
Tal Malkin
Chris Peikert (Eds.)

LN
CS

 1
28

26

41st Annual International Cryptology Conference, CRYPTO 2021
Virtual Event, August 16–20, 2021
Proceedings, Part II

Advances in Cryptology –
CRYPTO 2021

Lecture Notes in Computer Science 12826

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Tal Malkin • Chris Peikert (Eds.)

Advances in Cryptology –

CRYPTO 2021
41st Annual International Cryptology Conference, CRYPTO 2021
Virtual Event, August 16–20, 2021
Proceedings, Part II

123

Editors
Tal Malkin
Columbia University
New York City, NY, USA

Chris Peikert
University of Michigan
Ann Arbor, MI, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-84244-4 ISBN 978-3-030-84245-1 (eBook)
https://doi.org/10.1007/978-3-030-84245-1

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3533-6156
https://orcid.org/0000-0003-0419-7501
https://doi.org/10.1007/978-3-030-84245-1

Preface

The 41st International Cryptology Conference (Crypto 2021), sponsored by the
International Association of Cryptologic Research (IACR), was held during August
16–20, 2021. Due to the ongoing COVID-19 pandemic, and for the second consecutive
year, Crypto was held as an online-only virtual conference, instead of at its usual venue
of the University of California, Santa Barbara. In addition, six affiliated workshop
events took place during the days immediately prior to the conference.

The Crypto conference continues its substantial growth pattern: this year’s offering
received a record-high 430 submissions for consideration, of which 103 (also a record)
were accepted to appear in the program. The two program chairs were not allowed to
submit a paper, and Program Committee (PC) members were limited to two submis-
sions each. Review and extensive discussion occurred from late February through
mid-May, in a double-blind, two-stage process that included an author rebuttal phase
(following the initial reviews) and extensive discussion by reviewers. We thank the
58-person PC and the 390 external reviewers for their efforts to ensure that, during the
continuing COVID-19 pandemic and unusual work and life circumstances, we nev-
ertheless were able to perform a high-quality review process.

The PC selected four papers to receive recognition via awards, along with invita-
tions to the Journal of Cryptology, via a voting-based process that took into account
conflicts of interest (the program chairs did not vote).

– The Best Paper Award went to “On the Possibility of Basing Cryptography on EXP
6¼ BPP” by Yanyi Liu and Rafael Pass.

– The Best Paper by Early Career Researchers Award, along with an Honorable
Mention for Best Paper, went to “Linear Cryptanalysis of FF3-1 and FEA” by Tim
Beyne.

– Honorable Mentions for Best Paper also went to “Efficient Key Recovery for all
HFE Signature Variants” by Chengdong Tao, Albrecht Petzoldt, and Jintai Ding;
and “Three Halves Make a Whole? Beating the Half-Gates Lower Bound for
Garbled Circuits” by Mike Rosulek and Lawrence Roy.

In addition to the regular program, Crypto 2021 included two invited talks, by
Vanessa Teague on “Which e-voting problems do we need to solve?” and Jens Groth
on “A world of SNARKs.” The conference also carried forward the long-standing
tradition of having a rump session, organized in a virtual format.

The chairs would also like to thank the many other people whose hard work helped
ensure that Crypto 2021 was a success:

– Vladimir Kolesnikov (Georgia Institute of Technology)—Crypto 2021 general
chair.

– Daniele Micciancio (University of California, San Diego), Thomas Ristenpart
(Cornell Tech), Yevgeniy Dodis (New York University), and Thomas Shrimpton
(University of Florida)—Crypto 2021 Advisory Committee.

– Carmit Hazay (Bar Ilan University)—Crypto 2021 workshop chair.
– Bertram Poettering and Antigoni Polychroniadou—Crypto 2021 rump session

chairs.
– Kevin McCurley, for his critical assistance in setting up and managing the HotCRP

paper submission and review system, conference website, and other technology.
– Kevin McCurley, Kay McKelly, and members of the IACR’s emergency pandemic

team for their work in designing and running the virtual format.
– Anna Kramer and her colleagues at Springer.

July 2021 Tal Malkin
Chris Peikert

vi Preface

Organization

General Chair

Vladimir Kolesnikov Georgia Institute of Technology, USA

Program Committee Chairs

Tal Malkin Columbia University, USA
Chris Peikert University of Michigan and Algorand, Inc., USA

Program Committee

Abhi Shelat Northeastern University, USA
Andrej Bogdanov Chinese University of Hong Kong, Hong Kong
Antigoni Polychroniadou JP Morgan AI Research, USA
Brice Minaud Inria and École Normale Supérieure, France
Chaya Ganesh Indian Institute of Science, India
Chris Peikert University of Michigan and Algorand, Inc., USA
Claudio Orlandi Aarhus University, Denmark
Daniele Venturi Sapienza University of Rome, Italy
David Cash University of Chicago, USA
David Wu University of Virginia, USA
Dennis Hofheinz ETH Zurich, Switzerland
Divesh Aggarwal National University of Singapore, Singapore
Dominique Unruh University of Tartu, Estonia
Elena Andreeva Technical University of Vienna, Austria
Elena Kirshanova Immanuel Kant Baltic Federal University, Russia
Fabrice Benhamouda Algorand Foundation, USA
Fang Song Portland State University, USA
Frederik Vercauteren KU Leuven, Belgium
Ghada Almashaqbeh University of Connecticut, USA
Itai Dinur Ben-Gurion University, Israel
Jean-Pierre Tillich Inria, France
Jeremiah Blocki Purdue University, USA
John Schanck University of Waterloo, Canada
Jonathan Bootle IBM Research, Switzerland
Joseph Jaeger University of Washington, USA
Junqing Gong East China Normal University, China
Lisa Kohl CWI Amsterdam, The Netherlands
Manoj Prabhakaran IIT Bombay, India
Marcel Keller CSIRO’s Data61, Australia
Mariana Raykova Google, USA

Mike Rosulek Oregon State University, USA
Mor Weiss Bar-Ilan University, Israel
Muthuramakrishnan

Venkitasubramaniam
University of Rochester, USA

Ni Trieu Arizona State University, USA
Nir Bitansky Tel Aviv University, Israel
Nuttapong Attrapadung AIST, Japan
Omer Paneth Tel Aviv University, Israel
Paul Grubbs NYU, Cornell Tech and University of Michigan, USA
Peihan Miao University of Illinois at Chicago, USA
Peter Schwabe Max Planck Institute for Security and Privacy,

Germany, and Radboud University, The Netherlands
Ran Canetti BU, USA, and Tel Aviv University, Israel
Romain Gay IBM Research, Switzerland
Ron Steinfeld Monash University, Australia
Rosario Gennaro City University of New York, USA
Ryo Nishimaki NTT Secure Platform Laboratories, Japan
Sandro Coretti IOHK, Switzerland
Sikhar Patranabis Visa Research, USA
Sina Shiehian UC Berkeley and Stony Brook University, USA
Siyao Guo NYU Shanghai, China
Stanislaw Jarecki University of California, Irvine, USA
Tal Malkin Columbia University, USA
Tarik Moataz Aroki Systems, USA
Thomas Peters UC Louvain, Belgium
Thomas Peyrin Nanyang Technological University, Singapore
Tianren Liu University of Washington, USA
Viet Tung Hoang Florida State University, USA
Xavier Bonnetain University of Waterloo, Canada
Yu Yu Shanghai Jiao Tong University, China

Additional Reviewers

Aaram Yun
Aarushi Goel
Aayush Jain
Abhishek Jain
Adrien Benamira
Agnes Kiss
Aishwarya Thiruvengadam
Ajith Suresh
Akin Ünal
Akinori Kawachi
Akira Takahashi
Akshay Degwekar

Akshayaram Srinivasan
Akshima
Alain Passelègue
Alex Bienstock
Alex Lombardi
Alexander Golovnev
Alexander Hoover
Alexander May
Alexandre Wallet
Alexandru Cojocaru
Alice Pellet-Mary
Alin Tomescu

viii Organization

Amin Sakzad
Amit Singh Bhati
Amitabh Trehan
Amos Beimel
Anat Paskin-Cherniavsky
Anca Nitulescu
André Chailloux
Andre Esser
André Schrottenloher
Andrea Coladangelo
Andreas Hülsing
Antonin Leroux
Antonio Florez-Gutierrez
Archita Agarwal
Ariel Hamlin
Arka Rai Choudhuri
Arnab Roy
Ashrujit Ghoshal
Ashutosh Kumar
Ashwin Jha
Atsushi Takayasu
Aurore Guillevic
Avijit Dutta
Avishay Yanay
Baiyu Li
Balazs Udvarhelyi
Balthazar Bauer
Bart Mennink
Ben Smith
Benjamin Diamond
Benjamin Fuller
Benny Applebaum
Benoît Cogliati
Benoit Libert
Bertram Poettering
Binyi Chen
Bo-Yin Yang
Bogdan Ursu
Bruno Freitas dos Santos
Bryan Parno
Byeonghak Lee
Carl Bootland
Carles Padro
Carmit Hazay
Carsten Baum
Cecilia Boschini

Chan Nam Ngo
Charles Momin
Charlotte Bonte
Chen Qian
Chen-Da Liu-Zhang
Chenkai Weng
Chethan Kamath
Chris Brzuska
Christian Badertscher
Christian Janson
Christian Majenz
Christian Matt
Christina Boura
Christof Paar
Christoph Egger
Cody Freitag
Dahmun Goudarzi
Dakshita Khurana
Damian Vizar
Damiano Abram
Damien Stehlé
Damien Vergnaud
Daniel Escudero
Daniel Jost
Daniel Masny
Daniel Tschudi
Daniel Wichs
Dario Catalano
Dario Fiore
David Gerault
David Heath
Debbie Leung
Dean Doron
Debapriya Basu Roy
Dima Kogan
Dimitrios Papadopoulos
Divya Gupta
Divya Ravi
Dominique Schröder
Eduardo Soria-Vazquez
Eldon Chung
Emmanuela Orsini
Eran Lambooij
Eran Omri
Eshan Chattopadhyay
Estuardo Alpirez Bock

Organization ix

Evgenios Kornaropoulos
Eysa Lee
Fabio Banfi
Felix Engelmann
Felix Günther
Ferdinand Sibleyras
Fermi Ma
Fernando Virdia
Francesco Berti
François-Xavier Standaert
Fuyuki Kitagawa
Gaëtan Cassiers
Gaëtan Leurent
Gayathri Annapurna Garimella
Geoffroy Couteau
Georg Fuchsbauer
Ghous Amjad
Gildas Avoine
Giorgos Panagiotakos
Giorgos Zirdelis
Giulio Malavolta
Guy Rothblum
Hamidreza Khoshakhlagh
Hamza Abusalah
Hanjun Li
Hannah Davis
Haoyang Wang
Hart Montgomery
Henry Corrigan-Gibbs
Hila Dahari
Huijia Lin
Ian McQuoid
Ignacio Cascudo
Igors Stepanovs
Ilan Komargodski
Ilia Iliashenko
Ingrid Verbauwhede
Itamar Levi
Ittai Abraham
Ivan Damgård
Jack Doerner
Jacob Schuldt
James Bartusek
Jan Czajkowski
Jan-Pieter D’Anvers
Jaspal Singh

Jean Paul Degabriele
Jesper Buus Nielsen
Jesús-Javier Chi-Domínguez
Ji Luo
Jian Guo
Jiaxin Pan
Jiayu Xu
Joanne Adams-Woodage
João Ribeiro
Joël Alwen
Julia Hesse
Julia Len
Julian Loss
Junichi Tomida
Justin Holmgren
Justin Thaler
Kai-Min Chung
Katerina Sotiraki
Katharina Boudgoust
Kathrin Hövelmanns
Katsuyuki Takashima
Kazuhiko Minematsu
Keita Xagawa
Kevin Yeo
Kewen Wu
Khoa Nguyen
Koji Nuida
Kristina Hostáková
Laasya Bangalore
Lars Knudsen
Lawrence Roy
Lejla Batina
Lennart Braun
Léo Colisson
Leo de Castro
Léo Ducas
Léo Perrin
Lin Lyu
Ling Song
Luca De Feo
Luca Nizzardo
Lucjan Hanzlik
Luisa Siniscalchi
Łukasz Chmielewski
Maciej Obremski
Madalina Bolboceanu

x Organization

Mahimna Kelkar
Maria Eichlseder
María Naya-Plasencia
Marilyn George
Marios Georgiou
Mark Abspoel
Mark Simkin
Mark Zhandry
Markulf Kohlweiss
Marshall Ball
Marta Mularczyk
Martin Albrecht
Martin Hirt
Mary Wooters
Masayuki Abe
Matteo Campanelli
Matthias Fitzi
Mia Filic
Michael Reichle
Michael Rosenberg
Michael Walter
Michele Orru
Miguel Ambrona
Mingyuan Wang
Miran Kim
Miruna Rosca
Miyako Ohkubo
Mohammad Hajiabadi
Mohammad Hossein Faghihi Sereshgi
Monosij Maitra
Morgan Shirley
Mridul Nandi
Muhammed F. Esgin
Mustafa Khairallah
Naomi Ephraim
Nathan Manohar
Naty Peter
Navid Alamati
Ngoc Khanh Nguyen
Nicholas Spooner
Nicholas-Philip Brandt
Nico Döttling
Nicolas Resch
Nicolas Sendrier
Nikolaos Makriyannis
Nikolas Melissaris

Nils Fleischhacker
Nina Bindel
Nirvan Tyagi
Niv Gilboa
Noah Stephens-Davidowitz
Olivier Blazy
Olivier Bronchain
Omri Shmueli
Orfeas Stefanos Thyfronitis Litos
Orr Dunkelman
Oxana Poburinnaya
Patrick Derbez
Patrick Longa
Patrick Towa
Paul Rösler
Paul Zimmermann
Peter Gazi
Peter Rindal
Philippe Langevin
Pierre Briaud
Pierre Meyer
Pierrick Gaudry
Pierrick Mèaux
Po-Chu Hsu
Prabhanjan Ananth
Prashant Vasudeval
Pratik Sarkar
Pratik Soni
Pratyay Mukherjee
Pratyush Mishra
Qian Li
Qiang Tang
Qipeng Liu
Quan Quan Tan
Rachit Garg
Radu Titiu
Rajeev Raghunath
Rajendra Kumar
Ran Cohen
Raymond K. Zhao
Riad Wahby
Rishab Goyal
Rishabh Bhadauria
Rishiraj Bhattacharyya
Ritam Bhaumik
Robi Pedersen

Organization xi

Rohit Chatterjee
Rolando La Placa
Roman Langrehr
Rongmao Chen
Rupeng Yang
Ruth Ng
Saba Eskandarian
Sabine Oechsner
Sahar Mazloom
Saikrishna Badrinarayanan
Sam Kim
Samir Hodzic
Sanjam Garg
Sayandeep Saha
Schuyler Rosefield
Semyon Novoselov
Serge Fehr
Shai Halevi
Shashank Agrawal
Sherman S. M. Chow
Shi Bai
Shifeng Sun
Shivam Bhasin
Shota Yamada
Shuai Han
Shuichi Katsumata
Siang Meng Sim
Somitra Sanadhya
Sonia Belaïd
Sophia Yakoubov
Srinivas Vivek
Srinivasan Raghuraman
Sruthi Sekar
Stefano Tessaro
Steve Lu
Steven Galbraith
Stjepan Picek
Sumegha Garg
Susumu Kiyoshima
Sven Maier
Takahiro Matsuda
Takashi Yamakawa
Tal Moran
Tamer Mour
Thom Wiggers

Thomas Agrikola
Thomas Attema
Thomas Debris-Alazard
Thomas Decru
Tiancheng Xie
Tim Beyne
Titouan Tanguy
Tommaso Gagliardoni
Varun Maram
Vassilis Zikas
Venkata Koppula
Vincent Zucca
Virginie Lallemand
Ward Beullens
Wei Dai
Willy Quach
Wouter Castryck
Xiao Liang
Xiao Wang
Xiong Fan
Yael Kalai
Yan Bo Ti
Yann Rotella
Yannick Seurin
Yaobin Shen
Yashvanth Kondi
Yfke Dulek
Yiannis Tselekounis
Yifan Song
Yilei Chen
Yixin Shen
Yongsoo Song
Yu Long Chen
Yu Sa
Yue Guo
Yuncong Hu
Yupeng Zhang
Yuriy Polyakov
Yuval Ishai
Zahra Jafargholi
Zeyong Li
Zhengfeng Ji
Zichen Gui
Zuoxia Yu
Zvika Brakerski

xii Organization

Contents – Part II

Multi-party Computation

Game-Theoretic Fairness Meets Multi-party Protocols: The Case
of Leader Election. 3

Kai-Min Chung, T.-H. Hubert Chan, Ting Wen, and Elaine Shi

Computational Hardness of Optimal Fair Computation:
Beyond Minicrypt . 33

Hemanta K. Maji and Mingyuan Wang

YOSO: You Only Speak Once: Secure MPC with Stateless
Ephemeral Roles . 64

Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri,
Jesper Buus Nielsen, Tal Rabin, and Sophia Yakoubov

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 94
Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain,
and Gabriel Kaptchuk

Secure Computation from One-Way Noisy Communication, or:
Anti-correlation via Anti-concentration. 124

Shweta Agrawal, Yuval Ishai, Eyal Kushilevitz, Varun Narayanan,
Manoj Prabhakaran, Vinod Prabhakaran, and Alon Rosen

Broadcast-Optimal Two Round MPC with an Honest Majority 155
Ivan Damgård, Bernardo Magri, Divya Ravi, Luisa Siniscalchi,
and Sophia Yakoubov

Three-Round Secure Multiparty Computation from Black-Box Two-Round
Oblivious Transfer . 185

Arpita Patra and Akshayaram Srinivasan

On the Round Complexity of Black-Box Secure MPC. 214
Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 244
Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou,
and Yifan Song

Unconditional Communication-Efficient MPC via Hall’s
Marriage Theorem. 275

Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

Non-interactive Secure Multiparty Computation for Symmetric Functions,
Revisited: More Efficient Constructions and Extensions 305

Reo Eriguchi, Kazuma Ohara, Shota Yamada, and Koji Nuida

Efficient Information-Theoretic Multi-party Computation over
Non-commutative Rings. 335

Daniel Escudero and Eduardo Soria-Vazquez

Pushing the Limits of Valiant’s Universal Circuits: Simpler,
Tighter and More Compact . 365

Hanlin Liu, Yu Yu, Shuoyao Zhao, Jiang Zhang, Wenling Liu,
and Zhenkai Hu

Oblivious Key-Value Stores and Amplification for Private Set Intersection. . . 395
Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu,
and Avishay Yanai

MHz2k: MPC from HE over Z2k with New Packing, Simpler Reshare,
and Better ZKP. 426

Jung Hee Cheon, Dongwoo Kim, and Keewoo Lee

Sublinear GMW-Style Compiler for MPC with Preprocessing. 457
Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof

Limits on the Adaptive Security of Yao’s Garbling 486
Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Daniel Wichs

Lattice Cryptography

Subtractive Sets over Cyclotomic Rings: Limits of Schnorr-Like Arguments
over Lattices. 519

Martin R. Albrecht and Russell W. F. Lai

A Compressed R-Protocol Theory for Lattices . 549
Thomas Attema, Ronald Cramer, and Lisa Kohl

A New Simple Technique to Bootstrap Various Lattice Zero-Knowledge
Proofs to QROM Secure NIZKs . 580

Shuichi Katsumata

SMILE: Set Membership from Ideal Lattices with Applications to Ring
Signatures and Confidential Transactions . 611

Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler

Deniable Fully Homomorphic Encryption from Learning with Errors. 641
Shweta Agrawal, Shafi Goldwasser, and Saleet Mossel

xiv Contents – Part II

Lattice Cryptanalysis

Counterexamples to New Circular Security Assumptions Underlying iO. 673
Sam Hopkins, Aayush Jain, and Huijia Lin

How to Meet Ternary LWE Keys . 701
Alexander May

Lattice Reduction with Approximate Enumeration Oracles:
Practical Algorithms and Concrete Performance . 732

Martin R. Albrecht, Shi Bai, Jianwei Li, and Joe Rowell

Towards Faster Polynomial-Time Lattice Reduction 760
Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

Lower Bounds on Lattice Sieving and Information Set Decoding 791
Elena Kirshanova and Thijs Laarhoven

Author Index . 821

Contents – Part II xv

Multi-party Computation

Game-Theoretic Fairness Meets
Multi-party Protocols: The Case

of Leader Election

Kai-Min Chung1(B), T.-H. Hubert Chan2, Ting Wen2, and Elaine Shi3

1 Academia Sinica, Taipei City, Taiwan
kmchung@iis.sinica.edu.tw

2 The University of Hong Kong, Pokfulam, Hong Kong
hubert@cs.hku.hk

3 Carnegie Mellon University, Pittsburgh, USA
runting@cs.cmu.edu

Abstract. Suppose that n players want to elect a random leader and
they communicate by posting messages to a common broadcast channel.
This problem is called leader election, and it is fundamental to the dis-
tributed systems and cryptography literature. Recently, it has attracted
renewed interests due to its promised applications in decentralized envi-
ronments. In a game theoretically fair leader election protocol, roughly
speaking, we want that even a majority coalition cannot increase its own
chance of getting elected, nor hurt the chance of any honest individual.
The folklore tournament-tree protocol, which completes in logarithmi-
cally many rounds, can easily be shown to satisfy game theoretic secu-
rity. To the best of our knowledge, no sub-logarithmic round protocol
was known in the setting that we consider.

We show that by adopting an appropriate notion of approximate
game-theoretic fairness, and under standard cryptographic assumption,
we can achieve (1 − 1/2Θ(r))-fairness in r rounds for Θ(log log n) ≤
r ≤ Θ(log n), where n denotes the number of players. In particular,
this means that we can approximately match the fairness of the tourna-
ment tree protocol using as few as O(log log n) rounds. We also prove a
lower bound showing that logarithmically many rounds are necessary if
we restrict ourselves to “perfect” game-theoretic fairness and protocols
that are “very similar in structure” to the tournament-tree protocol.

Although leader election is a well-studied problem in other contexts in
distributed computing, our work is the first exploration of the round com-
plexity of game-theoretically fair leader election in the presence of a pos-
sibly majority coalition. As a by-product of our exploration, we suggest
a new, approximate game-theoretic fairness notion, called “approximate
sequential fairness”, which provides a more desirable solution concept
than some previously studied approximate fairness notions.

Author ordering is randomized. See our online full version [15] for full details and
proofs.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 3–32, 2021.
https://doi.org/10.1007/978-3-030-84245-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_1

4 K.-M. Chung et al.

1 Introduction

Suppose that Murphy and Moody simultaneously solve a long-standing open
problem in cryptography and they each submit a paper with identical result
to CRYPTO’21. The amazing CRYPTO’21 program committee recommends a
hard merge of the two papers. Murphy and Moody decide to flip a random coin
over the Internet to decide who gets to present the result at the prestigious
CRYPTO’21 conference, to be held on the beautiful virtual beaches of Santa
Barbara. Murphy and Moody both want to make sure that the outcome of the
coin toss is fair, even when the other player may be behaving selfishly. There
is good news and bad news. The bad news is that a famous lower bound by
Cleve [16] proved that a strong notion of fairness, henceforth called unbiasabil-
ity, is impossible in any n-player coin toss protocol in the presence of corrupt
majority. Specifically, for any r-round protocol, a coalition controlling half or
more of the players can implement an efficient attack that biases the outcome
by Ω(1r). This impossibility result also holds in the two-party setting where one
of the parties can be corrupt. This strong unbiasability notion is also the de
facto notion in the long line of work on multi-party computation [8,13,26]. The
good news is that Cleve’s lower bound is not a deal-breaker for Murphy and
Moody. In fact, they can simply run Blum’s celebrated coin toss protocol [10]:
each player picks a random bit and posts a commitment of the bit to a public
bulletin board (e.g., a broadcast channel, a blockchain); then both parties open
their committed bits and the XOR of the two bits is used to decide the winner.
If either player ever aborts from the protocol or opens the commitment wrongly,
it automatically forfeits and the other is declared the winner. Blum’s protocol is
not unbiasable, i.e., a player can indeed misbehave and bias the coin—however,
the bias will simply benefit the other player and hurt itself. Although not explic-
itly stated in Blum’s original paper, in fact, his celebrated protocol achieves a
game-theoretic notion of fairness which is strictly weaker than the de facto unbi-
asability notion. Specifically, no player can benefit itself or hurt the other by
deviating from the protocol, and thus the honest protocol is a Nash equilibrium
in which no player would be incentivized to deviate.

The above example shows that in the two-party setting, adopting a game the-
oretic notion of fairness allows us to circumvent the impossibility of fairness in
the corrupt majority setting [16]. Therefore, a natural question is whether such
game theoretic notions can also help us in the multi-party setting. Surprisingly,
this very natural question has traditionally been overlooked in the long line of
work on multi-party protocols. Only very recently, an elegant work by Chung
et al. [14] initiated the study of game-theoretic fairness in a multi-party setting.
Unfortunately, Chung et al. [14] proved broad impossibility results (in the cor-
rupt majority setting) for a particular formulation of the multi-party coin toss
problem for natural game-theoretic fairness notions. Specifically, suppose that n
parties want to toss a binary coin, and each player has preference for either the
bit 0 or 1. If the outcome agrees with a player’s preference, it obtains a utility
1; otherwise, it obtains a utility of 0. Chung et al. [14] showed that roughly
speaking, unless all players but one prefer the same coin, the following natural
fairness notions can be ruled out in the corrupt majority setting: 1) maximin

Game-Theoretic Fairness Meets Multi-party Protocols 5

fairness, which requires that no coalition can harm any honest individual; and 2)
cooperative strategy proofness (also called CSP-fairness for short), which requires
that no coalition can benefit itself.

Philosophically, if a protocol satisfies maximin fairness and CSP fairness,
then no individual should be incentivized to deviate from this equilibrium, no
matter whether the coalition/individual is greedy and profit-seeking, malicious
and aiming to harm others, or paranoid and aiming to defend itself in the worst-
possible scenario. Such protocols are also said to be incentive compatible.

1.1 Leader Election: Another Formulation of Multi-party Coin Toss

In this paper, we revisit the question of game-theoretically fair multi-party coin
toss. Specifically, we consider an alternative formulation. Instead of tossing a
binary coin, we consider the problem of leader election which can be viewed as
tossing an n-way coin among n parties. Suppose that all parties prefer to be
elected: the elected leader gains a utility of 1 (or equivalently, a utility of an
arbitrary positive value), whereas everyone else gains a utility of 0. This natu-
ral utility notion is often encountered in practical applications as we mention
in Sect. 1.3. Intriguingly, for this formulation, the theoretical landscape appears
starkly different from the binary-coin case1. The broad impossibility results of
Chung et al. [14] for the binary case no longer apply. A folklore approach hence-
forth called the tournament-tree protocol [6,31] establishes the feasibility of a
logarithmic round, game-theoretically fair leader election protocol, even in the
presence of majority coalitions:

– Each pair of players duels with each other to select a winner using Blum’s
coin toss [10]; again, aborting is treated as forfeiting.

– Now the n
2 winners of the previous iteration form pairs and run the same

protocol to elect n
4 winners.

– After logarithmically many rounds, the final winner is called the leader.

Like Blum’s protocol, the tournament-tree protocol also does not satisfy unbi-
asability, since anyone can abort and bias the outcome in a direction that harms
itself. However, one can show that it indeed satisfies the aforemnetioned maximin
fairness and CSP fairness notions, i.e., no coalition can harm an honest individ-
ual or benefit itself. In light of this folklore protocol, one important and natural
open question is to understand the round complexity of game-theoretically fair,
multi-party leader election in the corrupt majority setting. Specifically, can we
have an n-party, game-theoretically fair leader election protocol that tolerates
majority coalitions, and completes in o(log n) number of rounds? A näıve idea
is to directly collapse the tournament-tree protocol to two rounds—in the first
round, all players commit all random coins they ever need to use in the proto-
col; and in the second round, they open all random coins. It turns out that this
näıve approach completely fails in the sense that a majority coalition can have
a definitive winning strategy (see the online full version [15]).

1 Game theoretically fair leader election and binary coin toss are different in nature
partly due to the different utility functions.

6 K.-M. Chung et al.

Throughout this paper, we shall consider the plain setting without trusted
setup, and allowing standard cryptographic assumptions. This rules out näıve
solutions such as having the trusted setup choose the coin toss outcome, or using
Verifiable Delay Functions [11,12]. Also, recall that in the honest majority set-
ting, the standared multi-party computation literature gives us constant-round
solutions [7,18] that achieves the stronger notion of unbiasability. Therefore, we
will focus on the corrupt majority setting. We also stress that the game-theoretic
fairness notions we consider are stronger than in some previous contexts. For
example, a strictly weaker notion is called resilience, which requires that an
honest player is elected with constant probability [19,20,35,36]. The resilience
notion may be sufficient in certain contexts, however, it does not provide incen-
tive compatibility like our notions.

1.2 Our Results and Contributions

We initiate the study of the round complexity of game-theoretically fair, multi-
party leader election. Below, we first describe our new upper bound result and
techniques informally, and then we will discuss the interesting definitional sub-
tleties we encountered and our definitional contributions—it turns out that even
defining an approximate notion of (game-theoretic) fairness is rather non-trivial,
and the notions that existed in the literature appear somewhat lacking.

New upper bounds and techniques. Roughly speaking, we prove that one can
approximately match the fairness of the tournament-tree protocol, in as small as
O(log log n) rounds. Specifically, we give the following parametrized result that
allows one to trade off the round complexity and approximation factor.

Theorem 1 (Informal: round-efficient, game theoretically fair leader
election). For r ∈ [C0 log log n,C1 log n] where C0 and C1 are suitable con-
stants, r-round protocols exist that achieve

(
1 − 1

2Θ(r)

)
-approximate fairness in

the presence of a coalition of size at most
(
1 − 1

2Θ(r)

) · n.

In the above, roughly speaking, 1-fairness means perfect fairness and 0-
fairness means no fairness. Observe that if we plug in r = Θ(log log n), we can
achieve (1−o(1))-fairness against coalitions of size n−o(n). It is also interesting
to contrast our result with the classical notion of approximate unbiasability—
it is well-known that r-round protocols cannot achieve better than O(1/r)-
unbiasability in the presence of a majority coalition [16]. In contrast, our approx-
imation factor, i.e., 1

2Θ(r) , is exponentially sharper than the case of approximate
unbiasability. We review more related work on ε-unbiasability in the online full
version [15].

The techniques for achieving our upper bound are intriguing and somewhat
surprising at first sight. We describe a novel approach that combines combina-
torial techniques such as extractors, as well as cryptographic multiparty com-
putation (MPC). Intriguingly, for designing game theoretically secure protocols,
some of our classical insights in the standard MPC literature do not apply.

Game-Theoretic Fairness Meets Multi-party Protocols 7

Several aspects of our protocol design are counter-intuitive at first sight. For
example, jumping ahead, we defend against “a large coalition benefitting itself”
using (non-trivial) combinatorial techniques; but these combinatorial techniques
provide no meaningful defense against a small coalition benefitting itself—it is
initially surprising that small coalitions turn out to be more challenging to defend
against. To defend against a small coalition, we employ a special honest-majority
MPC protocol as part of our final construction. The fact that an honest-majority
MPC can provide meaningful guarantees in a corrupt majority setting is initially
surprising too. Of course, weaving together the combinatorial and the crypto-
graphic techniques also has various subtleties as we elaborate on in subsequent
sections. We believe our design paradigm can potentially lend to the design of
other game-theoretically fair protocols.

New definition of approximate fairness. It turns out that how to define a good
approximate fairness notion requires careful thought. The most natural (but
somewhat flawed) way to define (1−ε)-fairness is to require that even a majority
coalition cannot increase its own chances by more than an ε factor, or reduce an
honest individual’s chance by more than ε. Throughout the paper, we allow the
coalition’s action space to include arbitrary deviations from the prescribed pro-
tocol, as long as the coalition is subject to probabilistic polynomial-time (p.p.t.)
computations. We consider a multiplicative notion of error, i.e., we want that a
coalition A’s expected utility is at most |A|

(1−ε)·n where |A|
n is the coalition’s fair

share had it played honestly; moreover, we want that any honest individual’s
expected utility is at least (1 − ε)/n where 1/n is its utility if everyone partici-
pated honestly. We prefer a multiplicative notion to an additive notion, because
in practical settings, the game may be repeated many times and the absolute
value of the utility may not be as informative or meaningful. The relative gain
or loss often matters more.

Indeed, some earlier works considered such an approximate fairness notion—
for example, Pass and Shi [33] considered such a notion in the context of con-
sensus protocols; they want that a (minority) coalition cannot act selfishly to
increase its own gains by more than ε2. We realize, however, that such an approx-
imate notion is somewhat flawed and may fail to rule out some undesirable pro-
tocols. Specifically, consider a protocol in which some bad event happens with
small but non-negligible probability, and if the bad event happens, it makes sense
for the coalition to deviate. For example, consider a contrived example.

Example. Suppose that Alice and Bob run Blum’s coin toss except that with
ε probability, Bob sends all his random coins for the commitment to Alice
in the first round. If this small-probability bad event happens, Alice should
choose a coin that lets her win. This is not a desirable protocol because with
small but non-negligible probability, it strongly incentivizes Alice to deviate.

However, the above protocol is not ruled out by the aforementioned notion of
approximate fairness: since the probability of the bad event is small, the a-
2 Pass and Shi [33] do not consider the threat of a coalition targeting an individual.

8 K.-M. Chung et al.

priori motivation for Alice or Bob to deviate is indeed small. In the online full
version [15], we give another (arguably less contrived) counter-example that also
violates sequential fairness.

We propose a new approximate fairness notion called sequential approximate
fairness that avoids this drawback, and characterizes a more desirable space of
solution concepts. At a very high level, our new notion says, it is not enough for
a coalition to not have a-priori noticeable incentives to deviate, rather, we want
the following stronger guarantee: except with negligible probability, at no point
during the protocol execution should a coalition have noticeable (i.e., ε) incentive
to deviate, even after having observed the history of the execution so far.

Remark 1. In the online full version [15], we show that the non-sequential
approximate fairness notion is in fact equivalent to a multiplicative approxi-
mate variant of the Rational Protocol Design (RPD) notion proposed by Garay
et al. [22–24]. However, as mentioned, we believe that our new sequential approx-
imate notion provides a better solution concept.

Lower bound. The tournament-tree protocol achieves perfect fairness (i.e., ε = 0)
in an ideal “commit-and-immediately-open” model. That is, the protocol pro-
ceeds in log n iterations where each iteration consists of a commitment and a sub-
sequent opening for every player. In the online full version [15], we prove a lower
bound showing that in the operational model of the tournament-tree protocol,
i.e., if we insist on perfect fairness (assuming idealized commitments) as well as
immediate opening of committed values, unfortunately Θ(log n) rounds is opti-
mal. This lower bound provides a useful sanity check and guideline for protocol
design. In comparison, our protocol achieves sub-logarithmic round complexity
by introducing the approximate fairness relaxation and general cryptographic
techniques. It is an open direction to precisely characterize the minimal condi-
tions/assumptions under which sub-logarithmic rounds become possible.

Theorem 2 (Informal: some relaxations in our design are necessary).
Assume the ideal commitment model. If commitments must be opened immedi-
ately in the next round and perfect fairness is required, then Ω(log n) rounds is
necessary.

Our work complements the recent prior work of Chung et al. [14] and makes
a new step forward at understanding the mathematical landscape of game-
theoretically fair, multi-party coin toss. Unlike the de facto unbiasability notion,
however, our understanding of game-theoretic fairness in multi-party protocols
is only just beginning, and there are numerous open questions. We describe some
open questions in the online full version [15].

1.3 Motivating Applications and Scope of Our Work

Our work should be viewed as an initial theoretical exploration of the round com-
plexity of game-theoretically fair leader-election. We do not claim practicality;

Game-Theoretic Fairness Meets Multi-party Protocols 9

however, it is indeed an exciting future direction to design practical variants of
our ideas.

Having said this, interestingly, the original inspiration that led the formula-
tion of this problem as well as our game theoretic notions comes from emerg-
ing decentralized applications [5,6,9,31]. In a decentralized environment, often
pseudonyms or public keys are cheap to create, and thus it may well be that many
pseudonyms are controlled by the same entity, i.e., the classical honest major-
ity assumption is not reasonable. Some works orthogonal and complementary to
our paper [30] aim to make it more costly to establish identities in decentral-
ized applications, nonetheless, even with such DoS-defense mechanisms, honest
majority may not be a reasonable assumption.

A line of work [5,9] considered how to achieve a “financially fair” n-party
lottery over cryptocurrencies such as Bitcoin and Ethereum. These works adopt
game-theoretic fairness notions similar in spirit to ours, but they rely on collat-
eral and penalty mechanisms to achieve fairness. In comparison, in our model,
we aim to achieve fairness without having to rely on additional assumptions such
as collateral and penalty. A couple recent works [6,31] also pointed out that col-
lateral and penalty mechanism can be undesirable and should be minimized in
mechanism design in decentralized blockchain environments.

Leader election is also needed in decentralized smart contracts where one may
want to select a service provider among a pool to provide some service, e.g., act
as the block proposer, generate a verifiable random beacon, or verifiably perform
some computational task, in exchange for rewards. In this case, providers may
wish to get elected to earn a profit. A coalition may also wish to monopolize
the eco-system by harming and driving away smaller players (potentially even
at the cost of near-term loss). Conversely, a small player may be concerned
about protecting itself in worst-possible scenarios. Our game-theoretic notion
guarantees that no matter which of objectives a player or coalition has, it has
no noticeable incentive to deviate from the honest protocol. In such blockchain
settings, typically the blockchain itself can serve as a broadcast channel, and a
round can be a confirmation delay of the blockchain3.

2 Technical Overview

In this section, we will go through a few stepping stones to derive an O(log log n)-
round protocol achieving (1 − o(1))-approximate fairness. We defer the fully
parametrized version to the subsequent formal sections.

3 Why and how blockchain can formally realize/approximate a broadcast channel is
outside the scope of our paper, and has been extensively studied in a line of works on
distributed consensus. We simply assume broadcast as given, a modeling approach
that has been adopted in the long line of work on multi-party computation. In fact,
our protocol execution model is no different from the standard literature on multi-
party computation—see Sect. 2.1.

10 K.-M. Chung et al.

2.1 Leader Election Protocol

A leader election protocol (also called lottery) involves n players which exchange
messages over pairwise private channels as well as a common broadcast channel.
The protocol execution proceeds in synchronous rounds: in every round, players
first receive new messages, then they perform some local computation, and send
new messages. We assume a synchronous network where messages posted by
honest players can be received by honest recipients in the immediate next round.
At the end of the final round, everyone can apply an a-priori fixed function f
over all messages on the broadcast channel to determine a unique leader from [n],
i.e., the result is publicly verifiable. For correctness, we require that in an honest
execution where all players faithfully follow the protocol, the elected leader be
chosen uniformly at random from [n].

A subset of the players (often called a coalition) may decide to deviate from
the honest strategy. Such a coalition can perform a rushing attack: during a
round, players in the coalition (also called corrupt players) can wait to read all
messages sent by honest players in this round, then decide what messages they
should send in the same round.

Throughout the paper, we assume that an execution of the protocol is
parametrized with a security parameter κ, since the protocol may adopt cryp-
tographic primitives. We assume that the number of players n is a polynomially
bounded function in κ; without loss of generality we assume that n ≥ κ.

2.2 Non-sequential Approximate Fairness

For simplicity, we first present an overview of our upper bound using the non-
sequential notion of approximate fairness. However, in subsequent formal sec-
tions, we will actually define a better solution concept called sequential approxi-
mate fairness, and prove our protocols secure under this better solution concept.

Chung et al. [14] considered game theoretic fairness in a setting where n
parties wish to toss a binary coin. They considered perfect fairness notions and
coined them cooperative-strategy-proofness and maximin fairness, respectively.
Below we give the natural approximate versions of these notions:

– CSP-fairness: we say that a leader election protocol achieves (1 − ε)-
cooperative-strategy-proofness against a (non-uniform p.p.t.) coalition A ⊂
[n], iff no matter what (non-uniform p.p.t.) strategy A adopts, its expected
utility is at most |A|

(1−ε)n . We often write CSP-fairness in place of “cooperative
strategy proofness” for short.

– Maximin fairness: we say that a leader election protocol achieves (1 − ε)-
maximin-fairness against a (non-uniform p.p.t.) coalition A ⊂ [n], iff no
matter what (non-uniform p.p.t.) strategy A adopts, any honest individual’s
expected utility is at least (1 − ε)/n.

Approximate maximin-fairness and approximate CSP-fairness are not
equivalent—we give more explanations in the online full version [15].

Game-Theoretic Fairness Meets Multi-party Protocols 11

Remark 2 (Coalition-resistant notions of equilibrium). In our definitions, we con-
sider the deviation of a single coalition. This definitional approach is standard
in game theory [1–4,19–21,25,29,36,38], since the philosophy is to capture the
notion of an approximate equilibrium in the sense that no coalition has noticeable
incentives to deviate. Our equilibrium notion is coalition-resistant. In compari-
son, the standard notion of (approximate) Nash equilibrium typically considers
deviation of a single player, and therefore is weaker than our notions in this
sense.

Remark 3 (Choice of ε). In our formal results later, we will use ε = o(1)—in
fact, our result will be parametrized. For simplicity, in the informal roadmap, it
helps to think of ε = 1%.

2.3 A Strawman Scheme

Although in our final scheme we do NOT use random oracles (RO), it is instruc-
tive to think about a strawman scheme with an RO. Interestingly, this approach
is inspired by recent proof-of-stake consensus protocols [17,28].

Strawman: RO-based committee election + tournament tree

1. Every player i ∈ [n] broadcasts a bit xi ∈ {0, 1}, and we use
RO(x1, . . . , xn) to elect committee of size log9 n. If a player i fails to
post a bit, we treat xi := 0.

2. The committee runs the tournament-tree protocol to elect a final leader.

One can easily show that this approach achieves (1− ε)-CSP-fairness against
any coalition A containing at least ε/2 fraction of the players—we call a coalition
at least ε/2 fraction in size a large coalition. The argument is as follows. Since
the second step, i.e., tournament tree, is in some sense “ideal”, to increase its
expected utility, the coalition A ⊂ [n] must include as many of its own members
in the committee as possible. Suppose that ε = 1%. For a fixed RO query, the
probability that it selects a bad committee, i.e., one with more than |A|

(1−ε)·n
fraction of coalition players, is negligibly small by the Chernoff bound. Since the
coalition is computationally bounded and can make at most polynomially many
queries to RO, by the union bound, except with negligible probability, all of its
RO queries select a good committee.

Unfortunately, this scheme suffers from a couple serious flaws:

– Drawback 1: NOT approximately maximin-fair: a coalition A can harm an
individual i /∈ A as follows: wait till everyone not in A broadcasts their bits,
and then try different combinations of bits for those in A to find a combination
that excludes the player i from the committee. This attack can succeed with
1 − o(1) probability if |A| = Θ(log n).

– Drawback 2: NOT approximately CSP-fair against a small coalition: a profit-
seeking individual i is incentivized to deviate in the following manner: i can

12 K.-M. Chung et al.

wait for everyone else to post bits before posting its own bit denoted xi. In
this way it can increase its advantage roughly by a factor of 2 since it can try
two choices of xi. This attack can be extended to work for small coalitions
too.

The second drawback is somewhat surprising at first sight, since we proved
the strawman scheme to be CSP-fair against large coalitions (i.e., at least ε/2
fraction in size). The reason is because the Chernoff bound proof gives only sta-
tistical guarantees about a population, but does not give meaningful guarantees
about an individual or a very small group of players.

Remark 4. In the above strawman, one can also replace the committee election
with a single iteration of Feige’s lightest bin protocol [20]. The resulting protocol
would still be (1 − ε)-CSP-fair, although it suffers from exactly the same draw-
backs as the RO-based strawman. The upgrade techniques described in Sect. 2.4,
however, is compatible only with the RO-based approach—and this is why we
start with the RO-based approach. However, intriguingly, we will indeed make
use of the lightest bin protocol later in Sect. 2.5 where we show how to get rid
of the RO.

2.4 Warmup: A Game Theoretically Fair, RO-Based Protocol

We now discuss how to fix the two drawbacks in the previous strawman scheme.
We will still have an RO in the resulting warmup scheme; however, in the imme-
diate next subsection, we will discuss techniques for removing the RO, and obtain
our final construction.

The first drawback is due to a potentially large coalition A choosing its coins
(after examining honest coins) to exclude some individual i /∈ A from the com-
mittee. The second drawback is due to a small coalition A containing less than
ε fraction of the players choosing its coins to help its members get included.
To tackle these drawbacks, our idea is to introduce virtual identities henceforth
called v-ids for short. Basically, we will use the RO to select a committee con-
sisting of v-ids. When the RO’s inputs are being jointly selected, we make sure
that 1) a potentially large coalition A has no idea what each honest individual’s
v-id is and thus A has no idea which v-id to target; and 2) a small coalition has
no idea what its own v-ids are, and thus it has no idea which v-ids to help.

To achieve this, each player i’s final v-id will be the xor of two shares: a
share chosen by the player itself henceforth called the unmasked v-id, and a
share jointly chosen by a special, honest-majority protocol, henceforth called
the mask. In the beginning, the player itself commits to its own unmasked v-id,
and the MPC protocol jointly commits to each player’s mask. Next, the players
jointly choose the inputs to the RO. Finally, each player reveals its own unmasked
v-id, and then the MPC protocol reconstructs all players’ masks.

Special honest-majority MPC. Instantiating these ideas correctly, however, turns
out to be rather subtle. A generic honest-majority MPC protocol does not guar-
antee anything when there is a large coalition. In our case, when the coalition is

Game-Theoretic Fairness Meets Multi-party Protocols 13

large, it can fully control the mask value. However, we do need that even with
(1 − ε)n-sized coalitions, the mask value must be uniquely determined at the
end of the sharing phase, and reconstruction is guaranteed. More specifically, we
want our special, honest-majority MPC to satisfy the following properties for
some small η ∈ (0, 1) (think of η = ε/2):

– If |A| ≤ ηn, we want that at the end of this sharing phase, A has no idea
what its own masks are;

– As long as |A| < (1 − 2η)n, at the end of the sharing phase, the mask value
to be reconstructed is uniquely determined, and moreover, reconstruction is
guaranteed to be successful.

The following Fη
mpc ideal functionality describes what we need from the

honest-majority MPC. For simplicity, in our informal overview, we will describe
our protocols assuming the existence of this Fη

mpc ideal functionality. Later in
Sect. 4.2, we will instantiate it with an actual, constant-round cryptographic
protocol using bounded concurrent MPC techniques [32]. Technically, the real-
world cryptographic instantiation does not securely emulate Fmpc by a standard
simulation-based notion; nonetheless, we prove in the online full version [15] that
the fairness properties we care about in the ideal-world protocol (using idealized
cryptography) extend to the real-world protocol (using actual cryptography).

Fη
mpc: special, honest-majority MPC functionality

Sharing phase. Upon receiving share from all honest players, choose a
random string coins. If the coalition size |A| ≥ ηn, the adversary is asked to
overwrite the variable coins to any value of its choice. Send ok to all honest
players.

Reconstruction phase. Upon receiving recons from all honest players: if
|A| ≥ (1− 2η)n, the adversary may, at this point, overwrite the string coins
to its choice. Afterwards, in any case, send coins to all honest players.

Our warmup RO-based protocol. Now, it helps to describe our protocol first, then
we explain the additional subtleties. We describe our warmup protocol using an
idealized commitment scheme, as well as the Fmpc functionality described earlier.

Our warmup RO-based protocol

1. Every player i ∈ [n] commits to a randomly selected unmasked v-id
yi ∈ {0, 1}v where 2v = n · poly log n.

2. Send share to Fε/2
mpc and receive ok from Fmpc.

3. Every player i ∈ [n] broadcasts a bit xi. Let x be the concatenation of
all of {xi}i∈[n] in increasing order of the players’ indices—here for any
player j who has aborted, its xj is treated as 0.

4. Every player i ∈ [n] now opens its committed unmasked v-id yi ∈ {0, 1}v.

14 K.-M. Chung et al.

5. All honest players send recons to Fε/2
mpc, and they each receive a mask

vector z from Fε/2
mpc.

6. Parse z := (z1, . . . , zn) where each zj ∈ {0, 1}v for j ∈ [n]. We now view
yi ⊕ zi player i’s final v-id. A player i is a member of the committee C iff
1) it correctly committed and opened its unmasked v-id yi; 2) its final
v-id yi ⊕ zi is chosen by RO(x); and 3) its final v-id yi ⊕ zi does not
collide with anyone else’s final v-id—we may assume that anyone who
aborted has the final v-id ⊥.

7. The committe C runs the tournament-tree protocol to elect a leader.

Additional subtleties. At this moment, it helps to point out a few additional
subtleties.

1. Unique reconstruction even under a majority coalition. First, recall that even
in the presence of a (1−ε)-coalition, we wanted our Fmpc to guarantee unique-
ness of the reconstructed mask z at the end of the sharing phase. This is
important because we do not want the coalition to see the RO’s outputs and
then choose the mask vector z a-posteriori to exclude some honest individual
from the final committee or to include all of the coalition members.

2. The need for collision detection. Second, notice that the protocol prevents col-
liding final v-ids from being elected into the final committee. Such a collision
detection mechanism is necessary since otherwise, the following attack would
be possible4: a 99% coalition can make all of its members choose the same
final v-id—it can do that because it controls its members’ unmasked v-ids as
well as the mask value. Now, the 99% coalition can choose its input bits to
the RO to help this particular final v-id. In this way, with high probability,
all coalition members can be elected into the final committee.

3. Proving sequential approximate fairness. Last but not the least, so far we
have only focused on the non-sequential notion of fairness, and it turns out
that proving the sequential notion is much more subtle. In our formal proofs
later (see Sect. 5 and the online full version [15]), we will do a round-by-round
argument to show that except with negligible probability, in no round of the
protocol would the coalition have noticeable incentive to deviate.

Since this warmup construction is not our final scheme, we will not formally
prove the warmup construction. Instead, we now explain how to get rid of the
RO to get our final scheme.

2.5 Final Construction: Removing the Random Oracle

To remove the RO, our idea is to replace the committee election with a two-
phase approach, where the first phase uses a single iteration of Feige’s lightest-
bin protocol [20] and the second phase uses a combinatorial object called a
4 We describe this attack for illustration purposes to help understanding. Of course,

we will later prove our final construction secure against all possible p.p.t. coalition
strategies.

Game-Theoretic Fairness Meets Multi-party Protocols 15

sampler [37] in place of the RO. We briefly describe the intuition below. The
actual scheme, calculations, and proofs are more involved especially for getting
the more general, parametrized result, and we defer the full description to the
subsequent formal sections.

Background. We will rely on a combinatorial object called a sampler which is
known to be equivalent to a seeded extractor [37]5. A sampler, denoted as Samp,
is a combinatorial object with the following syntax and properties: given an input
x ∈ {0, 1}u, Samp(x) returns d sample points z1, . . . , zd ∈ {0, 1}v from its output
space. A sampler is supposed to have good, random-sampling-like properties.
Consider a predicate function f : {0, 1}v → {0, 1}. The population mean of f
over its inputs is defined as is 1

2v

∑
z∈{0,1}v f(z). The d sample points define

a sample mean 1
d

∑d
j=1 f(zj), which ideally should be close to the population

mean. An (εs, δs)-averaging sampler Samp guarantees that for any f , at least a
1 − δs fraction of the inputs will lead to a sample mean that differs from the
population mean by at most εs additively.

Intuition. A flawed idea is to directly replace the RO in the warmup scheme with
a sampler. To do so, the nature of our proof for this specific step will have to
change: in the warmup scheme, we relied on the fact that the coalition can make
only polynomially many queries to RO in our fairness proof. With a sampler,
however, we must make a combinatorial argument here that does not depend
on the adversary’s computational bounds (although to reason about other parts
of the scheme involving the commitment and the MPC, we still need to make
computational assumptions on the adversarial coalition). Specifically, we want
to argue that no matter which subset of players form a coalition, as long as the
coalition’s size is, say, between 0.01n and 0.99n, then almost all honest inputs
xH resist even the worst-case attack, in the sense that there does not exist a
xA such that x = (xH , xA) would form a bad input to Samp6. Here x is said to
be a bad input to Samp if Samp(x) selects a committee in which the fraction of
coalition players is noticeably higher than |A|/n.

Suppose that we want to select a log9 n-sized committee, and the final v-id
space is of size n log3 n. In this case, we would need the sampler to select roughly
d = log12 n output points. A calculation using the probabilistic method suggests
that in this case, we cannot start with n players who jointly select the input to
the sampler—if so, there would simply be too many combinations the adversarial
coalition could try for its own input bits; and the number of bad inputs to the
sampler simply is not sparse enough to defeat so many adversarial combinations.

The parameters would work out, however, if we start out with, say, log3 n
players who jointly choose the input to the sampler. In our subsequent formal
sections, we will select parameters that work with the best known explicit sam-
pler construction [27,34,37].

5 We stress that our construction does not need a common reference string as the seed.
6 Throughout the paper, for S ⊆ [n], we use xS := {xi}i∈S to denote the coordinates

of the vector x corresponding to all players in S.

16 K.-M. Chung et al.

Our idea. Given the above intuition, our idea is to adopt a two-phase committee
election approach. We first down-select to a preliminary committee of size log3 n,
and then the preliminary committee jointly choose input bits to a sampler to
select a final committee among all players, and the final committee runs the
tournament tree protocol to elect a leader among the final committee. We sketch
the protocol below while deferring a more formal description to Sect. 4:

– Commitment phase. As before, players commit to their unmasked v-ids and
use an honest-majority MPC to jointly commit to a mask first.

– Preliminary committee election. First, we elect a log3 n-sized preliminary com-
mittee such that the fraction of honest players on the preliminary committee
approximately matches the fraction of honest players in the overall popula-
tion. Here we do not care about the threat where a potentially large coalition
seek to exclude a specific individual or a small coalition or individual try to
include itself. It turns out that this can be accomplished by running a single
iteration of Feige’s elegant lightest bin protocol [20] in the plain model.

– Final committee election. Next, the preliminary committee jointly selects an
input to the sampler, which is used to select log9 n final v-ids among the
space of all possible v-ids—these final v-ids would form the final committee.
At this moment, the players open their unmasked v-ids, and reconstruct the
mask that was secret shared earlier by the MPC. The players’ final v-ids are
now revealed, and the final committee determined.

– Leader election. Finally, the elected, poly-logarithmically sized final commit-
tee runs the tournament-tree protocol to elect a final leader.

3 Defining Sequential Approximate Fairness

3.1 Sequential Approximate Fairness

The non-sequential fairness notions mentioned in Sect. 2.2 does not rule out some
undesirable protocols that may offer incentives for a coalition to deviate with
non-negligible probability. Recall the example given in Sect. 1 where two parties
run Blum’s coin toss except that with some small ε probability, Bob broadcasts
all its private coins in the first round. If the small (but non-negligible) probability
bad event happens, Alice should deviate and choose her coins to definitively win.
However, a-priori Alice does not have much incentive to deviate: since the bad
event happens with only ε probability, her a-priori probability if winning is at
most ε · 1 + (1 − ε) · 1

2 = (1 + ε) · 1
2 , and this is only an ε fraction more than her

fair share. Nonetheless, we do want to rule out such bad protocols since such
a protocol has a non-negligible probability ε of creating incentives for Alice to
deviate.

We propose a better solution concept called sequential approximate fairness.
Roughly speaking, we require that even if the coalition is allowed to re-evaluate
whether to deviate at the beginning of every round in the protocol, except with
negligible probability, no p.p.t. coalition (of size at most (1 − ε)n) should have ε
incentive to deviate at any time.

Game-Theoretic Fairness Meets Multi-party Protocols 17

When we try to formalize this notion of sequential rationality, we encounter
another subtlety: since our protocols will rely on cryptographic commitment
schemes, our definitions should capture the fact that the coalition is polynomi-
ally bounded. For example, it could be that there exists a set of execution prefixes
that account for non-negligible probability mass, such that if A deviated condi-
tioned on having observed those prefixes, it would have gained noticeably. How-
ever, it might be that these prefixes are computationally infeasible to recognize,
since recognizing them might involve, say, breaking cryptographic commitments.
As a result, our definitions actually stipulate that, for any polynomially bounded
coalition strategy that wants to deviate with non-negligible probability at some
point in the execution, deviating will not conditionally improve the coalition’s
utility by more than a noticeable amount.

To formally define our sequentially approximately fair notions, we first intro-
duce some probability notations.

Probability notation. In this paper, we use the acronym p.p.t. to mean expected
probabilistic polynomial-time. Let Π denote the original honest protocol. How-
ever, a non-uniform p.p.t. coalition A ⊂ [n] might deviate from the original
protocol and we use S to denote the strategy of A. As a special case, we use the
notation A(Π) to mean that the coalition A simply follows the honest protocol
and does not deviate. Let κ be the security parameter. We use the notation
tr ← ExecA(S) to denote a random sample of the protocol execution, where the
honest players [n]\A, interact with the coalition A which adopts the strategy
S. The random experiment ExecA(S) produces an execution trace tr (also called
a trace for short), which consists of all the messages and the internal states of
all players throughout the entire execution. Once the coalition A’s strategy S is
fixed, all players’ internal states and messages in all rounds would be uniquely
determined by all players’ randomness in all rounds—thus one can also equiva-
lently think of tr as the sequence of all players’ random coins in all rounds.

An event Evt(tr) is identified with its indicator function that takes a trace
tr and returns either 1 (meaning the event happens) or 0. For example, we use
WA(tr) = 1 to indicate that one player in A is elected as the leader in the end.

We use Pr[ExecA(S)(1κ) : Evt] := Pr[tr ← ExecΠ,A(S)(1κ) : Evt(tr)] to
denote the probability that when the coalition A adopts strategy S, the event
Evt happens. Similarly, given events Evt1 and Evt2, we use Pr[ExecA(S)(1κ) :
Evt1 | Evt2] to denote the conditional probability that when the coalition A
adopts strategy S and conditioning on the event Evt2, event Evt1 also happens.
The same notation extends to expectation E[·].

Deviation event. Given a strategy S of the coalition A, we define the deviation
event DevA(S)(tr) as follows:

– for each round r = 1, 2, . . .: replay the trace tr (which contains all players’
random coins) till the beginning of round r, immediately after the coalition
A has observed all honest nodes’ round-r messages; at this moment, check
whether the strategy S adopted by A would deviate from the honest protocol

18 K.-M. Chung et al.

Π in round r (i.e., whether S would send a message that differs from what
the honest strategy would have sent, suppose that the random coins of S have
been fixed by the trace tr); if yes, return 1;

– return 0 if the strategy S adopted by A does not actually deviate from Π till
the end.

Intuitively, we say that a protocol satisfies sequential CSP-fairness against
the coalition A iff either A never wants to deviate except with negligible proba-
bility (condition 1 in Definition 1); or conditioned on deviating, A does not do
noticeably better (condition 2 in Definition 1).

Definition 1 (Sequential CSP-fairness). Let ε ∈ (0, 1). We say that a
leader election protocol Π achieves (1 − ε)-sequential-CSP-fairness against a
(non-uniform p.p.t.) coalition A ⊆ [n] iff for any strategy S by A, there exist a
negligible function negl(·), such that and for all κ, at least one of the following
holds—recall that WA is the event that one of the coalition members in A is
elected leader:

1. Pr
[
ExecA(S)(1κ) : DevA(S)

]
≤ negl(κ),

2. Pr
[
ExecA(S)(1κ) : WA

∣
∣ DevA(S)

]
≤ 1

1−ε ·Pr
[
ExecA(Π)(1κ) : WA

∣
∣ DevA(S)

]
+

negl(κ).

In the above, the left-hand-side Pr
[
ExecA(S)(1κ) : WA

∣
∣ DevA(S)

]
means the

conditional probability that A(S), i.e., a coalition A adopting strategy S, is
elected leader, conditioned on DevA(S), i.e., that A(S) decided to deviate from
honest behavior. The right-hand-side Pr

[
ExecA(Π)(1κ) : WA

∣
∣ DevA(S)

]
means

the conditional probability for A to win, had A continued to adopt the honest
strategy throughout, even though A(S) had wanted to deviate at some point in the
protocol—the conditional probability is calculated when conditioning on traces
where A(S) would have deviated7. Intuitively, Condition 2 above says that con-
ditioned on the strategy S deciding to deviate, the coalition A cannot benefit
itself noticeably in comparison with just executing honestly to the end.

We can similarly define the sequential approximate maximin fairness.

Definition 2 (Sequential maximin fairness). Let ε ∈ (0, 1). We say that a
leader election protocol Π achieves (1− ε)-sequential-maximin-fairness against a
(non-uniform p.p.t.) coalition A ⊆ [n] iff for any strategy S by A, there exist a
negligible function negl(·), such that for all κ, at least one of the following holds:

7 Note that the event DevA(S)(tr) is well-defined, even if tr is sampled from ExecA(Π),
i.e., an execution in which A adopts the honest strategy. In this case, DevA(S)(tr)
means the following: had A instead adopted the strategy S rather than the honest
strategy Π, is there a round in which S would have started to deviate from the honest
protocol, given that all players’ randomness in all rounds is fixed by tr .

Game-Theoretic Fairness Meets Multi-party Protocols 19

1. Pr
[
ExecA(S)(1κ) : DevA(S)

]
≤ negl(κ),

2. for any i /∈ A, let W i be the event that player i is elected as the leader, it
holds that

Pr
[
ExecA(S)(1κ) : W i

∣∣ DevA(S)
]

≥ (1 − ε) · Pr
[
ExecA(Π)(1κ) : W i

∣∣ DevA(S)
]

− negl(κ).

The following fact says that the sequentially rational notions implies the
corresponding non-sequential counterparts defined earlier in Sect. 2.2.

Fact 1 (Sequential notions are stronger). Let ε(n, κ) ∈ (0, 1) be a non-
negligible function. If a leader election protocol satisfies (1 − ε)-sequential-CSP-
fairness (or (1 − ε)-sequential-maximin-fairness resp.) against the coalition A ⊆
[n], then for ε′(n, κ) = ε(n, κ)+negl(κ) where negl(·) is some negligible function,
then, the same protocol also satisfies non-sequential (1 − ε′)-CSP-fairness (or
non-sequential (1 − ε′)-maximin-fairness resp.) against A.

Proof. Deferred to the online full version [15].

We show that if the slack ε is constrained to being negligibly small, then in
fact the non-sequential notions imply the sequential notions too. However, this
direction is not true when the slack ε may be non-negligible.

Fact 2. If a protocol Π satisfies (1 − negl(κ))-CSP-fairness (or (1 − negl(κ))-
maximin-fairness resp.) against the coalition A ⊂ [n] for some negligible func-
tion negl(·), then Π satisfies (1 − negl′(κ))-sequential-CSP-fairness (or (1 −
negl(κ))-sequential-maximin-fairness resp.) against A for some negligible func-
tion negl′(·).
Proof. Deferred to the online full version [15].

3.2 Fairness of the Tournament Tree Protocol

Instantiated with a suitable cryptographic commitment protocol (described in
the online full version [15]), the folklore tournament-tree protocol satisfies (1 −
negl(κ))-sequential-CSP-fairness and (1 − negl(κ))-sequential-maximin-fairness
against coalitions of arbitrarily sizes, as stated below:

Theorem 3 (Tournament-tree protocol). Suppose that n is the number of
players and κ is the security parameter. Then, the tournament-tree protocol,
when instantiated with a suitable publicly verifiable, non-malleable commitment
scheme as defined in the online full version [15], satisfies (1−negl(κ))-sequential-
CSP-fairness and (1−negl(κ))-sequential-maximin-fairness against coalitions of
arbitrarily sizes. Moreover, the number of rounds is O(log n).

Proof. Deferred to the online full version [15].

20 K.-M. Chung et al.

4 Formal Description of Our Scheme

4.1 Description of Our Scheme Assuming Idealized Cryptography

Our scheme makes use of an (εs, δs)-averaging sampler which we define in the
online full version [15]. We will first describe our scheme assuming idealized
commitments Fcomm and an ideal MPC functionality Fmpc described earlier in
Sect. 2.4. Later in Sect. 4.2, we will instantiate the ideal cryptographic primitives
with actual cryptography. In the scheme below, committing to a value is per-
formed by sending it to Fcomm, and opening is performed by instructing Fcomm

to send the opening to everyone.

Our leader election protocol (assuming idealized cryptography)

Parameters. For some r := r(n), suppose that we would like to achieve
round complexity O(r) satisfying C0 log log n < r(n) < C1 log n, where C0

and C1 are suitable constants. We set the parameters as follows:

– Let B := n
29r such that the expected number of players in a bin (assuming

honest behavior) is n
B = 29r in the preliminary committee election.

– The parameters of the sampler are chosen as below: v is chosen such
that 2v

n = 20.5r. Let εs := 2−6r, and δs := 2−(1− ψ
2)|U|, where ψ denotes a

lower bound on the fraction of honest players, we shall assume ψ ≥ 1
2Θ(r) ,

which means that |A| ≤ (1 − 1
2Θ(r))n. Let d = (|U|/εs)c̃, where c̃ is the

universal constant specified in the online full version [15].
– Let η := 1/20.2r.

Our protocol.

1. Elect the preliminary committee U using lightest bin. Everyone i ∈ [n]
broadcasts a random index βi ∈ [B] indicating its choice of bin where
B denotes the number of bins. The bin with the lightest load is selected
as the preliminary committee U . Break ties with lexicographically the
smallest bin.

2. Elect the final committee C. Let Samp : {0, 1}|U| → {{0, 1}v}d denote
an explicit (εs, δs)-averaging sampler. If it is not the case that |U| ≥
log 1

δs
+ c · v (see the online full version [15]), simply abort with the

exception param error and output player 1 as the leader.
(a) Every player sends share to Fη

mpc, and receives ok from Fη
mpc.

(b) Every player i ∈ [n] commits to a randomly selected unmasked v-id
henceforth denoted yi ∈ {0, 1}v.

(c) Every player in the preliminary committee i ∈ U broadcasts a bit
xi. Let x be the concatenation of all of {xi}i∈U in increasing order
of the players’ indices—here for any player j who has aborted, its xj

is treated as 0.
(d) Every player i ∈ [n] now opens the committed string yi ∈ {0, 1}v.

Game-Theoretic Fairness Meets Multi-party Protocols 21

(e) Input recons to Fη
mpc, and receive a mask vector z from Fη

mpc.
(f) Parse z := (z1, . . . , zn) where each zj ∈ {0, 1}v for j ∈ [n]. We now

view yi ⊕ zi as player i’s finalized v-id, which corresponds to a point
in the output range of the sampler Samp. The final committee C
is defined as a multiset constructed as follows: for j ∈ [d], if there
is exactly one player i ∈ [n] who opened yi and whose final v-id
yi ⊕ zi = Sampj(x), then add i to C.

3. Elect leader among final committee. The final committee run the
tournament-tree protocol to elect a final leader.a In case the final com-
mittee is empty, simply output player 1 as the leader.

a When the ideal Fcomm and Fη
mpc are instantiated with actual cryp-

tography later in Sect. 4.2, the opening/reconstruction messages will be
posted to the broadcast channel such that the elected leader can be deter-
mined from the collection of messages posted to the broadcast channel.

4.2 Instantiating the Scheme with Real-World Cryptography

Our final protocol replaces the ideal commitment and Fmpc with actual cryptog-
raphy. To achieve this, we take an intermediate step and consider an IdealZK-
hybrid protocol where IdealZK is an idealized zero-knowledge proof function-
ality which we formally define in the online full version [15]. We first instantiate
the ideal commitment and Fmpc using a protocol in the IdealZK-hybrid world,
and then we use the elegant techniques of Pass [32] to instantiate the protocol
with actual cryptography with only O(1) round blowup, while allowing bounded
concurrent composition without any common reference string or trusted setup. In
our case, the total number of concurrent sessions of the cryptographic protocols
is a-priori known given n.

Instantiating the ideal commitments with non-malleable commitments. We will
instantiate the ideal commitments using a publicly verifiable, non-malleable com-
mitment (NMC) scheme which is defined in the online full version [15]. Basically,
to commit to a string, a player invokes n instances of NMC, one for each of the
n recipients. To open a previously committed string, post the openings corre-
sponding to all n instances, and the opening is successful iff all n instances open
to the same string. We may assume that messages are posted to the broadcast
channel and it can be publicly checked what a commitment opens to. An honest
committer’s commitment will always successfully open even when the receiver is
malicious.

Instantiating the Fmpc with bounded concurrent zero-knowledge proofs. To
instantiate Fmpc with actual cryptography, we first instantiate it in IdealZK-
hybrid world. Then, we use the bounded concurrent zero-knowledge proofs of
Pass [32] to replace the IdealZK instances with actual zero-knowledge proofs.

Therefore, it suffices to describe how to replace Fmpc with a protocol Πmpc

in the IdealZK-hybrid world. This protocol actually does not realize Fmpc with

22 K.-M. Chung et al.

full simulation security8. Yet, we can later prove that when we replace Fmpc

with this protocol, the game theoretic fairness properties we care about extend
to the real-world protocol.

Πmpc: instantiating Fη
mpc in the IdealZK-hybrid world

Let comm be a perfectly binding and computationally hiding (non-
interactive) commitment scheme. We assume that committing to a string
is accomplished by committing to each individual bit. Let η ∈ (0, 1) be a
parameter.

Sharing phase.

1. Every player i chooses a random string coinsi ∈ {0, 1}vn. It splits coinsi
into a �η · n�-out-of-n Shamir secret shares, and let coinsi,j be the j-
th share. Next, for each j ∈ [n], player i computes the commitment
coinsi,j := comm(coinsi,j , ρi,j) where ρi,j denotes some fresh randomess
consumed by the commitment scheme, and it posts the commitment
message {coinsi,j}j∈[n] to the broadcast channel.

2. Player i does the following for each j ∈ [n]:
– invokes an IdealZK instance denoted IdealZKi,j to prove that the

commitment message {coinsi,k}k∈[n] it has posted is computed cor-
rectly, by supplying to IdealZKi,j 1) the statement {coinsi,k}k∈[n]

and 2) all the random coins used in computing the commitment
message. IdealZKi,j checks the following NP relation: all the com-
mitments are computed correctly, and moreover, the openings form
a valid �ηn�-out-of-n secret sharing.

