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Preface

The 41st International Cryptology Conference (Crypto 2021), sponsored by the
International Association of Cryptologic Research (IACR), was held during August
16-20, 2021. Due to the ongoing COVID-19 pandemic, and for the second consecutive
year, Crypto was held as an online-only virtual conference, instead of at its usual venue
of the University of California, Santa Barbara. In addition, six affiliated workshop
events took place during the days immediately prior to the conference.

The Crypto conference continues its substantial growth pattern: this year’s offering
received a record-high 430 submissions for consideration, of which 103 (also a record)
were accepted to appear in the program. The two program chairs were not allowed to
submit a paper, and Program Committee (PC) members were limited to two submis-
sions each. Review and extensive discussion occurred from late February through
mid-May, in a double-blind, two-stage process that included an author rebuttal phase
(following the initial reviews) and extensive discussion by reviewers. We thank the
58-person PC and the 390 external reviewers for their efforts to ensure that, during the
continuing COVID-19 pandemic and unusual work and life circumstances, we nev-
ertheless were able to perform a high-quality review process.

The PC selected four papers to receive recognition via awards, along with invita-
tions to the Journal of Cryptology, via a voting-based process that took into account
conflicts of interest (the program chairs did not vote).

— The Best Paper Award went to “On the Possibility of Basing Cryptography on EXP
# BPP” by Yanyi Liu and Rafael Pass.

— The Best Paper by Early Career Researchers Award, along with an Honorable
Mention for Best Paper, went to “Linear Cryptanalysis of FF3-1 and FEA” by Tim
Beyne.

— Honorable Mentions for Best Paper also went to “Efficient Key Recovery for all
HFE Signature Variants” by Chengdong Tao, Albrecht Petzoldt, and Jintai Ding;
and “Three Halves Make a Whole? Beating the Half-Gates Lower Bound for
Garbled Circuits” by Mike Rosulek and Lawrence Roy.

In addition to the regular program, Crypto 2021 included two invited talks, by
Vanessa Teague on “Which e-voting problems do we need to solve?”” and Jens Groth
on “A world of SNARKs.” The conference also carried forward the long-standing
tradition of having a rump session, organized in a virtual format.

The chairs would also like to thank the many other people whose hard work helped
ensure that Crypto 2021 was a success:

— Vladimir Kolesnikov (Georgia Institute of Technology)—Crypto 2021 general
chair.

— Daniele Micciancio (University of California, San Diego), Thomas Ristenpart
(Cornell Tech), Yevgeniy Dodis (New York University), and Thomas Shrimpton
(University of Florida)—Crypto 2021 Advisory Committee.



Vi

Preface

Carmit Hazay (Bar Ilan University)—Crypto 2021 workshop chair.

Bertram Poettering and Antigoni Polychroniadou—Crypto 2021 rump session
chairs.

Kevin McCurley, for his critical assistance in setting up and managing the HotCRP
paper submission and review system, conference website, and other technology.
Kevin McCurley, Kay McKelly, and members of the IACR’s emergency pandemic
team for their work in designing and running the virtual format.

Anna Kramer and her colleagues at Springer.

July 2021 Tal Malkin

Chris Peikert
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Abstract. Suppose that n players want to elect a random leader and
they communicate by posting messages to a common broadcast channel.
This problem is called leader election, and it is fundamental to the dis-
tributed systems and cryptography literature. Recently, it has attracted
renewed interests due to its promised applications in decentralized envi-
ronments. In a game theoretically fair leader election protocol, roughly
speaking, we want that even a majority coalition cannot increase its own
chance of getting elected, nor hurt the chance of any honest individual.
The folklore tournament-tree protocol, which completes in logarithmi-
cally many rounds, can easily be shown to satisfy game theoretic secu-
rity. To the best of our knowledge, no sub-logarithmic round protocol
was known in the setting that we consider.

We show that by adopting an appropriate notion of approximate
game-theoretic fairness, and under standard cryptographic assumption,
we can achieve (1 — 1/2°()-fairness in 7 rounds for O(loglogn) <
r < O(logn), where n denotes the number of players. In particular,
this means that we can approximately match the fairness of the tourna-
ment tree protocol using as few as O(loglogn) rounds. We also prove a
lower bound showing that logarithmically many rounds are necessary if
we restrict ourselves to “perfect” game-theoretic fairness and protocols
that are “very similar in structure” to the tournament-tree protocol.

Although leader election is a well-studied problem in other contexts in
distributed computing, our work is the first exploration of the round com-
plexity of game-theoretically fair leader election in the presence of a pos-
sibly majority coalition. As a by-product of our exploration, we suggest
a new, approximate game-theoretic fairness notion, called “approximate
sequential fairness”, which provides a more desirable solution concept
than some previously studied approximate fairness notions.
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1 Introduction

Suppose that Murphy and Moody simultaneously solve a long-standing open
problem in cryptography and they each submit a paper with identical result
to CRYPTO’21. The amazing CRYPTO’21 program committee recommends a
hard merge of the two papers. Murphy and Moody decide to flip a random coin
over the Internet to decide who gets to present the result at the prestigious
CRYPTQ’21 conference, to be held on the beautiful virtual beaches of Santa
Barbara. Murphy and Moody both want to make sure that the outcome of the
coin toss is fair, even when the other player may be behaving selfishly. There
is good news and bad news. The bad news is that a famous lower bound by
Cleve [16] proved that a strong notion of fairness, henceforth called unbiasabil-
ity, is impossible in any n-player coin toss protocol in the presence of corrupt
majority. Specifically, for any r-round protocol, a coalition controlling half or
more of the players can implement an efficient attack that biases the outcome
by Q(%) This impossibility result also holds in the two-party setting where one
of the parties can be corrupt. This strong unbiasability notion is also the de
facto notion in the long line of work on multi-party computation [8,13,26]. The
good news is that Cleve’s lower bound is not a deal-breaker for Murphy and
Moody. In fact, they can simply run Blum’s celebrated coin toss protocol [10]:
each player picks a random bit and posts a commitment of the bit to a public
bulletin board (e.g., a broadcast channel, a blockchain); then both parties open
their committed bits and the XOR of the two bits is used to decide the winner.
If either player ever aborts from the protocol or opens the commitment wrongly,
it automatically forfeits and the other is declared the winner. Blum’s protocol is
not unbiasable, i.e., a player can indeed misbehave and bias the coin—however,
the bias will simply benefit the other player and hurt itself. Although not explic-
itly stated in Blum’s original paper, in fact, his celebrated protocol achieves a
game-theoretic notion of fairness which is strictly weaker than the de facto unbi-
asability notion. Specifically, no player can benefit itself or hurt the other by
deviating from the protocol, and thus the honest protocol is a Nash equilibrium
in which no player would be incentivized to deviate.

The above example shows that in the two-party setting, adopting a game the-
oretic notion of fairness allows us to circumvent the impossibility of fairness in
the corrupt majority setting [16]. Therefore, a natural question is whether such
game theoretic notions can also help us in the multi-party setting. Surprisingly,
this very natural question has traditionally been overlooked in the long line of
work on multi-party protocols. Only very recently, an elegant work by Chung
et al. [14] initiated the study of game-theoretic fairness in a multi-party setting.
Unfortunately, Chung et al. [14] proved broad impossibility results (in the cor-
rupt majority setting) for a particular formulation of the multi-party coin toss
problem for natural game-theoretic fairness notions. Specifically, suppose that n
parties want to toss a binary coin, and each player has preference for either the
bit 0 or 1. If the outcome agrees with a player’s preference, it obtains a utility
1; otherwise, it obtains a utility of 0. Chung et al. [14] showed that roughly
speaking, unless all players but one prefer the same coin, the following natural
fairness notions can be ruled out in the corrupt majority setting: 1) maximin
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fairness, which requires that no coalition can harm any honest individual; and 2)
cooperative strategy proofness (also called CSP-fairness for short), which requires
that no coalition can benefit itself.

Philosophically, if a protocol satisfies maximin fairness and CSP fairness,
then no individual should be incentivized to deviate from this equilibrium, no
matter whether the coalition/individual is greedy and profit-seeking, malicious
and aiming to harm others, or paranoid and aiming to defend itself in the worst-
possible scenario. Such protocols are also said to be incentive compatible.

1.1 Leader Election: Another Formulation of Multi-party Coin Toss

In this paper, we revisit the question of game-theoretically fair multi-party coin
toss. Specifically, we consider an alternative formulation. Instead of tossing a
binary coin, we consider the problem of leader election which can be viewed as
tossing an m-way coin among n parties. Suppose that all parties prefer to be
elected: the elected leader gains a utility of 1 (or equivalently, a utility of an
arbitrary positive value), whereas everyone else gains a utility of 0. This natu-
ral utility notion is often encountered in practical applications as we mention
in Sect. 1.3. Intriguingly, for this formulation, the theoretical landscape appears
starkly different from the binary-coin case'. The broad impossibility results of
Chung et al. [14] for the binary case no longer apply. A folklore approach hence-
forth called the tournament-tree protocol [6,31] establishes the feasibility of a
logarithmic round, game-theoretically fair leader election protocol, even in the
presence of majority coalitions:

— Each pair of players duels with each other to select a winner using Blum’s
coin toss [10]; again, aborting is treated as forfeiting.

— Now the 7 winners of the previous iteration form pairs and run the same
protocol to elect 7 winners.

— After logarithmically many rounds, the final winner is called the leader.

Like Blum’s protocol, the tournament-tree protocol also does not satisfy unbi-
asability, since anyone can abort and bias the outcome in a direction that harms
itself. However, one can show that it indeed satisfies the aforemnetioned maximin
fairness and CSP fairness notions, i.e., no coalition can harm an honest individ-
ual or benefit itself. In light of this folklore protocol, one important and natural
open question is to understand the round complexity of game-theoretically fair,
multi-party leader election in the corrupt majority setting. Specifically, can we
have an n-party, game-theoretically fair leader election protocol that tolerates
magjority coalitions, and completes in o(logn) number of rounds? A naive idea
is to directly collapse the tournament-tree protocol to two rounds—in the first
round, all players commit all random coins they ever need to use in the proto-
col; and in the second round, they open all random coins. It turns out that this
naive approach completely fails in the sense that a majority coalition can have
a definitive winning strategy (see the online full version [15]).

! Game theoretically fair leader election and binary coin toss are different in nature
partly due to the different utility functions.
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Throughout this paper, we shall consider the plain setting without trusted
setup, and allowing standard cryptographic assumptions. This rules out naive
solutions such as having the trusted setup choose the coin toss outcome, or using
Verifiable Delay Functions [11,12]. Also, recall that in the honest majority set-
ting, the standared multi-party computation literature gives us constant-round
solutions [7,18] that achieves the stronger notion of unbiasability. Therefore, we
will focus on the corrupt majority setting. We also stress that the game-theoretic
fairness notions we consider are stronger than in some previous contexts. For
example, a strictly weaker notion is called resilience, which requires that an
honest player is elected with constant probability [19,20,35,36]. The resilience
notion may be sufficient in certain contexts, however, it does not provide incen-
tive compatibility like our notions.

1.2 Our Results and Contributions

We initiate the study of the round complexity of game-theoretically fair, multi-
party leader election. Below, we first describe our new upper bound result and
techniques informally, and then we will discuss the interesting definitional sub-
tleties we encountered and our definitional contributions—it turns out that even
defining an approzimate notion of (game-theoretic) fairness is rather non-trivial,
and the notions that existed in the literature appear somewhat lacking.

New upper bounds and techniques. Roughly speaking, we prove that one can
approzimately match the fairness of the tournament-tree protocol, in as small as
O(loglogn) rounds. Specifically, we give the following parametrized result that
allows one to trade off the round complexity and approximation factor.

Theorem 1 (Informal: round-efficient, game theoretically fair leader
election). For r € [Cyloglogn,Cylogn] where Cy and Cy are suitable con-
stants, r-round protocols exist that achieve (1 - %)—appmximate fairness in

the presence of a coalition of size at most (1 — 29%) -n.

In the above, roughly speaking, 1-fairness means perfect fairness and 0-
fairness means no fairness. Observe that if we plug in » = O(loglogn), we can
achieve (1 —o(1))-fairness against coalitions of size n — o(n). It is also interesting
to contrast our result with the classical notion of approximate unbiasability—
it is well-known that r-round protocols cannot achieve better than O(1/r)-
unbiasability in the presence of a majority coalition [16]. In contrast, our approx-
imation factor, i.e., 29%, is exponentially sharper than the case of approximate
unbiasability. We review more related work on e-unbiasability in the online full
version [15].

The techniques for achieving our upper bound are intriguing and somewhat
surprising at first sight. We describe a novel approach that combines combina-
torial techniques such as extractors, as well as cryptographic multiparty com-
putation (MPC). Intriguingly, for designing game theoretically secure protocols,
some of our classical insights in the standard MPC literature do not apply.
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Several aspects of our protocol design are counter-intuitive at first sight. For
example, jumping ahead, we defend against “a large coalition benefitting itself”
using (non-trivial) combinatorial techniques; but these combinatorial techniques
provide no meaningful defense against a small coalition benefitting itself—it is
initially surprising that small coalitions turn out to be more challenging to defend
against. To defend against a small coalition, we employ a special honest-majority
MPC protocol as part of our final construction. The fact that an honest-majority
MPC can provide meaningful guarantees in a corrupt majority setting is initially
surprising too. Of course, weaving together the combinatorial and the crypto-
graphic techniques also has various subtleties as we elaborate on in subsequent
sections. We believe our design paradigm can potentially lend to the design of
other game-theoretically fair protocols.

New definition of approximate fairness. It turns out that how to define a good
approzimate fairness notion requires careful thought. The most natural (but
somewhat flawed) way to define (1 —e¢)-fairness is to require that even a majority
coalition cannot increase its own chances by more than an e factor, or reduce an
honest individual’s chance by more than €. Throughout the paper, we allow the
coalition’s action space to include arbitrary deviations from the prescribed pro-
tocol, as long as the coalition is subject to probabilistic polynomial-time (p.p.t.)
computations. We consider a multiplicative notion of error, i.e., we want that a
coalition A’s expected utility is at most (1‘_’1‘).” % is the coalition’s fair
share had it played honestly; moreover, we want that any honest individual’s
expected utility is at least (1 — €)/n where 1/n is its utility if everyone partici-
pated honestly. We prefer a multiplicative notion to an additive notion, because
in practical settings, the game may be repeated many times and the absolute
value of the utility may not be as informative or meaningful. The relative gain
or loss often matters more.

Indeed, some earlier works considered such an approximate fairness notion—
for example, Pass and Shi [33] considered such a notion in the context of con-
sensus protocols; they want that a (minority) coalition cannot act selfishly to
increase its own gains by more than €2. We realize, however, that such an approx-
imate notion is somewhat flawed and may fail to rule out some undesirable pro-
tocols. Specifically, consider a protocol in which some bad event happens with
small but non-negligible probability, and if the bad event happens, it makes sense
for the coalition to deviate. For example, consider a contrived example.

where

Ezample. Suppose that Alice and Bob run Blum'’s coin toss except that with
€ probability, Bob sends all his random coins for the commitment to Alice
in the first round. If this small-probability bad event happens, Alice should
choose a coin that lets her win. This is not a desirable protocol because with
small but non-negligible probability, it strongly incentivizes Alice to deviate.

However, the above protocol is not ruled out by the aforementioned notion of
approximate fairness: since the probability of the bad event is small, the a-

2 Pass and Shi [33] do not consider the threat of a coalition targeting an individual.
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priori motivation for Alice or Bob to deviate is indeed small. In the online full
version [15], we give another (arguably less contrived) counter-example that also
violates sequential fairness.

We propose a new approximate fairness notion called sequential approzimate
fairness that avoids this drawback, and characterizes a more desirable space of
solution concepts. At a very high level, our new notion says, it is not enough for
a coalition to not have a-priori noticeable incentives to deviate, rather, we want
the following stronger guarantee: except with negligible probability, at mo point
during the protocol execution should a coalition have noticeable (i.e., €) incentive
to deviate, even after having observed the history of the execution so far.

Remark 1. In the online full version [15], we show that the non-sequential
approximate fairness notion is in fact equivalent to a multiplicative approxi-
mate variant of the Rational Protocol Design (RPD) notion proposed by Garay
et al. [22-24]. However, as mentioned, we believe that our new sequential approx-
imate notion provides a better solution concept.

Lower bound. The tournament-tree protocol achieves perfect fairness (i.e., ¢ = 0)
in an ideal “commit-and-immediately-open” model. That is, the protocol pro-
ceeds in log n iterations where each iteration consists of a commitment and a sub-
sequent opening for every player. In the online full version [15], we prove a lower
bound showing that in the operational model of the tournament-tree protocol,
i.e., if we insist on perfect fairness (assuming idealized commitments) as well as
immediate opening of committed values, unfortunately ©(logn) rounds is opti-
mal. This lower bound provides a useful sanity check and guideline for protocol
design. In comparison, our protocol achieves sub-logarithmic round complexity
by introducing the approximate fairness relaxation and general cryptographic
techniques. It is an open direction to precisely characterize the minimal condi-
tions/assumptions under which sub-logarithmic rounds become possible.

Theorem 2 (Informal: some relaxations in our design are necessary).
Assume the ideal commitment model. If commitments must be opened immedi-
ately in the next round and perfect fairness is required, then §2(logn) rounds is
necessary.

Our work complements the recent prior work of Chung et al. [14] and makes
a new step forward at understanding the mathematical landscape of game-
theoretically fair, multi-party coin toss. Unlike the de facto unbiasability notion,
however, our understanding of game-theoretic fairness in multi-party protocols
is only just beginning, and there are numerous open questions. We describe some
open questions in the online full version [15].

1.3 Motivating Applications and Scope of Our Work

Our work should be viewed as an initial theoretical exploration of the round com-
plexity of game-theoretically fair leader-election. We do not claim practicality;
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however, it is indeed an exciting future direction to design practical variants of
our ideas.

Having said this, interestingly, the original inspiration that led the formula-
tion of this problem as well as our game theoretic notions comes from emerg-
ing decentralized applications [5,6,9,31]. In a decentralized environment, often
pseudonyms or public keys are cheap to create, and thus it may well be that many
pseudonyms are controlled by the same entity, i.e., the classical honest major-
ity assumption is not reasonable. Some works orthogonal and complementary to
our paper [30] aim to make it more costly to establish identities in decentral-
ized applications, nonetheless, even with such DoS-defense mechanisms, honest
majority may not be a reasonable assumption.

A line of work [5,9] considered how to achieve a “financially fair” n-party
lottery over cryptocurrencies such as Bitcoin and Ethereum. These works adopt
game-theoretic fairness notions similar in spirit to ours, but they rely on collat-
eral and penalty mechanisms to achieve fairness. In comparison, in our model,
we aim to achieve fairness without having to rely on additional assumptions such
as collateral and penalty. A couple recent works [6,31] also pointed out that col-
lateral and penalty mechanism can be undesirable and should be minimized in
mechanism design in decentralized blockchain environments.

Leader election is also needed in decentralized smart contracts where one may
want to select a service provider among a pool to provide some service, e.g., act
as the block proposer, generate a verifiable random beacon, or verifiably perform
some computational task, in exchange for rewards. In this case, providers may
wish to get elected to earn a profit. A coalition may also wish to monopolize
the eco-system by harming and driving away smaller players (potentially even
at the cost of near-term loss). Conversely, a small player may be concerned
about protecting itself in worst-possible scenarios. Our game-theoretic notion
guarantees that no matter which of objectives a player or coalition has, it has
no noticeable incentive to deviate from the honest protocol. In such blockchain
settings, typically the blockchain itself can serve as a broadcast channel, and a
round can be a confirmation delay of the blockchain?.

2 Technical Overview

In this section, we will go through a few stepping stones to derive an O(loglogn)-
round protocol achieving (1 — o(1))-approximate fairness. We defer the fully
parametrized version to the subsequent formal sections.

3 Why and how blockchain can formally realize/approximate a broadcast channel is
outside the scope of our paper, and has been extensively studied in a line of works on
distributed consensus. We simply assume broadcast as given, a modeling approach
that has been adopted in the long line of work on multi-party computation. In fact,
our protocol execution model is no different from the standard literature on multi-
party computation—see Sect. 2.1.
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2.1 Leader Election Protocol

A leader election protocol (also called lottery) involves n players which exchange
messages over pairwise private channels as well as a common broadcast channel.
The protocol execution proceeds in synchronous rounds: in every round, players
first receive new messages, then they perform some local computation, and send
new messages. We assume a synchronous network where messages posted by
honest players can be received by honest recipients in the immediate next round.
At the end of the final round, everyone can apply an a-priori fixed function f
over all messages on the broadcast channel to determine a unique leader from [n],
i.e., the result is publicly verifiable. For correctness, we require that in an honest
execution where all players faithfully follow the protocol, the elected leader be
chosen uniformly at random from [n].

A subset of the players (often called a coalition) may decide to deviate from
the honest strategy. Such a coalition can perform a rushing attack: during a
round, players in the coalition (also called corrupt players) can wait to read all
messages sent by honest players in this round, then decide what messages they
should send in the same round.

Throughout the paper, we assume that an execution of the protocol is
parametrized with a security parameter s, since the protocol may adopt cryp-
tographic primitives. We assume that the number of players n is a polynomially
bounded function in x; without loss of generality we assume that n > k.

2.2 Non-sequential Approximate Fairness

For simplicity, we first present an overview of our upper bound using the non-
sequential notion of approximate fairness. However, in subsequent formal sec-
tions, we will actually define a better solution concept called sequential approxi-
mate fairness, and prove our protocols secure under this better solution concept.

Chung et al. [14] considered game theoretic fairness in a setting where n
parties wish to toss a binary coin. They considered perfect fairness notions and
coined them cooperative-strategy-proofness and maximin fairness, respectively.
Below we give the natural approximate versions of these notions:

— CSP-fairness: we say that a leader election protocol achieves (1 — €)-
cooperative-strategy-proofness against a (non-uniform p.p.t.) coalition A C
[n], iff no matter what (non-uniform p.p.t.) strategy A adopts, its expected

utility is at most (1|_A€‘)n. We often write CSP-fairness in place of “cooperative
strategy proofness” for short.

— Maximin fairness: we say that a leader election protocol achieves (1 — €)-
maximin-fairness against a (non-uniform p.p.t.) coalition A C [n], iff no
matter what (non-uniform p.p.t.) strategy A adopts, any honest individual’s
expected utility is at least (1 — €)/n.

Approximate maximin-fairness and approximate CSP-fairness are not
equivalent—we give more explanations in the online full version [15].
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Remark 2 (Coalition-resistant notions of equilibrium). In our definitions, we con-
sider the deviation of a single coalition. This definitional approach is standard
in game theory [1-4,19-21,25,29,36,38], since the philosophy is to capture the
notion of an approximate equilibrium in the sense that no coalition has noticeable
incentives to deviate. Our equilibrium notion is coalition-resistant. In compari-
son, the standard notion of (approximate) Nash equilibrium typically considers
deviation of a single player, and therefore is weaker than our notions in this
sense.

Remark 3 (Choice of €). In our formal results later, we will use € = o(1)—in
fact, our result will be parametrized. For simplicity, in the informal roadmap, it
helps to think of € = 1%.

2.3 A Strawman Scheme

Although in our final scheme we do NOT use random oracles (RO), it is instruc-
tive to think about a strawman scheme with an RO. Interestingly, this approach
is inspired by recent proof-of-stake consensus protocols [17,28].

Strawman: RO-based committee election + tournament tree

1. Every player ¢ € [n] broadcasts a bit z; € {0,1}, and we use
RO(z1,...,2,) to elect committee of size log” n. If a player i fails to
post a bit, we treat z; := 0.

2. The committee runs the tournament-tree protocol to elect a final leader.

One can easily show that this approach achieves (1 — ¢)-CSP-fairness against
any coalition A containing at least €/2 fraction of the players—we call a coalition
at least €/2 fraction in size a large coalition. The argument is as follows. Since
the second step, i.e., tournament tree, is in some sense “ideal”, to increase its
expected utility, the coalition A C [n] must include as many of its own members
in the committee as possible. Suppose that € = 1%. For a fixed RO query, the
probability that it selects a bad committee, i.e., one with more than (1‘_‘3)%
fraction of coalition players, is negligibly small by the Chernoff bound. Since the
coalition is computationally bounded and can make at most polynomially many
queries to RO, by the union bound, except with negligible probability, all of its
RO queries select a good committee.

Unfortunately, this scheme suffers from a couple serious flaws:

— Drawback 1: NOT approximately mazimin-fair: a coalition A can harm an
individual 7 ¢ A as follows: wait till everyone not in A broadcasts their bits,
and then try different combinations of bits for those in A to find a combination
that excludes the player ¢ from the committee. This attack can succeed with
1 — o(1) probability if |A| = ©(logn).

— Drawback 2: NOT approzimately CSP-fair against a small coalition: a profit-
seeking individual 7 is incentivized to deviate in the following manner: ¢ can
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wait for everyone else to post bits before posting its own bit denoted z;. In
this way it can increase its advantage roughly by a factor of 2 since it can try
two choices of z;. This attack can be extended to work for small coalitions
too.

The second drawback is somewhat surprising at first sight, since we proved
the strawman scheme to be CSP-fair against large coalitions (i.e., at least €/2
fraction in size). The reason is because the Chernoff bound proof gives only sta-
tistical guarantees about a population, but does not give meaningful guarantees
about an individual or a very small group of players.

Remark 4. In the above strawman, one can also replace the committee election
with a single iteration of Feige’s lightest bin protocol [20]. The resulting protocol
would still be (1 — €)-CSP-fair, although it suffers from exactly the same draw-
backs as the RO-based strawman. The upgrade techniques described in Sect. 2.4,
however, is compatible only with the RO-based approach—and this is why we
start with the RO-based approach. However, intriguingly, we will indeed make
use of the lightest bin protocol later in Sect. 2.5 where we show how to get rid
of the RO.

2.4 Warmup: A Game Theoretically Fair, RO-Based Protocol

We now discuss how to fix the two drawbacks in the previous strawman scheme.
We will still have an RO in the resulting warmup scheme; however, in the imme-
diate next subsection, we will discuss techniques for removing the RO, and obtain
our final construction.

The first drawback is due to a potentially large coalition A choosing its coins
(after examining honest coins) to exclude some individual ¢ ¢ A from the com-
mittee. The second drawback is due to a small coalition A containing less than
e fraction of the players choosing its coins to help its members get included.
To tackle these drawbacks, our idea is to introduce virtual identities henceforth
called v-ids for short. Basically, we will use the RO to select a committee con-
sisting of v-ids. When the RQO’s inputs are being jointly selected, we make sure
that 1) a potentially large coalition A has no idea what each honest individual’s
v-id is and thus A has no idea which v-id to target; and 2) a small coalition has
no idea what its own v-ids are, and thus it has no idea which v-ids to help.

To achieve this, each player i’s final v-id will be the xor of two shares: a
share chosen by the player itself henceforth called the unmasked v-id, and a
share jointly chosen by a special, honest-majority protocol, henceforth called
the mask. In the beginning, the player itself commits to its own unmasked v-id,
and the MPC protocol jointly commits to each player’s mask. Next, the players
jointly choose the inputs to the RO. Finally, each player reveals its own unmasked
v-id, and then the MPC protocol reconstructs all players’ masks.

Special honest-magjority MPC. Instantiating these ideas correctly, however, turns
out to be rather subtle. A generic honest-majority MPC protocol does not guar-
antee anything when there is a large coalition. In our case, when the coalition is
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large, it can fully control the mask value. However, we do need that even with
(1 — €)n-sized coalitions, the mask value must be uniquely determined at the
end of the sharing phase, and reconstruction is guaranteed. More specifically, we
want our special, honest-majority MPC to satisfy the following properties for
some small 7 € (0,1) (think of n = €/2):

— If |A| < nn, we want that at the end of this sharing phase, A has no idea
what its own masks are;

— As long as |A] < (1 — 2n)n, at the end of the sharing phase, the mask value
to be reconstructed is uniquely determined, and moreover, reconstruction is
guaranteed to be successful.

The following F7),. ideal functionality describes what we need from the
honest-majority MPC. For simplicity, in our informal overview, we will describe
our protocols assuming the existence of this FJ . ideal functionality. Later in
Sect. 4.2, we will instantiate it with an actual, constant-round cryptographic
protocol using bounded concurrent MPC techniques [32]. Technically, the real-
world cryptographic instantiation does not securely emulate Fp,. by a standard
simulation-based notion; nonetheless, we prove in the online full version [15] that
the fairness properties we care about in the ideal-world protocol (using idealized

cryptography) extend to the real-world protocol (using actual cryptography).

Fihpet special, honest-majority MPC functionality

Sharing phase. Upon receiving share from all honest players, choose a
random string coins. If the coalition size |A| > nn, the adversary is asked to
overwrite the variable coins to any value of its choice. Send ok to all honest
players.

Reconstruction phase. Upon receiving recons from all honest players: if
|A| > (1 —2n)n, the adversary may, at this point, overwrite the string coins
to its choice. Afterwards, in any case, send coins to all honest players.

Our warmup RO-based protocol. Now, it helps to describe our protocol first, then
we explain the additional subtleties. We describe our warmup protocol using an
idealized commitment scheme, as well as the Fy,p. functionality described earlier.

Our warmup RO-based protocol

1. Every player ¢ € [n] commits to a randomly selected unmasked v-id
y; € {0,1}" where 2V = n - polylog n.

2. Send share to fél/gc and receive ok from Fipe.

3. Every player i € [n] broadcasts a bit z;. Let « be the concatenation of
all of {x;};c[n) in increasing order of the players’ indices—here for any
player j who has aborted, its z; is treated as 0.

4. Every player i € [n] now opens its committed unmasked v-id y; € {0,1}".
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5. All honest players send recons to 73{&, and they each receive a mask
vector z from fﬁ{ﬁc.

6. Parse z := (z1,...,2,) where each z; € {0,1}" for j € [n]. We now view
y; @ z; player i’s final v-id. A player i is a member of the committee C iff
1) it correctly committed and opened its unmasked v-id y;; 2) its final
v-id y; @ z; is chosen by RO(x); and 3) its final v-id y; ® z; does not
collide with anyone else’s final v-id—we may assume that anyone who
aborted has the final v-id L.

7. The committe C runs the tournament-tree protocol to elect a leader.

Additional subtleties. At this moment, it helps to point out a few additional
subtleties.

1. Unique reconstruction even under a majority coalition. First, recall that even
in the presence of a (1—e¢)-coalition, we wanted our Fpp,c to guarantee unique-
ness of the reconstructed mask z at the end of the sharing phase. This is
important because we do not want the coalition to see the RO’s outputs and
then choose the mask vector z a-posteriori to exclude some honest individual
from the final committee or to include all of the coalition members.

2. The need for collision detection. Second, notice that the protocol prevents col-
liding final v-ids from being elected into the final committee. Such a collision
detection mechanism is necessary since otherwise, the following attack would
be possible*: a 99% coalition can make all of its members choose the same
final v-id—it can do that because it controls its members’ unmasked v-ids as
well as the mask value. Now, the 99% coalition can choose its input bits to
the RO to help this particular final v-id. In this way, with high probability,
all coalition members can be elected into the final committee.

3. Proving sequential approzimate fairness. Last but not the least, so far we
have only focused on the non-sequential notion of fairness, and it turns out
that proving the sequential notion is much more subtle. In our formal proofs
later (see Sect. 5 and the online full version [15]), we will do a round-by-round
argument to show that except with negligible probability, in no round of the
protocol would the coalition have noticeable incentive to deviate.

Since this warmup construction is not our final scheme, we will not formally
prove the warmup construction. Instead, we now explain how to get rid of the
RO to get our final scheme.

2.5 Final Construction: Removing the Random Oracle

To remove the RO, our idea is to replace the committee election with a two-
phase approach, where the first phase uses a single iteration of Feige’s lightest-
bin protocol [20] and the second phase uses a combinatorial object called a

4 We describe this attack for illustration purposes to help understanding. Of course,
we will later prove our final construction secure against all possible p.p.t. coalition
strategies.
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sampler [37] in place of the RO. We briefly describe the intuition below. The
actual scheme, calculations, and proofs are more involved especially for getting
the more general, parametrized result, and we defer the full description to the
subsequent formal sections.

Background. We will rely on a combinatorial object called a sampler which is
known to be equivalent to a seeded extractor [37]°. A sampler, denoted as Samp,
is a combinatorial object with the following syntax and properties: given an input
z € {0,1}*, Samp(z) returns d sample points z1,...,24 € {0,1}" from its output
space. A sampler is supposed to have good, random-sampling-like properties.
Consider a predicate function f : {0,1}" — {0,1}. The population mean of f
over its inputs is defined as is 3 Eze{o,l}“ f(2). The d sample points define

a sample mean 52?21 f(#;), which ideally should be close to the population
mean. An (e, ds)-averaging sampler Samp guarantees that for any f, at least a
1 — §s fraction of the inputs will lead to a sample mean that differs from the
population mean by at most ¢ additively.

Intuition. A flawed idea is to directly replace the RO in the warmup scheme with
a sampler. To do so, the nature of our proof for this specific step will have to
change: in the warmup scheme, we relied on the fact that the coalition can make
only polynomially many queries to RO in our fairness proof. With a sampler,
however, we must make a combinatorial argument here that does not depend
on the adversary’s computational bounds (although to reason about other parts
of the scheme involving the commitment and the MPC, we still need to make
computational assumptions on the adversarial coalition). Specifically, we want
to argue that no matter which subset of players form a coalition, as long as the
coalition’s size is, say, between 0.01n and 0.99n, then almost all honest inputs
rp resist even the worst-case attack, in the sense that there does not exist a
x4 such that z = (zg,74) would form a bad input to Samp®. Here x is said to
be a bad input to Samp if Samp(x) selects a committee in which the fraction of
coalition players is noticeably higher than |A|/n.

Suppose that we want to select a log” n-sized committee, and the final v-id
space is of size nlog® n. In this case, we would need the sampler to select roughly
d = log"? n output points. A calculation using the probabilistic method suggests
that in this case, we cannot start with n players who jointly select the input to
the sampler—if so, there would simply be too many combinations the adversarial
coalition could try for its own input bits; and the number of bad inputs to the
sampler simply is not sparse enough to defeat so many adversarial combinations.

The parameters would work out, however, if we start out with, say, log3 n
players who jointly choose the input to the sampler. In our subsequent formal
sections, we will select parameters that work with the best known explicit sam-
pler construction [27,34,37].

5 We stress that our construction does not need a common reference string as the seed.
5 Throughout the paper, for S C [n], we use xs := {x;}ics to denote the coordinates
of the vector x corresponding to all players in S.
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Our idea. Given the above intuition, our idea is to adopt a two-phase committee
election approach. We first down-select to a preliminary committee of size log® n,
and then the preliminary committee jointly choose input bits to a sampler to
select a final committee among all players, and the final committee runs the
tournament tree protocol to elect a leader among the final committee. We sketch
the protocol below while deferring a more formal description to Sect. 4:

— Commitment phase. As before, players commit to their unmasked v-ids and
use an honest-majority MPC to jointly commit to a mask first.

— Preliminary committee election. First, we elect a log® n-sized preliminary com-
mittee such that the fraction of honest players on the preliminary committee
approximately matches the fraction of honest players in the overall popula-
tion. Here we do not care about the threat where a potentially large coalition
seek to exclude a specific individual or a small coalition or individual try to
include itself. It turns out that this can be accomplished by running a single
iteration of Feige’s elegant lightest bin protocol [20] in the plain model.

— Final committee election. Next, the preliminary committee jointly selects an
input to the sampler, which is used to select loggn final v-ids among the
space of all possible v-ids—these final v-ids would form the final committee.
At this moment, the players open their unmasked v-ids, and reconstruct the
mask that was secret shared earlier by the MPC. The players’ final v-ids are
now revealed, and the final committee determined.

— Leader election. Finally, the elected, poly-logarithmically sized final commit-
tee runs the tournament-tree protocol to elect a final leader.

3 Defining Sequential Approximate Fairness

3.1 Sequential Approximate Fairness

The non-sequential fairness notions mentioned in Sect. 2.2 does not rule out some
undesirable protocols that may offer incentives for a coalition to deviate with
non-negligible probability. Recall the example given in Sect. 1 where two parties
run Blum’s coin toss except that with some small e probability, Bob broadcasts
all its private coins in the first round. If the small (but non-negligible) probability
bad event happens, Alice should deviate and choose her coins to definitively win.
However, a-priori Alice does not have much incentive to deviate: since the bad
event happens with only e probability, her a-priori probability if winning is at
most €-1+ (1 —€)- 2 =(1+¢) 1, and this is only an € fraction more than her
fair share. Nonetheless, we do want to rule out such bad protocols since such
a protocol has a non-negligible probability € of creating incentives for Alice to
deviate.

We propose a better solution concept called sequential approximate fairness.
Roughly speaking, we require that even if the coalition is allowed to re-evaluate
whether to deviate at the beginning of every round in the protocol, except with
negligible probability, no p.p.t. coalition (of size at most (1 — €)n) should have e
incentive to deviate at any time.
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When we try to formalize this notion of sequential rationality, we encounter
another subtlety: since our protocols will rely on cryptographic commitment
schemes, our definitions should capture the fact that the coalition is polynomi-
ally bounded. For example, it could be that there exists a set of execution prefixes
that account for non-negligible probability mass, such that if A deviated condi-
tioned on having observed those prefixes, it would have gained noticeably. How-
ever, it might be that these prefixes are computationally infeasible to recognize,
since recognizing them might involve, say, breaking cryptographic commitments.
As a result, our definitions actually stipulate that, for any polynomially bounded
coalition strategy that wants to deviate with non-negligible probability at some
point in the execution, deviating will not conditionally improve the coalition’s
utility by more than a noticeable amount.

To formally define our sequentially approximately fair notions, we first intro-
duce some probability notations.

Probability notation. In this paper, we use the acronym p.p.t. to mean expected
probabilistic polynomial-time. Let II denote the original honest protocol. How-
ever, a non-uniform p.p.t. coalition A C [n] might deviate from the original
protocol and we use S to denote the strategy of A. As a special case, we use the
notation A(IT) to mean that the coalition A simply follows the honest protocol
and does not deviate. Let k be the security parameter. We use the notation
tr — Exec to denote a random sample of the protocol execution, where the
honest players [n]\A, interact with the coalition A which adopts the strategy
S. The random experiment ExecA(®) produces an ezecution trace tr (also called
a trace for short), which consists of all the messages and the internal states of
all players throughout the entire execution. Once the coalition A’s strategy S is
fixed, all players’ internal states and messages in all rounds would be uniquely
determined by all players’ randomness in all rounds—thus one can also equiva-
lently think of ¢r as the sequence of all players’ random coins in all rounds.

An event Evt(¢r) is identified with its indicator function that takes a trace
tr and returns either 1 (meaning the event happens) or 0. For example, we use
WA(tr) =1 to indicate that one player in A is elected as the leader in the end.

We use Pr[Exec?™®(17) : Evt] := Pr[tr «— Exec™ ) (1%) : Evt(tr)] to
denote the probability that when the coalition A adopts strategy .S, the event
Evt happens. Similarly, given events Evt; and Evts, we use Pr[ExecA(S)(l”) :
Evt; | Evts] to denote the conditional probability that when the coalition A
adopts strategy S and conditioning on the event Evts, event Evt; also happens.
The same notation extends to expectation E[-].

Devwiation event. Given a strategy S of the coalition A, we define the deviation
event DevA®) (tr) as follows:

— for each round r = 1,2,...: replay the trace ¢r (which contains all players’
random coins) till the beginning of round r, immediately after the coalition
A has observed all honest nodes’ round-r messages; at this moment, check
whether the strategy S adopted by A would deviate from the honest protocol
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IT in round r (i.e., whether S would send a message that differs from what
the honest strategy would have sent, suppose that the random coins of .S have
been fixed by the trace tr); if yes, return 1;

— return 0 if the strategy S adopted by A does not actually deviate from [T till
the end.

Intuitively, we say that a protocol satisfies sequential CSP-fairness against
the coalition A iff either A never wants to deviate except with negligible proba-
bility (condition 1 in Definition 1); or conditioned on deviating, A does not do
noticeably better (condition 2 in Definition 1).

Definition 1 (Sequential CSP-fairness). Let € € (0,1). We say that a
leader election protocol IT achieves (1 — €)-sequential-CSP-fairness against a
(non-uniform p.p.t.) coalition A C [n] iff for any strategy S by A, there exist a
negligible function negl(-), such that and for all k, at least one of the following
holds—recall that W4 is the event that one of the coalition members in A is
elected leader:

1. Pr [ExecA(S)(l"””) : DevA(S)] < negl(k),

2. Pr [ExecA(S)(l"””) WA DevA(S)} < L-Pr {ExecA(H)(l") WA DevA(S)} +
negl(k).

In the above, the left-hand-side Pr [ExecA(s)(l“) WA DevA(S)} means the
conditional probability that A(S), i.e., a coalition A adopting strategy S, is
elected leader, conditioned on DevA(S), i.e., that A(S) decided to deviate from
honest behavior. The right-hand-side Pr [ExecA(H)(l’“) WA ’ DevA(S)} means

the conditional probability for A to win, had A continued to adopt the honest
strategy throughout, even though A(S) had wanted to deviate at some point in the
protocol—the conditional probability is calculated when conditioning on traces
where A(S) would have deviated”. Intuitively, Condition 2 above says that con-
ditioned on the strategy S deciding to deviate, the coalition A cannot benefit
itself noticeably in comparison with just executing honestly to the end.

We can similarly define the sequential approximate maximin fairness.

Definition 2 (Sequential maximin fairness). Lete € (0,1). We say that a
leader election protocol IT achieves (1 — €)-sequential-mazimin-fairness against a
(non-uniform p.p.t.) coalition A C [n] iff for any strategy S by A, there exist a
negligible function negl(-), such that for all k, at least one of the following holds:

" Note that the event Dev*)(¢r) is well-defined, even if ¢r is sampled from ExecA(),

i.e., an execution in which A adopts the honest strategy. In this case, DevA®® (¢r)
means the following: had A instead adopted the strategy S rather than the honest
strategy I, is there a round in which S would have started to deviate from the honest
protocol, given that all players’ randomness in all rounds is fixed by tr.
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1. Pr [ExecA(S)(l“) : DevA(S)] < negl(k),

2. for any i ¢ A, let W' be the event that player i is elected as the leader, it
holds that

Pr [ExecA(S)(l"“) Wi | DevA(S)] >(1—¢)-Pr [ExecA(H)(l") Wi | DevA(S)] — negl(k).

The following fact says that the sequentially rational notions implies the
corresponding non-sequential counterparts defined earlier in Sect. 2.2.

Fact 1 (Sequential notions are stronger). Let ¢(n,x) € (0,1) be a non-
negligible function. If a leader election protocol satisfies (1 — €)-sequential-CSP-
fairness (or (1 — €)-sequential-mazimin-fairness resp.) against the coalition A C
[n], then for € (n,k) = e(n, k) + negl(k) where negl(-) is some negligible function,
then, the same protocol also satisfies non-sequential (1 — €')-CSP-fairness (or
non-sequential (1 — €')-mazximin-fairness resp.) against A.

Proof. Deferred to the online full version [15].

We show that if the slack e is constrained to being negligibly small, then in
fact the non-sequential notions imply the sequential notions too. However, this
direction is not true when the slack € may be non-negligible.

Fact 2. If a protocol IT satisfies (1 — negl(k))-CSP-fairness (or (1 — negl(k))-
maximin-fairness resp.) against the coalition A C [n] for some negligible func-
tion negl(-), then II satisfies (1 — negl'(k))-sequential-CSP-fairness (or (1 —
negl(k))-sequential-mazimin-fairness resp.) against A for some negligible func-
tion negl'(-).

Proof. Deferred to the online full version [15].

3.2 Fairness of the Tournament Tree Protocol

Instantiated with a suitable cryptographic commitment protocol (described in
the online full version [15]), the folklore tournament-tree protocol satisfies (1 —
negl(x))-sequential-CSP-fairness and (1 — negl(x))-sequential-maximin-fairness
against coalitions of arbitrarily sizes, as stated below:

Theorem 3 (Tournament-tree protocol). Suppose that n is the number of
players and k 1is the security parameter. Then, the tournament-tree protocol,
when instantiated with a suitable publicly verifiable, non-malleable commitment
scheme as defined in the online full version [15], satisfies (1—negl(k))-sequential-
CSP-fairness and (1 — negl(k))-sequential-mazimin-fairness against coalitions of
arbitrarily sizes. Moreover, the number of rounds is O(logn).

Proof. Deferred to the online full version [15].
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4 Formal Description of Our Scheme

4.1 Description of Our Scheme Assuming Idealized Cryptography

Our scheme makes use of an (eg, ds)-averaging sampler which we define in the
online full version [15]. We will first describe our scheme assuming idealized
commitments Foomm and an ideal MPC functionality Fp,pc described earlier in
Sect. 2.4. Later in Sect. 4.2, we will instantiate the ideal cryptographic primitives
with actual cryptography. In the scheme below, committing to a value is per-
formed by sending it to Feomm, and opening is performed by instructing Feomm
to send the opening to everyone.

Our leader election protocol (assuming idealized cryptography)

Parameters. For some r := r(n), suppose that we would like to achieve
round complexity O(r) satisfying Cgloglogn < r(n) < Cilogn, where Cj
and (' are suitable constants. We set the parameters as follows:

— Let B := 55 such that the expected number of players in a bin (assuming
honest behavior) is %

5= 29" in the preliminary committee election.

— The parameters of the sampler are chosen as below: v is chosen such
that % = 205" Let e := 275" and §, := 2_(1_%””‘, where 1) denotes a
lower bound on the fraction of honest players, we shall assume ¢ > 2@%,
which means that |A] < (1 — 5557)n. Let d = (|U|/e), where ¢ is the
universal constant specified in the online full version [15].

— Let n:=1/202",

Our protocol.

1. Elect the preliminary committee U using lightest bin. Everyone i € [n]
broadcasts a random index §; € [B] indicating its choice of bin where
B denotes the number of bins. The bin with the lightest load is selected
as the preliminary committee U. Break ties with lexicographically the
smallest bin.

2. Elect the final committee C. Let Samp : {0,1} — {{0,1}*}¢ denote
an explicit (e, ds)-averaging sampler. If it is not the case that |[U| >
log(%s + ¢ - v (see the online full version [15]), simply abort with the
exception param_error and output player 1 as the leader.

(a) Every player sends share to )., and receives ok from Fyl .

(b) Every player ¢ € [n] commits to a randomly selected unmasked v-id
henceforth denoted y; € {0,1}".

(¢) Every player in the preliminary committee i € U broadcasts a bit
x;. Let x be the concatenation of all of {z;};es in increasing order
of the players’ indices—here for any player j who has aborted, its x;
is treated as 0.

(d) Every player i € [n] now opens the committed string y; € {0,1}".
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(e) Input recons to Fy},., and receive a mask vector z from FJ ..
(f) Parse z := (21,...,2,) where each z; € {0,1}" for j € [n]. We now
view y; @ z; as player ¢’s finalized v-id, which corresponds to a point
in the output range of the sampler Samp. The final committee C
is defined as a multiset constructed as follows: for j € [d], if there
is exactly one player i € [n] who opened y; and whose final v-id

Yi © z; = Samp, (), then add i to C.
3. Elect leader among final committee. The final committee run the
tournament-tree protocol to elect a final leader.” In case the final com-

mittee is empty, simply output player 1 as the leader.

% When the ideal Feomm and fgpc are instantiated with actual cryp-
tography later in Sect. 4.2, the opening/reconstruction messages will be
posted to the broadcast channel such that the elected leader can be deter-
mined from the collection of messages posted to the broadcast channel.

4.2 Instantiating the Scheme with Real-World Cryptography

Our final protocol replaces the ideal commitment and Fy,pc with actual cryptog-
raphy. To achieve this, we take an intermediate step and consider an IdealZK-
hybrid protocol where IdealZK is an idealized zero-knowledge proof function-
ality which we formally define in the online full version [15]. We first instantiate
the ideal commitment and Fpc using a protocol in the IdealZK-hybrid world,
and then we use the elegant techniques of Pass [32] to instantiate the protocol
with actual cryptography with only O(1) round blowup, while allowing bounded
concurrent composition without any common reference string or trusted setup. In
our case, the total number of concurrent sessions of the cryptographic protocols
is a~priori known given n.

Instantiating the ideal commitments with non-malleable commitments. We will
instantiate the ideal commitments using a publicly verifiable, non-malleable com-
mitment (NMC) scheme which is defined in the online full version [15]. Basically,
to commit to a string, a player invokes n instances of NMC, one for each of the
n recipients. To open a previously committed string, post the openings corre-
sponding to all n instances, and the opening is successful iff all n instances open
to the same string. We may assume that messages are posted to the broadcast
channel and it can be publicly checked what a commitment opens to. An honest
committer’s commitment will always successfully open even when the receiver is
malicious.

Instantiating the Fmpe with bounded concurrent zero-knowledge proofs. To
instantiate Fnpc with actual cryptography, we first instantiate it in IdealZK-
hybrid world. Then, we use the bounded concurrent zero-knowledge proofs of
Pass [32] to replace the IdealZK instances with actual zero-knowledge proofs.
Therefore, it suffices to describe how to replace Fype with a protocol Ilpc
in the IdealZK-hybrid world. This protocol actually does not realize F,pc with
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full simulation security®. Yet, we can later prove that when we replace Fmpe
with this protocol, the game theoretic fairness properties we care about extend
to the real-world protocol.

Iy instantiating 77, in the IdealZK-hybrid world
Let comm be a perfectly binding and computationally hiding (non-
interactive) commitment scheme. We assume that committing to a string
is accomplished by committing to each individual bit. Let n € (0,1) be a

parameter.

Sharing phase.

1. Every player ¢ chooses a random string coins; € {0,1}*". It splits coins;
into a [n - n]-out-of-n Shamir secret shares, and let coins; ; be the j-
th share. Next, for each j € [n], player ¢ computes the commitment
coins; ; := comm(coins; ;, p; j) Where p; ; denotes some fresh randomess
consumed by the commitment scheme, and it posts the commitment
message {coins; ;}je[n] to the broadcast channel.

2. Player i does the following for each j € [n]:

— invokes an IdealZK instance denoted IdealZK; ; to prove that the
commitment message {coins; x }re[n) it has posted is computed cor-

rectly, by supplying to IdealZK; ; 1) the statement {mi,k}ke[n]
and 2) all the random coins used in computing the commitment
message. IdealZK, ; checks the following NP relation: all the com-
mitments are computed correctly, and moreover, the openings form
a valid [nn]-out-of-n secret sharing.
— gives player j the opening (coins; ;, p; ;).
3. A player ¢ € [n] does the following: for every j € [n], if player i
— has seen a message {coins; i }rc[n Posted by j;
~ has received the message ({coins; s }repn), 1) from IdealZK;; where
the statement must match the message posted by j; and
— has received a correct opening (coins; ;, p; ;) w.r.t. the i-th coordinate
of j’s posted message {coins; i }re[n], that is, coins; ;.
then, it posts the tuple (ok, j) to the broadcast channel.
4. Every player i does the following: for every j € [n] who has obtained an
approval message ok from at least (1 — n)n players, add j to the set S.
If |S| > nn, then let succ := 1; else let succ := 0. Output ok.

Reconstruction phase. If succ = 0, simply output the 0 vector. Else continue
with the following.

8 The reason we do not fully simulate Fmpc is due to technicalities arising from the
requirement that the outcome of the leader election be publicly computable from all
the messages posted to the broadcast channel.
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1. For every player j € S, if the current player ¢ posted (ok, j) during
the sharing phase, then let (coins; ;, p; ;) be the correct opening received
from j during the sharing phase, post (j,coins;;, p; i) to the broadcast
channel.

2. For every tuple (j,coins; x, p; i) received from some player k € [n], if
j € S and (coins; i, p; k) is a valid opening w.r.t. the k-th coordinate of
j’s commitment message posted during the sharing phase, then accept
this share (k, coins; ;) of coins;.

For every j € S, use all accepted shares to reconstruct coins;. Output
z 1= @jescoins; if the reconstruction of every coins; for j € S is success-
ful; else output the vector 0.

Theorem 4 (Main theorem). Assume the existence of enhanced trapdoor per-
mutations and collision resistant hash functions. Then, there exists an O(r)-
round leader election protocol that achieves (1 — 2~9())-sequential-mazimin-
fairness against a non-uniform p.p.t. coalition of size at most (1 —279)) . n,
and (1 — 279 -sequential- CSP-fairness against a non-uniform p.p.t. coalition
of arbitrary size.

Proof. The theorem results from the construction presented in this section. The
detailed proofs are presented in Sect. 5 and the online full version [15].

5 Proofs for the Ideal-World Protocol

5.1 Bounding the Preliminary Committee’s Size

Since the preliminary committee I/ is chosen from a lightest bin, it is immediate
that [U| < |%|. The next lemma states that there is a sufficient number of
honest players in U/ with high probability.

Lemma 1 (Sufficient honest players in the preliminary committee).
Suppose for some ¢ € (0,0.5), there are at least 1 - n honest players. Let |Ug|
denote the number of honest players in the preliminary committee U. Then, for
~v € (0,1), the following holds:

Pr |Z/{H|§(1_'Y)'¢;l] SB'GXP<—72‘§);)-

In particular, if & = 297 and Cyloglogn < r < Ciloglogn for appropriate
constants Cy and Cq, and v > 277, then the number of honest players in the
preliminary committee is at least 0.9Yn/B, except with exp(—27") probability.

Proof. By the Chernoff bound, except with probability exp (—72 . g—g) , the num-

ber of honest players in any particular bin is greater than (1 —-)- w—B”. The union
bound over all the B bins gives the required result.
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The following fact makes sure that the sampler needed by our protocol exists
except with doubly-exponentially small in r probability as long as at least a
1¥(n) > 1/2" fraction of the players are honest.

Fact 3. Suppose that the honest fraction v > 2% and that our protocol uses the
aforementioned parameters. We have that [U| > log(1/ds) + ¢ - v except with
exp(—92(277)) probability.

Proof. Since we choose dg := 2~ (=5)u| , the expression to verify can be rewritten
as [U| > (1 —/2)|U| + ¢ - v, which is equlvalent to:

0.5¢ - |U| > c-v=c-(logn+0.5r).

Od)n

Due to Lemma 1, the size of the preliminary committee is at least
exp(—£2(2™)) pI‘Obablhty Therefore, it suffices to show that

, except

0.5¢ - 0.9¢n/B > 0.45-272" .29 > ¢. (logn + 0.57),

where the last inequality holds as long as r > Cjloglogn for a sufficiently large
constant Cj.

5.2 Terminology and Notations

We first present proofs for our protocol in Sect. 4 assuming idealized Feomm and
Fmpe- However, we shall assume that the tournament-tree protocol is instanti-
ated with real cryptography as explained in the online full version [15], since
we will use the tournament-tree protocol’s fairness properties as a blackbox in
our proofs. In the online full version [15], we prove that the relevant security
properties extend to the real-world protocol when the idealized cryptographic
primitives are instantiated with actual cryptography.

Recall that A denotes the coalition; we often refer to players in A as corrupt
and players outside A as honest. Further, we often use the notation H := [n]\ A to
denote the set of honest players. For S C [n], we use the notation zg := {2, }ies
and yg is also similarly defined.

5.3 Composition of the Final Committee

Lemma 2 (Final committee composition). Suppose that the honest fraction
P >2np =2 OQT and that our protocol uses the aforementioned parameters.
Fiz N to be an arbitrary set of (distinct) final v-ids in the sampler’s output
range {0,1}" where \N| < n. Let Cn be the (multi-)set of final v-ids in N
chosen by Samp(z). Let® ey = ¢ - WI Then, conditioned on no param_error and
Ur| > 0.9¢ - n/B, with probability at least 1 — exp(—$2(27")) over the choice of

IV
qu -

2, Cn has size in the range [1 — €9, 1 + €o] - d -

9 Note that eg would be very large if A is too tiny, but our usage later will guarantee
that A is not too tiny.
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Alternatively, suppose there is some upper bound [N'| < N, and we set €9 =
€ - 2+ Then, with conditional probability at least 1 — exp(—§2(2™")) under the

events, Cnr has size at most (1 +¢g) - d - %

Proof. Let the final committee Cns be the multi-set of v-ids in N chosen by
the Samp(x). We shall show that, using the sampler theorem in the online full
version [15], except with probability p := exp(—§2(2°")) over the choice of x,

W]

ICnl €1 — €0, 14€0)-d- v

(1)
Observing that €5 = €q - %7 by the property of the (eg, ds)-averaging sampler,
except for at most 214! . §; = 20-5%IU number of bad inputs to the sampler, the
size of Cpr satisfies (1).

We say that some choice of xyny is bad if there exists a corrupt choice of
Z Any such that the combination of x gy and x4y (arranged in the right order)
will lead to Car such that (1) is violated. Otherwise, we say that xgry is good.
Note that if x gy is good, it means that no matter how the adversary chooses
Zanu, it cannot make Cyr violate (1).

Since honest players choose their xgqy at random, we next claim that the
fraction of bad zry is bounded by 2-03¥Ul < 9-027¥*n/B < 9-2(2™) Tpe
claim is true; otherwise, the number of bad inputs to the sampler is at least
2 0:3¢lu| . 90-99 Ul — 90.691U| an(d thus we have reached a contradiction. Finally,
a union bound over all the above bad events shows that except with probability
at most exp(—£2(27")), Cyr respects the range in (1).

The alternative case when there is an upper bound |N| < N uses the same
argument, but we just need one direction of the inequality from the sampler.

The above Lemma 2 immediately implies the following bound on the final
committee size.

Lemma 3 (Final committee not too large). Suppose that the honest frac-
tion ¢ > 2n = 2- 20% and that our protocol uses the aforementioned parameters.
Let eg = € - % = 27557 Then, with probability at least 1 — exp(—£2(257)), the
final committee C has size at most (1+¢g) -d- 57 < 20" and the protocol does
not throw param_error. In particular, with probability at least 1 — exp(—§2(2°7)),

the protocol has round complexity at most O(r).

Proof. Due to Lemma 1, except with exp(—£2(27")) probability, [Ug| > 0.9 -
n/B > 0.9¢ - |U|. Further, due to Fact 3, param_error does not happen except
with exp(—2(27")) probability. Conditioned on these bad events not happening,
we now use Lemma 2. In this case, the n players can choose at most n final v-ids,
i.e., IN] < n. The range in (1) implies that except with exp(—2(25")) over the
choice of xy, the final committee C has size at most:

n

ot e) =0+ d- o< d- (2705 4 976)

20—
_ (1 + 2—5.5r> . (|u|/€b)5 A 2—0.5r < (1 + 2—5.5r) . 215r'5. 2—0.57".

d(
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We shall consider the following bad events in our proofs. Recall that condi-
tioned on any coin used in the lightest-bin protocol for the preliminary committee
election, the protocol still has independent randomness x chosen by the prelimi-
nary committee as input for the averaging sampler, the unmasked v-ids y chosen
by all players, as well as the mask vector z.

— Event param_error. Recall that this happens when the preliminary comittee
selected does not have the desirable properties; by Lemma 1 and Fact 3, this
bad event happens with probability at most exp(—£2(27")).

— Event bad;: out of the d samples from the (eg,ds)-sampler, at least (1 +
€0) - d - 3z number of them correspond to corrupt players’ final v-ids, where
eg = 2767 . 205" i5 defined as in Lemma 3. Assuming the honest fraction
¥ > 2n, by Lemma 3, Pr[bad;] < exp(—£2(2°")). Moreover, observe that bad;
is determined by x, y4, and z4, and is independent of yy and zg.

— Event bads: the final committee C has size greater than (14 €g)-d- 5. Again
assuming 1 > 27, Lemma 3 implies that Pr[bads] < exp(—2(2°")). Observe
that bady depends on x, y, and z.

Lemma 4 (Influence of an honest player in the final committee). Sup-
pose that |A] < (1 —2n)n, i.e., % = >2n> QL For an honest player i ¢ A,
let M; be its multiplicity in the final committee C. Define a random variable 1;
that equals %, if none of the bad events bad events param_error or bad; or bads
happens; otherwise, T; equals 0.

Then, E[Y;] > % (1 — 2’0‘4&), where the expectation is taken over the ran-

domness used in the entire execution.

Proof. For ease of notation, the rest of the proof conditions on the event that
during the preliminary committee election, param_error does not happen; observe
that this bad event happens with probability at most exp(—2(27")), by Lemma 1
and Fact 3. Hence, at the end, we just need to multiply any conditional expec-
tation by a factor of 1 —exp(—§2(27")). Recall that we identify an event with its
{0, 1}-indicator random variable.

We next give a lower bound on E[M;|bad;]. Since yp is opened in the last
but second step and as long as |A| < (1 — 2n)n, the reconstruction of z is fully
determined before selecting input to the sampler, we may equivalently imagine
that yg is chosen at the end, independently of x, y4, and z. Since the event bad;
does not happen, there are at least d — (14¢€)-d- 55 = d(1—(1+€0)5:) > d(1 -
270497y available slots for the honest players’ final v-ids, where the inequality
follows from 1 + ¢y < 20017,

For each such slot, player i can get it if it chooses this slot and none of the
other honest players choose it; this happens with probability 2% (11— 2%)"_1 >
77 (1 = 2%) = 5-(1 — 27957). Therefore, conditioned on any choice of z,y4, z,
by just using the randomness of yy, we can conclude that E,, [M;|bad;] >
L (1 —27049r) (1 — 2705r) > 4 (] — 270-485") where the last inequality holds
for large enough r = £2(1).

Since this holds conditioned any choice of x,y4, z, we have the desired lower
bound on E[M;|bad,].
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We next give a lower bound for the following quantity:
E[MZ . bad1 . badg] = E[Mz‘badﬂ . Pr[badl] — E[MZ . bad1 . badg]

Z (1 — 2_0'485T) . Pr[badl] — dPr[badg]

d
2v

We use E[M; - bad; - bads] < d Pr[bady] < d - Prlbads] < d - exp(—£2(26")) <
A - exp(—{2(2°")) where the last inequality holds because 2° = n - 20°" and
we assume that r > Cyloglogn for some suitably large constant Cjy. There-
fore, we have E[M; - bad - bady] > & (1 —2794857) . (1 — exp(—§2(27))) — &
exp(—£2(2°7)) > £ (1 — 270483") Finally, we have

E[M; |bad; - bady)

E[Tz|bad1 . badg] =E |:]|\g|l|bad1 . bad2:| >

(1 + 60) . d . %
1 , .
> — (1 —2794837)(1 — ¢y) - Pr[bad; - bady] !
n
1 o
> — (1 —279481") . Prlbad; - bady] .
n

Hence, we have the lower bound E[7;] > E[7; - bad; - bady] > (1 —270-481),

Finally, recalling so far we have assume that param_error does not happen.
Therefore, multiplying the above by (1 — Pr[param_error]) = 1 — exp(—£2(2™))
gives the desired lower bound for the expectation of 7;.

