniform distribution on {0, 1}l. All logarithms
are base 2. If S is a subset of [n] :

– If x1, .., xn are some variables or elements, then xS denotes the set
{xi such that i ∈ S}.
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– For some function f outputting n values y1, · · · , yn on input x, f(x)S denotes
(yi)i∈S .

– If T1, .., Tn are sets, then TS denotes the union ∪i∈STi.

Statistical Distance. Let X1,X2 be two probability distributions over some
set S. Their statistical distance is

SD (X1,X2)
def= max

T⊆S
{Pr[X1 ∈ T ] − Pr[X2 ∈ T ]} =

1
2

∑

s∈S

∣∣∣∣Pr
X1

[s] − Pr
X2

[s]
∣∣∣∣

(they are said to be ε-close if SD (X1,X2) ≤ ε and denoted by X1 ≈ε X2).
For an event E, SDE(A;B) denotes SD (A|E;B|E).

Entropy. The min-entropy of a random variable W is H∞(W ) =
− log(maxw Pr[W = w]).
For a joint distribution (W,Z), following [16], we define the (average) conditional
min-entropy of W given Z as

H̃∞(W | Z) = − log( E
e←Z

(2−H∞(W |Z=z)))

(here the expectation is taken over e for which Pr[E = e] is nonzero).
For any two random variable W,Z, (W |Z) is said to be an (n, t′)-average source
if W is over {0, 1}n and H̃∞(W |Z) ≥ t′.
We require some basic properties of entropy and statistical distance, which are
given by the following lemmata.

Lemma 1. [16] Let A,B,C be random variables. Then if B has at most 2λ

possible values, then H̃∞(A | B) ≥ H∞(A,B) − λ ≥ H∞(A) − λ and, more
generally, H̃∞(A | B,C) ≥ H̃∞(A,B | C) − λ ≥ H̃∞(A | C) − λ.

Lemma 2. [32] For any random variables A,B, if A ≈ε B, then for any func-
tion f, f(A) ≈ε f(B).

Lemma 3. For any random variables A,B over A, and events E,E′ with non-
zero probabilities,

SD (A ∧ E,B ∧ E′) ≤ |Pr[E] − Pr[E′]| + Pr[E′] · SD (A|E,B|E′)

where,

SD (A ∧ E,B ∧ E′) def=
1
2

∑

a∈A
|Pr[A = a ∧ E] − Pr[B = a ∧ E′]|

and
SD (A|E,B|E′) def=

1
2

∑

a∈A
|Pr[A = a|E] − Pr[B = a|E′]|

Lemma 4 [4] Let X,Y,X ′, Y ′ be random variables such that
SD ((X,Y ), (X ′, Y ′)) ≤ ε and S be any set such that Pr[Y ∈ S] > 0 and
Pr[Y ′ ∈ S] > 0, then

SD (X|Y ∈ S,X ′|Y ′ ∈ S) ≤ 2ε

Pr[Y ′ ∈ S]
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2.2 Secret Sharing Schemes

Secret sharing schemes provide a mechanism to distribute a secret into shares
such that only an authorized subset of shares can reconstruct the secret and any
unauthorized subset of shares has “almost” no information about the secret. We
now define secret sharing schemes formally.

Definition 1. Let M be a finite set of secrets, where |M| ≥ 2 . Let [n] be a set of
identities (indices) of n parties. A sharing function Share : M → ({0, 1}l)n is a
(A, n, εs)- secret sharing scheme with respect to a monotone access structure5

A if the following two properties hold :

1. Correctness: The secret can be reconstructed by any set of parties that are
part of the access structure A. That is, for any set T ∈ A, there exists a
deterministic reconstruction function Rec : ({0, 1}l)|T | → M such that for
every m ∈ M,

Pr[Rec(Share(m)T ) = m] = 1

where the probability is over the randomness of the Share function and if
(sh1, .., shn) ← Share(m), then Share(m)T denotes {shi}i∈T . We will slightly
abuse the notation and denote Rec as the reconstruction procedure that takes
in T ∈ A and Share(m)T as input and outputs the secret.

2. Statistical Privacy: Any collusion of parties not part of the access struc-
ture should have “almost” no information about the underlying secret. More
formally, for any unauthorized set U /∈ A, and for every pair of secrets
m,m′ ∈ M,

Δ((Share(m))U ; (Share(m′))U ) ≤ εs

An access structure A is said to be (n, t)-threshold if and only if A contains all
subsets of [n] of size at least t.
Rate of a secret sharing scheme is defined as message size

share size (which would be equal
to log |M|

l ).

We now study a stronger privacy requirement, adaptive privacy (introduced by
Bellare and Rogaway [6]6).

2.2.1 Adaptive Privacy
Statistical privacy captures privacy against any non-adaptively chosen unautho-
rized set U . Adaptive privacy preserves privacy even when the choice of U to
be adaptive, which means the following. Let U = {i1, .., iq}. We say ij is chosen
adaptively, if its choice depended on {sharej}j∈{i1,..,ij−1}. The choice of which
share to query next depends on all the previously observed shares. We give the
formal definition below.
5 A is a monotone access structure if for all A, B such that A ⊂ B ⊆ [N ] and A ∈ A,

it holds that B ∈ A. Throughout this paper whenever we consider a general access
structure, we mean a monotone access structure.

6 In [6], the authors refer to adaptive privacy as privacy against dynamic adversaries.
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We say a (A, n, εs)-secret sharing scheme satisfies adaptive privacy with error
εadp if, for any distinguisher D, the advantage in the following game is at most εadp.
GameAd−Privacy : For any arbitrary distinct messages m0,m1 ∈ M
1. (share1, · · · , sharen) ← Share(mb) where b ∈R {0, 1}
2. For j = 1 to q 7

– D queries on a distinct index ij(such that i[j] /∈ A) and receives shareij

3. D outputs the guess b′ for b and wins if b = b′

While generally, any secret sharing scheme may not be adaptively private, we
can show that for the threshold setting, the scheme of [30] and for the general
access structures, the scheme of [8] are both adaptively private (which is proved
in the full version of our paper). We use them to instantiate our schemes.

Consistent Re-sampling. For any (A, n, εs)-secret sharing scheme (Share,
Rec), for any message m and a subset L ⊆ [n], when we say “(sh1, .., shn) ←
Share(m) consistent with sh∗

L on L” or “(sh1, .., shn) ← Share(m|sh∗
L)” we mean

the following procedure:

– Sample and output (sh1, .., shn) uniformly from the distribution Share(m)
conditioned on the event that shL = sh∗

L
– If the above event is a zero probability event then output a string of all zeroes

(of appropriate length).

We require the following consistent re-sampling feature8, which informally states
that for any (A, n, εs)-secret sharing scheme and any message m, the distribution
of shares which are re-sampled as shares of m, conditioned on some set T of shares
(which are also generated as shares of m) chosen adaptively, is identical to the
distribution of shares of m generated directly.

Lemma 5. For any (A, n, εs)-secret sharing scheme (Share,Rec) and for any
message m, the following two distributions are identical.

D1 :

– (sh′
1, .., sh

′
n) ← Share(m)

– (sh1, .., shn) ← Share(m|sh′
T )

– Output (sh1, .., shn)

D2 :

– (sh1, .., shn) ← Share(m)

– Output (sh1, .., shn)
Here, T ⊆ [N ] can be any subset chosen as: every index (except the first) depends
arbitrarily on the shares corresponding to all the previous indices.

We give a full proof of the above lemma in the full version of our paper.

7 q is arbitrary and chosen by D. It need not be chosen a-priori. We only use it to
denote the total number queries made by D

8 Note that we only use the re-sampling in proofs and do not require the procedure
to be efficient.
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3 Adaptive Extractors

Extractors (introduced by Nissan and Zuckerman [28]) output a near uniform
string y, from a source w that only has min-entropy, using a short uniform
string s, called the seed, as a catalyst. Average-case extractors are extractors
whose output remains close to uniform, even given the seed and some auxiliary
information (or leakage) about the source (independent of the seed), as long as
the source has enough average entropy given this leakage. We give their formal
definition below.

Definition 2. [16] Let Ext : {0, 1}η × {0, 1}d → {0, 1}l be a polynomial time
computable function. We say that Ext is an efficient average-case (η, μ, d, l, ε)-
strong extractor if for all pairs of random variables (W,Z) such that W is an
η-bit string satisfying H̃∞(W |Z) ≥ μ, we have

Ext(W ;Ud), Ud, Z ≈ε Ul, Ud, Z

3.1 Definition

Average-case extractors, unfortunately, provide no guarantees on the extractor
output being uniform when an adversary can obtain an ‘adaptive’ leakage on
the source, that is dependent on the extractor output and the seed. This is not
surprising, as if an adversary can obtain arbitrary adaptive leakage on the source,
then we cannot hope for the extractor output to remain uniform. For example,
given y = Ext(w, s), an adversary can distinguish the extractor output from uni-
form with high probability by querying a single bit of auxiliary information that
tells her whether Ext(w, s) = y. However, as we will see later, in many appli-
cations, the adaptive leakage that the adversary obtains comes from a specific
function family. Hence, by carefully defining this function family, we show how to
obtain useful notions of extractors that guarantee security even in the presence
of an adaptive auxiliary information. We introduce and call this notion adaptive
extractors and now proceed to formally define them.

Definition 3. An (η, μ, d, l, ε)- extractor Ext is said to be an (F , δ)-adaptive
extractor if for all pairs of random variables (W,Z) such that W is an η-bit
string satisfying H̃∞(W |Z) ≥ μ, and any function f in the function family F ,
it holds that

Z,Ud, f(W,Ext(W ;Ud), Ud),Ext(W ;Ud) ≈δ Z,Ud, f(W,Ul, Ud), Ul

We call δ, the adaptive error of the extractor.

3.2 Construction

Generic Relation. We show that every extractor is in fact an adaptive extractor
for the family of leakage functions where the adaptive leakage depends only on
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the source and the extractor output (i.e., it doesn’t depend on the seed except
via the extractor output), with some loss in security. This loss, in fact, depends
only on the number of bits of the extractor output that the adaptive leakage
function depends on. For ease of exposition, we omit auxiliary information z
that depends only on the source (but not on the extractor output or seed) from
the notation below. We now explicitly define this family below:

Fa,ζ ⊆ {f ′ : {0, 1}η × {0, 1}l → {0, 1}ζ}

such that for every f ′ ∈ Fa,ζ there exists two functions f : {0, 1}l → {0, 1}a and

g : {0, 1}η+a → {0, 1}ζ such that ∀w, y, f ′(w, y) = g(w, f(y))}

Here, ‘ζ’ denotes the number of bits of adaptive leakage and ‘a’ denotes the
number of bits of the extractor output (or the uniform string) that the adaptive
leakage depends on. This is captured by requiring that every function f ′ has
an equivalent representation in terms of some g and f such that f ′(w, y) =
g(w, f(y)) where f ’s output is only a bits long. w and y should be interpreted
as the source and the extractor output (or the uniform string) respectively.

The following theorem shows that any (η, μ, d, l, ε)- average case extractor can
be shown to be adaptive secure against the above family Fa,ζ , with an adaptive
error of 2a+2ε. Informally, we can reduce the adaptive security to the extractor
security (as in Definition 2) in the following way: to answer the adaptive leakage
query, the reduction makes a guess, v, for the extractor challenge dependent
value f(yb) (where, yb is the extractor challenge), which is of a-bits, and gets
the leakage g(w, v) from the source. Now, it gets the challenge yb from the
extractor challenger and if f(yb) matches the guess v, then the reduction can
successfully simulate the challenge and the adaptive leakage response, else it
cannot proceed (and aborts). Hence, the winning probability in the extractor
game is the probability of a correct guess (2−a), multiplied with the winning
probability of the adaptive extractor adversary. We formalize this proof in the
theorem below.

Theorem 1. Every (η, μ, d, l, ε)- average case extractor Ext is an (η, μ +
ζ, d, l, ε)- extractor that is (Fa,ζ , 2a+2ε)-adaptive, for any μ + ζ ≤ η and a ≤ l.

Proof. For simplicity, we omit the auxiliary information Z, that depends only
on the source (and not on the extractor output). Let W be the source of η bits,
such that H∞(W ) ≥ μ+ζ. Consider f ′ ∈ Fa,ζ , with the corresponding functions
(f, g) (recall f ′(w, y) = g(w, f(y)), where f outputs a bits and g outputs ζ bits).
To prove adaptive security (Definition 3), we need to show that:

Ud, f
′(W,Y ), Y ≈2a+2ε Ud, f

′(W,Ul), Ul,

where Y is the random variable Ext(W ;Ud). Expanding the description of f ′,
this gives:

Ud, g(W, f(Y )), Y ≈2a+2ε Ud, g(W, f(Ul)), Ul
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To prove this, we consider the following two sets B = {b : Pr[f(Y ) = b] >
0} and A = {0, 1}d+ζ+l. For each b ∈ B, we begin by using the statisti-
cal distance Lemma 3 with random variables A,B and events E,E′ set as
(Ud, g(W, f(Y )), Y ), (Ud, g(W, f(Ul)), Ul), f(Y ) = b and f(Ul) = b, respectively.
By use of law of total probability and Lemma 3, we get:

SD((Ud,g(W, f(Y )), Y ), (Ud, g(W, f(Ul)), Ul))

≤ Pr[f(Ul) ∈ B] +
∑

b∈B
SD (A ∧ E,B ∧ E′)

≤ Pr[f(Ul) ∈ B] +
∑

b∈B
((|Pr[E] − Pr[E′]|) + Pr[E′] · SD (A|E,B|E′))

But now, note that, by extractor security, since Y ≈ε Ul, by applying Lemma 2,
we have f(Y ) ≈ε f(Ul). Further, by the definition of statistical distance, we have
that, for each b ∈ B, |Pr[f(Y ) = b] − Pr[f(Ul) = b]| ≤ ε and Pr[f(Ul) /∈ B] ≤ ε
(since Pr[f(Y ) ∈ B] = 0]). Applying this to above inequality, we get:

SD((Ud,g(W, f(Y )), Y ), (Ud, g(W, f(Ul)), Ul))

≤ ε +
∑

b∈B
(ε + Pr[E′] · SD (A|E,B|E′))

= (|B| + 1)ε +
∑

b∈B
Pr[E′] · SD(A|E, B|E′)

Finally, we apply the statistical distance Lemma 4 on the random variables
(A, f(Y )) and (B, f(Ul)) with set S = {b}. Note that, given events E and E′ the
value of f(Y ) and f(Ul) are fixed to a b, which means the leakage g(W, b) is only
a leakage on W . Thus, we can use extractor security to get: (Ud, g(W, b), Y ) ≈ε

(Ud, g(W, b), Ul). Hence, applying this to the above inequality, we get:

SD((Ud,g(W, f(Y )), Y ), (Ud, g(W, f(Ul)), Ul))

≤ (|B| + 1)ε +
∑

b∈B
Pr[E′] · 2ε

Pr[f(Ul) = b]

≤ 4|B|ε ≤ 2a+2ε

Concrete Instantiation. We show that the extractor due to Guruswami et al. [21]
is an adaptive extractor even when the leakage depends on the entire extractor
output. We state the result from [21] below.

Lemma 6. [21] For every constant ν > 0 all integers η ≥ μ and all ε ≥ 0,
there is an explicit (efficient) (η, μ, d, l, ε)−strong extractor with l = (1 − ν)μ −
O(log(η) + log(

1
ε
)) and d ≤ O(log(η) + log(

1
ε
)).

Let Fullζ (= Fl,ζ), denote the leakage function family which computes leakage
(of size ζ) dependent on the entire extractor output and the source. The following
lemma shows that one can appropriately set the parameters of the [21] extractor
to get negligible error, while extracting a constant fraction of the bits from the
source, and while adaptively leaking a constant fraction of bits from it.
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Lemma 7. For all positive integers l, ζ, every constant ν > 1 and ε ≥ 0, there
is an explicit (efficient) (η, μ+ ζ, d, l, ε)−extractor that is (Fullζ , δ)-adaptive with
d = O(log(η

ε )), μ = νl + O(log(η
ε )), any η ≥ μ + ζ and δ = ε · 2l+2.

On further implication, for any c > 1, there exists constants α, β such that
d ≤ αl, μ ≤ βl, η ≥ βl + ζ, ε = 2−cl and δ = 2(1−c)l+2 when l = ω(log η).

Proof. The proof of the first part of the lemma follows directly from Theorem 1
and Lemma 6 and the further implication can be obtained by simple substitution.

Further, we use the following generalization of adaptive extractors: for an adap-
tive extractor Ext, if we consider k independent sources W1, · · · ,Wk and a single
seed S, all the extractor outputs (Ext(Wi;S))i∈[k] look uniform, even given adap-
tive leakage on each Wi, dependent on not just Ext(Wi;S) (or uniform), but also
all the prior extractor outputs and adaptive leakages (queried before i). As the
sources are independent, this lemma can be proved using a simple hybrid argu-
ment (the detailed proof is given in our full version).

Lemma 8. Let k be an arbitrary positive integer, W1, · · · ,Wk be k independent
(η, μ + ζ) sources and S be the uniform distribution on {0, 1}d. Let Ext be an
(η, μ + ζ, d, l, δ′)-extractor that is (Fullζ , δ)-adaptive. For each i ∈ [k], let E0

i

denotes Ext(Wi;S), E1
i denotes uniform distribution on {0, 1}l. For b ∈ {0, 1},

we define AdLeakb as follows. Then for any stateful distinguisher D′ we have
AdLeak0 ≈kδ AdLeak1.
AdLeakb :

– Let Tr and S be a null string and null set respectively.
– For upto k times

• (j, gj) ← D′(Tr) where j ∈ [k]\S and gj : {0, 1}η+l → {0, 1}ζ .
• Append (j, gj , gj(wj , E

b
j ), E

b
j ) to Tr.

• Add j to S.
– Output Tr.

4 Leakage Resilient Secret Sharing

Leakage-resilience of a secret sharing scheme is defined specific to a leakage
model/ leakage family. We begin by formally defining leakage-resilience and then
describe the leakage model.

Definition 4. An (A, n, εs)-secret sharing scheme is said to be an (A, n, εs, εl)-
leakage resilient secret sharing scheme against a leakage fam-
ily F if for all functions f ∈ F and for any two messages
m,m′,SD (f(Share(m)), f(Share(m′))) ≤ εl.
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4.1 Leakage Models

We consider two leakage models in this paper. For now, we restrict our discussion
to an (n, t)-threshold access structure.

– Adaptive Leakage and Reveal Model: The adversary can adaptively
obtain leakage on individual shares for any n− t+1 shares. After this, he can
additionally even get all the remaining t − 1 shares in their entirety.

– Joint Leakage and Reveal Model: The adversary can ask any number of
joint leakage queries on disjoint sets of size X (a parameter). After this, he can
additionally get any (at most t − 1) of the remaining shares in their entirety.
While this model completely subsumes the adaptive leakage and reveal model,
the amount of leakage per share supported in the latter would be lesser.

We provide a formal description of the adaptive leakage and reveal model and
the joint leakage and reveal model in Sect. 4.1.1 and Sect. 4.5 respectively. We
give a construction that is leakage resilient with respect to both these models in
Sect. 4.2. We prove leakage resilience of this scheme in the adaptive leakage and
reveal model in Sect. 4.3. We provide a proof sketch of leakage resilience in the
joint adaptive and reveal model in Sect. 4.5.2.

4.1.1 Adaptive Leakage and Reveal Model Fψ,τ
leak

The model allows for leakage on individual shares and then also reveals at most
t − 1 of the remaining shares in clear. We have two parameters in the model τ
and ψ where τ denotes the amount of leakage provided in each leakage query
and ψ captures the maximum number of leakage queries allowed. We allow ψ
ranging from 1 to n − t + 1. Though we allow ψ to be n − t + 1, we have it
as an explicit parameter because lower ψ would imply a weaker leakage model
and possibly have better constructions. In fact, our multi-layered construction
in Sect. 4.2 becomes compact (and offers better rate) as ψ decreases.

Leakm
Share:

– Initialize Z to be a null string and S to be a null set.
– (Sh1, · · · , Shn) ← Share(m)
– Leakage Phase:

For upto ψ times
• (j, fj) ← D(Z) where fj : {0, 1}γ → {0, 1}τ

• If j ∈ [n]\S, add j to S and append (j, fj , fj(Shj)) to Z
– Reveal phase

For upto t − 1 times
• j ← D(Z)
• If j ∈ [n]\S, append (j, Shj) to Z

– D updates Z with any relevant state information.
– Output Z.

Fig. 2. LRSS definition- LeakmShare distribution
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Let (Share,Rec) (where Share : {0, 1}l → ({0, 1}γ)n) be a t-out-of-n secret
sharing scheme. We formalize leakage obtained in this model on shares of a
message m as Leakm

Share in Fig. 2, where an arbitrary stateful distinguisher D
makes the queries. For any two messages m and m′, we require Leakm

Share ≈εlr

Leakm′
Share, for (Share,Rec) to be εlr leakage resilient against the adaptive leakage

and reveal model.

4.2 LRSS Construction for the Adaptive Leakage and Reveal Model

We refer the reader to the Introduction (Sect. 1.2) for a high-level overview of
the construction and proof. We proceed to describe the construction in detail in
Fig. 3 and prove its security in Sect. 4.3.

Let n be the number of parties and t be the reconstruction threshold. Let
h > 0 be a parameter guaranteed to be less than �n/(t − 1)�.
Building Blocks. Let (MShare,MRec) be an ((n, t), ε, ε)-adaptive secret
sharing scheme for messages in {0, 1}l with share space being {0, 1}l′ . For
i ∈ [h], let (SdSharei,SdReci) be an ((n, t), ε′

i, ε
′
i)-adaptive secret sharing

scheme for messages in {0, 1}di with share space being {0, 1}d
′
i . For i ∈ [h],

let Exti be an (ηi, μi + τ, di, �i, δ
′
i)-extractor that is (Fullτ , δi)-adaptive. We

set �1 = l′ and for i ∈ [h]\{1} we set li = li−1 + d′
i−1.

Shareh(m):

– (m1, · · · , mn) ← MShare(m).
– For i ∈ [h], pick seeds si ∈R {0, 1}di and compute their shares (sdi

1, · · · ,
sdi

n) ← SdSharei(si).
– For i ∈ [h] and j ∈ [n], pick sources wi

j ∈R {0, 1}ηi .
– For j ∈ [n]:

• Define yh+1
j = mj .

• For i ← h to 1, compute xi
j = yi+1

j ⊕Exti(wi
j ; s

i) and yi
j = (xi

j ||sdi
j).

– For j ∈ [n], define Shj = (w1
j , · · · , wh

j , y1
j ).

– Output (Sh1, · · · , Shn).

Rech(ShT ) : (where T is the reconstruction set)

– For j ∈ T , parse Shj as (w1
j , · · · , wh

j , y1
j ), where y1

j = x1
j ||sd1j .

– For i ← 1 to h:
• si = SdReci(sdi

T ).
• For each j ∈ T , yi+1

j = xi
j ⊕ Exti(wi

j ; s
i). For each i ∈ [h − 1], parse

yi+1
j as xi+1

j ||sdi+1
j .

– Parse yh+1
j as mj . Recover m = MRec(mT ).

– Output m.

Fig. 3. LRSS construction
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4.3 Proof of Leakage Resilience in the Adaptive Leakage and
Reveal Model

Theorem 2. For any ψ ≤ n− t+1 and l, τ > 0, (Shareh,Rech) is an ((n, t), ε)-
secret sharing scheme for l bit messages and is 2(ε + h(ε′ + (t − 1)δ))-leakage
resilient in the Adaptive Leakage and Reveal model Fψ,τ

leak where h = �ψ/(t− 1)�.
Further, there exists an instantiation of the scheme with rate is (2Θ(h)+hτ/l)−1.
When τ = Θ(l) and either n = Θ(t) or h is a constant, the scheme achieves
constant rate and constant leakage rate asymptotically.

Proof. The correctness of the scheme follows directly from the correctness of
underlying extractors and secret sharing schemes. The (adaptive) privacy of the
scheme is directly implied by the leakage resilience (against the adaptive leakage
and reveal model).

Leakage Resilience. For any message m we define the following the sequence
of hybrids. In these hybrids we assume that D always asks legitimate queries as
per the model and won’t write explicit checks for legitimacy (for example, we
assume that D doesn’t ask leakage on same share twice).

We analyze the leakage queries made by D as bunches of (t − 1) queries.
We now introduce some useful notation. Let S1, · · · ,Sh denote the sets of
indices queried by D, where Si contains the indices queried by D from the
((i − 1)(t − 1) + 1)th query to i(t − 1)th leakage queries (i.e., S1 contains the
first t − 1 queries, S2 the next t − 1 queries and so on). For i ∈ [h], we use S[i]

to denote
i⋃

j=1

Sj , which captures the set of indices queried in the first i(t − 1)

leakage queries. For i ∈ [h], let Z[i] denotes the set of leakage queries and the
corresponding responses to the first i(t − 1) leakage queries. Z[h+1] denotes Z[h]

together with the final reveal queries as well as any relevant state information. We
prove leakage resilience using a hybrid argument, with the following sequence of
hybrids, LeakBm

0 , {LeakAm
q , LeakBm

q }q∈[h] and LeakCm. The order of the hybrids
is LeakBm

0 , LeakAm
1 , LeakBm

1 , · · · , LeakAm
h , LeakBm

h , LeakCm, where we will show
that LeakCm is independent of m, and LeakBm

0 will correspond to the distribu-
tion Leakm

Shareh . This will allow us to show that Leakm
Shareh is indistinguishable

from Leakm′
Shareh . We begin by giving an informal description of these hybrids.

LeakAm
q : We start with q = 1. LeakAm

1 follows the actual leakage game i.e.,
Leakm

Shareh(≡ LeakBm
0 ) except for the following change: we replace the shares

sd1j , for each j ∈ S1 (the shares of s1 corresponding to the first t − 1 leakage
queries), with shares of a dummy seed s̃1 = 0d. In general, for each 1 < q ≤ h,
the only change we make in LeakAm

q (in comparison to the previous hybrid
LeakBm

q−1) is that we replace the shares sdq
j , for each j ∈ Sq (the shares of sq

corresponding to the q-th set of t − 1 leakage queries), with shares of a dummy
seed s̃q. After answering the leakage queries corresponding to Sq, shares of sq

are re-sampled consistent with the dummy seed shares used so far. The hybrid
is formally described in Fig. 4.
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LeakAm
q :

1. Initialize Z to be a null string and S1, · · · ,Sh to be null sets.
2. (m1, · · · , mn) ← MShare(m)
3. For i ∈ [h], choose si ∈R {0, 1}di

4. For i ∈ [h] and j ∈ [n], choose wi
j ∈R {0, 1}ηi

5. For i ∈ [h]\[q], compute (sdi
1, · · · , sdi

n) ← SdSharei(si)
6. For i ∈ [q], let s̃i = 0d

7. For j ∈ [n], define yh+1
j = mj

8. Leakage Phase:
(a) For c ← 1 to q

i. (s̃d
c

1, · · · , s̃d
c

n) ← SdSharec(s̃c)
ii. For up to (t − 1) times

A. (j, fj) ← D(Z)
B. If c < q,

∗ Choose xc
j ∈R {0, 1}lc and compute yc

j = (xc
j ||s̃d

c

j)
∗ For i ← c − 1 down to 1,
compute xi

j = yi+1
j ⊕ Exti(wi

j ; s
i) and yi

j = (xi
j ||sdi

j)
C. If c = q, for i ← h down to 1 compute{

xi
j = yi+1

j ⊕ Exti(wi
j ; s

i) and yi
j = (xi

j ||sdi
j) when i 	= q

xi
j = yi+1

j ⊕ Exti(wi
j ; s

i) and yi
j = (xi

j ||s̃d
i

j) when i = q

D. Define Shj = (w1
j , · · · , wh

j , y1
j )

E. Add j to Sc and append (j, fj , fj(Shj)) to Z

iii. (sdc
1, · · · , sdc

n) ← SdSharec(sc|s̃dc

Sc
)

(b) For j ∈ [n]\(S[q]) and i ← h down to 1,
compute xi

j = yi+1
j ⊕ Exti(wi

j ; s
i) and yi

j = (xi
j ||sdi

j)
(c) Define Shj = (w1

j , · · · , wh
j , y1

j )
(d) For c ← q + 1 to h

i. For upto t − 1 times
A. (j, fj) ← D(Z)
B. Add j to Sc and append (j, fj , fj(Shj)) to Z

9. Reveal phase
(a) For upto t − 1 times

i. j ← D(Z)
ii. Append (j, Shj) to Z

10. D updates Z with any relevant state information.
11. Output Z.

Fig. 4. Hybrid LeakAm
q
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LeakBm
q : For q = 1, LeakBm

1 follows the hybrid LeakAm
1 except for the following

change: in LeakBm
1 , we replace the values x1

j , for each j ∈ S1 with random, instead
of evaluating the h layers of masking to get x1

j (and hence x1
j ’s for j ∈ S1 are

independent of mS1 , si and the shares of si, for each 1 < i ≤ h). Note that in
LeakAm

1 , the shares Shj corresponding to S1 no longer depend on the seed s1.
We carefully use the adaptive extractor security of Ext1 to move to LeakBm

1 . In
general, for each 1 < q ≤ h, the only change we make in LeakBm

q (in comparison

LeakBm
q

1. Initialize Z to be a null string and S1, · · · ,Sh to be null sets.
2. (m1, · · · , mn) ← MShare(m)
3. For i ∈ [h], choose si ∈R {0, 1}di

4. For i ∈ [h] and j ∈ [n], choose wi
j ∈R {0, 1}ηi

5. For i ∈ [h]\[q], compute (sdi
1, · · · , sdi

n) ← SdSharei(si)
6. For i ∈ [q], let s̃i = 0d

7. For j ∈ [n], define yh+1
j = mj

8. Leakage Phase:
(a) For c ← 1 to q

i. (s̃d
c

1, · · · , s̃d
c

n) ← SdSharec(s̃c)
ii. For upto (t − 1) times

A. (j, fj) ← D(Z)
B. Choose xc

j ∈R {0, 1}lc and compute yc
j = (xc

j ||s̃d
c

j)
C. For i ← c − 1 down to 1

compute xi
j = yi+1

j ⊕ Exti(wi
j ; s

i) and yi
j = (xi

j ||sdi
j)

D. Define Shj = (w1
j , · · · , wh

j , y1
j )

E. Add j to Sc and append (j, fj , fj(Shj)) to Z

iii. (sdc
1, · · · , sdc

n) ← SdSharec(sc|s̃dc

Sc
)

(b) For j ∈ [n]\S[q] and i ← h to 1, (S[q] denotes a null set when q = 0)
compute xi

j = yi+1
j ⊕ Exti(wi

j ; s
i) and yi

j = (xi
j ||sdi

j)
(c) Define Shj = (w1

j , · · · , wh
j , y1

j )
(d) For c ← q + 1 to h

i. For upto t − 1 times
A. (j, fj) ← D(Z)

B. Add j to Sc and append (j, fj , fj(Shj)) to Z
9. Reveal phase

(a) For upto t − 1 times
i. j ← D(Z)
ii. Append (j, Shj) to Z

10. D updates Z with any relevant state information.
11. Output Z.

Fig. 5. Hybrid LeakBm
q
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to the previous hybrid LeakAm
q ) is that we replace the values xq

j , for each j ∈ Sq

with random, instead of evaluating the h − (q − 1) layers of masking to get xq
j

(and hence, for these queries in Sq, si and the shares of si, for each q < i ≤ h,
and the shares m are not used to evaluate xq

j). Further, we continue the steps
of masking to evaluate xq−1

j , xq−2
j , · · · , x1

j , for each j ∈ Sq as in the previous
hybrid. The hybrid is formally described in Fig. 5.

LeakCm: In the hybrid LeakBm
h , all the shares used in the leakage phase are

independent of the shares of the message m. Hence, the only part of the view
of D that depends on the shares of m corresponds to the reveal phase. In the
final hybrid LeakCm, we replace the t − 1 shares of m used in the reveal phase
by shares of 0l. This hybrid is formally described in Fig. 6.

The formal descriptions of all hybrids are given below with the change from
the prior hybrid highlighted in red color.

LeakCm

1. Initialize Z to be a null string and S1, · · · ,Sh to be null sets.
2. Let m̃ = 0l and (m̃1, · · · , m̃n) ← MShare(m̃)
3. For i ∈ [h], choose si ∈R {0, 1}di

4. For i ∈ [h], let s̃i = 0d

5. For i ∈ [h] and j ∈ [n], choose wi
j ∈R {0, 1}ηi

6. Leakage Phase:
(a) For c ← 1 to h

i. (s̃d
c

1, · · · , s̃d
c

n) ← SdSharec(s̃c)
ii. For upto (t − 1) times

A. (j, fj) ← D(Z)
B. Choose xc

j ∈R {0, 1}lc and compute yc
j = (xc

j ||s̃d
c

j)
C. For i ← c − 1 down to 1

compute xi
j = yi+1

j ⊕ Exti(wi
j ; s

i) and yi
j = (xi

j ||sdi
j)

D. Define Shj = (w1
j , · · · , wh

j , y1
j )

E. Add j to Sc and append (j, fj , fj(Shj)) to Z

iii. (sdc
1, · · · , sdc

n) ← SdSharec(sc|s̃dc

Sc
)

7. Reveal phase
(a) For upto t − 1 times

i. j ← D(Z)
ii. Define yh+1

j = m̃j

iii. For i ← h to 1, compute xi
j = yi+1

j ⊕ Exti(wi
j ; s

i) and yi
j =

(xi
j ||sdi

j)
iv. Define Shj = (w1

j , · · · , wh
j , y1

j )
v. Append (j, Shj) to Z

8. D updates Z with any relevant state information.
9. Output Z.

Fig. 6. Hybrid LeakCm. (Color figure online)
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We begin by proving the statistical closeness of LeakAm
q and LeakBm

q−1, for
each q ∈ [h], which follows from adaptive privacy of SdShareq, as atmost only
t − 1 dummy seed shares are used.

Claim 1. For q ∈ [h], if SdShareq is ε′
q-adaptively private against (n, t)-threshold

access structures, then LeakAm
q ≈ε′

q
LeakBm

q−1.

Proof. Answering the first (q − 1) sets of leakage queries (when q > 1):
Observe that the hybrids are identical up to answering the first (q−1)(t−1) leak-
age queries and differ in answering the remaining queries. For any k ∈ [q−1] and,

j ∈ Sk the leakage response only depends on s̃d
k

j , w1
j , · · · , wh

j and {si, sdi
j}1≤i<k

(as xk
j is chosen uniformly). We let Pre denote the union of these random vari-

ables upon which the leakage responses to j ∈ S[q−1] depend.

Answering the qth Set of Leakage Queries: Consider j ∈ Sq. To answer this
leakage query, it suffices to compute Shj = (w1

j , · · · , wh
j , y1

j ). The hybrids only
differ in computation of y1

j (particularly in computation of yq
j , which is used to

compute y1
j ) and the distribution of extractor sources is identical in both. We

highlight the differences here. LeakAm
q (Step 8-(a)-ii-C), iteratively computes

yh
j , · · · , yq

j , · · · , y1
j as follows.

– (yh
j , · · · , yq+1

j ) are computed using yh+1
j and {wi

j , sd
i
j , s

i}i∈[h]\[q]. Note that
the distribution of yh

j , · · · , yq+1
j is identical in both hybrids.

– xq
j is computed using yq+1

j , wq and sq. xq
j is also identical in both hybrids.

– yq
j is computed as xq

j ||s̃d
q

j (where s̃d
q

[n] are shares of a dummy seed s̃q which
are generated before answering any queries in Sq in Step 8-(a)-i (when c = q)).
Whereas in LeakBm

q−1, yq
j = xq

j ||sdq
j (where sdq

[n] are shares of sq)

– (yq−1
j , · · · , y1

j ) are computed using yq
j and {sdi

j , w
i
j , s

i}i∈[q−1]. The computa-
tion of (yq−1

j , · · · , y1
j ) given the later random variables is again identical to

LeakBm
q−1.

– Now LeakAm
q defines Shj = (w1

j , · · · , wh
j , y1

j )

For convenience, in this proof we distinguish (whenever necessary) the random
variables that have same literal in both the hybrids but are distributionally
different with subscripts A and B respectively. For example, yq

j,A and yq
j,B denote

the distributions of yq
j in LeakAm

q and, LeakBm
q−1 respectively.

Let Pre′ = ({wq
j , {sdi

j , w
i
j , s

i}i∈[h]\{q}}j∈[n]\S[q−1]
). Pre′ captures the informa-

tion required to answer all queries after the first q − 1 sets of leakage queries,
except for any information regarding sq, s̃q and their shares. Note that Pre′ is
identical in both hybrids9. Since, |Sq| ≤ t − 1, with a reduction to adaptive
privacy of SdShareq we have

9 Pre′ possibly repeats some information already there in Pre. For example for q = 2,
s1 is there in both Pre and Pre′. It is for the ease of exposition that we have this
repetition.
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Pre,Pre′, sq, s̃q, {s̃d
q

j}j∈Sq,A
≈ε′

q
Pre,Pre′, sq, s̃q, {sdq

j}j∈Sq,B

as (Pre,Pre′) is independent of the randomness used to generate the shares of s̃q

and sq. Note that the information on LHS suffices to answer the first q sets of
queries as per LeakAm

q . Similarly, RHS suffices to answer queries in S[q] as per
LeakBm

q−1. Therefore, we have,

Pre,Pre′, sq, s̃q, {s̃d
q

j}j∈Sq,A
, Z[q],A ≈ε′

q
Pre,Pre′, sq, s̃q, {sdq

j}j∈Sq,B
, Z[q],B (1)

Answering the Leakage and Reveal Queries Made After the qth Set of
Leakage Queries: After all the qth set leakage queries are answered, LeakAm

q

computes (sdq
1, · · · , sdq

n) ← SdShareq(sq|s̃dq

Sq,A
). Given (sdq

1, · · · , sdq
n), sq,Pre

and Pre′, for any j ∈ [n]\Sq, Shj is easily computed (Steps 8-(b) and 8-(c)).
With this, any further queries can be correctly answered as per LeakAm

q . Let

(ŝd
q

1, · · · , ŝd
q

n) ← SdShareq(sq|sdq
Sq,B

). By Lemma 2, we have

Pre,Pre′, sq, s̃q, Z[q],A, sdq
[n],A ≈ε′

q
Pre,Pre′, sq, s̃q, Z[q],B , ŝd

q

[n],B

Note that ŝd
q

[n] is identical to sdq
[n],B (of LeakBm

q−1) even given sq and {sdq
j}j∈Sq

by the property of consistent resampling in Claim 5. Therefore, we have,

Pre,Pre′, sq, Z[q],A, sdq
[n],A ≈ε′

q
Pre,Pre′, sq, Z[q],B , sdq

[n],B

Since the above LHS and RHS are sufficient to answer any further queries, we
have

Z[h+1],A ≈ε′
q

Z[h+1],B

which proves the claim.

Now, we prove the statistical closeness of LeakAm
q and LeakBm

q , for each q ∈ [h]
using the adaptive extractor security. The high-level idea behind the reduction
is that in hybrid LeakAm

q , the shares corresponding to the first q(t − 1) queries
(i.e., S[q]) no longer depend on the seed sq and hence, we can use the adaptive
extractor security of Extq to move to LeakBm

q .

Claim 2. For q ∈ [h], if Extq is an (ηq, μq + τ, dq, lq, δ
′
q)- extractor that is

(Fullτ , δq)-adaptive, then LeakAm
q ≈(t−1)δq LeakBm

q

Proof. Observe that the hybrids are identical up to answering the first (q−1)(t−
1) leakage queries and differ in answering the qth set of queries. Further, after
answering the qth set of leakage queries, the responses to all remaining leak-
age/reveal queries are answered identically in both hybrids.

Answering the first (q − 1) Sets of Leakage Queries (when q > 1):

For any k ∈ [q − 1] and j ∈ Sk the leakage response only depends on s̃d
k

j ,
w1

j , · · · , wh
j , {si, sdi

j}1≤i<k and xk
j , where the latter is uniformly chosen. We let



618 N. Chandran et al.

Pre denote the leakage responses Z[q−1] and the union of these random variables
upon which the leakage responses to j ∈ S[q−1] depend.

Answering the qth Set of Leakage Queries:
Consider j ∈ Sq and fj be the corresponding leakage function. To answer this
leakage query, we require computing fj(Shj) where Shj = (w1

j , · · · , wh
j , y1

j ). The
hybrids only differ in computation of y1

j (particularly in computation of xq
j , which

is used to compute y1
j ) and the distribution of extractor sources is identical in

both. The hybrids iteratively computes yq
j , · · · , y1

j as follows.

– xq
j is chosen uniformly from {0, 1}lq in LeakBm

q . In contrast, xq
j of LeakAm

q

depended on Extq(wq
j ; s

q) and yq+1
j .

– (yq
j , · · · , y1

j ) is determined given xq
j , s̃d

q

j and {sdi
j , w

i
j , s

i}i∈[q−1] in both the
hybrids.

– Both hybrids define Shj = (w1
j , · · · , wh

j , y1
j )

Let Pre′ = {wi
j , sd

i
j , s

i, yh+1
j , s̃d

q

j}i∈[h]\{q},j∈[n]\S[q−1]
.We capture Pre′ as the

information which along with {wq
j , s

q}j∈Sq
is sufficient to answer any leakage

queries on j ∈ Sq. Also, Pre′ is identical in both hybrids.
Let j1, · · · , jt−1 be the order of indices in which leakage queries are made in Sq.
Firstly, we prove that (Pre,Pre′, fj1(Shj1)) of both hybrids are statistically close.
After that we proceed to show that (Pre,Pre′, fj1(Shj1), · · · , fj(t−1)(Shj(t−1))) of
both the hybrids are statistically close, which implies that the hybrids are sta-
tistically close up to answering first q sets of queries. For convenience, in this
proof we distinguish (whenever necessary) the random variables that have same
literal in the hybrids but are distributionally different with subscripts A and B
respectively. For example, xq

j,A and xq
j,B denote the distributions of xq

j in LeakAm
q

and LeakBm
q respectively.

Firstly, in both hybrids the distribution of (j1, fj1) only depends on Z[q−1]

(and any internal randomness of D) and hence are identical. Note that given Pre′,
fj1(Shj1) in LeakAm

q , can be captured as Fullτ -adaptive leakage on the extractor
source wq

j1
and (xq

j1,A=) Extq(wq
j1

; sq) ⊕ yq+1
j1

. This is because (yq+1
j1

,Pre′) are
independent of (wq

j1
, sq). Let g1 be a function that takes Pre′, wq

j1
and xq

j1,A(or
xq

j1,B) as input, computes y1
j1,A (or y1

j1,B) and outputs fj(w1
j1

, · · · , wh
j1

, y1
j1,A) (or

fj(w1
j1

, · · · , wh
j1

, y1
j1,B)). With a reduction to adaptive security of Extq we have

Pre,Pre′, sq, g1(Pre′, wq
j1

,Extq(wq
j1

; sq) ⊕ yq+1
j )

≈δq Pre,Pre′, sq, g1(Pre′, wq
j1

, Ulq ⊕ yq+1
j )

≡ Pre,Pre′, sq, g1(Pre′, wq
j1

, xq
j1,B)

Therefore

Pre,Pre′, sq, fj1(Shj1,A) ≈δq Pre,Pre′, sq, fj1(Shj1,B)

With this, we showed that the hybrids are statistically close up to responding
to the first query in the qth set. Although, superficially, it may seem that all the



Adaptive Extractors and Their Application 619

leakage responses corresponding to j ∈ Sq can be captured as adaptive extractor
leakage on the source wq

j , but it’s not the case because of the following subtlety.
The extractor sources used in each query are independent of each other, but
the seed is the same. For example, one cannot directly capture fj2(Shj2) as
Fullτ -adaptive leakage (as we did with fj1(Shj1)). This is because the choice of
j2, fj2 depends on fj1(Shj1) which in turn depends on Extq(wq

j ; s
q), and hence is

not independent of the seed sq. We observe in Lemma 8 that adaptive extractors
allow us to handle even such (stronger) form of adaptive leakages across different
sources with same seed.

Proceeding, with a reduction to Lemma 8 with k = (t − 1), {Wi = W q
ji

:
i ∈ [k]}, S = sq and Ext = Extq and the ith leakage function being gi such
that gi (hardwired with Pre′, yq+1

ji
) takes wq

ji
and Extq(wq

ji
; sq) (resp. Ulq ) as

input, computes y1
ji,A

(resp. y1
ji,B

) and outputs fji(w
1
ji

, · · · , wh
ji

, y1
ji,A

) (resp.
fji(w

1
ji

, · · · , wh
ji

, y1
ji,B

)).

Pre,Pre′, sq, {fji , fji(Shji,A)}ji∈Sq,A
,Sq,A

≈(t−1)δq Pre,Pre′, sq, {fji , fji(Shji,B)}ji∈Sq,B
,Sq,B

This shows that the hybrids are statistically close up to answering the first q
sets of leakage queries.

Answering the Leakage and Reveal Queries Made After the qth

Set of Leakage Queries: After all the qth set of leakage queries are
answered, both hybrids compute (sdq

1, · · · , sdq
n) ← SdShare(sq|s̃dq

Sq
). Let Pre′′ =

{wq
j , sd

q
j , s

q}j∈[n]\Sq
. Note that Pre′ in conjunction with Pre′′ completely defines

Shj for any j ∈ [n]\S[q]. Since Pre′′ corresponding to LeakAm
q (resp. LeakBm

q ) is

only correlated to Sq, s
q and s̃d

q

Sq
(which is in Pre′) of the respective hybrids, we

have

Pre,Pre′,Pre
′′
A, sq, {fji , fji(Shji,A)}ji∈Sq,A

,Sq,A

≈(t−1)δq Pre,Pre′,Pre
′′
B , sq, {fji , fji(Shji,B)}ji∈Sq,B

,Sq,B

Since responses to leakage/reveal queries after the qth set are can be derived
from the LHS and RHS respectively depending on the hybrid, we have

Z[h+1],A ≈(t−1)δq Z[h+1],B

This proves the claim.

Finally, we use the adaptive security of MShare to show that LeakCm is statisti-
cally close to LeakBm

h .

Claim 3. If MShare is ε-adaptively private against (n, t)-threshold access struc-
tures, then LeakCm ≈ε LeakB

m
h .
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Proof. The hybrids answer the leakage queries identically and differ only in
answering the reveal queries.

Answering the Leakage Queries:

For any k ∈ [h] and j ∈ Sk the leakage response only depends on s̃d
k

j , w1
j , · · · , wh

j ,
{si, sdi

j}1≤i<k and xk
j , where the latter is uniformly chosen. We let Pre denote

the leakage responses Z[h] and the union of these random variables upon which
the leakage responses to j ∈ S[h] depend.

Answering the Reveal Queries: Let Pre′ = {wi
j , sd

i
j , s

i}i∈[h],j∈[n]\S[h]
. Note

that given yh+1
j for all j queried in the reveal phase, (Pre,Pre′) has sufficient

information to answer all the reveal queries.

– LeakBm
h samples (m1, · · · ,mn) ← MShare(m) and sets yh+1

j = mj for all j
queried in the reveal phase.

– LeakCm samples (m̃0, · · · , m̃) ← MShare(m̃) and sets yh+1
j = m̃j for all j

queried in the reveal phase.

Let RevealB and RevealC denote the sets of indices queried in the reveal phase of
LeakBm

h and LeakCm respectively. As reveal queries are at most t− 1 in number,
we now invoke adaptive privacy of MShare and get

Pre,Pre′, m̃,m, {mj}j∈RevealB ≈ε Pre,Pre
′, m̃,m, {m̃j}j∈RevealC

Note that (Pre,Pre′) is independent of the randomness used in generating shares
of m and m̃, therefore adaptive privacy of MShare can be invoked even given
these random variables.

Since Shj for j queried in reveal phase of LeakBm
h (resp. LeakCm) is deter-

mined by the above LHS (resp. RHS) we have

Z[h+1]︸ ︷︷ ︸
of LeakBm

q

≈ε Z[h+1]︸ ︷︷ ︸
of LeakCm

With the above claims and use of triangle inequality we know that for any
message m, Leakm

Shareh ≈ε+
∑

i∈[h]((t−1)δi+ε′
i)

LeakCm. Note that the descrip-
tion of LeakCm is independent of m. Hence for any message m = m′, we have
LeakCm ≡ LeakCm′

. Since, Leakm′
Shareh ≈hε′+h(t−1)δ+ε LeakC

m′
we get

Leakm
Shareh ≈2ε+2

∑
i∈[h]((t−1)δi+ε′

i)
Leakm′

Shareh

4.4 Parameters

For i ∈ [h], we instantiate SdSharei on seeds of length di with the (adaptively)
private Shamir secret sharing scheme, which results in individual seed share
length being di. We instantiate MShare on messages of length li with the (adap-
tively) private Shamir secret sharing scheme, which results in individual seed
share length being li.
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Recall Lemma 7 which states that for any c > 1, there exists constants α, β
such that d ≤ αl, μ ≤ βl, η ≥ βl + τ , ε = 2−cl and δ = 2−(c−1)l+2 when
l = ω(log η). Fix any c > 1, and constants α, β corresponding to this c given by
Lemma 7. For each i ∈ [h], we instantiate (ηi, μi +τ, di, li, δ

′
i)-extractor Exti that

is (Fullτ , δi)-adaptive as per this lemma as follows.

– We set l1 = l, δ′
1 = 2−cl, δ1 = 2−Ω(l), d1 ≤ αl1, μ1 ≤ βl1 and η1 = βl1 + τ .

– For i > 1, we set li = li−1 + di−1, δ′
i = 2−cli , δi = 2−Ω(li), di ≤ αli, μi ≤ βli

and ηi = βli + τ .

With this setting, individual share length of Shareh is lh + dh +
∑

i∈[h] ηi =
hτ +Θ((1+α)hl). Therefore, Shareh acheives constant rate and constant leakage
rate whenever τ = O(l) and either n = Θ(t) or h is a constant.

As our instantiations of SdSharei’s and MShare are perfectly adaptively pri-
vate, we have Shareh to be a perfectly adaptively private secret sharing scheme
which is t ·2−Ω(l)-leakage resilient against the adaptive leakage and reveal model.

4.5 LRSS for Joint Leakage and Reveal Model

4.5.1 Joint Leakage and Reveal Model J X,ψ,τ

The model allows for ψ number of joint leakage queries on disjoint sets where
each query depends on X number of shares and additionally also reveals t− 1 of
the remaining shares (on which leakage isn’t queried) in clear. The parameter τ
captures the amount of leakage provided in each leakage query.

Let (Share,Rec) (where Share : {0, 1}l → ({0, 1}γ)n) be a secret sharing
scheme for an (n, t)- threshold access structure. We formalize leakage obtained in
this model on shares of a message m as JLeakm

Share in Fig. 7, where an arbitrary
stateful distinguisher D makes the queries. For any two messages m and m′, we
require JLeakm

Share ≈εlr JLeakm′
Share, for (Share,Rec) to be εlr leakage resilient

against this model.

JLeakm
Share:

– Initialize Z be a null string and S to be a null set.
– (Sh1, · · · , Shn) ← Share(m)
– Leakage Phase:

For upto ψ times
• (Qj , fj) ← D(Z) where Qj ⊆ [n] and fj : {0, 1}|Qj |γ → {0, 1}τ

• If Qj ∈ [n]\S and |Qj | ≤ X,
add elements of Qj to S and append (Qj , fj , fj(ShQj

)) to Z
– Reveal phase

For upto t − 1 times
• j ← D(Z)
• If j ∈ [n]\S, append (j, Shj) to Z

– D updates Z to include any relevant state information.
– Output Z

Fig. 7. Joint LRSS definition- JLeakmShare distribution



622 N. Chandran et al.

4.5.2 Leakage Resilience of (Shareh,Rech) in J X,ψ,τ Model

Theorem 3. For any ψ,X > 0 such that ψ · X ≤ n − t + 1 and l, τ > 0,
(Shareh,Rech) is an ((n, t), ε)-secret sharing scheme for l bit messages and is
εlr-leakage resilient in the joint leakage and reveal model J X,ψ,τ where h =
� ψ


(t−1)/X�� and εlr = 2(ε + hε′ + (t − 1)
∑

i∈[h] 2
Xliδ′

i)).
Further, there exists an instantiation of the scheme with rate is (XΘ(h) +

hτ/l)−1. When τ = Θ(l), X is a constant and when either n = Θ(t) or h is a
constant, the scheme achieves constant rate and leakage rate asymptotically.

The proof for the joint leakage setting is very similar to the proof of Theorem 2
for the adaptive setting (on single shares). We give a complete proof of this in
our full version.

Further, we can also extend our construction to get LRSS for general access
structures as well, the details of which are given in the full version of our paper.

Acknowledgement. We thank all the anonymous reviewers who provided their valu-
able comments on an earlier version of this manuscript.
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14. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988, pp.
11–19. ACM (1988). https://doi.org/10.1145/62212.62214

15. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: 7th Interna-
tional Conference on Security and Cryptography for Networks, SCN 2010 (2010).
https://doi.org/10.1007/978-3-642-15317-4 9

16. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008), arXiv:cs/0602007

17. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: Proceedings
of the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2007 (2007). https://doi.org/10.1109/FOCS.2007.35

18. Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting:
adaptive tampering, noisy-leakage resilience, and improved rate. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 448–479. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 16

19. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 7

20. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018 (2018).
https://doi.org/10.1145/3188745.3188872

21. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. In: IEEE Conference on Computational
Complexity, pp. 96–108 (2007)

22. Guruswami, V., Wootters, M.: Repairing reed-solomon codes. In: Proceedings of
the Forty-eighth Annual ACM Symposium on Theory of Computing. STOC 2016.
ACM, New York (2016). https://doi.org/10.1145/2897518.2897525

https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/978-3-319-96884-1_18
https://doi.org/10.1007/978-3-319-96884-1_18
https://doi.org/10.1007/978-3-030-56877-1_5
https://doi.org/10.1007/978-3-030-36033-7_8
https://doi.org/10.1007/978-3-030-36033-7_8
https://doi.org/10.1109/FOCS46700.2020.00117
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-642-15317-4_9
http://arxiv.org/abs/cs/0602007
https://doi.org/10.1109/FOCS.2007.35
https://doi.org/10.1007/978-3-030-26951-7_16
https://doi.org/10.1007/978-3-642-13190-5_7
https://doi.org/10.1145/3188745.3188872
https://doi.org/10.1145/2897518.2897525


624 N. Chandran et al.

23. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

24. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

25. Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing against colluding
parties. In: 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019 (2019). https://doi.org/10.1109/FOCS.2019.00045

26. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Non-malleable
secret sharing against affine tampering. CoRR abs/1902.06195 (2019). http://
arxiv.org/abs/1902.06195

27. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

28. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–53 (1996)

29. Rothblum, G.N.: How to compute under AC0 leakage without secure hardware. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 552–569.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 32

30. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
31. Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications.

In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp.
480–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 17

32. Vadhan, S.: Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science. Now Publishers (2012). http://people.seas.harvard.edu/∼salil/
pseudorandomness/

33. Zimand, M.: Exposure-resilient extractors. In: 21st Annual IEEE Conference on
Computational Complexity (CCC 2006). IEEE Computer Society (2006). https://
doi.org/10.1109/CCC.2006.19

https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1109/FOCS.2019.00045
http://arxiv.org/abs/1902.06195
http://arxiv.org/abs/1902.06195
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-642-32009-5_32
https://doi.org/10.1007/978-3-030-26951-7_17
http://people.seas.harvard.edu/~salil/pseudorandomness/
http://people.seas.harvard.edu/~salil/pseudorandomness/
https://doi.org/10.1109/CCC.2006.19
https://doi.org/10.1109/CCC.2006.19


Secret Sharing



Upslices, Downslices, and Secret-Sharing
with Complexity of 1.5n

Benny Applebaum(B) and Oded Nir

Tel Aviv University, Tel Aviv, Israel
bennyap@post.tau.ac.il, odednir@mail.tau.ac.il

Abstract. A secret-sharing scheme allows to distribute a secret s among
n parties such that only some predefined “authorized” sets of parties can
reconstruct the secret, and all other “unauthorized” sets learn nothing
about s. The collection of authorized/unauthorized sets can be captured
by a monotone function f : {0, 1}n → {0, 1}. In this paper, we focus
on monotone functions that all their min-terms are sets of size a, and
on their duals – monotone functions whose max-terms are of size b. We
refer to these classes as (a, n)-upslices and (b, n)-downslices, and note
that these natural families correspond to monotone a-regular DNFs and
monotone (n − b)-regular CNFs. We derive the following results.
1. (General downslices) Every downslice can be realized with total

share size of 1.5n+o(n) < 20.585n. Since every monotone function
can be cheaply decomposed into n downslices, we obtain a similar
result for general access structures improving the previously known
20.637n+o(n) complexity of Applebaum, Beimel, Nir and Peter (STOC
2020). We also achieve a minor improvement in the exponent of lin-
ear secrets sharing schemes.

2. (Random mixture of upslices) Following Beimel and Farràs (TCC
2020) who studied the complexity of random DNFs with constant-
size terms, we consider the following general distribution F over
monotone DNFs: For each width value a ∈ [n], uniformly sample
ka monotone terms of size a, where k = (k1, . . . , kn) is an arbi-
trary vector of non-negative integers. We show that, except with
exponentially small probability, F can be realized with share size
of 20.5n+o(n) and can be linearly realized with an exponent strictly
smaller than 2/3. Our proof also provides a candidate distribution
for “exponentially-hard” access structure.

We use our results to explore connections between several seemingly
unrelated questions about the complexity of secret-sharing schemes such
as worst-case vs. average-case, linear vs. non-linear and primal vs. dual
access structures. We prove that, in at least one of these settings, there
is a significant gap in secret-sharing complexity.
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1 Introduction

Secret-sharing schemes, introduced by Shamir [32] and Blakley [12], are a central
cryptographic tool with a wide range of applications including secure multiparty
computation protocols [9,14], threshold cryptography [17], access control [28],
attribute-based encryption [22,36], and oblivious transfer [33,35]. In its general
form [24], an n-party secret-sharing scheme for a family of authorized sets F ⊆
2[n] (referred to as access structure) allows to distribute a secret s into n shares,
s1, . . . , sn, one for each party, such that: (1) every authorized set of parties,
A ∈ F , can reconstruct s from its shares; and (2) every unauthorized set of
parties, A /∈ F , cannot reveal any partial information on the secret even if the
parties are computationally unbounded. For example, in the canonical case of
threshold secret sharing the family F contains all the sets whose cardinality
exceeds some certain threshold. For this case, Shamir’s scheme [32] provides a
solution whose complexity, measured as the total share-size

∑
i |si|, is quasi-

linear, O(n log n), in the number of parties n. Moreover, Shamir’s scheme is
linear, that is, each share can be written as a linear combination of the secret
and the randomness that are taken from a finite field. This form of linearity
turns to be useful for many applications. (See the full version of the paper for a
formal definition of secret sharing and linear secret sharing.)

The complexity of general secret-sharing schemes. Determining the complexity
of general access structures is a basic, well-known, open problem in information-
theoretic cryptography. Formally, given a (monotone) access structure1 F we
let SSize(F ) := minD realizes F |D|, where |D| denotes the total share size of a
secret-sharing scheme D. For over 30 years, since the pioneering work of Ito
et al. [24], all known upper-bounds on SSize(F ) are tightly related to the com-
putational complexity of the characteristic function F . Here we think of F as the
monotone function that given a vector x ∈ {0, 1}n outputs 1 if and only if the
corresponding characteristic set A = {i : xi = 1} is an authorized set. Specifi-
cally, it is known that the complexity of an access structure is at most polynomial
in the representation size of F as a monotone CNF or DNF [24], as a monotone
formula [10], as a monotone span program [25], or as a multi-target monotone
span program [11]. This leads to an exponential upper-bound of 2n(1−o(1)) for
any n-party access structure F .

On the other hand, despite much efforts, the best known lower-bound on the
complexity of an n-party access structure is Ω(n2/ log n) due to [15]. Moreover,
we have no better lower-bounds even for non-explicit functions! This leaves a
huge exponential gap between the upper-bound and the lower-bound. For the
case of linear schemes, a counting argument (see, e.g., [8]) shows that for most
monotone functions F : {0, 1}n → {0, 1}, the complexity of the best linear secret-

1 Monotonicity here means that for any A ⊂ B it holds that A ∈ F ⇒ B ∈ F . It is not
hard to see that a non-monotone access structure does not admit a secret-sharing
scheme, and therefore this requirement is necessary.
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sharing (LSS) scheme, denoted by LSSize(F ), is at least 2n/2−o(n).2 Furthermore,
Pitassi and Robere [30] (building on results of [29,31]) prove that for every n
there exists an explicit n-input function F such that LSSize(F ) = 2Ω(n). In his
1996 thesis [4], Beimel conjectured that an exponential lower-bound of 2Ω(n)

also holds for the general case. Resolving this conjecture has remained one of
the main open problems in the field of secret sharing [5]. Taking a broader
view, similar exponential communication-complexity gaps exist for a large family
of information-theoretic secure computation tasks [3,6,19,21,23]. Among these,
secret-sharing is of special interest due to its elementary nature: Secret data is
only stored and revealed without being processed or manipulated.

Recent advances: slices, multislices and general access structures. In the past
three years, the seemingly tight correspondence between computational com-
plexity and secret-sharing complexity was challenged by several works. In a
breakthrough result, Liu, Vaikuntanathan and Wee [26,27] showed that any
general access structure can be realized with complexity of 20.994n, thus break-
ing the formula-size (or even circuit-size) barrier of 2n−o(n). The exponent was
further reduced to 0.64 in follow-up works of Applebaum, Beimel, Farràs, Nir
and Peter [1,2]. From a technical point of view, all these works reduced the
problem of realizing a general monotone function F to the problem of realizing
the simpler case of slice functions and multislice functions (originally referred
to as “fat slices” by [26]). Formally, (a : b, n)-multislices are monotone functions
that are unconstrained on inputs x of weight wt(x) ∈ [a, b], but must take the
value 0 on lighter inputs, and the value 1 on heavier inputs. An (a : a, n)-
multislice is referred to as an (a, n)-slice. Roughly, the results of [26] were
obtained by a sequence of 3 reductions: (1) Secret sharing for slice functions
with sub-exponential share size of 2Õ(

√
n) based on constructions of Conditional

Disclosure of Secrets (CDS) [27]; (2) Secret sharing for ((0.5− ε)n, (0.5+ ε)n, n)-
multislices (aka ε-midslice) with non-trivial cost of 2cn for some c < 1 based
on slice functions; and (3) Secret sharing for general access structures with 2cn

complexity based on midslice secret sharing. The work of [1] showed how to
improve Step 3 based on combinatorial covers, and the work of [2] improved the
second step by presenting and constructing robust-CDS schemes. A combina-
tion of these results allows us to realize any n-party access structure by a secret
sharing scheme of complexity 20.64n+o(n) and by a linear secret sharing scheme
of complexity 20.762n+o(n).