– gives player j the opening (coinsi,j , ρi,j).
3. A player i ∈ [n] does the following: for every j ∈ [n], if player i

– has seen a message {coinsj,k}k∈[n] posted by j;
– has received the message ({coinsj,k}k∈[n], 1) from IdealZKj,i where

the statement must match the message posted by j; and
– has received a correct opening (coinsj,i, ρj,i) w.r.t. the i-th coordinate

of j’s posted message {coinsj,k}k∈[n], that is, coinsj,i.
then, it posts the tuple (ok, j) to the broadcast channel.

4. Every player i does the following: for every j ∈ [n] who has obtained an
approval message ok from at least (1 − η)n players, add j to the set S.
If |S| ≥ ηn, then let succ := 1; else let succ := 0. Output ok.

Reconstruction phase. If succ = 0, simply output the 0 vector. Else continue
with the following.

8 The reason we do not fully simulate Fmpc is due to technicalities arising from the
requirement that the outcome of the leader election be publicly computable from all
the messages posted to the broadcast channel.

Game-Theoretic Fairness Meets Multi-party Protocols 23

1. For every player j ∈ S, if the current player i posted (ok, j) during
the sharing phase, then let (coinsj,i, ρj,i) be the correct opening received
from j during the sharing phase, post (j, coinsj,i, ρj,i) to the broadcast
channel.

2. For every tuple (j, coinsj,k, ρj,k) received from some player k ∈ [n], if
j ∈ S and (coinsj,k, ρj,k) is a valid opening w.r.t. the k-th coordinate of
j’s commitment message posted during the sharing phase, then accept
this share (k, coinsj,k) of coinsj .
For every j ∈ S, use all accepted shares to reconstruct coinsj . Output
z := ⊕j∈Scoinsj if the reconstruction of every coinsj for j ∈ S is success-
ful; else output the vector 0.

Theorem 4 (Main theorem). Assume the existence of enhanced trapdoor per-
mutations and collision resistant hash functions. Then, there exists an O(r)-
round leader election protocol that achieves (1 − 2−Θ(r))-sequential-maximin-
fairness against a non-uniform p.p.t. coalition of size at most (1 − 2−Θ(r)) · n,
and (1 − 2−Θ(r))-sequential-CSP-fairness against a non-uniform p.p.t. coalition
of arbitrary size.

Proof. The theorem results from the construction presented in this section. The
detailed proofs are presented in Sect. 5 and the online full version [15].

5 Proofs for the Ideal-World Protocol

5.1 Bounding the Preliminary Committee’s Size

Since the preliminary committee U is chosen from a lightest bin, it is immediate
that |U| ≤ ⌊

n
B

⌋
. The next lemma states that there is a sufficient number of

honest players in U with high probability.

Lemma 1 (Sufficient honest players in the preliminary committee).
Suppose for some ψ ∈ (0, 0.5), there are at least ψ · n honest players. Let |UH |
denote the number of honest players in the preliminary committee U . Then, for
γ ∈ (0, 1), the following holds:

Pr
[
|UH | ≤ (1 − γ) · ψn

B

]
≤ B · exp

(
−γ2 · ψn

2B

)
.

In particular, if n
B = 29r and C0 log log n ≤ r ≤ C1 log log n for appropriate

constants C0 and C1, and ψ ≥ 2−r, then the number of honest players in the
preliminary committee is at least 0.9ψn/B, except with exp(−27r) probability.

Proof. By the Chernoff bound, except with probability exp
(
−γ2 · ψn

2B

)
, the num-

ber of honest players in any particular bin is greater than (1−γ) · ψn
B . The union

bound over all the B bins gives the required result.

24 K.-M. Chung et al.

The following fact makes sure that the sampler needed by our protocol exists
except with doubly-exponentially small in r probability as long as at least a
ψ(n) ≥ 1/2r fraction of the players are honest.

Fact 3. Suppose that the honest fraction ψ ≥ 1
2r and that our protocol uses the

aforementioned parameters. We have that |U| ≥ log(1/δs) + c · v except with
exp(−Ω(27r)) probability.

Proof. Since we choose δs := 2−(1− ψ
2)|U|, the expression to verify can be rewritten

as |U| ≥ (1 − ψ/2)|U| + c · v, which is equivalent to:

0.5ψ · |U| ≥ c · v = c · (log n + 0.5r).

Due to Lemma 1, the size of the preliminary committee is at least 0.9ψn
B , except

exp(−Ω(27r)) probability. Therefore, it suffices to show that

0.5ψ · 0.9ψn/B ≥ 0.45 · 2−2r · 29r ≥ c · (log n + 0.5r),

where the last inequality holds as long as r ≥ C0 log log n for a sufficiently large
constant C0.

5.2 Terminology and Notations

We first present proofs for our protocol in Sect. 4 assuming idealized Fcomm and
Fmpc. However, we shall assume that the tournament-tree protocol is instanti-
ated with real cryptography as explained in the online full version [15], since
we will use the tournament-tree protocol’s fairness properties as a blackbox in
our proofs. In the online full version [15], we prove that the relevant security
properties extend to the real-world protocol when the idealized cryptographic
primitives are instantiated with actual cryptography.

Recall that A denotes the coalition; we often refer to players in A as corrupt
and players outside A as honest. Further, we often use the notation H := [n]\A to
denote the set of honest players. For S ⊆ [n], we use the notation xS := {xi}i∈S

and yS is also similarly defined.

5.3 Composition of the Final Committee

Lemma 2 (Final committee composition). Suppose that the honest fraction
ψ ≥ 2η = 2 · 1

20.2r and that our protocol uses the aforementioned parameters.
Fix N to be an arbitrary set of (distinct) final v-ids in the sampler’s output
range {0, 1}v where |N | ≤ n. Let CN be the (multi-)set of final v-ids in N
chosen by Samp(x). Let9 ε0 = εs · 2v

|N | . Then, conditioned on no param error and
|UH | ≥ 0.9ψ · n/B, with probability at least 1 − exp(−Ω(27r)) over the choice of
xH , CN has size in the range [1 − ε0, 1 + ε0] · d · |N |

2v .

9 Note that ε0 would be very large if N is too tiny, but our usage later will guarantee
that N is not too tiny.

Game-Theoretic Fairness Meets Multi-party Protocols 25

Alternatively, suppose there is some upper bound |N | ≤ N , and we set ε0 =
εs · 2v

N . Then, with conditional probability at least 1 − exp(−Ω(27r)) under the
events, CN has size at most (1 + ε0) · d · N

2v .

Proof. Let the final committee CN be the multi-set of v-ids in N chosen by
the Samp(x). We shall show that, using the sampler theorem in the online full
version [15], except with probability p := exp(−Ω(26r)) over the choice of xH ,

|CN | ∈ [1 − ε0, 1 + ε0] · d · |N |
2v

. (1)

Observing that εs = ε0 · |N |
2v , by the property of the (εs, δs)-averaging sampler,

except for at most 2|U| · δs = 20.5ψ|U| number of bad inputs to the sampler, the
size of CN satisfies (1).

We say that some choice of xH∩U is bad if there exists a corrupt choice of
xA∩U such that the combination of xH∩U and xA∩U (arranged in the right order)
will lead to CN such that (1) is violated. Otherwise, we say that xH∩U is good.
Note that if xH∩U is good, it means that no matter how the adversary chooses
xA∩U , it cannot make CN violate (1).

Since honest players choose their xH∩U at random, we next claim that the
fraction of bad xH∩U is bounded by 2−0.3ψ|U| ≤ 2−0.27ψ2·n/B ≤ 2−Ω(27r). The
claim is true; otherwise, the number of bad inputs to the sampler is at least
2−0.3ψ|U| · 20.9ψ|U| = 20.6ψ|U| and thus we have reached a contradiction. Finally,
a union bound over all the above bad events shows that except with probability
at most exp(−Ω(27r)), CN respects the range in (1).

The alternative case when there is an upper bound |N | ≤ N uses the same
argument, but we just need one direction of the inequality from the sampler.

The above Lemma 2 immediately implies the following bound on the final
committee size.

Lemma 3 (Final committee not too large). Suppose that the honest frac-
tion ψ > 2η = 2 · 1

20.2r and that our protocol uses the aforementioned parameters.
Let ε0 = εs · 2v

n = 2−5.5r. Then, with probability at least 1 − exp(−Ω(26r)), the
final committee C has size at most (1 + ε0) · d · n

2v ≤ 2O(r), and the protocol does
not throw param error. In particular, with probability at least 1 − exp(−Ω(26r)),
the protocol has round complexity at most O(r).

Proof. Due to Lemma 1, except with exp(−Ω(27r)) probability, |UH | ≥ 0.9ψ ·
n/B ≥ 0.9ψ · |U|. Further, due to Fact 3, param error does not happen except
with exp(−Ω(27r)) probability. Conditioned on these bad events not happening,
we now use Lemma 2. In this case, the n players can choose at most n final v-ids,
i.e., |N | ≤ n. The range in (1) implies that except with exp(−Ω(26r)) over the
choice of xH , the final committee C has size at most:

d(
n

2v
+ εs) = (1 + ε0) · d · n

2v
≤ d · (2−0.5r + 2−6r)

= (1 + 2−5.5r) · (|U|/εs)c̃ · 2−0.5r ≤ (1 + 2−5.5r) · 215rc̃ · 2−0.5r.

26 K.-M. Chung et al.

We shall consider the following bad events in our proofs. Recall that condi-
tioned on any coin used in the lightest-bin protocol for the preliminary committee
election, the protocol still has independent randomness x chosen by the prelimi-
nary committee as input for the averaging sampler, the unmasked v-ids y chosen
by all players, as well as the mask vector z.

– Event param error. Recall that this happens when the preliminary comittee
selected does not have the desirable properties; by Lemma 1 and Fact 3, this
bad event happens with probability at most exp(−Ω(27r)).

– Event bad1: out of the d samples from the (εs, δs)-sampler, at least (1 +
ε0) · d · n

2v number of them correspond to corrupt players’ final v-ids, where
ε0 := 2−6r · 20.5r is defined as in Lemma 3. Assuming the honest fraction
ψ ≥ 2η, by Lemma 3, Pr[bad1] ≤ exp(−Ω(26r)). Moreover, observe that bad1
is determined by x, yA, and zA, and is independent of yH and zH .

– Event bad2: the final committee C has size greater than (1+ ε0) ·d · n
2v . Again

assuming ψ ≥ 2η, Lemma 3 implies that Pr[bad2] ≤ exp(−Ω(26r)). Observe
that bad2 depends on x, y, and z.

Lemma 4 (Influence of an honest player in the final committee). Sup-
pose that |A| < (1 − 2η)n, i.e., h

n = ψ > 2η ≥ 1
2r . For an honest player i /∈ A,

let Mi be its multiplicity in the final committee C. Define a random variable Υi

that equals Mi

|C| , if none of the bad events bad events param error or bad1 or bad2
happens; otherwise, Υi equals 0.

Then, E[Υi] ≥ 1
n

(
1 − 2−0.48r

)
, where the expectation is taken over the ran-

domness used in the entire execution.

Proof. For ease of notation, the rest of the proof conditions on the event that
during the preliminary committee election, param error does not happen; observe
that this bad event happens with probability at most exp(−Ω(27r)), by Lemma 1
and Fact 3. Hence, at the end, we just need to multiply any conditional expec-
tation by a factor of 1− exp(−Ω(27r)). Recall that we identify an event with its
{0, 1}-indicator random variable.

We next give a lower bound on E[Mi|bad1]. Since yH is opened in the last
but second step and as long as |A| < (1 − 2η)n, the reconstruction of z is fully
determined before selecting input to the sampler, we may equivalently imagine
that yH is chosen at the end, independently of x, yA, and z. Since the event bad1
does not happen, there are at least d− (1+ ε0) ·d · n

2v = d(1− (1+ ε0) n
2v) ≥ d(1−

2−0.49r) available slots for the honest players’ final v-ids, where the inequality
follows from 1 + ε0 ≤ 20.01r.

For each such slot, player i can get it if it chooses this slot and none of the
other honest players choose it; this happens with probability 1

2v · (1 − 1
2v)h−1 ≥

1
2v (1 − n

2v) = 1
2v (1 − 2−0.5r). Therefore, conditioned on any choice of x, yA, z,

by just using the randomness of yH , we can conclude that EyH
[Mi|bad1] ≥

d
2v · (1 − 2−0.49r)(1 − 2−0.5r) ≥ d

2v (1 − 2−0.485r), where the last inequality holds
for large enough r = Ω(1).

Since this holds conditioned any choice of x, yA, z, we have the desired lower
bound on E[Mi|bad1].

Game-Theoretic Fairness Meets Multi-party Protocols 27

We next give a lower bound for the following quantity:

E[Mi · bad1 · bad2] = E[Mi|bad1] · Pr[bad1] − E[Mi · bad1 · bad2]
≥ d

2v
(1 − 2−0.485r) · Pr[bad1] − d Pr[bad2]

We use E[Mi · bad1 · bad2] ≤ d Pr[bad2] ≤ d · Pr[bad2] ≤ d · exp(−Ω(26r)) ≤
d
2v · exp(−Ω(25r)) where the last inequality holds because 2v = n · 20.5r and
we assume that r ≥ C0 log log n for some suitably large constant C0. There-
fore, we have E[Mi · bad1 · bad2] ≥ d

2v

(
1 − 2−0.485r

) · (1 − exp(−Ω(26r))
) − d

2v ·
exp(−Ω(25r)) ≥ d

2v (1 − 2−0.483r). Finally, we have

E[Υi|bad1 · bad2] = E
[
Mi

|C| |bad1 · bad2
]

≥ E[Mi|bad1 · bad2]
(1 + ε0) · d · n

2v

≥ 1
n

(1 − 2−0.483r)(1 − ε0) · Pr[bad1 · bad2]−1

≥ 1
n

(1 − 2−0.481r) · Pr[bad1 · bad2]−1.

Hence, we have the lower bound E[Υi] ≥ E[Υi ·bad1 ·bad2] ≥ 1
n (1− 2−0.481r).

Finally, recalling so far we have assume that param error does not happen.
Therefore, multiplying the above by (1 − Pr[param error]) = 1 − exp(−Ω(27r))
gives the desired lower bound for the expectation of Υi.

Lemma 5 (Sufficient honest players without collision). Suppose n = g +
t < V . There are V bins, of which t bins are bad and the rest are good. Suppose
each of g balls is thrown into a bin uniformly at random independently. Let Z be
the number of good bins containing exactly one ball. For any 0 < α < 1, except
with probability exp(−Θ(α2g(1 − n

V))), we have Z ≥ g(1 − 2n
V − 2α).

Proof. Consider throwing the g balls one by one independently into the bins.
For 1 ≤ i ≤ g, let Xi ∈ {0, 1} be the indicator random variable for the event
that when the i-th ball is thrown, it goes to an empty good bin. Observe that
no matter what happens to the first i − 1 balls, the event Xi = 1 happens with
probability at least 1 − n

V . Hence, S :=
∑g

i=1 Xi stochastically dominates the
binomial distribution Binom(g, 1 − n

V) with g trials and success rate 1 − n
V . By

stochastic dominance and the Chernoff bound,

Pr
[
S ≤ (1 − α) · g(1 − n

V
)
]

≤ exp
(
−Θ(α2g(1 − n

V
))

)

Hence, except with probability exp(−Θ(α2g(1 − n
V))), we have that S ≥ (1 −

α) · g(1 − n
V) ≥ g(1 − n

V − α).
Finally, observe what happens to the number Z of good bins having exactly

one ball as the g balls are thrown one by one. When Xi = 1, Z increases by 1;
when Xi = 0, Z either remains the same or decreases by 1. Hence, at the end, the
number Z of good bins having exactly one ball satisfies Z ≥ S−(g−S) = 2S−g.
The result follows.

28 K.-M. Chung et al.

Lemma 6 (Sufficient honest players in the final committee). Suppose
that |A| < (1 − 2η)n. Let G ⊆ H denote an arbitrary subset of honest players
with g = |G|, where g

n ≥ 1/2r. Except with probability exp(−Ω(2r)), the number
of players from G that are in the final committee10 is at least g · d

2v · (1−2−0.48r).
As a direct corollary, no matter how large A is, as long as the coalition A

adopts the honest strategy, then, for any subset G ⊆ [n] of at least n/2r players,
except with probability exp(−Ω(2r)), the number of players from G that are in
the final committee is at least g · d

2v · (1 − 2−0.48r).

Proof. Let V = 2v, and so n
V = 1

20.5r . Since |A| < (1 − 2η)n, the mask z to be
reconstructed later is fully determined before selecting input x to the sampler—in
this case, we can imagine that yG is chosen and revealed at the end, independent
of x, y[n]\G, and z. Setting α := 1

2r in Lemma 5, we have, except with probability
p ≤ exp

(−Ω(1
22r · g · (1 − 2−0.5r))

) ≤ exp
(−Ω(n

23r)
)
, the number of players in

G whose final v-id has no collision is at least Z := g(1 − 2 · 2−0.5r − 2 · 2−r) ≥ g
2 .

Recall that r ≤ C1 log n, and, as long as the constant C1 is sufficiently small, we
have that n > 24r, and thus p ≤ exp(−Ω(2r)).

Setting ε0 := εs · 2v

|Z| ≤ 2 · 2−6r · 21.5r, and using Lemma 2, we can show that
except with probability exp(−Ω(2r)), the number of players from G in the final
committee is at least (1 − ε0) · d · Z

2v ≥ g · d
2v · (1 − 2−0.48r).

5.4 Maximin Fairness

In this section, we will prove the following lemma.

Lemma 7 (Ideal-world protocol: maximin fairness). The ideal-world pro-
tocol (i.e., instantiated with Fcomm and Fmpc) satisfies (1−2−0.4r) = (1−2−Θ(r))-
sequential-maximin-fairness against any non-uniform p.p.t. coalition11 of size at
most (1 − 2η)n = (1 − 2−Θ(r))n.

Proof. Due to a lemma proven in the online full version [15], we can do a round-
by-round analysis. Let r∗ be the first round in which the coalition deviates. Let r̃
be the round in which all players reconstruct the mask vector z. Throughout, we
may assume that A < (1−2η)n. Further, for each round r∗, we may assume that
Pr[Devr∗

] is non-negligible where Devr∗
denotes the event that A deviates first in

round r∗. We want to show that conditioned on this non-negligible probability
event Devr∗

, A cannot conditionally harm an honest individual noticeably, or
conditionally increase its own winning probability noticeably.

Easy case: r∗ > r̃. This means the coalition A will deviate only in the tournament
tree protocol, whose sequential maximin fairness holds according to Theorem 3.
This means each honest player can only be hurt negligibly more.

Easy case: r∗ = r̃. As mentioned earlier, as long as |A| < (1−2η)n, in this round,
no matter what A does, reconstruction of z is guaranteed and the reconstructed
value is unique.
10 Throughout, a player with multiplicity μ in the final committee is counted μ times.
11 Recall that the tournament-tree protocol is still instantiated with real cryptography.

Game-Theoretic Fairness Meets Multi-party Protocols 29

Slightly more complicated case: r∗ = r̃ − 1. This is the case when the coalition A
deviates in the round in which the unmasked v-ids y are opened. Since we are
using an ideal Fcomm, the only possible deviation in round r∗ = r̃ − 1 is if some
member of the coalition i ∈ A fails to open its committed its yi value.

We consider two cases.

– First, suppose that |A| ≥ ηn. This means that the adversarial coalition
already knows the committed mask z at the end of the sharing phase. In
this case, the z mask to be reconstructed is uniquely determined at the end
of the sharing phase. In the round r∗ = r̃ − 1, to harm any specific honest
individual, A’s best strategy is the following: for every final v-id in the space
{0, 1}v, if one or more player(s) in A happen(s) to have that final v-id, make
exactly one of them open its yi value, such that there is no internal collision
among the coalition A. Due to the sequential fairness of the tournament-tree
protocol (i.e., Theorem 3), conditioned on the history of the protocol till the
end of round r̃, every honest final committee member’s winning probability is
at least 1

|C| − negl(κ), no matter how A behaves in any round greater than r̃.
Therefore, avoiding internal collision but otherwise opening every final v-id
is A’s best strategy for harming any specific honest player.
Note that opening the coalition members’ unmasked v-ids in an internal-
collision-avoiding manner like above does not change whether any honest
individual is included in the final committee, but it may increase the final
committee size (in comparison with the case when A continues to play hon-
estly). Due to Lemma 6, and since A has acted honestly so far, except with
negligible probability, the final committee size is at least nd

2v (1 − 2−0.48r).
Now, suppose A excludes its members from the final committee due to inter-
nal collision. Observe that actually this decision could have been made before
the input x to the Samp is chosen. Since there are at most n finalized v-ids
with no collision, by Lemma 3, except with exp(−2Ω(r)) probability (which
is negligible if r ≥ C0 log log n for a sufficiently large C0), the final committee
has size at most nd

2v (1 + 2−5.5r).
Therefore, except with negligible probability, for any honest i, the coalition
A can only reduce Υi by a 1 − 2−Θ(r) factor.

– Second, suppose that |A| < ηn. In this case, A has no information about
the mask z, and Devr∗

is independent of z. Further, z is guaranteed to be
reconstructed later. In this case, we can reprove Lemma 4 almost identically
except that instead of using the randomness yH , we now use the randomness
zH ; further, notice that bad1 is independent of zH , and even when condition-
ing on the non-negligible probability event Devr∗

, the probabilities of bad1
and bad2 are still negligible. Therefore, we get that even when conditioning
on Devr∗

, for any honest i, the expectation of Υi is at least 1
n · (1 − 2−0.48r)

no matter how A behaves during round r̃ and after. Had A continued to play
honestly, using the randomness of z, we know that even when conditioning
on Devr∗

, the expectation of Υi is at least 1/n − negl(κ) where the negl(κ)
term is due to the negligibly small probability of bad1 and bad2 in which case
Υi is defined to be 0. (see Lemma 4).

30 K.-M. Chung et al.

Therefore, deviating in round r̃ will not reduce any honest individual’s con-
ditional winning probability by a 1 − 2−Θ(r) multiplicative factor.

Remaining case: r∗ < r̃−1. The rest of the proof focuses on this remaining case.
Recall that we assume Pr[Devr∗

] ≥ 1
poly(n) . Let LEIdeal denote a randomized

execution of our ideal-world leader-election protocol described in Sect. 4.1.
Conditioning on the event Devr∗

, we prove maximin fairness assuming that
the coalition A contains no more than a 1 − 2η fraction of the players. Fix any
i /∈ A. Now, observe the following:

1. Recall that we may assume Devr∗
happens with non-negligible probability.

Following the proof of Lemma 4, and observing that before round r̃, the
randomness yH remains hidden and is independent of whatever that has hap-
pened so far, we have:

E
[
tr ← LEIdeal : Υi|Devr∗

(tr)
]

≥ 1
n

· (
1 − 2−0.48r

)
. (2)

The only difference in the argument is that both the probabilities
Pr[bad1|Devr∗

] and Pr[bad2|Devr∗
] are at most poly(n) · exp(−Ω(26r)), which

is still negligible, because we assume that r = Ω(log log n) is sufficiently large.
Indeed, for sufficiently large n, poly(n)·exp(−Ω(26r)) ≤ exp(−Ω(25.99r)), and
the proof works as before.

2. We next consider the proof of Lemma 6, but now we conditioned on Devr∗

(which has non-negligible probability). Suppose all players in A actually play
honestly. Define bad3 to be the event that the final committee has size less
than nd

2v · (1 − 2−0.48r). Lemma 6 states that Pr[bad3] ≤ exp(−Ω(2r)). Since
Devr∗

has non-negligible probability, we have Pr[bad3|Devr∗
] ≤ poly(n) ·

exp(−Ω(2r)) ≤ exp(−Ω(20.99r)) ≤ negl(κ), where the last inequalities hold
for large enough n ≥ κ because r ≥ Ω(log log n).
This implies that an honest continuation of the execution would lead to a
conditional expectation of Υi of at most

d/2v

n · d
2v · (1 − 2−0.48r)

+ negl(κ) ≤ 1
n

· (1+2−0.47r)+ negl(κ) ≤ 1
n

· (1+2−0.46r)

Summarizing the above, the ideal protocol is (1−2−0.4r)-sequential-maximin-
fair for any coalition that is at most (1 − 2η)n = (1 − 2−Θ(r))n in size.

Deferred materials. We defer to the online full version [15] 1) proofs of CSP
fairness for the ideal-world protocol, 2) proofs for the real-world protocol, and
3) our full lower bound proof. The online full version [15] also contain addi-
tional preliminaries, additional proofs for our sequential approximate fairness
notion, relationship to the RPD notion [22–24], as well as proofs for the folklore
tournament-tree protocol.

Acknowledgment. This work is partially supported by NSF under the award num-
bers CNS-1601879 and CNS-1561209, a Packard Fellowship, an ONR YIP award, and
the Hong Kong RGC under the grants 17200418 and 17201220.

Game-Theoretic Fairness Meets Multi-party Protocols 31

References

1. Abraham, I., Dolev, D., Halpern, J.Y.: Distributed protocols for leader election: a
game-theoretic perspective. ACM Trans. Econ. Comput. 7(1), 1–26 (2019)

2. Alistarh, D., Aspnes, J.: Sub-logarithmic test-and-set against a weak adversary.
In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 97–109. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24100-0 7

3. Alistarh, D., Attiya, H., Gilbert, S., Giurgiu, A., Guerraoui, R.: Fast randomized
test-and-set and renaming. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 94–108. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15763-9 9

4. Alistarh, D., Gelashvili, R., Vladu, A.: How to elect a leader faster than a tourna-
ment. In: PODC (2015)

5. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. Commun. ACM 59(4), 76–84 (2016)

6. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on bitcoin. In:
Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 231–247. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 15

7. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
STOC (1990)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC (1988)

9. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

10. Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
SIGACT News 15(1), 23–27 (1983)

11. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

12. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryp-
tology ePrint Archive, Report 2018/712 (2018)

13. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC (1988)

14. Chung, K.-M., Guo, Y., Lin, W.-K., Pass, R., Shi, E.: Game theoretic notions of
fairness in multi-party coin toss. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018.
LNCS, vol. 11239, pp. 563–596. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03807-6 21

15. Chung, K.-M., Chan, T.-H.H., Wen, T., Shi, E.: Game-theoretic fairness meets
multi-party protocols: the case of leader election. Online full version of this paper.
https://eprint.iacr.org/2020/1591

16. Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: STOC (1986)

17. Daian, P., Pass, R., Shi, E.: Snow White: robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-32101-7 2

18. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

https://doi.org/10.1007/978-3-642-24100-0_7
https://doi.org/10.1007/978-3-642-15763-9_9
https://doi.org/10.1007/978-3-642-15763-9_9
https://doi.org/10.1007/978-3-319-70278-0_15
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-030-03807-6_21
https://doi.org/10.1007/978-3-030-03807-6_21
https://eprint.iacr.org/2020/1591
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/11535218_23

32 K.-M. Chung et al.

19. Dodis, Y.: Fault-tolerant leader election and collective coin-flipping in the full
information model (2006, manuscript)

20. Feige, U.: Non-cryptographic selection protocols. In: FOCS (1999)
21. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-

weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)
22. Garay, J., Katz, J., Tackmann, B., Zikas, V.: How fair is your protocol? A utility-

based approach to protocol optimality. In: PODC (2015)
23. Garay, J.A., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol

design: cryptography against incentive-driven adversaries. In: FOCS (2013)
24. Garay, J.A., Tackmann, B., Zikas, V.: Fair distributed computation of reactive

functions. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 497–512. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5 33

25. Giakkoupis, G., Woelfel, P.: On the time and space complexity of randomized
test-and-set. In: PODC (2012)

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: ACM
Symposium on Theory of Computing (STOC) (1987)

27. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. J. ACM 56(4), 20:1–20:34 (2009)

28. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

29. Korach, E., Kutten, S., Moran, S.: A modular technique for the design of efficient
distributed leader finding algorithms. In: PODC, pp. 163–174 (1985)

30. Maram, D., et al.: Candid: can-do decentralized identity with legacy compatibility,
sybil-resistance, and accountability. https://eprint.iacr.org/2020/934

31. Miller, A., Bentov, I.: Zero-collateral lotteries in bitcoin and ethereum. In:
EuroS&P Workshops (2017)

32. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: STOC (2004)

33. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: PODC (2017)
34. Reingold, O., Vadhan, S.P., Wigderson, A.: Entropy waves, the zig-zag graph prod-

uct, and new constant-degree expanders and extractors. In: FOCS (2000)
35. Russell, A., Saks, M., Zuckerman, D.: Lower bounds for leader election and collec-

tive coin-flipping in the perfect information model. In: STOC (1999)
36. Russell, A., Zuckerman, D.: Perfect information leader election in log∗ n + o(1)

rounds. In: FOCS (1998)
37. Vadhan, S.P.: Pseudorandomness (foundations and trends in theoretical computer

science) (2012)
38. Zuckerman, D.: Randomness-optimal sampling, extractors, and constructive leader

election. In: STOC (1996)

https://doi.org/10.1007/978-3-662-48653-5_33
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://eprint.iacr.org/2020/934

Computational Hardness of Optimal Fair
Computation: Beyond Minicrypt

Hemanta K. Maji(B) and Mingyuan Wang

Department of Computer Science, Purdue University, West Lafayette, USA
{hmaji,wang1929}@purdue.edu

Abstract. Secure multi-party computation allows mutually distrusting
parties to compute securely over their private data. However, guarantee-
ing output delivery to honest parties when the adversarial parties may
abort the protocol has been a challenging objective. As a representative
task, this work considers two-party coin-tossing protocols with guaran-
teed output delivery, a.k.a., fair coin-tossing.

In the information-theoretic plain model, as in two-party zero-sum
games, one of the parties can force an output with certainty. In the
commitment-hybrid, any r-message coin-tossing protocol is 1/

√
r-unfair,

i.e., the adversary can change the honest party’s output distribution by
1/

√
r in the statistical distance. Moran, Naor, and Segev (TCC–2009)

constructed the first 1/r-unfair protocol in the oblivious transfer-hybrid.
No further security improvement is possible because Cleve (STOC–1986)
proved that 1/r-unfairness is unavoidable. Therefore, Moran, Naor, and
Segev’s coin-tossing protocol is optimal. However, is oblivious transfer
necessary for optimal fair coin-tossing?

Maji and Wang (CRYPTO–2020) proved that any coin-tossing proto-
col using one-way functions in a black-box manner is at least 1/

√
r-unfair.

That is, optimal fair coin-tossing is impossible in Minicrypt. Our work
focuses on tightly characterizing the hardness of computation assump-
tion necessary and sufficient for optimal fair coin-tossing within Crypto-
mania, outside Minicrypt. Haitner, Makriyannia, Nissim, Omri, Shaltiel,
and Silbak (FOCS–2018 and TCC–2018) proved that better than 1/

√
r-

unfairness, for any constant r, implies the existence of a key-agreement
protocol.

We prove that any coin-tossing protocol using public-key encryption
(or, multi-round key agreement protocols) in a black-box manner must be
1/

√
r-unfair. Next, our work entirely characterizes the additional power

of secure function evaluation functionalities for optimal fair coin-tossing.
We augment the model with an idealized secure function evaluation of
f , a.k.a., the f -hybrid. If f is complete, that is, oblivious transfer is

The research effort is supported in part by an NSF CRII Award CNS–1566499, NSF
SMALL Awards CNS–1618822 and CNS–2055605, the IARPA HECTOR project,
MITRE Innovation Program Academic Cybersecurity Research Awards (2019–2020,
2020–2021), a Ross-Lynn Research Scholars Grant (2021–2022), a Purdue Research
Foundation (PRF) Award (2017–2018), and The Center for Science of Information, an
NSF Science and Technology Center, Cooperative Agreement CCF–0939370.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 33–63, 2021.
https://doi.org/10.1007/978-3-030-84245-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_2

34 H. K. Maji and M. Wang

possible in the f -hybrid, then optimal fair coin-tossing is also possible
in the f -hybrid. On the other hand, if f is not complete, then a coin-
tossing protocol using public-key encryption in a black-box manner in
the f -hybrid is at least 1/

√
r-unfair.

Keywords: Fair computation · Optimal fair coin-tossing ·
Cryptomania · Black-box separation · Hardness of computation
results · Secure function evaluation functionalities

1 Introduction

Secure multi-party computation [31,75] allows mutually distrusting parties to
compute securely over their private data. However, guaranteeing output deliv-
ery to honest parties when the adversarial parties may abort during the pro-
tocol execution has been a challenging objective. A long line of highly influen-
tial works has undertaken the task of defining security with guaranteed out-
put delivery (i.e., fair computation) and fairly computing functionalities [1–
5,10,11,14,33,34,39,60]. This work considers the case when honest parties are
not in the majority. In particular, as is standard in this line of research, the
sequel relies on the representative task of two-party secure coin-tossing, an ele-
gant functionality providing uncluttered access to the primary bottlenecks of
achieving security in any specific adversarial model.

In the information-theoretic plain model, one of the parties can fix the coin-
tossing protocol’s output (using attacks in two-player zero-sum games, or games
against nature [65]). If the parties additionally have access to the commitment
functionality (a.k.a., the information-theoretic commitment-hybrid), an adver-
sary is forced to follow the protocol honestly (otherwise, the adversary risks
being identified), or abort the protocol execution prematurely. Against such
adversaries, referred to as fail-stop adversaries [20], there are coin-tossing proto-
cols [6,12,13,19] where a fail-stop adversary can change the honest party’s output
distribution by at most O(1/

√
r) , where r is the round-complexity of the proto-

col. That is, these protocols are O(1/
√

r)-insecure. In a ground-breaking result,
Moran, Naor, and Segev [61] constructed the first secure coin-tossing protocol in
the oblivious transfer-hybrid [24,67,68] that is O(1/r)-insecure. No further secu-
rity improvements are possible because Cleve [19] proved that O(1/r)-insecurity
is unavoidable; hence, the protocol by Moran, Naor, and Segev is optimal.

Incidentally, all fair computation protocols (not just coin-tossing, see, for
example, [1–5,10,11,14,33,34,39,60]) rely on the oblivious transfer functional-
ity to achieve O (1/r)-insecurity. A fundamental principle in theoretical cryp-
tography is to securely realize cryptographic primitives based on the minimal
computational hardness assumptions. Consequently, the following question is
natural.

Is oblivious transfer necessary for optimal fair computation?

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 35

Towards answering this fundamental research inquiry, recently, Maji and
Wang [59] proved that any coin-tossing protocol that uses one-way functions
in a black-box manner [7,44,69] must incur Ω (1/

√
r)-insecurity. This result

proves the qualitative optimality of the coin tossing protocols of [6,12,13,19]
in Minicrypt [42] because the commitment functionality is securely realizable by
the black-box use of one-way functions [38,62,63]. Consequently, the minimal
hardness of computation assumption enabling optimal fair coin-tossing must be
outside Minicrypt.

Summary of our results. This work studies the insecurity of fair coin-tossing
protocols outside Minicrypt, within (various levels of) Cryptomania [42]. Our
contributions are two-fold.

1. First, we generalize the (fully) black-box separation of Maji and Wang [59]
to prove that any coin-tossing protocol using public-key encryption in a fully
black-box manner must be Ω (1/

√
r)-insecure.

2. Finally, we prove a dichotomy for two-party secure (possibly, randomized out-
put) function evaluation functionalities. For any secure function evaluation
functionality f , either (A) optimal fair coin-tossing exists in the information-
theoretic f -hybrid, or (B) any coin-tossing protocol in the f -hybrid, even
using public-key encryption algorithms in a black-box manner, is Ω (1/

√
r)-

insecure.

Remark 1. In the information-theoretic f -hybrid model, parties have access to a
trusted party faithfully realizing the functionality f . However, this functionality
is realized unfairly. That is, the trusted party delivers the output to the adver-
sary first. If the adversary wants, it can abort the protocol and block the output
delivery to the honest parties. Otherwise, it can also permit the delivery of the
output to the honest parties and continue with the protocol execution. We high-
light that the fair f -hybrid (where the adversary cannot block output delivery to
the honest parties), for any f where both parties influence the output, straight-
forwardly yields perfectly or statistically secure fair coin-tossing protocol.1

Our hardness of computation results hold even for a game-theoretic definition
of fairness as well (which extends to the stronger simulation-based security defi-
nition). Section 1.1 summarizes our contributions. As shown in Fig. 1, our results
1 Suppose f = XOR. In a fair f -hybrid, the adversary cannot block the output delivery

to the honest parties. So, parties input random bits to the f -functionality and agree
on the output. This protocol has 0-insecurity. A similar protocol (using a deter-
ministic extractor for independent small-bias sources) can extract the fair output
from any f where both parties have influence on the output distribution. Consider
the following “collaborative randomness generation” followed by “extraction” pro-
tocol. (a) Invoke (in parallel) a bidirectional influence functionality multiple times
with random inputs. The output of each invocation in not entirely determined by
one of the parties. Consequently, these samples have average min-entropy. (b) Non-
interactively, parties use these fair output samples to extract this entropy to obtain
the (common) fair coin toss (using convolution/XOR, or traversal of an appropriate
expander graph).

36 H. K. Maji and M. Wang

Secure Construction Adversarial Attack

Pessiland

In General:
constant-unfair [37]

Fail-stop Adversary: Fail-stop Adversary:
1/

√
r-unfair [20]

Minicrypt
One-way Functions:
1/

√
r-unfair [6,12,13,19] 1/

√
r-unfair [59]

Cryptomania

Public-key Encryption:
1/

√
r-unfair [This work]

PKE + f -hybrid, f �→ OT:
1/

√
r-unfair [This work]

Oblivious Transfer:
1/r-unfair [61] 1/r-unfair [19]

Fig. 1. The first column summarizes of the most secure fair coin-tossing protocols in
Impagliazzo’s worlds [42]. Corresponding to each of these worlds, the second column
has the best attacks on these fair coin-tossing protocols. All the adversarial attacks are
fail-stop attackers except for the general attack in pessiland.

further reinforce the widely-held perception that oblivious transfer is necessary
for optimal fair coin-tossing. Our work nearly squeezes out the entire remain-
ing space left open in the state-of-the-art after the recent breakthrough of [59],
which was the first advancement on the quality of the attacks on fair coin-tossing
protocols since [20] after almost three decades. However, there are fascinating
problems left open by our work; Sect. 6 discusses one.

Positioning the technical contributions. Information-theoretic lower-
bounding techniques that work in the plain model and also extend to the f -
hybrid are rare. Maji and Wang [59] proved that optimal coin-tossing is impossi-
ble in the information-theoretic model even if parties can access a random oracle.
This work extends the potential-based approach of [59] to f -hybrid information-
theoretic models, such that oblivious transfer is impossible in the f -hybrid and
parties additionally have access to a public-key encryption oracle.

Fig. 2. The Kushilevitz Function [51], where Alice holds input x ∈ {0, 1, 2} and Bob
holds input y ∈ {0, 1, 2}. For example, the output is z0 if x = 0 and y ∈ {0, 1}.

For the discussion below, consider f to be the Kushilevitz function [51] (see
Fig. 2). One cannot realize this function securely in the information-theoretic

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 37

plain model even against honest-but-curious adversaries [9,49,50,57]. Further-
more, oblivious transfer is impossible in the f -hybrid [46,47]. The characterization
of the exact power of making ideal f -invocations is not entirely well-understood.

Invocations of the ideal f -functionality are non-trivially useful. For example,
one can realize the commitment functionality in the f -hybrid model [58] (even
with Universally Composable (UC) security [15,16] against malicious adver-
saries). The f -functionality is also known to securely implement other secure
function evaluation functionalities as well [71]. All these functionalities would
otherwise be impossible to securely realize in the plain model [17,52,66]. Con-
sequently, it is plausible that one can even implement optimal fair coin-tossing
without implementing oblivious transfer in the f -hybrid model.

Our technical contribution is an information-theoretic lower-bounding tech-
nique that precisely characterizes the power of any f -hybrid vis-à-vis its ability
to implement optimal fair coin-tossing. The authors believe that these techniques
shall be of independent interest to characterize the power of performing ideal
f -invocations in general.

1.1 Our Contribution

This section provides an informal summary of our results and positions our
contributions relative to the state-of-the-art. To facilitate this discussion, we need
to introduce a minimalistic definition of coin-tossing protocols. An (r,X)-coin-
tossing protocol is a two-party r-message interactive protocol where parties agree
on the final output ∈ {0, 1}, and the expected output of an honest execution of
the protocol is X. A coin-tossing protocol is ε-unfair if one of the parties can
change the honest party’s output distribution by ε (in the statistical distance).

Maji and Wang [59] proved that the existence of optimal coin-tossing pro-
tocols is outside Minicrypt [42], where one-way functions and other private-
key cryptographic primitives exist (for example, pseudorandom generator [40,
41,43], pseudorandom function [29,30], pseudorandom permutation [55], sta-
tistically binding commitment [62], statistically hiding commitment [38,63],
zero-knowledge proof [32], and digital signature [64,70]). Public-key crypto-
graphic primitives like public-key encryption, (multi-message) key-agreement
protocols, and secure oblivious transfer protocol are in Cryptomania [44] (out-
side Minicrypt). Although the existence of a secure oblivious transfer protocol
suffices for optimal fair coin-tossing, it was unknown whether weaker hardness of
computation assumptions (like public-key encryption and (multi-message) key-
agreement protocols [27]) suffice for optimal fair coin-tossing or not. Previously,
Haitner, Makriyannis, Nissim, Omri, Shaltiel, and Silbak [35,36], for any con-
stant r, prove that r-message coin-tossing protocols imply key-agreement proto-
cols, if they are less than 1/

√
r-insecure.

Result I. Towards this objective, we prove the following result.

Corollary 1 (Separation from Public-key Encryption). Any (r,X)-coin-
tossing protocol that uses a public-key encryption scheme in a fully black-box
manner is Ω (X(1 − X)/

√
r)-unfair.

38 H. K. Maji and M. Wang

We emphasize that X may depend on the message complexity r of the protocol,
which, in turn, depends on the security parameter. For example, consider an
ensemble of fair coin-tossing protocols with round complexity r and expected
output X = 1/r. This result shows a fail-stop adversary that changes the honest
party’s output distribution by 1/r3/2 in the statistical distance.

This hardness of computation result extends to the fair computation of any
multi-party functionality (possibly with inputs) such that the output has some
entropy, and honest parties are not in the majority (using a standard partition
argument). At a high level, this result implies that relying on stronger hardness of
computation assumptions like the existence of public-key cryptography provides
no “fairness-gains” for coin-tossing protocols than only using one-way functions.

This result’s heart is the following relativized separation in the information-
theoretic setting (refer to Theorem 5). There exists an oracle PKEn [56] that
enables the secure public-key encryption of n-bit messages. However, we prove
that any (r,X)-coin-tossing protocol where parties have oracle access to the
PKEn oracle (with polynomial query complexity) is Ω (X(1 − X)/

√
r)-unfair.

This relativized separation translates into a fully black-box separation using
by-now-standard techniques in this field [69]. Conceptually, this black-box sepa-
ration indicates that optimal fair coin-tossing requires a hardness of computation
assumption that is stronger than the existence of a secure public-key encryption
scheme.

Gertner, Kannan, Malkin, Reingold, and Vishwanathan [27] showed that the
existence of a public-key encryption scheme with additional (seemingly innocu-
ous) properties (like the ability to efficiently sample a public-key without know-
ing the private-key) enables oblivious transfer. Consequently, our oracles realiz-
ing public-key encryption must avoid any property enabling oblivious transfer
(even unforeseen ones). This observation highlights the subtlety underlying our
technical contributions. For example, our set of oracles permit testing whether
a public-key or cipher-text is valid or not. Without this test, oblivious transfer
and, in turn, optimal fair coin-tossing is possible. Surprisingly, these test oracles
are also sufficient to rule out the possibility of oblivious transfer.

Since public-key encryption schemes imply key agreement protocols, our
results prove that optimal fair coin-tossing is black-box separated from key agree-
ment protocols as well.

Result II. Let f : X × Y → R
Z be a two-party secure symmetric function

evaluation functionality, possibly with randomized output. The function takes
private inputs x and y from the parties and samples an output z ∈ Z according to
the probability distribution pf (z|x, y). The information-theoretic f-hybrid is an
information-theoretic model where parties have additional access to the (unfair)
f -functionality.

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 39

Observe that if f is the (symmetrized) oblivious transfer functionality,2 then
the Moran, Naor, and Segev protocol [61] is an optimal fair coin-tossing pro-
tocol in the (unfair) f -hybrid. More generally, if f is a functionality such that
there is an oblivious transfer protocol in the f -hybrid, one can emulate the
Moran, Naor, and Segev optimal coin-tossing protocol; consequently, optimal
coin-tossing exists in the f -hybrid. Kilian [47] characterized all functions f such
that there exists a secure oblivious transfer protocol in the f -hybrid, referred to
as complete functions.

Our work explores whether a function f that is not complete may enhance
the security of fair coin-tossing protocols.

Corollary 2 (Dichotomy of Functions). Let f be an arbitrary 2-party sym-
metric function evaluation functionality, possibly with randomized output. Then,
exactly one of the following two statements holds.

1. For all r ∈ N and X ∈ [0, 1], there exists an optimal (r,X)-coin-tossing
protocol in the f-hybrid (a.k.a., O(1/r)-unfair protocol).

2. Any (r,X)-coin-tossing protocol that uses public-key encryption protocols in
a black-box manner in the f-hybrid is Ω (X(1 − X)/

√
r)-unfair.

For example, Corollary 1 is implied by the stronger version of our result by
using a constant-valued f , a trivial function evaluation. For more details, refer
to Theorem 6. In our model, we emphasize that parties can perform an arbitrary
number of f -invocations in parallel in every round.

Let us further elaborate on our results. Consider a function f that has a
secure protocol in the information-theoretic plain model, referred to as triv-
ial functions. For deterministic output, trivial functions’ full characterization
is known [9,49,50,57]. For randomized output, the characterization of trivial
functions is not known currently. Observe that trivial functions are definitely
not complete; otherwise, a secure oblivious transfer protocol shall exist in the
information-theoretic plain model, which is impossible. For every t ∈ N, there
are functions ft such that any secure protocol for ft requires t rounds of interac-
tive communication in the information-theoretic plain model. For the random-
ized output case, the authors know of functions such that |X| = |Y | = 2 and
|Z| = (t+1) that need t-round protocols for secure computation, which is part of
ongoing independent research. Compiling out the ft-hybrid using such a t-round
secure computation protocol allows only for an Θ

(
X(1 − X)/

√
rt

)
-insecurity,

which yields a useless bound for t = Ω (r). Consequently, compiling out the
trivial functions is inadequate.

It is also well-known that functions of intermediate complexity exist [9,49,
50,57], which are neither complete nor trivial (for example, the Kushilevitz func-
tion, refer to Fig. 2). In fact, there are randomized functions (refer to Fig. 3) of
intermediate complexity such that |X| = |Y | = 2 and |Z| = 3 [23].
2 In the symmetrized oblivious transfer functionality, the sender has input (x0, x1) ∈

{0, 1}2, and the receiver has input (b, r) ∈ {0, 1}2. The symmetric oblivious transfer

functionality returns xb ⊕r to both the parties. If the receiver picks r
$←− {0, 1}, then

this functionality hides the receiver’s choice bit b from the sender.

40 H. K. Maji and M. Wang

Fig. 3. A randomized functionality of intermediate complexity with X = Y = {0, 1}
and Z = {0, 1, 2}. For instance, when x = 0 and y = 0, the distribution of the output
over Z is (18/54, 18/54, 18/54), i.e., a uniform distribution over Z.

Our result claims that even an intermediate function f is useless for optimal
fair coin-tossing; it is as useless as one-way functions or public-key encryption.
Therefore, our results’ technical approach must treat each f -hybrid invocation as
one step in the protocol. We highlight that the intermediate functions are useful
in securely realizing other non-trivial functionalities as well [58,71]. However, for
fair coin-tossing, they are useless.

1.2 Prior Works

Deterministic secure function evaluation. In this paper, we focus on two-party
secure function evaluation functionalities that provide the same output to the
parties. Consider a deterministic function f : X × Y → Z. The unfair ideal
functionality implementing f takes as input x and y from two parties and delivers
the output f(x, y) to the adversary. The adversary may choose to block the
output delivery to the honest party, or permit the delivery of the output to the
honest party.

In this document, we consider security against a semi-honest information-
theoretic adversary, i.e., the adversary follows the protocol description honestly
but is curious to find additional information about the other party’s private
input. There are several natural characterization problems in this scenario. The
functions that have perfectly secure protocols in the information-theoretic plain
model, a.k.a., the trivial functions, are identical to the set of decomposable func-
tions [9,50]. For every t ∈ N, there are infinitely many functions that require
t-rounds for their secure evaluation. Interestingly, relaxing the security from
perfect to statistical security, does not change this characterization [49,57].

Next, Kilian [46] characterized all deterministic functions f that enable obliv-
ious transfer in the f -hybrid, the complete functions. Any functions that has an
“embedded OR-minor” (refer to Definition 4) is complete. Such functions, intu-
itively, are the most powerful functions that enable general secure computation
of arbitrary functionalities.

The sets of trivial and complete functions are not exhaustive (for |Z| >
3 [18,48]). There are functions of intermediate complexity, which are neither
trivial nor complete (see, for example, Fig. 2). The power of the f -hybrid, for an
intermediate f , was explored by [71] using restricted forms of protocols.

Randomized secure function evaluation. A two-party randomized function
f(x, y) : X ×Y → R

Z is a function that, upon receipt of the inputs x and y, sam-
ples an output according to the distribution pf (z|x, y) over the samples space Z.
Kilian [47] characterized all complete randomized functions. Any function that

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 41

has an “embedded generalized OR-minor” (refer to Definition 4) is complete.
Recently, [23] characterized functions with 2-round protocols. Furthermore, even
for |X| = |Y | = 2 and |Z| = 3, there are random function evaluations that are
of intermediate complexity [23].

In the field of black-box separation, the seminal work of Impagliazzo and
Rudich [44] first proposed the notion of black-box separation between cryp-
tographic primitives. Since then, there has been many influential works [25–
28,69,72,74] in this line of research. Below, we elaborate on a few works that
are most relevant to us.

Firstly, for the fair coin-tossing in the random oracle model, the work of
Dachman-Soled, Lindell, Mahmoody, and Malkin [21] showed that when the
message complexity is small, random oracle can be compiled away and hence is
useless for fair coin-tossing. In another work, Dachman-Soled, Mahmoody, and
Malkin [22] studied a restricted type of protocols that they called “function-
oblivious” and showed that for this particular type of protocols, random oracles
cannot yield optimal fair coin-tossing. Recently, Maji and Wang [59] resolved
this problem in the full generality. They showed that any r-message coin-tossing
protocol in the random oracle model must be Ω (1/

√
r)-unfair.

In a recent work of Haitner, Nissim, Omri, Shaltiel, and Silbak [36] and
Haitner, Makriyannis, and Omri [35], they proved that, for any constant r, the
existence of an r-message fair coin-tossing protocol that is more secure than
1/

√
r implies the existence of (infinitely often) key agreement protocols.

1.3 Technical Overview

In this section, we present a high-level overview of our proofs. We start by
recalling the proofs of Maji and Wang [59].

Before we begin, we need to introduce the notion of Alice and Bob’s defense
coins. At any instance of the protocol evolution, Alice has a private defense coin
∈ {0, 1}, referred to as the Alice defense coin, which she outputs if Bob aborts
the protocol. Similarly, Bob has a Bob defense coin. When Alice prepares a
next message of the protocol, she updates her defense coin. However, when Bob
prepares a next message of the protocol, Alice’s defense coin remains unchanged.
Analogously, Bob updates his defense coin when preparing his next messages in
the protocol.

Abstraction of Maji and Wang [59] Technique. Consider an arbitrary fair coin-
tossing protocol πO where Alice and Bob have black-box access to some oracle
O. In their setting, O is a random oracle. Let r and X be the message complexity
and the expected output of this protocol. They used an inductive approach to
prove this protocol is (c · X(1 − X)/

√
r)-insecure as follows (c is a universal

constant).
For every possible first message of this protocol, they consider two attacks

(refer to Fig. 4). Firstly, parties can attack by immediately abort upon this first
message. Secondly, parties can defer their attack to the remaining sub-protocol,

42 H. K. Maji and M. Wang

Fig. 4. An intuitive illustration of the approach of Maji and Wang [59].

which has only r−1 messages. Suppose when the first message is mi, the remain-
ing sub-protocol has expected output xi. Additionally, the expectation of Alice
and Bob defense is ai and bi. The effectiveness of the first attack is precisely

|xi − ai| + |xi − bi| ,
where |xi − ai| is the change of Alice’s output if Bob aborts, and analogously,
|xi − bi| is the change of Bob’s output if Alice aborts. On the other hand, by the
inductive hypothesis, we know the effectiveness of the second attack is at least

c · xi(1 − xi)/
√

r − 1.

Now, they employed a key inequality by [45] (refer to Imported Lemma 1) and
show that the maximum of these two quantities is lower bounded by

c√
r

· (
xi(1 − xi) + (xi − ai)2 + (xi − bi)2

)
.

Define potential function Φ(x, a, b) := x(1 − x) + (x − a)2 + (x − b)2. Maji
and Wang noted that if Jensen’s inequality holds, i.e.,

E
i
[Φ(xi, ai, bi)] ≥ Φ

(

E
i
[xi] ,E

i
[ai] ,E

i
[bi]

)
, (1)

then the proof is complete. This is because the overall effectiveness of the attack
is lower bounded by

E
i

[

max

(

|xi − ai| + |xi − bi| , c · xi(1 − xi)/
√

r − 1

)]

(Expectation of the most effective attack)

≥ E
i

[
c√
r

· Φ(xi, ai, bi)
]

(The key inequality of [45])

≥ c√
r

· Φ

(

E
i
[xi] ,E

i
[ai] ,E

i
[bi]

)
(Jensen’s inequality)

≥ c√
r

· X(1 − X). (∵ E
i
[xi] = X)

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 43

To prove Eq. 1, they noted that Φ(x, a, b) could be rewritten as

Φ(x, a, b) = x + (x − a − b)2 − 2ab.

Observe that x and (x−a−b)2 are convex functions, and hence Jensen’s inequal-
ity holds. The only problematic term is ab. To resolve this, they noted that
suppose we have the following guarantee.

Conditioned on the partial transcript,
Alice private view and Bob private view are (close to) independent.3

Then we shall have E
i
[aibi] ≈ E

i
[ai] E

i
[bi] (refer to Claim 1).4 Consequently,

Eq. 1 shall hold and the proof is done.
Note that the argument thus far is oblivious to the fact that the oracle in

use is a random oracle. For any oracle O, if we have the guarantee above, this
proof will follow.

In particular, when the oracle in use is the random oracle, Maji and Wang
observed that, standard techniques (namely, the heavy querier [8]) do ensure
that Alice private view and Bob private view are (close to) independent. This
completes their proof.

Extending to f-hybrid. When f is a complete function, one can build oblivious
transfer protocol in the f -hybrid model and, consequently, by the MNS proto-
col [61], optimal fair coin-tossing does exist in the f -hybrid model.

On the other hand, if f is not complete, Kilian [47] showed that f must satisfy
the cross product rule (refer to Definition 4). This implies that conditioned on
the partial transcript, which includes ideal calls to f , Alice and Bob private view
are (perfectly) independent (refer to Lemma 3). Therefore, the proof strategy of
Maji and Wang [59] is applicable.

Extending to Public-key Encryption. Our proof for the public-key encryption
follows from the ideas of Mahmoody, Maji, and Prabhakaran [56]. First, we
define a collection of oracles PKEn (refer to Sect. 5.1), with respect to which
public-key encryption exists. To prove that optimal fair coin-tossing protocol
does not exist, it suffices to ensure that Alice and Bob private view are (close
to) independent. However, since with the help of PKEn oracle, Alice and Bob can
agree on a secret key such that a third party, Eve, who sees the transcript and
may ask polynomially many queries to the oracle, cannot learn any information
about the key. It is impossible to ensure the independence of the private views
by only invoking a public algorithm.

To resolve this, [56] showed that one could compile any protocol π in the
PKEn oracle to be a new protocol π′ in the PKEn oracle where parties never

3 For a joint distribution (X,Y), one may measure the closeness of X and Y being
independent by the statistical distance between (X,Y) and X × Y .

4 In particular, if Alice private view and Bob private view are perfectly independent,
we shall have E

i
[aibi] = E

i
[ai] E

i
[bi].

44 H. K. Maji and M. Wang

query the decryption oracle (refer to Imported Theorem 1). This compiler sat-
isfies that given a local view of Alice (resp., Bob) in protocol π, one could simu-
late the local view of Alice (resp., Bob) in protocol π′ and vice versa. Therefore,
instead of considering a fair coin-tossing protocol in the PKEn oracle model, one
could consider a fair coin-tossing protocol in the PKEn oracle model where par-
ties never query the decryption oracle. And [56] showed that, when the parties
do not call the decryption oracle, there does exist a public algorithm, namely the
common information learner, who can find all the correlation between Alice and
Bob (refer to Imported Theorem 2). And conditioned on the partial transcript
with the additional information from the common information learner, Alice and
Bob private view are (close to) independent. Therefore, we can continue with
the proof-strategy of Maji and Wang [59].

2 Preliminaries

For a randomized function f : X → Y, we shall use f(x; s) for f evaluated with
input x and randomness s.

We use uppercase letters for random variables, (corresponding) lowercase
letters for their values, and calligraphic letters for sets. For a joint distribution
(A,B), A and B represent the marginal distributions, and A × B represents
the product distribution where one samples from the marginal distributions A
and B independently. For two random variables A and B distributed over a
(discrete) sample space Ω, their statistical distance is defined as SD (A,B) := 1

2 ·∑
ω∈Ω |Pr[A = w] − Pr[B = w]| .
For a sequence (X1,X2, . . .), we use X≤i to denote the joint distribution

(X1,X2, . . . , Xi). Similarly, for any (x1, x2, . . .) ∈ Ω1 × Ω2 × · · ·, we define
x≤i := (x1, x2, . . . , xi) ∈ Ω1 ×Ω2 ×· · ·×Ωi. Let (M1,M2, . . . ,Mr) be a joint dis-
tribution over sample space Ω1×Ω2×· · ·×Ωr, such that for any i ∈ {1, 2, . . . , n},
Mi is a random variable over Ωi. A (real-valued) random variable Xi is said to be
M≤i measurable if there exists a deterministic function f : Ω1×· · ·×Ωi → R such
that Xi = f(M1, . . . ,Mi). A random variable τ : Ω1 × · · · × Ωr → {1, 2, . . . , r}
is called a stopping time, if the random variable 1τ≤i is M≤i measurable, where
1 is the indicator function. For a more formal treatment of probability spaces,
σ-algebras, filtrations, and martingales, refer to, for example, [73].

The following inequality shall be helpful for our proof.

Theorem 1 (Jensen’s inequality). If f is a multivariate convex function,
then E [f (X)] ≥ f (E[X]), for all probability distributions X over the domain
of f .

In particular, f(x, y, z) = (x − y − z)2 is a tri-variate convex function where
Jensen’s inequality applys.

3 Fair Coin-Tossing Protocol in the f-hybrid Model

Let f : X ×Y → Z be an arbitrary (possibly randomized) function. As standard
in the literature, we shall restrict to f such that the input domain X and Y and

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 45

the range Z are of constant size. A two-party protocol in the f -hybrid model is
defined as follows.

Definition 1 (f-hybrid Model [15,53]). A protocol between Alice and Bob
in the f-hybrid model is identical to a protocol in the plain model except that
both parties have access to a trusted party realizing f . At any point during the
execution, the protocol specifies which party is supposed to speak.

– Alice/Bob message. If Alice is supposed to speak, she shall prepare her next
message as a deterministic function of her private randomness and the partial
transcript.If Bob is supposed to speak, his message is prepared in a similar
manner.

– Trusted party message. At some point during the execution, the protocol
might specify that the trusted party shall speak next. In this case, the protocol
shall also specify a natural number 	, which indicates how many instances of
f should the trusted party compute. Alice (resp., Bob) will prepare her inputs
x = (x1, . . . , x�) (resp., y = (y1, . . . , y�)) and send it privately to the trusted
party. The trusted party shall compute (f(x1, y1), . . . , f(x�, y�)) and send it
as the next message.

In this paper, we shall restrict to fail-stop adversarial behavior.

Definition 2 (Fail-stop Attacker in the f-hybrid Model). A fail-stop
attacker follows the protocol honestly and might prematurely abort. She might
decide to abort when it is her turn to speak. Furthermore, during the trusted
party message, she shall always receive the trusted party message first and, based
on this message, decide whether to abort or not. If she decides to abort, this
action prevents the other party from receiving the trusted party message.

In particular, we shall focus on fair coin-tossing protocols in the f -hybrid model.

Definition 3 (Fair Coin-tossing in the f-hybrid Model). An (X0, r)-fair
coin-tossing in the f-hybrid model is a two-party protocol between Alice and Bob
in the f-hybrid model such that it satisfies the following.

– X0-Expected Output. At the end of the protocol, parties always agree on
the output ∈ {0, 1} of the protocol. The expectation of the output of an honest
execution is X0 ∈ (0, 1).

– r-Message Complexity. The total number of messages of the protocol is
(at most) r. This includes both the Alice/Bob message and the trusted party
message.

– Defense Preparation. Anytime a party speaks, she shall also prepare a
defense coin based on her private randomness and the partial transcript. Her
latest defense coin shall be her output when the other party decides to abort.
To ensure that parties always have a defense to output, they shall prepare a
defense before the protocol begins.

– Insecurity. The insecurity is defined as the maximum change a fail-stop
adversary can cause to the expectation of the other party’s output.

46 H. K. Maji and M. Wang

For any (randomized) functionality f , Kilian [47] proved that if f does not
satisfy the following cross product rule, f is complete for information-theoretic
semi-honest adversaries. That is, for any functionality g, there is a protocol in
the f -hybrid model that realizes g, which is secure against information-theoretic
semi-honest adversaries. In particular, this implies that there is a protocol in the
f -hybrid model that realizes oblivious transfer.

Definition 4 (Cross Product Rule). A (randomized) functionality f : X ×
Y → Z is said to satisfy the cross product rule if for all x0, x1 ∈ X , y0, y1 ∈ Y,
and z ∈ Z such that

Pr[f(x0, y0) = z] > 0 and Pr[f(x1, y0) = z] > 0,

we have

Pr[f(x0, y0) = z] · Pr[f(x1, y1) = z] = Pr[f(x1, y0) = z] · Pr[f(x0, y1) = z] .

We recall the MNS protocol by Moran, Naor, and Segev [61]. The MNS
protocol makes black-box uses of the oblivious transfer as a subroutine to con-
struct optimal-fair coin-tossing protocols. In particular, their protocol enjoys
the property that any fail-stop attack during the oblivious transfer subroutine is
an entirely ineffective attack. Therefore, the MNS protocol, combined with the
results of Kilian [47], gives us the following theorem.

Theorem 2 ([47,61]). Let f be a (randomized) functionality that is complete.
For any X0 ∈ (0, 1) and r ∈ N

∗, there is an (X0, r)-fair coin-tossing protocol in
the f-hybrid model that is (at most) O(1/r)-insecure against fail-stop attackers.

Remark 2 (On the necessity of the unfairness of f). We emphasize that it is
necessary that in the f -hybrid model, f is realized unfairly. That is, the adver-
sary receives the output of f before the honest party does. If f is realized fairly,
i.e., both parties receive the output simultaneously, it is possible to construct
perfectly-secure fair coin-tossing. For instance, let f be the XOR function. Con-
sider the protocol where Alice samples x

$←− {0, 1}, Bob samples y
$←− {0, 1}, and

the trusted party broadcast f(x, y), which is the final output of the protocol.
Trivially, one can verify that this protocol is perfectly-secure.

Intuitively, the results of Kilian [47] and Moran, Naor, and Segev [61] showed
that when f is a functionality that does not satisfy the cross product rule, a
secure protocol realizing f can be used to construct optimal-fair coin-tossing.

In this work, we complement the above results by showing that when f is a
functionality that does satisfy the cross product rule, a fair coin-tossing protocol
in the f -hybrid model is (qualitatively) as insecure as a fair coin-tossing protocol
in the information-theoretic model. In other words, f is completely useless for
fair coin-tossing. Our results are summarized as the following theorem.

Theorem 3 (Main Theorem for f-hybrid). Let f be a randomized function-
ality that is not complete. Any (X0, r)-fair coin-tossing protocol in the f-hybrid
model is (at least) Ω

(
X0(1−X0)√

r

)
-insecure.

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 47

4 Proof of Theorem 3

4.1 Properties of Functionalities

Let f be a functionality that satisfies the cross product rule. We start by observ-
ing some properties of f . Firstly, let us recall the following definition.

Definition 5 (Function Isomorphism [57]). Let f : X × Y → Z and g : X ×
Y → Z ′ be any two (randomized) functionalities. We say f ≤ g if there exist
deterministic mappings MA : X × Z ′ → Z and MB : Y × Z ′ → Z such that, for
all x ∈ X , y ∈ Y, and randomness s,

MA (x, g(x, y; s)) = MB (y, g(x, y; s))

and
SD (f(x, y) , MA (x, g(x, y))) = 0.

We say f and g are isomorphic (i.e., f ∼= g) if f ≤ g and g ≤ f .

Intuitively, f and g are isomorphic if securely computing f can be realized
by one ideal call to g without any further communication and vise versa. As an
example, the (deterministic) XOR functionality

[
0 1
1 0

]
is isomorphic to

[
0 1
2 3

]
.

Given two isomorphic functionalities f and g, it is easy to see that there is a
natural bijection between protocols in the f -hybrid model and g-hybrid model.

Lemma 1. Let f and g be two functionalities such that f ∼= g. For every fair
coin-tossing protocol π in the f-hybrid model, there is a fair coin-tossing protocol
π′ in the g-hybrid model such that

– π and π′ have the same message complexity r and expected output X0.
– For every fail-stop attack strategy for π, there exists a fail-stop attack strategy

for π′ such that the insecurities they cause are identical and vice versa.

Proof (Sketch). Given any protocol π in the f -hybrid model between A and B,
consider the protocol π′ in the g-hybrid model between A′ and B′. In π′, A′

simply simulates A and does what A does. Except when the trusted party sends
the output of g, A′ uses the mapping MA to recover the output of f and feeds it
to A. B′ behaves similarly. Easily, one can verify that these two protocols have
the same message complexity and expected output. Additionally, for every fail-
stop adversary A∗ for π, there is a fail-stop adversary (A∗)′ for π′ that simulates
A∗ in the same manner, which deviates the output of Bob by the same amount.

We are now ready to state our next lemma.

Lemma 2 (Maximally Renaming the Outputs of f). Let f : X × Y → Z
be a (randomized) functionality that is not complete. There exists a functionality
f ′ : X × Y → Z ′ such that f ∼= f ′ and f ′ satisfies the following strict cross
product rule. That is, for all x0, x1 ∈ X , y0, y1 ∈ Y, and z′ ∈ Z ′, we have

Pr[f ′(x0, y0) = z′] ·Pr[f ′(x1, y1) = z′] = Pr[f ′(x1, y0) = z′] ·Pr[f ′(x0, y1) = z′] .

48 H. K. Maji and M. Wang

The proof of this lemma follows from standard argument. We refer the reader
to the full version for a complete proof.

Following the example above, the XOR functionality
[
0 1
1 0

]
satisfies the cross

product rule, i.e., XOR is not complete, but it does not satisfy the strict cross
product rule since

Pr[XOR(0, 0) = 1] · Pr[XOR(1, 1) = 1]
= Pr[XOR(1, 0) = 1] · Pr[XOR(0, 1) = 1] .

On the other hand, functionality
[
0 1
2 3

]
is isomorphic to XOR and does satisfy

the strict cross product rule.
By Lemma 1, the insecurity of a fair coin-tossing protocol in the f -hybrid

model is identical to a fair coin-tossing protocol in the f ′-hybrid model when
f ∼= f ′. Therefore, in the rest of this section, without loss of generality, we
shall always assume f is maximally renamed according to Lemma 2 such that it
satisfies the strict cross product rule.

4.2 Notations and the Technical Theorem

Let π be an (X0, r)-fair coin-tossing protocol in the f -hybrid model. We shall use
RA and RB to denote the private randomness of Alice and Bob. We use random
variable Mi to denote the ith message of the protocol, which could be either an
Alice/Bob message or a trusted party message. Let Xi be the expected output
of the protocol conditioned on the first i messages of the protocol. In particular,
this definition is consistent with the definition of X0.

For an arbitrary i, we consider both Alice aborts and Bob aborts the ith

message. Suppose the ith message is Alice’s message. Alice abort means that she
aborts without sending this message to Bob. Conversely, Bob abort means he
aborts in his next message immediately after receiving this message. On the other
hand, if this is a trusted party message, then both a fail-stop Alice and a fail-
stop Bob can abort this message. This prevents the other party from receiving
the message. We refer to the defense output of Alice when Bob aborts the ith

message as Alice’s ith defense. Similarly, we define the ith defense of Bob. Let DA
i

(resp., DB
i) be the expectation of Alice’s (resp., Bob’s) ith defense conditioned

on the first i messages.
Now, we are ready to define our score function.

Definition 6. Let π be a fair coin-tossing protocol in the f-hybrid model with
message complexity r. Let τ be a stopping time. Let P ∈ {A,B,T} be the party
who sends the last message.5 We define the score function as follows.

Score (π, τ) := E
[
1(τ �=r)∨(P�=A) · ∣

∣Xτ − DA
τ

∣
∣ + 1(τ �=r)∨(P�=B) · ∣

∣Xτ − DB
τ

∣
∣] .

The following remarks, similar to [45,59], provide additional perspectives.

5 We use A, B, and T to stand for Alice, Bob, and the trusted party, respectively.

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 49

Remark 3. 1. In the information-theoretic plain model, for every message of the
protocol, one usually only consider the attack by the sender of this message.
The attack by the receiver, who may abort immediately after receiving this
message, usually is ineffective. This is because the sender is not lagging behind
in terms of the progress of the protocol. However, in the f -hybrid model, we
have trusted party messages, which reveal information regarding both parties’
private randomness. Therefore, both parties’ defenses may lag behind, and
both parties’ attacks could be effective. Hence, in our definition of the score
function, for every message we pick in the stopping time, we consider the
effectiveness of both parties’ attacks.