Lemma 5 (Sufficient honest players without collision). Suppose n = g+
t < V. There are V bins, of which t bins are bad and the rest are good. Suppose
each of g balls is thrown into a bin uniformly at random independently. Let Z be
the number of good bins containing exactly one ball. For any 0 < a < 1, except
with probability exp(—O(a?g(l — &))), we have Z > g(1 — 3 — 2a).

Proof. Consider throwing the g balls one by one independently into the bins.

For 1 <i < g, let X; € {0,1} be the indicator random variable for the event

that when the i-th ball is thrown, it goes to an empty good bin. Observe that

no matter what happens to the first 7« — 1 balls, the event X; = 1 happens with

probability at least 1 — ;. Hence, S := Zle X; stochastically dominates the
n

binomial distribution Binom(g,1 — {;) with g trials and success rate 1 — {;. By

stochastic dominance and the Chernoff bound,

Pr[S<(1—a) g(1— 1) < exp (-6(a?g(1- 1))
V V
Hence, except with probability exp(—6(a?g(1 — &))), we have that S > (1 —
0) - g(1-2)> g1 & —a).

Finally, observe what happens to the number Z of good bins having exactly
one ball as the g balls are thrown one by one. When X; = 1, Z increases by 1;
when X; = 0, Z either remains the same or decreases by 1. Hence, at the end, the
number Z of good bins having exactly one ball satisfies Z > S—(g—5) =25 —g.
The result follows.
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Lemma 6 (Sufficient honest players in the final committee). Suppose
that |A] < (1 —2n)n. Let G C H denote an arbitrary subset of honest players
with g = |G|, where £ > 1/2". Ezcept with probability exp(—{2(2")), the number
of players from G that are in the final committee' is at least g~% (1 —27048m),

As a direct corollary, no matter how large A is, as long as the coalition A
adopts the honest strategy, then, for any subset G C [n] of at least n/2" players,
except with probability exp(—§2(27)), the number of players from G that are in
the final committee is at least g - =& - (1 — 270-487),

Proof. Let V =2, and so {+ = g5 Since |A| < (1 — 2n)n, the mask z to be
reconstructed later is fully determined before selecting input x to the sampler—in
this case, we can imagine that ya is chosen and revealed at the end, independent
of z, Y\, and z. Setting o := 2% in Lemma 5, we have, except with probability
p < exp (79(% cg-(1— Q*O'E’T))) < exp (7(2(%)), the number of players in
G whose final v-id has no collision is at least Z := g(1—2-270-5" —2.277) > 2.
Recall that r < Cj logn, and, as long as the constant C is sufficiently small, we
have that n > 247 and thus p < exp(—2(27)).

Setting €p := € - % <2.2767.2157 and using Lemma 2, we can show that
except with probability exp(—42(2")), the number of players from G in the final
committee is at least (1 — ) - d-Z > g- & - (1 —27048),

5.4 Maximin Fairness
In this section, we will prove the following lemma.

Lemma 7 (Ideal-world protocol: maximin fairness). The ideal-world pro-
tocol (i.e., instantiated with Feomm and Fumpe) satisfies (1-27047) = (1-279(").
sequential-mazimin-fairness against any non-uniform p.p.t. coalition'' of size at
most (1 —2n)n = (1 —279))p,

Proof. Due to a lemma proven in the online full version [15], we can do a round-
by-round analysis. Let r* be the first round in which the coalition deviates. Let 7
be the round in which all players reconstruct the mask vector z. Throughout, we
may assume that A < (1—2n)n. Further, for each round r*, we may assume that
Pr[Dev" ] is non-negligible where Dev" denotes the event that A deviates first in
round r*. We want to show that conditioned on this non-negligible probability
event Dev” , A cannot conditionally harm an honest individual noticeably, or
conditionally increase its own winning probability noticeably.

Easy case: v* > 7. This means the coalition A will deviate only in the tournament
tree protocol, whose sequential maximin fairness holds according to Theorem 3.
This means each honest player can only be hurt negligibly more.

Easy case: r* = 7. As mentioned earlier, as long as |A| < (1—2n)n, in this round,
no matter what A does, reconstruction of z is guaranteed and the reconstructed
value is unique.

10 Throughout, a player with multiplicity p in the final committee is counted p times.
1 Recall that the tournament-tree protocol is still instantiated with real cryptography.
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Slightly more complicated case: r* = 7 — 1. This is the case when the coalition A
deviates in the round in which the unmasked v-ids y are opened. Since we are
using an ideal Feomm, the only possible deviation in round r* =7 — 1 is if some
member of the coalition i € A fails to open its committed its y; value.

We consider two cases.

— First, suppose that |A| > nn. This means that the adversarial coalition
already knows the committed mask z at the end of the sharing phase. In
this case, the z mask to be reconstructed is uniquely determined at the end
of the sharing phase. In the round r* = 7 — 1, to harm any specific honest
individual, A’s best strategy is the following: for every final v-id in the space
{0,1}7, if one or more player(s) in A happen(s) to have that final v-id, make
exactly one of them open its y; value, such that there is no internal collision
among the coalition A. Due to the sequential fairness of the tournament-tree
protocol (i.e., Theorem 3), conditioned on the history of the protocol till the
end of round 7, every honest final committee member’s winning probability is
at least ﬁ — negl(k), no matter how A behaves in any round greater than 7.
Therefore, avoiding internal collision but otherwise opening every final v-id
is A’s best strategy for harming any specific honest player.

Note that opening the coalition members’ unmasked v-ids in an internal-
collision-avoiding manner like above does not change whether any honest
individual is included in the final committee, but it may increase the final
committee size (in comparison with the case when A continues to play hon-
estly). Due to Lemma 6, and since A has acted honestly so far, except with
negligible probability, the final committee size is at least g—,‘f(l — 270:48m)
Now, suppose A excludes its members from the final committee due to inter-
nal collision. Observe that actually this decision could have been made before
the input = to the Samp is chosen. Since there are at most n finalized v-ids
with no collision, by Lemma 3, except with exp(—2(")) probability (which
is negligible if r > Cloglogn for a sufficiently large Cj), the final committee
has size at most 22(1 4 275-°7).

Therefore, except with negligible probability, for any honest i, the coalition
A can only reduce 7; by a 1 — 279(") factor.

— Second, suppose that |A] < nn. In this case, A has no information about
the mask z, and Dev’ s independent of z. Further, z is guaranteed to be
reconstructed later. In this case, we can reprove Lemma 4 almost identically
except that instead of using the randomness yy, we now use the randomness
zp; further, notice that bad; is independent of zg, and even when condition-
ing on the non-negligible probability event Devr*, the probabilities of bad;
and badsy are still negligible. Therefore, we get that even when conditioning
on DevT*, for any honest i, the expectation of 7; is at least % (1 — 27048r)
no matter how A behaves during round 7 and after. Had A continued to play
honestly, using the randomness of z, we know that even when conditioning
on Dev’ | the expectation of 7} is at least 1/n — negl(x) where the negl()
term is due to the negligibly small probability of bad; and bady in which case
7; is defined to be 0. (see Lemma 4).
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Therefore, deviating in round 7 will not reduce any honest individual’s con-
ditional winning probability by a 1 — 2-€(") multiplicative factor.

Remaining case: r* <7 —1. The rest of the proof focuses on this remaining case.
Recall that we assume Pr[Dev” ] > m Let LEldeal denote a randomized
execution of our ideal-world leader-election protocol described in Sect.4.1.

Conditioning on the event DevT*, we prove maximin fairness assuming that
the coalition A contains no more than a 1 — 27 fraction of the players. Fix any
i ¢ A. Now, observe the following:

1. Recall that we may assume Dev’” happens with non-negligible probability.
Following the proof of Lemma 4, and observing that before round 7, the
randomness yy remains hidden and is independent of whatever that has hap-
pened so far, we have:

B [ir — LEldeal : Yi|Dev’” (1r)] > % (1 27048y 2)
The only difference in the argument is that both the probabilities
Prlbad;|Dev" | and Pr[bads|Dev” ] are at most poly(n) - exp(—£2(267)), which
is still negligible, because we assume that r = 2(loglog n) is sufficiently large.
Indeed, for sufficiently large n, poly(n)-exp(—§2(2°")) < exp(—£2(2°997)), and
the proof works as before.

2. We next consider the proof of Lemma 6, but now we conditioned on Dev"
(which has non-negligible probability). Suppose all players in A actually play
honestly. Define bads to be the event that the final committee has size less
than 2¢ . (1 — 270487). Lemma 6 states that Pr[bads] < exp(—£2(2")). Since
Dev’” has non-negligible probability, we have Pr[bad3|DevT*] < poly(n) -
exp(—£2(2"7)) < exp(—2(2°9)) < negl(k), where the last inequalities hold
for large enough n > k because r > 2(loglogn).

This implies that an honest continuation of the execution would lead to a

conditional expectation of 7; of at most
d/2v

1 —0.47r
L (120 (142 )+ negl(k) <

1 (1 4 9—0-46r
y (1+270407)

1

+negl(x) < —

gl(x) < -

Summarizing the above, the ideal protocol is (1—27-4")-sequential-maximin-
fair for any coalition that is at most (1 — 21)n = (1 — 279 in size.

Deferred materials. We defer to the online full version [15] 1) proofs of CSP
fairness for the ideal-world protocol, 2) proofs for the real-world protocol, and
3) our full lower bound proof. The online full version [15] also contain addi-
tional preliminaries, additional proofs for our sequential approximate fairness
notion, relationship to the RPD notion [22-24], as well as proofs for the folklore
tournament-tree protocol.
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Abstract. Secure multi-party computation allows mutually distrusting
parties to compute securely over their private data. However, guarantee-
ing output delivery to honest parties when the adversarial parties may
abort the protocol has been a challenging objective. As a representative
task, this work considers two-party coin-tossing protocols with guaran-
teed output delivery, a.k.a., fair coin-tossing.

In the information-theoretic plain model, as in two-party zero-sum
games, one of the parties can force an output with certainty. In the
commitment-hybrid, any r-message coin-tossing protocol is 1/+/r-unfair,
i.e., the adversary can change the honest party’s output distribution by
1/4/7 in the statistical distance. Moran, Naor, and Segev (TCC-2009)
constructed the first 1/r-unfair protocol in the oblivious transfer-hybrid.
No further security improvement is possible because Cleve (STOC-1986)
proved that 1/r-unfairness is unavoidable. Therefore, Moran, Naor, and
Segev’s coin-tossing protocol is optimal. However, is oblivious transfer
necessary for optimal fair coin-tossing?

Maji and Wang (CRYPTO0-2020) proved that any coin-tossing proto-
col using one-way functions in a black-box manner is at least 1/4/r-unfair.
That is, optimal fair coin-tossing is impossible in Minicrypt. Our work
focuses on tightly characterizing the hardness of computation assump-
tion necessary and sufficient for optimal fair coin-tossing within Crypto-
mania, outside Minicrypt. Haitner, Makriyannia, Nissim, Omri, Shaltiel,
and Silbak (FOCS—2018 and TCC-2018) proved that better than 1//r-
unfairness, for any constant r, implies the existence of a key-agreement
protocol.

We prove that any coin-tossing protocol using public-key encryption
(or, multi-round key agreement protocols) in a black-box manner must be
1/+/r-unfair. Next, our work entirely characterizes the additional power
of secure function evaluation functionalities for optimal fair coin-tossing.
We augment the model with an idealized secure function evaluation of
f, a.k.a., the f-hybrid. If f is complete, that is, oblivious transfer is
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possible in the f-hybrid, then optimal fair coin-tossing is also possible
in the f-hybrid. On the other hand, if f is not complete, then a coin-
tossing protocol using public-key encryption in a black-box manner in
the f-hybrid is at least 1/4/r-unfair.

Keywords: Fair computation + Optimal fair coin-tossing -
Cryptomania - Black-box separation + Hardness of computation
results - Secure function evaluation functionalities

1 Introduction

Secure multi-party computation [31,75] allows mutually distrusting parties to
compute securely over their private data. However, guaranteeing output deliv-
ery to honest parties when the adversarial parties may abort during the pro-
tocol execution has been a challenging objective. A long line of highly influen-
tial works has undertaken the task of defining security with guaranteed out-
put delivery (i.e., fair computation) and fairly computing functionalities [1-
5,10,11,14,33,34,39,60]. This work considers the case when honest parties are
not in the majority. In particular, as is standard in this line of research, the
sequel relies on the representative task of two-party secure coin-tossing, an ele-
gant functionality providing uncluttered access to the primary bottlenecks of
achieving security in any specific adversarial model.

In the information-theoretic plain model, one of the parties can fix the coin-
tossing protocol’s output (using attacks in two-player zero-sum games, or games
against nature [65]). If the parties additionally have access to the commitment
functionality (a.k.a., the information-theoretic commitment-hybrid), an adver-
sary is forced to follow the protocol honestly (otherwise, the adversary risks
being identified), or abort the protocol execution prematurely. Against such
adversaries, referred to as fail-stop adversaries [20], there are coin-tossing proto-
cols [6,12,13,19] where a fail-stop adversary can change the honest party’s output
distribution by at most O(1/4/r), where r is the round-complexity of the proto-
col. That is, these protocols are O (1/+/7)-insecure. In a ground-breaking result,
Moran, Naor, and Segev [61] constructed the first secure coin-tossing protocol in
the oblivious transfer-hybrid [24,67,68] that is O (1/r)-insecure. No further secu-
rity improvements are possible because Cleve [19] proved that O (1/r)-insecurity
is unavoidable; hence, the protocol by Moran, Naor, and Segev is optimal.

Incidentally, all fair computation protocols (not just coin-tossing, see, for
example, [1-5,10,11,14,33,34,39,60]) rely on the oblivious transfer functional-
ity to achieve O(1/r)-insecurity. A fundamental principle in theoretical cryp-
tography is to securely realize cryptographic primitives based on the minimal
computational hardness assumptions. Consequently, the following question is
natural.

Is oblivious transfer necessary for optimal fair computation?
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Towards answering this fundamental research inquiry, recently, Maji and
Wang [59] proved that any coin-tossing protocol that uses one-way functions
in a black-box manner [7,44,69] must incur 2(1/+/r)-insecurity. This result
proves the qualitative optimality of the coin tossing protocols of [6,12,13,19]
in Minicrypt [42] because the commitment functionality is securely realizable by
the black-box use of one-way functions [38,62,63]. Consequently, the minimal
hardness of computation assumption enabling optimal fair coin-tossing must be
outside Minicrypt.

Summary of our results. This work studies the insecurity of fair coin-tossing
protocols outside Minicrypt, within (various levels of) Cryptomania [42]. Our
contributions are two-fold.

1. First, we generalize the (fully) black-box separation of Maji and Wang [59]
to prove that any coin-tossing protocol using public-key encryption in a fully
black-box manner must be 2(1/4/r)-insecure.

2. Finally, we prove a dichotomy for two-party secure (possibly, randomized out-
put) function evaluation functionalities. For any secure function evaluation
functionality f, either (A) optimal fair coin-tossing exists in the information-
theoretic f-hybrid, or (B) any coin-tossing protocol in the f-hybrid, even
using public-key encryption algorithms in a black-box manner, is 2(1/+/7)-
insecure.

Remark 1. In the information-theoretic f-hybrid model, parties have access to a
trusted party faithfully realizing the functionality f. However, this functionality
is realized unfairly. That is, the trusted party delivers the output to the adver-
sary first. If the adversary wants, it can abort the protocol and block the output
delivery to the honest parties. Otherwise, it can also permit the delivery of the
output to the honest parties and continue with the protocol execution. We high-
light that the fair f-hybrid (where the adversary cannot block output delivery to
the honest parties), for any f where both parties influence the output, straight-
forwardly yields perfectly or statistically secure fair coin-tossing protocol.!

Our hardness of computation results hold even for a game-theoretic definition
of fairness as well (which extends to the stronger simulation-based security defi-
nition). Section 1.1 summarizes our contributions. As shown in Fig. 1, our results

! Suppose f =XOR. In a fair f-hybrid, the adversary cannot block the output delivery
to the honest parties. So, parties input random bits to the f-functionality and agree
on the output. This protocol has O-insecurity. A similar protocol (using a deter-
ministic extractor for independent small-bias sources) can extract the fair output
from any f where both parties have influence on the output distribution. Consider
the following “collaborative randomness generation” followed by “extraction” pro-
tocol. (a) Invoke (in parallel) a bidirectional influence functionality multiple times
with random inputs. The output of each invocation in mot entirely determined by
one of the parties. Consequently, these samples have average min-entropy. (b) Non-
interactively, parties use these fair output samples to extract this entropy to obtain
the (common) fair coin toss (using convolution/XOR, or traversal of an appropriate
expander graph).
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HSecure Construction [Adversarial Attack
In General:
Pessiland constant-unfair [37]
Fail-stop Adversary: Fail-stop Adversary:

1/+/r-unfair [20]

Minicrvot One-way Functions: )
P 1//r-unfair [6,12,13,19] 1/y/r-unfair [59]
Public-key Encryption:

1/+/r-unfair [This work]

PKE + f-hybrid, f /& OT:

Cryptomania 1/+/r-unfair [This work]

Oblivious Transfer: .
1/r-unfair [61] 1/r-unfair [19]

Fig. 1. The first column summarizes of the most secure fair coin-tossing protocols in
Impagliazzo’s worlds [42]. Corresponding to each of these worlds, the second column
has the best attacks on these fair coin-tossing protocols. All the adversarial attacks are
fail-stop attackers except for the general attack in pessiland.

further reinforce the widely-held perception that oblivious transfer is necessary
for optimal fair coin-tossing. Our work nearly squeezes out the entire remain-
ing space left open in the state-of-the-art after the recent breakthrough of [59],
which was the first advancement on the quality of the attacks on fair coin-tossing
protocols since [20] after almost three decades. However, there are fascinating
problems left open by our work; Sect. 6 discusses one.

Positioning the technical contributions. Information-theoretic lower-
bounding techniques that work in the plain model and also extend to the f-
hybrid are rare. Maji and Wang [59] proved that optimal coin-tossing is impossi-
ble in the information-theoretic model even if parties can access a random oracle.
This work extends the potential-based approach of [59] to f-hybrid information-
theoretic models, such that oblivious transfer is impossible in the f-hybrid and
parties additionally have access to a public-key encryption oracle.

0 1 2

0|20 20|21

Z3 |24 |21

2 |23 |22 %2

Fig. 2. The Kushilevitz Function [51], where Alice holds input = € {0,1,2} and Bob
holds input y € {0,1,2}. For example, the output is 29 if z =0 and y € {0,1}.

For the discussion below, consider f to be the Kushilevitz function [51] (see
Fig.2). One cannot realize this function securely in the information-theoretic
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plain model even against honest-but-curious adversaries [9,49,50,57]. Further-
more, oblivious transfer is impossible in the f-hybrid [46,47]. The characterization
of the exact power of making ideal f-invocations is not entirely well-understood.

Invocations of the ideal f-functionality are non-trivially useful. For example,
one can realize the commitment functionality in the f-hybrid model [58] (even
with Universally Composable (UC) security [15,16] against malicious adver-
saries). The f-functionality is also known to securely implement other secure
function evaluation functionalities as well [71]. All these functionalities would
otherwise be impossible to securely realize in the plain model [17,52,66]. Con-
sequently, it is plausible that one can even implement optimal fair coin-tossing
without implementing oblivious transfer in the f-hybrid model.

Our technical contribution is an information-theoretic lower-bounding tech-
nique that precisely characterizes the power of any f-hybrid vis-a-vis its ability
to implement optimal fair coin-tossing. The authors believe that these techniques
shall be of independent interest to characterize the power of performing ideal
f-invocations in general.

1.1 Owur Contribution

This section provides an informal summary of our results and positions our
contributions relative to the state-of-the-art. To facilitate this discussion, we need
to introduce a minimalistic definition of coin-tossing protocols. An (r, X)-coin-
tossing protocol is a two-party r-message interactive protocol where parties agree
on the final output € {0,1}, and the expected output of an honest execution of
the protocol is X. A coin-tossing protocol is e-unfair if one of the parties can
change the honest party’s output distribution by € (in the statistical distance).

Maji and Wang [59] proved that the existence of optimal coin-tossing pro-
tocols is outside Minicrypt [42], where one-way functions and other private-
key cryptographic primitives exist (for example, pseudorandom generator [40,
41,43], pseudorandom function [29,30], pseudorandom permutation [55], sta-
tistically binding commitment [62], statistically hiding commitment [38,63],
zero-knowledge proof [32], and digital signature [64,70]). Public-key crypto-
graphic primitives like public-key encryption, (multi-message) key-agreement
protocols, and secure oblivious transfer protocol are in Cryptomania [44] (out-
side Minicrypt). Although the existence of a secure oblivious transfer protocol
suffices for optimal fair coin-tossing, it was unknown whether weaker hardness of
computation assumptions (like public-key encryption and (multi-message) key-
agreement protocols [27]) suffice for optimal fair coin-tossing or not. Previously,
Haitner, Makriyannis, Nissim, Omri, Shaltiel, and Silbak [35,36], for any con-
stant r, prove that r-message coin-tossing protocols imply key-agreement proto-
cols, if they are less than 1/4/r-insecure.

Result I. Towards this objective, we prove the following result.

Corollary 1 (Separation from Public-key Encryption). Any (r, X)-coin-
tossing protocol that uses a public-key encryption scheme in a fully black-box
manner is 2(X (1 — X)/\/r)-unfair.
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We emphasize that X may depend on the message complexity r of the protocol,
which, in turn, depends on the security parameter. For example, consider an
ensemble of fair coin-tossing protocols with round complexity r and expected
output X = 1/r. This result shows a fail-stop adversary that changes the honest
party’s output distribution by 1/ r3/2 in the statistical distance.

This hardness of computation result extends to the fair computation of any
multi-party functionality (possibly with inputs) such that the output has some
entropy, and honest parties are not in the majority (using a standard partition
argument). At a high level, this result implies that relying on stronger hardness of
computation assumptions like the existence of public-key cryptography provides
no “fairness-gains” for coin-tossing protocols than only using one-way functions.

This result’s heart is the following relativized separation in the information-
theoretic setting (refer to Theorem 5). There exists an oracle PKE,, [56] that
enables the secure public-key encryption of n-bit messages. However, we prove
that any (r, X)-coin-tossing protocol where parties have oracle access to the
PKE,, oracle (with polynomial query complexity) is (X (1 — X)//r)-unfair.
This relativized separation translates into a fully black-box separation using
by-now-standard techniques in this field [69]. Conceptually, this black-box sepa-
ration indicates that optimal fair coin-tossing requires a hardness of computation
assumption that is stronger than the existence of a secure public-key encryption
scheme.

Gertner, Kannan, Malkin, Reingold, and Vishwanathan [27] showed that the
existence of a public-key encryption scheme with additional (seemingly innocu-
ous) properties (like the ability to efficiently sample a public-key without know-
ing the private-key) enables oblivious transfer. Consequently, our oracles realiz-
ing public-key encryption must avoid any property enabling oblivious transfer
(even unforeseen ones). This observation highlights the subtlety underlying our
technical contributions. For example, our set of oracles permit testing whether
a public-key or cipher-text is valid or not. Without this test, oblivious transfer
and, in turn, optimal fair coin-tossing is possible. Surprisingly, these test oracles
are also sufficient to rule out the possibility of oblivious transfer.

Since public-key encryption schemes imply key agreement protocols, our
results prove that optimal fair coin-tossing is black-box separated from key agree-
ment protocols as well.

Result II. Let f: X x Y — R?Z be a two-party secure symmetric function
evaluation functionality, possibly with randomized output. The function takes
private inputs x and y from the parties and samples an output z € Z according to
the probability distribution p;(z|z,y). The information-theoretic f-hybrid is an
information-theoretic model where parties have additional access to the (unfair)
f-functionality.
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Observe that if f is the (symmetrized) oblivious transfer functionality,? then
the Moran, Naor, and Segev protocol [61] is an optimal fair coin-tossing pro-
tocol in the (unfair) f-hybrid. More generally, if f is a functionality such that
there is an oblivious transfer protocol in the f-hybrid, one can emulate the
Moran, Naor, and Segev optimal coin-tossing protocol; consequently, optimal
coin-tossing exists in the f-hybrid. Kilian [47] characterized all functions f such
that there exists a secure oblivious transfer protocol in the f-hybrid, referred to
as complete functions.

Our work explores whether a function f that is not complete may enhance
the security of fair coin-tossing protocols.

Corollary 2 (Dichotomy of Functions). Let f be an arbitrary 2-party sym-
metric function evaluation functionality, possibly with randomized output. Then,
exactly one of the following two statements holds.

1. For all r € N and X € [0,1], there exists an optimal (r, X)-coin-tossing
protocol in the f-hybrid (a.k.a., O(1/r)-unfair protocol).

2. Any (r, X)-coin-tossing protocol that uses public-key encryption protocols in
a black-box manner in the f-hybrid is (X (1 — X)//r)-unfair.

For example, Corollary 1 is implied by the stronger version of our result by
using a constant-valued f, a trivial function evaluation. For more details, refer
to Theorem 6. In our model, we emphasize that parties can perform an arbitrary
number of f-invocations in parallel in every round.

Let us further elaborate on our results. Consider a function f that has a
secure protocol in the information-theoretic plain model, referred to as triv-
tal functions. For deterministic output, trivial functions’ full characterization
is known [9,49,50,57]. For randomized output, the characterization of trivial
functions is not known currently. Observe that trivial functions are definitely
not complete; otherwise, a secure oblivious transfer protocol shall exist in the
information-theoretic plain model, which is impossible. For every ¢t € N, there
are functions f; such that any secure protocol for f; requires ¢ rounds of interac-
tive communication in the information-theoretic plain model. For the random-
ized output case, the authors know of functions such that |X| = |Y| = 2 and
|Z| = (t+1) that need t-round protocols for secure computation, which is part of
ongoing independent research. Compiling out the f;-hybrid using such a ¢-round
secure computation protocol allows only for an @ (X (1 — X)/v/rt)-insecurity,
which yields a useless bound for ¢ = §2(r). Consequently, compiling out the
trivial functions is inadequate.

It is also well-known that functions of intermediate complexity exist [9,49,
50,57], which are neither complete nor trivial (for example, the Kushilevitz func-
tion, refer to Fig.2). In fact, there are randomized functions (refer to Fig.3) of
intermediate complexity such that | X|=|Y|=2 and |Z| = 3 [23].

2 In the symmetrized oblivious transfer functionality, the sender has input (xo,z1) €
{0,1}?, and the receiver has input (b,r) € {0,1}*. The symmetric oblivious transfer

functionality returns z, @ r to both the parties. If the receiver picks r & {0,1}, then
this functionality hides the receiver’s choice bit b from the sender.
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1 ((18,18,18) (36,12,6)
54 \ (21,3,30) (42,2,10)

Fig. 3. A randomized functionality of intermediate complexity with X =Y = {0,1}
and Z = {0,1,2}. For instance, when = 0 and y = 0, the distribution of the output
over Z is (18/54,18/54,18/54), i.e., a uniform distribution over Z.

Our result claims that even an intermediate function f is useless for optimal
fair coin-tossing; it is as useless as one-way functions or public-key encryption.
Therefore, our results’ technical approach must treat each f-hybrid invocation as
one step in the protocol. We highlight that the intermediate functions are useful
in securely realizing other non-trivial functionalities as well [58,71]. However, for
fair coin-tossing, they are useless.

1.2 Prior Works

Deterministic secure function evaluation. In this paper, we focus on two-party
secure function evaluation functionalities that provide the same output to the
parties. Consider a deterministic function f: X x Y — Z. The unfair ideal
functionality implementing f takes as input x and y from two parties and delivers
the output f(z,y) to the adversary. The adversary may choose to block the
output delivery to the honest party, or permit the delivery of the output to the
honest party.

In this document, we consider security against a semi-honest information-
theoretic adversary, i.e., the adversary follows the protocol description honestly
but is curious to find additional information about the other party’s private
input. There are several natural characterization problems in this scenario. The
functions that have perfectly secure protocols in the information-theoretic plain
model, a.k.a., the trivial functions, are identical to the set of decomposable func-
tions [9,50]. For every ¢ € N, there are infinitely many functions that require
t-rounds for their secure evaluation. Interestingly, relaxing the security from
perfect to statistical security, does not change this characterization [49,57].

Next, Kilian [46] characterized all deterministic functions f that enable obliv-
ious transfer in the f-hybrid, the complete functions. Any functions that has an
“embedded OR-minor” (refer to Definition 4) is complete. Such functions, intu-
itively, are the most powerful functions that enable general secure computation
of arbitrary functionalities.

The sets of trivial and complete functions are not exhaustive (for |Z| >
3 [18,48]). There are functions of intermediate complexity, which are neither
trivial nor complete (see, for example, Fig.2). The power of the f-hybrid, for an
intermediate f, was explored by [71] using restricted forms of protocols.

Randomized secure function evaluation. A two-party randomized function
f(x,y): X xY — RZ is a function that, upon receipt of the inputs  and y, sam-
ples an output according to the distribution p¢(z|x,y) over the samples space Z.
Kilian [47] characterized all complete randomized functions. Any function that
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has an “embedded generalized OR-minor” (refer to Definition 4) is complete.
Recently, [23] characterized functions with 2-round protocols. Furthermore, even
for |X| = |Y| =2 and |Z| = 3, there are random function evaluations that are
of intermediate complexity [23].

In the field of black-box separation, the seminal work of Impagliazzo and
Rudich [44] first proposed the notion of black-box separation between cryp-
tographic primitives. Since then, there has been many influential works [25-
28,69,72,74] in this line of research. Below, we elaborate on a few works that
are most relevant to us.

Firstly, for the fair coin-tossing in the random oracle model, the work of
Dachman-Soled, Lindell, Mahmoody, and Malkin [21] showed that when the
message complexity is small, random oracle can be compiled away and hence is
useless for fair coin-tossing. In another work, Dachman-Soled, Mahmoody, and
Malkin [22] studied a restricted type of protocols that they called “function-
oblivious” and showed that for this particular type of protocols, random oracles
cannot yield optimal fair coin-tossing. Recently, Maji and Wang [59] resolved
this problem in the full generality. They showed that any r-message coin-tossing
protocol in the random oracle model must be 2(1/+/r)-unfair.

In a recent work of Haitner, Nissim, Omri, Shaltiel, and Silbak [36] and
Haitner, Makriyannis, and Omri [35], they proved that, for any constant r, the
existence of an r-message fair coin-tossing protocol that is more secure than
1/4/r implies the existence of (infinitely often) key agreement protocols.

1.3 Technical Overview

In this section, we present a high-level overview of our proofs. We start by
recalling the proofs of Maji and Wang [59].

Before we begin, we need to introduce the notion of Alice and Bob’s defense
coins. At any instance of the protocol evolution, Alice has a private defense coin
€ {0,1}, referred to as the Alice defense coin, which she outputs if Bob aborts
the protocol. Similarly, Bob has a Bob defense coin. When Alice prepares a
next message of the protocol, she updates her defense coin. However, when Bob
prepares a next message of the protocol, Alice’s defense coin remains unchanged.
Analogously, Bob updates his defense coin when preparing his next messages in
the protocol.

Abstraction of Maji and Wang [59] Technigque. Consider an arbitrary fair coin-
tossing protocol 7€ where Alice and Bob have black-box access to some oracle
O. In their setting, O is a random oracle. Let r and X be the message complexity
and the expected output of this protocol. They used an inductive approach to
prove this protocol is (¢ - X(1 — X)/+/r)-insecure as follows (c is a universal
constant).

For every possible first message of this protocol, they consider two attacks
(refer to Fig.4). Firstly, parties can attack by immediately abort upon this first
message. Secondly, parties can defer their attack to the remaining sub-protocol,
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Attack I —_— m

Attack II

(r — 1, 21)-sub- (r — 1, z¢)-sub-
protocol protocol

Fig. 4. An intuitive illustration of the approach of Maji and Wang [59].

which has only r —1 messages. Suppose when the first message is m;, the remain-
ing sub-protocol has expected output x;. Additionally, the expectation of Alice
and Bob defense is a; and b;. The effectiveness of the first attack is precisely

|{Ei — (li| + |(E2 — b1| s

where |x; — a;] is the change of Alice’s output if Bob aborts, and analogously,
|x; — b;] is the change of Bob’s output if Alice aborts. On the other hand, by the
inductive hypothesis, we know the effectiveness of the second attack is at least

c (1 —x;)/vVr—1.

Now, they employed a key inequality by [45] (refer to Imported Lemma 1) and
show that the maximum of these two quantities is lower bounded by

c
% . (Z‘Z(l — l‘l) + (l‘i - ai)Q + (J?l — bi)2) .

Define potential function ®(z,a,b) := (1 — x) + (x — a)® + (z — b)2. Maji
and Wang noted that if Jensen’s inequality holds, i.e.,

(2 7

E[®(xi, a;,b;)] > @ (E{ zi], Blai], B b ]> (1)

then the proof is complete. This is because the overall effectiveness of the attack
is lower bounded by

?lmax (ixi—az-u i il c-miu—xi)/m)]

(Expectation of the most effective attack)

> ]:j {\;77 &(xy, a4, bl)} (The key inequality of [45])
> \i[ o <E} [#] ,Ei)[ai] ,]S][bz]> (Jensen’s inequality)
> %-X(l—X). (- Elz] = X)
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To prove Eq. 1, they noted that @(z, a,b) could be rewritten as
d(z,a,b) = x + (x —a — b)? — 2ab.

Observe that z and (z —a—b)? are convex functions, and hence Jensen’s inequal-
ity holds. The only problematic term is ab. To resolve this, they noted that
suppose we have the following guarantee.

Conditioned on the partial transcript,
Alice private view and Bob private view are (close to) independent.3

Then we shall have E [a;b;] ~ E [a;] E [b;] (refer to Claim 1).* Consequently,

1 K3 K3
Eq. 1 shall hold and the proof is done.

Note that the argument thus far is oblivious to the fact that the oracle in
use is a random oracle. For any oracle O, if we have the guarantee above, this
proof will follow.

In particular, when the oracle in use is the random oracle, Maji and Wang
observed that, standard techniques (namely, the heavy querier [8]) do ensure
that Alice private view and Bob private view are (close to) independent. This
completes their proof.

Extending to f-hybrid. When f is a complete function, one can build oblivious
transfer protocol in the f-hybrid model and, consequently, by the MNS proto-
col [61], optimal fair coin-tossing does exist in the f-hybrid model.

On the other hand, if f is not complete, Kilian [47] showed that f must satisfy
the cross product rule (refer to Definition 4). This implies that conditioned on
the partial transcript, which includes ideal calls to f, Alice and Bob private view
are (perfectly) independent (refer to Lemma 3). Therefore, the proof strategy of
Maji and Wang [59] is applicable.

Ezxtending to Public-key Encryption. Our proof for the public-key encryption
follows from the ideas of Mahmoody, Maji, and Prabhakaran [56]. First, we
define a collection of oracles PKE,, (refer to Sect.5.1), with respect to which
public-key encryption exists. To prove that optimal fair coin-tossing protocol
does not exist, it suffices to ensure that Alice and Bob private view are (close
to) independent. However, since with the help of PKE,, oracle, Alice and Bob can
agree on a secret key such that a third party, Eve, who sees the transcript and
may ask polynomially many queries to the oracle, cannot learn any information
about the key. It is impossible to ensure the independence of the private views
by only invoking a public algorithm.

To resolve this, [56] showed that one could compile any protocol 7 in the
PKE,, oracle to be a new protocol 7’ in the PKE,, oracle where parties never

3 For a joint distribution (X,Y), one may measure the closeness of X and Y being
independent by the statistical distance between (X,Y) and X x Y.

4 In particular, if Alice private view and Bob private view are perfectly independent,
we shall have E [a:b;] = E [a:] E [b].
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query the decryption oracle (refer to Imported Theorem 1). This compiler sat-
isfies that given a local view of Alice (resp., Bob) in protocol 7, one could simu-
late the local view of Alice (resp., Bob) in protocol 7’ and vice versa. Therefore,
instead of considering a fair coin-tossing protocol in the PKE,, oracle model, one
could consider a fair coin-tossing protocol in the PKE,, oracle model where par-
ties never query the decryption oracle. And [56] showed that, when the parties
do not call the decryption oracle, there does exist a public algorithm, namely the
common information learner, who can find all the correlation between Alice and
Bob (refer to Imported Theorem 2). And conditioned on the partial transcript
with the additional information from the common information learner, Alice and
Bob private view are (close to) independent. Therefore, we can continue with
the proof-strategy of Maji and Wang [59].

2 Preliminaries

For a randomized function f: X — ), we shall use f(x;s) for f evaluated with
input x and randomness s.

We use uppercase letters for random variables, (corresponding) lowercase
letters for their values, and calligraphic letters for sets. For a joint distribution
(A,B), A and B represent the marginal distributions, and A x B represents
the product distribution where one samples from the marginal distributions A
and B independently. For two random variables A and B distributed over a
(discrete) sample space {2, their statistical distance is defined as SD (A, B) := %
Y wen |Pr[A=w] - Pr[B = w]|.

For a sequence (X1, Xo,...), we use X<, to denote the joint distribution
(X1,Xa,...,X;). Similarly, for any (21,x2,...) € 1 X {29 X ---, we define
x<; = (T1,®2,...,2;) € 21 X 29 X--- x (2. Let (My, Ma, ..., M,) be a joint dis-
tribution over sample space §21 X £25 X - - - X £2,., such that for any ¢ € {1,2,...,n},
M; is a random variable over (2;. A (real-valued) random variable X is said to be
M<; measurable if there exists a deterministic function f: {2, x---x §2; — R such
that X; = f(Mi,...,M;). A random variable 7: £ x --- x 2, — {1,2,...,r}
is called a stopping time, if the random variable 1,<; is M<; measurable, where
1 is the indicator function. For a more formal treatment of probability spaces,
o-algebras, filtrations, and martingales, refer to, for example, [73].

The following inequality shall be helpful for our proof.

Theorem 1 (Jensen’s inequality). If f is a multivariate convex function,
then E[f (X)] > f(E[X]), for all probability distributions X over the domain
of f.

In particular, f(x,y,2) = (x —y — 2)
Jensen’s inequality applys.

2 is a tri-variate convex function where

3 Fair Coin-Tossing Protocol in the f-hybrid Model

Let f: X XY — Z be an arbitrary (possibly randomized) function. As standard
in the literature, we shall restrict to f such that the input domain X and ) and
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the range Z are of constant size. A two-party protocol in the f-hybrid model is
defined as follows.

Definition 1 (f-hybrid Model [15,53]). A protocol between Alice and Bob
in the f-hybrid model is identical to a protocol in the plain model except that
both parties have access to a trusted party realizing f. At any point during the
ezecution, the protocol specifies which party is supposed to speak.

— Alice/Bob message. If Alice is supposed to speak, she shall prepare her next
message as a deterministic function of her private randomness and the partial
transcript.If Bob is supposed to speak, his message is prepared in a similar
manner.

— Trusted party message. At some point during the execution, the protocol
might specify that the trusted party shall speak next. In this case, the protocol
shall also specify a natural number £, which indicates how many instances of
f should the trusted party compute. Alice (resp., Bob) will prepare her inputs
x = (x1,...,x0) (resp., y = (y1,...,ye)) and send it privately to the trusted
party. The trusted party shall compute (f(x1,y1),-.., f(ze,ye)) and send it
as the next message.

In this paper, we shall restrict to fail-stop adversarial behavior.

Definition 2 (Fail-stop Attacker in the f-hybrid Model). A fail-stop
attacker follows the protocol honestly and might prematurely abort. She might
decide to abort when it is her turn to speak. Furthermore, during the trusted
party message, she shall always receive the trusted party message first and, based
on this message, decide whether to abort or not. If she decides to abort, this
action prevents the other party from receiving the trusted party message.

In particular, we shall focus on fair coin-tossing protocols in the f-hybrid model.

Definition 3 (Fair Coin-tossing in the f-hybrid Model). An (Xo,r)-fair
coin-tossing in the f-hybrid model is a two-party protocol between Alice and Bob
in the f-hybrid model such that it satisfies the following.

- Xo-FExpected Output. At the end of the protocol, parties always agree on
the output € {0,1} of the protocol. The expectation of the output of an honest
execution is Xo € (0,1).

- r-Message Complexity. The total number of messages of the protocol is
(at most) r. This includes both the Alice/Bob message and the trusted party
message.

- Defense Preparation. Anytime a party speaks, she shall also prepare a
defense coin based on her private randomness and the partial transcript. Her
latest defense coin shall be her output when the other party decides to abort.
To ensure that parties always have a defense to output, they shall prepare a
defense before the protocol begins.

— Insecurity. The insecurity is defined as the maximum change a fail-stop
adversary can cause to the expectation of the other party’s output.
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For any (randomized) functionality f, Kilian [47] proved that if f does not
satisfy the following cross product rule, f is complete for information-theoretic
semi-honest adversaries. That is, for any functionality g, there is a protocol in
the f-hybrid model that realizes g, which is secure against information-theoretic
semi-honest adversaries. In particular, this implies that there is a protocol in the
f-hybrid model that realizes oblivious transfer.

Definition 4 (Cross Product Rule). A (randomized) functionality f: X x
Y — Z is said to satisfy the cross product rule if for all xg,x1 € X, yo,y1 € YV,
and z € Z such that

Pr{f(zo,y0) = 2] >0 and Pr[f(z1,y0)=2]>0,

we have

Pr(f(xo,y0) = 2] - Pr[f(z1,y1) = 2] = Pr[f(21,90) = 2] - Pr[f(z0,y1) = 2]

We recall the MNS protocol by Moran, Naor, and Segev [61]. The MNS
protocol makes black-box uses of the oblivious transfer as a subroutine to con-
struct optimal-fair coin-tossing protocols. In particular, their protocol enjoys
the property that any fail-stop attack during the oblivious transfer subroutine is
an entirely ineffective attack. Therefore, the MNS protocol, combined with the
results of Kilian [47], gives us the following theorem.

Theorem 2 ([47,61]). Let f be a (randomized) functionality that is complete.
For any Xy € (0,1) and r € N*, there is an (Xo,r)-fair coin-tossing protocol in
the f-hybrid model that is (at most) O (1/r)-insecure against fail-stop attackers.

Remark 2 (On the necessity of the unfairness of f). We emphasize that it is
necessary that in the f-hybrid model, f is realized unfairly. That is, the adver-
sary receives the output of f before the honest party does. If f is realized fairly,
i.e., both parties receive the output simultaneously, it is possible to construct
perfectly-secure fair coin-tossing. For instance, let f be the XOR function. Con-

sider the protocol where Alice samples z & {0,1}, Bob samples y & {0,1}, and
the trusted party broadcast f(z,y), which is the final output of the protocol.
Trivially, one can verify that this protocol is perfectly-secure.

Intuitively, the results of Kilian [47] and Moran, Naor, and Segev [61] showed
that when f is a functionality that does not satisfy the cross product rule, a
secure protocol realizing f can be used to construct optimal-fair coin-tossing.

In this work, we complement the above results by showing that when f is a
functionality that does satisfy the cross product rule, a fair coin-tossing protocol
in the f-hybrid model is (qualitatively) as insecure as a fair coin-tossing protocol
in the information-theoretic model. In other words, f is completely useless for
fair coin-tossing. Our results are summarized as the following theorem.

Theorem 3 (Main Theorem for f-hybrid). Let f be a randomized function-
ality that is not complete. Any (Xo,r)-fair coin-tossing protocol in the f-hybrid

model is (at least) {2 (W)-insecur@.
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4 Proof of Theorem 3

4.1 Properties of Functionalities

Let f be a functionality that satisfies the cross product rule. We start by observ-
ing some properties of f. Firstly, let us recall the following definition.

Definition 5 (Function Isomorphism [57]). Let f: X xY — Z and g: X x
Y — Z' be any two (randomized) functionalities. We say f < g if there exist
deterministic mappings Mpa: X x Z' — Z and Mg: Y x Z' — Z such that, for
allx € X, y €Y, and randomness s,

Ma (x,9(x,y;5)) = Mg (y, 9(x,y; 5))

and
We say f and g are isomorphic (i.e., f =2 g)if f < g and g < f.

Intuitively, f and g are isomorphic if securely computing f can be realized
by one ideal call to g without any further communication and vise versa. As an

example, the (deterministic) XOR functionality {(1] é} is isomorphic to [g :1,)]
Given two isomorphic functionalities f and g, it is easy to see that there is a
natural bijection between protocols in the f-hybrid model and g-hybrid model.

Lemma 1. Let f and g be two functionalities such that f = g. For every fair
coin-tossing protocol  in the f-hybrid model, there is a fair coin-tossing protocol
7' in the g-hybrid model such that

— m and 7 have the same message complexity r and expected output Xg.
— For every fail-stop attack strategy for w, there exists a fail-stop attack strategy
for @ such that the insecurities they cause are identical and vice versa.

Proof (Sketch). Given any protocol 7 in the f-hybrid model between A and B,
consider the protocol 7’ in the g-hybrid model between A’ and B’. In 7/, A’
simply simulates A and does what A does. Except when the trusted party sends
the output of g, A’ uses the mapping Ma to recover the output of f and feeds it
to A. B’ behaves similarly. Easily, one can verify that these two protocols have
the same message complexity and expected output. Additionally, for every fail-
stop adversary A* for 7, there is a fail-stop adversary (A*)/ for 7’ that simulates
A* in the same manner, which deviates the output of Bob by the same amount.

We are now ready to state our next lemma.

Lemma 2 (Maximally Renaming the Outputs of f). Let f: X x Y — Z
be a (randomized) functionality that is not complete. There exists a functionality
fli X xY — Z' such that f = f' and f' satisfies the following strict cross
product rule. That is, for all xg,z1 € X, yo,y1 € Y, and 2’ € Z', we have

Pr(f'(z0,y0) = 2']- Pr[f'(z1,91) = 2'] = Pr[f'(21,90) = 2']-Pr[f'(wo, 1) = #].
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The proof of this lemma follows from standard argument. We refer the reader
to the full version for a complete proof.
Following the example above, the XOR functionality [(1] (1)] satisfies the cross

product rule, i.e., XOR is not complete, but it does not satisfy the strict cross
product rule since

Pr[XOR(0,0) = 1] - Pr[XOR(1,1) = 1] # Pr[XOR(1,0) = 1] - Pr[XOR(0,1) = 1].

On the other hand, functionality [g f;] is isomorphic to XOR and does satisfy

the strict cross product rule.

By Lemma 1, the insecurity of a fair coin-tossing protocol in the f-hybrid
model is identical to a fair coin-tossing protocol in the f’-hybrid model when
f = f’. Therefore, in the rest of this section, without loss of generality, we
shall always assume f is maximally renamed according to Lemma 2 such that it
satisfies the strict cross product rule.

4.2 Notations and the Technical Theorem

Let 7 be an (X, r)-fair coin-tossing protocol in the f-hybrid model. We shall use
R” and RB to denote the private randomness of Alice and Bob. We use random
variable M; to denote the i*" message of the protocol, which could be either an
Alice/Bob message or a trusted party message. Let X; be the expected output
of the protocol conditioned on the first i messages of the protocol. In particular,
this definition is consistent with the definition of Xj.

For an arbitrary i, we consider both Alice aborts and Bob aborts the i
message. Suppose the it message is Alice’s message. Alice abort means that she
aborts without sending this message to Bob. Conversely, Bob abort means he
aborts in his next message immediately after receiving this message. On the other
hand, if this is a trusted party message, then both a fail-stop Alice and a fail-
stop Bob can abort this message. This prevents the other party from receiving
the message. We refer to the defense output of Alice when Bob aborts the "
message as Alice’s i defense. Similarly, we define the i" defense of Bob. Let D2
(resp., DB) be the expectation of Alice’s (resp., Bob’s) i'* defense conditioned
on the first ¢ messages.

Now, we are ready to define our score function.

Definition 6. Let m be a fair coin-tossing protocol in the f-hybrid model with
message complexity r. Let T be a stopping time. Let P € {A,B, T} be the party
who sends the last message.® We define the score function as follows.

Score (m,7) = E [Lirzrvpza) - | Xr = DR[|+ Lirznvipse) - | X — DF].

The following remarks, similar to [45,59], provide additional perspectives.

5 We use A, B, and T to stand for Alice, Bob, and the trusted party, respectively.
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Remark 3. 1. In the information-theoretic plain model, for every message of the
protocol, one usually only consider the attack by the sender of this message.
The attack by the receiver, who may abort immediately after receiving this
message, usually is ineffective. This is because the sender is not lagging behind
in terms of the progress of the protocol. However, in the f-hybrid model, we
have trusted party messages, which reveal information regarding both parties’
private randomness. Therefore, both parties’ defenses may lag behind, and
both parties’ attacks could be effective. Hence, in our definition of the score
function, for every message we pick in the stopping time, we consider the
effectiveness of both parties’ attacks.

2. The last message of the protocol is a boundary case of the above argument.
Suppose Alice sends the last message of the protocol, Bob does not have
the opportunity to abort after receiving this message. Similarly, if this is a
Bob message, Alice cannot attack this message. On the other hand, if the
last message is a trusted party message, then both parties could potentially
attack this message. This explains the indicator function in our definition.

3. Finally, given a stopping time 7* that witnesses a high score. We can always
find a fail-stop attack strategy that deviates the expected output of the other
party by % - Score (7, 7*) in the following way. For Alice, we shall partition
the stopping time 7* by considering whether X, > DB or not. Similarly,
we partition 7* for Bob. These four attacks correspond to either Alice or
Bob favoring either 0 or 1. The quality of these four attacks sums up to
be Score (7, 7*). Hence, one of these four fail-stop attacks might be at least
1 - Score (m, 7*) effective.

The score function measures the effectiveness of a fail-stop attack corresponds
to a stopping time 7. We are interested in the effectiveness of the most devas-
tating fail-stop attacks. This motivates the following definition.

Definition 7. Let w be a fair coin-tossing protocol in the f-hybrid model. Define
Opt (7) := max Score (7, 7).

Now, we are ready to state our main theorem, which shows that the most
devastating fail-stop attack is guaranteed to achieve a high score. In light of the
remarks above, Theorem 4 directly implies Theorem 3.

Theorem 4. For any (Xo,r)-fair coin-tossing protocol m in the f-hybrid model,

we have
Opt (m) > I} - Xo (1 — Xo),

v2-1

where I, = -
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4.3 Inductive Proof of Theorem 4

In this section, we shall prove Theorem 4 by using mathematical induction on
the message complexity 7. Let us first state some useful lemmas.

Firstly, we note that in the f-hybrid model, where f is a (randomized) func-
tionality that satisfies the strict cross product rule, Alice view and Bob view are
always independent conditioned on the partial transcript.

Lemma 3 (Independence of Alice and Bob view). For any i and partial
transcript m<;, conditioned on this partial transcript, the joint distribution of
Alice and Bob private randomness is identical to the product of the marginal
distribution. That is,

SD( (RA,RB)|M§Z' =m<; , (RA|M§Z = mgi) X (RB|M§Z = m<1)> =0.

In particular, this lemma implies the following claim.

Claim 1. Let 7 be an arbitrary fair coin-tossing protocol in the f-hybrid model.
Suppose there are £ possible first messages, namely, mgl),m?),...,my), each
happens with probability p™M, p2) ... p® . Suppose conditioned on the first mes-
sage being My = mgi), the expected defense of Alice and Bob are d?’(i) and dlB’(i)

respectively. Then we have

£
Zp(z) . d?’(l)d?’(z) — Dé . DOB

i=1

Lemma 3 and Claim 1 can be proven in a straightforward manner. We omit it
due to space constraint. A proof can be found in the full version. Finally, the
following lemma from [45] shall be helpful as well.

Imported Lemma 1 ([45]). For all P € [0,1] and Q € [0,1/2], if P and Q

satisfy that
P

() <
14+ P
then for all x,c, 8 € [0,1], we have

max (P-z(1—z), |ac—oz\+|a:—ﬁ|)ZQ~(a:(l—x)—l—(x—oz)z—l—(x—ﬁ)Q).

In particular, for any integer r > 1, the constraints are satisfied, if we set P = I,
and QQ = I'y41, where I, := 4/ @

Base case: r = 1. We are now ready to prove Theorem 4. Let us start with
the base case. In the base case, the protocol consists of only one message. Recall
that the last message of the protocol is a boundary case of our score function.
It might not be the case that both parties can attack this message. Hence, we
prove it in different cases.
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Case 1: Alice message. Suppose this message is an Alice message. In this case,
we shall only consider the attack by Alice. By definition, with probability X,
Alice will send a message, conditioned on which the output shall be 1. And with
probability 1 — X, Alice will send a message, conditioned on which the output
shall be 0. On the other hand, the expectation of Bob’s defense will remain the
same as Df. Therefore, the maximum of the score shall be

Xo-[1— DE| +(1- Xo)- |0 - DB|.

which is
> Xo (1 - Xo).

In particular, this is
>TI1 - Xo(1—Xp).

Case 2: Bob message. This case is entirely analogous to case 1.

Case 3: Trusted party message. In this case, we shall consider the effectiveness

of the attacks by both parties. Suppose there are ¢ possible first message by

the trusted party, namely, mgl),m?), . ,mge), each happens with probability
pM p@ . p®) . Conditioned on first message being M; = mgl), the output of
the protocol is a:gl). We must have mgz) € {0,1} since the protocol has ended and

parties shall agree on the output. Furthermore, let the expected defense of Alice
and Bob be di\’(l) and dllg’(z). Therefore, the maximum of the score will be

S (4 - 9] - ).

We have
0
i % A, (3
ZP()'(‘xg)*dl() )
=1
. . . . A 2 . N 2
>0 (Iy) (1=af0) + (o) = a0 4 (o) — 2) >

(Since 2\ € {0,1})
L . ) , N2 , ,
=3 0. (Igo b (o) = O - B 2d§\’(”d18’(”>

(Identity Transformation)

+ ’zgi) — d?’(i)

4
> Xo+ (Xo — DA = DB) = 3" p@ 2 D g}
i=1

(Jensen’s inequality on convex function F(z,y, 2) = (z —y — 2)?)

= Xo+ (Xo — D — DB)* — 2D} - DB (Claim 1)



52 H. K. Maji and M. Wang

= Xo(1- Xo) + (Xo— D) + (Xo — DB)®  (Identity Transformation)
> Xo (1 - Xo)
> I Xo (1 — Xo)

This completes the proof of the base case.

Inductive Step. Suppose the statement is true for message complexity r. Let 7
be an arbitrary protocol with message complexity r+ 1. Suppose there are ¢ pos-

sible first mebbages namely, mg ), m§2), .. mgé), each happenb With probability

pM p3 . Conditioned on first message being M; = m1 , the output of

the protocol is xg) and the expected defense of Alice and Bob are d @ and

d?’(i) respectively. Note that conditioned on the first message being M; = m(1 ),

the remaining protocol 7(¥) becomes a protocol with expected output xg) and

message complexity r. By our inductive hypothesis, we have
Opt( )>F x()(l—z(li)).
(@)

On the other hand, we could also pick the first message m;’ as our stopping
time, which yields a score of

‘x@ A0 B

[

Therefore, the stopping time that witnesses the largest score yields (at least) a
score of
max (Frur(li) <lfx§i)) , ’:z:g) )

. . . N 2 . N 2
STy - <x§n (1= o) 4 (2 = d0)" 4 (2 229) )

(Imported Lemma 1)

B, (i
B0

Therefore, Opt (7) is lower bounded by
zp< DD (o) (1) + (o) a2 O) o (o) - a20)°)
=lypyq- ZP( ( ((1) d/i\’(i)—dlB’(i)> 2dA(Z)d ))

(Identity Transformation)

¢
> Iyq - (Xo + (Xo _DA_ DB)2 _ Zp(i) . Qd?’(z)dlB’(l)>
i=1
(Jensen’s inequality on convex function F(z,y,z) = (x —y — 2)?)



Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 53

— - (Xo + (Xo— DA — DB)? —2DA . D(‘?) (Claim 1)

2 2
= 1+ (Xo (1= Xo) + (Xo = D§)” + (Xo - DE)”)
(Identity Transformation)
> g1 Xo (11— Xo)

This completes the proof of the inductive step.

5 Black-Box Uses of Public-Key Encryption is Useless
for Optimal Fair Coin-Tossing

In this section, we prove that public-key encryption used in a black-boxed manner
shall not enable optimal fair coin-tossing. Our objective is to prove the existence
of an oracle, with respect to which public-key encryption exists, but optimal fair
coin-tossing does not.

5.1 Public-Key Encrytion Oracles

Let n be the security parameter. We follow the work of [56] and define the
following set of functions.

~ Gen: {0,1}" — {0,1}*". This function is a random injective function.

~ Enc: {0,1}*" x {0,1}" — {0,1}". This function is uniformly randomly sam-
pled among all functions that are injective with respect to the second input.
That is, when the first input is fixed, this function is injective.

~ Dec: {0,1}" x {0,1}*" — {0,1}" U{_L}. This function is the uniquely deter-
mined by functions Gen and Enc as follows. Dec takes as inputs a secret-
key sk € {0,1}" and a ciphertext ¢ € {0,1}°". If there exists a message
m € {0,1}" such that Enc(Gen(sk),m) = c, define Dec(sk,c) := m. Other-
wise, define Dec(sk,c) := L. Note that such message m, if exists, must be
unique, because Enc is injective with respect to the second input.

~ Test;: {0,1}*™ — {0,1}. This function is uniquely determined by function
Gen. Tt takes as an input a public-key pk € {0, 1}3". If there exists a secret-
key sk € {0,1}" such that Gen(sk) = pk, define Test;(pk) := 1. Otherwise,
define Test; (pk) := 0.

— Testy: {0,1}*" x {0,1}*" — {0,1}. This function is uniquely determined by
function Enc. It takes as inputs a public-key pk € {0,1}*" and a ciphertext
¢ € {0,1}*". If there exists a message m such that Enc(pk,m) = ¢, define
Testy(pk, ¢) := 1. Otherwise, define Testy(pk, c¢) := 0.

We shall refer to this collection of oracles the PKE oracle. Trivially, the PKE
oracle enables public-key encryption. We shall prove that it does not enable
optimally-fair coin-tossing.
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Remark 4. We stress that it is necessary to include the test functions Testy
and Testy. As shown by [27,54], public-key encryption with additional features
could be used to construct oblivious transfer protocols, which, in turn, could be
used to construct optimally-fair coin-tossing protocols [61].[56] proved that with
the test functions Test; and Tests, Alice’s and Bob’s private views can only be
correlated as a disjoint union of independent views, which is not sufficient to
realize oblivious transfer.We refer the readers to [56] for more details.

5.2 Our Results
We shall prove the following theorem.

Theorem 5 (Main theorem for PKE Oracle). There exists a universal
polynomial p(-, -, -,-) such that the following holds. Let w be any fair coin-tossing
protocol in the PKE oracle model, where Alice and Bob make at most m queries.
Let X be the expected output, and r be the message complexity of w. There exists
an (information-theoretic) fail-stop attacker that deviates the expected output of
the other party by (at least)

(252

This attacker shall ask at most p (n, m,r, m> additional queries.

It is instructive to understand why Theorem 3 does not imply Theorem 5. One
may be tempted to model the public-key encryption primitive as an idealized
secure function evaluation functionality to prove this implication. The idealized
functionality for public-key encryption delivers sender’s message to the receiver,
while hiding it from the eavesdropper. So, the “idealized public-key encryption”
functionality is a three-party functionality where the sender’s input is delivered
to the receiver; the eavesdropper has no input or output. This idealized effect is
easily achieved given secure point-to-point communication channels, which we
assume in our work. The non-triviality here is that our result is with respect
to an oracle that implements the public-key encryption functionality. An oracle
for public-key encryption is not necessarily used just for secure message passing.
Section 6 has a discussion elaborating the difference between an “ideal function-
ality” and an “oracle implementing the ideal functionality.”

Remark 5. As usual in the literature [21,22,59], we shall only consider instant
protocols. That is, once a party aborts, the other party shall not make any
additional queries to defend, but directly output her current defense coin. We
refer the reader to [21] for justification and more details on this assumption.

In fact, our proof technique is sufficient to prove the following stronger the-
orem.
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Theorem 6. There exists a universal polynomial p(-,-,-,-) such that the follow-
ing holds. Let f be any (randomized) functionality that is not complete. Let w
be any fair coin-tossing protocol in the f-hybrid model where parties have access
to the PKE oracle model. Assume Alice and Bob make at most m queries. Let
Xo be the expected output, and r be the message complexity of w. There exists
an (information-theoretic) fail-stop attacker that deviates the expected output of

the other party by (at least)
Q<Xo(1—Xo)>.

T
This attacker shall ask at most p (n, m,T, m> additional queries.

Our proof strategy consists of two steps, similar to that of [56].

1. Given a protocol in the PKE oracle model, we shall first convert it into a
protocol where parties do not invoke the decryption queries. By Imported
Theorem 1 proven in [56], we can convert it in a way such that the insecurity
of these two protocols in the presence of a semi-honest adversary is (almost)
identical. In particular, this ensures that the insecurity of fair coin-tossing
protocol in the presence of a fail-stop adversary is (almost) identical.

2. Next, we shall extend the results of [59], where they proved a fair coin-tossing
protocol in the random oracle model is highly insecure, to the setting of PKE
oracles without decryption oracle. Intuitively, The proof of [59] only relied on
the fact that in the random oracle model, there exists a public algorithm [8]
that asks polynomially many queries and decorrelate the private view of Alice
and Bob. Mahmoody, Maji, and Prabhakaran [56] proved that (summarized as
Imported Theorem 2) the PKE oracles without the decryption oracle satisfies
the similar property. Hence, the proof of [59] extends naturally to this setting.

Together, these two steps prove Theorem 5. The first step is summarized in
Sect. 5.3. The second step is summarized in Sect. 5.4.

5.3 Reduction from PKE Oracle to Image Testable Random Oracle

A (keyed version of) image-testable random oracles is a collection of pairs of
oracles (R*Y, T*®) parameterized by a key such that the following holds.

— R*: {0,1}" — {0,1}"" is a randomly sampled injective function.

— T*v: {0, 1}3n — {0,1} is uniquely determined by function R as follows.
Define T (j3) := 1 if there exists an a € {0,1}" such that R*Y(a) = 3.
Otherwise, define 7% () = 0.

Observe that the PKE oracle without the decryption oracle Dec is exactly
a (keyed version of) image-testable random oracles with the keys drawn from
{L}U{0,1}*". If the key is L, it refers to the pair of oracles (Gen, Test). If the
key € {0,1}"", it refers to the pair of oracles (Enc(key, -), Testy(key, -)). We shall
refer to the PKE oracle without the decryption oracle Dec as ITRO. We shall
use the following imported theorem, which is implicitly proven in [56].
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Imported Theorem 1 ([56]). There exists a universal polynomial p(-,-) such
that the following holds. Let m be a fair coin-tossing protocol in the PKE oracle
model. Let Xy and r be the expected output and message complexity. Suppose
Alice and Bob ask (at most) m queries. For any € > 0, there exists a fair coin-
tossing protocol ' in the ITRO model such that the following holds.