Intriguing questions. This state of affairs leaves open several intriguing ques-
tions. Firstly, what is the best-achievable exponent of secret-sharing schemes?
Secondly, which access structures are the hardest to realize? While the above
results do not seem to yield sub-exponential share size, they also do not give rise
to a candidate “hard” access structure. That is, to the best of our knowledge, we

2 The bound holds for any finite field. From now on when the field is unspecified
we take it, by default, to be the binary field. This only makes our positive results
stronger.
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do not have an explicit candidate distribution over access structures whose cost
is 2Ω(n) even if one restricts the attention to the current schemes. Indeed, it was
recently observed by Beimel and Farràs [7] that a randomly chosen monotone
function is likely to be a (n/2 − 1, n/2 + 2, n)-multislice, and therefore it can be
realized with sub-exponential complexity.

2 Our Contribution

We make progress towards answering the above questions by shifting the focus
from slices and multislices to downslices and upslices. Before stating our results,
let us introduce these new access structures.

2.1 Upslice and Downslices

A monotone function f : {0, 1}n → {0, 1} is an (a, n)-upslice if all its min-
terms are of size exactly a. Similarly to (a, n)-slice functions, an (a, n)-upslice
is unconstrained for inputs of weight a and takes the value 0 on lighter inputs,
however, in contrast to slice functions, an input y of weight larger than a takes the
value 1 only if there exists a smaller input x ≤ y of weight a on which the function
takes the value 1.3 This means that f is the pointwise smallest function among
all the monotone functions that agree with f on inputs of weight a. Downslices
are defined in a dual way. That is, a monotone function f is a (b, n)-downslice if
all its max-terms are of size exactly b. This means that f is unconstrained over
b-weight inputs, takes the value 1 on heavier inputs, and (unlike slice functions)
evaluates to 0 on an input y of weight smaller than b only if there exists a larger
input x ≥ y of weight b on which the function evaluates to 0. Accordingly, f
is the pointwise largest function among all the monotone functions that agree
with f on inputs of weight b. (An example of upslices and downslices is depicted
in Fig. 1).

Why Upslices and Downslices? Upslices and downslices are natural classes of
monotone functions. Indeed, (a, n)-upslices (resp., (b, n)-downslices) are exactly
the functions that can be represented by logical formulas in a Disjunctive Nor-
mal Form (resp., Conjunctive Normal Form) in which each term (resp., clause)
consists of exactly a variables (resp., n − b variables). Therefore, these function
families capture the basic computational models of regular monotone-DNFs and
regular monotone-CNFs. Additionally, every monotone function can be decom-
posed into a disjunction of its upslices, i.e., f =

∨
a∈[n] fa where fa is the (a, n)-

slice function that agrees with f on its a-weight inputs (hereafter referred to as
the a-upslice of f). Similarly, f can be written as a conjunction of its downslices.
Using standard closure properties of secret sharing, we conclude that the secret-
sharing complexity of worst-case monotone functions is at most n times larger
3 We use the standard partial order over strings that is induced by inclusion over the

corresponding characteristic sets. That is, x ≤ y if for every index i it holds that
xi ≤ yi.
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Fig. 1. An example of a 2-upslice access structure F and a 2-downslice access structure
G. Both access structures are defined over 4 parties and colored nodes correspond to
authorized sets. Note that in this example F and G agree on sets of size 2.

than the secret-sharing complexity of downslices/upslices. This should be con-
trasted with the status of “simple” slice functions whose complexity seems signif-
icantly smaller (i.e., sub-exponential) than the complexity of general monotone
functions. Indeed, one can show that the complexity of an a-slice function f
is the smallest among all monotone functions that agree with f on inputs of
weight a (ignoring low-order terms).4 For general values of a and b, the best
known secret sharing schemes of (a, n)-upslices and (b, n)-downslices are based
on their DNF and CNF representations and therefore have total share size of(
n
a

)
and

(
n
b

)
, respectively. Up to logarithmic improvements, these worst-case

bounds have remained unchanged even for the special case of (2, n)-upslices that
correspond to graph access structures [13] (not to be confused with forbidden
graph access structures [34] that correspond to (2, n)-slices). See [7] for additional
references.

2.2 Worst-Case Downslices

In Sect. 4 we show that every (b, n)-downslice admits a secret sharing scheme with
complexity of (3/2)n+o(n). Using the completeness of downslices this allows us to
improve the complexity of general access structures. Formally, following [2], we
define the secret-sharing exponent of a monotone function f : {0, 1}n → {0, 1},
denoted by S(f) := n−1 · log2 SSize(f) and define the (worst-case) secret-sharing
exponent S to be S = lim supn→∞ maxf∈M(n) S(f), where M(n) is the family of
all monotone functions over {0, 1}n (equivalently, all n-party access structures).
We prove the following theorem.

Theorem 2.1 (Main theorem). Every access structure over n parties can be
realized by a secret-sharing scheme with a total share-size of 1.5n+o(n). That is,
S ≤ log 3

2 < 0.585.

4 To see this, observe that if f is the a-slice of a monotone function g, we can write
f as f = (g ∧ Ta−1) ∨ Ta+1 where Tk is the k threshold function over n-bit inputs.
By using standard closure properties of secret sharing, one can therefore transform
a secret sharing for g into a secret sharing for f with an additive cost of O(log n).
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Recall that the previous best exponent, due to [2], was 0.637. The proof of
the theorem is based on two schemes for (βn, n)-downslices. The first scheme
is tailored to low downslices with β ≤ 1/2 and achieves an exponent of β, and
the second scheme is tailored to high downslices with β ≥ 1/2 and achieves an
exponent of H2(β) − (1 − β) where H2 is the binary entropy function. The most
expensive downslice corresponds to the case where β = 2/3 and has an exponent
of log(32 ). (See Fig. 2 in Sect. 4.) The two schemes are based on adaptation of
previous tools, such as robust-CDS and combinatorial covers, to the current
setting. See Sect. 4 for details.

Linear schemes. We also obtain a minor improvement for the exponent of lin-
ear secret-sharing schemes. Let S� denote the linear exponent, that is defined
analogously to S, except that SSize(F ) is replaced with LSSize(F ), the minimal
complexity of a linear scheme that realizes F .

Theorem 2.2 (Worst-case linear exponent). Every access structure over n
parties can be realized by a linear secret sharing scheme with a total share-size
of 20.7576n+o(n). That is, the linear exponent S� is at most 0.7576.

Recall that the previous best linear exponent, due to [2], was 0.762. Again the
theorem is based on LSS for (βn, n)-downslices for an arbitrary density β. Unfor-
tunately, a naive approach that mimics the proof of Theorem 2.2 yields an expo-
nent of 1

2 + β
2 or, for β > 0.5, an exponent of H2(β) − 1

2 (1 − β). For densities
larger than 1/2, the exponent can be as large as 0.772 which is strictly larger
than the exponent 0.762 that is achieved by [2]. To overcome this difficulty, we
introduce several additional tools that are tailored to the linear setting. Most
notably, we present a bootstrapping technique that starts with an LSS for a
target downslice with a given density γ, transforms it into an LSS for upslices
of various densities and then exploits the new schemes, to obtain a better LSS
for the target (γn, n)-downslice. We apply this procedure iteratively to several
key values of γ, and use these pivots to propagate the improvement to all other
values of β. See Sect. 5 for details.

2.3 Random Upslices and Mixed DNFs

Following [7], we study the complexity of randomly-chosen upslices. For this we
define a family of distributions over monotone-DNFs that is parameterized by
an arbitrary vector k = (k1, . . . , kn) of non-negative integers. We sample a DNF
from the k-DNF distribution as follows: For each width parameter a, select ka

random clauses uniformly at random from the set of all possible
(
n
a

)
monotone

a-clauses. We prove the following theorem.

Theorem 2.3 (Average case exponents). For every non-negative vector k,
a randomly chosen k-DNF f can be realized with complexity of 20.5n+o(n) except
with exponentially small probability of 2−Ω(n). For linear schemes, we get an
exponent which is strictly smaller than 2/3.
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Observe that there is a polynomial gap between the average-case complexity and
the best-known worst-case complexity. It is instructive to compare this gap with
the results of Beimel and Farràs [7] who considered (1) The uniform distribution
over all access structures, and (2) the uniform distribution over (a = O(1), n)-
upslices with exactly ka min-terms for an arbitrary value of ka. For these dis-
tributions, [7] have established super-polynomial gaps between the average case
complexity and the best-known worst-case complexity. Our results may indicate
that such dramatic gaps are an artifact of the chosen distribution. Technically,
the proof of Theorem 2.3 extends the ideas of [7] to handle arbitrary large values
of a ∈ [n]. (We note that the proof of [7] suffers from an aa dependency and so
it cannot be applied to (a = Ω(n), n)-upslices.)

Candidate hard distribution. We believe that random upslices form a good can-
didates for exponentially-hard distributions. Concretely, the proof of Theorem
2.3 suggests that the hardest case (for existing schemes) corresponds to the
uniform distribution over (n/2, n)-upslices with

√(
n

n/2

)
= 2n/2+o(n) min-terms.

(Equivalently, random DNF that contains
√(

n
n/2

)
random monotone terms of

width n/2). We believe that identifying such a candidate hard distribution is a
valuable first step towards achieving further progress either at the upper-bound
front or at the lower-bound front.

Is the worst-case/average-case gap real? Recall that in the average-case, we
derive an exponent of 0.5 for general schemes and an exponent slightly better
than 2/3 for linear schemes, whereas the worst-case exponents are log(3/2) and
slightly over 3/4 respectively. Admittedly, we do not know whether this gap
is “real”, and as far as we can see, there may be a way to reduce the worst-
case exponents to the average-case ones. (We do not have good candidates for
separation either.) While we cannot prove the existence of such a gap, we can
relate it to other central questions in the complexity of secret sharing like the
power of non-linearity and closure under duality. Define the dual access structure
of an n-party access structure f to be the n-party access structure that accepts
of all sets x whose complements x̄ are unauthorized under f , i.e., Dual(f)(x) =
1 − f(x̄). We prove the following gap theorem.

Theorem 2.4 (Gap theorem). At least one of the following gaps hold:

1. (Duality gap) There exists an n-party monotone access structure5 f whose
secret-sharing exponent is strictly smaller than the secret-sharing exponent of
its dual.

2. (Non-linearity gap) The (general) secret sharing exponent S is strictly smaller
than the linear secret sharing exponent S�.

3. (Average-case gap) Every k-DNF distribution can be realized, except with
exponentially small probability, with an exponent S̄ that is strictly smaller
than the worst-case secret sharing exponent S.

5 Formally, for asymptotic purposes one should think of f as a sequence of access
structures {fn : {0, 1}n → {0, 1}}n∈N

.
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Let us elaborate on the first two possibilities. The first item asserts that
SSize(f) < SSize(Dual(f)) · 2Ω(n). The absence of a duality gap, hereafter
referred to as the duality hypothesis, asserts that SSize(f) = SSize(Dual(f)) ·
2o(n). That is, the primal and dual access structure have similar secret-sharing
complexity up to sub-exponential difference. This hypothesis is known to hold
for LSS, and, to the best of our knowledge, its status for general secret-sharing
schemes is wide open. In fact, a recent paper of Csirmaz [16] refers to a stronger
version of this hypothesis (e.g., SSize(f) = SSize(Dual(f)) as a long-standing
open problem. Item 1 asserts that the complexity-gap between primal and dual
structures may be exponentially large.

The second item asserts that there is an exponential gap between linear-
schemes and non-linear schemes even in the worst-case! While we can prove
such a result for concrete cases (e.g., random slice functions), we do not know
whether non-linearity significantly helps for worst-case functions, and one may
guess that eventually the two exponents S� and S will collapse to, say 1/2. Item 2
asserts that this is not the case.

Proving Theorem 2.4. To prove the theorem, we show that, under the duality
hypothesis, one can improve Theorem 2.3 so that a random DNF, that is sampled
from an arbitrary k-DNF distribution, can be realized with an exponent that
is strictly smaller than 0.5, except with exponentially small probability. If, in
addition, there is no Average-case gap, we get that the worst-case exponent S
is smaller than 0.5. Since it is known that the linear exponent S� cannot be
smaller that 0.5 (e.g., by counting), we conclude that the linear exponent must
be strictly larger than the general exponent. (See Sect. 6).

3 Preliminaries

General. By default, all logarithms are taken to base 2. For positive integers
k ≤ n, we let

(
n

≥a

)
:=

∑
a≤i≤n

(
n
i

)
. We use the following standard estimate for

the binomial coefficients
(

n

k

)

= Θ(k−1/22H2(k/n)n) (1)

where H2(·), denotes the binary entropy function, that maps a real number α ∈
(0, 1) to H2(α) = −α log α − (1 − α) log(1 − α) and is set to zero for α ∈ {0, 1}.

Secret sharing. Standard background on secret-sharing schemes is deferred to the
full version of the paper, while formal definitions of slices, multislices, downslices,
and upslices can be found in Appendix A. Let us just mention the following
complexity conventions. Given a (monotone) access structure f : {0, 1}n →
{0, 1} we let SSize(f) := minD realizes f |D|, where |D| denotes the total share
size of a secret-sharing scheme D. The exponent of f is n−1 · log2 SSize(f), and
it is denoted by S(f). If F is a collection of n-party access structures then

SSize(F) := max
f∈F

SSize(f), and S(F) := max
f∈F

S(f).
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When F = {Fn} is a sequence of collections Fn of n-party access structures
we think of SSize(F) as a function of n, and define the secret-sharing exponent
S(F) to be S(F) := lim supn→∞ S(Fn). All these definitions naturally extend
to the linear setting as well.

We denote by D(b, n) (resp., D�(b, n)) the secret-sharing exponent (resp.,
the LSS exponent) of (b, n)-downslices and by D(β) (resp., D�(β)) the secret-
sharing exponent (resp., the LSS exponent) of (βn, n)-downslices. The notation
U(a, n),U�(a, n),U(α) and U�(α) is defined analogously for the secret-sharing
exponents and LSS exponents of (a, n)-upslices and (αn, n)-upslices. The secret-
sharing exponents and LSS exponents of (a : b, n)-multislices and (αn : βn, n)-
multislices are denoted by M(a : b, n),M�(a : b, n),M(α : β) and M�(α : β).

3.1 Covers

We will make use of the following combinatorial concept of “covers”.

Definition 3.1 (Covering a slice). We say that a collection of subsets G =
{Gi} over a ground set [n] upcovers a slice t if for every set A of size t, exists a
set Gi ∈ G such that A ⊆ Gi. Analogously, we say that G downcovers a slice t,
if for every set A of size t, exists a set Gi ∈ G such that Gi ⊆ A.

We start by introducing a fact about combinatorial covering designs by Erdős
and Spenser:

Fact 3.2 ([18]). For every positive integers a ≤ b ≤ n, there exists a family
G = {Gi}L

i=1 of b-subsets of [n] that upcovers the slice a where G is of size

L = L(n, a, b) ≤
[(

n
a

)
/
(

b
a

)] [
1 + log

(
b
a

)]
.

We will make use of the following dual fact.

Fact 3.3. For every positive integers a ≤ b ≤ n, there exists a family G =
{Gi}L

i=1 of a-subsets of [n] that downcovers the slice b where G is of size L =

L(n, a, b) ≤
[(

n
n−b

)
/
(
n−a
n−b

)] [
1 + log

(
n−a
n−b

)]
.

Moreover, for some constant C > 1, a random family G of a-subsets of n of
size at least L̄(n, a, b) =

[(
n
a

)
/
(

b
a

)]·n downcovers the slice b except with probability

C−n.

The reader should note that
[(

n
a

)
/
(

b
a

)]
=

[(
n

n−b

)
/
(
n−a
n−b

)]
.

Proof. Whenever a collection {Gi}L
i=1 upcovers the slice a, the collection of com-

plement sets
{
Ḡi

}L

i=1
downcovers the slice n − a. Fact 3.2 therefore implies the

first part.
For the “Moreover” part. Sample G by sampling each Gi uniformly at random

among all a-subsets of [n]. Fix some b-subset B ⊆ [n]. For every i ∈ [L], the
probability that Gi ⊆ B is p =

(
b
a

)
/
(
n
a

)
, and therefore

Pr[∀i, Gi � B] ≤ (1 − p)L = (1 − p)n/p < e−n,
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where the equality follows by noting that L̄(n, a, b) ·p = n. Therefore, by a union
bound over all sets of size b, the probability that there is some b-set that does
not contain any Gi is at most

(
n
b

) · e−n < 2n · e−n = 1/Cn for C = e/2. �	

4 General Secret-Sharing for Downslices

Recall that D(β) and D�(β) denote the secret-sharing exponent and LSS expo-
nent of (βn, n)-downslices. The classical CNF-based scheme [24] that enumerates
over all of the max-terms of size βn, yields an LSS exponent of H2(β). One can
also get an exponent of 0.637 via the general-purpose secret-sharing scheme of [2].
In this section, we improve these results and show that D(β) ≤ log(3/2) for any
β.

Theorem 4.1. Every n-party downslice access structure can be realized with
complexity of 2log(3/2)n+o(n). Additionally, for LSS, D�(β) ≤ 1

2 + β
2 and, for

β > 0.5, it holds that D�(β) ≤ H2(β) − 1
2 (1 − β).

The linear exponent will be improved in the next section. Before proving The-
orem 2.1, we will need the following simple observation whose proof is deferred
to the full version of the paper,.

Observation 4.2. Let f be an access structures over n parties, and assume that
Fi, the i-downslice of f , can be realized (resp., linearly realized) with total share
size of Si for every i ∈ [0, n]. Then, f can be realized (resp., linearly realized)
with share size of

∑n
i=0 Si ≤ n maxi Si.

We can now prove Theorem 2.1.

Proof (Proof of Theorem 2.1). Fix some access structure f over n parties
and let Fb denote the (b, n)-downslice of f . By Theorem 4.1 the access struc-
ture Fb can be realized with total share size Sb of at most 2log(

3
2 )n+o(n), and

so by Observation 4.2, f can be realized with complexity of maxb(Sb) · n ≤
2log(

3
2 )n+o(n). �	

The proof of Theorem 4.1 is based on the following two lemmas.

Lemma 4.3 (low-density downslices). Secret sharing for (b, n)-downslices
can be realized (resp., linearly realized) with share size of 2b+o(n) (resp.,
2b/2+n/2+o(n)). Consequently, for any constant β ∈ [0, 1], it holds that

D(β) ≤ β and D�(β) ≤ 1
2

+
β

2
.

The proof of Lemma 4.3 appears in Sect. 4.1 and it is based on a scheme for
multislices that will be employed also in the next sections. Lemma 4.3 presents an
improvement over previously known schemes for (b, n)-downslices in the regime
b ∈ [0, 0.637n], i.e., as long as the level b is smaller than the exponent of [2].
Higher levels, for which Lemma 4.3 provides no improvement, are treated by the
following lemma.
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Lemma 4.4 (high-density downslices). For every integers n and b ∈
(0.5n, n], every (b, n)-downslice can be realized with share size of

[(
n

n − b

)

/

(
2n − 2b

n − b

)]

· 2n−b+o(n),

and can be realized by a linear scheme with share size
[(

n

n − b

)

/

(
2n − 2b

n − b

)]

· 2(3n−3b)/2+o(n).

Consequently, for every constant β ∈ (0.5, 1], it holds that

D(β) ≤ H2(β) − (1 − β) and D�(β) ≤ H2(β) − 1
2
(1 − β).

We note that the maximal value of D(β) is log
(
3
2

)
and it is obtained when

β = 2/3. Therefore, a combination of Lemma 4.3 and Lemma 4.4 yield Theorem
4.1. The proof Lemma 4.4 is deferred to Sect. 4.2 and is based on a general
cover-reduction that will be also useful for the next sections.

The exponents of the above lemmas together with the CNF-based exponent
and the exponent of [2] are depicted in Fig. 2.

Fig. 2. A description of the exponents of four general schemes for (βn, n)-downslices.
The horizontal axis represents the density β of the slice, and the vertical axis represents
the resulting exponents. The solid red curve corresponds to the exponent of the CNF-
based scheme. The constant exponent of the general access structures scheme of [2]
appears as the dashed blue line. The dotted green straight line represents the exponent
that is achieved by the scheme of Lemma 4.3, and the dotted green curve which starts
at x = 0.5 represents the scheme for downslices of Lemma 4.4. (Color figure online)
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4.1 Low-Density Downslices via Multislices

Secret sharing schemes for (a : b, n) multislice access structures were consid-
ered in [1,2,26], for the special cases of “mid-slices” where a =

(
1
2 − δ

)
n,

b =
(
1
2 + δ

)
n for some constant δ ∈ [0, 0.5]. It is possible to generalize the

scheme of [2] that was originally designed to handle mid-slices to handle any
pair a < b ∈ [n] as follows. Recall that, for every constants 0 ≤ α < β ≤ 1, we
let M(α : β) (resp., M�(α : β)) denote the exponent (resp., LSS exponent) of
(αn : βn, n)-multislice access structures.

Lemma 4.5 (multislice lemma). For every a < b ∈ [n], every (a : b, n)-
multislice access structure can be realized by a secret-sharing scheme with share
size

(
b

≥a

) · 2o(n) and by a linear scheme with share size
√(

b
≥a

) · 2n/2+o(n). Con-
sequently, for every constants 0 ≤ α < β ≤ 1, the exponent M(α : β) of
(αn : βn, n)-multislice access structures satisfies

M(α : β) ≤
{

β H2

(
α
β

)
if α > β/2

β if α ≤ β/2
,

and, for the linear case, the exponent M�(α : β) satisfies

M�(α : β) ≤
{

1
2 + β

2 · H2

(
α
β

)
if α > β/2

1
2 + β

2 if α ≤ β/2
.

The proof follows the exact steps of the proof of Lemma 5.10 from [2] except that
we use a more general setting of parameters. See the full version of the paper,
for details. By using multislices to implement downslices, we derive Lemma 4.3.

Proof (Proof of Lemma 4.3). Let F be a (b, n)-downslice and let F ′ be the
(0 : b, n)-multislice of F . Observe that F equals F ′, and so by Lemma 4.5 it can
be implemented with the desired share sizes since

(
b

≥0

)
= 2b. �	

4.2 Reducing High-Density Downslices to Low Downslices

In order to prove Lemma 4.4 we reduce the problem of realizing (b, n)-downslices
for b > 0.5n to the problem of realizing (b′, n′)-downslices over a smaller set of
parties n′ < n and for density b′ = n′/2. This is, in fact, a special case of the
following more general reduction that will be also applied in its full power later
in Sect. 5.

Lemma 4.6 (cover reduction lemma). Let v < b ≤ n be positive integers. If
(b − v, n − v)-downslices can be realized (resp., linearly realized) with share size
z(b−v, n−v) then (b, n)-downslices can be realized (resp., linearly realized) with
share size of

[(
n

n − b

)

/

(
n − v

n − b

)] [

1 + log
(

n − v

n − b

)]

· z(b − v, n − v) (2)
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Consequently, for every constants 0 < α ≤ β < 1, if (αm,m)-downslices can be
realized (resp., linearly realized) with exponent of z′(α) then (βn, n)-downslices
can be realized with an exponent of

H2(β) − (1 − β)
(

H2(α) − z′(α)
1 − α

)

. (3)

The proof of Lemma 4.6 is deferred to Sect. 4.3.

Remark 4.7 (Generalizations of Lemma 4.6 and completeness of downslices).
The proof of Lemma 4.6 relies on downcovers. One can use upcovers to prove
a similar lemma that reduces low-density downslices to high-density downslices.
Moreover, both, Lemma 4.6 and its low-to-high variant, can be also proved for
the dual setting of upslices. So overall, Lemma 4.6 represents four possible trans-
formations. (The other three will not be used in this work.) By combining these
reductions with the completeness of downslices/upslices (Observation 4.2), we
conclude that it is possible to reduce a general access structure to downslices or
upslices of specific density.

We are now ready to realize high-density downslices.

Proof (Proof of Lemma 4.4). Let f be a (b, n)-downslice with b ∈ (0.5n, n]. Let
v = 2b − n, and observe that v ∈ (0, b] since b ∈ (0.5n, n]. We use the cover
reduction lemma (Lemma 4.6) to realize f based on secret-sharing scheme for
downslices with parameters (b − v, n − v) = (n − b, 2n − 2b).6 The latter can
be realized (non-linearly) with share size of 2n−b+o(n) by Lemma 4.3. Overall,
Lemma 4.6 yields a (non-linear) scheme for f with total share size of

[(
n

n − b

)

/

(
2n − 2b

n − b

)] [

1 + log
(

2n − 2b

n − b

)]

· 2n−b+o(n)

which equals
[(

n
n−b

)
/
(
2n−2b
n−b

)]·2n−b+o(n). In the linear case, we realize (n−b, 2(n−
b))-downslices using the linear secret-sharing scheme promised by Lemma 4.3.
This results in the desired share size:

[(
n

n − b

)

/

(
2n − 2b

n − b

)][

1 + log
(

2n − 2b

n − b

)]

· 2(3n−3b)/2+o(n)

which equals
[(

n
n−b

)
/
(
2n−2b
n−b

)]·2(3n−3b)/2+o(n). If we plug in b = βn for a constant
β ∈ (0.5, 1] and make use of (1), the general and linear share sizes translate
to 2(H2(β)−2(1−β)+(1−β))n+o(n) and 2(H2(β)−2(1−β)+ 3

2 (1−β))n+o(n), leading to the
desired exponents. �	

6 This choice of v can be shown to be optimal for both for the general and linear case.
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4.3 Proof of the Cover Reduction

The proof of Lemma 4.6 is based on the following construction.

Construction 4.8. Let F be a (b, n)-downslice. We share the secret s according
to F as follows:

1. Pick a family G = {Gi}L
i=1 of sets of size v that downcovers the slice b.

2. For every Gi ∈ G define the access structure Fi over the participant’s set
[n] \ Gi as follows:

Fi(x′) = F (x′ ∪ Gi)

where x′ is viewed as a subset of [n] \ Gi.
3. Split the secret s with an (L-out-of-L) LSS scheme to random shares

s1, . . . , sL ∈ {0, 1} such that s1 ⊕ · · · ⊕ sL = s. For every 1 ≤ i ≤ L share si

according to the access structure Fi.

Claim 4.9. Construction 4.8 realizes the access structure F .

Proof. It suffices to show that F =
∧

i Fi. Assume that x is authorized under F ,
we will show that it is also authorized by Fi for every i. Fix i and let x′ = x∩Ḡi,
we claim that x′ is authorized under Fi. Indeed, by definition, Fi(x′) = F (x′∪Gi)
which is 1 since x′ ∪ Gi contains x and is therefore authorized under F .

Next, assume that x is unauthorized under F . Since F is a (b, n)-downslice, x
must be a subset of some unauthorized set B of size b, and by the down-covering
property there exists an index i ∈ [L] such that Gi is a subset of the same set
B. Again letting x′ = x ∩ Ḡi, we then get that x′ ∪ Gi ⊆ B, and therefore
Fi(x′) = F (x′ ∪ Gi) = 0. The claim follows. �	
Claim 4.10. For every 1 ≤ i ≤ L, Fi is a (b − v, n − v)-downslice access
structure.

Proof. Fix a maximal unauthorized set x′ ⊂ [n] \ Gi of Fi. We show that x′

contains exactly b − v parties. For this, it suffices to show that x = x′ ∪ Gi is a
maximal unauthorized set of F . By definition, x′ ∪ Gi is unauthorized under F .
Moreover, every strict super-set y of x′∪Gi must be F -authorized. Otherwise, if y
is F -unauthorized then the set y′ = y∩Ḡi must be also Fi-unauthorized and since
y′ is a strict-super set of x′, this contradicts the fact that x′ is max-unauthorized
under Fi. Finally, since any max-term of F is of size b, the max-terms of Fi is
of size b − v. �	

Share size analysis: Due to Fact 3.3 we can pick a family G for step 1 of the
scheme of size

L =
[(

n

n − b

)

/

(
n − v

n − b

)] [

1 + log
(

n − v

n − b

)]

,

and for every set in G we use a secret sharing scheme with share size z(b−v, n−v),
which results in the desired share size. This completes the proof of the first part
of Lemma 4.6.
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The “Consequently” part follows immediately by plugging-in b = �βn�, v =
�β−α
1−α n�, and noting that αn = b−v

n−v converges to α when n goes to infinity.
Observe that the exponent of (αn(n − v), (n − v))-downslices is the same as
the exponent, z′(α), of α-downslice.7 Now, by applying (1) and noting that
βn = b/n = �βn�/n converges to β when n grows, we derive an exponent of

H2(β) − 1 − β

1 − α
H2(1 − α) + z′(α) · 1 − β

1 − α
,

which equals the expression in (3), as required. �	

5 Linear Secret Sharing for Downslices

In this section we present a LSS for general access structures with an exponent
of 0.7576 (Theorem 2.2). As in Sect. 4, this is done by showing that downslices
can be linearly realized with this exponent.

Theorem 5.1. Every n-party downslice access structure can be linearly realized
with complexity of 20.7576n+o(n).

The proof of Theorem 5.1 is based on a bootstrapping procedure which strongly
exploits the duality properties of LSS.

Section Organization. In Sect. 5.1 we describe a property of linear schemes for
dual access structures. In Sect. 5.2 we reduce downslices to upslices and vice
versa. In Section 5.3 we iteratively employ these reductions together with tools
from the previous section, to obtain a LSS for downslices with lower exponents
than before. Lastly in Sect. 5.4 we prove Theorem 2.2. Some additional opti-
mizations for low downslices (that do not affect Theorem 5.1) appear in the full
version of the paper.

5.1 Exploiting Duality

Definition 5.2 (Dual Access structures). The dual access structure of an n-
party access structure f is an n-party access structure, denoted by Dual(f), that
consists of all sets x whose complements x̄ are unauthorized under f . Viewing
f as a function, this means that for every input x

Dual(f)(x) = 1 − f(x̄).

Consequently, the complement of every min-term of f is a max-term of the
dual Dual(f), and the complement of every max-term of f is a min-term of
Dual(f).

7 More generally, whenever |g(n)− g′(n)| = o(n), the exponent of (g(n), n)-downslices
is equal to the exponent of (g′(n), n)-downslices. To see this, observe that (g(n), n)-
downslices can be written as a sub-exponential formula over (g′(n), n)-downslices.
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We make the following observation.

Fact 5.3 (Duals of slice access structures). Let f be an access structure.
Then:

1. If f is an (a, n)-slice then its dual is an ((n − a), n)-slice.
2. If f is an (a, n)-upslice then its dual is a ((n − a), n)-downslice, and vice

versa.
3. If f is an (a : b, n)-multislice then its dual is an (n − b : n − a, n)-multislice.

It is known that for linear schemes the total share size of an access structure
is equal to the total share size of its dual.

Fact 5.4 ([20]). A linear secret sharing scheme for an access structure f can be
converted into a linear scheme for the dual access structure Dual(f) with the
same total share size.

By Fact 5.4, Fact 5.3, Lemma 4.3, and Lemma 4.4, we get the following corollary.

Corollary 5.5 (Duality reduction). For every integers a ≤ n, the LSS com-
plexity of the family of (a, n)-downslices equals to the LSS complexity of the
family (n − a, n)-upslices.

By Lemma 4.4 and Lemma 4.3, for any constant 0 < α < 1, the family of
(αn, n)-upslices can be linearly realized with an exponent of

U�(α) ≤
{

H2(α) − 1
2 (α) if α < 1

2
1
2 + 1−α

2 if α ≥ 1
2

.

5.2 High-Density Downslices from Low-Density Upslices and
Mid-Range Multislices

In the following lemma we improve the exponent of a (c, n)-downslice f by
decomposing it into two access structures: one that has the same min-terms as
f up to a specific size u (which will be realized using low-density upslices), and
one that is simply the (u : c, n) multislice of f .

Lemma 5.6 (Reducing downslices to upslices). Let u ≤ c < n be integers.
Given a LSS that realizes (a, n)-upslices with an exponent of U′

�(a, n) and a LSS
that realizes the (u : c, n)-multislices with an exponent of M′

�(u : c, n), there
exists a LSS that realizes (a, n)-downslices with an exponent of

D�(c, n) ≤ min
u

[

max
(

max
i≤u

{U′
�(i, n)} ,M′

�(u : c, n)
)]

+ o(1),

where o(1) stands for a quantity that tends to zero as n increases, regardless of
the values of u and c.
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Proof. It suffices to show that for every u ≤ c any downward-induced (c, n)
access structure f can be realized with an exponent of

max
(

max
i≤u

{U′
�(i, n)} ,M′

�(u : c, n)
)

+ o(1). (4)

Fix some u ∈ [0, c]. Define fu,c to be the (u : c, n)-multislice of f , and fup
0,u as

the disjunction of the first u upslices of f . More formally, fup
0,u :=

u∨

i=0

fi where

fi is the i-upslice of f . Clearly, fup
0,u can be linearly realized with an exponent

of maxi≤u {U′
�(i, n)} + O(n−1 log n) (just duplicate the secret u times and deal

the i-th copy via the access structure fi). Consequently, the access structure
fup
0,u ∨ fu,c can be linearly realized with an exponent of (4). We complete the

proof by showing that f = fup
0,u ∨ fu,c.

For inputs x such that |x| ≤ u, f(x) = fup
0,u(x) and fu,c(x) = 0. For inputs x

such that u < |x| ≤ c, it holds that (1) f(x) = fu,c(x), and (2) fup
0,u ≤ f since

the min-terms of fup
0,u are a subset of those of f . We therefore conclude that for

such inputs f(x) = fup
0,u(x)∨fu,c(x). Finally, for inputs x with |x| > c, both f(x)

and fu,c(x) take the value 1, and so equality holds in this case as well. �	

5.3 Bootstrapping (c, n)-downslices

In this section we construct an LSS for (c, n)-downslices via an iterative process.
In each iteration, we will start with an LSS for (c, n)-downslices and end-up with
a new LSS for (c, n)-downslices whose exponent is at least as good as the one
achieved in the previous iteration. Each iteration i is composed of three steps:
(1) We generate LSS for all downslices of density larger than c; (2) We generate
LSS for all upslices of density smaller than n−c; (3) We use the current schemes
for (u, n)-upslices for u < ui for some parameter ui to obtain a new LSS for
(c, n)-downslices. Note that the target slice c is kept fixed across iterations. The
structure of a single iteration that consists of the three reductions is depicted
below. The process is formally defined in Construction 5.7.

Construction 5.7 (Bootstrapping downslices). Given integer n, a target
slice c < n, and time-bound t ∈ N, initialize an LSS for (c, n)-downslice based
on Theorem 4.1 and set D�(c, n)[0] to be its exponent, and repeat the following
steps for i ∈ [t] iterations:

1. For every d ∈ (c, n], apply the cover reduction (Lemma 4.6) and transform
the current LSS for (c, n)-downslices to an LSS for (d, n)-downslices with
exponent

D�(d, n)[i + 1] = H2(d/n) − (1 − d/n)
(

H2(c/n) − D�(c, n)[i]
1 − c/n

)

+ o(1). (5)

2. For every d ∈ (c, n], apply the duality reduction (Corollary 5.5) and transform
the LSS for (d, n)-downslices to an LSS for (n−d, n)-upslices with an exponent
of

U�(n − d, n)[i + 1] = D�(d, n)[i + 1]. (6)
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Fig. 3. We place all slices on an horizontal axis with an arrow which represents the
direction of the transformation.

3. Construct an LSS for (c, n)-downslices by applying Lemma 5.6 where (j, n)-
upslices for every j < n − c are instantiated with the LSS that were derived
in the previous step. Accordingly, the new LSS for (c, n)-downslices has an
exponent of

D�(c, n)[i + 1] = min
u≤c

[

max
(

max
j≤u

U�(j, n)[i + 1],M0
�(u : c, n)

)]

+ o(1). (7)

where M0
�(a : b, n) denotes the linear exponent of (a : b, n)-multislice access

structures that is achieved in Lemma 4.5.

Now by Lemma 4.6, Corollary 5.5 and Lemma 5.6, for any parameter t,
Construction 5.7 yields an LSS for (c, n)-downslices. For a given γ ∈ [0, 1] and
constant t, we can define a function Φt(γ) that captures the asymptotic expo-
nent that is achieved for (γn, n)-downslices after running Construction 5.7 for t
iterations. Formally,

Φ0(γ) :=

{
1
2 + 1

2γ if γ ≤ 1
2

H2(γ) − 1
2 (1 − γ) if γ > 1

2

is set to be the exponent derived from Theorem 4.1. Then by (5), (6) and (7)

Φi+1(γ) := min
υ∈[0,γ]

[

max
(

max
χ∈[0,υ]

(U′
�(χ, γ),M′

�(υ, γ)
)]

,

where

U′
�(χ, γ) := H2(χ) − χ

(
H2(γ) − Φi(γ)

1 − γ

)

,
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and

M′
�(υ, γ) :=

{
1
2 + 1

2γ H2(υ/γ) if γ/2 < υ < γ
1
2 + 1

2γ if υ < γ/2
.

We therefore conclude that

Lemma 5.8. For every constant t ∈ N and constant γ ∈ [0, 1], and for all n’s,
the LSS constructed by invoking Construction 5.7 for t steps on (γn, n), has an
exponent of Φt(γ) + ε(n) where ε(n) tends to zero when n grows.

Lemma 5.8 suffices for proving Theorem 5.1 (see Sect. 5.4).

Remark 5.9. Assuming the duality hypothesis, the same bootstraping
idea can be employed for general (non-linear) schemes. However, it does not
yield better general exponents than the ones shown in the previous section for
any downwslice.

5.4 Proof of Theorem 5.1

A natural approach for proving Theorem 5.1 would be to run the bootstrapping
scheme for each possible target c ∈ [n], and then glue together all the (c, n)-
downslices. This approach fails since the exponents of some slices will still be
too high. Instead we will apply Construction 5.7 for only two concrete values of c
and use the cover reduction to handle downslices of higher densities. Downslices
with low density will be treated by Lemma 4.5. Details follow.

By applying Construction 5.7 with γ1 = 0.5 and γ2 = 0.535 for t = 7 times,
we derive the following claim from Lemma 5.8.

Claim 5.10. Set γ1 = 0.5 and γ2 = 0.535. The family of (γ1n, n)-downslices
and the family of (γ2n, n)-downslices can be linearly realized with exponents of
z1 = 0.736 and z2 = 0.748.

Let f be a (d, n)-downslice. We distinguish between the following cases.

1. For d ∈ [0, 0.5n] linearly realize f by Lemma 4.3 with a maximal exponent of
0.75.

2. For d ∈ [0.5n, 0.535n] linearly realize f by applying the cover reduction
(Lemma 4.6) instantiated with the LSS for (0.5n, n)-downslices of Claim 5.10.
This yields an exponent of

H2(d/n) − (1 − d/n)
H2(γ1) − z1

1 − γ1
< H2(d/n) − 0.528(1 − d/n) (8)

which is upper-bounded by 0.751 for d ∈ [0.5n, 0.535n].
3. For d ∈ [0.535n, n] linearly realize f by applying the cover reduction (Lemma

4.6) instantiated with the LSS for (0.535n, n)-downslices of Claim 5.10. This
yields an exponent of

H2(d/n) − (1 − d/n)
H2(γ2) − z2

1 − γ2
< H2(d/n) − 0.534(1 − d/n) + o(1) (9)

which is upper-bounded by 0.7576 for d ∈ [0.535n, n].
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The proof of Theorem 5.1 follows. �	
Remark 5.11. A more careful analysis allows to obtain a better exponent for
values of d ≤ 0.535n. We sketch this result in the full version of the paper.

6 Random Upslices

Recall that, for a vector of non-negative integers k = (k1, . . . , kn), the k-DNF
distribution is defined by selecting, for each parameter a, ka clauses uniformly at
random from the set of all possible

(
n
a

)
monotone a-clauses. (We allow repetitions

though this choice does not change the results.) When k = (0a−1ka0n−a) is
supported on a single level a, we refer to this distribution as a random (a, ka, n)-
upslice. Observe that this special case is complete in the following sense.

Observation 6.1. For every k = (k1, . . . , kn) the following holds. If, for every
a ∈ [n], a random (a, ka, n)-upslice can be realized (resp., linearly realized) with
total share size of at most Sa except with probability ε, then, a random k =
(k1, . . . , kn) can be realized (resp., linearly realized) with an complexity of at
most

∑
Sa except with probability nε.

Proof. A random k-DNF f can be written as f =
∨

a fa where each fa is a
random (a, ka, n)-upslice. Hence, we can share f by duplicating the secret n
times and sharing the ath copy according to fa. The claim follows by applying
union-bound. �	

We can therefore reduce Theorem 2.3 to the following refined statements
(Theorem 6.2 and Theorem 6.3) about random (a, ka, n)-upslices. Specifically,
we prove the following theorem in Sect. 6.1.

Theorem 6.2 (random upslices). Let a ∈ [n], k ≤ (
n
a

)
and let f be a ran-

domly chosen (a, ka, n)-upslice. Then, with probability 1 − 2−Ω(n),

SSize(f) ≤
⎧
⎨

⎩

√(
n

α∗n

) · 2o(n) if a ∈ [0, α∗n]
√(

n
a

) · 2o(n) if a ∈ [α∗n, n]
,

where α∗ ∼ 0.157 is the root of 0.25H2(α) − α. Moreover, under the duality
hypothesis, with probability 1 − 2−Ω(n), the function f can be realized with an
exponent of at most 1

2 H2(λ) ∼ 0.491, where λ is the root of 1
2 H2(λ) − (1 −

λ)H2( λ
1−λ ).

The first part of the theorem (without the duality hypothesis), shows that, for
every density α ∈ [0, 1], a random (αn, n)-upslice can be realized, whp, with an
exponent of 0.5. Thus, by Observation 6.1, the non-linear part of Theorem 2.3
follows. We further mention that we did not attempt to optimize the exponent
for a ≤ α∗n, and indeed a better exponent can be achieved in this case.
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Moving on to the second (“Moreover”) part of the theorem, recall that the
duality hypothesis asserts that for every f = {fn}, it holds that SSize(f) ≤
SSize(Dual(f)) · 2o(n)8 and note that this part implies the gap Theorem ( 2.4),
based on Observation 6.1 and the outline given in Sect. 2.

We move on to handle the linear case.

Theorem 6.3 (LSS for random upslices). Let a ∈ [n], k ≤ (
n
a

)
and let f be

a randomly chosen (a, ka, n)-upslice. Then, with probability 1 − 2−Ω(n), it holds
that

LSSize(f) ≤
(

n

a

)1/3

· 2
n
3 +o(n).

Moreover, with probability 1 − 2−Ω(n), f can be realized with an exponent of at
most 0.6651 < 2/3, where 0.6651 = H2(λ) − (1 − λ)H2( λ

1−λ ) for the λ which is
the root of H2(λ) − 3

2 (1 − λ)H2( λ
1−λ ) − 1

2 .

Together with Observation 6.1, Theorem 6.3 implies the non-linear part of The-
orem 2.3. The proof of Theorem 6.3 appears in Sect. 6.2.

6.1 Proof of Theorem 6.2

Given a random (a, ka, n)-upslice f we realize f via one of the following two
schemes depending on ka. Let t be some threshold parameter that will be chosen
later.

1. If ka ≤ t realize f via a DNF scheme with complexity of ka.
2. If ka > t, set b to be the smallest integer solution of the inequality

t ≥
[(

n

a

)

/

(
b

a

)]

· n. (10)

If the min-terms of f downcover the slice b (that is, f(x) = 1 for every x of
weight at least b) realize f via the (a : b, n)-multislice of f with the general
scheme for multislices promised by Lemma 4.5. Otherwise, realize f via DNF
and call this event “failure”.

We analyze the complexity of the construction. We set t to
√(

n
a

)
. For ka ≤ t we

rely on the first scheme and get complexity of at most t =
√(

n
a

)
, as required.

We move on to the case where ka ≥ t. By Fact 3.3, the probability of “failure”
is 2−Ω(n) and so by Lemma 4.5, the complexity in this case is

(
b

≥a

) · 2o(n). We
will show that

(
b

≥ a

)

≤
⎧
⎨

⎩

√(
n

α∗n

) · 2o(n) if a ∈ [0, α∗n]
√(

n
a

) · 2o(n) if a ∈ [α∗n, n]
, (11)

8 In fact, a weaker hypothesis suffices that applies duality only to the family of (a :
b, n)-multislices; See Lemma 6.4.
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Let us start with the case of a ≥ α∗n. We claim that
(

b

≥ a

)

≤
(

b

a

)

· 2o(n) ≤



√(
n

a

)

· 2o(n). (12)

Indeed, by plugging t =
√(

n
a

)
into (10) and rearranging the terms, we get that

b is the smallest integer that satisfies
(

b
a

) ≥ n ·
√(

n
a

)
. Therefore, () holds.

To establish the first inequality, it suffices to show that a + o(n) ≥ b/2, or,
equivalently, that

(
2a
a

) · 2o(n) ≥ (
b
a

)
. By () it suffices to show that

(
2a
a

) · 2o(n) ≥
√(

n
a

)
. Taking logarithms from both sides, the inequality holds whenever 2a +

o(n) > 0.5H2(a/n)n which is indeed the case for any a > α∗n.
Next we deal with the case where a < α∗n. By (10), in this regime, b grows

monotonically with a and so in this case it holds that b < 2α∗. Therefore

(
b

≥ a

)

≤
(

2α∗n
≥ a

)

≤
(

2α∗n
α∗n

)

· 2o(n) ≤
√(

n

α∗n

)

· 2o(n),

where the last inequality follows from the previous case. This completes the proof
of the first part of Theorem 6.2 (without the “Moreover” part.)

Proving the “Moreover” part under the duality hypothesis. Now we assume the
duality hypothesis and derive the last part of the proof. We will need the follow-
ing lemma that is implied by the duality conjecture and the multislice lemma
(Lemma 4.5).

Lemma 6.4. Assuming the duality hypothesis, if (a : b, n)-multislices can be
realized with share size of S, then the dual (n − b : n − a, n)-multislices can be
realized with share size of S ·2o(n). Specifically, (a : b, n)-multislice can be realized
with share size of

(
n−a

≥n−b

) · 2o(n).

It can be verified that the above lemma outperforms the original (a : b, n)-
multislice construction (Lemma 4.5) whenever b > n − a.

Getting back to the proof of Theorem 6.2, we will now realize random (a, n)-
upslices with the same scheme but with different parameters and ingredients.
We will analyze this scheme for a ∈ [0, α∗∗n], where α∗∗ ∼ 0.686 is the solution
of the equation

H2(α) + (1 − α∗)H2

(
α

1 − α∗

)

− 1
2

H2(α∗) = 0

and α∗ ∼ 0.157 is defined as before to be the root of 0.25H2(α)−α. For a random
(a, n)-upslice f , we will run the previous scheme with the following changes. In
step (2) we will set b to be the smallest integer solution of the inequality

√(
n

n − b

)

≥
[(

n

a

)

/

(
b

a

)]

· n =
[(

n

n − b

)

/

(
n − a

n − b

)]

· n. (13)



Upslices, Downslices, and Secret-Sharing with Complexity of 1.5n 649

If in step (2) the min-terms of f downcover the slice b, we realize the (a : b, n)-
multislice of f by the new construction (Lemma 6.4) with share size

(
n−a

≥n−b

)·2o(n).
If the min-terms do not downcover the slice b, the process fails (and we use DNF-

based secret sharing). In addition, we set the threshold t to
√(

n
b

)
.

Claim. Under the duality hypothesis, for any a ∈ [0, α∗∗n] and any k, the
above scheme realizes a randomly chosen (a, k, n)-upslice with total share size

of
√(

n
n−b

) · 2o(n) except with probability 2−Ω(n).

Proof. First observe that, by Fact 3.3, the scheme fail with probability at most
2−Ω(n). Conditioned on not failing, the share size is max(

(
n−a

≥n−b

)
, t) and since

t =
√(

n
b

)
=

√(
n

n−b

)
it suffices to prove the following inequalities

(
n − a

≥ n − b

)

≤
(

n − a

n − b

)

· 2o(n) ≤




√(
n

n − b

)

· 2o(n).

Indeed, since b is the minimal integer that satisfies (13), we conclude that ()
holds. The first inequality can be established by showing that n − b + o(n) ≥
(n−a)/2, or, equivalently, that

(
2(n−b)

n−b

)·2o(n) ≥ (
n−a
n−b

)
. By () it suffices to show

that
(
2(n−b)

n−b

) · 2o(n) ≥
√(

n
n−b

)
. Taking logarithms from both sides and dividing

by n, we get that the inequality holds whenever 2(1 − b/n) + o(1) ≥ 0.5H2(b/n)
which holds whenever b/n ≤ 1−α∗+o(1). We conclude the argument by showing
that b/n ≤ 1−α∗+o(1). Since b is monotonically increasing with a (by (13)) and
since a ≤ α∗∗n, we may focus on the case where a = α∗∗n. Let β = b/n. Taking
logarithms from both sides of (13) and dividing by n, we can write 1

2 H2(β) =
H2(α∗∗) − β H2(α∗∗/β) + o(1), which, by the definition of α∗∗, guarantees that
β ≤ 1 − α∗ + o(1), as required. This completes the proof of Sect. 6.1.

Combining the two schemes together. Overall we now can realize random (a, n)
upslices where a ∈ [α∗n, α∗∗n] with share size

min

(√(
n

a

)

· 2o(n),

√(
n

n − b

)

· 2o(n)

)

(14)

where b = b(a, n) is the minimal integer that satisfies (13). Denote by a0 the
value for which the two expressions in (14) are equal, i.e., b(a0, n) = n − a0. We
will later calculate a0 and show that it is about 0.421n. For now let us record the
fact that a0 < n/2 and that, consequently, for any a > a0 it holds that b(a, n) >
b(a0, n) = n − a0 > n/2 (since b(a, n) monotonically increases with a). Next,
observe that, the bound (14) on the complexity for an (a, n) upslice simplifies

to
√(

n
a

) · 2o(n) when a ≤ a0 and to
√(

n
n−b

) · 2o(n) when a > a0. Furthermore,
the first expression monotonically increases with a for a < a0 < n/2, and the
second expression monotonically decreases with a for a > a0 (since b(a, n) > n/2
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and since b(a, n) increases with a). Hence, the upslice with the maximal share
size in the given range will be the (a0, n)-upslice. We move on to calculate a0.
Let a = αn and b = βn, by plugging (13) into the equation b(a, n) = n − a, we
conclude that α0 = a0/n is the solution to the equation

1
2

H2(1 − α) = H2(1 − α) − (1 − α)H2

(
α

1 − α

)

,

and therefore α0 ∼ 0.421. Therefore (14) is upper-bounded by
√(

n
a0

) · 2o(n) ≤
20.5H2(α0)n+o(n). We conclude that random (a, n)-upslices can be realized with
an exponent of 0.5H2(α0) ≤ 0.491 whenever a ∈ [α∗n, α∗∗n]. We complete the
proof by noting that all random upslices below α∗n and above α∗∗n can also be
realized with exponents below 0.491 due to the first scheme. �	

�	

6.2 Proof of Theorem 6.3

We begin by proving the first part of Theorem 6.3 (without the moreover part).
The construction is identical to the first construction presented in Sect. 6.1,
except that the threshold t is selected differently to be

(
n
a

)1/3 · 2n/3. Again for

ka ≤ t we rely on the first scheme and get complexity of at most t =
(
n
a

)1/3 ·2n/3,
as required. For ka ≥ t, by Fact 3.3 failure happens with 2−Ω(n) probability,
and, by Lemma 4.5, conditioned on not failing, the share complexity is at most
2n/2+o(n) ·

√(
b

≥a

)
. To complete the first part of the proof, it suffices to show that

the latter quantity is at most
(
n
a

)1/3 · 2
n
3 +o(n). This follows from the following

claim (
b

≥ a

)

≤
(

b

a

)

· 2o(n) ≤



(
n

a

)2/3

· 2−n/3+o(n).

Indeed, by plugging t =
(
n
a

)1/3 ·2n/3 into (10) and rearranging the terms, we get

that b is the smallest integer that satisfies
(

b
a

) ≥ n · (n
a

)2/3 · 2−n/3. Therefore, ()
holds. To establish the first inequality, it suffices to show that a+o(n) ≥ b/2, or,
equivalently, that

(
2a
a

) · 2o(n) ≥ (
b
a

)
. By () it suffices to show that

(
2a
a

) · 2o(n) ≥
(
n
a

)2/3 ·2−n/3. Taking logarithms from both sides, the inequality holds whenever
2a + o(n) > ( 23 H2(a/n) − 1/3)n which is indeed the case for every a ∈ [n]. This
completes the proof of the first part of the theorem (without the moreover part).

To prove the “Moreover” part, we make use of the following lemma which is
implied by the multislice construction (Lemma 4.5) and the duality closure of
linear schemes (Fact 5.4):

Lemma 6.5 (LSS for multislices). Let a, b ∈ [0, n] be integers, then the family

of (a : b, n)-multislices can be linearly realized with share size
√(

n−a
≥n−b

)·2n/2+o(n).
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It can be verified that the above lemma outperforms the original linear (a : b, n)-
multislice construction (Lemma 4.5) whenever b > n − a.

This time for a random (a, n)-upslice f , we will run the previous linear scheme
with the following changes. In step (2), we will set b to be the smallest integer
solution of the inequality

(
n

b

)1/3

· 2n/3 ≥
[(

n

a

)

/

(
b

a

)]

· n =
[(

n

n − b

)

/

(
n − a

n − b

)]

· n. (15)

In addition, we set the threshold t to
(
n
b

)1/3 · 2n/3.

Claim. For any a ∈ [n] and any k, the above scheme realizes a randomly chosen
(a, k, n)-upslice with total share size of

(
n

n−b

)1/3 · 2n/3.

Proof. First observe that by Fact 3.3 we fail with probability at most 2−Ω(n).
Conditioned on not failing, the share size is max(

√(
n−a

≥n−b

) · 2n/2+o(n), t) and

since t =
(
n
b

)1/3 · 2n/3 =
(

n
n−b

)1/3 · 2n/3 it suffices to show that

√(
n − a

≥ n − b

)

· 2n/2+o(n) ≤
(

n

n − b

)1/3

· 2n/3 · 2o(n). (16)

We prove (16) by establishing the following inequalities

(
n − a

≥ n − b

)

≤
(

n − a

n − b

)

· 2o(n) ≤




(
n

n − b

)2/3

· 2−n/3+o(n).

Indeed, since b is the minimal integer that satisfies (15), we conclude that ()
holds. The first inequality can be established by showing that n − b + o(n) ≥
(n − a)/2, or, equivalently, that

(
2(n−b)

n−b

) · 2o(n) ≥ (
n−a
n−b

)
. By () it suffices to

show that
(
2(n−b)

n−b

) · 2o(n) ≥ (
n

n−b

)2/3 · 2−n/3. Taking logarithms from both sides
and dividing by n, we get that the inequality holds whenever 2(1−b/n)+o(1) ≥
( 23 H2(b/n) − 1/3) which is indeed the case for every b ∈ [n]. This completes the
proof of Sect. 6.2.

Combining the two schemes together. Overall we now can linearly realize random
(a, n) upslices with share size of

min

((
n

a

)1/3

· 2n/3+o(n),

(
n

n − b

)1/3

· 2n/3+o(n)

)

(17)

where b = b(a, n) is the smallest integer that satisfies (15). Similarly to the
analysis in the proof for the general (non-linear) case, denote by a0 the value
for which the two expressions in (17) are equal, i.e., b(a0, n) = n − a0. We will
later calculate a0 and show that it is about 0.4595n. For now let us record
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the fact that a0 < n/2 and that, consequently, for any a > a0 it holds that
b(a, n) > b(a0, n) = n − a0 > n/2 (since b(a, n) monotonically increases with
a). Getting back to (17) observe that the complexity for an (a, n) upslice is
(
n
a

)1/3 ·2n/3+o(n) when a ≤ a0 and
(

n
n−b

)1/3 ·2n/3+o(n) when a > a0. Furthermore,
the first expression monotonically increases with a for a < a0 < n/2, and the
second expression monotonically decreases with a for a > a0 (since b(a, n) > n/2
and since b(a, n) increases with a). Hence, the upslice with the maximal share
size in the given range will be the (a0, n)-upslice. We move on to calculate a0.
Let a = αn and b = βn, by plugging (15) into the equation b(a, n) = n − a, we
conclude that α0 = a0/n is the solution to the equation

1
3

+
1
3

H2(1 − α) = H2(1 − α) − (1 − α)H2

(
α

1 − α

)

,

and therefore α0 ∼ 0.4595. It follows that (17) is upper-bounded by
(

n
a0

)1/3 ·
2n/3+o(n) ≤ 2n

H2(α0)+1
3 +o(n). We conclude that a random (a, n)-upslice can be

linearly realized with an exponent of H2(α0)+1
3 ≤ 0.6651 for any a, and the

“Moreover” part of Theorem 6.3 follows. �	
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A Omitted Preliminaries

We formally define four different types of “slice access structures” that will be
used as key components in our general constructions. Throughout this section,
we fix some complete access structure f over n parties. The following definitions
were extensively used by [26]. For string x, x′ ∈ {0, 1}n, we write x ≤ x′ if for
every i ∈ [n], xi ≤ x′

i. We let wt(x) denote the Hamming weight of x.

Definition A.1 (Slices and Multislices). For a ≤ b ∈ [n], we define the
(a : b)-multislice of f to be the access structure F : {0, 1}n → {0, 1} for which

F (x) =

⎧
⎪⎨

⎪⎩

0 if wt(x ) < a
f(x) if wt(x ) ∈ [a, b]
1 if wt(x ) > b

.

We say that F is (a : b, n)-multislice access-structure (or just (a : b, n)-slice) if
F is an (a : b)-multislice of some n-party access structure f . An (a : a)-multislice
is refereed to as an a-slice.

As already mentioned, our constructions strongly exploit the following fine-
grained variants of slice access structures.
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Definition A.2 (Upslices). For a ∈ [n], we define the a-upslice of f to be the
access structure F : {0, 1}n → {0, 1} for which

F (x) =

⎧
⎪⎨

⎪⎩

0 if wt(x) < a

f(x) if wt(x) = a

1 ⇐⇒ ∃x′ : wt(x′) = a, x′ ≤ x, f(x′) = 1 if wt(x ) > a
.

We say that F is an (a, n)-upslice access structure (or just (a, n)-upslice) if F
is an (a, n)-upslice of some n-party access structure f .

Observe that F is (a, n)-upslice if and only if all its min-terms are at level a.

Definition A.3 (Downslices). For b ∈ [n], we define the b-downslice of f to
be the access structure F : {0, 1}n → {0, 1} for which

F (x) =

⎧
⎪⎨

⎪⎩

0 ⇐⇒ ∃x′ : wt(x′) = b, x ≤ x′, f(x′) = 0 if wt(x ) < b
f(x) if wt(x ) = b
1 if wt(x ) > b

.

We say that F is a (b, n)-downslice access structure (or just (b, n)-downslice) if
F is a b-slice of some n-party access structure f .

Observe that F is a (b, n)-downslice if and only if all its max-terms are at level b.
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Abstract. This paper studies information-theoretically secure multi-
party computation (MPC) over rings Z/p�

Z. In the work of [Abs+19a,
TCC’19], a protocol based on the Shamir secret sharing over Z/p�

Z was
presented. As in the field case, its limitation is that the share size grows
as the number of players increases. Then several MPC protocols were
developed in [Abs+20, Asiacrypt’20] to overcome this limitation. How-
ever, (i) their offline multiplication gate has super-linear communication
complexity in the number of players; (ii) the share size is doubled for the
most important case, namely over Z/2�

Z due to infeasible lifting of self-
orthogonal codes from fields to rings; (iii) most importantly, the BGW
model could not be applied via the secret sharing given in [Abs+20, Asi-
acrypt’20] due to lack of strong multiplication.

In this paper we overcome all the drawbacks mentioned above. Of
independent interest, we establish an arithmetic secret sharing with
strong multiplication, which is the most important primitive in the BGW
model. Incidentally, our solution to (i) has some advantages over the con-
current one of [PS21, EC’21], since it is direct, is only one-page long, and
furthermore carries over Z/p�

Z. Finally, we lift Reverse Multiplication
Friendly Embeddings (RMFE) from fields to rings, with same (linear)
complexity. Note that RMFE has become a standard technique for com-
munication complexity in MPC in the regime over many instances of
the same circuit, as in [Cas+18, Crypto’18] and [DLN19, Crypto’19]. We
thus recover the same amortized complexity of MPC over Z/2�

Z than
over fields.

To obtain our theoretical results, we use the existence of lifts of curves
over rings, then use the known results stating that Riemann-Roch spaces
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are free modules. To make our scheme practical, we start from good alge-
braic geometry codes over finite fields obtained from existing computa-
tional techniques. Then we present, and implement, an efficient algorithm
to Hensel-lift the generating matrix of the code, such that the multiplica-
tive conditions are preserved over rings. On the other hand, a random
lifting of codes over rings does not preserve multiplicativity in general.
Finally we provide efficient methods for sharing and reconstruction over
rings.

1 Introduction

MPC over rings Z/p�
Z, is a model relevant for secure computation of functions

which are naturally expressed over rings of integers Z/p�
Z. The most important

case is Z/2�
Z with � (a multiple of) the length of machines integers. In this

model, the computation complexity is counted in terms of elementary additions
and multiplications in Z/p�

Z, and the communication complexity is the number
of elements of Z/p�

Z sent. By contrast, the previous model of MPC are arithmetic
circuits in Fp. But computations modulo p are not natively done by processors.
Unless p = 2, which is the case studied by MPC for the functions expressed
naturally as binary circuits. It appears from the literature that emulating MPC
over the integers, from MPC in Fp, incurs a substantial overhead in complexity.
For instance, the protocol of [Dam+06] for bit decomposition of numbers mod-
ulo a large p, in order to perform secure comparisons, costs log(p) log(log(p))
secure multiplications modulo p. Whereas comparisons directly between integers
modulo a power of 2 are much more efficient [Ara+18].