2. The last message of the protocol is a boundary case of the above argument.
Suppose Alice sends the last message of the protocol, Bob does not have
the opportunity to abort after receiving this message. Similarly, if this is a
Bob message, Alice cannot attack this message. On the other hand, if the
last message is a trusted party message, then both parties could potentially
attack this message. This explains the indicator function in our definition.

3. Finally, given a stopping time τ∗ that witnesses a high score. We can always
find a fail-stop attack strategy that deviates the expected output of the other
party by 1

4 · Score (π, τ∗) in the following way. For Alice, we shall partition
the stopping time τ∗ by considering whether Xτ ≥ DB

τ or not. Similarly,
we partition τ∗ for Bob. These four attacks correspond to either Alice or
Bob favoring either 0 or 1. The quality of these four attacks sums up to
be Score (π, τ∗). Hence, one of these four fail-stop attacks might be at least
1
4 · Score (π, τ∗) effective.

The score function measures the effectiveness of a fail-stop attack corresponds
to a stopping time τ . We are interested in the effectiveness of the most devas-
tating fail-stop attacks. This motivates the following definition.

Definition 7. Let π be a fair coin-tossing protocol in the f-hybrid model. Define

Opt (π) := max
τ

Score (π, τ) .

Now, we are ready to state our main theorem, which shows that the most
devastating fail-stop attack is guaranteed to achieve a high score. In light of the
remarks above, Theorem 4 directly implies Theorem 3.

Theorem 4. For any (X0, r)-fair coin-tossing protocol π in the f-hybrid model,
we have

Opt (π) ≥ Γr · X0 (1 − X0) ,

where Γr :=
√√

2−1
r .

50 H. K. Maji and M. Wang

4.3 Inductive Proof of Theorem 4

In this section, we shall prove Theorem 4 by using mathematical induction on
the message complexity r. Let us first state some useful lemmas.

Firstly, we note that in the f -hybrid model, where f is a (randomized) func-
tionality that satisfies the strict cross product rule, Alice view and Bob view are
always independent conditioned on the partial transcript.

Lemma 3 (Independence of Alice and Bob view). For any i and partial
transcript m≤i, conditioned on this partial transcript, the joint distribution of
Alice and Bob private randomness is identical to the product of the marginal
distribution. That is,

SD

(
(
RA, RB

)∣∣M≤i = m≤i ,
(
RA

∣
∣M≤i = m≤i

) × (
RB

∣
∣M≤i = m≤i

)
)

= 0.

In particular, this lemma implies the following claim.

Claim 1. Let π be an arbitrary fair coin-tossing protocol in the f-hybrid model.
Suppose there are 	 possible first messages, namely, m

(1)
1 ,m

(2)
1 , . . . ,m

(�)
1 , each

happens with probability p(1), p(2), . . . , p(�). Suppose conditioned on the first mes-
sage being M1 = m

(i)
1 , the expected defense of Alice and Bob are d

A,(i)
1 and d

B,(i)
1

respectively. Then we have

�∑

i=1

p(i) · d
A,(i)
1 d

B,(i)
1 = DA

0 · DB
0 .

Lemma 3 and Claim 1 can be proven in a straightforward manner. We omit it
due to space constraint. A proof can be found in the full version. Finally, the
following lemma from [45] shall be helpful as well.

Imported Lemma 1 ([45]). For all P ∈ [0, 1] and Q ∈ [0, 1/2], if P and Q
satisfy that

Q ≤ P

1 + P 2
,

then for all x, α, β ∈ [0, 1], we have

max (P · x(1 − x) , |x − α| + |x − β|) ≥ Q · (
x(1 − x) + (x − α)2 + (x − β)2

)
.

In particular, for any integer r ≥ 1, the constraints are satisfied, if we set P = Γr

and Q = Γr+1, where Γr :=
√√

2−1
r .

Base case: r = 1. We are now ready to prove Theorem 4. Let us start with
the base case. In the base case, the protocol consists of only one message. Recall
that the last message of the protocol is a boundary case of our score function.
It might not be the case that both parties can attack this message. Hence, we
prove it in different cases.

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 51

Case 1: Alice message. Suppose this message is an Alice message. In this case,
we shall only consider the attack by Alice. By definition, with probability X0,
Alice will send a message, conditioned on which the output shall be 1. And with
probability 1 − X0, Alice will send a message, conditioned on which the output
shall be 0. On the other hand, the expectation of Bob’s defense will remain the
same as DB

0 . Therefore, the maximum of the score shall be

X0 · ∣
∣1 − DB

0

∣
∣ + (1 − X0) · ∣

∣0 − DB
0

∣
∣ ,

which is
≥ X0 (1 − X0) .

In particular, this is
≥ Γ1 · X0 (1 − X0) .

Case 2: Bob message. This case is entirely analogous to case 1.

Case 3: Trusted party message. In this case, we shall consider the effectiveness
of the attacks by both parties. Suppose there are 	 possible first message by
the trusted party, namely, m

(1)
1 ,m

(2)
1 , . . . ,m

(�)
1 , each happens with probability

p(1), p(2), . . . , p(�). Conditioned on first message being M1 = m
(i)
1 , the output of

the protocol is x
(i)
1 . We must have x

(i)
1 ∈ {0, 1} since the protocol has ended and

parties shall agree on the output. Furthermore, let the expected defense of Alice
and Bob be d

A,(i)
1 and d

B,(i)
1 . Therefore, the maximum of the score will be

�∑

i=1

p(i) ·
(∣
∣
∣x(i)

1 − d
A,(i)
1

∣
∣
∣ +

∣
∣
∣x(i)

1 − d
B,(i)
1

∣
∣
∣
)

.

We have

�∑

i=1

p(i) ·
(∣
∣
∣x(i)

1 − d
A,(i)
1

∣
∣
∣ +

∣
∣
∣x(i)

1 − d
B,(i)
1

∣
∣
∣
)

≥
�∑

i=1

p(i) ·
(

x
(i)
1

(
1 − x

(i)
1

)
+

(
x
(i)
1 − d

A,(i)
1

)2

+
(
x
(i)
1 − d

B,(i)
1

)2
)

(Since x
(i)
1 ∈ {0, 1})

=
�∑

i=1

p(i) ·
(

x
(i)
1 +

(
x
(i)
1 − d

A,(i)
1 − d

B,(i)
1

)2

− 2d
A,(i)
1 d

B,(i)
1

)

(Identity Transformation)

≥ X0 +
(
X0 − DA − DB

)2 −
�∑

i=1

p(i) · 2d
A,(i)
1 d

B,(i)
1

(Jensen’s inequality on convex function F (x, y, z) := (x − y − z)2)

= X0 +
(
X0 − DA − DB

)2 − 2DA
0 · DB

0 (Claim 1)

52 H. K. Maji and M. Wang

= X0 (1 − X0) +
(
X0 − DA

0

)2
+

(
X0 − DB

0

)2
(Identity Transformation)

≥ X0 (1 − X0)
≥ Γ1 · X0 (1 − X0)

This completes the proof of the base case.

Inductive Step. Suppose the statement is true for message complexity r. Let π
be an arbitrary protocol with message complexity r+1. Suppose there are 	 pos-
sible first messages, namely, m

(1)
1 ,m

(2)
1 , . . . ,m

(�)
1 , each happens with probability

p(1), p(2), . . . , p(�). Conditioned on first message being M1 = m
(i)
1 , the output of

the protocol is x
(i)
1 and the expected defense of Alice and Bob are d

A,(i)
1 and

d
B,(i)
1 respectively. Note that conditioned on the first message being M1 = m

(i)
1 ,

the remaining protocol π(i) becomes a protocol with expected output x
(i)
1 and

message complexity r. By our inductive hypothesis, we have

Opt
(
π(i)

)
≥ Γr · x

(i)
1

(
1 − x

(i)
1

)
.

On the other hand, we could also pick the first message m
(i)
1 as our stopping

time, which yields a score of
∣
∣
∣x(i)

1 − d
A,(i)
1

∣
∣
∣ +

∣
∣
∣x(i)

1 − d
B,(i)
1

∣
∣
∣ .

Therefore, the stopping time that witnesses the largest score yields (at least) a
score of

max
(
Γr · x

(i)
1

(
1 − x

(i)
1

)
,

∣
∣
∣x(i)

1 − d
A,(i)
1

∣
∣
∣ +

∣
∣
∣x(i)

1 − d
B,(i)
1

∣
∣
∣
)

≥Γr+1 ·
(

x
(i)
1

(
1 − x

(i)
1

)
+

(
x
(i)
1 − d

A,(i)
1

)2

+
(
x
(i)
1 − d

B,(i)
1

)2
)

(Imported Lemma 1)

Therefore, Opt (π) is lower bounded by

�∑

i=1

p(i) · Γr+1 ·
(

x
(i)
1

(
1 − x

(i)
1

)
+

(
x
(i)
1 − d

A,(i)
1

)2

+
(
x
(i)
1 − d

B,(i)
1

)2
)

= Γr+1 ·
�∑

i=1

p(i) ·
(

x
(i)
1 +

(
x
(i)
1 − d

A,(i)
1 − d

B,(i)
1

)2

− 2d
A,(i)
1 d

B,(i)
1

)

(Identity Transformation)

≥ Γr+1 ·
(

X0 +
(
X0 − DA − DB

)2 −
�∑

i=1

p(i) · 2d
A,(i)
1 d

B,(i)
1

)

(Jensen’s inequality on convex function F (x, y, z) := (x − y − z)2)

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 53

= Γr+1 ·
(
X0 +

(
X0 − DA − DB

)2 − 2DA
0 · DB

0

)
(Claim 1)

= Γr+1 ·
(
X0 (1 − X0) +

(
X0 − DA

0

)2
+

(
X0 − DB

0

)2)

(Identity Transformation)
≥ Γr+1 · X0 (1 − X0)

This completes the proof of the inductive step.

5 Black-Box Uses of Public-Key Encryption is Useless
for Optimal Fair Coin-Tossing

In this section, we prove that public-key encryption used in a black-boxed manner
shall not enable optimal fair coin-tossing. Our objective is to prove the existence
of an oracle, with respect to which public-key encryption exists, but optimal fair
coin-tossing does not.

5.1 Public-Key Encrytion Oracles

Let n be the security parameter. We follow the work of [56] and define the
following set of functions.

– Gen : {0, 1}n → {0, 1}3n. This function is a random injective function.
– Enc : {0, 1}3n ×{0, 1}n → {0, 1}3n. This function is uniformly randomly sam-

pled among all functions that are injective with respect to the second input.
That is, when the first input is fixed, this function is injective.

– Dec : {0, 1}n × {0, 1}3n → {0, 1}n ∪ {⊥}. This function is the uniquely deter-
mined by functions Gen and Enc as follows. Dec takes as inputs a secret-
key sk ∈ {0, 1}n and a ciphertext c ∈ {0, 1}3n. If there exists a message
m ∈ {0, 1}n such that Enc(Gen(sk),m) = c, define Dec(sk, c) := m. Other-
wise, define Dec(sk, c) := ⊥. Note that such message m, if exists, must be
unique, because Enc is injective with respect to the second input.

– Test1 : {0, 1}3n → {0, 1}. This function is uniquely determined by function
Gen. It takes as an input a public-key pk ∈ {0, 1}3n. If there exists a secret-
key sk ∈ {0, 1}n such that Gen(sk) = pk, define Test1(pk) := 1. Otherwise,
define Test1(pk) := 0.

– Test2 : {0, 1}3n × {0, 1}3n → {0, 1}. This function is uniquely determined by
function Enc. It takes as inputs a public-key pk ∈ {0, 1}3n and a ciphertext
c ∈ {0, 1}3n. If there exists a message m such that Enc(pk,m) = c, define
Test2(pk, c) := 1. Otherwise, define Test2(pk, c) := 0.

We shall refer to this collection of oracles the PKE oracle. Trivially, the PKE
oracle enables public-key encryption. We shall prove that it does not enable
optimally-fair coin-tossing.

54 H. K. Maji and M. Wang

Remark 4. We stress that it is necessary to include the test functions Test1
and Test2. As shown by [27,54], public-key encryption with additional features
could be used to construct oblivious transfer protocols, which, in turn, could be
used to construct optimally-fair coin-tossing protocols [61].[56] proved that with
the test functions Test1 and Test2, Alice’s and Bob’s private views can only be
correlated as a disjoint union of independent views, which is not sufficient to
realize oblivious transfer.We refer the readers to [56] for more details.

5.2 Our Results

We shall prove the following theorem.

Theorem 5 (Main theorem for PKE Oracle). There exists a universal
polynomial p(·, ·, ·, ·) such that the following holds. Let π be any fair coin-tossing
protocol in the PKE oracle model, where Alice and Bob make at most m queries.
Let X0 be the expected output, and r be the message complexity of π. There exists
an (information-theoretic) fail-stop attacker that deviates the expected output of
the other party by (at least)

Ω

(
X0 (1 − X0)√

r

)
.

This attacker shall ask at most p
(
n,m, r, 1

X0(1−X0)

)
additional queries.

It is instructive to understand why Theorem 3 does not imply Theorem 5. One
may be tempted to model the public-key encryption primitive as an idealized
secure function evaluation functionality to prove this implication. The idealized
functionality for public-key encryption delivers sender’s message to the receiver,
while hiding it from the eavesdropper. So, the “idealized public-key encryption”
functionality is a three-party functionality where the sender’s input is delivered
to the receiver; the eavesdropper has no input or output. This idealized effect is
easily achieved given secure point-to-point communication channels, which we
assume in our work. The non-triviality here is that our result is with respect
to an oracle that implements the public-key encryption functionality. An oracle
for public-key encryption is not necessarily used just for secure message passing.
Section 6 has a discussion elaborating the difference between an “ideal function-
ality” and an “oracle implementing the ideal functionality.”

Remark 5. As usual in the literature [21,22,59], we shall only consider instant
protocols. That is, once a party aborts, the other party shall not make any
additional queries to defend, but directly output her current defense coin. We
refer the reader to [21] for justification and more details on this assumption.

In fact, our proof technique is sufficient to prove the following stronger the-
orem.

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 55

Theorem 6. There exists a universal polynomial p(·, ·, ·, ·) such that the follow-
ing holds. Let f be any (randomized) functionality that is not complete. Let π
be any fair coin-tossing protocol in the f-hybrid model where parties have access
to the PKE oracle model. Assume Alice and Bob make at most m queries. Let
X0 be the expected output, and r be the message complexity of π. There exists
an (information-theoretic) fail-stop attacker that deviates the expected output of
the other party by (at least)

Ω

(
X0 (1 − X0)√

r

)
.

This attacker shall ask at most p
(
n,m, r, 1

X0(1−X0)

)
additional queries.

Our proof strategy consists of two steps, similar to that of [56].

1. Given a protocol in the PKE oracle model, we shall first convert it into a
protocol where parties do not invoke the decryption queries. By Imported
Theorem 1 proven in [56], we can convert it in a way such that the insecurity
of these two protocols in the presence of a semi-honest adversary is (almost)
identical. In particular, this ensures that the insecurity of fair coin-tossing
protocol in the presence of a fail-stop adversary is (almost) identical.

2. Next, we shall extend the results of [59], where they proved a fair coin-tossing
protocol in the random oracle model is highly insecure, to the setting of PKE
oracles without decryption oracle. Intuitively, The proof of [59] only relied on
the fact that in the random oracle model, there exists a public algorithm [8]
that asks polynomially many queries and decorrelate the private view of Alice
and Bob. Mahmoody, Maji, and Prabhakaran [56] proved that (summarized as
Imported Theorem 2) the PKE oracles without the decryption oracle satisfies
the similar property. Hence, the proof of [59] extends naturally to this setting.

Together, these two steps prove Theorem 5. The first step is summarized in
Sect. 5.3. The second step is summarized in Sect. 5.4.

5.3 Reduction from PKE Oracle to Image Testable Random Oracle

A (keyed version of) image-testable random oracles is a collection of pairs of
oracles (Rkey, T key) parameterized by a key such that the following holds.

– Rkey : {0, 1}n → {0, 1}3n is a randomly sampled injective function.
– T key : {0, 1}3n → {0, 1} is uniquely determined by function Rkey as follows.

Define T key(β) := 1 if there exists an α ∈ {0, 1}n such that Rkey(α) = β.
Otherwise, define T key(β) = 0.

Observe that the PKE oracle without the decryption oracle Dec is exactly
a (keyed version of) image-testable random oracles with the keys drawn from
{⊥} ∪ {0, 1}3n. If the key is ⊥, it refers to the pair of oracles (Gen,Test1). If the
key ∈ {0, 1}3n, it refers to the pair of oracles (Enc(key, ·),Test2(key, ·)). We shall
refer to the PKE oracle without the decryption oracle Dec as ITRO. We shall
use the following imported theorem, which is implicitly proven in [56].

56 H. K. Maji and M. Wang

Imported Theorem 1 ([56]). There exists a universal polynomial p(·, ·) such
that the following holds. Let π be a fair coin-tossing protocol in the PKE oracle
model. Let X0 and r be the expected output and message complexity. Suppose
Alice and Bob ask (at most) m queries. For any ε > 0, there exists a fair coin-
tossing protocol π′ in the ITRO model such that the following holds.

– Let X ′
0 and r′ be the expected output and message complexity of π′. Then,

r′ = r and |X ′
0 − X0| < ε.

– Parties asks at most p(m, 1/ε) queries in protocol π′.
– For any semi-honest adversary A′ for protocol π′, there exists a semi-honest

adversary A for protocol π, such that the view of A is ε-close to the view of
A′. And vice versa. In particular, this implies that if π′ is α-insecure. π is
(at least) (α − ε)-insecure.

The intuition behind this theorem is the following. To avoid the uses of
decryption oracle, parties are going to help each other decrypt. In more detail,
suppose Alice generates a ciphertext using Bob’s public key. Whenever the prob-
ability that Bob invokes the decryption oracle on this ciphertext is non-negligibly
high, Alice will directly reveal the message to Bob. Hence, Bob does not need
to use the decryption oracle. This shall not harm the security as a semi-honest
Bob can recover the message by asking polynomially many additional queries.
We refer the readers to [56] for more details.

Looking forward, we shall prove that any fair coin-tossing protocol in the

ITRO model is Ω

(
X′

0(1−X′
0)√

r

)
-insecure. By setting ε to be 1/poly for some

sufficiently large polynomial, we shall guarantee that

ε = o
(

X0 (1 − X0)√
r

)
.

This guarantees that the insecurity of the protocol in the PKE oracle model is
(qualitatively) identical to the insecure of the protocol in the ITRO model.

5.4 Extending the Proof of [59] to Image Testable Random Oracle

We first recall the following theorem from [56].

Imported Theorem 2 (Common Information Learner [56]). There exists
a universal polynomial p(·, ·) such that the following holds. Let π be any two-party
protocol in the ITRO model, in which both parties make at most m queries. For
all threshold ε ∈ (0, 1), there exists a public algorithm, called the common infor-
mation learner, who has access to the transcript between Alice and Bob. After
receiving each message, the common information learner performs a sequence of
queries and obtain its corresponding answers from the ITRO. Let Mi denote the
ith message of the protocol. Let Hi denote the sequence of query-answer pairs
asked by the common information learner after receiving the message Mi. Let
Ti be the union of the ith message Mi and the ith common information learner

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 57

message Hi. Let V A
i (resp., V B

i) denote Alice’s (resp., Bob’s) private view imme-
diately after message Ti, which includes her private randomness, private queries,
and the public partial transcript. The common information learner guarantees
that the following conditions are simultaneously satisfied.

– Cross-product Property. Fix any round i,

E
t≤i←T≤i

[
SD

((
V A

i , V B
i

∣
∣T≤i = t≤i

)
,
(
V A

i

∣
∣T≤i = t≤i

) × (
V B

i

∣
∣T≤i = t≤i

))] ≤ ε.

Intuitively, it states that on average, the statistical distance between (1) the
joint distribution of Alice and Bob’s private view, and (2) the product of
the marginal distributions of Alice’s private views and Bob’s private views is
small.

– Efficient Property. The expected number of queries asked by the common
information learner is bounded by p(m, 1/ε).

This theorem, combined with proof of [59] gives the following theorem.

Theorem 7. There exists a universal polynomial p(·, ·, ·, ·) such that the follow-
ing holds. Let π be a protocol in the ITRO model, where Alice and Bob make at
most m queries. Let X0 and r be the expected output and message complexity.
Then, there exists an (information-theoretic) fail-stop adversary that deviates
the expected output of the other party by

Ω

(
X0 (1 − X0)√

r

)
.

This attacker asks at most p
(
n,m, r, 1

X0(1−X0)

)
additional queries.

Below, we briefly discuss why Imported Theorem 2 is sufficient to prove this
theorem. The full proof is analogous to [59] and the proof of the results in the
f -hybrid model. Hence we omit it here.

On a high level, the proof goes as follows. We prove Theorem 7 by induction.
Conditioned on the first message, the remaining protocol becomes an (r − 1)-
message protocol, and one can apply the inductive hypothesis. For every possible
first message i, we consider whether to abort immediately or defer the attack
to the remaining sub-protocol. By invoking Imported Lemma 1, we obtain a
potential function, which characterizes the insecurity of the protocol with first
message being i. This potential function will be of the form

Φ(xi, ai, bi) = xi(1 − xi) + (xi − ai)2 + (xi − bi)2,

where xi, ai, and bi stands for the expected output, expected Alice defense, and
expected Bob defense, respectively. To complete the proof, [59] showed that it
suffices to prove the following Jensen’s inequality.

E
i
[Φ(xi, ai, bi)] ≥ Φ

(

E
i
[xi] ,E

i
[ai] ,E

i
[bi]

)
.

58 H. K. Maji and M. Wang

To prove this, one can rewrite Φ(x, a, b) as

Φ(x, a, b) = x + (x − a − b)2 − 2ab.

We note that x and (x−a−b)2 are convex functions, and hence Jensen’s inequal-
ity holds. As for the term ab, we shall have

E
i
[aibi] ≈ E

i
[ai] · E

i
[bi]

as long as, conditioned on every possible first message i, Alice’s private view
is (almost) independent to Bob’s private view. This is exactly what Imported
Theorem 2 guarantees except for a small error depending on ε, which we shall
set to be sufficiently small. Therefore, the proof shall follow.

6 Open Problems

In this work, we proved that access to ideal invocations to the secure func-
tion evaluation functionalities like the Kushilevitz function [51] (Fig. 2) does
not enable optimal fair coin-tossing. However, we do not resolve the following
stronger statement. Suppose there exists an oracle relative to which there exists
a secure protocol for the Kushilevitz function. Is optimal fair coin-tossing impos-
sible relative to this oracle?

To appreciate the distinction between these two statements, observe that
there may be additional ways to use the “oracle implementing Kushilevitz func-
tion” than merely facilitating the secure computing of the Kushilevitz function.
More generally, there may be implicit consequences implied by the existence of
such an oracle. For example, “the existence of an efficient algorithm for 3SAT”
not only allows solving 3SAT problems, but it also allows efficiently solving any
problem in PH because the entire PH collapses to P.

This problem is incredibly challenging and one of the major open problems
in this field. The technical tools developed in this paper also bring us closer to
resolving this problem.

References

1. Agrawal, S., Prabhakaran, M.: On fair exchange, fair coins and fair sampling. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 259–
276. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 15

2. Alon, B., Omri, E.: Almost-optimally fair multiparty coin-tossing with nearly three-
quarters malicious. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol.
9985, pp. 307–335. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53641-4 13

3. Asharov, G.: Towards characterizing complete fairness in secure two-party compu-
tation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291–316. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 13

https://doi.org/10.1007/978-3-642-40041-4_15
https://doi.org/10.1007/978-3-662-53641-4_13
https://doi.org/10.1007/978-3-662-53641-4_13
https://doi.org/10.1007/978-3-642-54242-8_13

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 59

4. Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization
of fairness in secure two-party computation of boolean functions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 199–228. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 10

5. Asharov, G., Lindell, Y., Rabin, T.: A full characterization of functions that imply
fair coin tossing and ramifications to fairness. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 243–262. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36594-2 14

6. Awerbuch, B., Blum, M., Chor, B., Goldwasser, S., Micali, S.: How to implement
Bracha’s O (log n) byzantine agreement algorithm (1985)

7. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp.
296–315. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-
7 16

8. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal - an O(n2)-query
attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03356-8 22

9. Beaver, D.: Perfect privacy for two-party protocols. In: DIMACS (1989)
10. Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computa-

tion without honest majority and the best of both worlds. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 16

11. Beimel, A., Omri, E., Orlov, I.: Protocols for multiparty coin toss with dishon-
est majority. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 538–557.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 29

12. Blum, M.: Coin flipping by telephone - a protocol for solving impossible problems
(1982)

13. Broder, A.Z., Dolev, D.: Flipping coins in many pockets (byzantine agreement on
uniformly random values). In: 25th FOCS, pp. 157–170. IEEE Computer Society
Press, October 1984

14. Buchbinder, N., Haitner, I., Levi, N., Tsfadia, E.: Fair coin flipping: tighter analysis
and the many-party case. In: Klein, P.N. (ed.) 28th SODA, pp. 2580–2600. ACM-
SIAM, January 2017

15. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

16. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

17. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-39200-9 5

18. Chor, B., Kushilevitz, E.: A zero-one law for Boolean privacy (extended abstract).
In: 21st ACM STOC, pp. 62–72. ACM Press, May 1989

19. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th ACM STOC, pp. 364–369. ACM Press, May 1986

20. Cleve, R., Impagliazzo, R.: Martingales, collective coin flipping and discrete control
processes (extended abstract) (1993)

https://doi.org/10.1007/978-3-662-46494-6_10
https://doi.org/10.1007/978-3-642-36594-2_14
https://doi.org/10.1007/978-3-642-36594-2_14
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/978-3-642-22792-9_16
https://doi.org/10.1007/978-3-642-14623-7_29
https://doi.org/10.1007/3-540-39200-9_5

60 H. K. Maji and M. Wang

21. Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On the black-box
complexity of optimally-fair coin tossing. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 450–467. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19571-6 27

22. Dachman-Soled, D., Mahmoody, M., Malkin, T.: Can optimally-fair coin tossing be
based on one-way functions? In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
217–239. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 10

23. Data, D., Prabhakaran, M.: Towards characterizing securely computable two-party
randomized functions. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS,
vol. 10769, pp. 675–697. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76578-5 23

24. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 205–210.
Plenum Press, New York (1982)

25. Gennaro, R., Gertner, Y., Katz, J.: Lower bounds on the efficiency of encryption
and digital signature schemes. In: 35th ACM STOC, pp. 417–425. ACM Press,
June 2003

26. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: 41st FOCS, pp. 305–313. IEEE Computer Society Press, Novem-
ber 2000

27. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: 41st FOCS, pp.
325–335. IEEE Computer Society Press, November 2000

28. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: 42nd FOCS, pp. 126–135. IEEE Computer
Society Press, October 2001

29. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer Society Press,
October 1984

30. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

31. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

32. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991)

33. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp.
413–422. ACM Press, May 2008

34. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 8

35. Haitner, I., Makriyannis, N., Omri, E.: On the complexity of fair coin flipping.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp.
539–562. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 20

36. Haitner, I., Nissim, K., Omri, E., Shaltiel, R., Silbak, J.: Computational two-party
correlation: a dichotomy for key-agreement protocols. In: Thorup, M. (ed.) 59th
FOCS, pp. 136–147. IEEE Computer Society Press, October 2018

https://doi.org/10.1007/978-3-642-19571-6_27
https://doi.org/10.1007/978-3-642-19571-6_27
https://doi.org/10.1007/978-3-642-54242-8_10
https://doi.org/10.1007/978-3-642-54242-8_10
https://doi.org/10.1007/978-3-319-76578-5_23
https://doi.org/10.1007/978-3-319-76578-5_23
https://doi.org/10.1007/978-3-642-13190-5_8
https://doi.org/10.1007/978-3-030-03807-6_20

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 61

37. Haitner, I., Omri, E.: Coin flipping with constant bias implies one-way functions.
In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 110–119. IEEE Computer Society Press,
October 2011

38. Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way func-
tion. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 1–10. ACM Press,
June 2007

39. Haitner, I., Tsfadia, E.: An almost-optimally fair three-party coin-flipping protocol.
In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 408–416. ACM Press, May/June
(2014)

40. H̊astad, J.: Pseudo-random generators under uniform assumptions. In: 22nd ACM
STOC, pp. 395–404. ACM Press, May 1990

41. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

42. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
the Tenth Annual Structure in Complexity Theory Conference (1995)

43. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstracts). In: 21st ACM STOC, pp. 12–24. ACM Press, May
1989

44. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989

45. Khorasgani, H.A., Maji, H.K., Wang, M.: Coin tossing with lazy defense: hard-
ness of computation results. Cryptology ePrint Archive, Report 2020/131 (2020).
https://eprint.iacr.org/2020/131

46. Kilian, J.: A general completeness theorem for two-party games. In: 23rd ACM
STOC, pp. 553–560. ACM Press, May 1991

47. Kilian, J.: More general completeness theorems for secure two-party computation.
In: 32nd ACM STOC, pp. 316–324. ACM Press, May 2000

48. Kreitz, G.: A zero-one law for secure multi-party computation with ternary out-
puts. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 382–399. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-19571-6 23

49. Künzler, R., Müller-Quade, J., Raub, D.: Secure computability of functions in
the IT setting with dishonest majority and applications to long-term security. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 238–255. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00457-5 15

50. Kushilevitz, E.: Privacy and communication complexity. In: 30th FOCS, pp. 416–
421. IEEE Computer Society Press, October/November 1989

51. Kushilevitz, E., Nisan, N.: Communication complexity. Google Scholar Digital
Library Digital Library (1997)

52. Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 12

53. Lindell, Y.: How to simulate it - a tutorial on the simulation proof technique. Tutor.
Found. Cryptogr. 277–346, (2017)

54. Lindell, Y., Omri, E., Zarosim, H.: Completeness for symmetric two-party func-
tionalities - revisited. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS,
vol. 7658, pp. 116–133. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34961-4 9

55. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

https://eprint.iacr.org/2020/131
https://doi.org/10.1007/978-3-642-19571-6_23
https://doi.org/10.1007/978-3-642-00457-5_15
https://doi.org/10.1007/978-3-540-24638-1_12
https://doi.org/10.1007/978-3-540-24638-1_12
https://doi.org/10.1007/978-3-642-34961-4_9
https://doi.org/10.1007/978-3-642-34961-4_9

62 H. K. Maji and M. Wang

56. Mahmoody, M., Maji, H.K., Prabhakaran, M.: On the power of public-key encryp-
tion in secure computation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
240–264. Springer, Heidelberg (2014)

57. Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of multi-party computation
problems: the case of 2-party symmetric secure function evaluation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 256–273. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 16

58. Maji, H.K., Prabhakaran, M., Rosulek, M.: A zero-one law for cryptographic com-
plexity with respect to computational UC security. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 595–612. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7 32

59. Maji, H.K., Wang, M.: Black-box use of one-way functions is useless for optimal
fair coin-tossing. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II.
LNCS, vol. 12171, pp. 593–617. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-56880-1 21

60. Makriyannis, N.: On the classification of finite boolean functions up to fairness.
In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 135–154.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 9

61. Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-00457-5 1

62. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991)

63. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge argu-
ments for NP using any one-way permutation. J. Cryptol. 11(2), 87–108 (1998)

64. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st ACM STOC, pp. 33–43. ACM Press, May 1989

65. Papadimitriou, C.H.: Games against nature (extended abstract). In: 24th FOCS,
pp. 446–450. IEEE Computer Society Press, November 1983

66. Prabhakaran, M., Rosulek, M.: Cryptographic complexity of multi-party compu-
tation problems: classifications and separations. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 262–279. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85174-5 15

67. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Memo TR-
81 (1981)

68. Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187 (2005). http://eprint.iacr.org/2005/187

69. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004).https://doi.org/10.1007/978-3-540-24638-1 1

70. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, pp. 387–394. ACM Press, May 1990

71. Rosulek, M., Shirley, M.: On the structure of unconditional UC hybrid protocols.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp.
98–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 4

72. Rudich, S.: The use of interaction in public cryptosystems (extended abstract).
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 242–251. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 19

73. Schilling, R.L.: Measures, integrals and martingales (2017)

https://doi.org/10.1007/978-3-642-00457-5_16
https://doi.org/10.1007/978-3-642-14623-7_32
https://doi.org/10.1007/978-3-642-14623-7_32
https://doi.org/10.1007/978-3-030-56880-1_21
https://doi.org/10.1007/978-3-030-56880-1_21
https://doi.org/10.1007/978-3-319-10879-7_9
https://doi.org/10.1007/978-3-642-00457-5_1
https://doi.org/10.1007/978-3-642-00457-5_1
https://doi.org/10.1007/978-3-540-85174-5_15
https://doi.org/10.1007/978-3-540-85174-5_15
http://eprint.iacr.org/2005/187
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-030-03810-6_4
https://doi.org/10.1007/3-540-46766-1_19

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt 63

74. Simon, D.R.: Finding collisions on a one-way street: can secure hash functions
be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054137

75. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137

YOSO: You Only Speak Once

Secure MPC with Stateless Ephemeral Roles

Craig Gentry1(B), Shai Halevi1, Hugo Krawczyk1, Bernardo Magri2,
Jesper Buus Nielsen2, Tal Rabin1,3, and Sophia Yakoubov4

1 Algorand Foundation, New York, USA
hugo@ee.technion.ac.il

2 Concordium Blockchain Research Center, Aarhus University, Aarhus, Denmark
3 UPenn, Philadelphia, USA

4 Aarhus University, Aarhus, Denmark

Abstract. The inherent difficulty of maintaining stateful environments
over long periods of time gave rise to the paradigm of serverless com-
puting, where mostly stateless components are deployed on demand to
handle computation tasks, and are torn down once their task is complete.
Serverless architecture could offer the added benefit of improved resis-
tance to targeted denial-of-service attacks, by hiding from the attacker
the physical machines involved in the protocol until after they complete
their work. Realizing such protection, however, requires that the protocol
only uses stateless parties, where each party sends only one message and
never needs to speaks again. Perhaps the most famous example of this
style of protocols is the Nakamoto consensus protocol used in Bitcoin:
A peer can win the right to produce the next block by running a local
lottery (mining) while staying covert. Once the right has been won, it
is executed by sending a single message. After that, the physical entity
never needs to send more messages.

We refer to this as the You-Only-Speak-Once (YOSO) property, and
initiate the formal study of it within a new model that we call the
YOSO model. Our model is centered around the notion of roles, which
are stateless parties that can only send a single message. Crucially, our
modelling separates the protocol design, that only uses roles, from the
role-assignment mechanism, that assigns roles to actual physical entities.
This separation enables studying these two aspects separately, and our
YOSO model in this work only deals with the protocol-design aspect.

We describe several techniques for achieving YOSO MPC; both com-
putational and information theoretic. Our protocols are synchronous and
provide guaranteed output delivery (which is important for application
domains such as blockchains), assuming honest majority of roles in every

J. B. Nielsen—Partially funded by The Concordium Foundation; The Danish Indepen-
dent Research Council under Grant-ID DFF-8021-00366B (BETHE); The Carlsberg
Foundation under the Semper Ardens Research Project CF18-112 (BCM).
S. Yakoubov—Funded by the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation programme under grant agreement No
669255 (MPCPRO).

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 64–93, 2021.
https://doi.org/10.1007/978-3-030-84245-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_3

YOSO: You Only Speak Once 65

time step. We describe a practically efficient computationally-secure
protocol, as well as a proof-of-concept information theoretically secure
protocol.

Keywords: Blockchains · Secure MPC · Stateless Parties · YOSO

1 Introduction

A somewhat surprising feature of our networked world is just how hard it is to
keep a working stateful execution environment over long periods of time. Even
in non-adversarial settings, it is a major challenge to keep a server operational
and connected through software updates, local physical events, and global infras-
tructure interruptions. This becomes even harder in adversarial environments.
Consider for example a network adversary targeting a specific protocol, watch-
ing the communication network and mounting a targeted denial of service (DoS)
attack on any machine that sends a message in this protocol. In high-stake
environments, one also must worry about near-instant malicious compromise,
unleashed by well equipped adversaries with a stash of zero-day exploits.

One approach for mitigating this issue is the paradigm of serverless com-
puting, where mostly-stateless components are deployed on demand to handle
computation tasks, and are torn down once their task is complete. In addition
to economic benefits, a protocol built from such components could offer better
resistance against strong adversaries by hiding the physical machines that play
a role in the protocol, until after they complete their work and send their mes-
sages. To realize this protection, however, the protocol must utilize only stateless
components, making it harder to design.

Perhaps the best-known example of this style of protocol is the Nakamoto
consensus protocol used in Bitcoin [19]. A salient property of the Bitcoin design
is that a peer can win the right to produce the next block by running a local
lottery (mining), while staying covert. Once the right has been won, it is executed
by sending a single message. After that, the physical entity never needs to send
another message. Another example is the Algorand consensus protocol [8] with
its player-replaceability property.

In this work we initiate a formal study of protocols of this style, which we refer
to as You-Only-Speak-Once (YOSO). An important conceptual contribution of
our work is the (relatively) clean modeling of such protocols, centered around
their use of roles (which is the name we use for those one-time stateless parties).
Crucially, our modeling separates the protocol design using roles from the role-
assignment functionality that assigns the roles to actual physical machines.

This separation lets us study the protocol design problem on its own, freeing
us from having to specify the role-assignment implementation which is necessar-
ily very system dependent: a proof-of-work blockchain will have very different
role-assignment mechanisms from a proof-of-stake blockchain, and a traditional
cloud environment will use yet different mechanisms. However, all these systems
could use the same protocol for secure computation once the roles have been
properly assigned. On the technical side we make the following contributions:

66 C. Gentry et al.

– We present a formal model for defining and studying such protocols, called
the YOSO model, which in particular codifies the separation between role-
assignment and protocol execution and formally defines the notion of only
speaking once. The YOSO model is cast within the UC framework [5] and
therefore can draw on the existing body of research on UC security. An
overview of the model is provided in Sect. 2. For a more detailed treatment
see the full version of the paper [14].

– We also devise tools for working in the YOSO model, and describe two dif-
ferent secure MPC protocols. Our main solution presented in Sect. 3 is an
information theoretic proof-of-concept protocol that provides statistical secu-
rity.1 Additionally, in the full version [14] we also describe a computationally-
secure protocol. Both protocols are synchronous and provide guaranteed out-
put delivery (which is important for our application domain), assuming an
honest majority of roles in every protocol step.

– We show that an information theoretic secure YOSO MPC can be compiled
into a natural UC secure protocol running on a toy model of a blockchain with
role assignment. This is meant as a sanity check of the abstract role-based
YOSO model. It shows that protocols developed in this model can indeed
be compiled to practice. We show that if we start with a static-secure (anal-
ogously, adaptive-secure) YOSO protocol, we can get a static-secure (anal-
ogously, adaptive-secure) UC protocol with essentially the same corruption
threshold.

1.1 The YOSO Model

We introduce the YOSO model to make it easy to start studying YOSO MPC
independently of blockchain and role assignment.

Role-based computation. In the YOSO model, participants in protocols are called
roles rather than parties or nodes or machines. The reason for the name “roles”
is that we usually think of these one-time parties as playing some role in a
protocol. Some examples of roles include “Party #3 in the 2nd VSS protocol
on the 8th round”, “the prover in the 6th NIZK”, etc. Formally, a role is just a
stateless party that can only send a single message before it is destroyed, and a
protocol is an interaction between roles. Throughout this manuscript we use the
following terminology:

Roles: are abstract formal entities that perform the protocol actions and com-
municate with other roles.

Nodes/Machines: refer to stateful long-living entities that the adversary can
identify and target for corruption. These can be physical or virtual machines,
that would typically have some identifying characteristics such as an IP
address that can be used by the adversary to attack them.

1 As we explain below, the restrictions of working in the YOSO model are so severe
that a priory it was not clear to us that information-theoretical security is even
possible in the “2t + 1 regime”. Indeed this work began as an attempt to prove that
no such protocols exist.

YOSO: You Only Speak Once 67

We sometimes use the term parties, but only in informal discussions and in
contexts where the distinction between roles and machines is immaterial.

Importantly, roles are detached from machines, and mapping of machines to
roles happens at execution time. A protocol in the YOSO model will inevitably
be executed alongside a role-assignment functionality, and the security of the
protocol will rely on the guarantees provided by that functionality. Ideally, this
assignment should be unknown to the attacker until after the machine plays its
role and sends a message, hence limiting the adversary’s ability to target the
role for corruption.

The YOSO model can be used with different role-assignment functionalities
with different guarantees. In this work we mainly consider a simple random-
assignment functionality: it assigns each role to a random machine from among
a universe of available ones, and hides that assignment from the adversary (unless
the chosen machine is already corrupted). An adversary that corrupts machines
will therefore be unable to predict which roles will be corrupted; upon corruption
of a machine the adversary will be handed the random roles that are mapped
to that machine. This allows for a simplified view of the adversary where all
corruptions are random.

1.2 MPC in the YOSO Model

A compelling motivation for these protocols is scalable computation in the pres-
ence of an adaptive fail-stop adversary (a powerful DoS adversary, as noted ear-
lier). Imagine a large number—perhaps millions—of nodes that want to engage
in a secure computation in the presence of such an adversary. Assuming that the
DoS adversary cannot take down more than some threshold of the nodes, then
running an MPC protocol among all of them would yield the desired result.
However, running classical MPC protocols among a large number of nodes is
expensive. All of the nodes typically need to communicate with all of their peers,
creating a prohibitive communication load. YOSO MPC enables the computa-
tion to be run by a small subset of the nodes, with an independent subset—or
committee—participating in every round. YOSO MPC thwarts an adaptive DoS
adversary because the adversary is unable to predict which fail-stops will be
useful to foil the security; thus it creates the opportunity for execution of the
protocol with small committees resulting in communication that is sub-linear in
the number of nodes in the network.

As a more concrete example of a scenario where such scalable computation
would be necessary, consider “MPC as a service”. That is, an outsourced com-
putation service where clients submit inputs for a joint computation so that the
privacy of the inputs and the correctness of the output are guaranteed, even if
a fraction of the provider’s servers are adversarially controlled. However, while
full corruption of servers is expensive, dedicated denial of service against tar-
geted servers is an easier attack to carry out, and the protocol should be able
to withstand it. YOSO MPC offers a solution that remains secure under these
realistic conditions.

68 C. Gentry et al.

Role Assignment for YOSO MPC. In order to reap the benefits of such scalable
YOSO MPC, it is important to assign YOSO MPC roles to machines in a scal-
able way without revealing the role assignment before the roles need to speak.
Furthermore, the assigned machines should be able to receive secret messages
(even while the message senders do not know their identities). This is challenging
since, being able to speak only once, the machine having won a role cannot first
make a public key available, and then receive messages and execute its role in
the protocol. This would involve speaking at least twice.

One solution that was recently proposed by Benhamouda et al. [3] involves
the use of nominating committees: each machine has a public key for an encryp-
tion scheme allowing the rerandomization of public keys. For each role R there
will be a delegator role D. (We call R the delegate, and D the delegator.) First a
machine is assigned a delegator role D using, e.g., cryptographic sortition (or just
by solving some puzzle). Then the delegator D will pick, uniformly at random,
another machine to play the delegate role R. It will take that machine’s public
key pki, rerandomize it into ˜pki, and publish ˜pki. Note that ˜pki does not reveal
the identity of the machine that was assigned to R; however, it enables other
roles to send secret messages to the delegate R by encrypting to ˜pki. Finally, the
delegate R will execute the role.

One drawback of this approach is that the role R will be corrupt if the
delegator is corrupt or if the delegate is corrupt. This essentially doubles the
corruption budget of the adversary. It is an interesting research direction to
develop more practical and more secure role assignment mechanisms. However,
this is orthogonal to the design of MPC protocols which will be run by the roles,
which is the focus of our work. In the full version [14] we give a toy example of
compiling a YOSO protocol to run on top of a blockchain with role assignment
to illuminate this compelling use case.

Parameters of YOSO MPC Protocols. When designing a YOSO MPC protocol
there is a number of interesting parameters to consider. In addition to the many
“generic” aspects of MPC (such as corruption type and threshold, hardness
assumptions, trusted setup, security guarantees, etc.) YOSO MPC protocols
have some new parameters in their design.

– Future/Past Horizon: When a role speaks, it may send private messages to
roles intended to speak in future rounds. The future horizon describes how
far into the future a role may need to speak (similarly past horizon is how
far back a role may need to listen). The method of assigning roles impacts
and is impacted by the future and past horizons and should be taken into
consideration. For example, for proof-of-stake systems it is undesirable to
assign roles in advance using the current stake distribution. Or if roles are
assigned on the fly parties would need to read the history of communication
far into the past. One should therefore try to use as short a future/past
horizon as possible.

– Dynamic and Static Execution Time: Static execution time refers to the
ability to know ahead of time when a role would speak in the protocol,

YOSO: You Only Speak Once 69

contrasted with the dynamic case where the time to speak is only deter-
mined at run-time. As YOSO protocols are ideal for serverless architectures
where servers are only running when they need to act, static execution time
may save resources (e.g. cloud rental).
A related distinction (in the dynamic case) is whether only the role itself can
determine when it is going to speak, or whether it can be determined publicly.
(This could make a difference, e.g., in agreement protocols that must accu-
mulate enough votes before moving to the next phase, where we may want
to know if we still need to wait for the vote from the role or can we assume
that it crashed and will never vote.)

YOSO MPC from Additive Homomorphic Threshold Encryption. Our
first technical contribution is a YOSO MPC protocol in the computational set-
ting with guaranteed output delivery in a synchronous model, tolerating a dis-
honest minority of roles at any given round. Specifically, in every round we will
have some number n of roles that will form an honest-majority committee. As
stated, it falls to the role-assignment functionality to supply us with committees
with honest majority; in this work we allow ourselves to just assume that we
have them.

Given a supply of committees with honest majority, our construction is based
on the CDN protocol [10]. Informally, CDN requires a system-wide public key pk
for an additively homomorphic threshold encryption scheme, where the secret
key sk is shared among the committee members (with each member i hold-
ing ski). The participants then perform the entire computation using additive
homomorphism, interspersed with public decryption of masked intermediate val-
ues. The protocol uses Beaver triples that are generated on-the-fly to support
multiplications; the secret key shares are used to open values in every round of
Beaver triple use, and to obtain the computation output at the end.

We note that CDN is already almost a YOSO protocol: the only state the
participants need is the secret key shares ski, and the only messages that they
send are their decryption shares (with the ciphertexts all being public). Providing
the participants with shares of the global secret key sk can be done, e.g., using the
proactive handover protocol of Benhamouda et al. [3], which is a YOSO protocol.
In each protocol round, committee members get their decryption shares, and
then the committee decrypts the current batch of ciphertexts and reshares sk to
the next committee.

To get a YOSO protocol, we also need to generate the Beaver triples YOSO-
style. We will use two committees—CA and CB—to generate many triples of the
form

(

Enc(a),Enc(b),Enc(ab)
)

, which will be consumed by future committees
during multiplications. We first have members Pi of committee CA individually
choose random ai’s and publish the ciphertexts ai = Enc(ai) along with NIZK
proofs that these are valid ciphertexts. All parties can use additive homomor-
phism to obtain a, an encryption of the sum a of the ai’s. Then members Pj

of committee CB will individually choose random bj ’s and set bj = Enc(bj),
then use additive homomorphism to compute cj , an encryption of bja. Pj then

70 C. Gentry et al.

publishes (bj , cj), along with proofs that they were generated properly. All par-
ties can use additive homomorphism to obtain b and c, encryptions of the sums b
of the bj ’s and c of the bja’s, respectively. (a, b, c) form a Beaver triple. Note that
as long as all the NIZK proofs are valid and there is at least one honest party
in each committee CA, CB , the triple is indeed a Beaver triple for the values
a =

∑

i ai and b =
∑

j bj which are unknown to the adversary.2

We describe the complete CDN-based protocol ΠCDN, and prove its security,
in the full version [14]. For now, we state the following informal theorem.

Theorem. (informal) Any multiparty function F can be securely implemented by
the CDN YOSO protocol in a synchronous network with authenticated broadcast
channel, resilient against a fraction τ < 1/2 of random Byzantine corruptions.

We note that another approach for achieving computational security would be
to leverage fully homomorphic encryption (FHE). This requires an FHE scheme
with a one-message threshold decryption procedure, and also one whose secret
key could be maintained proactively using a YOSO protocol. Proactive mainte-
nance of the secret key can be achieved, e.g., using the YOSO handover protocol
of Benhamouda et al. [3], and one-round decryption can be achieved using the
techniques from Asharov et al. [1] and Mukherjee-Wichs [18] (after a one-time
trusted setup to generate the required evaluation key). In terms of complexity,
an FHE-based solution may be more efficient in number of rounds and total
communication, but it requires much more local computation, more per-round
communication, and a more complicated trusted setup.

YOSO MPC from Information Theoretic Techniques. Our second (and
main) technical contribution is a proof-of-concept information theoretic YOSO
protocol with guaranteed output delivery in a synchronous model, tolerating any
dishonest minority of roles at any given committee. This protocol does not need
any trusted setup, but it relies on secure point-to-point channels between roles,3

as well as a totally-ordered broadcast. One consequence of this protocol is statis-
tically unbiased coin-flip in the YOSO model, which (together with appropriate
role-assignment) implies unbiased public randomness in public blockchains via
a YOSO protocol.

We begin by observing that YOSO is easy in the semi-honest model, in
fact semi-honest BGW [2] is basically already a YOSO protocol. The BGW
protocol only uses secret sharing and reconstruction: secret sharing can be done
to a future committee (instead of the current one) over point-to-point channels,
and reconstruction can be done publicly. When implementing a circuit, each
multiplication gate has two committees, one for each round in the multiplication

2 If we have many honest parties in CA, CB (say m of them in each committee), then
we can improve efficiency and get Ω(m) triples at roughly the same bandwidth using
standard techniques.

3 We note again that such secure point-to-point channels would have to be imple-
mented somehow, even though the receiving role may not have been assigned yet
to a machine. This task falls to the role-assignment functionality, which we do not
specify in this work.

YOSO: You Only Speak Once 71

protocol. For a gate with large fan-out, the gate committee will reshare their
shares to the committees of all the downstream gates.

It is only when switching to the malicious model that things get hard, as
YOSO seems to rule out many common information-theoretic techniques. In
particular, patterns such as “committing” to a value and then being challenged
on it, or even just using the same secret value in many parts of the protocol,
seem to inherently require a party to stick around and speak more than once.
The same can be said for cut-and-choose techniques that have a party generating
multiple values, being challenged to open (say) half of them, and if they are all
valid then the other half is used in the protocol.

It is also easy to see that simplistic solutions such as one party sending
all its secret state to another will not help: It would allow the adversary to
get this secret value if either the sender or the receiver are corrupted, hence
amplifying the adversary’s power. A more promising avenue is to let a party
share its secret state with future committees (maybe more than one), and have
these committees emulate it in the future as needed. However, ensuring that a
message from one party is recoverable intact by future committees is challenging;
this is essentially a verifiable-secret-sharing (VSS) functionality. Ensuring that
the party shares the same message to multiple committees poses more challenges
still. In Sect. 3 we address these challenges by gradually developing stronger and
stronger primitives that build on each other. Here we just give a hint for some
of the observations that enable these tools, and the various steps that go into
the construction.

Step 1, Future Broadcast (FBcast). In Sect. 3.2 we describe a Future Broadcast
construction that enables a party to prepare a message that should be sent in a
future round. This may be complicated in general, since we need to ensure that
the message delivered in the future is in fact the message of the party creating
it, the kind of authenticity often requires VSS. But in our context we observe
that we only need to ensure this authenticity for messages of honest parties, as
faulty parties can say whatever they want at any time. Hence, for the FBcast
primitive we can assume an honest dealer, which makes the design a lot easier.

Observe that in the computational setting this is straightforward to achieve.
A party shares its value using a Shamir secret sharing and also provides every
share holder with a digital signature on the share. When the value is recon-
structed only shares with valid signatures are taken into the interpolation, if
they all lie on a degree-t polynomial then the constant term is taken as the
broadcasted message. In the IT setting we show that if the dealer is honest,
information theoretic MACs are sufficient to replace digital signatures in this
construction.

Step 2, Distributed Commitment (DC). In this construction we want to offer
some guarantees for reconstructing a value at a later time also in the case when
the dealer is faulty. DC enables a dealer to commit in a distribute manner to
a value and at a later time either open the committed value or null. This is
exactly the functionality of a commitment in the computational setting, but it
is achieved in the IT distributed setting.

72 C. Gentry et al.

To deliver DC we fortify the IT MACs into IT signatures (IT-SIG). An IT-SIG
offers a holder of the signature on a value some assurances that in fact the value
will be verified when presented. Our techniques build on the VSS interactive
tools of Rabin and Ben-Or [22] adjusted to the YOSO model. We transform
the IT-SIG from [22] into one where a party knows in advance all the messages
that it may need to send in the future. This makes it possible to replace the
multiple speaking rounds in the original protocol, by having each party share
its future messages using FBcast (Sect. 3.3). The IT-SIGs provide enough of the
digital signature properties for the purpose of realizing distributed commitments
(Sect. 3.4).

Step 3, Duplicate DC (DupDC) and VSS. Proceeding towards VSS, we again
turn to Rabin and Ben-Or [22], who utilize DC to achieve VSS via a cut-and-
choose proof. The complication in using in the YOSO model is that in this proof
one value needs to be used multiple times. In the YOSO model, this requires
creating duplicates of the same committed value, each to be used in a different
step of the proof. Letting the dealer run multiple DC’s does not work as the
dealer might be faulty and share different values. Thus, we would need the
dealer to prove that all the committed values are the same. This will create a
problem because for the proof to go through the committee holding the sharing
would need to talk. Once they talk they have exhausted their one opportunity
to speak and now the duplicate of the value has been wasted. Thus, we need to
create a mechanism that duplicates values without “wasting” them. Surprisingly,
we observe that our DC protocol allows the share holders themselves to create
duplicates of the commitment. This avoids the need for additional proofs, the
committee of shareholders is mostly honest so all the duplicates will be the same
by design (see Sect. 3.5). Here, yet again, we can make all elements of the proof
public, thus informing all parties of the result of the computation. This enables
us to finalize the design of the VSS (Sect. 3.6).

To eventually complete the design of the MPC we would also need duplicates
of the VSS as the same value might go into multiple gates and the committee
holding the value can only speak once. Luckily, we can derive the duplicates of
the VSS directly from the duplicates of the DC.

Step 4, Augmented VSS (AugVSS). We need one more level of sharing which we
call Augmented VSS. In this level of sharing we add the property that not only
is a secret s shared via VSS but also that all the shares that define the sharing
of s are VSSed. This will enable the MPC.

Step 5, Secure-MPC. Once we have AugVSS, getting information-theoretic
secure-MPC can be done using standard techniques that need to be adapted
to the YOSO model. We maintain the variant throughout the computation that
the values on the wires are AugVSS. Hence we prove:

YOSO: You Only Speak Once 73

Theorem. (informal) Any multiparty function F can be securely implemented by
an information-theoretic YOSO protocol in a synchronous network with broadcast
and secure point-to-point channels, resilient against a fraction τ < 1/2 of random
Byzantine corruptions. The protocol additionally tolerates any number of chosen,
Byzantine corruptions of input roles and output roles.

It is crucial, for practical purposes, that we can tolerate chosen corruptions
of input roles and output roles. Often the inputs and outputs are given by known
clients that could more easily be targeted by an attack.

Epilogue, Public Randomness. The cut-and-choose protocols in our design are
described using access to public randomness (which defines the challenges in
those protocols). But where can we get this public randomness? Producing true
randomness in a distributed setting seems to require MPC, creating a circular
problem. Yet, we can show that our protocols remain secure when using unpre-
dictable (high min-entropy) values, rather than truly random ones. Producing
public unpredictable values in the honest-majority setting is much easier, and
can even be done in a YOSO fashion. Thus, we can complete the MPC without
the need for true randomness.

Of course, once we are able to get full-blown MPC, we can use it to produce
completely uniform public randomness. This in particular solves the problem
of obtaining public uniform randomness on a public blockchain using a YOSO
protocol, a problem that was explored by a few previous works [6,7].

On the impossibility of Garay et al. [12]. In [12] it was shown that any pro-
tocol in the information theoretic model with a sublinear message complexity
(in the number of parties) cannot withstand adaptive corruptions of a fraction
equal or greater than 1 − √

0.5 of the total number of parties. Yet, we claim
that our IT protocol can withstand less than n/2 adaptive corruptions. This
is not a contradiction. Our proof proceeds in two steps. In the first we prove
that our IT protocol is adaptively secure without the assumption of sublinear
message complexity. In the second part, when we prove the protocol that has
sublinear message complexity, we need to combine our IT protocol with some
role-assignment mechanism. This inevitably takes our protocol out of the IT
model, making the lower bound of [12] not applicable.4

YOSO can be Realized. Our YOSO protocols are abstract in that they only
consider abstract roles; we abstract away role assignment and machines. To show
that protocols designed in our abstract YOSO model can be used in practice,
we show how to compile these abstract protocols into concrete protocols that
use physical machines, assuming an underlying role-assignment service. To that
end, we define a simple UC functionality FRA, modeling a system with role
assignment: That functionality “spits out” a sequence of random public keys,

4 Specifically, the implementation of our communication channels which are needed to
enable the solution can only be achieved in the computational setting (in our specific
case we assume a PKI and more).

74 C. Gentry et al.

where the corresponding secret key is known by a random, secret node in the
system.

Assuming access to this role-assignment functionality, in addition to a broad-
cast channel and point-to-point channels between physical machines in the sys-
tem (modeled as ideal functionalities FBC, FSPP), we show how to compile
any abstract protocol Π in the YOSO model into a concrete protocol in the
UC hybrid model with functionalities FRA, FBC, and FSPP. (These functionali-
ties can then be implemented using an underlying blockchain, e.g., as described
in [3].)

We prove two results: (1) We show that an abstract YOSO protocol Π that
IT YOSO-implements a secure function evaluation of F against t random, static
corruptions, can be compiled using hybrid functionalities FBC and FSPP into a
UC secure protocol Π ′ for the FRA-hybrid model that tolerates ρ chosen, static
corruptions for any ρ < t. (2) We show the same for adaptive security.

We can get security against chosen corruptions from security against random
corruptions because the adversary does not know the role-to-machine association
chosen by FRA. Intuitively, corrupting a machine just corrupts random roles.

1.3 Related Work

Protocols built out of ephemeral one-time roles became popular over the last
decade with the emergence of public blockchains, whose defining feature is not
relying on long-term participants with fixed identities. In particular, starting
with Nakamoto’s consensus protocol [19], these protocols became popular for
achieving agreement in different settings, e.g., [4,8,17,20].

Only very recently did we start seeing attempts at using this style of pro-
tocols for other cryptographic tasks: Benhamouda et al. [3] described how to
use such protocols for long-term maintenance of secrets on public blockchains,
and mentioned the possibility of using these secrets for various tasks, including
for general-purpose secure computation. Blum et al. [4] described how to imple-
ment input-free protocols in this model (such as coin tossing), and also described
informally an FHE-based solution for functions with input (similar to the one
sketched in Sect. 1.2 above).

Choudhuri et al. [9] described general-purpose secure-MPC protocols of this
style (that they call fluid), where the participants need to volunteer for roles
(in our terminology we would call it a volunteer-based role-assignment function-
ality). Such protocols can be tweaked and casted as YOSO protocols with a
volunteer-based role assignment. However, the protocols of [9] only guarantee
security with abort, making their use extremely fragile as a single corruption
can abort the protocol. Moreover, volunteer-based role assignment seems sus-
ceptible to an adversary filling the volunteering parties with faulty parties by
volunteering many times.

YOSO: You Only Speak Once 75

2 YOSO for the Working Cryptographer

The YOSO model can be cast within the UC framework [5] by identifying the
roles in YOSO protocols with the party identifiers of the UC framework. This
means that the roles are executed by the UC model, which completely abstracts
away how these roles are actually assigned to physical machines; in fact, there
is not even a notion of physical machines left. We then introduce a notion of
random corruptions that are out of the control of the adversary. This can be
used to model a set of roles which, in the now abstracted away real world, are
hidden inside random physical machines, and the adversary can corrupt machines
of its choosing.

Below we always use the term roles rather than parties, just to stress that we
are in the YOSO model. This terminology is for didactic purposes only; a role
in our formal model is identical to a party in the normal UC framework. The
“speak once” aspect is enforced by our execution model, as we now explain.

2.1 YOSO Wrappers

To force roles to only speak once, we are explicitly “yosofying” them with a
YOSO wrapper. Namely, our execution model postulates a wrapper around each
role, that kills it immediately after the first time that it speaks. When that
happens, the wrapper sends a Spoke token to the environment, the adversary
and all its sub-routines (sub-protocols and ideal functionalities). Thereafter it
responds with a Spoke token to the environment whenever activated, and only
sends Spoke to the sub-routines that it is connected to.

Defining what it means for a role to “speak for the first time” is somewhat
nontrivial. The main issue to tackle is whether sending messages to functionali-
ties constitute speaking. To see the issue, consider a protocol Π (that implements
some functionality F), in which a role R must listen for many incoming messages
before deciding to send a message. In this case, the F-hybrid model could have
the role R sending its input to F very early, but the implementation would have
R actually speaking much later.

To account for that, we let functionalities reply to parties with the special
Spoke token. The functionality can freely choose when to send this token, and
the YOSO wrapper will kill the role as soon as it receives a Spoke token from
any functionality. For example, a communication-channel functionality will reply
with a Spoke token as soon as a party sends anything on it, while a higher-level
functionality may trigger a Spoke token based on some input from the adversary.
Note that when a communication channel outputs Spoke to a role, the role will
pass it on to all its sub-routines and then its environment/outer protocol. Hence
the entire composed role will be crashed.

We denote the “yosofied” role R by YoS(R), and the protocol that we get by
yosofying all the roles in Π is denoted by YoS(Π).

76 C. Gentry et al.

2.2 Random Corruptions

In addition to the usual corruptions of the UC model we also model random
corruptions in the YOSO model—that is, corruptions out of the control of the
adversary.

We do this without changing the UC framework itself. Recall that in UC a
corruption is implemented by the adversary just writing (corrupt, cp) on the
backdoor tape of the party, where cp is some auxiliary information like the type
of corruption: Byzantine, semi-honest, et cetera. There is no explicit mechanism
in UC for limiting how many parties are corrupted or with which flavor. However,
we often choose to analyze protocols under a restricted set of corruptions. This
is simple to do by only quantifying over adversaries adhering to this restriction.
This is easy to formulate for settings like “only semi-honest corruptions” or “at
most a minority of the parties”. However, it seems to be trickier for random
corruptions: if the adversary corrupts a role R, how can we know that R was
chosen at random? We need a precise meaning for this in order to be able to
make precise security claims. For this purpose, we introduce a simple notion
called the corruption controller (CC), that runs as part of the environment. If
an adversary wants to do a random corruption, it asks the environment, which
will pass the request to the CC. Then, the CC will sample the corruption and
inform the adversary which role was corrupted (via the environment). If the
environment sees the adversary is not respecting the decision of the CC, then the
environment will make a random guess in the security game. This enforces that
no distinguishing advantage comes from executions violating the will of the CC.
We then only prove security under the class of environments having such a CC
and using it as intended. We call this the class of controlled environments.

These random corruptions can be mixed freely with other corruption types,
but it is illustrative to consider a generalization of the usual adversary structures
to random corruptions. We codify the corruption power of the adversary by
means of a corruption structure.

Let Role be the set of (names of) roles in the system. A corruption structure
on Role is a set of probability distributions over 2|Role|. A static adversary would
choose at the beginning of the execution a specific corruption distribution C ∈ C
and give it to the CC via the environment. Then the CC samples c ← C and
give it to the adversary via the environment, and each role R ∈ Role can now be
corrupted if R ∈ c. Note that a corruption structure with only point distributions
(i.e. with a single probability-one pattern c ∈ C) corresponds exactly to standard
static corruptions with these allowed patterns, coinciding with the notion of
general adversary structure of Hirt and Maurer [15]. We stress that corruption
structure represents our assumption about the corruption power of the adversary
when designing the protocol. It is up to the role-assignment functionality to
ensure that realistic adversaries will be unlikely to exceed this power.

When considering adaptive corruptions several choices are possible. We con-
sider two in this work called sample corruptions and point corruptions. In sample
corruptions the adversary gives a distribution on a set of roles and gets one of
them corrupted, within some bound. In point corruptions the adversary can ask

YOSO: You Only Speak Once 77

permission to corrupt a given role with some limited probability. If the corruption
fails the role stays honest forever after. It is interesting future work to explore
the relation between different notions of random corruptions.

2.3 YOSO Security

The notion of a protocol realizing a functionality is borrowed from the UC model.
Namely, we say that Π YOSO-realizes (implements) F for some class of envi-
ronments (possibly using random corruptions) if YoS(Π) UC-realizes F . The
considered class of environments should be a subset of the controlled environ-
ments.

It is easy to see that UC composition still holds for controlled environments.
If an environment is composed with a protocol or simulator to define a new
environment, as happens in the proof of the UC theorem, then this composed
environment still uses the CC of the original one. The same holds when one
composes an environment with a simulator. Therefore we get UC composition
also for controlled environments.

YOSO composition then follows directly from UC composition. Let Π be a
protocol for the G-hybrid model and assume that Π YOSO-realises F . Assume
that Γ YOSO-realises G. As usual in the UC framework let ΠG→Γ be the protocol
Π with calls to G replaced by calls to Γ . It follows that ΠG→Γ YOSO-realises F .
To see this, note that the premises give us that YoS(Π) UC-realises F and that
YoS(Γ) UC-realises G. By the usual UC theorem we get that YoS(Π)G→YoS(Γ)

UC-realises F . Then use that by construction YoS(Π)G→YoS(Γ) = YoS(ΠG→Γ).
This follows by the way the YoS wrapper passes around the Spoke token to shut
down entire composed parties.

2.4 Common Features, Functionalities, and Models

Synchrony. To simplify the treatment of synchronous clocks, we assume that
in every round the environment sends a Tick message to all the roles and also
to all the functionalities and the adversary, in addition to any other inputs that
it wants to provide them. We use the model in [16] for this.

Communication Channels and PKI. We assume an authenticated broadcast
channel denoted FBC, and usually also secure point-to-point channels FSPP (or
at least authenticated channels FPP). These functionalities are defined more or
less as usual in the UC framework, except that in our case they return a Spoke
token to any role immediately in the step following the receipt of message from
it.5 These functionalities are formally presented in the full version [14]. We also
sometimes use a PKI functionality, which is specified in Fig. 1.

YOSO Secure Function Evaluation. We consider secure function evaluation
in the YOSO model. We assume that the roles of a protocol Π are divided into

5 We allow a role to send messages on multiple channels in the same step, then it will
receive Spoke tokens from all of them in the next step.

78 C. Gentry et al.

Fig. 1. The ideal functionality FGen for a very simple PKI setup with key generator
Gen.

input roles, output roles and computation roles. The input roles receive inputs
from the environment and the output roles will deliver the outputs back. The
computation nodes carry out intermediary steps of the computation and do not
interact with the environment.

As usual for UC-like models, to formulate the assertion that a function F
could be computed securely we need to wrap that function by a compatible
functionality FF

MPC, as described in [14]. Importantly, we assume that the roles
receiving the output do not speak in an implementation (so FF

MPC never sends
Spoke tokens to the output roles). Otherwise these output roles would not be
able to contribute the result to the higher-level protocol.

By default, we assume that the roles receiving the inputs and the roles giving
the outputs can be corrupted using the usual chosen corruptions. This is rea-
sonable since in most of the meaningful high-level protocols, like elections, the
inputs to the protocol are given by known machines that might be subject to
targeted DoS attacks. Computation nodes however, are only subject to random
corruptions; when running in the “real world” with a concrete role assignment
mechanism, we get to execute computation roles on random machines.

We then say that Π YOSO securely implements F with a fraction τ random
corruptions if Π implements FF

MPC against any number of chosen corruptions of
input roles and output roles and random corruptions of up to a fraction τ of the
computation roles.

The IT YOSO Model. We define the standard IT YOSO model to be the
model with broadcast and secure point-to-point channels, unbounded environ-
ments, and poly-time protocols, ideal functionalities and simulators.

The Computational YOSO Model. The computational YOSO model is
equipped with an authenticated broadcast channel, perhaps authenticated point-
to-point channels, a PKI functionality (such as the one from Fig. 1), and poly-
time environments, protocols, ideal functionalities and simulators.

3 The Information-Theoretic t < n
2
MPC Protocol

In this section we describe an MPC protocol in the information theoretic YOSO
model for a fraction τ < 1/2 of random Byzantine corruptions.

Theorem 1. For any multiparty function F , there exists a poly-time protocol
Π described below running with the network (FBC,FSPP) which YOSO-realizes

YOSO: You Only Speak Once 79

the ideal functionality FF
MPC in the information theoretic YOSO model. The

protocol tolerates any number of chosen, Byzantine corruptions of input roles
and output roles, and for any τ < 1/2 it tolerates adaptive, Byzantine, random
τ -point-corruptions of computation nodes.

Recall that the reason we allow chosen corruptions of input roles and output
roles is that in a real-life setting we cannot reasonably assume that it is unknown
which machines will give input or get the outputs. So input and output roles
could be targeted. On the other hand, we want to model that computation roles
are run on random, secret machines, so we only allow random corruptions of com-
putation nodes. Recall that τ -point corruptions just means that the adversary
can point to a role R and ask for a corruption. Then the role is made corrupted
with probability τ , and with probability 1−τ it will remain honest forever after.
The type of random corruption it not essential for our proof. The reason why
we prove security against point corruptions is that this is the type of corruption
needed for the compilation result shown in the full version [14].

Below we will phrase the protocol in terms of disjoint committees of size n.
We call the roles in a committee parties. Let c be the number of committees that
we need. We then start with N = cn computation roles R1, . . . ,RN . We call the
committees C1, . . . ,Cc where Cj = {Pj

1, . . . ,P
j
n} and Pj

i = Ri+(j−1)n. We call Pj
i

party i in committee j. Notice that this grouping of roles into committees is static.
This does not affect security as the adversary cannot bias corruption towards a
specific committee. Each party is still subject only to τ -point corruptions. If we
set τ < 1/2 then we can clearly pick n large enough that we can conclude from
a tail bound that all committees have at most t < n/2 corrupted parties except
with negligible probability. For the rest of the section we then assume that this
has been done. From this point on the only assumption we need for security is
that each committee has t < n/2 corrupted parties.