— Let X, and v’ be the expected output and message complexity of ©’. Then,
r' =71 and | X} — Xo| <e.

— Parties asks at most p(m,1/e) queries in protocol w'.

— For any semi-honest adversary A’ for protocol ', there exists a semi-honest
adversary A for protocol w, such that the view of A is e-close to the view of
A'. And wvice versa. In particular, this implies that if ©' is a-insecure.  is
(at least) (o — €)-insecure.

The intuition behind this theorem is the following. To avoid the uses of
decryption oracle, parties are going to help each other decrypt. In more detail,
suppose Alice generates a ciphertext using Bob’s public key. Whenever the prob-
ability that Bob invokes the decryption oracle on this ciphertext is non-negligibly
high, Alice will directly reveal the message to Bob. Hence, Bob does not need
to use the decryption oracle. This shall not harm the security as a semi-honest
Bob can recover the message by asking polynomially many additional queries.
We refer the readers to [56] for more details.

Looking forward, we shall prove that any fair coin-tossing protocol in the

ITRO model is 2 Xo(1-Xo) -insecure. By setting € to be 1/poly for some

sufficiently large polynomial, we shall guarantee that

mo(Bl=x0)

This guarantees that the insecurity of the protocol in the PKE oracle model is
(qualitatively) identical to the insecure of the protocol in the ITRO model.

5.4 Extending the Proof of [59] to Image Testable Random Oracle

We first recall the following theorem from [56].

Imported Theorem 2 (Common Information Learner [56]). There ezists
a universal polynomial p(-, -) such that the following holds. Let 7 be any two-party
protocol in the ITRO model, in which both parties make at most m queries. For
all threshold € € (0,1), there exists a public algorithm, called the common infor-
mation learner, who has access to the transcript between Alice and Bob. After
receiving each message, the common information learner performs a sequence of
queries and obtain its corresponding answers from the ITRO. Let M; denote the
it message of the protocol. Let H; denote the sequence of query-answer pairs
asked by the common information learner after receiving the message M;. Let
T; be the union of the it" message M; and the it" common information learner
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message H;. Let V2 (resp., VEB) denote Alice’s (resp., Bob’s) private view imme-
diately after message T;, which includes her private randomness, private queries,
and the public partial transcript. The common information learner guarantees
that the following conditions are simultaneously satisfied.

— Cross-product Property. Fix any round 1,

E [SD((VAVE|T<i = ti), (VAT<i = t<i) x (VP |T<i = t<))] < e

tgp—TSi

Intuitively, it states that on average, the statistical distance between (1) the
joint distribution of Alice and Bob’s private view, and (2) the product of
the marginal distributions of Alice’s private views and Bob’s private views is
small.

- Efficient Property. The expected number of queries asked by the common
information learner is bounded by p(m,1/€).

This theorem, combined with proof of [59] gives the following theorem.

Theorem 7. There exists a universal polynomial p(-,-,-,-) such that the follow-
ing holds. Let w be a protocol in the ITRO model, where Alice and Bob make at
most m queries. Let Xg and r be the expected output and message complexity.
Then, there exists an (information-theoretic) fail-stop adversary that deviates
the expected output of the other party by

(245)

This attacker asks at most p (n, m,T, M) additional queries.

Below, we briefly discuss why Imported Theorem 2 is sufficient to prove this
theorem. The full proof is analogous to [59] and the proof of the results in the
f-hybrid model. Hence we omit it here.

On a high level, the proof goes as follows. We prove Theorem 7 by induction.
Conditioned on the first message, the remaining protocol becomes an (r — 1)-
message protocol, and one can apply the inductive hypothesis. For every possible
first message i, we consider whether to abort immediately or defer the attack
to the remaining sub-protocol. By invoking Imported Lemma 1, we obtain a
potential function, which characterizes the insecurity of the protocol with first
message being ¢. This potential function will be of the form

D(wi,ai,0;) = 2 (1 — ;) + (25 — a;)® + (2 — b;)?,

where x;, a;, and b; stands for the expected output, expected Alice defense, and
expected Bob defense, respectively. To complete the proof, [59] showed that it
suffices to prove the following Jensen’s inequality.

E[®(zi, a:,b;)] > © (1:3 [zi] , Elai] ,E [bz‘]) :

K2 3 K2
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To prove this, one can rewrite @(z, a,b) as
d(z,a,b) = x + (x — a — b)* — 2ab.

We note that z and (x —a—b)? are convex functions, and hence Jensen’s inequal-
ity holds. As for the term ab, we shall have
E[aib;] = E[a;i] - E [b;]

2 (2 ?

as long as, conditioned on every possible first message i, Alice’s private view
is (almost) independent to Bob’s private view. This is exactly what Imported
Theorem 2 guarantees except for a small error depending on €, which we shall
set to be sufficiently small. Therefore, the proof shall follow.

6 Open Problems

In this work, we proved that access to ideal invocations to the secure func-
tion evaluation functionalities like the Kushilevitz function [51] (Fig.2) does
not enable optimal fair coin-tossing. However, we do not resolve the following
stronger statement. Suppose there exists an oracle relative to which there exists
a secure protocol for the Kushilevitz function. Is optimal fair coin-tossing impos-
sible relative to this oracle?

To appreciate the distinction between these two statements, observe that
there may be additional ways to use the “oracle implementing Kushilevitz func-
tion” than merely facilitating the secure computing of the Kushilevitz function.
More generally, there may be implicit consequences implied by the existence of
such an oracle. For example, “the existence of an efficient algorithm for 3SAT”
not only allows solving 3SAT problems, but it also allows efficiently solving any
problem in PH because the entire PH collapses to P.

This problem is incredibly challenging and one of the major open problems
in this field. The technical tools developed in this paper also bring us closer to
resolving this problem.
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Abstract. The inherent difficulty of maintaining stateful environments
over long periods of time gave rise to the paradigm of serverless com-
puting, where mostly stateless components are deployed on demand to
handle computation tasks, and are torn down once their task is complete.
Serverless architecture could offer the added benefit of improved resis-
tance to targeted denial-of-service attacks, by hiding from the attacker
the physical machines involved in the protocol until after they complete
their work. Realizing such protection, however, requires that the protocol
only uses stateless parties, where each party sends only one message and
never needs to speaks again. Perhaps the most famous example of this
style of protocols is the Nakamoto consensus protocol used in Bitcoin:
A peer can win the right to produce the next block by running a local
lottery (mining) while staying covert. Once the right has been won, it
is executed by sending a single message. After that, the physical entity
never needs to send more messages.

We refer to this as the You-Only-Speak-Once (YOSO) property, and
initiate the formal study of it within a new model that we call the
YOSO model. Our model is centered around the notion of roles, which
are stateless parties that can only send a single message. Crucially, our
modelling separates the protocol design, that only uses roles, from the
role-assignment mechanism, that assigns roles to actual physical entities.
This separation enables studying these two aspects separately, and our
YOSO model in this work only deals with the protocol-design aspect.

We describe several techniques for achieving YOSO MPC; both com-
putational and information theoretic. Our protocols are synchronous and
provide guaranteed output delivery (which is important for application
domains such as blockchains), assuming honest majority of roles in every
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time step. We describe a practically efficient computationally-secure
protocol, as well as a proof-of-concept information theoretically secure
protocol.

Keywords: Blockchains + Secure MPC - Stateless Parties -+ YOSO

1 Introduction

A somewhat surprising feature of our networked world is just how hard it is to
keep a working stateful execution environment over long periods of time. Even
in non-adversarial settings, it is a major challenge to keep a server operational
and connected through software updates, local physical events, and global infras-
tructure interruptions. This becomes even harder in adversarial environments.
Consider for example a network adversary targeting a specific protocol, watch-
ing the communication network and mounting a targeted denial of service (DoS)
attack on any machine that sends a message in this protocol. In high-stake
environments, one also must worry about near-instant malicious compromise,
unleashed by well equipped adversaries with a stash of zero-day exploits.

One approach for mitigating this issue is the paradigm of serverless com-
puting, where mostly-stateless components are deployed on demand to handle
computation tasks, and are torn down once their task is complete. In addition
to economic benefits, a protocol built from such components could offer better
resistance against strong adversaries by hiding the physical machines that play
a role in the protocol, until after they complete their work and send their mes-
sages. To realize this protection, however, the protocol must utilize only stateless
components, making it harder to design.

Perhaps the best-known example of this style of protocol is the Nakamoto
consensus protocol used in Bitcoin [19]. A salient property of the Bitcoin design
is that a peer can win the right to produce the next block by running a local
lottery (mining), while staying covert. Once the right has been won, it is executed
by sending a single message. After that, the physical entity never needs to send
another message. Another example is the Algorand consensus protocol [8] with
its player-replaceability property.

In this work we initiate a formal study of protocols of this style, which we refer
to as You-Only-Speak-Once (YOSO). An important conceptual contribution of
our work is the (relatively) clean modeling of such protocols, centered around
their use of roles (which is the name we use for those one-time stateless parties).
Crucially, our modeling separates the protocol design using roles from the role-
assignment functionality that assigns the roles to actual physical machines.

This separation lets us study the protocol design problem on its own, freeing
us from having to specify the role-assignment implementation which is necessar-
ily very system dependent: a proof-of-work blockchain will have very different
role-assignment mechanisms from a proof-of-stake blockchain, and a traditional
cloud environment will use yet different mechanisms. However, all these systems
could use the same protocol for secure computation once the roles have been
properly assigned. On the technical side we make the following contributions:
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— We present a formal model for defining and studying such protocols, called
the YOSO model, which in particular codifies the separation between role-
assignment and protocol execution and formally defines the notion of only
speaking once. The YOSO model is cast within the UC framework [5] and
therefore can draw on the existing body of research on UC security. An
overview of the model is provided in Sect. 2. For a more detailed treatment
see the full version of the paper [14].

— We also devise tools for working in the YOSO model, and describe two dif-
ferent secure MPC protocols. Our main solution presented in Sect.3 is an
information theoretic proof-of-concept protocol that provides statistical secu-
rity.! Additionally, in the full version [14] we also describe a computationally-
secure protocol. Both protocols are synchronous and provide guaranteed out-
put delivery (which is important for our application domain), assuming an
honest majority of roles in every protocol step.

— We show that an information theoretic secure YOSO MPC can be compiled
into a natural UC secure protocol running on a toy model of a blockchain with
role assignment. This is meant as a sanity check of the abstract role-based
YOSO model. It shows that protocols developed in this model can indeed
be compiled to practice. We show that if we start with a static-secure (anal-
ogously, adaptive-secure) YOSO protocol, we can get a static-secure (anal-
ogously, adaptive-secure) UC protocol with essentially the same corruption
threshold.

1.1 The YOSO Model

We introduce the YOSO model to make it easy to start studying YOSO MPC
independently of blockchain and role assignment.

Role-based computation. In the YOSO model, participants in protocols are called
roles rather than parties or nodes or machines. The reason for the name “roles”
is that we usually think of these one-time parties as playing some role in a
protocol. Some examples of roles include “Party #3 in the 2nd VSS protocol
on the 8th round”, “the prover in the 6th NIZK”, etc. Formally, a role is just a
stateless party that can only send a single message before it is destroyed, and a
protocol is an interaction between roles. Throughout this manuscript we use the
following terminology:

Roles: are abstract formal entities that perform the protocol actions and com-
municate with other roles.

Nodes/Machines: refer to stateful long-living entities that the adversary can
identify and target for corruption. These can be physical or virtual machines,
that would typically have some identifying characteristics such as an IP
address that can be used by the adversary to attack them.

1 As we explain below, the restrictions of working in the YOSO model are so severe
that a priory it was not clear to us that information-theoretical security is even
possible in the “2t + 1 regime”. Indeed this work began as an attempt to prove that
no such protocols exist.
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We sometimes use the term parties, but only in informal discussions and in
contexts where the distinction between roles and machines is immaterial.

Importantly, roles are detached from machines, and mapping of machines to
roles happens at execution time. A protocol in the YOSO model will inevitably
be executed alongside a role-assignment functionality, and the security of the
protocol will rely on the guarantees provided by that functionality. Ideally, this
assignment should be unknown to the attacker until after the machine plays its
role and sends a message, hence limiting the adversary’s ability to target the
role for corruption.

The YOSO model can be used with different role-assignment functionalities
with different guarantees. In this work we mainly consider a simple random-
assignment functionality: it assigns each role to a random machine from among
a universe of available ones, and hides that assignment from the adversary (unless
the chosen machine is already corrupted). An adversary that corrupts machines
will therefore be unable to predict which roles will be corrupted; upon corruption
of a machine the adversary will be handed the random roles that are mapped
to that machine. This allows for a simplified view of the adversary where all
corruptions are random.

1.2 MPC in the YOSO Model

A compelling motivation for these protocols is scalable computation in the pres-
ence of an adaptive fail-stop adversary (a powerful DoS adversary, as noted ear-
lier). Imagine a large number—perhaps millions—of nodes that want to engage
in a secure computation in the presence of such an adversary. Assuming that the
DoS adversary cannot take down more than some threshold of the nodes, then
running an MPC protocol among all of them would yield the desired result.
However, running classical MPC protocols among a large number of nodes is
expensive. All of the nodes typically need to communicate with all of their peers,
creating a prohibitive communication load. YOSO MPC enables the computa-
tion to be run by a small subset of the nodes, with an independent subset—or
committee—participating in every round. YOSO MPC thwarts an adaptive DoS
adversary because the adversary is unable to predict which fail-stops will be
useful to foil the security; thus it creates the opportunity for execution of the
protocol with small committees resulting in communication that is sub-linear in
the number of nodes in the network.

As a more concrete example of a scenario where such scalable computation
would be necessary, consider “MPC as a service”. That is, an outsourced com-
putation service where clients submit inputs for a joint computation so that the
privacy of the inputs and the correctness of the output are guaranteed, even if
a fraction of the provider’s servers are adversarially controlled. However, while
full corruption of servers is expensive, dedicated denial of service against tar-
geted servers is an easier attack to carry out, and the protocol should be able
to withstand it. YOSO MPC offers a solution that remains secure under these
realistic conditions.
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Role Assignment for YOSO MPC. In order to reap the benefits of such scalable
YOSO MPC, it is important to assign YOSO MPC roles to machines in a scal-
able way without revealing the role assignment before the roles need to speak.
Furthermore, the assigned machines should be able to receive secret messages
(even while the message senders do not know their identities). This is challenging
since, being able to speak only once, the machine having won a role cannot first
make a public key available, and then receive messages and execute its role in
the protocol. This would involve speaking at least twice.

One solution that was recently proposed by Benhamouda et al. [3] involves
the use of nominating committees: each machine has a public key for an encryp-
tion scheme allowing the rerandomization of public keys. For each role R there
will be a delegator role D. (We call R the delegate, and D the delegator.) First a
machine is assigned a delegator role D using, e.g., cryptographic sortition (or just
by solving some puzzle). Then the delegator D will pick, uniformly at random,
another machine to play the delegate role R. It will take that machine’s public
key pk;, rerandomize it into pk;, and publish pk,. Note that pk, does not reveal
the identity of the machine that was assigned to R; however, it enables other
roles to send secret messages to the delegate R by encrypting to pk;. Finally, the
delegate R will execute the role.

One drawback of this approach is that the role R will be corrupt if the
delegator is corrupt or if the delegate is corrupt. This essentially doubles the
corruption budget of the adversary. It is an interesting research direction to
develop more practical and more secure role assignment mechanisms. However,
this is orthogonal to the design of MPC protocols which will be run by the roles,
which is the focus of our work. In the full version [14] we give a toy example of
compiling a YOSO protocol to run on top of a blockchain with role assignment
to illuminate this compelling use case.

Parameters of YOSO MPC Protocols. When designing a YOSO MPC protocol
there is a number of interesting parameters to consider. In addition to the many
“generic” aspects of MPC (such as corruption type and threshold, hardness
assumptions, trusted setup, security guarantees, etc.) YOSO MPC protocols
have some new parameters in their design.

— Future/Past Horizon: When a role speaks, it may send private messages to
roles intended to speak in future rounds. The future horizon describes how
far into the future a role may need to speak (similarly past horizon is how
far back a role may need to listen). The method of assigning roles impacts
and is impacted by the future and past horizons and should be taken into
consideration. For example, for proof-of-stake systems it is undesirable to
assign roles in advance using the current stake distribution. Or if roles are
assigned on the fly parties would need to read the history of communication
far into the past. One should therefore try to use as short a future/past
horizon as possible.

— Dynamic and Static Ezecution Time: Static execution time refers to the
ability to know ahead of time when a role would speak in the protocol,
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contrasted with the dynamic case where the time to speak is only deter-
mined at run-time. As YOSO protocols are ideal for serverless architectures
where servers are only running when they need to act, static execution time
may save resources (e.g. cloud rental).

A related distinction (in the dynamic case) is whether only the role itself can
determine when it is going to speak, or whether it can be determined publicly.
(This could make a difference, e.g., in agreement protocols that must accu-
mulate enough votes before moving to the next phase, where we may want
to know if we still need to wait for the vote from the role or can we assume
that it crashed and will never vote.)

YOSO MPC from Additive Homomorphic Threshold Encryption. Our
first technical contribution is a YOSO MPC protocol in the computational set-
ting with guaranteed output delivery in a synchronous model, tolerating a dis-
honest minority of roles at any given round. Specifically, in every round we will
have some number n of roles that will form an honest-majority committee. As
stated, it falls to the role-assignment functionality to supply us with committees
with honest majority; in this work we allow ourselves to just assume that we
have them.

Given a supply of committees with honest majority, our construction is based
on the CDN protocol [10]. Informally, CDN requires a system-wide public key pk
for an additively homomorphic threshold encryption scheme, where the secret
key sk is shared among the committee members (with each member ¢ hold-
ing sk;). The participants then perform the entire computation using additive
homomorphism, interspersed with public decryption of masked intermediate val-
ues. The protocol uses Beaver triples that are generated on-the-fly to support
multiplications; the secret key shares are used to open values in every round of
Beaver triple use, and to obtain the computation output at the end.

We note that CDN is already almost a YOSO protocol: the only state the
participants need is the secret key shares sk;, and the only messages that they
send are their decryption shares (with the ciphertexts all being public). Providing
the participants with shares of the global secret key sk can be done, e.g., using the
proactive handover protocol of Benhamouda et al. [3], which is a YOSO protocol.
In each protocol round, committee members get their decryption shares, and
then the committee decrypts the current batch of ciphertexts and reshares sk to
the next committee.

To get a YOSO protocol, we also need to generate the Beaver triples YOSO-
style. We will use two committees—C'4 and C'—to generate many triples of the
form (Enc(a), Enc(b), Enc(ab)), which will be consumed by future committees
during multiplications. We first have members P; of committee C'4 individually
choose random a;’s and publish the ciphertexts a; = Enc(a;) along with NIZK
proofs that these are valid ciphertexts. All parties can use additive homomor-
phism to obtain @, an encryption of the sum a of the a;’s. Then members P;
of committee Cz will individually choose random b,’s and set b; = Enc(b;),
then use additive homomorphism to compute ¢;, an encryption of b;a. P; then
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publishes (E, ¢;), along with proofs that they were generated properly. All par-
ties can use additive homomorphism to obtain b and ¢, encryptions of the sums b
of the b;’s and c of the b;ja’s, respectively. (a, b,¢) form a Beaver triple. Note that
as long as all the NIZK proofs are valid and there is at least one honest party
in each committee C'4,Cp, the triple is indeed a Beaver triple for the values
a=3;a; and b=}, b; which are unknown to the adversary.?

We describe the complete CDN-based protocol Ilcpy, and prove its security,
in the full version [14]. For now, we state the following informal theorem.

Theorem. (informal) Any multiparty function F' can be securely implemented by
the CDN YOSO protocol in a synchronous network with authenticated broadcast
channel, resilient against a fraction T < 1/2 of random Byzantine corruptions.

We note that another approach for achieving computational security would be
to leverage fully homomorphic encryption (FHE). This requires an FHE scheme
with a one-message threshold decryption procedure, and also one whose secret
key could be maintained proactively using a YOSO protocol. Proactive mainte-
nance of the secret key can be achieved, e.g., using the YOSO handover protocol
of Benhamouda et al. [3], and one-round decryption can be achieved using the
techniques from Asharov et al. [1] and Mukherjee-Wichs [18] (after a one-time
trusted setup to generate the required evaluation key). In terms of complexity,
an FHE-based solution may be more efficient in number of rounds and total
communication, but it requires much more local computation, more per-round
communication, and a more complicated trusted setup.

YOSO MPC from Information Theoretic Techniques. Our second (and
main) technical contribution is a proof-of-concept information theoretic YOSO
protocol with guaranteed output delivery in a synchronous model, tolerating any
dishonest minority of roles at any given committee. This protocol does not need
any trusted setup, but it relies on secure point-to-point channels between roles,?
as well as a totally-ordered broadcast. One consequence of this protocol is statis-
tically unbiased coin-flip in the YOSO model, which (together with appropriate
role-assignment) implies unbiased public randomness in public blockchains via
a YOSO protocol.

We begin by observing that YOSO is easy in the semi-honest model, in
fact semi-honest BGW [2] is basically already a YOSO protocol. The BGW
protocol only uses secret sharing and reconstruction: secret sharing can be done
to a future committee (instead of the current one) over point-to-point channels,
and reconstruction can be done publicly. When implementing a circuit, each
multiplication gate has two committees, one for each round in the multiplication

2 If we have many honest parties in Ca,Cp (say m of them in each committee), then
we can improve efficiency and get £2(m) triples at roughly the same bandwidth using
standard techniques.

3 We note again that such secure point-to-point channels would have to be imple-
mented somehow, even though the receiving role may not have been assigned yet
to a machine. This task falls to the role-assignment functionality, which we do not
specify in this work.
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protocol. For a gate with large fan-out, the gate committee will reshare their
shares to the committees of all the downstream gates.

It is only when switching to the malicious model that things get hard, as
YOSO seems to rule out many common information-theoretic techniques. In
particular, patterns such as “committing” to a value and then being challenged
on it, or even just using the same secret value in many parts of the protocol,
seem to inherently require a party to stick around and speak more than once.
The same can be said for cut-and-choose techniques that have a party generating
multiple values, being challenged to open (say) half of them, and if they are all
valid then the other half is used in the protocol.

It is also easy to see that simplistic solutions such as one party sending
all its secret state to another will not help: It would allow the adversary to
get this secret value if either the sender or the receiver are corrupted, hence
amplifying the adversary’s power. A more promising avenue is to let a party
share its secret state with future committees (maybe more than one), and have
these committees emulate it in the future as needed. However, ensuring that a
message from one party is recoverable intact by future committees is challenging;
this is essentially a verifiable-secret-sharing (VSS) functionality. Ensuring that
the party shares the same message to multiple committees poses more challenges
still. In Sect. 3 we address these challenges by gradually developing stronger and
stronger primitives that build on each other. Here we just give a hint for some
of the observations that enable these tools, and the various steps that go into
the construction.

Step 1, Future Broadcast (FBcast). In Sect. 3.2 we describe a Future Broadcast
construction that enables a party to prepare a message that should be sent in a
future round. This may be complicated in general, since we need to ensure that
the message delivered in the future is in fact the message of the party creating
it, the kind of authenticity often requires VSS. But in our context we observe
that we only need to ensure this authenticity for messages of honest parties, as
faulty parties can say whatever they want at any time. Hence, for the FBcast
primitive we can assume an honest dealer, which makes the design a lot easier.

Observe that in the computational setting this is straightforward to achieve.
A party shares its value using a Shamir secret sharing and also provides every
share holder with a digital signature on the share. When the value is recon-
structed only shares with valid signatures are taken into the interpolation, if
they all lie on a degree-t polynomial then the constant term is taken as the
broadcasted message. In the IT setting we show that if the dealer is honest,
information theoretic MACs are sufficient to replace digital signatures in this
construction.

Step 2, Distributed Commitment (DC). In this construction we want to offer
some guarantees for reconstructing a value at a later time also in the case when
the dealer is faulty. DC enables a dealer to commit in a distribute manner to
a value and at a later time either open the committed value or null. This is
exactly the functionality of a commitment in the computational setting, but it
is achieved in the IT distributed setting.
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To deliver DC we fortify the IT MACs into IT signatures (IT-SIG). An IT-SIG
offers a holder of the signature on a value some assurances that in fact the value
will be verified when presented. Our techniques build on the VSS interactive
tools of Rabin and Ben-Or [22] adjusted to the YOSO model. We transform
the IT-SIG from [22] into one where a party knows in advance all the messages
that it may need to send in the future. This makes it possible to replace the
multiple speaking rounds in the original protocol, by having each party share
its future messages using FBcast (Sect. 3.3). The IT-SIGs provide enough of the
digital signature properties for the purpose of realizing distributed commitments
(Sect. 3.4).

Step 3, Duplicate DC' (DupDC) and VSS. Proceeding towards VSS, we again
turn to Rabin and Ben-Or [22], who utilize DC to achieve VSS via a cut-and-
choose proof. The complication in using in the YOSO model is that in this proof
one value needs to be used multiple times. In the YOSO model, this requires
creating duplicates of the same committed value, each to be used in a different
step of the proof. Letting the dealer run multiple DC’s does not work as the
dealer might be faulty and share different values. Thus, we would need the
dealer to prove that all the committed values are the same. This will create a
problem because for the proof to go through the committee holding the sharing
would need to talk. Once they talk they have exhausted their one opportunity
to speak and now the duplicate of the value has been wasted. Thus, we need to
create a mechanism that duplicates values without “wasting” them. Surprisingly,
we observe that our DC protocol allows the share holders themselves to create
duplicates of the commitment. This avoids the need for additional proofs, the
committee of shareholders is mostly honest so all the duplicates will be the same
by design (see Sect.3.5). Here, yet again, we can make all elements of the proof
public, thus informing all parties of the result of the computation. This enables
us to finalize the design of the VSS (Sect. 3.6).

To eventually complete the design of the MPC we would also need duplicates
of the VSS as the same value might go into multiple gates and the committee
holding the value can only speak once. Luckily, we can derive the duplicates of
the VSS directly from the duplicates of the DC.

Step 4, Augmented VSS (AugVSS). We need one more level of sharing which we
call Augmented VSS. In this level of sharing we add the property that not only
is a secret s shared via VSS but also that all the shares that define the sharing
of s are VSSed. This will enable the MPC.

Step 5, Secure-MPC. Once we have AugVSS, getting information-theoretic
secure-MPC can be done using standard techniques that need to be adapted
to the YOSO model. We maintain the variant throughout the computation that
the values on the wires are AugVSS. Hence we prove:
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Theorem. (informal) Any multiparty function F can be securely implemented by
an information-theoretic YOSO protocol in a synchronous network with broadcast
and secure point-to-point channels, resilient against a fraction T < 1/2 of random
Byzantine corruptions. The protocol additionally tolerates any number of chosen,
Byzantine corruptions of input roles and output roles.

It is crucial, for practical purposes, that we can tolerate chosen corruptions
of input roles and output roles. Often the inputs and outputs are given by known
clients that could more easily be targeted by an attack.

Epilogue, Public Randomness. The cut-and-choose protocols in our design are
described using access to public randomness (which defines the challenges in
those protocols). But where can we get this public randomness? Producing true
randomness in a distributed setting seems to require MPC, creating a circular
problem. Yet, we can show that our protocols remain secure when using unpre-
dictable (high min-entropy) values, rather than truly random ones. Producing
public unpredictable values in the honest-majority setting is much easier, and
can even be done in a YOSO fashion. Thus, we can complete the MPC without
the need for true randomness.

Of course, once we are able to get full-blown MPC, we can use it to produce
completely uniform public randomness. This in particular solves the problem
of obtaining public uniform randomness on a public blockchain using a YOSO
protocol, a problem that was explored by a few previous works [6,7].

On the impossibility of Garay et al. [12]. In [12] it was shown that any pro-
tocol in the information theoretic model with a sublinear message complexity
(in the number of parties) cannot withstand adaptive corruptions of a fraction
equal or greater than 1 — /0.5 of the total number of parties. Yet, we claim
that our IT protocol can withstand less than n/2 adaptive corruptions. This
is not a contradiction. Our proof proceeds in two steps. In the first we prove
that our IT protocol is adaptively secure without the assumption of sublinear
message complexity. In the second part, when we prove the protocol that has
sublinear message complexity, we need to combine our IT protocol with some
role-assignment mechanism. This inevitably takes our protocol out of the IT
model, making the lower bound of [12] not applicable.*

YOSO can be Realized. Our YOSO protocols are abstract in that they only
consider abstract roles; we abstract away role assignment and machines. To show
that protocols designed in our abstract YOSO model can be used in practice,
we show how to compile these abstract protocols into concrete protocols that
use physical machines, assuming an underlying role-assignment service. To that
end, we define a simple UC functionality Fra, modeling a system with role
assignment: That functionality “spits out” a sequence of random public keys,

4 Specifically, the implementation of our communication channels which are needed to
enable the solution can only be achieved in the computational setting (in our specific
case we assume a PKI and more).
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where the corresponding secret key is known by a random, secret node in the
system.

Assuming access to this role-assignment functionality, in addition to a broad-
cast channel and point-to-point channels between physical machines in the sys-
tem (modeled as ideal functionalities Fpc, Fspp), we show how to compile
any abstract protocol IT in the YOSO model into a concrete protocol in the
UC hybrid model with functionalities Fra, Fic, and Fspp. (These functionali-
ties can then be implemented using an underlying blockchain, e.g., as described
in [3].)

We prove two results: (1) We show that an abstract YOSO protocol IT that
IT YOSO-implements a secure function evaluation of F' against t random, static
corruptions, can be compiled using hybrid functionalities Fzc and Fgpp into a
UC secure protocol I’ for the Fra-hybrid model that tolerates p chosen, static
corruptions for any p < t. (2) We show the same for adaptive security.

We can get security against chosen corruptions from security against random
corruptions because the adversary does not know the role-to-machine association
chosen by Fra. Intuitively, corrupting a machine just corrupts random roles.

1.3 Related Work

Protocols built out of ephemeral one-time roles became popular over the last
decade with the emergence of public blockchains, whose defining feature is not
relying on long-term participants with fixed identities. In particular, starting
with Nakamoto’s consensus protocol [19], these protocols became popular for
achieving agreement in different settings, e.g., [4,8,17,20].

Only very recently did we start seeing attempts at using this style of pro-
tocols for other cryptographic tasks: Benhamouda et al. [3] described how to
use such protocols for long-term maintenance of secrets on public blockchains,
and mentioned the possibility of using these secrets for various tasks, including
for general-purpose secure computation. Blum et al. [4] described how to imple-
ment input-free protocols in this model (such as coin tossing), and also described
informally an FHE-based solution for functions with input (similar to the one
sketched in Sect. 1.2 above).

Choudhuri et al. [9] described general-purpose secure-MPC protocols of this
style (that they call fluid), where the participants need to volunteer for roles
(in our terminology we would call it a volunteer-based role-assignment function-
ality). Such protocols can be tweaked and casted as YOSO protocols with a
volunteer-based role assignment. However, the protocols of [9] only guarantee
security with abort, making their use extremely fragile as a single corruption
can abort the protocol. Moreover, volunteer-based role assignment seems sus-
ceptible to an adversary filling the volunteering parties with faulty parties by
volunteering many times.
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2 YOSO for the Working Cryptographer

The YOSO model can be cast within the UC framework [5] by identifying the
roles in YOSO protocols with the party identifiers of the UC framework. This
means that the roles are executed by the UC model, which completely abstracts
away how these roles are actually assigned to physical machines; in fact, there
is not even a notion of physical machines left. We then introduce a notion of
random corruptions that are out of the control of the adversary. This can be
used to model a set of roles which, in the now abstracted away real world, are
hidden inside random physical machines, and the adversary can corrupt machines
of its choosing.

Below we always use the term roles rather than parties, just to stress that we
are in the YOSO model. This terminology is for didactic purposes only; a role
in our formal model is identical to a party in the normal UC framework. The
“speak once” aspect is enforced by our execution model, as we now explain.

2.1 YOSO Wrappers

To force roles to only speak once, we are explicitly “yosofying” them with a
YOSO wrapper. Namely, our execution model postulates a wrapper around each
role, that kills it immediately after the first time that it speaks. When that
happens, the wrapper sends a SPOKE token to the environment, the adversary
and all its sub-routines (sub-protocols and ideal functionalities). Thereafter it
responds with a SPOKE token to the environment whenever activated, and only
sends SPOKE to the sub-routines that it is connected to.

Defining what it means for a role to “speak for the first time” is somewhat
nontrivial. The main issue to tackle is whether sending messages to functionali-
ties constitute speaking. To see the issue, consider a protocol IT (that implements
some functionality F), in which a role R must listen for many incoming messages
before deciding to send a message. In this case, the F-hybrid model could have
the role R sending its input to F very early, but the implementation would have
R actually speaking much later.

To account for that, we let functionalities reply to parties with the special
SPOKE token. The functionality can freely choose when to send this token, and
the YOSO wrapper will kill the role as soon as it receives a SPOKE token from
any functionality. For example, a communication-channel functionality will reply
with a SPOKE token as soon as a party sends anything on it, while a higher-level
functionality may trigger a SPOKE token based on some input from the adversary.
Note that when a communication channel outputs SPOKE to a role, the role will
pass it on to all its sub-routines and then its environment/outer protocol. Hence
the entire composed role will be crashed.

We denote the “yosofied” role R by YoS(R), and the protocol that we get by
yosofying all the roles in IT is denoted by YoS(IT).
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2.2 Random Corruptions

In addition to the usual corruptions of the UC model we also model random
corruptions in the YOSO model—that is, corruptions out of the control of the
adversary.

We do this without changing the UC framework itself. Recall that in UC a
corruption is implemented by the adversary just writing (corrupt,cp) on the
backdoor tape of the party, where cp is some auxiliary information like the type
of corruption: Byzantine, semi-honest, et cetera. There is no explicit mechanism
in UC for limiting how many parties are corrupted or with which flavor. However,
we often choose to analyze protocols under a restricted set of corruptions. This
is simple to do by only quantifying over adversaries adhering to this restriction.
This is easy to formulate for settings like “only semi-honest corruptions” or “at
most a minority of the parties”. However, it seems to be trickier for random
corruptions: if the adversary corrupts a role R, how can we know that R was
chosen at random? We need a precise meaning for this in order to be able to
make precise security claims. For this purpose, we introduce a simple notion
called the corruption controller (CC), that runs as part of the environment. If
an adversary wants to do a random corruption, it asks the environment, which
will pass the request to the CC. Then, the CC will sample the corruption and
inform the adversary which role was corrupted (via the environment). If the
environment sees the adversary is not respecting the decision of the CC, then the
environment will make a random guess in the security game. This enforces that
no distinguishing advantage comes from executions violating the will of the CC.
We then only prove security under the class of environments having such a CC
and using it as intended. We call this the class of controlled environments.

These random corruptions can be mixed freely with other corruption types,
but it is illustrative to consider a generalization of the usual adversary structures
to random corruptions. We codify the corruption power of the adversary by
means of a corruption structure.

Let Role be the set of (names of) roles in the system. A corruption structure
on Role is a set of probability distributions over 2/Re'el A static adversary would
choose at the beginning of the execution a specific corruption distribution C' € C
and give it to the CC via the environment. Then the CC samples ¢ <+ C and
give it to the adversary via the environment, and each role R € Role can now be
corrupted if R € ¢. Note that a corruption structure with only point distributions
(i.e. with a single probability-one pattern ¢ € C) corresponds exactly to standard
static corruptions with these allowed patterns, coinciding with the notion of
general adversary structure of Hirt and Maurer [15]. We stress that corruption
structure represents our assumption about the corruption power of the adversary
when designing the protocol. It is up to the role-assignment functionality to
ensure that realistic adversaries will be unlikely to exceed this power.

When considering adaptive corruptions several choices are possible. We con-
sider two in this work called sample corruptions and point corruptions. In sample
corruptions the adversary gives a distribution on a set of roles and gets one of
them corrupted, within some bound. In point corruptions the adversary can ask
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permission to corrupt a given role with some limited probability. If the corruption
fails the role stays honest forever after. It is interesting future work to explore
the relation between different notions of random corruptions.

2.3 YOSO Security

The notion of a protocol realizing a functionality is borrowed from the UC model.
Namely, we say that IT YOSO-realizes (implements) F for some class of envi-
ronments (possibly using random corruptions) if YoS(IT) UC-realizes F. The
considered class of environments should be a subset of the controlled environ-
ments.

It is easy to see that UC composition still holds for controlled environments.
If an environment is composed with a protocol or simulator to define a new
environment, as happens in the proof of the UC theorem, then this composed
environment still uses the CC of the original one. The same holds when one
composes an environment with a simulator. Therefore we get UC composition
also for controlled environments.

YOSO composition then follows directly from UC composition. Let IT be a
protocol for the G-hybrid model and assume that I YOSO-realises F. Assume
that I" YOSO-realises G. As usual in the UC framework let 17971 be the protocol
IT with calls to G replaced by calls to I'. It follows that 1791 YOSO-realises F.
To see this, note that the premises give us that YoS(II) UC-realises F and that
YoS(I') UC-realises G. By the usual UC theorem we get that YoS(IT)9—YeS(I)
UC-realises F. Then use that by construction YoS(II)9—YS(I) = YoS(I19—1").
This follows by the way the YoS wrapper passes around the SPOKE token to shut
down entire composed parties.

2.4 Common Features, Functionalities, and Models

Synchrony. To simplify the treatment of synchronous clocks, we assume that
in every round the environment sends a TICK message to all the roles and also
to all the functionalities and the adversary, in addition to any other inputs that
it wants to provide them. We use the model in [16] for this.

Communication Channels and PKI. We assume an authenticated broadcast
channel denoted Fpgc, and usually also secure point-to-point channels Fspp (or
at least authenticated channels Fpp). These functionalities are defined more or
less as usual in the UC framework, except that in our case they return a SPOKE
token to any role immediately in the step following the receipt of message from
it.> These functionalities are formally presented in the full version [14]. We also
sometimes use a PKI functionality, which is specified in Fig. 1.

YOSO Secure Function Evaluation. We consider secure function evaluation
in the YOSO model. We assume that the roles of a protocol II are divided into

5 We allow a role to send messages on multiple channels in the same step, then it will
receive SPOKE tokens from all of them in the next step.
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On the first input TICK sample (pkg, skr) < Gen for all R € Correct U Crash. Output
pk to O. For all R € Leaky output skr to O. For each R € Malicious query O to get
the keys (pkr,skgr) for R. Then for each R € Correct output (skgr, { pkrs }r’crole) t0
R.

Fig. 1. The ideal functionality Fgen for a very simple PKI setup with key generator
Gen.

input roles, output roles and computation roles. The input roles receive inputs
from the environment and the output roles will deliver the outputs back. The
computation nodes carry out intermediary steps of the computation and do not
interact with the environment.

As usual for UC-like models, to formulate the assertion that a function F'
could be computed securely we need to wrap that function by a compatible
functionality ]—'ﬁpc, as described in [14]. Importantly, we assume that the roles
receiving the output do not speak in an implementation (so flﬂpc never sends
SPOKE tokens to the output roles). Otherwise these output roles would not be
able to contribute the result to the higher-level protocol.

By default, we assume that the roles receiving the inputs and the roles giving
the outputs can be corrupted using the usual chosen corruptions. This is rea-
sonable since in most of the meaningful high-level protocols, like elections, the
inputs to the protocol are given by known machines that might be subject to
targeted DoS attacks. Computation nodes however, are only subject to random
corruptions; when running in the “real world” with a concrete role assignment
mechanism, we get to execute computation roles on random machines.

We then say that IT YOSO securely implements F' with a fraction 7 random
corruptions if IT implements ]:ﬂpc against any number of chosen corruptions of
input roles and output roles and random corruptions of up to a fraction 7 of the
computation roles.

The IT YOSO Model. We define the standard I'T YOSO model to be the
model with broadcast and secure point-to-point channels, unbounded environ-
ments, and poly-time protocols, ideal functionalities and simulators.

The Computational YOSO Model. The computational YOSO model is
equipped with an authenticated broadcast channel, perhaps authenticated point-
to-point channels, a PKI functionality (such as the one from Fig. 1), and poly-
time environments, protocols, ideal functionalities and simulators.

3 The Information-Theoretic t < % MPC Protocol

In this section we describe an MPC protocol in the information theoretic YOSO
model for a fraction 7 < 1/2 of random Byzantine corruptions.

Theorem 1. For any multiparty function F, there exists a poly-time protocol
IT described below running with the network (Fgc, Fspp) which YOSO-realizes
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the ideal functionality Flipe in the information theoretic YOSO model. The
protocol tolerates any number of chosen, Byzantine corruptions of input roles
and output roles, and for any T < 1/2 it tolerates adaptive, Byzantine, random
T-point-corruptions of computation nodes.

Recall that the reason we allow chosen corruptions of input roles and output
roles is that in a real-life setting we cannot reasonably assume that it is unknown
which machines will give input or get the outputs. So input and output roles
could be targeted. On the other hand, we want to model that computation roles
are run on random, secret machines, so we only allow random corruptions of com-
putation nodes. Recall that 7-point corruptions just means that the adversary
can point to a role R and ask for a corruption. Then the role is made corrupted
with probability 7, and with probability 1 — 7 it will remain honest forever after.
The type of random corruption it not essential for our proof. The reason why
we prove security against point corruptions is that this is the type of corruption
needed for the compilation result shown in the full version [14].

Below we will phrase the protocol in terms of disjoint committees of size n.
We call the roles in a committee parties. Let ¢ be the number of committees that
we need. We then start with N = cn computation roles Ry, ..., Ry. We call the
committees Cy,...,C, where C; = {P{,..., P} and P/ = R;{ (;_1),. We call P
party @ in committee j. Notice that this grouping of roles into committees is static.
This does not affect security as the adversary cannot bias corruption towards a
specific committee. Each party is still subject only to 7-point corruptions. If we
set 7 < 1/2 then we can clearly pick n large enough that we can conclude from
a tail bound that all committees have at most ¢t < n/2 corrupted parties except
with negligible probability. For the rest of the section we then assume that this
has been done. From this point on the only assumption we need for security is
that each committee has t < n/2 corrupted parties.

Note that we allow any number of corruptions among input roles and output
roles. However, input roles and output roles are not part of committees, so this
does not violate the honest majority assumption for committees.

Our protocol is adaptively secure. We will, however, below mainly prove static
security and only briefly discuss adaptive security. The reason is that for point
corruptions, the distinction between adaptive corruptions and static corruptions
is minimal. An adaptive point corruption just means that the adversary chooses
to be oblivious to whether a party is corrupt or not until the point corruption.
This gives it no new powers over static corruptions. Note, in particular, that
corruption control component CC could sample before the UC execution starts
for each role R; a bit b; which is 1 with probability 7. If later the adversary
does a point corruption of R; it will become corrupted if and only if b; = 1.
Therefore, even in the adaptive case, the corruptions can be thought of as being
static: they were chosen before the execution started. The only complication in
proving adaptive security compared to proving static security is then that in the
adaptive case, the simulator will not know b; until the adversary does a point
corruption of R;. Below we phrase the proof in terms of static security. The proof
can be adapted to the adaptive case using standard techniques.
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The challenge in designing an information-theoretic MPC protocol in the
YOSO model is in replacing the actions of parties that interact and speak mul-
tiple times in regular MPC protocols with parties (more precisely, roles) that
speak only once. For this we introduce several tools and components for YOSO
adaptation that may be useful for other protocols as well. A first such tool is
Future Broadcast (FBcast) that allows a party P, that in the standard model
would speak in several rounds, to send its future messages to future roles that
will transmit the messages (either privately or through broadcast) when the time
for those messages to be delivered comes. For example, consider a non-YOSO
protocol where a party P transmits a message m at round ¢ and a message m’
at round i + 3. In the YOSO adaptation, the role representing the actions of
P in round 7 will transmit m at round ¢ and also, in the same round, apply
FBcast(m') to pass message m’ to a role that will speak m’ in round i + 3.
Note that this procedure is possible only in cases where the future message is
known in advance. An interesting point to observe is that correctness of FBcast
(in particular, in terms of correctness of messages sent “into the future”), needs
only be guaranteed for original senders of m’ that are honest as faulty ones can
choose to speak any message of their choice whenever they speak. The sender P
uses FBcast(m') to replace its own sending of m’ in the future. In the emulated
protocol a corrupt P} could send m” # m' at this future point. So it is tolerable
that FBcast(m') may open to m” # m/ in the future when Pg is corrupt.

As a first application of FBcast, we use it to adapt the IT-SIGs of [21,22] to
the YOSO model and then use this YOSOfied primitive to build a Distributed
Commitment (DC) protocol in the YOSO model. In it, a party (honest or faulty)
commits to a value that it can later choose to reveal or not, but it cannot change
the committed value. Furthermore, it is guaranteed that values committed by
honest parties are always revealed correctly. We then use DC as an essential
ingredient in the design of a YOSO Verifiable Secret Sharing (VSS) scheme
which in turn is a central component of our YOSO information-theoretic MPC
solution.

In various steps in our protocol we need access to some form of randomness
and for clarity of presentation we will assume the presence of a beacon func-
tionality. However, in actuality we need something much weaker than a truly
random source to deliver our results, it is enough that the challenge cannot be
guessed. Thus, we can have a very simple implementation of the beacon (see
full version [14]). We denote this functionality as Fypgeacon to reflect that it is
an unpredictable beacon. During the analysis we at first assume it returns uni-
formly random elements. At the end we then return to why it is enough that it
is unpredictable and how to implement it.

The solutions presented in this section make essential and repeated use of
secret sharing techniques. In all cases, the underlying scheme is Shamir’s scheme
over a given field, and we assume all committees into which secrets are shared
to have at least ¢ + 1 honest parties where ¢t + 1 > n/2. Thus, the polynomials
defining shares are of degree t.
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3.1 Information Theoretic and Homomorphic MAC

Message authentication codes (MAC) are used for verifying the authenticity of
messages between a sender and receiver that share a secret key. Following the
construction of [22] we have the following two protocols.

Three-party Setting. There exists (i) a sender S holding a message m, it chooses
a key K and generates its corresponding MAC tag M computed under a key K;
(ii) S sends the pair (m, M) to a receiver R; (iii) S sends the key K to a verifier
V. The verification procedure combines the pair (m, M) held by R with the key
K held by V.

For our purposes, we consider an information theoretic MAC function with
the following properties: (i) producing a correct MAC without knowing the key
succeeds with negligible probability even for an unbounded attacker; (i) mes-
sage hiding: nothing is learned about the message m from the key K; (iii) homo-
morphic: the MAC function is homomorphic with respect to appropriate group
operations in the following sense. If M; = MACkg,(m;),i = 1,2, and the keys
K1, Ky were computed by the same party (they might need to be correlated)
then My + My = MACK1+/K2(’ITL1 + m2).

Such a MAC can be implemented as follows (all elements and operations are
over a finite field, e.g., Zy,): K; = (a,b;), M; = am;+b; and K;+' K; = (a,b;+b;).
In the sequel, we will say that keys that share the same coefficient a but differ
in b; are correlated.

MAC with Distributed Public Verification. In the above setting, to verify a MAC
one has to trust V' to provide the correct key. In the scenarios in this paper, we
often do not trust any single party individually, but rather can only count on
committees with a majority of honest participants. Thus, we extend the basic 3-
party scheme to one where the role of V is instantiated by an n-party committee
V={W,...,V,}. Given a message m that S hands to R, S creates a MAC for
m as follows. For i = 1,...,n, S chooses keys K;, computes M; = MACg, (m),
and provides all M; to R and K; to V;. When m needs to be verified, R first
broadcasts m and the values M;. Then, each V; broadcasts K; and the value m
is accepted (i.e., the MAC validates) if and only if it holds that M; = MACk, (m)
for at least t 4 1 values of <.

The scheme guarantees that if S follows the protocol and ¢t +1 > (n —1)/2
members of V' are honest, then only a message m originating from S will be
accepted. Note that the validation of m is public once R and members of V
broadcast their values.

When the MAC in use is homomorphic, we have that if S MACs messages
my,ms in the above way, with the same R and same committee V, then the
message m = mj + mg can be validated as follows. R outputs m and M; =
Mi(l) + Ml-(Q)7 t=1,...,n, and each V; outputs Ki(l) +/ Ki(z). Here, Mi(1)7M1-(2)
are the MAC values received by R for m; and ma, respectively, and Ki(l), K 52)
are the keys received by V; for m; and msy, respectively. We therefore say that
this MAC procedure is homomorphic.
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This protocol is inherently YOSO as each party speaks only once and we refer
to it in the following as I'T-MAC.

3.2 Future Broadcast

We introduce Future Broadcast (FBcast), a fundamental primitive in the YOSO
setting that allows an honest party P that speaks at time ¢ to prepare a mes-
sage m for broadcasting at a future time . This is accomplished by having P
simply secret share m to a committee that will broadcast m at time t’, hence
bypassing the limitation of speaking only once. To guarantee that the message
can be reconstructed (in the case that P is honest and the committee has an
honest majority), FBcast implements a robust secret sharing scheme. Namely,
a scheme where correct reconstruction is guaranteed as long as the sharing was
done correctly and at least ¢ + 1 honest parties provide their shares (i.e., bad
shares from corrupt parties can be identified and eliminated). In settings where
digital signatures are available, robust secret sharing is implemented by hav-
ing the dealer sign its shares. In our information-theoretic setting, we achieve
a similar effect using the I'T-MAC procedure from Sect. 3.1 for verifying share
integrity.

FBcast.Share (Executed by S on input m) FBcast.Reveal(with public verification)

Set two n-party committees, ShareHolder

and ShareVerifier. 1. ShareHolder; beasts mi, M1, ..., M;n.

2. ShareVerifier; beasts Kii,..., Kn,i .

1. Compute a (t,n)-secret sharing 3. Accept m; iff M;,; = MACk, ;(m;) for
(m1,...,myn) of m for t = (n —1)/2. at least ¢ + 1 of the keys.

2. Generate keys K; j, 1 <i,j < n and 4. If there are at least ¢t + 1 accepted
compute M; ; = MACKW (mg). shares and they all define a single

3. Fori=1,...,n: polynomial of degree ¢ then output
Send mg, Mj1, ..., M;, to ShareHolder;; the constant term. Otherwise, output
Send K, ..., Ky, to ShareVerifier;. fail”.

Fig. 2. Future broadcast protocol

The FBcast protocol is presented in Fig. 2. Its first phase, FBcast.Share, is
executed by a party S on input message m. It consists of S secret sharing m
with a committee ShareHolder where in addition to its share, each ShareHolder;
receives an IT-MAC of the share computed by S using the above distributed
MAC procedure. An additional committee, ShareVerifier, receives the MAC keys
from S. When the value m needs to be broadcast in the future, FBcast.Reveal
is performed following the distributed verification procedure: the ShareHolder
members first broadcast their shares together with their MAC values, followed
by a broadcast of keys held by ShareVerifier (note that ShareVerifier must speak
after ShareHolder hence requiring two separate committees). Shares that do not
pass verification are discarded and if those that remain interpolate to a single
polynomial of degree ¢, the secret is reconstructed, otherwise reconstruction fails.
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We denote by FBcast.Shareg(m) the sharing by S of a value m and
FBcast.Revealg(m) the revealing of m (executed by two committees), and refer
to the whole protocol execution as FBcastg(m).

Analysis. We show that FBcast satisfies the requirement that if S is honest and
used m as input to FBcast.Share then m will be reconstructed when FBcast.Reveal
is executed. For this we need to show that only m;’s that originated from S are
accepted and that there are sufficiently many accepted shares to interpolate the
polynomial. If m; is accepted then the MAC was verified by a key broadcast
by at least one honest ShareVerifier. As S is honest, only m;’s created by S are
accepted by an honest party. Furthermore, each share broadcasted by an honest
ShareHolder is accepted as there will be at least ¢t + 1 honest ShareVerifiers whose
broadcasted keys satisfy the MAC. By construction, no party speaks twice.

Homomorphism of FBcast. Note that when used with a homomorphic MAC,
FBcast inherits the homomorphic property of the distributed MAC scheme from
Sect. 3.1. We denote this fact as FBp(my) + FBp(ms) = FBp(my + ms) for any
messages m1 and mo shared by the same party P. Yet, as the keys need to be
correlated the creator of the MAC needs to know in advance what two values
will be added. This is easily achievable in our protocols.

3.3 Homomorphic IT-SIG

Our protocols would benefit from a signature functionality in order to construct
a VSS protocol. Of course in the information theoretic setting we cannot achieve
the full properties of a signature, but we can achieve enough of the functionality
to deliver the result. The property which we need is the following. Assume again
the setting from the IT-MAC (Sect. 3.1). We would want to assure R that the
message that it holds will be accepted by the committee V. In essence, that it
has a “signature” on the message that it holds.

Unlike the transformation of the basic IT-MAC from [22] that did not require
modification to comply with the YOSO model, the IT-SIG construction from
that paper does require changes as it has interaction. Our protocol IT-SIG is
described in Fig. 3. It consists of two phases, IT-SIG.Setup and IT-SIG.Reveal. In
IT-SIG.Setup, a sender S provides a receiver R with a value m and also provides
verification information to a committee V of n verifiers Vi,...,V,. The goal is
for R to disclose m in the IT-SIG.Reveal phase in a way that allows to publicly
verify the correctness of m with the help of committee V and with the following
guarantees, assuming that V contains an honest majority:

— If S and R are honest then the correct value m is disclosed and verified during
IT-SIG.Reveal and no information on m is revealed prior to that.

— If both S and R are corrupt we make no requirement at all.

— If only S is corrupt, at the end of IT-SIG.Setup, R holds a value m’ that will
pass verification in IT-SIG.Reveal.
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IT-SIG.Setup

IT-SIG.Reveal

1.

On input m, the sender S:

(a) Generates keys K;j, 1 < i <

1.

If m was revealed in IT-SIG.Setup out-
put this as S’s message.

n,1 < j < k (for security pa- 2. R broadcasts (m,
rameter k), and computes M; ; = {Mij}i<i<njeinx,)-
MACg; ;(m). 3. Set the number of votes for m to be the
(b) Transfers (m,{M; ;} i<i<n,i<j<x) number of ¢’s for which K; ; # K; ; for
to receiver R and {Kj j}i<j<x to some j € INX; from the setup.
Vi. 4. For all 7’s not counted in the previous
(c) Executes FBcast.Shares(m), and step, execute FBcast.Revealy, (K ;) for
FBcast.Shares(K;,;),1< i< n,1 < j ¢ INX;. If MACk, ;(m) = M,,; for
7 < kK. any one of the recovered values then
2. Party Vi: increment the vote by 1"
(a) Chooses half of the indices at ran- 5. If vote is at least ¢ 4 1 then output m

dom, denoted by INX;.

as S’s message. Otherwise, output L.

(b) Broadcasts K, ; for j € INX;.
(c) Executes
FBcast.Sharey, (K ;), j ¢ INX;.

3. Execute FBcast.Reveals(K; ;) j €
INX; for all i; denote by Ri,j the re-
constructed values.

4. If there exist indexes 7 and j for which
MACg, (m) # M ; then R asks that
FBcast.Reveals(m) be executed to re-
veal m. If m = L set m to a default
value

Fig. 3. Information theoretic SIG

— If only R is corrupt, no value other than the m that originated with S in
IT-SIG.Setup can pass verification in IT-SIG.Reveal.

In addition, the protocol needs to satisfy the YOSO model where parties speak
only once. We build it so that R speaks only once (either in IT-SIG.Setup or
in IT-SIG.Reveal) while in the case of S and the parties in V, from which the
logic of the protocol requires more than one message, we resort to FBcast for
distributing their future messages so that a different committee broadcasts them
when needed, and all parties speak only once.

Analysis. The following assumes an honest majority in committee V and that
at most one of R and S is corrupted.

— Corrupt S: We need to show that at the end of IT-SIG.Setup, R holds a value
m’ that can pass verification in IT-SIG.Reveal. We split our analysis into two
cases. First, if a value m is revealed during Step 4 of IT-SIG.Setup we set m’ to
m and the rest follows trivially as this value will be outputted in IT-SIG.Reveal.
Otherwise, we set m’ to the value m received from S and show that m’ will
have at least ¢t + 1 votes in IT-SIG.Reveal. Indeed, for each honest V;, either
[_(i’j # K; ; for some j € INX; and thus their vote is counted; otherwise, it
holds that MACk, ;(m) = M; ; for all j € INX; as R did not complain against
these values. Thus, with (overwhelming) probability 1/ (H’;Q) due to the cut-
and-choose technique, there exists a j ¢ I N X; such that MACk, ;(m) = M; ;,
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and hence a vote for ¢ will be counted. This guarantees at least ¢t 4+ 1 votes
for the value m = m/'.

— Corrupt R: In this case we show that only the m that originated with S
will pass verification in IT-SIG.Reveal. If the message associated with S is set
to the value derived from FBcast.Revealg(m) in the setup, it is certainly a
message that originated with S. If it is set to the message published by R,
then that message must get ¢t +1 “votes”. Votes can be generated by corrupt
V; publishing incorrect keys in Step 2b of IT-SIG.Setup; however, there are at
most ¢ such corrupt V;. The only other way to generate a vote for an incorrect
m is to forge a MAC M, which happens with negligible probability.

— If S and R are honest, then due to the message hiding property of the MAC
function, no information on m is revealed until IT-SIG.Reveal is executed.
Indeed, the only case where R requests to broadcast m prior to IT-SIG.Reveal
is when the keys broadcasted by S do not verify the MACs; this cannot be
the case when S and R are both honest.

Homomorphism of IT-SIGs. The homomorphic properties of the MAC con-
struction from Sect. 3.1, imply similar properties for IT-SIG in Fig.3 when the
underlying MAC function is homomorphic. Namely, if m,m’ are messages on
which the (same) sender S runs IT-SIG.Setup with the same set V of verifiers
and with correlated keys (i.e., corresponding keys use the same coefficient a in
the scheme from Sect. 3.1), then an IT-SIG on m + m/’ can be verified with com-
mittee V using the MAC keys held by V for m and for m'. This homomorphic
property is used in an essential way when performing additions/multiplications
in an arithmetic circuit as described in Sect.3.11. A consequence of the need
for correlated keys is that if two messages may need to be added in the future,
this fact needs to be known at the time of generating the IT-SIG for both m,
and mo. In our application this is always the case as the need for additions is
determined by the specific circuit being computed.

3.4 Distributed Commitment (DC)

The FB protocol does not offer any guarantees in the case when the dealer is
faulty. Here, we introduce the distributed commitment protocol DC, shown in
Fig.4, that strengthens FB by providing better guarantees when the dealer is
corrupt. DC consists of two phases, DC.Commit and DC.Reveal. In DC.Commit,
a committer C' commits to a value m that may later be revealed in DC.Reveal.
More precisely, if C' is honest, then as in the case of FB, the revealed value is
m, and m is hidden until it is revealed. However, if C' is corrupt, the execution
of DC.Commit determines a single value m such that the output of DC.Reveal is
guaranteed to be either L or m (where m itself can be L). In other words, C
can choose to prevent reconstruction, but if it allows for it to happen then it can
only be to a value it committed to at the end of DC.Commit. Reconstruction is
public, namely, there will be public agreement on the output of DC.Reveal. In
essence, this is analogous to a regular commitment in the computational setting
where the committer is bound to the value but has the option not to reveal it.
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DC.Commit (executed by C' on input m) DC.Reveal
Let ShareHolder and ShareVerifier be two

n-party committees.

1. For ¢ = 1,...,n, run IT-SIG.Reveal
with ShareHolder; as receiver R; let m;

1. Committer C' computes a t-secret

sharing of m, (ma,...,m,) for t >
(n—1)/2.
2. For i = 1,..., n: C executes

IT-SIG.Setup on input m; with
ShareHolder; as receiver R and the set

to the output of this execution.

2. Take all m; that are not L and in-
terpolate a polynomial through these
points. If the polynomial is of degree ¢
or less output its constant term, oth-
erwise output L.

ShareVerifier acting as the set of veri-
fiers V (same ShareVerifier committee
is used in all the invocations).

Fig. 4. Distributed commitment

Protocol DC uses the IT-SIGs (Fig.3) in an essential way. In particu-
lar, in Step 3 of DC.Commit, for each m;, C executes IT-SIG.Setup(m;) with
ShareHolder; acting as the receiver and with ShareVerifier as the set V of ver-
ifiers. The n executions (one for each m;) are performed in parallel using the
same set ShareVerifier in all these executions.

Analysis. We show that at the end of DC.Commit a value m (or L) is deter-
mined, and during DC.Reveal, if C' is honest m will be revealed, and if C is
corrupt, either m or L will be revealed.

In DC.Commit, C executes IT-SIG.Setup with at least £+ 1 honest parties act-
ing as receivers R. For these honest parties, due to the properties of IT-SIG.Setup,
it is guaranteed that the value they hold will be accepted in IT-SIG.Reveal. We
claim that at the end of DC.Commit, a single value m is committed to, such
that the output in DC.Reveal is either m or L (where m itself can be L1). To
show this, we define m as the constant term of a polynomial of degree at most
t interpolated through the set of shares held by the honest parties (this value
might be L if the points interpolate to a polynomial of a higher degree than ¢).
We now show that if a value is outputted in DC.Reveal it can only be m. When
C' is honest then only shares that were created by C are accepted and thus the
polynomial will interpolate properly during DC.Reveal. If C is faulty we know
that at least the shares of the honest parties will be included in the set of shares
being interpolated and this is a set of at least ¢ + 1 shares. Thus, the message
which is opened can only be m or 1, with the latter happening only if the shares
m; did not correspond to points on a polynomial of degree at most ¢.

We denote by DCp(m) the output of the execution of DC.Commit by party
P on message m.

Homomorphism of DC. Due to the homomorphic properties of the IT-SIG
and FBcast, we have that for any two values m and m’ committed by the same
honest party P, it holds that DCp(m) + DCp(m') = DCp(m + m’). The same
considerations for ensuring the homomorphism of I'T-SIG described in Sect. 3.3
hold here too (i.e., the DC operations need to be performed by the same commit-
ter using correlated keys). In particular, if this property may be required in the
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future for two messages m,m’, then this fact needs to be known at the time of
running DC.Commit on these values (fortunately, for our application this require-
ment does hold). The question might be raised if we know that m and m’ will
be added why compute individual DC.Commit for both rather than the sum. In
many instances we will need to utilize all three values in different computations.

3.5 Duplicate DC

In our protocols, we often need to use a committed value multiple times, thus
requiring the decommitting parties in the DC protocol to act in more than one
round, a violation of the YOSO model. One possible solution is for the committer
C' to commit twice (or more) onto different committees to the same value and
provide a proof of equality for the committed values; yet this proof of equality
will “waste” the sharing, which is what we need to prevent. Thus, we avoid
proofs of equality by having the parties in ShareHolder and ShareVerifier reshare
the values that they receive in IT-SIG.Setup. It suffices that honest parties share
their shares correctly to guarantee that all duplicates commit to the same value.
We are using in an essential way the fact that it is the shareholders and verifiers
that reshare their values rather than C, and that we can rely on a majority of
honest shareholders.