1.1 Related Works

In a recent line of work on efficient MPC over Z/p�
Z, significant advances have

been made in order to avoid the overhead incurred by this emulation, by redesign-
ing basic arithmetic MPC so as to work “more directly” over the ring in question.
The first published paper [Cra+18] in this line introduces the SPDZ2k proto-
col, a full redesign of the well-known SPDZ-protocol [Dam+12], the benchmark
for the case of cryptographic security with dishonest majority in Beaver’s pre-
processing model, that works directly over the rings in question and that is
essentially as efficient as the most efficient SPDZ-incarnation. See also the com-
pilers of [DOS18,Abs+19b] from passive security over rings to active security
over rings. For more discussion about practical advantages, see [Cra+18] and its
follow-up [Dam+19], which also reports on applications to machine-learning that
significantly outperform approaches from field-based MPC. Maliciously secure
machine learning directly over the integers is now becoming the standard (e.g.
[PS20]).

Closer to us is the line of work [Abs+19a,Abs+20], that aims at answering
the question if information theoretically secure MPC over Z/p�

Z, has complexity
equal to the one of MPC over Fp. The issue is simple: suppose that one has
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the choice between two protocols with the same complexities: measured over
Fp for the former, and over Z/p�

Z for the latter. Then the latter protocol is
automatically the most efficient to securely compute any function over Z/p�

Z,
since no emulation is needed. The present paper firstly addresses this question
mainly in the plain model [CDN15, §5], denoted “BGW”, that is: assuming only
authenticated channels and requiring perfect security. So in particular, we have
that the number of malicious corruptions is t < n/3, since no broadcast channel
is available beyond this bound in the BGW model. [Abs+19a] considers MPC
in the BGW model over rings. It adapts the protocol of [BH08], including the
secret sharing over Z/p�

Z adapted from Shamir, and thus inherits the amortized
suboptimal O(n log(n)) communication complexity of [BH08].

We then consider the setting of Rabin&Ben-Or, denoted as “honest major-
ity”, which assumes a broadcast and requires unconditional statistical security,
tolerating t < n/2 corruptions. Until recently the best amortized communica-
tion complexity over fields was [BFO12], in n log(n), plus a term in n2 times
the depth of the circuit. Let us first discuss the n2 term, which was removed
over fields by [GSZ20]. As noticed in [Abs+20] (at the beginning of §6), the
main tool of [GSZ20] is the BatchedTriple Sacrifice protocol of [BFO12], that
checks correctness of shared Beaver triples. It runs in the offline phase, and has
O(n log(n)) communication complexity (to be sure, the notation φ in [GSZ20]
stands for the log of the size of the field, it is required to be φ ≥ log(n)). This
BatchedTriple Sacrifice was then carried over rings in [Abs+20], resulting in an
overall amortized communication complexity in O(n log(n)) also over rings.

Let us now discuss the log(n) overhead. Concurrently to our paper, it has
been removed by [PS21, EC’21], over fields. Their technique use as black box
the RMFE with optimal rate of [Cas+18], which come from algebraic curves.

In addition to the above super-linear offline communication complexity, there
are some other drawbacks in [Abs+20]: (i) their secret sharing schemes with
(standalone) Multiplication are constructed with a double sharing, which thus
doubles the size (ii) their way around this doubling, only for p ≥ 3, uses asymp-
totically good families of self-dual codes, for which no practical construction is
known (by contrast with good families of codes from algebraic curves/function
fields, whose computation is widely studied); (iii) most importantly, the secret
sharing scheme given in [Abs+20] cannot be adopted for the BGW model due
to lack of Strong multiplication.

1.2 Our Focus

Our main focus are the two fundamental primitives for MPC in the BGW model.
We also deal with the asymptotic complexity of MPC under honest majority,
especially the BatchedTriple Sacrifice which costs the so-far log(n) communica-
tion overhead. We are finally concerned by the computational efficiency of general
reconstruction methods of linear secret sharing schemes over rings, which was
not dealt with at all in previous works.

The first primitive for MPC in the BGW model is arithmetic secret sharing
with Strong multiplication (ASSSM). Recall that such a scheme with respect to
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adversary bound t, guarantees both: secrecy from any t shares, and, reconstruc-
tion of the product of two shared secrets, from any list of n−t products of pairwise
shares of these secrets. By contrast, secret sharing with (standalone) Multiplica-
tion only, requires all the n pairwise products of shares for reconstruction of the
product. The simplest example is the Verifiable secret sharing of BGW itself.
Importance of Strong multiplication is formalized in the Theorem 3 of [CDM00],
as the building block of error-free MPC protocols. Namely, it is emphasized in
[CDN15, p114] as the tool enabling not to restart the execution of the proto-
col, even when a player openly misbehaves. Notice that the log(n) overhead is
inherited from Shamir’s secret sharing, which operates in finite fields of cardi-
nality at least as large as the number of players. This limitation was removed
in the series of papers [CC06,Cas+09,CCX11] using algebraic geometric codes
over fields. Notice that these state of the art ASSSM and constant size of shares,
motivated the “MPC in the head technique” [Ish+07], see [Cas16, §5] for other
applications. In this paper we ask if the same tight size of shares is achievable
over rings. We also ask if the same efficiency of constructions is achievable as over
fields [Hes02,Khu04,Shu+01,SG20]. Also, much optimisation has been made for
sharing/reconstruction algorithms over fields [SW99,GS99,NW17].

The second primitive are Reverse multiplication friendly embeddings
(RMFE). They enable to emulate several circuits in parallel over small finite
fields Fp, from a single circuit over a large extension Fpm . They are introduced
in [Cas+18], and are the main tool for the upper bounds of [DLN19,BMN18,
DLS20,CG20,PS21]. RMFE enable to linearize the amortized communication
complexity of perfectly secure MPC, over multiple instances of the same circuit
(with possibly different inputs), while preserving an optimal corruption toler-
ance. Recall that a RMFE [Cas+18, Definition 1] (recalled in Sect. 5.4), is an
embedding from some vector space F

k
q over Fq, into some field extension Fqm ,

which “carries” the multiplication in Fqm into the component-wise multiplication
of vectors in F

k
q (the same one as for multiplicative secret sharing). The larger

the ratio k/m, the better the complexity of MPC is amortized. Again, RMFE
with polynomial encoding (as in Shamir secret sharing) exist up to k ≤ q + 1.
And again, this limit of the field size was removed in [Cas+18, Theorem 3] with
constructions from algebraic geometry coding. Namely, they achieve for any fix
q, a slowly growing infinite family of parameters k,m such that the ratios k/m
are lower bounded by a constant, which is optimal. We thus ask if the same
ratios are achievable over rings, and if constructions are as efficient.

1.3 Our Contributions

1.3.1 Asymptotically Optimal Strong Multiplication over Rings

Main Theorem 1. For every p and �, for any fixed even r larger than some
r̂(p), we have a slowly growing infinite family of number of integers n, such that
there exists an ASSSM over the fixed ring Z/p�

Z, with n shares, with constant
size of shares r and t-adversary bound such that 1/3 − t/n > 0 a constant
arbitrarily close to 0 (in O(p−r/2)).
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More precisely and generally: all parameters (n, p, r̂(p), t) published in [CC06,
Cas+09] over fields Fp, also hold over rings. We have stronger than privacy:
uniformity of the projection on any t shares of the space of vectors of shares of
any given fixed secret. Moreover, the scheme obtained by reduction modulo p
may be assumed to be asymptotically good as well. 1 Last but not least, sharing
and reconstruction over Z/p�

Z have the same computational complexity than for
ASSSM over fields Fp.

This thus closes the gap between the complexity of ASSSM over fields, and
over rings. Since this result is tight, we do not further justify why our con-
struction uses “Galois rings” extensions as an intermediary step. Although we
hope that it will be clear from Sect. 1.4, Sect. 2.1 (and also [Abs+19a,Abs+20])
that these objects play the same auxiliary role over rings, as finite fields exten-
sions do over fields. Concretely, under the hood is that Fp is embedded into
Fpr in order to access ASSSM/RMFE with good properties, which are then
lifted over Galois ring extensions, then seen as free modules over Z/p�

Z. But for
simplicity, we refrained from stating that the above theorem also holds for any
Galois ring extension of degree r, with the same parameters (n, p, r(p), t) than
[CC06,Cas+09] over Fpr . We also kept simple the formula and made explicit
only the case where t is close to n/3. To be sure, the parameters of [Cas+09]
also enable smaller sizes of shares, at the cost of a lower t (using multiplica-
tion friendly embeddings). The last claim, on efficiency, will follow from the
algorithms of Theorem 5 below. Technically, Theorem 5 applies here since the
componentwise squares (see Sect. 3.1) of the codes constructed are included in
“free codes” of dimension as small as the codes of the ASSSM over finite fields.

1.3.2 Optimal Communication of MPC Under Honest Majority
We remove the so-far aforementioned amortized log(n) communication over-
head, which also held over fields. The bottleneck comes from the offline phase,
in the subprotocol of [BFO12] checking triples, e.g., as transposed over rings in
[Abs+20, §6.6]. Recall that the baseline method of [BFO12] proceeds by encod-
ing many triples in three polynomials, then succinctly check the multiplicative
relation between these polynomials. We start by replacing it by an alternative
construction of Batched Triple Sacrifice over fields of fixed size. This construction
is closely related to the strong multiplication property, it is stated and proven in
Proposition 16. It enables to recover the main result of [PS21] in only one page.
We then lift the construction over rings with the same methods as before.

Main Theorem 2. In the model of [RB89]: honest majority and assuming
broadcast, then there exists a statistically secure MPC protocol with guaran-
teed output delivery and amortized communication complexity (both online and
offline) linear in the number of players per multiplication gate.

1 This fact is quite useful in some practical protocol applications but it is not strictly
necessary for general arithmetic MPC.
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Anticipating on the next result, notice that we could also have directly lifted
over rings the construction of [PS21]. Indeed, theirs is based on the RMFE of
[Cas+18], which we lift over rings with the same asymptotic rates.

1.3.3 Amortized Complexity of MPC over Rings
We construct, in Sect. 5.2 an infinite family of RMFE over rings with same
constant asymptotic ratio as the ones of [Cas+18]. Combined with the tight
complexities of general LSSS proven in Theorem 5, this enables to carry over
rings the results of [Cas+18] with the same computational and communication
complexities:

Main Theorem 3. In the BGW-model, there is an efficient MPC protocol for
n parties secure against the maximal number of active corruptions t < n/3 that
computes Ω(log n) evaluations of a single circuit over Z/p�

Z in parallel with an
amortized communication complexity (per instance) of O(n) elements of Z/p�

Z

per gate, and same computational complexity than in [Cas+18, Thm 1 & 2].
Combining with the Franklin-Yung paradigm [FY92], we get:

In the BGW-model, for every ε > 0, there is an efficient MPC protocol for n
parties secure against a submaximal number of active corruptions t < (1− ε)n/3
that computes Ω(n log n) evaluations of a single circuit over Z/p�

Z in parallel
with an amortized communication complexity (per instance) of O(1) elements
of Z/p�

Z per gate.

1.3.4 Optimal Share Sizes and Computability Under Honest
Majority
The asymptotically good ASSSM of Theorem 1 have a fortiori standalone Mul-
tiplication. So they can be used as a replacement for the schemes constructed in
[Abs+20, §4.1]. Especially for p = 2, recall that Multiplication of their schemes
is obtained via a double sharing, which thus doubles the size of the shares (as
stressed in the roadmap of [Abs+20, §3]). Our construction thus divides their
sizes of shares by 2 for p = 2. A corollary of above, is that the active protocol
presented in Section 6 of [Abs+20], which requires standalone Multiplication,
now works with share sizes reduced to half, and now using computable families
of codes, including from AG/function fields.

1.3.5 Practical Computability (continued)
Main Theorems 1, 2 and 3 rely on objects (ASSSM or RMFE or the related ones
of Proposition 16) with good asymptotic properties of which we prove existence.
We then describe in Sect. 4 efficient algorithms to construct these objects.

Theorem 4. Starting from any ASSSM over any fixed field Fp considered in
[CC06,Cas+09,CCX11], then, obtaining the lifts over Z/p�

Z for any �, as pre-
dicted by Main Theorem 1, boils down to solving � instances of a linear system
over Fp with Ω(n6) coefficients. Alternatively, log(�) linear systems: modulo
p, p2, p4, . . . , (p�)

1
2 .
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We have an analogous system to obtain the RMFE predicted by Main The-
orem 3, from the ones of [Cas+18, Theorem 5].

A formal description is given in Sect. 4 (for ASSSM) and Sect. 5.4 (for
RMFE), a toy example in Sect. 3.1. A proof of Theorem 4 is given in the long
version. It requires to prove that AG codes have a free lift whose square is also
free, which requires additional methods than those given in Sect. 3.3. We illus-
trate efficiency of our method in Sect. 4.1 by lifting a strongly multiplicative
secret sharing scheme over F16 for 64 players and adversary threshold t = 13,
into a scheme over the Galois extension of degree four of Z/2100Z, in a minute
on a single processor.

1.3.6 Tight Computational Complexity of Linear Secret Sharing
Schemes (LSSS) over Rings
Although theoretical results for error correction over rings are shown in
[Abs+19a, Construction 1 & Proposition 1], it is not yet clear in the literature
if there exists effective algorithms for even the simple task of reconstruction of a
secret with only erasures. We fill this gap by providing algorithms for sharing and
reconstruction of linear secret sharing schemes (LSSS) over rings that arize from
free codes. In particular it proves our efficiency claims in the Main Theorems
above. A free code C over Z/p�

Z is by definition the linear span of independent
vectors with coordinates in Z/p�

Z, in particular it is of same dimension than its
reduction C modulo p, which is a code over Fp. In particular, all the ASSSM
constructed in this paper have this property, as well as the objects studied in
[Abs+20] and in [Abs+19a] (which considers the specific case of Shamir secret
sharing over rings). On the other hand, LSSS arising from nonfree codes have
bad computational complexity, as we illustrate in Counterexample 10. We pro-
vide computational complexities that match the ones over finite fields, so which
are tight. For simplicity the following theorem is stated over Z/p�

Z, but it will be
clear from the proof that it obviously also holds over any Galois ring extension.

Theorem 5. Let n, � be integers, consider a free code C in (Z/p�
Z)n+1 and let

ψ the corresponding (LSSS) with n shares in Z/p�
Z, such that (without loss of

generality) the secret is encoded in the 0-th coordinate of codewords. Denote C
the code reduced modulo p and ψ the corresponding LSSS (which is ψ modulo
p) over Fp. We have:

(A) The task of computing a generating matrix of C in systematic form, from
any generating matrix of C and, more generally, Gauss pivot, has same
computational complexity as modulo p, plus O((dimC)(log �)).

(A’) Then, sharing a secret using ψ (thus of bitsize � times larger) has same
computational complexity than using ψ. As for sharewise multiplication.

(B) Let I ⊂ {1, . . . , n} be a set of n − d(C) + 2 indices of shares. Then, there
exists a linear map φI : (Z/p�

Z)|I| −→ Z/p�
Z that reconstructs the secret,

with the same complexity than a reconstruction map φI for ψ. Moreover,
φI can be compiled from a reconstruction map φI for the LSSS modulo p,
essentially for the cost of one matrix inversion in (Z/p�

Z)|I|×|I|.
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Notice that the matrix inversion required in (B) can be computed using the
Gauss pivot of (A).

1.4 Difficulties and Intuitions of the Constructions

Only algebraic-geometric (AG) constructions such as in [CC06] are so far known
to enable ASSSM over fields of constant sizes for an arbitrarily large number
of shares. They follow the same pattern than the scheme of Shamir, which is a
particular case. First, select an algebraic curve (e.g. all the points in Fq plus the
“point at infinity”, in the case of Shamir). Second, select a “Riemann-Roch” vector
space of functions (e.g. the polynomials of degree ≤ d in the case of Shamir: said
otherwise, the space L(d∞) of polynomials “vanishing at order at least d at
infinity”). Then, select a particular point P0 on the curve (e.g. the point 0 in
Shamir). To share a secret s, select a function at random in the Riemann-Roch
space that evaluates to s at P0. Then evaluate it on n predefined points of the
curve to obtain the shares. In what follows we will instead take a coding-based
approach. This has both the advantage to make proofs which are more black
box in the AG codes used, and also, our efficient methods will actually directly
lift the generating matrices of such AG codes over fields.

For C a code (over a field or a ring), we denote as componentwise square
C∗2 the code of same length which is generated by all the products of any two
codewords of C component by component. Strong multiplication of the LSSS
from C thus requires that C∗2 has large distance, thus be of small size. The
central problem of this paper is thus brought down to: starting from a free code
C over a ring (typically a finite field) which has free square of small dimension,
then find a code ˜C in a larger ring, that reduces to C mod p�, and has square
contained in a free code of small size. On the one hand, it is trivial to lift Reed-
Solomon (RS) codes over rings, in a way that preserves their remarkably small
componentwise square. Indeed, lifts of RS codes are given for free: these are the
RS codes over rings. RS codes over rings were studied in [Abs+19a], but, as over
finite fields, these RS codes have a log(n) size overhead. This inefficiency is one
of the main motivations of the present paper. On the other hand, when trying
to lift AG codes with larger genus, in order to remove this overhead, we hit
the main difficulty of this paper. Namely, we illustrate in Sect. 3.1 that lifting
at random (as done in [Abs+20]) almost certainly fails to preserve the small
dimension of the square.

But our theoretical results imply that a solution exists, which we are able
to compute efficiently. Anticipating on them, we first present a toy example in
Sect. 3.2. Recall that RS codes are the simplest case of AG codes, namely, over
the curve P1 (the “projective line”), which is of genus 0. This is why our toy
example Sect. 3.2 illustrates the simplest nontrivial example, which is a curve of
genus 1.

To obtain our theoretical results over rings, we first use known theorems
that state the existence of lifts of curves over rings. We then apply results of
Judy Walker that state that Riemann Roch spaces are free modules, and also,
the codes deduced from their injective evaluation at points of the curve. On the
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other hand, to compute the codes concretely, we will follow a direct approach.
Namely, instead of lifting curves over rings, we will directly lift a generating
matrix of the code, such that the multiplicative conditions are preserved. On
the face of it, there are more constraints than variables. But a result is always
returned. Proving this fact requires strictly more than that C lifts with a small
square. Indeed, it also requires freeness of the square of the lift ˜C∗2, which is
harder. This is why we prove it in the long version only.

The reader may wonder why we did not directly compute lifts of the curves.
The reason is that the theoretical results require that the curves be represented
with “smooth” equations, in particular, with many variables. But in practice,
good curves are expressed in terms of equations with two variables only. And
there is no efficient method today to compute smooth lifts of such “plane” models,
that have many “non smooth” points. Let alone computing Riemann-Roch spaces
of smooth models curves over rings, which is out of the scope of existing research
(except Walker-Voloch, for smooth curves in the plane).

1.5 Roadmap

In Sect. 2 we show that LSSS derived from free codes over Galois rings have
same privacy and reconstruction threshold as over the field modulo p. In Sect. 2.3
and Sect. 2.4 we present efficient sharing and reconstruction algorithms (proof
of Theorem 5 (A) (A’) and (B)). We show conversely in Counterexample 10
that there does not exist a linear reconstruction map for a large class of linear
codes over rings which are not free. This is why we focus on LSSS derived from
free codes. Let us mention for the hurry reader that the results in Sect. 2.3 and
Sect. 2.5 are not used for the proof of Main Theorem 1.

In Sect. 3 we highlight the nontriviality of Main Theorem 1 on a toy example
in Sect. 3.1, then illustrate in Sect. 3.2 how to compute a multiplicative lift of it.
We then prove the Theorem in Sect. 3.3.

In Sect. 4 we elaborate more on the Hensel lifting method illustrated in the
toy example.

In Sect. 5 we prove the aforementioned applications of the theory to MPC.
First with a proof of Proposition 16 (the triples sacrifice algorithm over a field-
/ring of constant size), then with a proof of Main Theorem 3. The proof involves
RMFE over rings with same asymptotically constant rate than over fields: we
also describe the effective algorithm to construct them in Sect. 5.4.

2 LSSS from Free Codes have Optimal Complexity

In Sect. 2.1 we introduce Galois ring extensions, and highlight that they the
same size and computational overhead over Z/p�

Z, than finite field extensions
have over Fpr . The presentation should be self-contained, but the reader can
also refer to [Abs+20,Abs+19a]. In Sect. 2.2 and Sect. 2.3 we consider general
LSSS from free codes over rings, and prove the tight complexity claims (A’) and
(B) of Theorem 5 for sharing and reconstruction. In Sect. 2.5 we show that free
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codes are generated from any lift of any basis. All the basics are recalled, but
the reader can alternatively refer to [Abs+20, §2-§4]

2.1 Optimal Complexities in Galois Rings Extensions R�(r)

2.1.1 Equal Computational and Sizes for Elementary Operations
Let p be a positive prime number and Fp := Z/pZ the finite field. Then, when
operating on objects with coordinates in Fp, we say that the computational
complexity is the number of elementary operations in Fp (where one can possibly
weight differently additions, scalar multiplications and bilinear multiplications).
Now, � ≥ 1 denoting an integer, the second context encountered in this paper
are objects with coordinates in Z/p�

Z the ring of integers modulo p�. In these
cases, we say that the computation complexity is the number of elementary
operations in Z/p�

Z (where one gives the same weights as before to additions,
scalar multiplications and bilinear multiplications). Likewise, the communication
(or size) complexity is, in the first context: the number of elements in Fp which
are sent by honest players; whereas in the second context it is the number of
elements in Z/p�

Z which are sent.
Galois-rings are defined as follows. Let r ≥ 1 be a positive integer and f(X) ∈

Fp[X] a monic irreducible polynomial of degree r. This defines the finite field
extension or degree r:

Fpr = Fp < δ >:= Fp[X]/f(X)

which is a vector space of dimension r over Fp with basis 1, δ, . . . , δr−1 and
multiplication rule defined by the multiplication modulo f(X). Now, consider
any monic polynomial f(X) ∈ Z/p�

Z which reduces to f(X) modulo p. Then
this defines the Galois ring extension of degree r:

(1) R�(r) = Z/p�
Z < Δ >:= Z/p�

Z[X]/f(X)

which is in particular equal to Z/p�
Z when r = 1. This is a free module

over Z/p�
Z of dimention r. That is: it is isomorphic to (Z/p�

Z)r, with basis
1,Δ, . . . ,Δr−1. Multiplication in R�(r) is defined by the multiplication modulo
f(X). Notice that an equivalent definition of R�(r) is to consider the unramified
extension of degree r of the ring Zp of p-adic integers, which is denoted W (Fpr )
the “Witt ring”, then reduce it modulo p�. This will be used in Sect. 3.3, and is
also a useful point of view for the Hensel lifting algorithm of Sect. 4.

We say that an element x ∈ R�(r) is invertible modulo p if its reduction
x̄ ∈ Fpr is invertible. A key property of Galois rings is that an element invertible
modulo p, is then also invertible in R�(r). Indeed, consider an arbitrary lift y of
x−1. Then we have a formula xy = 1− pλ which holds in R�(r) for some λ. But
the right hand side of the equation is invertible, of inverse 1+pλ+ · · ·+(pλ)�−1.
From this formula we see that inversion in R�(r) costs essentially one inversion
in Fpr , and O(log(�)) squarings in R�(r).
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2.1.2 Embeddings, and Their Equal Complexities Than over Fields
From the previous, we see that considering Z/p�

Z as embedded in R�(r), mul-
tiplies by r the size (an element x is mapped to the vector (x, 0, . . . , 0) with r
coordinates) by the same factor than when embedding Fp in Fpr . It follows from
the definition (1) that the naive schoolboy multiplication algorithm in R�(r) has
the same complexity than the one in Fpr . For large Galois rings, we have efficient
multiplication algorithms, which are motivated by their usage in LWE. Hence,
the references pointed in [Abs+19a, page 4] and [PC] show that they have also
the same complexity than in Fpr .

Finally, one may also need to make the converse operation, and “descend”
from secret sharing schemes over R�(r), to secret sharing schemes over Z/p�

Z.
The technique to do this over fields is introduced in [Cas+09, Theorem 7 & 8],
and based on linear maps called “multiplication friendly embeddings (MFE)”:
Fpm −→ F

2m−1
p , which have the property to bring the multiplication in Fpm ,

into the componentwise product in F
2m−1
p . For the same reason as Reed Solomon

codes lift trivially over rings, we have that the MFEs of [Cas+09, Theorem 8]
carry over Z/p�

Z with the same parameters, and thus we have exactly the same
“expansion rates” ((2m − 1)/m).

2.2 General LSSS and ASSSM over Rings

Let R be any finite ring (including R = Fpr or R�(r)), and n, k be positive
integers. To share a secret s in R, one samples uniformly an element w ∈ Rk−1

(the randomness space) then applies a certain linear map ψ on the whole to
obtain n “shares” : ψ(s,w) ∈ Rn. For I ⊂ {1, . . . n} a set of indices, we denote
|I| the size of I and πI : Rn → RI the projection on these components. For
any vector x ∈ Rn, we denote for short xI := πI(x) this projection, i.e., the
components of x in I, and likewise, for any linear map ψ in Rn, we denote for
short ψI := πI ◦ψ the “components of ψ in I”. Let 0 ≤ t < n be a positive integer.
Let k, n ≥ 1 be integers, we say that a linear secret sharing scheme (LSSS) over
R with n shares and randomness space Rk−1, is an R-linear map:

ψ :R × Rk−1 −→ Rn

(s,w) −→ ψ(s,w)

We say that it has t-privacy if for any share vector, any t coordinates are
independent of the secret, and it has rec-reconstruction if any rec coordinates
of a vector of shares determine the secret s.

Definition 6. We say that a LSSS with privacy threshold t, is furthermore
Arithmetic with Strong multiplication (ASSSM), if for any two secrets s, s′ ∈ R,
consider any sharings of them: (si) = ψ(s,u) and (s′

i) = ψ(s′,u′), then for any
set I of indices of size n− t, the data of the “sharewise” products (ψ(si)ψ(s′

i))i∈I

determines uniquely ss′. Said otherwise, I is a “reconstruction set” for ψ × ψ.

Notice that this a fortiori implies n − t reconstruction threshold. If one replaces
n−t by n in the definition above, then this is the weaker Multiplication property.
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2.3 Complexity of Sharing

From now on we specialize to a Galois ring R := R�(r) as defined in (1), e.g.,
equal to Z/p�

Z when r = 1.

2.3.1 Proof of Theorem 5 (A): Systematic Form
Let C ⊂ R�(r)n+1 be a free submodule of rank k, i.e., which is isomorphic to
R�(r)k. Making a choice of n + 1 coordinates in R�(r)n+1, we denote this a
“free code”. Likewise, we say that k elements in R�(r)n+1 form a free family if
they generate a submodule isomorphic to R�(r)k (we then say: “freely generate”).
Recall that this implies that the reduction C of C modulo p is a vector space
of same dimension k. [This follows immediately from the fact that if a square
matrix with entries in R�(r) is invertible, then its reduction modp is invertible.]
For the same reason, in the other direction, starting from a code C over Fpr

of dimension k, and considering any basis, then arbitrary lifts in R�(r) of these
basis vectors generate a free code C of same rank k.

We denote that a matrix G ∈ R�(r)k×(n+1) is in echelon form, if for each
row i ∈ {1, . . . , k}, there exists a column ji ∈ {0, . . . , n} containing a 1 entry
on row i and 0 everywhere else. We say in particular that G is in systematic
form if of the form (Idk|N). We say that matrix G′ is deduced from matrix G by
“elementary row operations”, if there exists a sequence of elementary row opera-
tions that transforms G into G′. Equivalently, if there exists an invertible matrix
E ∈ R�(r)k×k such that G′ = EG. Let us restate for convenience existence the
systematic form of free codes, which is used at least since Calderbank-Sloane
[CS95] (see also [SAS17, §5.1.1]). We re-prove it with an explicit construction,
which has same complexity than over fields, which thus proves Theorem 5 (A).

Proposition 7. Let G ∈ R�(r)k×(n+1) be a matrix such that the rows form a
free family. Then there exists a matrix in echelon form which is obtained from G
by elementary row operations. And thus, up to reordering the n+1, coordinates,
in systematic form.

Proof. Consider the reduction of G in Fpr . By the Gauss pivot, there exists an
invertible k × k matrix E and a matrix G′ in echelon form, such that G′ =
EG. Let E ∈ R�(r)k×k be an arbitrarily lift of E. E being invertible (since its
determinant is invertible modulo p), the matrix G′ := EG is deductible from G
by elementary row operations. G′ being a lift of G′, we have furthermore, for
each row i, existence of a column ji such that the entry G′

i,ji
is a lift of 1, and

thus invertible in R�(r). Using this entry as a pivot, we anihilate all the other
entries on this column ji by elementary row operations. Finally, we divide the
row i by G′

i,ji
, thus entry (i, ji) becomes 1. Repeating for all i yields a matrix

G′′ deduced from G′ by elementary row operations.

2.3.2 Sharing
Up to permutation of the coordinates, we may now assume G ∈ R�(r)k×(n+1) of
C in systematic form. By Theorem5 (A) (Proposition 7), the (one-shot) complex-
ity of computing this form is essentially the same as over fields. Then, sharing
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a secret s ∈ R�(r) with respect to the 0-th coordinate of C, boils down to the
following. First, sample a vector w ∈ R�(r)k−1, uniformly at random. This has
complexity O(k) (or in terms of bits: O(�k log2(p))). Then, deduce the vector of
shares from the left multiplication:

ψ : R�(r) × R�(r)k−1 −→ R�(r)n(2)

(s,w) −→ (s,w)G[1,...,n].(3)

Where G[1,...,n] denotes the n last columns of G. The complexity claim of The-
orem 5(A’) then follows from the fact that dim (C) = rk (C) = k, and thus that
the generating matrices have the same sizes, combined with the fact pointed in
Sect. 2.1, that complexity of the multiplication in R�(r) (by definition relatively
to elementary operations in Z/p�

Z) is the same as the one in Fpr (by definition
relatively to Fp).

2.4 Privacy (with Uniformity) and Efficient Reconstruction from
Free Codes

Let us now bound privacy and reconstruction. The following states that Theorem
11.77 and Corollary 11.79 [CDN15] also hold over rings. Moreover, we will also
prove computational efficiency of (4) (reconstruction) along the proof.

Proposition 8. Let C be a free code in R�(r)n+1 of rank k. Denote C the code
over Fpr obtained by reduction modulo p, C

⊥
the dual, and d(C), d(C

⊥
) the

minimal distances. Consider the LSSS with n shares in R�(r) obtained from C.
Recall that rec denotes the reconstruction threshold. Then we have:

rec ≤ n + 1 − (d(C) − 1) = n − d(C) + 2(4)

For all t ≥ d(C
⊥
) − 2, we have that:(5)

each set of t shares is uniformly random in R�(r)t, in particular we have t-privacy.

2.4.1 Reconstruction: Constructive Proof of (4), Thus of Thm 5 (B)
Notice that Eq. (4) is proven on a specific case in [Abs+20, Theorem 6]. But it
actually holds in general. Let us take the opportunity to make a constructive
proof, which will thus support our complexity claim of Theorem 5 (B). We keep
the notations of Eq. (2).

Let I ⊂ {1, . . . , n} be a subset of n+ 1− (d(C)− 1) indices. By definition of
the minimal distance, the linear map ψI : Fpr × F

k−1
pr −→ F

I
pr is injective. Since

it is defined over fields, it thus has a linear left inverse. We conclude by applying
Lemma 9 to M := R�(r)k, m := |I| and f := ψI .
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Lemma 9. Let M be a free R�(r)-module (say of rank v) and f : M → R�(r)m

be a R-linear map. Assume that the map modulo p:

f : (M mod p) = F
v
pr −→ F

m
pr

is an injection. Then f has a linear left inverse g : R�(r)m −→ M . In particular,
the image of f is a free R�(r)-module.

Proof. The matrix matf of f , of size m × v is such that, by assumption, when
we reduce it modulo p, then it contains a v × v invertible minor. But then this
minor in matf is also invertible (recall that (1+λp)−1 = 1+

∑

i λipi). Inverting
this minor (e.g. with Gauss pivot over R�(r), for efficiency), and completing with
m − v zero columns, yields a map g : R�(r)m −→ R�(r)v such that g ◦ f = Idv.

The last claim follow from the fact that f is in particular injective, so defines
an isomorphism between M , which is free, and its image inside R�(r)m.

Our claim about the computational complexity then follows as previously
from linearity of the reconstruction map ψI , and the fact (Sect. 2.1) that multi-
plications in R�(r) has same complexity than in Fpr .

2.4.2 Warning: Loss of Efficient Reconstruction for Non-free Codes
Recall that reconstructibility of a code means that, for any set of d − 1 coordi-
nates, the map consisting in puncturing these coordinates is an injection; and
that efficient reconstruction means that it has a linear left-inverse, which we
denote a retraction, as known as the reconstruction map. In the following Coun-
terexample 10 we show that, without the assumption to be free, there exists
submodules of R�(r)n+1 for which the puncturing map is an injection, but for
which there does not exists any linear retraction. This motivates why we restrict
to free codes in R�(r)n+1 in order to construct LSSS.

Counterexample 10. Let C be a code in R�(r)n+1 with d := d(C) ≥ 2 such
that there exists a punctured C∗ ⊂ R�(r)n+1−(d−1) which is not free. [For exam-
ple

C = 〈(p, p, p, 0), (1, 0, 0, 1)〉 ∈ R�(r)4, (e.g. R�(r) := Z/p�
Z )

with d(C) = 2 and injectivity in R�(r)3 when puncturing the last coordinate.]
Then there does not exist any linear reconstruction map, i.e., any retraction
R�(r)n+1−(d−1) −→ C.

The proof is that, supposing such a retraction, then, composing it on the left with
the puncturing map, yields a left-inverse to the inclusion C∗ ⊂ R�(r)n+1−(d−1).
Denoting G∗ ∈ R�(r)k×(n+1−(d−1)) a generating matrix of C∗ (in rows) and
L ∈ R�(r)(n+1−(d−1))×k the matrix of this left-inverse, we would thus have by
assumption G∗L = Idk. In particular G∗ modulo p would be of maximal dimen-
sion, k, thus G∗ would generate a free module, a contradiction.
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2.4.3 Privacy (with Uniformity): Proof of (5)
The bound (5) is proven in [Abs+20, Theorem 6]: although on a specific LSSS,
the arguments actually apply in general. The key to prove this formula over
rings is their Lemma 3. Let us recall it here, and provide a both shorter and
self-contained proof for it.

Lemma 11. Let C be a submodule of R�(r)n, denote d
⊥

the dual distance of
the reduction C modulo p. Let I be a set of indices with |I| = d

⊥ − 1. Then,
projection of C on the indices in I is the full space R�(r)I .

Proof. By assumption, CI = F
I
q . Hence CI contains |I| vectors so that the

matrix formed by them has an invertible determinant, thus has an inverse, thus
these vectors generate R�(r)I .

Then, the bound (5) follows by applying the Lemma to any set IA of t
indices, to which we add the index {0}. Indeed, we then have surjectivity of the
projection C −→ C{0} × CIA . In particular, for any fixed secret s ∈ R�(r) (0th

coordinate), we have surjectivity of the projection from the affine submodule Cs

of codewords with 0th coordinate equal to s, onto any subset of t shares. Thus
by definition the shares of s under the LSSS are such that any t of them vary
uniformly in R�(r)t, which was to be proven.

2.5 (Free) Generation from Any Lift of Any Basis

The following important fact is not formalized in the literature to our knowledge:

Theorem 12. Let C be a free code in R�(r)n+1. Consider the reduced code
modulo p: C ⊂ Fpr , and any basis (e′

i) of C. Then C is freely generated by any
lift of (e′

i) inside C.

Proof. Let k denote the rank of C. The “freely” claim again follows from the
fact that a family whose reduction modulo p is free, is itself free (the generating
matrix containing an invertible k × k determinant). Now, consider (e′

i=1...k) an
arbitrary lift of the (e′

i) inside C. It generates a submodule in C, which is free
of rank k by the first part of the proof. But C is itself a free module of rank k.
Thus this defines an injection R�(r)k ↪→ R�(r)k, which is by assumption also an
injection modulo k. Thus by Lemma 9 it has a left inverse, thus it is a bijection.

Corollary 13. If E ⊂ G are two lifts Rn of the same code G, and G is free,
then they are equal (in particular E is also free).

Proof. Indeed E contains a lift of a basis of G which, by Theorem 12, generate
the whole G. ��
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3 Main Theorem 1

3.1 A Random Free Lift of a Code of Small Square Mostly Fails to
Have a Small Square

For C a code (over a field or a ring), we denote as componentwise square C∗2 the
code of same length which is generated by all the products of any two codewords
of C component by component. Strong multiplication of the LSSS from C thus
requires that C∗2 has large distance, thus be of small size. The central problem
of this paper is, starting from a free code C ∈ R�(r)n (typically � = 1, i.e.,
R�(r) is a finite field) which has free square of small dimension, then find a
code ˜C in a larger ring than C, that reduces to C mod p�, is also free, and has
square of small size. Ideally, the square ˜C∗2 is desired to be also free, in which
case it is automatically of same rank as C∗2 (since the determinant is invertible
mod p�). We denote this desirable object informally as a “multiplication friendly
lift” in the exposition, whereas in the statements it will be replaced by precise
specifications. Let us revisit the family of [Abs+20, Example 2], and explain
why they provide also counterexamples where arbitrarily lifting fails to yield a
multiplication friendly lift.
Counterexample 14. Let C̄ and D̄ be codes over Fpr of same dimension and
let us assume that dim D̄∗2 < dim C̄∗2. Let us now build a code E over R�(r)
with � ≥ 3 and of length equal to the sum of the lengths of C̄ and D̄. Let (c̄i)i
and (d̄i)i be bases of C̄ and D̄, let (ci)i and (di)i be arbitrary lifts and define E
the code generated by the vectors (di, pci)i. Then E is free, because of dimension
dim D̄ = dim Ē, and is a lift of Ē. Suppose by contradiction that the square E∗2

would be free, then we would have:

dimE∗2 ≥ dim C̄∗2 > dim D̄∗2 = dim Ē∗2 .

On the other hand if it was free, then it would be of same rank than Ē∗2 by
Theorem 12. So we have a contradiction. Thus E∗2 is not free, thus it is strictly
larger than some free lift of Ē∗2 inside him.

3.1.1 The Desirable Case of Small Square: Sparsity of Solutions, if
Any, Illustrated on a Toy Example
Let us now illustrate hardness of the multiplicative lifting problem on a tiny AG
code. Consider the elliptic curve y2 + xy + y − x3 + 1 over

F23 = F2 < δ > with polynomial δ3 + δ + 1 = 0,

with 14 places, P0 the place at infinity, the divisor D0 = 4P0 and the Riemann-
Roch space L(4P0), with basis ei i=1...4 equal to the functions (1, x, x2, y). Let us
define the evaluation code C(D0) at the P1, . . . , P13, (not at P0, for simplicity).
We compute the following generating matrix:

G =

⎡

⎢

⎢

⎣

1 1 1 1 1 1 1 1 1 1 1 1 1
δ δ δ2 δ2 δ3 δ3 δ4 δ4 δ5 δ5 δ6 δ6 1
δ2 δ2 δ4 δ4 δ6 δ6 δ δ δ3 δ3 δ5 δ5 1
1 δ 1 δ2 δ2 δ4 1 δ4 δ δ2 δ δ4 0

⎤

⎥

⎥

⎦
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Let us consider the 10 componentwise products ei ∗ ej , with indices (i, j)
ordered as: (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3) etc. (i.e.: j increases first). They
generate by definition C(D0)∗2. We verify that, removing (2, 2) and (4, 4) from
the indices in this list, then the remaining 8 products: B := (ek ∗ el)(k,l)∈B

generate C(D0)∗2, where B denotes the remaining indices ordered as before.
In particular e2 ∗ e2 and e4 ∗ e4 decompose themselves on this basis B, with
decomposition coefficients (λ2,2,k,l)k,l∈B and (λ4,4,k,l)k,l∈B given by the following
2 × 8 matrix, called “Reduc” in the implementation:

(6)
(

transp
(

λ2,2,k,l, λ4,4,k,l

)

)

(k,l)∈B
=

[

0 0 1 0 0 0 0 0
1 0 0 1 1 1 0 0

]

Then we repeated the following experiment 108 times: randomly lift the (ei)i
modulo 22, to obtain vectors (ei)i with coordinates in R2(3) = Z/22Z < Δ >.
Let Cbad the code generated by these lifts. By Theorem 12, it is always free.
But we observed in all the experiments that e2 ∗ e2 and e4 ∗ e4 do not anymore
decompose themselves on the lifts of the previous basis of C(D0)∗2: B := (ek ∗
el)(k,l)∈B—see two paragraphs later for an explanation of how this checks were
done efficiently with linear algebra. So in these situations C∗2

bad is not a free lift
of the square C(D0)∗2, because if it were, then by Theorem 12 the lifted basis
B would generate it.

3.1.2 Why Solutions May Likely Not Exist at All
Let us give a feeling of why most codes with small squares are likely to have no
multiplication friendly lift. Let C be a code over, say, Fp = Z/pZ of dimension
k and length n, such that the square C

2
has small dimension, say, 3k < n. We

would like to find a code C over Z/p2Z (namely: a free submodule of (Z/p2Z)n)
of same rank k, that lifts C modulo p2, and such that the square C2 is also a
free lift of C

2
. As argued with the toy example, it follows from Theorem 12 that

these requirements are equivalent to the following: let (ei)i be any basis of C
lifting a basis (ei) of C; let B be any basis of C2; then B lifts modulo p2 to
a basis of the square C2, in particular generates the componentwise products
(ei ∗ ej )i,j . To fix ideas let us choose a basis of the form B = (ek ∗ el)(k,l)∈B as
in the toy example. Then the previous equivalent condition translates itself into
the fact that the equations expressing ei ∗ ej on this basis:

(7) ei ∗ ej =
∑

(k,l)∈B

λi,j,k,l ek ∗ el (mod p)

lift modulo p2. The number of degrees of freedom (the unknowns) are: (i)
the choices of lifts for the ei , so a total of nk coordinates to lift in Z/p2Z;
(ii) and lifts for the coefficients λi,j,k,l: a total of 3k × k(k + 1)/2 unknowns in
Z/p2Z. So the number of unknowns is asymptotically equivalent to (ii): 3k ×
k(k+1)/2. Whereas the number of equations is nk(k+1)/2 (namely: k(k+1)/2
vectorial equations with n coordinates in Z/p2Z each). Notice that 3k < n, so
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that there are more constraints than variables. Finally, as will be detailed in the
next paragraph, and then further in Sect. 4 notice that this quadratic system
over a ring simplifies modulo p2 to a linear system over the field Fp. Thus, the
system being overdetermined, then a priori no solution is likely to exist.

3.2 A Technique to Find Them When They Exist, Illustrated on
the Toy Example

We will formalize the general technique in Sect. 4. Existence of a solution to the
system for AG codes, is further evidence that these codes are highly non-generic
among those with small square.

First, fix a free lift Cbad of C(D0) by lifting arbitrarily the basis to (ei
′)i,

for example by lifting the coordinates from F2 < δ > to Z/22Z < Δ > by the
dummy rule: 1 → 1 and δ → Δ. This gives formally the same generating matrix
as G, with δ replaced by Δ. With the same dummy rule, lift the decomposition
coefficients (λ2,2,k,l)(k,l)∈B and (λ4,4,k,l)(k,l)∈B to λ′

2,2,k,l and λ′
4,4,k,l, so that

their matrix is formally the same as in (6). As the case for the huge majority
of arbitrarily chosen lifts (and illustrated with random tests two paragraphs
above), the vectors e′

2 ∗ e′
2 and e′

4 ∗ e′
4 do not decompose themselves on B :=

(ek
′ ∗ el

′)(k,l)∈B, let alone with coefficients equal to λ′
2,2,k,l and λ′

4,4,k,l. As a
matter of fact, we encounter nonzero error vectors 2D2,2 and 2D4,4 when trying
to write the decompositions in Z/22Z < Δ >:

(8) e′
2 ∗ e′

2 =
∑

(k,l)∈B

λ′
2,2,k,lek

′ ∗ el
′ + 2D2,2 and likewise for e′

4 ∗ e′
4

Let us insist on the remarkable fact that the error vectors are multiples of 2,
since the equalities (8) do hold without error term modulo 2. “Dividing” by 2,
their coefficients are

transp(D2,2,D4,4) =
[

0 0 δ4 δ4 δ δ 1 1 δ5 δ5 δ δ 0
0 0 δ δ 0 1 δ2 δ2 δ4 0 0 δ5 1

]

Which we express in F23 by abuse of notation (remember that an element 2x ∈
Z/22Z < Δ > is determined by the residue x ∈ F23 mod 2). Now, let us look
for corrective terms 2f ′

i and 2μ′
i,j,k,l, which we need only to find modulo 2:

(9) ei = e′
i + 2f ′

i and λi,j,k,l = λ′
i,j,k,l + 2μ′

i,j,k,l

So that, replacing ei
′ in (8) by the corrected ei of (9)—where the corrective

terms are treated as unknows—, simplifying and removing the terms that are
multiples of 22—because they vanish in Z/22Z < Δ >—, we observe that all the
terms remaining in the system are multiples of 2. So “dividing” the system by 2,
we fall back to a linear system in F23 :

(10) e2 ∗f ′
2+e2 ∗f ′

2 −D2,2 =
∑

(k,l)∈B

μ′
2,2,k,lek ∗el +λ2,2,k,l(ek ∗f ′

l +el ∗f ′
k)
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(and likewise for e4 ∗ e4 ) as could be expected from Hensel’s Lemma. Solving
this system for the corrective terms, we deduce the corrected basis (ei)i defined
as in (9), that define the corrected code Cgood, whose coordinates are given in
the big left-hand rotated matrix on the first formula page of the Appendix.

Likewise we deduce the corrected decomposition coefficients (λ2,2,k,l)k,l∈B

and (λ4,4,k,l)k,l∈B as given in the centered right-hand formula.
We can finally check straightforwardly that, with these corrected values, then

e2∗e2 and e4∗e4 now decompose themselves on B with the corrected coefficients,
without anymore parasitic error vectors. So with these corrected lifts (ei)i, we
have now that the square of the corrected code Cgood is also a free lift. That is,
we have succeeded in modifying the free lift Cbad into a multiplication-friendly
lift Cgood.

3.3 Proof of Main Theorem 1

3.3.1 Roadmap of the Proof

First. Consider a smooth curve over Fpr and a divisor D0 on this curve (that
is: a set of points with multiplicities), such that the degree (the sum of the
multiplicities) is deg (D0) < n. Then, the curve has a lift defined over the ring
R�(r) (provided it is given under an equivalent form where equations have no
singular points). Lifting the points then applying Judy Walker’s results, we have
the existence of lifts of the Riemann-Roch spaces: L(D) and L(2D) which are
free modules, and such that we have inclusions of products of spaces of global
sections

(11) L(D)⊗2 = L(2D) ,

where the traditional notation L(D)⊗2 stands for the space generated by
all products fg of pairs of sections (f, g) in L(D). Then, from Judy Walker’s
Theorem 15 below, we deduce that the evaluation codes over rings C(D) and
C(2D), arising from evaluation of these free lifts of Riemann-Roch spaces, are
also free. We will detail this material in the two next subsections

Next. The key property of these free lifts is that they behave well with respect
to inclusions and squares:

(12) C(D)∗2 ⊂ C(2D) .

Here the code C(2D) is free for the same reasons, with same rank as the classical
AG code C(2D0) below modulo p. So this forces the square C(D)∗2 to stay small,
contrary to the square of an arbitrary free lift, which may “spread out” too much
(as seen in Counterexample 14).
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Deducing the Parameters. By freeness of C(D), Proposition 8 (5) implies that
a LSSS from C(D) has privacy threshold at least as large as a LSSS from the
code below modulo p: C(D0).

Likewise, by Proposition 8 (4), a LSSS from the free code C(2D) has full
reconstruction from any n − d(C(2D0)) + 2 shares. Thus, by inclusion (12), so
does a LSSS from the subcode C(D)∗2. Said otherwise, a LSSS from C(D) has
reconstruction of the product, from a number of pairwise products of shares which
is as small as for a LSSS from C(D0).

For sake of completeness we review the concrete parameters of these schemes
in Sect. 3.4, examplified on the ones of [CC06].

3.3.2 Lift of Curves, Divisors and Riemann-Roch Spaces
Let us follow Walker’s [Wal99] notations. Note R = R�(r) the (Artinian local)
Galois ring, with residue ring R/(p) = Fpr . X0 being a smooth projective curve
over Fpr , then from [Ill05, Theorem 5.19 ii)] (or [SGA1, III Corollaire 7.4]), X0
has a smooth projective lift over the ring of Witt vectors W (Fpr ). Which, after
reduction mod p�, yields a projective lift X over R (because these properties
are preserved by base change). Also, R being local, Fpr -points of X0 lift to R-
points of X by the formal smoothness criterion (see [Wal99, Remark 4.5] or
next paragraph for details). As a consequence, divisors with support on rational
points (actually any divisor) lift to X—and thus also do the line bundles L0
arising from them.

An Explicit Procedure for Simultaneous Compatible Free Lifts of Line Bundles.
By [Wal99, Lemma 4.4] we can construct lifts of divisors D0 on X from the
following recipe. First, for every rational point P

(j)
0 of X0, fix a closed point

of degree one P (j) of X above P0, as described in [Wal99, Remark 4.5] (lift
arbitrarily P

(j)
0 to an R-point, then choose P (j) inside the image).

Then we can simultaneously lift divisors D0 and 2D0 on X0 as follows. For
every rational point P0 of X0 in the support of the line bundle D0, let m be
the valuation of D0 at P0 and let P be the closed point lying above P0 as fixed
earlier. Deduce from it a divisor mP , then sum over the points P0 in the support
of D0, to obtain a lift D of D0. Likewise for the divisor 2D, equal to the same
formal sum of R-points as in D and with twice the multiplicities. In particular,
note L := L(D) the line bundle associated to D, and likewise for L(2D).

Proof of (11). This formula well known for curves over fields. Let us justify that
it also holds over rings. The reason is that, by smoothness of the lift of the curve,
this guarantees that, in a small enough neighborhood U of P , we also have a
uniformizer denoted tU (see [Wal, Proposition 4.9]). Thus, as long as U does not
contain the other points of the support of D, we have:

(13) LU = t−m
U OU .

Thus t−m
U t−m

U ∈ LU (2D), hence the claimed inclusion of products of global
sections (11).
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3.3.3 Deducing AG Codes by Evaluation of Global Sections.
For any divisor D on X, we denote as the “Riemann-Roch space” Γ (X,L) the
space of global sections. In the rest of the paper it is denoted instead L(D). By
the argument above [Wal99, Theorem 4.7], f is a free R-module that reduces
modulo p to Γ (X0,L0). With slightly narrower conditions on the degree, then
have the following compatibilities, as wrapped-up in [Wal99, Theorem 5.5]:

Theorem 15 (Lifts of Riemann-Roch spaces and AG codes). Consider
n rational points P0 =

(

P
(j)
0

)

j=1...n
on X0, D0 a divisor of degree:

2g − 2 < degD0 < n

with associated line bundle L0, and the injective evaluation map γ0 yielding an
algebraic geometry code C in F

n
pr . Then this data lifts to objects over R: X,P

and D, with associated line bundle L, yielding an evaluation code C, such that
we have the following commutative diagram:

(14) Γ (X,L) �� ��
��

eval
��

Γ (X,L) ⊗R Fpr
˜ �� Γ (X0,L0)

��

eval
��

⊕jΓ (P (j),L|P (j))

γ∼=
��

⊕jΓ (P (j)
0 ,L0|P (j)

0
)

γ0
∼=
��

Rn
.⊗RFpr

�� Fn
pr

Where: - the top left horizontal arrow and the bottom horizontal arrow are
tensorisation by ⊗RFpr - the top right isomorphism is constructed canonically
as in the proofs of [Wal99, Lemma 4.6 & proof of Theorem 4.7]

- the top vertical arrows are the canonical restriction maps - the bottom left
vertical arrow is a collection of arbitrary isomorphisms for all j:

γj : Γ (P (j),L|P (j)) −→ A

that reduce to γ0 by tensorisation by ⊗RFpr (and if not, then redefine γ0 accord-
ingly without changing the code in F

n
pr ).

Notice that the name “evaluation maps” of the top vertical arrows is abusive
in general (because of poles, etc.: see the first example of Sect. 4.1), but they do
play this role.

In conclusion, as explained in [Wal99], the code C(D) (likewise C(2D)) is
free because it is the image of a free module: Γ (X,L), under the evaluation
map which is an injection modulo (p), and thus its image is a free submodule of
R�(r)n by Lemma 9.
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3.4 Reminders on the Asymptotic Parameters

Recall first the tradeoff of [CC06, §5] for secret sharing in finite fields Fp. Let us
cast a secret in Fp, into the extension Fpr of degree r, such that

pr ≥ 49 .

Then for adversary threshold 1/3− ε, and for infinitely many number of players,
there exists an ASSSM over Fpr and size r of shares, such that:

ε <
4

3(pr/2 − 1)
,

[CC06, §5] In particular, choosing r̂(ε) = −2 log(ε) yields an adversary bound
1/3 − ε when ε is sufficiently small.

Notice that the classical bound for the dual distance of AG codes over fields
is not stated explicitly in [Cas+09,CCX11]. But its parameters are well known
since Goppa (recalled e.g. in [Wal99, Theorem 2.1]), and also asymptocially
optimal in our regime 2g − 2 < degD0 < n. Which supports the claims of
[Cas+09,CCX11], and thus ours by Proposition 8.

4 Computing Hensel Lift of a Code with a Small Square

Starting from any code C ⊂ Fpr , for any positive L, the following Hensel lift
algorithm lifts the code to a free code CL ⊂ RL(r)n such that the square remains
generated by a lift of a basis of the square C

∗2
. It proceeds in L recursive steps.

Each of the steps consists in solving one instance of the same linear system
over Fpr , of size O(n3) × O(n3). Thus the overall complexity is linear in L
and polynomial in n. The algorithm was already illustrated in Sect. 3.2, let us
formalize it.

Let (ei)i∈[dimC] be a basis of the code C1 := C. By definition, the square C
∗2

is generated by the n(n+1)/2 distinct componentwise products (ei ∗ej )(i,j). C
∗2
1

being a vector space, one can extract a basis from the previous family, which we
denote (ek ∗ el)(k,l)∈B, where

∣

∣B
∣

∣ = dimC
∗2
1 .

A recursive step is as follows. The input is a free lift C� ∈ R�(r)n of C,
together with a basis (ei)i∈[dimC], and coefficients

(

λi,j,k,l

)

i≤j, (k,l)∈B
in R�(r),

such that we have the following invariant. The family of componentwise products
(ek ∗ el)(k,l)∈B generates the square C∗2

� . The coefficients express the larger
generating family (ei ∗ ej )(i≤j) on the smaller generating family, namely:

(15) ei ∗ ej =
∑

(k,l)∈B

λi,j,k,l ek ∗ el for all i ≤ j

The output of a step is a lift C�+1 ∈ R�+1(r)n, together with a basis
(ei

′′)i∈[dimC] that lifts (ei)i∈[dimC], and coefficients
(

λ′′
i,j,k,l

)

i≤j, (k,l)∈B
in
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R�+1(r) that lift the
(

λi,j,k,l

)

i≤j, (k,l)∈B
such that the same invariant holds (this

time with respect to the square C∗2
�+1).

The computation of a step is as follows. Fix arbitrary lifts ei
′ of the ei in

R�+1(r)n, and λ′
i,j,k,l of the λi,j,k,l in R�+1(r). We obtain error terms p�Di,j

when evaluating the equations in R�+1(r)n:

(16) ei
′ ∗ ej

′ =
∑

k,l

λ′
i,j,k,lek

′ ∗ el
′ + p�Di,j for all i ≤ j

Solving the system means finding correct lifts ei
′′ and λ′′

i,j,k,l such that the
error terms p�Di,j are all equal to 0. We express ei

′′ and λ′′
i,j,k,l from ei

′ and
λ′

i,j,k,l, added with corrective terms p�f ′
i and p�μ′

i,j,k,l:

(17) ei
′′ = ei

′ + p�f ′
i and λ′′

i,j,k,l = λ′
i,j,k,l + p�μ′

i,j,k,l

So that, replacing ei
′ in (16) by the corrected ei

′′ of (17) (where the corrective
terms are treated as unknows), simplifying and moding out the terms that are
multiples of p�+1, we observe (Hensel’s trick) that all the terms remaining in the
system are multiples of p�. Thus, dividing by p�, we fall back to the following
linear system in Fpr :

(18) ei ∗f ′
j +ej ∗f ′

i −Di,j =
∑

k,l

μ′
i,j,k,lek ∗el +λi,j,k,l(ek ∗f ′

l +el ∗f ′
k) ∀i ≤ j

which we notice is the same system for all steps. Finally, as for the size of
the system, each vectorial equation for (i, j) expands itself in n scalar equations,
so a total of nk(k + 1)/2. The lifts of the (ei)i are n unknowns and the lifts of
λi,j,k,l are k(k + 1).dim (C

∗2
) unknowns.

Complexity in log(L). It was suggested by a reviewer of Eurocrypt that, applying
the Hensel lifting method in its full version would enable a lifting complexity in
only O(log2 L) steps. This comes from the possibility to lift (15) directly modulo
p2� (full Hensel method). However, this requires to determine the corrective
terms modulo p�, and not anymore just modulo p as in (18). This thus requires
the task of solving a linear system modulo p�, not anymore just modulo p. This
task is efficiently computable, as proven in Sect. 5 (A). But for simplicity, we
nevertheless implemented the method in L steps.

4.1 Example of a Multiplication Friendly Lift Modulo 2100

Here we illustrate efficiency of our method by lifting a strongly multiplicative
secret sharing scheme over F16 for 64 players and adversary threshold t = 13,
into a scheme over Z/2100Z, in a minute on a single processor.

Let X0 be the “Hermitian” plane curve over F16 defined by equation f(x, T ) =
T 4+T −x4+1. Then it is well known that this curve has genus g = 4(4−1)/2 = 6
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and n + 1 := |X0(F16)| = 1 + 43 = 65 rational points (which reaches the Hasse-
Weil upper-bound). Let us denote these points P0, . . . , Pn=64, consider the divisor
D0 = 25P0, whose Riemann-Roch space L(D0) is of dimension 20. Let C be the
algebraic geometry code C of length n + 1 defined as evaluations of L(D0) on
all the rational points of X0, including the support {P0} of D0. Phrased with
the notations of [CC06, §3], this means that we allow in addition to evaluate
at Q. We do this to enable +1 on the adversary bound t. Evaluate at a point
P0 of the support of D0, simply proceeds by pre-multiplying the function to be
evaluated, by a uniformizer of P0 to the power the order of P0 in D0. For the
sake of illustration notice that, with t = 13, we have degD0 = 2g + t so that
the condition 39 = 3t < n − 4g = 40 of [CC06, Proposition 2] is satisfied, thus
from C we can deduce a secret sharing scheme with strong multiplication for
adversary bound t = 13.

Before going on, we compute the square code C
2

and the (a priori larger)
AG code associated to L(2D0), and check that both are equal. By the Riemann-
Roch formula we have that C(2D0) is of dimension 2.25 + 1− 6 = 45. From the
generating set (ei ∗ej )i≤j of C

2
we extract a basis (ek ∗el)(k,l)∈B. We now look

at the matrix expressing the (ei ∗ej )i≤j in terms of this basis (with the previous
notations, this is the matrix of the coefficients λi,j,k,l). It has (dim (C)(dim (C)+
1))/2 = 210 lines (all ordered pairs i ≤ j). Obviously the lines where the index
(i, j) belongs to B contain a single coefficient, equal to one. And obviously these
coefficients will remain equal to one in every lift mod p� so we can remove these
ndimC

2
= 64× 45 relations (and the corresponding variables) from the system

from now on. This means that equality actually holds in (12). It is left outside
of the scope of the paper to prove why this equality is actually implied by the
condition degD0 ≥ 2g + 1.

After some optimizations outside of the scope of this paper, we end up with
a system (18) of 10725 equations with 3305 unknowns but, surprisingly, of (still)
very large kernel: dimension 83 (dimension 200 before applying the trick). We
solve it in one second on a single processor.

Finally we repeat the operation, following the Hensel-lift algorithm: we rein-
ject the solution (the lifted vectors ei and coefficients λi,j,k,l) in a system
mod 23 (as in (15)), which is a multiple of 22 after simplification, thus falls
back to a system mod 2 after “division by 22”. Note the general fact that the
matrix of the new system obtained is exactly the same as the initial one (18),
because the coefficients depend only on the values modulo 2 of ei and λi,j,k,l. To
which we find again a solution (the mysterious lucky heuristic)—in one second
as expected—then repeat exactly 97 times (always the lucky heuristic) to reach
a multiplication friendly lift over R100(4).

5 Applications to MPC

5.1 Proof of Main Theorem 2

Proposition 16. For any fixed p and �, consider any fix number n of players,
and choose any fixed even integer r such that pr ≥ 64, and security parameter κ.
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Then there exists a slowly growing infinite sequence of integers N such that: for
any set of N triples ai, bi, ci in Z/p�

Z (resp. in Fp), which are shared between
the players using any linear secret sharing scheme, then there exists a protocol
that has the following properties

– The protocol consumes an additional number of triples, which is asymptoti-
cally N(1 + 2p−r/2), that are opened (so cannot be used anymore);

– Either all triples considered are correct: aibi = ci then it outputs true,
or at least one is incorrect, then it outputs false except with probability
O(p−(rκ−1)/2(1 + 4p−κ/2))

– The communication complexity is nr(N +2κ2) of elements of Z/p�
Z (resp. of

Fp) sent, the computational complexity is O(N) linear operations in Z/p�
Z

(resp. in Fp) per player.