Note that we allow any number of corruptions among input roles and output
roles. However, input roles and output roles are not part of committees, so this
does not violate the honest majority assumption for committees.

Our protocol is adaptively secure. We will, however, below mainly prove static
security and only briefly discuss adaptive security. The reason is that for point
corruptions, the distinction between adaptive corruptions and static corruptions
is minimal. An adaptive point corruption just means that the adversary chooses
to be oblivious to whether a party is corrupt or not until the point corruption.
This gives it no new powers over static corruptions. Note, in particular, that
corruption control component CC could sample before the UC execution starts
for each role Ri a bit bi which is 1 with probability τ . If later the adversary
does a point corruption of Ri it will become corrupted if and only if bi = 1.
Therefore, even in the adaptive case, the corruptions can be thought of as being
static: they were chosen before the execution started. The only complication in
proving adaptive security compared to proving static security is then that in the
adaptive case, the simulator will not know bi until the adversary does a point
corruption of Ri. Below we phrase the proof in terms of static security. The proof
can be adapted to the adaptive case using standard techniques.

80 C. Gentry et al.

The challenge in designing an information-theoretic MPC protocol in the
YOSO model is in replacing the actions of parties that interact and speak mul-
tiple times in regular MPC protocols with parties (more precisely, roles) that
speak only once. For this we introduce several tools and components for YOSO
adaptation that may be useful for other protocols as well. A first such tool is
Future Broadcast (FBcast) that allows a party P , that in the standard model
would speak in several rounds, to send its future messages to future roles that
will transmit the messages (either privately or through broadcast) when the time
for those messages to be delivered comes. For example, consider a non-YOSO
protocol where a party P transmits a message m at round i and a message m′

at round i + 3. In the YOSO adaptation, the role representing the actions of
P in round i will transmit m at round i and also, in the same round, apply
FBcast(m′) to pass message m′ to a role that will speak m′ in round i + 3.
Note that this procedure is possible only in cases where the future message is
known in advance. An interesting point to observe is that correctness of FBcast
(in particular, in terms of correctness of messages sent “into the future”), needs
only be guaranteed for original senders of m′ that are honest as faulty ones can
choose to speak any message of their choice whenever they speak. The sender Pj

i

uses FBcast(m′) to replace its own sending of m′ in the future. In the emulated
protocol a corrupt Pj

i could send m′′ �= m′ at this future point. So it is tolerable
that FBcast(m′) may open to m′′ �= m′ in the future when Pj

i is corrupt.
As a first application of FBcast, we use it to adapt the IT-SIGs of [21,22] to

the YOSO model and then use this YOSOfied primitive to build a Distributed
Commitment (DC) protocol in the YOSO model. In it, a party (honest or faulty)
commits to a value that it can later choose to reveal or not, but it cannot change
the committed value. Furthermore, it is guaranteed that values committed by
honest parties are always revealed correctly. We then use DC as an essential
ingredient in the design of a YOSO Verifiable Secret Sharing (VSS) scheme
which in turn is a central component of our YOSO information-theoretic MPC
solution.

In various steps in our protocol we need access to some form of randomness
and for clarity of presentation we will assume the presence of a beacon func-
tionality. However, in actuality we need something much weaker than a truly
random source to deliver our results, it is enough that the challenge cannot be
guessed. Thus, we can have a very simple implementation of the beacon (see
full version [14]). We denote this functionality as FUPBeacon to reflect that it is
an unpredictable beacon. During the analysis we at first assume it returns uni-
formly random elements. At the end we then return to why it is enough that it
is unpredictable and how to implement it.

The solutions presented in this section make essential and repeated use of
secret sharing techniques. In all cases, the underlying scheme is Shamir’s scheme
over a given field, and we assume all committees into which secrets are shared
to have at least t + 1 honest parties where t + 1 > n/2. Thus, the polynomials
defining shares are of degree t.

YOSO: You Only Speak Once 81

3.1 Information Theoretic and Homomorphic MAC

Message authentication codes (MAC) are used for verifying the authenticity of
messages between a sender and receiver that share a secret key. Following the
construction of [22] we have the following two protocols.

Three-party Setting. There exists (i) a sender S holding a message m, it chooses
a key K and generates its corresponding MAC tag M computed under a key K;
(ii) S sends the pair (m,M) to a receiver R; (iii) S sends the key K to a verifier
V . The verification procedure combines the pair (m,M) held by R with the key
K held by V .

For our purposes, we consider an information theoretic MAC function with
the following properties: (i) producing a correct MAC without knowing the key
succeeds with negligible probability even for an unbounded attacker; (ii) mes-
sage hiding: nothing is learned about the message m from the key K; (iii) homo-
morphic: the MAC function is homomorphic with respect to appropriate group
operations in the following sense. If Mi = MACKi

(mi), i = 1, 2, and the keys
K1,K2 were computed by the same party (they might need to be correlated)
then M1 + M2 = MACK1+′K2(m1 + m2).

Such a MAC can be implemented as follows (all elements and operations are
over a finite field, e.g., Zp): Ki = (a, bi), Mi = ami+bi and Ki+′Kj = (a, bi+bj).
In the sequel, we will say that keys that share the same coefficient a but differ
in bi are correlated.

MAC with Distributed Public Verification. In the above setting, to verify a MAC
one has to trust V to provide the correct key. In the scenarios in this paper, we
often do not trust any single party individually, but rather can only count on
committees with a majority of honest participants. Thus, we extend the basic 3-
party scheme to one where the role of V is instantiated by an n-party committee
V = {V1, . . . , Vn}. Given a message m that S hands to R, S creates a MAC for
m as follows. For i = 1, . . . , n, S chooses keys Ki, computes Mi = MACKi

(m),
and provides all Mi to R and Ki to Vi. When m needs to be verified, R first
broadcasts m and the values Mi. Then, each Vi broadcasts Ki and the value m
is accepted (i.e., the MAC validates) if and only if it holds that Mi = MACKi

(m)
for at least t + 1 values of i.

The scheme guarantees that if S follows the protocol and t + 1 > (n − 1)/2
members of V are honest, then only a message m originating from S will be
accepted. Note that the validation of m is public once R and members of V
broadcast their values.

When the MAC in use is homomorphic, we have that if S MACs messages
m1,m2 in the above way, with the same R and same committee V, then the
message m = m1 + m2 can be validated as follows. R outputs m and Mi =
M

(1)
i + M

(2)
i , i = 1, . . . , n, and each Vi outputs K

(1)
i +′ K

(2)
i . Here, M

(1)
i ,M

(2)
i

are the MAC values received by R for m1 and m2, respectively, and K
(1)
i ,K

(2)
i

are the keys received by Vi for m1 and m2, respectively. We therefore say that
this MAC procedure is homomorphic.

82 C. Gentry et al.

This protocol is inherently YOSO as each party speaks only once and we refer
to it in the following as IT-MAC.

3.2 Future Broadcast

We introduce Future Broadcast (FBcast), a fundamental primitive in the YOSO
setting that allows an honest party P that speaks at time t to prepare a mes-
sage m for broadcasting at a future time t′. This is accomplished by having P
simply secret share m to a committee that will broadcast m at time t′, hence
bypassing the limitation of speaking only once. To guarantee that the message
can be reconstructed (in the case that P is honest and the committee has an
honest majority), FBcast implements a robust secret sharing scheme. Namely,
a scheme where correct reconstruction is guaranteed as long as the sharing was
done correctly and at least t + 1 honest parties provide their shares (i.e., bad
shares from corrupt parties can be identified and eliminated). In settings where
digital signatures are available, robust secret sharing is implemented by hav-
ing the dealer sign its shares. In our information-theoretic setting, we achieve
a similar effect using the IT-MAC procedure from Sect. 3.1 for verifying share
integrity.

Fig. 2. Future broadcast protocol

The FBcast protocol is presented in Fig. 2. Its first phase, FBcast.Share, is
executed by a party S on input message m. It consists of S secret sharing m
with a committee ShareHolder where in addition to its share, each ShareHolderi
receives an IT-MAC of the share computed by S using the above distributed
MAC procedure. An additional committee, ShareVerifier, receives the MAC keys
from S. When the value m needs to be broadcast in the future, FBcast.Reveal
is performed following the distributed verification procedure: the ShareHolder
members first broadcast their shares together with their MAC values, followed
by a broadcast of keys held by ShareVerifier (note that ShareVerifier must speak
after ShareHolder hence requiring two separate committees). Shares that do not
pass verification are discarded and if those that remain interpolate to a single
polynomial of degree t, the secret is reconstructed, otherwise reconstruction fails.

YOSO: You Only Speak Once 83

We denote by FBcast.ShareS(m) the sharing by S of a value m and
FBcast.RevealS(m) the revealing of m (executed by two committees), and refer
to the whole protocol execution as FBcastS(m).

Analysis. We show that FBcast satisfies the requirement that if S is honest and
used m as input to FBcast.Share then m will be reconstructed when FBcast.Reveal
is executed. For this we need to show that only mi’s that originated from S are
accepted and that there are sufficiently many accepted shares to interpolate the
polynomial. If mi is accepted then the MAC was verified by a key broadcast
by at least one honest ShareVerifier. As S is honest, only mi’s created by S are
accepted by an honest party. Furthermore, each share broadcasted by an honest
ShareHolder is accepted as there will be at least t+1 honest ShareVerifiers whose
broadcasted keys satisfy the MAC. By construction, no party speaks twice.

Homomorphism of FBcast. Note that when used with a homomorphic MAC,
FBcast inherits the homomorphic property of the distributed MAC scheme from
Sect. 3.1. We denote this fact as FBP (m1) + FBP (m2) = FBP (m1 + m2) for any
messages m1 and m2 shared by the same party P . Yet, as the keys need to be
correlated the creator of the MAC needs to know in advance what two values
will be added. This is easily achievable in our protocols.

3.3 Homomorphic IT-SIG

Our protocols would benefit from a signature functionality in order to construct
a VSS protocol. Of course in the information theoretic setting we cannot achieve
the full properties of a signature, but we can achieve enough of the functionality
to deliver the result. The property which we need is the following. Assume again
the setting from the IT-MAC (Sect. 3.1). We would want to assure R that the
message that it holds will be accepted by the committee V. In essence, that it
has a “signature” on the message that it holds.

Unlike the transformation of the basic IT-MAC from [22] that did not require
modification to comply with the YOSO model, the IT-SIG construction from
that paper does require changes as it has interaction. Our protocol IT-SIG is
described in Fig. 3. It consists of two phases, IT-SIG.Setup and IT-SIG.Reveal. In
IT-SIG.Setup, a sender S provides a receiver R with a value m and also provides
verification information to a committee V of n verifiers V1, . . . , Vn. The goal is
for R to disclose m in the IT-SIG.Reveal phase in a way that allows to publicly
verify the correctness of m with the help of committee V and with the following
guarantees, assuming that V contains an honest majority:

– If S and R are honest then the correct value m is disclosed and verified during
IT-SIG.Reveal and no information on m is revealed prior to that.

– If both S and R are corrupt we make no requirement at all.
– If only S is corrupt, at the end of IT-SIG.Setup, R holds a value m′ that will

pass verification in IT-SIG.Reveal.

84 C. Gentry et al.

Fig. 3. Information theoretic SIG

– If only R is corrupt, no value other than the m that originated with S in
IT-SIG.Setup can pass verification in IT-SIG.Reveal.

In addition, the protocol needs to satisfy the YOSO model where parties speak
only once. We build it so that R speaks only once (either in IT-SIG.Setup or
in IT-SIG.Reveal) while in the case of S and the parties in V, from which the
logic of the protocol requires more than one message, we resort to FBcast for
distributing their future messages so that a different committee broadcasts them
when needed, and all parties speak only once.

Analysis. The following assumes an honest majority in committee V and that
at most one of R and S is corrupted.

– Corrupt S: We need to show that at the end of IT-SIG.Setup, R holds a value
m′ that can pass verification in IT-SIG.Reveal. We split our analysis into two
cases. First, if a value m̄ is revealed during Step 4 of IT-SIG.Setup we set m′ to
m̄ and the rest follows trivially as this value will be outputted in IT-SIG.Reveal.
Otherwise, we set m′ to the value m received from S and show that m′ will
have at least t + 1 votes in IT-SIG.Reveal. Indeed, for each honest Vi, either
K̄i,j �= Ki,j for some j ∈ INXi and thus their vote is counted; otherwise, it
holds that MACKi,j

(m) = Mi,j for all j ∈ INXi as R did not complain against
these values. Thus, with (overwhelming) probability 1/

(

κ
κ/2

)

due to the cut-
and-choose technique, there exists a j �∈ INXi such that MACKi,j

(m) = Mi,j ,

YOSO: You Only Speak Once 85

and hence a vote for i will be counted. This guarantees at least t + 1 votes
for the value m = m′.

– Corrupt R: In this case we show that only the m that originated with S
will pass verification in IT-SIG.Reveal. If the message associated with S is set
to the value derived from FBcast.RevealS(m) in the setup, it is certainly a
message that originated with S. If it is set to the message published by R,
then that message must get t + 1 “votes”. Votes can be generated by corrupt
Vi publishing incorrect keys in Step 2b of IT-SIG.Setup; however, there are at
most t such corrupt Vi. The only other way to generate a vote for an incorrect
m is to forge a MAC M , which happens with negligible probability.

– If S and R are honest, then due to the message hiding property of the MAC
function, no information on m is revealed until IT-SIG.Reveal is executed.
Indeed, the only case where R requests to broadcast m prior to IT-SIG.Reveal
is when the keys broadcasted by S do not verify the MACs; this cannot be
the case when S and R are both honest.

Homomorphism of IT-SIGs. The homomorphic properties of the MAC con-
struction from Sect. 3.1, imply similar properties for IT-SIG in Fig. 3 when the
underlying MAC function is homomorphic. Namely, if m,m′ are messages on
which the (same) sender S runs IT-SIG.Setup with the same set V of verifiers
and with correlated keys (i.e., corresponding keys use the same coefficient a in
the scheme from Sect. 3.1), then an IT-SIG on m+m′ can be verified with com-
mittee V using the MAC keys held by V for m and for m′. This homomorphic
property is used in an essential way when performing additions/multiplications
in an arithmetic circuit as described in Sect. 3.11. A consequence of the need
for correlated keys is that if two messages may need to be added in the future,
this fact needs to be known at the time of generating the IT-SIG for both m1

and m2. In our application this is always the case as the need for additions is
determined by the specific circuit being computed.

3.4 Distributed Commitment (DC)

The FB protocol does not offer any guarantees in the case when the dealer is
faulty. Here, we introduce the distributed commitment protocol DC, shown in
Fig. 4, that strengthens FB by providing better guarantees when the dealer is
corrupt. DC consists of two phases, DC.Commit and DC.Reveal. In DC.Commit,
a committer C commits to a value m that may later be revealed in DC.Reveal.
More precisely, if C is honest, then as in the case of FB, the revealed value is
m, and m is hidden until it is revealed. However, if C is corrupt, the execution
of DC.Commit determines a single value m such that the output of DC.Reveal is
guaranteed to be either ⊥ or m (where m itself can be ⊥). In other words, C
can choose to prevent reconstruction, but if it allows for it to happen then it can
only be to a value it committed to at the end of DC.Commit. Reconstruction is
public, namely, there will be public agreement on the output of DC.Reveal. In
essence, this is analogous to a regular commitment in the computational setting
where the committer is bound to the value but has the option not to reveal it.

86 C. Gentry et al.

Fig. 4. Distributed commitment

Protocol DC uses the IT-SIGs (Fig. 3) in an essential way. In particu-
lar, in Step 3 of DC.Commit, for each mi, C executes IT-SIG.Setup(mi) with
ShareHolderi acting as the receiver and with ShareVerifier as the set V of ver-
ifiers. The n executions (one for each mi) are performed in parallel using the
same set ShareVerifier in all these executions.

Analysis. We show that at the end of DC.Commit a value m (or ⊥) is deter-
mined, and during DC.Reveal, if C is honest m will be revealed, and if C is
corrupt, either m or ⊥ will be revealed.

In DC.Commit, C executes IT-SIG.Setup with at least t+1 honest parties act-
ing as receivers R. For these honest parties, due to the properties of IT-SIG.Setup,
it is guaranteed that the value they hold will be accepted in IT-SIG.Reveal. We
claim that at the end of DC.Commit, a single value m is committed to, such
that the output in DC.Reveal is either m or ⊥ (where m itself can be ⊥). To
show this, we define m as the constant term of a polynomial of degree at most
t interpolated through the set of shares held by the honest parties (this value
might be ⊥ if the points interpolate to a polynomial of a higher degree than t).
We now show that if a value is outputted in DC.Reveal it can only be m. When
C is honest then only shares that were created by C are accepted and thus the
polynomial will interpolate properly during DC.Reveal. If C is faulty we know
that at least the shares of the honest parties will be included in the set of shares
being interpolated and this is a set of at least t + 1 shares. Thus, the message
which is opened can only be m or ⊥, with the latter happening only if the shares
mi did not correspond to points on a polynomial of degree at most t.

We denote by DCP (m) the output of the execution of DC.Commit by party
P on message m.

Homomorphism of DC. Due to the homomorphic properties of the IT-SIG
and FBcast, we have that for any two values m and m′ committed by the same
honest party P , it holds that DCP (m) + DCP (m′) = DCP (m + m′). The same
considerations for ensuring the homomorphism of IT-SIG described in Sect. 3.3
hold here too (i.e., the DC operations need to be performed by the same commit-
ter using correlated keys). In particular, if this property may be required in the

YOSO: You Only Speak Once 87

future for two messages m,m′, then this fact needs to be known at the time of
running DC.Commit on these values (fortunately, for our application this require-
ment does hold). The question might be raised if we know that m and m′ will
be added why compute individual DC.Commit for both rather than the sum. In
many instances we will need to utilize all three values in different computations.

3.5 Duplicate DC

In our protocols, we often need to use a committed value multiple times, thus
requiring the decommitting parties in the DC protocol to act in more than one
round, a violation of the YOSO model. One possible solution is for the committer
C to commit twice (or more) onto different committees to the same value and
provide a proof of equality for the committed values; yet this proof of equality
will “waste” the sharing, which is what we need to prevent. Thus, we avoid
proofs of equality by having the parties in ShareHolder and ShareVerifier reshare
the values that they receive in IT-SIG.Setup. It suffices that honest parties share
their shares correctly to guarantee that all duplicates commit to the same value.
We are using in an essential way the fact that it is the shareholders and verifiers
that reshare their values rather than C, and that we can rely on a majority of
honest shareholders.

We define protocol DupDC that allows for the duplication of a DC-committed
value m. Let d be the number of duplicates needed. In a first committing phase,
DupDC.Commit, committer C runs DC.Commit with a committee ShareHolder,
sharing its input m so that ShareHolderi receives a share mi. To generate d
duplicates, for each i, 1 ≤ i ≤ n, C runs d copies of IT-SIG.Setup on mi, each copy
with an independent set of MAC keys. The same ShareVerifier committee is used
for all invocations. The d copies are verified by ShareHolderi, acting as receiver
R, as specified by IT-SIG.Setup. Finally, in the last step of DupDC.Commit, the
ShareHolderi’s and ShareVerifiers execute d independent FBcast.Share for all the
values that they holds, onto 2d separate committees.

The DupDC.Reveal phase follows DC.Reveal where the opening of mi is imple-
mented via share reconstruction by one of the d ShareHolder committees to which
mi was shared. Additional information that needs to be broadcast and verified
as specified by IT-SIG.Reveal is performed via FBcast.Reveal by the FBcast com-
mittees created by ShareHolderi during DupDC.Commit.

Analysis. It is straightforward to check that if the original committer C was
honest, all duplicated values are correct DC commitments and they will open
to the same committed value during DupDC.Reveal. If C is dishonest, but
ShareHolderi is honest, and verification against a ShareVerifier committee fails
during the IT-SIG.Setup actions, then the committed value is set to the one that
is FBcast.Reveal as part of Step 4 in IT-SIG.Setup. Otherwise, the value mi can
be reconstructed correctly by any of the d sharings of mi shared by ShareHolderi.
Since there is a majority (t + 1 or more) of honest shareholders in each of the
d ShareHolder committees, it is guaranteed that only the committed value or ⊥
will be reconstructed in each of the d copies.

88 C. Gentry et al.

It follows from the properties of the DC and FBcast protocols. We note that
C still has the option of not opening any subset of these duplicate commitments,
but all those that will be open will be open to the same value. Note that if the
verification fails for one of the duplicates and a value m̄ is revealed then it is
used for all duplicates.

3.6 Verifiable Secret Sharing Scheme

The distributed commitment DC functionality ensures that the committer, even
a corrupt one, is committed to a single value at the end of DC.Commit. However,
a corrupt committer can prevent reconstruction of the committed value during
DC.Reveal. In our applications, we need a commitment scheme with the property
that if the commitment phase is successful then reconstruction of the commit-
ted value is guaranteed. We achieve this via Verifiable Secret Sharing (VSS),
a protocol where a dealer secret shares a value s during a VSS.Share phase so
that s is guaranteed to be reconstructed during VSS.Reveal from any subset of
shareholders that includes t + 1 honest ones. This is the case even for corrupt
dealers that were not disqualified during VSS.Share.

First, we introduce a procedure used in our VSS design as well as part of
the MPC protocol. The goal is to guarantee that two parties that are supposed
to share the same value s, had in fact done so. We describe the protocol using
generic sharing that can be instantiated with any of the sharing protocols dis-
cussed in this paper, including DC, VSS, and its variants.

Protocol Share Equality Test.

1. Party P1 shares two values a1, ρ1 and P2 shares values a2, ρ2.
2. Value r is obtained from an unpredictable beacon FUPBeacon

3. The values a1 + r · ρ1 and a2 + r · ρ2 are reconstructed from their sharings.
4. If the reconstruction succeeds and the reconstructed values are equal, con-

clude the test was successful and a1 = a2. In any other case reject the test.

It follows using a standard argument that if a1 �= a2 then there is at most a single
challenge r that will make the proof pass, implying a probability error of |F|−1

for unpredictable r. Therefore, an unpredictability beacon FUPBeacon suffices (see
the full version [14] for details).

Protocol VSS.Share proceeds as follows.

1. The dealer D chooses a random polynomial f(x), s.t. f(0) = s and an addi-
tional random polynomial r(x), both of degree t. Let the coefficients of f(x)
and r(x) be, respectively, fj , rj for 0 ≤ j ≤ t.

2. Given a set ShareHolder = {P1, . . . , Pn}, D computes si = f(i), ρi = r(i) for
1 ≤ i ≤ n and transfers these values privately to Pi.

3. In the same step as above, D performs DupDC.Committo all the values fj , rj .
Due to the homomorphic properties of DC, this results in implicit DCD(si)
and DCD(ρi) sharings (shares of fj , rj allow the ShareHolder committee to
compute values si, ρi for all i).

YOSO: You Only Speak Once 89

4. Pi performs DupDC.Commit(si) to obtain two copies of DCPi
(si) (particular

applications, such as MPC, may require more copies) and performs DCPi
(ρi),

all with homomorphically correlated keys. Additionally, Pi shares the ρi to
one of the committees to which it duplicates the si.

5. Run the above Equality Test on the sharings of D and Pi of value si and
auxiliary ρi (in the case of D, the committee uses the implicit DC commitment
of si, ρi).

6. If the values are not equal execute DC.Reveal of D’s sharing of si. If it returns
⊥ disqualify the dealer.

Protocol VSS.Reveal proceeds as follows.

1. Execute DC.Reveal for all si shared by Pi

2. Interpolate a polynomial using all these share and output the constant term.

Analysis. The VSS protocol needs to ensure that all of the dealer’s shares si

are points on a polynomial of degree at most t and that the value si shared
by Pi is the same as the one received from D. The former property is enforced
via the DC-sharing of polynomial coefficients by D (it ensures the degree of the
polynomial and the implicit DC sharing of shares si and ρi) while the latter uses
the equality test to compare the sharings of D and Pi.

Homomorphism of VSS. VSS inherits the homomorphic properties of DC,
importantly, in the case of VSS, these properties hold even if the VSS was per-
formed by two different dealers as long as it was done into the same set of
shareholders. Namely, for two secrets m1 and m2, and two dealers D1 and D2,
we have VSSD1

(m1) + VSSD2
(m2) = VSS(m1 + m2). Note that the right-hand

side VSS is not associated to a specific dealer as it combines sharings of D1 and
D2. The reason the homomorphism holds across dealers is due to the homomor-
phic properties of DCPi

(·) (that only hold for same committer) and the fact that
the same Pi’s act in both VSS dealings as shareholders.

3.7 Duplicate VSS

As in the case of DC, we also need duplicates of VSS values as a value will need
to be part of various computations. Recall that a VSS is a sharing of a value s
where each share si of the sharing is shared as DCPi

(si). It is easy to see that
duplicating the DCPi

(si) commitments results in duplicate VSSs.

3.8 Augmented VSS

In our application, particularly for the multiplication protocol, we need an Aug-
mented VSS (AugVSS), where not only the secret given as input is shared with
VSS but also the shares resulting from VSS(s) are shared with VSS.

AugVSS is achieved via the following computation. The dealer D holding a
value s defines a polynomial f(x) = ftx

t + ... + f1x + f0 where f0 = s. It carries

90 C. Gentry et al.

out VSS(f�) for 0 ≤ � ≤ t. Through the homomoprhic properties of the VSS,
this implicitly creates a VSS(si) where si = f(i).

It can easily be verified that AugVSS is also additively homomorphic, inher-
iting this property from the homomorphic properties of the VSS. Furthermore,
an AugVSS of a value m can be added to a VSS of a value m′ creating a VSS
sharing of m + m′.

3.9 Duplicate AugVSS

Unlike the previous duplications, e.g. duplicate VSS, where we need to simply
have another copy of the value, the duplicate AugVSS needs to provide a stronger
guarantee. It needs to have a sharing of the same value but with a different
polynomial. The need for this will become evident when we describe the MPC
protocol. AugVSS is modified as follows.

A single duplicate VSS is carried out for the constant term, DupVSS(f0).
In addition, two sets of values ft, ..., f1 and f ′

t , ...f
′
1 are chosen. Each set in

combination with f0 defines a different polynomial with the same constant term.
The protocol from above is executed on both these sets to create two duplicates.
If more copies are needed additional coefficients need to be chosen.

3.10 Proof of Local Multiplication (PLM)

In the following protocol, a prover P shares values a, b and c using VSS and
proves that a · b = c. The proof uses two committees, C and C ′.

1. P performs VSSP (a) and VSSP (c) onto committee C, and VSSP (b) onto com-
mittee C ′. In addition, P chooses a random value b′ and executes VSSP (b′)
onto committee C ′ and VSSP (a · b′) onto committee C.

2. Receive random e from FUPBeacon;
3. Committee C ′ reconstructs using VSS.Reveal the value r = e · b + b′;
4. Committee C reconstructs using VSS.Reveal the value d = r·a − e·c − a·b′

5. Accept the proof if d = 0 and reject otherwise.

It follows using a standard argument that if c �= ab then d �= 0 except with
probability |F|−1. In particular, there is a single e which will let the proof pass.
Hence it is enough that e cannot be guessed with non-negligible probability. The
rest of the argument for the correctness of the proof follows from the properties
of the VSS.

3.11 YOSO MPC

Using the tools developed up to now we can show how to do secure function
evaluation (or MPC) in the YOSO model. That is, we are given an arithmetic
circuit C, with m secret inputs provided by m parties (roles), and we show how
to privately compute the circuit on the inputs, in the YOSO model.

YOSO: You Only Speak Once 91

Let C be a given arithmetic circuit with m inputs x1, . . . , xm and gates
g1, . . . , g�. For the YOSO computation of C, we show how to create, given a
gate gi with input values vi1, vi2, both shared with DupAugVSS, a committee Ci

that will hold a DupAugVSS sharing of the output of the gate. In addition, there
will be a collection of d duplicates of the AugVSS of the gate’s output, where d
is the number of gates to which this output enters as an input.

With a lot of attention to details and committee selection we could do the
addition of the MPC without interaction. However, to simplify the description
of the protocol and to make the addition and multiplication more uniform we
will describe things in the same manner.

Gate input setup: As we are looking at a single gate we refer to the com-
mittee computing the gate as C. The parties in this committee are P1, ..., Pn.
Assume that the value on one input wire is a and the second is b.
The parties in the committee C needs to receive its shares of the values on the
input wires. As we assume that the values a and b of input wires are shared
using AugVSS this means that the share ai and bi of party Pi are shared using
a VSS. These values are reconstructed towards Pi. Once Pi receives these two
shares it shares them using DupVSS. In addition, Pi proves that it shared
the values which it received, and this is done using the proof of equality of
sharing from Sect. 3.6.

Addition: An addition gate can be implemented without interaction. However,
for simplicity, we take advantage of the fact that (as needed for multiplica-
tion gates) input wires are shared using DupAugVSS, hence we can use the
homomophic properties of AugVSS to implement addition.

Multiplication: 1. Party Pi holding shares ai and bi of the input wires, shares
the value γi = ai · bi using DupAugVSS. The sharing of these values needs
to be done onto different committees as specified by the PLM protocol.

2. It executes the PLM protocol to prove that γi is the product of its two
input shares (Sect. 3.10).

3. For any i for which the DupAugVSS or the PLM procedures fail, the
committee that holds ai and bi uses VSS.Reveal to publicly reconstruct
these values. Later, when the protocol uses the value γi, its value is set
to the product ai · bi of the reconstructed values.

4. The linear combination of the AugVSS of the γi’s define the AugVSS
of c = a · b = Σ2t+1

i=1 λi(γi = ai · bi). This also creates the VSS(ci) =
Σ2t+1

j=1 λjVSS(γj,i) for the appropriate Lagrange coefficients.

Security argument. The multiplication protocol follows the design of [13]. The
correctness of the AugVSS sharing of the multiplication c = a · b follows from: (i)
the fact that AugVSS(γi) completed in a proper manner and its homomorphic
properties (ii) the correctness of the PLM; (iii) the public availability of γi values
for those i where verification failed (these values are available because in AugVSS
of the input values of the wires, not only the secret is shared but also its shares).
(iv) the existence of Lagrange coefficients λi for which c = a ·b = Σ2t+1

i=1 λi(ai ·bi).

92 C. Gentry et al.

Formalizing security follows standard arguments. In particular, the simulator
proceeds as follows. Use the AugVSS’s to reconstruct the inputs of the corrupted
parties. Input these to FF

MPC where F denotes the function computed by C.
Use dummy inputs of the honest parties in the simulation. Run the simulated
protocol honestly with these dummy inputs. When processing an output gate,
learn the correct output from FF

MPC. Then from the t simulated shares of the
corrupted parties and the output acting as share t + 1 compute the matching
shares of the honest parties. Then send these in the simulation. Furthermore,
the simulation of the IT-MAC and IT-SIG are straightforward.

To prove adaptive security the simulator will for each committee Cj start
out with a set Cj of size t playing the role of the corrupted parties and will
simulate as in the static case with Cj being corrupted. If party Pj

i in Cj becomes
corrupted and Pj

i �∈ Cj then the simulator will swap Pj
i with an honest party in

Cj and then patch the view of the party to get a simulated state of Pj
i . If Pj

i holds
a share on a random, unknown polynomial of degree at most t, the share will
just be simulated by a random field element. If Pj

i holds a share on a random,
known polynomial of degree at most t, as is the case for a reconstructed output
of the computation, then the simulator will know the output and will, with the
additional t simulated shares of Cj , have t + 1 simulated shares. From these it
can compute the corresponding simulated share of Pj

i and claim this as the state
of Pj

i . In general the adaptive patching follows using standard techniques from
MPC and can be done along the lines of [11] where the patching technique is
used to prove [2] adaptive secure in the UC model.

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, Chicago, Illinois, USA, 2–4 May 1988, pp. 1–10 (1988)

3. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64375-1 10

4. Blum, E., Katz, J., Liu Zhang, C.-D., Loss, J.: Asynchronous byzantine agreement
with subquadratic communication. IACR Cryptology ePrint Archive, 2020:851
(2020)

5. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

6. Cascudo, I., David, B.: SCRAPE: scalable randomness attested by public entities.
In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp.
537–556. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 27

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-319-61204-1_27

YOSO: You Only Speak Once 93

7. Cascudo, I., David, B.: ALBATROSS: publicly attestable batched randomness
based on secret sharing. IACR Cryptology ePrint Archive, 2020:644 (2020)

8. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155–183 (2019)

9. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: secure
multiparty computation with dynamic participants. IACR Cryptology ePrint
Archive, 2020:754 (2020)

10. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

11. Damg̊ard, I., Nielsen, J.B.: Adaptive versus static security in the UC model. In:
Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS,
vol. 8782, pp. 10–28. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12475-9 2

12. Garay, J.A., Ishai, Y., Ostrovsky, R., Zikas, V.: The price of low communication in
secure multi-party computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 420–446. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 14

13. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Coan, B.A., Afek,
Y. (eds.) 17th ACM PODC, pp. 101–111. ACM, June/July 1998

14. Gentry, C., et al.: YOSO: you only speak once/secure MPC with stateless
ephemeral roles. IACR Cryptology ePrint Archive, 2021:210 (2021)

15. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in
perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000)

16. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

17. Micali, S.: Very simple and efficient byzantine agreement. In: Papadimitriou, C.H.
(ed.) ITCS 2017. LIPIcs, vol. 4266, pp. 6:1–6:1, 67, January 2017

18. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol.
9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 26

19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009)
20. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T. (eds.)

ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

21. Rabin, T.: Robust sharing of secrets when the dealer is honest or cheating. J. ACM
41(6), 1089–1109 (1994)

22. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, pp. 73–85. ACM (1989)

https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-319-12475-9_2
https://doi.org/10.1007/978-3-319-12475-9_2
https://doi.org/10.1007/978-3-319-63688-7_14
https://doi.org/10.1007/978-3-319-63688-7_14
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-319-70697-9_14

Fluid MPC: Secure Multiparty
Computation with Dynamic Participants

Arka Rai Choudhuri1(B) , Aarushi Goel1, Matthew Green1, Abhishek Jain1,
and Gabriel Kaptchuk2

1 Johns Hopkins University, Baltimore, USA
{achoud,aarushig,mgreen,abhishek}@cs.jhu.edu

2 Boston University, Boston, USA
kaptchuk@bu.edu

Abstract. Existing approaches to secure multiparty computation
(MPC) require all participants to commit to the entire duration of the
protocol. As interest in MPC continues to grow, it is inevitable that there
will be a desire to use it to evaluate increasingly complex functionalities,
resulting in computations spanning several hours or days.

Such scenarios call for a dynamic participation model for MPC where
participants have the flexibility to go offline as needed and (re)join when
they have available computational resources. Such a model would also
democratize access to privacy-preserving computation by facilitating an
“MPC-as-a-service” paradigm—the deployment of MPC in volunteer-
operated networks (such as blockchains, where dynamism is inherent)
that perform computation on behalf of clients.

In this work, we initiate the study of fluid MPC, where parties can
dynamically join and leave the computation. The minimum commitment
required from each participant is referred to as fluidity, measured in the
number of rounds of communication that it must stay online. Our con-
tributions are threefold:

– We provide a formal treatment of fluid MPC, exploring various pos-
sible modeling choices.

– We construct information-theoretic fluid MPC protocols in the
honest-majority setting. Our protocols achieve maximal fluidity,
meaning that a party can exit the computation after receiving and
sending messages in one round.

– We implement our protocol and test it in multiple network settings.

1 Introduction

Secure multiparty computation (MPC) [6,10,32,48] allows a group of parties to
jointly compute a function while preserving the confidentiality of their inputs.
The increasing practicality of MPC protocols has recently spurred demand for
its use in a wide variety of contexts such as studying the wage gap in Boston
[37] and student success [8].

Given the increasing popularity of MPC, it is inevitable that more ambi-
tious applications will be explored in the near future—like complex simulations
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 94–123, 2021.
https://doi.org/10.1007/978-3-030-84245-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_4&domain=pdf
http://orcid.org/0000-0003-0452-3426
https://doi.org/10.1007/978-3-030-84245-1_4

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 95

on secret initial conditions or training machine learning algorithms on mas-
sive, distributed datasets. Because the circuit representations of these function-
alities can be extremely deep, evaluating them could take several hours or even
days, even with highly efficient MPC protocols. While MPC has been studied
in a variety of settings over the years, nearly all previous work considers static
participants who must commit to participating for the entire duration of the
computation. However, this requirement may not be reasonable for large, long
duration computations such as above because the participants may be limited
in their computational resources or in the amount of time that they can devote
to the computation at a stretch. Indeed, during such a long period, it is more
realistic to expect that some participants may go offline either to perform other
duties (or undergo maintenance), or due to connectivity problems.

To accommodate increasingly complex applications and participation from
parties with fewer computational resources, MPC protocols must be designed
to support flexibility. In this work, we formalize the study of MPC protocols
that can support dynamic participation – where parties can join and leave the
computation without interrupting the protocol. Not only would this remove the
need for parties to commit to entire long running computations, but it would
also allow fresh parties to join midway through, shepherding the computation to
its end. It would also reduce reliance on parties with very large computational
resources, by enabling parties with low resources to contribute in long compu-
tations. This would effectively yield a weighted, privacy preserving, distributed
computing system.

Highly dynamic computational settings have already started to appear in
practice, e.g. Bitcoin [42], Ethereum [9], and TOR [21]. These networks are
powered by volunteer nodes that are free to come and go as they please, a model
that has proven to be wildly successful. Designing networks to accommodate
high churn rates means that anyone can participate in the protocol, no mat-
ter their computational power or availability. Building MPC protocols that are
amenable to this setting would be an important step towards replicating the
success of these networks. This would allow the creation of volunteer networks
capable of private computation, creating an “MPC-as-a-service” [3] system and
democratizing access to privacy preserving computation.

Fluid MPC. To bring MPC to highly dynamic settings, we formalize the study
of fluid MPC. Consider a group of clients that wish to compute a function on
confidential inputs, but do not have the resources to conduct the full computation
themselves. These clients share their inputs in a privacy preserving manner with
some initial committee of (volunteer) servers. Once the computation begins, both
the clients and the initial servers may exit the protocol execution. Additionally,
other servers, even those not present during the input stage, can simply “sign-up”
to join part-way through the protocol execution. The resulting protocol should
still provide the security properties we expect from MPC.

We consider a model in which the computation is divided into an input stage,
an execution stage, and an output stage. We illustrate this in Fig. 1. During the
input stage, a set of clients prepare their inputs for computation and hand them

96 A. R. Choudhuri et al.

over to the first committee of servers. The execution stage is further divided into
a sequence of epochs. During each epoch, a committee of servers are responsible
for doing some part of the computation, and then the intermediary state of the
computation is securely transferred to a new committee. Once the full circuit
has been evaluated, there is an output stage where the final results are recovered
by the clients.

In order to see how well suited a particular protocol is to this dynamic set-
ting, we introduce the notion of fluidity of a protocol. Fluidity captures the
minimum commitment required from each server participating in the execution
stage, measured in communication rounds. More specifically, fluidity is the num-
ber of communication rounds within an epoch.

A protocol with worse fluidity might require that servers remain active to
send, receive, or act as passive observers on many rounds of communication.
In this sense, MPC protocols designed for static participants have the worst
possible fluidity—all participants must remain active throughout the lifetime of
the entire protocol. In this work, we focus on protocols with only a single round of
communication per epoch, which we say achieve maximal fluidity. Note that such
protocols must have no intra-committee communication, as the communication
round must be used to transfer state.

Recall that the idea of flexibility is central to the goal of Fluid MPC. Achiev-
ing maximal fluidity is ideal for fluid MPC protocols, as they give the most
flexibility to the servers participating in the protocol. It allows owners of com-
putational resources to contribute spare cycles to MPC during downtime, and a
quick exit (without disrupting computation) when they are needed for another,
possibly a more important task. Maximal fluidity is important to achieving this
vision. Moreover, since one of our motivations behind introducing this model is
evaluation of deep circuits, an important goal of this work is also to design proto-
col that not only achieve maximal fluidity, but also where the computation done
by the servers in each epoch is independent of the size of the function/circuit.

There are several other modeling choices that can significantly impact fea-
sibility and efficiency of a fluid MPC protocol—many of which are non-trivial
and unique to this setting. For instance: when and how are the identities of
the servers in the committee of a particular epoch fixed? What requirements
are there on the churn rate of the system? How does the adversary’s corruption
model interact with the dynamism of the protocol participants? We have already
seen from the extensive literature on consensus networks that different networks
make different, reasonable assumptions and arrive at very different protocols.

We discuss these modeling choices and provide a formal treatment of fluid
MPC in Sect. 3. For the constructions we give in this work, we assume that the
identities of the servers in a committee are made known during the previous
epoch.

Applications. We imagine that fluid MPC will be most useful for applications
that involve long-running computations with deep circuits. In such a setting,
being able to temporarily enlist dynamic computing resources could facilitate
privacy-preserving computations that are difficult or impossible with limited

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 97

Epoch i Epoch i + 1 Epoch i + 2Input Stage • • • • • • Output Stage

Execution Stage

Fig. 1. Computation model of fluid MPC. A set of clients initiate the computation
with the input stage. During the execution stage, servers come and go, doing small
amounts of work during the compute phases and transferring state in the hand-off
phase. Finally, once the entire circuit has been evaluated, the output parties recover
the outputs during the output stage.

static resources. This model would be especially valuable in scientific comput-
ing, where deep circuits are common and resources can be scarce. Consider,
for example, an optimization problem with many constraints over distributed
medical datasets. Using a fluid MPC protocol makes it more feasible to per-
form such a computation with limited resources: the privacy provided by MPC
can help clear important regulatory or legal impediments that would otherwise
prevent stakeholders from contributing data to the analysis, and a dynamic par-
ticipation model can allow stakeholders to harness computing resources as they
become available.

Prior Work: Player Replaceability. In recent years, the notion of player
replaceability has been studied in the context of Byzantine Agreement (BA)
[11,40]. These works design BA protocols where after every round, the “current”
set of players can be replaced with “new” ones without disrupting the protocol.
This idea has been used in the design of blockchains such as Algorand [30], where
player replaceability helps mitigate targeted attacks on chosen participants after
their identity is revealed.

Our work can be viewed as extending this line of research to the setting of
MPC. We note that unlike BA where the parties have no private states – and
hence, do not require state transfer for achieving player replaceability – the MPC
setting necessitates a state transfer step to accommodate player churn. Maximal
fluidity captures the best possible scenario where this process is performed in a
single round.

1.1 Our Contributions

In this work, we initiate the study of fluid MPC. We state our contributions
below.

Model. We provide a formal treatment of fluid MPC, exploring possible mod-
eling choices in the setting of dynamic participants.

Protocols With Maximal Fluidity. We construct information-theoretic fluid
MPC protocols that achieve maximal fluidity. We consider adversaries that
(adaptively) corrupt any minority of the servers in each committee.

98 A. R. Choudhuri et al.

We begin by observing that the protocol by Genarro, Rabin and Rabin [28],
which is an optimized version of the classical semi-honest BGW protocol [6] can
be adapted to the fluid MPC setting in a surprisingly simple manner. We call this
protocol Fluid-BGW. This protocol also achieves division of work, in the sense
that the amount of work that each committee is required to do is independent
of the depth of the circuit.

To achieve security against malicious adversaries, we extend the “additive
attack” paradigm of [26] to the fluid MPC setting, showing that any malicious
adversarial strategy on semi-honest fluid MPC protocols (with a specific struc-
ture and satisfying a weak notion of privacy against malicious adversaries1) is
limited to injecting additive values on the intermediate wires of the circuit. We
use this observation to build an efficient compiler (in a similar vein as recent
works of [12,43]) that transforms such semi-honest fluid MPC protocols into
ones that achieve security with abort against malicious adversaries. Our com-
piler enjoys two salient properties:

– It preserves fluidity of the underlying semi-honest protocol.
– It incurs a multiplicative overhead of only 2 (for circuits over large fields) in

the communication complexity of the underlying protocol.

Applying our compiler to Fluid-BGW yields a maximally fluid MPC protocol
that achieves security with abort against malicious adversaries.

We note that, while we consider a slightly restrictive setting where the adver-
sary is limited to corrupting a minority of servers in each committee, there is
evidence that our assumption might hold in practice if we, e.g., leverage cer-
tain blockchains. The work of [7] (see also [29]) explores a similar problem
of dynamism in the context of secret-sharing with a similar honest-majority
assumption as in our work. They show that in certain blockchain networks, it
is possible to leverage the honest-majority style assumption (which is crucial to
the security of such blockchains) to elect committees of servers with an honest
majority of parties. The same mechanism can also be used in our work (we dis-
cuss this in more detail in Sect. 3.2). Moreover, the honest majority assumption
is necessary for achieving information-theoretic security (or for using assump-
tions weaker than oblivious transfer), for the same reasons as in standard (static)
MPC.

Implementation. We implement Fluid-BGW and our malicious compiler in
C++, building off the code-base of [12,16]. We run our implementation across mul-
tiple network settings and give concrete measurements. Due to space constraints,
we discuss our implementation and experimental results in the full version of the
paper [13].

1 It was observed in [26] that almost all known secret sharing based semi-honest proto-
cols in the static model naturally satisfy this weak privacy property. We observe that
the fluid version of BGW continues to satisfy this property. Further, we conjecture
that most secret-sharing based approaches in the fluid MPC setting would also yield
semi-honest protocols that achieve this property.

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 99

1.2 Related Work

Proactive Multiparty Computation. The proactive security model, first
introduced in [44], aims to model the persistent corruption of parties in a dis-
tributed computation, and the continuous race between parties for corruption
and recovery. To capture this, the model defines a “mobile” adversary that is
not restricted in the total number of corruptions, but can corrupt a subset of
parties in different time periods, and the parties periodically reboot to a clean
state to mitigate the total number of corruptions. Prior works have investigated
the feasibility of proactive security both in the context of secret sharing [35,39]
and general multiparty computation [4,22,44].

While both fluid MPC and Proactive MPC (PMPC) consider dynamic mod-
els, the motivation behind the two models are completely different. This in turn
leads to different modeling choices. Indeed, the dynamic model in PMPC con-
siders slow-moving adversaries, modeling a spreading computer virus where the
set of participants are fixed through the duration of the protocol. This is in
contrast to the Fluid MPC model where the dynamism is derived from partici-
pants leaving and joining the protocol execution as desired. As such, the primary
objective of our work is to construct protocols that have maximal fluidity while
simultaneously minimizing the computational complexity in each epoch. Neither
of these goals are a consideration for protocols in the PMPC setting. Further-
more, unlike PMPC, fluid MPC captures the notion of volunteer servers that
sign-up for computation proportional to the computational resources available
to them.

The difference in motivation highlighted above also presents different con-
straints in protocol design. For instance, unlike PMPC, the size of private states
of parties is a key consideration in the design of fluid MPC; we discuss this fur-
ther in Sect. 2. We do note, however, that some ideas from the PMPC setting,
such as state re-randomization are relevant in our setting as well.

Transferable MPC. In [14], Clark and Hopkinson consider a notion of Trans-
ferable MPC (T-MPC) where parties compute partial outputs of their inputs and
transfer these shares to other parties to continue computation while maintaining
privacy. Unlike our setting, the sequence of transfers, and the computation at
each step is determined completely by the circuit structure. In the constructed
protocol, each partial computation involves multiple rounds of interaction and
therefore does not achieve fluidity; additionally parties cannot leave during com-
putation sacrificing on dynamism.

Concurrent and Independent Work. Two independent and concurrent
works [7,33] also model dynamic computing environments by considering proto-
cols that progress in discrete stages denoted as epochs, which are further divided
into computation and hand-off phases. These works study and design secret shar-
ing protocols in the dynamic environment. In contrast, our work focuses on the
broader goal of multi-party computation protocols for all functionalities.

Furthermore, we focus on building protocols that achieve maximal fluidity.
While this goal is not considered in [33], [7] can be seen as achieving maximal

100 A. R. Choudhuri et al.

fluidity for secret sharing. In choosing committees for each epoch, [33] consider
an approach similar to ours where the committee is announced at the start of
the hand-off phase of each epoch. [7] leverage properties in the blockchain to
implement a committee selection procedure that ensures an honest majority in
each committee.

Lastly, both of these works consider a security model incomparable to ours.
Specifically, they consider security with guaranteed output delivery for secret
sharing against computationally bounded adversaries, whereas we consider MPC
with security with abort against computationally unbounded adversaries.

Malicious Security Compilers for MPC. There has been a recent line of
exciting work [1,2,12,23,36,38,41,43] in designing concretely efficient compiler
that upgrade security from semi-honest to malicious in the honest majority set-
ting. Some of these compilers rely on the additive attack paradigm introduced
in [26]. We take a similar approach, but adapt and extend the additive attack
paradigm to the fluid MPC setting.

2 Technical Overview

We start by briefly discussing some specifics of the model in which we will
present our construction. A detailed formal description of our model is provided
in Sect. 3.

As discussed earlier, we consider a client-server model where computation
proceeds in three phases – input stage, execution stage and output stage (see
Fig. 1). The execution stage proceeds in epochs, where different committees of
servers perform the computation. Each epoch � is further divided into two phases:
(1) computation phase, where the servers in the committee (denoted as S�) per-
form computation, and (2) hand-off phase, where the servers in S� transfer their
states to the incoming committee S�+1. We require that at the start of the hand-
off phase of epoch �, everyone is aware of committee S�+1. We consider security
in the presence of an adversary who can corrupt a minority of servers in every
committee.

For the remainder of the technical overview, we describe our ideas for the
simplified case where all the committees are disjoint and the size of the commit-
tees remain the same across all epochs, denoted as n. Neither of these restrictions
are necessary for our protocols, and we refer the reader to the technical sections
for further details.

Main Challenges. Designing protocols that are well suited to the fluid MPC
setting requires overcoming challenges that are not standard in the static setting.
While some of these challenges have been considered previously in isolation in
other contexts, the main difficulty is in addressing them at the same time.

1. Fluidity. The primary focus of our work is the fluidity of protocols, a measure
of how long the servers must remain online in order to contribute to the
computation. The fluidity of a protocol is the number of rounds of interaction

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 101

in a single epoch, and we say that a protocol achieves maximal fluidity if
there is only a single round in each epoch. Designing protocols with maximal
fluidity means that the computation phase of an epoch must be “silent” (i.e.,
non-interactive), and the hand-off phase must complete in a single round.

2. Small State Complexity. In many classical MPC protocols, the private
state held by each party is quite large, often proportional to the size of the
circuit (see, e.g. [19]). We refer to this as the state complexity of the protocol.
While state complexity is generally not considered an important measure of
a protocol’s efficiency, in the fluid MPC setting it takes on new importance.
Because the state held by the servers must be transferred between epochs,
the state complexity of a protocol contributes directly to its communication
complexity. Protocols with large state complexity, say proportional to the
size of the circuit, would require each committee to perform a large amount
of work, undermining any advantage of fluidity. Therefore, special attention
must be paid to minimize the state complexity of the protocol in the fluid
MPC setting.

3. Secure State Transfer. As mentioned earlier, we consider adversaries that
can corrupt a minority of servers in every committee. As such, state cannot be
naively handed off between committees in a one-to-one manner. To illustrate
why this is true, consider secret sharing based protocols where the players
collectively hold a t-out-of-n secret sharing of the wire values and iteratively
compute on these shares. If states were transferred by having each server
in committee Si choose a unique server in Si+1 (as noted, we assume for
convenience that |Si| = |Si+1|) and simply sending that new server their
state, the adversary would see 2t shares of the transferred state, t shares
from Si and another t shares from Si+1, thus breaking the privacy of the
protocol. Fluid MPC protocols must therefore incorporate mechanisms to
securely transfer the protocol state between committees.

In this work, we focus our attention on protocols that achieve maximal fluidity.
Designing such protocols requires careful balancing between these three factors.
In particular, the need for small state complexity makes it difficult to use many
of the efficient MPC techniques known in the literature, as we will discuss in
more detail below.

Adapting Optimized Semi-honest BGW [28] to Fluid MPC. Despite the
challenges involved in the design of fluid MPC protocols, we observe that the
protocol by Gennaro et al. [28], which is an optimized version of the semi-honest
BGW [6] protocol can be adapted to the fluid MPC setting in a surprisingly
simple manner.

Recall that in [28], the parties collectively compute over an arithmetic circuit
representation of the functionality that they wish to compute, using Shamir’s
secret sharing scheme. For each intermediate wire in the circuit, the following
invariant is maintained: the shares held by the parties correspond to a t-of-n
secret sharing of the value induced by the inputs on that wire. Evaluating addi-
tion gates requires the parties to simply add their shares of the incoming wires,

102 A. R. Choudhuri et al.

� = 1

� = 2

� = 3

� = 4

S1
3

S1
2

S1
1

S2
3

S2
2

S2
1

S3
3

S3
2

S3
1

S4
3

S4
2

S4
1

S1 S2 S3 S4hand-off hand-off hand-off

Fig. 2. Left: Part of the circuit partitioned into different layers, indicated by the
different colors. Right: A visual representation of the flow of information during the
modified version of BGW presented in Sect. 2, running with committees of size 3, which
achieves maximal fluidity. S� =

{
S�
1, S

�
2, S

�
3,

}
denotes the set of active servers in each

committee corresponding to level �, indicated by the same color.

leveraging the linearity of the secret sharing scheme. For evaluating multiplica-
tion gates, the parties first locally multiply their shares of the incoming wires,
resulting in a distributed degree 2t polynomial encoding of the value induced
on the output wire of the gate. Then, each party computes a fresh t-out-of-n
sharing of this degree 2t share and sends one of these share-of-share to every
other party. Finally, the parties locally interpolate these received shares and as
a result, all the parties hold a t-out-of-n sharing of the product. Thus, every
multiplication gate requires only one round of communication.

We observe that adapting this version of semi-honest BGW to fluid MPC
setting, which we will refer to as Fluid-BGW, is straightforward. The key obser-
vation is that the degree reduction procedure of this protocol simultaneously re-
randomizes the state, so that only a single round of communication is required
to accomplish both goals. In each epoch, the servers will evaluate all the gates in
a single layer of the circuit, which may contain both addition and multiplication
gates (see Fig. 2). More specifically, for each epoch �:

Computation Phase: The servers in S� interpolate the shares-of-shares
(received from the previous committee) to obtain a degree t sharing for full
intermediary state (for each gate in that layer). Then, they locally evaluate
each gate in layer �, possibly increasing the degree of the shares that they
hold. Finally, they compute a t-out-of-n secret sharing of the entire state they
hold, including multiplied shares, added shares and any “old” values that may
be needed later in the circuit.

Hand-off Phase: The servers in S� then send one share of each sharing to each
active server in S�+1.

The computation phase is non-interactive and the hand-off phase consists of
only a single round of communication, and therefore the above protocol achieves
maximal fluidity.

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 103

Recall that we consider adversaries who can corrupt a minority of t servers
in each committee, a significant departure from the classical setting in which a
total of t parties can be corrupted. At first glance, it may seem as though the
adversary can gain significant advantage by corrupting (say) the first t parties in
committee S� and the last t parties in committee S�+1. However, since computing
shares-of-shares essentially re-randomizes the state, at the end of the hand-off
phase of epoch �, the adversary is aware of the (1) nt shares-of-shares that were
sent to the last t corrupt servers during the hand-off phase of epoch � and (2)
(n− t)× t shares-of-shares that the first t corrupt servers in S� sent to the (n− t)
honest servers in S�+1. This is in fact no different than regular BGW. Since the
partial information that the adversary has about the states of the (n− t) honest
servers in S�+1 only corresponds to t shares of their individual states, privacy is
ensured.

Compiler for Malicious Security. Having established the feasibility of semi-
honest MPC with maximal fluidity, we now describe our ideas for transform-
ing semi-honest fluid MPC protocols into ones that achieve security against
malicious adversaries. Our goal is to achieve two salient properties: (1) fluidity
preservation, i.e., preserve the fluidity of the underlying protocol, (2) multiplica-
tive overhead of 2 in the complexity of the underlying protocol.

Shortcomings of Natural Solutions. Consider a natural way of achieving
malicious security: after each gate evaluation, the servers perform a check that
the gate was properly evaluated, as is done in the malicious-secure version of
BGW [6]. However, known techniques for implementing gate-by-gate checks rely
on primitives such as verifiable secret sharing (among others) that require addi-
tional interaction between the parties. Such a strategy is therefore incompatible
with our goal of achieving maximal fluidity, which requires a single round hand-
off phase. Even computational techniques like non-interactive zero knowledge
proofs do not appear to be directly applicable as they may require a committee
to have access to all prior rounds of communication in order to verify that the
received messages were correctly computed.

Starting Idea: Consolidated Checks. Since performing gate-by-gate checks
is not well-suited to fluid MPC, we consider a consolidated check approach to
malicious security, where the correctness of the computation (of the entire cir-
cuit) is checked once. This approach has previously been studied in the design of
efficient MPC protocols [12,20,23,25,26,34,43]. In this line of work, [26] made
an important observation, that linear-based MPC protocols (a natural class of
semi-honest honest-majority MPC protocols) are secure up to additive attacks,
meaning any strategy followed by a malicious adversary is equivalent to injecting
an additive error on each wire in the circuit. They use this observation to first
compile the circuit into another circuit that automatically detects errors, e.g.,
AMD circuits and then run a semi-honest protocol on this modified circuit to
get malicious security. Many other works [25,27] follow suit.

Assuming that the same observation caries over to the fluid MPC setting,
for feasibility, one could consider running a semi-honest, maximally fluid MPC

104 A. R. Choudhuri et al.

protocol on such transformed circuits. However, transforming a circuit into an
AMD circuit incurs very high overhead in practice. In order to design a more
efficient compiler that only incurs an overhead of 2, we turn towards the approach
taken by some of the more recent malicious security compilers [12,23,34,43]. In
some sense, the ideas used in these works can be viewed as a more efficient
implementation of the same idea as above (without using AMD circuits).

Roughly speaking, in the approach taken by these recent compilers, for every
shared wire value z in the circuit, the parties also compute a secret sharing of
a MAC on z. At the end of the protocol, the parties verify validity of all the
MACs in one shot. Given the observation from [26], it is easy to see that the
parties can generate a single, secret MAC key r at the beginning of the protocol
and compute MAC(r, z) = rz for each wire z in the circuit. It holds that if the
adversary injects an additive error δ on the wire value z, to surpass the check,
they must inject a corresponding additive error of δ̂ = rδ on the MAC. Because
r is uniformly distributed and unknown to all servers, this can only happen
with probability negligible in the field size. While previously, this approach has
primarily been used for improving the efficiency of MPC protocols, we use it in
this work for also maximizing fluidity.

Verifying the MACs requires revealing the key r, but this is only done at
the end of the protocol, as revealing r too early would allow the adversary to
forge MACs. Furthermore, to facilitate efficient MAC verification, the parties
finish the protocol with the following “condensed” check: they generate random
coefficients αk and use them to compute linear combinations of the wire values
and MACs as follows:

u =
∑

k∈[|C|]
αk · zk and v =

∑

k∈[|C|]
αk · rzk.

Finally, they reconstruct the key r and interactively verify if v = ru, before
revealing the output shares.

To build on this approach, we first need to show that linear-based fluid MPC
protocols are also secure up to additive attacks against malicious adversaries. We
prove this to be true in the full version of the paper and show that the semi-
honest Fluid-BGW satisfies the structural requirement of linear-based fluid MPC
protocols. At first glance, it would appear that we can then directly implement
the above mechanism to the fluid MPC setting as follows: in the output stage,
parties interactively generate shares of αk, locally compute this linear combina-
tion, reconstruct r, and perform the equality check.

To see where this approach falls short, consider the state complexity of this
protocol. To perform the consolidated check, parties in the output stage require
shares of all wires in the circuit, namely zk and rzk for k ∈ [|C|], which must have
been passed along as part of the state between each consecutive pair of commit-
tees. This means that the state complexity of the protocol is proportional to the
size of the circuit, which (as discussed earlier) would undermine the advantages
of the fluid MPC model. More concretely, this approach would incur at least |C|
multiplicative overhead in the communication of the underlying protocol – far
higher than our goal of achieving constant overhead.

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 105

Incrementally Computing Linear Combination. In order to implement the
above consolidated check approach in the fluid MPC setting, we require a method
for computing the aforementioned aggregated values that does not require access
to the entire intermediate computation during the output stage. Towards this,
we observe that the servers can incrementally compute u and v throughout the
protocol. This can be done by having each committee incorporate the part of u
and v corresponding to the gates evaluated by the previous committee into the
partial sum. That is, committee S� is responsible for (1) evaluating the gates on
layer �, (2) computing the MACs for gates on layer �, and (3) computing the
partial linear combination for all the gates before layer � − 1.

Let the output of the kth gate on the ith layer of the circuit be denoted as
zi
k. Apart from the shares of z�−1

k and rz�−1
k (for k ∈ [w]), the servers computing

layer � of the circuit S� also receive shares of

u�−2 =
∑

i≤�−2

∑

k∈[w]

αi
k · zi

k and v�−2 =
∑

i≤�−2

∑

k∈[w]

αi
k · rzi

k

from S�−1 during hand-off, where αi
k is a random value associated with the gate

outputting zi
k. While u�−2 and v�−2 represent the consolidated check for all gates

in the circuit before layer � − 1. S� then computes shares of

u�−1 = u�−2 +
∑

k∈[w]

α�−1
k · z�−1

k and v�−1 = v�−2 +
∑

k∈[w]

α�−1
k · rz�−1

k

in addition to shares of the outputs of gates on layer � (z�
k and rz�

k) and transfer
u�−1 and v�−1 to S�+1 during hand-off. Note that the final u = ud and v = vd,
where d is the depth of the circuit. This leaves the following main question: how
do the servers agree upon the values of α�

k?
Notice that |{α�

k}k∈[w],�∈[d]| = |C|, therefore generating shares of all the α�
k

values at the beginning of the protocol and passing them forward will, again,
yield a protocol that has an excessively large state complexity. Another natural
solution might be to have the servers generate α�

k as and when they need them.
However, because our goal is to maintain maximal fluidity, the servers in Sj for
some fixed j cannot generate αj

k, as this would require communication within
Sj .

Instead, consider a protocol in which the servers in Sj−1 do the work of
generating the shares of αj

k. Each server in Sj−1 generates a random value and
shares it, sending one share to each server in Sj . The servers in Sj then combine
these shares using a Vandermonde matrix to get correct shares of αj

k, as suggested
by [5]. While this approach achieves maximal fluidity and requires a small state
complexity, it incurs a multiplicative overhead of n in the complexity of the
underlying semi-honest protocol.2

2 In the static setting, this technique allows for batched randomness generation, by
generating O(n) sharings with O(n2) messages. In the fluid MPC setting, however,
the number of servers cannot be known in advance and may not correspond to the
width of the circuit. Therefore, such amortization techniques are not applicable.

106 A. R. Choudhuri et al.

Efficient Compiler. We now describe our ideas for achieving multiplicative
overhead of only 2 (for circuits over large fields). In our compiler, we use the
above intuition, having each committee, evaluate gates for its layer, compute
MACs for the previous layer, and incrementally add to the sum. In the input
stage, the clients generate a sharing of a secret random MAC key r, and secret
random values β, α1, . . . , αw. Over the course of the protocol, the servers will
incrementally compute values

u =
∑

�∈[d]

∑

k∈[w]

(αk(β)�) · z�
k and v =

∑

�∈[d]

∑

k∈[w]

(αk(β)�) · rz�
k

where z�
k is the output of the kth gate on level �, (β)� is β raised to the �th

power, and αk(β)� is the “random” coefficient associated with it. At the end of
the protocol, the parties verify whether v = ru.

Notice that at the beginning of the execution stage, the servers do not have
shares of (αk(β)�) for � > 0, but they have the necessary information to compute
a valid sharing of this coefficient in parallel with the normal computation, namely
β, α1, . . . , αw. To compute the coefficients, we require that the servers computing
layer � are given shares of (αk(β)�−1) and β by the previous set of servers, in
addition to the shares of the actual wire values. The servers in S� then use these
shares to compute shares of (1) the values z�

k on outgoing wires from the gates
on layer �, (2) the partial sums by adding the values computed in the previous
layer u�−1 = u�−2 + (αk(β)�−1) · z�−1

k and v�−1 = v�−2 + (αk(β)�−1) · rz�−1
k ,

and (3) the coefficients for the next layer (αk(β)�) = β · αk(β)�−1. All of this
information can be securely transferred to the next committee.

We give a simplified sketch to illustrate why this check is sufficient. Let
ε�
z,k (and ε�

rz,k resp.) be the additive error introduced by the adversary on the
computation of z�

k (rz�
k resp.).

As before, the check succeeds if

r ·
∑

�∈[d]

∑

k∈[w]

(αk(β)�)(z�
k + ε�

z,k) =
∑

�∈[d]

∑

k∈[w]

(αk(β)�)(rz�
k + ε�

rz,k)

Let the qth gate on level m be the first gate where the adversary injects errors
εm
z,q and εm

rz,q. The above equality can be re-written as.

αq

[
d∑

�=m

((β)�ε�
rz,q) − r

d∑

�=m

((β)�ε�
z,q)

]

=

r ·
d∑

�=m

∑

k∈[w]
k �=q

(αk(β)�)(z�
k + ε�

z,k) −
d∑

�=m

∑

k∈[w]
k �=q

(αk(β)�)(rz�
k + ε�

rz,k)

This holds only if either (1)
∑d

�=m((β)�ε�
z,q) = 0 and

∑d
�=m((β)�ε�

rz,q) = 0.
The key point is that since these are polynomials in β with degree at most
d, the probability that β is equal to one of its roots is d/|F|. Or if (2)

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 107

r =
∑d

�=m((β)�ε�
rz,q)(

∑d
�=m((β)�ε�

z,q))
−1. Since r is uniformly distributed, this

happens only with probability 1/|F|.
This analysis is significantly simplified for clarity and the full analysis is

included in the full version of the paper [13]. Note that the adversary can inject
additive errors on r and β, since these values are also re-shared between sets of
servers. Also, since the α values for the gates on level � > 0 are computed using
a multiplication operation, the adversary can potentially inject additive errors
on these values as well. However, we observe that the additive errors on the
value of β and consequently on the α values associated with the gates on higher
levels, does not hamper the correctness of output. But the errors on the value
of r, do need to be taken into consideration. The analysis in the full version of
the paper addresses how these errors can be handled, making it non-trivial and
notationally complicated, but the core intuition remains the same.

We note that we are not the first to consider generating multiple random
values by raising a single random value to consecutively larger powers. In partic-
ular, [20] performs consolidated checks by taking a linear combination of all wire
values, the coefficients for which need to be generated securely, i.e. be randomly
distributed and authenticated. But this generation is expensive, so they generate
a single secure value and derive all other values by raising it to consecutively
larger powers. A consequence of this technique is that once the single secure
value is revealed, the exponentiations are done locally and therefore precludes
any introduction of errors in this computation for the honest parties. Although
this technique might seem similar to ours, our specific implementation is dif-
ferent and for a different purpose, namely, achieving maximal fluidity together
with small constant multiplicative overhead.

Implementation Overview. Due to space constraints, discussion of our imple-
mentation does not fit in this version of this work, so we briefly discuss it here.
We implement Fluid-BGW with our malicious security compiler in C++, using
libscapi [16] and the code written for [12] as a starting point. We implement
several minor optimizations for our implementation. For instance, we preprocess
the circuit so the players always know the maximum number of random values
that will be needed in future layers for the malicious security compiler. This
allows the player to never pass on unnecessary information. We run our protocol
both on a single large server, to benchmark its computational performance, and
using the AWS C4.large instances spread between North Virginia, Germany and
India, replicating the WAN deployment in [12]. We report both per-layer timing
results and total runtime for between 3 and 20 servers per epoch.

3 Fluid MPC

In this section, we give a formal treatment of the fluid MPC setting. We start
by describing the model of computation and then turn to the task of defining
security. Our goals in this section are twofold: first, we illustrate that there are
many possible modeling parameters to choose from in the fluid MPC setting.
Second, we highlight the modeling choices that we make for the protocols we

108 A. R. Choudhuri et al.

describe in later sections. Before beginning, we reiterate that the functionalities
considered in this setting can be represented by circuits where the depth of such
circuits are large.

Model of Computation. We consider a client-server model of computation
where a set of clients C want to compute a function over their private inputs.
The clients delegate the computation of the function to a set of servers S. Unlike
the traditional client-server model [15,17,18] where every server is required to
participate in the entire computation (and hence, remain online for its entire
duration), we consider a dynamic model of computation where the servers can
volunteer their computational resources for part of the computation and then
potentially go offline. That is, the set of servers is not fixed in advance.

We adopt terminology from the execution model used in the context of per-
missionless blockchains [24,45,46]. The protocol execution is specified by an
interactive Turing Machine (ITM) E referred to as the environment. The envi-
ronment E represents everything that is external to the protocol execution. The
environment generates inputs to all the parties, reads all the outputs and addi-
tionally can interact in an arbitrary manner with an adversary A during the
execution of the protocol.

Protocols in this execution model proceed in rounds, where at the start of
each round, the environment E can specify an input to the parties, and receive
an output from the corresponding parties at the end of the round. We also allow
the environment E to spawn new parties at any point during the protocol. The
parties have access to point-to-point and broadcast channels. In addition, we
assume fully synchronous message channels, where the adversary does not have
control over the delivery of messages. This is the commonly considered setting
for MPC protocols.

3.1 Modeling Dynamic Computation

In a fluid MPC protocol, computation proceeds in three stages:
Input Stage: In this stage, the environment E hands the input to the clients

at the start of the protocol, who then pre-process their inputs and hand
them off to the servers for computation.

Execution Stage: This is the main stage of computation where only the
servers participate in the computation of the function.

Output Stage: This is the final stage where only the clients participate
in order to reconstruct the output of the function. The output is then
handed to the environment.

The clients only participate in the input and output stages of the protocol.
Consequently, we require that the computational complexity of both the input
and the output stages is independent of the depth of the functionality (when
represented as a circuit) being computed by the protocol. Indeed, a primary goal
of this work is to offload the computation work to the servers and a computation-
intensive input/output phase would undermine this goal.

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 109

Epoch �

Committee S�

Compute Phase Hand-off Phase

Epoch � + 1

Committee S�+1

Compute Phase Hand-off Phase• • •

Fig. 3. Epochs � and � + 1

We wish to capture dynamism for the bulk of the computation, and thus
model dynamism in the execution stage of the protocol (rather than the input
and output stages). In the following, we highlight the key modeling choices for
the protocols we present in the full version of the paper by displaying them in
bold font in color.