We define protocol DupDC that allows for the duplication of a DC-committed
value m. Let d be the number of duplicates needed. In a first committing phase,
DupDC.Commit, committer C' runs DC.Commit with a committee ShareHolder,
sharing its input m so that ShareHolder; receives a share m;. To generate d
duplicates, for each i, 1 < i < n, C runs d copies of IT-SIG.Setup on m;, each copy
with an independent set of MAC keys. The same ShareVerifier committee is used
for all invocations. The d copies are verified by ShareHolder;, acting as receiver
R, as specified by IT-SIG.Setup. Finally, in the last step of DupDC.Commit, the
ShareHolder;’s and ShareVerifiers execute d independent FBcast.Share for all the
values that they holds, onto 2d separate committees.

The DupDC.Reveal phase follows DC.Reveal where the opening of m; is imple-
mented via share reconstruction by one of the d ShareHolder committees to which
m,; was shared. Additional information that needs to be broadcast and verified
as specified by IT-SIG.Reveal is performed via FBcast.Reveal by the FBcast com-
mittees created by ShareHolder; during DupDC.Commit.

Analysis. It is straightforward to check that if the original committer C' was
honest, all duplicated values are correct DC commitments and they will open
to the same committed value during DupDC.Reveal. If C is dishonest, but
ShareHolder; is honest, and verification against a ShareVerifier committee fails
during the IT-SIG.Setup actions, then the committed value is set to the one that
is FBcast.Reveal as part of Step 4 in IT-SIG.Setup. Otherwise, the value m; can
be reconstructed correctly by any of the d sharings of m; shared by ShareHolder,.
Since there is a majority (¢t + 1 or more) of honest shareholders in each of the
d ShareHolder committees, it is guaranteed that only the committed value or L
will be reconstructed in each of the d copies.
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It follows from the properties of the DC and FBcast protocols. We note that
C still has the option of not opening any subset of these duplicate commitments,
but all those that will be open will be open to the same value. Note that if the
verification fails for one of the duplicates and a value m is revealed then it is
used for all duplicates.

3.6 Verifiable Secret Sharing Scheme

The distributed commitment DC functionality ensures that the committer, even
a corrupt one, is committed to a single value at the end of DC.Commit. However,
a corrupt committer can prevent reconstruction of the committed value during
DC.Reveal. In our applications, we need a commitment scheme with the property
that if the commitment phase is successful then reconstruction of the commit-
ted value is guaranteed. We achieve this via Verifiable Secret Sharing (VSS),
a protocol where a dealer secret shares a value s during a VSS.Share phase so
that s is guaranteed to be reconstructed during VSS.Reveal from any subset of
shareholders that includes ¢ 4+ 1 honest ones. This is the case even for corrupt
dealers that were not disqualified during VSS.Share.

First, we introduce a procedure used in our VSS design as well as part of
the MPC protocol. The goal is to guarantee that two parties that are supposed
to share the same value s, had in fact done so. We describe the protocol using
generic sharing that can be instantiated with any of the sharing protocols dis-
cussed in this paper, including DC, VSS, and its variants.

Protocol Share Equality Test.

Party P, shares two values ai, p1 and P» shares values ag, ps.

Value r is obtained from an unpredictable beacon Fypgeacon

The values a; + 7 - p1 and ag + 7 - p are reconstructed from their sharings.
If the reconstruction succeeds and the reconstructed values are equal, con-
clude the test was successful and a; = as. In any other case reject the test.

=W =

It follows using a standard argument that if a; # as then there is at most a single
challenge r that will make the proof pass, implying a probability error of |F|~!
for unpredictable r. Therefore, an unpredictability beacon Fypgeacon suffices (see
the full version [14] for details).

Protocol VSS.Share proceeds as follows.

1. The dealer D chooses a random polynomial f(z), s.t. f(0) = s and an addi-
tional random polynomial r(x), both of degree t. Let the coefficients of f(z)
and 7(x) be, respectively, f;,r; for 0 < j <t.

2. Given a set ShareHolder = {Py,..., P,}, D computes s; = f(i), p; = r(4) for
1 < i < n and transfers these values privately to P;.

3. In the same step as above, D performs DupDC.Committo all the values f;,7;.
Due to the homomorphic properties of DC, this results in implicit DCp(s;)
and DCp(p;) sharings (shares of f;,r; allow the ShareHolder committee to
compute values s;, p; for all 7).
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4. P; performs DupDC.Commit(s;) to obtain two copies of DCp, (s;) (particular
applications, such as MPC, may require more copies) and performs DCp, (p;),
all with homomorphically correlated keys. Additionally, P; shares the p; to
one of the committees to which it duplicates the s;.

5. Run the above Fquality Test on the sharings of D and P; of value s; and
auxiliary p; (in the case of D, the committee uses the implicit DC commitment
of s, p;).

6. If the values are not equal execute DC.Reveal of D’s sharing of s;. If it returns
L disqualify the dealer.

Protocol VSS.Reveal proceeds as follows.

1. Execute DC.Reveal for all s; shared by P;
2. Interpolate a polynomial using all these share and output the constant term.

Analysis. The VSS protocol needs to ensure that all of the dealer’s shares s;
are points on a polynomial of degree at most ¢ and that the value s; shared
by P; is the same as the one received from D. The former property is enforced
via the DC-sharing of polynomial coefficients by D (it ensures the degree of the
polynomial and the implicit DC sharing of shares s; and p;) while the latter uses
the equality test to compare the sharings of D and P;.

Homomorphism of VSS. VSS inherits the homomorphic properties of DC,
importantly, in the case of VSS, these properties hold even if the VSS was per-
formed by two different dealers as long as it was done into the same set of
shareholders. Namely, for two secrets mi and mo, and two dealers D7 and Ds,
we have VSSp (m1) + VSSp, (m2) = VSS(my 4+ m2). Note that the right-hand
side VS8 is not associated to a specific dealer as it combines sharings of D; and
Ds. The reason the homomorphism holds across dealers is due to the homomor-
phic properties of DCp, (-) (that only hold for same committer) and the fact that
the same P;’s act in both VSS dealings as shareholders.

3.7 Duplicate VSS

As in the case of DC, we also need duplicates of VSS values as a value will need
to be part of various computations. Recall that a VSS is a sharing of a value s
where each share s; of the sharing is shared as DCp, (s;). It is easy to see that
duplicating the DCp, (s;) commitments results in duplicate VSSs.

3.8 Augmented VSS

In our application, particularly for the multiplication protocol, we need an Aug-
mented VSS (AugVSS), where not only the secret given as input is shared with
VSS but also the shares resulting from VSS(s) are shared with VSS.

AugVSS is achieved via the following computation. The dealer D holding a
value s defines a polynomial f(z) = fiat + ... + fiz + fo where fo = s. It carries
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out VSS(fy) for 0 < ¢ < t. Through the homomoprhic properties of the VSS,
this implicitly creates a VSS(s;) where s; = f(i).

It can easily be verified that AugVSS is also additively homomorphic, inher-
iting this property from the homomorphic properties of the VSS. Furthermore,
an AugVSS of a value m can be added to a VSS of a value m’ creating a VSS
sharing of m +m/.

3.9 Duplicate AugVSS

Unlike the previous duplications, e.g. duplicate VSS, where we need to simply
have another copy of the value, the duplicate AugVSS needs to provide a stronger
guarantee. It needs to have a sharing of the same value but with a different
polynomial. The need for this will become evident when we describe the MPC
protocol. AugVSS is modified as follows.

A single duplicate VSS is carried out for the constant term, DupVSS(fp).
In addition, two sets of values fy,..., f1 and f/,...f] are chosen. Each set in
combination with f defines a different polynomial with the same constant term.
The protocol from above is executed on both these sets to create two duplicates.
If more copies are needed additional coefficients need to be chosen.

3.10 Proof of Local Multiplication (PLM)

In the following protocol, a prover P shares values a,b and ¢ using VSS and
proves that a - b = ¢. The proof uses two committees, C' and C"’.

1. P performs VSSp(a) and VSSp(c) onto committee C, and VSSp(b) onto com-
mittee C’. In addition, P chooses a random value b’ and executes VSSp(b')
onto committee C’ and VSSp(a - ') onto committee C.

Receive random e from Fypgeacon;

Committee C’ reconstructs using VSS.Reveal the value r = e - b+ b';
Committee C' reconstructs using VSS.Reveal the value d = r-a —e-c — a-V’
Accept the proof if d = 0 and reject otherwise.

CU N

It follows using a standard argument that if ¢ # ab then d # 0 except with
probability |F|~!. In particular, there is a single e which will let the proof pass.
Hence it is enough that e cannot be guessed with non-negligible probability. The
rest of the argument for the correctness of the proof follows from the properties
of the VSS.

3.11 YOSO MPC

Using the tools developed up to now we can show how to do secure function
evaluation (or MPC) in the YOSO model. That is, we are given an arithmetic
circuit C, with m secret inputs provided by m parties (roles), and we show how
to privately compute the circuit on the inputs, in the YOSO model.
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Let C be a given arithmetic circuit with m inputs z1,...,z,, and gates
g1, ---,9e. For the YOSO computation of C, we show how to create, given a
gate g; with input values v;1, v;2, both shared with DupAugVSS, a committee C;
that will hold a DupAugVSS sharing of the output of the gate. In addition, there
will be a collection of d duplicates of the AugVSS of the gate’s output, where d
is the number of gates to which this output enters as an input.

With a lot of attention to details and committee selection we could do the
addition of the MPC without interaction. However, to simplify the description
of the protocol and to make the addition and multiplication more uniform we
will describe things in the same manner.

Gate input setup: As we are looking at a single gate we refer to the com-

mittee computing the gate as C. The parties in this committee are Py, ..., P,.
Assume that the value on one input wire is a and the second is b.
The parties in the committee C needs to receive its shares of the values on the
input wires. As we assume that the values a and b of input wires are shared
using AugVSS this means that the share a; and b; of party P; are shared using
a VSS. These values are reconstructed towards P;. Once P; receives these two
shares it shares them using DupVSS. In addition, P; proves that it shared
the values which it received, and this is done using the proof of equality of
sharing from Sect. 3.6.

Addition: An addition gate can be implemented without interaction. However,
for simplicity, we take advantage of the fact that (as needed for multiplica-
tion gates) input wires are shared using DupAugVSS, hence we can use the
homomophic properties of AugVSS to implement addition.

Multiplication: 1. Party P; holding shares a; and b; of the input wires, shares
the value «; = a; - b; using DupAugVSS. The sharing of these values needs
to be done onto different committees as specified by the PLM protocol.

2. It executes the PLM protocol to prove that ~y; is the product of its two
input shares (Sect. 3.10).

3. For any ¢ for which the DupAugVSS or the PLM procedures fail, the
committee that holds a; and b; uses VSS.Reveal to publicly reconstruct
these values. Later, when the protocol uses the value 7;, its value is set
to the product a; - b; of the reconstructed values.

4. The linear combination of the AugVSS of the 7;’s define the AugVSS
ofc =a-b = E?ifl)\i(% = a; - b;). This also creates the VSS(¢;) =
Efﬁil/\jVSS (7y,:) for the appropriate Lagrange coefficients.

Security argument. The multiplication protocol follows the design of [13]. The
correctness of the AugVSS sharing of the multiplication ¢ = a- b follows from: (i)
the fact that AugVSS(~;) completed in a proper manner and its homomorphic
properties (ii) the correctness of the PLM; (iii) the public availability of 7; values
for those ¢ where verification failed (these values are available because in AugVSS
of the input values of the wires, not only the secret is shared but also its shares).
(iv) the existence of Lagrange coefficients \; for which ¢ = a-b = ST\ (a;-b;).
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Formalizing security follows standard arguments. In particular, the simulator
proceeds as follows. Use the AugVSS’s to reconstruct the inputs of the corrupted
parties. Input these to ]—'ﬂpc where F' denotes the function computed by C.
Use dummy inputs of the honest parties in the simulation. Run the simulated
protocol honestly with these dummy inputs. When processing an output gate,
learn the correct output from Fijp.. Then from the ¢ simulated shares of the
corrupted parties and the output acting as share ¢t + 1 compute the matching
shares of the honest parties. Then send these in the simulation. Furthermore,
the simulation of the IT-MAC and IT-SIG are straightforward.

To prove adaptive security the simulator will for each committee C; start
out with a set C; of size ¢ playing the role of the corrupted parties and will
simulate as in the static case with C; being corrupted. If party Pg in C; becomes
corrupted and P{ ¢ C; then the simulator will swap Pg with an honest party in
C'; and then patch the view of the party to get a simulated state of Pz VI Pz holds
a share on a random, unknown polynomial of degree at most ¢, the share will
just be simulated by a random field element. If P/ holds a share on a random,
known polynomial of degree at most ¢, as is the case for a reconstructed output
of the computation, then the simulator will know the output and will, with the
additional ¢ simulated shares of C}, have ¢t 4 1 simulated shares. From these it
can compute the corresponding simulated share of Pg and claim this as the state
of PZ . In general the adaptive patching follows using standard techniques from
MPC and can be done along the lines of [11] where the patching technique is
used to prove [2] adaptive secure in the UC model.
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Abstract. Existing approaches to secure multiparty computation
(MPC) require all participants to commit to the entire duration of the
protocol. As interest in MPC continues to grow, it is inevitable that there
will be a desire to use it to evaluate increasingly complex functionalities,
resulting in computations spanning several hours or days.

Such scenarios call for a dynamic participation model for MPC where
participants have the flexibility to go offline as needed and (re)join when
they have available computational resources. Such a model would also
democratize access to privacy-preserving computation by facilitating an
“MPC-as-a-service” paradigm—the deployment of MPC in volunteer-
operated networks (such as blockchains, where dynamism is inherent)
that perform computation on behalf of clients.

In this work, we initiate the study of fluid MPC, where parties can
dynamically join and leave the computation. The minimum commitment
required from each participant is referred to as fluidity, measured in the
number of rounds of communication that it must stay online. Our con-
tributions are threefold:

— We provide a formal treatment of fluid MPC, exploring various pos-
sible modeling choices.

— We construct information-theoretic fluid MPC protocols in the
honest-majority setting. Our protocols achieve mazximal fluidity,
meaning that a party can exit the computation after receiving and
sending messages in one round.

— We implement our protocol and test it in multiple network settings.

1 Introduction

Secure multiparty computation (MPC) [6,10,32,48] allows a group of parties to
jointly compute a function while preserving the confidentiality of their inputs.
The increasing practicality of MPC protocols has recently spurred demand for
its use in a wide variety of contexts such as studying the wage gap in Boston
[37] and student success [8].

Given the increasing popularity of MPC, it is inevitable that more ambi-
tious applications will be explored in the near future—Ilike complex simulations
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on secret initial conditions or training machine learning algorithms on mas-
sive, distributed datasets. Because the circuit representations of these function-
alities can be extremely deep, evaluating them could take several hours or even
days, even with highly efficient MPC protocols. While MPC has been studied
in a variety of settings over the years, nearly all previous work considers static
participants who must commit to participating for the entire duration of the
computation. However, this requirement may not be reasonable for large, long
duration computations such as above because the participants may be limited
in their computational resources or in the amount of time that they can devote
to the computation at a stretch. Indeed, during such a long period, it is more
realistic to expect that some participants may go offline either to perform other
duties (or undergo maintenance), or due to connectivity problems.

To accommodate increasingly complex applications and participation from
parties with fewer computational resources, MPC protocols must be designed
to support flexibility. In this work, we formalize the study of MPC protocols
that can support dynamic participation — where parties can join and leave the
computation without interrupting the protocol. Not only would this remove the
need for parties to commit to entire long running computations, but it would
also allow fresh parties to join midway through, shepherding the computation to
its end. It would also reduce reliance on parties with very large computational
resources, by enabling parties with low resources to contribute in long compu-
tations. This would effectively yield a weighted, privacy preserving, distributed
computing system.

Highly dynamic computational settings have already started to appear in
practice, e.g. Bitcoin [42], Ethereum [9], and TOR [21]. These networks are
powered by volunteer nodes that are free to come and go as they please, a model
that has proven to be wildly successful. Designing networks to accommodate
high churn rates means that anyone can participate in the protocol, no mat-
ter their computational power or availability. Building MPC protocols that are
amenable to this setting would be an important step towards replicating the
success of these networks. This would allow the creation of volunteer networks
capable of private computation, creating an “MPC-as-a-service” [3] system and
democratizing access to privacy preserving computation.

Fluid MPC. To bring MPC to highly dynamic settings, we formalize the study
of fluid MPC. Consider a group of clients that wish to compute a function on
confidential inputs, but do not have the resources to conduct the full computation
themselves. These clients share their inputs in a privacy preserving manner with
some initial committee of (volunteer) servers. Once the computation begins, both
the clients and the initial servers may exit the protocol execution. Additionally,
other servers, even those not present during the input stage, can simply “sign-up”
to join part-way through the protocol execution. The resulting protocol should
still provide the security properties we expect from MPC.

We consider a model in which the computation is divided into an input stage,
an execution stage, and an output stage. We illustrate this in Fig. 1. During the
input stage, a set of clients prepare their inputs for computation and hand them
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over to the first committee of servers. The execution stage is further divided into
a sequence of epochs. During each epoch, a committee of servers are responsible
for doing some part of the computation, and then the intermediary state of the
computation is securely transferred to a new committee. Once the full circuit
has been evaluated, there is an output stage where the final results are recovered
by the clients.

In order to see how well suited a particular protocol is to this dynamic set-
ting, we introduce the notion of fluidity of a protocol. Fluidity captures the
minimum commitment required from each server participating in the execution
stage, measured in communication rounds. More specifically, fluidity is the num-
ber of communication rounds within an epoch.

A protocol with worse fluidity might require that servers remain active to
send, receive, or act as passive observers on many rounds of communication.
In this sense, MPC protocols designed for static participants have the worst
possible fluidity—all participants must remain active throughout the lifetime of
the entire protocol. In this work, we focus on protocols with only a single round of
communication per epoch, which we say achieve mazimal fluidity. Note that such
protocols must have no intra-committee communication, as the communication
round must be used to transfer state.

Recall that the idea of flexibility is central to the goal of Fluid MPC. Achiev-
ing maximal fluidity is ideal for fluid MPC protocols, as they give the most
flexibility to the servers participating in the protocol. It allows owners of com-
putational resources to contribute spare cycles to MPC during downtime, and a
quick exit (without disrupting computation) when they are needed for another,
possibly a more important task. Maximal fluidity is important to achieving this
vision. Moreover, since one of our motivations behind introducing this model is
evaluation of deep circuits, an important goal of this work is also to design proto-
col that not only achieve maximal fluidity, but also where the computation done
by the servers in each epoch is independent of the size of the function/circuit.

There are several other modeling choices that can significantly impact fea-
sibility and efficiency of a fluid MPC protocol—many of which are non-trivial
and unique to this setting. For instance: when and how are the identities of
the servers in the committee of a particular epoch fixed? What requirements
are there on the churn rate of the system? How does the adversary’s corruption
model interact with the dynamism of the protocol participants? We have already
seen from the extensive literature on consensus networks that different networks
make different, reasonable assumptions and arrive at very different protocols.

We discuss these modeling choices and provide a formal treatment of fluid
MPC in Sect. 3. For the constructions we give in this work, we assume that the
identities of the servers in a committee are made known during the previous
epoch.

Applications. We imagine that fluid MPC will be most useful for applications
that involve long-running computations with deep circuits. In such a setting,
being able to temporarily enlist dynamic computing resources could facilitate
privacy-preserving computations that are difficult or impossible with limited
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Fig. 1. Computation model of fluid MPC. A set of clients initiate the computation
with the input stage. During the execution stage, servers come and go, doing small
amounts of work during the compute phases and transferring state in the hand-off
phase. Finally, once the entire circuit has been evaluated, the output parties recover
the outputs during the output stage.

static resources. This model would be especially valuable in scientific comput-
ing, where deep circuits are common and resources can be scarce. Consider,
for example, an optimization problem with many constraints over distributed
medical datasets. Using a fluid MPC protocol makes it more feasible to per-
form such a computation with limited resources: the privacy provided by MPC
can help clear important regulatory or legal impediments that would otherwise
prevent stakeholders from contributing data to the analysis, and a dynamic par-
ticipation model can allow stakeholders to harness computing resources as they
become available.

Prior Work: Player Replaceability. In recent years, the notion of player
replaceability has been studied in the context of Byzantine Agreement (BA)
[11,40]. These works design BA protocols where after every round, the “current”
set of players can be replaced with “new” ones without disrupting the protocol.
This idea has been used in the design of blockchains such as Algorand [30], where
player replaceability helps mitigate targeted attacks on chosen participants after
their identity is revealed.

Our work can be viewed as extending this line of research to the setting of
MPC. We note that unlike BA where the parties have no private states — and
hence, do not require state transfer for achieving player replaceability — the MPC
setting necessitates a state transfer step to accommodate player churn. Maximal
fluidity captures the best possible scenario where this process is performed in a
single round.

1.1 Owur Contributions

In this work, we initiate the study of fluid MPC. We state our contributions
below.

Model. We provide a formal treatment of fluid MPC, exploring possible mod-
eling choices in the setting of dynamic participants.

Protocols With Maximal Fluidity. We construct information-theoretic fluid
MPC protocols that achieve maximal fluidity. We consider adversaries that
(adaptively) corrupt any minority of the servers in each committee.
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We begin by observing that the protocol by Genarro, Rabin and Rabin [28],
which is an optimized version of the classical semi-honest BGW protocol [6] can
be adapted to the fluid MPC setting in a surprisingly simple manner. We call this
protocol Fluid-BGW. This protocol also achieves division of work, in the sense
that the amount of work that each committee is required to do is independent
of the depth of the circuit.

To achieve security against malicious adversaries, we extend the “additive
attack” paradigm of [26] to the fluid MPC setting, showing that any malicious
adversarial strategy on semi-honest fluid MPC protocols (with a specific struc-
ture and satisfying a weak notion of privacy against malicious adversaries!) is
limited to injecting additive values on the intermediate wires of the circuit. We
use this observation to build an efficient compiler (in a similar vein as recent
works of [12,43]) that transforms such semi-honest fluid MPC protocols into
ones that achieve security with abort against malicious adversaries. Our com-
piler enjoys two salient properties:

— It preserves fluidity of the underlying semi-honest protocol.
— Tt incurs a multiplicative overhead of only 2 (for circuits over large fields) in
the communication complexity of the underlying protocol.

Applying our compiler to Fluid-BGW yields a maximally fluid MPC protocol
that achieves security with abort against malicious adversaries.

We note that, while we consider a slightly restrictive setting where the adver-
sary is limited to corrupting a minority of servers in each committee, there is
evidence that our assumption might hold in practice if we, e.g., leverage cer-
tain blockchains. The work of [7] (see also [29]) explores a similar problem
of dynamism in the context of secret-sharing with a similar honest-majority
assumption as in our work. They show that in certain blockchain networks, it
is possible to leverage the honest-majority style assumption (which is crucial to
the security of such blockchains) to elect committees of servers with an honest
majority of parties. The same mechanism can also be used in our work (we dis-
cuss this in more detail in Sect. 3.2). Moreover, the honest majority assumption
is necessary for achieving information-theoretic security (or for using assump-
tions weaker than oblivious transfer), for the same reasons as in standard (static)
MPC.

Implementation. We implement Fluid-BGW and our malicious compiler in
C++, building off the code-base of [12,16]. We run our implementation across mul-
tiple network settings and give concrete measurements. Due to space constraints,
we discuss our implementation and experimental results in the full version of the
paper [13].

! Tt was observed in [26] that almost all known secret sharing based semi-honest proto-
cols in the static model naturally satisfy this weak privacy property. We observe that
the fluid version of BGW continues to satisfy this property. Further, we conjecture
that most secret-sharing based approaches in the fluid MPC setting would also yield
semi-honest protocols that achieve this property.
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1.2 Related Work

Proactive Multiparty Computation. The proactive security model, first
introduced in [44], aims to model the persistent corruption of parties in a dis-
tributed computation, and the continuous race between parties for corruption
and recovery. To capture this, the model defines a “mobile” adversary that is
not restricted in the total number of corruptions, but can corrupt a subset of
parties in different time periods, and the parties periodically reboot to a clean
state to mitigate the total number of corruptions. Prior works have investigated
the feasibility of proactive security both in the context of secret sharing [35,39]
and general multiparty computation [4,22,44].

While both fluid MPC and Proactive MPC (PMPC) consider dynamic mod-
els, the motivation behind the two models are completely different. This in turn
leads to different modeling choices. Indeed, the dynamic model in PMPC con-
siders slow-moving adversaries, modeling a spreading computer virus where the
set of participants are fixed through the duration of the protocol. This is in
contrast to the Fluid MPC model where the dynamism is derived from partici-
pants leaving and joining the protocol execution as desired. As such, the primary
objective of our work is to construct protocols that have maximal fluidity while
simultaneously minimizing the computational complexity in each epoch. Neither
of these goals are a consideration for protocols in the PMPC setting. Further-
more, unlike PMPC, fluid MPC captures the notion of volunteer servers that
sign-up for computation proportional to the computational resources available
to them.

The difference in motivation highlighted above also presents different con-
straints in protocol design. For instance, unlike PMPC, the size of private states
of parties is a key consideration in the design of fluid MPC; we discuss this fur-
ther in Sect. 2. We do note, however, that some ideas from the PMPC setting,
such as state re-randomization are relevant in our setting as well.

Transferable MPC. In [14], Clark and Hopkinson consider a notion of Trans-
ferable MPC (T-MPC) where parties compute partial outputs of their inputs and
transfer these shares to other parties to continue computation while maintaining
privacy. Unlike our setting, the sequence of transfers, and the computation at
each step is determined completely by the circuit structure. In the constructed
protocol, each partial computation involves multiple rounds of interaction and
therefore does not achieve fluidity; additionally parties cannot leave during com-
putation sacrificing on dynamism.

Concurrent and Independent Work. Two independent and concurrent
works [7,33] also model dynamic computing environments by considering proto-
cols that progress in discrete stages denoted as epochs, which are further divided
into computation and hand-off phases. These works study and design secret shar-
ing protocols in the dynamic environment. In contrast, our work focuses on the
broader goal of multi-party computation protocols for all functionalities.
Furthermore, we focus on building protocols that achieve maximal fluidity.
While this goal is not considered in [33], [7] can be seen as achieving maximal
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fluidity for secret sharing. In choosing committees for each epoch, [33] consider
an approach similar to ours where the committee is announced at the start of
the hand-off phase of each epoch. [7] leverage properties in the blockchain to
implement a committee selection procedure that ensures an honest majority in
each committee.

Lastly, both of these works consider a security model incomparable to ours.
Specifically, they consider security with guaranteed output delivery for secret
sharing against computationally bounded adversaries, whereas we consider MPC
with security with abort against computationally unbounded adversaries.

Malicious Security Compilers for MPC. There has been a recent line of
exciting work [1,2,12,23,36,38,41,43] in designing concretely efficient compiler
that upgrade security from semi-honest to malicious in the honest majority set-
ting. Some of these compilers rely on the additive attack paradigm introduced
in [26]. We take a similar approach, but adapt and extend the additive attack
paradigm to the fluid MPC setting.

2 Technical Overview

We start by briefly discussing some specifics of the model in which we will
present our construction. A detailed formal description of our model is provided
in Sect. 3.

As discussed earlier, we consider a client-server model where computation
proceeds in three phases — input stage, execution stage and output stage (see
Fig.1). The execution stage proceeds in epochs, where different committees of
servers perform the computation. Each epoch £ is further divided into two phases:
(1) computation phase, where the servers in the committee (denoted as S*) per-
form computation, and (2) hand-off phase, where the servers in S* transfer their
states to the incoming committee S+, We require that at the start of the hand-
off phase of epoch ¢, everyone is aware of committee S+, We consider security
in the presence of an adversary who can corrupt a minority of servers in every
committee.

For the remainder of the technical overview, we describe our ideas for the
simplified case where all the committees are disjoint and the size of the commit-
tees remain the same across all epochs, denoted as n. Neither of these restrictions
are necessary for our protocols, and we refer the reader to the technical sections
for further details.

Main Challenges. Designing protocols that are well suited to the fluid MPC
setting requires overcoming challenges that are not standard in the static setting.
While some of these challenges have been considered previously in isolation in
other contexts, the main difficulty is in addressing them at the same time.

1. Fluidity. The primary focus of our work is the fluidity of protocols, a measure
of how long the servers must remain online in order to contribute to the
computation. The fluidity of a protocol is the number of rounds of interaction
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in a single epoch, and we say that a protocol achieves maximal fluidity if
there is only a single round in each epoch. Designing protocols with maximal
fluidity means that the computation phase of an epoch must be “silent” (i.e.,
non-interactive), and the hand-off phase must complete in a single round.

2. Small State Complexity. In many classical MPC protocols, the private
state held by each party is quite large, often proportional to the size of the
circuit (see, e.g. [19]). We refer to this as the state complezity of the protocol.
While state complexity is generally not considered an important measure of
a protocol’s efficiency, in the fluid MPC setting it takes on new importance.
Because the state held by the servers must be transferred between epochs,
the state complexity of a protocol contributes directly to its communication
complexity. Protocols with large state complexity, say proportional to the
size of the circuit, would require each committee to perform a large amount
of work, undermining any advantage of fluidity. Therefore, special attention
must be paid to minimize the state complexity of the protocol in the fluid
MPC setting.

3. Secure State Transfer. As mentioned earlier, we consider adversaries that
can corrupt a minority of servers in every committee. As such, state cannot be
naively handed off between committees in a one-to-one manner. To illustrate
why this is true, consider secret sharing based protocols where the players
collectively hold a t-out-of-n secret sharing of the wire values and iteratively
compute on these shares. If states were transferred by having each server
in committee S* choose a unique server in S**! (as noted, we assume for
convenience that |S?| = |S*™!|) and simply sending that new server their
state, the adversary would see 2t shares of the transferred state, ¢t shares
from S? and another ¢ shares from S**!, thus breaking the privacy of the
protocol. Fluid MPC protocols must therefore incorporate mechanisms to
securely transfer the protocol state between committees.

In this work, we focus our attention on protocols that achieve maximal fluidity.
Designing such protocols requires careful balancing between these three factors.
In particular, the need for small state complexity makes it difficult to use many
of the efficient MPC techniques known in the literature, as we will discuss in
more detail below.

Adapting Optimized Semi-honest BGW [28] to Fluid MPC. Despite the
challenges involved in the design of fluid MPC protocols, we observe that the
protocol by Gennaro et al. [28], which is an optimized version of the semi-honest
BGW [6] protocol can be adapted to the fluild MPC setting in a surprisingly
simple manner.

Recall that in [28], the parties collectively compute over an arithmetic circuit
representation of the functionality that they wish to compute, using Shamir’s
secret sharing scheme. For each intermediate wire in the circuit, the following
invariant is maintained: the shares held by the parties correspond to a t-of-n
secret sharing of the value induced by the inputs on that wire. Evaluating addi-
tion gates requires the parties to simply add their shares of the incoming wires,
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Fig. 2. Left: Part of the circuit partitioned into different layers, indicated by the
different colors. Right: A visual representation of the flow of information during the
modified version of BGW presented in Sect. 2, running with committees of size 3, which
achieves maximal fluidity. S* = {Sf, S¢, S5, } denotes the set of active servers in each
committee corresponding to level £, indicated by the same color.

leveraging the linearity of the secret sharing scheme. For evaluating multiplica-
tion gates, the parties first locally multiply their shares of the incoming wires,
resulting in a distributed degree 2t polynomial encoding of the value induced
on the output wire of the gate. Then, each party computes a fresh t-out-of-n
sharing of this degree 2t share and sends one of these share-of-share to every
other party. Finally, the parties locally interpolate these received shares and as
a result, all the parties hold a t-out-of-n sharing of the product. Thus, every
multiplication gate requires only one round of communication.

We observe that adapting this version of semi-honest BGW to fluid MPC
setting, which we will refer to as Fluid-BGW, is straightforward. The key obser-
vation is that the degree reduction procedure of this protocol simultaneously re-
randomizes the state, so that only a single round of communication is required
to accomplish both goals. In each epoch, the servers will evaluate all the gates in
a single layer of the circuit, which may contain both addition and multiplication
gates (see Fig.2). More specifically, for each epoch ¢:

Computation Phase: The servers in S’ interpolate the shares-of-shares
(received from the previous committee) to obtain a degree t sharing for full
intermediary state (for each gate in that layer). Then, they locally evaluate
each gate in layer ¢, possibly increasing the degree of the shares that they
hold. Finally, they compute a t-out-of-n secret sharing of the entire state they
hold, including multiplied shares, added shares and any “old” values that may
be needed later in the circuit.

Hand-off Phase: The servers in S’ then send one share of each sharing to each
active server in S*1.

The computation phase is non-interactive and the hand-off phase consists of
only a single round of communication, and therefore the above protocol achieves
maximal fluidity.
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Recall that we consider adversaries who can corrupt a minority of ¢ servers
in each committee, a significant departure from the classical setting in which a
total of t parties can be corrupted. At first glance, it may seem as though the
adversary can gain significant advantage by corrupting (say) the first ¢ parties in
committee S and the last ¢ parties in committee S*!. However, since computing
shares-of-shares essentially re-randomizes the state, at the end of the hand-off
phase of epoch ¢, the adversary is aware of the (1) nt shares-of-shares that were
sent to the last ¢ corrupt servers during the hand-off phase of epoch ¢ and (2)
(n—t) x t shares-of-shares that the first ¢ corrupt servers in S* sent to the (n —t)
honest servers in S¢*1. This is in fact no different than regular BGW. Since the
partial information that the adversary has about the states of the (n —t) honest
servers in S“T! only corresponds to t shares of their individual states, privacy is
ensured.

Compiler for Malicious Security. Having established the feasibility of semi-
honest MPC with maximal fluidity, we now describe our ideas for transform-
ing semi-honest fluid MPC protocols into ones that achieve security against
malicious adversaries. Our goal is to achieve two salient properties: (1) fluidity
preservation, i.e., preserve the fluidity of the underlying protocol, (2) multiplica-
tive overhead of 2 in the complexity of the underlying protocol.

Shortcomings of Natural Solutions. Consider a natural way of achieving
malicious security: after each gate evaluation, the servers perform a check that
the gate was properly evaluated, as is done in the malicious-secure version of
BGW [6]. However, known techniques for implementing gate-by-gate checks rely
on primitives such as verifiable secret sharing (among others) that require addi-
tional interaction between the parties. Such a strategy is therefore incompatible
with our goal of achieving maximal fluidity, which requires a single round hand-
off phase. Even computational techniques like non-interactive zero knowledge
proofs do not appear to be directly applicable as they may require a committee
to have access to all prior rounds of communication in order to verify that the
received messages were correctly computed.

Starting Idea: Consolidated Checks. Since performing gate-by-gate checks
is not well-suited to fluid MPC, we consider a consolidated check approach to
malicious security, where the correctness of the computation (of the entire cir-
cuit) is checked once. This approach has previously been studied in the design of
efficient MPC protocols [12,20,23,25,26,34,43]. In this line of work, [26] made
an important observation, that linear-based MPC protocols (a natural class of
semi-honest honest-majority MPC protocols) are secure up to additive attacks,
meaning any strategy followed by a malicious adversary is equivalent to injecting
an additive error on each wire in the circuit. They use this observation to first
compile the circuit into another circuit that automatically detects errors, e.g.,
AMD circuits and then run a semi-honest protocol on this modified circuit to
get malicious security. Many other works [25,27] follow suit.

Assuming that the same observation caries over to the fluid MPC setting,
for feasibility, one could consider running a semi-honest, maximally fluid MPC
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protocol on such transformed circuits. However, transforming a circuit into an
AMD circuit incurs very high overhead in practice. In order to design a more
efficient compiler that only incurs an overhead of 2, we turn towards the approach
taken by some of the more recent malicious security compilers [12,23,34,43]. In
some sense, the ideas used in these works can be viewed as a more efficient
implementation of the same idea as above (without using AMD circuits).

Roughly speaking, in the approach taken by these recent compilers, for every
shared wire value z in the circuit, the parties also compute a secret sharing of
a MAC on z. At the end of the protocol, the parties verify validity of all the
MACs in one shot. Given the observation from [26], it is easy to see that the
parties can generate a single, secret MAC key r at the beginning of the protocol
and compute M AC(r, z) = rz for each wire z in the circuit. It holds that if the
adversary injects an additive error § on the wire value z, to surpass the check,
they must inject a corresponding additive error of 5 = 6 on the MAC. Because
r is uniformly distributed and unknown to all servers, this can only happen
with probability negligible in the field size. While previously, this approach has
primarily been used for improving the efficiency of MPC protocols, we use it in
this work for also maximizing fluidity.

Verifying the MACs requires revealing the key 7, but this is only done at
the end of the protocol, as revealing r too early would allow the adversary to
forge MACs. Furthermore, to facilitate efficient MAC verification, the parties
finish the protocol with the following “condensed” check: they generate random
coefficients «ay, and use them to compute linear combinations of the wire values

and MAC:s as follows:
Z ap -z, and v = Z Qp - TZE.
ke(|C]] kel|C]]

Finally, they reconstruct the key r and interactively verify if v = ru, before
revealing the output shares.

To build on this approach, we first need to show that linear-based fluid MPC
protocols are also secure up to additive attacks against malicious adversaries. We
prove this to be true in the full version of the paper and show that the semi-
honest Fluid-BGW satisfies the structural requirement of linear-based fluid MPC
protocols. At first glance, it would appear that we can then directly implement
the above mechanism to the fluid MPC setting as follows: in the output stage,
parties interactively generate shares of ay, locally compute this linear combina-
tion, reconstruct r, and perform the equality check.

To see where this approach falls short, consider the state complexity of this
protocol. To perform the consolidated check, parties in the output stage require
shares of all wires in the circuit, namely zj, and rzy, for k € [|C|], which must have
been passed along as part of the state between each consecutive pair of commit-
tees. This means that the state complexity of the protocol is proportional to the
size of the circuit, which (as discussed earlier) would undermine the advantages
of the fluid MPC model. More concretely, this approach would incur at least |C|
multiplicative overhead in the communication of the underlying protocol — far
higher than our goal of achieving constant overhead.
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Incrementally Computing Linear Combination. In order to implement the
above consolidated check approach in the fluid MPC setting, we require a method
for computing the aforementioned aggregated values that does not require access
to the entire intermediate computation during the output stage. Towards this,
we observe that the servers can incrementally compute v and v throughout the
protocol. This can be done by having each committee incorporate the part of u
and v corresponding to the gates evaluated by the previous committee into the
partial sum. That is, committee S’ is responsible for (1) evaluating the gates on
layer ¢, (2) computing the MACs for gates on layer ¢, and (3) computing the
partial linear combination for all the gates before layer £ — 1.

Let the output of the &*" gate on the i'" layer of the circuit be denoted as
zi. Apart from the shares of zf;_l and rzi_l (for k € [w]), the servers computing
layer £ of the circuit S¢ also receive shares of

Up_g = E E o, - 2, and vp_g = E E ay, - Tz,

i<l—2 ke[w] i<l—2 ke w]

from S¢~! during hand-off, where a is a random value associated with the gate
outputting z;. While u,_» and v,_ represent the consolidated check for all gates
in the circuit before layer £ — 1. S’ then computes shares of

-1 -1 -1 1
Ug_1 = Up—o + E ai . zﬁ and vy_1 = vp_o + E ozi . rzi
ke(w] kew]

in addition to shares of the outputs of gates on layer ¢ (21, and rzL) and transfer
ug—1 and vy_; to S during hand-off. Note that the final u = ug and v = vy,
where d is the depth of the circuit. This leaves the following main question: how
do the servers agree upon the values of ai?

Notice that [{af }refw],ccq)| = |C|, therefore generating shares of all the af
values at the beginning of the protocol and passing them forward will, again,
yield a protocol that has an excessively large state complexity. Another natural
solution might be to have the servers generate ozﬁ as and when they need them.
However, because our goal is to maintain maximal fluidity, the servers in S7 for
some fixed j cannot generate «, as this would require communication within
S,

Instead, comsider a protocol in which the servers in Si=1 do the work of
generating the shares of o, Each server in 877! generates a random value and
shares it, sending one share to each server in §7. The servers in §7 then combine
these shares using a Vandermonde matrix to get correct shares of a7, as suggested
by [5]. While this approach achieves maximal fluidity and requires a small state
complexity, it incurs a multiplicative overhead of n in the complexity of the
underlying semi-honest protocol.?

2 In the static setting, this technique allows for batched randomness generation, by
generating O(n) sharings with O(n?) messages. In the fluid MPC setting, however,
the number of servers cannot be known in advance and may not correspond to the
width of the circuit. Therefore, such amortization techniques are not applicable.
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Efficient Compiler. We now describe our ideas for achieving multiplicative
overhead of only 2 (for circuits over large fields). In our compiler, we use the
above intuition, having each committee, evaluate gates for its layer, compute
MAGCs for the previous layer, and incrementally add to the sum. In the input
stage, the clients generate a sharing of a secret random MAC key r, and secret
random values 3, aq,...,a,. Over the course of the protocol, the servers will
incrementally compute values

u= Z Z (r(B)%) - 25 and v = Z Z ar(B)) - rzp

Led) ke[w] Led) ke[w]

where z,‘i is the output of the k*" gate on level ¢, (3)* is 3 raised to the (th
power, and ay(8)¢ is the “random” coefficient associated with it. At the end of
the protocol, the parties verify whether v = ru.

Notice that at the beginning of the execution stage, the servers do not have
shares of (ay(3)*) for £ > 0, but they have the necessary information to compute
a valid sharing of this coefficient in parallel with the normal computation, namely
8,1, ..., ay. To compute the coefficients, we require that the servers computing
layer ¢ are given shares of (ax(3)!) and 3 by the previous set of servers, in
addition to the shares of the actual wire values. The servers in S¢ then use these
shares to compute shares of (1) the values z,‘; on outgoing wires from the gates
on layer £, (2) the partial sums by adding the values computed in the previous
layer ug—1 = wp—o + (i (B)1) - 2pF and vy = ve_o + (ag(B)F1) - rzi
and (3) the coefficients for the next layer (ax(3)°) = B - ar(B)'~'. All of this
information can be securely transferred to the next committee.

We give a simplified sketch to illustrate why this check is sufficient. Let

e? . (and efiz, i resp.) be the additive error introduced by the adversary on the

computation of zﬁ (Tzﬁ resp.).
As before, the check succeeds if

re > D (@) e =D Y (@) iz + e p)

Led) kew] Led] ke[w]

Let the ¢*" gate on level m be the first gate where the adversary injects errors

7', and €7 . The above equality can be re-written as.
d d
Qq Z((ﬁ)zeﬁz,q) -r Z((ﬁ)zeg,q) =
l=m l=m
d d
rey o > (@B )k Fean) = D D () (rzk +ersy)
£=m ke [w] L=m kew]
k#q k#q

This holds only if either (1) Z?Zm((ﬁ) et ,) =0 and Zz (3L, ) = 0.

72,9
The key point is that since these are polynomials in 8 with degree at most

d, the probability that [ is equal to one of its roots is d/|F|. Or if (2)
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r= Z?:m((ﬁ)zefz,q)(zgzm((ﬁ)ze?q))_l. Since r is uniformly distributed, this
happens only with probability 1/|F|.

This analysis is significantly simplified for clarity and the full analysis is
included in the full version of the paper [13]. Note that the adversary can inject
additive errors on r and (3, since these values are also re-shared between sets of
servers. Also, since the « values for the gates on level £ > 0 are computed using
a multiplication operation, the adversary can potentially inject additive errors
on these values as well. However, we observe that the additive errors on the
value of § and consequently on the « values associated with the gates on higher
levels, does not hamper the correctness of output. But the errors on the value
of r, do need to be taken into consideration. The analysis in the full version of
the paper addresses how these errors can be handled, making it non-trivial and
notationally complicated, but the core intuition remains the same.

We note that we are not the first to consider generating multiple random
values by raising a single random value to consecutively larger powers. In partic-
ular, [20] performs consolidated checks by taking a linear combination of all wire
values, the coefficients for which need to be generated securely, i.e. be randomly
distributed and authenticated. But this generation is expensive, so they generate
a single secure value and derive all other values by raising it to consecutively
larger powers. A consequence of this technique is that once the single secure
value is revealed, the exponentiations are done locally and therefore precludes
any introduction of errors in this computation for the honest parties. Although
this technique might seem similar to ours, our specific implementation is dif-
ferent and for a different purpose, namely, achieving maximal fluidity together
with small constant multiplicative overhead.

Implementation Overview. Due to space constraints, discussion of our imple-
mentation does not fit in this version of this work, so we briefly discuss it here.
We implement Fluid-BGW with our malicious security compiler in C++, using
libscapi [16] and the code written for [12] as a starting point. We implement
several minor optimizations for our implementation. For instance, we preprocess
the circuit so the players always know the maximum number of random values
that will be needed in future layers for the malicious security compiler. This
allows the player to never pass on unnecessary information. We run our protocol
both on a single large server, to benchmark its computational performance, and
using the AWS C4.large instances spread between North Virginia, Germany and
India, replicating the WAN deployment in [12]. We report both per-layer timing
results and total runtime for between 3 and 20 servers per epoch.

3 Fluid MPC

In this section, we give a formal treatment of the fluid MPC setting. We start
by describing the model of computation and then turn to the task of defining
security. Our goals in this section are twofold: first, we illustrate that there are
many possible modeling parameters to choose from in the fluid MPC setting.
Second, we highlight the modeling choices that we make for the protocols we
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describe in later sections. Before beginning, we reiterate that the functionalities
considered in this setting can be represented by circuits where the depth of such
circuits are large.

Model of Computation. We consider a client-server model of computation
where a set of clients C want to compute a function over their private inputs.
The clients delegate the computation of the function to a set of servers S. Unlike
the traditional client-server model [15,17,18] where every server is required to
participate in the entire computation (and hence, remain online for its entire
duration), we consider a dynamic model of computation where the servers can
volunteer their computational resources for part of the computation and then
potentially go offline. That is, the set of servers is not fixed in advance.

We adopt terminology from the execution model used in the context of per-
missionless blockchains [24,45,46]. The protocol execution is specified by an
interactive Turing Machine (ITM) & referred to as the environment. The envi-
ronment & represents everything that is external to the protocol execution. The
environment generates inputs to all the parties, reads all the outputs and addi-
tionally can interact in an arbitrary manner with an adversary .4 during the
execution of the protocol.

Protocols in this execution model proceed in rounds, where at the start of
each round, the environment £ can specify an input to the parties, and receive
an output from the corresponding parties at the end of the round. We also allow
the environment £ to spawn new parties at any point during the protocol. The
parties have access to point-to-point and broadcast channels. In addition, we
assume fully synchronous message channels, where the adversary does not have
control over the delivery of messages. This is the commonly considered setting
for MPC protocols.

3.1 Modeling Dynamic Computation

In a fluid MPC protocol, computation proceeds in three stages:

Input Stage: In this stage, the environment £ hands the input to the clients
at the start of the protocol, who then pre-process their inputs and hand
them off to the servers for computation.

Execution Stage: This is the main stage of computation where only the
servers participate in the computation of the function.

Output Stage: This is the final stage where only the clients participate
in order to reconstruct the output of the function. The output is then
handed to the environment.

The clients only participate in the input and output stages of the protocol.
Consequently, we require that the computational complexity of both the input
and the output stages is independent of the depth of the functionality (when
represented as a circuit) being computed by the protocol. Indeed, a primary goal
of this work is to offload the computation work to the servers and a computation-
intensive input/output phase would undermine this goal.
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Fig. 3. Epochs £ and £+ 1

We wish to capture dynamism for the bulk of the computation, and thus
model dynamism in the execution stage of the protocol (rather than the input
and output stages). In the following, we highlight the key modeling choices for
the protocols we present in the full version of the paper by displaying them in
bold font in color.

Epoch. We model the progression of the execution stage in discrete steps
referred to as epochs. In each epoch £, only a subset of servers S* participate in
the computation. We refer to this set of servers S¢ as the committee for epoch
£. An epoch is further divided into two phases, illustrated in Fig. 3:
Computation Phase: Every epoch begins with a computation phase where
the servers in the committee S¢ perform computation over their local
states, possibly involving multiple rounds of interaction with each other.
Hand-off Phase: The epoch then transitions to a hand-off phase where the
committee S¢ transfers the protocol state to the next committee S¢*1.
As with the computation phase, this phase may involve multiple rounds
of interaction. When this phase is completed, epoch ¢ + 1 begins.

Fluidity. We define the notion of fluidity to measure the minimum commitment
that a server needs to make for participating in the execution stage.

Definition 1 (Fluidity). Fluidity is defined as the number of rounds of inter-
action within an epoch.

Clearly, the fewer the number rounds in an epoch, the more “fluid” the
protocol. We say that a protocol has maximal fluidity when the number of
rounds in an epoch is 1. We emphasize that this is only possible when the
computation phase of an epoch is completely non-interactive, i.e., the servers
only perform local computation on their states without interacting with each
other. This is because the hand-off phase must consist of at least one round of
communication. In this work, we aim to design protocols with maximal fluidity.

3.2 Committees

We now explore modeling choices for committees. We address three key aspects
of a committee — its formation, size and possible overlap with other committees.
Along the way, we also discuss how long a server needs to remain online.



110 A. R. Choudhuri et al.

Functionality feommittee
Hardcoded: Sampling function Sample : P +— P.

1. Set P:=0

When party P; sends input nominate, P := P U {P;}.

3. When the environment sends input elect, compute P’ « Sample(P) and broad-
cast P’ as the selected committee.

o

Fig. 4. Functionality for committee formation.

Committee Formation. From our above discussion on computation progress-
ing in epochs, we consider two choices for committee formation:

Static. In the most restrictive choice, the environment determines right
at the start, which servers will participate in the protocol, and the epoch(s)
they will be participating in. This in turn determines the committee for every
epoch. This means that the servers must commit to their resources ahead of
time. We view this choice to be too restrictive and shall not consider it for
our model.

On-the-fly. In the other choice, committees are determined dynamically
such that committee for epoch / + 1 is determined and known to
everyone at the start of the hand-off phase of epoch /. We consider
the functionality feommittee described in Figure 4 to capture this setting.

In an epoch ¢, if the environment £ provides input nominate to a party at
the start of the round, it relays this message to feommittee tO indicate that it
wants to be considered in the committee for epoch ¢ + 1. The functionality
computes the committee using the sampling function Sample, from the set
of parties P that have been “nominated.” The environment & is also allowed
a separate input elect that specifies the cut-off point for the functionality to
compute the committee. The cut-off point corresponds to the start of the
hand-off phase of epoch ¢ where the parties in S¢ are made aware of the
committee S via a broadcast from feommittee-

We consider two possible committee choices in this dynamic setting below.

Volunteer Committees. One can view the servers as “volunteers” who
sign up to participate in the execution stage whenever they have computa-
tional resources available. Essentially anyone, who wants to, can join (up
until the cut-off point) in aiding with the computation. This can be imple-
mented by simply setting the sampling function Sample in feommittee t0 be
the identity function, i.e. a party is included in the committee for epoch
£+ 1 if and only if it sent a nominate to fcommittee during the computation
phase of epoch /.

Elected Committees. One could envision other sampling functions
that implement a selection process using a participation criterion such
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as the cryptographic sortition [30] considered in the context of proof of

stake blockchains. The work of [7] considers the function Sample that

is additionally parameterized by a probability p; for each party in P,

Sample independently flips a coin that outputs 1 with probability p, and

only includes the party in the final committee if the corresponding coin

toss results in the value 1. To ensure that all parties are considered in the
selection process, one can simply require that every party sends a nominate
t0 feommittee iN €ach epoch. Committee election has also been studied in
different network settings; e.g., the recent work of [47] provides methods

for electing committees over TOR [21].

Both of the above choices have direct consequences on the corruption model.
The former choice of volunteer committees models protocols that are accessi-
ble to anyone who wants to participate. However, an adversary could misuse
this accessibility to corrupt a large fraction of (maybe even all) participants
of a committee. As such, we view this as an optimistic model since achieving
security in this model can require placing severe constraints on the global
corruption threshold.

The latter choice of elected committees can, by design, be viewed as a
semi-closed system since not everyone who “volunteers” their resources are
selected to participate in the computation. However, by using an appropri-
ate sampling function, this selection process can potentially ensure that the
number of corruptions in each committee are kept within a desired threshold.

We envision that the choice of the specific model (i.e. the sampling func-
tion Sample) is best determined by the environment the protocol is to be
deployed in and the corruption threshold one is willing to tolerate. (We dis-
cuss the latter implication in Section 3.3.) Our protocol design is agnostic to
this choice and only requires that the committee S* knows committee S**!
at the start of the hand-off phase.

Participant Activity. We say that a server is active within an epoch if it
either (a) performs some protocol computation, or (b) sends/receives protocol
messages. Clearly, a server S is active during epoch £ only if it belongs to S¢ U
S, When extending this notion to a committee, we say committee S’ is active
from the beginning of the hand-off phase in epoch £—1 to the end of the hand-off
phase in epoch ¢ (see Fig. 3).

We say that a server is “online” if it is active (in the above sense) or sim-
ply passively listening to broadcast communication. A protocol may potentially
require a server to be online throughout the protocol and keep its local state
up-to-date as a function of all the broadcast protocol messages (possibly for
participation at a later stage). In such a case, while a server may not be per-
forming active computation throughout the protocol, it would nevertheless have
to commit to being present and listening throughout the protocol. To minimize
the amount of online time of participants, ideally one would like servers to be
online only when active.

Committee Sizes. In view of modeling committee members signing up as
and when they have available computational resources, we allow for variable
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committee sizes in each epoch. This simply follows from allowing the envi-
ronment £ to determine how many parties it provides the nominate input. For
simplicity, we describe our protocol in the technical sections for the simplified
setting where the committee sizes in each epoch are equal and indicate how it
extends to the variable committee size setting. An alternative choice would be
to require the committee to have a fixed size, or change sizes at some prescribed
rate. These choices might be more reasonable under the requirement that servers
announce their committee membership at the start of the protocol.

Committee Overlap. In our envisioned applications, participants with avail-
able computational resources will sign up more often to be a part of a committee
(see Remark 1). In view of this, we make no restriction on committee over-
lap, i.e., we allow a server to volunteer to be in multiple epoch committees. As
we discuss below, this has some bearing on modeling security for the protocol.

Remark 1 (Weighted Computation). We note that our model naturally allows
for a form of weighted computation, where the amount of work performed by a
participant is proportional to its available resources. This is because a participant
(i.e., a server) can choose to participate in a number of epochs proportional to
its available resources.

3.3 Security

As in traditional MPC, there are various choices for modeling corruption of
parties to determine the number of parties that can be corrupted (i.e., honest
vs dishonest majority) as well as the time of corruption (i.e., static vs adaptive
corruption). The environment £ can determine to corrupt a party, and on doing
80, hands the local state of the corrupted party to the adversary A. For a semi-
honest (passive) corruption, A is only able to continue viewing the local state,
but for a malicious (active) corruption, A takes full control of the party and
instructs its behavior subsequently.

Corruption Threshold. We consider an honest-majority model for fluid MPC
where we restrict (A, E) to the setting where the adversary A controls any
minority of the clients as well as any minority of servers in every com-
mittee in an epoch.

We discuss the impact of the choice of committee formation on corruption
threshold:

— Volunteer Committee. In the volunteer setting, ensuring honest majority
in each epoch may be difficult; as such we view it as an optimistic model.
In the extreme case, honest-majority per epoch can be enforced by assuming
the global corruption threshold to be N/2F where E is the total number of
epochs and N is the total number of parties across all epochs.

— Elected Committee. In the elected committee model, the committee selec-
tion process may enforce an honest majority amongst the selected participants
in every epoch. The work of [7] enforces this via a cryptographic sortition
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process in proof-of-stake blockchains where an honest majority of stake is
assumed (in fact they require a larger stake fraction to be honest for their
committee selection).

An alternative model is where an adversary may control a majority of clients
and additionally a majority of servers in one or more epochs. We leave the study
of such a model for future work.

Corruption Timing. Given that the protocol progresses in discrete steps, and
knowledge of committees may not be known in advance, it is important to model
when an adversary can specify the list of corrupted parties. For clients, this is
straightforward: we assume that the environment £ specifies the list of corrupted
clients at the start of the protocol, i.e. we assume static corruption for the
clients. Since the servers perform the bulk of the computation, and their partici-
pation is already dynamic, there are various considerations for corruption timing.
We consider two main aspects below: point of corruption and effect on prior epochs.

Point of corruption: When the committee S¢ is determined at the start of
hand-off phase of epoch £—1, the adversary can specify the corrupted servers
from S in either:

1. a static manner, where the environment £ is only allowed to list the set
of corrupted servers when the committee S¢ is determined; or

2. an adaptive manner, where the environment £ can corrupt servers in S*
adaptively up until the end of epoch ¢, i.e. while they are active.

Effect on prior epochs: We consider the effect of the adversary corrupting
parties during epoch £ on prior epochs.

1. No retroactive effect: In this setting, the corruption of servers during
epoch ¢ has no bearing on any epoch j < /¢, i.e. the adversary does not
learn any additional information about epoch j at epoch £. This model
can be achieved in two ways:

Erasure of states: If servers in S’ erase their respective local states
at the end of epoch j, then even if the server were to participate in
epoch £ (i.e. STNS? # ), the adversary would not gain any additional
information when the environment £ hands over the local state.
Disjoint committees: If the sets of servers in each epoch are disjoint,
by corrupting servers in epoch ¢, the adversary cannot learn anything
about prior epochs.
We note that for any protocol that is oblivious to the real identities of
the servers (i.e. the protocol doesn’t assume any prior state from the
servers), the two methods of achieving no retroactive effect, i.e. erasures
and disjoint committees are equivalent. This follows from the fact that
servers do not have to keep state in order to rejoin computation, and
therefore from the point of view of the protocol and for all purposes, are
equivalent to new servers.’

3 We would like to point out that if one were to implement point-to-point channels
via a PKI, this equivalence may not hold.
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2. Retroactive effect: In this setting, the adversary is allowed limited infor-
mation from prior epochs. Specifically, when corrupting a server S € S*
in epoch ¢, the adversary learns private states of the server in all prior
epochs (if the server has been in a committee before). Therefore, the S
is then assumed to have been (passively) corrupt in every epoch j < /.
In order to prevent the adversary from arbitrarily learning information
about prior epochs, the adversary is limited to corrupting servers in epoch
¢ as long as corrupting a server S and its retroactive effect of consider-
ing S to be corrupted in all prior epochs does not cross the corruption
threshold in any epoch.

One could consider models with various combinations of the aforementioned

aspects. We will narrow further discussion to two models of the adversary:

Definition 2 (R-adaptive Adversary). We say that the (A,E) results in an
R-adaptive adversary A if the environment £ can statically corrupt a set T of
the clients (at the start of the protocol) and corrupt the servers in an adaptive
manner with retroactive effect. Specifically, in epoch £, the environment £ can
adaptively choose to corrupt a set of servers T* C [ng] from the set S¢, where T*
corresponds to a canonical mapping based on the ordering of servers in S°. On
E corrupting the server, A learns its entire past state and can send messages on
its behalf in epoch €. The set of servers that € can corrupt, and its corresponding
retroactive effect, will be determined by the corruption threshold T specifying that
Ve, T < 7 - ny.

Definition 3 (NR-adaptive Adversary). We say that the (A, E) results in an
NR-adaptive adversary A if the environment £ can statically corrupt a set T of
the clients (at the start of the protocol) and corrupt the servers in an adaptive
manner with no retroactive effect. The corruption process is similar to the case
of R-adaptive adversaries, except that the environment € can corrupt any server
in epoch £ as long as the number of corrupted servers in epoch £ are within the
corruption threshold. As mentioned earlier, any protocol that achieves security
against such an adversary necessarily requires either (a) erasure of state, or (b)
disjoint committees.

While our security definition will be general, and encompass both adversarial
models, we will consider protocols in the model with R-adaptive adversary.

In the above discussions, we have considered corruptions only when servers
are active. One could also consider a seemingly stronger model where the adver-
sary can corrupt servers when they are offline, i.e. no longer active. We remark
below that our model already captures offline corruption.

Remark 2 (Offline Corruption). If servers are offline once they are no longer
active i.e. they are not passively listening to protocol messages, then offline
corruptions in the retroactive effect model is the same as adaptive corruptions
during (and until the end of) the epoch due to the fact that the server’s protocol
state has not changed since the last time it was active. Going forward, since
honest parties do go offline when they are no longer active, we do not specify
offline corruptions as they are already captured by our model.
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Remark 3 (Un-corrupting parties). It might be desirable to consider a model in
which a server is initially corrupted by the adversary, but then the adversary
eventually decided to “un-corrupt” that server, returning it to honest status.
This kind of “mobile adversary” has been studied in some prior works [31]. We
note that this can be captured in our model by just having the adversary “un-
corrupt” a server by making that server leave the computation at the end of the
epoch and rely on the natural churn of the network to replace that server.

Defining Security. We consider a network of m-clients and N-servers S and
denote by (W = (n1,...,ng), E) the partitioning of the servers into E tuples
(corresponding to epochs) where the ¢-th tuple has n, parties (corresponding to
committee in the /-th epoch), i.e. S C S such that V¢ € [E], |S*| = ny.

Similar to the client-server setting, defined in [15,17,18], only the m clients
have an input (and receive output), computing a function f: X3 X -+ x X, —
Y; X --- x Y,,, where for each ¢ € [m], X; and Y; are the input and output
domains of the ¢-th client.

We provide a definition of fluid MPC that corresponds to the classical secu-
rity notion in the MPC literature called security with abort, but note that
other commonly studied security notions can also be defined in this setting in a
straightforward manner. The security of a protocol (with respect to a function-
ality f) is defined by comparing the real-world execution of the protocol with
an ideal-world evaluation of f by a trusted party. More concretely, it is required
that for every adversary A, which attacks the real execution of the protocol,
there exist an adversary Sim, also referred to as a simulator in the ideal-world
such that no environment £ can tell whether it is interacting with A and parties
running the protocol or with Sim and parties interacting with f. As mentioned
earlier, the environment & (i) determines the inputs to the parties running the
protocol in each round; (ii) sees the outputs to the protocol; and (iii) interacts
in an arbitrary manner with the adversary A. In this context, one can view the
environment £ as an interactive distinguisher.

It should be noted that it is only the clients that have inputs to the protocol
7. While the servers have no input, the environment £, in any round, can provide
it with the input nominate upon which the server relays this message to the ideal
functionality to indicate it is volunteering for the committee in the subsequent
epoch. These servers have no output, so do not relay any information back to £.