For simplicity we prove it over finite fields. Then the same methods to lift it
over rings as in Main Theorem 1 apply. Consider the finite field extension Fpr

and an optimal family of algebraic curves over Fpr with genera slowly growing
to infinity. The best existing asymptotic ratio of the number of rational points
divided by the genus, is denoted A(pr) “the Ihara constant”. When r is even then
Ihara showed existence of infinitely many curves with slowly growing genera such
that it matches the upper-bound of Drinfeld-Vladuts: A(pr) = pr/2 − 1. Recall
that this bound is one order of magnitude lower than the Weil upper bound
(which is relevant only for finite genera). Fix a curve C in this family, with genus
g, such that it has at least 2(N +2g−1) points (which is possible for all N large
enough since pr ≥ 64). Consider a fixed set of points P1, . . . , PN on this curve,
and G a point of degree N +2g− 1 (existence is guaranteed by [Sti09, Theorem
5.2.10 c)]). Then there exists an interpolation formula with coefficients linear in
the ai (resp. the bi), that builds rational functions f (resp. g) in the Riemann
Roch space L(G), such that they take the values ai (resp. bi) at the points
P1, . . . , PN . [The technique for this is as in Lagrange’s interpolation formula:
one considers for every point Pi a fixed public function χi that vanishes at all
the Pj for j �= i but not at Pi. Existence of χi is guaranteed by a consequence
of the Riemann-Roch formula: �(G − ∑

i
=j Pj) − �(G − ∑

j Pj) > 0. Then, the
function f is deduced as the linear combination

∑

i(ai/χi(Pi))fi]. The players
can thus obtain a secret sharing of coefficients of f seen as a linear combination
of the public χi’s (same for g). Define h = fg in L(2G). Consider the remaining
points of the curve: PN+1, . . . , P2(N+2g−1). Players sacrifice N +2g− 1 auxiliary
triples (possibly incorrect), in order to compute with the Beaver passively-secure
protocol (so possibly incorrectly) secret sharings of the products c̃i = f(Pi)g(Pi)
at all those remaining points. At this point, if all triples are correct and no
cheating occurred, then we should have h(Pi) = ci for all i = 1 . . . N and h(Pi) =
c̃i for all i = N +1 . . . 2(N +2g− 1) As above, players compute a secret sharing
of the unique function ˜h in L(2G) such that ˜h(Pi) = ci for all i = 1 . . . N and
˜h(Pi) = c̃i (namely they locally compute a secret sharing of the coefficients of
the linear decomposition of ˜h along the public χi). Then they sample a random
secret shared challenge value λ ∈ Fprκ , compute locally secret sharings of the
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evaluations f(λ), g(λ) and ˜h(λ), compute a (possibly false) secret sharing of the
product f(λ)g(λ) by sacrificing 2κ2 triples (multiplication in Fprκ/Fpr being done
with the schoolboy algorithm), then perform a equal-to-zero check on f(λ)g(λ)−
˜h(λ). If it passes, then they return accept.

5.2 Existence of Lifts of RMFE over Rings, with Constant Rate

Let p be a prime and r, k, m ≥ 1 be positive integers. ∗ denotes the component-
wise product. We adapt over rings [Cas+18, Definition 1] (where q = pr).

Definition 17. A pair (φ, ψ) is called an (k,m)pr -Reverse Multiplication
Friendly Embedding (RMFE) if φ : R�(r)k → R�(rm) and ψ : R�(rm) → R�(r)k

are two R�(r)-linear maps satisfying

(19) x ∗ y = ψ(φ(x)φ(y)) for all x, y ∈ R�(r)k

Theorem 18. Consider the family of “Reverse multiplication friendly embed-
dings” (RMFE) of [Cas+18, Theorem 5] (where q := pr), then there exists a
family of RMFE of (R�(r))k into R�(rm), with k slowly growing to infinity and
the same constant asymptotic expansion rates m/k.

Let us review the construction over fields of [Cas+18, Lem 6 & Cor 1] that
provides [Cas+18, Theorem 5], and use the tools of Sect. 3.3 to show that it
lifts. We consider a smooth curve over Fq of genus g, with k distinct rational
points denoted P1, P2, . . . , Pk. Let G be a divisor such that degG ≥ k + 2g + 1
(and for simplicity, with support outside of {P1, . . . , Pk}). By the Riemann-
Roch formula we thus have dim

Fq
L(G)− dim

FqL(G − ∑

i Pi) = k. By Sect. 3.3,
the Riemann Roch spaces in this equality lift to free modules of same rank.
Consider the evaluation map π : L(G) −→ F

k
q : f −→ (f(Pi))i∈[k], which has

kernel L(G − ∑

i Pi). Then π is surjective, since dim
Fq
Im(π) = dim

Fq
L(G) −

dim
Fq

L(G − ∑

i Pi) = k. Surjectivity is preserved over rings (by the invertible
determinant mod p trick).

Choose a subspace W of L(G) of dimension k such that π induces an iso-
morphism between W and F

k
q . Choose R a point of degree m > 2 deg (G), which

exists for m large enough by [Sti09, Theorem 5.2.10 c)]. For any f ∈ L(G),
we denote by cf the evaluation vector (f(Pi)), and by f(R) the evaluation.
The previous isomorphism induces the Fq-linear map φ : π(V ) = F

k
q −→ Fqm :

cf → f(R). Then φ is injective, since deg (R) > deg (G). Thus the lift over rings
is also injective, by Lemma 9.

Define the Fq -linear map τ : L(2G) −→ Fqm : f → f(R). Then τ is injective,
since m = deg(R) > deg(2G), and likewise for the lift by Lemma 9. Bijectivity
of Im(τ) with L(2G) induces the Fq-linear map ψ′ : Im(τ) ⊆ Fqm −→ F

k
q :

f(R) → (f(Pi)). Then ψ′ surjective (but not injective), by the same degree
reason than π, and likewise for surjectivity of the lift. We extend φ′ from Im(τ)
to all of Fqm linearly, and denote the resulting map ψ.

Finally, RMFE follows from the fact that, for any cf , cg ∈ F
k
q we have:

ψ(φ(cf )φ(cg )) = ψ(f(R)g(R)) = ψ((f.g)(R)) = cf g = cf ∗ cg
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where f, g ∈ W are uniquely determined from cf , cg by the injectivities above.
Note that (fg)(R) belongs to Im(τ) since fg ∈ L(2G).

5.3 Proof of Main Theorem 3

We can now compile a protocol for a circuit over a large Galois ring R�(r), into a
protocol for many evaluations in parallel of this circuit in Z/p�

Z by casting over
rings the protocols of [Cas+18]. Since we choose to restrict ourselves to the case of
optimal adversary rate, we really need hyperinvertible matrices over Galois rings
for any number of players (not the alternative with suboptimal adversary bound
discussed in [Cas+18, §2.4]). Fortunately their construction is straightforward,
see e.g. [Abs+19a]. We can thus cast the original protocol of Beerliova-Hirt over
Galois rings, then compensate their bad asymptotic communication overhead
by amortizing it over several instances in parallel, exactly as done in [Cas+18,
Theorem 1 & 2]. Namely, the main tool are RMFE over rings with asymptotically
linear rate, which is solved above in Sect. 5.2. Whereas the “tensoring-up” trick
carries over rings without any technical difficulty.

5.4 An Analogous Efficient Hensel Lift for RMFE

Again we consider for simplicity only the base field Fp, instead of Fpr . Let us
make the following useful rephrasing of the definition of a reverse multiplication
embedding (RMFE) of Fk

p into Fpm Consider the field extension Fpm , equipped
with its internal multiplication law. Denoting the dual over Fp with ∗, this law is
captured by what is denoted as the multiplication tensor T ∈ F

∗
pm ⊗ F

∗
pm ⊗ Fpm

Its components Ti=1..m are Fp-bilinear forms from
(

Fpm × Fpm

)

to Fp. Now fix
a linear map

φ : Fk
p −→ Fpm

The pull back of T :

φ∗T = T (φ(.), φ(.))

decomposes in Fpm in m components which are symmetric bilinear forms

φ∗Ti = Ti(φ(.), φ(.)) , i = 1..m

belonging by definition to the symmetric tensor space of the linear forms
S2((Fk

p)
∗).

Definition 19. Consider the (nonintegral) algebra F
k
p, equipped with the multi-

plication law component-by-component. This law is captured by what is denoted
as the “multiplication tensor”, belonging to

(

F
k
p

)∗ ⊗ (

F
k
p

)∗ ⊗F
k
p. We say that φ is

a reverse multiplication embedding iff these m bilinear forms φ∗Ti generate the
components (x∗

1 ⊗ x∗
1, ...x

∗
k ⊗ x∗

k) of the multiplication tensor.
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Lifting of an Algorithm φ Modulo p2: Suppose we are given a reverse multipli-
cation friendly embedding φ, over Fp (r = 1 to make notations simple): for each
j = 1 . . . k, we have coefficients λi,j such that:

(20) x∗
j ⊗ x∗

j =
m

∑

i=1

λi,j . φ
∗Ti

(it is a tensorial equality: it takes place in the space of symmetric bilinear
forms of length k, so expands on coordinates as a set of k(k+1)/2 equations). We
want to lift φ and the coefficients λi,j such that the equalities (20) hold modulo
p2. (So we have mk+mk unknowns and m equations, each of them taking place
in a symmetric tensor space of dimension k(k + 1)/2 ). Consider arbitrary lifts
φ′ and λ′

i,j of φ and λi,j over Z/p2Z, we thus obtain the (tensorial) equalities
modulo p2 for j = 1..k :

x∗
j ⊗ x∗

j =
m

∑

i=1

λ′
i,jφ

′∗Ti + pΔj

and we would like to eliminate the error terms pΔj modulo p2 by choosing
better lifts of φ and of λi,j :

(21) φ′ + pψ and λ′
i,j + pμi,j

After replacing (21) in (20) then simplification, the equation becomes the
following (tensorial) linear equation modulo p (so with coordinates in Fp):

m
∑

i=1

2λ′
i,jTi

(

φ′(.), ψ(.)
)

+ μ′
i,jTi

(

φ′(), φ′
i(.)

)

= −Δj

where the unknowns are ψ and μ′
i,j .

How to repeat and compute higher lifts modulo p� then proceeds as in Sect. 4.
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Abstract. We present the first homomorphic secret sharing (HSS) con-
struction that simultaneously (1) has negligible correctness error, (2)
supports integers from an exponentially large range, and (3) relies on an
assumption not known to imply FHE—specifically, the Decisional Com-
posite Residuosity (DCR) assumption. This resolves an open question
posed by Boyle, Gilboa, and Ishai (Crypto 2016). Homomorphic secret
sharing is analogous to fully-homomorphic encryption, except the cipher-
texts are shared across two non-colluding evaluators. Previous construc-
tions of HSS either had non-negligible correctness error and polynomial-
size plaintext space or were based on the stronger LWE assumption. We
also present two applications of our technique: a two server ORAM with
constant bandwidth overhead, and a rate-1 trapdoor hash function with
negligible error rate.

1 Introduction

Homomorphic secret sharing is a relaxation of fully-homomorphic encryption
(FHE) where the ciphertexts are shared across two non-colluding evaluators,
who may homomorphically evaluate functions on their shares. In FHE, if c ←
Enc(x) then Hom(f, c) is an encryption of f(x). In HSS, if s0, s1 ← Share(x) then
Hom(f, s1) and Hom(f, s0) (computed independently) are a sharing of f(x).

Boyle, Gilboa, and Ishai [BGI16] initiated the line of work on secure com-
putation from HSS with a construction based on the Decisional Diffie–Hellman
(DDH) assumption. They used their scheme to achieve the first secure two-party
computation protocol with sublinear communication from an assumption not
known to imply FHE. Though their HSS only supports restricted multiplication
straight-line (RMS) programs, this is enough at least to evaluate polynomial-size
branching programs. All known HSS constructions (including ours) that aren’t
based on FHE have this same limitation.

The HSS of [BGI16] has two main limitations. First, it achieves correctness
with probability only 1 − p (for p = 1/poly). Second, it can only support a
message space of polynomial size M , as it requires O(M/p) time for a step they
call “share conversion”. [FGJS17] constructed a similar HSS scheme based on
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Paillier encryption (from the DCR assumption), with the same limitations and
O(M/p)-time share conversion technique. The cost of share conversion was later
improved to O(

√
M/p) by [DKK18], which they proved is optimal for these

schemes unless faster interval discrete logarithm algorithms are found.
These limitations were eventually removed by [BKS19], using lattice-based

cryptography. Their scheme is based the Learning With Errors (LWE) assump-
tion, and achieves homomorphic secret sharing with exponentially small cor-
rectness error and exponentially large plaintext space. The LWE assumption is
strong enough to construct FHE [BV11], although their HSS scheme uses simpler
techniques and can be more efficient than FHE.

Why is correctness error important? Besides the theoretical distinction, it
increases the overhead for secure computation: the 2PC protocol of [BGI16]
needs to repeat homomorphic evaluation polynomially many times and take a
majority vote (using another MPC protocol) on the outcome. Longer programs
have higher chance for error, as if any operation errors then the whole com-
putation will fail. Consequently, when evaluating an n-step program on plain-
texts bounded by M , they require O(Mn2) time to get a constant error rate
(or O(Mn2t) time after repeating for O(t) tries to get a negligible error rate
of 2−t). The reduced error rate from [DKK18] allows this to be improved to
O(M1/2n3/2). Ideally, we would want the computation cost of a 2PC protocol
to be linear in n.

Supporting exponentially large plaintext space can also improve the 2PC
protocol’s computational complexity, because it is necessary to represent the
HSS scheme’s key inside of its messages. [BGI16] manage this by taking the
bit-decomposition of the key, though this multiplies the computational cost by
the key size. When M can be exponentially large, however, the key can directly
fit inside the plaintext space. Additionally, computations can be performed on
large chunks of data at a time, further improving efficiency. Finally, there may
be some computations that can only be performed with the larger message space
bound. Specifically, RMS programs with a polynomial bound on memory values
are sufficient to evaluate branching programs [BGI16], while with a large enough
message space algebraic branching programs over Z can be evaluated.

The question of whether negligible correctness error could be achieved from
an assumption not known to imply FHE was left as an open problem by [BGI16].1

1.1 Our Results

We give an affirmative answer this open question. We construct an HSS scheme
based on Damg̊ard–Jurik encryption (under the DCR assumption) that achieves
negligible correctness error and exponentially large message space. When our
HSS is used for 2PC, there is no need for repeated HSS evaluation to amplify
correctness. We can therefore securely evaluate n-step RMS programs in O(n)
time. Previous constructions required a polynomial bound on the size of the

1 A concurrent work [OSY21] has also independently solved this problem.
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values in the RMS computation, while our construction natively supports arith-
metic operations over exponentially large values.

The main insight in our construction is to define a new “distance function”,
the key step used for share conversion in HSS schemes. Ours is based on the
algebraic properties of the ciphertext group (Z/Ns+1

Z)×, while existing distance
functions use the generic technique of searching for a randomly chosen subset
of ciphertexts. This allows us to extract an exponentially large result from our
distance function, and achieve share conversion with a negligible error rate.

We also present several other applications of our new result and techniques:

ORAM. We propose a novel 2-server malicious secure Oblivious RAM (ORAM)
protocol that achieves constant bandwidth. An ORAM protocol allows the client
to hide its access pattern on a database outsourced to untrusted server(s). Our
protocol is closely based on the single server Onion ORAM protocol [DvDF+16],
which leverages server side computation to achieve constant bandwidth blowup.
We replace this server side computation with a number of RMS programs, which
can be evaluated by the two servers using our HSS scheme.

While there already exist multi-server ORAM constructions with constant
client-server bandwidth overhead (e.g., [DvDF+16,FNR+15,HOY+17]), they all
require either super-constant server-server communication or a minimum block
size of Ω(log6 N), where N is the number of blocks in the ORAM. Whereas,
our HSS based 2-server ORAM achieves constant bandwidth for block of size
ω(log4 N) and with no server-server communication.

Trapdoor hash functions. Beyond HSS, another construction based on the notion
of a distance function is trapdoor hash functions (TDH) [DGI+19]. Rate-1 TDHs
are a kind of hash function that have additional properties useful for two-party
computation. Specifically, if Alice has some f in a limited class of predicates and
Bob has a message x, if Bob sends the hash of x and Alice sends a key generated
based on f , they can each compute a single-bit share of f(x). [DGI+19] use
rate-1 TDHs to build rate-1 string oblivious transfer (OT), from which they
construct efficient private information retrieval and semi-compact homomorphic
encryption. They also present several other constructions based on TDHs.

Prior work [DGI+19] constructed rate-1 TDHs from a variety of assumptions
(DDH, QR, DCR, and LWE), but only their QR and LWE instantiations achieve
negligible correctness error. For DDH and DCR, they had to compensate by using
error correcting codes in their construction of rate-1 string OT. We can directly
construct a rate-1 trapdoor hash function from DCR using our distance function,
achieving negligible correctness error. Our construction also generalizes beyond
TDHs, in that it can handle functions f outputting more than a single bit.

HSS definition. We extend the definition of HSS to allow (generalized, to repre-
sent RMS operations) circuits to be evaluated one gate at a time. One benefit of
this approach is that it allows secure evaluation of online algorithms, which may
take input and produce output many times, while maintaining some secret state.
The function to evaluate may be chosen adaptively based on previous outputs
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or shares. We also define malicious security of HSS, in the form of share authen-
tication. These definitions are directly useful for our application to ORAM.

1.2 Technical Overview

Introduction to HSS. HSS schemes work through the interaction of two different
homomorphic schemes: additively homomorphic encryption and additive secret
sharing. Following the notation of [BGI16], let [[x]] denote an encryption of x.
Let 〈y〉 denote additive shares of y, meaning that party 0 has 〈y〉0 and party 1
has 〈y〉1 such that 〈y〉1 − 〈y〉0 = y. Then 〈x〉 + 〈y〉 ≡ 〈x + y〉, where ≡ means
shares that decode to the same value, or ciphertexts that decrypt to the same
plaintext. We will write the group operation on the homomorphic encryption
multiplicatively, so [[x]][[y]] ≡ [[x + y]]. Any additively homomorphic encryption
supports multiplication by constants, so we have [[x]]c ≡ [[cx]].

We have two different additively homomorphic schemes; what happens if we
let them interact? If the parties compute [[x]]〈y〉, they get ⟪[[xy]]⟫, where ⟪z⟫
denotes multiplicative shares of z. More precisely, party i has ⟪[[x]]y⟫i = [[x]]〈y〉i ,
and ⟪[[x]]y⟫1/⟪[[x]]y⟫0 = [[x]]〈y〉1−〈y〉0 ≡ [[xy]]. What’s interesting here is that by
combining the two encryption schemes we get a representation of the product.
That is, we have a bilinear map. However, we would really like to be able to
perform multiple operations in sequence. Is there any way we could make the
result instead be 〈xy〉?

Luckily, many additively homomorphic encryption schemes perform decryp-
tion through exponentiation, the same operation as was used for homomorphi-
cally multiplying by a constant. For Paillier, decryption is φ−1([[z]]ϕ) = z, where
φ(z) = 1 + Nϕz is a homomorphism from the plaintext space to the ciphertext
space, and N and ϕ are the public and private keys. Therefore, if we have shares
〈ϕy〉 then we can compute [[x]]〈ϕy〉 ≡ ⟪φ(x)y⟫ ≡ ⟪φ(xy)⟫. For ElGamal, the
decryption of a ciphertext [[z]] = (A,B) is φ−1(A−kB), where φ(z) = gz for a
public generator g. Again, φ is a homomorphism from the plaintext space. This
is slightly more complicated in that it’s taking a dot product “in the exponent”
with the private key vector �k = [−k 1], but if we take the secret shares to be
vectors 〈�ky〉 then still we have [[x]]〈�ky〉 ≡ ⟪φ(x)y⟫ ≡ ⟪φ(xy)⟫.

The last step of decryption for both schemes is to compute φ−1. For HSS we
need to do the same, but on the multiplicative shares ⟪φ(z)⟫ split across the two
parties performing HSS. This is done with a distance function, with the property
that Dist(aφ(z))−Dist(a) = z, ideally for any ciphertext a and plaintext z. Then
Dist(∗)⟪φ(xy)⟫i ≡ 〈xy〉i gives additive shares of the multiplication result. The
idea from [BGI16] for constructing Dist is that both parties agree on a common
set of “special points”, which they choose randomly. They iteratively compute
aφ(−1)j , starting at j = 0 and continuing until c = aφ(−1)j is special, then set
Dist(a) to be the distance j. If they find the same special point c,

Dist(aφ(z)) − Dist(a) = Dist(cφ(j + z)) − Dist(cφ(j)) = j + z − j = z,

so their distances are additive shares of z. When the special points are chosen
randomly and z is small, Dist(aφ(z)) and Dist(a) will usually pick the same c.



Large Message Homomorphic Secret Sharing from DCR and Applications 691

Putting this all together, HSS consists of a way of homomorphically multiply-
ing a ciphertext [[x]] by a share 〈y〉, or rather 〈ky〉 for some private key k, to get
⟪φ(xy)⟫, then finally using a distance function to find 〈xy〉. A circularly secure
encryption scheme allows ky to be encrypted, so then Dist

(
[[ky]]kx

) ≡ 〈kxy〉,
which can feed the input of another multiplication operation, and so on.

Paillier distance function. We now present a simplified version of our main HSS
construction. It uses a variant of Paillier encryption, where instead of encrypting
messages as rN (1 + Nz) mod N2 for public key N and uniformly random r, it
encrypts them as rN3

(1 + N2z) mod N4. This is to allow the plaintext size to

be bigger than the private key. We have
(
rN3

(1 + N2z)
)ϕ

= 1 + N2ϕz = φ(z).

To find φ−1(a), compute (a − 1)/N2, as a − 1 must be a multiple of N2, then
multiply by ϕ−1 mod N2.

It turns out that we can design a distance function that is based on this φ−1.
A prior construction of HSS from Paillier encryption, [FGJS17], had a minor
optimization based on ⟪φ(z)⟫1 = ⟪φ(z)⟫0 mod N2, since ⟪φ(z)⟫1/⟪φ(z)⟫0 =
φ(z) = 1 + N2ϕz. Therefore both parties will have something in common, and
they can use it as their common point c = ⟪φ(z)⟫0 mod N2 = ⟪φ(z)⟫1 mod N2.
On input a, let the distance function pick a canonical representative c = a mod
N2 ∈ [−N−1

2 , N−1
2 ]. Then a/c = 1 + N2w, and we let Dist(a) = w. This means

that our “special points” are [−N−1
2 , N−1

2 ], instead of a random set like [BGI16].
We then have Dist(aφ(z)) − Dist(a) = ϕz, because aφ(z)/c = (1 + N2ϕz)(1 +
N2w) = 1 + N2(ϕz + w). This is a slightly different property than what we
specified for distance functions, but it is actually even better as we don’t need to
use circularly secure encryption to get 〈ϕxy〉 as the result of multiplication—ϕ
will already be multiplied in the output.

However, there’s one last step before we have an HSS. The result from Dist
will be in the form of additive shares modulo N2, and we need them to be additive
shares in Z so that we can use them as an exponent in the next operation.
Exponentiating to a power that is modulo N2 would not make sense, as the
multiplicative order of almost any ciphertext does not divide N2. We use a
trick from the LWE HSS construction: additive shares modulo N2 of a value z
much smaller than N2 (so |z|/N2 is negligible) have overwhelming probability
of being additive shares over Z, without any modulus. Therefore we can make
a distance function that has only negligible failure probability and supports an
exponentially large bound on the plaintext.

1.3 Other Related Work

We compare our proposed ORAM construction to Onion ORAM [DvDF+16],
which is also based on the Damg̊ard–Jurik public-key encryption. To ensure
malicious security and achieve constant bandwidth overhead, the scheme
allows for blocks of size ω̃(log6 N), with Õ(B log4 N) client computation and
ω̃(B log4 N) server computation. For comparison, our proposed ORAM construc-
tion allows for blocks of size ω̃(log4 N), with Õ(B log4 N) client computation and
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Õ(B log5 N) server computation. To ensure the integrity of server side storage,
Onion ORAM uses a verification algorithm that relies on probabilistic check-
ing and error correcting codes. This integrity check adds an overhead to the
communication and computation. In our protocol we get this verification check
“for free”, as the HSS shares held by the two servers satisfy the authenticated
property—which ensures that a single corrupt server cannot modify its share
without it being detected by the client during the decoding process. This gives
major savings in our protocol’s communication and client side computation com-
pared to Onion ORAM.

Bucket ORAM proposed by Fletcher et al. [FNR+15] proposes a single
server ORAM with constant bandwidth overhead for blocks of size Ω̃(log6 N).
It’s a constant round protocol, but asymptotically its client and server com-
putation match that of Onion ORAM. S3ORAM [HOY+17] proposes a multi-
server ORAM construction with constant client-server bandwidth overhead. It
avoid the evaluation of homomorphic operations on the server side and is based
on Shamir Secret Sharing. However, this protocol incurs O(log N) overhead in
server-server communication, which makes the overall communication overhead
logarithmic. Another interesting work on designing 2-server ORAMs optimized
for secure computation is due to Doerner and Shelat [DS17]. Their construction
is based on the notion of function secret sharing, which is closely related to HSS.
However, it also incurs an O(log N) server-server communication overhead.

1.4 Concurrent Result

A concurrent and independent work [OSY21] also constructs an HSS from the
DCR assumption and achieves negligible correctness error for an exponentially
large plaintext space. Qualitatively, our distance function, which is the main
construction we base our results on, matches theirs. There are two main aspects
in which our work improves on theirs.

We use Damg̊ard–Jurik encryption, which allows the plaintext space to be sig-
nificantly larger than the whole private key. OSY instead uses Paillier encryption.
They consequently have to split their private key into chunks, requiring either
a circular security assumption or a provably circular secure encryption scheme.
OSY needs to use around 6 chunks, assuming circular security, or Θ(log(N))
without. While our ciphertexts are somewhat bigger, we only need a single
ciphertext for an input to our HSS scheme. We therefore have either a constant
or Θ(�(κ)) speedup in both computation and communication relative to OSY’s
HSS scheme, depending on the assumption. While their scheme more naturally
supports additive decoding, a variant of our scheme also has this property.

We also give novel HSS definitions and proofs that support running online
algorithms, and adaptively choosing functions to evaluate based on previous
ciphertexts. We define authenticated HSS, and prove that our construction
is authenticated, allowing its use in maliciously secure protocols such as our
ORAM.
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2 Preliminaries

2.1 Notation

Modular arithmetic. Let Z/NZ be the ring of integers modulo N and (Z/NZ)+

be its additive group. Let (Z/NZ)× be the multiplicative group of all units x
of Z/NZ, i.e. all x coprime to N . Normally multiplication of x̄ = x + NZ ∈
Z/NZ by some integer K ∈ Z will just be Kx̄ = Kx + NZ ∈ Z/NZ; however,
we overload this to mean Kx + KNZ ∈ Z/KNZ as well. We will notate the
quotient map from Z/KNZ to Z/NZ as · + NZ, or omit it when it is clear
from context. To say that two values a and b are the same modulo N , i.e., that
a + NZ = b + NZ, we write a ≡N b. For modulus we assume round to nearest,
so · mod N : Z/NZ → [−N

2 , N
2 ) ∩ Z and x = (x mod N) + NZ for all x.

Algorithm notation. We write our constructions in pseudocode. While the nota-
tion should be mostly self-explanatory, there are a few things to take note of.
The boolean AND and OR operations are ∧ and ∨, and the compliment of a
bit b is b = 1 − b. We give equality testing its own symbol, ?=, so x

?= y is 1
if x = y, and 0 otherwise. Assignment statements are written as x := 1, while
sampling is written as x ← {0, 1}, to indicate that x is uniformly random in the
set {0, 1}. We use ρ ← $ to represent sampling a uniformly random bit stream
ρ. This notation also applies to subroutine calls, so if f is deterministic then the
notation is y := f(x), but if f is randomized then it is y ← f(x).

We will also write our definitions in pseudocode, expressing our security prop-
erties as indistinguishability of two randomized algorithms. Often the adversary
A gets to choose some x partway through a randomized algorithm. To preserve
the adversary’s state and give it to the distinguisher we use (view, x) ← A and
return view from the distribution along with everything else. This way A can
put its state in view and the distinguisher will see it.

2.2 Damg̊ard–Jurik Encryption

Our construction is based on the Damg̊ard–Jurik public-key encryption scheme
[DJ01], a generalization of Paillier encryption [Pai99]. At a high level, the plain-
texts of Damg̊ard–Jurik are members of an additive group (Z/Ns

Z)+. Encryp-
tion applies an isomorphism exp from (Z/Ns

Z)+ to a subgroup of (Z/Ns+1
Z)×,

then hides the plaintext by multiplying by a random perfect power of Ns in
(Z/Ns+1

Z)×. Decryption uses the private key to cancel out this random value,
then applies log, the inverse of exp. This requires that the discrete logarithm be
efficiently computable for the subgroup.

This is possible by taking advantage of N being nilpotent in Z/Ns+1
Z. Power

series in N can have at most s+1 nonzero terms because Ns+1 ≡Ns+1 0, allowing
us to use the usual Taylor series for eNx and 1

N ln(x) to define exp(x) and log(x).

exp(x) =
s∑

k=0

(Nx)k

k!
log(1 + Nx) =

s∑

k=1

(−N)k−1xk

k
.
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exp is an isomorphism from (Z/Ns
Z)+ to 1 + N(Z/Ns+1

Z), the subgroup con-
sisting of all u ∈ (Z/Ns+1

Z)× such that u ≡N 1. Specifically, exp and log are
inverse functions and exp(x+y) = exp(x) exp(y) (see full version of the paper for
the proof of these properties). These functions are sufficient to define Damg̊ard–
Jurik encryption.

Definition 1. Given a security parameter κ and a message size s, define the
Damg̊ard–Jurik encryption scheme as follows.2

(N,ϕ) ← DJ.KeyGen(1κ): Generate an RSA modulus N = pq where 2�(κ)−1 <
p, q < 2�(κ), and � is a polynomial chosen to make the scheme achieve κ-bit
security. Let the public key be N and the private key be ϕ = ϕ(N), where
ϕ(N) = (p − 1)(q − 1) is Euler’s totient function.

c ← DJ.EncN,s(x): Given x ∈ Z/Ns
Z, choose a uniformly random r ∈

(Z/Ns+1
Z)× and output c = rNs

exp(x).
x := DJ.DecN,s,ϕ(c): Given c ∈ (Z/Ns+1

Z)×, output x = 1
ϕ log(cϕ) ∈ Z/Ns

Z.

Encryption is clearly additively homomorphic, since rNs

1 rNs

2 exp(x) exp(y) =
(r1r2)Ns

exp(x + y). Decryption is well defined because cϕ ≡N 1 by Euler’s
theorem, and because p − 1 and q − 1 are each coprime to N since p and q have
the same bit length. The order of (Z/Ns+1

Z)× is ϕ(Ns+1) = ps(p−1)qs(q−1) =
ϕNs, so log(cϕ) = log(rϕNs

exp(x)ϕ) = log(exp(ϕx)) = ϕx, which implies the
correctness of decryption.

The security of this encryption scheme is based on the decisional composite
residuosity assumption (DCR).

Definition 2. The decisional composite residuosity (DCR) assumption is that
the uniform distribution on (Z/N2

Z)× is indistinguishable from the uniform
distribution on the subgroup of perfect powers of N in (Z/N2

Z)×.

We will not use the assumption directly, as it will be more convenient use the
CPA security of Damg̊ard–Jurik encryption as the basis for our security proofs.

Theorem 3 (Damg̊ard and Jurik [DJ01, Theorem 1]). Damg̊ard–Jurik
encryption is CPA secure if and only if the DCR assumption holds. That is, the
oracles Oi,N,s(x0, x1) = DJ.EncN,s(N,xi) for i ∈ {0, 1} must be indistinguish-
able, meaning that for any PPT A the following probability must be negligibly
different between the two values of i.

Pr[(N,ϕ) ← DJ.KeyGen(1κ); AOi,N,s(N) = 1]

2 Damg̊ard–Jurik was originally defined using exp(x) = (1 + N)x, which required log
to use Hensel lifting. We instead chose to use Taylor series because it simplifies
the description of log, and only require O(s) additions and multiplications to eval-
uate with Horner’s rule, while the Hensel lifting algorithm took O(s2) arithmetic
operations.
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select(b, x0, x1):
v := b(x1 − x0)
w := v + x0

return w

(a) As an RMS program

+ × +×−1

x1

xb

x0

b

(b) As an RM circuit

Fig. 1. The selection function xb represented as an RMS program (left, Definition 4)
and a RM circuit (right, Definition 8). In the RM circuit, dashed wires (wire type IN)
correspond to inputs in an RMS program, while solid wires (wire type REG) correspond
to registers.

2.3 Universal Hashing

In our ORAM construction we will assume a family of hash function H = {h :
U → [m]}, which satisfied the uniform difference property, which states: for any
two unequal x, y ∈ U , the number (h(x) − h(y)) mod m is uniformly random
over all hash functions h ∈ H.

3 Circuit Homomorphic Secret Sharing

In this section we present a definition of homomorphic secret sharing (HSS) based
on evaluating (generalized) circuits. We first present a notion of circuit that is
general enough to capture the operations that our HSS scheme can perform,
Restricted Multiplication Straight-line programs. Then we define a notion of
HSS based on replacing each gate in a circuit with an operation that works on
shares. We will only need to specify properties of a single gate at a time; these
properties compose to become secure evaluation of a whole circuit.

The benefits of this approach are threefold. The piecewise definition allows
the evaluation of online algorithms, where some output may need to be produced
before the rest of the inputs can be taken, with state maintained throughout.
It also allows the circuit to be chosen adaptively, based on previous outputs or
even shares. Finally, it simplifies the proof of our HSS construction to be able
to prove properties of individual gates and have them compose.

3.1 Restricted Multiplication Circuits

First, we give a definition for restricted multiplication straight-line programs,
which were first defined in [Cle90]. We give a slight generalization however,
allowing inputs to be added together before multiplication with a register. Poly-
nomially sized RMS programs under the new definition could still be written in
polynomial size in the traditional definition by applying the distributive prop-
erty, but this may multiply the number of steps by n.
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Definition 4. A Restricted Multiplication Straight-line (RMS) program over a
ring K is a sequential program taking with inputs x1, . . . , xn ∈ K and registers
z1, . . ., where the outputs are a subset of the registers. Each instruction must
take the form

zk := (A0 +
∑

i≤n

Aixi)(B0 +
∑

i<k

Bizi),

for some constants A0, . . . , AN , B0, · · · Bk−1.

For convenience we take the first n registers to be the inputs, to avoid explic-
itly writing out a conversion like z1 := 1; zi+1 := xiz1. An example of an RMS
program is shown in Fig. 1a. We want to define a kind of circuit that captures the
allowed operations in RMS programs. In an RMS program there are two types
of values: inputs and registers. This suggests defining circuits with two types of
wire, called IN and REG. The circuit for the example is shown in Fig. 1b, where
IN wires are drawn with a dashed line, and REG wires are drawn with a solid line.
Gates representing linear operations (addition and multiplication-by-constant)
are allowed for either type of wire, and both wire types allow sources for the
value 1. However, multiplication is only allowed between the IN wire type and
the REG wire type, and must always produce a REG wire.

Typed circuits. To make this formal, we need to define circuits with multiple
types of wire. First we define circuit prototypes, which specify what types of
wires and gates are allowed, then we define circuits for a given prototype.

Definition 5. A circuit prototype (types, gates, in, out) consists of a set types ⊆
{0, 1}∗ of wire types and a set gates ⊆ {0, 1}∗ of gate types, together with maps
in : gates → types∗ and out : gates → types assigning to each gate type the wire
types of its inputs and output.

Definition 6. A typed circuit (nodes,wires, inputs, outputs, type, gate) for a cir-
cuit prototype (types, gates, in, out) consists of a) a directed acyclic graph
(nodes,wires), b) a total order on wires, c) subsets inputs, outputs ⊆ nodes,
d) a node labeling type : nodes → types, and e) a non-input node label-
ing gate : nodes \ inputs → gates. A non-input node is called a gate. We
require the circuit to be well-formed: for any gate v, type(v) = out

(
gate(v)

)
,

and if (v1, v), (v2, v), . . . , (vn, v) are v’s incoming wires in sorted order,
type(v1) type(v2) · · · type(vn) = in

(
gate(v)

)
.

Note that in the above definition we followed the more common practice
of only using single output gates and letting fan-out be an implicit operation
represented by a gate having multiple outgoing edges. A more general definition
would allow gates with multiple outputs and disallow implicit fanout, so that
fanout can be controlled by what gates are allowed. The simplified definition is
enough for our application, but e.g. quantum circuits would be better represented
by a more general definition.

We would like to evaluate typed circuits, just like any other kind of circuit.
To do this, we to need a semantics to define what each gate does.
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Run(f, s, x):
(nodes,wires, inputs, outputs, type, gate) := f
(values, eval) := s
for v ∈ nodes \ inputs in topological order:

u := empty list
for e ∈ wires in sorted order:

if (w, v) = e: append w to u
xv := eval(gate(g))(xu[1], xu[2], . . . , xu[|u|])

return {xv}v∈outputs

Fig. 2. Algorithm for evaluating a circuit f with a semantics s. The circuit and the
semantics must share the same circuit prototype.

+
×

×
φ

x1

x2

y1

y2

�x · �y

Fig. 3. A bounded RM circuit for computing the dot product of a pair of two element
vectors. The new wire type MUL is drawn with a line, and the new conversion
operation φ with a triangle.

Definition 7. A semantics (values, eval) for a circuit prototype (types, gates, in,
out) assigns each wire type w ∈ types a set of values values(w), and assigns each
gate type g ∈ gates a function eval(g) : values(w1)×values(w2)×· · ·×values(wn) →
values

(
out(g)

)
, where w1 w2 · · · wn = in(g) are the input wire types of the gate.

We can evaluate a typed circuit using a semantics. Given values xv ∈ values(
type(v)) for all circuit inputs v ∈ inputs, the evaluation proceeds in topological
order. The inputs of each gate are its incoming wires, and the input order is given
by the total order on the edges. Every gate g ∈ nodes \ inputs gets evaluated as
xg = eval(gate(g))(xv1 , xv2 , . . . , xvn

) where (v1, g), (v2, g), . . . , (vn, g) ∈ wires are
the incoming wires of g in sorted order. The outputs are then xv for v ∈ outputs.
See Fig. 2 for the formal algorithm.

Restricted multiplication (RM) circuits. We can now define restricted multipli-
cation circuits using the above definitions.

Definition 8. The RM circuit prototype over a ring K has wire types types =
{IN,REG}, gate types for constants and linear operations {1IN, 1REG,+IN,+REG,
×IN c,×REG c} for all c ∈ K, and a single nonlinear multiplication operation
× : IN × REG → REG. An RM circuit is a circuit for this circuit prototype.

An RM circuit can be evaluated just like an RMS program.
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Definition 9. The evaluation semantics for RM circuits over K has
values(IN) = values(REG) = K and performs each gate operation in the ring
K.

However, this is not the only semantics assigned to RM programs. In fact,
our HSS definition is based on the idea of giving multiple different semantics to
the same circuit: one for the plaintexts and one for the shares. The latter define
what shares are and how homomorphic operations are evaluated on them.

Bounded RM circuits. Unfortunately, our construction will not be capable of
evaluating all RM circuits. Similarly to [BGI16], we have a share conversion step
that only works for values of bounded size. This conversion step is normally done
on the output of every multiplication, but it can be delayed until after further
linear operations. We generalize RM circuits with another wire type to represent
unconverted values.

Definition 10. The bounded RM circuit prototype over a ring R has wire types
types = {IN,REG,MUL} and gate types for a) the constant 1 for all wire types, b)
linear operations for all wire types, c) a multiplication operation × : IN×REG →
MUL, and d) a conversion operation φ : MUL → REG. A bounded RM circuit is
a circuit for this circuit prototype.

An example of this new kind of circuit is illustrated in Fig. 3.

Definition 11. The evaluation semantics for bounded RM circuits over K,
given a bound M ⊆ K, sets values(IN) = values(REG) = values(MUL) = K ∪ {⊥}
and assigns the usual operations in K for linear operations and multiplication.
eval(φ)(x) is x if x ∈ M , or ⊥ otherwise. ⊥ is an absorbing element for all
operations, so if any input is ⊥ then the output is ⊥.

The value ⊥ allows the circuit evaluation to fail if the input to the conversion
operation isn’t bounded. This idea is generalized by the following definition.

Definition 12. A semantics (values, eval) is called a failure semantics if, for
all wire types w ∈ types, there is a special value ⊥ ∈ values(w) called failure
that is absorbing for all functions in eval(gates). That is, for any g ∈ gates,
eval(g)(. . . ,⊥, . . .) = ⊥, no matter what the other arguments are.

The evaluation semantics of bounded RM circuits is a failure semantics.

3.2 Homomorphic Secret Sharing

Instead of taking a whole circuit to evaluate at once, our two-server HSS defini-
tion works piecemeal, by assigning three different semantics to the same circuit
prototype. The first semantics is the usual one that works over the plaintexts,
while the other two define, for each of the two servers, the what values the
shares may take and how homomorphic operations may be computed on them.
In a sense, these share semantics define compilers that turn the circuit into some-
thing that can be evaluated on shares, one gate at a time. The idea is that if
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we require that the plaintext semantics and share semantics be compatible with
each other in a certain way, it implies that the homomorphic operations correctly
evaluate the circuit to the sames result as if it were evaluated on the plaintext.

In our construction we are using Damg̊ard–Jurik encryption, so K will be
Z/Ns

Z, which depends on the public key N and cannot be fixed in advance. This
means that the operations we can perform have to be sampled randomly, at the
same time as the public key, even though it is more usual to define homomorphic
secret sharing in terms of some fixed operations (see e.g. [BGI+17]). Therefore,
the plaintext evaluation will depend on the public key. We give the homomorphic
operations access to shares of the secret key as well, as some of our operations
(such as getting shares of 1) will depend on them.

Definition 13. A (1−p)-correct two-server Homomorphic Secret Sharing (HSS)
scheme with public-key setup consists of PPT algorithms:

– (pk, sk0, sk1) ← Setup(1κ) outputs the keys and the circuit prototype, where κ
is the security parameter.

– ((types, gates, in, out), (values, eval)) := Eval(pk) gives the circuit prototype and
the plaintext evaluation semantics. This must be a failure semantics.

– (valuesj , evalj) := Hom(j, pk, skj) outputs the homomorphic evaluation
semantics for server j, except that evalj takes an extra argument r, which
is a stream of random coins.

– (s0, s1) ← Share(pk, sk0, sk1, w, x), given a wire type w ∈ types and a value
x ∈ values(w), outputs shares sj ∈ valuesj(w).

– y ← Decode(pk, sk0, sk1, w, s0, s1) decodes an output y ∈ values(w) from shares
sj ∈ valuesj(w), where w ∈ types.

The following conditions are imposed.

– Correctness: Running Decode on the shares from Share must output the orig-
inal input x when x is not failure. More precisely, the following distribution
outputs true with probability at least 1 − p, for any PPT adversary A.

(pk, sk0, sk1) ← Setup(1κ)
(w, x) ← A(pk, sk0, sk1)
(s0, s1) ← Share(pk, sk0, sk1, w, x)
y ← Decode(pk, sk0, sk1, w, s0, s1)

return x
?
= y ∨ x

?
= ⊥

– Homomorphism: The semantics must commute with Decode. That is, the fol-
lowing distributions are indistinguishable except with advantage p, for any
PPT adversary A such that the first distribution never returns ⊥.

(pk, sk0, sk1) ← Setup(1κ)

(proto, (values, eval)) := Eval(pk)

(view, g, {(si0, si1)}i) ← A(pk, sk0, sk1)

r ← $

for i := 1 to n:

xi ← Decode(pk, sk0, sk1, in(g)i, si0, si1)

y := eval(g)(x1, . . . , xn)

return view, r, y

(pk, sk0, sk1) ← Setup(1κ)

(proto, (values, eval)) := Eval(pk)

(view, g, {(si0, si1)}i) ← A(pk, sk0, sk1)

r ← $

(valuesj , evalj) := Hom(j, pk, skj), ∀j ∈ {0, 1}
s′

j := evalj(g, r)(s1, . . . , sn), ∀j ∈ {0, 1}
y ← Decode(pk, sk0, sk1, out(g), s′

0, s′
1)

return view, r, y
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– Privacy: Share must give each server no information about x. More precisely,
we need the oracles O0,pk,sk0,sk1 and O1,pk,sk0,sk1 to be indistinguishable, for
any PPT adversary A and any compromised server j ∈ {0, 1}.

Oi,pk,sk0,sk1(w, x0, x1):

(s0, s1) ← Share(pk, sk0, sk1, w, xi)
return sj

Formally, Pr[(pk, sk0, sk1) ← Setup(1κ); AOi,pk,sk0,sk1 (pk, skj) = 1] must be
negligibly different between i = 0 and i = 1.

There are some important differences from the existing HSS definition such
as [BGI+17]. In order to split the evaluation up into gates, we give a definition
of homomorphism correctness that works on individual gates. We cannot simply
use their definition for each gate, because their correctness property assumes that
the shares input to Eval come directly from Share, not from other homomorphic
operations. By allowing the shares to be chosen adversarially, we can accurately
model online computation, where the adversary may dynamically choose what
to evaluate based on the shares and keys.

However, HSS is not 100% correct. What’s to stop the adversary from choos-
ing shares (or even a sequence of gates that would generate those shares) that
cause the HSS to fail? In [BGI16] this is solved by sampling a PRF provided to
both parties, as part of Share, and using it to randomize the conversion opera-
tion. This works since the circuit is chosen before the shares. But our adversary
gets to choose the shares, so we have to explicitly introduce into the homomor-
phism property a stream of randomness r that is sampled after the input shares
have been determined. It could be instantiated with a shared PRG, reseeded
whenever the circuit might be chosen adaptively based on the previous seed. If
it were necessary to somehow adaptively change the circuit without using any
communication at all, a random oracle evaluated on a description of the current
gate and where the input shares came from would be an alternative.

For compatibility with existing constructions of HSS, we include an error
probability p in our definition, even though in our HSS scheme p is negligible.
The DDH-based construction of [BGI16] satisfies our definition with p = 1

poly(κ) .
We do not prove this, but it should become clear that the same techniques we
use to prove that our HSS scheme satisfies the definition would also work when
applied to theirs. The LWE-based construction of [BKS19] should also work—
this time with p a negligible function of κ.

The homomorphism property requires that decoding then performing a plain-
text operation must work the same as doing the operation homomorphically, then
decoding.3 Why not go the other way round using Share and Hom, by requiring

3 This structure may seem familiar to readers interested in category theory. In fact,
we hit on these definitions by thinking of circuit semantics as functors. The homo-
morphism property then requires that Decode be a natural transformation from the
homomorphic evaluation semantics to the plaintext evaluation semantics.
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that the output of the homomorphic operation be indistinguishable from sharing
the plaintext value? It turns out that this property is harder to achieve, as it
is actually a form of circuit privacy. It asserts that the real distribution, where
the shares are produced from a homomorphically evaluated circuit, is indistin-
guishable from an ideal distribution where the shares are simulated just using
Share. Unfortunately, we cannot achieve this property because our construction
involves holding shares of integers that may grow in size as they pass through
the circuit. There’s no way for Share to always produce shares of the right size.

Since our correctness and homomorphism definitions are in terms of perform-
ing a single operation, we need to prove that they can be composed into correctly
evaluating a whole circuit.

Lemma 14. In any (1 − p)-correct two-server HSS scheme, evaluating an arbi-
trary circuit on shares and then decoding the result vs. decoding the inputs and
evaluating the circuit has distinguisher advantage at most np if the circuit has n
gates. More precisely, following distributions are distinguishable with advantage
at most np if the PPT A outputs a circuit f of at most n gates.

(pk, sk0, sk1) ← Setup(1κ)

(proto, sempt) := Eval(pk)

(view, f, {(s0v, s1v)}v) ← A(pk, sk0, sk1)

(nodes,wires, inputs, outputs, type, gate) := f

r ← $

for v ∈ inputs:

xv ← Decode(pk, sk0, sk1, type(v), s0v, s1v)

return view, r,Run(f, sempt, {xv}v)

(pk, sk0, sk1) ← Setup(1κ)

(proto, sempt) := Eval(pk)

(view, f, {(s0v, s1v)}v) ← A(pk, sk0, sk1)

(nodes,wires, inputs, outputs, type, gate) := f

r ← $

for j ∈ {0, 1}:
s′

j := Run(f,Hom(j, pk, skj), {sjv}v, r)

for v ∈ outputs:

yv ← Decode(pk, sk0, sk1, type(v), s′
0v, s′

1v)

return view, r, y

In the second distribution, the extra parameter r to Run represents giving each
homomorphic gate evaluating its own piece of the random stream r.

Proof. We give a hybrid proof starting from the right distribution and going to
the left. Partition the circuit f into two parts g and h, where everything in g
comes before everything in h in topological order. The circuit g is evaluated using
Hom, then its outputs are fed into Decode and used to evaluate h in plaintext.
Initially g is the whole circuit and h is nothing, and in each hybrid we shift a gate
from g into h, picking a gate that comes last in topological order. The difference
caused by the change is that before the gate was evaluated homomorphically,
then decoded, while afterwards its inputs are decoded and then it is evaluated
in plaintext. Since r is a freshly random string for each gate, the homomorphism
property shows that this change has advantage at most p.

After all gates have been moved from g to h, we are at the left distribution.
Since there are n gates to shift over, the total advantage is bounded by np.

An important property of our HSS scheme is that Decode authenticates its
shares, at least for some wire types. More precisely, we can set up an experiment
where shares are provided honestly to both the adversary and an honest server,
the honest server performs some homomorphic operations on its shares, then they
each provide an input to a decode operation. The adversary wins if it manages
to obtain a different result than would be obtained with two honest servers.
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AuthGame

init(j ∈ {0, 1}):
(pk, sk0, sk1) ← Setup(1κ)
((types, gates, in, out), (values, eval)) := Eval(pk)
(valuesk, evalk) := Hom(k, pk, skk), ∀k ∈ {0, 1}
U, W := empty list
return pk, skj

share(w ∈ types, x ∈ values(w)):
(s0, s1) ← Share(pk, sk0, sk1, w, x)
append (s0, s1) to U and w to W
return sj

eval(g ∈ gates, i1, . . . , in):
assert W [i1]W [i2] · · · W [in] = in(g)
r ← $
sk := evalk(g, r)(U [i1]k, . . . , U [in]k), ∀k ∈ {0, 1}
append (s0, s1) to U and out(g) to W
return r

guess(i, sj ∈ valuesj(W [i])):
assert W [i] ∈ A
s j := U [i]j
y ← Decode(pk, sk0, sk1, W [i], U [i]0, U [i]1)
z ← Decode(pk, sk0, sk1, W [i], s0, s1)
win if y � ?= z ∧ y � ?= ⊥ ∧ z � ?= ⊥

Fig. 4. Game defining authentication for wire types A ⊆ types. An adversary A is
given oracle access to the interface of AuthGame, which emulates an honest party. A is
required to call init exactly once, before calling anything else in AuthGame, and only
wins by making a successful call to guess.

Definition 15. An HSS scheme is authenticated for wire types A ⊆ types if it
is impossible for a single party to find a share of a wire type in A that decodes
to a different result than would be obtained if they were honest. Formally, PPTs
can only win AuthGame (Fig. 4) with negligible probability.

Some applications have a single trusted client, who can run the Share and
Decode operations themselves. Others might not trust the client, or have numer-
ous mutually distrusting clients and so need to implement these algorithms with
MPC. We define a couple special cases where these operations can be imple-
mented more easily, without the need for generic MPC.

Definition 16. A two-server HSS scheme has public-key sharing if there is a
UC secure 3-party protocol to compute (s0, s1) ← Share(pk, sk0, sk1, w, x), where
x is provided by the client, skj is input by server j, all parties know pk and w,
and sj is output to server j. All protocol messages must come from the client.
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Definition 17. A two-server HSS scheme has additive decoding for wire type
w if values(w) is an abelian group and there are PPT algorithms f0, f1 such that

Decode(pk, sk0, sk1, w, s0, s1) = f1(pk, sk1, s1) − f0(pk, sk0, s0).

4 Main Construction

4.1 Distance Function

Similarly to [BGI16], share conversion for our HSS scheme works by picking a
subset of ciphertexts to be “special”, and measuring the “distance” from the
nearest special point. Here “distance” means the number of times some genera-
tor must be divided to reach the special point. We pick the subset of values in[−N

2 , N
2

)
to be special, i.e. those c ∈ Z/Ns+1

Z where c = c mod N . The genera-
tor in our case is exp(1). The only special point that can be reached is c mod N
because exp(1) mod N = 1. This choice of generator allows the distance to be
computed efficiently using log.

DistN,s : (Z/Ns+1
Z)× → Z/Ns

Z

c �→ log
( c

c mod N

)

This is justified by the following theorem, which shows that DistN,s preserves
the distance between two ciphertexts.

Theorem 18. For any c ∈ (Z/Ns+1
Z)× and x ∈ Z/Ns

Z,

DistN,s(c exp(x)) − DistN,s(c) = x.

Proof. First, we need to show that DistN,s(c) is always well defined. We have
c

c mod N ≡N
c
c ≡N 1, so log

(
c

c mod N

)
is well defined. Then,

DistN,s(c exp(x)) − DistN,s(c)

= log
(

c exp(x)
c exp(x) mod N

)
− log

( c

c mod N

)

= log
(

c exp(x)
c mod N

)
− log

( c

c mod N

)
= x.

Note that we have only shown the correctness of the distance function modulo
Ns. Our construction will in fact need to convert its outputs to be in Z, as there
is no consistent way to exponentiate to a power that is in Z/Ns

Z when the
multiplicative order of the base does not divide Ns. The following lemma will
be used to show that using · mod Ns to convert shares to Z works with all but
negligible probability.

Lemma 19. For any N ∈ Z
+, x ∈ Z, and uniformly random r ∈ Z/NZ, we

have

Pr
[
x = (r + x) mod N − r mod N

]
= max

(
1 − |x|

N
, 0

)
.
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Setup(1κ):
(N, ϕ) ← DJ.KeyGen(1κ)
ϕ0 ← [0, N)
ϕ1 := ϕ0 + ϕ
return N, ϕ0, ϕ1

valuesj(IN) = (Z/Ns+1
Z)×

valuesj(REG) = Z

valuesj(MUL) = Z/Ns
Z

evalj(×, r)(c, sj) = DistN,s(csj )

evalj(φ, r)(sj) = (sj + r) mod Ns

Share(N, ϕ0, ϕ1, IN, x):
c ← DJ.EncN,s(xj)
return c, c

Share(N, ϕ0, ϕ1,REG, x):
s0 ← [0, Ns+12κ)
x′ := x mod Ns

return s0, s0 + (ϕ1 − ϕ0)x′

Share(N, ϕ0, ϕ1,MUL, x):
s0 ← Z/Ns

Z

return s0, s0 + (ϕ1 − ϕ0)x

Decode(N, ϕ0, ϕ1, IN, s0, s1):
if s0 �= s1: return ⊥
return DJ.DecN,s,ϕ1−ϕ0(s0)

Decode(N, ϕ0, ϕ1,REG, s0, s1):
if s1 − s0 /∈ (ϕ1 − ϕ0)Z:

return ⊥
return (s1 − s0)/(ϕ1 − ϕ0) + Ns

Z

Decode(N, ϕ0, ϕ1,MUL, s0, s1):
return (s1 − s0)/(ϕ1 − ϕ0)

Fig. 5. Our HSS scheme for bounded RM circuits. In the top left the encryption is
setup and the secret key shared between the two parties. The secret share sets are
in the top right, along with the non-trivial homomorphic that may be performed on
them. The linear operations are given by the abelian group structure that the shares
are in, so we omit them. Share and Decode for the three types of shares are shown in
the bottom.

Proof. The condition may equivalently be written as

r mod N + x =
(
r mod N + x

)
mod N.

This clearly holds if and only if −N
2 ≤ r mod N + x < N

2 , i.e. if it is already
reduced so taking the modulus will not change it. If x ≥ 0 then this is equivalent
to r ∈ [−N

2 , N
2 − x), which contains N − x (or none, if x > N) of the N

possible integer values for r mod N . The case of negative x is symmetric, so the
probability is either N−|x|

N = 1 − |x|
N , or 0 if it would otherwise be negative.

4.2 HSS Construction

Now we have everything required to define our main HSS scheme, which will be
parameterized by a ciphertext size s and a bound M on the values. To start, we
generate a random Damg̊ard–Jurik key pair (N,ϕ) and share ϕ between the two
parties in Setup (Fig. 5). The plaintext evaluation semantics Eval(N) are then
the evaluation semantics (Definition 11) for bounded RM circuits over Z/Ns

Z

bounded in [−M,M ].
Our three types of shares of a value x will be ciphertexts in (Z/Ns+1

Z)×,
additive shares of ϕx in Z, and additive shares of ϕx in Z/Ns

Z (see values
in Fig. 5). We let Share encrypt or generate these shares and Decode decrypt or
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decode them, while checking for consistency between the two parties’ shares. The
share types are all abelian groups, allowing the circuit’s linear operations to be
defined on the shares easily. We omit these, other than noting that constructing
1REG and 1MUL requires secret shares of the private key ϕ. In fact, additive secret
shares of ϕ are exactly the same as our REG and MUL shares of 1.

The homomorphic multiplication function evalj(×, r) in Fig. 5 is based on
cϕx essentially decrypting x times the plaintext, so when performed on additive
shares s0, s1 of ϕx this gives multiplicative shares of the decryption. We then
use the distance function to convert them to additive shares. As these shares are
only in Z/Ns

Z, we define evalj(φ, r) to pick a representative in Z, allowing the
result to be converted to shares in Z.

Theorem 20. Figure 5 describes a (1 − MN1−s)-correct HSS scheme (Defini-
tion 13) under DCR.

Proof. There are three properties to be proved.

Correctness: For the IN wire type, this is just the correctness of Damg̊ard–Jurik
encryption. For REG and MUL we have s1 − s0 = (ϕ1 − ϕ0)x, so dividing out
ϕ1 − ϕ0 inside Decode gives the correct decoding.

Homomorphism: We omit the trivial proofs for the linear operations allowed
in bounded RM circuits. For multiplication, we have

cs1

cs0
= cs1−s0 = cϕy = exp(ϕx)y = exp(ϕxy),

where x = DJ.DecN,s,ϕ(c) and y = s1−s0
ϕ are the two input share decodings.

Then Theorem 18 shows that eval1(×, r)(c, s1) − eval0(×, r)(c, s0) = ϕxy.
The correctness of share conversion evalj(×, r)(φ) with probability 1− ϕM

Ns

follows directly from Lemma 19. Adding r to both shares before taking the
modulus guarantees that s0 is uniformly random, as is required by the lemma,
and does not change s1 − s0 ≡Ns ϕx. This is the only step with imperfect
correctness, so because ϕ < N we get that the overall scheme is (1−MN1−s)-
correct.

Privacy: We must show that Share leaks nothing about the value being shared to
any individual server. We present a hybrid proof, starting with the adversary
A having access to O0,pk,sk0,sk1 , and ending A accessing O1,pk,sk0,sk1 .
1. Use dummy shares of 0 in Share for wire types REG and MUL. For MUL,

s0 and s1 individually are uniformly random, independent of x, so this
is indistinguishable to the adversary, who only gets to see sj . Similarly,
the distribution for s0 when sharing a REG value does not depend on x,
while s1 is uniform in the range [ϕx′, ϕx′ +Ns+12κ), which is statistically
indistinguishable from being uniform in [0, Ns+12κ) because the distri-
butions are identical in all but a negligible fraction |ϕx′|

Ns+12κ < 2−κ of the
possibilities. After this change, ϕ is unused by Share.

2. Instead of setting ϕ1 = ϕ0 + ϕ, sample ϕ1 ← [N, 2N). This is indistin-
guishable because ϕ0 is uniform in [0, N), the adversary only gets to see
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ϕj , and [N, 2N) and [ϕ,ϕ + N) overlap in all but N − ϕ = p + q − 1
out of N possibilities. Therefore, the adversary has advantage at most
p+q−1

N ≤ 2�(κ)+1

22(�(κ)−1) = 2−�(κ)+3, which is negligible.
3. Notice that the private key ϕ is now totally unused. Therefore, swapping

the oracle to O1,pk,sk0,sk1 is indistinguishable. Specifically, Share for wire
types REG and MUL already ignores its input, while for wire type IN,
Theorem 3 shows that Share encrypts its input securely.

4. Undo hybrids 2 and 1. We are now at a distribution where A is given
oracle access to O1,pk,sk0,sk1 , and Setup and Share once more have their
real implementations.

We proved that each operation in our HSS scheme has an error rate of at most
MN1−s. Normally s should be chosen to be the smallest such that MN1−s ≤
2−k, to make the error rate negligible. For many applications (including ORAM),
M ≤ 2−κN , in which case s = 2 is most efficient. Concretely, at the 128-bit
security level N ≈ 23072, so s = 2 is sufficient for plaintexts of up to 2944 bits.

Authentication. Shares of type IN are trivially authenticated, as both parties
always have the same share. REG values are always multiples of ϕ, so to create
a fake share the adversary would have to guess a multiple of ϕ to offset their
share by. Finding a multiple of ϕ would give an attack against privacy.

Theorem 21. The HSS scheme in Fig. 5 is authenticated for wire types
{IN,REG}.
Proof. See the full version of this paper.

Public-key sharing. Our construction also satisfies public-key sharing (Definition
16). This is easiest to see for IN shares, because they are just encryptions under
the public key N . We can build public-key sharing for the other share types from
this. To share out a MUL share of x, just give out IN shares of x, then run the RM
circuit to compute x×1REG, which produces MUL wire type shares. Finally, REG
shares of x can be given out by splitting x into pieces small enough to guarantee
that φ will succeed (so x =

∑
i xiM

i), then doing public key sharing on every
xi. Then they are converted back to REG type with φ, and x =

∑
i xiM

i is then
computed inside an RM circuit. Note that in all cases the client only needs to
send a message to both servers, who then do some local computation to find the
shares.

4.3 Additive Decoding

Notice how in the previous HSS scheme, decoding REG shares is almost additive.
The only flaw is that we need to divide by ϕ. With circular security we could
simply encrypt ϕ−1 and multiply it as the last step. It’s a little trickier without.