Epoch. We model the progression of the execution stage in discrete steps
referred to as epochs. In each epoch �, only a subset of servers S� participate in
the computation. We refer to this set of servers S� as the committee for epoch
�. An epoch is further divided into two phases, illustrated in Fig. 3:

Computation Phase: Every epoch begins with a computation phase where
the servers in the committee S� perform computation over their local
states, possibly involving multiple rounds of interaction with each other.

Hand-off Phase: The epoch then transitions to a hand-off phase where the
committee S� transfers the protocol state to the next committee S�+1.
As with the computation phase, this phase may involve multiple rounds
of interaction. When this phase is completed, epoch � + 1 begins.

Fluidity. We define the notion of fluidity to measure the minimum commitment
that a server needs to make for participating in the execution stage.

Definition 1 (Fluidity). Fluidity is defined as the number of rounds of inter-
action within an epoch.

Clearly, the fewer the number rounds in an epoch, the more “fluid” the
protocol. We say that a protocol has maximal fluidity when the number of
rounds in an epoch is 1. We emphasize that this is only possible when the
computation phase of an epoch is completely non-interactive, i.e., the servers
only perform local computation on their states without interacting with each
other. This is because the hand-off phase must consist of at least one round of
communication. In this work, we aim to design protocols with maximal fluidity.

3.2 Committees

We now explore modeling choices for committees. We address three key aspects
of a committee – its formation, size and possible overlap with other committees.
Along the way, we also discuss how long a server needs to remain online.

110 A. R. Choudhuri et al.

Functionality fcommittee

Hardcoded: Sampling function Sample : P→�P .

1. Set P := ∅
2. When party Pi sends input nominate, P := P ∪ {Pi}.
3. When the environment sends input elect, compute P ′ ← Sample(P) and broad-

cast P ′ as the selected committee.

Fig. 4. Functionality for committee formation.

Committee Formation. From our above discussion on computation progress-
ing in epochs, we consider two choices for committee formation:

Static. In the most restrictive choice, the environment determines right
at the start, which servers will participate in the protocol, and the epoch(s)
they will be participating in. This in turn determines the committee for every
epoch. This means that the servers must commit to their resources ahead of
time. We view this choice to be too restrictive and shall not consider it for
our model.

On-the-fly. In the other choice, committees are determined dynamically
such that committee for epoch � + 1 is determined and known to
everyone at the start of the hand-off phase of epoch �. We consider
the functionality fcommittee described in Figure 4 to capture this setting.

In an epoch �, if the environment E provides input nominate to a party at
the start of the round, it relays this message to fcommittee to indicate that it
wants to be considered in the committee for epoch � + 1. The functionality
computes the committee using the sampling function Sample, from the set
of parties P that have been “nominated.” The environment E is also allowed
a separate input elect that specifies the cut-off point for the functionality to
compute the committee. The cut-off point corresponds to the start of the
hand-off phase of epoch � where the parties in S� are made aware of the
committee S�+1 via a broadcast from fcommittee.

We consider two possible committee choices in this dynamic setting below.

Volunteer Committees. One can view the servers as “volunteers” who
sign up to participate in the execution stage whenever they have computa-
tional resources available. Essentially anyone, who wants to, can join (up
until the cut-off point) in aiding with the computation. This can be imple-
mented by simply setting the sampling function Sample in fcommittee to be
the identity function, i.e. a party is included in the committee for epoch
� + 1 if and only if it sent a nominate to fcommittee during the computation
phase of epoch �.

Elected Committees. One could envision other sampling functions
that implement a selection process using a participation criterion such

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 111

as the cryptographic sortition [30] considered in the context of proof of
stake blockchains. The work of [7] considers the function Sample that
is additionally parameterized by a probability p; for each party in P,
Sample independently flips a coin that outputs 1 with probability p, and
only includes the party in the final committee if the corresponding coin
toss results in the value 1. To ensure that all parties are considered in the
selection process, one can simply require that every party sends a nominate
to fcommittee in each epoch. Committee election has also been studied in
different network settings; e.g., the recent work of [47] provides methods
for electing committees over TOR [21].

Both of the above choices have direct consequences on the corruption model.
The former choice of volunteer committees models protocols that are accessi-
ble to anyone who wants to participate. However, an adversary could misuse
this accessibility to corrupt a large fraction of (maybe even all) participants
of a committee. As such, we view this as an optimistic model since achieving
security in this model can require placing severe constraints on the global
corruption threshold.

The latter choice of elected committees can, by design, be viewed as a
semi-closed system since not everyone who “volunteers” their resources are
selected to participate in the computation. However, by using an appropri-
ate sampling function, this selection process can potentially ensure that the
number of corruptions in each committee are kept within a desired threshold.

We envision that the choice of the specific model (i.e. the sampling func-
tion Sample) is best determined by the environment the protocol is to be
deployed in and the corruption threshold one is willing to tolerate. (We dis-
cuss the latter implication in Section 3.3.) Our protocol design is agnostic to
this choice and only requires that the committee S� knows committee S�+1

at the start of the hand-off phase.

Participant Activity. We say that a server is active within an epoch if it
either (a) performs some protocol computation, or (b) sends/receives protocol
messages. Clearly, a server S is active during epoch � only if it belongs to S� ∪
S�+1. When extending this notion to a committee, we say committee S� is active
from the beginning of the hand-off phase in epoch �−1 to the end of the hand-off
phase in epoch � (see Fig. 3).

We say that a server is “online” if it is active (in the above sense) or sim-
ply passively listening to broadcast communication. A protocol may potentially
require a server to be online throughout the protocol and keep its local state
up-to-date as a function of all the broadcast protocol messages (possibly for
participation at a later stage). In such a case, while a server may not be per-
forming active computation throughout the protocol, it would nevertheless have
to commit to being present and listening throughout the protocol. To minimize
the amount of online time of participants, ideally one would like servers to be
online only when active.

Committee Sizes. In view of modeling committee members signing up as
and when they have available computational resources, we allow for variable

112 A. R. Choudhuri et al.

committee sizes in each epoch. This simply follows from allowing the envi-
ronment E to determine how many parties it provides the nominate input. For
simplicity, we describe our protocol in the technical sections for the simplified
setting where the committee sizes in each epoch are equal and indicate how it
extends to the variable committee size setting. An alternative choice would be
to require the committee to have a fixed size, or change sizes at some prescribed
rate. These choices might be more reasonable under the requirement that servers
announce their committee membership at the start of the protocol.

Committee Overlap. In our envisioned applications, participants with avail-
able computational resources will sign up more often to be a part of a committee
(see Remark 1). In view of this, we make no restriction on committee over-
lap, i.e., we allow a server to volunteer to be in multiple epoch committees. As
we discuss below, this has some bearing on modeling security for the protocol.

Remark 1 (Weighted Computation). We note that our model naturally allows
for a form of weighted computation, where the amount of work performed by a
participant is proportional to its available resources. This is because a participant
(i.e., a server) can choose to participate in a number of epochs proportional to
its available resources.

3.3 Security

As in traditional MPC, there are various choices for modeling corruption of
parties to determine the number of parties that can be corrupted (i.e., honest
vs dishonest majority) as well as the time of corruption (i.e., static vs adaptive
corruption). The environment E can determine to corrupt a party, and on doing
so, hands the local state of the corrupted party to the adversary A. For a semi-
honest (passive) corruption, A is only able to continue viewing the local state,
but for a malicious (active) corruption, A takes full control of the party and
instructs its behavior subsequently.

Corruption Threshold. We consider an honest-majority model for fluid MPC
where we restrict (A, E) to the setting where the adversary A controls any
minority of the clients as well as any minority of servers in every com-
mittee in an epoch.

We discuss the impact of the choice of committee formation on corruption
threshold:

– Volunteer Committee. In the volunteer setting, ensuring honest majority
in each epoch may be difficult; as such we view it as an optimistic model.
In the extreme case, honest-majority per epoch can be enforced by assuming
the global corruption threshold to be N/2E where E is the total number of
epochs and N is the total number of parties across all epochs.

– Elected Committee. In the elected committee model, the committee selec-
tion process may enforce an honest majority amongst the selected participants
in every epoch. The work of [7] enforces this via a cryptographic sortition

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 113

process in proof-of-stake blockchains where an honest majority of stake is
assumed (in fact they require a larger stake fraction to be honest for their
committee selection).

An alternative model is where an adversary may control a majority of clients
and additionally a majority of servers in one or more epochs. We leave the study
of such a model for future work.

Corruption Timing. Given that the protocol progresses in discrete steps, and
knowledge of committees may not be known in advance, it is important to model
when an adversary can specify the list of corrupted parties. For clients, this is
straightforward: we assume that the environment E specifies the list of corrupted
clients at the start of the protocol, i.e. we assume static corruption for the
clients. Since the servers perform the bulk of the computation, and their partici-
pation is already dynamic, there are various considerations for corruption timing.
We consider two main aspects below: point of corruption and effect on prior epochs.

Point of corruption: When the committee S� is determined at the start of
hand-off phase of epoch �−1, the adversary can specify the corrupted servers
from S� in either:
1. a static manner, where the environment E is only allowed to list the set

of corrupted servers when the committee S� is determined; or
2. an adaptive manner, where the environment E can corrupt servers in S�

adaptively up until the end of epoch �, i.e. while they are active.
Effect on prior epochs: We consider the effect of the adversary corrupting
parties during epoch � on prior epochs.
1. No retroactive effect: In this setting, the corruption of servers during

epoch � has no bearing on any epoch j < �, i.e. the adversary does not
learn any additional information about epoch j at epoch �. This model
can be achieved in two ways:

Erasure of states: If servers in Sj erase their respective local states
at the end of epoch j, then even if the server were to participate in
epoch � (i.e. Sj ∩S� �= ∅), the adversary would not gain any additional
information when the environment E hands over the local state.
Disjoint committees: If the sets of servers in each epoch are disjoint,
by corrupting servers in epoch �, the adversary cannot learn anything
about prior epochs.

We note that for any protocol that is oblivious to the real identities of
the servers (i.e. the protocol doesn’t assume any prior state from the
servers), the two methods of achieving no retroactive effect, i.e. erasures
and disjoint committees are equivalent. This follows from the fact that
servers do not have to keep state in order to rejoin computation, and
therefore from the point of view of the protocol and for all purposes, are
equivalent to new servers.3

3 We would like to point out that if one were to implement point-to-point channels
via a PKI, this equivalence may not hold.

114 A. R. Choudhuri et al.

2. Retroactive effect: In this setting, the adversary is allowed limited infor-
mation from prior epochs. Specifically, when corrupting a server S ∈ S�

in epoch �, the adversary learns private states of the server in all prior
epochs (if the server has been in a committee before). Therefore, the S
is then assumed to have been (passively) corrupt in every epoch j < �.
In order to prevent the adversary from arbitrarily learning information
about prior epochs, the adversary is limited to corrupting servers in epoch
� as long as corrupting a server S and its retroactive effect of consider-
ing S to be corrupted in all prior epochs does not cross the corruption
threshold in any epoch.

One could consider models with various combinations of the aforementioned
aspects. We will narrow further discussion to two models of the adversary:

Definition 2 (R-adaptive Adversary). We say that the (A, E) results in an
R-adaptive adversary A if the environment E can statically corrupt a set T of
the clients (at the start of the protocol) and corrupt the servers in an adaptive
manner with retroactive effect. Specifically, in epoch �, the environment E can
adaptively choose to corrupt a set of servers T � ⊂ [n�] from the set S�, where T �

corresponds to a canonical mapping based on the ordering of servers in S�. On
E corrupting the server, A learns its entire past state and can send messages on
its behalf in epoch �. The set of servers that E can corrupt, and its corresponding
retroactive effect, will be determined by the corruption threshold τ specifying that
∀�, |T �| < τ · n�.

Definition 3 (NR-adaptive Adversary). We say that the (A, E) results in an
NR-adaptive adversary A if the environment E can statically corrupt a set T of
the clients (at the start of the protocol) and corrupt the servers in an adaptive
manner with no retroactive effect. The corruption process is similar to the case
of R-adaptive adversaries, except that the environment E can corrupt any server
in epoch � as long as the number of corrupted servers in epoch � are within the
corruption threshold. As mentioned earlier, any protocol that achieves security
against such an adversary necessarily requires either (a) erasure of state, or (b)
disjoint committees.

While our security definition will be general, and encompass both adversarial
models, we will consider protocols in the model with R-adaptive adversary.

In the above discussions, we have considered corruptions only when servers
are active. One could also consider a seemingly stronger model where the adver-
sary can corrupt servers when they are offline, i.e. no longer active. We remark
below that our model already captures offline corruption.

Remark 2 (Offline Corruption). If servers are offline once they are no longer
active i.e. they are not passively listening to protocol messages, then offline
corruptions in the retroactive effect model is the same as adaptive corruptions
during (and until the end of) the epoch due to the fact that the server’s protocol
state has not changed since the last time it was active. Going forward, since
honest parties do go offline when they are no longer active, we do not specify
offline corruptions as they are already captured by our model.

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 115

Remark 3 (Un-corrupting parties). It might be desirable to consider a model in
which a server is initially corrupted by the adversary, but then the adversary
eventually decided to “un-corrupt” that server, returning it to honest status.
This kind of “mobile adversary” has been studied in some prior works [31]. We
note that this can be captured in our model by just having the adversary “un-
corrupt” a server by making that server leave the computation at the end of the
epoch and rely on the natural churn of the network to replace that server.

Defining Security. We consider a network of m-clients and N -servers S and
denote by (−→n = (n1, . . . , nE), E) the partitioning of the servers into E tuples
(corresponding to epochs) where the �-th tuple has n� parties (corresponding to
committee in the �-th epoch), i.e. S� ⊂ S such that ∀� ∈ [E], |S�| = n�.

Similar to the client-server setting, defined in [15,17,18], only the m clients
have an input (and receive output), computing a function f : X1 × · · · × Xm →
Y1 × · · · × Ym, where for each i ∈ [m], Xi and Yi are the input and output
domains of the i-th client.

We provide a definition of fluid MPC that corresponds to the classical secu-
rity notion in the MPC literature called security with abort, but note that
other commonly studied security notions can also be defined in this setting in a
straightforward manner. The security of a protocol (with respect to a function-
ality f) is defined by comparing the real-world execution of the protocol with
an ideal-world evaluation of f by a trusted party. More concretely, it is required
that for every adversary A, which attacks the real execution of the protocol,
there exist an adversary Sim, also referred to as a simulator in the ideal-world
such that no environment E can tell whether it is interacting with A and parties
running the protocol or with Sim and parties interacting with f . As mentioned
earlier, the environment E (i) determines the inputs to the parties running the
protocol in each round; (ii) sees the outputs to the protocol; and (iii) interacts
in an arbitrary manner with the adversary A. In this context, one can view the
environment E as an interactive distinguisher.

It should be noted that it is only the clients that have inputs to the protocol
π. While the servers have no input, the environment E , in any round, can provide
it with the input nominate upon which the server relays this message to the ideal
functionality to indicate it is volunteering for the committee in the subsequent
epoch. These servers have no output, so do not relay any information back to E .

In the real execution of the (−→n ,E)-party protocol π for computing f in
the presence of fcommittee proceeds first with the environment passing the inputs
to all the clients, who then pre-process their inputs and hand it off to the servers
in S1. The protocol then proceeds in epochs as described earlier in the presence
of an adversary A and environment E . E at the start of the protocol chooses
a subset of clients T ⊂ [m] to corrupt and hands their local states to A. As
discussed, the corruption of the clients is static, and thus fixed for the duration
of the protocol. The honest parties follow the instructions of π. Depending on
whether A is R-adaptive or NR-adaptive, E proceeds with adaptively corrupting
servers and handing over their states to A who then sends messages on their
behalf.

116 A. R. Choudhuri et al.

The execution of the above protocol defines REALπ,A,T,E,fcommittee(z), a ran-
dom variable whose value is determined by the coin tosses of the adversary and
the honest players. This random variable contains (a) the output of the adver-
sary (which may be an arbitrary function of its view); (b) the outputs of the
uncorrupted clients; and (c) list of all the corrupted servers

{
T �

}
�∈[E]

.
The ideal world execution is defined similarly to prior works. We formally

define the ideal execution for the case of retroactive adaptive security, and the
analogous definition for non-retroactive adaptive security can be obtained by
appropriate modifications. Roughly, in the ideal world execution, the participants
have access to a trusted party who computes the desired functionality f . The
participants send their inputs to this trusted party who computes the function
and returns the output to the participants.

More formally, an ideal world execution for a function f in the presence of
fcommittee with adversary Sim proceeds as follows:

– Clients send inputs to the trusted party: The clients send their inputs
to the trusted party, and we let x′

i denote the value sent by client Ci. The
adversary Sim sends inputs on behalf of the corrupted clients.

– Corruption Phase of servers: The trusted party initializes � = 1. Until
Sim indicates the end of the current phase (see below), the following steps
are executed:
1. Trusted party sends � to Sim and initializes an append-only list Corrupt�

to be ∅.
2. Sim then sends pairs of the form (j, i) where j denotes epoch number and

i denotes the index of the corrupted server in epoch j ≤ �. Upon receiving
this, the trusted party appends i to the list Corruptj . This step can be
repeated multiple times.

3. Sim sends continue to the trusted party, and the trusted party increments
� by 1.

Sim may also send an abort message to the trusted party in this phase in
which case the trusted party sends ⊥ to all honest clients and stops. Else,
Sim sends next phase to the trusted party to indicate the end of the current
phase.
The following steps are only executed if the Sim has not already sent an abort
message to the trusted.

– Trusted party sends output to the adversary: The trusted party com-
putes f(x′

1, . . . , x
′
m) = (y1, . . . , ym) and sends {yi}i∈T to the adversary Sim.

– Adversary instructs trust party to abort or continue: This is formal-
ized by having the adversary send either a continue or abort message to the
trusted party. In the latter case, the trusted party sends to each uncorrupted
client Ci its output value yi. In the former case, the trusted party sends the
special symbol ⊥ to each uncorrupted client.

– Outputs: Sim outputs an arbitrary function of its view, and the honest par-
ties output the values obtained from the trusted party.

Sim also interacts with the environment E in an identical manner to the real
execution interaction between E and A. In particular this means, Sim cannot

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 117

rewind E or look at its internal state. The above ideal execution defines a random
variable IDEALπ,Sim,T,E,fcommittee(z) whose value is determined by the coin tosses of
the adversary and the honest players. This random variable containing the (a)
output of the ideal adversary Sim; (b) output of the honest parties after an ideal
execution with the trusted party computing f where Sim has control over the
adversary’s input to f ; and (c) the lists

{
Corrupt�

}

�
of corrupted servers output

by the trusted party. If Sim sends abort in the corruption phase of the server,
the trusted party outputs the lists that have been updated until the point the
abort message was received from Sim.

Having described the real and the ideal worlds, we now define security.

Definition 4. Let f : X1×· · ·×Xm → Y1×· · ·×Ym be a functionality and let π
be a fluid MPC protocol for computing f with m clients, N servers and E epochs.
We say that π achieves (τ, μ) retroactive adaptive security (resp. non-retroactive
adaptive security) if for every probabilistic adversary A in the real world there
exists a probabilistic simulator Sim in the ideal world such that for every proba-
bilistic environment E if A is R-adaptive (resp. NR-adaptive) controlling a subset
of servers T � ⊆ S�, ∀� ∈ [E] s.t. |T �| < τ ·n� and less than τ · m clients, it holds
that for all auxiliary input z ∈ {0, 1}∗

SD (IDEALf,Sim,T,E,fcommittee(z),REALπ,A,T,E,fcommittee(z)) ≤ μ

where SD(X,Y) is the statistical distance between distributions X and Y .

When μ is a negligible function of some security parameter λ, we say that the
protocol π is τ -secure.

Remark 4. We note that the above definitions do not explicitly state whether
the adversary behaves in (a) a semi-honest manner, where the messages that it
sends on behalf of the parties are computed as per protocol specification; or (b)
a malicious manner, where it can deviate from the protocol specification. Our
intention is to give a general definition independent of the type of adversary.
In the subsequent description, we will appropriately prefix the adversary with
semi-honest/malicious to indicate the power of the adversary.

This Work. We summarize the fluid MPC model that we focus on in the full
version of this paper [13], in the definition below.

Definition 5 (Maximally-Fluid MPC with R-Adaptive Security). We say that
a Fluid MPC protocol π is a Maximally-Fluid MPC with R-Adaptive Security
if it additionally satisfies the following properties:

– Fluidity: It has maximal fluidity.
– Volunteer Based Sign-up Model: Committee for epoch �+1 is determined

and known to everyone at the start of the hand-off phase of epoch � where
the sampling function for fcommittee is the identity function. Each epoch can
have variable committee sizes, and the committees themselves can arbitrarily
overlap. A server is only required to be online during epochs where it is active.

118 A. R. Choudhuri et al.

– Malicious R-Adaptive Security: It achieves security as per Definition 4
against malicious R-adaptive adversaries who control any minority (τ < 1/2)
of clients and any minority of servers in every committee in an epoch.

As we have just shown, there are many interesting, reasonable modeling choices
that can be made in the study of fluid MPC. While our specific model name
may be heavy-handed, we want to ensure that our modeling choices are clear
throughout this work. Additionally, we hope to emphasize that our work is an
initial foray in the study of fluid MPC and much is to be done to fully understand
this setting.

4 Results in Full Version of the Paper

In the full version of this work [13], we construct a Maximally-Fluid MPC with
R-Adaptive Security (see Definition 5). In this section, we outline the sequence of
steps used for obtaining this result, and include the main theorems we prove for
completeness.

1. We start by adapting the additive attack paradigm of [26] to the fluid MPC
setting. In particular, we formally define a class of secret sharing based fluid
MPC protocols, called “linear-based fluid MPC protocols”. We then focus
on “weakly private” linear-based fluid MPC protocols, which are semi-honest
protocols that additionally achieve a weak notion of privacy against a mali-
cious R-adaptive (see Definition 2) adversary. We show that such weakly pri-
vate protocols are also secure against a malicious R-adaptive adversary up to
“additive attacks”. Formally, we prove the following theorem:

Theorem 1. Let Π be a Fluid MPC protocol computing a (possibly randomized)
m-client circuit C :

(
F
in
)m → F

out using N servers that is a linear-based Fluid
MPC with respect to a t-out-of-n secret sharing scheme, and is weakly-private
against malicious R-adaptive adversaries controlling at most t� < n�/2 servers in
committee S� (for each � ∈ [d]) and t < m/2 clients, where d is the depth of the
circuit C and n� are the number of servers in epoch �. Then, Π is a 1/2-secure
Fluid MPC with R-Adaptive Security with d epochs for computing the additively
corruptible version f̃C of C.

2. Next, we present a general compiler that can transform any linear based fluid
MPC protocol that is secure against a malicious R-adaptive adversary up to
additive attacks, into a protocol that achieves security with abort against a
malicious R-adaptive adversary. Our resulting protocol only incurs a constant
multiplicative overhead in the communication complexity of the original pro-
tocol and also preserves its fluidity. Formally, we prove the following theorem:

Theorem 2. Let C :
(
F
in
)m → F

out be a (possibly randomized) m-client circuit.
Let C̃ be the robust circuit corresponding to C. Let Π be a Fluid MPC protocol
computing C̃ using N servers that is linear-based with respect to a t-out-of-n

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 119

secret sharing scheme, and is weakly-private against malicious R-adaptive adver-
saries controlling at most t� < n�/2 servers in committee S� (for each � ∈ [d+1])
and t < m/2 clients, where d is the depth of the circuit C and n� is the number
of servers in epoch �. Then, the there exists a protocol that is a 1/2-secure Fluid
MPC with R-Adaptive Security with d + 1 epochs for computing C. Moreover,
this protocol preserves the fluidity of Π and only adds a constant multiplicative
overhead to the communication complexity of Π.

3. Finally, we adapt the semi-honest protocol of Genarro, Rabin and Rabin [28],
which is an optimized version of the classical semi-honest BGW protocol [6],
to the fluid MPC setting and show that this protocol is both linear-based and
weakly private against a malicious R-adaptive adversary, and achieves max-
imal fluidity. Using Theorem 1, we establish that this linear-based weakly
private protocol is also secure against a malicious R-adaptive adversary up to
additive attacks. Finally, we apply the compiler from Theorem 2 to this pro-
tocol to obtain a maximally fluid MPC protocol secure against malicious
R-adaptive adversaries. Concretely, the following corollary holds directly from
the two theorems above:

Corollary 1. There exists an information-theoretically secure Maximally-Fluid
MPC with R-Adaptive Security (See Definition 5) for any f ∈ P/Poly.

Acknowledgements. The fourth author would like to thank Amit Sahai and Sunoo
Park for insightful discussions on dynamism in MPC. The fifth author would like to
thank Shaanan Cohney for early discussions around blockchains and MPC.

Arka Rai Choudhuri, Aarushi Goel and Abhishek Jain were supported in part by
DARPA/ARL Safeware Grant W911NF-15-C-0213, NSF CNS-1814919, NSF CAREER
1942789, Samsung Global Research Outreach award and Johns Hopkins University Cat-
alyst award. Arka Rai Choudhuri is also supported by NSF Grants CNS-1908181 and
Office of Naval Research Grant N00014-19-1-2294. Matthew Green is supported by NSF
under awards CNS-1653110 and CNS-1801479, the Office of Naval Research under con-
tract N00014-19-1-2292, DARPA under Contract No. HR001120C0084, and a Security
and Privacy research award from Google. Abhishek Jain was additionally supported in
part by an Office of Naval Research grant N00014-19-1-2294. Gabriel Kaptchuk is sup-
ported by the National Science Foundation under Grant #2030859 to the Computing
Research Association for the CIFellows Project. Significant portions of this work were
done while Gabriel Kaptchuk was at Johns Hopkins University and supported by NSF
CNS-1329737. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of
the United States Government or DARPA.

References

1. Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - break-
ing the 1 billion-gate per second barrier. In: 2017 IEEE Symposium on Security
and Privacy, San Jose, CA, USA, 22–26 May 2017, pp. 843–862. IEEE Computer
Society Press (2017)

120 A. R. Choudhuri et al.

2. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016,
Vienna, Austria, 24–28 October 2016, pp. 805–817. ACM Press (2016)

3. Barak, A., Hirt, M., Koskas, L., Lindell, Y.: An end-to-end system for large scale
P2P MPC-as-a-service and low-bandwidth MPC for weak participants. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, pp. 695–712. ACM, New York (2018). http://doi.acm.org/10.
1145/3243734.3243801

4. Baron, J., El Defrawy, K., Lampkins, J., Ostrovsky, R.: How to withstand mobile
virus attacks, revisited. In: Halldórsson, M.M., Dolev, S. (eds.) 33rd ACM PODC,
Paris, France, 15–18 July 2014, pp. 293–302. ACM (2014)

5. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 16

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, Chicago, IL, USA, 2–4 May 1988, pp. 1–10. ACM Press (1988)

7. Benhamouda, F., et al.: Can a blockchain keep a secret? Cryptology ePrint Archive,
Report 2020/464 (2020). https://eprint.iacr.org/2020/464

8. Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste, R.: Stu-
dents and taxes: a privacy-preserving study using secure computation. Proc. Priv.
Enhancing Technol. 2016(3), 117–135 (2016)

9. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. White Paper 3(37) (2014)

10. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 462–462.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 43

11. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155–183 (2019)

12. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993,
pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

13. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: secure
multiparty computation with dynamic participants. Cryptology ePrint Archive,
Report 2020/754 (2020). https://eprint.iacr.org/2020/754

14. Clark, M.R., Hopkinson, K.M.: Transferable multiparty computation with applica-
tions to the smart grid. IEEE Trans. Inf. Forensics Secur. 9(9), 1356–1366 (2014)

15. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

16. Cryptobiu: cryptobiu/libscapi, May 2019. https://github.com/cryptobiu/libscapi
17. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box

pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

18. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 30

http://doi.acm.org/10.1145/3243734.3243801
http://doi.acm.org/10.1145/3243734.3243801
https://doi.org/10.1007/11681878_16
https://eprint.iacr.org/2020/464
https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/978-3-319-96878-0_2
https://eprint.iacr.org/2020/754
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://github.com/cryptobiu/libscapi
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/11818175_30

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 121

19. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

20. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

21. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th Conference on USENIX Security Symposium,
SSYM 2004, vol. 13, pp. 21–21. USENIX Association, Berkeley (2004). http://dl.
acm.org/citation.cfm?id=1251375.1251396

22. Eldefrawy, K., Ostrovsky, R., Park, S., Yung, M.: Proactive secure multiparty
computation with a dishonest majority. In: Catalano, D., De Prisco, R. (eds.) SCN
2018. LNCS, vol. 11035, pp. 200–215. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98113-0 11

23. Furukawa, J., Lindell, Y.: Two-thirds honest-majority MPC for malicious adver-
saries at almost the cost of semi-honest. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019, 11–15 November 2019, pp. 1557–1571. ACM Press
(2019)

24. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

25. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7 35

26. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: Shmoys, D.B. (ed.)
46th ACM STOC, New York, NY, USA, 31 May–3 June 2014, pp. 495–504. ACM
Press (2014)

27. Genkin, D., Ishai, Y., Weiss, M.: Binary AMD circuits from secure multiparty
computation. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp.
336–366. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 14

28. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Coan, B.A., Afek,
Y. (eds.) 17th ACM PODC, Puerto Vallarta, Mexico, 28 June–2 July 1998, pp.
101–111. ACM (1998)

29. Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-index PIR
and applications. Cryptology ePrint Archive, Report 2020/1248 (2020). https://
eprint.iacr.org/2020/1248

30. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, Shanghai, China, 28–31 October 2017, pp. 51–68
(2017)

31. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. Cryptology ePrint Archive, Report 2017/454
(2017). http://eprint.iacr.org/2017/454

https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38
http://dl.acm.org/citation.cfm?id=1251375.1251396
http://dl.acm.org/citation.cfm?id=1251375.1251396
https://doi.org/10.1007/978-3-319-98113-0_11
https://doi.org/10.1007/978-3-319-98113-0_11
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-662-53641-4_14
https://doi.org/10.1007/978-3-662-53641-4_14
https://eprint.iacr.org/2020/1248
https://eprint.iacr.org/2020/1248
http://eprint.iacr.org/2017/454

122 A. R. Choudhuri et al.

32. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, New York City, NY, USA, 25–27 May 1987, pp. 218–229. ACM Press (1987)

33. Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retriev-
ing secrets on a blockchain. Cryptology ePrint Archive, Report 2020/504 (2020).
https://eprint.iacr.org/2020/504

34. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest
majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II.
LNCS, vol. 12171, pp. 618–646. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-56880-1 22

35. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

36. Ikarashi, D., Kikuchi, R., Hamada, K., Chida, K.: Actively private and correct
MPC scheme in t<n/2 from passively secure schemes with small overhead. Cryp-
tology ePrint Archive, Report 2014/304 (2014). http://eprint.iacr.org/2014/304

37. Lapets, A., Volgushev, N., Bestavros, A., Jansen, F., Varia, M.: Secure MPC
for analytics as a web application. In: 2016 IEEE Cybersecurity Development
(SecDev), pp. 73–74. IEEE (2016)

38. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic
circuits with malicious adversaries and an honest-majority. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, Dallas, TX, USA, 31
October–2 November 2017, pp. 259–276. ACM Press (2017)

39. Maram, S.K.D., et al.: CHURP: dynamic-committee proactive secret sharing. In:
ACM Conference on Computer and Communications Security, pp. 2369–2386.
ACM (2019)

40. Micali, S.: Very simple and efficient byzantine agreement. In: Papadimitriou, C.H.
(ed.) ITCS 2017, Berkeley, CA, USA, 9–11 January 2017, vol. 4266, pp. 6:1–6:1.
LIPIcs (2017)

41. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
the garbled circuit approach. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015,
Denver, CO, USA, 12–16 October 2015, pp. 591–602. ACM Press (2015)

42. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, 2008 (2008). http://
www.bitcoin.org/bitcoin.pdf

43. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority
MPC by batchwise multiplication verification. In: Preneel, B., Vercauteren, F.
(eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93387-0 17

44. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: Logrippo, L. (ed.) 10th ACM PODC, Montreal, QC, Canada, 19–21
August 1991, pp. 51–59. ACM (1991)

45. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
II. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 22

46. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: Schiller, E.M., Schwarzmann,
A.A. (eds.) 36th ACM PODC, Washington, DC, USA, 25–27 July 2017, pp. 315–
324. ACM (2017)

https://eprint.iacr.org/2020/504
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
http://eprint.iacr.org/2014/304
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22

Fluid MPC: Secure Multiparty Computation with Dynamic Participants 123

47. Wails, R., Johnson, A., Starin, D., Yerukhimovich, A., Gordon, S.D.: Stormy:
statistics in tor by measuring securely. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019, 11–15 November 2019, pp. 615–632. ACM Press
(2019)

48. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, Toronto, Ontario, Canada, 27–29 October 1986, pp. 162–167. IEEE Com-
puter Society Press (1986)

Secure Computation from One-Way Noisy
Communication, or: Anti-correlation via

Anti-concentration

Shweta Agrawal1(B), Yuval Ishai2, Eyal Kushilevitz2, Varun Narayanan3,
Manoj Prabhakaran4, Vinod Prabhakaran3, and Alon Rosen5

1 Indian Institute of Technology Madras, Chennai, India
shweta@iitm.ac.in

2 Technion, Haifa, Israel
{yuvali,eyalk}@cs.technion.ac.il

3 Tata Institute of Fundamental Research, Mumbai, India
vinodmp@tifr.res.in

4 Indian Institute of Technology Bombay, Mumbai, India
mp@cse.iitb.ac.in

5 IDC Herzliya, Herzliya, Israel
alon.rosen@idc.ac.il

Abstract. Can a sender encode a pair of messages (m0, m1) jointly,
and send their encoding over (say) a binary erasure channel, so that the
receiver can decode exactly one of the two messages and the sender does
not know which one?

Garg et al. (Crypto 2015) showed that this is information-theoretically
impossible. We show how to circumvent this impossibility by assuming
that the receiver is computationally bounded, settling for an inverse-
polynomial security error (which is provably necessary), and relying on
ideal obfuscation. Our solution creates a “computational anti-correlation”
between the events of receiving m0 and receiving m1 by exploiting the
anti-concentration of the binomial distribution.

The ideal obfuscation primitive in our construction can either be
directly realized using (stateless) tamper-proof hardware, yielding an
unconditional result, or heuristically instantiated in the plain model
using existing indistinguishability obfuscation schemes.

As a corollary, we get similar feasibility results for general secure com-
putation of sender-receiver functionalities by leveraging the completeness
of the above “random oblivious transfer” functionality.

1 Introduction

Starting with the pioneering work of Wyner [57], who showed that the wiretap
channel can be used for secure communication, a long line of work in cryp-
tography studied the usefulness of noisy channels for general cryptographic
tasks [12,13,22,35,48,51,55,56]. A major landmark in this line of work is a
full characterization of the “complete” channels on which oblivious transfer, and
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 124–154, 2021.
https://doi.org/10.1007/978-3-030-84245-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_5

Secure Computation from One-Way Noisy Communication 125

hence secure two-party computation, can be based [20,21]. In a nutshell, almost
all nontrivial noisy channels are complete in this sense.

However, most cryptographic constructions from noisy channels crucially
require interaction, and while this is not always a barrier, there are applications
in which interaction is inherently unidirectional. Indeed, secure communication
in this setting was the topic of Wyner’s work, and is a central theme in the
big body of work on “physical layer security” [14,50]. Given only one-way noisy
communication, any functionality that can be securely realized can be expressed
as a randomized mapping f : A → B that takes an input a ∈ A from a sender S
and delivers an output b = f(a) to a receiver R. Note that, here the randomness
is internal to the functionality, and is neither known to nor can be influenced
by the sender or the receiver. We will give examples for useful functionalities of
this type in Sect. 1.3.

The goal is to realize such sender-receiver functionalities assuming that S and
R are given access to a channel C : X → Y. Such channels are usually simpler
than the target function f , and can be plausibly assumed to be available to the
parties. Well-known examples of “simple” channels that correspond to naturally
occurring processes are the binary erasure channel (BEC), which erases each
transmitted bit with some fixed probability 0 < p < 1, and the binary symmetric
channel (BSC) which flips each bit with probability 0 < p < 1/2.

1.1 Complete Channels

The general study of secure computation from one-way noisy communication
was initiated by Garg et al. [25], who showed that one-way communication over
BEC or BSC suffices for realizing any deterministic sender-receiver functionality.
This includes zero-knowledge proofs as a useful special case. For general, possibly
randomized, functionalities, they showed that the following random string-OT
functionality (ROT) described below (where a0, a1 are strings), is complete:

CROT(a0, a1) =

{
(a0,⊥) w.p. 1

2

(⊥, a1) w.p. 1
2 ,

This was recently extended to the case when a0, a1 are bits [2], albeit at the
(necessary) cost of allowing an inverse polynomial, rather than negligible, error.

Note that in ROT the receiver must learn exactly one of the two messages
but the sender should not be able to guess which one. This makes the secure
realization of ROT highly non-trivial. Indeed, ROT appears to be significantly
more powerful than BEC and BSC, and it is not clear how to realize it by a
naturally occurring process. While BEC and BSC merely erase or flip bits of
information randomly and independently, ROT induces a strong anti-correlation
between events, namely the receipt of a0 and the receipt of a1.

Can the anti-correlation inherent in ROT be generated “out of thin air”
by invoking simple channels such as BEC or BSC? This question was already
addressed by Garg et al. [25], who showed that the simple noisy channels are
indeed not complete. In fact, ROT cannot be securely realized from such channels

126 S. Agrawal et al.

even if one considers semi-honest parties (who do not deviate from the protocol)
and allows a small constant security error.1

It is instructive to sketch the proof of this impossibility result. We consider
the more general case of a string erasure channel (SEC) that erases each input
string with probability p. The proof relies on a classical correlation inequality
due to Harris and Kleitman [33,43], asserting that for any two monotone Boolean
functions f0, f1 : {0, 1}n → {0, 1} and for any product distribution R over
{0, 1}n, the events f0(R) = 1 and f1(R) = 1 are not anti-correlated. That is,

Pr [f0(R) = 1 ∧ f1(R) = 1] ≥ Pr [f0(R) = 1] · Pr [f1(R) = 1] .

Now, by the receiver’s security requirement, even if we condition on a “typical”
joint encoding x of (a0, a1) that the sender transmits over the SEC channel,
the receiver’s output should be distributed almost as prescribed by the ROT
functionality. In particular, if pi is the probability that the receiver can con-
fidently decode ai conditioned on x being sent, and Ei is the corresponding
conditional event, then p0 ≈ p1 ≈ 0.5. Letting n denote the number of invoca-
tions of the SEC, r ⊆ [n] represent the set of received symbols, and fi(r) indicate
whether Ei occurs on received set r, the Harris-Kleitman inequality implies that
Pr [E0 ∧ E1] ≥ p0 · p1 ≈ 0.25, contradicting the sender’s security requirement.

The above impossibility result is purely information-theoretic and does not
give rise to a constructive attack. In particular, the functions fi are monotone
because information is monotone: more received symbols mean more confidence.
While there are examples for non-monotonicity of information in a computational
setting, for instance in the context of generalized secret sharing [45], it is not clear
that this has any relevance to the current setting. In fact, Garg et al. [25] showed
an efficient attack that rules out computationally secure protocols with negligible
security error. This leaves open the possibility of obtaining ROT from naturally-
occurring channels with a small constant, or better yet inverse-polynomial, error.

1.2 Our Results

In this work, we show that the impossibility result for ROT from SEC and other
simple channels can be circumvented, if one is willing to settle for security against
a computationally bounded receiver and to allow for inverse-polynomial error.
On the one hand, both of these relaxations are necessary in light of the above
mentioned impossibility results but, on the other hand, we still find the positive
result to be unexpected, even with these relaxations.

Our main result is cast in a generic model that assumes “ideal obfuscation,”
enabling the sender to give the receiver an oracle access to an obfuscated pro-
gram. In this generic model, we can unconditionally obtain information-theoretic
security by assuming that a malicious receiver is restricted to polynomially many
1 The argument in [25] implicitly relies on the technical assumption that the ROT

protocol is Las Vegas, in the sense that if the receiver does output a message ab,
then this message is correct; all existing protocols in this setting, including those
presented in this work, satisfy this requirement.

Secure Computation from One-Way Noisy Communication 127

queries to the program, but is otherwise computationally unbounded. Before dis-
cussing the question of instantiating the generic model, we state the main result.

Theorem 1 (Informal). There is a one-way secure computation (OWSC) pro-
tocol for ROT over the binary erasure channel (BEC) as well as the binary sym-
metric channel (BSC) using ideal obfuscation, with inverse-polynomial statisti-
cal security error against a semi-honest sender and a query-bounded malicious
receiver.

Building on Theorem 1, we can leverage the completeness of ROT for sender-
receiver functionalities [25] to obtain the following general completeness result:

Theorem 2 (Informal). BEC and BSC are (each) complete for OWSC using
ideal obfuscation, with inverse-polynomial statistical security against a semi-
honest sender and a query-bounded malicious receiver.

Instantiating ideal obfuscation. A direct way of implementing the ideal
obfuscation in our construction is by sending (stateless) tamper-proof hardware
to the receiver. To obtain a plain-model instantiation, a natural approach is
to use indistinguishability obfuscation (iO) [6,30] instead of ideal obfuscation.
Following the first candidate construction of Garg et al. [24], iO has been stud-
ied extensively [1,4,7,8,15,16,19,26,27,37,38,46,54] and has been constructed
from well-studied assumptions in the recent breakthrough work of Jain, Lin and
Sahai [38]. Unfortunately, we were unable to prove that our protocols remain
(computationally) secure when replacing ideal obfuscation by iO, and consider
this to be a highly plausible conjecture. Since iO is “best possible” obfusca-
tion [30], it follows that if some instantiation of ideal obfuscation in our proto-
cols is secure then its instantiation with any iO scheme is secure. Concretely, we
make the following conjecture.

Conjecture 1 (Informal). Replacing ideal obfuscation by any secure iO scheme
in the protocol establishing Theorem 1 results in a OWSC protocol for ROT
over BEC or BSC that has inverse-polynomial computational security against a
semi-honest sender and a malicious receiver.

While there are strong negative results for instantiating ideal notions of
obfuscation [6,28], these results require at least one of the building blocks to
be “contrived.” They are not known to apply to any combination of a natural
(unbroken) iO candidate and natural application. We believe that Conjecture 1
is qualitatively similar to the leap of faith one makes when heuristically instanti-
ating natural protocols in generic models such as the Random Oracle Model [9]
or the Generic Group Model [53]. Arguably, the leap of faith in our case is quite
conservative because of the simple and “non-cryptographic” functions to which
we apply ideal obfuscation. This should be contrasted with typical applications
of obfuscation in cryptography, and also with heuristic iO candidates whose secu-
rity needs to hold even for contrived pairs of equivalent circuits. See Sect. 1.5 for
further discussion.

128 S. Agrawal et al.

Assuming Conjecture 1, we can obtain a plain-model variant of Theorem 2
with security against a malicious sender by using OWSC for non-interactive zero
knowledge to effectively emulate an honest sender behavior.

Theorem 3 (Informal). Suppose iO exists and Conjecture 1 holds. Then,
BEC and BSC are (each) complete for OWSC, with inverse-polynomial com-
putational security against malicious sender and receiver.

We leave open the question of eliminating Conjecture 1 or, better yet, basing
the conclusion of Theorem 3 on a weaker or incomparable assumption to iO.

1.3 Why Base on One-Way Noisy Communication?

Several important cryptographic tasks can be captured as sender-receiver func-
tionalities. A natural example, already given in [25] is that of randomly gener-
ating “puzzles” without giving any of the parties an advantage in solving them.
For instance, the sender can transmit to a receiver a random Sudoku challenge,
or a random image of a one-way function, while the receiver is guaranteed that
the sender has no advantage in solving the puzzle. More generally, one could use
secure realizations of sender-receiver functionalities to unidirectionally generate
trusted parameters such as RSA moduli or common reference strings. Unlike the
common interactive solutions to such problems, here we consider a setting that
allows for completely non-interactive solutions.

Another example of a useful sender-receiver functionality is randomized blind
signatures, which can be captured by a randomized function that takes a mes-
sage and a signing key from the sender and delivers a signature on some random-
ized function of the message to the receiver (for instance by adding a random
serial number to a given dollar amount). Randomized blind signatures are a
fundamental building block for e-cash applications. They can also be used for
non-interactive certified PKI generation, where an authority can issue to a user
signed public keys, while only the users learn the corresponding secret keys.

Non-interactive zero-knowledge (NIZK), which is constructed in the common
random string model, can also be implemented in the sender-receiver model, by
modeling it as a deterministic function that takes an NP-statement and a witness
from the sender and outputs the statement along with the output of the verifica-
tion predicate to the receiver. As noted by Garg et al. [25], NIZK over a one-way
noisy channel provides a truly non-interactive solution to zero knowledge proofs,
where no trusted common randomness is available to the parties. Moreover, this
solution can achieve useful properties of interactive zero-knowledge protocols
such as non-transferability and deniability, which are impossible to achieve in
the standard non-interactive setting.

While the above applications require security against a malicious sender, it is
also meaningful (and non-trivial) to implement protocols that are secure against
semi-honest senders. Such protocols can be generically compiled to be secure
against malicious senders by invoking NIZK in the sender-receiver model. Note
that NIZK by itself is not sufficient for realizing many non-trivial functionalities,

Secure Computation from One-Way Noisy Communication 129

including the ones mentioned above. For this, it is necessary (and sufficient) to
have a secure realization of semi-honest ROT.

Applications notwithstanding, understanding the cryptographic power of
noisy channels with one-way communication is a fundamental question from
the theoretical standpoint.

1.4 Technical Overview

To present the new idea underlying our constructions, we focus on a protocol
for realizing ROT using a string erasure channel (SEC), with erasure probability
p = 0.5. This can be extended to BEC and BSC as required by Theorem 1. To
realize ROT, we want the symbols that the sender transmits over the SEC to
partition the probability space into two events E0 and E1, such that Pr [E0] ≈
Pr [E1] ≈ 0.5, and in each event Ei the receiver can learn ai but not a1−i.

The protocol begins by having the sender transmit a random n-tuple x ∈ Σn

over a large alphabet Σ that makes the probability of predicting an erased sym-
bol negligible. It sends x over the SEC. It then picks a small secret “test set”
S ⊂ [n] and sends to the receiver an obfuscated program F = FS,x,a that
expects the receiver to report all of the symbols it received from the channel.
(When instantiating the ideal obfuscation, the sender needs to communicate the
obfuscated program over a reliable channel; however, the latter can be imple-
mented with constant rate over any standard noisy channel.) After checking that
each unerased symbol reported by the receiver matches the corresponding sym-
bol in x, the program F counts how many symbols from the secret set S were
reported; if this number is bigger than |S|/2 it outputs a1, otherwise it outputs
a0 (Fig. 1).

Fig. 1. ROT from String Erasure Channel (SEC)

The erasures induced by the channel are independent of x, and so whether the
receiver outputs a0 or a1 is independent of the sender’s view. Thus, the protocol
is secure even against a computationally unbounded semi-honest sender.

For security against the receiver, we consider two cases. If the channel delivers
a minority of the symbols from S, then an honest receiver can legitimately obtain
a0 from F , and even a dishonest receiver will need a super-polynomial number
of calls to F to guess even one of the missing symbols.

On the other hand, what if the channel delivers a majority of the symbols
from S, which occurs with probability ≈ 0.5? In this case, a dishonest receiver

130 S. Agrawal et al.

can obtain both messages by first acting honestly, legitimately obtaining a1, and
then invoking F again and obtaining a0 by just “forgetting” some of the received
symbols. The latter attack seems inherently impossible to defend against. How
can we expect a receiver who obtained few symbols from S to prove its ignorance?

It turns out, however, that there is a surprisingly simple solution: F will not
deliver a0 when the total reported number of received symbols is significantly
below n/2. In other words, F does not trust a receiver who claims to be too
unlucky. Intuitively, the reason this simple approach works is that S is both
small and secret. So without knowledge of S, for every symbol in S that the
receiver tries to “forget” it needs to unwillingly forget a large number of additional
received symbols. By choosing the size of S and the “unluckiness” threshold
carefully, we can ensure that successfully mounting the above “forgetting” attack
is computationally infeasible except for a bad event that occurs with inverse-
polynomial probability.

The analysis however requires more care and crucially relies, in addi-
tion to standard Chernoff-style concentration inequalities, on a simple anti-
concentration phenomenon: the binomial distribution with n trials is almost
always Ω(n1/2)-far from its mean. Metaphorically speaking, the events E0 and
E1 that are separated by this anti-concentration can be viewed as “computa-
tional black holes” whose disjoint gravity zones cover almost the entire proba-
bility space.

In a bit more detail, for a transmitted x ∈ Σn and set V ⊆ [n] indicating
non-erased coordinates, let x|V denote the vector x with all coordinates outside
of V replaced by a special erasure symbol ⊥. Set the “unluckiness” threshold to
be n/2 − n0.51 and the size of S to be

√
n. Define the function F as:

FS,x,a (y|V) =

⎧⎪⎨
⎪⎩
(⊥,⊥) if (y|V �= x|V) ∨ (|V | < n/2 − n0.51

)
,

(a0,⊥) otherwise if |V ∩ S| < |S|/2,
(⊥, a1) otherwise.

where y|V denotes a n-tuple of presumably received symbols.
An honest receiver, who always feeds y|V = x|V to F , gets unlucky with

negligible probability. This is because, over the random erasures of the SEC,
Pr

[|V | ≥ n/2 − n0.51
]

> 1 − negl(n), and conditioned on this event, |V ∩ S| is
symmetrically distributed around |S|/2. In particular, the output of F is almost
equally likely to be a0 as it is to be a1.

A dishonest receiver, on the other may attempt to learn both a0 and a1

by feeding y|U to F , where U �= V does not correspond to the set of non-
erased coordinates. This is not a problem if y|U �= x|U as in such a case F will
output (⊥,⊥), but there is always a chance that the receiver can come up with
y|U = x|U . Here we have two possible cases:

U is not contained in V . This case can be ruled out when |Σ| is super-
polynomially large, as it requires the receiver to correctly guess a randomly
sampled xi for i ∈ U \ V .

Secure Computation from One-Way Noisy Communication 131

U is a strict subset of V . In this case, one cannot prevent the receiver from
feeding an input y|U = x|U , as this merely amounts to erasing symbols from
the received string x|V . Here, the only hope for the receiver to obtain both
a0 and a1 is to be able to transition from the case |V ∩ S| ≥ |S|/2 to the
case |U ∩ S| < |S|/2. Note that, by anti-concentration, in this case |V ∩ S|
is likely larger than |S|/2 by Ω(

√|S|) and, moreover, S is secret, hence the
receiver cannot just find such U by only removing few elements of V in an
exhaustive search. On the other hand, if the receiver tries to forget many
symbols from the unknown S by just forgetting many symbols from V , it will
hit the unlucky zone where F returns (⊥,⊥).

To prevent attacks as in the first case, it is imperative that the obfuscation of F
hide x. Avoiding attacks as in the second case, on the other hand, requires the
obfuscation to hide S. What type of obfuscation would be sufficient for hiding x
and S? Ideal obfuscation limits the receiver to black-box access to F . Intuitively,
this means that the receiver’s attempts to mount the above attacks are restricted
to random guesses, as x and S are information theoretically hidden.

1.5 Discussion

The unconditional result given by Theorem 1 (and subsequent theorems that
build on it) captures the main contribution of this work. Our use of ideal obfusca-
tion is technically equivalent to having a single, stateless, tamper-proof hardware
token shipped from the sender to the receiver. In fact, unlike current candidates
for cryptographic obfuscation, such an approach may be efficient enough to be
implemented. Thus, our results can be cast as part of a long line of theory-
oriented works on cryptography using tamper-proof hardware (see [5,29,32,40],
along many others).

From a complexity theoretic point of view, the ideal obfuscation primitive
can be viewed as a (succinctly described) oracle generated by the sender, such
that security holds unconditionally with respect to any query-bounded receiver
that has access to this oracle. For instance, this is the model used in works
on zero-knowledge PCP [36,42,47]. Alternatively, it can be seen as a second,
“resettable” sender, analogously to the multi-prover proof model [10,11,31,39].

An unusual aspect of our main feasibility result that separates it from almost
all nontrivial applications of obfuscation in cryptography is that it is based on
ideal obfuscation alone, without making any additional assumptions such as the
existence of one-way functions (or alternatively NP�⊆ io-BPP [44]). In particular,
the functions we obfuscate are simple, explicit and “non-cryptographic.”

We also note the analogy with the Random Oracle Model (ROM) method-
ology: there is a long tradition in cryptography of using a construction in an
idealized “generic” model, such as the ROM [9], as a stepping stone towards
heuristic plain-model realizations. The latter are obtained by using concrete hash
functions as a substitute for the random oracle. For example, constructions of
transparent SNARGs for NP follow this approach [49]. Our proposal is analogous:
heuristically instantiate the ideal obfuscation by using any iO construction from

132 S. Agrawal et al.

the literature. There are strong negative results for instantiating ideal notions
of obfuscation [6]. These are in a sense analogous to similar negative results for
instantiating the ROM [18]. However, similarly to ROM instantiations, we do
not see a reason why these negative results should apply to a combination of a
natural application and a natural iO construction that was not designed with a
counterexample in mind.

Finally, most solutions for natural cryptographic tasks that were initially
cast in idealized models were later followed by plain-model constructions under
simple and plausible cryptographic assumptions. We expect the current work to
follow a similar path.

2 Preliminaries

Notation. We write x ← X to denote the process of freshly sampling a uni-
formly random element x from a finite set X . We denote the i-th coordinate of
a vector x ∈ X n by either xi or x(i). For a vector x ∈ X n and set A ⊆ [n], the
restriction of x to A, denoted by x|A, is the length n vector in (X ∪ {⊥})n with
all the coordinates outside of A replaced by a special erasure symbol ⊥. That
is, x|A (i) = x(i) if i ∈ A and x|A (i) = ⊥ otherwise. The notation

(
[n]
k

)
denotes

the family of all subsets of [n] with size k.

2.1 Sender-Receiver Functionalities and Channels

We study secure computation tasks that are made possible by one-way commu-
nication over a noisy channel. Such tasks can be captured by sender-receiver
functionalities, that take an input from a sender S and deliver a (possibly) ran-
domized output to a receiver R. In the randomized case, the randomness is picked
by the functionality and is not revealed to the sender or the receiver. More pre-
cisely, a sender-receiver functionality is a randomized mapping f : A → B that
takes an input a ∈ A from a sender S and delivers an output b = f(a) to a
receiver R. We will sometimes refer to f simply as a function.

In order to realize f , we assume that S and R are given parallel access to
a channel C : X → Y. A channel is also a sender-receiver functionality but is
usually much simpler than the target function f . We define three channels of
interest below.

– BSC. Cp
BSC denotes the Binary Symmetric Channel (BSC) with crossover

probability p: i.e., for input x ∈ {0, 1}, the output Cp
BSC(x) is 1 − x with

probability p and is x otherwise.
– SEC and BEC. Cp

SEC denotes the String Erasure Channel (SEC) which takes
an input string of a fixed length and outputs ⊥ with probability p and x oth-
erwise. When the string length is 1, Cp

SEC is called a Binary Erasure Channel
(BEC), and denoted by Cp

BEC. When p = 1
2 , we may omit it from the notation.

– ROT. The (String) Randomized Oblivious Transfer channel CROT takes as
input a pair of fixed-length strings (x0, x1) and outputs (x0,⊥) or (⊥, x1)
with probability 1

2 each.

Secure Computation from One-Way Noisy Communication 133

For brevity, we shall write C(x1, . . . , xm) to denote (C(x1), . . . , C(xm)), i.e.,
the outcome of m independent invocations of a channel C.

2.2 Secure Computation with One-Way Communication

A secure protocol for f : A → B over a channel C is formalized via the standard
definitional framework of reductions in secure computation. Our definitions are
in fact simpler because of the non-interactive setting. We start with the sim-
plest case of defining information-theoretic security against semi-honest parties
for a finite function f , ignoring computational complexity. We then describe
extensions to malicious parties, computational security, and infinite families of
functions.

OWSC protocols. A one-way secure computation protocol for f over C specifies
a randomized encoder that maps the sender’s input a into a sequence of channel
inputs x, and a decoder that maps the receiver’s channel outputs y into an
output b. Up to an error bound parameter ε, the protocol should satisfy the
following security requirements: (i) given the sender’s view, which consists of an
input a and the messages x that it fed into the channel, the receiver’s output
should be distributed as f(a), and (ii) the view of the receiver, namely the
messages y it received from the channel, can be simulated from f(a). Note that
(i) captures receiver security against a semi-honest sender as well as correctness,
while (ii) captures sender security against the receiver. Also note that since the
receiver does not send messages, whether it is semi-honest or malicious does not
make a difference. We formalize the above security requirements below, using Δ
to denote statistical distance.

Definition 1 (One-way secure computation: semi-honest sender).
Given a randomized function f : A → B and a channel C : X → Y, a pair
of randomized functions 〈S,R〉, where S : A → X n and R : Yn → B, is said to
be an ε-secure OWSC protocol for f over C (with semi-honest sender) if there
exists a simulator SR : B → Yn, such that for all a ∈ A, the following hold:

Δ ((S(a), f(a)) , (S(a),R(C(S(a))))) ≤ ε (Security against semi-honest sender)

Δ (SR(f(a)) , C(S(a))) ≤ ε (Security against receiver)

OWSC for malicious parties. In the case of a malicious sender, our security
requirement coincides with the standard notion of universally composable (UC)
security [17], but with simplifications implied by the communication model. The
extra security requirement in this case is that for any strategy of the sender (for
choosing x), a simulator is able to extract a valid input. Formally, an OWSC
protocol for f over C is secure against malicious parties if, in addition to the
requirements in Definition 1, there exists a randomized simulator SS : X n → A
such that for every x ∈ X n,

Δ (f(SS(x)) , R(C(x))) ≤ ε (Security against malicious sender)

134 S. Agrawal et al.

Note that the first condition of Definition 1 is retained to imply correctness when
the sender is honest, and the second condition implies security against malicious
receiver as well.

OWSC with computational security. We can naturally relax the above
definition of (statistical) ε-secure OWSC to a computationally (T, ε)-secure
OWSC, for a distinguisher size bound T , by replacing each statistical dis-
tance bound Δ (A,B) ≤ ε by the condition that for all circuits C of size T ,
|Pr[C(A) = 1] − Pr[C(B) = 1]| ≤ ε.

Universal Protocols and Complete channels for OWSC. So far, we con-
sidered OWSC protocols for a concrete finite function f and with a concrete
level of security. However, in a cryptographic context, one is often interested in
a single “universal” protocol in which the sender and the receiver are given a cir-
cuit f̂ , representing a function f , and a security parameter 1λ as common inputs
(in addition to the sender being given an input a for f). More generally, one
may consider any computational model – i.e., a representation of the function –
instead of circuits (e.g., in the context of information-theoretic security, it will
be useful to consider weaker representation models such as branching programs).

In a polynomial time universal protocol Π = 〈S,R〉, both S and R run in
time polynomial in λ. Protocol Π is said to be a universal ε-secure (resp., (T, ε)-
secure) OWSC protocol for F over C, if for all f̂ ∈ F with |f̂ | ≤ λ, the protocol
obtained from Π by fixing the common inputs to (f̂ , 1λ) is an ε(λ)-secure (resp.,
(T (λ), ε(λ))-secure) OWSC for f over C, where f denotes the function repre-
sented by f̂ .

While F above can be a narrow class of functions (e.g., string OTs), we shall
be particularly interested in the case where it is a general computational model
like circuits or branching programs. If a channel C enables such a universal pro-
tocol, we say that C is OWSC-complete for the corresponding computational
model. We will distinguish between completeness with inverse-polynomial error
and completeness with negligible error, depending on how fast the error van-
ishes with λ. We will also distinguish between completeness with statistical vs.
computational security and between semi-honest vs. malicious senders.

Definition 2 (OWSC-complete channel). For a computational model F ,
we say that C is OWSC-complete with inverse-polynomial statistical error if,
for every c > 0, there is a polynomial-time universal ε-secure OWSC protocol
for F over C, where ε(λ) = O(1

λc). We say that C is OWSC-complete with
negligible statistical error if there exists a polynomial-time universal ε-secure
OWSC protocol for F over C for some negligible function ε.

We say that C is computational OWSC-complete with inverse-polynomial
statistical error (resp., negligible statistical error) if, for every c > 0, there exists
a polynomial-time universal OWSC protocol Π such that for every polynomial
T (λ), Π is a (T, ε)-secure OWSC protocol for F over C, where ε(λ) = O(1

λc)
(resp., ε is negligible).

Secure Computation from One-Way Noisy Communication 135

Completeness as defined above is said to be against malicious parties if the
definition of secure OWSC used is against malicious parties, with the simulator
SS being polynomial time.

As discussed above, useful instantiations of F include circuits, branching pro-
grams, and string-ROT. We will assume statistical security against semi-honest
parties by default, and will explicitly indicate when security is computational or
against malicious parties.

OWSC using ideal obfuscation. Our results, which are information-theoretic
in nature, make use of obfuscation as an ideal primitive. An OWSC protocol for
f over C using ideal obfuscation is defined similarly to the above except that,
in addition to its inputs x for the channel C, the sender specifies a function F
(using, say, a circuit F̂), to which the receiver is only given (bounded) oracle
access. An honest receiver can make a single query q to F after observing the
outputs y of C, and then compute the output b based on y and F (q). To define
security, we extend the syntax of Definition 1 by adding a query bound parameter
Q. The definition of ε-security against the receiver is modified to (Q, ε)-security
as follows. The simulator SR is now an interactive algorithm that interacts with
an arbitrary Q-bounded R∗. Given input b (output of f), SR first generates
and sends to R∗ a simulated channel output y, and then provides a simulated
response for each F -query made by R∗. We require that for every Q-bounded R∗

and sender input a ∈ A, the following holds:

Δ
(
[SR(f(a)) ↔ R∗] , [F ↔ R∗(C(x)) | (F̂ , x) ← S(a))]

)
≤ ε

(Security against a query-bounded receiver)

Here [SR(f(a)) ↔ R∗] is the ideal-world transcript of the interaction of SR(f(a))
with R∗, and [F ↔ R∗(C(x))] denotes the real-world transcript of R∗ interacting
with the channel C and F , on sender input a. Note that in the latter F denotes
the function corresponding to F̂ generated by S(a). The completeness notions
in Definition 2 are adapted to the ideal obfuscation setting by requiring that for
every polynomial query bound Q(λ), there is an appropriate ε such that Π is a
universal (Q, ε)-secure OWSC protocol.

2.3 Probability Preliminaries

We state an anti-concentration bound for binomial distribution, which we cru-
cially use in the analysis of all our constructions. The statement of the lemma
is quoted verbatim from [52, Theorem 4.6].

Lemma 1 (Anti-concentration). Let 0 < p < 1, and X = X1 + . . . + Xn,
where, for each i ∈ [n], Xi is independently and identically distributed as
Bernoulli(p). There exists Θp > 0 depending only on p (where Θ 1

2
= 1), such

that, for all 0 ≤ k ≤ n, we have Pr [X = k] ≤ Θp√
n

.

136 S. Agrawal et al.

Following is a standard concentration inequality required for the analysis of
our protocols.

Lemma 2 (Chernoff bound). Let 0 < p < 1, and X1, . . . , Xn be random vari-
ables such that for each i ∈ [n], Xi is independently and identically distributed as
Bernoulli(p). Further, let X = X1+X2+ . . .+Xn. When μ denotes the expected
value of X, i.e., μ = E (X) = p · n,

(i) Pr [X ≥ (1 + δ)μ] ≤ e− δ2
2+δ μ for all δ > 0,

(ii) Pr [X ≤ (1 − δ)μ] ≤ e−μ δ2
2 for all δ ∈ (0, 1).

In particular, for all η ∈ (
1
2 , 1

)
, for sufficiently large n,

(iii) Pr [X ∈ [p(n − nη), p(n + nη)]] ≥ 1 − 2e− 1
4p n2η−1

= 1 − negl(n).

Proof: (iii) follows from applying (i) and (ii) by setting μ = p · n and δ = nη−1

p .
Note that δ ∈ (0, 1) for sufficiently large n. ��

3 ROT from SEC Using Ideal Obfuscation

In this section, we prove that ROT can be realized using a string erasure channel
(with erasure probability p = 0.5), assuming ideal obfuscation, following the
sketch discussed in Sect. 1.4. In more detail, we prove:

Theorem 4 (ROT from SEC using ideal obfuscation). There exists an
OWSC protocol for string-ROT over SEC using ideal obfuscation, with inverse-
polynomial statistical security against a semi-honest sender and a query-bounded
receiver.

More concretely, for any constant c > 0, there exists an OWSC protocol
which, for all λ, t ∈ N, realizes t-bit string ROT with ε-security against a semi-
honest sender and a polynomial query-bounded receiver, using n invocations of
�-bit SEC and an ideal obfuscation of a circuit F̂ , when ε = O(1

λc), n = O(λ8c),
� = ω(log λ), and |F̂ | = O(t + λ16c).

Proof: An OWSC protocol 〈S,R〉 for t-bit string ROT over �-bit SEC is provided
in Fig. 2. The proof follows the argument sketched in the technical overview (See
Sect. 1.4). We will use the following lemmas to prove the theorem; they are
formally proved in the full version of this work [3] using the anti-concentration
bound (Lemma 1) and Chernoff bound (Lemma 2).

Lemma 3. Let η > 1
2 , and U, V be arbitrary subsets of [n] such that |U |, |V | ∈

[n−nη

2 , n+nη

2] and V ⊆ U . For all δ ∈ (η − 1
2 , 1

2), and for sufficiently large n,

Pr
S←([n]√

n)

[
|S ∩ V | ≤

√
n

2

∣∣∣∣|S ∩ U | ≥
√

n

2
+ nδ

]
≤ e− nδ

4 +6.

Secure Computation from One-Way Noisy Communication 137

Lemma 4. Let k ∈ [n−nη

2 , n+nη

2] and 0 < δ < min(14 , 1 − η). For sufficiently
large n such that

√
n
2 is an integer, for any S ⊂ [n] with |S| = √

n,

Pr
U←([n]

k)

[
|S ∩ U | ∈

[√
n

2
− nδ,

√
n

2
+ nδ

]]
≤ 2nδ− 1

4 e3.

Correctness. For any x = (x1, . . . , xn) such that xi ∈ {0, 1}�, the output of CSEC

on input x is CSEC(x) = x|U , where U is a uniformly random subset of [n]. Hence,
when |S| = √

n is an odd number, by symmetry, the event |U ∩ S| ≤ |S|
2 =

√
n
2

occurs with probability 1
2 . By Lemma 2, with all but negligible probability, |U | ≥

n
2 − n0.51. Hence, by a union bound, FS,x,a0,a1(x|U) = (a0,⊥) with probability
1
2 − negl(n) and FS,x,a0,a1(x|U) = (⊥, a1) with probability 1

2 − negl(n). This
proves the correctness of the protocol.

Security. Next, we argue that the protocol presented in Fig. 2 achieves sender
and receiver privacy. To argue receiver privacy against (even a computationally
unbounded) semi-honest sender, we need to show that for all (a0, a1), it holds
that:

Δ ((S(a0, a1), CROT(a0, a1)) , (S(a0, a1),R(CSEC(S(a0, a1))))) ≤ negl(n)

Note that the erasures induced by the string erasure channel are independent of
the input to the channel. Hence, as we already observed, for any x sent by the
sender, the receiver R obtains x|U , where U is a uniformly random subset of [n],
independent of x (as well as single query access to FS,x,a0,a1). By definition of
F , the output of an honest receiver, viz. FS,x,a0,a1(x|U), is only a function of
the size of the sets U and U ∩ S. Thus, whether the receiver outputs (a0,⊥) or
(⊥, a1) is independent of the view of the sender. Receiver privacy now follows
from the fact that the receiver is correct with negligible error.

To argue sender privacy, we need to construct a simulator SR : B → Yn as
an interactive algorithm that interacts with an arbitrary Q-bounded R∗. In the
sequel, for ease of presentation, for a0, a1 ∈ {0, 1}t, we will denote (⊥, a1) by
(1, a1) and (a0,⊥) by (0, a0) (i.e., we will use the format (index revealed, message
at the revealed index)). Given input (b, ab) for a random bit b, SR first generates
and sends to R∗ a simulated channel output y, and then provides a simulated
response for each F -query made by R∗.

Simulator SR(b, ab) :

1. Sample S ← ([n]√
n

)
.

2. Let x = (x1, . . . , xn), where xi ← {0, 1}� for i ∈ [n].
3. Sample U ← 2[n] conditioned on

(a) |U ∩ S| ≥
√

n
2 if b = 0,

(b) |U ∩ S| <
√

n
2 if b = 1.

4. Output x|U to R∗.

138 S. Agrawal et al.

Next, the simulator answers Q queries by R∗ to FS,x,a0,a1 as follows: Upon
query y|V , if

(|V | ≥ n
2 − n0.51

)∧(y|V = x|V) it outputs (b, ab). If not, it outputs
⊥.

We will argue that the statistical distance between the simulated transcript
resulting from the interaction of SR(b, ab) with R∗ and the real view of R∗ on
sender input (a0, a1) is at most O(n− 1

8). The distribution on x|U received by
R∗ is identical when it interacts with S or with the simulator SR. It remains to
argue that R∗ cannot make a query which SR(b, ab) cannot simulate (except with
probability O(n

−1
8)).

First, we argue that,

Pr
[
|U | ∈

[n

2
− n0.51,

n

2
+ n0.51

]
and |U ∩ S| /∈

[√
n

2
,

√
n

2
+ n

1
8

]]

≥ 1 − O(n
−1
8). (1)

To see this, observe that by Lemma 2, with all but negligible probability, |U | ∈[
n
2 − n0.51, n

2 + n0.51
]
. Conditioned on this event, by Lemma 4, probability with

which |U ∩ S| ∈ [
√

n
2 − n

1
8 ,

√
n
2 + n

1
8] is O(n− 1

8).
Now we show that in the above event, the simulator answers any query by R∗

as in the real world, except with negligible probability. To see this, note that the
simulator has access to ab, and the only cases in which it cannot answer correctly
is when R∗ makes a query to F̂ whose output is (1 − b, a1−b). We argue that
this does not happen, except with negligible probability. Consider the following
cases:

Case 1: |U ∩ S| <
√

n
2 . R∗ is given x|U where FS,x,a0,a1(x|U) = (⊥, a1). To

recover a0, R∗ must output (y|V) such that |V ∩ S| ≥
√

n
2 and y|V = x|V .