In the real execution of the (7, E)-party protocol 7 for computing f in
the presence of feommittee Proceeds first with the environment passing the inputs
to all the clients, who then pre-process their inputs and hand it off to the servers
in S'. The protocol then proceeds in epochs as described earlier in the presence
of an adversary A and environment £. £ at the start of the protocol chooses
a subset of clients T' C [m] to corrupt and hands their local states to A. As
discussed, the corruption of the clients is static, and thus fixed for the duration
of the protocol. The honest parties follow the instructions of w. Depending on
whether A is R-adaptive or NR-adaptive, £ proceeds with adaptively corrupting
servers and handing over their states to \A who then sends messages on their
behalf.
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The execution of the above protocol defines REAL: A 7.£, fomminee (2), & Lal-
dom variable whose value is determined by the coin tosses of the adversary and
the honest players. This random variable contains (a) the output of the adver-
sary (which may be an arbitrary function of its view); (b) the outputs of the
uncorrupted clients; and (c) list of all the corrupted servers {Te} teB)”

The ideal world execution is defined similarly to prior works. We formally
define the ideal execution for the case of retroactive adaptive security, and the
analogous definition for non-retroactive adaptive security can be obtained by
appropriate modifications. Roughly, in the ideal world execution, the participants
have access to a trusted party who computes the desired functionality f. The
participants send their inputs to this trusted party who computes the function
and returns the output to the participants.

More formally, an ideal world execution for a function f in the presence of
Sfeommittee With adversary Sim proceeds as follows:

— Clients send inputs to the trusted party: The clients send their inputs
to the trusted party, and we let z} denote the value sent by client C;. The
adversary Sim sends inputs on behalf of the corrupted clients.

— Corruption Phase of servers: The trusted party initializes ¢ = 1. Until
Sim indicates the end of the current phase (see below), the following steps
are executed:

1. Trusted party sends £ to Sim and initializes an append-only list Corrupte
to be 0.

2. Sim then sends pairs of the form (j,¢) where j denotes epoch number and
1 denotes the indez of the corrupted server in epoch j < ¢. Upon receiving
this, the trusted party appends ¢ to the list Corrupt’. This step can be
repeated multiple times.

3. Sim sends continue to the trusted party, and the trusted party increments
¢ by 1.

Sim may also send an abort message to the trusted party in this phase in
which case the trusted party sends L to all honest clients and stops. Else,
Sim sends next phase to the trusted party to indicate the end of the current
phase.

The following steps are only executed if the Sim has not already sent an abort
message to the trusted.

— Trusted party sends output to the adversary: The trusted party com-
putes f(z1,...,2.,) = (y1,-..,Ym) and sends {y; }ier to the adversary Sim.

— Adversary instructs trust party to abort or continue: This is formal-
ized by having the adversary send either a continue or abort message to the
trusted party. In the latter case, the trusted party sends to each uncorrupted
client C; its output value y;. In the former case, the trusted party sends the
special symbol L to each uncorrupted client.

— Outputs: Sim outputs an arbitrary function of its view, and the honest par-
ties output the values obtained from the trusted party.

Sim also interacts with the environment £ in an identical manner to the real
execution interaction between £ and A. In particular this means, Sim cannot
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rewind & or look at its internal state. The above ideal execution defines a random
variable IDEAL Sim, 7., feommuee (2) Whose value is determined by the coin tosses of
the adversary and the honest players. This random variable containing the (a)
output of the ideal adversary Sim; (b) output of the honest parties after an ideal
execution with the trusted party computing f where Sim has control over the

adversary’s input to f; and (c) the lists {Corruptz}é of corrupted servers output

by the trusted party. If Sim sends abort in the corruption phase of the server,
the trusted party outputs the lists that have been updated until the point the
abort message was received from Sim.

Having described the real and the ideal worlds, we now define security.

Definition 4. Let f : X1 x---x X,, — Y1 X---XxY,, be a functionality and let ©
be a fluid MPC protocol for computing f with m clients, N servers and E epochs.
We say that w achieves (7, ) retroactive adaptive security (resp. non-retroactive
adaptive security) if for every probabilistic adversary A in the real world there
exists a probabilistic simulator Sim in the ideal world such that for every proba-
bilistic environment & if A is R-adaptive (resp. NR-adaptive) controlling a subset
of servers T* C 8, VU € [E] s.t. |T%| < 7-ny and less than T -m clients, it holds
that for all auziliary input z € {0,1}*

SD (lDEALf7Sim7T7g7fcommittee (Z), REAL7"7AyT7g7fcomm/'ttee(Z)) S /’(‘
where SD(X,Y) is the statistical distance between distributions X and Y.

When p is a negligible function of some security parameter A\, we say that the
protocol 7 is T-secure.

Remark 4. We note that the above definitions do not explicitly state whether
the adversary behaves in (a) a semi-honest manner, where the messages that it
sends on behalf of the parties are computed as per protocol specification; or (b)
a malicious manner, where it can deviate from the protocol specification. Our
intention is to give a general definition independent of the type of adversary.
In the subsequent description, we will appropriately prefix the adversary with
semi-honest /malicious to indicate the power of the adversary.

This Work. We summarize the fluid MPC model that we focus on in the full
version of this paper [13], in the definition below.

Definition 5 (Maximally-Fluid MPC with R-Adaptive Security). We say that
a Fluid MPC protocol 7 is a Maximally-Fluid MPC with R-Adaptive Security
if it additionally satisfies the following properties:

— Fluidity: It has maximal fluidity.

— Volunteer Based Sign-up Model: Committee for epoch £+1 is determined
and known to everyone at the start of the hand-off phase of epoch £ where
the sampling function for feommittee 1S the identity function. Each epoch can
have variable committee sizes, and the committees themselves can arbitrarily
overlap. A server is only required to be online during epochs where it is active.
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- Malicious R-Adaptive Security: It achieves security as per Definition 4
against malicious R-adaptive adversaries who control any minority (1 < 1/2)
of clients and any minority of servers in every committee in an epoch.

As we have just shown, there are many interesting, reasonable modeling choices
that can be made in the study of fluid MPC. While our specific model name
may be heavy-handed, we want to ensure that our modeling choices are clear
throughout this work. Additionally, we hope to emphasize that our work is an
initial foray in the study of fluid MPC and much is to be done to fully understand
this setting.

4 Results in Full Version of the Paper

In the full version of this work [13], we construct a Maximally-Fluid MPC with
R-Adaptive Security (see Definition 5). In this section, we outline the sequence of
steps used for obtaining this result, and include the main theorems we prove for
completeness.

1. We start by adapting the additive attack paradigm of [26] to the fluid MPC
setting. In particular, we formally define a class of secret sharing based fluid
MPC protocols, called “linear-based fluid MPC protocols”. We then focus
on “weakly private” linear-based fluid MPC protocols, which are semi-honest
protocols that additionally achieve a weak notion of privacy against a mali-
cious R-adaptive (see Definition 2) adversary. We show that such weakly pri-
vate protocols are also secure against a malicious R-adaptive adversary up to
“additive attacks”. Formally, we prove the following theorem:

Theorem 1. Let IT be a Fluid MPC protocol computing a (possibly randomized)
m-client circuit C : (Fi”)m — Ut ysing N servers that is a linear-based Fluid
MPC with respect to a t-out-of-n secret sharing scheme, and is weakly-private
against malicious R-adaptive adversaries controlling at most ty < ng/2 servers in
committee Sy (for each £ € [d]) and t < m/2 clients, where d is the depth of the
circuit C and ng are the number of servers in epoch £. Then, II is a 1/2-secure
Fluid MPC with R-Adaptive Security with d epochs for computing the additively
corruptible version fc of C.

2. Next, we present a general compiler that can transform any linear based fluid
MPC protocol that is secure against a malicious R-adaptive adversary up to
additive attacks, into a protocol that achieves security with abort against a
malicious R-adaptive adversary. Our resulting protocol only incurs a constant
multiplicative overhead in the communication complexity of the original pro-
tocol and also preserves its fluidity. Formally, we prove the following theorem:

Theorem 2. Let C : (Fi")m — T be a (possibly randomized) m-client circuit.

Let C' be the robust circuit corresponding to C. Let II be a Fluid MPC protocol
computing C' using N servers that is linear-based with respect to a t-out-of-n
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secret sharing scheme, and is weakly-private against malicious R-adaptive adver-
saries controlling at most ty < ng/2 servers in committee Sy (for each £ € [d+1])
and t < m/2 clients, where d is the depth of the circuit C and ny is the number
of servers in epoch £. Then, the there exists a protocol that is a 1/2-secure Fluid
MPC with R-Adaptive Security with d + 1 epochs for computing C. Moreover,
this protocol preserves the fluidity of Il and only adds a constant multiplicative
overhead to the communication complexity of II.

3. Finally, we adapt the semi-honest protocol of Genarro, Rabin and Rabin [28],
which is an optimized version of the classical semi-honest BGW protocol [6],
to the fluid MPC setting and show that this protocol is both linear-based and
weakly private against a malicious R-adaptive adversary, and achieves max-
imal fluidity. Using Theorem 1, we establish that this linear-based weakly
private protocol is also secure against a malicious R-adaptive adversary up to
additive attacks. Finally, we apply the compiler from Theorem 2 to this pro-
tocol to obtain a maximally fluid MPC protocol secure against malicious
R-adaptive adversaries. Concretely, the following corollary holds directly from
the two theorems above:

Corollary 1. There exists an information-theoretically secure Maximally-Fluid
MPC with R-Adaptive Security (See Definition 5) for any f € P/Poly.
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Abstract. Can a sender encode a pair of messages (mo,m1) jointly,
and send their encoding over (say) a binary erasure channel, so that the
receiver can decode exactly one of the two messages and the sender does
not know which one?

Garg et al. (Crypto 2015) showed that this is information-theoretically
impossible. We show how to circumvent this impossibility by assuming
that the receiver is computationally bounded, settling for an inverse-
polynomial security error (which is provably necessary), and relying on
ideal obfuscation. Our solution creates a “computational anti-correlation”
between the events of receiving mgo and receiving m by exploiting the
anti-concentration of the binomial distribution.

The ideal obfuscation primitive in our construction can either be
directly realized using (stateless) tamper-proof hardware, yielding an
unconditional result, or heuristically instantiated in the plain model
using existing indistinguishability obfuscation schemes.

As a corollary, we get similar feasibility results for general secure com-
putation of sender-receiver functionalities by leveraging the completeness
of the above “random oblivious transfer” functionality.

1 Introduction

Starting with the pioneering work of Wyner [57], who showed that the wiretap
channel can be used for secure communication, a long line of work in cryp-
tography studied the usefulness of noisy channels for general cryptographic
tasks [12,13,22,35,48,51,55,56]. A major landmark in this line of work is a
full characterization of the “complete” channels on which oblivious transfer, and
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hence secure two-party computation, can be based [20,21]. In a nutshell, almost
all nontrivial noisy channels are complete in this sense.

However, most cryptographic constructions from noisy channels crucially
require interaction, and while this is not always a barrier, there are applications
in which interaction is inherently unidirectional. Indeed, secure communication
in this setting was the topic of Wyner’s work, and is a central theme in the
big body of work on “physical layer security” [14,50]. Given only one-way noisy
communication, any functionality that can be securely realized can be expressed
as a randomized mapping f : A — B that takes an input a € A from a sender S
and delivers an output b = f(a) to a receiver R. Note that, here the randomness
is internal to the functionality, and is neither known to nor can be influenced
by the sender or the receiver. We will give examples for useful functionalities of
this type in Sect. 1.3.

The goal is to realize such sender-receiver functionalities assuming that S and
R are given access to a channel C : X — ). Such channels are usually simpler
than the target function f, and can be plausibly assumed to be available to the
parties. Well-known examples of “simple” channels that correspond to naturally
occurring processes are the binary erasure channel (BEC), which erases each
transmitted bit with some fixed probability 0 < p < 1, and the binary symmetric
channel (BSC) which flips each bit with probability 0 < p < 1/2.

1.1 Complete Channels

The general study of secure computation from one-way noisy communication
was initiated by Garg et al. [25], who showed that one-way communication over
BEC or BSC suffices for realizing any deterministic sender-receiver functionality.
This includes zero-knowledge proofs as a useful special case. For general, possibly
randomized, functionalities, they showed that the following random string-OT
functionality (ROT) described below (where ag, a1 are strings), is complete:

(a0, L) w.p.

CroT(ag,a1) = {

(SIS

(L,a1) w.p.

This was recently extended to the case when ag,a; are bits [2], albeit at the
(necessary) cost of allowing an inverse polynomial, rather than negligible, error.

Note that in ROT the receiver must learn ezactly one of the two messages
but the sender should not be able to guess which one. This makes the secure
realization of ROT highly non-trivial. Indeed, ROT appears to be significantly
more powerful than BEC and BSC, and it is not clear how to realize it by a
naturally occurring process. While BEC and BSC merely erase or flip bits of
information randomly and independently, ROT induces a strong anti-correlation
between events, namely the receipt of ag and the receipt of a;.

Can the anti-correlation inherent in ROT be generated “out of thin air”
by invoking simple channels such as BEC or BSC? This question was already
addressed by Garg et al. [25], who showed that the simple noisy channels are
indeed not complete. In fact, ROT cannot be securely realized from such channels
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even if one considers semi-honest parties (who do not deviate from the protocol)
and allows a small constant security error.!

It is instructive to sketch the proof of this impossibility result. We consider
the more general case of a string erasure channel (SEC) that erases each input
string with probability p. The proof relies on a classical correlation inequality
due to Harris and Kleitman [33,43], asserting that for any two monotone Boolean
functions fo, f1 : {0,1}" — {0,1} and for any product distribution R over
{0,1}™, the events fo(R) =1 and f1(R) = 1 are not anti-correlated. That is,

Prfo(R) =1A fi(R) =1] = Pr[fo(R) = 1] - Pr[f1(R) = 1].

Now, by the receiver’s security requirement, even if we condition on a “typical”
joint encoding x of (ag,aq) that the sender transmits over the SEC channel,
the receiver’s output should be distributed almost as prescribed by the ROT
functionality. In particular, if p; is the probability that the receiver can con-
fidently decode a; conditioned on « being sent, and F; is the corresponding
conditional event, then pg =~ p; =~ 0.5. Letting n denote the number of invoca-
tions of the SEC, r C [n] represent the set of received symbols, and f;(r) indicate
whether FE; occurs on received set r, the Harris-Kleitman inequality implies that
Pr[Eog A E1] > po - p1 =~ 0.25, contradicting the sender’s security requirement.
The above impossibility result is purely information-theoretic and does not
give rise to a constructive attack. In particular, the functions f; are monotone
because information is monotone: more received symbols mean more confidence.
While there are examples for non-monotonicity of information in a computational
setting, for instance in the context of generalized secret sharing [45], it is not clear
that this has any relevance to the current setting. In fact, Garg et al. [25] showed
an efficient attack that rules out computationally secure protocols with negligible
security error. This leaves open the possibility of obtaining ROT from naturally-
occurring channels with a small constant, or better yet inverse-polynomial, error.

1.2 Our Results

In this work, we show that the impossibility result for ROT from SEC and other
simple channels can be circumvented, if one is willing to settle for security against
a computationally bounded receiver and to allow for inverse-polynomial error.
On the one hand, both of these relaxations are necessary in light of the above
mentioned impossibility results but, on the other hand, we still find the positive
result to be unexpected, even with these relaxations.

Our main result is cast in a generic model that assumes “ideal obfuscation,”
enabling the sender to give the receiver an oracle access to an obfuscated pro-
gram. In this generic model, we can unconditionally obtain information-theoretic
security by assuming that a malicious receiver is restricted to polynomially many

! The argument in [25] implicitly relies on the technical assumption that the ROT
protocol is Las Vegas, in the sense that if the receiver does output a message ap,
then this message is correct; all existing protocols in this setting, including those
presented in this work, satisfy this requirement.
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queries to the program, but is otherwise computationally unbounded. Before dis-
cussing the question of instantiating the generic model, we state the main result.

Theorem 1 (Informal). There is a one-way secure computation (OWSC) pro-
tocol for ROT over the binary erasure channel (BEC) as well as the binary sym-
metric channel (BSC) using ideal obfuscation, with inverse-polynomial statisti-
cal security error against a semi-honest sender and a query-bounded malicious
recetver.

Building on Theorem 1, we can leverage the completeness of ROT for sender-
receiver functionalities [25] to obtain the following general completeness result:

Theorem 2 (Informal). BEC and BSC are (each) complete for OWSC using
ideal obfuscation, with inverse-polynomial statistical security against a semi-
honest sender and a query-bounded malicious receiver.

Instantiating ideal obfuscation. A direct way of implementing the ideal
obfuscation in our construction is by sending (stateless) tamper-proof hardware
to the receiver. To obtain a plain-model instantiation, a natural approach is
to use indistinguishability obfuscation (iO) [6,30] instead of ideal obfuscation.
Following the first candidate construction of Garg et al. [24], iO has been stud-
ied extensively [1,4,7,8,15,16,19,26,27,37,38,46,54] and has been constructed
from well-studied assumptions in the recent breakthrough work of Jain, Lin and
Sahai [38]. Unfortunately, we were unable to prove that our protocols remain
(computationally) secure when replacing ideal obfuscation by iO, and consider
this to be a highly plausible conjecture. Since iO is “best possible” obfusca-
tion [30], it follows that if some instantiation of ideal obfuscation in our proto-
cols is secure then its instantiation with any iO scheme is secure. Concretely, we
make the following conjecture.

Congecture 1 (Informal). Replacing ideal obfuscation by any secure iO scheme
in the protocol establishing Theorem 1 results in a OWSC protocol for ROT
over BEC or BSC that has inverse-polynomial computational security against a
semi-honest sender and a malicious receiver.

While there are strong negative results for instantiating ideal notions of
obfuscation [6,28], these results require at least one of the building blocks to
be “contrived.” They are not known to apply to any combination of a natural
(unbroken) iO candidate and natural application. We believe that Conjecture 1
is qualitatively similar to the leap of faith one makes when heuristically instanti-
ating natural protocols in generic models such as the Random Oracle Model [9]
or the Generic Group Model [53]. Arguably, the leap of faith in our case is quite
conservative because of the simple and “non-cryptographic” functions to which
we apply ideal obfuscation. This should be contrasted with typical applications
of obfuscation in cryptography, and also with heuristic iO candidates whose secu-
rity needs to hold even for contrived pairs of equivalent circuits. See Sect. 1.5 for
further discussion.
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Assuming Conjecture 1, we can obtain a plain-model variant of Theorem 2
with security against a malicious sender by using OWSC for non-interactive zero
knowledge to effectively emulate an honest sender behavior.

Theorem 3 (Informal). Suppose iO exists and Conjecture 1 holds. Then,
BEC and BSC are (each) complete for OWSC, with inverse-polynomial com-
putational security against malicious sender and receiver.

We leave open the question of eliminating Conjecture 1 or, better yet, basing
the conclusion of Theorem 3 on a weaker or incomparable assumption to iO.

1.3 Why Base on One-Way Noisy Communication?

Several important cryptographic tasks can be captured as sender-receiver func-
tionalities. A natural example, already given in [25] is that of randomly gener-
ating “puzzles” without giving any of the parties an advantage in solving them.
For instance, the sender can transmit to a receiver a random Sudoku challenge,
or a random image of a one-way function, while the receiver is guaranteed that
the sender has no advantage in solving the puzzle. More generally, one could use
secure realizations of sender-receiver functionalities to unidirectionally generate
trusted parameters such as RSA moduli or common reference strings. Unlike the
common interactive solutions to such problems, here we consider a setting that
allows for completely non-interactive solutions.

Another example of a useful sender-receiver functionality is randomized blind
signatures, which can be captured by a randomized function that takes a mes-
sage and a signing key from the sender and delivers a signature on some random-
ized function of the message to the receiver (for instance by adding a random
serial number to a given dollar amount). Randomized blind signatures are a
fundamental building block for e-cash applications. They can also be used for
non-interactive certified PKI generation, where an authority can issue to a user
signed public keys, while only the users learn the corresponding secret keys.

Non-interactive zero-knowledge (NIZK), which is constructed in the common
random string model, can also be implemented in the sender-receiver model, by
modeling it as a deterministic function that takes an NP-statement and a witness
from the sender and outputs the statement along with the output of the verifica-
tion predicate to the receiver. As noted by Garg et al. [25], NIZK over a one-way
noisy channel provides a truly non-interactive solution to zero knowledge proofs,
where no trusted common randomness is available to the parties. Moreover, this
solution can achieve useful properties of interactive zero-knowledge protocols
such as non-transferability and deniability, which are impossible to achieve in
the standard non-interactive setting.

While the above applications require security against a malicious sender, it is
also meaningful (and non-trivial) to implement protocols that are secure against
semi-honest senders. Such protocols can be generically compiled to be secure
against malicious senders by invoking NIZK in the sender-receiver model. Note
that NIZK by itself is not sufficient for realizing many non-trivial functionalities,
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including the ones mentioned above. For this, it is necessary (and sufficient) to
have a secure realization of semi-honest ROT.

Applications notwithstanding, understanding the cryptographic power of
noisy channels with one-way communication is a fundamental question from
the theoretical standpoint.

1.4 Technical Overview

To present the new idea underlying our constructions, we focus on a protocol
for realizing ROT using a string erasure channel (SEC), with erasure probability
p = 0.5. This can be extended to BEC and BSC as required by Theorem 1. To
realize ROT, we want the symbols that the sender transmits over the SEC to
partition the probability space into two events Fy and Fj, such that Pr[Ey] =
Pr[E4] =~ 0.5, and in each event E; the receiver can learn a; but not a;_;.

The protocol begins by having the sender transmit a random n-tuple x € X™
over a large alphabet X' that makes the probability of predicting an erased sym-
bol negligible. It sends « over the SEC. It then picks a small secret “test set”
S C [n] and sends to the receiver an obfuscated program F = Fg,, that
expects the receiver to report all of the symbols it received from the channel.
(When instantiating the ideal obfuscation, the sender needs to communicate the
obfuscated program over a reliable channel; however, the latter can be imple-
mented with constant rate over any standard noisy channel.) After checking that
each unerased symbol reported by the receiver matches the corresponding sym-
bol in @, the program F' counts how many symbols from the secret set S were
reported; if this number is bigger than |S|/2 it outputs a1, otherwise it outputs
ap (Fig. 1).

Sender input: a = (ao,a1).

Sender: Sample random & € X" and send @ over SEC.

Sender: Sample random S C [n] of size y/n and send an obfuscation of F =
Fs %,a over reliable channel.

Receiver: Output F(y), where y is the sequence of non-erased symbols.

Fig. 1. ROT from String Erasure Channel (SEC)

The erasures induced by the channel are independent of x, and so whether the
receiver outputs ag or a; is independent of the sender’s view. Thus, the protocol
is secure even against a computationally unbounded semi-honest sender.

For security against the receiver, we consider two cases. If the channel delivers
a minority of the symbols from S, then an honest receiver can legitimately obtain
ag from F'| and even a dishonest receiver will need a super-polynomial number
of calls to F' to guess even one of the missing symbols.

On the other hand, what if the channel delivers a majority of the symbols
from S, which occurs with probability ~ 0.57 In this case, a dishonest receiver
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can obtain both messages by first acting honestly, legitimately obtaining a;, and
then invoking F' again and obtaining ag by just “forgetting” some of the received
symbols. The latter attack seems inherently impossible to defend against. How
can we expect a receiver who obtained few symbols from S to prove its ignorance?

It turns out, however, that there is a surprisingly simple solution: F’ will not
deliver ay when the total reported number of received symbols is significantly
below n/2. In other words, F' does not trust a receiver who claims to be too
unlucky. Intuitively, the reason this simple approach works is that S is both
small and secret. So without knowledge of S, for every symbol in S that the
receiver tries to “forget” it needs to unwillingly forget a large number of additional
received symbols. By choosing the size of S and the “unluckiness” threshold
carefully, we can ensure that successfully mounting the above “forgetting” attack
is computationally infeasible except for a bad event that occurs with inverse-
polynomial probability.

The analysis however requires more care and crucially relies, in addi-
tion to standard Chernoff-style concentration inequalities, on a simple anti-
concentration phenomenon: the binomial distribution with n trials is almost
always 2(n'/?)-far from its mean. Metaphorically speaking, the events Ey and
FE; that are separated by this anti-concentration can be viewed as “computa-
tional black holes” whose disjoint gravity zones cover almost the entire proba-
bility space.

In a bit more detail, for a transmitted & € X™ and set V' C [n] indicating
non-erased coordinates, let @[, denote the vector & with all coordinates outside
of V replaced by a special erasure symbol L. Set the “unluckiness” threshold to
be n/2 — n°5! and the size of S to be /n. Define the function F as:

(L, L) if (y|, # z|,)V (|V| <n/2-— n0'51) ,
Fsaa(yly) =< (ap, L) otherwise if [V N S| <|S|/2,
(L,ay) otherwise.

where y|,, denotes a n-tuple of presumably received symbols.

An honest receiver, who always feeds y|,, = x|, to F, gets unlucky with
negligible probability. This is because, over the random erasures of the SEC,
Pr[|V|>n/2 —n%%] > 1 — negl(n), and conditioned on this event, [V N S| is
symmetrically distributed around |S|/2. In particular, the output of F' is almost
equally likely to be ag as it is to be a;.

A dishonest receiver, on the other may attempt to learn both ag and a;
by feeding y|, to F, where U # V does not correspond to the set of non-
erased coordinates. This is not a problem if y|,, # |, as in such a case F will
output (L, L), but there is always a chance that the receiver can come up with
Y|y = x|,. Here we have two possible cases:

U is not contained in V. This case can be ruled out when |X| is super-
polynomially large, as it requires the receiver to correctly guess a randomly
sampled x; for i € U\ V.
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U is a strict subset of V. In this case, one cannot prevent the receiver from
feeding an input y|,; = x|, as this merely amounts to erasing symbols from
the received string x|, . Here, the only hope for the receiver to obtain both
ap and ap is to be able to transition from the case |V N S| > [S|/2 to the
case U N S| < |S|/2. Note that, by anti-concentration, in this case |V N S|
is likely larger than |S|/2 by £2(1/|S]) and, moreover, S is secret, hence the
receiver cannot just find such U by only removing few elements of V' in an
exhaustive search. On the other hand, if the receiver tries to forget many
symbols from the unknown S by just forgetting many symbols from V, it will
hit the unlucky zone where F' returns (L, L).

To prevent attacks as in the first case, it is imperative that the obfuscation of F’
hide x. Avoiding attacks as in the second case, on the other hand, requires the
obfuscation to hide S. What type of obfuscation would be sufficient for hiding x
and S? Ideal obfuscation limits the receiver to black-box access to F'. Intuitively,
this means that the receiver’s attempts to mount the above attacks are restricted
to random guesses, as  and S are information theoretically hidden.

1.5 Discussion

The unconditional result given by Theorem 1 (and subsequent theorems that
build on it) captures the main contribution of this work. Our use of ideal obfusca-
tion is technically equivalent to having a single, stateless, tamper-proof hardware
token shipped from the sender to the receiver. In fact, unlike current candidates
for cryptographic obfuscation, such an approach may be efficient enough to be
implemented. Thus, our results can be cast as part of a long line of theory-
oriented works on cryptography using tamper-proof hardware (see [5,29,32,40],
along many others).

From a complexity theoretic point of view, the ideal obfuscation primitive
can be viewed as a (succinctly described) oracle generated by the sender, such
that security holds unconditionally with respect to any query-bounded receiver
that has access to this oracle. For instance, this is the model used in works
on zero-knowledge PCP [36,42,47|. Alternatively, it can be seen as a second,
“resettable” sender, analogously to the multi-prover proof model [10,11,31,39].

An unusual aspect of our main feasibility result that separates it from almost
all nontrivial applications of obfuscation in cryptography is that it is based on
ideal obfuscation alone, without making any additional assumptions such as the
existence of one-way functions (or alternatively NPZ io-BPP [44]). In particular,
the functions we obfuscate are simple, explicit and “non-cryptographic.”

We also note the analogy with the Random Oracle Model (ROM) method-
ology: there is a long tradition in cryptography of using a construction in an
idealized “generic” model, such as the ROM [9], as a stepping stone towards
heuristic plain-model realizations. The latter are obtained by using concrete hash
functions as a substitute for the random oracle. For example, constructions of
transparent SNARGs for NP follow this approach [49]. Our proposal is analogous:
heuristically instantiate the ideal obfuscation by using any iO construction from
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the literature. There are strong negative results for instantiating ideal notions
of obfuscation [6]. These are in a sense analogous to similar negative results for
instantiating the ROM [18|. However, similarly to ROM instantiations, we do
not see a reason why these negative results should apply to a combination of a
natural application and a natural iO construction that was not designed with a
counterexample in mind.

Finally, most solutions for natural cryptographic tasks that were initially
cast in idealized models were later followed by plain-model constructions under
simple and plausible cryptographic assumptions. We expect the current work to
follow a similar path.

2 Preliminaries

Notation. We write z < X to denote the process of freshly sampling a uni-
formly random element x from a finite set A'. We denote the i-th coordinate of
a vector & € X™ by either x; or x(i). For a vector ¢ € X™ and set A C [n], the
restriction of & to A, denoted by x| 4, is the length n vector in (X U {L})" with
all the coordinates outside of A replaced by a special erasure symbol L. That
is, x|, (i) = «(i) if t € A and x|, (i) = L otherwise. The notation ([Z]) denotes
the family of all subsets of [n] with size k.

2.1 Sender-Receiver Functionalities and Channels

We study secure computation tasks that are made possible by one-way commu-
nication over a noisy channel. Such tasks can be captured by sender-receiver
functionalities, that take an input from a sender S and deliver a (possibly) ran-
domized output to a receiver R. In the randomized case, the randomness is picked
by the functionality and is not revealed to the sender or the receiver. More pre-
cisely, a sender-receiver functionality is a randomized mapping f : A — B that
takes an input a € A from a sender S and delivers an output b = f(a) to a
receiver R. We will sometimes refer to f simply as a function.

In order to realize f, we assume that S and R are given parallel access to
a channel C : X — Y. A channel is also a sender-receiver functionality but is
usually much simpler than the target function f. We define three channels of
interest below.

~ BSC. C§sc denotes the Binary Symmetric Channel (BSC) with crossover
probability p: i.e., for input z € {0,1}, the output Cisc(z) is 1 — x with
probability p and is x otherwise.

~ SEC and BEC. C{.. denotes the String Erasure Channel (SEC) which takes
an input string of a fixed length and outputs 1 with probability p and = oth-
erwise. When the string length is 1, CZc is called a Binary Erasure Channel
(BEC), and denoted by C5zc. When p = 1, we may omit it from the notation.

— ROT. The (String) Randomized Oblivious Transfer channel Crot takes as
input a pair of fixed-length strings (xo,z1) and outputs (xg, L) or (L,x;)
with probability % each.
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For brevity, we shall write C(z1,..., %) to denote (C(z1),...,C(zm)), ie.,
the outcome of m independent invocations of a channel C.

2.2 Secure Computation with One-Way Communication

A secure protocol for f: A — B over a channel C is formalized via the standard
definitional framework of reductions in secure computation. Our definitions are
in fact simpler because of the non-interactive setting. We start with the sim-
plest case of defining information-theoretic security against semi-honest parties
for a finite function f, ignoring computational complexity. We then describe
extensions to malicious parties, computational security, and infinite families of
functions.

OWSC protocols. A one-way secure computation protocol for f over C specifies
a randomized encoder that maps the sender’s input a into a sequence of channel
inputs x, and a decoder that maps the receiver’s channel outputs y into an
output b. Up to an error bound parameter e, the protocol should satisfy the
following security requirements: (i) given the sender’s view, which consists of an
input a and the messages ® that it fed into the channel, the receiver’s output
should be distributed as f(a), and (ii) the view of the receiver, namely the
messages y it received from the channel, can be simulated from f(a). Note that
(i) captures receiver security against a semi-honest sender as well as correctness,
while (ii) captures sender security against the receiver. Also note that since the
receiver does not send messages, whether it is semi-honest or malicious does not
make a difference. We formalize the above security requirements below, using A
to denote statistical distance.

Definition 1 (One-way secure computation: semi-honest sender).
Given a randomized function f : A — B and a channel C : X — Y, a pair
of randomized functions (S,R), where S : A — X™ and R : Y™ — B, is said to
be an e-secure OWSC protocol for f over C (with semi-honest sender) if there
exists a simulator Sg : B — Y™, such that for all a € A, the following hold:

A((S(a), f(a)) , (S(a),R(C(S(a))))) <€ (Security against semi-honest sender)
A(Sr(f(a)), C(S(a))) <€ (Security against receiver)

OWSC for malicious parties. In the case of a malicious sender, our security
requirement coincides with the standard notion of universally composable (UC)
security [17], but with simplifications implied by the communication model. The
extra security requirement in this case is that for any strategy of the sender (for
choosing x), a simulator is able to extract a valid input. Formally, an OWSC
protocol for f over C is secure against malicious parties if, in addition to the
requirements in Definition 1, there exists a randomized simulator Sg : X™ — A
such that for every x € X",

A(f(Ss(x)), R(C(x))) <€ (Security against malicious sender)
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Note that the first condition of Definition 1 is retained to imply correctness when
the sender is honest, and the second condition implies security against malicious
receiver as well.

OWSC with computational security. We can naturally relax the above
definition of (statistical) e-secure OWSC to a computationally (T,€)-secure
OWSC, for a distinguisher size bound T, by replacing each statistical dis-
tance bound A (A, B) < e by the condition that for all circuits C of size T,
|Pr[C(A) =1] —Pr[C(B) =1]| <e.

Universal Protocols and Complete channels for OWSC. So far, we con-
sidered OWSC protocols for a concrete finite function f and with a concrete
level of security. However, in a cryptographic context, one is often interested in
a single “universal” protocol in which the sender and the receiver are given a cir-
cuit f , representing a function f, and a security parameter 1* as common inputs
(in addition to the sender being given an input a for f). More generally, one
may consider any computational model — i.e., a representation of the function —
instead of circuits (e.g., in the context of information-theoretic security, it will
be useful to consider weaker representation models such as branching programs).

In a polynomial time universal protocol IT = (S,R), both S and R run in
time polynomial in A. Protocol IT is said to be a universal e-secure (resp., (T, €)-
secure) OWSC protocol for F over C, if for all f € F with |f| < A, the protocol
obtained from IT by fixing the common inputs to (f,1*) is an e(\)-secure (resp.,
(T'(N), €(N))-secure) OWSC for f over C, where f denotes the function repre-
sented by f.

While F above can be a narrow class of functions (e.g., string OTs), we shall
be particularly interested in the case where it is a general computational model
like circuits or branching programs. If a channel C enables such a universal pro-
tocol, we say that C is OWSC-complete for the corresponding computational
model. We will distinguish between completeness with inverse-polynomial error
and completeness with negligible error, depending on how fast the error van-
ishes with A\. We will also distinguish between completeness with statistical vs.
computational security and between semi-honest vs. malicious senders.

Definition 2 (OWSC-complete channel). For a computational model F,
we say that C is OWSC-complete with inverse-polynomial statistical error if,
for every ¢ > 0, there is a polynomial-time universal e-secure OWSC' protocol
for F over C, where e(\) = O(5=). We say that C is OWSC-complete with
negligible statistical error if there exists a polynomial-time universal e-secure
OWSC protocol for F over C for some negligible function e.

We say that C is computational OWSC-complete with inverse-polynomial
statistical error (resp., negligible statistical error) if, for every ¢ > 0, there exists
a polynomial-time universal OWSC protocol II such that for every polynomial
T(N), II is a (T,€)-secure OWSC protocol for F over C, where e(\) = O(5=)
(resp., € is negligible).
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Completeness as defined above is said to be against malicious parties if the
definition of secure OWSC used is against malicious parties, with the simulator
Ss being polynomial time.

As discussed above, useful instantiations of F include circuits, branching pro-
grams, and string-ROT. We will assume statistical security against semi-honest
parties by default, and will explicitly indicate when security is computational or
against malicious parties.

OWSC using ideal obfuscation. Our results, which are information-theoretic
in nature, make use of obfuscation as an ideal primitive. An OWSC protocol for
f over C using ideal obfuscation is defined similarly to the above except that,
in addition to its inputs x for the channel C, the sender specifies a function F
(using, say, a circuit F'), to which the receiver is only given (bounded) oracle
access. An honest receiver can make a single query ¢ to F' after observing the
outputs y of C, and then compute the output b based on y and F(q). To define
security, we extend the syntax of Definition 1 by adding a query bound parameter
Q. The definition of e-security against the receiver is modified to (Q, €)-security
as follows. The simulator Sg is now an interactive algorithm that interacts with
an arbitrary @-bounded R*. Given input b (output of f), Sg first generates
and sends to R* a simulated channel output y, and then provides a simulated
response for each F-query made by R*. We require that for every Q-bounded R*
and sender input a € A, the following holds:

A (ISr(f(@) = R, [F = R (C(x)) | (F,z) —S(a)]) < e

(Security against a query-bounded receiver)

Here [Sr(f(a)) <> R*] is the ideal-world transcript of the interaction of Sr(f(a))

with R*, and [F < R*(C(x))] denotes the real-world transcript of R* interacting
with the channel C and F', on sender input a. Note that in the latter F' denotes
the function corresponding to E generated by S(a). The completeness notions
in Definition 2 are adapted to the ideal obfuscation setting by requiring that for
every polynomial query bound Q()), there is an appropriate € such that IT is a
universal (Q, €)-secure OWSC protocol.

2.3 Probability Preliminaries

We state an anti-concentration bound for binomial distribution, which we cru-
cially use in the analysis of all our constructions. The statement of the lemma
is quoted verbatim from [52, Theorem 4.6].

Lemma 1 (Anti-concentration). Let 0 < p < 1, and X = X; + ... + X,
where, for each i € [n], X; is independently and identically distributed as
Bernoulli(p). There exists ©, > 0 depending only on p (where @% = 1), such

that, for all 0 < k < n, we have Pr[X = k] < &
Vvn
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Following is a standard concentration inequality required for the analysis of
our protocols.

Lemma 2 (Chernoff bound). Let 0 < p < 1, and X1, ..., X,, be random vari-
ables such that for each i € [n], X; is independently and identically distributed as
Bernoulli(p). Further, let X = X1+ Xo+...+ X,,. When u denotes the expected
value of X, i.e., pn=E(X)=p-n,

(i) PriX > (1+)u] < o~ Pk for all § > 0,
(i1) PriX < (1-9d)u] < e for all § € (0,1).
In particular, for all n € (%, 1), for sufficiently large n,

(iii) Pr[X € [p(n —n"),p(n+n")]] > 1 -2 %" =1 — negl(n).

n”*l

Proof: (iii) follows from applying (i) and (ii) by setting p =p-n and § = -
Note that § € (0,1) for sufficiently large n. O

3 ROT from SEC Using Ideal Obfuscation

In this section, we prove that ROT can be realized using a string erasure channel
(with erasure probability p = 0.5), assuming ideal obfuscation, following the
sketch discussed in Sect. 1.4. In more detail, we prove:

Theorem 4 (ROT from SEC using ideal obfuscation). There exists an
OWSC protocol for string-ROT over SEC using ideal obfuscation, with inverse-
polynomial statistical security against a semi-honest sender and a query-bounded
recetver.

More concretely, for any constant ¢ > 0, there exists an OWSC protocol
which, for all A\;t € N, realizes t-bit string ROT with e-security against a semi-
honest sender and a polynomial query-bounded receiver, using n invocations of
(-bit SEC and an ideal obfuscation of a circuit F', when e = O(5), n=0(\%),
(= w(log)), and |F| = O(t 4+ \169).

Proof: An OWSC protocol (S, R) for ¢-bit string ROT over ¢-bit SEC is provided
in Fig. 2. The proof follows the argument sketched in the technical overview (See
Sect. 1.4). We will use the following lemmas to prove the theorem; they are
formally proved in the full version of this work [3] using the anti-concentration
bound (Lemma 1) and Chernoff bound (Lemma 2).

Lemma 3. Let ) > %, and U,V be arbitrary subsets of [n] such that |U|,|V| €
[”_T"", ”';—7“] and V. CU. For all § € (n— %,1), and for sufficiently large n,
Vn

71.5
Pr [|SﬁV|§|SﬁU|2\/ﬁ—i—n‘s < e TH6
(I 2 2
S—(w)
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Lemma 4. Let k € [”;2"77, ”*2—"”] and 0 < 6 < min(§,1 —n). For sufficiently

large n such that @ is an integer, for any S C [n] with |S| = v/n,

Pr [|SﬂU|€ |:\/ﬁ—n6’\/ﬁ+n5:|:| §2n57%€3.
U«—([:]) 2 2

Correctness. For any x = (1, ..., ,) such that z; € {0, 1}, the output of Cqgc
on input x is Cggc(x) = x|, where U is a uniformly random subset of [n]. Hence,
when |S| = /n is an odd number, by symmetry, the event |[U N S| < @ = 4
occurs with probability 1. By Lemma 2, with all but negligible probability, |U| >
2

? —n%?1. Hence, by a union bound, Fs 4 q0.a, (2|;;) = (a0, L) with probability
3 —negl(n) and Fsg a9.0, (®[;) = (L,a1) with probability 3 — negl(n). This
proves the correctness of the protocol.

Security. Next, we argue that the protocol presented in Fig.2 achieves sender
and receiver privacy. To argue receiver privacy against (even a computationally
unbounded) semi-honest sender, we need to show that for all (ag,a1), it holds
that:

A((S(ao,a1),Crot(a0,a1)), (S(ao, a1), R(Csgc(S(ao; a1))))) < negl(n)

Note that the erasures induced by the string erasure channel are independent of
the input to the channel. Hence, as we already observed, for any @ sent by the
sender, the receiver R obtains x|, where U is a uniformly random subset of [n],
independent of x (as well as single query access to F's 5 q0.q4,)- By definition of
F, the output of an honest receiver, viz. Fs 4 a9, (Z|y), is only a function of
the size of the sets U and U N S. Thus, whether the receiver outputs (ag, L) or
(L,ay) is independent of the view of the sender. Receiver privacy now follows
from the fact that the receiver is correct with negligible error.

To argue sender privacy, we need to construct a simulator Sg : B — V" as
an interactive algorithm that interacts with an arbitrary @-bounded R*. In the
sequel, for ease of presentation, for ag,a; € {0,1}!, we will denote (L, a;) by
(1,a1) and (ag, L) by (0,a0) (i-e., we will use the format (index revealed, message
at the revealed index)). Given input (b, ap) for a random bit b, Sg first generates
and sends to R* a simulated channel output y, and then provides a simulated
response for each F-query made by R*.

Simulator Sg(b, ap):

1. Sample S « (\[7/%)
2. Let © = (x1,...,2,), where z; « {0,1}¢ for i € [n].
3. Sample U « 2[" conditioned on
(a) [UNS|> L ifb=0,
(b) [UNS| < ¥ ifb=1.
4. Output x|, to R*.
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Next, the simulator answers ) queries by R* to Fs 4 4.4, @s follows: Upon
query yly,if (|V] > 2 — n®)A(yl|,, = @) it outputs (b, ap). If not, it outputs
1.

We will argue that the statistical distance between the simulated transcript
resulting from the interaction of Sr(b,ap) with R* and the real view of R* on
sender input (ag,a;) is at most O(n~%). The distribution on x|, received by
R* is identical when it interacts with S or with the simulator Sg. It remains to
argue that R* cannot make a query which Sr(b, as) cannot simulate (except with

probability O(n ¥ )).
n ). (1)

First, we argue that,

To see this, observe that by Lemma 2, with all but negligible probability, |U| €
[% — n0-5L, 5+ n0'51}. Conditioned on this event, by Lemma 4, probability with
which |U N S| € [¥2 —ns, Y2 4 ns]is O(n~3).

Now we show that in the above event, the simulator answers any query by R*
as in the real world, except with negligible probability. To see this, note that the
simulator has access to ap, and the only cases in which it cannot answer correctly
is when R* makes a query to F' whose output is (1 — b,a1_5). We argue that
this does not happen, except with negligible probability. Consider the following
cases:

e

2 "9 2

>1

Pr {|U| € [ﬁ — 05 @+n0‘51} and |UN S| ¢ [\/ﬁ

Case 1: |UNS| < YT R* is given x|, where Fsgz a0.0,(x|;) = (L,a1). To

n

recover ag, R* must output (yl,,) such that [V N S| > % and y|, = x|,
However, since Vi € [n], z; is uniform in {0,1}¢, the probability of guess-
ing even a single string x; is negligible. Thus in this case, R* succeeds with
probability at most 2~¢, which is negligible.

Case 2: |UNS| > @ +ns. R* is given x|y st. Fs g a0,a,(x|;) = (a0, L). To

recover the other output ag, R* must output (y|,,) such that [V N S| < 4
and yl,, = x|,. As before, for any ¢ ¢ U, it can guess z; correctly only
with negligible probability. By Lemma 3, when |[U| < & + n%-31 (this happens
with overwhelming probability by Lemma 2), for all V' C U such that |U| >
5 = n%1 the probability that |V N S| < @ is negligible. Thus in this case
also, R* succeeds in coming up with a query that makes Fg 4 40,4, OUtput
(1 —b,a1_p) with at most negligible probability.

Thus, by taking a union bound, we can conclude that the simulator can answer
the queries of a poly(\)-bounded R* except with negligible probability.

Finally, we show the bound on the circuit |F | in the theorem statement. Each
position of the input y is encoded using ¢ + 1 bits, with say, the first bit used as
a flag denoting if it is L. Then a circuit of size O(n?) on the n flag bits suffices
for computing the two threshold conditions on |V| and [V N S| used in F, and a
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circuit of size O(nf) suffices to compute the equality condition x|, = yl,,. The
output is encoded, say, as (b, ap) for b € {0,1} with an additional flag to indicate
if it is (L, L). Each of these ¢t + 2 output bits can be computed as a function of
two bits from ag and a; and the three condition bits computed above. So overall
F'is of size O(t + n? + nf)). The theorem now follows by setting n = A8¢. This
concludes the proof. |

ROT from String Erasure Channel

Function F

Parameters: S C [n] with |S| = /n, & = (z1,...,%,), where z; € {0,1}¢ for
i€ [n], ao,a1 € {0,1}".

Input: y = (y1,...,Yn), where, for all i € [n], yi € {0,1}" or y; = L. We write
Y|, to indicate that V' = {i|y; # L}.

FS,m (y'v ,(107(11)
(Lyar), if (V] >2—=n®Y) A (yl, = ®|,) A (VNS < L),
= ¢ (ao, L), if (V=2 -n"")A(yly=a|,)A(VNSI>4L), (2
(L, 1), otherwise.

NIE

We write Fs,z,a9,a; (-) to denote Fs (-, ao,a1).

Sender S(ag, a1)

Receiver R
(inputs ao, a1 € {0,1}")

1. Sample S « (E;ll) @ sent over Csec (with 1-query access to F')
2. Let = 5 ~
CLet & = (21, @), F given as 1. Receive Csec(x) = x|,

where each z; < {0,1}*.
3. Output (F, ) where F'is
a circuit for Fs,z, ag,a; -

oracle to R where U « 2[™.
2. Output F (z|).

Fig. 2. The OWSC protocol (S,R) for realizing ROT over the string erasure channel
assuming ideal obfuscation.

4 Completeness of BEC and BSC Using Ideal Obfuscation

In this section, we show that the binary erasure channel and the binary sym-
metric channel are (each) complete, assuming ideal obfuscation. In Sect. 4.1, we
construct the string erasure channel from the binary erasure channel and from
the binary symmetric channel. We then appeal to a composition theorem 5 to
argue that BEC/BSC can be used to construct ROT. Finally, in Sect.4.2 we
discuss completeness of BEC/BSC for general sender-receiver functionalities.
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4.1 String Erasure Channel from BEC/BSC

In this section, we provide constructions of string erasure channel from binary
erasure channel and from binary symmetric channel using ideal obfuscation.?

We first define a quantity that will be used in the construction and analysis
of the following protocols. Let 0 < p < 1, and Xj,...,X,, be random variables
such that for each i € [n], X; is independently and identically distributed as
Bernoulli(p). Further, let X = X7 + Xo + ... + X,,. Define

Centre(p, n) = max {t €n]:PriX <t < ;}

Claim 1. For ©, > 0 that depends only on p (as described in Lemma 1),
11 6
Pr[X < Centre(p,n)] € <2, 3t \/%] :
Proof: Pr[X = Centre(p,n)] < % by the anti-concentration bound in Lemma 1.
Claim follows from this and the definition of Centre(p,n). O

We now proceed to formally state and prove the first main result in this
section.

Lemma 5 (SEC from BEC using ideal obfuscation). There exists an
OWSC protocol for SEC over BEC using ideal obfuscation, with inverse-
polynomial statistical security against a semi-honest sender and a query-bounded
recetver.

More concretely, for all p € (0,1) and ¢ > 0, there exists an OWSC' protocol
which, for all \,€ € N, realizes £-bit SEC with e-security against a semi-honest
sender and a polynomial query-bounded receiver, using n invocations of the BEC
with erasure probability p and an ideal obfuscation of a circuit F, when € =

O(%), n=0\*), and |F| = O£ - X%).

Proof: The OWSC protocol (S, R) for an ¢-bit SEC over BEC with erasure prob-
ability p € (0, 1) is provided in Fig. 3. We argue correctness and security below.
Correctness. Since Che erases each bit in & with probability p independently,
the number of non-erasures |U| is distributed according to Binomial(n,1 — p).
Hence, by Claim 1, the probability with which receiver reports an erasure is

11 61,
Pr[|U| < Centre(1 — p,n)] € (2, 5T NG ) .

2 We remark that OWSC of SEC over BEC with inverse polynomial statistical secu-
rity exists without using ideal obfuscation. Such a protocol can be obtained following
the ideas in [2], where an OWSC protocol was constructed for string-ROT over bit-
ROT with inverse polynomial statistical security. We do not explore the possibility
of building such an OWSC protocol for SEC over BSC. Instead, we stick to con-
structions using ideal obfuscation since our next step towards realizing OWSC of
ROT over BEC/BEC, i.e. of constructing OWSC of ROT over SEC, anyway uses
ideal obfuscation.
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String Erasure Channel from Binary Erasure Channel

Function F

— Parameters: € {0,1}" and a € {0,1}".
— Input: y|,, such that V C [n] and y; € {0,1}" forall i € V.

a. i (gly = @ly) A (V] > Centre(1 - p,n)),

1, otherwise.

Fw(y|V7a) _{

We write Fi o) to denote Fz (-, a).

Sender S(a € {0, 1}[') Receiver R

@ sent over Chrc
(with 1-query access to F')

1.+ {0,1}". b tven us
2. Output (F, ) where F'is given as 1. Receive x|, = Chec(x).
reuit for F oracle to R
a circui z,a- 2. Output F(z|;).

Fig. 3. Protocol (S,R) for realizing ¢-bit string-Erasure Channel using n invocations
of a binary erasure channel with erasure probability p € (0, 1).

Thus, the input string a is output with probability % (with inverse polynomial
bias), which proves correctness of SEC.

Security. We first prove the statistical security against a computationally
unbounded semi-honest sender by arguing that for all a € {0, 1}*

6.,
NE

The erasure pattern over n uses of the channel is independent of the sender’s
input . Consequently, whether the receiver outputs a or L is independent of
the view of the sender. The bound on the statistical distance now follows from
the correctness of the protocol.

To argue security against the receiver, we need to construct a simulator
Sgr : B — Y™ as an interactive algorithm that interacts with an arbitrary poly(n)-
bounded R*. Given input a € {0,1}° U { L}, Sg first generates and sends to R*
a simulated channel output y, and then provides a simulated response for each
F’—query made by R*.

A((S(a), Csec(a)) , (S(a), R(Cgec(S(a))) <

Simulator Sg(a): Simulator constructs y as follows:

1. Sample x « {0,1}"

2. Sample erasure pattern [n] \ U (as generated on n independent uses of C5¢c)
under the conditioning |U| > Centre(1 — p,n) if a # L and under the condi-
tioning |U| < Centre(1 —p,n) if a = L.

3. Output x|, to R*.
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For @ queries by R* to F', the simulator replies to a query y|,, follows:

— Case 1:1f |U| > Centre(1—p, n), simulator outputs F ,(y|,/) as it has access
to z,a, and U.
— Case 2: If |U| < Centre(1 — p, n), simulator simply outputs L.

Since the distribution on x|, received by R* is identical when it interacts with S
or with the simulator Sg, it is sufficient to argue that R* cannot make any query
which Sg cannot correctly respond to, except with probability O(n_Tl) In case
1, when |U] > Centre(1 — p,n), the simulator/predictor can honestly compute
Fy o(yly/) and the query is answered correctly. In case 2, the simulator /predictor
fails if R* makes a query y|,, such that F, ,(y|, ) = a. Define the set

Bad = {U : |U| € [Centre(1 — p,n) — n°,Centre(1 — p,n))} .

Since [n] \ U is the erasure pattern during n independent uses of Chec, |U]| is
distributed according to the Binomial(n,1 — p) distribution independent of x.
Hence, for all € {0,1}", by applying the anti-concentration bound in Lemma 1
together with a union bound,

O1p -nd.
Vn

We will show that, except under the event Bad (which happens with probability
at most 81_p~n*i, when § = %), R* outputs a query yl,, such that F, .(yl,,) =
a with negligible probability. Taking a union bound over poly(n) queries, we
achieve the desired security condition.

It suffices to show that for all @ € {0,1}* and computationally unbounded
algorithms Adv that take x|, as input,

Pr[Bad] = I?Jr [|U] € [Centre(1 — p,n) — n’, Centre(1 — p,n))] <

W_{g)f}n v [Fe(yly ,a) # L |-Bad, y|,, = Adv(x|,), Fx (yl, ,a) = L] = negl(n).
3)

The event ‘~Bad and F, (y|,, ,a) = L’ is the same as ‘|U| < Centre(1—p,n)—n’".
Hence,

P [Faluly ) # L-Bad. gl = Adv(ly). Fe(yly ) = L

< P [V Ul > n® and -
_ac«—{OE}",U‘ \U|=n’® an y|V\U x|\ |

|U| < Centre(1 —p,n) — nd, y|, = Adv(w|U)}

. 5 —n®
= m‘*{O,F}I,‘ViE[n‘S] I:yl - Ii’V’L © [n H =2 .

The function F' can be realized using ¢ + 1 Boolean circuits (to compute
each bit of the output encoded with one extra bit to report L). When the input
is appropriately encoded, the Boolean circuits need to compute a thresholding
function on n-bit inputs (quadratic blow-up), and equality check for O(n)-bit
inputs (linear blow-up). Hence, the size of E" is O(£-n?). The lemma now follows
by setting n = A*c. This concludes the proof. O
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We would like to remark that the above construction can also be used to realize
string erasure channel with erasure probability % from another string erasure
channel (possibly of different string length) with arbitrary probability of erasure
(¢'-bit Cégc for 0 < p < 1). We can then put this result together with the result in
Theorem 4 to show that ROT can be realized from general SEC (See Sect. 4.2).

Using a similar construction we can realize string erasure channel from binary
symmetric channel using ideal obfuscation. Formally, we prove the following
lemma:

Lemma 6 (SEC from BSC using ideal obfuscation). For p € (0, %), there
exists an OWSC protocol for SEC over BSC with crossover probability p using
ideal obfuscation, with inverse-polynomial statistical security against a semi-
honest sender and a query-bounded receiver.

More concretely, for all p € (0, %) and ¢ > 0, there exists an OWSC protocol
which, for all A\, ¢ € N, realizes £-bit SEC with e-security against a semi-honest
sender and a polynomial query-bounded receiver, using n invocations of the BSC

with crossover probability p and an ideal obfuscation of a circuit F, when ¢ =
O(), n = O(X¥), and |[F| = O(¢ - 3%).

Proof: The OWSC protocol (R,S) for SEC over BSC is provided in Fig.4. We
argue correctness and security below.

Correctness. Since Ci flips each bit in @ with probability p independently,
|& & y| is distributed according to Binomial(n, p). Hence, by Claim 1,

)

Thus, the input string a is output with probability % (with inverse polynomial
bias), which proves correctness of SEC.

Nl

11
Pr |z @ y| < Centre(p,n)] € ( +60,-n

272

Security. We first argue statistical security against a computationally
unbounded semi-honest sender by showing that for all a € {0,1}*

A((S(a), Csec(@)) , (S(a), R(CEsc(S(a)))) < 6, -n*.

Observe that the noise added by the BSC is independent of the sender’s input
x. Consequently, whether the receiver outputs a or L is independent of the
view of the sender. The bound on the statistical distance now follows from the
correctness of the protocol.

To argue security against the receiver, we need to construct a simulator
Sr : B — Y™ as an interactive algorithm that interacts with an arbitrary poly(n)-
bounded R*. Given input a € {0,1}* U { L}, Sg first generates and sends to R*
a simulated channel output y, and then provides a simulated response for each
F-query made by R*.

Simulator Sg(a): Simulator constructs y as follows:

1. Sample x «— {0,1}"™.
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String Erasure Channel from Binary Symmetric Channel

Function F
— Parameters: @ € {0,1}" and a € {0,1}".
— Input: y € {0,1}".

a, if & ® y| < Centre(p,n),

Fm(yaa) = {

1, otherwise.
We write Fi o(-) to denote Fz (-, a).

Sender S(a € {0,1}9)

1. =+ {0,1}".
2. Output (F, x) where F is a circuit fgr Fya-
(z will be sent to R over CEsc, and F' will be used as the oracle for R, below.)

Receiver R with 1 query oracle access to F'

1. Receive y = Chsc ().
2. Output F(y).

Fig. 4. The protocol (S,R) for realizing ¢-bit String-Erasure Channel using n invoca-
tions of a binary symmetric channel with crossover probability p.

2. Sample y = CEsc(x) conditioned on |z & y| < Centre(p,n) if a # L and
|x @ y| > Centre(p,n) if a = L.
3. Output y to R*.

For @ queries by R* to F, the simulator replies to a query gy follows:

— Case 1:If |x @ y| < Centre(p,n), simulator outputs Fj (y) as it has access
to x and a.
— Case 2: If |x @ y| > Centre(p, n), simulator simply outputs L.

Since the distribution on |, received by R* is identical when it interacts with
S or with the simulator Sg, it is sufficient to argue that R* cannot make any query
which Sg cannot correctly respond to (except with probability O(n%l)). In case
1, when |U| > Centre(1 — p,n), the simulator/predictor can honestly compute
Fy o(yly/) and the query is answered correctly. In case 2, the simulator /predictor
fails if R* makes a query y|,, such that F, ,(yl|,/) = a. Define the set

Bad = {(z,y) € {0,1}*" : |z ® y| € (Centre(p, n), Centre(p,n) +n’]} .

In the sequel, we will denote Centre(p,n) by t. When = «— {0,1}" and y =
Chsc(x), |x Pyl is the number of bits noise added by Che. Hence, it is distributed
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according to the Binomial(n, p) distribution. By applying the anti-concentration
bound in Lemma 1 together with a union bound, we get

= g o3
(m<—{o,1}1:,2=cgsc(m)[Bad] o, 1}}?1, e lr@yl e (t,t+n]] <O, -n’"2.
We will show that, except under the event Bad (which happens with probability
at most 91,p~n_%, when § = %), R* outputs a query y|,, such that F, ,(y|,,) =
a with negligible probability. Taking a union bound over poly(n) queries, we
achieve the desired security condition.
It suffices to show that for all @ € {0,1}¢ and computationally unbounded
algorithms Adv that take y as input,

[Fo.a(y) # L|-Bad, Fr () = L,g = Adv(y)] = negl(n).  (4)

T
z—{0,1}",y=Cfsc(z)

The event ‘~Bad and Fj, ,(§) = L’ is the same as ‘|z ® y| > Centre(p,n) + n°".
We complete the argument by appealing to the following claim.

Claim 2. For any computationally unbounded algorithm A, for sufficiently large
values of n,

Pr  [Fu(g.a)# Lz @y| > Centre(p.n) +nf,§ — Aly)]
E‘—{O-,l}”yyzcgsc(ﬂ?)

a-2p2 s
f”‘

< 3e~

Proof: Let t = Centre(p,n) and V ={i € [n] : §; ®y; = 1}. For & «— {0,1}",y =
Cosc(x), and § — A(y),
Pr[Fpa(y) # Ll @yl >t + 0]
7Pr[|m@ﬁ|<t|\x®y|>t+n5]
=Pr[|(z S yey) <tllzayl>t+n’]
gPrl (z; D yi) <|V|Z(xi@yz)> 2n5||m@y|2t+n5
eV

eV

V| +nd
=Pr lZ(xi@yi)z”Hx@ylzwn‘;
eV

Since « is uniformly distributed, & @ y is independent of y and, therefore,
independent of (y, 9, V). Conditioned on V (and suppressing this conditioning
in the steps below), we have, for all V' C [n],

V4 é
Pr [;(mi@yi) > H%,Lr@yl >t +n’
2

5
<Pr [Z(xi oy > VT

‘ 2
eV
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where z;®y;, ¢ € V, are independent and identically distributed with distribution
Bernoulli(p). This probability is clearly zero if |V| < n%. For |V| > n%, by the
Chernoff bound in Lemma 2,

1% J 1%
Pr Z(ﬂﬁz Dy > H% < Pr Z(ﬂcz Dy > %
eV eV
1
=Pr Z(ml@yz)2(1+(2—1>)p-|V|
eV
(&)
<e Tlp"'l p-|V| < ei(l—ip)2 nd

Moreover, since |z @ y| is Binomial(n,p), we have Pr[lz & y| <

Centre(p,n)] < %, which along with the anti-concentration bound in Lemma 1,

gives
1 e 1
P >t+n]>-—=L.14+n%)>2
llreyl>t+n’]> 5 - 28 (407 > 3,
for sufficiently large n since § < % This proves the claim. O

The function F' can be realized using ¢ 4+ 1 Boolean circuits (to compute each
bit of the output encoded with one extra bit to report ). When the input
is appropriately encoded, the Boolean circuits need to compute a XOR and
thresholding function on n-bit input (quadratic blow-up). Hence, the size of Fis
O(f-n?). The lemma now follows by setting n = A*c. This concludes the proof.

O

4.2 Completeness of BEC/BSC Using Ideal Obfuscation

We can put together the results in Sect.4.1 (that the string erasure channel
(SEC) can be constructed using the binary erasure and binary symmetric chan-
nels, using ideal obfuscation) with the result from Sect.3 (that ROT can be
constructed using SEC, using ideal obfuscation), to obtain the following.

Theorem 5 (ROT from BEC or BSC using ideal obfuscation). There
exists an OWSC protocol ﬂﬁg({« (respectively, WE%% ) for ROT over BEC (respec-
tively, BSC) using ideal obfuscation, with inverse-polynomial statistical security
against a semi-honest sender and a polynomial query-bounded receiver.