Instead, we generate a second key (N ′, ϕ′) and use it to encrypt ϕ−1 mod
N ′s′

, avoiding the need for a circular security assumption. But then how do we
decrypt this ciphertext? If the shares were multiplied by ϕ′(ϕ′−1 mod N ′s′

) then
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valuesj(REG) = Z × Z × Z

Setup(1κ):
(N, ϕ) ← DJ.KeyGen(1κ)
(N ′, ϕ′) ← DJ.KeyGen(1κ)
μ := ϕ−1 mod N ′s−2

ν := N ′s−2
)−1 mod ϕ′

c′ ← DJ.EncN′,s−2(μ)
ϕ0, ϕ

′
0 ← [0, NN ′2κ)

return (N, N ′, c′), (ϕ0, ϕ
′
0), (ϕ0 + ϕ, ϕ′

0 + ϕν)

Share(. . . ,REG, x):
x′ := x mod Ns

s0, s
′
0 ← [0, Ns+1N ′2κ)

v0 ← [0, Ns2κ)
s1 := s0 + (ϕ1 − ϕ0)x′

s′
1 := s′

0 + (ϕ′
1 − ϕ′

0)x′

return (s0, s′
0, v0), (s1, s′

1, v1)
Share(. . . ,MUL, x):

(s0, s′
0, v0), (s1, s′

1, v1) ← Share(. . . ,REG, x)
return (s0, s′

0), (s1, s′
1)

valuesj(MUL) = Z/Ns
Z × Z/Ns

Z

evalj(×, r)(c, (sj , s
′
j)):

return DistN,s(csj ),DistN,s(cs′
j )

evalj(φ, r ‖ r′ ‖ r′′)((tj , t
′
j)):

sj := (tj + r) mod Ns

s′
j := (t′

j + r′) mod Ns

vj := DistN′,s−2

(
c′sj−N′s−2s′

j

)

vj := (vj + r′′) mod N ′s−2

return (sj , s
′
j , vj)

Decode(. . . ,REG, (s0, s′
0, v0), (s1, s′

1, v1)):
if (s1 − s0) �= (ϕ1 − ϕ0)(v1 − v0)

∨ (s′
1 − s′

0) �= (ϕ′
1 − ϕ′

0)(v1 − v0):
return ⊥

return v1 − v0 + Ns
Z

Decode(. . . ,MUL, (s0, s′
0), (s1, s′

1)):
ν := (ϕ′

1 − ϕ′
0)/(ϕ1 − ϕ0)

if (s′
1 − s′

0) �= ν(s1 − s0):
return ⊥

return (s1 − s0)/(ϕ1 − ϕ0)

Fig. 6. Modifications to the HSS scheme in Fig. 5 needed to support additive decoding.
Only those functions that have been modified are shown. For compactness, the public
and private keys in Share and Decode have been omitted with an ellipsis, rather than
writing out (N, N ′, c′), (ϕ0, ϕ

′
0), (ϕ1, ϕ

′
1) every time.

during decryption the ϕ′ϕ′−1 would cancel, since it is modulo N ′s′
, and similarly

ϕ would cancel with ϕ−1. But ϕ′−1 mod N ′s′
is nearly as large as N ′s′

, requiring
s to be around double s′ and making the scheme less efficient.

There’s a trick to avoid this, however. Let ν = N ′−s′
mod ϕ′. Then,

1 − N ′s′
ν ≡ϕ′N ′s′ ϕ′(ϕ′−1 mod N ′s′

)

by the Chinese remainder theorem, since modulo ϕ′ they are both 0, and modulo
N ′s′

they are both 1. Therefore, 1 − N ′s′
ν is just as good for decoding the

result, because the final decryption is of a ciphertext in (Z/N ′s′
Z)×, which has

order ϕ′N ′s′
. If for every value x we maintain shares of ϕx and ϕνx (which are

both relatively small), we can do additive decoding by first computing shares
of ϕ(1 − N ′s′

ν)x, then doing a final multiply by the encryption of ϕ−1 to get
additive shares of x.

We show the modified HSS scheme in Fig. 6. Setup now computes the second
key pair (N ′, ϕ′) and gives out an encryption c′ of μ = ϕ−1 under the second key.
It also returns secret shares ϕ′

1 − ϕ′
0 = ϕν alongside the secret shares of ϕ. The

REG shares have the biggest changes. Not only does they keep track of shares
of both ϕx and ϕνx, but they also keep shares (v0, v1) of x. This is because the
only time we have an upper bound on the size of a plaintext value x is during
evalj(φ, r), so we compute additive shares of x then and cache them. The MUL
shares also needed to be changed to keep shares of both ϕx and ϕνx. We set
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s′ = s − 2 because the additive decoding value x is much smaller (by a factor of
nearly NN ′) than ϕνx. The former is computed modulo N ′s−2 while the latter
is found modulo Ns, which makes the error probabilities similar.

Theorem 22. Assuming DCR, the modified scheme in Fig. 6 is a (1−p)-correct
HSS scheme that is authenticated for all wire types and has additive decoding for
REG wires, where p = MN ′(N1−s + N ′ 1−s

)
.

Proof. See the full version of this paper.

Choosing s to achieve a negligible error rate is essentially the same as for the
previous construction. Because N and N ′ are of approximately the same size,
s should be chosen such that p ≈ 2MN2−s ≤ 2−k. Roughly, s just needs to be
incremented. Public key sharing works for this new protocol in exactly the same
way as before, since we did not change the sharing process for IN shares, and
public key sharing of everything else was based on that one share type.

5 Distributed Oblivious RAM

An oblivious RAM (ORAM) allows a client to outsource its data (a sequence of N
blocks) to an untrusted server, such that it can access any sequence of data blocks
on the server while hiding the access pattern [Ost92,Gol87]. While traditionally
ORAM protocols were designed assuming a single server which stores data pas-
sively, recent works have considered more general settings, allowing for multiple
servers with computational capabilities [DvDF+16,HOY+17,FNR+15]. Given
the result in [Gol87], all passive server ORAM protocols incur at least Ω(log N)
bandwidth overhead. However, if we allow for server side computation, con-
stant bandwidth blowup can be achieved for large block sizes [DvDF+16]. In
this section we propose a new malicious secure ORAM construction based on 2
party HSS. Our construction achieves constant bandwidth blowup for blocks of
size at least Ω(log4 N) bits.

5.1 Definition: Distributed ORAM

We consider a 3 party distributed ORAM model with a single client and 2
non-colluding servers. All the parties maintain a state (stc, sts0, sts1) which is
updated after each ORAM operation, where stc is the client state and sts0, sts1
are the states of the two servers respectively.

Definition 23. A distributed 2-server ORAM construction with security param-
eter κ consists of the following two interactive protocols:

– (st′c, st
′
s0, st

′
s1) ← Setup(D): The client inputs an N sized array D of blocks,

where each block is of length B bits. This function initializes the ORAM with
the array D.
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– (data, st′c, st
′
s0, st

′
s1) ← Access(in, stc, sts0, sts1): The client receives as input

an ORAM operation in = (op, idx, data), where op = {read,write}, idx ∈
[1 . . . N ] and data ∈ {0, 1}B ∪{⊥}. If op = read then the client should return
the block D[idx]. If op = write, then this protocol should update the content
of block D[idx] in the ORAM with data.

We use the simulation based definition for a malicious secure ORAM as was
considered in [DvDF+16] (see the full version of this paper for details).

5.2 An Overview of Bounded Feedback and Onion ORAM

Our protocol is inspired by the Onion ORAM protocol proposed in [DvDF+16],
which in turn is based on the passive server Bounded Feedback ORAM protocol
from the same paper. In this subsection we describe Bounded Feedback ORAM
and how it can be modified to give the single server Onion ORAM construction.

Bounded Feedback ORAM. Similar to other tree-based ORAMs, its server mem-
ory is organized in the form of an L depth binary tree T , where each node of the
tree (also referred to as a bucket) contains Z blocks. The leaves of the tree are
numbered from 0 to 2L − 1. P(l) represent the blocks on the path to leaf l on
this tree and P(l, k) represents the kth bucket from the root node on this same
path respectively.

As is the case for all tree based ORAMs, each block is mapped to a unique
random leaf node in this tree. And this mapping is stored in a position map
(PosMap) by the client. The key invariant that’s maintained is that each block
(with index addr) is present in some bucket on the path P(PosMap[addr]).

For each block in the tree, the server also stores the corresponding meta-
data (addr, label), where addr is the logical address of the block and label =
PosMap[addr]. The corresponding metadata tree is referred to as md. We use
the shorthand md[l] to represent the list of all metadata present on the path l
in md.

ORAM Access. To read/write a block addr the client looks up the correspond-
ing leaf label PosMap[addr] from the position map. It further downloads all the
blocks on the path PosMap[addr] in tree T from the server. The client can now
locally read and update the block addr. The block addr is remapped to a new
random leaf label and is inserted in the root bucket. All the downloaded blocks
on path l are re-encrypted and stored back on the server. To ensure that no
bucket overflows except with negligible probability, after every A (a parame-
ter) Access operation the blocks are percolated towards the leaves in the tree
while maintaining the key invariant. This process is also called the eviction
algorithm. Most tree based ORAMs often differ in their eviction procedures.

Triplet Eviction Algorithm. As is the case for other tree based ORAMs, eviction
is performed along a specific path (let say l). For k = 0 to L, the algorithm pushes
all the blocks in bucket P(l, k) into one of its two children buckets. This process
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can be carried out without violating the key invariant. After every A ORAM
accesses, the next eviction path is chosen in the reverse lexicographic order of G
(a variable), which is initialized to 0 and incremented by 1 after each eviction
procedure. Given the analysis in [DvDF+16], the parameters Z = A = Θ(λ)
ensure negligible overflow probability for each bucket, where λ is the statistical
security parameter.

Recursion. Storing the position map requires space O(N log N). To avoid the
large client memory, we can recursively store the position map in a smaller
ORAM on the server. This recursive approach used in all tree based ORAMs
does not incur any additional asymptotic cost for blocks of size Ω(log2 N), where
N is the size of the database. For all the ORAM protocols we describe ahead,
we will ignore the cost of recursion for larger block sizes.

How Onion ORAM Differs. The Onion ORAM protocol is similar to the
Bounded Feedback ORAM with the key distinction that all computation on
the data blocks is performed by the server locally. For this purpose the ORAM
data structure is encrypted using an additively homomophic encryption scheme,
which allows the server to perform access and evict algorithms locally. More
details on the Onion ORAM construction can be found in full version of this
paper.

5.3 Our HSS Based ORAM Construction

In our construction the server side computation of Onion ORAM is divided
across 2 non-colluding servers using our HSS construction.

The two servers store two ORAM binary trees (T0, T1) respectively, and they
also have additive shares of authenticated meta-data (md,H(md)) corresponding
to each block in the tree. Each block b in our scheme is a sequence of chunks
(b1, b2, . . . , bC) (for some parameter C), where each chunk can be secret shared
as wires of type REG using HSS.

The server side computation in Onion ORAM can be replaced with homo-
morphic computation on the HSS shares by the two servers, where the client
sends an encrypted index as a wire type IN. For the eviction procedure, we con-
ceptually use the same technique as used in Onion ORAM, which uses Θ(ZL)
select operations. We next describe the selection and evict algorithms in a little
more detail.

Selection. An advantage of using HSS is being able to evaluate a limited kind of
arithmetic circuit, so we can encode more than just a single bit in a ciphertext. In
fact, we can do a 1-of-m select operation by sending just a single ciphertext to the
servers. Suppose we want to select the ith element of a sequence y0, . . . , ym−1, for
some i ∈ [0,m−1]. Then if we interpolate a polynomial p(X) through the points
p(0) = y0, . . . , p(m−1) = ym−1, then we can evaluate p(i) to find yi. Polynomial
interpolation is a linear operation, and so can be performed separately by each
server, on its own share of {yi}i.
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select(i ∈ IN, y0 ∈ REG, . . . , ym−1 ∈ REG):
D[j] := (m−1)!

j!

∑j
k=0

j
k

)
(−1)j−k ×REG yk

z := 0REG
for j := m − 1 to 0:

z := z +REG D[j]
z := φ(z × (i +IN (1 − j))

z := 1
(m−1)!

×REG z

return z

SelectShare(pk, sk0, sk1, i, {y0k}k, {y1k}k):
in[“i”] := Share(pk, sk0, sk1, IN, i)
for j ∈ {0, 1}:

for each chunk index c:
for k := 0 to m − 1:

in[“y” ‖ k] := yjk[c]
sj [c] := Run(select,Hom(j, pk, skj), in)

return s0, s1
Select(pk, sk0, sk1, i, {y0k}k, {y1k}k):

(s0, s1) ← SelectShare(pk, sk0, sk1,
i, {y0k}k, {y1k}k)

for j ∈ {0, 1}:
s′

j :=
∑

c M ′csj [c]
z′ := Decode′(pk, sk0, sk1,REG, s′

0, s′
1)

for each chunk index c:
z[c] := � z′

M′c � mod M ′

return z

Fig. 7. Left: Selection operation pseudocode. The pseudocode follows the wire-type
rules of a bounded RM circuit, and could easily be unrolled into a circuit. Right: The
distributed Select algorithm, which runs the select RM circuit on the given shares,
then decodes the result to find yi. Client computation is colored red and server compu-
tation is colored blue. Because in our HSS the REG secret shares do not depending at
all on the ciphertext size parameter s, we can pack together several shares (by treating
them as a base M ′ number) and decode them all at once, which reduces the overhead
of the secret sharing step. However, we need Decode from Fig. 5 to be modified slightly,
to not take its output modulo Ns, and we call this modification Decode′.

Evict(pk, sk0, sk1, le,md, {x0k}k, {x1k}k, {y0k}k, {y1k}k):
remap := array of zeros
for each block b of parent node 
 le

2
�.

if md says b is present and needs to move to le:
find next empty location b′ in le
remap[b′] := b

for each block b of node le:
inj := (yjb, xj0, . . . , xj(Z−1))∀j ∈ {0, 1}
y0b, y1b ← SelectShare(pk, sk0, sk1, remap[b], in0, in1)

return {y0k}k, {y1k}k

Fig. 8. The distributed Evict algorithm. Inputs are le, the location of the node to
evict into, the shares {x0k}k, {x1k}k of the blocks in the parent node of le, and shares
{y0k}k, {y1k}k of node le.

However, there’s one small issue that we’ve skipped over. We can only evalu-
ate bounded RM circuit, and representing a fraction in the ring is very likely to
produce a large number that is outside of the bound. We instead use the Newton
polynomial interpolation, representing p as

p(X) =
m−1∑

j=0

Δj [y]
j!

(X)j where Δj [y] =
j∑

k=0

(
j

k

)
(−1)j−kyk,
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where (X)j = X(X − 1) · · · (X − j +1) is the falling factorial. Although we only
show the direct formula for computing the differences Δj [y], faster FFT-based
methods would also work. Notice that the finite differences Δj [y] are all integers,
so only need to evaluate (m − 1)! p(i) to remove all of the fractions, and then
divide by (m − 1)! at the last step, which works since p(i) is an integer. We can
evaluate this polynomial using a variant of Horner’s rule, which is efficient inside
an RM circuit (Fig. 7).

p(X) =
((

Δm−1[y]
(m − 1)!

(X − m + 2) +
Δm−2[y]
(m − 2)!

)
(X − m + 3) + · · ·

)
X +

Δ0[y]
0!

We need to compute a size bound M on the values in this computation,
given the known bound M ′ on every yi. We have |∗|Δj [y] ≤ M ′ ∑

k

(
j
k

)
= 2jM ′.

Let S be a subexpression in the evaluation of (m − 1)! p(X). Then |S| ≤
∑m−1

j=0 |∗| (m−1)!
j! Δj [y]mj , because every (x − j + 1) ≤ m, and going from S to

this we only add more nonnegative terms and multiply more factors of m ≥ 1.
This can be turned into an upper bound, which we will use to set M .

|S| ≤
m−1∑

j=0

(m − 1)!
j!

2jmjM ′ ≤ (m − 1)!M ′
∞∑

j=0

(2m)j

j!
= (m − 1)!M ′e2m ≤ M

(1)

Eviction. We need to move up to Z blocks in a parent node in the tree into
a child node, which has locations for Z blocks. We do this by performing Z
instances of 1-of-(Z + 1) Select, allowing each block location in a child node to
select any of its parent node’s blocks, or its existing value if it was already filled.
This algorithm is shown in Fig. 8.

Using these two algorithms, we describe our Setup and Access function for
our proposed ORAM scheme in Fig. 9 and Fig. 10 respectively.

Our ORAM construction can also be used for implementing 2 party secure
computation of RAM programs. In full version of this paper we further dis-
cuss how the public-key sharing property (Definition 16) and additive decoding
(Definition 17) of our HSS scheme help realize this protocol more efficiently.

5.4 Proof of Security

Intuitively, the adversary learns nothing looking at one server’s binary tree data
- which consists of one share of each corresponding plaintext block chunks. Hence
the view of the adversary in this case can be simulated given the privacy guaran-
tee of our HSS scheme. Our scheme satisfies the authenticated shares property,
hence any tampering of the shares by the adversary would make the protocol
abort. The meta data is authenticated using a universal hash function that sat-
isfies uniform difference property.

Theorem 24. The distributed ORAM construction described in Fig. 9 and
Fig. 10 is a secure ORAM.
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Let (Setup, Share, Eval,Run,Decode) be a 2 party HSS scheme as in Definition 13
H is a universal family that satisfies uniform difference property

Protocol parameters: B, λ, κ

Setup(D):

(T,md) ← Bounded-Feedback-ORAM-Setup on input D
h ←$ H
hash ← h(md)
Picks random shares md0 and hash0
md1 ← md + md0 and hash1 ← hash + hash0
G, cnt ← 0
(pk, sk0, sk1) ← Setup(1κ)
For each block b ∈ T , for each chunk index c:

(b0[c], b1[c]) ← Share(pk, sk0, sk1,REG, b[c])
For i = 0, 1, and for each block b in T :

Set corresponding block in Ti as bi

stc = (G, cnt,PosMap, pk, sk0, sk1)
For i = 0, 1, stsi

= (Ti,mdi, hashi, ski)

Fig. 9. The 2-server distributed ORAM Setup function. In this protocol we assume the
ORAM Setup protocol for the Bounded Feedback ORAM given in [DvDF+16]. Client
side computation is colored red and server side computation is colored blue.

Proof. See full version of this paper.

5.5 Complexity Analysis

First, we must determine the dependence between the parameters. Each share
stores a number in [0,M ′ −1), and since there are C share chunks per block this
gives B = C log2 M ′. For the HSS parameters, we choose the smallest possible
ciphertext size (s = 2) as this will decrease the communication bandwidth of data
sent to the servers. Therefore, we should set MN −1 = 2−λ, where N = 2Θ(�(κ)) is
the Damg̊ard–Jurik public key, to have a statistical correctness error negligible
in λ. We set M ′ to be as large as possible (as determined by Eq. 1) in order
to reduce the number of chunks (which take extra computation) while keeping
the same block size and ciphertext size. So we set M ′ = 1

(m−1)!e
−2mM , where

m = Z(L + 1) is the largest number of options in a select operation, and get
log2 M ′ = Θ(�(κ) − λ − ZL log(ZL)) = Θ(�(κ) − λ log N log(λ)), where we have
assumed that λ = Ω(log(N)).

Next, we analyze the complexity of each part.

Communication Complexity. The communication complexity from client to the
servers consists of Θ(ZL) ciphertexts sent on every eviction (once every A
accesses), plus 1 sent for every access. From the server to the client, we get
B + Θ(�(κ)) bits sent from each server, for the shares we decode plus the extra
Θ(�(κ)) coming from the fact that the shares were already multiplied by the pri-
vate key before they were sent back. This comes to a total of 2B +Θ(�(κ) log N)
amortized communication for each access.
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Access(in = (op, addr, data), stc, sts0, sts1)):

l′ ←$ [0, 2L − 1]
l ← PosMap[addr]
PosMap[addr] ← l′

Compute arrays mdi[l], hashi[l]
For j = 0 to Z(L + 1):

if H(md1[l, j] − md0[l, j]) �= hash1[l, j] − hash0[l, j] then abort
md ← md1[l] − md0[1] // Element wise subtraction
Find i � md[i, 0] = addr
data ← Select (i, P0(l), P1(l))
if data = ⊥ then abort
if op = write then data = data′ else output data
Set md[l, j] ← (addr, l′) for the least index j � md[l, j] �= ⊥
md[l, i] ← ⊥
For each chunk index c:

(b0[c], b1[c]) ← Share(pk, sk0, sk1,REG, data[c])
Sample new random md0 and hash0
md1 ← md + md0 and hash1 ← H(md) + hash0
md[l] ← mdi and h(md[l]) ← hashi

Set (cnt + 1)th block in bucket Pi(l, 1) as bi

// Eviction
cnt ← cnt + 1 mod A

if cnt
?= 0:

le ← reverse bit string of G // Picking paths in reverse lexicographic order
G ← (G + 1 mod 2L)
For k ← 0 to L − 1:

For each child bucket C of P(le):
b ∈ 02Z

For i ∈ [0, Z − 1] : Set b[i] ← 1 if ith block in P(le) can be moved into C

For i ∈ [0, Z − 1] : Set b[Z + i] ← 1 if ith block in C is real
Evict (b, (P0(le)||C0), (P1(le)||C1))

Fig. 10. The 2-server distributed ORAM Access function. Client side computation is
colored red and server side computation is colored blue.

Client Computation. The client computation is dominated by the Share function
calls in the Select operations in the protocol. This is dominated by eviction, where
it invokes Z(L + 1) instances of Share, each taking time Õ(�2(κ)) because they
are dominated by exponentiation. This takes a total of Õ(log N�2(κ)) amortized
time per access.

Server Computation. For the server the most computationally intensive step is
the computation in the Select operations. We require evaluation of a O(m) gate
RM circuit for a m-way select. This is dominated by the Evict step, which requires
CZ(L + 1) evaluations of a Z + 1-way selection. The cost of evaluating a gate is
dominated by exponentiation, so we get an amortized cost of Õ(Cλ log N�2(κ)).

We use a similarly parameter regime to Onion ORAM, where we set the sta-
tistical security parameter λ = ω(log N) and computational security parameter
κ = ω(log N), and based on the best known attacks on Damg̊ard–Jurik encryp-
tion (from factoring), set �(κ) = Θ(κ3). The communication complexity is then
2B + O(log4 N), so we set the minimum block size to be B = ω(O(log4 N))
to get constant communication overhead. Then the number of chunks is deter-
mined to be C = B

log2 M ′ = Θ( log
4 N

log3 N
) = Θ(log N). Finally, we find the client
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side computation Õ(log7 N) = Õ(B log4 N), and the server-side computation
Õ(log3 N�2(κ)) = Õ(log9 N) = Õ(B log5 N).

6 Trapdoor Hash Functions

The idea of using a distance function to compute a distributed discrete logarithm
has been applied to more than just HSS. One such application is to trapdoor hash
functions, which have applications to rate-1 OT, PIR, and private matrix-vector
products, among others [DGI+19]. In this section we present a new trapdoor
hash function based on DCR and our distance function, and show that it has
negligible error probability. We then talk about possible generalizations allowed
by our construction.

Setup(1κ, 1n):
(N, ϕ) ← DJ.KeyGen(1κ)
(g0, g1, . . . , gn) ← (Z/N2

Z)×

return N, g0, . . . , gn

Hash((N, g0, . . . , gn), x, ρ):
r ← [0, N) from random bits ρ
return gr

0

∏
i gxi

i

Decode((N, g0, . . . , gn), k, h):
e0 := DistN,1(hk) mod N mod 2
return e0, e0

KeyGen((N, g0, . . . , gn), f):
write f(x) =

⊕
i fixi

k ← [0, N)
K0 := gk

0

Ki := gk
i exp(fi), ∀i ∈ [1, n]

return K, k

Eval((N, g0, . . . , gn), K, x, ρ):
r ← [0, N) from random bits ρ
d := DistN,1 Kr

0

∏
i Kxi

i

)
return d mod N mod 2

Fig. 11. Trapdoor hash function for linear predicates from DCR based on our distance
function, which achieves a negligible error rate.

We present our trapdoor hash in Fig. 11. See also the full version of this paper,
where we review the definition of a trapdoor hash function, with some notational
changes. We support linear predicates, Fn := {f(x) =

⊕
i fixi | fi ∈ {0, 1}}.

[DGI+19] also gave a DCR-based construction that was in many ways simi-
lar, but since they used the distance function of [BGI16] they had an inverse
polynomial error rate. We instead achieve a negligible error probability.

Theorem 25. The construction in Fig. 11 is a (1−nN−1)-correct trapdoor hash
function with rate 1.

Proof. See the full version of the paper.
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6.1 Generalizations

Trapdoor hash functions are only defined to output a single bit, but our construc-
tion is really suited to producing a longer output. A possible generalization would
be to allow output in any abelian group G, so the correctness property would
be that if e ← Eval(crs, pk, x; ρ) and e0 ← Decode(crs, sk, h) then e − e0 = f(x).
Then we could achieve G = Z (as long as we have a bound on |f(x)|) by simply
removing the last mod 2 step from Eval and Decode. And G = Z/Ns

Z would
work with perfect correctness if the mod N were removed as well.

This is useful for constructing rate-1 string OT efficiently. [DGI+19] build
1-out-of-k OT in batches of n elements, then having the receiver send n TDH
public keys selecting the n bits they are interested in. The same hash h is shared
among these n evaluations of the TDH, so if n � |h| (the bit length of h) then the
scheme is rate 1. However, this requires sending many public keys. Generalizing
TDH to output large chunks of data would only need batches of n � 1 to achieve
rate 1, as it would provide nearly |h| bits of output per evaluation.

References

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, Part I, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53018-4 19

[BGI+17] Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homo-
morphic secret sharing. Cryptology ePrint Archive, Report 2017/1248
(2017). https://eprint.iacr.org/2017/1248

[BKS19] Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices
without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
Part II, vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17656-3 1

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106.
IEEE Computer Society Press, October 2011

[Cle90] Cleve, R.: Towards optimal simulations of formulas by bounded-width
programs. In: 22nd ACM STOC, pp. 271–277. ACM Press, May 1990

[DGI+19] Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.:
Trapdoor hash functions and their applications. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, Part III, vol. 11694, pp. 3–32.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 1

[DJ01] Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC
2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44586-2 9

[DKK18] Dinur, I., Keller, N., Klein, O.: An optimal distributed discrete log proto-
col with applications to homomorphic secret sharing. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. Part III, vol. 10993. LNCS, pp.
213–242. Springer, Heidelberg (2018). https://doi.org/10.1007/s00145-
019-09330-2

https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://eprint.iacr.org/2017/1248
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/s00145-019-09330-2
https://doi.org/10.1007/s00145-019-09330-2


Large Message Homomorphic Secret Sharing from DCR and Applications 717

[DS17] Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 523–535 (2017)

[DvDF+16] Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs,
D.: Onion ORAM: a constant bandwidth blowup oblivious RAM. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
145–174. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49099-0 6

[FGJS17] Fazio, N., Gennaro, R., Jafarikhah, T., Skeith III, W.E.: Homomorphic
secret sharing from Paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H.,
Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68637-0 23

[FNR+15] Fletcher, C.W., Naveed, M., Ren, L., Shi, E., Stefanov, E.: Bucket ORAM:
single online roundtrip, constant bandwidth oblivious ram. IACR Cryptol.
ePrint Arch., 2015:1065 (2015)

[Gol87] Goldreich, O.: Towards a theory of software protection and simulation by
oblivious rams. In: Proceedings of the Nineteenth Annual ACM Sympo-
sium on Theory of Computing, pp. 182–194 (1987)

[HOY+17] Hoang, T., Ozkaptan, C.D., Yavuz, A.A., Guajardo, J., Nguyen, T.:
S3ORAM: a computation-efficient and constant client bandwidth blowup
ORAM with Shamir secret sharing. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 491–
505 (2017)

[Ost92] Ostrovsky, R.: Software protection and simulation on oblivious RAMs.
PhD thesis, Massachusetts Institute of Technology (1992)

[OSY21] Orlandi, C., Scholl, P., Yakoubov, S.: The rise of Paillier: homomorphic
secret sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-
X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 678–708. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 24

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 16

https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16


Traceable Secret Sharing
and Applications

Vipul Goyal1,2(B), Yifan Song1, and Akshayaram Srinivasan3

1 Carnegie Mellon University, Pittsburgh, USA
goyal@cs.cmu.edu, yifans2@andrew.cmu.edu

2 NTT Research, Sunnyvale, USA
3 Tata Institute of Fundamental Research, Mumbai, India

akshayaram.srinivasan@tifr.res.in

Abstract. Consider a scenario where Alice stores some secret data s
on n servers using a t-out-of-n secret sharing scheme. Trudy (the col-
lector) is interested in the secret data of Alice and is willing to pay for
it. Trudy publishes an advertisement on the internet which describes an
elaborate cryptographic scheme to collect the shares from the n servers.
Each server who decides to submit its share is paid a hefty monetary
reward and is guaranteed “immunity” from being caught or prosecuted
in a court for violating its service agreement with Alice. Bob is one of the
servers and sees this advertisement. On examining the collection scheme
closely, Bob concludes that there is no way for Alice to prove anything in
a court that he submitted his share. Indeed, if Bob is rational, he might
use the cryptographic scheme in the advertisement and submit his share
since there are no penalties and no fear of being caught and prosecuted.
Can we design a secret sharing scheme which Alice can use to avoid such
a scenario?

We introduce a new primitive called as Traceable Secret Sharing to
tackle this problem. In particular, a traceable secret sharing scheme guar-
antees that a cheating server always runs the risk of getting traced and
prosecuted by providing a valid evidence (which can be examined in a
court of law) implicating its dishonest behavior. We explore various def-
initional aspects and show how they are highly non-trivial to construct
(even ignoring efficiency aspects). We then give an efficient construc-
tion of traceable secret sharing assuming the existence of a secure two-
party computation protocol. We also show an application of this prim-
itive in constructing traceable protocols for multi-server delegation of
computation.

1 Introduction

Secret sharing [Sha79,Bla79] allows a client to store a secret on n servers such
that an authorized subset of the servers can recover the secret, while any unau-
thorized set learns no information about the secret. Now, consider a scenario
where the client Alice stores her secret s (some proprietary dataset) across n dif-
ferent servers (or cloud providers) using secret sharing to enhance privacy. Alice
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12827, pp. 718–747, 2021.
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divides her secret into n shares using (say) a t-out-of-n secret sharing scheme
and stores one share on each server. Let us call these shares share1, . . . , sharen.

Trudy (the collector) is highly interested in learning Alice’s secret and is
willing to pay for it. Therefore, Trudy publishes an advertisement on the inter-
net. The advertisement has an elaborate cryptographic scheme to collect shares
from the servers. Each server who decides to submit its share is paid $100.
The collection scheme guarantees “cryptographic immunity” from being caught
or prosecuted in a court (e.g., for violating its service agreement with Alice).
The elaborate collection scheme has the following components: (1) a description
of functions f1, . . . , fn (called as the collector’s functions), and (2) description
of a pirate reconstruction box Rec�. The i-th server Pi is supposed to submit
fi(sharei) to the collector (in exchange for $100).1 If enough such fi(sharei) are
collected, the reconstruction box Rec� would output the secret s (or some infor-
mation about s). The functions {fi}i∈[n] and pirate reconstruction box Rec�

are constructed very carefully to guarantee that even if Alice gets her hands on
them (and even on fi(sharei) for all i), it would not be possible for Alice to prove
anything in a court and seek damages from any of the servers.

Bob is one of the servers and sees this advertisement. Competition from bigger
cloud providers is tough, and, at this point, $100 could really help Bob keep the
service afloat and pay the staff salaries. Bob is worried however that if he gives
out fi(sharei) and somehow it reaches Alice, she will be able to trace him and
sue him in a court for damages. This would surely mean bankruptcy given Bob’s
service agreement with Alice. However, upon examining the collection scheme
and the reconstruction box closely, Bob concludes that there is no way for Alice
to prove anything in a court even if he submitted fi(sharei) (and it falls into
Alice’s hands). After all, Alice could have computed fi(sharei) even on her own.

What if sharei was generated using a secure 2-party computation between
Alice and Bob s.t. Alice doesn’t know sharei? sharei could potentially even have
identifying information about Bob. However we note that the function fi may
have been cleverly designed to remove this identifying information and only leave
the “essence” of the share intact. In general, the function fi might even encrypt
sharei with a public key (s.t. only the reconstruction box has the corresponding
secret key). The reconstruction box code may even be “obfuscated” in some way.
Indeed if Bob is rational, he might submit fi(sharei) to the collector to get $100
since there are no penalties and no fear of being caught and prosecuted. After
all, if he was the only one submitting the share, the collector anyway can get no
information about Alice’s secret. On the other hand, if a large number of servers
are participating in the collection, Bob’s does not want to be the one missing
out on $100.

The main goal of our paper is to try to design a secret sharing scheme in which
the servers are held accountable for cheating. In particular, any server which
cheats should run the risk of giving out a “proof of cheating” to the outside world.

1 To ensure that the server cannot claim a false reward by submitting fi evaluated
on some dummy value, the collector can presumably check the correctness of all the
submitted values by, e.g., checking that they lie on a single polynomial.
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Given any collection scheme consisting of f1, . . . , fn, the reconstruction box Rec�,
and the collected shares {fi(sharei)}i∈M where M is the set of malicious servers,
Alice should be able to prove in front of a Judge that, for some i, Pi leaked its
share. In other words, there does not exist a collection scheme which guarantees
immunity to the cheating servers. We call such a secret sharing scheme a traceable
secret sharing. The notion of traceable secret sharing seems to be relevant in
natural scenarios such as secure multi-party computation in the client server
model [IK00], and, in threshold cryptosystems [DF90,Fra90,DDFY94].

1.1 Our Results

We initiate the study of traceable secret sharing (TSS) and explore various defi-
nitional aspects. TSS schemes turn out to be highly non-trivial to construct even
ignoring efficiency aspects. We first start with the high-level description of this
primitive.

Definition. In a traditional threshold secret sharing scheme, there is a sharing
phase where the dealer generates a set of n shares of his secret and distributes
it to the servers. The reconstruction algorithm allows any set of t servers to
come together to get back the secret. In a traceable secret sharing scheme, there
are two additional algorithms, namely, Trace and Judge. At a high-level, the
Trace algorithm uses the set of n collector functions f1, . . . , fn, the collected
shares fi(sharei) (for all i), the pirate reconstruction box and the view of the
dealer during the sharing phase. It outputs the identity of a traitor along with an
evidence that this is indeed a traitor. This evidence is later analyzed by the Judge
algorithm which pronounces whether the server is guilty or not. We assume that
the honest servers never submit their shares and the malicious servers submit
fi(sharei). A way to model this (which we follow in this work) is to consider the
collector’s function corresponding to an honest server to be a constant function.

In addition to correctness and statistical privacy properties of a threshold
secret sharing, we require a traceable secret sharing scheme to satisfy two addi-
tional properties. The first property is traceability which roughly states that if
the pirate reconstruction box is able to distinguish between the shares of two
different secrets with non-negligible advantage (where the probability is over the
random coins of the sharing phase, random coins of the collectors functions and
the internal coins of the reconstruction box), then the Trace algorithm, with
non-negligible probability, outputs the identity of a traitor along with a valid
evidence that is accepted by the Judge algorithm. The second property, called as
non-imputability, protects an honest server against a cheating dealer. Roughly,
this property requires that a cheating dealer, even if it colludes with every other
party, cannot produce a valid evidence that implicates an honest server.

On the Model. We now make a couple of comments on the model.

– We require the Trace algorithm to take the description of the collector func-
tions, the reconstruction box Rec∗ as well as {fi(sharei)}i∈M submitted by
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the malicious servers as input. These components might be available to Alice
if Trudy was Alice’s agent, or if Trudy later sells them anonymously to Alice,
or if Trudy gets caught by the law enforcement authorities and these are
submitted as evidence in the court of law. We note that if, for instance,
{fi(sharei)}i∈M is not available to the trace algorithm, then there is no hope
of identifying a traitor. Indeed, the reconstruction box does not have any
secrets, and it is useless unless it is run on {fi(sharei)}i∈[M ]. This is, in fact, a
key difference between traitor tracing (where the trace algorithm only requires
access to the decryption box) and our notion of traceable secret sharing. We
elaborate more on the differences between these two notions in Sect. 2.

– In this work, we consider a model where the collector specifies a set of func-
tions (f1, . . . , fn) and asks the servers to submit fi(sharei). However, it is pos-
sible to consider more general cases where the collector may ask the servers
to run a distributed protocol and get the output of the protocol. Specifi-
cally, the collector and the servers might run a general MPC protocol that
computes the reconstruction function and gives the output to the collector.
We leave the study of such stronger models for future work. We note that in
general, any tracing system (including broadcast encryption with traitor trac-
ing) has its limitations and serves more as a deterrence rather than providing
“foolproof security”. In broadcast encryption with traitor tracing, the traitor
might decrypt the broadcast and stream on an anonymous channel and then
there is no hope of tracing the traitor. In spite of these limitations, traitor
tracing has been widely deployed in practice (see, Fiat and Naor’s ACM Paris
Kanellakis Theory and Practice Award citation [ACM17]) and we take the
first direction towards defining and constructing a similar primitive for the
case of secret sharing.

Construction. In this work, we provide an efficient construction of traceable
secret sharing scheme under standard cryptographic assumptions. Specifically,
we show the following theorem:

Informal Theorem 1. Assuming the existence of a secure two-party computa-
tion protocol, there exists an explicit construction of t-out-of-n threshold traceable
secret sharing scheme for t ≥ 4 in the PKI model.2 In particular, for secrets of
length λ,

– The construction satisfies statistical privacy.
– If there exists a set of n collector functions and a pirate reconstruction box

that can distinguish between shares of two different secrets with advantage at
least ε, then there exists a tracing algorithm that makes poly(λ, 1/ε) oracle
calls to the pirate reconstruction box and outputs the identity of a traitor along
with a valid evidence with probability Ω( nε/(n−t+1)

1+(n−1)ε/(n−t+1) ).
– With all but negligible probability, a (polynomially bounded) cheating dealer

cannot provide a valid evidence against an honest party even if it colludes
with every other party.

2 See Remark 2 on why PKI is necessary for traceable secret sharing.
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Extensions. We also consider a couple of extensions to our setting of traceable
secret sharing. The first extension is the collusion-resistant setting. Here, we
consider a scenario where a group of upto t − 1 servers could come together and
pool in their shares, apply a collector’s function on their pooled shares and then
submit the output. (Note that if we allow more than t servers to come together,
then the servers could just reconstruct the secret without any collection, and TSS
becomes meaningless.) We show that a simple modification to the construction
from the above theorem actually satisfies this stronger definition. The second
extension is that the tracing algorithm is now required to output the identities
of multiple traitors along with a valid evidence implicating each of them. We
note that in this case, it not possible to output the identities of more than t
traitors as the reconstruction box can simply ignore the collected shares from
some of the parties if more than t parties submit their shares. We are able to
design a tracing algorithm that outputs the identities of at least t − 1 traitors
(which is nearly optimal) along with a valid evidence against each one of them.

Going Beyond Storage: Delegating Computation. We show an application of our
traceable secret sharing in constructing offline-online multi-server delegation of
computation on private data. In this setting, there is a single client who wants to
delegate an expensive computation on a private input to a set of n servers. We are
specifically interested in constructing offline-online secure computation protocols
for this task. In the offline phase, the client learns the circuit that it wants to
evaluate and engages in a protocol with the n servers. In the online phase, the
client learns its private input and runs the online phase of the protocol. At the
end of the online phase, the client can reconstruct the output of the computation.
We require the online computation cost of the client to only grow with the input
and output length of the computation and is otherwise independent of the size
of the circuit.

Now, consider a scenario as before where there is a collector who is interested
in learning the secret data of the client and publishes an advertisement describing
a set of collector functions f1, . . . , fn and a reconstruction box Rec∗. The servers
can submit the output of the collector functions applied on their entire view (as
opposed to just the shares) during the protocol execution and the reconstruction
box outputs some information about the client’s input. We would like to design
a protocol such that any server who submits this information always runs a
risk of getting traced and prosecuted. This means that there are two additional
algorithms (Trace, Judge) (that have the same semantics as in the traceable secret
sharing scheme) that are respectively able to trace and verify the identities of the
cheating servers. Specifically, given a set of n collector functions f1, . . . , fn, the
collected views of the servers f1(view1), . . . , fn(viewn) and a pirate reconstruction
box Rec∗ that is able to distinguish two different client inputs x0, x1 (that may
not even lead to the same output), we require the Trace algorithm to output
a valid evidence (that is accepted by the Judge algorithm) against a cheating
server. We show the following theorem.
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Informal Theorem 2. Assuming the existence of a secure two-party compu-
tation protocol, there exists an explicit construction of n servers offline-online,
delegation of computation protocol tolerating t passive server corruptions in the
PKI model. In particular,

– For any two client inputs x0, x1, the views of any set of t − 1 servers when
the client’s input is x0 is statistically close to their views when the client’s
input is x1.

– For any two client inputs x0, x1, if there exists a set of n collector func-
tions and a pirate reconstruction box that can distinguish the views where
the client’s inputs are x0 and x1 with advantage at least ε, then there exists
a tracing algorithm that makes poly(|C|, λ, 1/ε) (where C is the circuit to be
evaluated) oracle calls to the pirate reconstruction box and outputs the identity
of a traitor along with a valid evidence with probability Ω( nε/(n−t+1)

|C|+(n−1)ε/(n−t+1) ).
– With all but negligible probability, a (polynomially bounded) cheating client

cannot provide a valid evidence against an honest server even if it colludes
with every other server.

We note that this theorem statement does not follow as a direct consequence
of traceable secret sharing (more on this in the next section) and in fact, the
main challenge is to ensure that the shares of the intermediate wire values are
also traceable. Indeed, if the starting shares of the inputs are traceable while the
shares that the servers receive of the intermediate wire values are non-traceable,
the servers can safely submit these intermediate shares to a collector (which still
leaks non-trivial information).

1.2 Related Work

To the best of our knowledge, the notion of traceable secret sharing has never
been studied directly. We discuss a few related notions that have appeared before
in the literature. In the next subsection, we argue why techniques developed in
the context of these problems fail in the TSS setting.

Traitor Tracing in Broadcast Encryption. A closely related notion to traceable
secret sharing is that of traitor tracing [CFN94]. In the setting of traitor trac-
ing [CFN94], there is a central party (also called as the broadcaster) who samples
a set of public parameters along with n secret keys and distributes the secret
keys to a set of parties (also called as subscribers). The broadcaster can use
the public parameters to encrypt some message to a set of authorized parties
and the authorized parties can use their secret key to decrypt this ciphertext.
Now, when a group of subscribers come together to create a pirate decryption
box that allows even an unauthorized party to decrypt the broadcast, a trac-
ing algorithm can trace a party which was involved in creating this decryption
box. There has been a long line of work focusing on obtaining efficient con-
structions of traitor tracing [BS95,KD98,NP98,BF99,FT99,NP01,SW00,KY01,
NNL01,KY02,DF03,CPP05,BSW06,BW06,BN08,BZ14,NWZ16,GKW18] and
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several works which considered the setting where the broadcaster could be mali-
cious [Pfi96,PS96,PW97]. Broadcast encryption with traitor tracing has been
widely used in practice to protect digital content.

Fingerprinting Codes. Fingerprinting codes, introduced by Boneh and
Shaw [BS95] are information theoretic objects used in the construction of traitor
tracing schemes. It consists of a code generator that outputs a set of codewords
along with a tracing key. We assign each codeword in the set to a different party.
If a group of parties collude and create a new word (using some restricted oper-
ations) then the trace algorithm takes the tracing key and this new word and
outputs a subset of the parties that were used in constructing this word. Subse-
quent to their introduction, more efficient constructions of fingerprinting codes
have been proposed in [KD98,SSW01,Tar03]. The main difference between this
notion and that of traceable secret sharing is that it doesn’t allow to share a
secret and additionally, the operations that are allowed to create a new word are
somewhat restricted.

Accountable Authority IBE. An Accountable-Authority Identity based Encryp-
tion [Goy07] was introduced by Goyal to reduce the trust on the private key
generator (PKG) in a IBE scheme. Specifically, if the PKG was behaving dis-
honestly and was leaking information of individual party’s secret key, then there
is an algorithm that can produce a proof that is accepted by a judge implicating
the dishonest behavior of the PKG. There have been some extensions to this
notion like Black-Box Accountable Authority IBE [GLSW08].

2 Technical Overview

In this section, we will give a high-level overview of our construction of traceable
secret sharing and also give details of the proof. We will also give an overview of
our traceable delegation protocol. Before describing our construction of traceable
secret sharing, we will first explain why existing secret sharing schemes are not
traceable.

Limitations of Existing Secret Sharing Schemes. Existing secret sharing schemes
(such as Shamir secret sharing) do not satisfy non-imputability property. In
these constructions, the dealer knows the entire share that is given to a party
and hence, a malicious dealer will be able to easily implicate an honest party by
coming up with his own collector functions, collected shares and a reconstruction
box which serve as valid evidence against this party. To prevent this attack, we
may try to run a secure multiparty computation protocol between the dealer
and the parties where the dealer provides his secret and the parties receive
the shares at the end. This prevents the dealer from learning the shares that
the parties receive. It turns out if the underlying secret sharing scheme has
some additional properties such as each share having sufficient min-entropy even
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conditioned on the other shares3, then this modification can be proved to satisfy
non-imputability. However, in this case it is not clear if the traceability holds.

Comparison with Related Notions. A major difference between related notions
such as traitor tracing and a traceable secret sharing is in the restrictions placed
on the tracing algorithm. In a traceable secret sharing, we are not trying to
extract some secret from the pirate box but rather, we are trying to extract
some information from (possibly obfuscated/encrypted) input given to the pirate
box. This means we are only given a single sample and we must work with this
sample. Indeed, we can produce fresh samples on our own and try to run the
reconstruction box on these samples but in this case, the secret we are trying
to extract is lost. Hence, its not even clear apriori how invoking the pirate box
multiple times can help. One way to get around this issue would be to use the
given input sample to produce multiple (correlated) samples s.t. the target secret
is somehow present in all of them. However, this makes the construction and the
analysis more subtle. We also note that a simple construction for broadcast
encryption with traitor tracing exists based on any public key encryption. The
problem becomes interesting only while considering the efficiency aspects. On
the other hand, for traceable secret sharing, even getting a feasibility result is
an interesting problem because of the above mentioned reason.

In the next subsection, we give details of our construction of traceable secret
sharing scheme.

2.1 Our First Construction

The main idea behind our first construction is to partition the share of each party
into two parts. The first part is a secret that is known only to this party and is
unknown to the dealer and the second part is a share of a secret such that the
secret is known only to the dealer (unknown to any individual party). Intuitively,
the first part which is unknown to the dealer prevents a cheating dealer from
implicating an honest party and the secret in the second part enables a dealer
to trace a traitor. With this insight, let us now give details of our construction.

– To share a secret s, the dealer uses Shamir sharing to split s into n shares,
namely, ssh1, . . . , sshn ∈ {0, 1}λ. The threshold t used here is the same as the
required threshold for TSS.

– For every j ∈ [λ], the dealer chooses a random mask Rj uniformly from {0, 1}λ

and splits Rj into n Shamir shares R1,j , . . . , Rn,j (again using threshold t).
– Now, the party Pi and the dealer engage in a secure two-party compu-

tation protocol that computes the following function. The function takes
the i-th Shamir share sshi, the shares {Ri,j}j∈[λ], and all masks {Rj}j∈[λ]

from the dealer. It then samples Li,j for each j ∈ [λ] randomly such that
〈Li,j , Rj〉 = sshi,j where sshi,j refers to the j-th bit of sshi and 〈·, ·〉 denotes

3 The constructions of leakage-resilient secret sharing schemes given in [SV19,
ADN+19] satisfies this property.
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the inner product. It finally provides owf(Li,j) as output to the dealer and
{Li,j , Ri,j}j∈[λ] to Pi. Here, owf is an one-way function.

– The share of Pi (denoted by sharei) consists of {Li,j , Ri,j}j∈[λ]. The view
of the dealer at the end of the sharing phase includes the Shamir shares
ssh1, . . . , sshn, the shares {Ri,j}i∈[n],j∈[λ] and {owf(Li,j)}i∈[n],j∈[λ].4

– In order to implicate the party Pi, the tracing algorithm is required to output
any Li,j that is a valid pre-image.

Notice that the dealer’s secrets {Rj}j∈[λ] are in fact secret shared among the
parties. This means that even if you fix sharei for a party Pi, the value of Rj can
still be freely decided by sampling {sharek}k �=i appropriately. This observation
would be very useful when we design the tracing algorithm.

Non-Imputability. It can be easily shown that the above construction protects
an honest party from a cheating dealer. In particular, it follows from the security
of two-party computation that the dealer learns no information about a party’s
Li,j except learning that the inner-product of Li,j and Rj is sshi,j . Thus, one
can argue from the one-wayness property of owf (which hold even if there is
a single bit of leakage) that the probability that a malicious dealer provides a
valid pre-image is negligible and hence the probability that an honest party is
implicated by a malicious dealer is negligible.

Tracing Algorithm Overview. Recall that the tracing algorithm receives the col-
lector’s functions f1, . . . , fn, the collected shares f1(share1), . . . , fn(sharen), the
view of the dealer, and a pirate reconstruction box that is guaranteed to distin-
guish between the secret shares of s0 and s1 with noticeable advantage. The goal
of the tracing algorithm is to extract one of Li,j that serves as a valid evidence
against party Pi. However, to extract this evidence, the tracing algorithm must
overcome the following challenges.

Challenge-1: Extraction from Single-Bit of Information. The first challenge is
that the reconstruction box only gives a single bit of information about the
evidence against Pi. However, recall that a valid evidence against Pi is one of
{Li,j}j∈[λ] where each Li,j is λ bits long. Furthermore, the reconstruction box is
guaranteed to distinguish between the shares of s0 and s1 only with noticeable
advantage and this means that the answer that the reconstruction box gives
could sometimes be erroneous. So, the tracing algorithm must somehow use this
single bit of information (which could further be erroneous) to extract a λ-bit
long string.

To overcome this challenge, we rely on Goldreich-Levin decoding [GL89].
Indeed, our construction is designed to be able to use Goldreich-Levin decoding
4 We note that our construction satisfies statistical privacy even though we rely on

secure two party computation protocol. This is because the dealer’s inputs to any
set of t−1 of these secure two-party computation corresponds to t−1 Shamir shares
and it follows from the perfect privacy of Shamir secret sharing that these shares do
not reveal anything about the secret that was shared.
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from the start. Before we go into the details of our solution, we first recall the
setting of Goldreich-Levin decoding. Suppose there exists an oracle Ora that
has a secret input x ∈ {0, 1}λ hard-wired in its description. The oracle accepts
queries y ∈ {0, 1}λ and produces an output z ∈ {0, 1}. If for a uniformly chosen
query y, the probability that the oracle’s output z is equal to 〈x, y〉 is noticeably
more than 1/2, Goldreich-Levin decoding algorithm gives a way of obtaining
x hardwired in the oracle’s description with overwhelming probability. Coming
back to our setting, we will treat Li,j as the secret input x and use the pirate
reconstruction box to simulate the working of the oracle Ora. The trace algorithm
will then run the Goldreich-Levin decoder to extract out the secret Li,j . However,
for this task to be possible, we need the ability to set the query y to be equal to Rj

so that we can use the reconstruction box to predict 〈Li,j , y〉 = 〈Li,j , Rj〉. But
the tracing algorithm only gets f1(share1), . . . , fn(sharen) which could contain
“encrypted” versions of Li,j and the shares of Rj and it is not clear upfront
on how to set the Rj to be equal to the query y. This is where we use an
earlier observation about our construction where we showed that is possible to
fix sharei (that contains Li,j) and resample the other shares in such a way that
Rj is fixed to the oracle query y. We will then run the pirate reconstruction box
on the fixed fi(sharei) along with outputs of the other collector functions applied
on the freshly sampled shares and use the output of the reconstruction box to
predict 〈Li,j , y〉.

A subtle but an important point that was ignored in the above paragraph
is how does the tracing algorithm determine which Li,j to extract. The above
description assumed that the tracing algorithm already knows which party is the
traitor and then tries to extract the Li,j from this party. This brings us to the
second challenge.

Challenge-2: A Careful Hybrid Argument. To determine the identity of a cheat-
ing party, the tracing algorithm will define a sequence of distributions or hybrids
starting from the distribution where the shares correspond to the secret s0 and
ending with a distribution where the shares correspond to the secret s1. Specif-
ically, for every i ∈ [n] and j ∈ [λ + 1], the tracing algorithm defines Hybi,j as
the distribution where {sshi′}i′<i are valid Shamir shares of s1 and {sshi′}i′>i

are valid Shamir shares of s0. Further, the first j − 1 bits of the i-th share are
changed from a share of s0 to a share of s1. Now, via a standard averaging argu-
ment, it follows that if the pirate reconstruction box can distinguish between
shares of s0 and s1 with advantage ε, then there exists an i ∈ [n], j ∈ [λ + 1]
such that the reconstruction box can distinguish between Hybi,j and Hybi,j+1

with advantage ε/O(nλ). This means that party Pi is a traitor (as otherwise,
Hybi,j ≡ Hybi,j+1) and the tracing algorithm tries to extract an incriminating
evidence against Pi. However, in order to determine if the reconstruction box can
distinguish between Hybi,j and Hybi,j+1 with noticeable advantage, we need the
tracing algorithm to generate samples from both these distributions. To generate
a sample from Hybi,j or Hybi,j+1, we need to change the inner product of Li,j

with Rj . However, we do not know {Li,j}j∈[λ] that is available in sharei (recall



728 V. Goyal et al.

that it only gets fi(sharei)) and hence, there does not seem to be a way for it to
sample Rj such that the inner product of Li,j with Rj is a particular value.

To solve this issue, we slightly change the sequence of hybrids by introducing
a “fine-grained structure”. Specifically, instead of defining λ hybrids for chang-
ing the i-th Shamir share, we define 2λ + 1 small hybrids Hybi,j indexed by
j ∈ {0, . . . , 2λ}. These hybrids first change sshi from a valid Shamir sharing
of s0 (associated with sshi+1, . . . , sshn) to a random string one bit at a time,
then change the random string to a valid Shamir sharing of s1 (associated with
ssh1, . . . , sshi−1) again one bit at a time. Now, via a similar averaging argument
we can show that there exists a i ∈ [n], j ∈ [0, 2λ − 1] such that the pirate
reconstruction box can distinguish between Hybi,j and Hybi,j+1 with advantage
ε/O(nλ). For simplicity, assume that such a j ∈ [0, λ − 1]. The key advantage
of this fine-grained hybrid structure is that it additionally allows the tracing
algorithm to sample from Hybi,j or Hybi,j+1. We now give the details below.

In a thought experiment, the tracing algorithm first fixes sharei. This means
that all {Li,j}j∈[λ] are fixed but these values are unknown to the tracing algo-
rithm. For every k > j, it fixes Rk as in the sharing phase. This means that the
inner product of Li,k with Rk remains the same as the k-th bit of the i-th share
of s0. For every k < j, we sample an independent R′

k and this is possible due to
an earlier observation that conditioned on fixing any share, the dealer’s secrets
are uniformly distributed. This means that for every k < j, the inner product of
Li,k with the new R′

k is an uniformly chosen random bit. Now, if we fix Rj as in
the sharing phase, we get an sample from Hybi,j ; else, if we sample R′

j uniformly
at random, we get a sample from Hybi,j+1.

Completing the Tracing. The tracing algorithm will go over every i, j and deter-
mine if the pirate reconstruction box can distinguish between Hybi,j and Hybi,j+1

with noticeable advantage. Eventually, it will reach Hybi,j and Hybi,j+1 such
that the pirate reconstruction box can distinguish between these two hybrids
with probability at least ε/O(nλ). It will now use Goldreich-Levin decoder to
extract Li,j . For completeness, we provide the details below.

– The tracing algorithm starts running the Goldreich-Levin decoder and simu-
lates the access to the oracle Ora.

– When the decoder queries the oracle on a uniform y, the tracing algorithm
does the following:

• It fixes the collected share of party Pi, i.e., fi(sharei). In addition to this,
it also fixes the random masks {Rk}k>j which are available from the view
of the dealer. By fixing these random masks, the tracing algorithm has
fixed the inner product of Li,k and Rk for k > j to be the same as the
bits of the initial Shamir share sshi that was used in the sharing phase.

• It then randomly samples ssh′
i+1, . . . , ssh

′
n such that these correspond to

the last n − i shares of a Shamir sharing of the secret s0. It also samples
ssh′

1, . . . , ssh
′
i−1 such that (ssh′

1, . . . , ssh
′
i−1) correspond to the first (i − 1)

shares of a Shamir sharing of s1.
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• It sets R′
j = y (where y is the query) and samples R′

1,j , . . . , R
′
i−1,j ,

R′
i+1,j , . . . , R

′
n,j such that these values together with Ri,j corresponds

to a valid Shamir sharing of R′
j .

• For k < j, it samples Rk uniformly from {0, 1}λ. Then the shares of
{Rk}k �=j are randomly sampled such that they are consistent with the
fixed sharei and it samples share′

1, . . . , share
′
i−1, share

′
i+1, . . . , share

′
n that

are consistent with the above sampled values.
• The tracing algorithm then runs the pirate reconstruction box on

f1(share′
1), . . . , fi−1(share′

i−1), fi(sharei), fi−1(share′
i−1), . . . , fn(share′

n)).
We show that using the output of the reconstruction box, one can pre-
dict the value of the inner-product between Li,j and y with probability
noticeably better than half.

A minor subtlety that arises because of fixing (sharei, {Rk}k>j) is that for the
Goldreich-Levin decoding to work, we require that conditioned on fixing these
values, the reconstruction box still distinguishes between Hybi,j and Hybi,j+1

with non-negligible advantage. We note that we can rely on Markov’s inequality
to show that for ε

O(nλ) fraction of values of (sharei, {Rk}k>j), the reconstruction
box still distinguishes between Hybi,j+1 and Hybi,j with probability at least

ε
O(nλ) conditioned on fixing these values. This allows the tracing algorithm to
use the pirate reconstruction box to simulate the oracle and thus, enabling the
Goldreich-Levin decoder to extract Li,j .

2.2 Boosting Tracing Probability

The analysis explained before shows us how to trace a traitor with overwhelming
probability conditioned on sharei, {Rk}k>j belonging to a “good” set. Also, we
argued via Markov’s inequality that the probability that this value is “good” is
at least ε

O(λn) . Thus, the probability of tracing a traitor is roughly, ε
O(λn) . We

now show how to increase the success probability of the tracing algorithm in
a sequence of steps. The first step will show how to increase it to O(ε/n), the
second step will increase the tracing probability to O(ε) and the final step will
show how to increase it to O( nε/(n−t+1)

1+(n−1)ε/(n−t+1) ). In this informal overview, we
will focus only on the first two steps and leave the third step to the main body.

First Step: O(ε/n). We note that to implicate Pi, it is sufficient to extract one of
{Li,j}j∈[λ] as the evidence. The above analysis tried to extract one specific Lij

and hence, suffered from a bad success probability. In the first boosting step, we
analyze the success probability of the tracing algorithm in extracting any one of
the {Lij}j∈[λ]. Since the tracing algorithm has more “slots” to extract a valid
evidence, this increases the success probability by a proportional factor.

Towards this goal, we define (sharei, {Rk}k∈[λ]) output in the initial sharing
phase to be traceable if there exists j ∈ [λ] (or j ∈ {λ + 1 . . . , 2λ}) such that
(sharei, {Rk}k>j) (or (sharei, {Rk}k>2λ−j+1)) is “good”. In this case, we note
that we can use the strategy mentioned above to extract Li,j (or Li,2λ−j+1).
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The main technical lemma that we show in this step is the following. Let
us consider two large hybrids Hybi and Hybi+1, and if εi is the advantage of
the pirate reconstruction box in distinguishing between Hybi and Hybi+1, then
with probability O(εi − ε/(Cn)), (sharei, {Rk}k∈[λ]) output in the initial sharing
phase is traceable (where C is a some large enough constant). By observing that
there exists an i ∈ [n] such that, εi ≥ ε/n (via an averaging argument), we show
that probability of tracing is O(ε/n). We now give an overview of this lemma
by assuming without loss of generality that that the distinguishing advantage
between Hybi,0 and Hybi,λ is at least εi/2.

The main idea in the proof of the lemma is the following (informal) duality
condition. We show that for every j ∈ [λ], we can either use (sharei, {Rk}k>j)
to extract Li,j or the distinguishing advantage between Hybi,j−1 and Hybi,j is
“small”. Since we know that the distinguishing advantage between Hybi,0 and
Hybi,λ is at least εi/2, we get a lower bound on the probability that there exists
a j ∈ [λ], such that (sharei, {Rk}k>j) can be used to extract Li,j . The actual
proof is involved and uses a delicate partitioning argument. We refer the reader
to the main body for the full details.

Second Step: O(ε): We note that the previous analysis showed that the prob-
ability that (sharei, {Rk}k∈[λ]) is traceable is at least O(εi − ε/(Cn)). This in
particular means that Pi can be traced with probability at least O(εi − ε/(Cn)).
The key trick in this step is that if any two parties can be traced independently,
then we may take advantage of the pairwise independence and boost the success
probability. However, to trace a party, we need (sharei, {Rk}k∈[λ]) to be trace-
able, which means the event that one party can be traced is correlated with the
event that another party can be traced.

To break the above mentioned correlation, we modify our construction as
follows. In the sharing phase, instead of sampling Rj and using Shamir secret
sharing to split it, the dealer samples a polynomial pj(·) of degree at most t − 1
and sets Ri,j to be pj(αi) (for some fixed element αi). Furthermore, instead
of sampling Li,j such that sshi,j = 〈Li,j , Rj〉, the sharing protocol samples
Li,j such that sshi,j = 〈Li,j , pj(βi)〉 (for some fixed element βi). In this new
construction, to trace a party Pi, we need (sharei, {pk(βi)}k∈[λ]) to be trace-
able. We observe that if t ≥ 4, the random variables (sharei, {pk(βi)}k∈[λ])
and (sharei′ , {pk(βi′)}k∈[λ]) for any i �= i′ are pairwise independent. We rely
on this observation and make use of standard inequalities like Cauchy-Schwartz
to get a lower bound on the probability that at least for one i ∈ {1, . . . , n},
(sharei, {pk(βi)}k∈[λ]) is traceable. This allows us to get an improved analysis
and thus improving the success probability to O(ε).

2.3 Traceable Delegation

In this subsection, we show an application of traceable secret sharing to con-
structing traceable multi-server delegation of computation in the offline-online
setting.
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The Setting. In our model, there is a single client and n servers. The client
wants to delegate the computation of a circuit C on some private input x to
the n servers. We consider the offline-online setting where the client gets the
circuit to be computed in the offline phase but learns the private input in the
online phase. The offline computational cost of the client can grow with the
size of the circuit C but we require the online computation of the client to be
extremely fast. In particular, it should only grow proportional to the input length
x and the output length of C and is otherwise, independent of the size of C. We
require the standard correctness and the privacy properties from the protocol,
meaning that the client always reconstructs the correct output and the views of
t servers provide no information about the client’s private input x. Additionally,
we require the protocol to be traceable, meaning that given any set of collector
functions f1, . . . , fn and a pirate reconstruction box that can distinguish between
the cases where the client’s input was x0 and x1 with noticeable advantage, then
we require a tracing algorithm to output a valid evidence (accepted by a judge)
against one of the cheating servers.

Why Natural Approaches Fail? A natural approach to construct such a traceable
MPC protocol is for the client to use our traceable secret sharing scheme to secret
share its private input x among the n servers. Then, the servers can run standard
MPC protocols like BGW [BOGW88] or GMW [GMW87] to compute a secret
share of the output which can finally be reconstructed by the client. However,
this approach fails in our setting because these protocols crucially rely on the
secret sharing scheme to be linear whereas our traceable secret sharing scheme is
non-linear. To get around this problem of non-linearity, one might think that for
every gate, we might run a mini MPC protocol that takes the traceable shares of
the inputs, reconstructs the input values, computes the output of the gate and
then reshares it using a traceable secret sharing scheme. However, this requires
the mini MPC protocol itself to be traceable and we are back to square one. In
conclusion, the main difficulty we face is in making the shares of the intermediate
wire values to be traceable.