However, since ∀i ∈ [n], xi is uniform in {0, 1}�, the probability of guess-
ing even a single string xi is negligible. Thus in this case, R∗ succeeds with
probability at most 2−�, which is negligible.

Case 2: |U ∩ S| ≥
√

n
2 + n

1
8 . R∗ is given x|U s.t. FS,x,a0,a1(x|U) = (a0,⊥). To

recover the other output a0, R∗ must output (y|V) such that |V ∩ S| <
√

n
2

and y|V = x|V . As before, for any i /∈ U , it can guess xi correctly only
with negligible probability. By Lemma 3, when |U | ≤ n

2 +n0.51 (this happens
with overwhelming probability by Lemma 2), for all V ⊆ U such that |U | ≥
n
2 − n0.51, the probability that |V ∩ S| <

√
n
2 is negligible. Thus in this case

also, R∗ succeeds in coming up with a query that makes FS,x,a0,a1 output
(1 − b, a1−b) with at most negligible probability.

Thus, by taking a union bound, we can conclude that the simulator can answer
the queries of a poly(λ)-bounded R∗ except with negligible probability.

Finally, we show the bound on the circuit |F̂ | in the theorem statement. Each
position of the input y is encoded using �+1 bits, with say, the first bit used as
a flag denoting if it is ⊥. Then a circuit of size O(n2) on the n flag bits suffices
for computing the two threshold conditions on |V | and |V ∩ S| used in F , and a

Secure Computation from One-Way Noisy Communication 139

circuit of size O(n�) suffices to compute the equality condition x|V = y|V . The
output is encoded, say, as (b, ab) for b ∈ {0, 1} with an additional flag to indicate
if it is (⊥,⊥). Each of these t + 2 output bits can be computed as a function of
two bits from a0 and a1 and the three condition bits computed above. So overall
F̂ is of size O(t + n2 + n�)). The theorem now follows by setting n = λ8c. This
concludes the proof. ��

Fig. 2. The OWSC protocol 〈S,R〉 for realizing ROT over the string erasure channel
assuming ideal obfuscation.

4 Completeness of BEC and BSC Using Ideal Obfuscation

In this section, we show that the binary erasure channel and the binary sym-
metric channel are (each) complete, assuming ideal obfuscation. In Sect. 4.1, we
construct the string erasure channel from the binary erasure channel and from
the binary symmetric channel. We then appeal to a composition theorem 5 to
argue that BEC/BSC can be used to construct ROT. Finally, in Sect. 4.2 we
discuss completeness of BEC/BSC for general sender-receiver functionalities.

140 S. Agrawal et al.

4.1 String Erasure Channel from BEC/BSC

In this section, we provide constructions of string erasure channel from binary
erasure channel and from binary symmetric channel using ideal obfuscation.2

We first define a quantity that will be used in the construction and analysis
of the following protocols. Let 0 < p < 1, and X1, . . . , Xn be random variables
such that for each i ∈ [n], Xi is independently and identically distributed as
Bernoulli(p). Further, let X = X1 + X2 + . . . + Xn. Define

Centre(p, n) = max
{

t ∈ [n] : Pr [X < t] ≤ 1
2

}
.

Claim 1. For Θp > 0 that depends only on p (as described in Lemma 1),

Pr [X ≤ Centre(p, n)] ∈
(
1
2
,
1
2
+

Θp√
n

]
.

Proof: Pr [X = Centre(p, n)] ≤ Θp√
n

by the anti-concentration bound in Lemma 1.
Claim follows from this and the definition of Centre(p, n). ��

We now proceed to formally state and prove the first main result in this
section.

Lemma 5 (SEC from BEC using ideal obfuscation). There exists an
OWSC protocol for SEC over BEC using ideal obfuscation, with inverse-
polynomial statistical security against a semi-honest sender and a query-bounded
receiver.

More concretely, for all p ∈ (0, 1) and c > 0, there exists an OWSC protocol
which, for all λ, � ∈ N, realizes �-bit SEC with ε-security against a semi-honest
sender and a polynomial query-bounded receiver, using n invocations of the BEC
with erasure probability p and an ideal obfuscation of a circuit F̂ , when ε =
O(1

λc), n = O(λ4c), and |F̂ | = O(� · λ8c).

Proof: The OWSC protocol 〈S,R〉 for an �-bit SEC over BEC with erasure prob-
ability p ∈ (0, 1) is provided in Fig. 3. We argue correctness and security below.
Correctness. Since Cp

BEC erases each bit in x with probability p independently,
the number of non-erasures |U | is distributed according to Binomial(n, 1 − p).
Hence, by Claim 1, the probability with which receiver reports an erasure is

Pr [|U | ≤ Centre(1 − p, n)] ∈
(
1
2
,
1
2
+

Θ1−p√
n

)
.

2 We remark that OWSC of SEC over BEC with inverse polynomial statistical secu-
rity exists without using ideal obfuscation. Such a protocol can be obtained following
the ideas in [2], where an OWSC protocol was constructed for string-ROT over bit-
ROT with inverse polynomial statistical security. We do not explore the possibility
of building such an OWSC protocol for SEC over BSC. Instead, we stick to con-
structions using ideal obfuscation since our next step towards realizing OWSC of
ROT over BEC/BEC, i.e. of constructing OWSC of ROT over SEC, anyway uses
ideal obfuscation.

Secure Computation from One-Way Noisy Communication 141

Fig. 3. Protocol 〈S,R〉 for realizing �-bit string-Erasure Channel using n invocations
of a binary erasure channel with erasure probability p ∈ (0, 1).

Thus, the input string a is output with probability 1
2 (with inverse polynomial

bias), which proves correctness of SEC.
Security. We first prove the statistical security against a computationally
unbounded semi-honest sender by arguing that for all a ∈ {0, 1}�

Δ ((S(a), CSEC(a)) , (S(a),R(Cp
BEC(S(a)))) ≤ Θ1−p√

n
.

The erasure pattern over n uses of the channel is independent of the sender’s
input x. Consequently, whether the receiver outputs a or ⊥ is independent of
the view of the sender. The bound on the statistical distance now follows from
the correctness of the protocol.

To argue security against the receiver, we need to construct a simulator
SR : B → Yn as an interactive algorithm that interacts with an arbitrary poly(n)-
bounded R∗. Given input a ∈ {0, 1}� ∪ {⊥}, SR first generates and sends to R∗

a simulated channel output y, and then provides a simulated response for each
F̂ -query made by R∗.

Simulator SR(a) : Simulator constructs y as follows:

1. Sample x ← {0, 1}n

2. Sample erasure pattern [n] \ U (as generated on n independent uses of Cp
BEC)

under the conditioning |U | > Centre(1 − p, n) if a �= ⊥ and under the condi-
tioning |U | ≤ Centre(1 − p, n) if a = ⊥.

3. Output x|U to R∗.

142 S. Agrawal et al.

For Q queries by R∗ to F , the simulator replies to a query y|V follows:

– Case 1: If |U | > Centre(1−p, n), simulator outputs Fx,a(y|V) as it has access
to x, a, and U .

– Case 2: If |U | ≤ Centre(1 − p, n), simulator simply outputs ⊥.

Since the distribution on x|U received by R∗ is identical when it interacts with S
or with the simulator SR, it is sufficient to argue that R∗ cannot make any query
which SR cannot correctly respond to, except with probability O(n

−1
4). In case

1, when |U | > Centre(1 − p, n), the simulator/predictor can honestly compute
Fx,a(y|V) and the query is answered correctly. In case 2, the simulator/predictor
fails if R∗ makes a query y|V such that Fx,a(y|V) = a. Define the set

Bad =
{
U : |U | ∈ [

Centre(1 − p, n) − nδ,Centre(1 − p, n)
)}

.

Since [n] \ U is the erasure pattern during n independent uses of Cp
BEC, |U | is

distributed according to the Binomial(n, 1 − p) distribution independent of x.
Hence, for all x ∈ {0, 1}n, by applying the anti-concentration bound in Lemma 1
together with a union bound,

Pr[Bad] = Pr
U

[|U | ∈ [
Centre(1 − p, n) − nδ,Centre(1 − p, n)

)] ≤ Θ1−p√
n

· nδ.

We will show that, except under the event Bad (which happens with probability
at most Θ1−p ·n− 1

4 , when δ = 1
4), R∗ outputs a query y|V such that Fx,a(y|V) =

a with negligible probability. Taking a union bound over poly(n) queries, we
achieve the desired security condition.

It suffices to show that for all a ∈ {0, 1}� and computationally unbounded
algorithms Adv that take x|U as input,

Pr
x←{0,1}n,U

[
Fx (y|V , a) �= ⊥ ∣

∣¬Bad, y|V = Adv(x|U), Fx (y|V , a) = ⊥]
= negl(n).

(3)

The event ‘¬Bad and Fx(y|V , a) = ⊥’ is the same as ‘|U | ≤ Centre(1−p, n)−nδ’.
Hence,

Pr
x←{0,1}n,U

[Fx(y|V , a) �= ⊥ |¬Bad, y|V = Adv(x|U), Fx(y|V , a) = ⊥]

≤ Pr
x←{0,1}n,U

[
|V \ U | ≥ nδ and y|V \U = x|V \U |

|U | ≤ Centre(1 − p, n) − nδ, y|V = Adv(x|U)
]

≤ Pr
xi←{0,1},∀i∈[nδ]

[
yi = xi,∀i ∈ [nδ]

]
= 2−nδ

.

The function F can be realized using � + 1 Boolean circuits (to compute
each bit of the output encoded with one extra bit to report ⊥). When the input
is appropriately encoded, the Boolean circuits need to compute a thresholding
function on n-bit inputs (quadratic blow-up), and equality check for O(n)-bit
inputs (linear blow-up). Hence, the size of F̂ is O(� ·n2). The lemma now follows
by setting n = λ4c. This concludes the proof. ��

Secure Computation from One-Way Noisy Communication 143

We would like to remark that the above construction can also be used to realize
string erasure channel with erasure probability 1

2 from another string erasure
channel (possibly of different string length) with arbitrary probability of erasure
(�′-bit Cp

SEC for 0 < p < 1). We can then put this result together with the result in
Theorem 4 to show that ROT can be realized from general SEC (See Sect. 4.2).

Using a similar construction we can realize string erasure channel from binary
symmetric channel using ideal obfuscation. Formally, we prove the following
lemma:

Lemma 6 (SEC from BSC using ideal obfuscation). For p ∈ (0, 1
2), there

exists an OWSC protocol for SEC over BSC with crossover probability p using
ideal obfuscation, with inverse-polynomial statistical security against a semi-
honest sender and a query-bounded receiver.

More concretely, for all p ∈ (0, 1
2) and c > 0, there exists an OWSC protocol

which, for all λ, � ∈ N, realizes �-bit SEC with ε-security against a semi-honest
sender and a polynomial query-bounded receiver, using n invocations of the BSC
with crossover probability p and an ideal obfuscation of a circuit F̂ , when ε =
O(1

λc), n = O(λ4c), and |F̂ | = O(� · λ8c).

Proof: The OWSC protocol 〈R,S〉 for SEC over BSC is provided in Fig. 4. We
argue correctness and security below.
Correctness. Since Cp

BSC flips each bit in x with probability p independently,
|x ⊕ y| is distributed according to Binomial(n, p). Hence, by Claim 1,

Pr [|x ⊕ y| ≤ Centre(p, n)] ∈
(
1
2
,
1
2
+ Θp · n− 1

2

)
.

Thus, the input string a is output with probability 1
2 (with inverse polynomial

bias), which proves correctness of SEC.
Security. We first argue statistical security against a computationally
unbounded semi-honest sender by showing that for all a ∈ {0, 1}�

Δ ((S(a), CSEC(a)) , (S(a),R(Cp
BSC(S(a)))) ≤ Θp · n− 1

2 .

Observe that the noise added by the BSC is independent of the sender’s input
x. Consequently, whether the receiver outputs a or ⊥ is independent of the
view of the sender. The bound on the statistical distance now follows from the
correctness of the protocol.

To argue security against the receiver, we need to construct a simulator
SR : B → Yn as an interactive algorithm that interacts with an arbitrary poly(n)-
bounded R∗. Given input a ∈ {0, 1}� ∪ {⊥}, SR first generates and sends to R∗

a simulated channel output y, and then provides a simulated response for each
F -query made by R∗.

Simulator SR(a) : Simulator constructs y as follows:

1. Sample x ← {0, 1}n.

144 S. Agrawal et al.

Fig. 4. The protocol 〈S,R〉 for realizing �-bit String-Erasure Channel using n invoca-
tions of a binary symmetric channel with crossover probability p.

2. Sample y = Cp
BSC(x) conditioned on |x ⊕ y| ≤ Centre(p, n) if a �= ⊥ and

|x ⊕ y| > Centre(p, n) if a = ⊥.
3. Output y to R∗.

For Q queries by R∗ to F̂ , the simulator replies to a query ŷ follows:

– Case 1: If |x ⊕ y| ≤ Centre(p, n), simulator outputs Fx,a(ŷ) as it has access
to x and a.

– Case 2: If |x ⊕ y| > Centre(p, n), simulator simply outputs ⊥.

Since the distribution on x|U received by R∗ is identical when it interacts with
S or with the simulator SR, it is sufficient to argue that R∗ cannot make any query
which SR cannot correctly respond to (except with probability O(n

−1
4)). In case

1, when |U | > Centre(1 − p, n), the simulator/predictor can honestly compute
Fx,a(y|V) and the query is answered correctly. In case 2, the simulator/predictor
fails if R∗ makes a query y|V such that Fx,a(y|V) = a. Define the set

Bad =
{
(x,y) ∈ {0, 1}2n : |x ⊕ y| ∈ (

Centre(p, n),Centre(p, n) + nδ
]}

.

In the sequel, we will denote Centre(p, n) by t. When x ← {0, 1}n and y =
Cp
BSC(x), |x⊕y| is the number of bits noise added by Cp

BSC. Hence, it is distributed

Secure Computation from One-Way Noisy Communication 145

according to the Binomial(n, p) distribution. By applying the anti-concentration
bound in Lemma 1 together with a union bound, we get

Pr
(x←{0,1}n,y=Cp

BSC(x)
[Bad] = Pr

x←{0,1}n,y=Cp
BSC(x)

[|x ⊕ y| ∈ (
t, t + nδ

]] ≤ Θp · nδ− 1
2 .

We will show that, except under the event Bad (which happens with probability
at most Θ1−p ·n− 1

4 , when δ = 1
4), R∗ outputs a query y|V such that Fx,a(y|V) =

a with negligible probability. Taking a union bound over poly(n) queries, we
achieve the desired security condition.

It suffices to show that for all a ∈ {0, 1}� and computationally unbounded
algorithms Adv that take y as input,

Pr
x←{0,1}n,y=Cp

BSC
(x)

[Fx ,a(ŷ) �= ⊥ |¬Bad, Fx ,a(ŷ) = ⊥, ŷ = Adv(y)] = negl(n). (4)

The event ‘¬Bad and Fx,a(ŷ) = ⊥’ is the same as ‘|x ⊕ y| ≥ Centre(p, n) + nδ’.
We complete the argument by appealing to the following claim.

Claim 2. For any computationally unbounded algorithm A, for sufficiently large
values of n,

Pr
x←{0,1}n,y=Cp

BSC(x)

[
Fx(ŷ, a) �= ⊥∣∣|x ⊕ y| ≥ Centre(p, n) + nδ, ŷ ← A(y)

]
≤ 3e− (1−2p)2

4 nδ

.

Proof: Let t = Centre(p, n) and V = {i ∈ [n] : ŷi ⊕yi = 1}. For x ← {0, 1}n,y =
Cp
BSC(x), and ŷ ← A(y),

Pr
[
Fx,a(ŷ) �= ⊥∣∣|x ⊕ y| ≥ t + nδ

]
= Pr

[|x ⊕ ŷ| ≤ t
∣∣|x ⊕ y| ≥ t + nδ

]
= Pr

[|(x ⊕ y) ⊕ (y ⊕ ŷ)| ≤ t
∣∣|x ⊕ y| ≥ t + nδ

]
≤ Pr

[∑
i∈V

(xi ⊕ yi) −
(

|V | −
∑
i∈V

(xi ⊕ yi)

)
≥ nδ

∣∣|x ⊕ y| ≥ t + nδ

]

= Pr

[∑
i∈V

(xi ⊕ yi) ≥ |V | + nδ

2

∣∣|x ⊕ y| ≥ t + nδ

]
.

Since x is uniformly distributed, x ⊕ y is independent of y and, therefore,
independent of (y, ŷ, V). Conditioned on V (and suppressing this conditioning
in the steps below), we have, for all V ⊆ [n],

Pr

[∑
i∈V

(xi ⊕ yi) ≥ |V | + nδ

2
, |x ⊕ y| ≥ t + nδ

]
≤ Pr

[∑
i∈V

(xi ⊕ yi) ≥ |V | + nδ

2

]
,

146 S. Agrawal et al.

where xi⊕yi, i ∈ V , are independent and identically distributed with distribution
Bernoulli(p). This probability is clearly zero if |V | < nδ. For |V | ≥ nδ, by the
Chernoff bound in Lemma 2,

Pr

[∑
i∈V

(xi ⊕ yi) ≥ |V | + nδ

2

]
≤ Pr

[∑
i∈V

(xi ⊕ yi) ≥ |V |
2

]

= Pr

[∑
i∈V

(xi ⊕ yi) ≥
(
1 +

(
1
2p

− 1
))

p · |V |
]

≤ e
− (1

2p
−1)2

1
2p

+1
p·|V | ≤ e− (1−2p)2

4 nδ

.

Moreover, since |x ⊕ y| is Binomial(n, p), we have Pr[|x ⊕ y| <
Centre(p, n)] < 1

2 , which along with the anti-concentration bound in Lemma 1,
gives

Pr
[|x ⊕ y| ≥ t + nδ

] ≥ 1
2

− Θp√
n

· (1 + nδ) ≥ 1
3
,

for sufficiently large n since δ < 1
2 . This proves the claim. ��

The function F can be realized using � + 1 Boolean circuits (to compute each
bit of the output encoded with one extra bit to report ⊥). When the input
is appropriately encoded, the Boolean circuits need to compute a XOR and
thresholding function on n-bit input (quadratic blow-up). Hence, the size of F̂ is
O(� · n2). The lemma now follows by setting n = λ4c. This concludes the proof.

��

4.2 Completeness of BEC/BSC Using Ideal Obfuscation

We can put together the results in Sect. 4.1 (that the string erasure channel
(SEC) can be constructed using the binary erasure and binary symmetric chan-
nels, using ideal obfuscation) with the result from Sect. 3 (that ROT can be
constructed using SEC, using ideal obfuscation), to obtain the following.

Theorem 5 (ROT from BEC or BSC using ideal obfuscation). There
exists an OWSC protocol ΠBEC

ROT (respectively, ΠBSC
ROT) for ROT over BEC (respec-

tively, BSC) using ideal obfuscation, with inverse-polynomial statistical security
against a semi-honest sender and a polynomial query-bounded receiver.

Proof: We shall compose the OWSC protocol for ROT over SEC from Theorem 4
with the protocol from Lemma 5 (respectively, from Lemma 6). For this, we need
to argue that OWSC protocols compose. The security definition of OWSC (Def-
inition 1) could be seen as a specialization of the UC security notion, to the
one-way communication setting, and a semi-honest sender, in a (C,B)-hybrid
model, where C is the channel, and B is a functionality that takes a circuit

Secure Computation from One-Way Noisy Communication 147

from the sender and provides the receiver with black-box access to it (for a
bounded number of queries). To see this is indeed the case, note that when the
sender is (passively) corrupt, a simulator for passive-security should merely for-
ward the sender’s input a to the functionality, resulting in the receiver obtaining
f(a); hence the environment’s views in the ideal and real executions (in addi-
tion to a, which is universally quantified over) are simply (S(a),R(C(S(a)))) and
(S(a), f(a)).

When the receiver is (possibly actively) corrupt, its view includes an output
from the channel C and its interaction with the oracle B; the security definition
for OWSC in this case is the same as for UC security, by treating the receiver as
the environment (the input a is part of the corrupt receiver’s view in the OWSC
definition, due to the universal quantifier over a).

Before we can apply composition, note that we have a mixed corruption
model with fixed roles. That is, the party playing the sender in all of the protocols
or functionalities is the same (i.e., corrupting one corrupts all), and similarly for
the receiver. Hence we have only two non-trivial corruption scenarios: all the
senders are passively corrupt, or all the receiver’s are actively corrupt. In either
case, the protocol for ROT from SEC, as well as the protocol for SEC from
BEC (or BSC) satisfies the corresponding security guarantee. We note that in a
corruption scenario, if UC or passive security holds for each protocol instance,
then, it holds for the composed protocol for the same corruption scenario (this is
implicit in the proof of composition theorems for static adversaries, which fixes
a corruption scenario and derives a simulator for the composed protocol from
individual simulators for the constituent protocols).

Finally, note that in the composed secure protocol, there are several instances
of B invoked by the sender (and each one accessed a bounded number of times
by the receiver). These multiple instances, with programs, say F1, · · · , Fn can
be replaced by a single instance of B to which the sender inputs a combined
program F such that F (i, x) = Fi(x). Thus we obtain an OWSC protocol using
ideal obfuscation for ROT from either BEC or BSC. ��

We are now ready to show that the binary erasure channel and the binary
symmetric channel are complete, using ideal obfuscation. To generalize the above
construction to arbitrary functionalities, we rely on a previous result by Garg
et al. [25], which showed that ROT is complete for arbitrary finite functionalities
even for the case of malicious parties, with statistical security. Combined with
our reductions from ROT to BSC and BEC, we get a similar completeness result
for BEC/BSC with inverse-polynomial error.

In more detail, we claim that:

Theorem 6 (Completeness of BEC/BSC using ideal obfuscation: semi-
honest sender). BEC and BSC are (each) complete for OWSC using ideal
obfuscation, with inverse-polynomial statistical security against a semi-honest
sender and a polynomial query-bounded receiver.

Proof: [Proof sketch] Analogously to [2], let us first consider the setting of
semi-honest parties. In this case, we may combine the reduction from ROT

148 S. Agrawal et al.

to BEC/BSC with Yao’s garbled circuits [58] as follows. Given a randomized
sender receiver functionality F (a; r), define a deterministic (two-way) function-
ality F̃ that takes (a, r1) from the sender and r2 from the receiver, and outputs
F (a; r1 ⊕ r2) to the receiver. Using Yao’s protocol to securely evaluate F̃ with
uniformly random choices of r1, r2, we get a secure reduction of F to OT where
the receiver’s inputs are random. We may now replace the random choices of the
receiver by leveraging a ROT channel, and then apply the reduction from ROT
to BEC/BSC.

The above compiler makes use of Yao’s garbled circuits, which assume the
existence of one way functions. In the setting of ideal obfuscation, we may obtain
an unconditional result as follows. First, note that for the case of branching
programs, we may use information theoretic garbled circuits [23,34,41]. For the
case of circuits, we use a result of Goyal et al. [32] which implies unconditionally
secure garbled circuits from ideal obfuscation. In more detail, [32] show how to
obtain unconditionally secure computation from hardware tokens. Our setting
requires only a degenerate “single-use” version of the construction of Goyal et al.,
that replaces symmetric encryption with a one-time pad. ��

5 OWSC in the Plain Model and Against Malicious
Adversaries

In this section, we address the question of implementing our protocols in the
plain model. We also show how to augment a plain model OWSC protocol to be
secure against active corruption (of the sender, as the receiver is always passive),
using a NIZK proof.

5.1 OWSC in the Plain Model

Recall that an OWSC protocol Π using ideal obfuscation uses oracle access to a
function F (specified as a circuit F̂). We denote by Π[O] the protocol in the plain
model that is obtained by communicating O(F̂) instead of providing the oracle.
Here, for the purpose of error-free communication, we use an error correcting
(or erasure correcting, resp.) code to encode O(F̂) before sending it over BSC
(resp., BEC).

As discussed earlier, given the statistical nature of the functions used in the
protocols ΠBEC

ROT and ΠBSC
ROT, it is conceivable that there exists an obfuscation

scheme O such that the protocols ΠBEC
ROT and ΠBSC

ROT can be converted to secure
protocols in the plain model by using this obfuscation scheme to replace the
ideal obfuscation scheme. We state this as a conjecture below.3

3 We remark that a more general conjecture about obfuscation of a generalized notion
of “evasive” functions is plausible, and would in turn imply Conjecture 2. As such a
generalization is somewhat tangential to the focus of this work, we do not present
this formalization here.

Secure Computation from One-Way Noisy Communication 149

Conjecture 2. There exists an obfuscation scheme O such that ΠBEC
ROT[O] and

ΠBSC
ROT[O] are OWSC protocols (in the plain model) for ROT, over BEC and

BSC respectively, with inverse-polynomial security against a semi-honest sender
and a computationally bounded receiver.

Interestingly, if any such scheme as conjectured above exists, then an indis-
tinguishability obfuscation (iO) scheme can be used in its place. More formally,
we have the following theorem. Its proof follows standard ideas and is deferred
to the full version.

Theorem 7. Suppose Conjecture 2 holds, with an obfuscation scheme O. Fur-
ther, suppose there is an iO scheme iO for all polynomial sized circuits. Let
pad(F̂) be a padded version of the circuit F̂ which is of the same size as O(F̂).
Then ΠBEC

ROT[iO ◦ pad] and ΠBSC
ROT[iO ◦ pad] are OWSC protocols (in the plain

model) for ROT, over BEC and BSC respectively, with inverse-polynomial secu-
rity against a semi-honest sender and a computationally bounded receiver.

5.2 Security Against Malicious Sender

In this section, we argue that BEC and BSC are (each) complete even against
malicious adversaries in the plain model, assuming Conjecture 2. The key obser-
vation here is that UC-secure OWSC protocols for NIZK exist over BEC as well
as over BSC, as shown by Garg et al. [25, Lemma 3]. We show that such a NIZK
can be used to turn the ROT protocols ΠBEC

ROT[O] and ΠBSC
ROT[O] to be secure

against malicious senders. We then appeal to another result of Garg et al. [25]
which shows that for general (possibly randomized) functionalities, the ROT
channel is complete.

To obtain security against malicious senders, we need to ensure that the
receiver’s output is of the form (a0,⊥) with probability 1

2 and (⊥, a1) other-
wise (except for a small inverse polynomial error). The strings (a0, a1) may be
probabilistic, but should be extracted by a simulator. For this, we show that it
is enough for the sender to additionally provide a NIZK proof of the fact that
the program communicated is indeed an obfuscation O(F̂) of a valid function F̂
as specified by the protocol. Recall that in the original protocol, the receiver is
supposed to feed the message it received over the channel (BEC or BSC) to the
obfuscated program and output whatever the program outputs. In the modified
ROT protocol, if the verification of the NIZK proof fails, or if the program out-
puts an error, then the receiver outputs (a,⊥) or (⊥, a) (for some fixed a) with
probability 1

2 each.
We briefly sketch why this modification yields a OWSC for ROT that is secure

against a malicious sender (we defer further details to the full version [3]). If the
NIZK proof fails or if the program outputs an error, the protocol corresponds
to an ideal ROT execution in which the sender sends (a, a) as its input. We
need to analyze the behavior of the protocol when this does not happen. Note
that the program F̂ contains a string x that the sender is supposed to send over
the channel, but a malicious sender may send a different string x′. If x′ differs

150 S. Agrawal et al.

from x in a lot of positions, then with all but negligible probability the program
outputs an error, captured by the above case. On the other hand, if x′ agrees
with x in most places, then conditioned on the program not outputting an error,
it can be shown that the output continues to be of the form (a0,⊥) or (⊥, a1)
with almost equal probabilities, as in the original analysis. A formal analysis of
this modification is provided in the full version of this work [3].

It remains to argue that BEC and BSC are complete, even in the plain model,
assuming Conjecture 2. Recall that in Sect. 4.2, we argued that BEC and BSC are
complete for OWSC assuming ideal obfuscation, by composing OWSC protocols
over ROT for general sender-receiver functionalities with OWSC protocols over
BEC/BSC for ROT using ideal obfuscation. The argument for the plain model
remains the same, except that we now use the ROT protocols in the plain model.
Using standard garbled circuits based on one way functions in the compiler
described by Theorem 6, we obtain:

Theorem 8 (Completeness of BEC/BSC against malicious adversary).
Suppose Conjecture 2 holds and one-way functions exist. Then BEC and BSC

are (each) complete for OWSC with inverse-polynomial security against a mali-
cious sender and a computationally bounded receiver.

Acknowledgements. We thank the anonymous Crypto reviewers for their careful
reading and many helpful comments. This Research was supported by Ministry of Sci-
ence and Technology, Israel and Department of Science and Technology, Government of
India, and in part by the International Centre for Theoretical Sciences (ICTS) during a
visit for participating in the program-Foundational Aspects of Blockchain Technology
(ICTS/Prog-fabt2020/01). In addition, S. Agrawal was supported by the DST “Swar-
najayanti” fellowship, and Indo-French CEFIPRA project; Y. Ishai was supported by
ERC Project NTSC (742754), NSF-BSF grant 2015782, ISF grant 2774/20, and BSF
grant 2018393; E. Kushilevitz was supported by ISF grant 2774/20, BSF grant 2018393,
and NSF-BSF grant 2015782; V. Narayanan and V. Prabhakaran were supported by
the Department of Atomic Energy, Government of India, under project no. RTI4001,
DAE OM No. 1303/4/2019/R&D-II/DAE/1969 dated 7.2.2020; M. Prabhakaran was
supported by the Dept. of Science and Technology, India via the Ramanujan Fellow-
ship; V. Prabhakaran was supported by the Science & Engineering Research Board,
India through project MTR/2020/000308; A. Rosen was supported in part by ISF grant
No. 1399/17 and Project PROMETHEUS (Grant 780701). This work was conducted
in part when the first and second author were visiting the Simons Institute for Theory
of Computing.

References

1. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: EUROCRYPT. Springer (2019)

2. Agrawal, S., et al.: Cryptography from one-way communication: on completeness
of finite channels. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol.
12493, pp. 653–685. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64840-4_22

https://doi.org/10.1007/978-3-030-64840-4_22
https://doi.org/10.1007/978-3-030-64840-4_22

Secure Computation from One-Way Noisy Communication 151

3. Agrawal, S., et al.: Secure computation from one-way noisy communication, or:
anti-correlation via anti-concentration. ePrint (2021)

4. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilin-
ear maps: iO from LWE, bilinear maps, and weak pseudorandomness. Cryptology
ePrint Archive, Report 2018/615 (2018). https://ia.cr/2018/615

5. Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 162–172.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_9

6. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2),
6:1–6:48 (2012)

7. Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Return of GGH15: provable security
against zeroizing attacks. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS,
vol. 11240, pp. 544–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03810-6_20

8. Bartusek, J., Ishai, Y., Jain, A., Ma, F., Sahai, A., Zhandry, M.: Affine determinant
programs: a framework for obfuscation and witness encryption. In: ITCS, vol. 151,
pp. 82:1–82:39 (2020)

9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS, pp. 62–73 (1993)

10. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive
proofs: how to remove intractability assumptions. In: STOC, pp. 113–131. ACM
(1988)

11. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner,
N.: Zero knowledge protocols from succinct constraint detection. In: Kalai, Y.,
Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 172–206. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70503-3_6

12. Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy
amplification. IEEE Trans. Inf. Theor. 41(6), 1915–1923 (1995)

13. Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public dis-
cussion. SIAM J. Comput. 17(2), 210–229 (1988)

14. Bloch, M., Barros, J.: Physical-Layer Security: from Information Theory to Security
Engineering. Cambridge University Press, Cambridge (2011)

15. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomor-
phic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1_4

16. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings are not
necessary for iO: circular-secure LWE suffices. IACR Cryptology ePrint Archive
(2020)

17. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2005). Extended abstract
in FOCS 2001

18. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

19. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0_20

20. Crepeau, C., Kilian, J.: Achieving oblivious transfer using weakened security
assumptions. In: FOCS, pp. 42–52 (1988)

https://ia.cr/2018/615
https://doi.org/10.1007/978-3-662-45608-8_9
https://doi.org/10.1007/978-3-030-03810-6_20
https://doi.org/10.1007/978-3-030-03810-6_20
https://doi.org/10.1007/978-3-319-70503-3_6
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20

152 S. Agrawal et al.

21. Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from
almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol.
3352, pp. 47–59. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30598-9_4

22. Damgård, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X_5

23. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: STOC, pp. 554–563 (1994)

24. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45, 882–929 (2016)

25. Garg, S., Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with
one-way communication. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 191–208. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7_10

26. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53644-5_10

27. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. In: STOC
2021, pp. 736–749 (2021)

28. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS, pp. 553–562 (2005)

29. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5_3

30. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-70936-7_11

31. Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive locking, zero-knowledge
PCPs, and unconditional cryptography. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 173–190. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7_10

32. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptogra-
phy on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 308–326. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2_19

33. Harris, T.E.: A lower bound for the critical probability in a certain percolation
process. Math. Proc. Cambridge Philos. Soc. 56(1), 13–20 (1960)

34. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: ISTCS 1997, pp. 174–184. IEEE Computer Society (1997)

35. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A., Wullschleger,
J.: Constant-rate oblivious transfer from noisy channels. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9_38

36. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28914-9_9

https://doi.org/10.1007/978-3-540-30598-9_4
https://doi.org/10.1007/978-3-540-30598-9_4
https://doi.org/10.1007/3-540-48910-X_5
https://doi.org/10.1007/978-3-662-48000-7_10
https://doi.org/10.1007/978-3-662-48000-7_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-540-70936-7_11
https://doi.org/10.1007/978-3-642-14623-7_10
https://doi.org/10.1007/978-3-642-14623-7_10
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-22792-9_38
https://doi.org/10.1007/978-3-642-28914-9_9

Secure Computation from One-Way Noisy Communication 153

37. Jain, A., Lin, H., Sahai, A.: Simplifying constructions and assumptions for iO.
Cryptology ePrint Archive, Report 2019/1252 (2019). https://eprint.iacr.org/
2019/1252

38. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: STOC 2021, pp. 60–73 (2021)

39. Kalai, Y.T., Raz, R.: Interactive PCP. In: ICALP, pp. 536–547 (2008)
40. Katz, J.: Universally composable multi-party computation using tamper-proof

hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_7

41. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31
(1988)

42. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: STOC, pp. 496–505. ACM (1997)

43. Kleitman, D.J.: Families of non-disjoint subsets. J. Comb. Theory 1(1), 153–155
(1966)

44. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: FOCS 2014, pp. 374–383 (2014)

45. Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. J. Cryptol. 30(2),
444–469 (2017)

46. Ma, F., Zhandry, M.: The MMap strikes back: obfuscation and new multilinear
maps immune to CLT13 zeroizing attacks. In: Beimel, A., Dziembowski, S. (eds.)
TCC 2018. LNCS, vol. 11240, pp. 513–543. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03810-6_19

47. Mahmoody, M., Xiao, D.: Languages with efficient zero-knowledge PCPs are in
SZK. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 297–314. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36594-2_17

48. Maurer, U.M.: Perfect cryptographic security from partially independent channels.
In: STOC, pp. 561–571 (1991)

49. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

50. Vincent Poor, H., Schaefer, R.F.: Wireless physical layer security. Proc. Nat. Acad.
Sci. 114(1), 19–26 (2017)

51. Ranellucci, S., Tapp, A., Winkler, S., Wullschleger, J.: On the efficiency of bit
commitment reductions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 520–537. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25385-0_28

52. Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms. Pearson
Education, London (2013)

53. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0_18

54. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. In: Can-
teaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 127–
156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_5

55. Winter, A., Nascimento, A.C.A., Imai, H.: Commitment capacity of discrete mem-
oryless channels. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS,
vol. 2898, pp. 35–51. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-40974-8_4

56. Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 332–349. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5_20

https://eprint.iacr.org/2019/1252
https://eprint.iacr.org/2019/1252
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-030-03810-6_19
https://doi.org/10.1007/978-3-030-03810-6_19
https://doi.org/10.1007/978-3-642-36594-2_17
https://doi.org/10.1007/978-3-642-25385-0_28
https://doi.org/10.1007/978-3-642-25385-0_28
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-030-77883-5_5
https://doi.org/10.1007/978-3-540-40974-8_4
https://doi.org/10.1007/978-3-540-40974-8_4
https://doi.org/10.1007/978-3-642-00457-5_20
https://doi.org/10.1007/978-3-642-00457-5_20

154 S. Agrawal et al.

57. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)
58. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,

pp. 162–167 (1986)

Broadcast-Optimal Two Round MPC
with an Honest Majority

Ivan Damg̊ard1(B), Bernardo Magri1,2(B), Divya Ravi1(B),
Luisa Siniscalchi1,2(B), and Sophia Yakoubov1(B)

1 Aarhus University, Aarhus, Denmark
{ivan,magri,divya,lsiniscalchi,sophia.yakoubov}@cs.au.dk

2 Concordium Blockchain Research Center, Aarhus, Denmark

Abstract. This paper closes the question of the possibility of two-round
MPC protocols achieving different security guarantees with and without
the availability of broadcast in any given round. Cohen et al. [CGZ20]
study this question in the dishonest majority setting; we complete the
picture by studying the honest majority setting.

In the honest majority setting, given broadcast in both rounds, it
is known that the strongest guarantee—guaranteed output delivery—is
achievable [GLS15]. We show that, given broadcast in the first round
only, guaranteed output delivery is still achievable. Given broadcast in
the second round only, we give a new construction that achieves iden-
tifiable abort, and we show that fairness—and thus guaranteed output
delivery—are not achievable in this setting. Finally, if only peer-to-peer
channels are available, we show that the weakest guarantee—selective
abort—is the only one achievable for corruption thresholds t > 1 and for
t = 1 and n = 3. On the other hand, it is already known that selective
abort can be achieved in these cases. In the remaining cases, i.e., t = 1
and n ≥ 4, it is known [IKP10,IKKP15] that guaranteed output delivery
(and thus all weaker guarantees) are possible.

1 Introduction

In this paper we advance the study of round-optimal secure computation, focus-
ing on secure computation with active corruptions, an honest majority, and some
setup (e.g. a public key infrastructure). It is known that in this setting, secure
computation is possible in two rounds (whereas one round is clearly not enough).
However, most known two-round protocols in the honest majority setting either
only achieve the weakest security guarantee (selective abort) [ACGJ19], or make
use of a broadcast channel in both rounds [GLS15]. Since broadcast channels are
expensive, it is important to try to minimize their use (while achieving strong
security guarantees).

The only step in this direction is the protocol of Cohen et al. [CGZ20].
They achieve secure computation with unanimous abort for a dishonest majority

S. Yakoubov and Divya Ravi—Funded by the European Research Council (ERC) under
the European Unions’s Horizon 2020 research and innovation programme under grant
agreement No 669255 (MPCPRO) and 803096 (SPEC).

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 155–184, 2021.
https://doi.org/10.1007/978-3-030-84245-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_6

156 I. Damg̊ard et al.

(and thus also for an honest majority) with broadcast in the second round only,
and they also show that unanimous abort is the strongest achievable guarantee
in this setting. Finally, Cohen et al. showed that, given a dishonest majority,
selective abort is the strongest achievable security guarantee with broadcast in
the first round only.

We make a study analogous to the work of Cohen et al. but in the honest
majority setting. Like Cohen et al., we consider all four broadcast patterns:
broadcast in both rounds, broadcast in the second round only, broadcast in the
first round only, and no broadcast at all. Gordon et al. [GLS15] showed that,
given broadcast in both rounds, the strongest guarantee—guaranteed output
delivery—is achievable. For each of the other broadcast patterns, we ask:

What is the strongest achievable security guarantee in this broadcast pat-
tern, given an honest majority?

We consider the following security guarantees:

Selective Abort (SA): A secure computation protocol achieves selective
abort if every honest party either obtains the output, or aborts.
Unanimous Abort (UA): A secure computation protocol achieves unani-
mous abort if either all honest parties obtain the output, or they all (unani-
mously) abort.
Identifiable Abort (IA): A secure computation protocol achieves identifi-
able abort if either all honest parties obtain the output, or they all (unani-
mously) abort, identifying one corrupt party.
Fairness (FAIR): A secure computation protocol achieves fairness if either
all parties obtain the output, or none of them do. In particular, an adversary
cannot learn the output if the honest parties do not also learn it.
Guaranteed Output Delivery (GOD): A secure computation protocol
achieves guaranteed output delivery if all honest parties will learn the compu-
tation output no matter what the adversary does.

Some of these guarantees are strictly stronger than others. In particular, guar-
anteed output delivery implies identifiable abort (since an abort never happens),
which implies unanimous abort, which in turn implies selective abort. Similarly,
guaranteed output delivery implies fairness, which implies unanimous abort.
Fairness and identifiable abort are incomparable. In a fair protocol, in case of
an abort, both corrupt and honest parties get less information: corrupt parties
are guaranteed to learn nothing if the protocol aborts, but honest parties may
not learn anything about corrupt parties’ identities. On the other hand, in a
protocol with identifiable abort, in case of an abort corrupt parties may learn
the output, but honest parties will identify at least one corrupt party.

In Table 1, we summarize our results. Like the impossibility results of Cohen
et al., all of our impossibility results hold given arbitrary setup (such as a com-
mon reference string, a public key infrastructure, and correlated randomness).
Our feasibility results use only a PKI and CRS. Below we give a very brief

Broadcast-Optimal Two Round MPC with an Honest Majority 157

Table 1. Feasibility and impossibility for two-round MPC in the honest majority
setting with different guarantees and broadcast patterns. The R1 column describes
whether broadcast is available in round 1; the R2 column describes whether broad-
cast is available in round 2. Arrows indicate implication: the possibility of a stronger
security guarantee implies the possibility of weaker ones in the same setting, and the
impossibility of a weaker guarantee implies the impossibility of stronger ones in the
same setting.

Broadcast
Pattern t

selective
abort

unanimous
abort

identifiable
abort

fairness
guaranteed
output
delivery

R1 R2

BC BC

1 < t < n
2

✓ ✓ ✓ [GLS15] ✓ ✓ [GLS15]

P2P BC ✓ ✓ ✓ (Thm 9) ✗ (Thm 2) for
t > 1

✗ for t > 1

✗ (Cor 3) for
n ≤ 3t

✗ for n ≤ 3t

BC P2P ✓ ✓ ✓ (Thm 7) ✓ ✓ (Thm 7)

P2P P2P ✓ [ACGJ19] ✗ (Cor 1) for
t > 1

✗ for t > 1 ✗ (Thm 2) for
t > 1

✗ for t > 1

✗ (Cor 3) for
n ≤ 3t

✗ for n ≤ 3t

P2P P2P

t = 1, n = 3 ✓ [ACGJ19] ✗ (Cor 2) ✗ ✗ (Cor 2) ✗

t = 1, n = 4 ✓ ✓ ✓ ([IKKP15]) ✓ ✓ ([IKKP15])

t = 1, n ≥ 5 ✓ ✓ ✓ ([IKP10]) ✓ ✓ ([IKP10])

description of our results. It turns out that going from dishonest to honest major-
ity allows for stronger security guarantees in some, but not all cases. In Sect. 1.1
we give a longer overview of our results, and the techniques we use.

No Broadcast In this setting, we show that if the adversary controls two or
more parties (t > 1), or if t = 1, n = 3, selective abort is the best achievable
guarantee. This completes the picture, since (1) selective abort can indeed be
achieved by the results of Ananth et al. [ACGJ19], and (2) for t = 1, n ≥ 4,
guaranteed output delivery can be achieved by the results of Ishai et al.
[IKP10], [IKKP15].
Broadcast in the First Round Only In this setting, we show that guar-
anteed output delivery—the strongest guarantee—can be achieved.
Broadcast in the Second Round Only In this setting, we show that
fairness is impossible if t ≥ n/3, or if t > 1 (again, in the remaining case of
t = 1, n ≥ 4, guaranteed output delivery can be achieved). If fairness is ruled
out, the best one can hope for is identifiable abort, and we show this can
indeed be achieved given an honest majority.

To achieve identifiable abort with broadcast in the second round only, we
introduce a new tool called one-or-nothing secret sharing, which we believe to be

158 I. Damg̊ard et al.

of independent interest. One-or-nothing secret sharing is a flavor of secret sharing
that allows a dealer to share a vector of secrets. Once the shares are distributed
to the receivers, they can vote on which secret to reconstruct by publishing
“ballots”. Each receiver either votes for the secret she wishes to reconstruct,
or abstains (by publishing a special equivocation ballot). If only one secret is
voted for, and gets sufficiently many votes, the ballots enable reconstruction
of that secret. On the other hand, if receivers disagree about which secret to
reconstruct, nothing is revealed. This could have applications to voting scenarios
where, though some voters may remain undecided, unanimity among the decided
voters is important.

1.1 Technical Overview

In this section we summarize our results given each of the broadcast patterns in
more detail.

No Broadcast (P2P-P2P). Without a broadcast channel, we show that only
the weakest guarantee—selective abort—is achievable. Ananth et al. [ACGJ19]
give a protocol for secure computation with selective abort in this setting; we
prove that secure computation with unanimous abort is not achievable, implying
impossibility for all stronger guarantees. More specifically, we get the following
two results:

Result 1 (Cor 1: P2P-P2P, UA, t > 1) Secure computation of general func-
tions with unanimous abort cannot be achieved in two rounds of peer-to-peer
communication for corruption threshold t > 1.

Result 2 (Cor 2: P2P-P2P, UA, t = 1, n = 3) Secure computation of general
functions with unanimous abort cannot be achieved in two rounds of peer-to-peer
communication for corruption threshold t = 1 when n = 31.

We prove the first result by focusing on broadcast, where only one party (the
dealer) has an input bit, and all parties should output that bit. We show that
computing broadcast with unanimous abort in two peer-to-peer rounds with
t > 1 is impossible2.

The only case not covered by these two results is t = 1 and n ≥ 4. However
for this case, it follows from results by Ishai et al. [IKP10] and [IKKP15] that the
strongest guarantee—guaranteed output delivery—is achievable in two rounds
of peer-to-peer communication.

For completeness, we note that the case of n = 2 and t = 1 is special. We are
no longer in an honest majority setting, so fairness is known to be impossible
[Cle86]. The other three guarantees are possible and equivalent.
1 Patra and Ravi [PR18] give a similar result in the absence of a PKI and correlated

randomness; our impossibility result is stronger, as it holds even given arbitrary
correlated randomness.

2 It is well known that computing broadcast with guaranteed output delivery requires
t rounds, but this of course does not imply the same for broadcast with unanimous
abort.

Broadcast-Optimal Two Round MPC with an Honest Majority 159

Broadcast in the First Round Only (BC-P2P). We show that any first-round
extractable two broadcast-round protocol (where the simulator demonstrating
security of the protocol can extract parties’ inputs from their first-round mes-
sages and it is efficient to check whether a given second-round message is correct)
can be run over one broadcast round followed by one peer-to-peer round with-
out any loss in security. Since the protocol of Gordon et al. [GLS15] satisfies
these properties, we conclude that guaranteed output delivery is achievable in
the honest majority setting as long as broadcast is available in the first round.

Result 3 (Thm 7: BC-P2P, GOD, n ≥ 2t+1) Secure computation of general
functions with guaranteed output delivery is possible in two rounds of communica-
tion, only the first of which is over a broadcast channel, for corruption threshold
t such that n ≥ 2t + 1.

Broadcast in the Second Round Only (P2P-BC). When broadcast is available in
the second round, not the first, it turns out that fairness (and hence guaranteed
output delivery) cannot be achieved. More specifically, we obtain the following
two results:

Result 4 (Cor 3: P2P-BC, FAIR, n ≤ 3t) Secure computation of general
functions with fairness cannot be achieved in two rounds of communication, only
the second of which is over a broadcast channel, for corruption threshold t such
that n ≤ 3t.

Result 5 (Thm 2: P2P-BC, FAIR, t > 1) Secure computation of general
functions with fairness cannot be achieved in two rounds of communication, only
the second of which is over a broadcast channel, for corruption threshold t > 1.

Both these results are shown using the same basic idea, namely if the protocol
is fair, we construct an attack in which corrupt players send inconsistent messages
in the first round and then use the second round messages to obtain two different
outputs, corresponding to different choices of their own input—which, of course,
violates privacy.

Combining the two results, we see that fairness is unachievable when broad-
cast is only available in the second round (the only case not covered is t = 1, n ≥ 4
where guaranteed output delivery is possible, as discussed above). We therefore
turn to the next-best guarantee, which is identifiable abort; in Sect. 8, we show
how to achieve it for n > 2t.

Result 6 (Thm 9: P2P-BC, ID, n > 2t) Secure computation of general func-
tions with identifiable abort is achievable in two rounds of communication, only
the second of which is over a broadcast channel, for corruption threshold t such
that n > 2t.

To show this result, we use a high-level strategy adopted from Cohen et al.
Namely, we start from any protocol that achieves identifiable abort for honest
majority given two rounds of broadcast, and compile this into a protocol that

160 I. Damg̊ard et al.

works when the first round is limited to peer-to-peer channels. While Cohen
et al. achieve unanimous abort this way, we aim for the stronger guarantee of
identifiable abort, since we assume honest majority.

To explain our technical contribution, let us follow the approach of Cohen
et al. and see where we get stuck. The idea is to have each party broadcast
a garbled circuit in the second round. This garbled circuit corresponds to the
code they would use to compute their second-round message in the underlying
protocol (given their input and all the first-round messages they receive). In the
first round (over peer-to-peer channels), the parties additively secret share all
the labels for their garbled circuit, and send their first-round message from the
underlying protocol to each of their peers. In the second round (over broadcast),
for each bit of first-round message she receives, each party forwards her share of
the corresponding label in everyone else’s garbled circuit. Cohen et al. used this
approach to achieve unanimous abort for dishonest majority.

However, even assuming honest majority, this will not be sufficient for iden-
tifiable abort. The main issue is that corrupt parties may send inconsistent
messages in the first round. This problem cannot be solved just by requiring
each party to sign their first-round messages, because Pi may send an invalid
signature—or nothing at all—to Pj . Pj then cannot do what she was supposed
to in the second round; so, all she can do is to complain, but she cannot demon-
strate any proof that Pi cheated. All honest parties now agree that either Pi

or Pj is corrupt, but there is no way to tell which one. This is not an issue if
we aim for unanimous abort; however, if we aim for identifiable abort, we must
either find out who to blame or compute the correct output anyway, without
any further interaction.

We solve this problem by introducing a new primitive we call one-or-nothing
secret sharing. This special kind secret sharing allows a dealer to share several
values simultaneously. (In our case, the values would be two garbled circuit labels
for a given bit b.) The share recipients can then “vote” on which of the values to
reconstruct; if they aren’t sure (in our case, they wouldn’t be sure if they didn’t
get b in the first round), they are able to “abstain”, which essentially means
casting their vote with the majority. As long as there are no contradictory votes
and a minority of abstain votes, reconstruction of the appropriate value succeeds;
otherwise, the privacy of all values is guaranteed.

We use this primitive to share the labels for the garbled circuits as sketched
above. If all reconstructions succeed, we get the correct output. Otherwise, we
can identify a corrupt player. By requiring parties to sign their first-round mes-
sages, we can ensure that if there are contradicting votes, all parties can agree
that some party Pi sent inconsistent messages in the first round. If there is a
majority of abstains, this proves that some particular Pi sent an invalid first-
round message to at least one honest party.

1.2 Related Work

The quest for optimal round-complexity for secure computation protocols is a
well-established topic in cryptography. Starting with the first feasibility results

Broadcast-Optimal Two Round MPC with an Honest Majority 161

from almost 35 years ago [Yao86,GMW87,BGW88,CCD88] a lot of progress
has been made in improving the round complexity of protocols [GIKR01,Lin01,
CD01] [IK02,IKP10,IKKP15,GLS15,PR18,ACGJ18,CGZ20]. In this section we
detail the prior work that specifically targets the two-round setting. We divide
the discussion into two: impossibility and feasibility results.

Table 2. Previous impossibility results. Each row in this table describes a setting
where MPC is known to be impossible. “UA” stand for unanimous abort, and “IA” for
identifiable abort.

Result n t Guarantee CRS? PKI? CR? R1 R2

[GIKR02] any t ≥ 2 fairness ✓ ✗ ✗ BC + P2P BC + P2P

[GLS15] n = 3 t = 1 fairness ✓ ✗ ✗ BC BC

[PR18] n = 3 t = 1 fairness ✓ ✗ ✗ BC + P2P BC + P2P

[PR18] n = 3 t = 1 UA ✓ ✗ ✗ P2P P2P

[CGZ20] n = 3 t = 2 UA ✓ ✓ ✓ BC P2P

[CGZ20] n = 3 t = 2 IA ✓ ✓ ✓ P2P BC

Impossibility Results. Table 2 summarizes the known lower bounds on two-round
secure computation. Gennaro et al. [GIKR02] shed light on the optimal round-
complexity for general MPC protocols achieving fairness without correlated ran-
domness (e.g., PKI). Their model allows for communication over both authenti-
cated point-to-point channels and a broadcast channel. They show that in this
setting, three rounds are necessary for a protocol with at least t ≥ 2 corrupt par-
ties by focusing on the computation of exclusive-or and conjunction functions. In
a slightly different model, where the parties can communicate only over a broad-
cast channel, Gordon et al. [GLS15] show that the existence of a fair two-round
MPC protocol for an honest majority would imply a virtual black-box program
obfuscation scheme, which would contradict the well-known impossibility result
of Barak et al. [BGI+01].

Patra and Ravi [PR18] investigate the three party setting. They show that
three rounds are necessary for generic secure computation achieving unanimous
abort when parties do not have access to a broadcast channel, and that the same
three are necessary for fairness even when parties do have a broadcast channel.
Badrinarayanan et al. [BMMR21] study broadcast-optimal three-round MPC
with guaranteed output delivery given an honest majority and CRS, and show
that use of broadcast in the first two rounds is necessary.

It is well known that in the dishonest majority setting fairness cannot be
achieved for generic computation [Cle86]. Cohen et al. [CGZ20] study the fea-
sibility of two round secure computation with unanimous and identifiable abort
in the dishonest majority setting. Their results show that considering arbitrary
setup (e.g., a PKI) and communication over point-to-point channels, achieving

162 I. Damg̊ard et al.

unanimous abort in two rounds is not possible even if the parties are addition-
ally allowed to communicate over a broadcast channel only in the first round,
and achieving identifiable abort in two rounds is not possible even if the parties
are additionally allowed to communicate over a broadcast channel only in the
second round.

Table 3. Protocols for secure MPC with two-rounds. “UA” stands for unanimous
abort, “FS-GOD” for guaranteed output delivery against fail-stop adversaries, “SM-
GOD” for guaranteed output delivery against semi-malicious adversaries, and “M-
GOD” for guaranteed output delivery against malicious adversaries.

Result n t Guarantee PKI? CRS? 1st round 2nd round Assumptions

[IKP10] n ≥ 5 t = 1 GOD ✗ ✗ P2P P2P PRG

[IKKP15] n = 3 t = 1 SA ✗ ✗ P2P P2P PRG

[IKKP15] n = 4 t = 1 GOD ✗ ✗ P2P P2P injective OWF

[GLS15] any t < n
2

M-GOD ✓ ✓ BC + P2P BC + P2P dFHE

[PR18] n = 3 t = 1 UA ✗ ✗ BC + P2P BC + P2P GC, NICOM, eNICOM, PRG

[ACGJ18] any t < n
2

UA ✗ ✗ BC + P2P BC + P2P OWF

[ACGJ18] any t < n
2

FS-GOD ✓ ✗ BC + P2P BC + P2P OWF

[ACGJ18] any t < n
2

FS-GOD ✗ ✗ BC + P2P BC + P2P OWF, SH-OT

[ACGJ18] any t < n
2

FS-GOD / SM-GOD ✓ ✗ BC BC OWF

[GS18] any t < n UA ✗ ✓ BC BC 2-round OT

[CGZ20] any t < n SA ✗ ✓ P2P P2P 2-round OT

[CGZ20] any t < n UA ✗ ✓ P2P BC 2-round OT

[CGZ20] any t < n IA ✗ ✓ BC BC 2-round OT

Feasibility Results. Table 3 summarizes known two-round secure computation
constructions. While three rounds are necessary for fair MPC [GIKR02] for t ≥ 2
(without correlated randomness), Ishai et al. [IKP10] show that it is possible to
build generic two-round MPC with guaranteed output delivery when only a
single party is corrupt (t = 1) for n ≥ 5. Later, [IKKP15] showed the same for
n = 4, and that selective abort is also possible for n = 3.

The work of [GLS15] gives a three round generic MPC protocol that guar-
antees output delivery and is secure against a minority of semi-honest fail-stop
adversaries where parties only communicate over point-to-point channels; the
same protocol can be upgraded to be secure against malicious adversaries if the
parties are also allowed to communicate over a broadcast channel. The use of
broadcast channel in the last round can be avoided (and point-to-point channels
can be used instead), as shown by Badrinarayanan et al. [BMMR21]. Moreover,
assuming a PKI, the protocol of [GLS15] can be compressed to only two rounds.

For n = 3 and t = 1, Patra and Ravi [PR18] present a tight upper bound
achieving unanimous abort in the setting with point-to-point channels and a
broadcast channel. The protocol leverages garbled circuits, (equivocal) non-
interactive commitment scheme and a PRG. In the same honest majority setting
but for arbitrary n, Ananth et al. [ACGJ18] build four variants of a two-round
protocol. Two of these variants are in the plain model (without setup), with

Broadcast-Optimal Two Round MPC with an Honest Majority 163

both point-to-point channels and broadcast available in both rounds. The first
achieves security with unanimous abort and relies on one-way functions, and
the second achieves guaranteed output delivery against fail-stop adversaries and
additionally relies on semi-honest oblivious transfer. Their other two protocols
require a PKI; and achieve guaranteed output delivery against fail-stop and
semi-malicious adversaries.

Finally, Cohen et al. [CGZ20] present a complete characterization of the
feasibility landscape of two-round MPC in the dishonest majority setting, for all
broadcast patterns. In particular, they show protocols (without a PKI) for the
cases of point-to-point communication in both rounds, point-to-point in the first
round and broadcast in the second round, and broadcast in both rounds. The
protocols achieve security with selective abort, unanimous abort and identifiable
abort, respectively. All protocols rely on two-round oblivious transfer.

2 Secure Multiparty Computation (MPC) Definitions

2.1 Security Model

We follow the real/ideal world simulation paradigm and we adopt the security
model of Cohen, Garay and Zikas [CGZ20]. As in their work, we state our results
in a stand-alone setting.3

Real-world. An n-party protocol Π = (P1, . . . , Pn) is an n-tuple of probabilistic
polynomial-time (PPT) interactive Turing machines (ITMs), where each party
Pi is initialized with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. We let A
denote a special PPT ITM that represents the adversary and that is initialized
with input that contains the identities of the corrupt parties, their respective
private inputs, and an auxiliary input. The protocol is executed in rounds (i.e.,
the protocol is synchronous), where each round consists of the send phase and
the receive phase, where parties can respectively send the messages from this
round to other parties and receive messages from other parties. In every round
parties can communicate either over a broadcast channel or a fully connected
point-to-point (P2P) network, where we additionally assume all communication
to be private and ideally authenticated. (Given a PKI and a broadcast channel,
such a fully connected point-to-point network can be instantiated.)

During the execution of the protocol, the corrupt parties receive arbitrary
instructions from the adversary A, while the honest parties faithfully follow the
instructions of the protocol. We consider the adversary A to be rushing, i.e.,
during every round the adversary can see the messages the honest parties sent
before producing messages from corrupt parties.

At the end of the protocol execution, the honest parties produce output,
the corrupt parties produce no output, and the adversary outputs an arbitrary
function of its view. The view of a party during the execution consists of its
input, random coins and the messages it sees during the execution.
3 We note that our security proofs can translate to an appropriate (synchronous)

composable setting with minimal changes.

164 I. Damg̊ard et al.

Definition 1 (Real-world execution). Let Π = (P1, . . . , Pn) be an n-party
protocol and let I ⊆ [n], of size at most t, denote the set of indices of the parties
corrupted by A. The joint execution of Π under (A, I) in the real world, on input
vector x = (x1, . . . , xn), auxiliary input aux and security parameter λ, denoted
REALΠ,I,A(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and A(aux)
resulting from the protocol interaction.

Ideal-world. We describe ideal world executions with selective abort (sl-abort),
unanimous abort (un-abort), identifiable abort (id-abort), fairness (fairness) and
guaranteed output delivery (god).

Definition 2 (Ideal Computation). Consider type ∈ {sl-abort, un-abort,
id-abort, fairness, god}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function
and let I ⊆ [n], of size at most t, be the set of indices of the corrupt parties.
Then, the joint ideal execution of f under (S, I) on input vector x = (x1, . . . , xn),
auxiliary input aux to S and security parameter λ, denoted IDEALtypef,I,S(aux)(x, λ),
is defined as the output vector of P1, . . . , Pn and S resulting from the following
ideal process.

1. Parties send inputs to trusted party: An honest party Pi sends its input xi

to the trusted party. The simulator S may send to the trusted party arbitrary
inputs for the corrupt parties. Let x′

i be the value actually sent as the input
of party Pi.

2. Trusted party speaks to simulator: The trusted party computes (y1, . . . , yn) =
f(x′

1, . . . , x
′
n). If there are no corrupt parties or type = god, proceed to step 4.

(a) If type ∈ {sl-abort, un-abort, id-abort}: The trusted party sends {yi}i∈I to
S.

(b) If type = fairness: The trusted party sends ready to S.
3. Simulator S responds to trusted party:

(a) If type = sl-abort: The simulator S can select a set of parties that will
not get the output as J ⊆ [n]\I. (Note that J can be empty, allowing all
parties to obtain the output.) It sends (abort,J) to the trusted party.

(b) If type ∈ {un-abort, fairness}: The simulator can send abort to the trusted
party. If it does, we take J = [n]\I.

(c) If type = id-abort: If it chooses to abort, the simulator S can select a
corrupt party i∗ ∈ I who will be blamed, and send (abort, i∗) to the
trusted party. If it does, we take J = [n]\I.

4. Trusted party answers parties:
(a) If the trusted party got abort from the simulator S,

i. It sets the abort message abortmsg, as follows:
– if type ∈ {sl-abort, un-abort, fairness}, we let abortmsg = ⊥.
– if type = id-abort, we let abortmsg = (⊥, i∗).

ii. The trusted party then sends abortmsg to every party Pj, j ∈ J , and
yj to every party Pj, j ∈ [n]\J .

Note that, if type = god, we will never be in this setting, since S was not
allowed to ask for an abort.

Broadcast-Optimal Two Round MPC with an Honest Majority 165

(b) Otherwise, it sends y to every Pj, j ∈ [n].
5. Outputs: Honest parties always output the message received from the trusted

party while the corrupt parties output nothing. The simulator S outputs an
arbitrary function of the initial inputs {xi}i∈I , the messages received by the
corrupt parties from the trusted party and its auxiliary input.

Security Definitions. We now define the security notion for protocols.

Definition 3. Consider type ∈ {sl-abort, un-abort, id-abort, fairness, god}. Let
f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function. A protocol Π t-securely com-
putes the function f with type security if for every PPT real-world adversary A
there exists a PPT simulator S such that for every I ⊆ [n] of size at most t, it
holds that

{
REALΠ,I,A(aux)(x, λ)

}
x∈({0,1}∗)n,λ∈N

c≡
{
IDEAL

type
f,I,S(aux)(x, λ)

}

x∈({0,1}∗)n,λ∈N
.

2.2 Notation

In this paper, we focus on two-round secure computation protocols. Rather than
viewing a protocol Π as an n-tuple of interactive Turing machines, it is conve-
nient to view each Turing machine as a sequence of three algorithms: frst-msgi,
to compute Pi’s first messages to its peers; snd-msgi, to compute Pi’s second
messages; and outputi, to compute Pi’s output. Thus, a protocol Π can be
defined as {(frst-msgi, snd-msgi, outputi)}i∈[n].

The syntax of the algorithms is as follows:

– frst-msgi(xi, ri) → (msg1i→1, . . . ,msg1i→n) produces the first-round messages
of party Pi to all parties. Note that a party’s message to itself can be consid-
ered to be its state.

– snd-msgi(xi, ri,msg11→i, . . . ,msg1n→i) → (msg2i→1, . . . ,msg2i→n) produces the
second-round messages of party Pi to all parties.

– outputi(xi, ri,msg11→i, . . . ,msg1n→i,msg21→i, . . . ,msg2n→i) → yi produces the
output returned to party Pi.

When the first round is over broadcast channels, we consider frst-msgi to
return only one message—msg1i . Similarly, when the second round is over broad-
cast channels, we consider snd-msgi to return only msg1i .

Throughout our negative results, we omit the randomness r, and instead
focus on deterministic protocols, modeling the randomness implicitly as part of
the algorithm.

3 No Broadcast: Impossibility of Unanimous Abort

For our negative results in the setting where no broadcast is available, we lever-
age related negative results for broadcast (or byzantine agreement). To show that

166 I. Damg̊ard et al.

guaranteed output delivery is impossible in two rounds of peer-to-peer commu-
nication, we can use the fact that broadcast cannot be realized in two rounds
for t > 1 [FL82,DS83]. To show the impossibility of weaker guarantees such as
unanimous abort in this setting, we prove that a weaker flavor of broadcast,
called (weak) detectable broadcast [FGMv02]—where all parties either learn the
broadcast bit, or unanimously abort—cannot be realized in two rounds either.

We state the definitions of broadcast and detectable broadcast (from Fitzi et
al. [FGMv02]) below.

Definition 4 (Broadcast). A protocol among n parties, where the dealer D =
P1 holds an input value x ∈ {0, 1} and every other party Pi, i ∈ [2, . . . , n] outputs
a value yi ∈ {0, 1}, achieves broadcast if it satisfies the following two conditions:

Validity: If the dealer D is honest then all honest parties Pi output yi = x.
Consistency: All honest parties output the same value y2 = · · · = yn = y.

Definition 5 (Detectable Broadcast). A protocol among n parties achieves
detectable broadcast if it satisfies the following three conditions:

Correctness: All honest parties unanimously accept or unanimously reject
the protocol. If all honest parties accept then the protocol achieves broadcast.
Completeness: If all parties are honest then all parties accept.
Fairness: If any honest party rejects the protocol then the adversary gets no
information about the dealer’s input x.

We additionally define weak detectable broadcast.

Definition 6 (Weak Detectable Broadcast). A protocol among n parties
achieves weak detectable broadcast if it satisfies only the correctness and com-
pleteness requirements of detectable broadcast.

An alternative way of viewing broadcast, through the lense of secure com-
putation, is by considering the simple broadcast function fbc(x,⊥, . . . ,⊥) =
(⊥, x, . . . , x) which takes an input bit x from the dealer D = P1, and out-
puts that bit to all other parties. Broadcast (Definition 4) is exactly equiv-
alent to computing fbc with guaranteed output delivery; detectable broadcast
(Definition 5) is equivalent to computing it with fairness; and weak detectable
broadcast (Definition 6) is equivalent to computing it with unanimous abort.

Theorem 1. Weak detectable broadcast cannot be achieved in two rounds of
peer-to-peer communication for corruption threshold t > 1.

Proof. We prove Thm 1 by contradiction. We let

Πwdbc = {(frst-msgi, snd-msgi, outputi)}i∈[1,...,n]

be the description of the two-round weak detectable broadcast protocol. We use
the notation we introduce for two-round secure computation in Sect. 2.2, and
consider the weak detectable broadcast protocol to be a secure computation

Broadcast-Optimal Two Round MPC with an Honest Majority 167

with unanimous abort of fbc. We let x1 = x denote the bit being broadcast
by the dealer D = P1, and xi = ⊥ for i ∈ [2, . . . , n] be placeholders for other
parties’ inputs. We assume that μ = negl is the negligible probability with which
security of Πwdbc fails.

Below we consider an execution of Πwdbc and a sequence of scenarios involving
different adversarial strategies with two corruptions (t = 2). The dealer D = P1

is corrupt in all of these; at most one of the receiving parties P2, . . . , Pn is corrupt
at a time. We argue that each subsequent strategy clearly requires certain parties
to output certain values, by the definition of weak detectable broadcast. In the
last strategy, we see a contradiction, where some parties must output both 0 and
1. Therefore, Πwdbc could not have been a weak detectable broadcast protocol.
In all of the strategies below, we let msgb,i→j denote a party Pi’s bth-round
message to party Pj ; we only specify how these messages are generated when
this is done dishonestly.

Scenario 1: D is corrupt.
Round 1: D behaves honestly using input x = 0.
Round 2: D behaves honestly using input x = 0.

By completeness (which holds since everyone behaved honestly), all honest
parties must accept the protocol. By correctness, the protocol must thus
achieve broadcast. By validity, all honest parties must output 0. Since com-
pleteness, correctness and validity hold with probability at least 1−μ, we can
infer that honest parties must output 0 with probability at least 1 − μ.
Scenario 2M : D and P2 are corrupt.

Round 1: D computes two different sets of messages, using different
inputs x = 0 and x = 1, as follows:

(msg
1,(0)
1→1 , . . . ,msg

1,(0)
1→n) ← frst-msg1(x = 0)

(msg
1,(1)
1→1 , . . . ,msg

1,(1)
1→n) ← frst-msg1(x = 1)

D sends msg
1,(0)
1→3 , . . . ,msg

1,(0)
1→n to parties P3, . . . , Pn. P2 behaves honestly.

Round 2: D behaves honestly using input x = 0. P2 computes two
different sets of second-round messages, as follows:

(msg
2,(0)
2→1 , . . . ,msg

2,(0)
2→n) ← snd-msg2(⊥,msg

1,(0)
1→2 ,msg12→2, . . . ,msg1n→2)

(msg
2,(1)
2→1 , . . . ,msg

2,(1)
2→n) ← snd-msg2(⊥,msg

1,(1)
1→2 ,msg12→2, . . . ,msg1n→2)

P2 sends msg
2,(1)
2→n to Pn (pretending, essentially, that D dealt a 1), and

msg
2,(0)
2→i to other parties Pi (pretending that D dealt a 0).