Proof: We shall compose the OWSC protocol for ROT over SEC from Theorem 4
with the protocol from Lemma 5 (respectively, from Lemma 6). For this, we need
to argue that OWSC protocols compose. The security definition of OWSC (Def-
inition 1) could be seen as a specialization of the UC security notion, to the
one-way communication setting, and a semi-honest sender, in a (C,B)-hybrid
model, where C is the channel, and B is a functionality that takes a circuit
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from the sender and provides the receiver with black-box access to it (for a
bounded number of queries). To see this is indeed the case, note that when the
sender is (passively) corrupt, a simulator for passive-security should merely for-
ward the sender’s input a to the functionality, resulting in the receiver obtaining
f(a); hence the environment’s views in the ideal and real executions (in addi-
tion to a, which is universally quantified over) are simply (S(a), R(C(S(a)))) and
(S(a), f(a)).

When the receiver is (possibly actively) corrupt, its view includes an output
from the channel C and its interaction with the oracle B; the security definition
for OWSC in this case is the same as for UC security, by treating the receiver as
the environment (the input a is part of the corrupt receiver’s view in the OWSC
definition, due to the universal quantifier over a).

Before we can apply composition, note that we have a mixed corruption
model with fized roles. That is, the party playing the sender in all of the protocols
or functionalities is the same (i.e., corrupting one corrupts all), and similarly for
the receiver. Hence we have only two non-trivial corruption scenarios: all the
senders are passively corrupt, or all the receiver’s are actively corrupt. In either
case, the protocol for ROT from SEC, as well as the protocol for SEC from
BEC (or BSC) satisfies the corresponding security guarantee. We note that in a
corruption scenario, if UC or passive security holds for each protocol instance,
then, it holds for the composed protocol for the same corruption scenario (this is
implicit in the proof of composition theorems for static adversaries, which fixes
a corruption scenario and derives a simulator for the composed protocol from
individual simulators for the constituent protocols).

Finally, note that in the composed secure protocol, there are several instances
of B invoked by the sender (and each one accessed a bounded number of times
by the receiver). These multiple instances, with programs, say Fi,---, F, can
be replaced by a single instance of B to which the sender inputs a combined
program F' such that F'(i,z) = F;(x). Thus we obtain an OWSC protocol using
ideal obfuscation for ROT from either BEC or BSC. O

We are now ready to show that the binary erasure channel and the binary
symmetric channel are complete, using ideal obfuscation. To generalize the above
construction to arbitrary functionalities, we rely on a previous result by Garg
et al. [25], which showed that ROT is complete for arbitrary finite functionalities
even for the case of malicious parties, with statistical security. Combined with
our reductions from ROT to BSC and BEC, we get a similar completeness result
for BEC/BSC with inverse-polynomial error.

In more detail, we claim that:

Theorem 6 (Completeness of BEC/BSC using ideal obfuscation: semi-
honest sender). BEC and BSC are (each) complete for OWSC using ideal
obfuscation, with inverse-polynomial statistical security against a semi-honest
sender and a polynomial query-bounded receiver.

Proof: [Proof sketch] Analogously to [2], let us first consider the setting of
semi-honest parties. In this case, we may combine the reduction from ROT
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to BEC/BSC with Yao’s garbled circuits [58] as follows. Given a randomized
sender receiver functionality F'(a;r), define a deterministic (two-way) function-
ality F that takes (a,r1) from the sender and ry from the receiver, and outputs
F(a;m @ 1) to the receiver. Using Yao’s protocol to securely evaluate F with
uniformly random choices of r1, 7y, we get a secure reduction of F' to OT where
the receiver’s inputs are random. We may now replace the random choices of the
receiver by leveraging a ROT channel, and then apply the reduction from ROT
to BEC/BSC.

The above compiler makes use of Yao’s garbled circuits, which assume the
existence of one way functions. In the setting of ideal obfuscation, we may obtain
an unconditional result as follows. First, note that for the case of branching
programs, we may use information theoretic garbled circuits [23,34,41]. For the
case of circuits, we use a result of Goyal et al. [32] which implies unconditionally
secure garbled circuits from ideal obfuscation. In more detail, [32] show how to
obtain unconditionally secure computation from hardware tokens. Our setting
requires only a degenerate “single-use” version of the construction of Goyal et al.,
that replaces symmetric encryption with a one-time pad. O

5 OWSC in the Plain Model and Against Malicious
Adversaries

In this section, we address the question of implementing our protocols in the
plain model. We also show how to augment a plain model OWSC protocol to be
secure against active corruption (of the sender, as the receiver is always passive),
using a NIZK proof.

5.1 OWSC in the Plain Model

Recall that an OWSC protocol IT using ideal obfuscation uses oracle access to a
function F (specified as a circuit ). We denote by II[O] the protocol in the plain
model that is obtained by communicating O(F ) instead of providing the oracle.
Here, for the purpose of error-free communication, we use an error correcting
(or erasure correcting, resp.) code to encode O(F) before sending it over BSC
(resp., BEC).

As discussed earlier, given the statistical nature of the functions used in the
protocols TTEES and TIESS., it is conceivable that there exists an obfuscation
scheme O such that the protocols TTEES and TTESS. can be converted to secure
protocols in the plain model by using this obfuscation scheme to replace the
ideal obfuscation scheme. We state this as a conjecture below.?

3 We remark that a more general conjecture about obfuscation of a generalized notion
of “evasive” functions is plausible, and would in turn imply Conjecture 2. As such a
generalization is somewhat tangential to the focus of this work, we do not present
this formalization here.
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Congecture 2. There exists an obfuscation scheme O such that TTEES[O] and
MESC.[O] are OWSC protocols (in the plain model) for ROT, over BEC and
BSC respectively, with inverse-polynomial security against a semi-honest sender
and a computationally bounded receiver.

Interestingly, if any such scheme as conjectured above exists, then an indis-
tinguishability obfuscation (iO) scheme can be used in its place. More formally,
we have the following theorem. Its proof follows standard ideas and is deferred
to the full version.

Theorem 7. Suppose Conjecture 2 holds, with an obfuscation scheme O. Fur-
ther, suppose there is an 10 scheme iO for all polynomial sized circuits. Let
pad(ﬁ’) be a padded version of the circuit F' which is of the same size as O(F)
Then TIEES[iO o pad] and TIEZS.[iO o pad] are OWSC' protocols (in the plain
model) for ROT, over BEC and BSC respectively, with inverse-polynomial secu-
rity against a semi-honest sender and a computationally bounded receiver.

5.2 Security Against Malicious Sender

In this section, we argue that BEC and BSC are (each) complete even against
malicious adversaries in the plain model, assuming Conjecture 2. The key obser-
vation here is that UC-secure OWSC protocols for NIZK exist over BEC as well
as over BSC, as shown by Garg et al. [25, Lemma 3]. We show that such a NIZK
can be used to turn the ROT protocols TTEEG[O] and TTESS[O] to be secure
against malicious senders. We then appeal to another result of Garg et al. [25]
which shows that for general (possibly randomized) functionalities, the ROT
channel is complete.

To obtain security against malicious senders, we need to ensure that the
receiver’s output is of the form (ag, L) with probability % and (L, a;) other-
wise (except for a small inverse polynomial error). The strings (ag, a;) may be
probabilistic, but should be extracted by a simulator. For this, we show that it
is enough for the sender to additionally provide a NIZK proof of the fact that
the program communicated is indeed an obfuscation O(F) of a valid function F
as specified by the protocol. Recall that in the original protocol, the receiver is
supposed to feed the message it received over the channel (BEC or BSC) to the
obfuscated program and output whatever the program outputs. In the modified
ROT protocol, if the verification of the NIZK proof fails, or if the program out-
puts an error, then the receiver outputs (a, L) or (L, a) (for some fixed a) with
probability % each.

We briefly sketch why this modification yields a OWSC for ROT that is secure
against a malicious sender (we defer further details to the full version [3]). If the
NIZK proof fails or if the program outputs an error, the protocol corresponds
to an ideal ROT execution in which the sender sends (a,a) as its input. We
need to analyze the behavior of the protocol when this does not happen. Note
that the program F contains a string « that the sender is supposed to send over
the channel, but a malicious sender may send a different string «’. If ' differs
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from x in a lot of positions, then with all but negligible probability the program
outputs an error, captured by the above case. On the other hand, if &’ agrees
with @ in most places, then conditioned on the program not outputting an error,
it can be shown that the output continues to be of the form (ag, L) or (L,a)
with almost equal probabilities, as in the original analysis. A formal analysis of
this modification is provided in the full version of this work [3].

It remains to argue that BEC and BSC are complete, even in the plain model,
assuming Conjecture 2. Recall that in Sect. 4.2, we argued that BEC and BSC are
complete for OWSC assuming ideal obfuscation, by composing OWSC protocols
over ROT for general sender-receiver functionalities with OWSC protocols over
BEC/BSC for ROT using ideal obfuscation. The argument for the plain model
remains the same, except that we now use the ROT protocols in the plain model.
Using standard garbled circuits based on one way functions in the compiler
described by Theorem 6, we obtain:

Theorem 8 (Completeness of BEC/BSC against malicious adversary).

Suppose Conjecture 2 holds and one-way functions exist. Then BEC and BSC
are (each) complete for OWSC with inverse-polynomial security against a mali-
cious sender and a computationally bounded receiver.
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Abstract. This paper closes the question of the possibility of two-round
MPC protocols achieving different security guarantees with and without
the availability of broadcast in any given round. Cohen et al. [CGZ20]
study this question in the dishonest majority setting; we complete the
picture by studying the honest majority setting.

In the honest majority setting, given broadcast in both rounds, it
is known that the strongest guarantee—guaranteed output delivery—is
achievable [GLS15]. We show that, given broadcast in the first round
only, guaranteed output delivery is still achievable. Given broadcast in
the second round only, we give a new construction that achieves iden-
tifiable abort, and we show that fairness—and thus guaranteed output
delivery—are not achievable in this setting. Finally, if only peer-to-peer
channels are available, we show that the weakest guarantee—selective
abort—is the only one achievable for corruption thresholds ¢t > 1 and for
t =1 and n = 3. On the other hand, it is already known that selective
abort can be achieved in these cases. In the remaining cases, i.e., t = 1
and n > 4, it is known [IKP10,IKKP15] that guaranteed output delivery
(and thus all weaker guarantees) are possible.

1 Introduction

In this paper we advance the study of round-optimal secure computation, focus-
ing on secure computation with active corruptions, an honest majority, and some
setup (e.g. a public key infrastructure). It is known that in this setting, secure
computation is possible in two rounds (whereas one round is clearly not enough).
However, most known two-round protocols in the honest majority setting either
only achieve the weakest security guarantee (selective abort) [ACGJ19], or make
use of a broadcast channel in both rounds [GLS15]. Since broadcast channels are
expensive, it is important to try to minimize their use (while achieving strong
security guarantees).

The only step in this direction is the protocol of Cohen et al. [CGZ20].
They achieve secure computation with unanimous abort for a dishonest majority
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(and thus also for an honest majority) with broadcast in the second round only,
and they also show that unanimous abort is the strongest achievable guarantee
in this setting. Finally, Cohen et al. showed that, given a dishonest majority,
selective abort is the strongest achievable security guarantee with broadcast in
the first round only.

We make a study analogous to the work of Cohen et al. but in the honest
majority setting. Like Cohen et al., we consider all four broadcast patterns:
broadcast in both rounds, broadcast in the second round only, broadcast in the
first round only, and no broadcast at all. Gordon et al. [GLS15] showed that,
given broadcast in both rounds, the strongest guarantee—guaranteed output
delivery—is achievable. For each of the other broadcast patterns, we ask:

What is the strongest achievable security guarantee in this broadcast pat-
tern, given an honest majority?

We consider the following security guarantees:

Selective Abort (SA): A secure computation protocol achieves selective
abort if every honest party either obtains the output, or aborts.
Unanimous Abort (UA): A secure computation protocol achieves unani-
mous abort if either all honest parties obtain the output, or they all (unani-
mously) abort.

Identifiable Abort (IA): A secure computation protocol achieves identifi-
able abort if either all honest parties obtain the output, or they all (unani-
mously) abort, identifying one corrupt party.

Fairness (FAIR): A secure computation protocol achieves fairness if either
all parties obtain the output, or none of them do. In particular, an adversary
cannot learn the output if the honest parties do not also learn it.
Guaranteed Output Delivery (GOD): A secure computation protocol
achieves guaranteed output delivery if all honest parties will learn the compu-
tation output no matter what the adversary does.

Some of these guarantees are strictly stronger than others. In particular, guar-
anteed output delivery implies identifiable abort (since an abort never happens),
which implies unanimous abort, which in turn implies selective abort. Similarly,
guaranteed output delivery implies fairness, which implies unanimous abort.
Fairness and identifiable abort are incomparable. In a fair protocol, in case of
an abort, both corrupt and honest parties get less information: corrupt parties
are guaranteed to learn nothing if the protocol aborts, but honest parties may
not learn anything about corrupt parties’ identities. On the other hand, in a
protocol with identifiable abort, in case of an abort corrupt parties may learn
the output, but honest parties will identify at least one corrupt party.

In Table 1, we summarize our results. Like the impossibility results of Cohen
et al., all of our impossibility results hold given arbitrary setup (such as a com-
mon reference string, a public key infrastructure, and correlated randomness).
Our feasibility results use only a PKI and CRS. Below we give a very brief
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Table 1. Feasibility and impossibility for two-round MPC in the honest majority
setting with different guarantees and broadcast patterns. The R1 column describes
whether broadcast is available in round 1; the R2 column describes whether broad-
cast is available in round 2. Arrows indicate implication: the possibility of a stronger
security guarantee implies the possibility of weaker ones in the same setting, and the
impossibility of a weaker guarantee implies the impossibility of stronger ones in the
same setting.

Broadcast selective unanimous identifiable . guaranteed
Pattern t abort abort abort fairness output
delivery
R1 R2
BC | BC v v v [GLS15] v —— /[GLS15]
P2P | BC Vo vV ¢——— (Thm 9) | X (Thm 2) for —— X for t > 1
t>1
1<t< g
X (Cor 3) for - X for n < 3t
n < 3t
BC | P2P v /e— v/ (Thm 7) /ée—— / (Thm 7)
P2P | P2P v [ACGJ19] | X (Cor 1) for — X for t > 1 X (Thm 2) for — X for t > 1
t>1 t>1
X (Cor 3) for - X for n < 3t
n < 3t
t=1,n=3|v [ACGJ19] X (Cor 2) ——— X X (Cor 2) —— X
P2P | P2P || 4 =1, n=14 v v v ([IKKP15]) v/ —— / ([IKKP15])
t=1,n>5 v v v (IKP10]) v/« v ([IKP10))

description of our results. It turns out that going from dishonest to honest major-
ity allows for stronger security guarantees in some, but not all cases. In Sect. 1.1
we give a longer overview of our results, and the techniques we use.

No Broadcast In this setting, we show that if the adversary controls two or
more parties (t > 1), or if t = 1,n = 3, selective abort is the best achievable
guarantee. This completes the picture, since (1) selective abort can indeed be
achieved by the results of Ananth et al. [ACGJ19], and (2) for t = 1,n > 4,
guaranteed output delivery can be achieved by the results of Ishai et al.
[IKP10], IKKP15].

Broadcast in the First Round Only In this setting, we show that guar-
anteed output delivery—the strongest guarantee—can be achieved.
Broadcast in the Second Round Only In this setting, we show that
fairness is impossible if ¢ > n/3, or if ¢t > 1 (again, in the remaining case of
t =1,n > 4, guaranteed output delivery can be achieved). If fairness is ruled
out, the best one can hope for is identifiable abort, and we show this can
indeed be achieved given an honest majority.

To achieve identifiable abort with broadcast in the second round only, we
introduce a new tool called one-or-nothing secret sharing, which we believe to be
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of independent interest. One-or-nothing secret sharing is a flavor of secret sharing
that allows a dealer to share a vector of secrets. Once the shares are distributed
to the receivers, they can vote on which secret to reconstruct by publishing
“ballots”. Each receiver either votes for the secret she wishes to reconstruct,
or abstains (by publishing a special equivocation ballot). If only one secret is
voted for, and gets sufficiently many votes, the ballots enable reconstruction
of that secret. On the other hand, if receivers disagree about which secret to
reconstruct, nothing is revealed. This could have applications to voting scenarios
where, though some voters may remain undecided, unanimity among the decided
voters is important.

1.1 Technical Overview

In this section we summarize our results given each of the broadcast patterns in
more detail.

No Broadcast (P2P-P2P). Without a broadcast channel, we show that only
the weakest guarantee—selective abort—is achievable. Ananth et al. [ACGJ19]
give a protocol for secure computation with selective abort in this setting; we
prove that secure computation with unanimous abort is not achievable, implying
impossibility for all stronger guarantees. More specifically, we get the following
two results:

Result 1 (Cor 1: P2P-P2P, UA, t > 1) Secure computation of general func-
tions with unanimous abort cannot be achieved in two rounds of peer-to-peer
communication for corruption threshold t > 1.

Result 2 (Cor 2: P2P-P2P, UA, t = 1, n = 3) Secure computation of general
functions with unanimous abort cannot be achieved in two rounds of peer-to-peer
commaunication for corruption threshold t = 1 when n = 3'.

We prove the first result by focusing on broadcast, where only one party (the
dealer) has an input bit, and all parties should output that bit. We show that
computing broadcast with unanimous abort in two peer-to-peer rounds with
t > 1 is impossible?.

The only case not covered by these two results is ¢ = 1 and n > 4. However
for this case, it follows from results by Ishai et al. [IKP10] and [IKKP15] that the
strongest guarantee—guaranteed output delivery—is achievable in two rounds
of peer-to-peer communication.

For completeness, we note that the case of n = 2 and t = 1 is special. We are
no longer in an honest majority setting, so fairness is known to be impossible
[Cle86]. The other three guarantees are possible and equivalent.

! Patra and Ravi [PR18] give a similar result in the absence of a PKI and correlated
randomness; our impossibility result is stronger, as it holds even given arbitrary
correlated randomness.

2 Tt is well known that computing broadcast with guaranteed output delivery requires
t rounds, but this of course does not imply the same for broadcast with unanimous
abort.
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Broadcast in the First Round Only (BC-P2P). We show that any first-round
extractable two broadcast-round protocol (where the simulator demonstrating
security of the protocol can extract parties’ inputs from their first-round mes-
sages and it is efficient to check whether a given second-round message is correct)
can be run over one broadcast round followed by one peer-to-peer round with-
out any loss in security. Since the protocol of Gordon et al. [GLS15] satisfies
these properties, we conclude that guaranteed output delivery is achievable in
the honest majority setting as long as broadcast is available in the first round.

Result 3 (Thm 7: BC-P2P, GOD, n > 2t+1) Secure computation of general
functions with guaranteed output delivery is possible in two rounds of communica-
tion, only the first of which is over a broadcast channel, for corruption threshold
t such that n > 2t + 1.

Broadcast in the Second Round Only (P2P-BC). When broadcast is available in
the second round, not the first, it turns out that fairness (and hence guaranteed
output delivery) cannot be achieved. More specifically, we obtain the following
two results:

Result 4 (Cor 3: P2P-BC, FAIR, n < 3t) Secure computation of general
Sfunctions with fairness cannot be achieved in two rounds of communication, only
the second of which is over a broadcast channel, for corruption threshold t such
that n < 3t.

Result 5 (Thm 2: P2P-BC, FAIR, ¢ > 1) Secure computation of general
functions with fairness cannot be achieved in two rounds of communication, only
the second of which is over a broadcast channel, for corruption threshold t > 1.

Both these results are shown using the same basic idea, namely if the protocol
is fair, we construct an attack in which corrupt players send inconsistent messages
in the first round and then use the second round messages to obtain two different
outputs, corresponding to different choices of their own input—which, of course,
violates privacy.

Combining the two results, we see that fairness is unachievable when broad-
cast is only available in the second round (the only case not covered ist = 1,n > 4
where guaranteed output delivery is possible, as discussed above). We therefore
turn to the next-best guarantee, which is identifiable abort; in Sect. 8, we show
how to achieve it for n > 2t.

Result 6 (Thm 9: P2P-BC, ID, n > 2t) Secure computation of general func-
tions with identifiable abort is achievable in two rounds of communication, only
the second of which is over a broadcast channel, for corruption threshold t such
that n > 2t.

To show this result, we use a high-level strategy adopted from Cohen et al.
Namely, we start from any protocol that achieves identifiable abort for honest
majority given two rounds of broadcast, and compile this into a protocol that
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works when the first round is limited to peer-to-peer channels. While Cohen
et al. achieve unanimous abort this way, we aim for the stronger guarantee of
identifiable abort, since we assume honest majority.

To explain our technical contribution, let us follow the approach of Cohen
et al. and see where we get stuck. The idea is to have each party broadcast
a garbled circuit in the second round. This garbled circuit corresponds to the
code they would use to compute their second-round message in the underlying
protocol (given their input and all the first-round messages they receive). In the
first round (over peer-to-peer channels), the parties additively secret share all
the labels for their garbled circuit, and send their first-round message from the
underlying protocol to each of their peers. In the second round (over broadcast),
for each bit of first-round message she receives, each party forwards her share of
the corresponding label in everyone else’s garbled circuit. Cohen et al. used this
approach to achieve unanimous abort for dishonest majority.

However, even assuming honest majority, this will not be sufficient for iden-
tifiable abort. The main issue is that corrupt parties may send inconsistent
messages in the first round. This problem cannot be solved just by requiring
each party to sign their first-round messages, because P; may send an invalid
signature—or nothing at all-—to P;. P; then cannot do what she was supposed
to in the second round; so, all she can do is to complain, but she cannot demon-
strate any proof that P; cheated. All honest parties now agree that either P;
or Pj is corrupt, but there is no way to tell which one. This is not an issue if
we aim for unanimous abort; however, if we aim for identifiable abort, we must
either find out who to blame or compute the correct output anyway, without
any further interaction.

We solve this problem by introducing a new primitive we call one-or-nothing
secret sharing. This special kind secret sharing allows a dealer to share several
values simultaneously. (In our case, the values would be two garbled circuit labels
for a given bit b.) The share recipients can then “vote” on which of the values to
reconstruct; if they aren’t sure (in our case, they wouldn’t be sure if they didn’t
get b in the first round), they are able to “abstain”, which essentially means
casting their vote with the majority. As long as there are no contradictory votes
and a minority of abstain votes, reconstruction of the appropriate value succeeds;
otherwise, the privacy of all values is guaranteed.

We use this primitive to share the labels for the garbled circuits as sketched
above. If all reconstructions succeed, we get the correct output. Otherwise, we
can identify a corrupt player. By requiring parties to sign their first-round mes-
sages, we can ensure that if there are contradicting votes, all parties can agree
that some party P; sent inconsistent messages in the first round. If there is a
majority of abstains, this proves that some particular P; sent an invalid first-
round message to at least one honest party.

1.2 Related Work

The quest for optimal round-complexity for secure computation protocols is a
well-established topic in cryptography. Starting with the first feasibility results
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from almost 35 years ago [Yao86, GMW87, BGWS88,CCD88]| a lot of progress
has been made in improving the round complexity of protocols [GIKRO01,Lin01,
CDO01] IK02,IKP10,IKKP15, GLS15,PR18,ACGJ18,CGZ20]. In this section we
detail the prior work that specifically targets the two-round setting. We divide
the discussion into two: impossibility and feasibility results.

Table 2. Previous impossibility results. Each row in this table describes a setting
where MPC is known to be impossible. “UA” stand for unanimous abort, and “IA” for
identifiable abort.

Result n t Guarantee CRS? PKI? CR? R1 R2
GIKRO2] any ¢ >2 fairness v X X BC + P2P BC + P2P

[

[GLS15] n=3 t=1 fairness v X X BC BC

[PR1S] n=3 t=1 faimess « X X BC+ P2P BC + P2P
[PR1S] n=3 t=1 UA v X X PP P2P
[CGZ20] n=3 t=2 UA v v v BC pP2pP
[CGZ20] n=3 t=2 IA v v v P2p BC

Impossibility Results. Table 2 summarizes the known lower bounds on two-round
secure computation. Gennaro et al. [GIKR02] shed light on the optimal round-
complexity for general MPC protocols achieving fairness without correlated ran-
domness (e.g., PKI). Their model allows for communication over both authenti-
cated point-to-point channels and a broadcast channel. They show that in this
setting, three rounds are necessary for a protocol with at least ¢ > 2 corrupt par-
ties by focusing on the computation of exclusive-or and conjunction functions. In
a slightly different model, where the parties can communicate only over a broad-
cast channel, Gordon et al. [GLS15] show that the existence of a fair two-round
MPC protocol for an honest majority would imply a virtual black-box program
obfuscation scheme, which would contradict the well-known impossibility result
of Barak et al. [BGI+01].

Patra and Ravi [PR18] investigate the three party setting. They show that
three rounds are necessary for generic secure computation achieving unanimous
abort when parties do not have access to a broadcast channel, and that the same
three are necessary for fairness even when parties do have a broadcast channel.
Badrinarayanan et al. [BMMR21] study broadcast-optimal three-round MPC
with guaranteed output delivery given an honest majority and CRS, and show
that use of broadcast in the first two rounds is necessary.

It is well known that in the dishonest majority setting fairness cannot be
achieved for generic computation [Cle86]. Cohen et al. [CGZ20] study the fea-
sibility of two round secure computation with unanimous and identifiable abort
in the dishonest majority setting. Their results show that considering arbitrary
setup (e.g., a PKI) and communication over point-to-point channels, achieving
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unanimous abort in two rounds is not possible even if the parties are addition-
ally allowed to communicate over a broadcast channel only in the first round,
and achieving identifiable abort in two rounds is not possible even if the parties
are additionally allowed to communicate over a broadcast channel only in the
second round.

Table 3. Protocols for secure MPC with two-rounds. “UA” stands for unanimous
abort, “FS-GOD” for guaranteed output delivery against fail-stop adversaries, “SM-
GOD” for guaranteed output delivery against semi-malicious adversaries, and “M-
GOD?” for guaranteed output delivery against malicious adversaries.

Result n t Guarantee PKI? CRS? 1st round 2nd round Assumptions
[[KP1O] n>5t=1 GOD X x  Ppop p2pP PRG
[[KKP15] n=3 t=1 SA X x PP p2pP PRG
[IKKP15] n=4 t=1 GOD X X P2P P2pP injective OWF
[GLS15] any t< 3% M-GOD v v BC + P2P BC + P2P dFHE
[PR18] n=3 t=1 UA X X BC + P2P BC + P2P GC, NICOM, eNICOM, PRG
[ACGJ18] any t< 4 UA X X BC + P2P BC + P2P OWF
[ACGJ18] any t< 5 FS-GOD v X BC + P2P BC + P2P OWF
[ACGJ18] any t¢< % FS-GOD X X BC + P2P BC + P2P OWF, SH-OT
[ACGJ18] any t< % FS-GOD /SM-GOD v X BC BC OWF
[GS18] any t<n UA X v BC BC 2-round OT
[CGZ20] any t<n SA X v P2P P2p 2-round OT
[CGZ20] any t<n UA X v P2p BC 2-round OT
[CGZ20] any t<mn IA X v BC BC 2-round OT

Feasibility Results. Table 3 summarizes known two-round secure computation
constructions. While three rounds are necessary for fair MPC [GIKRO02] for ¢ > 2
(without correlated randomness), Ishai et al. [IKP10] show that it is possible to
build generic two-round MPC with guaranteed output delivery when only a
single party is corrupt (¢t = 1) for n > 5. Later, [IKKP15] showed the same for
n = 4, and that selective abort is also possible for n = 3.

The work of [GLS15] gives a three round generic MPC protocol that guar-
antees output delivery and is secure against a minority of semi-honest fail-stop
adversaries where parties only communicate over point-to-point channels; the
same protocol can be upgraded to be secure against malicious adversaries if the
parties are also allowed to communicate over a broadcast channel. The use of
broadcast channel in the last round can be avoided (and point-to-point channels
can be used instead), as shown by Badrinarayanan et al. [BMMR21]. Moreover,
assuming a PKI, the protocol of [GLS15] can be compressed to only two rounds.

For n = 3 and ¢t = 1, Patra and Ravi [PR18] present a tight upper bound
achieving unanimous abort in the setting with point-to-point channels and a
broadcast channel. The protocol leverages garbled circuits, (equivocal) non-
interactive commitment scheme and a PRG. In the same honest majority setting
but for arbitrary n, Ananth et al. [ACGJ18] build four variants of a two-round
protocol. Two of these variants are in the plain model (without setup), with
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both point-to-point channels and broadcast available in both rounds. The first
achieves security with unanimous abort and relies on one-way functions, and
the second achieves guaranteed output delivery against fail-stop adversaries and
additionally relies on semi-honest oblivious transfer. Their other two protocols
require a PKI; and achieve guaranteed output delivery against fail-stop and
semi-malicious adversaries.

Finally, Cohen et al. [CGZ20] present a complete characterization of the
feasibility landscape of two-round MPC in the dishonest majority setting, for all
broadcast patterns. In particular, they show protocols (without a PKI) for the
cases of point-to-point communication in both rounds, point-to-point in the first
round and broadcast in the second round, and broadcast in both rounds. The
protocols achieve security with selective abort, unanimous abort and identifiable
abort, respectively. All protocols rely on two-round oblivious transfer.

2 Secure Multiparty Computation (MPC) Definitions

2.1 Security Model

We follow the real/ideal world simulation paradigm and we adopt the security
model of Cohen, Garay and Zikas [CGZ20]. As in their work, we state our results
in a stand-alone setting.?

Real-world. An n-party protocol IT = (Py, ..., P,) is an n-tuple of probabilistic
polynomial-time (PPT) interactive Turing machines (ITMs), where each party
P; is initialized with input z; € {0,1}* and random coins r; € {0,1}*. We let A
denote a special PPT ITM that represents the adversary and that is initialized
with input that contains the identities of the corrupt parties, their respective
private inputs, and an auxiliary input. The protocol is executed in rounds (i.e.,
the protocol is synchronous), where each round consists of the send phase and
the receive phase, where parties can respectively send the messages from this
round to other parties and receive messages from other parties. In every round
parties can communicate either over a broadcast channel or a fully connected
point-to-point (P2P) network, where we additionally assume all communication
to be private and ideally authenticated. (Given a PKI and a broadcast channel,
such a fully connected point-to-point network can be instantiated.)

During the execution of the protocol, the corrupt parties receive arbitrary
instructions from the adversary A, while the honest parties faithfully follow the
instructions of the protocol. We consider the adversary A to be rushing, i.e.,
during every round the adversary can see the messages the honest parties sent
before producing messages from corrupt parties.

At the end of the protocol execution, the honest parties produce output,
the corrupt parties produce no output, and the adversary outputs an arbitrary
function of its view. The view of a party during the execution consists of its
input, random coins and the messages it sees during the execution.

3 We note that our security proofs can translate to an appropriate (synchronous)
composable setting with minimal changes.
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Definition 1 (Real-world execution). Let II = (Py,...,P,) be an n-party
protocol and let T C [n], of size at most t, denote the set of indices of the parties
corrupted by A. The joint execution of II under (A,T) in the real world, on input
vector x = (x1,...,%,), auziliary input aux and security parameter X\, denoted
REAL 77, A(aux) (2, A), is defined as the output vector of Py,..., P, and A(aux)
resulting from the protocol interaction.

Ideal-world. We describe ideal world executions with selective abort (sl-abort),
unanimous abort (un-abort), identifiable abort (id-abort), fairness (fairness) and
guaranteed output delivery (god).

Definition 2 (Ideal Computation). Consider type € {sl-abort,un-abort,
id-abort, fairness, god}. Let f : ({0,1}*)™ — ({0,1}*)™ be an n-party function
and let T C [n], of size at most t, be the set of indices of the corrupt parties.

Then, the joint ideal execution of f under (S,T) on input vector x = (x1,...,%n),
auzxiliary input aux to S and security parameter \, denoted IDEAL}yfs(auX) (z, \),

s defined as the output vector of Py, ..., P, and S resulting from the following
ideal process.

1. Parties send inputs to trusted party: An honest party P; sends its input x;
to the trusted party. The simulator S may send to the trusted party arbitrary
inputs for the corrupt parties. Let x} be the value actually sent as the input
of party P;.

2. Trusted party speaks to simulator: The trusted party computes (y1,...,Yn) =

f(zy,...,xl). If there are no corrupt parties or type = god, proceed to step 4.
(a) If type € {sl-abort, un-abort, id-abort}: The trusted party sends {y; }icz to
S

(b) If type = fairness: The trusted party sends ready to S.
8. Simulator S responds to trusted party:

(a) If type = sl-abort: The simulator S can select a set of parties that will
not get the output as J C [n]\Z. (Note that J can be empty, allowing all
parties to obtain the output.) It sends (abort, J) to the trusted party.

(b) If type € {un-abort, fairness}: The simulator can send abort to the trusted
party. If it does, we take J = [n]\Z.

(c) If type = id-abort: If it chooses to abort, the simulator S can select a
corrupt party i* € T who will be blamed, and send (abort,i*) to the
trusted party. If it does, we take J = [n]\Z.

4. Trusted party answers parties:
(a) If the trusted party got abort from the simulator S,
i. It sets the abort message abortmsg, as follows:
— if type € {sl-abort, un-abort, fairness}, we let abortmsg = L.
- if type = id-abort, we let abortmsg = (L, 7*).
it. The trusted party then sends abortmsg to every party P;, j € J, and
y; to every party P;, j € [n]\J.
Note that, if type = god, we will never be in this setting, since S was not
allowed to ask for an abort.
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(b) Otherwise, it sends y to every P;, j € [n].

5. Outputs: Honest parties always output the message received from the trusted
party while the corrupt parties output nothing. The simulator S outputs an
arbitrary function of the initial inputs {x; }icz, the messages received by the
corrupt parties from the trusted party and its auziliary input.

Security Definitions. We now define the security notion for protocols.

Definition 3. Consider type € {sl-abort,un-abort,id-abort, fairness, god}. Let
f:({0,1})™ — ({0,1}*)™ be an n-party function. A protocol II t-securely com-
putes the function f with type security if for every PPT real-world adversary A
there exists a PPT simulator S such that for every T C [n] of size at most t, it
holds that

lle

type
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2.2 Notation

In this paper, we focus on two-round secure computation protocols. Rather than
viewing a protocol IT as an n-tuple of interactive Turing machines, it is conve-
nient to view each Turing machine as a sequence of three algorithms: frst-msg,,
to compute P;’s first messages to its peers; snd-msg;, to compute P;’s second
messages; and output,;, to compute P;’s output. Thus, a protocol II can be
defined as {(frst-msg;, snd-msg;, output;) }ic[n-

The syntax of the algorithms is as follows:

— frst-msg;(w;,r;) — (msgl_,,,...,msg,_, ) produces the first-round messages
of party P; to all parties. Note that a party’s message to itself can be consid-
ered to be its state.

1 1 2 2
— snd-msg;(x;, r;, Msgi_,;,...,msg, ;) — (msg7_,,...,msg;_. ) produces the
second-round messages of party P; to all parties.
1 1 2 2
— output,(z;, i, Msgi_,;, ..., MSg,_,;, MSEI_,,, ..., msg;_,;) — y; produces the

output returned to party P;.

When the first round is over broadcast channels, we consider frst-msg, to
return only one message—msg;. Similarly, when the second round is over broad-
cast channels, we consider snd-msg; to return only msg}.

Throughout our negative results, we omit the randomness r, and instead
focus on deterministic protocols, modeling the randomness implicitly as part of
the algorithm.

3 No Broadcast: Impossibility of Unanimous Abort

For our negative results in the setting where no broadcast is available, we lever-
age related negative results for broadcast (or byzantine agreement). To show that
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guaranteed output delivery is impossible in two rounds of peer-to-peer commu-
nication, we can use the fact that broadcast cannot be realized in two rounds
for ¢t > 1 [FL82,DS83|. To show the impossibility of weaker guarantees such as
unanimous abort in this setting, we prove that a weaker flavor of broadcast,
called (weak) detectable broadcast [FGMv02]—where all parties either learn the
broadcast bit, or unanimously abort—cannot be realized in two rounds either.

We state the definitions of broadcast and detectable broadcast (from Fitzi et
al. [FGMv02]) below.

Definition 4 (Broadcast). A protocol among n parties, where the dealer D =
Py holds an input value x € {0,1} and every other party P;,i € [2,...,n] outputs
a value y; € {0,1}, achieves broadcast if it satisfies the following two conditions:

Validity: If the dealer D is honest then all honest parties P; output y; = .
Consistency: All honest parties output the same value yo = --- =y, = y.

Definition 5 (Detectable Broadcast). A protocol among n parties achieves
detectable broadcast if it satisfies the following three conditions:

Correctness: All honest parties unanimously accept or unanimously reject
the protocol. If all honest parties accept then the protocol achieves broadcast.
Completeness: If all parties are honest then all parties accept.

Fairness: If any honest party rejects the protocol then the adversary gets no
information about the dealer’s input x.

We additionally define weak detectable broadcast.

Definition 6 (Weak Detectable Broadcast). A protocol among n parties
achieves weak detectable broadcast if it satisfies only the correctness and com-
pleteness requirements of detectable broadcast.

An alternative way of viewing broadcast, through the lense of secure com-
putation, is by considering the simple broadcast function fpc(x, L,..., L) =
(L,z,...,2) which takes an input bit x from the dealer D = P;, and out-
puts that bit to all other parties. Broadcast (Definition 4) is exactly equiv-
alent to computing f,. with guaranteed output delivery; detectable broadcast
(Definition 5) is equivalent to computing it with fairness; and weak detectable
broadcast (Definition 6) is equivalent to computing it with unanimous abort.

Theorem 1. Weak detectable broadcast cannot be achieved in two rounds of
peer-to-peer communication for corruption threshold t > 1.

Proof. We prove Thm 1 by contradiction. We let
I = {(frst-msg;, snd-msg;, output;)}ic(1,... n]

be the description of the two-round weak detectable broadcast protocol. We use
the notation we introduce for two-round secure computation in Sect.2.2, and
consider the weak detectable broadcast protocol to be a secure computation
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with unanimous abort of f,.. We let x1 = x denote the bit being broadcast
by the dealer D = Py, and z; = L for i € [2,...,n| be placeholders for other
parties’ inputs. We assume that p = negl is the negligible probability with which
security of IT,q. fails.

Below we consider an execution of IT;q,. and a sequence of scenarios involving
different adversarial strategies with two corruptions (¢ = 2). The dealer D = P;
is corrupt in all of these; at most one of the receiving parties P, ..., P, is corrupt
at a time. We argue that each subsequent strategy clearly requires certain parties
to output certain values, by the definition of weak detectable broadcast. In the
last strategy, we see a contradiction, where some parties must output both 0 and
1. Therefore, Il,4v. could not have been a weak detectable broadcast protocol.
In all of the strategies below, we let msg, ; ,; denote a party F;’s bth-round
message to party P;; we only specify how these messages are generated when
this is done dlshonestly.

Scenario 1: D is corrupt.

Round 1: D behaves honestly using input z = 0.

Round 2: D behaves honestly using input z = 0.
By completeness (which holds since everyone behaved honestly), all honest
parties must accept the protocol. By correctness, the protocol must thus
achieve broadcast. By validity, all honest parties must output 0. Since com-
pleteness, correctness and validity hold with probability at least 1 — u, we can
infer that honest parties must output 0 with probability at least 1 — p
Scenario 2);: D and P, are corrupt.

Round 1: D computes two different sets of messages, using different

inputs z = 0 and x = 1, as follows:

(msgl’(o) . ,msg}ﬁ)}l) — frst-msg,(z =0)
(msg}_()l)7 . msg}ili) — frst-msg, (z = 1)

D sends msg}ig, .. msgl’( ) %o parties Ps, ..., P,. P» behaves honestly.

Round 2: D behaves honestly using input z = 0. P, computes two
different sets of second-round messages, as follows:

, 0

(msg>', ... msg3' ")) — snd-msg,(L, msgy ), msgh ... msgl_,)
2, 2,(1 1,(1

(msgzil)7 cee msgz_(,i) «— snd-msg, (L, msglig, msg%ﬁg, ce msg,ll_g)

P, sends msgg’(l) to P, (pretending, essentially, that D dealt a 1), and
mngL) to other parties P; (pretending that D dealt a 0).
P, ..., P,_1 must accept and output 0 with probability at least 1 — u, since
their views are identical to those in the previous scenario. By correctness, P,
must also accept when other honest parties accept. By consistency, P, must
also output 0. Since correctness or consistency break with probability at most
u, P, outputs 0 with probability at least 1 — 2u.
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Scenario 2y: D is corrupt.
Round 1: D sends msgl’( ) to P», and msg;”, (0) to other parties P;.
Round 2: D continues to represent x = 1 towards P, and x = 0 towards

the others.
P, must accept and output 0 with probability at least 1 — 2u, since its view
is the same as in the previous scenario. By correctness, P, ..., P,_1 must
also accept when P, accepts. By consistency, Ps,...,P,_1 must also out-

put 0. Since correctness or consistency break with probability at most u,
Py, ..., P,_1 output 0 with probability at least 1 — 3pu.

Now, skipping ahead, we generalize, for k € [3,...,n — 1]:

Scenario kj;: D and P are corrupt.
Round 1: D sends msgl( ) to Py, ..., Px_1, and msg}’(o) to the other

—1 —1

parties Pgy1, ..., P,. Py acts honestly.

Round 2: D continues to represent * =1 to Ps,...,Py_1 and = 0 to
Pyiq,...,P,. In the second round Py acts analogously to P, in scenario
25 lee. Pk uses msgl’(o) to compute (msgi’ﬁ?, . msgii?i 1) (which it

1,(1)

—k

to compute msgiﬁ% (which it sends

sends to P,...,P,_1), and msgy’

to Py).
Py, ..., P,_1 must accept and output 0 with probability at least 1—(2(k—1)—
1)p =1—(2k — 3)u, since their views are identical to those in the previous
scenario (namely Scenario (k — 1)g). By correctness, P, must also accept
when other honest parties accept. By consistency, P, must also output 0.
Since correctness or consistency break with probability at most u, P,, outputs
0 with probability at least 1 — (2k —3)p —pu=1—2(k — 1)p.
Scenario kp: D is corrupt. (

1,(0

Round 1: D sends msgl’( ) to Py, ..., Py, and msg; ) to the other parties

—1

Piy1y..., Py

Round 2: D continues to represent z = 1 to Ps,..., P, and x = 0 to

Pk+1a"'7pn~
P,, must accept and output 0 with probability at least 1 — 2(k — 1)u, since
its view is the same as in the previous scenario. By correctness, P, ..., P,_1
must also accept. By consistency, Ps,..., P,_1 must also output 0. Since
correctness or consistency break with probability at most p, Ps,..., P,—1

output 0 with probability at least 1 —2(k — )y —p=1— (2k — 1)p.
We end with Scenarios ny, ng.

Scenario np;: D and P, are corrupt.
Round 1: D behaves honestly using input x = 1. P,, behaves honestly.
Round 2: D behaves honestly using input « = 1. P, pretends D dealt

a 0 towards, e.g., only P,. More precisely, P,, uses msg17( ) to compute

msgni% (which it sends to P), and msgli) to compute (msgn(j%, cey

msgi’(jzb_l) (which it sends to Ps,..., P,_1).
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P, must accept and output 0 with probability at least 1 — (2(n — 1) — 1) =
1 —(2n — 3)pu, since its view is the same as in the previous scenario (namely,
Scenario (n—1)g). By correctness, Ps, ..., P,_1 must also accept. By consis-
tency, Ps, ..., P, must also output 0. This must happen with probability
atleast 1 — (2n —3)u—p=1-2(n—1)pu.
Scenario ng: D is corrupt.

Round 1: D behaves honestly using input z = 1.

Round 2: D behaves honestly using input z = 1.

In Scenario ng, on the one hand, by completeness (which holds as everyone
behaved honestly), all honest parties must accept the protocol; by validity, all
honest parties must output 1. On the other hand, since the view of Ps, ..., P,_1
is the same as their respective views in the previous scenario, they must output
0 with probability at least 1 — 2(n — 1)u, which is overwhelming. This is a
contradiction.

The impossibility of realizing weak detectable broadcast in two rounds for
t > 1 clearly implies that there exists a function (specifically, fyc) which is
impossible to compute with unanimous abort for ¢ > 1 in two rounds of peer-to-
peer communication.

Corollary 1 (P2P-P2P, UA, ¢t > 1). There exist functions f such that no
n-party two-round protocol can compute f with unanimous abort against t > 1
corruptions in two rounds of peer-to-peer communication.

4 Broadcast in the Second Round: Impossibility
of Fairness

In this section, we show that it is not possible to design fair protocols tolerating
t > 1 corruptions when broadcast is available only in the second round.

Theorem 2 (P2P-BC, FAIR, t > 1). There exist functions f such that no n-
party two-round protocol can compute f with fairness against t > 1 corruptions
while making use of broadcast only in the second round (i.e. where the first round
s over point-to-point channels and second round uses both broadcast and point-
to-point channels).

In our proof we use the function fy.¢, which is defined below. Let P; hold as
input a bit X; = b € {0,1}, and every other party P; (i € {2,...,n}) hold as

input a pair of strings, denoted as X; = (29, z}).

fmot (Xl = b7 Xy = (xga (E%), o 7Xn = (xga ‘rqlz)) = (‘rgvxgv s 71’.1771)
Proof. We prove Thm2 by contradiction. Let IT be a protocol that computes
fmor with fairness by using broadcast only in the second round. Consider an
execution of IT where X; denotes the input of P;. We describe a sequence of
scenarios C1,...,Cy,C}. In each scenario, P; and at most one other party is
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corrupt. In all the scenarios, the corrupt parties behave honestly (in particular,
they use their honest inputs), but may drop incoming or outgoing messages.

At a high-level, the sequence of scenarios is designed so that corrupt P; drops
her first-round message to one additional honest party in each scenario. We show
that in each scenario, the adversary manages to obtain the output computed with
respect to X1 = b and (at least some of) the honest parties’ inputs. This leads
to a contradiction, because the final scenario involves no first-round messages
from P; related to its input X; = b, but the adversary is still able to learn x?
corresponding to some honest P;. In particular, this implies that the adversary
is able to re-compute second-round messages from P; with different choices of
input X7, obtaining multiple outputs (on different inputs).

Before describing the scenarios in detail, we define some useful notation. Let
(X1,...,X,) denote a specific combination of inputs that are fixed across all
scenarios. Let u = negl denote the negligible probability with which the security
of IT breaks. We assume, without loss of generality, that the second round of IT
involves broadcast communication alone (as given a PKI and a broadcast chan-
nel, point-to-point communication can be realized by broadcasting encryptions
of the private messages using the public key of the recipient). Let nTs/gZ2 denote
P;’s second-round broadcast message, computed honestly given that P; did not
receive the private message (i.e. the communication over point-to-point channel)
from P; in the first round.

Scenario C: P is corrupt.
Round 1: P; behaves honestly (i.e. follows the instructions of IT).
Round 2: P, behaves honestly.

Since everyone behaved honestly, it follows from correctness that P; obtains the
b b

output y = faot (1, ..., 7n) = (28,2%,...,2%) with probability at least 1 — p.
Scenario C5: P; and P, are corrupt.
Round 1: P, and P> behave honestly.
Round 2: P, remains silent. P, pretends she did not receive a first-round
message from P;. In more detail, P, sends rﬁ\s/gg over broadcast channel.

The adversary’s view subsumes her view in the previous scenario, so the adver-
sary learns the output y = (28,2%,...,22) which allows her to learn z? corre-
sponding to each honest P;. It follows from the security of IT that honest parties
also obtain 2% corresponding to each honest P; (i.e. for i € [n]\{1,2}) with prob-
ability at least 1 — u. If not, then either correctness or fairness is violated, which

contradicts our assumption that I7 is secure.

Scenario C3: P; and P3 are corrupt.
Round 1: P, behaves honestly, but does not send a message to Ps. Ps
behaves honestly.
Round 2: P; remains silent. P3 pretends that she did not receive a first-
round message from P; (i.e. she sends msg; via broadcast).
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The adversary’s view subsumes the view of an honest P; in Scenario Cy (which
includes r?s/gg), so, the adversary learns {Ig}ie[n]\{m} with probability at least
1 — p. By the fairness of IT, when the adversary obtains this information, honest
parties P, Py, Ps, . .., P, must also learn mi-’ corresponding to each honest P; (i.e.
for i € [n]\{1,3}).? Since the fairness of II breaks with probability at most ,
parties Po, Py, Ps, ..., P, learn {xf}ie[n]\{lyg} with probability at least 1 — 2u.

Scenario Cy: P, and P, are corrupt.
Round 1: P; behaves honestly, except that she does not send a message
to P, and P5. P4 behaves honestly.
Round 2: P; remains silent. P, pretends that she did not receive a first-
round message from P; (i.e. she sends msg, via broadcast).

The adversary’s view subsumes the view of an honest Py in Scenario C3 (which
includes rﬁ\s/g?, where j € {2,3}). Therefore, the adversary learns {x?}ie[n]\{m,}
with probability at least 1 — 2u. By the security of IT, honest Py, P5, Ps, ..., P,
must also obtain 2% corresponding to each honest P; (i.e. for i € [n]\{1,4}). Since
the security of II breaks with probability at most u, parties Ps, P3, Ps, ..., Py,
learn {2?};c()\ 1,4} With probability at least 1 — 3.

Generalizing the above for k = 3 to n:

Scenario Cj: P, and P, are corrupt.
Round 1: P; behaves honestly, except that she does not send a message
to P, P3, ..., Py_1. Py behaves honestly.
Round 2: P; remains silent. Py pretends that she did not receive a first-
round message from P; (i.e. she sends rﬁ\s/gi via broadcast).

The adversary’s view subsumes the view of an honest Py, in Scenario C—; (which

includes messages nffs/g?, where j € {2,...,k — 1}). Thus, the adversary learns

{x?}ie[n]\{17k_1} with probability at least 1 — (k — 2)u. By the security of II,

honest parties should obtain z? corresponding to each honest P; (i.e. for i €

[n]\{1,k}). Since the security of IT breaks with probability at most p, honest

parties learn the values 2% with probability at least 1—(k—2)u—pu = 1—(k—1)pu.
Finally, we describe the last scenario:

Scenario C}: P, and P, are corrupt.
Round 1: P; remains silent. P,, behaves honestly.
Round 2: P; and P,, remain silent.

The adversary’s view subsumes her view in Scenario C,, (which includes messages
rﬁ?é?, where j € {1,...,n — 1}). Thus, in Scenario C};, the adversary is able to
learn {xg}ie[n]\{l,n—l} with probability at least 1 — (n—1)u. This leads us to the

4 Note that we conclude that the honest parties learn x5, which the adversary may,
for some reason, not have learned. This is because in the ideal functionality, output
is considered as a single unit of information; fairness requires that if the adversary
learns any output it could not have obtained solely from its own inputs, then the
honest parties must learn the entire output.
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final contradiction: C}; does not involve any message from P; related to the input
X1 = b, but the adversary was able to obtain {xi—’}ie[n]\{lm_l}. This implies that
the adversary can compute {x?l}ie[n]\{l)n_l} with respect to any input X; = b’
of her choice. This “residual attack” breaks the privacy property of the protocol,
as it allows the adversary to learn both input strings of an honest P;. (which is
not allowed as per the ideal realization of fyet).

Lastly, we note that the above proof requires that the function computed
is such that each party receives the output. This is because the inference in
Scenario Cy, (k € [n]) relies on the adversary obtaining output on behalf of Pj,.

5 Completing the Picture: Impossibility Results
for n < 3t

In the previous two sections, we showed the impossibility of unanimous abort
when no broadcast is available, and the impossibility of fairness when broadcast
is only available in the second round. However, both of those impossibility results
only hold for ¢ > 1. In this section, using different techniques, we extend those
results to the case when ¢ = 1 and n = 3. In our impossibility results in this
section, we use a property which we call last message resiliency.

Definition 7 (Last Message Resiliency). A protocol is t-last message
resiliency if, in an honest execution, any protocol participant P; can compute
its output without using t of the messages it received in the last round.

More formally, consider a protocol II =  {(frst-msg,,snd-msg,,
output;)}ic,....n]- The protocol is t-last message resilient if, for each i €
[1,...,n] and each S C {1,...,n}\{i} such that |S| < t, the output func-
tion output, returns the correct output even without second round messages
from parties P;,i € S. That is, for all security parameters X\, for all sets
S C{1,...,n}\{i} such that |S| <t, for all inputs xq,...,Zn,

w2 w2
Pr (outPUti (l'i, msg%ﬁi, AR msg}L*)i7 MSg1_is- -+ msgn—m) )) — negl()\)

1 1 2 2
7é Outputi(xiﬂ MSgy_is -+, MSEy ;s MSEY_55 .-, MSEy, 5
over the randomness used in the protocol, where, for j € [1,...,n],
1 1
(msgj _.1,...,msg;_,) — frst-msg;(z;),
2 2 1 1
(msgj_q,...,msgj_,) < snd-msg; (z;, msg;_, .. -, msg,_.;),

and

~ 2 _ msg?—)iv Zf] g S?
msg,_.;, = :
1L otherwise.
Theorem 3. Any protocol IT which achieves secure computation with unani-
mous abort with corruption threshold t and whose last round can be executed
over peer-to-peer channels must be t-last message resilient.
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Proof. We prove this by contradiction. Assume II achieves unanimous abort,
and is not t-resilient. Then, by definition, there exist inputs z1,...,z,, an ¢ €
[1,...,n] and a subset S C {1,...,n}\{¢} (such that |S| < t) where, with non-
negligible probability,

1 1 ~ 2 ~ 2
output,(z;, msgi_,,, ..., Msg,_;, MSg]_,;, ..., msg, ;)
1 1 2 2
# output,(x;, msgi_,;,...,Msg,_,;, MSgi_;,...,Msg;_,;)

(where the messages are produced in the way described in Definition 7).

The adversary can use this by corrupting P;, j € S; it will behave honestly,
except in the last round, where P}, j € S will not send messages to P;. (Note that
the ability to send last round messages to some parties but not others relies on
the fact that the last round is over peer-to-peer channels.) With non-negligible
probability, P; will receive an incorrect output (e.g. an abort). However, this
cannot occur in a protocol with unanimous abort; all other honest parties must
accept the protocol and produce the correct output (since their views are the
same as in an entirely honest execution), so P; must as well.

Theorem 4. Any protocol II which achieves secure computation with fairness
with corruption threshold t must be t-last message resilient.

Proof. We prove this by contradiction. Assume II achieves fairness, and is not
t-resilient. Then, by definition, there exist inputs z1,...,zp, an ¢ € [1,...,n]
and a subset S C {1,...,n}\{i} (such that |S| < t) where, with non-negligible
probability,

1 1 ~ 2 ~ 2
outputi(a:i, MSgy_,;5---,MSG, ., MSET_;\..., msgn_}i)
1 1 2 2
# output,(x;, msg;_,;, ..., MSg,_,;, MSgI_;, ..., msg,_,,).

(where the messages are produced in the way described in Definition 7).

The adversary can use this by corrupting P;, j € S. As in the previous
proof, it will behave honestly, except in the last round, where P;,j € S will not
send messages to P;. With non-negligible probability, P; will receive an incorrect
output (e.g. an abort), while the rushing adversary will learn the output, since
it will have all of the messages it would have gotten in a fully honest execution
of the protocol. This violates fairness.’?

Theorem 5. There exists a function f such that any protocol Il securely real-
izing f with corruption threshold t such that n < 3t and whose first round can
be executed over peer-to-peer channels cannot be t-last message resilient.

Proof. Consider the function fy described in the proof of Thm 2, where party

P, provides as input a choice bit X; = b € {0,1} and every other party P;

provides as input a pair of strings i.e. X; = (29, x}).

5 Note that while P; does not learn the output, other honest parties might. How-
ever, even one honest party not receiving the output is a violation of fairness if the
adversary learns the output.
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Consider an adversary corrupting P;. The adversary should clearly be unable
to recompute the function with multiple inputs, e.g., with respect to both X; =0
and X; = 1 (as this will allow it to learn both the input strings of the honest
parties which is in contrast to an ideal execution, where it can learn exactly one
of the input strings).

We now show that, in a t-last message resilient (where n < 3t) two-round
protocol II where the first round is over peer-to-peer channels, P; can always
learn both of those outputs. Consider a corrupt P, and partition the honest
parties into two sets of equal size (assuming for simplicity that the number of
honest parties is even): Sy and ;. Note that [So| = [S1| = 25t < t.

Py uses X7 = 0 to compute its first round messages to Sp; it uses X; =1 to
compute its first round messages to S;. (Note that the ability to send first round
messages based on different inputs relies on the fact that the first round is over
peer-to-peer channels.) All other parties behave honestly. Because the protocol
IT is t-last message resilient, and because S contains t or fewer parties, P; has
enough second round messages excluding those it received from S7 to compute
its output. Note that all second round messages except for those received from
S1 are distributed exactly as in an honest execution with X; = 0; therefore, by
last message resiliency, Py learns (29, 29,...,2%) (as per the definition of fyot).
Similarly, by excluding second round messages it received from Sy, P; learns the
output (z3,z3,...,2L) i.e. the output computed based on X; = 1. This is clearly
a violation of privacy.

Corollary 2 (P2P-P2P, UA, n < 3t). Secure computation of general func-
tions with unanimous abort cannot be achieved in two rounds of peer-to-peer
communication for corruption threshold t such that n < 3t.

This corollary follows directly from Theorems 3 and 5.

Remark 1. Note that for ¢ > 1, Cor 2 is subsumed by Cor 1. However, Cor 2
covers the case of t = 1 and n = 3, closing the question of unanimous abort with
honest majority in two rounds of peer-to-peer communication.

Corollary 3. (P2P-BC, FAIR, n < 3t). Secure computation of general func-
tions with fairness cannot be achieved in two rounds the first of which is over
peer-to-peer channels for corruption threshold t such that n < 3t.

This corollary follows from Theorems 4 and 5.

6 Broadcast in the First Round: Guaranteed Output
Delivery

In this section, we argue that any protocol that achieves guaranteed output
delivery in two rounds of broadcast also achieves guaranteed output delivery
when broadcast is available in the first round only. We first show that if the
protocol achieves guaranteed output delivery with corruption threshold ¢ in two
rounds of broadcast, it achieves the same guarantee with threshold ¢ —1 when the
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second round is over peer-to-peer channels. We next show that if the first-round
messages commit corrupt parties to their inputs, the second round can be run
over peer-to-peer channels with no loss in corruption budget.

Theorem 6. Let Hffd be a two broadcast-round protocol that securely computes
the function f with guaranteed output delivery against an adversary corrupting
t parties. Then Hffd achieves the same guarantee when the second round is run
over peer-to-peer channels but with t — 1 corruptions.

Proof (Sketch). Let ﬁfsd denote the protocol where the second round is run
over peer-to-peer channels but with ¢ — 1 corruptions. Towards a contradiction,
assume fYEg 4 is not secure against (¢t — 1) corruptions; in particular, assume that
there is an adversary A that breaks security.

We first observe that A certainly can’t cause honest parties to abort in fos d
by sending them incorrect things in the second round, since ITg; 4 achieves guar-
anteed output delivery, meaning that honest parties do not abort no matter
what A does. Therefore, all A can hope for is to cause disagreement in ﬁffd.
In particular, A can send different second-round messages to different honest
parties, hoping that honest parties end up with outputs computed on different
corrupt party inputs. However, if A could do that, we could use A to build an
adversary A that breaks the security of ITES d by corrupting one additional hon-
est party, mentally sending different messages to it, and obtaining the output on
two different sets of its own inputs.

Suppose A can make a pair of honest parties in I78%—P; and P;—obtain
different outputs by sending different second-round messages to them. Then, we
construct our adversary A for IT§; 4 as follows. A corrupts the same ¢t — 1 parties
as ./Zl, as well as one additional honest party—P;—who will behave semi-honestly.
A uses the second-round messages sent by Ato P; as her broadcast second-round
messages in 15 d However, A also computes what P;’s output would have been
if she had broadcast the second-round messages sent by A to P;. This allows A
to obtain the output on behalf of P; on two different sets of inputs, breaking the
security of IT8%¢ (and completing the proof).

Theorem 7. Let Hffd be a two broadcast-round protocol that securely computes
the function f with guaranteed output delivery with the additional constraint that
a stmulator can extract inputs from the first-round messages and it is efficient
to check whether a given second-round message is correct. Then Hf?d achieves
the same guarantee when the second round is run over point-to-point channels.

Proof (Sketch). Starting from the protocol H§§d it is possible to define another
protocol Hffsgp that has the following modifications: (1) the second round mes-
sages of Hffd are sent over point-to-point channels and (2) the honest parties
compute their output based on all the first round messages and the subset C' of
second round messages that are generated correctly. (Observe that |C| > n — ¢,

because at least n — ¢ parties are honest.)
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Relying on the GOD security of ITE, it is possible to claim that HESSQP also
achieves GOD. This follows from two important observations. First, since the
input is extracted from the first round of HE:;QP which is over broadcast, the
adversary cannot cause disagreement among the honest parties with respect to

her input (i.e. she cannot send messages based on different inputs to different
honest parties). Second, in HESSQP the honest parties are always able to compute
the output; otherwise, the honest parties in J78¢ would not have been able to
compute an output when A does not send any second round message, which

contradicts GOD security.

Next, we observe that the two broadcast-round protocol of Gordon et al.
[GLS15] has the two properties required by Thm 7. The protocol of Gordon
et al. [GLS15] uses zero knowledge proofs to compile a semi-malicious protocol
into a fully malicious one. The zero knowledge proofs accompanying the first
round messages can be used for input extraction; the zero knowledge proofs
accompanying the second round messages can be used to efficiently determine
which of these second round messages are generated correctly.

7 One-or-Nothing Secret Sharing

In Sect. 8, we will show a protocol that achieves security with identifiable abort
in the honest majority setting in two rounds, only the second of which is over
broadcast. In this section, we introduce an important building block for that
protocol which we call one-or-nothing secret sharing.

We define one-or-nothing secret sharing as a new flavor of secret sharing
wherein the dealer can share a vector of secrets. While traditional secret sharing
schemes are designed for receivers to eventually publish their shares and recover
the entirety of what was shared, one-or-nothing secret sharing is designed for
receivers to eventually recover at most one of the shared values. While recon-
struction usually requires each party to contribute its entire share, in one-or-
nothing secret sharing, each party instead wvotes on the index of the value to
reconstruct by producing a “ballot” based on its secret share. If two parties vote
for different indices, the set of published ballots should reveal nothing about any
of the values. However, some parties are allowed to equivocate—they might be
unsure which index they wish to vote for, so they will support the preference of
the majority. If a majority votes for the same index, and the rest equivocate,
the ballots enable the recovery of the value at that index.

Our secure computation construction in Sect.8 uses one-or-nothing secret
sharing to share labels for garbled circuits. However, we imagine one-or-nothing
secret sharing might be of independent interest, e.g. in voting scenarios where
unanimity among the decided voters is important.