Our Protocol. The main idea behind our protocol is to “secret share” the circuit
rather than secret sharing the input. Towards building the main intuition behind
the protocol, let us start with a trivial case where the circuit is just a single gate
g that takes in two input values and has a single output value. In the offline phase
of our computation, the client “garbles the truth table” of this gate. Specifically,
for every input wire and the output wire, the client chooses a random masking
bit. Let us call these masking bits to be r1, r2 corresponding to the input wires
and r3 corresponding to the output wire. Further, the client generates a table
with 4 entries where the (a, b)-th entry of the table for a ∈ {0, 1} and b ∈ {0, 1}
is given by g(a ⊕ r1, b ⊕ r2) ⊕ r3. After generating all the entries of the “garbled
table”, the client uses our traceable secret sharing to secret share each entry
of the garbled truth table to the n servers. This completes the offline phase
of the protocol and at the end of the offline phase, each of the servers hold
a secret share for every entry of the garbled truth table. In the online phase,
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the client learns its input (x1, x2) ∈ {0, 1} × {0, 1} and it sends to each of the
servers (x1 ⊕ r1, x2 ⊕ r2). Now, each of the servers hold the masked values of
the input wires, and they just choose the share corresponding to the entry given
by (x1 ⊕ r1, x2 ⊕ r2) in the truth table, and reconstruct this particular value by
broadcasting the chosen shares. It is easy to see that the reconstructed value
will be the actual output of the gate masked with r3. Now, this value will be
sent back to the client who can unmask this value and learn the output of the
computation.

To give the main idea behind tracing, notice that in the online evalua-
tion phase executed by the servers, there are three secret shares that are left
untouched. Further, the entry of the gate table that is reconstructed does not
give any information about the client’s input due to the one-time pad security.
This means that if we change any one of the untouched shares to a secret sharing
of the revealed value and if the reconstruction box is able to detect this change,
then we are back to the standard setting of traceable secret sharing. With this
intuition in mind, let us now give the details about tracing. Towards this, let us
first assume that we have a set of n collector functions f1, . . . , fn and a pirate
reconstruction box that can distinguish between the cases where the input of the
client was (x1, x2) from the case the input was (x′

1, x
′
2) with noticeable advan-

tage. The tracing algorithm defines a sequence of 6 hybrids starting from the
case where the input was (x1, x2) and ending with the case where the input was
(x′

1, x
′
2). The first three hybrids change each entry of the garbled truth table to

be g(x1 ⊕ r1, x2 ⊕ r2) ⊕ r3. That is, at the end of these changes, all the 4 secrets
that were shared during the offline phase are equal to g(x1 ⊕ r1, x2 ⊕ r2) ⊕ r3.
Notice that once we have done this change, we can rely on the one-time pad
security to make the views of all the servers to be independent of the input.
In particular, we can change the masked inputs which were sent during the
online phase to be (x′

1 ⊕ r1, x
′
2 ⊕ r2) and the entries of the garbled table to be

g(x′
1 ⊕ r1, x

′
2 ⊕ r2) ⊕ r3. The next sequence of 3 hybrids will just reverse these

changes ending with the actual view of the servers when the client’s input was
(x′

1, x
′
2). If the reconstruction box distinguishes between the cases where the

client’s inputs were (x1, x2) from (x′
1, x

′
2) with advantage ε, then via a standard

averaging argument, it follows that there exists two intermediate hybrids Hyb
and Hyb′ in this sequence such that the reconstruction box is able to distinguish
between these two hybrids with advantage ε/6. Notice that the only difference
between any two subsequent hybrids is the secret that was shared in a particular
gate entry. Thus, fixing all other gate entries and their corresponding shares, we
can now directly rely on our tracing algorithm to catch a specific traitor.

An astute reader might have noticed the similarities between our approach
and the point-and-permute trick in garbled circuits [BMR90]. Indeed, we can
extend the toy example in a straightforward way to computing an arbitrary
circuit C composed of many gates via the point-and-permute trick. Specifically,
we ask the client to choose an independent random masking bit for each wire of
the circuit (including the output wires) and generate the garbled truth table for
each gate as explained above. In the offline phase, the client secret shares each
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entry of each garbled table using our traceable secret sharing scheme and sends
it over to the servers. In the online phase, the client sends the masked values
of its input. Then, the servers compute the masked output of each gate in the
topological order, starting from the input gates and ending in the output gates
exactly as explained above. Once the servers have the masked value of the output,
then can simply send this to the client who unmasks this and reconstructs the
actual output.

A Subtlety. A minor subtlety that arises with the above approach is in proving
the non-imputability property. Let us once again consider the toy example above
where there is a single gate. In the online phase, when the servers broadcast the
shares corresponding to the (x1 ⊕ r1, x2 ⊕ r2)-th entry of the garbled truth
table, they also need to broadcast the {Li,j}j∈[λ] corresponding to these shares.
However, broadcasting these values allow a cheating client that colluded with one
other server to easily implicate an honest server. To prevent this attack, we make
use of the specific structure of our shares. Recall that the share corresponding
to the i-th server comprises of {Li,j , Ri,j}j∈[λ]. Instead of asking the servers to
naively broadcast this share in its entirety, we first ask the servers to broadcast
{Ri,j}j∈[λ]. This allows the servers to first reconstruct {Rj}j∈[λ]. Once this is
done, the servers can take the inner produce of each Li,j with Rj to reconstruct
the i-th Shamir share sshi. The servers then broadcast this value and this allows
them to reconstruct the actual secret without revealing {Li,j}j∈[λ] to any party.

2.4 Extensions

Trace t-1 Parties. In this extension, we are interested in tracing many
traitors. By using the construction in the previous step, we note that
(share1, {p1,k(0)}k∈[λ]), . . . , (sharen, {pn,k(0)}k∈[λ]) are (t − 1)-wise independent.
We use the trick of explained before to identify t − 1 “special” parties such that
each of them can be traced with probability O(ε/(n − t + 1)). Therefore, we can
trace t − 1 parties with probability O((ε/(n − t + 1))t−1).

Disjoint Collusion Setting. We also consider the setting where up to t−1 parties
can collude. We focus on the disjoint collusion setting where each party can be
in at most one collusion. We model the collusion by allowing the collector to
specify functions fi1,...,ik

for collusion of k ≤ t − 1 parties, where fi1,...,ik
takes

sharei1 , . . . , shareik
as input.

The main idea of the tracing algorithm would be the same as before.
However, to generate a valid random sample which is either in Hybi,j or
Hybi,j−1, in addition to fixing (sharei, {pk(βi)}k>j), we also need to fix
{sharei′ , {pk(βi′)}k∈[λ]}i′∈Ci

, where Ci denotes the set of parties which collude
with Pi. Because we need to use the collected share sent by Pi, which requires
that the shares of Pi and all parties who collude with Pi should be the same
as that generated in the initial phase. Furthermore, since the tracing algorithm
does not know {Li′,k}i′∈Ci,k∈[λ], we need to also reuse {pk(βi′)}i′∈Ci,k∈[λ] so that
the inner product between Li′,j and pk(βi′) is known to the tracing algorithm.



734 V. Goyal et al.

However, for pj(·), we need to fix 2t − 3 values, which has already determined
pj(·). It disables us to change the value of pj(βi).

To solve this issue, we modify the construction as follows. In the sharing
phase, for j ∈ [λ] instead of only using one polynomial pj(·), the dealer samples
n polynomials p1,j(·), . . . , pn,j(·) of degree at most t−1. Every party will receive
R1

i,j = p1,j(αi), . . . , Rn
i,j = pn,j(αi). Instead of sampling Li,j such that sshi,j =

〈Li,j , pj(βi)〉, the sharing protocol samples Li,j such that sshi,j = 〈Li,j , pi,j(0)〉.
In this way, we only fix t − 1 values of pi,j(·) and therefore can still change the
value of pi,j(0). The first step of boosting success probability still works in the
new construction. Therefore, we can trace a party with probability O(ε/(n− t+
1)) in the collusion setting.

3 Preliminaries

Let λ denote the security parameter. A function μ(·) : N → R
+ is said to be

negligible if for any polynomial poly(·) there exists λ0 such that for all λ > λ0

we have μ(λ) < 1
poly(λ) . We will use negl(·) to denote an unspecified negligible

function and poly(·) to denote an unspecified polynomial function.
We assume reader’s familiarity with the digital signature schemes.

3.1 Goldreich-Levin Lemma

Lemma 1. Suppose owf is a one-way function. If there is an oracle Ora(X, �)
with X hard-coded where X ∈ {0, 1}λ such that

Pr
Y ∼{0,1}λ

[Ora(X,Y ) = 〈X,Y 〉] ≥ 1/2 + η(λ),

then there exists a probabilistic algorithm Inv, which takes owf and owf(X)
as input, has the access to Ora(X, �), runs in poly(1/η(λ), λ) and makes
poly(1/η(λ), λ) oracle queries, such that

Pr[X ′ ← InvOra(X,�)(owf(·), owf(X)) : owf(X ′) = owf(X)] ≥ 1 − negl(λ).

We use InvOra(X,�)(owf(X)) for simplicity and ignore the input of the descrip-
tion of owf when it is evident from the context.

4 Traceable Secret Sharing

In Sect. 4.1, we give the definition of a traceable secret sharing. In Sect. 4.2, we
give our construction. We refer the readers to the full version of this paper for
the proof of security.
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4.1 Definition

A traceable secret sharing scheme consists of four algorithms
(Share,Rec,Trace, Judge). The (Share,Rec) have the same syntax as that of a
normal secret sharing scheme. The algorithm Trace takes in a set of n collector
functions f1, . . . , fn, the set of collected shares, a pirate reconstruction box, the
view of the dealer during the sharing phase and outputs the identity of a traitor
party i� who has submitted its share to the collector along with a proof πi� . The
Judge algorithm takes in this proof and pronounces whether i� is guilty or not.
We give the formal definition below.

Definition 1. A Traceable Secret Sharing (TSS) is a tuple of four algorithms
(Share,Rec,Trace, Judge) with the following syntax:

– Share(1λ, s, t, n) : On input the security parameter 1λ, a secret s, the threshold
t and the number of players n, the dealer D runs the Share protocol with
n players P1, . . . , Pn. At the end of the protocol, the player Pi outputs its
share sharei and the dealer outputs its view viewD. We will ignore the security
parameter when it is evident from the context.

– Rec(sharei1 , . . . , shareit
) : This is a deterministic algorithm such that given

any set of t shares, denoted by sharei1 , . . . , shareit
, outputs a secret s.

– TraceRec
�

(f1, . . . , fn, f1(share1), . . . , fn(sharen), viewD, s0, s1) : The collector
publishes the description of the functions f1, . . . , fn along with a pirate recon-
struction box Rec�. The collector receives shares from a set of parties after
applying the collector functions. If a party Pi is honest and has not sub-
mitted its share, we will replace fi with a constant function. Formally, if H
is the set of honest parties, then fi is a constant function for i ∈ H. The
Trace algorithm takes the n collector functions f1, . . . , fn, the collected shares
f1(share1), . . . , fn(sharen), the view of D, two secrets s0, s1, and with oracle
access to a pirate reconstruction box Rec� outputs an index i� ∈ [n] and a
proof πi� .

– Judge(i�, πi� , viewD) : This is a deterministic algorithm that takes the alleged
traitor identity i� ∈ [n], the proof πi� and the view viewD of the dealer and
outputs guilty or not − guilty.

We say a scheme is a t-out-of-n δ-traceable secret sharing if it satisfies the
following properties.

– Correctness. For any secret s and any T = {i1, . . . , it} where each ij ∈ [n],
we require that

Pr
Share(s,t,n)

[Rec(sharei1 , . . . , shareit
) = s] = 1

– Statistical Privacy. For any two secrets s0, s1 and any T ⊆ [n] with |T | ≤
t − 1, we require that

{(share1, . . . , sharen) ← Share(s0, t, n) : shareT } ≈s

{(share1, . . . , sharen) ← Share(s1, t, n) : shareT }
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– Traceability. If there exists a set of n collector functions f1, . . . , fn (where
fi is a constant function if Pi is honest) and a pirate reconstruction box Rec�

such that for two secrets s0, s1,

| Pr
Share(s0,t,n)

[Rec�(f1(share1), . . . , fn(sharen)) = 0] −
Pr

Share(s1,t,n)
[Rec�(f1(share1), . . . , fn(sharen)) = 0]| ≥ ε

then,

Pr[(share1, . . . , sharen, viewD) ← Share(s0, t, n);

(i�, πi�) ← TraceRec
�

(f1, . . . , fn, f1(share1), . . . , fn(sharen), viewD, s0, s1) :
Judge(i�, πi� , viewD) = guilty] ≥ δ(ε)

Furthermore, the number of queries that Trace makes to the pirate reconstruc-
tion box Rec� is poly(λ, 1/ε).

– Non-imputability. For any secret s, honest player Pi� and any computa-
tionally bounded algorithm ˜D,

Pr
share(1λ,s,t,n)

[(view′
D, i�, πi�) ← ˜D(viewD, share[n]\{i�}) : Judge(i�, πi� , view′

D)

= guilty] ≤ negl(λ)

Remark 1. We can consider a stronger definition wherein the parties apply the
collector’s functions on not only the shares received but also on its entire view
during the execution of the sharing protocol. In fact, our construction satisfies
this stronger definition.

Tracing More Traitors. In the previous definition, it was sufficient for the Trace
algorithm to output the identity of one of the traitors i� along with a proof
πi� . It is natural to consider a stronger formulation where Trace is required to
output the identities of all the traitors along with a valid proofs against each
one of them. We note that it is generally impossible to output the identities of
more than t traitors as the reconstruction box could simply ignore some of the
collected shares. So, the best we could hope for from a tracing algorithm is to
output the identities along with valid evidence of at most t traitors.

Collusion-Resistant Setting. In the previous formulation, we considered the set-
ting where the individual parties submit their shares without colluding. Here,
we consider a stronger formulation where the collector publishes the description
of the functions which can take a set of shares as input. To be more precise, we
consider the disjoint collusion setting (though stronger formulations are indeed
possible) where each party can appear in at most one collusion. We model this
collusion by allowing the collector to specify functions f{i1,...,ik} for collusion of
k ≤ t − 1 players, where f{i1,...,ik} takes sharei1 , . . . , shareik

as input. The trace
algorithm takes in the description of these collector’s functions, collected shares
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and the view of the dealer and outputs the identity of a traitor along with a
proof by making oracle access to the reconstruction box. We note that if t or
more parties collude together they can then recover the secret and submit some
information about the secret to the collector. Thus, we restrict the size of the
collusions to be at most t − 1.

4.2 Construction

Setting. Let n denote the number of players and λ denote the security parameter.
We further set the length of the secret to be λ. In the full version of this paper,
we will show that our construction is traceable under parallel composition so
that larger length secrets can be chopped into blocks of length λ bits each. We
use Pi to represent the i-th player. Let F = GF(2λ). Let owf be an one-way
function. Let α1, . . . , αn, β1, . . . , βn ∈ F \ {0} be 2n distinct fixed elements. The
pair of elements (αi, βi) is assigned to Pi. Each Pi also has a pair of keys (ski, vki)
generated by Gen of a digital signature scheme and we assume that vki is public
and is known to every other party including the judge algorithm (similar to the
PKI infrastructure). Alternatively, we may assume that at the end of the sharing
protocol, the dealer and the server come together and sign on the transcript of
the sharing protocol. In this way, the transcript available with the dealer’s view
can be verified by the judge.

Remark 2. We note that the PKI assumption seems a necessary condition for
a traceable secret sharing scheme. Intuitively, if without the PKI assumption, a
corrupted server can simply deny the messages and the corresponding signatures
sent to the client when this sever is caught by the tracing algorithm. Essentially,
there would be no way for the judge to check whether the messages are sent by
the server or not.

For k ∈ [n] and k ≥ t, we say a vector (or a set) of pairs of values
((αi1 , vi1), . . . , (αik

, vik
)) are valid t-Shamir shares of secret s, if there exists

a polynomial f(·) ∈ F[X] of degree at most t − 1, such that f(αij
) = vij

for all
j ∈ [k] and f(0) = s.

Theorem 3. Assume the existence of one-way functions, the PKI infrastructure
and secure two-party computation protocols. For t ≥ 4, n ≥ t and any C =
poly(λ), there exists an explicit t-out-of-n δ-traceable secret sharing scheme with
the size of each share O(λ2) where δ(ε) = p(ε)/(n−1

n p(ε) + 1) − negl(λ), and

p(ε) =
nε

2(n − t + 1)
− (

t − 1
2

+ nλ)
ε

Cnλ
.

Without loss of generality, for t ≥ 4, n ≥ t, a set of n collector functions
f1, . . . , fn and a pirate reconstruction box Rec� such that for two secrets s0, s1,

| Pr
Share(s0,t,n)

[Rec�(f1(share1), . . . , fn(sharen)) = 0] −
Pr

Share(s1,t,n)
[Rec�(f1(share1), . . . , fn(sharen)) = 0]| ≥ ε,
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we assume

Pr
Share(s0,t,n)

[Rec�(f1(share1), . . . , fn(sharen)) = 0] −
Pr

Share(s1,t,n)
[Rec�(f1(share1), . . . , fn(sharen)) = 0] ≥ ε.

To handle the case

Pr
Share(s0,t,n)

[Rec�(f1(share1), . . . , fn(sharen)) = 0] −
Pr

Share(s1,t,n)
[Rec�(f1(share1), . . . , fn(sharen)) = 0] ≤ −ε,

one can first design a new ˜Rec
�

which always outputs the opposite bit of Rec�

and then run Trace with access to ˜Rec
�
.

1. Fshare receives sshi, {pj(·)}j∈[λ] from D and (ski, vki) from Pi.
2. For every j ∈ [λ], Fshare samples a random Li,j such that sshi,j = 〈Li,j , pj(βi)〉.

• Let Ri,j = pj(αi). Fshare sets sharei = (αi, βi, (Li,1, Ri,1), . . . , (Li,λ, Ri,λ))
and sends sharei to Pi.

• For every j ∈ [λ], Fshare sends (owf(Li,j), Sign(owf(Li,j), ski)) to D.

Fig. 1. Description of Fshare

Our construction works as below.

– Share(1λ, s, t, n) : The dealer D first randomly generates ((α1, ssh1), . . . ,
(αn, sshn)) which are valid t-Shamir shares of secret s. For each j ∈ [λ],
D repeatedly samples a random polynomial pj(·) ∈ F[X] of degree at most
t−1 until pj(·) satisfies that pj(βi) �= 0 for all i ∈ [n].5 Here, pj(βi) is used as
“Rj” for Pi. See more discussion in the second step of Sect. 2.2. We require
pj(βi) �= 0 to ensure that the inner-product 〈Li,j , pj(βi)〉 in Fig. 1 is not a
constant 0.
For every player Pi, let sshi = (sshi,1, . . . , sshi,λ) where sshi,j ∈ {0, 1}. The
dealer D and Pi query Fshare which is described in Fig. 1.
Let viewD = ({vki}i∈[n], {(owf(Li,j),Sign(owf(Li,j), ski))}i∈[n],j∈[λ],
{(αi, sshi)}i∈[n], {pj(·)}j∈[λ], {βi}i∈[n]).

– Rec(sharei1 , . . . , shareit
) : For k ∈ [t], parse shareik

as (αik
, βik

,
(Lik,1, Rik,1), . . . , (Lik,λ, Rik,λ)). For j ∈ [λ], compute the polynomial pj(·) ∈
F[X] of degree at most t−1 such that pj(αik

) = Rik,j for all k ∈ [t]. For k ∈ [t]
and j ∈ [λ], let sshik,j = 〈Lik,j , pj(βik

)〉 and sshik
= (sshik,1, . . . , sshik,λ).

Then reconstruct the secret s by using the reconstruction of the Shamir secret
sharing scheme on (αi1 , sshi1), . . . , (αit

, sshit
).

5 We note that Share(1λ, s, t, n) is an expected probabilistic polynomial time algo-
rithm. However, it can be made strict polynomial time with negligible error proba-
bility.
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– TraceRec
�

(f1, . . . , fn, f1(share1), . . . , fn(sharen), viewD, s0, s1) : Recall that:

Pr
Share(s0,t,n)

[Rec�(f1(share1), . . . , fn(sharen)) = 0] −
Pr

Share(s1,t,n)
[Rec�(f1(share1), . . . , fn(sharen)) = 0] ≥ ε.

For i ∈ {t, . . . , n} and j ∈ {0, . . . , 2λ}, we define the distribution Hybi,j as
follows:6

• If j ≤ λ, ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . ,

(αn, ssh′
n)) are sampled randomly such that ((α1, ssh

′
1), . . . ,

(αi−1, ssh
′
i−1)) are valid t-Shamir shares of s1 and ((α1, ssh

′
1), . . . ,

(αt−1, ssh
′
t−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh′

n)) are valid t-Shamir
shares of s0. Then the first j bits of ssh′′

i are replaced by random bits. Let
ssh′

i be ssh′′
i after replacement. p′

1, . . . , p
′
λ are then sampled in the same

way as that in Share(1λ, s, t, n). (share′
1, . . . , share

′
n) are generated in the

same way as that in Fshare.
• If j > λ, ((α1, ssh

′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . ,

(αn, ssh′
n)) are sampled randomly such that ((α1, ssh

′
1), . . . ,

(αi−1, ssh
′
i−1), (αi, ssh

′′
i )) are valid t-Shamir shares of s1 and ((α1, ssh

′
1),

. . . , (αt−1, ssh
′
t−1), (αi+1, ssh

′
i+1), . . . , (αn, ssh′

n)) are valid t-Shamir shares
of s0. Then the first 2λ − j bits of ssh′′

i are replaced by random bits. Let
ssh′

i be ssh′′
i after replacement. p′

1, . . . , p
′
λ are then sampled in the same

way as that in Share(1λ, s, t, n). (share′
1, . . . , share

′
n) are generated in the

same way as that in Fshare.
Let η(ε) = ε

Cnλ where C = poly(λ). Let InvOra(X,�) be the algorithm in the
Goldreich-Levin Lemma, where Ora(X, �) is an oracle with X hard-coded
and X is an element in F, such that Pr[Y ∼ F : Ora(X,Y ) = 〈X,Y 〉] ≥
1/2 + η(ε)/2.
For every i ∈ {t, . . . , n} and j ∈ {1, . . . , λ}, Trace starts running
InvOra(Li,j ,�)(owf(Li,j)) by simulating the access to Ora(Li,j , �) as below:

• On receiving a query Y , if Y = 0, Trace outputs 0. Otherwise, Trace
randomly generates (share′

1, . . . , share
′
i−1, share

′
i+1, . . . , share

′
n) such that,

after combining with sharei (which is unknown to Trace), it is a sample
in Hybi,j and p′

j(βi) = Y , p′
k(βi) = pk(βi) for k > j.

To this end, Trace randomly samples ssh′′
i such that ssh′′

i,k = sshi,k for
k > j. Then randomly sample (ssh′

1, . . . , ssh
′
t−1, ssh

′
i+1, . . . , ssh

′
n) such that

((α1, ssh
′
1), . . . , (αt−1, ssh

′
t−1), (αi, ssh

′′
i ), (αi+1, ssh

′
i+1), . . . , (αn, ssh′

n)) are
valid t-Shamir shares of s0, and after that, generate (ssh′

t, . . . , ssh
′
i−1) such

that ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1)) are valid t-Shamir shares of s1.

For k < j, it repeatedly samples a random polynomial p′
k(·) ∈ F[X] of

degree at most t − 1 such that p′
k(αi) = pk(αi) (recall that Ri,k = pk(αi)

is a component in sharei) until p′
k(·) satisfies that p′

k(β1), . . . p′
k(βn) are

non-zero.

6 We intentionally choose the index i starting from t since the first t− 1 shares in the
Shamir sharing of s0 and s1 are identical and uniformly distributed.
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For k = j, it repeatedly samples a random polynomial p′
k(·) ∈ F[X] of

degree at most t − 1 such that p′
k(αi) = pk(αi) and p′

k(βi) = Y �= 0 until
p′

k(·) satisfies that p′
k(β1), . . . p′

k(βn) are non-zero.
For k > j, it repeatedly samples a random polynomial p′

k(·) ∈ F[X] of
degree at most t − 1 such that p′

k(αi) = pk(αi) and p′
k(βi) = pk(βi) �= 0

until p′
k(·) satisfies that p′

k(β1), . . . p′
k(βn) are non-zero.

Then, share′
1, . . . , share

′
i−1, share

′
i+1, . . . , share

′
n are generated in the same

way as that in Fshare.
• Let share′

i = sharei. Note that fi(share′
i) = fi(sharei) is known to Trace.

Let b = Rec�(f1(share′
1), . . . , fn(share′

n)). Intuitively, b indicates whether
the sharing is in Hybi,j−1 or Hybi,j . See the formal analysis in the full
version of this paper. Output b⊕ ssh′′

i,j , where ssh′′
i,j is the j-th bit of ssh′′

i

which was generated in the last step.
Then Trace receives the output of L′

i,j = InvOra(Li,j ,�)(owf(Li,j)) and checks
that whether owf(Li,j) = owf(L′

i,j). If they are the same, Trace adds
(i, (j, L′

i,j)) into the output list.
For every i ∈ {t, . . . , n} and j ∈ {λ, . . . , 2λ − 1}, Trace starts running
InvOra(Li,2λ−j ,�)(owf(Li,2λ−j)) by simulating the access to Ora(Li,2λ−j , �) as
below:

• On receiving a query Y , if Y = 0, Trace outputs 0. Otherwise, Trace
randomly generates (share′

1, . . . , share
′
i−1, share

′
i+1, . . . , share

′
n) such that,

after combining with sharei (which is unknown to Trace), it is a sample
in Hybi,j and p′

2λ−j(βi) = Y , p′
k(βi) = pk(βi) for k > 2λ − j.

To this end, Trace randomly samples ssh′′
i such that ssh′′

i,k =
sshi,k for k > 2λ − j. Then randomly sample (ssh′

1, . . . , ssh
′
i−1)

such that ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i )) are valid t-Shamir

shares of s1, and after that, generate (ssh′
i+1, . . . , ssh

′
n) such that

((α1, ssh
′
1), . . . , (αt−1, ssh

′
t−1), (αi+1, ssh

′
i+1), . . . , (αn, ssh′

n)) are valid t-
Shamir shares of s0.
For k < 2λ − j, repeated sample a random polynomial p′

k(·) ∈ F[X] of
degree at most t − 1 such that p′

k(αi) = pk(αi) (recall that Ri,k = pk(αi)
is a component in sharei) until p′

k(·) satisfies that p′
k(β1), . . . p′

k(βn) are
non-zero.
For k = 2λ − j, repeated sample a random polynomial p′

k(·) ∈ F[X] of
degree at most t − 1 such that p′

k(αi) = pk(αi) and p′
k(βi) = Y �= 0 until

p′
k(·) satisfies that p′

k(β1), . . . p′
k(βn) are non-zero.

For k > 2λ − j, repeated sample a random polynomial p′
k(·) ∈ F[X] of

degree at most t − 1 such that p′
k(αi) = pk(αi) and p′

k(βi) = pk(βi) �= 0
until p′

k(·) satisfies that p′
k(β1), . . . p′

k(βn) are non-zero.
Then, share′

1, . . . , share
′
i−1, share

′
i+1, . . . , share

′
n are generated in the same

way as that in Fshare.
• Let share′

i = sharei. Note that fi(share′
i) = fi(sharei) is known to Trace.

Let b = Rec�(f1(share′
1), . . . , fn(share′

n)). Intuitively, b indicates whether
the sharing is in Hybi,j or Hybi,j+1. See the formal analysis in the full
version of this paper. Output b̄⊕ ssh′′

i,2λ−j , where ssh′′
i,2λ−j is the (2λ−j)-

th bit of ssh′′
i which was generated in the last step.
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Then Trace receives the output of L′
i,2λ−j = InvOra(Li,2λ−j ,�)(owf(Li,2λ−j))

and checks that whether owf(Li,2λ−j) = owf(L′
i,2λ−j). If they are the same,

Trace adds (i, (2λ − j, L′
i,2λ−j)) into the output list.

In the end, if the output list is empty, Trace outputs ⊥. Otherwise, Trace
outputs the first pair (i, (j, L′

i,j)) in the output list.
– Judge(i�, πi� , viewD) : Judge first parses πi� as (j, L′

i�,j). Then output
Verify(owf(L′

i�,j), σi�,j , vki�) where σi�,j is the signature available from viewD.

Proof and Extensions. In the full version of this paper, (1) we give the formal
proof of our construction, (2) we show how to improve the tracing probability of
our construction, (3) we extend our construction to the collision-resistant setting
and tracing more than one servers, and (4) we show the parallel composition of
our construction. We refer the readers to the full version of this paper for more
details.

5 Traceable Multi-server Delegation of Computation

In this section, we define and construct a traceable multi-server delegation of
computation from our traceable secret sharing. A traceable multi-server delega-
tion of computation is an offline-online protocol between a client and n servers
denoted by P1, . . . , Pn. In the offline phase, the client’s input is a circuit C and
it engages in a protocol with the severs. In the online phase, the client learns the
input x and sends a single message to each of the servers. The servers engage in a
protocol and at the end of the protocol, each server sends a single message back
to the client. The client reconstructs C(x) from these messages. We require the
online computational cost of the client to only grow with the input and output
length and is otherwise, independent of the size of the circuit. Let us denote the
view of the i-th server with viewi(C, x) and the view of the client as viewD(C, x).
When it is clear from the context, we use viewi to denote viewi(C, x). We say
(Π,Trace, Judge) (where Trace and Judge have the same semantics of the secret
sharing scheme) to be a traceable delegation of computation if it satisfies the
following properties.

Definition 2. An offline-online multi-server delegation of computation proto-
col (Π,Trace, Judge) with threshold t is said to be δ-traceable if it satisfies the
following properties.

– Correctness. The correctness requirement states that for every circuit C and
every input x, the client reconstructs C(x) with probability 1.

– Security. For every circuit and any two inputs x0, x1 and for any subset T
of the servers of size at most t − 1, we require that

viewT (C, x0) ≈s viewT (C, x1)

– Traceability. If there exists a set of n collector functions f1, . . . , fn (where
fi is a constant function if Pi is honest) and a pirate reconstruction box Rec�

such that for two inputs x0, x1,

| Pr
Π(C,x0)

[Rec�
(f1(view1), . . . , fn(viewn)) = 0] − Pr

Π(C,x1)
[Rec�

(f1(view1), . . . , fn(viewn)) = 0]| ≥ ε



742 V. Goyal et al.

then,

Pr[(view1, . . . , viewn, viewD) ← Π(C, x0);

(i�, πi�) ← TraceRec
�

(f1, . . . , fn, f1(view1), . . . , fn(viewn), viewD, x0, x1) :
Judge(i�, πi� , viewD) = guilty] ≥ δ(ε)

Furthermore, the number of queries that Trace makes to the pirate reconstruc-
tion box Rec� is poly(|C|, λ, 1/ε).

– Non-imputability. For any circuit C and input x, an honest server Pi� and
any computationally bounded client ˜D,

Pr
Π(C,x)

[(view′
D, i�, πi� ) ← ˜D(viewD, view[n]\{i�}) : Judge(i�, πi� , view′

D) = guilty] ≤ negl(λ)

5.1 The Protocol

In this subsection, we give the details of our traceable delegation of computation.

– Offline Phase. In the offline phase, the client receives the circuit C and does
the following.
1. For every wire w of the circuit C, the client chooses a random mask

rw ← {0, 1}. We assume the input wires are labeled from 1 to .
2. For every gate g of the circuit with input wires i and j and the output

wire k, the client generates a table with 4 entries where each entry is
labeled with (a, b) ∈ {0, 1} × {0, 1}. The (a, b)-th entry of the gate table
is given by g(a ⊕ ri, b ⊕ rj) ⊕ rk.

3. For every gate g and every entry of the gate table, the client and the
servers run the sharing protocol of a t-out-of-n traceable secret sharing.
Let shareg,a,b

i be the i-th share corresponding to the (a, b)-th entry of the
gate g.

– Online Phase. In the online phase, the client receives its input x and sends
x ⊕ r[�] to each of the servers. The servers now starting running the online
protocol. For every gate g (in the topological order),
1. The servers hold yi ⊕ rj and yj ⊕ rj where yi, yj are the values carried by

the i and j-th wires when the circuit C is evaluated on input x.
2. Now, the i-th server parses share

g,yi⊕ri,yj⊕rj

i as (αi, βi, (Li,1, Ri,1),
. . . , (Li,λ, Ri,λ)). The servers first exchange Ri,1, . . . , Ri,λ to each other.
For j ∈ [λ], the servers compute the polynomial pj(·) ∈ F[X] of degree at
most t − 1 such that pj(αi) = Ri,j for all i ∈ [n]. For every j ∈ [λ], the
i-th server computes sshi,j = 〈Li,j , pj(βi)〉 and sshi = (sshi,1, . . . , sshi,λ).
The servers then broadcast the values of sshi and use the reconstruction
of the Shamir secret sharing scheme to obtain g(yi, yj) ⊕ rk = yk ⊕ rk.

The servers finally send the masked values of the output to the client, who
removes the output masks to learn C(x).

– Tracing algorithm. Given f1, . . . , fn, f1(view1), . . . , fn(viewn), the view of
the client viewC , two inputs x0, x1 and oracle access to a reconstruction box
Rec∗, the tracing algorithm does the following.
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1. It defines a sequence of hybrid distributions Hybg,a,b (starting from
Π(C, x0)) for every gate g and (a, b) ∈ {0, 1} × {0, 1} such that every
g′ < g (with input wires i′, j′ and output wire k′), we change all the gate
entries to g(yi′ ⊕ ri′ , yj′ ⊕ rj′) ⊕ rk′ . Further, for all entries that are less
than (a, b) in the gate table of g (w.r.t. to some ordering), we change those
entries to g(yi ⊕ ri, yj ⊕ rj) ⊕ rk. Notice that Hyb|C|,1,1 is independent
of x0 and hence, symmetrically, it defines Hyb′

g,a,b from Π(C, x1) where
Hyb|C|,1,1 ≡ Hyb′

|C|,1,1.
2. Notice that for any two intermediate hybrids in this sequence, the only

difference is in the value that was secret shared in a particular gate
entry. Thus, the tracing algorithm fixes the secret shares of all other
gate entries and runs the corresponding tracing algorithm for the secret
sharing scheme where the two secrets are the two different values in the
subsequent hybrids corresponding to this gate table entry. It repeats this
process for every subsequent hybrid in the sequence. If in some iteration it
succeeds in extracting a valid evidence from a party, it stops and outputs
the evidence.

– Judge algorithm. The judge algorithm for the MPC runs the corresponding
judge algorithm of the secret sharing scheme and outputs whatever it outputs.

Theorem 4. If the protocol described above is instantiated with a δ-traceable
secret sharing scheme, then it is an offline-online δ(ε/8|C|)-traceable n server
delegation protocol with threshold t for a circuit C.

Proof. The correctness of the protocol is easy to observe and we now show
security, traceability and non-imputability.

Security. To show security, we need to show that for any two inputs x0, x1 and
for any subset T ⊆ [n] of size at most t − 1, we have

viewT (C, x0) ≈s viewT (C, x1).

We show security through a hybrid argument.

– Hyb0 : This corresponds to viewT (C, x0).
– Hyb1 : In this hybrid, we generate the sharings of the gate entries differently.

For every gate g with input wires i, j and output wire k, we generate the
(a, b)-th entry for every (a, b) �= (yi ⊕ ri, yj ⊕ rj) as a secret sharing of 0.
We output the view of the T servers. We note that Hyb0 ≈s Hyb1 from the
privacy of traceable secret sharing scheme.

– Hyb2 : In this hybrid, for every wire i, we set yi ⊕ ri as an independently
chosen random value. Hyb2 is identically distributed to Hyb1. Notice Hyb2 is
independent of the input x0.

Via an identical argument, we can show that viewT (C, x1) is computationally
close to Hyb2. This proves security.
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Traceability. Let us fix the collector functions f1, . . . , fn and a pirate reconstruc-
tion box Rec∗ such that for two inputs x0, x1,

| Pr
Π(C,x0)

[Rec�
(f1(view1), . . . , fn(viewn)) = 0] − Pr

Π(C,x1)
[Rec�

(f1(view1), . . . , fn(viewn)) = 0]| ≥ ε.

We now define a sequence of 4|C| hybrids starting from Π(C, x0). Specifically, for
every gate g (with input wires i, j and output wire k) and (a, b) ∈ {0, 1}×{0, 1},
we define Hybg,a,b where as a distribution where for every g′ < g (with input wires
i′, j′ and output wire k′), we change all the gate entries to g(yi′⊕ri′ , yj′⊕rj′)⊕r′

k′ .
Further, for all entries that are less than (a, b) in the gate table of g (w.r.t. to
some ordering), we change those entries to g(yi ⊕ri, yj ⊕rj)⊕rk. Note that once
we make this change for every gate entry, the final hybrid is independent of x0

and hence, we can reverse these hybrids one by one to get Π(C, x1). Without
loss of generality, let us assume that

| Pr
Π(C,x0)

[Rec�
(f1(view1), . . . , fn(viewn)) = 0] − Pr

Hyb|C|,1,1
[Rec�

(f1(view1), . . . , fn(viewn)) = 0]| ≥ ε/2

By an averaging argument, we infer that there exists two intermediate hybrids,
Hyb and Hyb′ in the sequence such that

| Pr
Hyb

[Rec�
(f1(view1), . . . , fn(viewn)) = 0] − Pr

Hyb′[Rec
�
(f1(view1), . . . , fn(viewn)) = 0]| ≥ ε/(8|C|)

Notice that the only difference between Hyb and Hyb′ is the value that was secret
shared in a particular gate entry. Thus, it follows from the traceability of the
underlying secret sharing scheme, that the MPC tracing algorithm outputs a
valid evidence against a party with probability at least δ(ε/(8|C|)).

Non-imputability. Note that the offline view of the servers consists of the views
of 4|C| different sharings of our traceable secret sharing scheme. Further, observe
that the messages sent during step 2 of the online phase can be simulated using
viewD. The non-imputability property follows directly from the underlying trace-
able secret sharing, as we can correctly guess the particular secret for which
an adversarial dealer gives the correct evidence with 1/(4|C|λ) probability and
hardcode the one-way function challenge in this position.
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Abstract. There is a huge gap between the upper and lower bounds
on the share size of secret-sharing schemes for arbitrary n-party access
structures, and consistent with our current knowledge the optimal share
size can be anywhere between polynomial in n and exponential in n. For
linear secret-sharing schemes, we know that the share size for almost all
n-party access structures must be exponential in n. Furthermore, most
constructions of efficient secret-sharing schemes are linear. We would
like to study larger classes of secret-sharing schemes with two goals.
On one hand, we want to prove lower bounds for larger classes of secret-
sharing schemes, possibly shedding some light on the share size of general
secret-sharing schemes. On the other hand, we want to construct efficient
secret-sharing schemes for access structures that do not have efficient lin-
ear secret-sharing schemes. Given this motivation, Paskin-Cherniavsky
and Radune (ITC’20) defined and studied a new class of secret-sharing
schemes in which the shares are generated by applying degree-d poly-
nomials to the secret and some random field elements. The special case
d = 1 corresponds to linear and multi-linear secret-sharing schemes.

We define and study two additional classes of polynomial secret-
sharing schemes: (1) schemes in which for every authorized set the recon-
struction of the secret is done using polynomials and (2) schemes in
which both sharing and reconstruction are done by polynomials. For
linear secret-sharing schemes, schemes with linear sharing and schemes
with linear reconstruction are equivalent. We give evidence that for
polynomial secret-sharing schemes, schemes with polynomial sharing
are probably stronger than schemes with polynomial reconstruction. We
also prove lower bounds on the share size for schemes with polynomial
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reconstruction. On the positive side, we provide constructions of secret-
sharing schemes and conditional disclosure of secrets (CDS) protocols
with quadratic sharing and reconstruction. We extend a construction of
Liu et al. (CRYPTO’17) and construct optimal quadratic k-server CDS
protocols for functions f : [N ]k → {0, 1} with message size O(N (k−1)/3).
We show how to transform our quadratic k-server CDS protocol to a
robust CDS protocol, and use the robust CDS protocol to construct
quadratic secret-sharing schemes for arbitrary access structures with
share size O(20.705n); this is better than the best known share size of
O(20.7576n) for linear secret-sharing schemes and worse than the best
known share size of O(20.585n) for general secret-sharing schemes.

1 Introduction

A secret-sharing scheme is a cryptographic tool that enables a dealer holding a
secret to share it among a set of parties such that only some predefined subsets of
the parties (called authorized sets) can learn the secret and all the other subsets
cannot get any information about the secret. The collection of authorized sets
is called an access structure. These schemes were presented by Shamir [43],
Blakley [21], and Ito, Saito, and Nishizeky [31] for secure storage. Nowadays,
secret-sharing schemes are used in many cryptographic tasks, see, e.g., [13] for
a list of applications. There are many constructions of secret-sharing schemes
for specific families of access structures that have short shares, e.g., [16,19,20,
22,31,32,44]. However, in the best known secret-sharing schemes for general n-
party access structures, the share size is exponential in n [5,8,35], resulting in
impractical secret-sharing schemes. In contrast, the best known lower bound on
the share size of a party for some n-party access structure is Ω(n/ log n) [23,24].
There is a huge gap between the upper bounds and lower bounds, and in spite of
active research for more than 30 years, we lack understanding of the share size.

One of the directions to gain some understanding on the share size is to
study sub-classes of secret-sharing schemes. Specifically, the class of linear secret-
sharing schemes was studied in many papers, e.g., [11,12,15,22,26,27,32,41]. In
these schemes the sharing algorithm applies a linear mapping on the secret and
some random field elements to generate the shares. For linear secret-sharing
schemes there are strong lower bounds, i.e., in linear secret-sharing schemes
almost all n-party access structures require shares of size at least 20.5n−o(n) [11]
and there exists explicit n-party access structures require shares of size at least
2Ω(n) [40–42]. It is an important question to extend these lower bounds to other
classes of secret-sharing schemes. Furthermore, we would like to construct effi-
cient secret-sharing schemes (i.e., schemes with small share size) for a richer
class of access structures than the access structures that have efficient linear
secret-sharing schemes (which by [32] coincide with the access structures that
have a small monotone span program). Currently, only few such constructions
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are known [16,44].1 Studying broader classes of secret-sharing schemes will hope-
fully result in efficient schemes for more access structures and will develop new
techniques for constructing non-linear secret-sharing schemes. In a recent work,
Paskin-Cherniavsky and Radune [38] perused these directions – they defined and
studied a new class of secret-sharing schemes, called polynomial secret-sharing
schemes, in which the sharing algorithm applies (low-degree) polynomials on the
secret and some random field elements to generate the shares.

In this paper, we broaden the study of polynomial secret-sharing schemes and
define and study two additional classes of polynomial secret-sharing schemes –
(1) schemes in which the reconstruction algorithm, which computes the secret
from the shares of parties of an authorized set, is done by polynomials, and
(2) schemes in which both sharing and reconstruction algorithms are done by
applying polynomials. We prove lower bounds for schemes of the first type (hence
also for schemes of the second type). We then focus on quadratic secret-sharing
schemes – schemes in which the sharing and/or reconstruction are done by poly-
nomials of degree-2, and provide constructions of such schemes that are more
efficient than linear secret-sharing schemes. Thus, we show that considering the
wider class of polynomial secret-sharing schemes gives rise to better schemes
than linear schemes.

As part of our results, we construct conditional disclosure of secrets (CDS)
protocols, a primitive that was introduced in [29]. In a k-server CDS protocol
for a Boolean function f : [N ]k → {0, 1}, there is a set of k servers that hold a
secret s and have a common random string. In addition, each server Qi holds
a private input xi ∈ [N ]. Each server sends one message such that a referee,
who knows the private inputs of the servers but nothing more, learns the secret
s if f(x1, . . . , xk) = 1 and learns nothing otherwise. CDS protocols have been
used recently in [4,5,8,35] to construct the best known secret-sharing schemes
for arbitrary access structures. Continuing this line of research, we construct
quadratic k-server CDS protocols that are provably more efficient than linear
CDS protocols. We use them to construct quadratic secret-sharing schemes for
arbitrary access structures; these schemes are more efficient than the best known
linear secret-sharing schemes.

1.1 Our Contributions and Techniques

Polynomial Sharing vs. Polynomial Reconstruction. Our conceptional contribu-
tion is the distinction between three types of polynomial secret-sharing schemes:
schemes with polynomial sharing (defined in [38]), schemes with polynomial
reconstruction, and schemes in which both sharing and reconstruction are done
by polynomials. For linear secret-sharing schemes (in which the secret contains
one field element) these notions are equivalent [12,32]. In the full version of
the paper [17], we extend this equivalence to multi-linear secret-sharing schemes

1 In [44] they construct efficient secret-sharing schemes for access structures that cor-
respond to languages that have statistical zero-knowledge proofs with log-space ver-
ifiers and simulators.
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(i.e., schemes in which the secret can contain more than one filed element).
In Sect. 3.1, we give evidence that such equivalence does not hold for polyno-
mial secret-sharing schemes. We show that a small variation of a secret-sharing
scheme of [16] for the quadratic non-residuosity modulo a prime access structure
has an efficient secret-sharing scheme with degree-3 sharing.2 Following [16], we
conjecture that the quadratic non-residuosity modulo a prime is not in NC (the
class of problems that have a sequence of circuits of polynomial size and poly-
logarithmic depth). By our discussion in Remark 4.6, every sequence of access
structures that has efficient secret-sharing schemes with polynomial reconstruc-
tion is in NC. Thus, under the conjecture about quadratic non-residuosity mod-
ulo a prime problem, we get the desired separation.

Lower Bounds for Secret-Sharing Schemes with Degree-d Reconstruction. In
Sect. 4, we show lower bounds for secret-sharing schemes with degree-d recon-
struction. Using a result of [34], we show a lower bound of Ω(2n/(d+1)) for shar-
ing one-bit secrets. We also show that every secret-sharing scheme with degree-d
reconstruction and share size c can be converted to a multi-linear secret-sharing
scheme with share size O(cd) (with the same domain of secrets). Using a lower
bound on the share size of linear secret-sharing schemes over any finite field
from [41], we obtain that there exists an explicit access structure such that for
every finite field F it requires shares of size 2Ω(n/d) log |F| in every secret-sharing
schemes over F with degree-d reconstruction. Furthermore, this transformation
implies that every sequence of access structures that have efficient secret-sharing
schemes with degree-d reconstruction for a constant d is in NC.

Quadratic Multi-server Conditional Disclosure of Secrets Protocols. Liu
et al. [36] constructed a quadratic two-server CDS protocol for any function
f : [N ]2 → {0, 1} with message size O(N1/3). In Sect. 5, we construct quadratic
k-server CDS protocols with message size O(N (k−1)/3). By our lower bounds
from Sect. 4, this is the optimal message size for quadratic CDS protocols. Our
construction uses the two-server CDS protocol of [36] (denoted PLVW) to con-
struct the k-server CDS protocol. Specifically, the k servers Q1, . . . , Qk simulate
the two servers in the CDS protocol PLVW, where Q1 simulates the first server
in PLVW and servers Q2, . . . , Qk simulate the second server in PLVW.

Quadratic Multi-server Robust Conditional Disclosure of Secrets Protocols. In a
t-robust CDS protocol (denoted t-RCDS protocol), each server can send up to
t messages for different inputs using the same shared randomness such that
the security is not violated if the value of the function f is 0 for all combina-
tions of inputs. RCDS protocols were defined in [5] and were used to construct
secret-sharing schemes for arbitrary access structures. Furthermore, Applebaum
et al. [5] showed a general transformation from CDS protocol to RCDS protocol.
2 We present it as a CDS protocol for the quadratic non-residuosity function. Using

known equivalence, this implies a secret-sharing scheme, as in [16].
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Using their transformation as is, we get a quadratic RCDS protocol with mes-
sage size Õ(N (k−1)/3tk−1), which is not useful for constructing improved secret-
sharing schemes (compared to the best known linear secret-sharing schemes).
In Sect. 6, we show that with a careful analysis that exploits the structure of
our quadratic k-server CDS protocol, we can get an improved message size of
Õ(N (k−1)/3t2(k−1)/3+1).

Quadratic Secret-Sharing Schemes for Arbitrary Access Structures and Almost
All Access Structures. Applebaum et al. [5] and Applebaum and Nir [8] showed
transformations from k-server RCDS protocols to secret-sharing schemes for
arbitrary access structures. In [8], they achieved a general secret-sharing scheme
for arbitrary access structures with share size 20.585n+o(n). In Sect. 7, we plug
our quadratic k-server RCDS protocol in the transformation of [8] and get
a quadratic secret-sharing scheme for arbitrary access structures with share
size 20.705+o(n). This should be compared to the best known linear secret-
sharing scheme for arbitrary access structures, given in [8], that has share size
20.7576n+o(n).

Beimel and Farràs [14] proved that for almost all access structures, there is a
secret-sharing scheme for one-bit secrets with shares of size 2Õ(

√
n) and a linear

secret-sharing scheme with shares of size 2n/2+o(n). By a lower bound of [11]
this share size is tight for linear secret-sharing schemes. In Sect. 7, we construct
quadratic secret-sharing schemes for almost all access structures. Plugging our
quadratic k-server CDS protocol in the construction of [14], we get that for
almost all access structures there is a quadratic secret-sharing scheme for sharing
one-bit secrets with shares of size 2n/3+o(n). This proves a separation between
quadratic secret-sharing schemes and linear secret-sharing schemes for almost
all access structures.

Quadratic Two-Server Robust CDS Protocols. Motivated by the interesting
application of robust CDS (RCDS) protocols for constructing secret-sharing
schemes, we further investigate quadratic two-server RCDS protocols. In the
full version of the paper [17], we show how to transform the quadratic two-
server CDS protocol of [36] to an RCDS protocol that is N1/3-robust for one
server while maintaining the Õ(N1/3) message size. In comparison, the quadratic
two-server N1/3-RCDS protocol of Sect. 6 has message size Õ(N8/9), however, it
is robust for both servers. This transformation is non-blackbox, and uses poly-
nomials of degree t to mask messages, where the masks of every messages of t
inputs are uniformly distributed. Non-blackbox constructions of RCDS protocols
may avoid limitations of constructing using CDS protocols as a blackbox.
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1.2 Open Questions

Next, we mention a few open problems arising from this paper. We show non-
trivial lower bounds for secret-sharing schemes with degree-d reconstruction.
In [38], they ask the analogous question:

Question 1.1. Prove lower bounds on the share size of secret-sharing schemes
with degree-d sharing.

We show a construction with degree-3 sharing that under a plausible con-
jecture does not have degree-3 reconstruction. We would like to prove such a
separation without any assumptions.

Question 1.2. Prove (unconditionally) that there is some access structure that
has an efficient secret-sharing scheme with polynomial sharing but does not have
an efficient secret-sharing scheme with polynomial reconstruction.

Question 1.3. Are there access structures that have an efficient secret-sharing
scheme with polynomial reconstruction (of non-constant degree) but do not have
an efficient secret-sharing scheme with polynomial sharing?

We construct quadratic CDS protocols and secret-sharing schemes for arbi-
trary access structures. For quadratic CDS protocols we prove a matching lower
bound on the message size. However, for larger values of d, the lower bound on
the message size of degree-d CDS protocols is smaller.

Question 1.4. Are there degree-d CDS protocols with smaller message size than
the message size of quadratic CDS protocols? Are there degree-d secret-sharing
schemes that are more efficient than quadratic secret-sharing schemes?

Perhaps the most important question is to construct efficient secret-sharing
schemes for a wide class of access structures.

Question 1.5. Construct efficient degree-d secret-sharing schemes for a larger
class of access structures than the access structures that have efficient linear
secret-sharing schemes.

1.3 Additional Related Works

Conditional Disclosure of Secrets (CDS) Protocols. Conditional disclosure of
secrets (CDS) protocols were first defined by Gertner et al. [29]. The motiva-
tion for this definition was to construct symmetric private information retrieval
protocols. CDS protocols were used in many cryptographic applications, such as
attribute based encryption [10,28,45], priced oblivious transfer [1], and secret-
sharing schemes [4,5,8,14,18,35].

Liu et al. [36] showed two constructions of two-server CDS protocols. In
their first construction, which is most relevant to our work, they constructed
a quadratic two-server CDS protocol for any Boolean function f : [N ]2 →
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{0, 1} with message size O(N1/3). In their second construction, which is non-
polynomial, they constructed a two-server CDS protocol with message size
2O(

√
log N log log N). Applebaum and Arkis [2] (improving on [3]) have shown that

for long secrets, i.e., secrets of size Θ(2N2
), there is a two-server CDS protocol

in which the message size is 3 times the size of the secret. There are also sev-
eral constructions of multi-server CDS protocols. Liu et al. [37] constructed a
k-server CDS protocol (for one-bit secrets) with message size 2Õ(

√
k log N). Beimel

and Peter [18] and Liu et al. [37] constructed a linear k-server CDS protocol (for
one-bit secrets) with message size O(N (k−1)/2); by [18], this bound is optimal
(up to a factor of k). When we have long secrets, i.e., secrets of size Θ(2Nk

),
Applebaum and Arkis [2] showed that there is a k-server CDS protocol in which
the message size is 4 times the size of the secret. Gay et al. [28] proved a lower
bound of Ω(log log N) on the message size of two-server CDS protocols for some
function and a lower bound of Ω(

√
log N) on the message size of linear two-server

CDS protocols. Later, Applebaum et al. [3], Applebaum et al. [7], and Apple-
baum and Vasudevan [9] proved a lower bound of Ω(log N) on the message size
of two-server CDS protocols.

Polynomial Secret-Sharing Schemes. Paskin-Cherniavsky and Radune [38] pre-
sented the model of secret-sharing schemes with polynomial sharing, in which
the sharing is a polynomial of low (constant) degree and the reconstruction can
be any function. They showed limitations of various sub-classes of secret-sharing
schemes with polynomial sharing. Specifically, they showed that the subclass of
schemes for which the sharing is linear in the randomness (and the secret can
be with any degree) is equivalent to multi-linear schemes up to a multiplicate
factor of O(n) in the share size. This implies that schemes in this subclass cannot
significantly reduce the known share size of multi-linear schemes. In addition,
they showed that the subclass of schemes over finite fields with odd character-
istic such that the degree of the randomness in the sharing function is exactly 2
or 0 in any monomial of the polynomial can efficiently realize only access struc-
tures whose all minimal authorized sets are singletons. They also studied the
randomness complexity of schemes with polynomial sharing. They showed an
exponential upper bound on the randomness complexity (as a function of the
share size). For linear and multi-linear schemes, we have a tight linear upper
bound on the randomness complexity.

2 Preliminaries

In this section we define secret-sharing schemes, conditional disclosure of secrets
protocols, and robust conditional disclosure of secrets protocols.

Notations. We say that two probability distributions Y1,Y2 over domain X are
identical, and denote Y1 ≡ Y2, if Y1(x) = Y2(x) for every x ∈ X . We denote
by

(
N
[m]

)
the set of all subsets of N of size m. We say that g(n) = Õ(f(n)) if
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g(n) = O(f(n) logc n) for some constant c, i.e., the Õ notation ignores poly-
logarithmic factors.

Secret-Sharing. We start by presenting the definition of secret-sharing schemes.

Definition 2.1 (Access Structures). Let P = {P1, . . . , Pn} be a set of par-
ties. A collection Γ ⊆ 2P is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure is a monotone collection Γ ⊆ 2P of non-empty subsets of
P . Sets in Γ are called authorized, and sets not in Γ are called unauthorized.

Definition 2.2 (Secret-Sharing Schemes). A secret-sharing scheme Π with
domain of secrets S is a mapping from S×R, where R is some finite set called the
set of random strings, to a set of n-tuples S1×S2×· · ·×Sn, where Sj is called the
domain of shares of party Pj. A dealer distributes a secret s ∈ S according to Π
by first sampling a random string r ∈ R with uniform distribution, computing a
vector of shares Π(s, r) = (s1, . . . , sn), and privately communicating each share
sj to party Pj. For a set A ⊆ P , we denote ΠA(s, r) as the restriction of Π(s, r)
to its A-entries (i.e., the shares of the parties in A).

Given a secret-sharing scheme Π, define the size of the secret as log |S|, the
share size of party Pj as log |Sj |, and the total share size as

∑n
j=1 log |Sj |.

Let S be a finite set of secrets, where |S| ≥ 2. A secret-sharing scheme Π
with domain of secrets S realizes an access structure Γ if the following two
requirements hold:

Correctness. The secret can be reconstructed by any authorized set of parties.
That is, for any set B = {Pi1 , . . . , Pi|B|} ∈ Γ there exists a reconstruction
function ReconB : Si1 × · · · × Si|B| → S such that for every secret s ∈ S and
every random string r ∈ R, ReconB (ΠB(s, r)) = s.

Security. Every unauthorized set cannot learn anything about the secret from
its shares. Formally, for any set T = {Pi1 , . . . , Pi|T |} /∈ Γ , every pair of secrets
s, s′ ∈ S, and every vector of shares (si1 , . . . , si|T |) ∈ Si1 × · · · × Si|T | , it holds
that ΠT (s, r) ≡ ΠT (s′, r), where the probability distributions are over the choice
of r from R with uniform distribution.

Definition 2.3 (Threshold Secret-Sharing Schemes). Let Π be a secret-
sharing scheme on a set of n parties P . We say that Π is a t-out-of-n secret-
sharing scheme if it realizes the access structure Γt,n = {A ⊆ P : |A| ≥ t}.

Conditional Disclosure of Secrets. Next, we define k-server conditional disclosure
of secrets (CDS) protocols, first presented in [29]. We consider a model where
k servers3 Q1, . . . , Qk hold a secret s and a common random string r; every
3 For clarity of the presentation (especially when using CDS protocols to construct

secret-sharing schemes) we denote the entities in a CDS protocol by servers and the
entities in a secret-sharing scheme by parties.



756 A. Beimel et al.

server Qi holds an input xi for some k-input function f . In addition, there is
a referee that holds x1, . . . , xk but, prior to the execution of the protocol, does
not know s and r. In a CDS protocol for f , for every i ∈ [k], server Qi sends
a single message to the referee, based on r, s, and xi; the server does not see
neither the inputs of the other servers nor their messages when computing its
message. The requirements are that the referee can reconstruct the secret s if
f(x1, . . . , xk) = 1, and it cannot learn any information about the secret s if
f(x1, . . . , xk) = 0.

Definition 2.4 (Conditional Disclosure of Secrets Protocols). Let f :
X1 × · · · × Xk → {0, 1} be a k-input function. A k-server CDS protocol P
for f , with domain of secrets S, domain of common random strings R, and
finite message domains M1, . . . ,Mk, consists of k message computation functions
Enc1, . . . ,Enck, where Enci : Xi × S × R → Mi for every i ∈ [k]. For an input
x = (x1, . . . , xk) ∈ X1 × · · · × Xk, secret s ∈ S, and randomness r ∈ R, we
let Enc(x, s, r) = (Enc1(x1, s, r), . . . ,Enck(xk, s, r)). We say that a protocol P
is a CDS protocol for f if it satisfies the following properties: (1) Correctness:
There is a deterministic reconstruction function Dec : X1 × · · · × Xk × M1 ×
· · · × Mk → S such that for every input x = (x1, . . . , xk) ∈ X1 × · · · × Xk for
which f(x1, . . . , xk) = 1, every secret s ∈ S, and every common random string
r ∈ R, it holds that Dec(x,Enc(x, s, r)) = s. (2) Security: For every input
x = (x1, . . . , xk) ∈ X1 × · · · × Xk for which f(x1, . . . , xk) = 0 and every pair
of secrets s, s′ ∈ S it holds that Enc(x, s, r) ≡ Enc(x, s′, r), where r is
sampled uniformly from R.

The message size of a CDS protocol P is defined as the size of the largest
message sent by the servers, i.e., max1≤i≤k log |Mi|. In two-server CDS proto-
cols, we sometimes refer to the servers as Alice and Bob (instead of Q1 and Q2,
respectively).

Definition 2.5 (The Predicate INDEXk
N). We define the k-input function

INDEXk
N : {0, 1}Nk−1 × [N ]k−1 → {0, 1} where for every D ∈ {0, 1}Nk−1

(a
(k − 1) dimensional array called the database) and every (i2, . . . , ik) ∈ [N ]k−1

(called the index), INDEXk
N (D, i2, . . . , ik) = Di2,...,ik

.

Observation 2.6 ([28]). If there is a k-server CDS protocol for INDEXk
N with

message size M , then for every f : [N ]k → {0, 1} there is a k-server CDS
protocol with message size M .

We obtain the above CDS protocol for f in the following way: Server Q1 con-
structs a database Di2,...,ik

= f(x1, i2, . . . , ik) for every i2, . . . , ik ∈ [N ] and
servers Q2, . . . , Qk−1 treat their inputs (x2, . . . , xk) ∈ [N ]k−1 as the index, and
execute the CDS protocol for INDEXk

N (D,x2, . . . , xk) = f(x1, x2, . . . , xk).

Robust Conditional Disclosure of Secrets. In the definition of CDS protocols
(Definition 2.4), if a server sends messages for different inputs with the same
randomness, then the security is not guaranteed and the referee can possibly
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learn information on the secret. In [5], the notion of robust CDS (RCDS) pro-
tocols was presented. In RCDS protocols, the security is guaranteed even if the
referee receives messages of different inputs with the same randomness. Next we
define the notion of t-RCDS protocols.

Definition 2.7 (Zero Sets). Let f : X1 × X2 × · · · × Xk → {0, 1} be a k-input
function. We say that a set of inputs Z ⊆ X1 × X2 · · · × Xk is a zero set of f
if f(x) = 0 for every x ∈ Z. For sets Z1, . . . , Zk, we denote Enci(Zi, s, r) =
(Enci(xi, s, r))xi∈Zi

and

Enc(Z1 × Z2 · · · × Zk, s, r) = (Enc1(Z1, s, r), . . . ,Enck(Zk, s, r)).