P3, . . . , Pn−1 must accept and output 0 with probability at least 1 − μ, since
their views are identical to those in the previous scenario. By correctness, Pn

must also accept when other honest parties accept. By consistency, Pn must
also output 0. Since correctness or consistency break with probability at most
μ, Pn outputs 0 with probability at least 1 − 2μ.

168 I. Damg̊ard et al.

Scenario 2H : D is corrupt.
Round 1: D sends msg

1,(1)
1→2 to P2, and msg

1,(0)
1→i to other parties Pi.

Round 2: D continues to represent x = 1 towards P2 and x = 0 towards
the others.

Pn must accept and output 0 with probability at least 1 − 2μ, since its view
is the same as in the previous scenario. By correctness, P2, . . . , Pn−1 must
also accept when Pn accepts. By consistency, P2, . . . , Pn−1 must also out-
put 0. Since correctness or consistency break with probability at most μ,
P2, . . . , Pn−1 output 0 with probability at least 1 − 3μ.

Now, skipping ahead, we generalize, for k ∈ [3, . . . , n − 1]:

Scenario kM : D and Pk are corrupt.
Round 1: D sends msg

1,(1)
1→i to P2, . . . , Pk−1, and msg

1,(0)
1→i to the other

parties Pk+1, . . . , Pn. Pk acts honestly.
Round 2: D continues to represent x = 1 to P2, . . . , Pk−1 and x = 0 to
Pk+1, . . . , Pn. In the second round Pk acts analogously to P2 in scenario
2M ; i.e., Pk uses msg

1,(0)
1→k to compute (msg

2,(0)
k→1, . . . ,msg

2,(0)
k→n−1) (which it

sends to P2, . . . , Pn−1), and msg
1,(1)
1→k to compute msg

2,(1)
k→n (which it sends

to Pn).
P2, . . . , Pn−1 must accept and output 0 with probability at least 1−(2(k−1)−
1)μ = 1 − (2k − 3)μ, since their views are identical to those in the previous
scenario (namely Scenario (k − 1)H). By correctness, Pn must also accept
when other honest parties accept. By consistency, Pn must also output 0.
Since correctness or consistency break with probability at most μ, Pn outputs
0 with probability at least 1 − (2k − 3)μ − μ = 1 − 2(k − 1)μ.
Scenario kH : D is corrupt.

Round 1: D sends msg
1,(1)
1→i to P2, . . . , Pk, and msg

1,(0)
1→i to the other parties

Pk+1, . . . , Pn.
Round 2: D continues to represent x = 1 to P2, . . . , Pk and x = 0 to
Pk+1, . . . , Pn.

Pn must accept and output 0 with probability at least 1 − 2(k − 1)μ, since
its view is the same as in the previous scenario. By correctness, P2, . . . , Pn−1

must also accept. By consistency, P2, . . . , Pn−1 must also output 0. Since
correctness or consistency break with probability at most μ, P2, . . . , Pn−1

output 0 with probability at least 1 − 2(k − 1)μ − μ = 1 − (2k − 1)μ.

We end with Scenarios nM , nH .

Scenario nM : D and Pn are corrupt.
Round 1: D behaves honestly using input x = 1. Pn behaves honestly.
Round 2: D behaves honestly using input x = 1. Pn pretends D dealt
a 0 towards, e.g., only P2. More precisely, Pn uses msg

1,(0)
1→n to compute

msg
2,(0)
n→2 (which it sends to P2), and msg

1,(1)
1→n to compute (msg

2,(1)
n→3, . . . ,

msg
2,(1)
n→n−1) (which it sends to P3, . . . , Pn−1).

Broadcast-Optimal Two Round MPC with an Honest Majority 169

P2 must accept and output 0 with probability at least 1 − (2(n − 1) − 1)μ =
1 − (2n − 3)μ, since its view is the same as in the previous scenario (namely,
Scenario (n−1)H). By correctness, P3, . . . , Pn−1 must also accept. By consis-
tency, P3, . . . , Pn−1 must also output 0. This must happen with probability
at least 1 − (2n − 3)μ − μ = 1 − 2(n − 1)μ.
Scenario nH : D is corrupt.

Round 1: D behaves honestly using input x = 1.
Round 2: D behaves honestly using input x = 1.

In Scenario nH , on the one hand, by completeness (which holds as everyone
behaved honestly), all honest parties must accept the protocol; by validity, all
honest parties must output 1. On the other hand, since the view of P3, . . . , Pn−1

is the same as their respective views in the previous scenario, they must output
0 with probability at least 1 − 2(n − 1)μ, which is overwhelming. This is a
contradiction.

The impossibility of realizing weak detectable broadcast in two rounds for
t > 1 clearly implies that there exists a function (specifically, fbc) which is
impossible to compute with unanimous abort for t > 1 in two rounds of peer-to-
peer communication.

Corollary 1 (P2P-P2P, UA, t > 1). There exist functions f such that no
n-party two-round protocol can compute f with unanimous abort against t > 1
corruptions in two rounds of peer-to-peer communication.

4 Broadcast in the Second Round: Impossibility
of Fairness

In this section, we show that it is not possible to design fair protocols tolerating
t > 1 corruptions when broadcast is available only in the second round.

Theorem 2 (P2P-BC, FAIR, t > 1). There exist functions f such that no n-
party two-round protocol can compute f with fairness against t > 1 corruptions
while making use of broadcast only in the second round (i.e. where the first round
is over point-to-point channels and second round uses both broadcast and point-
to-point channels).

In our proof we use the function fmot, which is defined below. Let P1 hold as
input a bit X1 = b ∈ {0, 1}, and every other party Pi (i ∈ {2, . . . , n}) hold as
input a pair of strings, denoted as Xi = (x0

i , x
1
i).

fmot
(
X1 = b,X2 = (x0

2, x
1
2), . . . , Xn = (x0

n, x1
n)

)
= (xb

2, x
b
3, . . . , x

b
n).

Proof. We prove Thm 2 by contradiction. Let Π be a protocol that computes
fmot with fairness by using broadcast only in the second round. Consider an
execution of Π where Xi denotes the input of Pi. We describe a sequence of
scenarios C1, . . . , Cn, C∗

n. In each scenario, P1 and at most one other party is

170 I. Damg̊ard et al.

corrupt. In all the scenarios, the corrupt parties behave honestly (in particular,
they use their honest inputs), but may drop incoming or outgoing messages.

At a high-level, the sequence of scenarios is designed so that corrupt P1 drops
her first-round message to one additional honest party in each scenario. We show
that in each scenario, the adversary manages to obtain the output computed with
respect to X1 = b and (at least some of) the honest parties’ inputs. This leads
to a contradiction, because the final scenario involves no first-round messages
from P1 related to its input X1 = b, but the adversary is still able to learn xb

i

corresponding to some honest Pi. In particular, this implies that the adversary
is able to re-compute second-round messages from P1 with different choices of
input X1, obtaining multiple outputs (on different inputs).

Before describing the scenarios in detail, we define some useful notation. Let
(X1, . . . , Xn) denote a specific combination of inputs that are fixed across all
scenarios. Let μ = negl denote the negligible probability with which the security
of Π breaks. We assume, without loss of generality, that the second round of Π
involves broadcast communication alone (as given a PKI and a broadcast chan-
nel, point-to-point communication can be realized by broadcasting encryptions
of the private messages using the public key of the recipient). Let m̃sg

2
i denote

Pi’s second-round broadcast message, computed honestly given that Pi did not
receive the private message (i.e. the communication over point-to-point channel)
from P1 in the first round.

Scenario C1: P1 is corrupt.
Round 1: P1 behaves honestly (i.e. follows the instructions of Π).
Round 2: P1 behaves honestly.

Since everyone behaved honestly, it follows from correctness that P1 obtains the
output y = fmot(x1, . . . , xn) = (xb

2, x
b
3, . . . , x

b
n) with probability at least 1 − μ.

Scenario C2: P1 and P2 are corrupt.
Round 1: P1 and P2 behave honestly.
Round 2: P1 remains silent. P2 pretends she did not receive a first-round
message from P1. In more detail, P2 sends m̃sg

2
2 over broadcast channel.

The adversary’s view subsumes her view in the previous scenario, so the adver-
sary learns the output y = (xb

2, x
b
3, . . . , x

b
n) which allows her to learn xb

i corre-
sponding to each honest Pi. It follows from the security of Π that honest parties
also obtain xb

i corresponding to each honest Pi (i.e. for i ∈ [n]\{1, 2}) with prob-
ability at least 1−μ. If not, then either correctness or fairness is violated, which
contradicts our assumption that Π is secure.

Scenario C3: P1 and P3 are corrupt.
Round 1: P1 behaves honestly, but does not send a message to P2. P3

behaves honestly.
Round 2: P1 remains silent. P3 pretends that she did not receive a first-
round message from P1 (i.e. she sends m̃sg

2
3 via broadcast).

Broadcast-Optimal Two Round MPC with an Honest Majority 171

The adversary’s view subsumes the view of an honest P3 in Scenario C2 (which
includes m̃sg

2
2); so, the adversary learns {xb

i}i∈[n]\{1,2} with probability at least
1−μ. By the fairness of Π, when the adversary obtains this information, honest
parties P2, P4, P5, . . . , Pn must also learn xb

i corresponding to each honest Pi (i.e.
for i ∈ [n]\{1, 3}).4 Since the fairness of Π breaks with probability at most μ,
parties P2, P4, P5, . . . , Pn learn {xb

i}i∈[n]\{1,3} with probability at least 1 − 2μ.

Scenario C4: P1 and P4 are corrupt.
Round 1: P1 behaves honestly, except that she does not send a message
to P2 and P3. P4 behaves honestly.
Round 2: P1 remains silent. P4 pretends that she did not receive a first-
round message from P1 (i.e. she sends m̃sg

2
4 via broadcast).

The adversary’s view subsumes the view of an honest P4 in Scenario C3 (which
includes m̃sg

2
j , where j ∈ {2, 3}). Therefore, the adversary learns {xb

i}i∈[n]\{1,3}
with probability at least 1 − 2μ. By the security of Π, honest P2, P3, P5, . . . , Pn

must also obtain xb
i corresponding to each honest Pi (i.e. for i ∈ [n]\{1, 4}). Since

the security of Π breaks with probability at most μ, parties P2, P3, P5, . . . , Pn

learn {xb
i}i∈[n]\{1,4} with probability at least 1 − 3μ.

Generalizing the above for k = 3 to n:

Scenario Ck: P1 and Pk are corrupt.
Round 1: P1 behaves honestly, except that she does not send a message
to P2, P3, . . . , Pk−1. Pk behaves honestly.
Round 2: P1 remains silent. Pk pretends that she did not receive a first-
round message from P1 (i.e. she sends m̃sg

2
k via broadcast).

The adversary’s view subsumes the view of an honest Pk in Scenario Ck−1 (which
includes messages m̃sg

2
j , where j ∈ {2, . . . , k − 1}). Thus, the adversary learns

{xb
i}i∈[n]\{1,k−1} with probability at least 1 − (k − 2)μ. By the security of Π,

honest parties should obtain xb
i corresponding to each honest Pi (i.e. for i ∈

[n]\{1, k}). Since the security of Π breaks with probability at most μ, honest
parties learn the values xb

i with probability at least 1−(k−2)μ−μ = 1−(k−1)μ.
Finally, we describe the last scenario:

Scenario C∗
n: P1 and Pn are corrupt.

Round 1: P1 remains silent. Pn behaves honestly.
Round 2: P1 and Pn remain silent.

The adversary’s view subsumes her view in Scenario Cn (which includes messages
m̃sg

2
j , where j ∈ {1, . . . , n − 1}). Thus, in Scenario C∗

n, the adversary is able to
learn {xb

i}i∈[n]\{1,n−1} with probability at least 1− (n−1)μ. This leads us to the

4 Note that we conclude that the honest parties learn xb
2, which the adversary may,

for some reason, not have learned. This is because in the ideal functionality, output
is considered as a single unit of information; fairness requires that if the adversary
learns any output it could not have obtained solely from its own inputs, then the
honest parties must learn the entire output.

172 I. Damg̊ard et al.

final contradiction: C∗
n does not involve any message from P1 related to the input

X1 = b, but the adversary was able to obtain {xb
i}i∈[n]\{1,n−1}. This implies that

the adversary can compute {xb′
i }i∈[n]\{1,n−1} with respect to any input X1 = b′

of her choice. This “residual attack” breaks the privacy property of the protocol,
as it allows the adversary to learn both input strings of an honest Pi. (which is
not allowed as per the ideal realization of fmot).

Lastly, we note that the above proof requires that the function computed
is such that each party receives the output. This is because the inference in
Scenario Ck (k ∈ [n]) relies on the adversary obtaining output on behalf of Pk.

5 Completing the Picture: Impossibility Results
for n ≤ 3t

In the previous two sections, we showed the impossibility of unanimous abort
when no broadcast is available, and the impossibility of fairness when broadcast
is only available in the second round. However, both of those impossibility results
only hold for t > 1. In this section, using different techniques, we extend those
results to the case when t = 1 and n = 3. In our impossibility results in this
section, we use a property which we call last message resiliency.

Definition 7 (Last Message Resiliency). A protocol is t-last message
resiliency if, in an honest execution, any protocol participant Pi can compute
its output without using t of the messages it received in the last round.

More formally, consider a protocol Π = {(frst-msgi, snd-msgi,
outputi)}i∈[1,...,n]. The protocol is t-last message resilient if, for each i ∈
[1, . . . , n] and each S ⊆ {1, . . . , n}\{i} such that |S| ≤ t, the output func-
tion outputi returns the correct output even without second round messages
from parties Pi, i ∈ S. That is, for all security parameters λ, for all sets
S ⊆ {1, . . . , n}\{i} such that |S| ≤ t, for all inputs x1, . . . , xn,

Pr
(
outputi(xi,msg11→i, . . . ,msg1n→i, m̃sg21→i, . . . , m̃sg2n→i)
	= outputi(xi,msg11→i, . . . ,msg1n→i,msg21→i, . . . ,msg2n→i)

)
= negl(λ)

over the randomness used in the protocol, where, for j ∈ [1, . . . , n],

(msg1j→1, . . . ,msg1j→n) ← frst-msgj(xj),

(msg2j→1, . . . ,msg2j→n) ← snd-msgj(xj ,msg11→j , . . . ,msg1n→j),

and

m̃sg2j→i =

{
msg2j→i, if j 	∈ S,

⊥ otherwise.

Theorem 3. Any protocol Π which achieves secure computation with unani-
mous abort with corruption threshold t and whose last round can be executed
over peer-to-peer channels must be t-last message resilient.

Broadcast-Optimal Two Round MPC with an Honest Majority 173

Proof. We prove this by contradiction. Assume Π achieves unanimous abort,
and is not t-resilient. Then, by definition, there exist inputs x1, . . . , xn, an i ∈
[1, . . . , n] and a subset S ⊆ {1, . . . , n}\{i} (such that |S| ≤ t) where, with non-
negligible probability,

outputi(xi,msg11→i, . . . ,msg1n→i, m̃sg21→i, . . . , m̃sg2n→i)
	= outputi(xi,msg11→i, . . . ,msg1n→i,msg21→i, . . . ,msg2n→i)

(where the messages are produced in the way described in Definition 7).
The adversary can use this by corrupting Pj , j ∈ S; it will behave honestly,

except in the last round, where Pj , j ∈ S will not send messages to Pi. (Note that
the ability to send last round messages to some parties but not others relies on
the fact that the last round is over peer-to-peer channels.) With non-negligible
probability, Pi will receive an incorrect output (e.g. an abort). However, this
cannot occur in a protocol with unanimous abort; all other honest parties must
accept the protocol and produce the correct output (since their views are the
same as in an entirely honest execution), so Pi must as well.

Theorem 4. Any protocol Π which achieves secure computation with fairness
with corruption threshold t must be t-last message resilient.

Proof. We prove this by contradiction. Assume Π achieves fairness, and is not
t-resilient. Then, by definition, there exist inputs x1, . . . , xn, an i ∈ [1, . . . , n]
and a subset S ⊆ {1, . . . , n}\{i} (such that |S| ≤ t) where, with non-negligible
probability,

outputi(xi,msg11→i, . . . ,msg1n→i, m̃sg21→i, . . . , m̃sg2n→i)
	= outputi(xi,msg11→i, . . . ,msg1n→i,msg21→i, . . . ,msg2n→i).

(where the messages are produced in the way described in Definition 7).
The adversary can use this by corrupting Pj , j ∈ S. As in the previous

proof, it will behave honestly, except in the last round, where Pj , j ∈ S will not
send messages to Pi. With non-negligible probability, Pi will receive an incorrect
output (e.g. an abort), while the rushing adversary will learn the output, since
it will have all of the messages it would have gotten in a fully honest execution
of the protocol. This violates fairness.5

Theorem 5. There exists a function f such that any protocol Π securely real-
izing f with corruption threshold t such that n ≤ 3t and whose first round can
be executed over peer-to-peer channels cannot be t-last message resilient.

Proof. Consider the function fmot described in the proof of Thm 2, where party
P1 provides as input a choice bit X1 = b ∈ {0, 1} and every other party Pi

provides as input a pair of strings i.e. Xi = (x0
i , x

1
i).

5 Note that while Pi does not learn the output, other honest parties might. How-
ever, even one honest party not receiving the output is a violation of fairness if the
adversary learns the output.

174 I. Damg̊ard et al.

Consider an adversary corrupting P1. The adversary should clearly be unable
to recompute the function with multiple inputs, e.g., with respect to both X1 = 0
and X1 = 1 (as this will allow it to learn both the input strings of the honest
parties which is in contrast to an ideal execution, where it can learn exactly one
of the input strings).

We now show that, in a t-last message resilient (where n ≤ 3t) two-round
protocol Π where the first round is over peer-to-peer channels, P1 can always
learn both of those outputs. Consider a corrupt P1, and partition the honest
parties into two sets of equal size (assuming for simplicity that the number of
honest parties is even): S0 and S1. Note that |S0| = |S1| = n−t

2 ≤ t.
P1 uses X1 = 0 to compute its first round messages to S0; it uses X1 = 1 to

compute its first round messages to S1. (Note that the ability to send first round
messages based on different inputs relies on the fact that the first round is over
peer-to-peer channels.) All other parties behave honestly. Because the protocol
Π is t-last message resilient, and because S1 contains t or fewer parties, P1 has
enough second round messages excluding those it received from S1 to compute
its output. Note that all second round messages except for those received from
S1 are distributed exactly as in an honest execution with X1 = 0; therefore, by
last message resiliency, P1 learns (x0

2, x
0
3, . . . , x

0
n) (as per the definition of fmot).

Similarly, by excluding second round messages it received from S0, P1 learns the
output (x1

2, x
1
3, . . . , x

1
n) i.e. the output computed based on X1 = 1. This is clearly

a violation of privacy.

Corollary 2 (P2P-P2P, UA, n ≤ 3t). Secure computation of general func-
tions with unanimous abort cannot be achieved in two rounds of peer-to-peer
communication for corruption threshold t such that n ≤ 3t.

This corollary follows directly from Theorems 3 and 5.

Remark 1. Note that for t > 1, Cor 2 is subsumed by Cor 1. However, Cor 2
covers the case of t = 1 and n = 3, closing the question of unanimous abort with
honest majority in two rounds of peer-to-peer communication.

Corollary 3. (P2P-BC, FAIR, n ≤ 3t). Secure computation of general func-
tions with fairness cannot be achieved in two rounds the first of which is over
peer-to-peer channels for corruption threshold t such that n ≤ 3t.

This corollary follows from Theorems 4 and 5.

6 Broadcast in the First Round: Guaranteed Output
Delivery

In this section, we argue that any protocol that achieves guaranteed output
delivery in two rounds of broadcast also achieves guaranteed output delivery
when broadcast is available in the first round only. We first show that if the
protocol achieves guaranteed output delivery with corruption threshold t in two
rounds of broadcast, it achieves the same guarantee with threshold t−1 when the

Broadcast-Optimal Two Round MPC with an Honest Majority 175

second round is over peer-to-peer channels. We next show that if the first-round
messages commit corrupt parties to their inputs, the second round can be run
over peer-to-peer channels with no loss in corruption budget.

Theorem 6. Let Πgod
bc be a two broadcast-round protocol that securely computes

the function f with guaranteed output delivery against an adversary corrupting
t parties. Then Πgod

bc achieves the same guarantee when the second round is run
over peer-to-peer channels but with t − 1 corruptions.

Proof (Sketch). Let Π̃god
bc denote the protocol where the second round is run

over peer-to-peer channels but with t − 1 corruptions. Towards a contradiction,
assume Π̃god

bc is not secure against (t−1) corruptions; in particular, assume that
there is an adversary Ã that breaks security.

We first observe that Ã certainly can’t cause honest parties to abort in Π̃god
bc

by sending them incorrect things in the second round, since Πgod
bc achieves guar-

anteed output delivery, meaning that honest parties do not abort no matter
what Ã does. Therefore, all Ã can hope for is to cause disagreement in Π̃god

bc .
In particular, Ã can send different second-round messages to different honest
parties, hoping that honest parties end up with outputs computed on different
corrupt party inputs. However, if Ã could do that, we could use Ã to build an
adversary A that breaks the security of Πgod

bc by corrupting one additional hon-
est party, mentally sending different messages to it, and obtaining the output on
two different sets of its own inputs.

Suppose Ã can make a pair of honest parties in Π̃god
bc —Pi and Pj—obtain

different outputs by sending different second-round messages to them. Then, we
construct our adversary A for Πgod

bc as follows. A corrupts the same t− 1 parties
as Ã, as well as one additional honest party—Pi—who will behave semi-honestly.
A uses the second-round messages sent by Ã to Pj as her broadcast second-round
messages in Πgod

bc . However, A also computes what Pi’s output would have been
if she had broadcast the second-round messages sent by Ã to Pi. This allows A
to obtain the output on behalf of Pi on two different sets of inputs, breaking the
security of Πgod

bc (and completing the proof).

Theorem 7. Let Πgod
bc be a two broadcast-round protocol that securely computes

the function f with guaranteed output delivery with the additional constraint that
a simulator can extract inputs from the first-round messages and it is efficient
to check whether a given second-round message is correct. Then Πgod

bc achieves
the same guarantee when the second round is run over point-to-point channels.

Proof (Sketch). Starting from the protocol Πgod
bc it is possible to define another

protocol Πgod
bcp2p that has the following modifications: (1) the second round mes-

sages of Πgod
bc are sent over point-to-point channels and (2) the honest parties

compute their output based on all the first round messages and the subset C of
second round messages that are generated correctly. (Observe that |C| ≥ n − t,
because at least n − t parties are honest.)

176 I. Damg̊ard et al.

Relying on the GOD security of Πgod
bc , it is possible to claim that Πgod

bcp2p also
achieves GOD. This follows from two important observations. First, since the
input is extracted from the first round of Πgod

bcp2p which is over broadcast, the
adversary cannot cause disagreement among the honest parties with respect to
her input (i.e. she cannot send messages based on different inputs to different
honest parties). Second, in Πgod

bcp2p the honest parties are always able to compute
the output; otherwise, the honest parties in Πgod

bc would not have been able to
compute an output when A does not send any second round message, which
contradicts GOD security.

Next, we observe that the two broadcast-round protocol of Gordon et al.
[GLS15] has the two properties required by Thm 7. The protocol of Gordon
et al. [GLS15] uses zero knowledge proofs to compile a semi-malicious protocol
into a fully malicious one. The zero knowledge proofs accompanying the first
round messages can be used for input extraction; the zero knowledge proofs
accompanying the second round messages can be used to efficiently determine
which of these second round messages are generated correctly.

7 One-or-Nothing Secret Sharing

In Sect. 8, we will show a protocol that achieves security with identifiable abort
in the honest majority setting in two rounds, only the second of which is over
broadcast. In this section, we introduce an important building block for that
protocol which we call one-or-nothing secret sharing.

We define one-or-nothing secret sharing as a new flavor of secret sharing
wherein the dealer can share a vector of secrets. While traditional secret sharing
schemes are designed for receivers to eventually publish their shares and recover
the entirety of what was shared, one-or-nothing secret sharing is designed for
receivers to eventually recover at most one of the shared values. While recon-
struction usually requires each party to contribute its entire share, in one-or-
nothing secret sharing, each party instead votes on the index of the value to
reconstruct by producing a “ballot” based on its secret share. If two parties vote
for different indices, the set of published ballots should reveal nothing about any
of the values. However, some parties are allowed to equivocate—they might be
unsure which index they wish to vote for, so they will support the preference of
the majority. If a majority votes for the same index, and the rest equivocate,
the ballots enable the recovery of the value at that index.

Our secure computation construction in Sect. 8 uses one-or-nothing secret
sharing to share labels for garbled circuits. However, we imagine one-or-nothing
secret sharing might be of independent interest, e.g. in voting scenarios where
unanimity among the decided voters is important.

7.1 Definitions

Syntax. The natural syntax for a one-or-nothing secret sharing scheme consists
of a tuple of three algorithms (share, vote, reconstruct).

Broadcast-Optimal Two Round MPC with an Honest Majority 177

share(x(1), . . . , x(l)) → (s, s1, . . . , sn) is an algorithm that takes l values x(1),
. . . , x(l), and produces the secret shares s1, . . . , sn, as well as the public share
s.
vote(s, si, v) → si is an algorithm that takes the public share s, a secret share
si, and a vote v, where v ∈ {1, . . . , l,⊥} can either be an index of a value, or
it can be ⊥ if party i is unsure which value it wants to vote for. It outputs a
public ballot si.
reconstruct(s, s1, . . . , sn) → {x(v),⊥} is an algorithm that takes the public
share s, all of the ballots s1, . . . , sn, and outputs either the value x(v) which
received a majority of votes, or outputs ⊥.

Non-Interactive One-or-Nothing Secret Sharing. We modify this natural syntax
to ensure that each party can vote even if they have not received a secret share.
This is important in case e.g. the dealer is corrupt, and chooses not to distribute
shares properly. We call such a scheme a non-interactive one-or-nothing secret
sharing scheme. A non-interactive one-or-nothing secret sharing scheme consists
of a tuple of four algorithms (setup, share, vote, reconstruct).

setup(1λ) → sk is an algorithm that produces a key shared between the
dealer and one of the receivers. (This can be non-interactively derived by
both dealer and receiver by running setup on randomness obtained from e.g.
key exchange.)
share(sk1, . . . , skn, x(1), . . . , x(l)) → s is an algorithm that takes the n shared
keys sk1, . . . , skn and the l values x(1), . . . , x(l), and produces a public share
s.
vote(ski, v) → si is an algorithm that takes a secret share si and a vote v,
where v ∈ {1, . . . , l,⊥} can either be an index of a value, or it can be ⊥ if
party i is unsure which value it wants to vote for. It outputs a public ballot
si.
reconstruct(s, s1, . . . , sn) → {x(v),⊥} is an algorithm that takes the public
share s, all of the ballots s1, . . . , sn, and outputs either the value x(v) which
received a majority of votes, or outputs ⊥.

Security. We require three properties of one-or-nothing secret sharing: correct-
ness, privacy (which requires that if fewer than t + 1 parties vote for an index,
the value at that index stays hidden) and contradiction-privacy (which requires
that if two parties vote for different indices, all values stay hidden). Below we
define these formally for non-interactive one-or-nothing secret sharing.

Definition 8 (One-or-Nothing Secret Sharing: Correctness). Infor-
mally, this property requires that when at least n − t parties produce their ballot
using the same v (and the rest produce their ballot with ⊥), reconstruct returns
x(v). (When t = n

2 − 1, n − t is a majority.)
More formally, a one-or-nothing secret sharing scheme is correct if for any

security parameter λ ∈ N, any vector of secrets (x(1), . . . , x(l)), any index v ∈ [l]

178 I. Damg̊ard et al.

and any subset S ⊆ [n], |S| ≥ n − t,

Pr

⎡

⎢
⎢
⎢
⎢
⎣

x = x(v) :

ski ← setup(1λ) for i ∈ [n]
s ← share(sk1, . . . , skn, x(1), . . . , x(l))

si ← vote(ski, v) for i ∈ S
si ← vote(ski,⊥) for i ∈ [n]\S
x ← reconstruct(s, s1, . . . , sn)

⎤

⎥
⎥
⎥
⎥
⎦

≥ 1 − negl(λ),

where the probability is taken over the random coins of the algorithms.

Definition 9 (One-or-Nothing Secret Sharing: Privacy). Informally, this
property requires that when no honest parties produce their ballot using v, then
the adversary learns nothing about x(v).

More formally, a one-or-nothing secret sharing scheme is private if for any
security parameter λ ∈ N, for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2

+ negl(λ)

in the following experiment:

Adversary A Challenger C

b ← {0, 1}
A ⊂ {1, . . . , n}(s.t. |A| ≤ t)

−−−−−−−−−−−−−−−−−−−−−−−−−−� H := {1, . . . , n}\A
x
(v)
0 , x

(v)
1 (s.t. |x(v)

0 | = |x(v)
1 |)

−−−−−−−−−−−−−−−−−−−−−−−−−−� x(v) := x
(v)
b

{x(v′)}v′∈{1,...,l}\{v}

v, {vi �= v}i∈H

−−−−−−−−−−−−−−−−−−−−−−−−−−�
ski ← setup(1λ) for i ∈ [n]

s ← share(sk1, . . . , skn, x(1), . . . , x(l))
si ← vote(ski, vi) for i ∈ H

{ski}i∈A, s, {si}i∈H

�−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−�
A wins if b′ = b

Definition 10 (One-or-Nothing Secret Sharing: Contradiction-
Privacy). Informally, this property requires that if two different parties pro-
duce their ballots using different votes vi 	= vj such that vi 	= ⊥ and vj 	= ⊥,
then the adversary should learn nothing at all.

More formally, a one-or-nothing secret sharing scheme is contradiction-
private if for any security parameter λ ∈ N, for every PPT adversary A, it
holds that

Pr[A wins] ≤ 1
2

+ negl(λ)

in the following experiment:

Broadcast-Optimal Two Round MPC with an Honest Majority 179

Adversary A Challenger C

b ← {0, 1}
A ⊂ {1, . . . , n}(s.t. |A| ≤ t)

−−−−−−−−−−−−−−−−−−−−−−−−−−� H := {1, . . . , n}\A
x
(v)
0 , x

(v)
1 (s.t. |x(v)

0 | = |x(v)
1 |)

−−−−−−−−−−−−−−−−−−−−−−−−−−� x(v) := x
(v)
b for v ∈ {1, . . . , l}

for v ∈ {1, . . . , l}

{vi}i∈H

−−−−−−−−−−−−−−−−−−−−−−−−−−�
ski ← setup(1λ) for i ∈ [n]

s ← share(sk1, . . . , skn, x(1), . . . , x(l))
si ← vote(ski, vi) for i ∈ H

{ski}i∈A, s, {si}i∈H

�−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−�
A wins if b′ = b

and there exists i, j ∈ H
s.t. vi �= vj , vi �= ⊥ and vj �= ⊥

7.2 Constructions

A first attempt would be to additively share all the values x(1), . . . , x(l). How-
ever, this fails because if all of the honest parties compute vote on ⊥ (by e.g.
publishing both their additive shares), the adversary will be able to reconstruct
all of the values, violating privacy (Definition 9).

Instead, we instantiate a non-interactive one-or-nothing secret sharing scheme
as follows, using a symmetric encryption scheme SKE = (keygen, enc, dec)
(defined in the full version of this paper [DMR+20]).

Figure 7.1: Non-Interactive One-or-Nothing Secret Sharing

setup(1λ) → sk: Choose l+1 symmetric encryption keys k(1), . . . , k(l), k(⊥)

using SKE.keygen(1λ). Let sk = (k(1), . . . , k(l), k(⊥)).
share(sk1, . . . , skn, x(1), . . . , x(l)) → s:

1. Compute (x
(v)
1 , . . . , x

(v)
n) as the additive sharing of x(v) for v ∈ [l].

2. Compute (x
(v)
i→1, . . . , x

(v)
i→n) as the threshold sharing of x

(v)
i with thresh-

old t for v ∈ [l], i ∈ [n].

3. Parse (k
(1)
i , . . . , k

(l)
i , k

(⊥)
i) = ski for i ∈ [n].

4. Compute c
(v)
i = enc(k

(v)
i , x

(v)
i) for v ∈ [l], i ∈ [n].

5. Compute c
(v)
i→j = enc

(
k
(⊥)
i , enc(k

(v)
j , x

(v)
i→j)

)
for v ∈ [l], i ∈ [n], j ∈ [n].

6. Output s = ({c
(v)
i }i∈[n],v∈[l], {c

(v)
i→j}i,j∈[n],v∈[l]).

vote(ski, v) → si where v ∈ {1, . . . , l, ⊥}: Output si = (v, k
(v)
i).

reconstruct(s, s1, . . . , sn) → {x(v), ⊥}:
1. Parse ({c

(v)
i }i∈[n],v∈[l], {c

(v)
i→j}i,j∈[n],v∈[l]) = s.

2. Parse (vi, ki) = si for i ∈ [n].
3. If there does not exist a v ∈ {1, . . . , l} such that at least (n − t) parties

vote for v and everyone else votes for ⊥, output ⊥.

180 I. Damg̊ard et al.

4. Let v �= ⊥ denote the only value which received votes; let S ⊆
{1, . . . , n} be the set of i such that vi = v.

5. For i ∈ S (so, vi = v), compute xi = dec(ki, c
(v)
i).

6. For i /∈ S (so, vi = ⊥), for each j ∈ S, compute xi→j =

dec
(
ki, dec(kj , c

(v)
i→j)

)
. Let xi denote the value reconstructed using the

threshold shares {xi→j}j∈S .
7. If there exists any i such that xi = ⊥, output ⊥. Else, output x =∑n

i=1 xi.

Theorem 8. The above construction is a secure non-interactive one-or-nothing
sharing scheme when n > 2t.

We defer the proof of security to the full version of this paper [DMR+20].

8 Broadcast in the Second Round: Identifiable Abort

In this section, we show a protocol achieving secure computation with identifiable
abort in two rounds, with the first round only using peer-to-peer channels, when
t < n

2 .
One could hope that executing a protocol Πbc that requires two rounds of

broadcast over one round of peer-to-peer channels followed by one round of
broadcast will simply work, just like in the case of one round of broadcast fol-
lowed by one round of peer-to-peer channels (Sect. 6). However, this is not the
case. When the first round is over peer-to-peer channels, the danger is that cor-
rupt parties might send inconsistent messages to honest parties in that round.
Allowing honest parties to compute their second-round messages based on incon-
sistent first-round messages might violate security. So, we must somehow guar-
antee that all honest-party second-round messages are based on the same set of
first-round messages.

Our protocol follows the structure of the protocols described by Cohen et al.
[CGZ20]. It is described as a compiler that takes a protocol Πbc which achieves
the desired guarantees given two rounds of broadcast, and achieves those same
guarantees in the broadcast pattern we are interested in, which has broadcast
available in the second round only. In the compiler of Cohen et al., to ensure
that honest parties base their second-round messages on the same view of the
first round, parties garble and broadcast their second-message functions. In more
detail, in the first round the parties secret share all the labels for their garbled
circuit using additive secret sharing, and send their first-round message from the
underlying protocol to each of their peers. In the second round (over broadcast),
each party sends their garbled second-message function, and for each bit of first-
round message she receives, she forwards her share of the corresponding label
in everyone else’s garbled circuit. The labels corresponding to the same set of
first-round messages are reconstructed for each party’s garbled second-message
function, thus guaranteeing consistency.

Broadcast-Optimal Two Round MPC with an Honest Majority 181

We use a similar approach. However, as mentioned in the introduction, there
are other challenges to address when our goal is identifiable (as opposed to
unanimous) abort. In the techniques of Cohen et al., in the second round, for
each bit of every first-round message, every party Pi must forward to everyone
else exactly one of a pair of shares of labels which Pi should have obtained from
every other party Pj . However, since the first round is over peer-to-peer channels,
Pi can claim that it didn’t get the shares of labels from Pj , and the computation
must still complete (i.e. the correct label needs to be reconstructed), since it is
unclear who to blame—Pi or Pj

6

An alternative approach might be to use threshold secret sharing instead of
additive secret sharing to share the garbled labels. In order to ensure that honest
parties can either identify a cheater or reconstruct at least one of each pair of
labels, we would need to set our secret sharing threshold to be at most n − t.
However, when t = n

2 −1, the adversary only needs one additional honest party’s
share to reconstruct any given label. If she sends different first-round messages to
different honest parties, they will contribute shares of different labels, enabling
the adversary to reconstruct both labels for some input wires. This allows the
adversary to violate honest parties’ privacy.

This is where our non-interactive one-or-nothing secret sharing primitive
comes into play. Parties can use it to secret share the pair of labels for each wire
of their garbled circuit by only broadcasting one value—the public share—in the
second round. By the non-interactive design of the one-or-nothing secret sharing
scheme, parties don’t even need to have seen the public share to contribute to
reconstruction, so no party can claim to be unable to contribute. The privacy
properties of the scheme guarantee that at most one label per wire will be recov-
ered. Moreover, if an honest party is not sure which label share to choose (which
may happen if she did not get a valid first-round message of Πbc), she can still
enable the recovery of the appropriate label (by contributing an equivocation
ballot).

We also have to consider how to identify an adversary that sends different
first-round messages from the underlying protocol to different honest parties. We
thus require each party Pi to sign these first-round messages; each other party Pj

will only act upon first-round messages from Pi with valid signatures, and echo
those messages (and signatures). In this way, we can identify Pi as a cheater as
long as she included valid signatures with her inconsistent messages. If she did
not, then either enough parties will complain about Pi to implicate her, or the
equivocation ballots will allow the computation to complete anyway.

At a very high level, our protocol can be described as follows. In the first
round, the parties send their first-round message of Πbc along with a signature to
each of their peers. In the second round (over broadcast), the parties do the fol-
lowing: (1) compute a garbling of their second-message function; (2) secret share
all the labels for their garbled circuit using the one-or-nothing secret sharing; (3)
vote for the share of the corresponding label (based on the first-round message

6 Note that this is not an issue in the protocol with unanimous abort of Cohen et al.
since if the reconstruction of the label fails, the honest parties can simply abort.

182 I. Damg̊ard et al.

received) in everyone else’s garbled circuit; (4) compute a zero-knowledge proof
to ensure the correctness of the actions taken in the second round; and (5) echo
all the first-round messages of Πbc with the corresponding signatures received
from the other parties in the first round.

Intuitively, our protocol achieves identifiable abort due to the following. First,
if a corrupt party is not caught, she must have sent a first-round message with
a valid signature to at least one honest party; otherwise, n − t > t parties would
claim to have a conflict with her, which implicates her as a cheater (since at
least one honest party is clearly accusing her). Second, she must not have sent
two different first-round messages with valid signatures; otherwise, those two
contradictory signatures would implicate her. Third, the zero-knowledge proof in
the second round ensures that every corrupt party garbles and shares its garbled
circuit labels correctly. We can conclude that, by the correctness property of the
secret sharing scheme, if no party is caught, then one label from each label pair
is reconstructed, and the underlying protocol Πbc can be carried out.

We state the theorem below, and defer the formal description of the protocol
to the full version of this paper [DMR+20].

Theorem 9 (P2P-BC, ID, n > 2t). Let F be an efficiently computable n-
party function and let n > 2t. Let Πbc be a two broadcast-round protocol that
securely computes F with identifiable abort with the additional constraint that the
straight-line simulator can extract inputs from the first-round messages. Assum-
ing a setup with CRS and PKI, and that (garble, eval, simGC) is a secure
garbling scheme, (gen, sign, ver) is a digital signature scheme, (share, vote,
reconstruct, verify) is a one-or-nothing secret sharing scheme, (keygen,
keyagree) is a non-interactive key agreement scheme and (setupZK, prove,
verify, simP, simP.Extract) is a secure non-interactive zero-knowledge proof
system. Then, there exists a protocol that securely computes F with identifi-
able abort over two rounds, the first of which is over peer-to-peer channels, and
the second of which is over a broadcast channel.

Remark 2. Note that when the underlying protocol Πbc is instantiated using the
protocols of Gordon et al. or Cohen et al. [GLS15,CGZ20], then our construction
relies only on CRS and PKI (and does not require correlated randomness).

References

[ACGJ18] Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal
secure multiparty computation with honest majority. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 395–
424. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-
0 14

[ACGJ19] Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Two round information-
theoretic MPC with malicious security. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 532–561. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 19

https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-030-17656-3_19

Broadcast-Optimal Two Round MPC with an Honest Majority 183

[BGI+01] Barak, B., et al.: On the (im)possibility of obfuscating programs. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 1

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: 20th ACM STOC. ACM Press, May 1988

[BMMR21] Badrinarayanan, S., Miao, P., Mukherjee, P., Ravi, D.: On the round
complexity of fully secure solitary MPC with honest majority. Cryp-
tology ePrint Archive, Report 2021/241 (2021). https://eprint.iacr.org/
2021/241

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: 20th ACM STOC. ACM Press, May
1988

[CD01] Cramer, R., Damg̊ard, I.: Secure distributed linear algebra in a constant
number of rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44647-8 7

[CGZ20] Cohen, R., Garay, J., Zikas, V.: Broadcast-optimal two-round MPC. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol.
12106, pp. 828–858. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-45724-2 28

[Cle86] Cleve, R.: Limits on the security of coin flips when half the processors are
faulty (extended abstract). In: 18th ACM STOC. ACM Press, May 1986

[DMR+20] Damg̊ard, I., Magri, B., Ravi, D., Siniscalchi, L., Yakoubov, S.: Broadcast-
optimal two round MPC with an honest majority. Cryptology ePrint
Archive, Report 2020/1254 (2020). https://eprint.iacr.org/2020/1254

[DS83] Dolev, D., Raymond Strong, H.: Authenticated algorithms for byzantine
agreement. SIAM J. Comput. 12(4), 656–666 (1983)

[FGMv02] Fitzi, M., Gisin, N., Maurer, U., von Rotz, O.: Unconditional byzantine
agreement and multi-party computation secure against dishonest minori-
ties from scratch. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS,
vol. 2332, pp. 482–501. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 32

[FL82] Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure inter-
active consistency. Inf. Process. Lett. 14(4), 183–186 (1982)

[GIKR01] Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity
of verifiable secret sharing and secure multicast. In: 33rd ACM STOC.
ACM Press, July 2001

[GIKR02] Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure
multiparty computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol.
2442, pp. 178–193. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45708-9 12

[GLS15] Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness
and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7 4

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: 19th
ACM STOC. ACM Press, May 1987

https://doi.org/10.1007/3-540-44647-8_1
https://eprint.iacr.org/2021/241
https://eprint.iacr.org/2021/241
https://doi.org/10.1007/3-540-44647-8_7
https://doi.org/10.1007/3-540-44647-8_7
https://doi.org/10.1007/978-3-030-45724-2_28
https://doi.org/10.1007/978-3-030-45724-2_28
https://eprint.iacr.org/2020/1254
https://doi.org/10.1007/3-540-46035-7_32
https://doi.org/10.1007/3-540-46035-7_32
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/978-3-662-48000-7_4

184 I. Damg̊ard et al.

[GS18] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018, Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 16

[IK02] Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation
via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S.,
Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002.
LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45465-9 22

[IKKP15] Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure
computation with minimal interaction, revisited. In: Gennaro, R., Rob-
shaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 359–378.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 18

[IKP10] Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with
minimal interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 577–594. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 31

[Lin01] Lindell, Y.: Parallel coin-tossing and constant-round secure two-party
computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 171–189. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44647-8 10

[PR18] Patra, A., Ravi, D.: On the exact round complexity of secure three-party
computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 425–458. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96881-0 15

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/3-540-44647-8_10
https://doi.org/10.1007/3-540-44647-8_10
https://doi.org/10.1007/978-3-319-96881-0_15
https://doi.org/10.1007/978-3-319-96881-0_15

Three-Round Secure Multiparty
Computation from Black-Box Two-Round

Oblivious Transfer

Arpita Patra1(B) and Akshayaram Srinivasan2

1 Indian Institute of Science, Bangalore, India
arpita@iisc.ac.in

2 Tata Institute of Fundamental Research, Mumbai, India

Abstract. We give constructions of three-round secure multiparty com-
putation (MPC) protocols for general functions that make black-box use
of a two-round oblivious transfer (OT). For the case of semi-honest adver-
saries, we make use of a two-round, semi-honest secure OT in the plain
model. This resolves the round-complexity of black-box (semi-honest)
MPC protocols from minimal assumptions and answers an open question
of Applebaum et al. (ITCS 2020). For the case of malicious adversaries,
we make use of a two-round maliciously-secure OT in the common ran-
dom/reference string model that satisfies a (mild) variant of adaptive
security for the receiver.

1 Introduction

Secure Multiparty Computation (MPC) is a fundamental cryptographic primi-
tive that allows a set of mutually distrusting parties to compute a joint function
of their private inputs. The security guarantee provided here is that any adver-
sary corrupting an arbitrary subset of the participating parties cannot learn
anything about the inputs of the honest parties except what is leaked from the
output of the function. The seminal feasibility results of Yao [36] and Goldre-
ich, Micali, and Wigderson [20] showed that any multiparty functionality can be
securely computed.

An important line of research in this area aims to construct efficient MPC
protocols that minimizes the number of rounds of communication. The work
of Beaver, Micali, and Rogaway [5] initiated this research direction and gave
a construction of a constant-round protocol for computing general functions.
On the lower bounds side, it is known that a single-round of communication is
insufficient for securely computing most functionalities and hence, the minimum
number of rounds needed to securely compute general functions is two.

A recent line of work has led to constructions of round-optimal (i.e., two-
round) secure multiparty computation protocols under various cryptographic
assumptions. The work of Garg et al. [14] gave a construction of such a protocol
based on indistinguishability obfuscation [4,15] and subsequent work of Gordon
et al. [21] improved the assumption to a witness encryption scheme [16]. Later,
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 185–213, 2021.
https://doi.org/10.1007/978-3-030-84245-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_7

186 A. Patra and A. Srinivasan

Mukherjee and Wichs [31] (and the subsequent works [9,33]) gave a protocol
based on the Learning with Errors assumption [35], Garg and Srinivasan [18]
gave a construction from Bilinear maps and Boyle et al. [7,8] gave a construction
from the Decisional Diffie-Hellman (DDH) assumption. Finally, the works of
Benhamouda and Lin [6] and Garg and Srinivasan [19] gave constructions of
two-round MPC protocols based on the minimal assumption that two-round
oblivious transfer (OT) exists.

Black-Box Round Complexity. A cryptographic protocol P is said to make
black-box use of an underlying primitive Q if P only makes input/output calls
to Q and is agnostic to how Q is implemented. Apart from being a fundamental
theoretical question, black-box protocols tend to be more efficient than their non-
black-box counterparts and are usually viewed as the first step towards practi-
cality. Unfortunately, the constructions of two-round MPC protocols from [6,19]
made non-black-box use of a two-round OT. On the other hand, a recent work of
Applebaum et al. [3] showed that such non-black-box use is inherent by providing
a black-box separation between these two primitives. As far as positive results
are concerned, we do know of 4-round MPC protocols making black-box use of
a two-round OT from [2,17,30]. These works left open the following intriguing
question (which was explicitly mentioned in [3]):

Can we construct a three-round secure multiparty computation protocol for
general functions making black-box use of a two-round OT?

1.1 Our Results

In this work, we give a near complete answer to the above question. For the case
of semi-honest adversaries, we fully resolve the problem and show that two-round
OT is black-box complete for three-round MPC. Specifically,

Informal Theorem 1. Let f be an arbitrary multiparty functionality. There
exists a three-round protocol that securely computes f against semi-honest adver-
saries corrupting an arbitrary subset of the parties. The protocol makes black-box
use of a two-round, semi-honest secure OT and is in the plain model. The com-
putational cost of the protocol grows polynomially with the circuit size of f and
the security parameter.

For the case of malicious adversaries, we give a three-round MPC proto-
col that makes black-box use of two-round, malicious-secure OT that addition-
ally satisfies an equivocality property for the receiver’s message. Specifically,
we require the existence of a special algorithm that can equivocate the first
round receiver OT message to both bits 0 and 1. Such equivocality property is
implied by a two-round OT that is secure against a malicious adversary that
can adaptively corrupt the receiver or, it can be obtained from black-box use of
a dual-mode public-key encryption scheme [34]. The main theorem we show for
malicious adversaries is the following:

Three-Round Secure Multiparty Computation 187

Informal Theorem 2. Let f be an arbitrary multiparty functionality. There
exists a three-round protocol that UC-realizes f (with unanimous abort) against
malicious adversaries corrupting an arbitrary subset of the parties. The protocol
makes black-box use of a two-round, UC-secure OT against malicious adversaries
with equivocal receiver security and is in the common random/reference string
model. The computational cost of the protocol grows polynomially with the circuit
size of f and the security parameter.

We note that the work of Garg and Srinivasan [19] gave a generic transforma-
tion from any two-round, malicious-secure OT to one that additionally satisfies
the equivocal receiver property. Unfortunately, this transformation makes non-
black-box use of a PRG (but makes black-box use of OT). We leave open the
interesting problem of obtaining a black-box transformation, or showing that
such non-black-box use is inherent.

2 Technical Overview

In this section, we give a high-level overview of the main techniques used in the
construction our MPC protocols in the semi-honest and the malicious setting.

Starting Point. Our work builds on the recent results of [6,19] which gave con-
structions of a two-round MPC protocol from two-round OT. The key technical
contribution in these works is the design of a round-collapsing compiler that
takes a larger round protocol for securely computing the required functionality
and squishes the number of rounds to two. Specifically, instead of the parties
interacting with each other as in the larger round protocol, the round-collapsing
compiler gave a mechanism wherein the garbled circuits generated by each party
performs this interaction. The interaction between garbled circuits is enabled by
making use of a two-round OT. Unfortunately, these constructions [6,19] require
non-black-box use of cryptographic primitives.

If we look closely into these constructions, we observe that there is only one
place where non-black-box use of cryptography is needed. Specifically, the gar-
bled circuits which perform the interaction on behalf of the parties use the code
of the underlying larger round protocol. Thus, if the larger round protocol makes
use of cryptographic primitives such as an OT, then the squished protocol makes
non-black-box use of these primitives. On the other hand, if the larger round
protocol only made use of information-theoretic operations, then the resultant
two-round protocol makes black-box use of cryptography. Unfortunately, the neg-
ative results in [29] rules out information-theoretic secure computation protocols
for most functions in the dishonest majority setting. Furthermore, the work of
Applebaum et al. [3] showed that such non-black-box use of OT is inherent if
we want to construct a two-round MPC protocol. However, their work left open
the problem of constructing a black-box three-round MPC protocol based on
two-round OT.

The work of Garg, Ishai, and Srinivasan [17] observed that if the parties
apriori shared random OT correlations, then one can use the results of [26,

188 A. Patra and A. Srinivasan

28] to construct an information-theoretic MPC protocol in the OT correlations
model. Now, squishing the number of rounds of such a protocol using the round-
collapsing compiler of [6,19] gives rise to an MPC protocol that makes black-
box use of cryptography. Garg et al. [17] also gave a method of generating such
correlations in a single round using a primitive called non-interactive OT. This
gives rise to the following three-round protocol that makes black-box use of
cryptographic operations: use the first round to generate random OT correlations
relying on non-interactive OT, and use the next two rounds to implement the
round-collapsing compiler of [6,19]. However, a non-interactive OT is a very
strong primitive and it is not known whether this can be constructed generically
from a two-round OT.

Double Selection Functionality. If we abstract out the other details from [17],
then the main ingredient needed to instantiate the black-box version of the
round-collapsing compiler is a three-round protocol for a special multiparty func-
tionality that we call as the double selection. In this functionality, only three of
the n parties, say, P1, P2 and P3 have private inputs. The input of P1 is given
by two bits (α, r), the input of P2 is given by two bits (x0, x1) and the input of
P3 is given by two strings (y0, y1). The functionality first computes xα ⊕ r and
then computes yxα⊕r and delivers (xα ⊕r, yxα⊕r) to every party (and not just to
P1, P2, and P3.). In other words, the functionality first selects xα from (x0, x1),
XORs xα with r and then again selects yxα⊕r from (y0, y1) and hence, the name
double selection. The work of Garg et al. [17] can be viewed as giving a three-
round protocol for the double selection functionality based on non-interactive
OT. The goal of this work is to give such a protocol based only on black-box use
of a two-round OT.

We first note that if we relax the requirement to say that, only one of
{P1, P2, P3} gets the output at the end of the third round, then based on prior
work, it is possible to design a black-box three-round protocol for this relaxed
functionality. Indeed, one can express the double selection functionality as a
degree-3 polynomial (over F2) and use the protocol from [2] to securely evaluate
a degree-3 polynomial. Additionally, it is not too hard to see that if we invoke
such a protocol thrice, then we can enable each one of {P1, P2, P3} to get the
output of the double selection functionality at the end of the third round. How-
ever, the main technical challenge here is to enable each of the n parties and not
just {P1, P2, P3}, to reconstruct the output at the end of the third round. This
requirement is equivalent to constructing a three-party protocol with a special
property called as publicly-decodable transcript [3]. Roughly speaking, this prop-
erty requires the existence of an efficient algorithm that takes the transcript of
the three-party protocol and gives the output of the double selection functional-
ity. For the sake of simplicity, let us restrict ourselves to protocols where the last
round (i.e., the third round) message contains the output in the clear. We now
explain how to construct such a protocol making black-box use of two-round
OT.

Key Idea: “Cascading OT.” Since the last round message of the protocol
contains the output of the functionality in the clear, this implies that there

Three-Round Secure Multiparty Computation 189

exists some party that can compute this output at the end of the second round
and then broadcast this value to all the parties in the third round. This seems
particularly challenging if we restrict ourselves to making black-box use of a
two-round OT. Indeed, this implies that we need a mechanism to compute the
output of a degree-3 function in two rounds using a two-round OT that only
enables degree-2 computation. This apparent mismatch in the degree is the key
challenge that we need to tackle.

This is where our idea of “cascading OT” comes into the picture. Specifically,
in our protocol, one of the parties, say P3, computes a sender OT message with
respect to a receiver OT message generated by P1 (that encodes P1’s input).
The sender inputs used by P3 to generate this message are in fact, two other
sender OT messages computed by P3, each with respect to a receiver OT message
generated by P2 (that encodes P2’s input). Thus, the “inner” sender OT message
encodes a degree two computation of P2 and P3’s inputs and the “outer” sender
OT message encodes a degree-3 computation of P1, P2 and P3’s inputs. This
idea of cascading two sender OT messages by P3 allows P1 to compute a degree-
3 function in two rounds and thus, enabling us to solve the degree mismatch
problem. Let us first see how to implement this “cascading OT” idea in the
semi-honest setting and later explain the additional challenges that arise in the
malicious setting.

2.1 Semi-honest Setting

In the first round, P1 computes two receiver OT messages: otr that encodes α as
the choice bit and otr′ that encodes r as the choice bit. In parallel, P2 computes
two receiver OT messages otr0 that encodes its input x0 and otr1 that encodes
x1. P1 broadcasts (otr, otr′) and P2 broadcasts (otr0, otr1) in the first round. In
the second round, P3 chooses a random bit mask and computes two sender OT
messages: ots0 with respect to otr0 using (y0 ⊕ mask, y1 ⊕ mask) as its sender
inputs and ots1 with respect to otr1 using again (y0 ⊕ mask, y1 ⊕ mask) as its
inputs. It then computes the “cascading” sender OT message ots with respect to
otr using (ots0, ots1) as its two sender messages. Additionally, it computes ots′

with respect to otr′ with (mask, y1 ⊕ y0 ⊕ mask) as its sender messages. It then
sends (ots, ots′) to P1 in the second round.

Now, the randomness used in generating otr enables P1 to recover otsα from
ots. However, recall that otsα is generated with respect to otrα and the ran-
domness used for generating this message is available with P2. Thus, to enable
P1 to decrypt otsα, in the second round, P2 computes a sender OT message
with respect to otr with the input and randomness used for computing otr0 and
otr1 as the two sender inputs. Thus, P1 can first recover xα and the random-
ness used for generating otrα from P2’s second round message and then obtain
yxα

⊕mask := xα(y1⊕y0)⊕y0⊕mask from otsα. P1 also computes r(y1⊕y0)⊕mask
from ots′ using the randomness used in generating otr′. It adds these two values
to get yxα⊕r. In the last round, P1 broadcasts (xα⊕r, yxα⊕r). This protocol satis-
fies correctness and we can show that this protocol is secure against semi-honest
adversaries by relying on the semi-honest security of the two-round OT.

190 A. Patra and A. Srinivasan

From Double Selection to General Functions. To give a protocol for gen-
eral functions, we can use the reduction from general functions to double selection
implicit in the work of [17]. Alternatively, we can use the above idea of cascading
OT to give a three-round secure protocol for a related degree-3 function called as
3MULTPlus. We can then rely on completeness results from [3,8,17] who showed
a round-preserving black-box reduction from a semi-honest protocol for com-
puting general functions to a secure protocol for 3MULTPlus functionality. In
the main body, we construct a protocol for securely computing 3MULTPlus and
directly rely on the above completeness theorem to give a self-contained version
of our semi-honest MPC result.

2.2 Malicious Setting

In the malicious setting, many other challenges arise and we now explain our
ideas to solve them.

Challenge-1: Attack by a malicious P3. Let us start with the bare-bones
version of the malicious protocol which is just the semi-honest protocol but with
all the OT invocations replaced with a malicious secure version. On inspection,
we see that a corrupt P3 can completely break the security of this protocol.
Specifically, P3 can compute ots0 and ots1 on two different pairs of inputs, say
using (mask,mask) and (1 ⊕ mask, 1 ⊕ mask) respectively and compute ots′ on
inputs (mask,mask). Depending on the message received from P1 in the last
round, corrupt P3 learns the value α. In order to prevent such an attack, we
need a mechanism to ensure that P3 uses consistent inputs to compute both ots0
and ots1.

One way to ensure consistency of P3’s inputs is to ask P3 to give a zero-
knowledge proof that the inputs used in both these computations are consistent.
However, a näıve way of implementing such a zero-knowledge proof makes non-
black-box use of cryptographic primitives which we want to avoid. To give a
“black-box” zero-knowledge proof, we make use of “MPC-in-the-head” approach
of Ishai et al. [25].

Solution: “MPC-in-the-head” Approach. To convey the main idea, we first
explain a simple solution that blows-up the number of rounds and later show
how to squish the number of rounds. P3 imagines m-servers in its head (for some
appropriately chosen parameter m). It then shares y0, y1,mask among these m
servers using a threshold linear secret sharing scheme with a threshold parameter
t. For each i ∈ [m], P3 computes {otsi0, otsi1, otsi, ots′i} using the shares given to
the i-th server. Specifically, the values (y0, y1,mask) in the original computation
are replaced with the shares (yi

0, y
i
1,maski) given to the i-th server. P3 sends

{otsi, ots′i}i∈[m] to P1 in the second round. P1 now chooses a random subset T
of [m] of size t and asks P3 to reveal the shares and the randomness used in the
computation of (otsi, ots′i) for every i ∈ T . P1 now checks if these computations
are correct. If they are all correct, then for each i ∈ [m], P1 recovers the share
of the output and reconstructs the output. Here, we are crucially relying on the
fact xα(y1 ⊕ y0) ⊕ y0 ⊕mask and r(y1 ⊕ y0) ⊕mask recovered by P1 in the bare-
bones protocol are linear functions of y0, y1,mask and the secret sharing scheme

Three-Round Secure Multiparty Computation 191

used by P3 supports linear operations on the shares. This ensures that P1 can
recover the correct output from the shares. However, this idea seems to blow-up
the number of rounds to 4. To squish the number of rounds to 2, we make use of
a trick from [27], wherein P1, in the first round, uses a t-out-of-m OT to commit
to its set T and P3 in the second round uses the m sets of inputs, randomness
as its sender inputs.

We can now show that if a malicious P3 is using inconsistent inputs in “many”
server executions then it gets caught with overwhelming probability. On the other
hand, if P3 is using inconsistent inputs in a “small” number of server executions,
then we can rely on the error correcting properties of the secret sharing scheme
to recover the correct output.1

Need for Equivocal Receiver Security. Here, another technical issue arises
and to solve this, we need the OT to satisfy the equivocality property on the
receiver’s message. To see why this additional property is required, consider the
case where P2 is honest but P1 is corrupted. Since the adversary is rushing, the
honest P2 sends both otr0, otr1 before receiving otr, otr′. Recall that in the second
round, P2 generates a sender OT message with respect to otr with the input and
the randomness used in otr0 and otr1 as its OT inputs. Unfortunately, this leads
to the following issue during simulation. We cannot know the value of xα unless
we receive otr from the corrupt P1. This value is obtained only after we send
both otr0, otr1. However, since xα and the randomness used in generating otrα
are needed to compute the sender OT message from P2, we need to generate
otrα in a way that it correctly encodes xα. To solve this issue, we rely on the
equivocality property of the receiver’s message. Specifically, since the first round
OT message of the receiver can be equivocated to both bits 0 and 1, we use the
equivocal simulator to generate randomness that is consistent with the encoding
of xα. We then use this randomness to generate the second round OT message.
As mentioned earlier, this property is satisfied by any two-round OT that is
secure against adversaries that can adaptively corrupt the receiver, or it can be
obtained from a dual-mode public-key encryption scheme [34].

Challenge-2: Attack by Malicious P2. In the previous step, we prevented
a malicious P3 from breaking the security of the protocol. However, we observe
that a malicious P2 can still break the security of the protocol by mounting an
input dependent abort. Specifically, a corrupt P2 can generate the second round
OT message with respect to otr such that only one of its two sender inputs
contains the correct randomness used in generating (otr0, otr1). It sets the other
sender input to be some junk value. If the input α of P1 corresponds to the
position that contains the junk value, then P1 aborts at the end of the second
round. This enables P2 to learn the value α. The first natural idea to prevent
this attack is to use a zero-knowledge proof to show that P2 is using the correct
inputs in generating the sender OT message. However, unlike the previous step,

1 Here, we need to additionally ensure that malicious P3 is generating the shares
correctly. Hence, we make use of a pairwise verifiable secret sharing based on bivariate
polynomials and do additional checks on the shares to ensure that the sharing is done
correctly.

192 A. Patra and A. Srinivasan

the relation that we want to prove (or equivalently, the functionality computed
by the MPC) involves a cryptographic statement and in those cases, the “MPC-
in-the-head” approach leads to non-black-box use of cryptographic primitives.
Thus, we need a new approach to deal with this issue.

Solution: Using an OT-Combiner. We first observe that if the input α of
P1 was uniformly random, then the probability that a corrupt P2 can guess α
to force P1 to abort is 1/2. For κ = Ω(λ) (where λ is the security parameter),
consider invoking the above protocol κ times on independently chosen random
P1 inputs (α1, . . . , ακ). Then, the probability that corrupt P2 can guess more
than λ of these inputs is negligible. Given this observation, consider the following
two-party functionality:

1. The input of P1 is given by two bits (α, r) and the input of P2 is given by
two other bits (x0, x1).

2. P1 and P2 also share κ = Ω(λ) random OT correlations with P1 acting as the
receiver and P2 acting as the sender. Additionally, a corrupt P2 might learn
λ of these receiver correlations. We call these as “leaky” OT correlations.

3. At the end of the protocol, we want both P1 and P2 to learn (xα ⊕ r).

A statistically secure protocol for the above functionality is obtained by
first implementing the information-theoretic OT combiner protocol from [12]
to extract “pure” OT correlations from the above “leaky” OT correlations and
then use the information-theoretic two-party protocols [24,26,28] in the OT cor-
relations model to securely compute xα ⊕ r. Unfortunately, this protocol does
not run in two rounds. To squish the number of rounds, we apply the round
collapsing compiler of [6,19] to this larger round protocol and use the protocol
from the first step (the one that suffers from input dependent abort) to set up
the leaky OT correlations. Since the above protocol is statistical, the squished
protocol only makes black-box use of cryptographic operations. Additionally, to
enable the party P3 to output yxα⊕r, we use the following observation about the
compiler given in [19]: even if a party is not participating in the protocol, the
garbled circuit generated by the party can listen to the protocol transcript and
thus, learn the output. This observation allows the garbled circuit generated by
P3 to listen to the protocol between P1 and P2 and obtain xα ⊕ r. This garbled
circuit can then output yxα⊕r. This allows us to obtain a three-round black-box
protocol for the double selection functionality that does not suffer from input
dependent abort.

From Double Selection to General Functions. To give a protocol for gen-
eral functions, we use the techniques in [17] to show that double selection is
black-box complete for designing three-round secure protocols against malicious
adversaries. Specifically, we apply the round-collapsing compiler to statistically
secure protocols in the OT correlations model [26,28] and use the above protocol
to implement the double selection functionality. This gives rise to a three-round
MPC protocol that makes black-box use of a two-round, malicious-secure OT
with equivocal receiver security.

Three-Round Secure Multiparty Computation 193

3 Preliminaries

We recall some standard cryptographic definitions in this section. Let λ denote
the security parameter. We give the standard definition for negligible functions,
computational indistinguishability and the UC framework [11] in the full version.

3.1 Oblivious Transfer

In this paper, we consider a 1-out-of-2 OT, similar to [1,10,13,22,32,34] where
one party, the sender, has input composed of two strings (s0, s1) and the input
of the second party, the receiver, is a bit β. The receiver should learn sβ and
nothing regarding s1−β , while the sender should gain no information about β.

Semi-honest Secure Two-Round OT. A two-round semi-honest OT protocol
〈S,R〉 is defined by three probabilistic algorithms (OT1,OT2,OT3) as follows.
The receiver runs the algorithm OT1 with the security parameter 1λ, and a bit
β ∈ {0, 1} as input and the random tape set to ω and obtains otr. The receiver
then sends otr to the sender, who obtains ots by evaluating OT2(otr, (s0, s1))
(with a uniform random tape), where s0, s1 ∈ {0, 1}λ are the sender’s input
messages. The sender then sends ots to the receiver who obtains sβ by evaluating
OT3(ots, (β, ω)).

– Correctness. For every choice bit β ∈ {0, 1} and the random tape ω of the
receiver, and any input messages s0 and s1 of the sender we require that,
if otr := OT1(1λ, β;ω), ots ← OT2(otr, (s0, s1)), then OT3(ots, (β, ω)) = sβ

with probability 1.
– Receiver’s security. We require that, {otr : ω ← {0, 1}∗, otr :=

OT1(1λ, 0;ω)} c≈ {otr : ω ← {0, 1}∗, otr := OT1(1λ, 1;ω)}.
– Sender’s security. We require that for any choice of β ∈ {0, 1} and any

strings K0,K1, L0, L1 ∈ {0, 1}λ with L0 = L1 = Kβ , we have that, {β, ω ←
{0, 1}∗,OT2(1λ, otr,K0,K1)} c≈ {β, ω ← {0, 1}∗,OT2(1λ, otr, L0, L1)} where
otr := OT1(1λ, β;ω).

Remark 1. We note that we can relax the correctness requirement to have a
negligible probability of error. For the sake of simplicity of exposition, we stick
to protocols having perfect correctness.

Maliciously Secure Two-Round OT with Equivocal Receiver Security.
We consider the stronger notion of oblivious transfer with security against mali-
cious adversaries in the common random/reference string model. In addition
to the standard security against malicious receivers, we need this protocol to
satisfy a special property called equivocal receiver security introduced in [19].
Informally, this property says that the first round message of the receiver can
be equivocated to both choice bits 0 and 1. In terms of syntax, we supplement
the syntax of semi-honest OT with an algorithm KOT that takes the security
parameter 1λ as input and outputs the common random/reference string crs.
Also, the three algorithms OT1,OT2 and OT3 additionally take crs as input.

194 A. Patra and A. Srinivasan

Furthermore, instead of using the entire random tape of OT1 algorithm as input
to OT3, we let the OT1 algorithm to output some secret information which is
then used by OT3.

– Correctness. For every β ∈ {0, 1} and any input messages s0 and s1 of
the sender, we require that, if crs ← KOT(1λ), (otr, μ) ← OT1(crs, β), ots ←
OT2(crs, otr, (s0, s1)), then OT3(crs, ots, (β, μ)) = sβ with probability 1.

– Equivocal Receiver’s security. We require the existence of a PPT simu-
lator SimR = (Sim1

R,Sim2
R) such that for any sequence of (β1, . . . , βn) where

each βi ∈ {0, 1} and n = poly(λ), we have:
{

(crs, {(otri, μi
βi

)}i∈[n]) : (crs, td) ← Sim1
R(1λ), {(otri, μi

0, μ
i
1) ←

Sim2
R(crs, td)}i∈[n]

}
c≈

{
(crs, {OT1(crs, βi)}i∈[n]) : crs ← KOT(1λ)

}
.

– Checking Validity of Receiver’s Key. There is a deterministic polynomial
time algorithm CheckValid that takes as input crs, otr, β, μ and outputs 1 if
and only if there exists some ω ∈ {0, 1}∗ such that (otr, μ) := OT1(crs, β;ω).

– Sender’s security. We require the existence of PPT algorithm SimS =
(Sim1

S ,Sim2
S) such that for any choice of Ki

0,K
i
1 ∈ {0, 1}λ for i ∈ [n] where

n = poly(λ), PPT adversary A and any PPT distinguisher D, we have:
∣∣∣ Pr[Expt1 = 1] − Pr[Expt2 = 1]

∣∣∣ ≤ negl(λ).

Expt1:

crs ← KOT(1λ)
{otri}i∈[n] ← A(crs)

{
otsi ← OT2(crs, otr

i, (Ki
0, K

i
1))

}
i∈[n]

Output D(crs, {otsi}i∈[n])

Expt2:

(crs, td) ← Sim1
S(1λ)

{otri}i∈[n] ← A(crs)
βi := Sim2

S(crs, td, otri) ∀i ∈ [n]
Li

0 := Ki
βi

and Li
1 := Ki

βi{
otsi ← OT2(crs, otr, (L

i
0, L

i
1))

}
i∈[n]

Output D(crs, {otsi}i∈[n])

Remark 2. We note that a two-round malicious secure OT with equivocal
receiver security implies a standard two-round malicious OT that implements
the ideal OT functionality.

We recall the definitions of garbled circuits, non-interactive secure computa-
tion and some properties of symmetric bivariate polynomial in the full version.

4 3-Round Semi-honest MPC

In this section, we give a three-round, semi-honest secure protocol for computing
arbitrary multiparty functionalities making black-box use of a two-round, semi-
honest secure OT in the plain model. We do this in two steps. In the first step, we
give a three round protocol for securely computing the F3MULTPlus functionality
(described below) against semi-honest adversaries. In the second step, we extend
it for the case of general functions by relying on the results from [3,8,17].