7.1 Definitions

Syntax. The natural syntax for a one-or-nothing secret sharing scheme consists
of a tuple of three algorithms (share, vote, reconstruct).
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share(z(®,..., W) — (s,51,...,s,) is an algorithm that takes  values z(!),
.., and produces the secret shares s1,. .., s,, as well as the public share

s.

vote(s, s;,v) — §; is an algorithm that takes the public share s, a secret share

si, and a vote v, where v € {1,...,l, L} can either be an index of a value, or

it can be L if party 7 is unsure which value it wants to vote for. It outputs a

public ballot ;.

reconstruct(s,i,...,5,) — {z(*), L} is an algorithm that takes the public

share s, all of the ballots 51,...,5,, and outputs either the value 2(*) which

received a majority of votes, or outputs L.

Non-Interactive One-or-Nothing Secret Sharing. We modify this natural syntax
to ensure that each party can vote even if they have not received a secret share.
This is important in case e.g. the dealer is corrupt, and chooses not to distribute
shares properly. We call such a scheme a non-interactive one-or-nothing secret
sharing scheme. A non-interactive one-or-nothing secret sharing scheme consists
of a tuple of four algorithms (setup, share, vote, reconstruct).

setup(1*) — sk is an algorithm that produces a key shared between the
dealer and one of the receivers. (This can be non-interactively derived by
both dealer and receiver by running setup on randomness obtained from e.g.
key exchange.)

share(sky,...,sky,, =W, ,x(l)) — s is an algorithm that takes the n shared
keys ski, ..., sk, and the [ values ("), ... (" and produces a public share
S.

vote(sk;,v) — §; is an algorithm that takes a secret share s; and a vote v,
where v € {1,...,l, L} can either be an index of a value, or it can be L if
party ¢ is unsure which value it wants to vote for. It outputs a public ballot
Si.

reconstruct(s,3i,...,5,) — {z(*), L} is an algorithm that takes the public
share s, all of the ballots 31,...,3n,, and outputs either the value z(*) which
received a majority of votes, or outputs L.

Security. We require three properties of one-or-nothing secret sharing: correct-
ness, privacy (which requires that if fewer than ¢ + 1 parties vote for an index,
the value at that index stays hidden) and contradiction-privacy (which requires
that if two parties vote for different indices, all values stay hidden). Below we
define these formally for non-interactive one-or-nothing secret sharing.

Definition 8 (One-or-Nothing Secret Sharing: Correctness). Infor-
mally, this property requires that when at least n — t parties produce their ballot
using the same v (and the rest produce their ballot with 1), reconstruct returns
). (Whent =12 —1, n—t is a majority.)

More formally, a one-or-nothing secret sharing scheme is correct if for any
security parameter X € N, any vector of secrets (z™), ..., xW), any index v € [I]
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and any subset S C [n],|S| > n —t,

sk; « setup(1*) fori € [n]
s « share(sky,...,sk,,z( ... 1)
Pr |z =z : 5; < vote(sk;,v) forie S > 1 —mnegl(N),
5; « vote(sk;, L) fori € [n]\S

x < reconstruct(s,s1,...,5,)
where the probability is taken over the random coins of the algorithms.

Definition 9 (One-or-Nothing Secret Sharing: Privacy). Informally, this
property requires that when no honest parties produce their ballot using v, then
the adversary learns nothing about =)

More formally, a one-or-nothing secret sharing scheme is private if for any
security parameter A € N, for every PPT adversary A, it holds that

Pr[A wins] < % + negl(A)

in the following experiment:

Adversary A Challenger C
b— {0,1}
ACHL,...,n}(s.t. |A| < t)
> H:={1,...,n}\A
2", 2{" (s.t. |2("] = |2{"])
> () .— I(v)

!
=Y vreqa o
v, {vi # v}ien

sk; < setup(1?) for i € [n]
s < share(sky, ..., sky, M w(l))
3; <« vote(sk;,v;) fori € H

{ski}ien, s, {Si}ien

b’

A wins if b =b

Definition 10 (One-or-Nothing Secret Sharing: Contradiction-
Privacy). Informally, this property requires that if two different parties pro-
duce their ballots using different votes v; # v; such that v; # L and v; # L,
then the adversary should learn nothing at all.

More formally, a one-or-nothing secret sharing scheme is contradiction-
private if for any security parameter A € N, for every PPT adversary A, it
holds that

Pr[A wins] < % + negl(X)

in the following experiment:
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Adversary A Challenger C
b~ {0,1}
AC{l,...,n}(s.t. |A| <)
> H:={1,...,n}\A
28”2 (s:t. 8] = |={")
>z = a:t(;j) forve{1,...,1}
forve {1,...,1}
{vi}ien
>
sk; — setup(1?) for i € [n]
s < share(sky, ..., sky, M w(l))
S; <« vote(sk;,v;) fori € H
{ski}iea, s, {Si}ien
<
b/
>

A wins if b’ =b
and there exists i,j € H
s.t. vg Fvj, v; L and vy # L

7.2 Constructions

A first attempt would be to additively share all the values (), ..., (). How-
ever, this fails because if all of the honest parties compute vote on L (by e.g.
publishing both their additive shares), the adversary will be able to reconstruct
all of the values, violating privacy (Definition 9).

Instead, we instantiate a non-interactive one-or-nothing secret sharing scheme
as follows, using a symmetric encryption scheme SKE = (keygen,enc,dec)
(defined in the full version of this paper [DMR+20]).

Figure 7.1: Non-Interactive One-or-Nothing Secret Sharing

setup(1>‘) — sk: Choose [+ 1 symmetric encryption keys k(l), . ,k(l),k(l)
using SKE.keygen(1*). Let sk = (k™" ... & k().

share(ski,...,skn,,z®, ..., z0) - s
1. Compute (z{”,...,2{") as the additive sharing of z(*) for v € [I].
2. Compute (%(1)1, oo ,mgi)n) as the threshold sharing of xgv) with thresh-

old ¢ for v € [], i € [n].
Parse (kgl)7 ... ,kE”,kEL)) = sk; for i € [n].
Compute c!”) = enc(k'", z")) for v € [1], i € [n].
Compute cﬁ”_Ej = enc(kEL)7 enc(kév),xEQj)) forve[l], i€ [n], j € [n]
6. Output s = ({¢;" Yieral,vem: {6 Vijeinl.ver)-
vote(sk;,v) — S; where v € {1,...,1, L}: Output 5; = (v,kgv)).
reconstruct(s,s1,...,5,) — {z*, L}:
1. Parse ({C,Ev)}ie[n]yve[l], {Cgi))j}i,je[n],ve[l]) = S.
2. Parse (v;,k;) =5; for i € [n].
3. If there does not exist a v € {1,...,1} such that at least (n —t) parties
vote for v and everyone else votes for |, output L.

A
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4. Let v # L denote the only value which received votes; let S C
{1,...,n} be the set of i such that v; = v.
(v)

5. For i € S (so, v; = v), compute z; = dec(k;,c; ).

6. For i ¢ S (so, vi = 1), for each j € S, compute z;—; =
dec:(ki7 dec(k;, CE:)J)) Let x; denote the value reconstructed using the

threshold shares {z;—;} es.
7. If there exists any ¢ such that z; = 1, output L. Else, output x =

> i

Theorem 8. The above construction is a secure non-interactive one-or-nothing
sharing scheme when n > 2t.

We defer the proof of security to the full version of this paper [DMR+20].

8 Broadcast in the Second Round: Identifiable Abort

In this section, we show a protocol achieving secure computation with identifiable
abort in two rounds, with the first round only using peer-to-peer channels, when
t< 3.

One could hope that executing a protocol IT,. that requires two rounds of
broadcast over one round of peer-to-peer channels followed by one round of
broadcast will simply work, just like in the case of one round of broadcast fol-
lowed by one round of peer-to-peer channels (Sect.6). However, this is not the
case. When the first round is over peer-to-peer channels, the danger is that cor-
rupt parties might send inconsistent messages to honest parties in that round.
Allowing honest parties to compute their second-round messages based on incon-
sistent first-round messages might violate security. So, we must somehow guar-
antee that all honest-party second-round messages are based on the same set of
first-round messages.

Our protocol follows the structure of the protocols described by Cohen et al.
[CGZ20]. It is described as a compiler that takes a protocol IT,. which achieves
the desired guarantees given two rounds of broadcast, and achieves those same
guarantees in the broadcast pattern we are interested in, which has broadcast
available in the second round only. In the compiler of Cohen et al., to ensure
that honest parties base their second-round messages on the same view of the
first round, parties garble and broadcast their second-message functions. In more
detail, in the first round the parties secret share all the labels for their garbled
circuit using additive secret sharing, and send their first-round message from the
underlying protocol to each of their peers. In the second round (over broadcast),
each party sends their garbled second-message function, and for each bit of first-
round message she receives, she forwards her share of the corresponding label
in everyone else’s garbled circuit. The labels corresponding to the same set of
first-round messages are reconstructed for each party’s garbled second-message
function, thus guaranteeing consistency.
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We use a similar approach. However, as mentioned in the introduction, there
are other challenges to address when our goal is identifiable (as opposed to
unanimous) abort. In the techniques of Cohen et al., in the second round, for
each bit of every first-round message, every party P; must forward to everyone
else exactly one of a pair of shares of labels which P; should have obtained from
every other party P;. However, since the first round is over peer-to-peer channels,
P; can claim that it didn’t get the shares of labels from P;, and the computation
must still complete (i.e. the correct label needs to be reconstructed), since it is
unclear who to blame—F; or P; 6

An alternative approach might be to use threshold secret sharing instead of
additive secret sharing to share the garbled labels. In order to ensure that honest
parties can either identify a cheater or reconstruct at least one of each pair of
labels, we would need to set our secret sharing threshold to be at most n — ¢.
However, when t = § —1, the adversary only needs one additional honest party’s
share to reconstruct any given label. If she sends different first-round messages to
different honest parties, they will contribute shares of different labels, enabling
the adversary to reconstruct both labels for some input wires. This allows the
adversary to violate honest parties’ privacy.

This is where our non-interactive one-or-nothing secret sharing primitive
comes into play. Parties can use it to secret share the pair of labels for each wire
of their garbled circuit by only broadcasting one value—the public share—in the
second round. By the non-interactive design of the one-or-nothing secret sharing
scheme, parties don’t even need to have seen the public share to contribute to
reconstruction, so no party can claim to be unable to contribute. The privacy
properties of the scheme guarantee that at most one label per wire will be recov-
ered. Moreover, if an honest party is not sure which label share to choose (which
may happen if she did not get a valid first-round message of ITy.), she can still
enable the recovery of the appropriate label (by contributing an equivocation
ballot).

We also have to consider how to identify an adversary that sends different
first-round messages from the underlying protocol to different honest parties. We
thus require each party P; to sign these first-round messages; each other party P;
will only act upon first-round messages from P; with valid signatures, and echo
those messages (and signatures). In this way, we can identify P; as a cheater as
long as she included valid signatures with her inconsistent messages. If she did
not, then either enough parties will complain about P; to implicate her, or the
equivocation ballots will allow the computation to complete anyway.

At a very high level, our protocol can be described as follows. In the first
round, the parties send their first-round message of T, along with a signature to
each of their peers. In the second round (over broadcast), the parties do the fol-
lowing: (1) compute a garbling of their second-message function; (2) secret share
all the labels for their garbled circuit using the one-or-nothing secret sharing; (3)
vote for the share of the corresponding label (based on the first-round message

6 Note that this is not an issue in the protocol with unanimous abort of Cohen et al.
since if the reconstruction of the label fails, the honest parties can simply abort.
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received) in everyone else’s garbled circuit; (4) compute a zero-knowledge proof
to ensure the correctness of the actions taken in the second round; and (5) echo
all the first-round messages of ITy. with the corresponding signatures received
from the other parties in the first round.

Intuitively, our protocol achieves identifiable abort due to the following. First,
if a corrupt party is not caught, she must have sent a first-round message with
a valid signature to at least one honest party; otherwise, n —t > t parties would
claim to have a conflict with her, which implicates her as a cheater (since at
least one honest party is clearly accusing her). Second, she must not have sent
two different first-round messages with valid signatures; otherwise, those two
contradictory signatures would implicate her. Third, the zero-knowledge proof in
the second round ensures that every corrupt party garbles and shares its garbled
circuit labels correctly. We can conclude that, by the correctness property of the
secret sharing scheme, if no party is caught, then one label from each label pair
is reconstructed, and the underlying protocol II,. can be carried out.

We state the theorem below, and defer the formal description of the protocol
to the full version of this paper [DMR+-20].

Theorem 9 (P2P-BC, ID, n > 2t). Let F be an efficiently computable n-
party function and let n > 2t. Let Iy, be a two broadcast-round protocol that
securely computes F with identifiable abort with the additional constraint that the
straight-line simulator can extract inputs from the first-round messages. Assum-
ing a setup with CRS and PKI, and that (garble,eval,simGC) is a secure
garbling scheme, (gen,sign,ver) is a digital signature scheme, (share,vote,
reconstruct,verify) is a one-or-nothing secret sharing scheme, (keygen,
keyagree) is a non-interactive key agreement scheme and (setupZK,prove,
verify, simP, simP.Extract) is a secure mon-interactive zero-knowledge proof
system. Then, there exists a protocol that securely computes F with identifi-
able abort over two rounds, the first of which is over peer-to-peer channels, and
the second of which is over a broadcast channel.

Remark 2. Note that when the underlying protocol I1. is instantiated using the
protocols of Gordon et al. or Cohen et al. [GLS15,CGZ20], then our construction
relies only on CRS and PKI (and does not require correlated randomness).
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Abstract. We give constructions of three-round secure multiparty com-
putation (MPC) protocols for general functions that make black-boz use
of a two-round oblivious transfer (OT). For the case of semi-honest adver-
saries, we make use of a two-round, semi-honest secure OT in the plain
model. This resolves the round-complexity of black-box (semi-honest)
MPC protocols from minimal assumptions and answers an open question
of Applebaum et al. (ITCS 2020). For the case of malicious adversaries,
we make use of a two-round maliciously-secure OT in the common ran-
dom/reference string model that satisfies a (mild) variant of adaptive
security for the receiver.

1 Introduction

Secure Multiparty Computation (MPC) is a fundamental cryptographic primi-
tive that allows a set of mutually distrusting parties to compute a joint function
of their private inputs. The security guarantee provided here is that any adver-
sary corrupting an arbitrary subset of the participating parties cannot learn
anything about the inputs of the honest parties except what is leaked from the
output of the function. The seminal feasibility results of Yao [36] and Goldre-
ich, Micali, and Wigderson [20] showed that any multiparty functionality can be
securely computed.

An important line of research in this area aims to construct efficient MPC
protocols that minimizes the number of rounds of communication. The work
of Beaver, Micali, and Rogaway [5] initiated this research direction and gave
a construction of a constant-round protocol for computing general functions.
On the lower bounds side, it is known that a single-round of communication is
insufficient for securely computing most functionalities and hence, the minimum
number of rounds needed to securely compute general functions is two.

A recent line of work has led to constructions of round-optimal (i.e., two-
round) secure multiparty computation protocols under various cryptographic
assumptions. The work of Garg et al. [14] gave a construction of such a protocol
based on indistinguishability obfuscation [4,15] and subsequent work of Gordon
et al. [21] improved the assumption to a witness encryption scheme [16]. Later,
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Mukherjee and Wichs [31] (and the subsequent works [9,33]) gave a protocol
based on the Learning with Errors assumption [35], Garg and Srinivasan [18]
gave a construction from Bilinear maps and Boyle et al. [7,8] gave a construction
from the Decisional Diffie-Hellman (DDH) assumption. Finally, the works of
Benhamouda and Lin [6] and Garg and Srinivasan [19] gave constructions of
two-round MPC protocols based on the minimal assumption that two-round
oblivious transfer (OT) exists.

Black-Box Round Complexity. A cryptographic protocol P is said to make
black-box use of an underlying primitive @ if P only makes input/output calls
to @ and is agnostic to how @ is implemented. Apart from being a fundamental
theoretical question, black-box protocols tend to be more efficient than their non-
black-box counterparts and are usually viewed as the first step towards practi-
cality. Unfortunately, the constructions of two-round MPC protocols from [6,19]
made non-black-box use of a two-round OT. On the other hand, a recent work of
Applebaum et al. [3] showed that such non-black-box use is inherent by providing
a black-box separation between these two primitives. As far as positive results
are concerned, we do know of 4-round MPC protocols making black-box use of
a two-round OT from [2,17,30]. These works left open the following intriguing
question (which was explicitly mentioned in [3]):

Can we construct a three-round secure multiparty computation protocol for
general functions making black-box use of a two-round OT?

1.1 Our Results

In this work, we give a near complete answer to the above question. For the case
of semi-honest adversaries, we fully resolve the problem and show that two-round
OT is black-box complete for three-round MPC. Specifically,

Informal Theorem 1. Let f be an arbitrary multiparty functionality. There
exists a three-round protocol that securely computes f against semi-honest adver-
saries corrupting an arbitrary subset of the parties. The protocol makes black-box
use of a two-round, semi-honest secure OT and is in the plain model. The com-
putational cost of the protocol grows polynomially with the circuit size of f and
the security parameter.

For the case of malicious adversaries, we give a three-round MPC proto-
col that makes black-box use of two-round, malicious-secure OT that addition-
ally satisfies an equivocality property for the receiver’s message. Specifically,
we require the existence of a special algorithm that can equivocate the first
round receiver OT message to both bits 0 and 1. Such equivocality property is
implied by a two-round OT that is secure against a malicious adversary that
can adaptively corrupt the receiver or, it can be obtained from black-box use of
a dual-mode public-key encryption scheme [34]. The main theorem we show for
malicious adversaries is the following:
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Informal Theorem 2. Let f be an arbitrary multiparty functionality. There
exists a three-round protocol that UC-realizes f (with unanimous abort) against
malicious adversaries corrupting an arbitrary subset of the parties. The protocol
makes black-box use of a two-round, UC-secure OT against malicious adversaries
with equivocal receiver security and is in the common random/reference string
model. The computational cost of the protocol grows polynomially with the circuit
size of f and the security parameter.

We note that the work of Garg and Srinivasan [19] gave a generic transforma-
tion from any two-round, malicious-secure OT to one that additionally satisfies
the equivocal receiver property. Unfortunately, this transformation makes non-
black-box use of a PRG (but makes black-box use of OT). We leave open the
interesting problem of obtaining a black-box transformation, or showing that
such non-black-box use is inherent.

2 Technical Overview

In this section, we give a high-level overview of the main techniques used in the
construction our MPC protocols in the semi-honest and the malicious setting.

Starting Point. Our work builds on the recent results of [6,19] which gave con-
structions of a two-round MPC protocol from two-round OT. The key technical
contribution in these works is the design of a round-collapsing compiler that
takes a larger round protocol for securely computing the required functionality
and squishes the number of rounds to two. Specifically, instead of the parties
interacting with each other as in the larger round protocol, the round-collapsing
compiler gave a mechanism wherein the garbled circuits generated by each party
performs this interaction. The interaction between garbled circuits is enabled by
making use of a two-round OT. Unfortunately, these constructions [6,19] require
non-black-box use of cryptographic primitives.

If we look closely into these constructions, we observe that there is only one
place where non-black-box use of cryptography is needed. Specifically, the gar-
bled circuits which perform the interaction on behalf of the parties use the code
of the underlying larger round protocol. Thus, if the larger round protocol makes
use of cryptographic primitives such as an OT, then the squished protocol makes
non-black-box use of these primitives. On the other hand, if the larger round
protocol only made use of information-theoretic operations, then the resultant
two-round protocol makes black-box use of cryptography. Unfortunately, the neg-
ative results in [29] rules out information-theoretic secure computation protocols
for most functions in the dishonest majority setting. Furthermore, the work of
Applebaum et al. [3] showed that such non-black-box use of OT is inherent if
we want to construct a two-round MPC protocol. However, their work left open
the problem of constructing a black-box three-round MPC protocol based on
two-round OT.

The work of Garg, Ishai, and Srinivasan [17] observed that if the parties
apriori shared random OT correlations, then one can use the results of [26,
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28] to construct an information-theoretic MPC protocol in the OT correlations
model. Now, squishing the number of rounds of such a protocol using the round-
collapsing compiler of [6,19] gives rise to an MPC protocol that makes black-
box use of cryptography. Garg et al. [17] also gave a method of generating such
correlations in a single round using a primitive called non-interactive OT. This
gives rise to the following three-round protocol that makes black-box use of
cryptographic operations: use the first round to generate random OT correlations
relying on non-interactive OT, and use the next two rounds to implement the
round-collapsing compiler of [6,19]. However, a non-interactive OT is a very
strong primitive and it is not known whether this can be constructed generically
from a two-round OT.

Double Selection Functionality. If we abstract out the other details from [17],
then the main ingredient needed to instantiate the black-box version of the
round-collapsing compiler is a three-round protocol for a special multiparty func-
tionality that we call as the double selection. In this functionality, only three of
the n parties, say, P;, P, and P3 have private inputs. The input of P; is given
by two bits (e, r), the input of P, is given by two bits (xg,21) and the input of
P; is given by two strings (yo, y1). The functionality first computes z, @ r and
then computes y,_ g, and delivers (o @7, Yz gr) to every party (and not just to
Py, Py, and Ps.). In other words, the functionality first selects z,, from (zg,z1),
XORs z, with r and then again selects y,_ g, from (yo,y1) and hence, the name
double selection. The work of Garg et al. [17] can be viewed as giving a three-
round protocol for the double selection functionality based on non-interactive
OT. The goal of this work is to give such a protocol based only on black-box use
of a two-round OT.

We first note that if we relax the requirement to say that, only one of
{Py, Py, Ps} gets the output at the end of the third round, then based on prior
work, it is possible to design a black-box three-round protocol for this relaxed
functionality. Indeed, one can express the double selection functionality as a
degree-3 polynomial (over Fg) and use the protocol from [2] to securely evaluate
a degree-3 polynomial. Additionally, it is not too hard to see that if we invoke
such a protocol thrice, then we can enable each one of {P;, Py, P3} to get the
output of the double selection functionality at the end of the third round. How-
ever, the main technical challenge here is to enable each of the n parties and not
just {Py, Py, P3}, to reconstruct the output at the end of the third round. This
requirement is equivalent to constructing a three-party protocol with a special
property called as publicly-decodable transcript [3]. Roughly speaking, this prop-
erty requires the existence of an efficient algorithm that takes the transcript of
the three-party protocol and gives the output of the double selection functional-
ity. For the sake of simplicity, let us restrict ourselves to protocols where the last
round (i.e., the third round) message contains the output in the clear. We now
explain how to construct such a protocol making black-box use of two-round
OT.

Key Idea: “Cascading OT.” Since the last round message of the protocol
contains the output of the functionality in the clear, this implies that there
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exists some party that can compute this output at the end of the second round
and then broadcast this value to all the parties in the third round. This seems
particularly challenging if we restrict ourselves to making black-box use of a
two-round OT. Indeed, this implies that we need a mechanism to compute the
output of a degree-3 function in two rounds using a two-round OT that only
enables degree-2 computation. This apparent mismatch in the degree is the key
challenge that we need to tackle.

This is where our idea of “cascading OT” comes into the picture. Specifically,
in our protocol, one of the parties, say Ps, computes a sender OT message with
respect to a receiver OT message generated by P (that encodes P;’s input).
The sender inputs used by P; to generate this message are in fact, two other
sender OT messages computed by Ps, each with respect to a receiver OT message
generated by P» (that encodes Py’s input). Thus, the “inner” sender OT message
encodes a degree two computation of P, and P3’s inputs and the “outer” sender
OT message encodes a degree-3 computation of Py, P, and Ps’s inputs. This
idea of cascading two sender OT messages by P3 allows P; to compute a degree-
3 function in two rounds and thus, enabling us to solve the degree mismatch
problem. Let us first see how to implement this “cascading OT” idea in the
semi-honest setting and later explain the additional challenges that arise in the
malicious setting.

2.1 Semi-honest Setting

In the first round, P; computes two receiver OT messages: otr that encodes « as
the choice bit and otr’ that encodes 7 as the choice bit. In parallel, P, computes
two receiver OT messages otry that encodes its input xzg and otr; that encodes
x1. Py broadcasts (otr,otr’) and P, broadcasts (otrg, otry) in the first round. In
the second round, Ps chooses a random bit mask and computes two sender OT
messages: otsy with respect to otry using (yo @ mask,y; @ mask) as its sender
inputs and ots; with respect to otr; using again (yo @ mask,y; @ mask) as its
inputs. It then computes the “cascading” sender OT message ots with respect to
otr using (otsg, ots;) as its two sender messages. Additionally, it computes ots’
with respect to otr’ with (mask, y1 @ yo © mask) as its sender messages. It then
sends (ots, ots’) to P; in the second round.

Now, the randomness used in generating otr enables P; to recover ots, from
ots. However, recall that ots, is generated with respect to otr, and the ran-
domness used for generating this message is available with P,. Thus, to enable
P, to decrypt ots,, in the second round, P, computes a sender OT message
with respect to otr with the input and randomness used for computing otry and
otr; as the two sender inputs. Thus, P; can first recover z, and the random-
ness used for generating otr,, from P»’s second round message and then obtain
Yu,, BMask := x4 (y1BYo) DyoPmask from ots,,. P; also computes r(y; Byo)Bmask
from ots’ using the randomness used in generating otr’. It adds these two values
to get Ya,, g~ In the last round, Py broadcasts (2, ®T, Yz, er). This protocol satis-
fies correctness and we can show that this protocol is secure against semi-honest
adversaries by relying on the semi-honest security of the two-round OT.
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From Double Selection to General Functions. To give a protocol for gen-
eral functions, we can use the reduction from general functions to double selection
implicit in the work of [17]. Alternatively, we can use the above idea of cascading
OT to give a three-round secure protocol for a related degree-3 function called as
3MULTPIlus. We can then rely on completeness results from [3,8,17] who showed
a round-preserving black-box reduction from a semi-honest protocol for com-
puting general functions to a secure protocol for 3MULTPlus functionality. In
the main body, we construct a protocol for securely computing 3MULTPlus and
directly rely on the above completeness theorem to give a self-contained version
of our semi-honest MPC result.

2.2 Malicious Setting

In the malicious setting, many other challenges arise and we now explain our
ideas to solve them.

Challenge-1: Attack by a malicious Ps. Let us start with the bare-bones
version of the malicious protocol which is just the semi-honest protocol but with
all the OT invocations replaced with a malicious secure version. On inspection,
we see that a corrupt P3; can completely break the security of this protocol.
Specifically, P; can compute otsy and ots; on two different pairs of inputs, say
using (mask, mask) and (1 & mask, 1 & mask) respectively and compute ots’ on
inputs (mask, mask). Depending on the message received from P; in the last
round, corrupt P3 learns the value a. In order to prevent such an attack, we
need a mechanism to ensure that P3 uses consistent inputs to compute both otsg
and ots;.

One way to ensure consistency of P3’s inputs is to ask Ps to give a zero-
knowledge proof that the inputs used in both these computations are consistent.
However, a naive way of implementing such a zero-knowledge proof makes non-
black-box use of cryptographic primitives which we want to avoid. To give a
“black-box” zero-knowledge proof, we make use of “MPC-in-the-head” approach
of Ishai et al. [25].

Solution: “MPC-in-the-head” Approach. To convey the main idea, we first
explain a simple solution that blows-up the number of rounds and later show
how to squish the number of rounds. P3 imagines m-servers in its head (for some
appropriately chosen parameter m). It then shares yo, y1, mask among these m
servers using a threshold linear secret sharing scheme with a threshold parameter
t. For each i € [m], P; computes {ots}, ots!, ots’, ots’"} using the shares given to
the i-th server. Specifically, the values (yo,y1, mask) in the original computation
are replaced with the shares (yj,%!, mask’) given to the i-th server. Ps sends
{ots’, ots’ Z}Z—e[m] to P, in the second round. P; now chooses a random subset T'
of [m] of size ¢ and asks Pj to reveal the shares and the randomness used in the
computation of (ots’, ots’") for every i € T. P; now checks if these computations
are correct. If they are all correct, then for each i € [m], Py recovers the share
of the output and reconstructs the output. Here, we are crucially relying on the
fact zo(y1 ® yo) D yo ® mask and r(y; D yo) G mask recovered by P; in the bare-
bones protocol are linear functions of yg, y1, mask and the secret sharing scheme
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used by Pj3 supports linear operations on the shares. This ensures that P, can
recover the correct output from the shares. However, this idea seems to blow-up
the number of rounds to 4. To squish the number of rounds to 2, we make use of
a trick from [27], wherein Py, in the first round, uses a t-out-of-m OT to commit
to its set T' and P3 in the second round uses the m sets of inputs, randomness
as its sender inputs.

We can now show that if a malicious Pj is using inconsistent inputs in “many”
server executions then it gets caught with overwhelming probability. On the other
hand, if P is using inconsistent inputs in a “small” number of server executions,
then we can rely on the error correcting properties of the secret sharing scheme
to recover the correct output.1

Need for Equivocal Receiver Security. Here, another technical issue arises
and to solve this, we need the OT to satisfy the equivocality property on the
receiver’s message. To see why this additional property is required, consider the
case where P, is honest but P; is corrupted. Since the adversary is rushing, the
honest P, sends both otrg, otr; before receiving otr, otr’. Recall that in the second
round, P, generates a sender OT message with respect to otr with the input and
the randomness used in otrg and otr; as its OT inputs. Unfortunately, this leads
to the following issue during simulation. We cannot know the value of x,, unless
we receive otr from the corrupt P;. This value is obtained only after we send
both otrg, otr;. However, since x, and the randomness used in generating otr,
are needed to compute the sender OT message from P, we need to generate
otr, in a way that it correctly encodes z,. To solve this issue, we rely on the
equivocality property of the receiver’s message. Specifically, since the first round
OT message of the receiver can be equivocated to both bits 0 and 1, we use the
equivocal simulator to generate randomness that is consistent with the encoding
of z,. We then use this randomness to generate the second round OT message.
As mentioned earlier, this property is satisfied by any two-round OT that is
secure against adversaries that can adaptively corrupt the receiver, or it can be
obtained from a dual-mode public-key encryption scheme [34].

Challenge-2: Attack by Malicious P,. In the previous step, we prevented
a malicious P35 from breaking the security of the protocol. However, we observe
that a malicious P, can still break the security of the protocol by mounting an
input dependent abort. Specifically, a corrupt P, can generate the second round
OT message with respect to otr such that only one of its two sender inputs
contains the correct randomness used in generating (otrg, otry). It sets the other
sender input to be some junk value. If the input « of P; corresponds to the
position that contains the junk value, then P; aborts at the end of the second
round. This enables P, to learn the value a. The first natural idea to prevent
this attack is to use a zero-knowledge proof to show that P, is using the correct
inputs in generating the sender OT message. However, unlike the previous step,

! Here, we need to additionally ensure that malicious Ps is generating the shares
correctly. Hence, we make use of a pairwise verifiable secret sharing based on bivariate
polynomials and do additional checks on the shares to ensure that the sharing is done
correctly.
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the relation that we want to prove (or equivalently, the functionality computed
by the MPC) involves a cryptographic statement and in those cases, the “MPC-
in-the-head” approach leads to non-black-box use of cryptographic primitives.
Thus, we need a new approach to deal with this issue.

Solution: Using an OT-Combiner. We first observe that if the input a of
P, was uniformly random, then the probability that a corrupt P, can guess «
to force Py to abort is 1/2. For k = Q(\) (where X is the security parameter),
consider invoking the above protocol s times on independently chosen random
Py inputs (aq,...,a,). Then, the probability that corrupt P can guess more
than A of these inputs is negligible. Given this observation, consider the following
two-party functionality:

1. The input of P; is given by two bits («,r) and the input of P; is given by
two other bits (zg,x1).

2. P; and P; also share k = Q(\) random OT correlations with P; acting as the
receiver and P, acting as the sender. Additionally, a corrupt P, might learn
A of these receiver correlations. We call these as “leaky” OT correlations.

3. At the end of the protocol, we want both P; and P» to learn (z, @ r).

A statistically secure protocol for the above functionality is obtained by
first implementing the information-theoretic OT combiner protocol from [12]
to extract “pure” OT correlations from the above “leaky” OT correlations and
then use the information-theoretic two-party protocols [24,26,28] in the OT cor-
relations model to securely compute z, @ r. Unfortunately, this protocol does
not run in two rounds. To squish the number of rounds, we apply the round
collapsing compiler of [6,19] to this larger round protocol and use the protocol
from the first step (the one that suffers from input dependent abort) to set up
the leaky OT correlations. Since the above protocol is statistical, the squished
protocol only makes black-box use of cryptographic operations. Additionally, to
enable the party P to output y, -, we use the following observation about the
compiler given in [19]: even if a party is not participating in the protocol, the
garbled circuit generated by the party can listen to the protocol transcript and
thus, learn the output. This observation allows the garbled circuit generated by
Pj5 to listen to the protocol between P; and P> and obtain x, ¢ r. This garbled
circuit can then output y,_g,. This allows us to obtain a three-round black-box
protocol for the double selection functionality that does not suffer from input
dependent abort.

From Double Selection to General Functions. To give a protocol for gen-
eral functions, we use the techniques in [17] to show that double selection is
black-box complete for designing three-round secure protocols against malicious
adversaries. Specifically, we apply the round-collapsing compiler to statistically
secure protocols in the OT correlations model [26,28] and use the above protocol
to implement the double selection functionality. This gives rise to a three-round
MPC protocol that makes black-box use of a two-round, malicious-secure OT
with equivocal receiver security.
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3 Preliminaries

We recall some standard cryptographic definitions in this section. Let A denote
the security parameter. We give the standard definition for negligible functions,
computational indistinguishability and the UC framework [11] in the full version.

3.1 Oblivious Transfer

In this paper, we consider a 1-out-of-2 OT, similar to [1,10,13,22,32,34] where
one party, the sender, has input composed of two strings (s, s1) and the input
of the second party, the receiver, is a bit 8. The receiver should learn sg and
nothing regarding s;_g, while the sender should gain no information about f.

Semi-honest Secure Two-Round OT. A two-round semi-honest OT protocol
(S, R) is defined by three probabilistic algorithms (OT;,0T2,0Tj3) as follows.
The receiver runs the algorithm OT; with the security parameter 1%, and a bit
3 € 40,1} as input and the random tape set to w and obtains otr. The receiver
then sends otr to the sender, who obtains ots by evaluating OTs(otr, (sg, $1))
(with a uniform random tape), where so,s; € {0,1}* are the sender’s input
messages. The sender then sends ots to the receiver who obtains sg by evaluating
0T (ots, (8, w)).

— Correctness. For every choice bit 8 € {0,1} and the random tape w of the
receiver, and any input messages sy and s; of the sender we require that,
if otr := OT1(1*, B;w), ots « OTa(otr, (so, 1)), then OT3(ots, (3,w)) = s
with probability 1.

— Receiver’s security. We require that, {otr : w «— {0,1}* otr :=
OT1(1*,0;w)} = {otr : w « {0,1}*,0tr := OT;(1*, 1;w)}.

— Sender’s security. We require that for any choice of 8 € {0,1} and any
strings Ko, K1, Lo, L1 € {0,1}* with Ly = L; = Kg, we have that, {3,w «
{0,1}*, 0T (1%, otr, Ko, K1)} ~ {B,w « {0,1}*,0T4(1*, otr, Lo, L1)} where
otr := OT{(1*, B;w).

Remark 1. We note that we can relax the correctness requirement to have a
negligible probability of error. For the sake of simplicity of exposition, we stick
to protocols having perfect correctness.

Maliciously Secure Two-Round OT with Equivocal Receiver Security.
We consider the stronger notion of oblivious transfer with security against mali-
cious adversaries in the common random/reference string model. In addition
to the standard security against malicious receivers, we need this protocol to
satisfy a special property called equivocal receiver security introduced in [19].
Informally, this property says that the first round message of the receiver can
be equivocated to both choice bits 0 and 1. In terms of syntax, we supplement
the syntax of semi-honest OT with an algorithm Kot that takes the security
parameter 1" as input and outputs the common random/reference string crs.
Also, the three algorithms OT;,0Ty and OT3 additionally take crs as input.
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Furthermore, instead of using the entire random tape of OT; algorithm as input
to OT3, we let the OT; algorithm to output some secret information which is
then used by OTs.

— Correctness. For every f € {0,1} and any input messages so and s; of
the sender, we require that, if crs « Ko1(1%), (otr, ) < OTy(crs, 3), ots «
OTg(crs, otr, (sg,s1)), then OTgs(crs, ots, (5, t)) = sg with probability 1.

— Equivocal Receiver’s security. We require the existence of a PPT simu-
lator Simp = (Simg, Sim%) such that for any sequence of (81, ..., (3,) where
each f3; € {0,1} and n = poly(}\), we have:

{(ers, {(otr', s ) bicin) ¢ (crs,td) — Simp(1%), {(otr', i, i) —
Sim%(cr;td)}ie[n]} ~ {(crs, {OT1(crs, Bi) Yicpn)) : crs « KOT(l’\)}.

— Checking Validity of Receiver’s Key. There is a deterministic polynomial
time algorithm CheckValid that takes as input crs,otr, 5, 4 and outputs 1 if
and only if there exists some w € {0,1}* such that (otr, i) := OT1(crs, B;w).

— Sender’s security. We require the existence of PPT algorithm Simg =
(Simg, Sim%) such that for any choice of K}, Ki € {0,1}* for i € [n] where
n = poly(A), PPT adversary A and any PPT distinguisher D, we have:

Pr[Expt; = 1] — Pr[Expty = 1]| < negl()).

Expt;: Expt,:
crs «— Kot(1%) (crs, td) Sims(1%)
{otr'}ic[n) «— Alcrs) {otr'}ic[n) < Alcrs)

Bi == Simg(crs, td, otr?) Vi € [n]
L= Kj, and Li := K},
{ots’ « OTz(crs, otr’, (K, K{))}ie[n] {ots’ — OTa(crs,otr, (L§, L)) }
Output D(crs, {ots’}icpn)) Output D(crs, {ots' }ic(n))

i€[n]

Remark 2. We note that a two-round malicious secure OT with equivocal
receiver security implies a standard two-round malicious OT that implements
the ideal OT functionality.

We recall the definitions of garbled circuits, non-interactive secure computa-
tion and some properties of symmetric bivariate polynomial in the full version.

4 3-Round Semi-honest MPC

In this section, we give a three-round, semi-honest secure protocol for computing
arbitrary multiparty functionalities making black-box use of a two-round, semi-
honest secure OT in the plain model. We do this in two steps. In the first step, we
give a three round protocol for securely computing the FapmyLtpius functionality
(described below) against semi-honest adversaries. In the second step, we extend
it for the case of general functions by relying on the results from [3,8,17].
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4.1 First Step: Protocol for FsmuLtpius

Let us first recall the FsmuLtpius functionality. It is a n-party functionality that
takes input from 3 parties and delivers output to every party. Specifically, let us
denote the parties that provide inputs to this functionality by P, P>, and Ps.
The input of P; for i € {1,2,3} is given by (z;,y;) € {0,1} x {0,1}. The output
of the functionality is given by 1 - 2 - 3+ y1 + y2 + y3 (where + and - are over
F3). The main theorem that we show in this subsection is:

Theorem 3. There is an efficient three-round protocol smurtpius (Fig. 1) that
makes black-box use of a two-round, semi-honest OT and securely computes the
F3MULTPlus Junctionality against semi-honest adversaries corrupting an arbitrary
subset of the parties. The protocol is in the plain model.

Building IIsmuyitpius In Fig. 1, we describe a three-round protocol for securely
computing FamuLtpius against semi-honest adversaries making black-box access
to a 2-round semi-honest OT. We give an informal description below.

At a high-level, the degree-3 computation is achieved by cascading OT mes-
sages i.e., generating a sender OT message where the inputs are themselves two
other sender OT messages. Since OT enables degree-2 computation, cascading
OT enables us to compute the result of a degree-3 computation. The main nov-
elty lies in being able to do this in 2 rounds for OTs that are run in parallel.
The last round is spent on a single broadcast of a value by each party and subse-
quent local accumulation of these broadcasted values to obtain the final result.
We elaborate on this idea below.

In the first round, P;, acting as a receiver, publishes an OT receiver message
otr that encodes its input x;. In parallel, Py, first splits x5 into two additive
shares (22,0, z2,1) and then publishes two OT receiver messages, otrg, otr; where
otr, encodes z2 3. In the second round, Ps splits its input 23 into two additive
shares, x30,x31. It then prepares two OT sender messages with respect to the
receiver messages otrg, otr; where the sender inputs used in both these messages
are given by (x3,0,231). Let these OT messages be denoted by otsg,ots;. The
crux of our construction is then to use otsg, ots; as the sender inputs in response
to P;’s receiver message otr. With this sender message, P, can retrieve ots,,,
but in order to decode ots,,, it needs the receiver’s input and randomness used
for ots,,, which are held by P». Responding to P;’s receiver message otr, P
computes a sender OT message with input ((x2,0,w20), (z2,1,ws2,1)). Using this
message, Py can retrieve 25 ,, and the corresponding randomness while z2 1_,,
and the matching randomness are hidden. Deducing from the OT correctness,
we conclude that P at the end of the second round can compute T35 ., which
can be written as a4, (€30 + 31) + T30 = (21 - T2 + T20) - T3 + T30, since
T9.4y = T1(T2,0+%2,1)+22,0. To cancel out the extra multiplicative term x - 3
in the expression, another OT instance is needed between Ps, P3, where P5 enacts
a receiver with input 3 and P, enacts a sender with input x99, %2,0,1 which
are an additive secret sharing of x5 ¢. Once all the OTs conclude in the first two
rounds, each of P, P, and P; accumulates their appropriate local data (which
includes their other input y;) and this can be shown to be an additive secret
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sharing of the output. In the final round, each party broadcasts this value and
this enables every party to compute the final result via plain addition. Lastly,
each of these three parties distributes shares of 0 amongst P, P», P5 to be added
to their local sum before broadcast. This step is required for simulation in the
case where there exists more than one honest party in the set Py, Ps, Ps.

—[ Protocol H3MULTP|US}

Inputs: P; for ¢ € [3] inputs (zi, ys).
Output: For each i € [n], P; outputs z1x2x3 + y1 + y2 + y3.
Primitive: A two-round semi-honest secure OT protocol (OT1,0T2,0T3).

Round-1: In the first round,
— Py chooses a random string w «+— {0,1}* and computes otr := OT1(1*, z1; w).

— P, chooses two random strings wo,wi < {0,1}". It chooses random bits
Z2,0,%2,1 — {0,1} subject to xa = w21 + x2,0. It computes otrg :=
OT1(1A,x270;uJ0) and otr; := OT1(1A,x2’1;w1).

— P53 chooses a random string «' <« {0,1}* and computes otry :=
OT. (1%, z3;w).

— Py broadcasts otr, P» broadcasts (otrg,otri) and Ps; broadcasts otrs.

— For every i € [3], P; chooses a random additive secret sharing of 0 given
by (61, 685,65) and sends the share &} to party P; for j € [3] \ {i} via private
channels.®

Round-2: In the second round,

— P, computes ots «— OTz(otr, (z2,0,wo), (T2,1,w1)). It then chooses random
bits x2,0,0, 22,0,1 < {0, 1} subject to z2,0 = x2,0,0+%2,0,1. It computes otss «—
OTQ(Otr371'2,0,07CL‘270,1),

— P5 chooses random bits 3,0, 3,1 < {0, 1} subject to 3 = x3,0+x3,1. For each
b € {0,1}, it first computes ots, < OT2(otry, 3,0, 23,1). It then computes
ots «— OTy(otr, otsp, ots1).

— P, broadcasts (ots, otss) and P3 broadcasts ots.

Round-3: In the last round,

— For each i € [3], P; computes §; = 6; + 67 + 07.

— Ps sets z2 1= T2,0,0 + y2 + J2.

— P3 computes 2,045 := OT3(otss, (z3,w’)) and sets 23 = X2,0,45 +T3,0+y3+03.

— Py computes (22,z,,wsz, ) := OTs(ots, (x1,w)) and otsz, := OTs(ots, (x1,w)).
It then computes 23,2, , = OTs(0tss,, (T2,41,ws)). It then sets 21 :=
1'3,12,1.1 + 1+ 61~

— Py broadcasts z1, P» broadcasts z2 and P3 broadcasts z3.

Output: Every party outputs z1 + 22 + 23.

“ We can simulate a single round of private channel messages in two rounds over
public channels by making use of a two-round OT.

Fig. 1. Protocol IIsmuLteius
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We show the correctness and security in Lemma 1-2.
Lemma 1 (Correctness). Protocol amyitpius correctly computes FsmuLTplus-

Proof. We first observe that x5 ., computed by Ps; in Round-3 is equal to
x3(22,0,0 + ©2,0,1) + X2,0,0 = T3 - T2,0 + T2,0,0. Therefore, z3 = w3 - w20 + 20,0 +
z3,0 + Y3 + 03. We then observe that x5 ., and ots,, computed by P; are equal
to x1 - X2 + 2,0 and OTg(OTl(l)‘,x27m1;wx1),x370,x371) respectively. Therefore,
T34,, computed by P is equal to 225, (T30 + x31) + x3,0 = (T1 - T2 + T20) -
23 + x3,0. This implies that z; = (1 - x2 + 22,0) - T3 + 3,0 + y1 + 01. Finally, we
observe that (01, d2,d3) form an additive secret sharing of 0. Hence,

21+ 20+ 23 = (@1 - 22 + 22,0) - T3 + X3,0 + Y1 + 01)
+ (@2,0,0 + y2 + 62) + (z3 - 2,0 + Z2,0,0 + T30 + Y3 + d3)
=21 T2 T3 +Y1+Y2+Ys

This completes the proof of correctness.

Lemma 2 (Security). Protocol Iamuiteis securely computes FamuLTPlus
against a semi-honest adversary corrupting an arbitrary subset of parties.

We defer the proof to the full version.

4.2 Second Step: Protocol for Arbitrary Functions
We recall the theorem about completeness of FamyLtpius from [3, Theorem 6.4].

Theorem 4 ([3,8,17]). Let f be an n-party functionality. There exists a pro-
tocol Iy for securely computing f against a semi-honest adversary (corrupting
an arbitrary subset of parties), where I1; makes parallel calls to the Famurtpius
functionality and uses no further interaction. The protocol Il can either be: (1)
computationally secure using a black-box PRG, where the complexity of the par-
ties is polynomial in n, the security parameter A\ and the circuit size of f, or
alternatively (2) perfectly secure, where the complexity of the parties is polyno-
mial in n and the branching program size of f.

From Theorem 3 and the UC composition theorem [11], we get the following.

Corollary 1. Let f be an n-party functionality. There is a three-round protocol
that makes black-box use of a two-round, semi-honest secure OT and securely
computes f against a semi-honest adversary corrupting an arbitrary subset of
parties. The complexity of the parties is polynomial in n, the security parameter
A and the circuit size of f.
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5 3-Round Malicious MPC

In this section, we give a construction of a 3-round protocol that computes any
multiparty functionality with UC-security against malicious adversaries. The
protocol makes black-box use of a two-round, malicious-secure OT with equiv-
ocal receiver security. We do this in three steps. In the first step, we define a
special n-party functionality called double selection and give a two-round, black-
box protocol that securely computes this functionality. However, this protocol
satisfies only a weaker notion of security which is security with input dependent
abort. In the second step, we use the protocol from the first step and give a
three-round protocol that securely computes this double selection functionality
with standard security. In the final step, we show how to bootstrap the protocol
from the second step to a black-box, three-round protocol for general functions.

5.1 First Step: Special Functionality with Input Dependent Abort

In this subsection, we define a special n-party functionality f:{selpri in Fig. 2 and
give a black-box, two-round protocol that computes ]:JSeIPri' This functionality
captures input-dependent abort attack that can be launched by a corrupt P
against P;, causing loss of input privacy of P;.

r—[ Functionality ]:dTSeIPri} N

Fls.pn is parameterized by an n-party function dSelPri whose description follows.
dSelPri receives («, r) € {0,1} x {0, 1} from P1, (yo,y1) € {0,1} x {0,1} from P> and
for every 3 < i < m, it receives (2,21) € {0,1}* x {0,1}* from P;. dSelPri delivers
(Yo, {#} @r}3<i<n) to Pi and the other parties do not get any outputs. Let x; be
the input of party P; to dSelPri (note that x; for different parties maybe of different
lengths) and let S be the adversary. The functionality }—dTSelpri proceeds as follows:

1. Each party P; (and S on behalf of P; if P; is corrupted) sends (input,sid, P;, x;)
to the functionality.

2. If P is corrupted then S may send (predicate, sid, EQg) where EQg is the equality
predicate that takes the first component of P;’s input a and outputs 1 iff 5 = «a.

3. Upon receiving the inputs from all parties, evaluate out := dSelPri(z1, ..., x,). If
P, is corrupted, the functionality delivers out to S.

4. If Pp is not corrupted, then on receiving (generateOutput,sid) from S, the ideal
functionality computes pred = EQg(a) (if (predicate, sid, EQg) is received; if such a
message is not received, it sets pred = 0). If pred = 0, it gives (output, sid, Py, out)
to Pp. Else, if pred = 1, it sends (output, sid, P;, abort). (And ignores the message
if inputs from all parties in {Pi,..., P,} have not been received.) On the other
hand, if (abort, sid) is received then, it sends (output, sid, Pi, abort) to Pi.

Fig. 2. Functionality fJSelpri
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We show the following theorem, which implies the subsequent corollary via
the results from [24,26].

Theorem 5. There exists a two-round protocol stelpri (Fig. 4) that UC-realizes

fjselpri in the Fim p)-raoT (Fig. 3) hybrid model making black-box access to a two-
round, malicious-secure OT with equivocal receiver security.

Corollary 2. There exists a two-round protocol stelpri that UC-realizes the

functionality ]:Jselpri making black-box access to a two-round, malicious-secure
OT with equivocal receiver security.

,—[ Functionality F(m,p)-RaOT} )

Let § be an adversary.

— A party P; (and S on behalf of P; if P; is corrupted) sends (receiver, sid, P;).

— Another party P; (and S on behalf of P; if P; is corrupted) sends
(sender, sid, P;, (s1,...,Sm)) to the functionality where s; € {0,1}" for each
j € [m].

— On receiving both these messages, for each j € [m], the functionality indepen-
dently sets s} = s; with probability p and sets s; = L with probability 1 — p.

— On receiving (generateOutput, sid) from S (if P; is corrupted), the functionality
delivers (output,sid, (s1,...,sn,)) to P;.

Fig. 3. Functionality F, p)-raoT

Building HZSeIPri‘ We begin with the description of a protocol that computes a
simplified version of the function dSelPri in the face of a semi-honest adversary,
assuming Pj as the lone provider of a pair zg, z1. This version, in fact, is identical
to the first two rounds of the construction for “double-selection” functionality
implementing “cascaded OT” described in Sect. 2.1.

Now, to make the idea work against a malicious adversary, we inspect the
roles of the various parties and try to see the kind of attack that they can
mount. P;’s role only includes preparing two OT receiver messages and therefore
a corrupt P is taken care by the sender security of the OT against malicious
receivers. Next, a corrupt P, plays the role of two receivers to P3 and one sender
to P;, where the messages and matching randomnesses used for the former role
are fed as input in the latter role. While OT’s sender security takes care, and in
effect, fixes P»’s input through the receiver messages, there is still a scope for P,
to launch a selective failure or input-dependent attack against P, by selectively
choosing only one of the OT sender inputs correctly. This allows it to learn P;’s
input «, by simply observing whether P, aborts or not. But the functionality
f;rSelPri allows this attack, and preventing this attack is taken care in the next
section. This brings us to the last case where P5 can be corrupt.
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P;3 prepares three OT sender messages, wherein the third instance takes the
result of first two instances as input and in addition, the inputs to the first
two instances need to be identical, namely (zo + mask, z; + mask). Tackling a
corrupt Ps clearly requires to step beyond OT receiver security against malicious
senders. Here, we deploy MPC-in-the-head approach [25] for the consistency
check, where P3 prepares states of m virtual parties in its head that jointly hold
a secret sharing of zg, z1, mask. The sharing is pairwise checkable and adheres
to a threshold that dictates its security. A bivariate polynomial based sharing
scheme fits the bill. Next, the i-th virtual party’s state includes the OT sender
messages that are prepared by simply replicating Ps’s computation on the i-th
shares of zg, z1, mask. Now, the goal is to open some number of the states to P; for
checking and we need to ensure that this number (a) is not big enough to violate
Py’s privacy, (b) but is enough to either catch a corrupt Ps or error-correct the
faults. Here, we invoke a 2-party NISC between P; and P, for computing the
Rabin OT functionality F(,, p)-ra0T, Where P3 inputs the m states. F(,, p)-raoT
ensures each state is chosen to be revealed to P; independently with probability
p. Using Chernoff bounds, we can conclude that the probability that more than
the threshold number of states are revealed to P; is negligible. Consequently,
the secrets zg, z1, mask are safe from P, with overwhelming probability. On the
other hand, a corrupt Ps either gets caught with overwhelming probability when
it prepares a “large” number of wrong states and in the case where it ends up
maligning small number of states, we rely on error correction to ensure the
recovery of information. Since the NISC realizing F,, ,)-rsoT makes black-box
use of a two-round OT [24,26], our final construction is black-box, as desired.

[ R ]
Protocol Il g, p,;

Inputs: P; inputs (a,r) € {0,1} x {0,1}, P> inputs (yo,y1) € {0,1} x {0,1}. For
every 3 <i<n, P; inputs (2§, 2}) € {0,1}* x {0,1}*.

Output: P outputs (ya, {2, arb3<i<n)-

Primitives: (a) A malicious-secure two-round OT with equivocal receiver security
(Kot,0T1,0T2,0T3) (see Section 3.1). We use OT7 to denote an algorithm that
takes a crs and g()-bit string (for some polynomial ¢(-)) as input and applies
OT1 to each bit of that string. (b) Functionality F(,, p)-raor Where m = 31 41
and p = \/2m.

Common Random/Reference String Generation: For each ¢ € [n], sample
crs’ « Kot (1%). Set the crs to be (crs', ... crs™).
Round-1: In the first round,
— Py computes (otr, 1) < OTi(crs',a) and (otr,5) « OTi(crs',r). For each
i € [3,n], P1 sends (receiver, i, P1) to the F(,, p)-rsot functionality.
— For each b € {0,1}, P, computes (otry, up) « OT1(crs®, yp).
— For each i € [3,n], P; does the following:
e It chooses mask® < {0,1}* uniformly at random.
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e It chooses three random degree-\ symmetric bivariate polynomials
5§, 81,85 over GF(2)) such that S§(0,0) = =z, Si(0,0) = zi and
5%(0,0) = mask®.
e For each j € [m] and for each vy € [0,2], let f27(z) = S’ (z, ) (where we
associate j with the j-th element in GF(2)).
e For each j € [m] and for each v € [0,2], it computes (otr’’, u%’) =
OTj (crs’, f27 ().
— Py broadcasts (otr,otr), P> broadcasts (otrg,otr1) and for each i € [3,n], P;
broadcasts {otr’7};c(m).ve[0,2] to every party.
Round-2: In the second round,
— P, computes ots < OTz(crs', otr, (yo, to), (y1, 11))-
— For every ¢ € [3,n], P; does the following for each j € [m],
e For each b € {0,1}, it chooses 7,7 « {0,1}* and computes ots,” :=
OTa(ers?, otry, f37(0) + ££7(0), £17(0) + f37 (0); 7).
e Tt chooses random 77 « {0,1}* and computes ots"™! =
OT2(crs', otr, otsé’j,otsi’j;Ti’j). -
e It chooses random 777 « {0,1}* and computes ots™”’
OTz(crs', otr, — f37(0), f17(0) — f37 (0) — f37(0); 7).
e Tt sets the string s = ({£27(2), 157} cp0.2) fotsy? s 7o7 Yoefo,1y, 707, 707).
It then sends (sender,i, P;, (s**,...,5"™)) to the F(m,p)-raoT functionality.
~ P sends ots and for every i € [3,n], P; sends ({ots"’,0ts"” };c(m)) to P1 via
private channels (which can implemented in two rounds over a public-channel
model using a two-round OT).
Output: To compute the output, P1 does the following: For each i € [3,n],
— Tt receives (output, i, (3°1,...,35°™)) as the output from F(m,p)-RaOT -
— Let J; C [m] such that for each j € J;, 55 # L.
— For each j € J;: S S
e It parses 57 as ({f77(z), 15" }rep.21, {0ts,”, 737 Yoe 0.1y, 77, 7).
e For each v € [0,2], it checks if CheckValid(crs*, otry?, (f37(x), uy’)) (see
Sect. 3.1 for CheckValid) outputs 1 and if f27(z) is a degree-\ polynomial.
e For every k € J; \ {j} and 7 € [0,2], it checks if f27 (k) = f2*(j).

e It checks if otsf’i = VOTg(crsvl,‘otr,otsé’jv7 otsi’jA;_Ti’j) and ots/ —
OTz(ers’, otr, — f37(0), £17(0) = f57(0) = 7 (0); 7). -
e It also checks if ots;” := OTa(crs® otry, f57(0) + f37(0), f17(0) +

£37(0); 707) for each b € {0,1}.
e If any of the above checks fail, it aborts.

— It computes (Yo, fta) := OT3(crs', ots, (a, 1)). It then runs CheckValid(crs?,
otra, (Ya, ta)). If the algorithm outputs 1, then it proceeds. Otherwise, it
aborts.

— For each j € [m],

e It computes ots’y? := OTs(crs', ots™?, (a, ).
e It then computes Shi’ := OTs(crs?, otsh?, (Yas fta))-
e It also computes Sh,” := OTs(crs',ots™, (r, ).

— It computes z; as the Reed-Solomon decoding of {ShlygY + Shy” }Yiem), cor-
recting at most A errors.

It outputs (Yo, {2i}ic[3,n)-

Fig. 4. Protocol HgSeIPri
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The following lemma proves Theorem 5. We defer the proof to the full version.

Lemma 3. Let A be an (possibly malicious) adversary corrupting an arbitrary
subset of parties in the protocol stelpri. There exists a simulator Sim such that

for any environment Z, EXEC . ~ EXEC

dselpri»oiM, Z

dSeIPn "A z

5.2 Conforming Protocols and the Round-Collapsing Compiler

The steps 2 and 3 of building a maliciously-secure MPC protocol for a general func-
tion require the usage of a conforming protocol introduced in [19]. In this subsec-
tion, we recall this notion and present a slightly modified version given in [17].
Further, these two steps will build upon the round-collapsing compiler of [19].

Specification of a Conforming Protocol. Consider an n-party deterministic?
MPC protocol ® between parties P, ..., P, with inputs x4, ..., z,, respectively
computing some function f(x1,...,z,). For each i € [n], we let ; € {0,1}™
denote the input of party P;. A conforming protocol ® is defined by functions
pre, post, and computations steps or what we call actions ¢1, - - - 1. The protocol
® proceeds in three stages: pre-processing, computation and output.

— Pre-processing phase: For each i € [n], party P; first samples v; € {0,1}*
(where ¢ is the parameter of the protocol) as the output of a randomized
function pre(1*,4) and sets z; as z; = (z; @ v;[(i — 1)¢/n+ 1,(i — 1)¢/n +
m])[|0¢/"=™ where v;[(i — 1)¢/n + 1, (i — 1)£/n + m] denotes the bits of the
string v; in the positions [(i — 1)¢/n+ 1, (i — 1)¢/n + m]. P; retains v; as the
secret information and broadcasts z; to every other party. We require that
vilk] =0 for all k € [(\{(i — 1)¢/n+1,...,il/n}.3

— Computation phase: For each i € [n], party P; sets st := (21| - - ||z ). Next,
for each ¢t € {1---T} parties proceed as follows:

1. Parse action ¢ as (i, f, g, h) where i € [n] and f, g, h € [{].

2. Party P, computes one NAND gate as st[h] = NAND(st[f] @ v;[f],

st[g] @ vilg ]) @ v;[h] and broadcasts st[h] to every other party.

3. Every party P; for j # i updates st[h] to the bit value received from P;.
We require that for all ¢,¢' € [T] such that ¢ # t/, if ¢ = (-,-,-,h) and
¢v = (+,+,-,h') then h # h’ Also, we denote A; C [T] to be the set of rounds
in which P; sends a bit. Namely, A; = {t € T'| ¢+ = (¢,+,,-)}.

— Output phase: For each i € [n], party P; outputs post(st).

We now recall the following theorem proved in [17,19].

2 Randomized protocols can be handled by including the randomness used by a party
as part of its input.

3 Here, we slightly differ from the formulation used in [17,19]. In their work, pre is
defined to additionally take x; as input and outputs (z;,v;). However, the trans-
formation from any protocol to a conforming protocol given in these works has the
above structure where the last £/n — m bits of z; are 0 and the first m bits of z; is
the XOR of z; and v;[(¢ — 1)¢/n+ 1, (i — 1)¢/n + m].



Three-Round Secure Multiparty Computation 203

Theorem 6 ([17,19]). Any MPC protocol II can be transformed into a con-
forming protocol ® while inheriting the correctness and the security of the orig-
inal protocol. Furthermore, the post function of ® is just a projection function
(i.e., it outputs some bits of st)* and the simulated message z; (for every honest
party) is (r;]|0Y"=™) where r; is a uniformly chosen random string of length m
(independent of other simulated messages).

5.3 Second Step: Special Functionality with Standard Security

In this subsection, we define the n-party version of the double-selection function-
ality Fysel in Fig.5 and give a three-round protocol for securely realizing this
functionality. The main theorem we prove in this subsection is given below.

f-[ Functionality fdseJ N

Fasel is parameterized by an n-party function dSel whose description follows. dSel
receives (a,r) € {0,1} x {0,1} from P; and (yo,y1) € {0,1} x {0,1} from Px. For
every 3 < i < n, dSelPri receives (2,21) € {0,1}* x {0,1}* from P;. dSel delivers
(Yo ® 7, {2}, @r}3<i<n) to every party (and this is where dSelPri differs from dSel).
Let x; be the input of party P; to dSel (note that z; for different parties maybe of
different lengths) and let S be the adversary. Fase proceeds as follows:

1. For each ¢ € [3,n], P (and S on behalf of P; if P; is corrupted) sends
(input, sid, P;, ;) to the functionality.
2. If either of P or P, is honest, then for each ¢ € {1,2}, P; (and S on behalf of P;
if P; is corrupted) sends (input,sid, P;, ;) to the functionality.
. If P, and P, are both corrupted, S sends (Corrupt,sid, 3) where g € {0, 1}.
4. Upon receiving the inputs from all parties, the functionality computes:

w

out (ya @, {Z;Q@T}ie[377l]) If P, or P, is honest.
’ (B, {z5}ie,n) If P, and P, are corrupt.

5. The functionality delivers  (output,sid,out) to S. On receiving
(generateOutput,sid) from S, the functionality delivers (output,sid, P;,out)
to every honest P;. On the other hand, if S sends (abort, sid), then the function-
ality sends (output,sid, P;, abort) to every honest P;. (And ignores the message
if inputs from all parties in {P1,..., P,} have not been received.)