Definition 2.8 (t-RCDS Protocols). Let P be a k-server CDS protocol for
a k-input function f : X1 × X2 × · · · × Xk → {0, 1} and Z = Z1 × Z2 ×
· · · × Zk ⊆ X1 × X2 × · · · × Xk be a zero set of f . We say that P is robust
for the set Z if for every pair of secrets s, s′ ∈ S, it holds that Enc(Z, s, r) and
Enc(Z, s′, r) are identically distributed. For every integers t1, . . . , tk, we say that
P is a (t1, . . . , tk)-RCDS protocol if it is robust for every zero set Z1×Z2×· · ·×Zk

such that |Zi| ≤ ti for every i ∈ [k]. Finally, for every integer t, we say that P
is a t-RCDS protocol if it is a (t, . . . , t)-RCDS protocol.

3 Degree-d Secret Sharing and Degree-d CDS Protocols

In [38], polynomial secret-sharing schemes are defined as secret-sharing schemes
in which the sharing function can be computed by polynomial of low degree. In
this paper, we define secret-sharing schemes with polynomial reconstruction and
secret-sharing schemes with both polynomial sharing and reconstruction.

Definition 3.1 (Degree of Polynomial). The degree of each multivariate
monomial is the sum of the degree of all its variables; the degree of a polynomial
is the maximal degree of its monomials.

Definition 3.2 (Degree-d Mapping over F). A function f : F
� → F

m

can be computed by degree-d polynomials over F if there are m polyno-
mials Q1, . . . , Qm : F

� → F of degree at most d s.t. f(x1, . . . , x�) =
(Q1(x1, . . . , x�), . . . , Qm(x1, . . . , x�)) .

A secret-sharing scheme has a polynomial sharing if the mapping that the
dealer uses to generate the shares given to the parties can be computed by
polynomials, as we formalize at the following definition.

Definition 3.3 (Secret-Sharing Schemes with Degree-d Sharing [38]).
Let Π be a secret-sharing scheme with domain of secrets S. We say that
the scheme Π has degree-d sharing over a finite field F if there are integers
�, �r, �1, . . . , �n such that S ⊆ F

�, R = F
�r , and Si = F

�i for every i ∈ [n], and Π
can be computed by degree-d polynomials over F.
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In Definition 3.3, we allow S to be a subset of F� (in [38], S = F
�). In particular,

we will study the case where � = 1 and S = {0, 1} ⊆ F.
A secret-sharing scheme has a polynomial reconstruction if for every autho-

rized set the mapping that the set uses to reconstruct the secret from its shares
can be computed by polynomials.

Definition 3.4 (Secret-Sharing Schemes with Degree-d Reconstruc-
tion). Let Π be a secret-sharing scheme with domain of secrets S. We say
that the scheme Π has a degree-d reconstruction over a finite field F if there
are integers �, �r, �1, . . . , �n such that S ⊆ F

�, R = F
�r , and Si = F

�i for every
i ∈ [n], and ReconB, the reconstruction function of the secret, can be computed
by degree-d polynomials over F for every B ∈ Γ .

Definition 3.5 (Degree-d Secret-Sharing Schemes). A secret-sharing
scheme Π is a degree-d secret-sharing scheme over F if it has degree-d shar-
ing and degree-d reconstruction over F.

Definition 3.6 (CDS Protocols with Degree-d Encoding). A CDS pro-
tocol P has a degree-d encoding over a finite field F if there are integers
�, �r, �1, . . . , �k ≥ 1 such that S ⊆ F

�, R = F
�r ,Mi = F

�i for every 1 ≤ i ≤ k,
and for every i ∈ [k] and every x ∈ Xi the function Enci,x : F�+�r → Mi can be
computed by degree-d polynomials over F, where Enci,x(s, r) = Enci(x, r, s).

Definition 3.7 (CDS Protocols with Degree-d Decoding). A CDS pro-
tocol P has a degree-d decoding over a finite field F if there are integers
�, �r, �1, . . . , �k ≥ 1 such that S ⊆ F

�, R = F
�r , Mi = F

�i for every 1 ≤ � ≤ k,
and for every inputs x1, . . . , xk the function Decx1,...,xk

: F
�1+···+�k → S can

be computed by degree-d polynomials over F, where Decx1,...,xk
(m1, . . . ,mk) =

Dec(x1, . . . , xk,m1, . . . ,mk).

Note that in Definition 3.7, the polynomials computing the decoding can be
different for every input x.

Definition 3.8 (Degree-d CDS Protocols). A CDS protocol P is a degree-d
CDS protocol over F if it has degree-d encoding and degree-d decoding over F.

Definition 3.9 (Linear Secret-Sharing Schemes and CDS Protocols).
A linear polynomial is a degree-1 polynomial. A linear secret-sharing scheme is
a degree-1 secret-sharing scheme and � = 1 (i.e., the secret contains one field
element). A secret-sharing scheme has a linear sharing (resp., reconstruction) if
it has degree-1 sharing (resp., reconstruction). Similar notations hold for CDS
protocols.

Secret-sharing schemes with linear sharing are equivalent to secret-sharing
schemes with linear reconstruction as shown by [12,32].

Claim 3.10 ([12,32]). A secret-sharing scheme Π is linear if and only if for
every authorized set B the reconstruction function ReconB is a linear mapping.
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In the full version of this paper [17], we generalize Claim 3.10 and show
that secret-sharing schemes with degree-1 sharing (i.e., multi-linear schemes)
are equivalent to secret-sharing schemes with degree-1 reconstruction.

Definition 3.11 (Quadratic Secret-Sharing Schemes and CDS Proto-
cols). A quadratic polynomial is a degree-2 polynomial. A quadratic secret-
sharing scheme is a degree-2 secret-sharing scheme. A secret-sharing scheme
has a quadratic sharing (resp., reconstruction) if it has degree-2 sharing (resp.,
reconstruction). Similar notations hold for CDS protocols.

Let A = {An}n∈N
be a family of access structures, where An is an n-party access

structure. We informally say that A can be realized by polynomial secret-sharing
schemes if it can be realized by degree-f(n) secret-sharing schemes where f(n)
is a constant or relatively small function, i.e., log n.

Remark 3.12. Observe that for every finite field, every function can be com-
puted by a polynomial (with high degree). Therefore, every access structure can
be realized by a secret-sharing scheme with polynomial reconstruction of high
degree. This is not true for sharing since we require that the polynomial sharing
uses uniformly distributed random elements of the field. However, by relaxing
correctness and security, we can also get a statistical secret-sharing scheme with
polynomial sharing of high degree (by sampling many field elements and con-
structing a distribution that is close to uniform on the set R of the random
strings of the secret-sharing scheme).

3.1 CDS with Degree-3 Encoding for the Non-quadratic Residues
Function

In this section we show an example of a function that can be realized by an
efficient CDS protocol with degree-3 encoding, but, under the assumption that
the quadratic residue modulo a prime problem is not in NC, it does not have an
efficient CDS protocol with degree-d decoding (for any constant d). Our construc-
tion is built upon [16] where they construct an efficient non-linear secret-sharing
scheme for an access structure that corresponds to the quadratic residue func-
tion. In the construction of [16], the random string is not uniformly distributed
in the field (as we require from CDS protocols with polynomial encoding). In
the following construction, in order to get a degree-d encoding, we choose the
random string uniformly, resulting in a small error in the correctness.

The Quadratic Residue Modulo a Prime Problem. For a prime p, let QRp =
{a ∈ {1, . . . , p − 1} : ∃b ∈ {1, . . . , p − 1} a ≡ b2 (mod p)}. The quadratic residue
modulo a prime problem is given p and a, where p is a prime, and outputs 1 if and
only if a ∈ QRp. All the known algorithms for the quadratic residue modulo a
prime problem are sequential and it is not known if efficient parallel algorithms
for this problem exist. The known algorithms are of two types; the first type
requires computing a modular exponentiation and the second requires computing
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the gcd. Therefore, the problem is related to modular exponentiation and gcd
problems, and thus according to the current state of the art, it is reasonable to
assume that the problem is not in NC (see [16] for more details).

CDS protocol for fNQRPp

– The secret: A bit s ∈ {0, 1}.
– Qi for every 1 ≤ i ≤ k holds xi ∈ {0, 1}.
– Common randomness: r, z1, . . . , zk−1 ∈ Fp.
– The protocol

• Calculate zk = − k−1
j=1 zj .

• Server Q1 sends (z1 + s · 21x1r
2 + r2) mod p.

• Server Qi for every 2 ≤ i ≤ k sends (zi + s · 2ixir
2) mod p.

Fig. 1. A k-server CDS protocol with degree-3 Encoding for fNQRPp
.

We define, for a prime p and k = 
log p�−1, the function fNQRPp
: {0, 1}k →

{0, 1} such that fNQRPp
(x1, . . . , xk) = 1 if (1 +

∑k
i=1 2ixi) mod p �∈ QRp and

fNQRPp
(x1, . . . , xk) = 0 otherwise.4 The function fNQRPp

is realized by the CDS
protocol depicted in Fig. 1. This protocol has perfect security, however, it has a
one-side error 1/p in the correctness. Repeating this protocol t times will result
in a protocol with error O(1/pt).

Lemma 3.13. For every t, there is a k-server CDS protocol with degree-3 encod-
ing over Fp for the function fNQRPp

with S = {0, 1} and an error in correctness
of 1/pt and message size of O(t log p).

Proof. In Fig. 1, we describe a k-server CDS protocol for fNQRPp
. We next prove

its correctness and security.
For correctness, assuming r �= 0, when s = 0 the sum of the messages

the referee gets is
∑k

i=1 zi + r2 ≡ r2 mod p, and when s = 1 the sum is
r2(1 +

∑k
i=1 2ixi) mod p. Recall that r2 · a ∈ QRp iff a ∈ QRp. Therefore, when

fNQRPp
(x1, . . . , xk) = 1, s = 1 iff the sum of the messages is not in QRp. The

referee can reconstruct the secret when the random element r is in Fp \{0}, thus
the referee can reconstruct the secret with probability 1 − 1/p. To amplify the
correctness, we repeat the protocol t times and get correctness with probability
of 1 − 1/pt.

In order to prove security, we prove that every k-tuples of messages for an
input x1, . . . , xk such that fNQRPp

(x1, . . . , xk) = 0 the messages are identically
distributed when s = 0 and when s = 1. When r = 0 the messages are uniform
random elements whose sum is 0 regardless of the secret. Otherwise, regardless of
4 We add 1 to the input to avoid the input 0, which is neither a quadratic residue nor

a quadratic non residue.
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the secret, the sum of the messages is a uniformly random distributed quadratic
residue: for s = 0 the sum is r2 mod p and for s = 1 the sum is b = r2(1 +∑k

i=1 2ixi) mod p ∈ QRp which is also a uniformly distributed quadratic residue.
Thus, in both cases the messages are random elements in Fp with the restriction
that their sum is a random quadratic residue.

Each message contains only one field element of size log p. As we repeat the
protocol t times, the message size is t log p. The encoding function is zi +(2ixi) ·
sr2 mod p which is a degree-3 polynomial in the secret and the randomness (for
every xi). �

In Lemma 4.4 we show that for any constant d, any CDS protocol with degree-
d decoding and message size M can be transformed to a linear CDS protocol in
which the message size is Md. Recall that any sequence of functions {fi}i∈N

that
can be realized by a linear CDS protocol with polynomial message size (in the
number of servers) is in NC, i.e., it has a family of circuits of poly-logarithmic
depth and polynomial size (see discussion in Remark 4.6). The above is true even
if there is an exponentially small error in the correctness (this is discussed in the
full version of the paper [17]). Thus, we obtain the following corollary.

Corollary 3.14. Under the assumption that {NQRPp}p is a prime �∈ NC, there
is a sequence of functions that can be realized by an efficient CDS protocol with
degree-3 encoding, but for any constant d, cannot be realized by an efficient CDS
protocol with degree-d decoding.

4 Lower Bounds for Secret Sharing with Degree-d
Reconstruction

In this section, we show lower bounds for secret-sharing schemes with degree-d
reconstruction.

4.1 Lower Bounds for 1-Bit Secrets for Implicit Access Structures

The following theorem was showed in [34].

Theorem 4.1 (Implied by [34]). Let Frec be the family of possible reconstruc-
tion functions, c be the sum of the share sizes of all the parties (i.e., the total
share size), and FA be a family of n-party access structures. For all but at most√|FA| access structures Γ ∈ FA, for any secret-sharing scheme with domain of
secrets {0, 1} and reconstruction function from Frec, it holds that

log |Frec| · c = Ω(log |FA|).
We obtain the following two corollaries.

Corollary 4.2. For almost all n-party access structures, any secret-sharing
scheme realizing them over any finite field with domain of secrets {0, 1} and
degree-d reconstruction requires total share size of 2n/(d+1)−o(n).
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Proof. Let FA be the family of all n-party access structures. Thus, |FA| =
2Θ(2n/

√
n). We next consider the family of degree-d polynomials as the family of

reconstruction functions.
Fix a finite field F, and consider shares of total size c, hence they contain v =

c/ log |F| field elements. In this case the reconstruction function is a polynomial
of degree ≤ d in v variables. There are at most (v + 1)d monomials of degree
≤ d (for each of the d variables we choose either an element from the v shares
or 1 for degree smaller than d), thus less than |F|(v+1)d

= 2log |F|·(c/ log |F|+1)d ≤
2(c+1)d

polynomials of degree ≤ d (as the reconstruction function can choose
any coefficient in F for every monomial). If |F| > 22

n/(d+1)
, then the share size

of every secret-sharing scheme over F is > 2n/(d+1) (since log |F| ≥ 2n/(d+1)).
Thus, we only need to consider at most 22

n/(d+1)
fields, and consider Frec of size

22
n/(d+1) · 2(c+1)d

. Thus, by Theorem 4.1, (2n/(d+1) + (c + 1)d) · c ≥ Ω(2n/
√

n),
so cd+1 ≥ 2n−o(n) and c ≥ 2n/(d+1)−o(n). �
Corollary 4.3. For almost all k-input functions f : [N ]k → {0, 1}, the message
size in any degree-d CDS protocol for them over any finite field with domain of
secrets {0, 1} is Ω(N (k−1)/(d+1)/k).

The proof of Corollary 4.3 is similar to the proof of Corollary 4.2 when we use
the fact that CDS protocol for a function f : [N ]k → {0, 1} is equivalent to
secret-sharing scheme for an access structure with kN parties (see e.g. [4,18]).
The formal proof of Corollary 4.3 is given in the full version of this paper [17].

4.2 A Transformation from Secret Sharing with Degree-d
Reconstruction into a Linear Secret Sharing

We start with a transformation from secret-sharing schemes with polynomial
reconstruction to linear schemes. The idea of the transformation is to add random
field elements to the randomness of the original polynomial scheme and generate
new shares using these random elements, such that the reconstruction of the
secret in the resulting scheme is a linear combination of the elements in the
shares of the resulting scheme. In particular, for every monomial of degree at
least two in a polynomial used for the reconstruction, we share the value of
the monomial among the parties that have elements in the monomial. That is,
the sharing function computes the polynomials instead of the reconstruction
algorithm. As a corollary, we obtain a lower bound on the share size for schemes
with polynomial reconstruction.

Lemma 4.4. Let Γ be an n-party access structure, and assume that there exists
a secret-sharing scheme ΠP realizing Γ over F with �-elements secrets and
degree-d reconstruction, in which the shares contain together c field elements.
Then, there is a multi-linear secret-sharing scheme ΠL realizing Γ over F with
�-elements secrets, in which the share of each party contains O(cd) field elements.
In particular, if the secret in ΠP contains one field element then ΠL is linear.
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Proof. To construct the desired scheme ΠL, the dealer first shares the secret
according to scheme ΠP . Then, for every possible monomial x�1

i1
· . . . · x�d′

id′ in the

reconstruction of some authorized set such that 2 ≤ ∑d′

i=1 �i ≤ d, where xij
is a

field element in the share of a party Pij
for every j ∈ [d′], the dealer computes the

value v of the monomial (using the shares that it creates) and shares v using a
d′-out-of-d′ secret-sharing scheme among the parties Pi1 , . . . , Pid′ (i.e., the dealer
chooses d′ random field elements rv

i1
, . . . , rv

id′ such that v = rv
i1

+· · ·+rv
id′ ).

5 Note
that the randomness of scheme ΠL contains the random elements of scheme ΠP

and the random elements rv
i1

, . . . , rv
id′−1

for every possible monomial x�1
i1

· . . . ·x�d′
id′

of value v such that 2 ≤ ∑d′

i=1 �i ≤ d as above (the dealer computes rv
id′ =

x�1
i1

· . . . · x
�d′
id′ − rv

i1
− · · · − rv

id′−1
).

We prove that the construction of ΠL realizes Γ and has linear reconstruc-
tion. By the equivalence between linear reconstruction and linear sharing (even
for multi-element secrets), which is shown in the full version of this paper [17],
ΠL can be converted to a secret-sharing scheme with linear sharing and recon-
struction while preserving the share size.

We now prove the correctness of ΠL. For an authorized set B ∈ Γ , denote
SB as the field elements in the shares of B, and let

ReconB,j(SB) =
∑

xi∈SB

αxi
xi +

∑

xi1 ,...,xi
d′ ∈SB ,d′≤d,

2≤�1+···+�d′≤d

α
x

�1
i1

,...,x
�
d′

i
d′

x�1
i1

· . . . · x
�d′
id′

be the reconstruction function of B of the j-th element of the secret in scheme
ΠP . Then, the set B can reconstruct the secret in scheme ΠL by applying the
linear combination of the field elements in the shares of the parties as follows:

∑

xi∈SB

αxi
xi +

∑

xi1 ,...,xi
d′ ∈SB ,d′≤d,

2≤�1+···+�d′ ≤d

α
x

�1
i1

,...,x
�
d′

i
d′

d′
∑

j=1

rv
ij

=
∑

xi∈SB

αxi
xi +

∑

xi1 ,...,xd′
i
d′ ∈SB ,d′≤d,

2≤�1+···+�d′≤d

α
x

�1
i1

,...,x
�
d′

i
d′

x�1
i1

· . . . · x
�d′
id′ .

We next prove the security of ΠL. Let T be an unauthorized set. For every
authorized subset T ′ it must be that T ′ �⊆ T , thus, the set T misses at least one
random field element rv

ij
from any monomial for the set T ′, so it cannot learn

information on the value of these monomials, and hence cannot learn information
on the secret from these values. In the scheme ΠL, the set T can only learn
its shares in scheme ΠP , and every possible monomial of at most d variables
5 If there is more than one element of some party in the monomial, the dealer can

share the monomial among the parties that have elements in it, or give to such a
party the sum of the shares that corresponding to its elements.
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that contains elements of those shares; these additional values can be computed
from the original shares of T . Thus, in scheme ΠL, the set T learns only the
information it can learn in scheme ΠP , and, hence, by the security of scheme
ΠP , the set T cannot learn any information about the secret.

Finally, in scheme ΠL, each party gets at most c field elements from the share
of scheme ΠP , and an element from the d′-out-of-d′ secret-sharing scheme, for
every monomial as above x�1

i1
· . . . · x

�d′
id′ such that 2 ≤ ∑d′

i=1 �i ≤ d; there are at

most
∑d

d′=2 cd′
such monomials. Overall, each party gets c +

∑d
d′=2 cd′

= O(cd)
field elements. �

The above transformation gives us a lower bound on the share size of secret-
sharing schemes with polynomial reconstruction, using any lower bound on the
share size of linear secret-sharing schemes, as described next.

Corollary 4.5. Assume that there exist an n-party access structure Γ such that
the share size of at least one party in every linear secret-sharing scheme realizing
Γ is c. Then, the share size of at least one party in every secret-sharing scheme
realizing Γ with degree-d reconstruction is Ω(c1/d).

Remark 4.6. Recall that the class NCi contains all Boolean functions (or prob-
lems) that can be computed by polynomial-size Boolean circuits with gates with
fan-in at most two and depth O(logi n). Following the discussion in [16], the
class of access structures that have a linear secret-sharing scheme with polyno-
mial share size contains monotone NC1 and is contained in algebraic NC2 and in
NC3 for small enough fields (at most exponential in polynomial of the number
of parties n). Lemma 4.4 implies that the class of access structures that have a
secret-sharing scheme with polynomial reconstruction and polynomial share size
is also contained in NC3.

4.3 Lower Bounds for 1-Element Secrets for Explicit Access
Structures

Now, let us recall the explicit lower bound of Pitassi and Robere [41] on the
share size of linear secret-sharing schemes.

Theorem 4.7 ([41]). There is a constant β > 0 such that for every n, there
is an explicit n-party access structure Γ such that for every finite field F,
any linear secret-sharing scheme realizing Γ over F requires total share size of
Ω(2βn log |F|).

The next explicit lower bound for secret-sharing schemes with polynomial
reconstruction and one-element secrets follows directly from Corollary 4.5 when
using Theorem 4.7.

Corollary 4.8. There is a constant β > 0 such that for every n, there is an
explicit n-party access structure Γ such that for every d and every finite field F,
any secret-sharing scheme realizing Γ over F with degree-d reconstruction and
one-element secrets requires total share size of Ω(2βn/d log |F|).
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Recall that the information ratio (or the normalized share size) is the ratio
between the share size and the secret size. Corollary 4.8 provides a lower bound
on the information ratio of an explicit access structure even for large finite
fields. Corollary 4.2 provides a lower bound with a better constant in the expo-
nent, however, it only applies to implicit access structures and does not give a
non-trivial lower bound on the information ratio for large finite fields.

5 Quadratic CDS Protocols

In this section, we construct a quadratic k-server CDS protocol, i.e., a CDS
protocol in which the encoding and decoding are computed by degree-2 polyno-
mials. We start by describing a quadratic two-server CDS protocol (a variant of
the quadratic two-server CDS protocol of [36]) and then construct a quadratic
k-server CDS protocol that “simulates” the two-server CDS protocol.

A Quadratic Two-Server CDS Protocol. As a warm-up, we describe in Fig. 2 a
two-server CDS protocol in which the encoding and the decoding are computed
by polynomials of degree 2 over F2. This protocol is a variant of the protocol of
[36] using a different notation (i.e., using cubes instead of polynomials).

Lemma 5.1. Protocol Π2, described in Fig. 2, is a quadratic two-server CDS
protocol over F2 for the function INDEX2

N with message size O(N1/3).

Proof. We start with analyzing the value of the expression in (1). When s = 0,
Bob sends A1 = S1, A2 = S2, and A3 = S3 to the referee. Thus, when s = 0, we
get that m1

i1
= m1 ⊕ r1,i1 ⊕ r1, m2

i2
= m2 ⊕ r2,i2 ⊕ r2, and m3

i3
= m3 ⊕ r3,i3 ⊕ r3,

and the value of the expression in (1) is

m1 ⊕ m2 ⊕ m3 ⊕ m1
i1 ⊕ r1,i1 ⊕ m2

i2 ⊕ r2,i2 ⊕ m3
i3 ⊕ r3,i3 = r1 ⊕ r2 ⊕ r3 = 0. (2)

When s = 1, Bob sends A1 = S1 ⊕ {i1}, A2 = S2 ⊕ {i2}, and A3 = S3 ⊕ {i3} to
the referee. We observe the following:

m1 =

⎛

⎝
⊕

j2∈S2⊕{i2},j3∈S3⊕{i3}
Di1,j2,j3

⎞

⎠

=

⎛

⎝
⊕

j2∈S2,j3∈S3⊕{i3}
Di1,j2,j3

⎞

⎠ ⊕
⎛

⎝
⊕

j3∈S3⊕{i3}
Di1,i2,j3

⎞

⎠

=

⎛

⎝
⊕

j2∈S2,j3∈S3

Di1,j2,j3

⎞

⎠ ⊕
⎛

⎝
⊕

j2∈S2

Di1,j2,i3

⎞

⎠ ⊕
⎛

⎝
⊕

j3∈S3

Di1,i2,j3

⎞

⎠ ⊕ Di1,i2,i3 .

(3)

Similarly,

m2 =

⎛

⎝
⊕

j1∈S1,j3∈S3

Dj1,i2,j3

⎞

⎠ ⊕
⎛

⎝
⊕

j1∈S1

Dj1,i2,i3

⎞

⎠ ⊕
⎛

⎝
⊕

j3∈S3

Di1,i2,j3

⎞

⎠ ⊕ Di1,i2,i3 .
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Protocol Π2

– The secret: A bit s ∈ {0, 1}.
– Alice holds a database D ∈ {0, 1}N and Bob holds an index i ∈ [N ] viewed

as (i1, i2, i3) such that i1, i2, i3 ∈ [N1/3].
– Common randomness: S1, S2, S3 ⊆ [N1/3], r1, r2 ∈ {0, 1}, and 3N1/3 bits

r1,j1 , r2,j2 , r3,j3 ∈ {0, 1} for every j1, j2, j3 ∈ [N1/3].
– The protocol

• Compute r3 = r1 ⊕ r2.
• Alice computes 3N1/3 bits:

∗ m1
j1 = j2∈S2,j3∈S3

Dj1,j2,j3 ⊕ r1,j1 ⊕ r1 for every j1 ∈ [N1/3].
∗ m2

j2 = j1∈S1,j3∈S3
Dj1,j2,j3 ⊕ r2,j2 ⊕ r2 for every j2 ∈ [N1/3] .

∗ m3
j3 = j1∈S1,j2∈S2

Dj1,j2,j3 ⊕ r3,j3 ⊕ r3 for every j3 ∈ [N1/3].
• Alice sends (m1

j1)j1∈[N1/3], (m
2
j2)j2∈[N1/3], (m

3
j3)j3∈[N1/3] to the ref-

eree.
• Bob computes 3 strings Ah = (Ah[1], . . . , Ah[N1/3]) for h ∈ {1, 2, 3}

(each string of length N1/3), where
∗ Ah[jh] = Sh[jh] for every jh = ih.
∗ Ah[ih] = Sh[ih] ⊕ s

(that is, if s = 0 then Ah = Sh, otherwise Ah = Sh ⊕ {ih}).
• Bob sends r1,i1 , r2,i2 , r3,i3 , and A1, A2, A3 to the referee.
• The referee computes:

m1 = j2∈A2,j3∈A3
Di1,j2,j3 , m2 = j1∈A1,j3∈A3

Dj1,i2,j3 ,
m3 = j1∈A1,j2∈A2

Dj1,j2,i3

and outputs

m1 ⊕ m2 ⊕ m3 ⊕ m1
i1 ⊕ r1,i1 ⊕ m2

i2 ⊕ r2,i2 ⊕ m3
i3 ⊕ r3,i3 . (1)

Fig. 2. A quadratic two-server CDS protocol Π2 for the function INDEX2
N .

m3 =

⎛

⎝
⊕

j1∈S1,j2∈S2

Dj1,j2,i3

⎞

⎠ ⊕
⎛

⎝
⊕

j1∈S1

Dj1,i2,i3

⎞

⎠ ⊕
⎛

⎝
⊕

j2∈S2

Di1,j2,i3

⎞

⎠ ⊕ Di1,i2,i3 .

Therefore,

m1 ⊕ m2 ⊕ m3 =

⎛

⎝
⊕

j2∈S2,j3∈S3

Di1,j2,j3

⎞

⎠ ⊕
⎛

⎝
⊕

j1∈S1,j3∈S3

Dj1,i2,j3

⎞

⎠

⊕
⎛

⎝
⊕

j1∈S1,j2∈S2

Dj1,j2,i3

⎞

⎠ ⊕ Di1,i2,i3 .

Thus, when s = 1, the value of the expression in (1) is

m1⊕m2⊕m3⊕m1
i1 ⊕r1,i1 ⊕m2

i2 ⊕r2,i2 ⊕m3
i3 ⊕r3,i3 ⊕r1⊕r2⊕r3 = Di1,i2,i3 . (4)
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Correctness. We next prove the correctness of the protocol, that is, when
Di1,i2,i3 = 1 the referee correctly reconstructs s. Recall that the output of the
referee is the expression in (1). As explained above, when s = 0 the referee
outputs 0 and when s = 1 the referee outputs Di1,i2,i3 = 1.

Security. Fix inputs D and i = (i1, i2, i3) such that Di1,i2,i3 = 0, a message
of Alice (m1

j1
)j1∈[N1/3], (m2

j2
)j2∈[N1/3], (m3

j3
)j3∈[N1/3], and a message of Bob

A1, A2, A3, r1,i1 , r2,i2 , r3,i3 such that
⊕

j2∈A2,j3∈A3

Di1,j2,j3⊕
⊕

j1∈A1,j3∈A3

Dj1,i2,j3 ⊕
⊕

j1∈A1,j2∈A2

Dj1,j2,i3

⊕ m1
i1 ⊕ r1,i1 ⊕ m2

i2 ⊕ r2,i2 ⊕ m3
i3 ⊕ r3,i3 = 0 (5)

(no other restrictions are made on the messages). By (2) and (4), when Di1,i2,i3 =
0 only such messages are possible. We next argue that the referee cannot learn
any information about the secret given these inputs and messages, i.e., these
messages have the same probability when s = 0 and when s = 1. In particular,
we show that for every secret s ∈ {0, 1} there is a unique common random string
r such that Alice and Bob send these messages with the secret s. We define the
common random string r as follows:

– For h ∈ {1, 2, 3}, define Sh = Ah if s = 0 and Sh = Ah ⊕ {ih} if s = 1.
These S1, S2, S3 are consistent with the message of Bob and s and are the
only consistent choice. Both when s = 0 and s = 1, as Di1,i2,i3 = 0, it holds
that

⊕

j2∈A2,j3∈A3

Di1,j2,j3 ⊕
⊕

j1∈A1,j3∈A3

Dj1,i2,j3 ⊕
⊕

j1∈A1,j2∈A2

Dj1,j2,i3

=
⊕

j2∈S2,j3∈S3

Di1,j2,j3 ⊕
⊕

j1∈S1,j3∈S3

Dj1,i2,j3 ⊕
⊕

j1∈S1,j2∈S2

Dj1,j2,i3 . (6)

This is true since when s = 0 the sets A1, A2, A3 are the same as the sets
S1, S2, S3, and when s = 1, by (4), the two sides of the expression are differ
by Di1,i2,i3 which is 0.

– The message of Bob determines r1,i1 , r2,i2 , and r3,i3 .
– Define

r1 = m1
i1 ⊕

⊕

j2∈S2,j3∈S3

Di1,j2,j3 ⊕ r1,i1 (7)

r2 = m2
i2 ⊕

⊕

j1∈S1,j3∈S3

Dj1,i2,j3 ⊕ r2,i2 . (8)

Given the secret s, the inputs, and the messages of Alice and Bob, these
values are possible and unique.

– Define r3 = r1 ⊕ r2. By (5), (6), (7), and (8), this value is possible, i.e., it
satisfies

m3
i3 =

⊕

j1∈S1,j2∈S2

Dj1,j2,i3 ⊕ r3,i3 ⊕ r3.
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– For every j1 �= i1, j2 �= i2, and j3 �= i3 define

r1,j1 = m1
j1 ⊕

⊕

j2∈S2,j3∈S3

Di1,j2,j3 ⊕ r1,

r2,j2 = m2
j2 ⊕

⊕

j1∈S1,j3∈S3

Dj1,i2,j3 ⊕ r2,

r3,j3 = m3
j3 ⊕

⊕

j1∈S1,j2∈S2

Dj1,j2,i3 ⊕ r3.

Given the secret s, the inputs, and the messages of Alice and Bob, these
values are possible and unique.

Recall that the common random string is uniformly distributed (i.e., the prob-
ability of each such string is 1/26N1/3+2, as it contains 6N1/3 + 2 bits). Since
for every pair of messages of Alice and Bob when Di1,i2,i3 = 0 we have that
every secret s has exactly one consistent random string, this pair has the same
probability when s = 0 and when s = 1 and the security follows.

Message Size. Alice sends 3N1/3 bits and Bob sends 3 strings each of size N1/3

and 3 random bits, so the message size is O(N1/3).

Degree of the Protocol. The message of Alice contains an exclusive or of bits
of a 3-dimension cubes, where two dimensions are determined by the common
randomness (the sets S1, S2, S3). That is, when we represent a set S ⊆ [N1/3]
by N1/3 bits S = (S[1], . . . , S[N1/3]), then for every j1 ∈ [N1/3]

m1
j1 =

⊕

j2∈[N1/3],j3∈[N1/3]

S2[j2] · S3[j3] · Dj1,j2,j3 ⊕ r1,j1 ⊕ r1.

Thus, m1
j1

, for every input D, is a polynomial of degree 2 over F2 whose variables
are the bits of the random string. Similarly, m2

j2
, m3

j3
are polynomials of degree

2 over F2. The message of Bob for every jh �= ih contains a polynomial of degree
1 over F2, since it sends Sh[jh]. For the index ih ∈ [N1/3], Bob sends Sh[ih] ⊕ s,
which is a polynomial of degree 1 over F2. The decoding is also a computation
of a 3-dimension cube such that only two dimensions are determined by the
common randomness, i.e., the decoding is a degree-2 polynomial over F2.

�
An Auxiliary Protocol ΠXOR. In Fig. 4, we will describe a k-server CDS pro-
tocol, where servers Q2, . . . , Qk simulate Bob in the two-server CDS protocol.
To construct this protocol, we design a k-server protocol ΠXOR that simulates
Bob, i.e., sends a set A, where A = S if s = 0 and A = S ⊕ {i} if s = 1.
In ΠXOR, each server Q� holds an index i�, which together determine an index
i = (i1, i2, . . . , ik), and they need to send messages to the referee such that
the referee will learn A without learning any information on s. Let N1, . . . , Nk

be integers and N = N1 · . . . · Nk. We construct the following protocol in
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The protocol ΠXOR

– Input: Q1 holds an array S = (Sj1,...,jk )j1∈[N1],...,jk∈[Nk], a bit s ∈ {0, 1},
and i1 ∈ [N1], and Q , for every 2 ≤ ≤ k, holds an index i ∈ [N ]. The
referee holds i1, . . . , ik.

– Output: An array A = (Aj1,...,jk)j1∈[N1],...,jk∈[Nk] s.t. Aj1,...,jk = Sj1,...,jk

for every (j1, . . . , jk) = (i1, . . . , ik) and Ai1,...,ik = Si1,...,ik ⊕ s.
– Common randomness: rj2,...,jk ∈ {0, 1} for every j2 ∈ [N2], . . . , jk ∈ [Nk]

and every ∈ {1, . . . , k}.
– The protocol

• Q1 computes an (N1 − 1)× N2 × . . . × Nk array A and two 1× N2 ×
. . . × Nk arrays A0 and A1.

∗ Aj1,...,jk = Sj1,...,jk for every j1 ∈ [N1] \ {i1}, j2 ∈ [N2], . . . , jk ∈
[Nk].

∗ A0
i1,j2,...,jk

= Si1,j2,...,jk ⊕ rj2,...,jk,1 for every j2 ∈ [N2], . . . , jk ∈
[Nk].

∗ A1
i1,j2,...,jk

= Si1,j2,...,jk ⊕ rj2,...,jk,2 ⊕ · · ·⊕ rj2,...,jk,k ⊕ s for every
j2 ∈ [N2], . . . , jk ∈ [Nk].

• Q1 sends A, A0, A1.
• Q , for every 2 ≤ ≤ k, sends rj2,...,jk,1 for every (j2, . . . , jk) ∈

[N2]×· · ·×[Nk] such that j = i , and rj2,...,jk for every (j2, . . . , jk) ∈
[N2] × · · · × [Nk] such that j = i .

• The referee completes A to an N1 × N2 × . . . × Nk array as follows
∗ Ai1,i2,...,ik = A1

i1,i2,...,ik
⊕ ri2,...,ik,2 ⊕ · · · ⊕ ri2,...,ik,k.

∗ Ai1,j2,...,jk = A0
i1,j2,...,jk

⊕ rj2,...,jk,1 for every (j2, . . . , jk) =
(i2, . . . , ik).

• The referee returns A.

Fig. 3. The protocol ΠXOR for the function fXOR.

which server Q1 holds a set S ⊆ [N ] represented by a k-dimensional Boolean
array (Sj1, . . . , jk)j1∈[N1],...,jk∈[Nk], the secret s, and an index i1 ∈ [N1]. Server
Q� for 2 ≤ � ≤ k holds an index i� ∈ [N�]. If s = 1, the referee outputs
S ⊕{(i1, i2, . . . , ik)} and if s = 0 it outputs S (without learning any information
on s). Define the function6

fXOR(S, s, i1, . . . , ik) =
{

i1, i2, . . . , ik, S If s = 0,
i1, i2, . . . , ik, S ⊕ {(i1, i2, . . . , ik)} If s = 1.

We next define when a protocol for fXOR is secure. This is a special case of
security of private simultaneous messages (PSM) protocols [25,30], that is, we
require that for every two inputs for which fXOR outputs the same value, the
distribution of messages is the same. Observe that every possible output of fXOR

results from exactly two inputs.

6 We include i1, . . . , ik in the output of fXOR to be consistent with PSM protocols, in
which the referee does not know the input.
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Definition 5.2. We say that a protocol for fXOR is secure if for every i1 ∈
[N1], . . . , ik ∈ [Nk], and every S, the distributions of messages of the protocol on
inputs S, s = 0, i1, . . . , ik and inputs S ⊕{(i1, i2, . . . , ik)}, s = 1, i1, . . . , ik are the
same.

The protocol ΠXOR for fXOR is described in Fig. 3. Next we present a high
level description of the protocol. Server Q1 sends to the referee three arrays:
A,A0, A1. The array A contains all the indices for which Q1 knows that S and
A are equal (i.e., indices j1, . . . , jk where j1 �= i1, so Aj1,...,jk

= Sj1,...,jk
), the

array A0 enables the referee to compute Ai1,j2,...,jk
for all the indices for which

there is at least one j� �= i� for some 2 ≤ � ≤ k, and the array A1 enables the
referee to compute Ai1,...,ik

.

Lemma 5.3. Protocol ΠXOR is a correct and secure protocol for fXOR with
message size O(N1 · . . . · Nk). The degree of the message generation and output
reconstruction in the protocol (as a function of the randomness and the input S)
is 1 over F2.

The proof of Lemma 5.3 appears in full version of this paper [17].
The k-Server CDS Protocol. Now we present our k-server CDS protocol for the
function INDEXk

N , assuming that k ≡ 1 (mod 3). The case of k �≡ 1 (mod 3) is
somewhat more messy and can be handled as done in [18].

We next present an overview of our construction. The input of the pro-
tocol is a database D ∈ {0, 1}Nk−1

held by Q1 and an index i ∈ [N ]k−1

jointly held by Q2, . . . , Qk. The input i ∈ [N ]k−1 is viewed as (i1, i2, i3) where
i1, i2, i3 ∈ [N (k−1)/3], where ih, for h ∈ {1, 2, 3}, contains the inputs of servers
Q2+(h−1)(k−1)/3, . . . , Q1+h(k−1)/3. The common randomness contains three ran-
dom subsets, one for each dimension, i.e., S1, S2, S3 ⊆ [N (k−1)/3]. In the pro-
tocol, we want that the referee will be able to compute S1 ⊕ {i1}, S2 ⊕ {i2},
and S3 ⊕ {i3} when s = 1, and S1, S2, S3 when s = 0 (as in the proto-
col Π2 described in Fig. 2). For this task, we use the protocol ΠXOR. Servers
Q2, . . . , Q1+(k−1)/3 execute the protocol ΠXOR in order to generate messages
that enable the referee to learn S1 ⊕ {i1} when s = 1 and S1 when s = 0.
Similarly, servers Q2+(k−1)/3, . . . , Q1+2(k−1)/3 and servers Q2+2(k−1)/3, . . . , Qk

independently execute the protocol ΠXOR in order to generate messages that
enable the referee to learn S2 ⊕ {i2} when s = 1 and S2 when s = 0 and
S3 ⊕ {i3} when s = 1 and S3 when s = 0, respectively. In addition, we want the
referee to learn the bits r1,i1 , r2,i2 , r3,i3 as in Π2. To achieve this goal, we define
rh,j,1 . . . , rh,j,(k−1)/3 for every j ∈ [N (k−1)/3] and every h ∈ {1, 2, 3}, such that
rh,j,1 ⊕ · · · ⊕ rh,j,(k−1)/3 = rh,j .

Theorem 5.4. Protocol Πk, described in Fig. 4, is a quadratic k-server CDS
protocol over F2 for the function INDEXk

N with message size O(N (k−1)/3).

The proof of Theorem5.4 appears in full version of this paper [17].

Corollary 5.5. Every function f : [N ]k → {0, 1} has a quadratic k-server CDS
protocol over F2 with message size O(N (k−1)/3).
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The protocol Πk

– The secret: A bit s ∈ {0, 1}.
– Q1 holds a database D ∈ {0, 1}Nk−1

, and Q2, . . . , Qk hold x2, . . . , xk ∈
[N ], respectively.

– Common randomness: S1, S2, S3 ⊆ [N (k−1)/3], r1, r2 ∈ {0, 1},
rh,j,1, . . . , rh,j,(k−1)/3 ∈ {0, 1} for every h ∈ {1, 2, 3} and every j ∈
[N (k−1)/3], and the common randomness of three independent executions
of protocol ΠXOR.

– The protocol
• Let:

∗ ih = x1+(h−1)(k−1)+ for every h ∈ {1, 2, 3} and every 1 ≤ ≤
(k − 1)/3.

∗ r3 = r1 ⊕ r2.
• Q1 computes 3N (k−1)/3 bits:

∗ m1
j1 = j2∈S2,j3∈S3

Dj1,j2,j3 ⊕ r1,j1,1 ⊕ · · · ⊕ r1,j1,(k−1)/3 ⊕ r1 for
every j1 ∈ [N (k−1)/3].

∗ m2
j2 = j1∈S1,j3∈S3

Dj1,j2,j3 ⊕ r2,j2,1 ⊕ · · · ⊕ r2,j2,(k−1)/3 ⊕ r2 for
every j2 ∈ [N (k−1)/3].

∗ m3
j3 = j1∈S1,j2∈S2

Dj1,j2,j3 ⊕ r3,j3,1 ⊕ · · · ⊕ r3,j3,(k−1)/3 ⊕ r3 for
every j3 ∈ [N (k−1)/3].

• Q1 sends (m1
j1)j1∈[N(k−1)/3], (m

2
j2)j2∈[N(k−1)/3], (m

3
j3)j3∈[N(k−1)/3] to

the referee.
• Q2+(h−1)(k−1)/3, . . . , Q1+h(k−1)/3, for every h ∈ {1, 2, 3}, execute

ΠXOR with the set Sh held by Q2+(h−1)(k−1)/3, the secret s, and ih
held by Q1+(h−1)(k−1)/3+ . Let mh

xor,1, . . . , m
h
xor,(k−1)/3 be the mes-

sages sent in this execution of ΠXOR.
• Q , for every 2 ≤ ≤ k:

∗ Computes h = 3 (k − 1) and α = − 1 − (h − 1)(k − 1)/3.
∗ Sends mh

xor,α, and for every j = (j1, . . . , j(k−1)/3) ∈ [N (k−1)/3]
such that jα = iαh , sends rh,j,α.

• The referee computes:
∗ Ah, for every h ∈ {1, 2, 3}, from the messages

mh
xor,1, . . . , m

h
xor,(k−1)/3 of ΠXOR.

∗ rh,ih = rh,ih,1 ⊕ rh,ih,2 ⊕· · ·⊕ rh,ih,(k−1)/3, for every h ∈ {1, 2, 3}.
∗ m1 = j2∈A2,j3∈A3

Di1,j2,j3 , m2 = j1∈A1,j3∈A3
Dj1,i2,j3 ,

m3 = j1∈A1,j2∈A2
Dj1,j2,i3

and outputs

m1 ⊕ m2 ⊕ m3 ⊕ m1
i1 ⊕ r1,i1 ⊕ m2

i2 ⊕ r2,i2 ⊕ m3
i3 ⊕ r3,i3 . (9)

Fig. 4. A quadratic k-server CDS protocol Πk for the function INDEXk
N .
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6 A Quadratic Robust CDS Protocol

In this section, we construct a quadratic k-server t-RCDS protocol, which is a
CDS protocol in which the referee gets no information on the secret even if each
server sends messages on multiple inputs with the same common randomness.

6.1 An Improved Analysis of the Transformation of [5]

We first show an improved analysis of the transformation of [5] from t′-RCDS
protocols to t-RCDS protocols for t′ < t; in particular, from CDS protocols
(i.e., t′ = 1) to t-RCDS protocols. In the transformation of [5], the servers
independently execute O(tk−1) copies of the underlying RCDS protocol for f :
[N ]k → {0, 1}. This is done in a way that ensures that even if a server sends
messages of many inputs, in at least some of the executions of the underlying
RCDS protocol the referee gets messages of few inputs. We observe that the
input domain in each execution of the underling RCDS is [N/t] (as opposed to
[N ]), and this will reduce the total message size. In Lemma 6.2, we present the
improved analysis.

We start with an overview of the ideas behind our analysis. Following the
construction of the linear two-server RCDS protocol in [6] (the full version of [5]),
when making a server Qi robust, we divide the domain of inputs of Qi using a
hash function h : [N ] → [v] (actually we do this for several hash functions, as
will be explained later); for every b ∈ [v], the servers execute the underlying
CDS protocol where the input of Qi is restricted to the inputs {xi : h(xi) = b}.
We next define families of hash functions that we use in the transformation.

Definition 6.1 (Families of m′-Collision-Free Hash Functions). A set of
functions HN,m,m′,v = {hd : [N ] → [v] : d ∈ [�]} (where � is the number of
functions in the family) is a family of m′-collision-free hash functions if for
every set T ∈ (

N
[m]

)
there exists at least one function h ∈ HN,m,m′,v for which

for every b ∈ [v] it holds that |{x ∈ T : h(x) = b}| ≤ m′, that is, h restricted to
T is at most m′-to-one. A family HN,m,1,v is a family of perfect hash functions
if it is a family of 1-collision-free hash functions. A family HN,m,m′,v is output-
balanced if |{x ∈ [N ] : h(x) = a}| ≤ �N/v� for every a ∈ [v] and h ∈ HN,m,m′,v,
i.e., each h divides [N ] to v sets of almost the same size.

Lemma 6.2. Let f : [N ]k → {0, 1} be a k-input function and t and t′ be integers
such that t′ < t ≤ N . Assume that there is a k-server t′-RCDS protocol P ′

for f , in which for every N ′ ≤ N and for every restriction of f with input
domain A1 × . . . ,×Ak, where Ai ⊆ [N ] is of size N ′ for 1 ≤ i ≤ k, the message
size is c(N ′). In addition, assume that there is a family of an output-balanced
t′-collision-free hash functions HN,kt,t′,v = {h1, . . . , h�} of size �. Then, there
is a k-server t-RCDS protocol P for f with message size O(�vk−1 · c(N/v)).
This transformation preserves the degree of the encoding and the decoding of the
underlying RCDS protocol.
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Proof. The desired protocol P is described in Fig. 5. This is actually the transfor-
mation of [5] with the following difference. Instead of executing P ′ with domain
of inputs of size N per server, we execute it with a restriction of f with domain of
inputs of size �N/v� per server.7 The correctness and robustness of the protocol
follows from the proof of the transformation of [5].

Next, we analyze the message size. Observe that for each h ∈ HN,kt,t′,v, each
server sends messages in vk−1 copies of P ′, where each copy is for a restriction of f
with input domain of size maxa∈[v] |Sa| per server, where Sa = {x ∈ [N ] : h(x) =
a}. Since HN,kt,t′,v is output balanced, it holds that maxa∈[v] |Sa| ≤ �N/v� and
since |HN,kt,t′,v| = �, the message size is O(�vk−1 · c (�N/v�). We next argue
that the degree of the encoding and decoding in the transformation does not
change when S is the additive group of the field in the protocol P ′ (see Fig. 5).
In the encoding, the servers execute a linear operation on the secret and the
field elements s1, . . . , s�−1 in order to generate s�. Then, they encode each sd by
executing the underlying RCDS protocol. That is, the encoding is computed by
the degree-d polynomials that compute the encoding in the underlying RCDS
protocol. For the decoding, the referee first executes the decoding procedure of
the underlying RCDS protocol in order to learn s1, . . . , s� and then by summing
them up the referee learns the secret. That is, the decoding is actually sum-
ming up the degree-d polynomials that compute the decoding of the � copies
of the underlying RCDS protocol. Therefore, the degree of the encoding and
the decoding of the transformation are the same as for the underlying RCDS
protocol. �

A t-RCDS protocol

The secret: s ∈ S, where, w.l.o.g., S is a group (e.g., S = Zm for some m).
The protocol

– Choose −1 random elements s1, . . . , s −1 ∈ S and let s = s− (s1+ · · ·+
s −1) (addition is in the group).

– For every d ∈ [ ]:
• Let Sa = {x ∈ [N ] : hd(x) = a} for every a ∈ [v].
• For every a1, . . . , ak ∈ [v], independently execute the k-server t -RCDS

protocol P for the restriction of f to Sa1 × · · · × Sak with the secret
sd, that is, for every i ∈ [k], server Qi with input xi sends a message
for the restriction of f to Sa1 ×· · ·×Sai−1 ×Shd(xi)×Sai+1 ×· · ·×Sak

for every a1, . . . , ai−1, ai+1, . . . , ak ∈ [v].

Fig. 5. A transformation of a t′-RCDS protocol to a t-RCDS protocol for t′ < t.

7 in [5], they do not deal with restrictions of the domain of inputs since it does not
improve the asymptotic message size of their protocols.
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6.2 The Construction of the Quadratic t-RCDS Protocol

We next construct a quadratic k-server t-RCDS protocol. Our construction uses
the improved analysis in Lemma6.2 of the transformation of [5] for converting a
t′-RCDS protocol into a t-RCDS protocol for t′ < t. Applying the transformation
of [5] without our improved analysis starting from our quadratic k-server CDS
protocol in Theorem 5.4 will result in a quadratic k-server t-RCDS protocol
with message size Õ(N (k−1)/3tk−1). Using our improved analysis, we get better
message size of Õ(N (k−1)/3t2(k−1)/3+1).

We start by quoting the following two lemmas that we use in order to instan-
tiate Lemma 6.2. Both lemmas can be proved by a simple probabilistic argument.
Their proofs can be found in [39].

Lemma 6.3. Let N be an integer and m ∈ [
√

N ]. Then, there exists an output-
balanced family of perfect hash functions HN,m,1,m2 = {hi : [N ] → [m2] : i ∈ [�]},
where � = 16m ln N .

Lemma 6.4. Let N be an integer and m ∈ {15, . . . , N/2}. Then, there exists
an output-balanced family of log m-collision-free hash functions HN,m,log m,2m =
{hi : [N ] → [2m] : i ∈ [�]}, where � = 16m ln N .

Theorem 6.5. Let t < min
{

N/2k, 2
√

N/k
}
. Then, there is a quadratic k-server

t-RCDS protocol over F2 with message size

O(N (k−1)/3t2(k−1)/3+1 ·k2k · log2 N · log(4k−1)/3 t) = Õ(N (k−1)/3t2(k−1)/3+1 ·k2k).

Proof. Similarly to [5], we construct the protocol in two stages. In the first stage,
we transform our quadratic k-server CDS protocol from Fig. 4 into a quadratic
k-server log t-RCDS protocol, and then, in the second stage, we transform this
protocol into a quadratic k-server t-RCDS protocol.

For the first stage, we use the output-balanced family HN,k log t,1,k2 log2 t

of perfect hash functions with O(k log t log N) hash functions promised by
Lemma 6.3. Applying the transformation of Lemma6.2 with HN,k log t,1,k2 log2 t

and our quadratic (non-robust) k-server CDS protocol described in Theorem 5.4
as the underlying protocol (this protocol has message size O(N (k−1)/3)) results in
a quadratic k-server log t-RCDS protocol, which we denote by P ′, with message
size c′(N) = O(N (k−1)/3 · (k log t)(4k−1)/3 · log N).

For the second stage, we apply Lemma 6.2 with the log t-RCDS protocol P ′

and the output-balanced family of (log t)-collision-free hash functions, denoted
by HN,kt,log t,2kt with O(kt log N) hash functions promised by Lemma6.4; there-
fore, we get message size of

O(kt log N · (2kt)k−1 · c′(N/2kt)) = O(N (k−1)/3t
2(k−1)

3 +1 ·k2k · log2 N · log
4k−1

3 t).

�
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7 A Quadratic Secret Sharing for General Access
Structures

In this section, we use our results described in Sect. 5 and Subsect. 6.2 to con-
struct improved quadratic secret-sharing schemes. Our upper bounds are better
than the best known upper bounds for linear schemes. In addition, our upper
bounds imply a separation between quadratic and linear secret-sharing schemes
for almost all access structures.

A Construction for All Access Structures. Next we use our quadratic k-server
RCDS protocol in the construction of general secret sharing of [8].

Theorem 7.1 (Implied by [8]). Assume that for every function f : [N ]k →
{0, 1} there is a k-server t-RCDS protocol with message size c(k,N, t), then
there is a secret-sharing scheme realizing an arbitrary n-party access structure
with share size

max
{

max
0<β≤0.5

c(
√

n, 2
√

n, 2β
√

n),

max
0.5<β≤1

c
(√

2n(1 − β), 2
√

2n(1−β), 2
√

n(1−β)/2
)

· 2H2(β)n−2(1−β)n

}
· 2o(n).

Furthermore, the degree of sharing and reconstruction of this secret-sharing
scheme is the degree of encoding and decoding, respectively, of the underlying
RCDS protocol.

In the construction of [8], they use a t-RCDS protocol that is robust only for
some of the subsets of size t (rather than all subsets). In our construction, we
can avoid the more complex definition of robustness and use a t-RCDS protocol
that is robust against all subsets of size at most t.

Theorem 7.2. Every n-party access structure can be realized by a quadratic
secret-sharing scheme over F2 with share size 20.705n+o(n).

Proof. The theorem follows from Theorem 7.1 using our quadratic t-RCDS pro-
tocol with message size Õ(N (k−1)/3t2(k−1)/3+1 · k2k) from Theorem 6.5. We get
share size

max
{

max
0<β≤0.5

2n(2β+1)/3, max
0.5<β≤1

2H2(β)n−2/3(1−β)n

}
· 2o(n).

The maximum value of this expression is at β ≈ 0.613512 and it is 20.705n. �
In comparison, Applebaum and Nir [8] construct a linear secret-sharing scheme
over F2 with share size 20.7576n+o(n) and a general (non-polynomial) secret-
sharing scheme with share size 20.585n+o(n).
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A Construction for Almost All Access Structures. It was shown in [14] that
almost all access structures can be realized by a general secret-sharing scheme
with shares of size 2o(n) and by a linear secret-sharing scheme with share size
2n/2+o(n). Furthermore, it was shown in [11] that almost all access structures
require share size 2n/2−o(n) in any linear secret-sharing scheme even with 1-
bit secrets over all finite fields Fq. Following [14], we show that almost all access
structures can be realized by a quadratic secret-sharing scheme with 1-bit secrets
over F2 with share size 2n/3+o(n), proving a separation between quadratic and
linear schemes for almost all access structures.

Theorem 7.3. Almost all access structures can be realized by a quadratic secret-
sharing scheme with 1-bit secrets over F2 and with share size 2n/3+o(n).

Proof. We say that Γ is an [a, b]-slice access structure if for every set of parties
A it holds that if |A| < a, then A �∈ Γ and if |A| > b, then A ∈ Γ .

By [33], almost all access structures are [n/2−1, n/2+2]-slice access structure,
thus it suffices to construct secret-sharing schemes for them. Let c(k,N) be
the message size in a quadratic k-server protocol for any function f : [N ]k →
{0, 1}. By [35], for every k there is a secret-sharing scheme for [a, b]-slice access

structure with share size
c(k,N) · 2(b−a+1)n/kO(n)

(
n
a

)

(
n/k
a/k

)k
. In our case, a = 
n/2�−1

and b = 
n/2� + 2, and by taking k =
√

n/ log n we get share size c(k,N) ·
2O(

√
n log n). Using our quadratic k-server CDS protocol described in Theorem 5.4

with c(k,N) = N (k−1)/3 and N =
(
n/k
a/k

)
< 2n/k, the share size is 2n/3+o(n). �
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Abstract. Innovative side-channel attacks have repeatedly falsified the
assumption that cryptographic implementations are opaque black-boxes.
Therefore, it is essential to ensure cryptographic constructions’ security
even when information leaks via unforeseen avenues. One such fundamen-
tal cryptographic primitive is the secret-sharing schemes, which underlies
nearly all threshold cryptography. Our understanding of the leakage-
resilience of secret-sharing schemes is still in its preliminary stage.

This work studies locally leakage-resilient linear secret-sharing
schemes. An adversary can leak m bits of arbitrary local leakage from
each n secret shares. However, in a locally leakage-resilient secret-sharing
scheme, the leakage’s joint distribution reveals no additional information
about the secret.

For every constant m, we prove that the Massey secret-sharing scheme
corresponding to a random linear code of dimension k (over sufficiently
large prime fields) is locally leakage-resilient, where k/n > 1/2 is a con-
stant. The previous best construction by Benhamouda, Degwekar, Ishai,
Rabin (CRYPTO–2018) needed k/n > 0.907. A technical challenge arises
because the number of all possible m-bit local leakage functions is expo-
nentially larger than the number of random linear codes. Our technical
innovation begins with identifying an appropriate pseudorandomness-
inspired family of tests; passing them suffices to ensure leakage-resilience.
We show that most linear codes pass all tests in this family. This Monte-
Carlo construction of linear secret-sharing scheme that is locally leakage-
resilient has applications to leakage-resilient secure computation.

H.K. Maji and M. Wang—The research effort is supported in part by an NSF
CRII Award CNS–1566499, NSF SMALL Awards CNS–1618822 and CNS–2055605,
the IARPA HECTOR project, MITRE Innovation Program Academic Cybersecu-
rity Research Awards (2019–2020, 2020–2021), a Ross-Lynn Research Scholars Grant
(2021–2022), a Purdue Research Foundation (PRF) Award (2017–2018), and The Cen-
ter for Science of Information, an NSF Science and Technology Center, Cooperative
Agreement CCF–0939370.
A. Paskin-Cherniavsky and T. Suad—Research supported by the Ariel Cyber Inno-
vation Center in conjunction with the Israel National Cyber directorate in the Prime
Minister’s Office.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12827, pp. 779–808, 2021.
https://doi.org/10.1007/978-3-030-84252-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84252-9_26&domain=pdf
https://doi.org/10.1007/978-3-030-84252-9_26


780 H. K. Maji et al.

Furthermore, we highlight a crucial bottleneck for all the analytical
approaches in this line of work. Benhamouda et al. introduced an ana-
lytical proxy to study the leakage-resilience of secret-sharing schemes;
if the proxy is small, then the scheme is leakage-resilient. However, we
present a one-bit local leakage function demonstrating that the converse
is false, motivating the need for new analytically well-behaved functions
that capture leakage-resilience more accurately.

Technically, the analysis involves probabilistic and combinatorial tech-
niques and (discrete) Fourier analysis. The family of new “tests” captur-
ing local leakage functions, we believe, is of independent and broader
interest.

Keywords: Local leakage-resilience · Massey secret-sharing scheme ·
Random linear codes · Shamir’s secret-sharing scheme · Discrete fourier
analysis

1 Introduction

Traditionally, one treats the cryptosystems implementing cryptographic primi-
tives as impervious black-boxes that faithfully realize the intended input-output
behavior and provide no additional information. In the real-world implementa-
tions and deployments, however, this assumption has been repeatedly proven
false. Beginning with the works of Kocher et al. [33,34], several innovative and
sophisticated side-channel attacks reveal partial information about the interme-
diate values and stored secrets of computation (for a summary of the history of
several of these attacks, refer to [10,35,46,48,50,56]). These side-channel attacks
on fundamental cryptographic building blocks like secret-sharing schemes pose
a threat to the security of all cryptographic constructions relying on them.

Towards addressing these concerns, one can design mechanical countermea-
sures, hardware solutions, and algorithmic representation to protect against
known threats [1,5,12,17,20,21]. However, this approach creates unknown risks,
the risk of undiscovered attacks compromising a scheme’s security. On the other
hand, leakage-resilient cryptography formally models potential avenues of infor-
mation leakage and the leakage attacks that an adversary may undertake. This
approach has the benefit that the general model encompasses leakage attacks
beyond those that are already known. Furthermore, one knows the formal secu-
rity guarantees and risks of using such cryptographic schemes. In the last few
decades, there has been a large body of highly influential research on the feasi-
bility and efficiency of realizing leakage-resilient variants of fundamental crypto-
graphic primitives against active/passive adversaries that perform leakage stat-
ically/adaptively (refer to the excellent survey [32]).

One such fundamental cryptographic primitive is secret-sharing schemes,
which are essential to nearly all threshold cryptography. In the (so-called) stan-
dard model, the adversary can corrupt a few parties and obtain their secret-
shares; however, it obtains no additional information about the remaining secret
shares. The security of secret-sharing schemes crucially relies on the fact that the
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corruption threshold is lower than the secret-sharing schemes’ privacy threshold.
However, a side-channel attack on a secret-sharing scheme provides the adversary
a restricted or noisy access to every party’s secret share. For instance, a passive
adversary can leak a few bits from each secret share. Although it has a partial
view of each secret share, the leakages’ joint distribution may be correlated with
the secret to compromise its secrecy.

Our understanding of the leakage-resilience of secret-sharing schemes is still
in its preliminary stage. Even for prominent secret-sharing schemes like Shamir’s
secret-sharing scheme, the exact characterization of the leakage-resilience is not
well-understood. A locally leakage-resilient secret-sharing scheme (LLRSS) [7]
(also implicit in the constructions of [26]) protects against a static passive adver-
sary. The adversary chooses leakage functions from all the secret shares. However,
an LLRSS secret-sharing scheme ensures that the leakage’s joint distribution is
statistically independent of the secret. Guruswami and Wootters’s reconstruction
algorithm [28,29] for Reed-Solomon codes (and follow-up works [18,27,42,52])
demonstrate that Shamir’s secret-sharing scheme on characteristic-2 finite fields
is insecure even when the adversary can leak only one bit from every secret
share. Achieving leakage-resilience seems challenging because the adversary need
not reconstruct the complete secret; obtaining only some partial information
about the secret precludes leakage-resilience. For example, over characteristic-
two fields, if the secret is a linear combination of some parties’ secret shares, then
the adversary can leak only one bit from these secret shares and reconstruct the
least significant bit of the secret. Although this attack does not suffice to recon-
struct the complete secret (which is impossible using entropy arguments), it
suffices to distinguish the secret 0 from secret 1.

There has been a significant amount of research into constructing new
leakage-resilient secret-sharing schemes [3,6,11,13,15,23,24,31,36,41,51]. How-
ever, it seems insurmountable to replace every deployed secret-sharing scheme
with their leakage-resilient version or an entirely new leakage-resilient secret-
sharing scheme. Furthermore, in specific contexts, cryptographic constructions
crucially rely on the secret-sharing scheme’s additional salient features (for exam-
ple, their linearity and algebraic structure); thus, making such a substitution
impossible. Inspired by these concerns, recently, there have been studies on
the leakage-resilience of prominent secret-sharing schemes, like Shamir’s secret-
sharing scheme and the additive secret-sharing scheme [2,14,30,37,39].

A Summary of Our Model and Results. This work studies the leakage-
resilience of Massey secret-sharing schemes [43] corresponding to various linear
codes, for example, random linear codes, Reed-Solomon codes, and the parity
code. We remind the readers that prominent secret-sharing schemes like Shamir’s
secret-sharing scheme and the additive secret-sharing scheme are the Massey
secret-sharing schemes corresponding to (punctured) Reed-Solomon codes and
the parity code. Our work considers m-bit general leakage from each secret share,
where m is a constant.

Result 1. We present a Monte Carlo algorithm for a linear secret-sharing
scheme that is secure against m-bit leakage from each secret share, where m is
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a constant. We prove that the Massey secret-sharing scheme corresponding to a
random linear code is leakage-resilient if k/n is a constant > 1/2. Towards this
objective, the technical challenge is that the number of potential constructions is
exponentially smaller than the number of all such leakage functions. Overcoming
this hurdle requires identifying a significantly smaller set of “tests,” passing them
suffices to guarantee leakage-resilience.

Result 2. Next, we show an explicit leakage function (leaking only m = 1
bit from each secret share) that highlights a significant shortcoming of the ana-
lytic techniques employed in this line of work. Ever since the work of Ben-
hamouda et al. [7], analytic techniques employ a (natural) “proxy analytic func-
tion” to study the leakage resilience of secret-sharing schemes. If this proxy is
small, then the insecurity of the secret-sharing scheme to leakage attacks is small
as well. However, we present an explicit attack demonstrating that the converse
is false, making a case for discovering new (analytically well-behaved) proxies
that represent the insecurity of secret-sharing schemes more accurately.

Result 3. Using the new analytical techniques developed for “Result 1” in our
work, we improve the leakage-resilience guarantees for Shamir’s secret-sharing
scheme for n parties. We prove that if the reconstruction threshold k � 0.8675 ·n
then it is secure against m = 1 bit leakage from each secret share improving the
previous state-of-the-art from k � 0.907·n.1 Independent to our work, the journal
version [9] of [8] also improved the threshold to k � 0.85n.

Result 4. Finally, we note that an attack for additive secret-sharing schemes
proposed by Benhamouda et al. [7] can be extended to all linear secret-sharing
schemes. By this observation, we prove that to achieve 2−λ insecurity, the thresh-
old k must be at least Ω

(
λ

log λ

)
. This generalizes a similar result by Nielsen and

Simkin [44] as their result works only for polynomially large fields while our
result works for fields of arbitrary size.

1.1 Our Contributions

This section introduces some basic definitions to facilitate an intuitive presenta-
tion of our results.

F is a prime field such that |F | needs λ bits for its binary representation, i.e.,
2λ−1 � |F | < 2λ. We interpret λ as the security parameter and, therefore, the
number of parties n = poly(λ). Typically, in cryptography, the objective is to
demonstrate the insecurity of cryptographic constructions is negl(λ), a function
that decays faster than any inverse-polynomial in λ. However, in this work, as
is common in information theory and coding theory literature, all our results
shall further ensure that the insecurity is exponentially decaying in the security
parameter.

Massey Secret-Sharing Scheme. Let C ⊆ Fn+1 be a subset, referred to
as a code. The Masey secret-sharing scheme [43] corresponding to code C secret-
1 The older full version of [8] claims a smaller constant in Theorem 1.2, which is a

consequence of an incorrect calculation. k � 0.907n is an accurate reflection of the
result in their full version.
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shares the secret s ∈ F by choosing a random (c0, c1, . . . , cn) ∈ C conditioned
on c0 = s. The secret share of party i is si = ci, for all i ∈ {1, . . . , n}.

Linear Codes. A vector subspace V ⊆ Fn+1 of dimension (k + 1) is an
[n + 1, k + 1]F -code. A matrix G+ ∈ F (k+1)×(n+1) succinctly represents this
vector space V if the linear span of its rows, represented by 〈G+〉, is identical
to the vector space V . (Punctured) Reed-Solomon codes and parity codes are
linear codes. Fix distinct evaluation places X1, . . . , Xn ∈ F ∗. The set of elements
(f(0), f(X1), . . . , f(Xn) ), for all polynomials f(X) ∈ F [X] of degree < (k + 1),
is the (punctured) Reed-Solomon code. The set of all elements (c0, c1, . . . , cn) ∈
Fn+1 such that c0 + c1 +· · · + cn = 0 is the parity code.

This work considers Massey secret-sharing schemes of linear codes.
Local Leakage-Resilience of Secret-Sharing Schemes. An (n,m)

local leakage function leaks m-bit leakage from each of the secret shares of
the n parties. The output of an (n,m) local leakage function is the joint
distribution of the mn leakage bits. A secret-sharing scheme for n parties is
(m, ε) − locallyleakage − resilient if any (n,m) local leakage function cannot
distinguish whether the secret s(0) ∈ F from the secret s(1) ∈ F based on the
joint leakage distributions, for arbitrary s(0), s(1) ∈ F .

Remark 1. In the literature (e.g., [7]), the following definition of leakage-
resilience has also been considered. The adversary is given some secret shares
explicitly and then allowed to leak from the remaining secret shares. We note
that, for an MDS code G+, the leakage-resilience of Massey secret-sharing cor-
responding to G+ in these two definitions are equivalent as follows.

Suppose G+ is an MDS code of dimension (k + 1) × (n + 1). If the adversary
obtains t shares explicitly, the remaining secret shares is exactly a Massey secret-
sharing scheme corresponding to some G′ of dimension (k + 1 − t) × (n + 1 − t).
Hence, G+ is leakage-resilient to an adversary who obtains t shares explicitly if
and only if Massey secret-sharing corresponding to G′ is leakage-resilient when
the adversary only leaks from every secret share.

In this paper, we only work with G+ that is MDS.2 Therefore, we restrict to
the simple setting where the adversary only leaks from every secret share.

Result 1. Leakage-Resilience of Random Linear Codes. For the pre-
sentation in this section, a random [n + 1, k + 1]F -code is the linear code 〈G+〉
where G+ ∈ F (k+1)×(n+1) is a rank-(k + 1) random matrix. Section 2.2 provides
additional details on efficiently sampling such a matrix.

Corollary 1 (Random Linear Secret-sharing Schemes are Leakage-
resilient). Fix constants m ∈ N, δ ∈ (0, 1), and η ∈ (0, 1). Define n = (1−η) ·λ
and k = (1/2 + δ) · n. Let F be a prime field of order ∈ {2λ−1, . . . , 2λ − 1}. For
all sufficiently large λ, the Massey secret-sharing scheme corresponding to a ran-
dom [n + 1, k + 1]F -code is (m, ε)-locally leakage-resilient, where ε = exp(−Θλ),
except with exp(−Θλ) probability.

2 In particular, our main result considers a random G+, which is MDS with over-
whelming probability.
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We highlight that one can publicly choose the randomness determining G+ once
(say, using a CRS) and use this code for all future applications. With high
probability, as long as the local leakage is � m, the Massey secret-sharing scheme
corresponding to the linear code 〈G+〉 shall be leakage-resilient.3 Intuitively,
the Massey secret-sharing scheme corresponding to a random [n + 1, k + 1]F -
code (where F is a finite field of order > 2λ−1, n = 0.97λ, and k = 0.49λ)
shall be leakage-resilient to arbitrary m-bit local leakages when λ is sufficiently
large (except with exponentially small probability). The threshold of λ being
sufficiently large depends on the choices of m, δ, and η. For example, when m = 1
and using 2000-bit prime numbers, the insecurity of the above scheme is < 2−50.

Efficiency. Linear codes, in contrast to non-linear codes, result in efficient
Massey secret-sharing schemes. In particular, when G+ = [Ik+1 | P ] is in the
standard form, as is the case in this work, then the corresponding Massey secret-
sharing scheme is easy to specify, where Ik+1 ∈ F (k+1)×(k+1) is the identity
matrix. Observe that the secret shares of the secret s ∈ F is

(s, s1, . . . , sn) := (s, r1, . . . , rk) · G+,

where r1, . . . , rk are independently and uniformly distributed over F . Recon-
struction of the secret is efficient as well for this secret-sharing scheme. Suppose
G+

∗,0 = λ1 · G+
∗,j1

+· · · + λt · G+
∗,jt

, where G+
∗,j represents the j-th column of the

matrix G+ and λ1, . . . , λt ∈ F are appropriate constants. Then, parties j1, . . . , jt

can efficiently reconstruct the secret s = λ1 · sj1 + · · · + λt · sjt
, where sj rep-

resents the secret share of party j. Furthermore, any t = k + 1 shall be able to
reconstruct the secret because any (k + 1) columns of a random G+ is full rank,
except with an exponentially small probability.

The efficient reconstruction of the secret depends on parties reporting their
secret shares correctly. If there are (k + 1) publicly identifiable honest parties,
all parties can efficiently reconstruct the secret from these parties’ secret-shares.
Additionally, information-theoretic primitives like message authentication codes
can ensure that malicious parties cannot disclose incorrect secret shares.4 Using
such information-theoretic cryptographic primitives, all parties can efficiently
reconstruct the secret in applications using such secret-sharing schemes.

Applications. Linear secret-sharing schemes have applications in secure multi-
party computation [25,55] due to their additive structure. In particular, an addi-
tive secret-sharing scheme is useful for the secure computation of circuits that use
only addition gates, i.e., the aggregation functionality. The secure computation
protocol proceeds as follows. Party i secret-shares its inputs x(i) using a linear
secret-sharing scheme. Let the secret share of x(i) for party j be x(i,j). Now, party

3 However, as are typical for probabilistic existential results in information theory and
coding theory, one cannot efficiently test whether the sampled G+ is leakage-resilient.

4 This step is necessary because efficient error-correction algorithms for (dense) ran-
dom linear codes shall require incredible breakthroughs in mathematics. In fact, a
lot of cryptography assumes that error-correction for random linear codes is inef-
ficient [47,49]. Efficient error-correction is known only when the matrix G+ has
additional algebraic structures.
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j has the secret shares x(1,j), . . . , x(n,j). Party j defines s(j) :=
∑n

i=1 x(i,j). Now,
the secret shares s(1), . . . , s(n) are secret shares of the sum s = x(1)+· · ·+x(n). If
any (k+1) parties can reconstruct the secret in the linear secret-sharing scheme,
any subset of (k + 1) parties can come online to recover the sum s.

When using our linear secret-sharing scheme5 robust to arbitrary m-bit local
leakage, this secure computation is leakage-resilient to arbitrary m-bit leakage
as well, when k/n is a constant > 1/2. The previous state-of-the-art construc-
tion [7] used Shamir’s secret-sharing scheme and needed k/n � 0.907, which
was a significantly larger fraction. [39] proved the leakage-resilience of Shamir’s
secret-sharing scheme for an extremely restricted family of leakage functions,
namely, the physical-bit leakage function, for every k > 1.

Derandomization. We highlight that we significantly derandomized the space
of all possible codes to demonstrate that a linear code suffices to construct a
leakage-resilient secret-sharing scheme. For example, against active adversaries
who tamper the secret shares, the probabilistic construction of Cheraghchi and
Guruswami [16] used (inefficient) non-linear codes.6

Technical Highlights. At the outset, linear codes as potential candidate con-
structions for leakage-resilient secret-sharing schemes seem far-fetched. Observe
that the set of all possible (n,m) local leakage functions is 2mn|F | � 22

λ

, where m

is a constant, n = poly(λ), and p ≈ 2λ. However, there are only |F |kn ≈ 2poly(λ)

different matrices G+. Typically, the proofs of similar results (see, for example,
[16,22,39]) proceed by “union bound” techniques and need the set of adversarial
strategies to be significantly smaller than the potential choices available for the
construction. One of our work’s key technical contributions is to address this
apparent handicap that our construction faces.

We introduce a new family of “tests” (see Sect. 3) inspired by the various
notions of pseudorandomness [53,54]. We show that if a generator matrix G+

passes all these tests, then the Massey secret-sharing scheme corresponding to
the linear code 〈G+〉 is leakage-resilient (see Sect. 3.3). The advantage here is
that the number of all possible tests is significantly smaller than the number of
choices for choosing G+. Finally, we show that nearly all matrices G+ pass all our
tests (see Sect. 3.2). Lemmas 1 and 2 abstract these two technical innovations,
which, the authors believe, are of potential independent interest in the broader
field of probabilistic analysis. Section 3 presents the proof of this result.

Result 2. A Barrier in the Analytic Modeling. Benhamouda et al. [7]
introduced an analytic proxy (Refer to Eq. 6) for upper bounding the statistical
distance between leakage distributions of different secrets. All the works in this
line of research ([7,39] and this work) essentially study leakage-resilience of the
secret-sharing scheme through this analytic proxy. We present an inherent barrier

5 Additionally, one can use information-theoretic message authentication codes to
avoid incorrect revelation of secret-shares.

6 We note that non-malleability naturally requires the code to be non-linear. However,
our point is that the union bound technique would not have worked if one considers
a very small family of constructions such as linear codes.
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for this proof strategy. We prove that one cannot prove any meaningful result
when the threshold is less than half of the number of parties.

In particular, we present an explicit leakage function �L, which tests whether
the field element is a quadratic residue or not. We prove that for any linear secret-
sharing scheme with threshold k and n parties such that k < n/2, the analytic
proxy with respect to this secret-sharing scheme and our leakage function �L is
at least 1.7 Therefore, using this analytic proxy, it is hopeless to prove leakage-
resilience against general leakage when k < n/2. This result is summarized as
Theorem 1 in Sect. 4.

In light of this, our first result that states a random linear code is leakage-
resilient when k � (12 + δ)n for an arbitrary constant δ ∈ (0, 1/2) is the optimal
result one could hope to obtain using the current proof technique. To obtain
better results, significantly different ideas are required.

We note that the recent work of Maji et al. [39] also employs this analytic
proxy. They show that Shamir’s secret-sharing with random evaluation places
is leakage-resilient even for the most stringent case k = 2 and n = poly(λ).
Their results, however, do not contradict the barrier we present here. They only
consider the family of leakage functions that leak physical-bit when the field
elements are store in their natural binary representations. The counter-example
we present, i.e., testing whether a field element is a quadratic residue or not,
cannot be simulated by leaking a constant number of physical-bits.

Result 3. We prove the following result on the leakage-resilience of Shamir’s
secret-sharing scheme.

Corollary 2. There exists a universal constant p0 such that, for all finite field
F of prime order p > p0, the following holds. Shamir’s secret-sharing scheme
with number of parties n and threshold k is (1, exp(−Θn)-leakage-resilient if
k � 0.8675n.

We improve from the previous state-of-the-art result of k � 0.907n of [7] to
k � 0.8675n. In an independent work, Benhamouda et al. [9] also improved
their results to k � 0.85n. Note that achieving k < n/2 shall enable parties to
multiply their respective secret shares to obtain secret shares of the product of
the secrets.

Technically, we prove this result by employing a more fine-grained (compared
to [7]) analysis on the analytic proxy. Section 5 presents the proof overview.

Result 4. Consider a secret-sharing scheme with n parties and threshold k
over a prime field F of order p that is leakage-resilient to m-bit leakage from each
share. Nielsen and Simkin [44] proved that it must hold that k ·log p � m·(n−k).
Intuitively, they prove this result using an entropy argument.8 Consequently,
their result is inevitably sensitive to the size of the field. They used this result

7 Note that this analytic proxy is used as an upper bound of the statistical distance.
Hence, it gives an inconsequential bound if it is � 1.

8 Note that a secret-sharing scheme contains exactly k ·log p amount of entropy. Hence,
intuitively, the total amount entropy leaked m · n cannot exceed k · log p.
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to show that if the field size satisfies p = poly(n), the threshold k must be at
least Ω (n/ log n).

For linear secret-sharing schemes, we obtain a similar result, independent of
the field size.

Corollary 3. If a linear secret-sharing scheme (over an arbitrarily large field)
with n parties and threshold k is (1, ε)-leakage-resilient, then it must hold that
ε �

(
1
2k

)k. Consequently, if it is (1, exp(−Θn))-leakage-resilient, it must hold
that k = Ω (n/ log n).

We prove our result through a similar attack proposed by [7] (on additive secret-
sharing schemes). A proof of this result is provided in the full version [40].

1.2 Prior Works

Local leakage-resilient secret-sharing schemes were introduced by Benhamouda,
Degwekar, Ishai, and Rabin [7] (also, independently by [26] as an intermediate
primitive). There has been a sequence of works analyzing the leakage-resilience of
prominent secret-sharing schemes [2,14,30,37,39] and constructing new leakage-
resilient secret-sharing schemes [3,6,11,13,15,23,24,31,36,41,51].

There is an exciting connection between repairing a linear code in the dis-
tributed storage setting and the leakage-resilience of its corresponding Massey
secret-sharing scheme [43]. In the distributed storage setting, every coordinate
of the linear code is separately stored. The objective is to repair a block of the
code by obtaining information from all other blocks. For example, Guruswami
and Wootters [28,29] present a reconstruction algorithm that obtains m = 1 bit
from every block of a Reed-Solomon code to repair any block when the field has
characteristic two. These reconstruction algorithms ensure that by leaking m bits
from the secret-shares corresponding to the Massey secret-sharing scheme corre-
sponding to the linear code, it is possible to reconstruct the secret. For example,
the Reed-Solomon reconstruction algorithm of Guruswami-Wootters translates
into a leakage attack on Shamir’s secret-sharing scheme (for characteristic two
fields), the Massey secret-sharing scheme corresponding to a (punctured) Reed-
Solomon code.

However, when working over prime fields, [7] proved that Shamir’s secret-
sharing scheme is robust to m = 1 bit leakage if the reconstruction threshold is
sufficiently high. In particular, their analysis proved that it suffices for the recon-
struction threshold k to be at least 0.907n, where n is the total number of parties.
Moreover, their results extend to arbitrary MDS codes. They complement this
positive result with an attack on the additive secret-sharing scheme that has a
distinguishing advantage of ε � k−k. After that, Nielsen and Simkin [44] present
a probabilistic argument to construct a leakage attack on any Massey secret-
sharing scheme. Roughly, their attack needs m � k log p/(n − k) bits of leakage
from each secret share, where p is the order of the prime field.

Recently, [39] studied a restricted family of leakage on Shamir’s secret-sharing
schemes. The secret-shares, which are elements of the prime field, are represented
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in their natural binary representation and stored in hardware. The adversary
can leak only physical bits from the memory storage. They proved that Shamir’s
secret-sharing scheme with random evaluation places is leakage-resilient to this
leakage family.

2 Preliminaries and Notations

The binary entropy function h2 : [0, 1] → [0, 1] is

h2(p) := − p log2 p − (1 − p) log2(1 − p).

We shall use the following elementary upper bound on the binomial coefficients.

Claim 1 (Estimation of Binomial Coefficients). For all n ∈ N and k ∈
{0, 1, . . . , n}, we have (

n

k

)
� 2h2(k/n)·n.

Proof. Observe that

1 =
(

k

n
+

n − k

n

)n

�
(

n

k

) (
k

n

)k (
1 − k

n

)n−k

=
(

n

k

)
2−h2(k/n)·n.

This completes the proof of the claim.

Our work uses the length of the binary representation of the order of the
prime field F as the security parameter λ. The total number of parties n =
poly(λ) and the reconstruction threshold k = poly(λ) as well. The objective of
our arguments shall be to show the insecurity of the cryptographic constructions
is ε = negl(λ), i.e., a function that decays faster than any inverse-polynomial of
the λ.

We shall also use the following Vinogradov notations for brevity in our analy-
sis (as consistent with, for example, [4]). For functions f(λ) and g(λ), one writes
f(λ) ∼ g(λ) to represent f(λ) = (1 + o(1)) · g(λ), where o(1) is a decreasing
function in λ. Similarly, f(λ) � g(λ) is equivalent to f(λ) � (1 + o(1)) · g(λ).
Finally, f(λ) 
 g(λ) represents that f(λ) = o(1) · g(λ). We explicitly mention
the definitions of these notations because there are multiple interpretations of
these symbols even in the field of analysis.

2.1 General Notation: Vectors, Random Variables, Sets

Let X be a sample space. Particular elements of X are represented using the
small-case letter x. A random variable of sampling x from the sample space X
shall be represented by x.

For any two distributions A and B over the same sample space (which is
enumerable), the statistical distance between the two distributions, represented
by SD(A,B), is defined as 1

2

∑
x |Pr[A = x] − Pr[B = x]|.

A vector �v ∈ Ωn is interpreted as �v = (v1, . . . , vn), where each vi ∈ Ω. For
any I ⊆ {1, . . . , n}, the vector �vI ∈ Ω|I| represents the vector (vi : i ∈ I).

Let (S, ◦) be a group. Let A ⊆ S and x ∈ S be an arbitrary element of S.
Then x ◦ S is the set {x ◦ y : y ∈ S}.
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2.2 Matrices

We adopt the following notations for matrices as consistent with [45].
Let F be a finite field. A matrix M ∈ F k×n has k-rows and n-columns, and

each of its element is in F . For i ∈ {1, . . . , k} and j ∈ {1, . . . , n}, Mi,j represents
the (i, j)-th elements in the matrix M . Furthermore, Mi,∗ represents the i-th row
of M and M∗,j represents the j-th column of M . The transpose of the matrix
M ∈ F k×n is the matrix N ∈ Fn×k such that Mi,j = Nj,i, for all i ∈ {1, . . . , k}
and j ∈ {1, . . . , n}. We represent N = Mᵀ.

Let I ⊆ {1, . . . , k} and J ⊆ {1, . . . , n} be a subset of row and column indices,
respectively. The matrix M restricted to rows I and columns J is represented
by MI,J . If I = {i} is a singleton set, then we represent Mi,J for M{i},J . The
analogous notation also holds for singleton J . Furthermore, G∗,J represents the
columns of G indexed by J (all rows are included). Similarly, G∗,j represents the
j-th column of the matrix G. Analogously, one defines GI,∗ and Gi,∗.

Some parts of the documents use {0, 1, . . . , k} as row indices and {0, 1, . . . , n}
as column indices for a matrix G ∈ F (k+1)×(n+1). We will be explicit in men-
tioning the row and column indices in this work.

Random Matrices. A random matrix M of dimension k × n is a uniformly
random element of F k×n. This sampling is equivalent to choosing every element
Mi,j of the matrix uniformly and independently at random from F , for all i ∈
{1, . . . , k} and j ∈ {1, . . . , n}.

2.3 Codes and Massey Secret-Sharing Schemes

We use the following notations for error-correcting codes as consistent with [38].
Let F be a finite field. A linear code C (over the finite field F ) of length

(n+1) and rank (k +1) is a (k +1)-dimension vector subspace of Fn+1, referred
to as an [n + 1, k + 1]F -code. The generator matrix G ∈ F (k+1)×(n+1) of an
[n+1, k+1]F linear code C ensures that every element in C can be expressed as
�x ·G, for an appropriate �x ∈ F k+1. Given a generator matrix G, the row-span of
G, i.e., the code generated by G, is represented by 〈G〉. A generator matrix G is
in the standard form if G = [Ik+1|P ], where Ik+1 ∈ F (k+1)×(k+1) is the identity
matrix and P ∈ F (k+1)×(n−k) is the parity check matrix. In our work, we always
assume that the generator matrices are in their standard form.

Let C ⊆ Fn+1 be the linear code that G generates. The dual code of C,
represented by C⊥ ⊆ Fn+1, is the set of all elements in Fn+1 that are orthogonal
to every element in C. The dual code of an [n + 1, k + 1]F -code happens to
be an [n + 1, n − k]F -code. The generator matrix H for the dual code of the
[n+1, k+1]F linear code C generated by G = [Ik+1|P ] satisfies H = [−P ᵀ|In−k],
where P ᵀ ∈ F (n−k)×(k+1) is the transpose of the matrix P ∈ F (k+1)×(n−k). For
brevity, we shall refer to the generator matrix H as the dual of the generator
matrix G.

Maximum Distance Separable Codes. The distance of a linear code is the
minimum weight of a non-zero codeword. An [n, k]F -code is maximum distance
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separable (MDS) if its distance is (n − k + 1). Furthermore, the dual code of an
[n, k]F -MDS code is an [n, n − k]F -MDS code.

Massey Secret-Sharing Scheme. Let C ⊆ Fn+1 be a code (not necessarily
a linear code). Let s ∈ F be a secret. The secret-sharing scheme picks a random
element (s, s1, . . . , sn) ∈ C to share the secret s. The secret shares of parties
1, . . . , n are s1, . . . , sn ∈ F , respectively. Below, we elaborate on the Massey
secret-sharing scheme and its properties specifically for a linear code C such
that its generator matrix G+ is in the standard form.

Recall that the set of all codewords of the linear code generated by the
generator matrix G+ ∈ F (k+1)×(n+1) is

{
�y : �x ∈ F k+1, �x · G+ =: �y

} ⊆ Fn+1.

For such a generator matrix, its rows are indexed by {0, 1, . . . , k} and its columns
are indexed by {0, 1, . . . , n}. Let s ∈ F be the secret. The secret-sharing scheme
picks independent and uniformly random r1, . . . , rk ∈ F . Let

(y0, y1, . . . , yn) := (s, r1, . . . , rk) · G+.

Observe that y0 = s because the generator matrix G+ is in the standard form.
The secret shares for the parties 1, . . . , n are s1 = y1, s2 = y2, . . . , sn = yn,
respectively. Observe that every party’s secret-share is an element of the field
F . Of particular interest will be the set of all secret shares of the secret s = 0.
Observe that the secret-shares form an [n, k]F -code that is 〈G〉, where G =
G+

{1,...,k}×{1,...,n}. Note that the matrix G is also in the standard form. The
secret shares of s ∈ F ∗ form the affine space s · �v + 〈G〉, where �v = G+

0,{1,...,n}.
Refer to Fig. 1 for a pictorial summary.

Suppose parties i1, . . . , it ∈ {1, . . . , n} come together to reconstruct the secret
with their, respective, secret shares si1 , . . . , sit

. Let G+
∗,i1

, . . . , G+
∗,it

∈ F (k+1)×1

represent the columns indexed by i1, . . . , it ∈ {1, . . . , n}, respectively. If the
column G+

∗,0 ∈ F (k+1)×1 lies in the span of
{
G+

∗,i1
, . . . , G+

∗,it

}
then these parties

can reconstruct the secret s using a linear combination of their secret shares.
If the column G+

∗0 does not lie in the span of
{
G+

∗,i1
, . . . , G+

∗,it

}
then the secret

remains perfectly hidden from these parties. The perfectly-hiding property is
specific to the case that a linear code is used for the Massey secret-sharing
scheme. In particular, this perfectly-hiding property need not necessarily hold
for Massey secret-sharing schemes that use a non-linear secret-sharing scheme.

In this document, we shall use the “Massey secret-sharing scheme of G+”
to refer to the Massey secret-sharing scheme corresponding to the linear code
generated by the generator matrix G+. The underlying field F , the length of
the code (n + 1), and the rank (k + 1) of the linear code are implicit given the
definition of the generator matrix G+. These parameters, in turn, define the space
of the secret-shares, the total number of parties, and the randomness needed to
generate the secret shares for the Massey secret-sharing scheme, respectively.

Specific Linear Codes. The (punctured) Reed-Solomon code of rank (k+1)
and evaluation places �X = (X1, . . . , Xn) ∈ (F ∗)n, where i �= j implies Xi �= Xj ,
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is the following code. Let f(X) be the unique polynomial with F -coefficients
and degree � k such that f(0) = y0, f(X1) = y1, f(X2) = y2, . . . , f(Xk) = yk,
for any y0, y1, . . . , yk ∈ F . Define ck+1 = f(Xk+1), . . . , cn = f(Xn). The set
of all codewords (y0, y1, . . . , yk, ck+1, . . . , cn) ∈ Fn+1 is an [n + 1, k + 1]F -code.
Furthermore, the mapping

(y0, y1, . . . , yk) → (y0, y1, . . . , yk, ck+1, . . . , cn)

is linear and a generator matrix in the standard form establishes this mapping.

Specific Secret-Sharing Schemes. Shamir’s secret-sharing scheme is the
Massey secret-sharing scheme corresponding to (punctured) Reed-Solomon
codes. Suppose the evaluation places of the (punctured) Reed-Solomon code are
�X = (X1, . . . , Xn) ∈ (F ∗)n. Suppose the secret is s ∈ F . Let f(X) be the unique
polynomial with F -coefficients and degree � k such that f(0) = s, f(X1) =
r1, . . . , f(Xk) = rk. Define the secret shares (s1, . . . , sn), where si = f(Xi), for
all i ∈ {1, . . . , n}.

2.4 Locally Leakage-Resilient Secret-Sharing Scheme

Fix a finite field F and an n-party secret-sharing scheme for secrets s ∈ F ,
where every party gets an element in F as their secret share. An (n,m) local
leakage function �L = (L1, . . . , Ln) is an n-collection of m-bit leakage functions
Li : F → {0, 1}m, for i ∈ {1, . . . , n}. Note that there are a total of 2mn·|F |

different (n,m) local leakage functions. Let �L(s) be the joint distribution of
the (n,m) leakage function �L over the sample space ({0, 1}m)n defined by the
experiment: (a) sample secret shares (s1, . . . , sn) for the secret s, and (b) output
(L1(s1), . . . , Ln(sn)). We emphasize that the secret-sharing scheme and the finite
field F shall be evident from the context. So, we do not include the description
of the secret-sharing scheme and the finite field in the random variables above
to avoid excessively cumbersome notation.

A secret-sharing scheme for n-parties is (m, ε)-locally leakage-resilient secret-
sharing scheme if, for all (n,m) local leakage functions �L = (L1, . . . , Ln) and
secret pairs (s(0), s(1)), the statistical distance between the leakage joint distri-
butions �L(s(0)) and �L(s(1)) is at most ε.

For brevity, we shall say that a generator matrix G is (m, ε)-locally leakage-
resilient if the Massey secret-sharing scheme corresponding to the linear code
generated by G is (m, ε)-locally leakage-resilient.

3 Leakage-Resilience of Random Linear Codes

In this section, we prove Corollary 1. We start by recalling some notations. Refer
to Fig. 1 for a pictorial summary of the notations. The secret shares of 0 is the
vector space

(0, r1, . . . , rk) · G{0,...,k},{1,...,n} ∈ Fn.
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1

Ik −Rᵀ In−k
R

�v

Fig. 1. The matrix on the left is G+ = [Ik+1 | P ], where P is the random matrix
in the shaded region. The indices of rows and columns of G+ are {0, 1, . . . , k} and
{0, 1, . . . , n}, respectively. The blue G = [Ik | R] is a submatrix of G+. The vector
highlighted in red is the vector �v. On the right-hand side, we have the matrix H, where
〈H〉 is the dual code of 〈G〉. (Color figure online)

Observe that this vector space is an [n, k]F -code, represented by 〈G〉, where
G = G+

{1,...,k},{1,...,n}. Each element of 〈G〉 is equally likely to be chosen as the
secret share for the n parties. Next, consider the secret s ∈ F ∗. The secret shares
of s form the affine space

(s, r1, . . . , rk) · G+
∗,{1,...,n} ∈ Fn.

Observe that, one can express this affine space as

s · �v + 〈G〉 ⊆ Fn,

where �v = G+
0,{1,...,n} ∈ Fn.

To demonstrate that the Massey secret-sharing scheme corresponding to the
linear code generated by a generator matrix G+ ∈ F (k+1)×(n+1) is vulnerable
to leakage attacks, the adversary needs to present two secrets s(0), s(1) ∈ F and
an (n,m) local leakage function �L such that the statistical distance between the
joint leakage distributions for these two secrets is large.

First Attempt. Fix an (n,m) local leakage function �L. Let �	 ∈ ({0, 1}m)n be
a leakage value. Let L−1

i (	i) ⊆ F be the subset of i-th party’s secret shares such
that the leakage function Li outputs 	i ∈ {0, 1}m as output. Therefore, we have
si ∈ L−1

i (	i) if and only if Li(si) = 	i. Furthermore, the leakage is �	 if and only
if the secret shares �s belongs to the set

�L−1(�	) := L−1
1 (	1) ×· · · × L−1

n (	n).

So, the probability of the leakage being �	 conditioned on the secret being s(0) is

1

|F |k
·
∣∣∣ s(0) · �v + 〈G〉 ∩ �L−1(�	)

∣∣∣ .

Similarly, the probability of the leakage being �	 conditioned on the secret
being s(1) is

1

|F |k
·
∣∣∣ s(1) · �v + 〈G〉 ∩ �L−1(�	)

∣∣∣ .
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The absolute value of the difference in the probabilities is, therefore, the following
expression.

1

|F |k
·
∣∣∣∣∣

∣∣∣s(0) · �v + 〈G〉 ∩ �L−1(�	)
∣∣∣ −

∣∣∣s(1) · �v + 〈G〉 ∩ �L−1(�	)
∣∣∣

∣∣∣∣∣.

The statistical distance between the joint leakage distributions is

1
2

· 1

|F |k
∑

��∈({0,1}m)n

∣∣∣∣∣
∣∣∣s(0) · �v + 〈G〉 ∩ �L−1(�	)

∣∣∣ −
∣∣∣s(1) · �v + 〈G〉 ∩ �L−1(�	)

∣∣∣
∣∣∣∣∣.

(1)
If the expression in Eq. 1 is � ε for all (n,m) leakage functions �L and all pairs
of secrets s(0) and s(1), then the generator matrix G+ is (m, ε)-locally leakage-
resilient.

Remark 2. Observe that if one can choose �L to ensure that any codeword �c ∈ 〈G〉
that belongs to �L−1(�	) (for some �	) also has �c + s(1) ·�v �∈ �L−1(�	) for some secret
s(1), then the expression in Eq. 1 is identical to 1.

For example, if the finite field is characteristic-2, even with m = 1 bit leakage
from each secret share, an adversary can ensure this condition. The attack works
as follows. Suppose the secret s can be reconstructed by α1s1 +α2s2 + · · ·+αksk

where α1, . . . , αk are fixed field elements and si is the i-th secret share. The
adversary leaks the least significant symbol bi of αisi from the i-th secret share.
Afterwards, the adversary can reconstruct the least significant symbol of the
secret s by computing b1 ⊕ b2 ⊕ · · · ⊕ bk. This leakage attack extends to linear
secret-sharing schemes over finite fields with small characteristics. More specifi-
cally, the above attack generalize to characteristic-p field when the adversary is
allowed to leak �log p� bits from each secret share.

Recall that the number of (n,m) local leakage functions is 2mn·|F |. One
encounters the following hurdle while proceeding by the union bound technique
to prove our result. Suppose that for every leakage function �L there is one gener-
ator matrix such that the statistical distance in Eq. 1 is > ε. Using näıve union
bound technique, one shall rule out 2mn·|F | generator matrices. However, there
are only a total of |F |(k+1)×(n−k) generator matrices. For the event of encounter-
ing generator matrices that are (m, ε)-locally leakage-resilient with high proba-
bility, we shall require

2mn·|F | 
 |F |(k+1)·(n−k) ∼ 2kn·log2|F |.

For simplicity, consider the minimal non-trivial case of m = 1 and k = n(1 −
o(1)). Our result is impossible to prove even for this minimal non-trivial case
where |F | = p � 2λ−1 and m = 1.

Remark 3. We note that the recent result of [39] uses a union bound technique.
In their work, however, they consider physical-bit leakage functions. The total
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number of physical-bit leakage functions is extremely small;9 otherwise, their
approach (despite all the exciting new technical tools) would not have worked.

Remark 4. In the active adversary setting, to the authors’ best knowledge, union
bound (over all possible adversaries) is the only general technique known in the
literature. See, for instance, the probabilistic proofs of the existence of non-
malleable extractors [19] and non-malleable codes [16,22]. The proof of [16] even
employs non-linear codes (which provide significantly more degrees of freedom in
designing the encoding schemes) to push a “union bound based proof” through.

A New Set of Tests. To circumvent the hurdles associated with the näıve
union bound, we propose a new set of tests. We emphasize that it is non-trivial
to prove that if a generator matrix G passes all these tests, then G+ is (m, ε)-
locally leakage-resilient. Section 3.3 elaborates this implication. The inspiration
for these tests stems from the literature in pseudorandomness [53,54].10

Recall that G+ ∈ F (k+1)×(n+1) is the generator matrix of the code, and
G+ = [Ik+1|P ] is in the standard form, where P ∈ F (k+1)×(n−k). The secret
shares of secret 0 is the [n, k]F -code 〈G〉. The matrix G is also in the standard
form, say G = [Ik|R], where R = P{1,...,k}×{1,...,n−k} ∈ F k×(n−k). Then, the
matrix H = [−Rᵀ|In−k] generates the dual code of the code generated by the
matrix G = [Ik|R]. We introduce the matrix H because it is easy to express our
tests using the row-span of H, i.e. 〈H〉.

Fix parameters σ ∈ [0, 1], γ ∈ N, and a ∈ N. The set of all tests Testσ,γ,a

is defined as follows. Every test is additionally indexed by (�V , J), where �V =
(V1, . . . , Vn), each Vi is a size-γ subset of the finite field F , and J is a size-
(1 − σ) · n subset of {1, . . . , n}. A codeword c ∈ Fn fails the test indexed by
(�V , J) if cj ∈ Vj , for all j ∈ J .

The generator matrix H fails the test indexed by (�V , J) if at least an code-
words fail this test. The generator matrix H passes Testσ,γ,a if H does not fail
for any test in Testσ,γ,a.

Lemma 1 (Technical Lemma 1). Let G+ be the generator matrix of an
[n + 1, k + 1]F -code. Consider a Massey secret-sharing scheme corresponding to
the linear code 〈G+〉. Let 〈G〉 be the [n, k]F -code formed by the set of all secret
shares of the secret 0. Let 〈H〉 be the [n, n − k]F -code that is the dual code of
〈G〉. Let Testσ,γ,a be a set of tests, where γ = 2m · T 2 and T ∈ N. If H passes
Testσ,γ,a, 〈H〉 is an MDS code, and σ ∈ (0, 2k/n − 1], then G+ is (m, ε)-locally
leakage-resilient, where

ε = 2−(log2(Cm)·(k/n)−log2(a)−h2(σ))·n + 2−(log2(T )·σ−(σ+k⊥/n)m−h2(σ))·n,

9 For example, consider a physical-bit leakage function that leaks one bit from the
field F . There are log2 |F | such functions. In comparison, there are 2|F | general 1-bit
leakage functions.

10 Intuitively, a set whose correlation with any Fourier character is small can be inter-
preted as a pseudorandom object. On the other side, a large Fourier coefficient
indicates a correlation with a Fourier character; thus, the object is not pseudoran-
dom. In a similar spirit, as we shall explain, our tests find whether a code 〈H〉 has
many codewords with large Fourier coefficients or not.
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and Cm > 1 is a suitable constant depending on m.11

Remark 5. Note that this lemma is where we inherently need k > n/2. Other-
wise, we are unable to pick a σ. We discuss this barrier further when we go into
the proof in Remark 6 and Sect. 4.

In Sect. 3.1, we shall set the parameters properly to ensure the insecurity is
negligible. There are potentially several techniques to prove this result. We prove
this technical lemma using Fourier analysis in Sect. 3.3.

Most Matrices Pass the Tests. Let us do a sanity check first. The total
number of tests in Testσ,γ,a is

(|F |
γ

)n

·
(

n

(1 − σ)n

)
= Θ|F |γ·n · 2h2(σ)·n.

Furthermore, the total number of generator matrices G is |F |k·(n−k). So, it is
plausible that the union bound technique may work for this result.

However, näıve accounting does not suffice. Section 3.2 presents the careful
accounting needed to prove the following result.

Lemma 2 (Technical Lemma 2). Fix constant σ, γ, a. Let p � 2λ−1 be a
prime and limλ→∞ n/λ ∈ (0, 1), where λ is the security parameter. Let G+ be
the generator matrix of an [n + 1, k + 1]F -code in the standard form such that
each element of its parity check matrix is independently and uniformly chosen
from F , where constant k/n ∈ (σ, 1). Consider a Massey secret-sharing scheme
corresponding to the linear code 〈G+〉. Let 〈G〉 be the [n, k]F -code formed by the
set of all secret shares of the secret 0. Let 〈H〉 be the [n, n − k]F -code that is the
dual code of 〈G〉. Then, the following bound holds.

Pr
G+

$←−G+

[H is MDS and passes Testσ,γ,a] = 1 − 2−(1−n/λ)·λ − exp(−Θλ3).

3.1 Parameter Setting for Corollary 1

Before we go into the proof of Lemmas 1 and 2, let us first show how we can
set up the parameters in both lemmas to imply Corollary 1. Let us restate the
corollary first.

Corollary 4. (Restatement of Corollary 1). Fix constants m ∈ N, δ ∈
(0, 1), and η ∈ (0, 1). Define n = (1 − η) · λ and k = (1/2 + δ) · n. Let F
be a prime field of order ∈ {2λ−1, . . . , 2λ − 1}. For all sufficiently large λ, the
Massey secret-sharing scheme corresponding to a random [n + 1, k + 1]F -code
is (m, ε)-locally leakage-resilient, where ε = exp(−Θλ), except with exp(−Θλ)
probability.

The sequence of parameter choices is as follows. We emphasize that all param-
eters below are constants.
11 Refer to the full version [40] for the relation between m and the constant Cm.
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1. We are given the number of bits leaked from each share m and the target
threshold δ as constants. Therefore, Cm > 1 is also fixed as a constant.

2. We shall pick constants σ > 0 and a > 1 arbitrarily satisfying the following
constraints.
(a) σ < min(2δ, 1/2 + δ). This parameter choice ensures that σ < 2k/n − 1

and σ < k/n.
(b) log2(Cm) · (1/2 + δ) − log2(a) − h2(σ) > 0. This choice ensures that the

first part in the expression of ε in Lemma 1 is negligible.
3. Next, we pick any constant T satisfying log2(T ) · σ − (σ + (1/2 − δ)) m −

h2(σ) > 0. This choice ensures that the second part in the expression of ε in
Lemma 1 is negligible.

4. Since we have picked T , this implicitly fixes γ as γ = 2m · T 2.

Clearly, all the steps above are feasible, and we have now fixed all the con-
stants involved. One can verify that all the prerequisites of Lemmas 1 and 2 are
satisfied. Consequently, Lemmas 1 and 2 together imply that the Massey secret-
sharing scheme corresponding to a random linear code is negligibly-insecure with
overwhelming probability.

As a concrete example, suppose m = 1, n = 0.97λ, and k = 0.49λ. In this
case Cm =

√
2, by setting, σ = 0.01, a = 1.5, and T = 250, one can verify that

λ > 2000 ensures that we achieve 2−50-insecurity.12

3.2 Proof of Lemma 2

The proof of Lemma 2 proceeds by a combinatorial argument. Fix a test (�V , J)

in the set of tests Testσ,γ,a. Consider the experiment where G+ $←− G+, and
H ∈ F k⊥×n be the matrix corresponding to G+ as described in the statement
of Lemma 2, where k⊥ = n−k. Our entire analysis is for this distribution of the
matrix H.

Observe that 〈H〉 is a maximum distance separable (MDS) code, with high
probability. We defer the proof of this claim to the full version [40].

Claim 2. The linear codes 〈G〉 and 〈H〉 are maximum distance separable codes,
except with probability (at most) 2n/p = exp(−Θλ).

Henceforth, our analysis shall assume that G+ is random as well as 〈G〉 and 〈H〉
are MDS (without loss of generality). Therefore 〈G〉 is an [n, k]F -MDS code and
〈H〉 is an [n, k⊥]F -MDS code, where k⊥ = n − k. Recall that H = [−Rᵀ|In−k],
where every element of −Rᵀ is independent and uniformly random over F .

Without loss of generality, assume that J = {σn + 1, σn + 2, . . . , n}. Among
the indices in J , let us fix the indices J ′ = {k+1, k+2, . . . , n} as the information
set for the linear code 〈H〉.13 Let us fix a set of witnesses B ⊆ F k⊥

of size an.
12 For similar range of parameter choices, e.g., when n is close to λ, the dominant

failure probability is the probability that a random matrix is not MDS, which is
2n−λ.

13 Since 〈H〉 is MDS, we can pick any k⊥ coordinates to be the information set. We
choose the last k⊥ coordinates (to coincide with the In−k block identity matrix of
H) for simplicity. All remaining coordinates of a codeword in 〈H〉 are derived via a
linear combination of the information set.
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Objective. Over the distribution of 〈H〉, what is the probability that every
codeword c ∈ 〈H〉 such that c restricted to the information set J ′ is in the set B

fails the test (�V , J)? That is, compute the probability of the event “if cJ ′ ∈ B
then cj ∈ Vj , for all j ∈ J .”

Proof for a Weaker Bound. The total number of choices for �V is at most
(|F |γ)n = |F |γ·n. The total number of choices for J is at most

(
n

(1−σ)n

)
= 2h2(σ)·n.

Finally, the total number of sets of witnesses B is at most
(
γk⊥

an

)
.14 Therefore,

the total number of possibilities is

|F |γ·n · 2h2(σ)·n ·
(

γk⊥

an

)
. (2)

Next, fix a column index j ∈ J \ J ′ = {σn + 1, σn + 2, . . . , k}. Pick one
non-zero witness �d(1) ∈ B. Over the randomness of choosing H∗,j , the random
variable �d(1) · H∗,j is uniformly random over the field F . So, the probability of
this coordinate being in Vj is γ/ |F |. This statement is true for all j ∈ J \ J ′

independently. Therefore, for all j ∈ J \J ′, the probability of the j-th coordinate
of the codeword �d(1) · H being in Vj is

(
γ

|F |
)(1−σ)n−k⊥

.

Now, choose a second witness �d(2) ∈ B. Suppose �d(2) is a scalar multiple
of �d(1). In this case, the random variables d(1) · H∗,j and �d(2) · H∗,j are scalar
multiples of each other as well. However, if �d(2) is not in the span of �d(1), then
the random variable �d(2) · H∗,j is uniformly random over the field F and (most
importantly) independent of the random variable �d(1) ·H∗,j . Therefore, the prob-
ability of all coordinates of the codeword �d(2) ·H indexed by j ∈ J \J ′ being in Vj

is (independently) (γ/|F |)(1−σ)n−k⊥
. We highlight that if, indeed, the witnesses

are linearly dependent then the columns are linearly dependent as well. Conse-
quently, identifying linearly independent witnesses seems necessary (not merely
sufficient) for our proof strategy to succeed.

Generalizing this technique, one claims the following result. We defer the
proof to the full version [40].

Claim 3. Fix any r linearly independent �d(1), �d(2), . . . , �d(r) ∈ F k⊥
. For all j ∈

J \ J ′, over the randomness of choosing H∗,j, the distribution of the random
matrix

14 Because there are γ options for every k⊥ information coordinates in 〈H〉. Among

these γk⊥
choices for the information coordinates, one can choose any an of them

as the witness set B.
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(
�d(i) · H∗,j

)j∈J\J ′

i∈{1,2,...,r}

is identical to the uniform distribution over F r×((1−σ)n−k⊥).

Consequently, the probability of all the codewords corresponding to these r lin-
early independent witnesses in B failing the test (V, J) is

[(
γ

|F |
)(1−σ)n−k⊥]r

(3)

Now how many linearly independent witnesses can one identify among an

witnesses of B? Towards this objective, we prove a bound similar in spirit to
matrix rank lower bounds from communication complexity theory. We defer the
proof to the full version [40].

Claim 4 (Rank bound for ‘Bounded-Diversity’ Matrices). Let M ∈
Fu×v, where u = 2αv, be an arbitrary matrix such that each row of this matrix
is distinct. Suppose every column j ∈ {1, . . . , v} of M satisfies

∣∣∣{M1,j ,M2,j , . . . ,Mu,j}
∣∣∣ � γ.

Then, rank(M) � α
log2 γ · v.

Back to Proving Lemma 2. Construct M such that every row of M is a witness
in B. Therefore, the matrix M ∈ Fu×v, where u = an and v = k⊥. Applying
Claim 4 for u = an = 2log2(a)·n and v = k⊥, we get r � log2 a

log2 γ · k⊥. For our end
application scenario, we shall have k⊥ = Θn, and positive constant a and γ � 2.
Therefore, we shall have r = Θn. So, the probability expression in Eq. 3 effec-
tively behaves like |F |−Θn2

. On the other hand, the total number of possibilities

given by Eq. 2 are dominated by |F |γn and
(
γk⊥

an

)
� γk⊥·an

. When n � Θlog λ,
using union bound, one can conclude that the probability of a random 〈H〉 failing
some test (�V , J) with some witness B is 1 − exp(−Θλ).

However, n � Θlog λ is unacceptably small. Our objective is to achieve n =
Θλ. In fact, we have recklessly indulged in significant over-counting. Let us fix
this proof to get the desired bound.

Final Fix. Observe that we do not need to pick B of size an from Vk+1×· · ·×Vn.
For any B, identify the (unique) lexicographically smallest set B̂ ⊆ B of r linearly
independent witnesses. In the analysis presented above, we have significantly
over-counted by separately considering all B ⊇ B̂. To fix this situation, we
consider the argument below that analyzes B̂ to account for all B ⊇ B̂.

Now, fix the (canonical) set B̂ of r linearly independent witnesses. The proof
above says that the probability of a random 〈H〉 failing the test (�V , J) with

some witness B ⊇ B̂ is at most (γ/|F |)((1−σ)n−k⊥)·r. We emphasize that B may
have more linearly independent elements; however, it is inconsequential for our
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analysis. So, we need only to pick B̂ of size r such that the witnesses are linearly
independent of each other. Consequently, the total number of possibilities of
Eq. 2 drastically reduces to the following bound.

|F |γ·n · 2h2(σ)·n ·
(

γk⊥

r

)
, (4)

where r = log2 a
log2 γ · k⊥. Now, we can put together the total number of witnesses of

Eq. 4 with the failure probability of Eq. 3 using a union bound. The probability
that a random 〈H〉 fails some test (�V , I) witnessed by r linearly independent
witnesses in B̂ is at most

|F |γ·n · 2h2(σ)·n ·
(

γk⊥

r

)
·
(

γ

|F |
)((1−σ)n−k⊥)·r

� |F |γ·n · 2h2(σ)n ·���γk⊥·r · γ(1−σ)n·r−��k⊥·r · 1

|F |((1−σ)n−k⊥)r

= |F |γn · 2h2(σ)·n · 2(1−k/n)(1−σ) log2(a)·n2 · 1

|F |(logγ a)(1−k/n)(k/n−σ)·n2 .

In our scenario, we have constant k/n ∈ (σ, 1), constant a, and limλ→∞ n/λ ∈
(0, 1). For these setting of the parameters, the numerator is dominated by the
term 2Θλ2

. Furthermore, we have constant γ, so the denominator is 2Θλ3
. So,

the probability expression above is exp(−Ω (λ)).
To summarize, we incur two forms of failures in our analysis. (1) 〈H〉 is not

MDS, and (2) 〈H〉 fails some test. The probability of the first failure is exp(−Θλ),
and the probability of the second failure is exp(−Ω (λ)).

3.3 Proof of Lemma 1

We prove Lemma 1 using Fourier analysis. The full version [40] provides the
preliminaries of Fourier analysis that suffices for the proofs in this paper.

To begin, let us summarize what we are provided. We are given a fixed
generator matrix H ∈ F k⊥×n, where k⊥ = (n − k). The code 〈H〉 is MDS and
the matrix H passes all tests in Testσ,γ,a, where γ = 2m · T 2.

Consider any (n,m) local leakage function �L = (L1, . . . , Ln), such that each
Li : F → {0, 1}m. Our objective is to prove that this leakage function cannot
distinguish the secret shares of the secret 0 from the secret 1. Fix any i ∈
{1, . . . , n} and leakage 	 ∈ {0, 1}m. Let 1i,� : F → {0, 1} be the indicator function
for Li(si) = 	, where si is the secret share of party i.

Claim 5. Let i ∈ {1, . . . , n} and 	 ∈ {0, 1}m. The size of the following set is at
most T 2.

Bigi,� =
{

α : α ∈ F,
∣∣∣1̂i,�(α)

∣∣∣ � 1/T
}

.
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This result follows from Parseval’s identity, and that function 1i,� has a binary
output. Refer to the full version [40] for a proof of this claim. Given the leakage
function �L = (L1, . . . , Ln) and i ∈ {1, . . . , n}, define the sets

Vi =
⋃

�∈{0,1}m

Bigi,�.

Extend each Vi arbitrarily, if needed, to be of size γ = 2mT 2. Now, we have
defined the �V = (V1, . . . , Vn) corresponding to the leakage function �L.

Algebraization of Leakage-Resilience. Benhamouda et al. [7] showed that
proving that the statistical distance expression in Eq. 1 is smaller than some
quantity is implied by upper-bounding the analytical expression below by the
same quantity. That is,

SD
(
�L(s(0)), �L(s(1))

)

=
1
2

∑
�∈({0,1}m)n

∣∣∣∣∣∣
∑

α∈〈H〉

n∏
i=1

1̂i,�i
(αi) · ωαi·s(0)·vi −

∑
α∈〈H〉

n∏
i=1

1̂i,�i
(αi) · ωαi·s(1)·vi

∣∣∣∣∣∣
(5)

�
∑

�x∈F k⊥ \{0k⊥}

∑
��=(�1,...,�n)∈({0,1}m)n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ . (6)

For completeness, we include proof of this in the full version [40]. We now proceed
to upper bound this expression for an H that passes all tests in Testσ,γ,a.

Remark 6. We emphasize that the analytical expression above is only an upper
bound to the statistical distance. We show that using the expression above as
a proxy to analyze the exact statistical distance encounters some bottlenecks.
Section 4 highlights one such bottleneck.

Upper-Bounding Eq. 6. We partition the elements �x ∈ F k⊥ \ {0k⊥} into two
sets.

Bad :=
{

�x : ∃J s.t. �x �= 0n & �x · H fails the test indexed by (�V , J) ∈ Testσ,γ,a

}
.

We emphasize that J ⊆ {1, 2, . . . , n} is of size (1 − σ)n. The remaining elements
form the subset

Bad =
(
F k⊥ \ {0k⊥}

)
\ Bad.

Next, we upper-bound the expression of Eq. 6 for elements �x ∈ Bad and �x ∈ Bad
separately.
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Upper Bound: Part 1. First we consider the sum of Eq. 6 restricted to �x ∈ Bad.

∑
�x∈Bad

∑
��∈({0,1}m)n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣

=
∑

�x∈Bad

n∏
i=1

∑
�i∈{0,1}m

∣∣∣1̂i,�i
(�x · H∗,i)

∣∣∣

� an2h2(σ)n · max
�x∈Bad

n∏
i=1

∑
�i∈{0,1}m

∣∣∣1̂i,�i
(�x · H∗,i)

∣∣∣ (7)

The last inequality is due to the fact that there are
(

n
(1−σ)n

)
= 2h2(σ)n subsets J ,

and each test indexed by (V, J) has at most an different codewords failing it.15

Next, fix any element �x ∈ Bad. The codeword �x · H has < k⊥ zeroes.16

Therefore, the codeword �x · H has > k elements from F ∗. Using this property,
we claim the following result.

Claim 6. Let 〈H〉 be an [n, n − k]F -MDS code, and �x ∈ F k⊥ \ {0k⊥} be an
arbitrary message. Then, there exists a constant Cm > 1 such that

n∏
i=1

∑
�i∈{0,1}m

∣∣∣1̂i,�i
(�x · H∗,i)

∣∣∣ � C−k
m .

We defer the proof to the full version [40]. Substituting this upper bound in
Eq. 7, we get the following upper bound

2−(log2(Cm)·(k/n)−log2(a)−h2(σ))·n, (8)

which completes the first upper bound. By picking our parameters as in Sect. 3.1,
this upper bound is negligibly small.
Upper Bound: Part 2. Now, it remains to upper-bound

∑

�x∈Bad

∑
��∈({0,1}m)n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ .

The crucial observation about any codeword c = �x·H ∈ Bad is the following. The
number of j ∈ {1, . . . , n} such that cj �∈ Vj is at least σn. For the coordinates
where cj �∈ Vj , we utilize the fact that the magnitude of the Fourier coefficients
contributed in the above expression is at most 1/T . Based on these observations,
using Fourier analysis, we prove the following bound.
15 Since H passes all tests in the set Testσ,γ,a, at most an codewords fail any test

indexed by (�V , J).
16 If the codeword has k⊥ zeroes, we can choose their indices as the information set

(because 〈H〉 is MDS). That implies that the entire codeword is 0n, which contradicts
the fact that Bad has non-zero elements.
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Claim 7. For 0 < σ � 1 − 2k⊥/n, the expression above is upper-bounded by

2−(log2(T )·σ−(σ+k⊥/n)m−h2(σ))·n.

A proof of this claim is provided in the full version [40]. By picking our param-
eters as in Sect. 3.1, this upper bound is negligibly small.

Remark 7. We highlight that if we pick a σ such that σ > 1 − 2k⊥/n, then
näıvely using the analysis above yields an upper bound of

pk⊥−(1−σ)n/2 · 2−(log2(T )·σ−(σ+k⊥/n)m−h2(σ))·n.

The full version [40] of our paper present a proof sketch of this bound. Observe
that the leading term pΘλ forces the choice of T to be ω (1). However, in our
analysis, we crucially rely on T to be a constant.

In particular, if 2k⊥ > n, no suitable σ can be choosen to avoid this bottle-
neck. We discuss this barrier further in Sect. 4.

4 The k > n/2 Barrier

In this section, we discuss why k > n/2 is inherently required for the current
proof techniques (which are common to [7,39] and this work). In particular, we
pinpoint the step where one uses Eq. 6 to upper bound the Eq. 5 as the place
where this barrier arises.17 That is, when one uses the magnitude of the Fourier
coefficients to upper bound the statistical distance as

∑

�x∈F k⊥ \{0k⊥}

∑
��∈({0,1}m)n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ .

To justify our claim, we prove the following theorem.

Theorem 1. There exists a leakage function �L that leaks one bit from each share
such that the following holds. Let 〈G〉 be any [n, k]F code such that k < n/2. Let
〈H〉 be the dual code of 〈G〉. The above equation is lower bounded by 1. That is,

∑

�x∈F k⊥ \{0k⊥}

∑
��∈{0,1}n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ � p(n−2k)/2 > 1.

Consequently, one cannot prove any meaningful upper-bound when k < n/2.

In fact, we identify the leakage function explicitly as follows. Define the set of
quadratic residues as

QR := {α ∈ F : ∃β s.t. β2 = α}.

17 Note that Eq. 5 is an identity transformation of the statistical distance. Hence, the
proof until this step must not produce any barriers.
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Define �L = (L1, . . . , Ln) as for all i ∈ {1, 2, . . . , n},

Li(x) :=

{
1 if x ∈ QR
0 if x /∈ QR .

By standard techniques in the Fourier analysis and the well-known facts about
the quadratic Gaussian sum, one can verify this theorem with this particular
leakage function. We refer the readers to the full version [40] for a detailed
proof.

5 Leakage-Resilience of Shamir’s Secret-Sharing

In this section, we present our result that Shamir’s secret-sharing with threshold
k and n parties is leakage-resilient when k � 0.8675n. This improves the state-of-
the-art result of Benhamouda et al. [7]. In fact, we prove a more general theorem
as follows.

Theorem 2. There exists a universal constant p0 such that, for all finite field
F of prime order p > p0, the following holds. Let G+ be an arbitrary MDS
[n + 1, k + 1]F code such that k � 0.8675n. The Massey secret-sharing scheme
corresponding to G+ is (1, exp(−Θn)-leakage-resilient.

As Shamir’s secret-sharing is a Massey secret-sharing scheme corresponding to
the punctured Reed-Solomon codes, this theorem applies to Shamir’s secret-
sharing directly.

We refer the readers to the full version [40] for a detailed proof. In what
follows, we present an overview of our proof. Starting from the upper bound
Eq. 6, i.e.,

∑

�x∈F k⊥ \{0k⊥ }

∑
��∈{0,1}n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ ,

our main idea is that we shall bound it with the exact information where the
zeros of the codeword (from 〈H〉) are. This is motivated by the fact that the
Fourier coefficient corresponds to 0 has the dominant weight.

Note that since 〈H〉 is an MDS [n, k⊥ = n − k]F -code, a non-zero codeword
from 〈H〉 has at most k⊥−1 zeros. For any collection of indices A ⊆ {1, 2, . . . , n}
such that |A| � k⊥ − 1, let us define set

SA := {�x | a ∈ A ⇐⇒ �x · H∗,a = 0} .

That is, the collection of messages whose codewords satisfy that 0 appears
exactly at those indices from A. Clearly, F k⊥ \

{
0k⊥

}
=

⋃
A : |A|�k⊥−1

SA. We

shall break the summation based on A, i.e.,

∑
A : |A|�k⊥−1

∑
�x∈SA

∑
��∈{0,1}n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ .



804 H. K. Maji et al.

To bound each summation over some A, i.e.,

ΓA :=
∑

�x∈SA

∑
��∈{0,1}n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ ,

we use the following ideas. (Refer to Fig. 2 for notations.)

B1 B2A1 A2 A3

D1 D2 D3

J1 J2 J3

Fig. 2. The dual generator matrix H ∈ F k⊥×n. We pick the first k⊥ columns as J1 and
the second k⊥ columns as J2. Let J3 be the rest of the columns. The set of columns
A = A1 ∪ A2 ∪ A3 is exactly where the codeword will be 0. We pick B1 and B2 to
ensure that |B1| + |A| = |B2| + |A| = k⊥.

We know the codewords are 0 at columns in A = A1 ∪ A2 ∪ A3 and non-zero
at columns outside A. Since �x · H∗,a = 0 for a ∈ A, bounding over columns
from A can be easily handled. Next, we shall use the worst-case bound to bound
the summation over columns from D1 ∪ D2 ∪ D3. Finally, for the columns of
B1 and B2, we let them enumerate all possibilities from F ∗ and bound them
appropriately.

We refer the readers to the full version [40] for the subtleties in the proof.
Overall, we are able to prove that

ΓA �
(π

2

)−(|A|+2k−n)

.

Finally, our upper bound is now

�
∑

A : |A|�k⊥−1

(π

2

)−(|A|+2k−n)

=
k⊥−1∑
i=0

2n
[
h2(i/n)−(i/n+2k/n−1) log2(π

2 )
]
.

Suppose k/n = σ, it suffices to ensure that

max
q∈[0,1−σ)

h2(q) − (q + 2σ − 1) log2(π/2) < 0.

We prove that σ � 0.8675 suffices, which completes the proof of the theorem.
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