Fig. 5. Functionality Fysel

Theorem 7. There exists a three-round protocol Mysel (Fig. 7) that UC-realizes
the Fysel functionality. Iyse makes black-box use of a two-round malicious-secure
OT with equivocal receiver security in the fjsemri—hybrid model.

4 We note that this property can be generically added to any conforming protocol by
expanding the computation phase to include more actions that compute the output
of the protocol.
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Building Ilyse. The primary challenge in Ilyse, over stelpri, is to keep any
corrupt P;’s behaviour, as an OT sender, in check. We resort to an OT combiner
protocol [12,23], that guarantees generation of a secure OT correlation given a
number of leaky OTs, as formalized by functionality Fy-reakyoT in Fig. 6.

,—[ Functionality ]'—K—LeakyOT} )

Let S be an adversary corrupting at most one among {Pi, P2}.

— A party P (and S on behalf of P if P is corrupted) sends
(receiver, sid, Pi, a1, ..., ().

— Another party P> (and S on behalf of P> if P, is corrupted) sends
(sender, sid, P2, (K, {(sh, s1)}ic[s)) to the functionality where K C [x] is a set
of size at most A and s;, € {0,1} for each 7 € [k] and b € {0,1}.

— On receiving both these messages, the functionality computes out; :=
{(ai, s6,) }iers) and outy := {ai}ick.

— For i € {1,2}, if P; is corrupted, the functionality delivers (output, sid, P;, out;) to
S. On receiving (generateOutput, sid) from S (if either of P; or P, is corrupted),
the functionality delivers (output,sid, P;,out;) to every honest P;. On the other
hand, if S sends (abort, sid), it sends (output, sid, P;, abort) to every honest P;.

\ J

Fig. 6. Functionality Fiy-LeakyoT

In keeping with the goal of publishing a masked version of P;’s selected input
of Py, i.e. yo + r, we slightly stretch the goal of OT combiner from realizing a
secure OT correlation to realizing a simple two-party functionality captured by
FoTplus- FoTplus gets two bits (a, r) from the receiver and two bits (sg, s1) from
the sender and delivers (s, @ r) to both parties. An information-theoretic pro-
tocol for securely realizing Fotpius in the Fi-|cakyoT-hybrid model is guaranteed
from an OT combiner protocol followed by a secure computation protocol in the
OT-hybrid model [24,28].

Theorem 8 ([12,24,28]). Let k = Q(\) and consider the Fi.-LeakyoT functional-
ity described in Fig. 6. There exists a statistically secure protocol that UC-realizes
the Fotpius functionality making a single call to the Fy-LeakyoT functionality.
Furthermore, the inputs to Fe-LeakyoT given by an honest receiver in the above
protocol are uniformly chosen (aq,...,a) and the inputs given by an honest
sender are (2, {(sh, s4) }iep)) where {(sh, 1) }ieps) are uniformly chosen.

While Theorem 8 guarantees a protocol for FoTpius, it may be a multi-round
protocol and it is not clear how Ilgse can use this for its goal to realize Fyse.
Here, we invoke the round-collapsing compiler of [17,19] on a conforming protocol
obtained from the protocol implied by Theorem 8 in F-{eakyoT-hybrid model.
To be specific, Theorem 8 implies the following protocol for realizing FoTplus:

— Call to Fi-LeakyoT functionality. The honest P; samples uniform bits
(a1,...,0x) as input to the functionality. The honest P, samples uniform
bits {(sh, s4)}iepw) and sends (&, {(sf, s1) }ies)) to the functionality.

— Protocol Ilgtpus. Using the output of Fi-reakyor functionality, Py and P
interact with each other using the statistically-secure protocol IloTps (from
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Theorem 8) that realizes the Fotpus functionality. In this protocol, P;’s
input is given by ((a,7), (sh,, 1), ..., (s, ax)) and P’s input is given by
((yo,v1), (8,81, - -+, (s§,s5)) (where (a,r) are the Py’s inputs to the Fotplus
functionality and yg, y1 are Py’s inputs). Without loss of generality, we assume
that the last message from P; to P, contains the output of Fotpius.

Let @ be the conforming protocol obtained as a result of the transformation
given in Theorem 6 to the protocol HoTtpws (as above). We assume w.l.o.g. that
the input of P, in @ is of the form (sfxl, .. .,sgﬁ,al,...,ak,a,r) and that of
Py is ({sp, 51 }ie[s], Y0, ¥1). We further assume w.lo.g. that at the end of the
computation phase of @, st[¢/2] (for each i € {1,2}) contains the output of the
protocol (i.e., v1[¢/2] = v2[¢/2] = 0) and post just outputs this bit (if either
party has not aborted and this information is public from st).

Now to enable Il4se to achieve the larger goal of publishing “doubly-selected”
inputs of Ps,..., P,, all that is needed from Pj, ..., P, is to take part in ® and
listen to the conversation. That is, the garbled circuits generated by P; and
P, will perform the interaction as dictated by the protocol ® while the garbled
circuits generated by all other parties will listen to this interaction. By the
virtue of listening to this interaction, the last garbled circuit of every party in
{Ps,...,P,} will output the labels for st that has (s, @ r) at the position £/2.
Specifically, we introduce another layer of garbled circuits for the parties Ps to
P, that takes st as input, has z{, 2% hardwired and outputs Zit[e /2] if st does
not indicate an abort of P, or P,. W.l.o.g., we can assume that st contains this
information on abort. To tackle a malicious behaviour of P;, we make them
commit to 2§,z via OT receiver messages in the first round and reveal the
opening information via the garbled circuit.

There are two missing blocks now: (a) how to create the correlation of a
Fr-LeakyoT functionality (since ® runs given the output of Fieakyor) and (b)
how to release the labels corresponding to the initial public joint state for every
party’s garbled circuit in 3 rounds. Both are resolved through & calls to Tjselpri
functionality (recall that & is the OT combiner parameter). Ilyse runs & copies of
chirSeIPri with the input of P; in the k-th copy being {au, v1[k]}re[x (Where v is
the private state of P; as per the round-collapsing compiler and a4 is uniformly
chosen), the input of P» being a random pair of bits (s§,s¥) and the inputs
for the rest of parties being equal to a pair of secret keys for a SKE scheme
(looking ahead, these keys will enable release of the first set of labels). These
executions of fJSeIPri lead to P, and P, sharing k-random OT correlations. It is
these k random OT correlations that serve as the input and output of the leaky
OT functionality. Specifically, as argued in the proof, we show that a corrupt P,
cannot guess more than A among (ay, ..., a,) without triggering an abort by an
honest P; with overwhelming probability. In other words, the size of the set K
that a corrupt P» sends to the F-LeakyoT functionality is at most A. This allows
us to use the security of the conforming protocol ® to argue the security of the
round-collapsed protocol.

We now explain how to release the labels corresponding to the initial public
joint state for every party’s garbled circuit in 3 rounds. This is where we use
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the secret keys in the calls to fc]ILSeIPri' Recall that Py gets P;’s secret key corre-
sponding to the bit s¥ & vy[k] from fjselpri at the end of round-2. In round-3,
Py sends this secret key and P; sends a pair of encryptions, encrypting b-th label
under b-th key for b € {0,1}. Putting these two things together, all parties can
recover the label for P;’s circuit corresponding to the bit sf;k @ vy [k]. This way
all the parties obtain the labels for the first set of garbled circuits. This will
trigger evaluation of the bunch of circuits emulating ®.

Lastly, we consider the }jSelPri functionality instantiated with n + 1 parties
with P, additionally playing the role of P, ;. Specifically, the inputs of party
Py includes (yo,y1) as well as (23, 27).

—i Protocol 114se

Inputs: P; inputs (a,r) € {0,1} x {0,1}, P> inputs (yo,y1) € {0,1} x {0,1}. For
every 3 < i < n, P; inputs (z,2}) € {0, 1} x {0, 1}

Output: Every party outputs (ya ® 7, {Zya@T}gglsn)

Primitives and Functionalities: (a) A malicious-secure, two-round OT with
equivocal receiver security (Kot,0T1,0T2,0T3) (see Section 3.1). We use OT}
to denote an algorithm that takes a crs and ¢(\)-bit string (for some polyno-
mial ¢(-)) as input and applies OT; to each bit of that string. (b) Functionality
Flspa- (¢) The conforming protocol ® obtained as a result of the transformation
in Theorem 6 to IloTpius as discussed. (d) Garbling scheme (Garble, Eval) (e) A
symmetric-key Encryption Scheme (Gen, Enc, Dec).

Common Random/Reference String: For each i € [n], sample crs’ « Kot(1%)
and output {crs’};c[,) as the common random/reference string.
Round-1: In the first round,

— Py and P, run pre(1*,1) and pre(1%,2) to get v1 and vo respectively. For each
i € [3,n], P; sets v; = 0.

— P1 chooses k random bits ai,...,a, and P> chooses random pairs of bits
(s&,s%) for each k € [x].

— For each ¢ € [2,n] and for each k € [k], P; chooses two random secret keys

(sky*, skv*) using Gen(1*).

For each k € [k], Pi sends (input,k, Pi, (ak,v1[k])), P2 sends (input, k, P,

(s&,5%)) and for each i € [2,n], P; sends (input, k, P;, (s kék, skiF)) to deelpn
— For each i € [3,n], for each b € {0, 1}, P; computes (otr}, i) « OT7(crs’, 2f).
— For each i € [3,n], P; broadcasts {otr} }yc(0,1} to every other party.

Round-2: In the second round,

— Py sets 22" := (au, ..., qp,,7) and P, sets xa := ({so7 sl}ke[ﬁ Yo, Y1)-

— P and P> rebpectlvely set 22" = (2" D[k + 1, 2k + 2])]|07/27 542 and
29 i= (w2 D v2ll/2 +1,£/2 4 2k + 2])||0’f/2 (@r+2),

— For each 7 € {1,2} and for each ¢ such that ¢+ = (i, f, g, h) (A; is the set of
such values of t), for each a, 8 € {0,1}, P; computes: (otr"-®8 yht0)
OT1(crs’, v;[h] ® NAND (v;[f] EB ! UZ[ 1 B8)).

~ P broadcasts (25", {otr""*F},c, apefo13) and P> broadcasts

(22, {otri’t""’ﬁ}teAz,a’ge{071}) to every other party.
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Round-3: In the final round, each party P; does the following:
- If ¢ = 1, P receives for each k € [k], (output,k,P1, (z1[k],
{Sk;f[k @ul[k]}ie 2,n))) from fJSeIPri where z:[k] = Sl‘ik'a
— P; sets st := 0%||(25"||22).

- If i € [3,n], P computes (61\1261, lab®T+1)  «  Garble(1*, ChkC*[{z{,

1 }oef0,13])- _

— Ifi € {1,2}, P; sets lab"" ™' = {1, L },cpy
— for each t from T down to 1,

1. Parse ¢+ as (i*, f, g, h). _

2. If i = 4* then it computes (where C"' is described in Figure 8)
(C*,lab"t) « Garble(1*, C*![vi, {u""*?} 4.5, L, lab"t ).

3. If ¢ # ¢* then for every a,8 € {0, 1}, it sets ots’ tf
OTg(crsi*,otri*’t’a’ﬁ,Iab’h‘f(fl,lab;’ffl) and computes (C*,lab™")
Garble(1*, C¥t[v;, L, {ots’ P}, 5, lab™**1)).

— Each P; sends ({C"'}ieiry {Iab;’lst 1}kelnt1,0) to every other party and if

i € [3,n], it also sends ChkC . In addition, Pi sends {Iabk oK@ (k) T1 (K]

v1 (K], {skzl Koy [k ]}iep’"]}ke[n] and for each i € [2,n], P; sends {Enc(sky",

Iab;’yo), Enc(ski‘k7 Iabi’}l)}ke[,ﬁ].

Output. Each party P; does the following:
— It sets st[k] = z1[k] @ v1[k] for each k € [k] receiving the value from Pi’s

broadcast.

— For each j € [2,n] and k € [k], it recovers Iabf;’,lst[k] «— Dec(s k:gt[i

Enc(skyy, |ab;1t[k )-
- Letlab” = {{lab}! ot whretels {1ab L bretosn g |-
~ Tor each j € [2,n], let lab” := {|abk’st[k]}ke[4.

— for each t from 1 to T do:
1. Parse ¢+ as (i*, f, g, h).
2. Compute ((o, 3,7), 1, lab
3. Set st[h] := 1.
4. for each j # " do: '
(a) Compute (ofcs, {Iabi’t+l}k€[¢]*\{,b}) := Eval(C??, I;vb]’t).
(b) Recover lab?'™" := OT5(crs’ , ots, (v, 1)).
(c) Set lab”""" := {labl" }cpe.
— For each j € [3,n],

i t41 ~ox o ~—i% ¢
T = Eval(C o lab ).

e Compute (27, p?) := EvaI(ChkC Iabj7T+1)

e Run CheckVahd(crsJ Otrlyy o)y (# 7, 1)),
— If any of runs of the CheckValid algorithm outputs 0 then abort. Otherwise,
output (st[¢/2], {zgt[ém}je[gm]).

@ This message is received in the end of round-2, since stelpri is a 2-round protocol.

Fig. 7. Protocol Ilgse
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1

r-[ Circuit C** and ChkCiJ

Input of C*': st ‘ ‘
Hard-coded Information of C*%: v;, {u"**P}, s, {ots"*F}, s, and lab =
{|abk,0,|abk_’1}k€[g]‘

Code of C*t:
— Let ¢t = (i*7f7g7 h)
— if 1 = ¢ then:

o Compute st[h] := NAND(st[f] © v;[f], st[g] © vi[g]) © vi[h].
o Output ((St[fL St[g}v St[h]), :u‘l’t’St[fLSt[g]v {Iabk,st[k]}k€[€])'
— else: Output (ots® ++=t/1stlo], {labg stjk) Fregqny)-

Input of ChkC’: st

Hard-coded Information of ChkC': {zé,ué}be{o,l}.
Code of ChkC":
— Check from st if P or P» have not aborted. We assume w.l.o.g. that this
information is public from st.
— If no abort occurs, then output Z;:t[é/Q]?HZt[Z/Q]' Otherwise, output L.

Fig. 8. Circuit C** and ChkC®

Lemma 4. Let A be an (possibly malicious) adversary corrupting an arbitrary

subset of parties in the protocol Ilyse). There exists a simulator Sim such that for

. C
any environment Z, EXECg, sim,z ¥ EXECrg, 4,2

We defer the proof of this lemma to the full version.

5.4 Third Step: Bootstrapping from Special to General Functions

In this section, we build a 3-round MPC protocol for any multiparty function f
in the Fyse-hybrid model. The main theorem shown here is the following.

Theorem 9. Let f be a n-party functionality. There exists a protocol 1y (Fig. 9)

that UC-realizes f in three rounds against malicious adversaries corrupting an

arbitrary number of parties. 11y makes black-box use of a two-round, malicious-
secure OT with equivocal receiver security and is in Fyse-hybrid model.
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Building II;. The protocol II; is obtained as a result of applying the
round-collapsing compiler in [17,19] to perfect/statistical protocols in the OT-
correlations model (e.g., [26,28]) which have the following structure.

— Generating OT Correlations. Every pair of parties invoke a certain num-
ber of OT executions on uniformly chosen random inputs.

— Protocol II. The parties augment their inputs with the OT correlations
generated in the previous phase. The parties then use the perfect/statistical
protocol from [26,28] in the OT correlations model to securely compute f.

Let ® be the conforming protocol obtained as a result of the transformation in
Theorem 6 to II. For every i,j € [n] such that i # j, let x be the number of
random OT correlations required between party P; (acting as the receiver) and
P; (acting as the sender) in the protocol ®. The building blocks we use for II;
are the conforming protocol ®, a two-round, malicious-secure OT with equivocal
receiver security, a garbling scheme for circuits and a symmetric key encryption.
Further, we assume without loss of generality, that the first (n — 1) bits of the
augmented input of party P; in & contains the bits obtained from every other
party (acting as sender) in the OT correlations generation phase. Specifically,
the first x bits are the received bits from Py (if ¢ # 1) and the second set of k bits
are the received bits from P (if ¢ # 2) and so on. We denote a function Getlndex
that takes i, j, k as inputs (where i,5 € [n], i # j and k € [k]) and returns an
index ind € [¢] of the state st of the conforming protocol that corresponds to the
received bit in the k-th OT correlation between P; (acting as the receiver) and
P; (acting as the sender). We now present an information description of Ily.

Building on the round-collapsing compiler of [17,19], the main challenge in
II; is in making the first set of labels for the joint state available within 3
rounds. Unlike [17,19], the input to the conforming protocol in our case not
only includes the actual inputs of the parties, but also the OT correlations. The
generation of the latter (to be specific, the output bit of an OT) is completed
only at the end of round-2. As a result, the public state of a party can be made
available to all only in round-3 and the labels for the joint state in round-4.
We overcome this challenge using the double selection Fyse functionality. The
double selection functionality allows the parties to learn the labels corresponding
to masked value of the correlation bits at the end of round-3 allowing them to
trigger the evaluation of garbled circuits at the end of round-3.
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—i Protocol II¢

Inputs: P; for ¢ € [n] inputs ;.

Output: Every party outputs f(z1,...,Zn).

Primitives and Functionalities: (a) A malicious-secure two-round OT with
equivocal receiver security (Kot,O0T1,0T2,0Ts3) (see Section 3.1), (b) Func-
tionality Fysel (c) The conforming protocol ® obtained as a result of the trans-
formation in Theorem 6 to II as discussed (c) Garbling scheme (Garble, Eval) (d)
A symmetric-key Encryption Scheme (Gen, Enc, Dec).

Common Random/Reference String: For each i € [n], sample crs’ «— Kot(1%)
and output {crs'};c(,) as the common random /reference string.
Round-1: In the first round,

— Each P; runs pre(l)‘,i) to get v;.

— For each i,j € [n] and ¢ # j and for each k € [k], the parties invoke an
instance of functionality Fyse as follows:

e D, taking the role of P, sends (input, (4, j, k), P, (o}, r17)) to Fase where

a7 is a uniformly chosen bit and 757 := v;[GetIndex(i, j, k)].

e P;, taking the role of P, sends (mput (4,7, k), P;, (yijo, y;ejl) t0 Fasel where
y,’cjo, yi’fl are uniformly chosen bits.

e For every s € [n], Ps inputs (input, (¢,75, k), Ps, (s Z’dﬂsk,ﬁ’y’fﬁ) to Fasel
where sk,scg ,sk; 7 are sampled using Gen(1%).

Round-2: In the second rou_n_d every P; does the following

= Tt sets o™ = (21, {0, uL 0, i1 bt iy keln)-

— It sets zpart =P Qi — 1)€/n+ (n— Dk + 1,i/n).

— For each ¢ € [n] and for each ¢ such that ¢+ = (4, f,g,h) (A; is the set of
such values of t), for each a, 8 € {0,1}, it computes: (otr®>®# pbtefy
OTi(crs’, v;[h] @ NAND(vl[f] @ a,vilg] ® B))-

— It broadcasts ( part fotrirt }teA B¢ 10, 1})

Round-3: In the final round each party P; does the following:

~ Tt sets st = (0775 |8 | [| 07728,

— It sets lab®T*! . {IabZ T Iabl T Y ke where for each k € [¢] and b €
{0,1}, labp 2t .= 1.

— for each ¢ from T down to 1,

1. Let ¢ as (i*, f,g,h).

2. If ¢+ = 4% then it computes (ai‘t,labi‘t) —  Garble(1*, C%*[uy,
{ut*PY, 5, L, lab™* ) (where C*' is described in Figure 8).

3. If 4 7é i* then for every a,8 € {0,1}, it sets ots’ »*”
OTa(crs,otr! 68 Jabl' ! Jabl H'1) and computes (C"' lab™") «—
Garble(lA,Clt[vl,J_,{ots”a’ﬂ}a,ﬁ,labi’t“]) (where C*' is described in
Figure 8).

— Each P; broadcasts {5’i’t}t€m, and for each j € [n} and k ¢ [(j —
1/n+1,(j — 1)/n + (n — 1)&], P; broadcasts lab®! In addition, P;

k,st[k] "
broadcasts for each j,j’ € [n] such that j # j' and k € [x], (ct}gfof =

o o,
4,3,J i 4,7,J _ 4,7, 2,1
Enc(sk;5 IabGetIndex(] i k00 S’ = Enc(skyh? 1ableyngeni i i1 ))
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Output: Each party P; does the following:
— For each j,j° € [n] such that j # j and for each k € [x], let n :=
Getlndex(4, j, k) and do the following:
1. Receive (output, (4,5, k), P;, (2, {skZij/ seln))) from Fuse functionality.
2. Reset st[n] = z,.

I S i
3. For each s € [n], set lab)" ., < Dec(sky L, ety i)

—~ 1 .
— For every j € [n], let lab’ = {|abi’715t[k]}k€[€]7 where

{Iabi’;t[k]}ke[(j,1)4/,1“,(];1)@/”“,1,1),{] are decrypted as above and the rest
received from P;’s round-3 message.
— for each t from 1 to T do:
1. Parse ¢¢ as (1", f, g, h).
it o, it
2. Compute ((a, 3,7), i, lab - ) := Eval(C" ', lab t).
3. Set st[h] := .
4. for each j # " do:
. ~. ., —~t
(a) Compute (ots, {Iabi’,:r[;]}ke[g]\{h}) := Eval(C??, lab’ ).

(b) Recover Iabi’;j[i] := OT3(crs’ , ots, (v, 1))

Sttt j,t+1
(c) Set lab i= {laby, ik eela-
— Output post(st,v;).

Fig. 9. Protocol 11

Lemma 5. Let A be an (possibly malicious) adversary corrupting an arbitrary
subset of parties in the protocol I1;. There exists a simulator Sim such that for

any environment Z, EXECz, sim z ~ EXECu; 4.z

We give the proof of this lemma in the full version.
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Abstract. We consider the question of minimizing the round complez-
ity of secure multiparty computation (MPC) protocols that make a black-
boz use of simple cryptographic primitives with security against any num-
ber of malicious parties. In the plain model, previous black-box protocols
required a high constant number of rounds (>15). This is far from the
known lower bound of 4 rounds for protocols with black-box simulators.

When allowing random oblivious transfer (OT) correlations, 2-round
protocols making black-box use of a pseudorandom generator were known.
However, such protocols were obtained via a round-collapsing “protocol
garbling” technique that has poor concrete efficiency and makes non-
black-box use of an underlying maliciously secure protocol.

We improve this state of affairs by presenting the following types of
black-box protocols.

— 4-round “pairwise MPC” in the plain model. This round-
optimal protocol enables each ordered pair of parties to compute a
function of both inputs whose output is delivered to the second party.
The protocol makes black-box use of any public-key encryption (PKE)
with pseudorandom public keys. As a special case, we get a black-
box round-optimal realization of secure (copies of ) OT between every
ordered pair of parties.

— 2-round MPC from OT correlations. This round-optimal proto-
col makes a black-box use of any general 2-round MPC protocol sat-
isfying an augmented notion of semi-honest security. In the two-party
case, this yields new kinds of 2-round black-box protocols.

— 5-round MPC in the plain model. This protocol makes a black-
box use of PKE with pseudorandom public keys, and 2-round oblivious
transfer with “semi-malicious” security.

A key technical tool for the first result is a novel combination of split-
state non-malleable codes (Dziembowski, Pietrzak, and Wichs, JACM’18)
with standalone secure two-party protocols to construct non-malleable
two-party protocols. The second result is based on a new round-optimized
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variant of the “IPS compiler” (Ishai, Prabhakaran and Sahai, Crypto’08).
The third result is obtained via a specialized combination of these two tech-
niques.

1 Introduction

Minimizing the round complezity of cryptographic protocols has been a central
theme of research in the past few decades. Much of this research focused on the
question of minimizing the round complexity of protocols for secure multiparty
computation (MPC), both in the general case as well as for special tasks of inter-
est such as zero-knowledge proofs, oblivious transfer (OT), or coin-tossing. This
question is motivated not only by its direct relevance to the latency of protocols
running over real-life networks, but also as an intriguing theoretical challenge
that often inspires new ideas and serves as a test bed for new techniques.

The round complexity of MPC. We consider the standard setting of MPC
with an arbitrary number of malicious parties, namely parties that are corrupted
by a central adversary who may arbitrarily change their behavior. What do we
know about the round complexity of MPC in this setting? Allowing a common
random string (CRS) setup, it was recently shown [13,28] that 2-round MPC pro-
tocols are possible under the (minimal) assumption that 2-round OT exists in the
CRS model. This round complexity is clearly optimal, even in the easier setting
of semi-honest adversaries who send messages as instructed by the protocol. In
the plain model, without any setup, a long line of works [6,9,10,15,19,27,40,54]
has culminated in 4-round protocols that rely on the minimal assumption that
a 4-round OT protocol exists [19]. This round complexity is known to be opti-
mal for protocols that admit a black-box simulator [27,30,52]. All of the above
4-round protocols are of this kind.

Black-box constructions. Another central research theme in cryptography is
obtaining black-box constructions of higher-level primitives from simpler lower-
level primitives. A black-box construction of X from Y, also known as a (fully)
black-box reduction from X to Y [59], specifies an implementation of X that
only has oracle access to the input-output relation of Y, without being given
any explicit representation of Y, e.g., in the form of a Boolean circuit or a Tur-
ing Machine. Moreover, it is required that the security reduction be black-box
in the sense that any adversary Ax “attacking” X can be used as a black-box
to obtain an adversary Ay who obtains a similar advantage in attacking Y.
Originating from the pioneering work of Impagliazzo and Rudich [43], a long
line of works study the landscape of black-box reductions between natural cryp-
tographic primitives. More relevant to our work is the effort to replace known
instances of non-black-box constructions, where X requires access to the code of
Y, by black-box constructions.

In the MPC context, early examples of results along this line include a black-
box construction of constant-round honest-majority MPC protocols from one-
way functions [22] (replacing an earlier non-black-box construction from [12])
and a black-box construction of malicious-secure OT from semi-honest OT [39]
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(replacing a non-black-box construction of [31]). Beyond the theoretical inter-
est in understanding the tightness of the relation between primitives, the goal
of replacing non-black-box constructions by black-box counterparts is strongly
motivated by asymptotic and concrete efficiency. A well-known example in the
context of MPC is the non-black-box OT extension construction of Beaver [11],
which was replaced by a much more efficient black-box construction from [44]
that is commonly used as a basis for fast MPC implementations. We use the
term black-box MPC to refer generically to an MPC protocol obtained via a
black-box construction from simple low-level primitives (such as OT) that can
be easily and efficiently constructed from standard cryptographic assumptions.

Round complexity of black-box MPC. Interestingly, all of the round-
optimal MPC protocols in the standard setting we consider, including those
mentioned above, make non-black-box use of the underlying primitives. In the
case of 2-round MPC protocols in the CRS model, this is known to be inherent
(even for the easier goal of semi-honest security), at least for black-box con-
structions from 2-round OT or any other 2-party protocol [7]. However, no such
impossibility result is known for 4-round MPC protocols in the plain model.

In the two-party case, a 4-round black-box protocol is known for one-sided
functionalities that deliver output to only one of the two parties [24,57]. The most
general protocol of this kind makes a black-box use of any public-key encryption
(PKE) with pseudorandom public keys, which can be easily constructed from
most standard cryptographic assumptions [24]. This implies a similar 5-round
protocol for two-sided functionalities.

In contrast, for a general number of parties, all known constant-round proto-
cols are either complex and inefficient, or resort to idealized models such as the
Random Oracle (RO) model to achieve better efficiency but only heuristic secu-
rity. Despite the significant body of work on the round complexity of black-box
MPC and related primitives in the plain model, the best exact round complex-
ity that follows from existing works [32,49,60] is greater than 15 (see Sect. 1.2).
Recent attempts to minimize round complexity [6,9,10,15,19,27,54] have led to
complex protocols that make heavy non-black-box use of cryptography. This gap
gives rise to the first motivating question for our work.

What is the minimal round complexity of black-box MPC in the plain model?
Must we necessarily resort to idealized models to achieve simplicity and/or
efficiency?

Round complexity of black-box protocol transformations. It turns out
that if “plain model” is relaxed to allow a simple setup in the form of random OT
correlations between each pair of parties, the first part of the above question has
been settled. Concretely, given an OT correlation setup, which can be generated
with good concrete efficiency [14,44], there is a 2-round MPC protocol making a
black-box use of a pseudorandom generator [26]. However, this 2-round protocol
is quite complex and inefficient, as it is obtained by applying a heavily non-
black-box “protocol garbling” transformation [13,28] to an underlying multi-
round (information-theoretic) MPC protocol. This not only hurts asymptotic
and concrete efficiency, but also rules out applying this transformation while
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respecting a black-box use of an underlying primitive. The latter includes a
black-box use of an algebraic structure (e.g., a big finite field), a cryptographic
primitive (e.g., homomorphic encryption or even a random oracle), or an ideal
functionality oracle (e.g., OT or its arithmetic variant OLE). This is similar to
the classical non-black-box protocol transformation from semi-honest MPC to
malicious MPC, due to Goldreich, Micali, and Wigderson [31], which is limited
in the same way.

In contrast, “black-box protocol transformations” from weak MPC proto-
cols to stronger ones, commonly known as “MPC-in-the-head” transformations
[46,49,50], have successfully avoided these limitations. In a nutshell, such trans-
formations obtain a strong MPC protocol for f (say, with malicious security)
by making a black-box use of any weak MPC protocol (say, with semi-honest
security) for a related functionality f’. The relation between f and f’ needs
to be restricted in some way. Typically, f’ is a next-message function of (an
information-theoretic) weak MPC protocol for f.

This black-box protocol transformation paradigm, systematically studied in
[48], has not only given rise to new theoretical feasibility and efficiency results,
but it has also led to practical zero-knowledge proof systems [5,29], digital sig-
natures [16,51], and MPC protocols [41]. The question we ask is whether one
can obtain a similar black-box protocol transformation in the context of 2-round
MPC with OT correlation setup:

Are there useful kinds of “black-box protocol transformations” from 2-round
semi-honest MPC to 2-round malicious MPC with OT correlation setup?

This question is particularly motivated in the two-party case, where there are
many different techniques for efficient 2-round semi-honest protocols that make
black-box use of algebraic or cryptographic primitives.

1.1 Owur Contributions

We make progress on the aforementioned questions by obtaining the following
types of round-efficient black-box protocols.

Black-box 4-Round “Pairwise MPC” in the Plain Model. Our first result
addresses the first question by settling the round complexity of black-box MPC
for a restricted but useful class of functionalities. Concretely, we get a 4-round
black-box protocol for any pairwise MPC functionality that enable each ordered
pair of parties to simultaneously compute a function of their inputs, whose out-
put is delivered to the second party. The protocol makes a black-box use of
any public-key encryption (PKE) with pseudorandom public keys (which can be
instantiated based on CDH, LWE and LPN), similar to the 4-round 2-party OT
protocol of [24].

Informal Theorem 1. Let f be a pairwise MPC functionality. Assume the
existence of a public-key encryption with pseudorandom public keys. There exists
a four round black-box MPC protocol in the plain model that securely implements
f against static corruptions of all-but-one parties.
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The central challenge in the pairwise MPC setting is to develop two-party
protocols that remain secure when executed in parallel. We develop new black-box
protocols for this setting, starting with the case of OT protocols, and generalizing
via the result of [45] to any two-party functionality. To this end, a technical
contribution of our work is a novel combination of split-state non-malleable
codes [18,23] with standalone secure two-party protocols to obtain black-box,
non-malleable two-party protocols.

The resulting pairwise MPC can be used to generate OT correlations in
a preprocessing phase, as required by the 2-round black-box protocol of [26].
This results in a 6-round MPC protocol making black-box use of PKE with
pseudorandom public keys. While this already constitutes a major improvement
over the state of the art, it is still two rounds away from the 4-round lower
bound. Perhaps more importantly, as discussed above, the [26] approach employs
a round-collapsing “protocol garbling” that limits its efficiency and applicability
to protocols that make black-box use of algebraic or cryptographic primitives.
Motivated by both limitations, we would like to replace the protocol garbling
technique by a black-box protocol transformation that takes advantage of OT
correlations.

An “IPS-style Compiler” for 2-round MPC. Our second main contribu-
tion is a new black-box protocol transformation obtained via a round-optimized
variant of the “IPS compiler” [49]. This transformation uses a 2-round honest-
majority MPC protocol from [47,58] to transform in a black-box way any 2-round
MPC protocol with an augmented variant of semi-honest security to obtain a
2-round MPC protocol with malicious security. The transformation relies on
a special form of OT correlations (denoted as watchlist correlations) that can
be generated via the above mentioned pairwise MPC functionality. Specifically,
the watchlist correlations model outputs an n-party correlation between (n — 1)
senders and a single receiver, where each sender S; for i € [n — 1] obtains a
random set of m strings x; 1, ..., Zim, and the receiver obtains a random subset
K C [m] of a fixed size, as well as the values {z; j}icn—1],je[x]- Combined with
our first main result, this yields the same kind of 6-round black-box protocol
obtained via [26], but with the advantage of making a black-box use of an aug-
mented semi-honest protocol (as opposed to a non-black-box use of a malicious
protocol incurred by the protocol garbling technique).

The augmented semi-honest security requirement combines the so-called
semi-malicious security [8], which is satisfied by most natural 2-round semi-
honest protocols, with a form of adaptive security with erasures. The latter is
satisfied by all natural information-theoretic protocols (with standard forms of
setup), as well as by computationally secure protocols with pre-processing. Con-
cretely, we show the protocol from [26] in the OT correlations model and the
protocol from [55] in the OLE correlations model satisfy augmented semi-honest
security and thus, can be used in our compiler.

Informal Theorem 2. Let f be an arbitrary multiparty functionality. Consider
the client-server MPC' protocol from [47] that securely computes f. Let f' be
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the function computed by the servers in this protocol. There exists a black-box
transformation from a two-round MPC protocol for [’ satisfying augmented semi-
honest security to a two-round malicious secure protocol for computing f in the
watchlist correlations model.

Towards concretely efficient 2-sided NISC. An interesting use case for the above
result is the 2-round, secure two-party protocol in which both parties get an
output. This should be contrasted with the standard notion of non-interactive
secure computation (NISC) [45] that applies to one-sided functionalities. Note
that this kind of 2-sided NISC cannot be obtained by simply running two par-
allel instances of standard NISC, since even if we ignore parallel composition
issues, there is no mechanism to enforce consistency between the inputs used in
these instances (unless we rely on zero-knowledge proofs and make non-black-
box use of cryptography). The only alternative black-box approach to 2-sided
NISC over OT correlations we are aware of is via the protocol garbling technique
that garbles the code of a malicious secure protocol and thus, has prohibitive
computational and communication cost. Even in the 1-sided case, existing pro-
tocols from [1,17,42,45,56] are heavily tailored to specific garbling techniques
and do not make a black-box use of an underlying semi-honest protocol.

We note that techniques developed in the context of an “IPS-style compiler”
in the two-round setting gives a new approach for constructing protocols for the
2-sided NISC problem. Specifically, if we use [47,58] as the outer protocol and
use the simple two-sided version of Yao’s protocol (using Boolean garbling in the
OT correlations model) as the inner protocol, we obtain a 2-sided NISC proto-
col that is secure against malicious adversaries in the OT correlations model.!
In Sect. 8.5 of the full version, we suggest some optimizations to improve the
concrete efficiency.

Black-box 5-Round MPC in the Plain Model. Our third and final result
uses a specialized combination of the previous contributions to get “one round
away” from settling the main open question about the round complexity of black-
box MPC. Concretely, we get a 5-round MPC protocol that makes a black-box
use of PKE with pseudorandom public keys (as in the first contribution), along
with any 2-round OT protocol with “semi-malicious” security. The latter security
requirement is a very mild strengthening of semi-honest security in the context
of 2-round OT protocols, and is satisfied by most 2-round OT protocols from the
literature (for instance, it can be instantiated from standard assumptions such
as DDH, LWE, QR).

Informal Theorem 3. Let f be an arbitrary multiparty functionality. Assume
the existence of a public key encryption with pseudorandom public keys and a
two-round oblivious transfer protocol with semi-malicious security. There exists
a five-round black-box protocol in the plain model that securely implements f
against malicious adversaries that statically corrupts upto all-but-one parties.

1 As we noted before, for the case of constant number of parties, watchlist correlations
reduces to standard OT correlations.
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1.2 Related Work

In this subsection, we give a brief overview of the two main approaches taken by
prior work obtaining black-box MPC protocols in the plain model.

Coin tossing based approach. The main idea in this approach is to use a black-
box simulatable coin tossing protocol to setup a CRS and then use black-box
MPC protocols (such as [GIS18]) in the CRS model. Roughly, to generate the
CRS, the idea is for each party to commit to a random string r; and in a later
step, for all parties to reveal their coins. To ensure that malicious parties cannot
set their randomness as a function of that of other honest players, players should
use a (concurrent) non-malleable commitment in the commit phase.

But the main bottleneck to obtaining such a coin tossing protocol is achiev-
ing simulatability. To achieve the simulation guarantee and allow a simulator to
“force” the output of the coin toss to be a certain value?, one would need to
rely zero-knowledge protocols, which if applied naively make non-black-box use
of cryptography. Even if one were able to achieve simulation-based guarantees
via a specific protocol, one would need to tailor this to prove statements about
construction of bounded concurrent non-malleable commitment w.r.t. commit-
ment against synchronising adversaries, for which no round efficient black-box
constructions exist. More specifically, [35] gives a black-box protocol but the
number of rounds of this protocol is greater than 18 (the coin tossing requires at
least two more rounds. [36] gives a 3-round black-box construction of NMCom
but is only secure in the standalone setting. The other round efficient construc-
tions of concurrent NMCom [20,21,37,53] make non-black use of cryptography.

IPS compiler based approach. The IPS compiler [49] gives a black-box MPC pro-
tocol in the OT hybrid model. The main challenge in instantiating this approach
in the plain model is in constructing a protocol that securely realizes the ideal OT
functionality. In particular, we need a protocol that realizes the ideal OT func-
tionality between every ordered pair of parties. [60] gave a non-constant round
black-box way to realize this which was improved by [32] who gave a constant
round protocol. The main component in the constant round protocol is again a
constant round black-box bounded concurrent non-malleable commitment wrt
replacement (which is weaker than the traditional definition of non-malleable
commitment wrt commitment). Even if we rely on a three-round black-box ver-
sion of such a non-malleable commitment from [34], the OT protocol requires
at least 12 rounds of communication. A straightforward way of combining this
with the IPS approach incurs at least four more rounds.

2 Technical Overview

In this section, we provide an overview of the key technical ideas used in con-
structing a four round, black-box pairwise MPC in the plain model. One of the

2 Note that this corresponds to the programmability requirement.
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key building blocks used in this construction is a watchlist protocol. We give a
construction of this protocol based on any public-key encryption with pseudo-
random public keys and we elaborate on this next.

2.1 The Watchlist Protocol

We start by describing the ideal version of the watchlist functionality. The watch-
list functionality is nothing but an implementation of a k-out-of-m oblivious
transfer between each ordered pair of parties. Specifically, each ordered pair P;
and P; execute a k-out-of-m OT where F; acts as a receiver and P; acts as
a sender. We observe that the k-out-of-m OT is a one-sided functionality and
hence, this can be realized if parties have pairwise access to independent copies
of the ideal OT functionality [45,49]. We call this as simultaneous secure OT
and would like to securely realize this ideal functionality in the plain model in
the presence of arbitrary malicious corruptions.

A Starting Point. A natural first attempt is to just have each pair of parties
simultaneously execute a two-party secure protocol computing the k-out-of-m
OT functionality. Such a protocol can be realized based on black-box use of any
public key encryption scheme with pseudorandom public keys [24,57].

Unfortunately, this does not securely emulate access to independent copies of
the ideal OT functionality between pairs of participants, because this protocol
satisfies only stand-alone security. It is easy to achieve OT that composes under
parallel repetition with fized roles, i.e., where many OT sessions are executed in
parallel, and an adversary either corrupts multiple senders or multiple receivers
but does not simultaneously corrupt (subsets of) senders and receivers. In par-
ticular, the stand-alone secure construction of OT from pseudorandom public
keys in [24] already achieves this notion of parallel composition.

But in the (more general) simultaneous setting, an adversarial party P;* par-
ticipates in many OT sessions simultaneously, as sender in some sessions and
receiver in others. This gives P} the opportunity to generate its own (e.g.,
sender) message in some OT session as a function of a message generated by
an honest sender in a different OT session, thereby possibly making its own
input depend on the input(s) of honest player(s). Clearly, this is disallowed by
the ideal simultaneous OT functionality; but not prevented by standalone OT.
Our first step towards addressing this vulnerability is to ensure that adversarial
inputs are independent of the inputs of honest players.

As discussed in the introduction, we develop a novel approach to achieving
such independence. In particular, we construct “non-malleable OT” that satisfies
the following guarantees.

— Receiver Security under Parallel Composition. For every adversarial
sender A* that corrupts the OT sender (or resp., multiple senders in any
parallel composition of the OT protocol), there exists a simulator that sim-
ulates the view of A* with black-box access to (resp., copies of) the ideal
OT functionality. This follows automatically from simulation-based security
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against malicious senders (resp., in the parallel composition setting) of the
underlying two-party secure protocol ITr.

— Non-Malleability. Informally, here we consider a man-in-the-middle adver-
sary MIM that acts as a receiver in a subset of OT sessions (that we refer to
as “left” sessions) and as sender in a different subset of OT sessions (that we
refer to as “right” sessions).

We require the existence of a simulator-extractor Sim-Ext, that given the
inputs of all honest receivers (participating in all right sessions), is able to
extract all the implicit inputs used by the MIM in all its right sessions. Cru-
cially, Sim-Ext does not have access to the inputs of honest senders (partici-
pating in the left sessions).

This is the key property that prevents an adversarial sender from “copying”
the inputs of honest senders, or more generally, generating its inputs as a
function of honest senders’ inputs. Achieving this property will be a key
technical focus of our work.

In what follows, we provide an overview of our construction of non-malleable
OT. Then, in Sect. 2.1, we discuss why any non-malleable OT protocol satisfy-
ing these properties almost directly implies pairwise ideal OT functionality (or,
simulataneous secure OT), and therefore also securely realizes watchlists.

Towards Non-Malleable OT. We take inspiration from recent works that
use non-malleable codes (introduced in [23]) to build cryptographic primitives
like non-malleable commitments [36], and non-malleable multi-prover interactive
proofs [33].

In more detail, we will build non-malleable OT by combining parallel com-
posable two-party secure computation with (an) appropriate (variant of) split-
state non-malleable codes. Such codes are specified by encoding and decoding
algorithms (Enc, Dec). The encoding algorithm Enc is a randomized algorithm
that encodes any message m into a codeword consisting of two parts or “states”
(L, R), and the decoding algorithm Dec on input a codeword returns the underly-
ing message. The security property is that for every pair of tampering functions
(f,g) with no fixed points, the (distribution of) m « Dec(f(L), g(R)), where
(L,R) « Enc(m), is independent of m. We now describe (a simplified variant of)
our construction.

Our Construction. For simplicity, we will focus on the special case of implement-
ing non-malleable 1-out-of-2 OT, but our techniques immediately extend to the
more general setting of k-out-of-m OT. To prevent obvious copying attacks, we
will assign to each party a unique tag or identity.

Our construction of non-malleable OT simply involves ezecuting a secure two-
party protocol II between a sender S and a receiver R, for a special functionality
F. Before describing this functionality, we discuss the inputs of participants to
this functionality.

The sender S with on input (mg, m1) and tag encodes these messages using an
appropriate split-state non-malleable code (Enc, Dec). Specifically, S computes
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Lo,Ro <« Enc(mgl|tag) and L;,R; « Enc(mq]||tag). The receiver R obtains as
input a choice bit b € {0,1}, and samples uniformly random ¢ € {0,1}. S
and R then invoke a two-party secure protocol IIr to compute functionality F
described in Fig. 1. In addition, S sends tag to R.

Sender Inputs: mg, Lo, Ro,m1, L1, R1, tag. Receiver Inputs: b, c.

The functionality F(mo, Lo, Ro, m1, L1, R1, b, ¢, tag) is defined as follows.

1. If Dec(Lo, Ro) # (mol|tag) or Dec(L1,R1) # (m1]|tag), output L.
2. If ¢ =0, output (mys, Lo, L1) and output (ms, Ro, R1), otherwise.

Fig. 1. The functionality F

We note that the ideal functionality F reveals my to R, and in addition,
reveals either only (Lo, L1) or only (Ro, Ry). Because any split-state non-malleable
code is also a 2-out-of-2 secret sharing scheme [4], the shares L;_; and Ry_; each
statistically hide m;_; from R. It is also clear that protocol IT makes only black-
box use of the underlying two-party computation protocol.

We show that (an appropriate k-out-of-m variant of) the protocol sketched
above securely realizes non-malleable OT, even when II itself is only parallel
composable secure (but may be completely malleable).

Proving Sender Non-Malleability. For ease of exposition, let’s consider a sim-
pler man-in-the-middle adversary (MIM) that participates in a single left session
as receiver, and a single right session as sender. We will also assume that the
MIM never sends messages that cause an honest party to abort. Additionally, the
underlying secure two-party protocol IT will be a round optimal (four round) pro-
tocol with sequential messages, and has the following specific structure. Namely,
it will require the receiver to commit to its input b in the first round of the
protocol, and at the same time, it will be delayed-input w.r.t. receiver input c,
which will be chosen by the receiver immediately before the third round begins.
Finally, it will require the inputs (mg, m1, Lo, Ro, L1, Ry, tag) of the sender to be
committed in the second round of the protocol, before ¢ is chosen by the receiver.

First Attempt: An Alternate Extraction Mechanism. One possible way to extract
sender inputs from the right execution, is to execute the simulator of the under-
lying two-party protocol II. Unfortunately, this fails because II is only parallel
composable secure, and extracting from the right execution automatically reveals
honest sender inputs from the left execution.

Instead, we will use the specific way that sender inputs are encoded to intro-
duce an alternate extraction mechanism. Specifically, one could imagine rewind-
ing the third and the fourth round message of IT, using inputs ¢ =0 and ¢ =1
on behalf of the honest receiver in the real and rewinding threads, respectively.
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By our assumption, the adversary is non-aborting. Therefore, we expect to obtain
outputs (Lo, L1) and (Rg, Ry) in the right session in the real and rewinding threads
respectively. At this point, we can use the decoder of the non-malleable code to
obtain (mg, my), which, by correctness of the two-party protocol, should corre-
spond to the implicit inputs of the MIM in the right session.

It doesn’t seem like this argument gives us much (yet): rewinding the MIM’s
third and fourth rounds would also end up rewinding the third and the fourth
rounds of the left execution with (possibly different) inputs ¢, ¢ used by the MIM
in the main and rewinding threads. Thus, it may seem like we are back to square
one: it may not be possible to hide the inputs of the honest sender in the presence
of such rewinding.

Towards Resolving the FExtraction Bottleneck: 1-Rewind Sender Security. To
tackle this problem, our first step will be to require that IT satisfy a stronger
security property: 1-rewind sender security. Roughly, this means that any adver-
sarial receiver R* that rewinds the honest sender one time in the third and
fourth rounds, using (possibly different) inputs ¢, ¢ in the main and rewinding
threads, does not recover any information beyond the output of F on inputs
(mo, miy, |_07 L1, Ro, Rl, b,a and (mo, mi, |_07 |_1, Ro, Rl, b,’C\) We formalize this by
requiring the existence of a specific type of simulator: this simulator generates a
view for R* in the main thread given only (mg, Lo,L;) and a view for R* in the
rewinding thread given only (mg,Ro,R1) (or vice-versa). Now, it may seem like
this type of simulator may not be very meaningful, since the sum total of this
information could essentially allow the receiver to recover m, ¢ by combining
Ll—E with Rl—E'

However, the fact that (Lg,L;) and (Rg,R1) are made available in separate
threads can be exploited argue that the MIM’s input must be independent of
m, ¢, as we discuss next.

Alternative Simulation. Let us go back to our alternate extraction mechanism
discussed earlier, where w.l.o.g. the third and fourth round messages of II are
rewound with (honest) receiver input set to ¢ = 0 in the main and ¢ = 1 in
the rewinding thread, respectively. This means that in the main thread, the
challenger obtains output (Lo,L;) in the right session. In the rewind thread,
setting ¢ = 1, the challenger obtains outputs (ﬁo, ﬁl) Meanwhile the real and
rewinding left executions will simulated using only (mg, Lo, L1) and (mg, Ro, R1)
(or vice-versa) respectively, as described above. This means that in the main
thread, the MIM outputs ([o,tl) as a function of only (mg, Lo, L1), and in the
rewinding thread, the MIM outputs (ﬁo, ﬁl) as a function of only (mg, Ro, Ry).3
We formalize this intuition to argue that the MIM’s behaviour naturally
gives rise to a split-state tampering function family. Here, one tampering func-
tion corresponds to the MIM’s functionality in the main thread, and the other

3 Actually, the MIM may also output (E(),El) as a function of only (mg, Ro,R1), and

(ﬁo,ﬁl) as a function of only (mg,Lo,L1). We use codes satisfying an additional
symmetric decoding property to account for this case.
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corresponds to the MIM’s functionality in the rewinding thread. This allows us
to rely on the non-malleability of the underlying encoding scheme to switch from
generating L, ¢, R, ¢ as an encoding of m;_y, to generating it as an encoding
of a dummy value.

This completes a simplified description of the main ideas in our protocol. We
swept several details under the rug but point out one important detail below.

Many-many Non-malleability. Recall that we simplified things earlier, to focus
on a setting where the MIM participates in a single left session as receiver and
a single right session as sender. For our application to watchlists, we require
security against adversaries that participate in multiple left and right sessions.

To achieve security in this setting, we will rely on many-many non-malleable
codes (that are implied by one-many non-malleable codes [18]) that achieve secu-
rity in the presence of multiple tamperings of a single codeword [18]. Moreover,
in order to deal with adversaries that may abort arbitrarily, we will modify the
functionality F. Instead of encoding (mg,m1) a single time, the sender generates
A (where X is the security parameter) fresh encodings {(L{, RE)}ie[A],be{O,l} of
mo and my. The receiver picks A choice bits cy,...,c) instead of a single bit c.
The functionality F checks if for every i € [A],b € {0,1}, {(L{, R}) e peqo.1}
encode my. If the check fails, F outputs L. If it passes, then for every i € [A], it
outputs (L§, L) if ¢; = 0 and otherwise, outputs (R, R}).

This helps ensure that for every adversary MIM that completes a main thread
(without aborting) given honest receiver input ¢ = ¢y, ..., ¢y, there is (w.h.p.)
a rewinding thread with a different choice ¢/ = ¢f,...,c) of honest receiver
input, that is also completed by the MIM. We then rely on any index i for which
¢; # ¢ to carry out the argument described above. Additional details of our
non-malleable OT protocol can be found in Sect. 5.1 in the full version.

From Non-Malleable OT to Watchlists. We note that that our OT pro-
tocol, as described above, prohibits an adversarial sender from generating its
generating its inputs as a function of honest senders’ inputs.

One could ask for an even stronger property, requiring the inputs of adver-
sarial receivers to be independent of the honest receivers’ inputs. At first glance,
this stronger property appears to be necessary, since pairwise access to ideal
OTs would actually enforce that all adversarial receiver inputs are independent
of the inputs of honest receivers.

But upon taking a closer look, we realize that non-malleable OT as described
in the previous section actually suffices to construct watchlists with security in
the real/ideal paradigm. Intuitively, this is because the outputs of honest parties
are affected only by the inputs of the adversarial senders, and are unaffected by
the inputs of adversarial receivers. In other words, even if adversarial receivers
manage to have their inputs depend on the inputs of the honest receivers, this
cannot affect the joint distribution of their view and the outputs of honest parties
in the ideal world. We formalize this intuition and show that non-malleable OT
generically implies a protocol for securely realizing the watchlist functionality.
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The only missing ingredient in our description is the 1-rewind sender secure
protocol, which we describe next.

Constructing a 1-Rewind Sender Secure Protocol. In our actual con-
struction of non-malleable OT, the receiver inputs (ci,...cy) do not need to
remain hidden from a corrupted sender. In particular, all we need is for the
protocol to allow for delayed function selection, where the function to be com-
puted (defined by ¢y, ..., cy) is selected by the receiver in the third round. Given
this, the 1-rewinding security property translates to requiring that any corrupt
receiver which rewinds the third and the fourth round messages of the sender
by providing (possibly) different functions learns nothing beyond the output of
these two functions on sender and receiver inputs that were fixed in the first two
rounds.

We will design such a 2-party protocol for NC1 circuits* by relying on a
different variant [45,46,49] of the IPS paradigm. Specifically, we will use the
same 2-client m-server outer protocol [58] that was discussed at the beginning of
the overview, and combine it an inner protocol that is based a variant of Yao’s
garbled circuits [61]. Yao’s protocol also allows for the garbled circuits to be
generated in the final round, which immediately gives us the delayed function
selection property. Importantly, since we only care about parallel composable
security in the resulting two-party protocol, parallel composable but possibly
malleable 1-rewind secure OT will suffice to implement watchlists in this set-
ting. We slightly generalize the works of [24,57] to obtain a maliciously secure
OT that satisfies 1-rewind sender security and makes black-box use of a PKE
with pseudorandom public keys. We refer the reader to Appendix C of the full
version for the details of constructing the secure computation protocol and to
Appendix D of the full version for the construction of a 1-rewind sender secure
OT protocol.

Immediate Application: Black-Box Simultaneous Two-Party Compu-
tation. Plugging the resulting simultaneous OT protocol in place of ideal OT,
into the non-interactive two-party secure black-box computation protocol of [45],
yields a round optimal two-party simultaneous secure computation, from black-
box use of any PKE with pseudorandom public keys.

Organization. Due to lack of space, we include our construction of non-malleable
OT in the body of the paper, and defer remaining protocols to the full version.

3 Preliminaries and Definitions
Let A denote the security parameter. A function pu(-) : N — RT is said to be
negligible if for any polynomial poly(-) there exists Ay such that for all A > Xg

4 We show in Sect.5.1 of the full version that 1-rewind secure 2PC for NC1 circuits
suffices to obtain non-malleable OT.
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we have p(X\) < m. We will use negl(-) to denote an unspecified negligible
function and poly(-) to denote an unspecified polynomial function. We use A to
denote the statistical distance.

For a probabilistic algorithm A, we denote A(z;7) to be the output of A on
input = with the content of the random tape being . When r is omitted, A(x)
denotes a distribution. For a finite set .S, we denote x «— S as the process of
sampling = uniformly from the set S. We will use PPT to denote Probabilistic

Polynomial Time algorithm.

3.1 Non-malleable Codes

We will use non-malleable codes in the split-state model, that are one-many
secure and satisfy a special augmented non-malleability [2] property, as discussed
below.

Definition 1. (One-many augmented split-state non-malleable codes).

Fizx any polynomials (), p(:). An £(-)-augmented non-malleable code with error
e(-) for messages m € {0,1}?N consists of algorithms NM.Code, NM.Decode
where NM.Code(m) — (L, R) such that for every m € {0,1}PXN)

NM.Decode(NM.Code(m)) = m

and for every set of functions f = (f1, f2,... fen)),9 = (91,92, ---gen)) there
exists a random variable Dy, on {{0,1}PX) U same* }N) which is independent
of the randomness in NM.Code such that for all messages m € {0,1}*™) it holds
that

A ((R, {NM.Decode(fi(L), g:(R) }icieny)) » (replace(Dy 4, m))) < €(A)

A ((R, {NM.Decode(g;(R), fi(L)}icieny)) » (replace(Dy 4, m))) < €(A)
where (L,R) < NM.Code(m) and the function replace : {0,1}* x {0,1}* — {0,1}
replaces all occurrences of same* in its first input with its second input s, and
outputs the result.

It was shown in [3,34,38] that the CGL one-many non-malleable codes con-
structed in [18] are also one-many augmented non-malleable codes. But we point
out that in this definition, we also require messages obtained by decoding the
tampered codewords with left and right shares interchanged to be unrelated
with the original message. It is easy to see that this property is satisfied by
any non-malleable code with symmetric decoding (i.e. where NMDec(L,R) =
NMDec(R,L)). This property can be achieved, as observed in [33], by modifying
any split-state code to attach a special symbol “¢” to the left part of the code-
word, and a special symbol “r” to the right part of the codeword. This yields the
following imported theorem:

Theorem 1. (Imported.) [33,34] For every polynomial £(-), there exists a poly-
nomial q(-) such that for every A € N, there exists an explicit (-augmented,
split-state non-malleable code satisfying Definition 1 with efficient encoding and
decoding algorithms with code length q(\), rate g(A\)~*M) and error 2-a(N*,
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3.2 Low-Depth Proofs

We will describe how any computation that can be verified by a family of poly-
nomial sized ciruits can be transformed into a proof that is verifiable by a family
of circuits in NC1. Let R be an efficiently computable binary relation. Let L be
the language consisting of statements in R, i.e. for which R(z) = 1.

Definition 2 (Low-Depth Non-Interactive Proofs). A low-depth non-
interactive proof with perfect completeness and soundness for a relation R con-
sists of an (efficient) prover P and a verifier V that satisfy:

— Perfect completeness. A proof system is perfectly complete if an honest
prover can always convince an honest verifier. For all x € L we have

PrlV(n)=1lmr — P(z)] =1

- Perfect soundness. A proof system is perfectly sound if it is infeasible to
convince an honest verifier when the statement is false. For oll x ¢ L and all
(even unbounded) adversaries A we have

PriV(z,m) = 1jm < A(z)] = 0.
-~ Low depth. The verifier V' can be implemented in NC1.

We outline a simple construction of a low-depth non-interactive proof, borrowed
from [25]. The prover P executes the verification circuit on z and generates
the proof as the sequential concatenation (in some specified order) of the bit
values assigned to the individual wires of the circuit computing R. The verifier
V proceeds by checking consistency of the values assigned to the internal wires
of the circuit for each gate. In particular for each gate in the verification circuit
the verifier checks if the wire vales provided in the proof represent a correct
evaluation of the gate. Since the verification corresponding to each gate can be
done independent of every other gate and in constant depth, we have that V
itself is constant depth.

Looking ahead, our construction of non-malleable OT makes use of a (mal-
leable) two-party computation protocol for NC1 that must verify validity of a
non-malleable code. We rely on low-depth proofs to ensure that the two-party
computation protocol only performs NC1 computations.

3.3 1-Rewind Sender-Secure Two-Party Computation

Let us consider a protocol IT between two parties, namely, the sender § and the
receiver R. The sender holds a private input x5 and the receiver holds a private
input xr and they wish to compute some function of their private inputs securely
with the receiver obtains the output of the function. We want this protocol to
satisfy:
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— (Delayed-function selection) The function to be securely computed is only
decided in the third round by the receiver R. That is, the third round message
contains the explicit description of the function f to be computed and the
first two messages depend only on the size of the function.

— (1-Rewinding Security) Any malicious receiver that rewinds the third and
fourth rounds of the protocol once (by possibly giving different functions
fo, f1) cannot learn anything about the sender’s inputs except the output on
these two functions.

The syntax of the protocol and the two properties are formalized below.

Syntaz. The special two party protocol IT is given by a tuple of algorithms
(ITy, I3, IT3, I14,0utyr). ITy and IT3 are the next message functions run by the
receiver R and Il; and II, are the next message functions run by the sender
§. At the end of the protocol, R runs out;; on the transcript, its input and the
random tape to get the output of the protocol. We use 7, to denote the message
sent in the protocol IT in round r for every r € [4].

Definition 3. Let II = (II1, s, II3, I14,0uty) be a 4-round protocol between a
receiver R and a sender § with the receiver computing the output at the end of
the fourth round. We say that II is a I-rewinding sender secure protocol with
delayed function selection for NC* circuits if it satisfies:

— Delayed Function Selection. The first and second message functions
I, IT, take as input the size of the function f € NC to be securely com-
puted and are otherwise, independent of the function description. The third
round message from R contains the explicit description of the function f to
be computed.

- Receiver Security. For every malicious PPT adversary A that corrupts
the sender, there exists an expected polynomial (black-box) simulator Simg =
(Sim%,Sim%) such that for all choices of honest receiver input rr and the
function f € NC*, the joint distribution of the view of A and R’s output in
the real execution is computationally indistinguishable to the output of the
1deal experiment described in Fig. 2.

- 1-Rewinding Sender Security. For every malicious adversary A, cor-
rupting the receiver, there exists an expected polynomial time simulators
Simg = (Simé, Simg) such that for every choice of sender’s input xg, we have:

Expt, (A, I, xg, 5)Expty (A, Simg, 2z, x5)

where Expt; and Expty are defined in Fig. 3.
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The honest receiver R sends xr and f to the ideal functionality.

Initialize A with uniform random tape r.

Sim% on input f, interacts with .4 and outputs 71, 7o, zs and sk.

Send zs to the ideal functionality.

Sim% on input sk, interacts with .4 and outputs w3 and m4. Sim% may send

an abort to the ideal functionality.

Output (r, 71,72, 73, 74) and the output of the honest R.

Fig. 2. Ideal experiment in the receiver security game

Expt, (A7 I, Is) = 1]

Initialize A with a uniform random

tape s.
71— A(1%; ).
Choose r + {0,1}* uniformly

at random and compute w2 <
Iy (zs,m1;7).

(fo, m3[0]), (f1,ms[1]) = A(mz; 5).
malb] + IHi(zs, 71, (fo,m3[b]);7) for
be{0,1}.

Output
(3771—1771—21{fb77r3[b}7ﬂ.4[b]}b€{0»1})'

Expt, (A, Sims, 1’5)

Initialize A with a uniform random
tape s.

Sim} interacts with A and produces
(71, sk).

Sim% on input sk interacts with A
and produces a query (zr, fo, f1) to
be sent to the ideal functionality.
On receiving 2z, = fo(or,zs)
from the ideal functionality, Sim%
interacts with A and produces

(72, { fo, m3[b], ma[b] oego,11)-

— Output

(Sv 1,72, {fbv 7T3[b]7 71'4[1)]}56{0,1}).

Fig. 3. Descriptions of Expt; and Expt,.

4 Non-Malleable Oblivious Transfer

4.1 Definition

We define non-malleable OT which considers a man-in-the-middle adversary that
generates OT messages as a function of those generated by honest players. The
non-malleability property ensures that no PPT adversarial sender can generate
its OT inputs as a function of the (secret) inputs of honest senders.

Definition 4 (¢ non-malleable (m

k) Oblivious Transfer). An ¢ non-

malleable Oblivious Transfer is a protocol between a sender S with inputs

m
k
{mi}icim) and a receiver R with input K C [m] where |K| = k, that satisfies the
following:
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— Correctness. For everyi € [m],m; € {0,1}* and K C [m] such that |K| = k,

Outr (S({mi}tigim)) R(K)) = {mi}iek

- (Parallel Composable) Receiver Security. For every PPT sender 8* and
every pair K, K' of k-sized subsets of [m], we require