Three-Round Secure Multiparty Computation 195

4.1 First Step: Protocol for F3MULTPlus

Let us first recall the F3MULTPlus functionality. It is a n-party functionality that
takes input from 3 parties and delivers output to every party. Specifically, let us
denote the parties that provide inputs to this functionality by P1, P2, and P3.
The input of Pi for i ∈ {1, 2, 3} is given by (xi, yi) ∈ {0, 1} × {0, 1}. The output
of the functionality is given by x1 · x2 · x3 + y1 + y2 + y3 (where + and · are over
F2). The main theorem that we show in this subsection is:

Theorem 3. There is an efficient three-round protocol Π3MULTPlus (Fig. 1) that
makes black-box use of a two-round, semi-honest OT and securely computes the
F3MULTPlus functionality against semi-honest adversaries corrupting an arbitrary
subset of the parties. The protocol is in the plain model.

Building Π3MULTPlus. In Fig. 1, we describe a three-round protocol for securely
computing F3MULTPlus against semi-honest adversaries making black-box access
to a 2-round semi-honest OT. We give an informal description below.

At a high-level, the degree-3 computation is achieved by cascading OT mes-
sages i.e., generating a sender OT message where the inputs are themselves two
other sender OT messages. Since OT enables degree-2 computation, cascading
OT enables us to compute the result of a degree-3 computation. The main nov-
elty lies in being able to do this in 2 rounds for OTs that are run in parallel.
The last round is spent on a single broadcast of a value by each party and subse-
quent local accumulation of these broadcasted values to obtain the final result.
We elaborate on this idea below.

In the first round, P1, acting as a receiver, publishes an OT receiver message
otr that encodes its input x1. In parallel, P2, first splits x2 into two additive
shares (x2,0, x2,1) and then publishes two OT receiver messages, otr0, otr1 where
otrb encodes x2,b. In the second round, P3 splits its input x3 into two additive
shares, x3,0, x3,1. It then prepares two OT sender messages with respect to the
receiver messages otr0, otr1 where the sender inputs used in both these messages
are given by (x3,0, x3,1). Let these OT messages be denoted by ots0, ots1. The
crux of our construction is then to use ots0, ots1 as the sender inputs in response
to P1’s receiver message otr. With this sender message, P1 can retrieve otsx1 ,
but in order to decode otsx1 , it needs the receiver’s input and randomness used
for otsx1 , which are held by P2. Responding to P1’s receiver message otr, P2

computes a sender OT message with input ((x2,0, ω2,0), (x2,1, ω2,1)). Using this
message, P1 can retrieve x2,x1 and the corresponding randomness while x2,1−x1

and the matching randomness are hidden. Deducing from the OT correctness,
we conclude that P1 at the end of the second round can compute x3,x2,x1

which
can be written as x2,x1(x3,0 + x3,1) + x3,0 = (x1 · x2 + x2,0) · x3 + x3,0, since
x2,x1 = x1(x2,0 +x2,1)+x2,0. To cancel out the extra multiplicative term x2,0 ·x3

in the expression, another OT instance is needed between P2, P3, where P3 enacts
a receiver with input x3 and P2 enacts a sender with input x2,0,0, x2,0,1 which
are an additive secret sharing of x2,0. Once all the OTs conclude in the first two
rounds, each of P1, P2 and P3 accumulates their appropriate local data (which
includes their other input yi) and this can be shown to be an additive secret

196 A. Patra and A. Srinivasan

sharing of the output. In the final round, each party broadcasts this value and
this enables every party to compute the final result via plain addition. Lastly,
each of these three parties distributes shares of 0 amongst P1, P2, P3 to be added
to their local sum before broadcast. This step is required for simulation in the
case where there exists more than one honest party in the set P1, P2, P3.

Inputs: Pi for i ∈ [3] inputs (xi, yi).
Output: For each i ∈ [n], Pi outputs x1x2x3 + y1 + y2 + y3.
Primitive: A two-round semi-honest secure OT protocol (OT1,OT2,OT3).

Round-1: In the first round,
– P1 chooses a random string ω ← {0, 1}∗ and computes otr := OT1(1

λ, x1; ω).
– P2 chooses two random strings ω0, ω1 ← {0, 1}∗. It chooses random bits

x2,0, x2,1 ← {0, 1} subject to x2 = x2,1 + x2,0. It computes otr0 :=
OT1(1

λ, x2,0; ω0) and otr1 := OT1(1
λ, x2,1; ω1).

– P3 chooses a random string ω′ ← {0, 1}∗ and computes otr3 :=
OT1(1

λ, x3; ω
′).

– P1 broadcasts otr, P2 broadcasts (otr0, otr1) and P3 broadcasts otr3.
– For every i ∈ [3], Pi chooses a random additive secret sharing of 0 given

by (δi
1, δ

i
2, δ

i
3) and sends the share δi

j to party Pj for j ∈ [3] \ {i} via private
channels.a

Round-2: In the second round,
– P2 computes ots ← OT2(otr, (x2,0, ω0), (x2,1, ω1)). It then chooses random

bits x2,0,0, x2,0,1 ← {0, 1} subject to x2,0 = x2,0,0+x2,0,1. It computes ots3 ←
OT2(otr3, x2,0,0, x2,0,1).

– P3 chooses random bits x3,0, x3,1 ← {0, 1} subject to x3 = x3,0+x3,1. For each
b ∈ {0, 1}, it first computes otsb ← OT2(otrb, x3,0, x3,1). It then computes
ots ← OT2(otr, ots0, ots1).

– P2 broadcasts (ots, ots3) and P3 broadcasts ots.
Round-3: In the last round,

– For each i ∈ [3], Pi computes δi = δ1i + δ2i + δ3i .
– P2 sets z2 := x2,0,0 + y2 + δ2.
– P3 computes x2,0,x3 := OT3(ots3, (x3, ω

′)) and sets z3 = x2,0,x3+x3,0+y3+δ3.
– P1 computes (x2,x1 , ωx1) := OT3(ots, (x1, ω)) and otsx1 := OT3(ots, (x1, ω)).

It then computes x3,x2,x1
:= OT3(otsx1 , (x2,x1 , ωx1)). It then sets z1 :=

x3,x2,x1
+ y1 + δ1.

– P1 broadcasts z1, P2 broadcasts z2 and P3 broadcasts z3.
Output: Every party outputs z1 + z2 + z3.

a We can simulate a single round of private channel messages in two rounds over
public channels by making use of a two-round OT.

Protocol Π3MULTPlus

Fig. 1. Protocol Π3MULTPlus

Three-Round Secure Multiparty Computation 197

We show the correctness and security in Lemma 1–2.

Lemma 1 (Correctness). Protocol Π3MULTPlus correctly computes F3MULTPlus.

Proof. We first observe that x2,0,x3 computed by P3 in Round-3 is equal to
x3(x2,0,0 + x2,0,1) + x2,0,0 = x3 · x2,0 + x2,0,0. Therefore, z3 = x3 · x2,0 + x2,0,0 +
x3,0 + y3 + δ3. We then observe that x2,x1 and otsx1 computed by P1 are equal
to x1 · x2 + x2,0 and OT2(OT1(1λ, x2,x1 ;ωx1), x3,0, x3,1) respectively. Therefore,
x3,x2,x1

computed by P1 is equal to x2,x1(x3,0 + x3,1) + x3,0 = (x1 · x2 + x2,0) ·
x3 + x3,0. This implies that z1 = (x1 · x2 + x2,0) · x3 + x3,0 + y1 + δ1. Finally, we
observe that (δ1, δ2, δ3) form an additive secret sharing of 0. Hence,

z1 + z2 + z3 = ((x1 · x2 + x2,0) · x3 + x3,0 + y1 + δ1)
+ (x2,0,0 + y2 + δ2) + (x3 · x2,0 + x2,0,0 + x3,0 + y3 + δ3)
= x1 · x2 · x3 + y1 + y2 + y3

This completes the proof of correctness.

Lemma 2 (Security). Protocol Π3MULTPlus securely computes F3MULTPlus

against a semi-honest adversary corrupting an arbitrary subset of parties.

We defer the proof to the full version.

4.2 Second Step: Protocol for Arbitrary Functions

We recall the theorem about completeness of F3MULTPlus from [3, Theorem 6.4].

Theorem 4 ([3,8,17]). Let f be an n-party functionality. There exists a pro-
tocol Πf for securely computing f against a semi-honest adversary (corrupting
an arbitrary subset of parties), where Πf makes parallel calls to the F3MULTPlus

functionality and uses no further interaction. The protocol Πf can either be: (1)
computationally secure using a black-box PRG, where the complexity of the par-
ties is polynomial in n, the security parameter λ and the circuit size of f , or
alternatively (2) perfectly secure, where the complexity of the parties is polyno-
mial in n and the branching program size of f .

From Theorem 3 and the UC composition theorem [11], we get the following.

Corollary 1. Let f be an n-party functionality. There is a three-round protocol
that makes black-box use of a two-round, semi-honest secure OT and securely
computes f against a semi-honest adversary corrupting an arbitrary subset of
parties. The complexity of the parties is polynomial in n, the security parameter
λ and the circuit size of f .

198 A. Patra and A. Srinivasan

5 3-Round Malicious MPC

In this section, we give a construction of a 3-round protocol that computes any
multiparty functionality with UC-security against malicious adversaries. The
protocol makes black-box use of a two-round, malicious-secure OT with equiv-
ocal receiver security. We do this in three steps. In the first step, we define a
special n-party functionality called double selection and give a two-round, black-
box protocol that securely computes this functionality. However, this protocol
satisfies only a weaker notion of security which is security with input dependent
abort. In the second step, we use the protocol from the first step and give a
three-round protocol that securely computes this double selection functionality
with standard security. In the final step, we show how to bootstrap the protocol
from the second step to a black-box, three-round protocol for general functions.

5.1 First Step: Special Functionality with Input Dependent Abort

In this subsection, we define a special n-party functionality F†
dSelPri in Fig. 2 and

give a black-box, two-round protocol that computes F†
dSelPri. This functionality

captures input-dependent abort attack that can be launched by a corrupt P2

against P1, causing loss of input privacy of P1.

Fig. 2. Functionality F†
dSelPri

Three-Round Secure Multiparty Computation 199

We show the following theorem, which implies the subsequent corollary via
the results from [24,26].

Theorem 5. There exists a two-round protocol Π†
dSelPri (Fig. 4) that UC-realizes

F†
dSelPri in the F(m,p)-RaOT (Fig. 3) hybrid model making black-box access to a two-

round, malicious-secure OT with equivocal receiver security.

Corollary 2. There exists a two-round protocol Π†
dSelPri that UC-realizes the

functionality F†
dSelPri making black-box access to a two-round, malicious-secure

OT with equivocal receiver security.

Fig. 3. Functionality F(m,p)-RaOT

Building Π†
dSelPri. We begin with the description of a protocol that computes a

simplified version of the function dSelPri in the face of a semi-honest adversary,
assuming P3 as the lone provider of a pair z0, z1. This version, in fact, is identical
to the first two rounds of the construction for “double-selection” functionality
implementing “cascaded OT” described in Sect. 2.1.

Now, to make the idea work against a malicious adversary, we inspect the
roles of the various parties and try to see the kind of attack that they can
mount. P1’s role only includes preparing two OT receiver messages and therefore
a corrupt P1 is taken care by the sender security of the OT against malicious
receivers. Next, a corrupt P2 plays the role of two receivers to P3 and one sender
to P1, where the messages and matching randomnesses used for the former role
are fed as input in the latter role. While OT’s sender security takes care, and in
effect, fixes P2’s input through the receiver messages, there is still a scope for P2

to launch a selective failure or input-dependent attack against P1 by selectively
choosing only one of the OT sender inputs correctly. This allows it to learn P1’s
input α, by simply observing whether P1 aborts or not. But the functionality
F†

dSelPri allows this attack, and preventing this attack is taken care in the next
section. This brings us to the last case where P3 can be corrupt.

200 A. Patra and A. Srinivasan

P3 prepares three OT sender messages, wherein the third instance takes the
result of first two instances as input and in addition, the inputs to the first
two instances need to be identical, namely (z0 + mask, z1 + mask). Tackling a
corrupt P3 clearly requires to step beyond OT receiver security against malicious
senders. Here, we deploy MPC-in-the-head approach [25] for the consistency
check, where P3 prepares states of m virtual parties in its head that jointly hold
a secret sharing of z0, z1,mask. The sharing is pairwise checkable and adheres
to a threshold that dictates its security. A bivariate polynomial based sharing
scheme fits the bill. Next, the i-th virtual party’s state includes the OT sender
messages that are prepared by simply replicating P3’s computation on the i-th
shares of z0, z1,mask. Now, the goal is to open some number of the states to P1 for
checking and we need to ensure that this number (a) is not big enough to violate
P3’s privacy, (b) but is enough to either catch a corrupt P3 or error-correct the
faults. Here, we invoke a 2-party NISC between P1 and P2 for computing the
Rabin OT functionality F(m,p)-RaOT, where P3 inputs the m states. F(m,p)-RaOT

ensures each state is chosen to be revealed to P1 independently with probability
p. Using Chernoff bounds, we can conclude that the probability that more than
the threshold number of states are revealed to P1 is negligible. Consequently,
the secrets z0, z1,mask are safe from P1 with overwhelming probability. On the
other hand, a corrupt P3 either gets caught with overwhelming probability when
it prepares a “large” number of wrong states and in the case where it ends up
maligning small number of states, we rely on error correction to ensure the
recovery of information. Since the NISC realizing F(m,p)-RaOT makes black-box
use of a two-round OT [24,26], our final construction is black-box, as desired.

Inputs: P1 inputs (α, r) ∈ {0, 1} × {0, 1}, P2 inputs (y0, y1) ∈ {0, 1} × {0, 1}. For
every 3 ≤ i ≤ n, Pi inputs (zi

0, z
i
1) ∈ {0, 1}λ × {0, 1}λ.

Output: P1 outputs (yα, {zi
yα⊕r}3≤i≤n).

Primitives: (a) A malicious-secure two-round OT with equivocal receiver security
(KOT,OT1,OT2,OT3) (see Section 3.1). We use OT∗

1 to denote an algorithm that
takes a crs and q(λ)-bit string (for some polynomial q(·)) as input and applies
OT1 to each bit of that string. (b) Functionality F(m,p)-RaOT where m = 3λ + 1
and p = λ/2m.

Common Random/Reference String Generation: For each i ∈ [n], sample
crsi ← KOT(1λ). Set the crs to be (crs1, . . . , crsn).

Round-1: In the first round,
– P1 computes (otr, μ) ← OT1(crs

1, α) and (otr, μ) ← OT1(crs
1, r). For each

i ∈ [3, n], P1 sends (receiver, i, P1) to the F(m,p)-RaOT functionality.
– For each b ∈ {0, 1}, P2 computes (otrb, μb) ← OT1(crs

2, yb).
– For each i ∈ [3, n], Pi does the following:

• It chooses maski ← {0, 1}λ uniformly at random.

Protocol Π†
dSelPri

Three-Round Secure Multiparty Computation 201

• It chooses three random degree-λ symmetric bivariate polynomials
Si
0, S

i
1, S

i
2 over GF(2λ) such that Si

0(0, 0) = zi
0, Si

1(0, 0) = zi
1 and

Si
2(0, 0) = maski.

• For each j ∈ [m] and for each γ ∈ [0, 2], let f i,j
γ (x) = Si

γ(x, j) (where we
associate j with the j-th element in GF(2λ)).

• For each j ∈ [m] and for each γ ∈ [0, 2], it computes (otri,jγ , μi,j
γ) :=

OT∗
1(crs

i, f i,j
γ (x)).

– P1 broadcasts (otr, otr), P2 broadcasts (otr0, otr1) and for each i ∈ [3, n], Pi

broadcasts {otri,jγ }j∈[m],γ∈[0,2] to every party.
Round-2: In the second round,

– P2 computes ots ← OT2(crs
1, otr, (y0, μ0), (y1, μ1)).

– For every i ∈ [3, n], Pi does the following for each j ∈ [m],
• For each b ∈ {0, 1}, it chooses τ i,j

b ← {0, 1}∗ and computes otsi,jb :=
OT2(crs

2, otrb, f
i,j
0 (0) + f i,j

2 (0), f i,j
1 (0) + f i,j

2 (0); τ i,j
b).

• It chooses random τ i,j ← {0, 1}∗ and computes otsi,j :=
OT2(crs

1, otr, otsi,j0 , otsi,j1 ; τ i,j).
• It chooses random τ i,j ← {0, 1}∗ and computes ots

i,j ←
OT2(crs

1, otr, −f i,j
2 (0), f i,j

1 (0) − f i,j
0 (0) − f i,j

2 (0); τ i,j).
• It sets the string si,j = ({f i,j

γ (x), μi,j
γ }γ∈[0,2], {otsi,jb , τ i,j

b }b∈{0,1}, τ i,j , τ i,j).
It then sends (sender, i, Pi, (s

i,1, . . . , si,m)) to the F(m,p)-RaOT functionality.

– P2 sends ots and for every i ∈ [3, n], Pi sends ({otsi,j , otsi,j}j∈[m]) to P1 via
private channels (which can implemented in two rounds over a public-channel
model using a two-round OT).

Output: To compute the output, P1 does the following: For each i ∈ [3, n],
– It receives (output, i, (si,1, . . . , si,m)) as the output from F(m,p)-RaOT.
– Let Ji ⊆ [m] such that for each j ∈ Ji, si

j �= ⊥.
– For each j ∈ Ji:

• It parses si,j as ({f i,j
γ (x), μi,j

γ }γ∈[0,2], {otsi,jb , τ i,j
b }b∈{0,1}, τ i,j , τ i,j).

• For each γ ∈ [0, 2], it checks if CheckValid(crsi, otri,jγ , (f i,j
γ (x), μi,j

γ)) (see
Sect. 3.1 for CheckValid) outputs 1 and if f i,j

γ (x) is a degree-λ polynomial.
• For every k ∈ Ji \ {j} and γ ∈ [0, 2], it checks if f i,j

γ (k) = f i,k
γ (j).

• It checks if otsi,j := OT2(crs
1, otr, otsi,j0 , otsi,j1 ; τ i,j) and ots

i,j ←
OT2(crs

1, otr, −f i,j
2 (0), f i,j

1 (0) − f i,j
0 (0) − f i,j

2 (0); τ i,j).
• It also checks if otsi,jb := OT2(crs

2, otrb, f
i,j
0 (0) + f i,j

2 (0), f i,j
1 (0) +

f i,j
2 (0); τ i,j

b) for each b ∈ {0, 1}.
• If any of the above checks fail, it aborts.

– It computes (yα, μα) := OT3(crs
1, ots, (α, μ)). It then runs CheckValid(crs2,

otrα, (yα, μα)). If the algorithm outputs 1, then it proceeds. Otherwise, it
aborts.

– For each j ∈ [m],
• It computes otsi,jα := OT3(crs

1, otsi,j , (α, μ)).
• It then computes Shi,j

yα
:= OT3(crs

2, otsi,jα , (yα, μα)).

• It also computes Sh
i,j
r := OT3(crs

1, ots
i,j

, (r, μ)).

– It computes zi as the Reed-Solomon decoding of {Shi,j
yα

+ Sh
i,j
r }j∈[m], cor-

recting at most λ errors.
It outputs (yα, {zi}i∈[3,n]).

Fig. 4. Protocol Π†
dSelPri

202 A. Patra and A. Srinivasan

The following lemma proves Theorem 5. We defer the proof to the full version.

Lemma 3. Let A be an (possibly malicious) adversary corrupting an arbitrary
subset of parties in the protocol Π†

dSelPri. There exists a simulator Sim such that
for any environment Z, EXECF†

dSelPri,Sim,Z
c≈ EXECΠ†

dSelPri,A,Z

5.2 Conforming Protocols and the Round-Collapsing Compiler

The steps 2 and 3 of building a maliciously-secure MPC protocol for a general func-
tion require the usage of a conforming protocol introduced in [19]. In this subsec-
tion, we recall this notion and present a slightly modified version given in [17].
Further, these two steps will build upon the round-collapsing compiler of [19].

Specification of a Conforming Protocol. Consider an n-party deterministic2

MPC protocol Φ between parties P1, . . . , Pn with inputs x1, . . . , xn, respectively
computing some function f(x1, . . . , xn). For each i ∈ [n], we let xi ∈ {0, 1}m

denote the input of party Pi. A conforming protocol Φ is defined by functions
pre, post, and computations steps or what we call actions φ1, · · · φT . The protocol
Φ proceeds in three stages: pre-processing, computation and output.

– Pre-processing phase: For each i ∈ [n], party Pi first samples vi ∈ {0, 1}�

(where 	 is the parameter of the protocol) as the output of a randomized
function pre(1λ, i) and sets zi as zi = (xi ⊕ vi[(i − 1)	/n + 1, (i − 1)	/n +
m])‖0�/n−m, where vi[(i − 1)	/n + 1, (i − 1)	/n + m] denotes the bits of the
string vi in the positions [(i − 1)	/n + 1, (i − 1)	/n + m]. Pi retains vi as the
secret information and broadcasts zi to every other party. We require that
vi[k] = 0 for all k ∈ []\{(i − 1)	/n + 1, . . . , i	/n}.3

– Computation phase: For each i ∈ [n], party Pi sets st := (z1‖· · · ‖zn). Next,
for each t ∈ {1 · · · T} parties proceed as follows:
1. Parse action φt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [].
2. Party Pi computes one NAND gate as st[h] = NAND

(
st[f] ⊕ vi[f],

st[g] ⊕ vi[g]
)

⊕ vi[h] and broadcasts st[h] to every other party.
3. Every party Pj for j
= i updates st[h] to the bit value received from Pi.

We require that for all t, t′ ∈ [T] such that t
= t′, if φt = (·, ·, ·, h) and
φt′ = (·, ·, ·, h′) then h
= h′. Also, we denote Ai ⊂ [T] to be the set of rounds
in which Pi sends a bit. Namely, Ai = {t ∈ T | φt = (i, ·, ·, ·)} .

– Output phase: For each i ∈ [n], party Pi outputs post(st).

We now recall the following theorem proved in [17,19].
2 Randomized protocols can be handled by including the randomness used by a party

as part of its input.
3 Here, we slightly differ from the formulation used in [17,19]. In their work, pre is

defined to additionally take xi as input and outputs (zi, vi). However, the trans-
formation from any protocol to a conforming protocol given in these works has the
above structure where the last 	/n − m bits of zi are 0 and the first m bits of zi is
the XOR of xi and vi[(i − 1)	/n + 1, (i − 1)	/n + m].

Three-Round Secure Multiparty Computation 203

Theorem 6 ([17,19]). Any MPC protocol Π can be transformed into a con-
forming protocol Φ while inheriting the correctness and the security of the orig-
inal protocol. Furthermore, the post function of Φ is just a projection function
(i.e., it outputs some bits of st)4 and the simulated message zi (for every honest
party) is (ri‖0�/n−m) where ri is a uniformly chosen random string of length m
(independent of other simulated messages).

5.3 Second Step: Special Functionality with Standard Security

In this subsection, we define the n-party version of the double-selection function-
ality FdSel in Fig. 5 and give a three-round protocol for securely realizing this
functionality. The main theorem we prove in this subsection is given below.

Fig. 5. Functionality FdSel

Theorem 7. There exists a three-round protocol ΠdSel (Fig. 7) that UC-realizes
the FdSel functionality. ΠdSel makes black-box use of a two-round malicious-secure
OT with equivocal receiver security in the F†

dSelPri-hybrid model.

4 We note that this property can be generically added to any conforming protocol by
expanding the computation phase to include more actions that compute the output
of the protocol.

204 A. Patra and A. Srinivasan

Building ΠdSel. The primary challenge in ΠdSel, over Π†
dSelPri, is to keep any

corrupt P2’s behaviour, as an OT sender, in check. We resort to an OT combiner
protocol [12,23], that guarantees generation of a secure OT correlation given a
number of leaky OTs, as formalized by functionality Fκ-LeakyOT in Fig. 6.

Fig. 6. Functionality Fκ-LeakyOT

In keeping with the goal of publishing a masked version of P1’s selected input
of P2, i.e. yα + r, we slightly stretch the goal of OT combiner from realizing a
secure OT correlation to realizing a simple two-party functionality captured by
FOTplus. FOTplus gets two bits (α, r) from the receiver and two bits (s0, s1) from
the sender and delivers (sα ⊕ r) to both parties. An information-theoretic pro-
tocol for securely realizing FOTplus in the Fκ-LeakyOT-hybrid model is guaranteed
from an OT combiner protocol followed by a secure computation protocol in the
OT-hybrid model [24,28].

Theorem 8 ([12,24,28]). Let κ = Ω(λ) and consider the Fκ-LeakyOT functional-
ity described in Fig. 6. There exists a statistically secure protocol that UC-realizes
the FOTplus functionality making a single call to the Fκ-LeakyOT functionality.
Furthermore, the inputs to Fκ-LeakyOT given by an honest receiver in the above
protocol are uniformly chosen (α1, . . . , ακ) and the inputs given by an honest
sender are (∅, {(si

0, s
i
1)}i∈[κ]) where {(si

0, s
i
1)}i∈[κ] are uniformly chosen.

While Theorem 8 guarantees a protocol for FOTplus, it may be a multi-round
protocol and it is not clear how ΠdSel can use this for its goal to realize FdSel.
Here, we invoke the round-collapsing compiler of [17,19] on a conforming protocol
obtained from the protocol implied by Theorem 8 in Fκ-LeakyOT-hybrid model.
To be specific, Theorem 8 implies the following protocol for realizing FOTplus:

– Call to Fκ-LeakyOT functionality. The honest P1 samples uniform bits
(α1, . . . , ακ) as input to the functionality. The honest P2 samples uniform
bits {(si

0, s
i
1)}i∈[κ] and sends (∅, {(si

0, s
i
1)}i∈[κ]) to the functionality.

– Protocol ΠOTplus. Using the output of Fκ-LeakyOT functionality, P1 and P2

interact with each other using the statistically-secure protocol ΠOTplus (from

Three-Round Secure Multiparty Computation 205

Theorem 8) that realizes the FOTplus functionality. In this protocol, P1’s
input is given by ((α, r), (s1

α1
, α1), . . . , (sκ

ακ
, ακ)) and P2’s input is given by

((y0, y1), (s1
0, s

1
1), . . . , (s

κ
0 , sκ

1)) (where (α, r) are the P1’s inputs to the FOTplus

functionality and y0, y1 are P2’s inputs). Without loss of generality, we assume
that the last message from P1 to P2 contains the output of FOTplus.

Let Φ be the conforming protocol obtained as a result of the transformation
given in Theorem 6 to the protocol ΠOTplus (as above). We assume w.l.o.g. that
the input of P1 in Φ is of the form (si

α1
, . . . , si

ακ
, α1, . . . , αk, α, r) and that of

P2 is ({si
0, s

i
1}i∈[κ], y0, y1). We further assume w.l.o.g. that at the end of the

computation phase of Φ, st[/2] (for each i ∈ {1, 2}) contains the output of the
protocol (i.e., v1[/2] = v2[/2] = 0) and post just outputs this bit (if either
party has not aborted and this information is public from st).

Now to enable ΠdSel to achieve the larger goal of publishing “doubly-selected”
inputs of P3, . . . , Pn, all that is needed from P3, . . . , Pn is to take part in Φ and
listen to the conversation. That is, the garbled circuits generated by P1 and
P2 will perform the interaction as dictated by the protocol Φ while the garbled
circuits generated by all other parties will listen to this interaction. By the
virtue of listening to this interaction, the last garbled circuit of every party in
{P3, . . . , Pn} will output the labels for st that has (sα ⊕ r) at the position 	/2.
Specifically, we introduce another layer of garbled circuits for the parties P3 to
Pn that takes st as input, has zi

0, z
i
1 hardwired and outputs zi

st[�/2] if st does
not indicate an abort of P1 or P2. W.l.o.g., we can assume that st contains this
information on abort. To tackle a malicious behaviour of Pi, we make them
commit to zi

0, z
i
1 via OT receiver messages in the first round and reveal the

opening information via the garbled circuit.
There are two missing blocks now: (a) how to create the correlation of a

Fκ-LeakyOT functionality (since Φ runs given the output of Fκ-LeakyOT) and (b)
how to release the labels corresponding to the initial public joint state for every
party’s garbled circuit in 3 rounds. Both are resolved through κ calls to F†

dSelPri

functionality (recall that κ is the OT combiner parameter). ΠdSel runs κ copies of
F†

dSelPri with the input of P1 in the k-th copy being {αk, v1[k]}k∈[κ] (where v1 is
the private state of P1 as per the round-collapsing compiler and αk is uniformly
chosen), the input of P2 being a random pair of bits (sk

0 , sk
1) and the inputs

for the rest of parties being equal to a pair of secret keys for a SKE scheme
(looking ahead, these keys will enable release of the first set of labels). These κ

executions of F†
dSelPri lead to P1 and P2 sharing κ-random OT correlations. It is

these κ random OT correlations that serve as the input and output of the leaky
OT functionality. Specifically, as argued in the proof, we show that a corrupt P2

cannot guess more than λ among (α1, . . . , ακ) without triggering an abort by an
honest P1 with overwhelming probability. In other words, the size of the set K
that a corrupt P2 sends to the Fκ-LeakyOT functionality is at most λ. This allows
us to use the security of the conforming protocol Φ to argue the security of the
round-collapsed protocol.

We now explain how to release the labels corresponding to the initial public
joint state for every party’s garbled circuit in 3 rounds. This is where we use

206 A. Patra and A. Srinivasan

the secret keys in the calls to F†
dSelPri. Recall that P1 gets Pj ’s secret key corre-

sponding to the bit sk
αk

⊕ v1[k] from F†
dSelPri at the end of round-2. In round-3,

P1 sends this secret key and Pj sends a pair of encryptions, encrypting b-th label
under b-th key for b ∈ {0, 1}. Putting these two things together, all parties can
recover the label for Pj ’s circuit corresponding to the bit sk

αk
⊕ v1[k]. This way

all the parties obtain the labels for the first set of garbled circuits. This will
trigger evaluation of the bunch of circuits emulating Φ.

Lastly, we consider the F†
dSelPri functionality instantiated with n + 1 parties

with P2 additionally playing the role of Pn+1. Specifically, the inputs of party
P2 includes (y0, y1) as well as (z2

0 , z2
1).

Inputs: P1 inputs (α, r) ∈ {0, 1} × {0, 1}, P2 inputs (y0, y1) ∈ {0, 1} × {0, 1}. For
every 3 ≤ i ≤ n, Pi inputs (zi

0, z
i
1) ∈ {0, 1}λ × {0, 1}λ.

Output: Every party outputs (yα ⊕ r, {zi
yα⊕r}3≤i≤n).

Primitives and Functionalities: (a) A malicious-secure, two-round OT with
equivocal receiver security (KOT,OT1,OT2,OT3) (see Section 3.1). We use OT∗

1

to denote an algorithm that takes a crs and q(λ)-bit string (for some polyno-
mial q(·)) as input and applies OT1 to each bit of that string. (b) Functionality
F†

dSelPri. (c) The conforming protocol Φ obtained as a result of the transformation
in Theorem 6 to ΠOTplus as discussed. (d) Garbling scheme (Garble,Eval) (e) A
symmetric-key Encryption Scheme (Gen,Enc,Dec).

Common Random/Reference String: For each i ∈ [n], sample crsi ← KOT(1λ)
and output {crsi}i∈[n] as the common random/reference string.

Round-1: In the first round,
– P1 and P2 run pre(1λ, 1) and pre(1λ, 2) to get v1 and v2 respectively. For each

i ∈ [3, n], Pi sets vi = 0�.
– P1 chooses κ random bits α1, . . . , ακ and P2 chooses random pairs of bits

(sk
0 , sk

1) for each k ∈ [κ].
– For each i ∈ [2, n] and for each k ∈ [κ], Pi chooses two random secret keys

(ski,k
0 , ski,k

1) using Gen(1λ).
– For each k ∈ [κ], P1 sends (input, k, P1, (αk, v1[k])), P2 sends (input, k, P2,

(sk
0 , sk

1)) and for each i ∈ [2, n], Pi sends (input, k, Pi, (sk
i,k
0 , ski,k

1)) to F†
dSelPri.

– For each i ∈ [3, n], for each b ∈ {0, 1}, Pi computes (otrib, μ
i
b) ← OT∗

1(crs
i, zi

b).
– For each i ∈ [3, n], Pi broadcasts {otrib}b∈{0,1} to every other party.

Round-2: In the second round,
– P1 sets xpart

1 := (α1, . . . , ακ, α, r) and P2 sets x2 := ({sk
0 , sk

1}k∈[κ], y0, y1).

– P1 and P2 respectively set zpart
1 := (xpart

1 ⊕ v1[κ + 1, 2κ + 2])‖0�/2−(2κ+2) and
z2 := (x2 ⊕ v2[/2 + 1, 	/2 + 2κ + 2])‖0�/2−(2κ+2).

– For each i ∈ {1, 2} and for each t such that φt = (i, f, g, h) (Ai is the set of
such values of t), for each α, β ∈ {0, 1}, Pi computes: (otri,t,α,β , μi,t,α,β) ←
OT1(crs

i, vi[h] ⊕ NAND(vi[f] ⊕ α, vi[g] ⊕ β)).
– P1 broadcasts

(
zpart
1 , {otri,t,α,β}t∈A1,α,β∈{0,1}

)
and P2 broadcasts(

z2, {otri,t,α,β}t∈A2,α,β∈{0,1}
)

to every other party.

Protocol ΠdSel

Three-Round Secure Multiparty Computation 207

Round-3: In the final round, each party Pi does the following:
– If i = 1, P1 receives for each k ∈ [κ], (output, k, P1, (x1[k],

{ski,k
x1[k]⊕v1[k]

}i∈[2,n])) from F†
dSelPri where x1[k] = sk

αk
.a

– Pi sets st := 0κ‖(zpart
1 ‖z2).

– If i ∈ [3, n], Pi computes (C̃hkC
i

, labi,T+1) ← Garble(1λ,ChkCi[{zi
b,

μi
b}b∈{0,1}]).

– If i ∈ {1, 2}, Pi sets labi,T+1 = {⊥, ⊥}k∈[�].
– for each t from T down to 1,

1. Parse φt as (i∗, f, g, h).
2. If i = i∗ then it computes (where Ci,t is described in Figure 8)

(C̃i,t, labi,t) ← Garble(1λ, Ci,t[vi, {μi,t,α,β}α,β , ⊥, labi,t+1]).
3. If i �= i∗ then for every α, β ∈ {0, 1}, it sets otsi

∗,t,α,β ←
OT2(crs

i∗
, otri

∗,t,α,β , labi,t+1
h,0 , labi,t+1

h,1) and computes (C̃i,t, labi,t) ←
Garble(1λ, Ci,t[vi, ⊥, {otsi∗,t,α,β}α,β , labi,t+1]).

– Each Pi sends ({C̃i,t}t∈[T],{labi,1
k,st[k]}k∈[κ+1,�]) to every other party and if

i ∈ [3, n], it also sends C̃hkC
i

. In addition, P1 sends
{
lab1,1

k,x1[k]⊕v1[k]
, x1[k] ⊕

v1[k], {ski,k
x1[k]⊕v1[k]

}i∈[2,n]

}

k∈[κ]
and for each i ∈ [2, n], Pi sends {Enc(ski,k

0 ,

labi,1
k,0),Enc(sk

i,k
1 , labi,1

k,1)}k∈[κ].
Output. Each party Pi does the following:

– It sets st[k] = x1[k] ⊕ v1[k] for each k ∈ [κ] receiving the value from P1’s
broadcast.

– For each j ∈ [2, n] and k ∈ [κ], it recovers labj,1
k,st[k] ← Dec(skj,k

st[k],

Enc(ski,k
st[k], lab

i,1
k,st[k])).

– Let l̃ab
1,1

:=
{

{lab1,1
k,x1[k]⊕v1[k]

}k∈[κ], {lab1,1
k,st[k]}k∈[κ+1,�]

}
.

– For each j ∈ [2, n], let l̃ab
j,1

:= {labj,1
k,st[k]}k∈[�].

– for each t from 1 to T do:
1. Parse φt as (i∗, f, g, h).

2. Compute ((α, β, γ), μ, l̃ab
i∗,t+1

) := Eval(C̃i∗,t, l̃ab
i∗,t

).
3. Set st[h] := γ.
4. for each j �= i∗ do:

(a) Compute (ots, {labj,t+1
k }k∈[�]\{h}) := Eval(C̃j,t, l̃ab

j,t
).

(b) Recover labj,t+1
h := OT3(crs

i∗
, ots, (γ, μ)).

(c) Set l̃ab
j,t+1

:= {labj,t+1
k }k∈[�].

– For each j ∈ [3, n],

• Compute (zj , μj) := Eval(C̃hkC
j

, l̃ab
j,T+1

)
• Run CheckValid(crsj , otrjst[�/2], (z

j , μj)).
– If any of runs of the CheckValid algorithm outputs 0 then abort. Otherwise,

output (st[/2], {zj
st[�/2]}j∈[3,n]).

a This message is received in the end of round-2, since Π†
dSelPri is a 2-round protocol.

Fig. 7. Protocol ΠdSel

208 A. Patra and A. Srinivasan

Fig. 8. Circuit Ci,t and ChkCi

Lemma 4. Let A be an (possibly malicious) adversary corrupting an arbitrary
subset of parties in the protocol ΠdSel. There exists a simulator Sim such that for
any environment Z, EXECFdSel,Sim,Z

c≈ EXECΠdSel,A,Z

We defer the proof of this lemma to the full version.

5.4 Third Step: Bootstrapping from Special to General Functions

In this section, we build a 3-round MPC protocol for any multiparty function f
in the FdSel-hybrid model. The main theorem shown here is the following.

Theorem 9. Let f be a n-party functionality. There exists a protocol Πf (Fig. 9)
that UC-realizes f in three rounds against malicious adversaries corrupting an
arbitrary number of parties. Πf makes black-box use of a two-round, malicious-
secure OT with equivocal receiver security and is in FdSel-hybrid model.

Three-Round Secure Multiparty Computation 209

Building Πf . The protocol Πf is obtained as a result of applying the
round-collapsing compiler in [17,19] to perfect/statistical protocols in the OT-
correlations model (e.g., [26,28]) which have the following structure.

– Generating OT Correlations. Every pair of parties invoke a certain num-
ber of OT executions on uniformly chosen random inputs.

– Protocol Π. The parties augment their inputs with the OT correlations
generated in the previous phase. The parties then use the perfect/statistical
protocol from [26,28] in the OT correlations model to securely compute f .

Let Φ be the conforming protocol obtained as a result of the transformation in
Theorem 6 to Π. For every i, j ∈ [n] such that i
= j, let κ be the number of
random OT correlations required between party Pi (acting as the receiver) and
Pj (acting as the sender) in the protocol Φ. The building blocks we use for Πf

are the conforming protocol Φ, a two-round, malicious-secure OT with equivocal
receiver security, a garbling scheme for circuits and a symmetric key encryption.
Further, we assume without loss of generality, that the first (n − 1)κ bits of the
augmented input of party Pi in Φ contains the bits obtained from every other
party (acting as sender) in the OT correlations generation phase. Specifically,
the first κ bits are the received bits from P1 (if i
= 1) and the second set of κ bits
are the received bits from P2 (if i
= 2) and so on. We denote a function GetIndex
that takes i, j, k as inputs (where i, j ∈ [n], i
= j and k ∈ [κ]) and returns an
index ind ∈ [] of the state st of the conforming protocol that corresponds to the
received bit in the k-th OT correlation between Pi (acting as the receiver) and
Pj (acting as the sender). We now present an information description of Πf .

Building on the round-collapsing compiler of [17,19], the main challenge in
Πf is in making the first set of labels for the joint state available within 3
rounds. Unlike [17,19], the input to the conforming protocol in our case not
only includes the actual inputs of the parties, but also the OT correlations. The
generation of the latter (to be specific, the output bit of an OT) is completed
only at the end of round-2. As a result, the public state of a party can be made
available to all only in round-3 and the labels for the joint state in round-4.
We overcome this challenge using the double selection FdSel functionality. The
double selection functionality allows the parties to learn the labels corresponding
to masked value of the correlation bits at the end of round-3 allowing them to
trigger the evaluation of garbled circuits at the end of round-3.

210 A. Patra and A. Srinivasan

Inputs: Pi for i ∈ [n] inputs xi.
Output: Every party outputs f(x1, . . . , xn).
Primitives and Functionalities: (a) A malicious-secure two-round OT with

equivocal receiver security (KOT,OT1,OT2,OT3) (see Section 3.1), (b) Func-
tionality FdSel (c) The conforming protocol Φ obtained as a result of the trans-
formation in Theorem 6 to Π as discussed (c) Garbling scheme (Garble,Eval) (d)
A symmetric-key Encryption Scheme (Gen,Enc,Dec).

Common Random/Reference String: For each i ∈ [n], sample crsi ← KOT(1λ)
and output {crsi}i∈[n] as the common random/reference string.

Round-1: In the first round,
– Each Pi runs pre(1λ, i) to get vi.
– For each i, j ∈ [n] and i �= j and for each k ∈ [κ], the parties invoke an

instance of functionality FdSel as follows:
• Pi, taking the role of P1, sends (input, (i, j, k), Pi, (α

i,j
k , ri,j

k)) to FdSel where
αi,j

k is a uniformly chosen bit and ri,j
k := vi[GetIndex(i, j, k)].

• Pj , taking the role of P2, sends (input, (i, j, k), Pj , (y
i,j
k,0, y

i,j
k,1) to FdSel where

yi,j
k,0, y

i,j
k,1 are uniformly chosen bits.

• For every s ∈ [n], Ps inputs (input, (i, j, k), Ps, (sk
s,i,j
k,0 , sks,i,j

k,1)) to FdSel

where sks,i,j
k,0 , sks,i,j

k,1 are sampled using Gen(1λ).
Round-2: In the second round, every Pi does the following

– It sets xpart
i := (xi, {αi,j

k , yj,i
k,0, y

j,i
k,1}j∈[n]\{i},k∈[κ]).

– It sets zpart
i := xpart

i ⊕ vi[(i − 1)	/n + (n − 1)κ + 1, i	/n].
– For each i ∈ [n] and for each t such that φt = (i, f, g, h) (Ai is the set of

such values of t), for each α, β ∈ {0, 1}, it computes: (otri,t,α,β , μi,t,α,β) ←
OT1(crs

i, vi[h] ⊕ NAND(vi[f] ⊕ α, vi[g] ⊕ β)).
– It broadcasts

(
zpart

i , {otri,t,α,β}t∈Ai,α,β∈{0,1}
)
.

Round-3: In the final round, each party Pi does the following:

– It sets st =
(
(0(n−1)κ‖zpart

1)||. . . ||(0(n−1)κ‖zpart
n)

)
.

– It sets labi,T+1 := {labi,T+1
k,0 , labi,T+1

k,1 }k∈[�] where for each k ∈ [] and b ∈
{0, 1}, labi,T+1

k,b := ⊥.
– for each t from T down to 1,

1. Let φt as (i∗, f, g, h).

2. If i = i∗, then it computes (C̃i,t, labi,t) ← Garble(1λ, Ci,t[vi,
{μi,t,α,β}α,β , ⊥, labi,t+1]) (where Ci,t is described in Figure 8).

3. If i �= i∗ then for every α, β ∈ {0, 1}, it sets otsi
∗,t,α,β ←

OT2(crs
i∗

, otri
∗,t,α,β , labi,t+1

h,0 , labi,t+1
h,1) and computes (C̃i,t, labi,t) ←

Garble(1λ, Ci,t[vi, ⊥, {otsi,t,α,β}α,β , labi,t+1]) (where Ci,t is described in
Figure 8).

– Each Pi broadcasts {C̃i,t}t∈[T], and for each j ∈ [n] and k �∈ [(j −
1)	/n + 1, (j − 1)	/n + (n − 1)κ], Pi broadcasts labi,1

k,st[k]. In addition, Pi

broadcasts for each j, j′ ∈ [n] such that j �= j′ and k ∈ [κ],
(
cti,j,j′

k,0 =

Enc(ski,j,j′
k,0 , labi,1

GetIndex(j,j′,k),0), ct
i,j,j′
k,1 = Enc(ski,j,j′

k,1 , labi,1
GetIndex(j,j′,k),1)

)
.

Protocol Πf

Three-Round Secure Multiparty Computation 211

Output: Each party Pi does the following:
– For each j, j′ ∈ [n] such that j �= j′ and for each k ∈ [κ], let η :=

GetIndex(i, j, k) and do the following:

1. Receive (output, (j, j′, k), Pi, (zη, {sks,j,j′
k,zη

}s∈[n])) from FdSel functionality.

2. Reset st[η] = zη.

3. For each s ∈ [n], set labs,1
η,st[η] ← Dec(sks,j,j′

k,st[η], ct
s,j,j′
k,st[η]).

– For every j ∈ [n], let l̃ab
j,1

= {labj,1
k,st[k]}k∈[�], where

{labj,1
k,st[k]}k∈[(j−1)�/n+1,(j−1)�/n+(n−1)κ] are decrypted as above and the rest

received from Pj ’s round-3 message.
– for each t from 1 to T do:

1. Parse φt as (i∗, f, g, h).

2. Compute ((α, β, γ), μ, l̃ab
i∗,t+1

) := Eval(C̃i∗,t, l̃ab
i∗,t

).
3. Set st[h] := γ.
4. for each j �= i∗ do:

(a) Compute (ots, {labj,t+1
k,st[k]}k∈[�]\{h}) := Eval(C̃j,t, l̃ab

j,t
).

(b) Recover labj,t+1
h,st[h] := OT3(crs

i∗
, ots, (γ, μ)).

(c) Set l̃ab
j,t+1

:= {labj,t+1
k,st[k]}k∈[�].

– Output post(st, vi).

Fig. 9. Protocol Πf

Lemma 5. Let A be an (possibly malicious) adversary corrupting an arbitrary
subset of parties in the protocol Πf . There exists a simulator Sim such that for
any environment Z, EXECFf ,Sim,Z

c≈ EXECΠf ,A,Z

We give the proof of this lemma in the full version.

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

2. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 16

3. Applebaum, B., Brakerski, Z., Garg, S., Ishai, Y., Srinivasan, A.: Separating two-
round secure computation from oblivious transfer. In: Vidick, T. (ed.) 11th Inno-
vations in Theoretical Computer Science Conference, ITCS 2020, Seattle, Wash-
ington, USA, 12–14 January 2020, volume 151 of LIPIcs, pp. 71:1–71:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020)

4. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1

212 A. Patra and A. Srinivasan

6. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 17

7. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6 6

8. Boyle, F., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: ITCS 2018, pp. 21:1–21:21, January 2018

9. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 8

10. Cachin, C., Crépeau, C., Marcil, J.: Oblivious transfer with a memory-bounded
receiver. In: 39th FOCS, pp. 493–502. IEEE Computer Society Press, November
1998

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

12. Cascudo, I., Damg̊ard, I., Farràs, O., Ranellucci, S.: Resource-efficient OT combin-
ers with active security. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS,
vol. 10678, pp. 461–486. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70503-3 15

13. Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R.: Constant-round oblivious transfer
in the bounded storage model. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
446–472. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1
25

14. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

16. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press, June 2013

17. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and
black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol.
11239, pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03807-6 5

18. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press (2017)

19. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, S. (ed.) 19th
ACM STOC, pp. 218–229. ACM Press, May 1987

https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-319-70503-3_15
https://doi.org/10.1007/978-3-319-70503-3_15
https://doi.org/10.1007/978-3-540-24638-1_25
https://doi.org/10.1007/978-3-540-24638-1_25
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16

Three-Round Secure Multiparty Computation 213

21. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48000-7 4

22. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptol. 25(1), 158–193 (2012). https://doi.org/10.1007/s00145-010-
9092-8

23. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners
for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005). https://doi.org/
10.1007/11426639 6

24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

25. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp.
21–30. ACM Press, June 2007

26. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

27. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simula-
tion in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 6

28. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp.
20–31. ACM Press, May 1988

29. Kushilevitz, E.: Privacy and communication complexity. In: 30th FOCS, pp. 416–
421. IEEE Computer Society Press, October/November 1989

30. Lin, H., Liu, T., Wee, H.: Information-theoretic 2-round MPC without round col-
lapsing: adaptive security, and more. In: Pass, R., Pietrzak, K. (eds.) TCC 2020,
Part II. LNCS, vol. 12551, pp. 502–531. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-64378-2 18

31. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol.
9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 26

32. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Rao Kosaraju, S.
(ed.) 12th SODA, pp. 448–457. ACM-SIAM, January 2001

33. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 9

34. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5
31

35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

36. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/s00145-010-9092-8
https://doi.org/10.1007/s00145-010-9092-8
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-030-64378-2_18
https://doi.org/10.1007/978-3-030-64378-2_18
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

On the Round Complexity of Black-Box
Secure MPC

Yuval Ishai1(B), Dakshita Khurana2, Amit Sahai3,
and Akshayaram Srinivasan4

1 Technion, Haifa, Israel
yuvali@cs.technion.ac.il
2 UIUC, Champaign, US
dakshita@illinois.edu

3 UCLA, Los Angeles, US
sahai@cs.ucla.edu

4 Tata Institute of Fundamental Research, Mumbai, India
akshayaram.srinivasan@tifr.res.in

Abstract. We consider the question of minimizing the round complex-
ity of secure multiparty computation (MPC) protocols that make a black-
box use of simple cryptographic primitives with security against any num-
ber of malicious parties. In the plain model, previous black-box protocols
required a high constant number of rounds (>15). This is far from the
known lower bound of 4 rounds for protocols with black-box simulators.

When allowing random oblivious transfer (OT) correlations, 2-round
protocols making black-box use of a pseudorandom generator were known.
However, such protocols were obtained via a round-collapsing “protocol
garbling” technique that has poor concrete efficiency and makes non-
black-box use of an underlying maliciously secure protocol.

We improve this state of affairs by presenting the following types of
black-box protocols.

– 4-round “pairwise MPC” in the plain model. This round-
optimal protocol enables each ordered pair of parties to compute a
function of both inputs whose output is delivered to the second party.
The protocol makes black-box use of any public-key encryption (PKE)
with pseudorandom public keys. As a special case, we get a black-
box round-optimal realization of secure (copies of) OT between every
ordered pair of parties.

– 2-round MPC from OT correlations. This round-optimal proto-
col makes a black-box use of any general 2-round MPC protocol sat-
isfying an augmented notion of semi-honest security. In the two-party
case, this yields new kinds of 2-round black-box protocols.

– 5-round MPC in the plain model. This protocol makes a black-
box use ofPKEwith pseudorandom public keys, and 2-round oblivious
transfer with “semi-malicious” security.

A key technical tool for the first result is a novel combination of split-
state non-malleable codes (Dziembowski, Pietrzak, and Wichs, JACM’18)
with standalone secure two-party protocols to construct non-malleable
two-party protocols. The second result is based on a new round-optimized

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 214–243, 2021.
https://doi.org/10.1007/978-3-030-84245-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_8

On the Round Complexity of Black-Box Secure MPC 215

variant of the “IPS compiler” (Ishai, Prabhakaran and Sahai, Crypto’08).
The third result is obtained via a specialized combination of these two tech-
niques.

1 Introduction

Minimizing the round complexity of cryptographic protocols has been a central
theme of research in the past few decades. Much of this research focused on the
question of minimizing the round complexity of protocols for secure multiparty
computation (MPC), both in the general case as well as for special tasks of inter-
est such as zero-knowledge proofs, oblivious transfer (OT), or coin-tossing. This
question is motivated not only by its direct relevance to the latency of protocols
running over real-life networks, but also as an intriguing theoretical challenge
that often inspires new ideas and serves as a test bed for new techniques.

The round complexity of MPC. We consider the standard setting of MPC
with an arbitrary number of malicious parties, namely parties that are corrupted
by a central adversary who may arbitrarily change their behavior. What do we
know about the round complexity of MPC in this setting? Allowing a common
random string (CRS) setup, it was recently shown [13,28] that 2-round MPC pro-
tocols are possible under the (minimal) assumption that 2-round OT exists in the
CRS model. This round complexity is clearly optimal, even in the easier setting
of semi-honest adversaries who send messages as instructed by the protocol. In
the plain model, without any setup, a long line of works [6,9,10,15,19,27,40,54]
has culminated in 4-round protocols that rely on the minimal assumption that
a 4-round OT protocol exists [19]. This round complexity is known to be opti-
mal for protocols that admit a black-box simulator [27,30,52]. All of the above
4-round protocols are of this kind.

Black-box constructions. Another central research theme in cryptography is
obtaining black-box constructions of higher-level primitives from simpler lower-
level primitives. A black-box construction of X from Y , also known as a (fully)
black-box reduction from X to Y [59], specifies an implementation of X that
only has oracle access to the input-output relation of Y , without being given
any explicit representation of Y , e.g., in the form of a Boolean circuit or a Tur-
ing Machine. Moreover, it is required that the security reduction be black-box
in the sense that any adversary AX “attacking” X can be used as a black-box
to obtain an adversary AY who obtains a similar advantage in attacking Y .
Originating from the pioneering work of Impagliazzo and Rudich [43], a long
line of works study the landscape of black-box reductions between natural cryp-
tographic primitives. More relevant to our work is the effort to replace known
instances of non-black-box constructions, where X requires access to the code of
Y , by black-box constructions.

In the MPC context, early examples of results along this line include a black-
box construction of constant-round honest-majority MPC protocols from one-
way functions [22] (replacing an earlier non-black-box construction from [12])
and a black-box construction of malicious-secure OT from semi-honest OT [39]

216 Y. Ishai et al.

(replacing a non-black-box construction of [31]). Beyond the theoretical inter-
est in understanding the tightness of the relation between primitives, the goal
of replacing non-black-box constructions by black-box counterparts is strongly
motivated by asymptotic and concrete efficiency. A well-known example in the
context of MPC is the non-black-box OT extension construction of Beaver [11],
which was replaced by a much more efficient black-box construction from [44]
that is commonly used as a basis for fast MPC implementations. We use the
term black-box MPC to refer generically to an MPC protocol obtained via a
black-box construction from simple low-level primitives (such as OT) that can
be easily and efficiently constructed from standard cryptographic assumptions.

Round complexity of black-box MPC. Interestingly, all of the round-
optimal MPC protocols in the standard setting we consider, including those
mentioned above, make non-black-box use of the underlying primitives. In the
case of 2-round MPC protocols in the CRS model, this is known to be inherent
(even for the easier goal of semi-honest security), at least for black-box con-
structions from 2-round OT or any other 2-party protocol [7]. However, no such
impossibility result is known for 4-round MPC protocols in the plain model.

In the two-party case, a 4-round black-box protocol is known for one-sided
functionalities that deliver output to only one of the two parties [24,57]. The most
general protocol of this kind makes a black-box use of any public-key encryption
(PKE) with pseudorandom public keys, which can be easily constructed from
most standard cryptographic assumptions [24]. This implies a similar 5-round
protocol for two-sided functionalities.

In contrast, for a general number of parties, all known constant-round proto-
cols are either complex and inefficient, or resort to idealized models such as the
Random Oracle (RO) model to achieve better efficiency but only heuristic secu-
rity. Despite the significant body of work on the round complexity of black-box
MPC and related primitives in the plain model, the best exact round complex-
ity that follows from existing works [32,49,60] is greater than 15 (see Sect. 1.2).
Recent attempts to minimize round complexity [6,9,10,15,19,27,54] have led to
complex protocols that make heavy non-black-box use of cryptography. This gap
gives rise to the first motivating question for our work.

What is the minimal round complexity of black-box MPC in the plain model?
Must we necessarily resort to idealized models to achieve simplicity and/or

efficiency?

Round complexity of black-box protocol transformations. It turns out
that if “plain model” is relaxed to allow a simple setup in the form of random OT
correlations between each pair of parties, the first part of the above question has
been settled. Concretely, given an OT correlation setup, which can be generated
with good concrete efficiency [14,44], there is a 2-round MPC protocol making a
black-box use of a pseudorandom generator [26]. However, this 2-round protocol
is quite complex and inefficient, as it is obtained by applying a heavily non-
black-box “protocol garbling” transformation [13,28] to an underlying multi-
round (information-theoretic) MPC protocol. This not only hurts asymptotic
and concrete efficiency, but also rules out applying this transformation while

On the Round Complexity of Black-Box Secure MPC 217

respecting a black-box use of an underlying primitive. The latter includes a
black-box use of an algebraic structure (e.g., a big finite field), a cryptographic
primitive (e.g., homomorphic encryption or even a random oracle), or an ideal
functionality oracle (e.g., OT or its arithmetic variant OLE). This is similar to
the classical non-black-box protocol transformation from semi-honest MPC to
malicious MPC, due to Goldreich, Micali, and Wigderson [31], which is limited
in the same way.

In contrast, “black-box protocol transformations” from weak MPC proto-
cols to stronger ones, commonly known as “MPC-in-the-head” transformations
[46,49,50], have successfully avoided these limitations. In a nutshell, such trans-
formations obtain a strong MPC protocol for f (say, with malicious security)
by making a black-box use of any weak MPC protocol (say, with semi-honest
security) for a related functionality f ′. The relation between f and f ′ needs
to be restricted in some way. Typically, f ′ is a next-message function of (an
information-theoretic) weak MPC protocol for f .

This black-box protocol transformation paradigm, systematically studied in
[48], has not only given rise to new theoretical feasibility and efficiency results,
but it has also led to practical zero-knowledge proof systems [5,29], digital sig-
natures [16,51], and MPC protocols [41]. The question we ask is whether one
can obtain a similar black-box protocol transformation in the context of 2-round
MPC with OT correlation setup:

Are there useful kinds of “black-box protocol transformations” from 2-round
semi-honest MPC to 2-round malicious MPC with OT correlation setup?

This question is particularly motivated in the two-party case, where there are
many different techniques for efficient 2-round semi-honest protocols that make
black-box use of algebraic or cryptographic primitives.

1.1 Our Contributions

We make progress on the aforementioned questions by obtaining the following
types of round-efficient black-box protocols.

Black-box 4-Round “Pairwise MPC” in the Plain Model. Our first result
addresses the first question by settling the round complexity of black-box MPC
for a restricted but useful class of functionalities. Concretely, we get a 4-round
black-box protocol for any pairwise MPC functionality that enable each ordered
pair of parties to simultaneously compute a function of their inputs, whose out-
put is delivered to the second party. The protocol makes a black-box use of
any public-key encryption (PKE) with pseudorandom public keys (which can be
instantiated based on CDH, LWE and LPN), similar to the 4-round 2-party OT
protocol of [24].

Informal Theorem 1. Let f be a pairwise MPC functionality. Assume the
existence of a public-key encryption with pseudorandom public keys. There exists
a four round black-box MPC protocol in the plain model that securely implements
f against static corruptions of all-but-one parties.

218 Y. Ishai et al.

The central challenge in the pairwise MPC setting is to develop two-party
protocols that remain secure when executed in parallel. We develop new black-box
protocols for this setting, starting with the case of OT protocols, and generalizing
via the result of [45] to any two-party functionality. To this end, a technical
contribution of our work is a novel combination of split-state non-malleable
codes [18,23] with standalone secure two-party protocols to obtain black-box,
non-malleable two-party protocols.

The resulting pairwise MPC can be used to generate OT correlations in
a preprocessing phase, as required by the 2-round black-box protocol of [26].
This results in a 6-round MPC protocol making black-box use of PKE with
pseudorandom public keys. While this already constitutes a major improvement
over the state of the art, it is still two rounds away from the 4-round lower
bound. Perhaps more importantly, as discussed above, the [26] approach employs
a round-collapsing “protocol garbling” that limits its efficiency and applicability
to protocols that make black-box use of algebraic or cryptographic primitives.
Motivated by both limitations, we would like to replace the protocol garbling
technique by a black-box protocol transformation that takes advantage of OT
correlations.

An “IPS-style Compiler” for 2-round MPC. Our second main contribu-
tion is a new black-box protocol transformation obtained via a round-optimized
variant of the “IPS compiler” [49]. This transformation uses a 2-round honest-
majority MPC protocol from [47,58] to transform in a black-box way any 2-round
MPC protocol with an augmented variant of semi-honest security to obtain a
2-round MPC protocol with malicious security. The transformation relies on
a special form of OT correlations (denoted as watchlist correlations) that can
be generated via the above mentioned pairwise MPC functionality. Specifically,
the watchlist correlations model outputs an n-party correlation between (n − 1)
senders and a single receiver, where each sender Si for i ∈ [n − 1] obtains a
random set of m strings xi,1, . . . , xi,m, and the receiver obtains a random subset
K ⊂ [m] of a fixed size, as well as the values {xi,j}i∈[n−1],j∈[k]. Combined with
our first main result, this yields the same kind of 6-round black-box protocol
obtained via [26], but with the advantage of making a black-box use of an aug-
mented semi-honest protocol (as opposed to a non-black-box use of a malicious
protocol incurred by the protocol garbling technique).

The augmented semi-honest security requirement combines the so-called
semi-malicious security [8], which is satisfied by most natural 2-round semi-
honest protocols, with a form of adaptive security with erasures. The latter is
satisfied by all natural information-theoretic protocols (with standard forms of
setup), as well as by computationally secure protocols with pre-processing. Con-
cretely, we show the protocol from [26] in the OT correlations model and the
protocol from [55] in the OLE correlations model satisfy augmented semi-honest
security and thus, can be used in our compiler.

Informal Theorem 2. Let f be an arbitrary multiparty functionality. Consider
the client-server MPC protocol from [47] that securely computes f . Let f ′ be

On the Round Complexity of Black-Box Secure MPC 219

the function computed by the servers in this protocol. There exists a black-box
transformation from a two-round MPC protocol for f ′ satisfying augmented semi-
honest security to a two-round malicious secure protocol for computing f in the
watchlist correlations model.

Towards concretely efficient 2-sided NISC. An interesting use case for the above
result is the 2-round, secure two-party protocol in which both parties get an
output. This should be contrasted with the standard notion of non-interactive
secure computation (NISC) [45] that applies to one-sided functionalities. Note
that this kind of 2-sided NISC cannot be obtained by simply running two par-
allel instances of standard NISC, since even if we ignore parallel composition
issues, there is no mechanism to enforce consistency between the inputs used in
these instances (unless we rely on zero-knowledge proofs and make non-black-
box use of cryptography). The only alternative black-box approach to 2-sided
NISC over OT correlations we are aware of is via the protocol garbling technique
that garbles the code of a malicious secure protocol and thus, has prohibitive
computational and communication cost. Even in the 1-sided case, existing pro-
tocols from [1,17,42,45,56] are heavily tailored to specific garbling techniques
and do not make a black-box use of an underlying semi-honest protocol.

We note that techniques developed in the context of an “IPS-style compiler”
in the two-round setting gives a new approach for constructing protocols for the
2-sided NISC problem. Specifically, if we use [47,58] as the outer protocol and
use the simple two-sided version of Yao’s protocol (using Boolean garbling in the
OT correlations model) as the inner protocol, we obtain a 2-sided NISC proto-
col that is secure against malicious adversaries in the OT correlations model.1

In Sect. 8.5 of the full version, we suggest some optimizations to improve the
concrete efficiency.

Black-box 5-Round MPC in the Plain Model. Our third and final result
uses a specialized combination of the previous contributions to get “one round
away” from settling the main open question about the round complexity of black-
box MPC. Concretely, we get a 5-round MPC protocol that makes a black-box
use of PKE with pseudorandom public keys (as in the first contribution), along
with any 2-round OT protocol with “semi-malicious” security. The latter security
requirement is a very mild strengthening of semi-honest security in the context
of 2-round OT protocols, and is satisfied by most 2-round OT protocols from the
literature (for instance, it can be instantiated from standard assumptions such
as DDH, LWE, QR).

Informal Theorem 3. Let f be an arbitrary multiparty functionality. Assume
the existence of a public key encryption with pseudorandom public keys and a
two-round oblivious transfer protocol with semi-malicious security. There exists
a five-round black-box protocol in the plain model that securely implements f
against malicious adversaries that statically corrupts upto all-but-one parties.

1 As we noted before, for the case of constant number of parties, watchlist correlations
reduces to standard OT correlations.

220 Y. Ishai et al.

1.2 Related Work

In this subsection, we give a brief overview of the two main approaches taken by
prior work obtaining black-box MPC protocols in the plain model.

Coin tossing based approach. The main idea in this approach is to use a black-
box simulatable coin tossing protocol to setup a CRS and then use black-box
MPC protocols (such as [GIS18]) in the CRS model. Roughly, to generate the
CRS, the idea is for each party to commit to a random string ri and in a later
step, for all parties to reveal their coins. To ensure that malicious parties cannot
set their randomness as a function of that of other honest players, players should
use a (concurrent) non-malleable commitment in the commit phase.

But the main bottleneck to obtaining such a coin tossing protocol is achiev-
ing simulatability. To achieve the simulation guarantee and allow a simulator to
“force” the output of the coin toss to be a certain value2, one would need to
rely zero-knowledge protocols, which if applied naively make non-black-box use
of cryptography. Even if one were able to achieve simulation-based guarantees
via a specific protocol, one would need to tailor this to prove statements about
construction of bounded concurrent non-malleable commitment w.r.t. commit-
ment against synchronising adversaries, for which no round efficient black-box
constructions exist. More specifically, [35] gives a black-box protocol but the
number of rounds of this protocol is greater than 18 (the coin tossing requires at
least two more rounds. [36] gives a 3-round black-box construction of NMCom
but is only secure in the standalone setting. The other round efficient construc-
tions of concurrent NMCom [20,21,37,53] make non-black use of cryptography.

IPS compiler based approach. The IPS compiler [49] gives a black-box MPC pro-
tocol in the OT hybrid model. The main challenge in instantiating this approach
in the plain model is in constructing a protocol that securely realizes the ideal OT
functionality. In particular, we need a protocol that realizes the ideal OT func-
tionality between every ordered pair of parties. [60] gave a non-constant round
black-box way to realize this which was improved by [32] who gave a constant
round protocol. The main component in the constant round protocol is again a
constant round black-box bounded concurrent non-malleable commitment wrt
replacement (which is weaker than the traditional definition of non-malleable
commitment wrt commitment). Even if we rely on a three-round black-box ver-
sion of such a non-malleable commitment from [34], the OT protocol requires
at least 12 rounds of communication. A straightforward way of combining this
with the IPS approach incurs at least four more rounds.

2 Technical Overview

In this section, we provide an overview of the key technical ideas used in con-
structing a four round, black-box pairwise MPC in the plain model. One of the

2 Note that this corresponds to the programmability requirement.

On the Round Complexity of Black-Box Secure MPC 221

key building blocks used in this construction is a watchlist protocol. We give a
construction of this protocol based on any public-key encryption with pseudo-
random public keys and we elaborate on this next.

2.1 The Watchlist Protocol

We start by describing the ideal version of the watchlist functionality. The watch-
list functionality is nothing but an implementation of a k-out-of-m oblivious
transfer between each ordered pair of parties. Specifically, each ordered pair Pi

and Pj execute a k-out-of-m OT where Pi acts as a receiver and Pj acts as
a sender. We observe that the k-out-of-m OT is a one-sided functionality and
hence, this can be realized if parties have pairwise access to independent copies
of the ideal OT functionality [45,49]. We call this as simultaneous secure OT
and would like to securely realize this ideal functionality in the plain model in
the presence of arbitrary malicious corruptions.

A Starting Point. A natural first attempt is to just have each pair of parties
simultaneously execute a two-party secure protocol computing the k-out-of-m
OT functionality. Such a protocol can be realized based on black-box use of any
public key encryption scheme with pseudorandom public keys [24,57].

Unfortunately, this does not securely emulate access to independent copies of
the ideal OT functionality between pairs of participants, because this protocol
satisfies only stand-alone security. It is easy to achieve OT that composes under
parallel repetition with fixed roles, i.e., where many OT sessions are executed in
parallel, and an adversary either corrupts multiple senders or multiple receivers
but does not simultaneously corrupt (subsets of) senders and receivers. In par-
ticular, the stand-alone secure construction of OT from pseudorandom public
keys in [24] already achieves this notion of parallel composition.

But in the (more general) simultaneous setting, an adversarial party P ∗
i par-

ticipates in many OT sessions simultaneously, as sender in some sessions and
receiver in others. This gives P ∗

i the opportunity to generate its own (e.g.,
sender) message in some OT session as a function of a message generated by
an honest sender in a different OT session, thereby possibly making its own
input depend on the input(s) of honest player(s). Clearly, this is disallowed by
the ideal simultaneous OT functionality; but not prevented by standalone OT.
Our first step towards addressing this vulnerability is to ensure that adversarial
inputs are independent of the inputs of honest players.

As discussed in the introduction, we develop a novel approach to achieving
such independence. In particular, we construct “non-malleable OT” that satisfies
the following guarantees.

– Receiver Security under Parallel Composition. For every adversarial
sender A∗ that corrupts the OT sender (or resp., multiple senders in any
parallel composition of the OT protocol), there exists a simulator that sim-
ulates the view of A∗ with black-box access to (resp., copies of) the ideal
OT functionality. This follows automatically from simulation-based security

222 Y. Ishai et al.

against malicious senders (resp., in the parallel composition setting) of the
underlying two-party secure protocol ΠF .

– Non-Malleability. Informally, here we consider a man-in-the-middle adver-
sary MIM that acts as a receiver in a subset of OT sessions (that we refer to
as “left” sessions) and as sender in a different subset of OT sessions (that we
refer to as “right” sessions).
We require the existence of a simulator-extractor Sim-Ext, that given the
inputs of all honest receivers (participating in all right sessions), is able to
extract all the implicit inputs used by the MIM in all its right sessions. Cru-
cially, Sim-Ext does not have access to the inputs of honest senders (partici-
pating in the left sessions).
This is the key property that prevents an adversarial sender from “copying”
the inputs of honest senders, or more generally, generating its inputs as a
function of honest senders’ inputs. Achieving this property will be a key
technical focus of our work.

In what follows, we provide an overview of our construction of non-malleable
OT. Then, in Sect. 2.1, we discuss why any non-malleable OT protocol satisfy-
ing these properties almost directly implies pairwise ideal OT functionality (or,
simulataneous secure OT), and therefore also securely realizes watchlists.

Towards Non-Malleable OT. We take inspiration from recent works that
use non-malleable codes (introduced in [23]) to build cryptographic primitives
like non-malleable commitments [36], and non-malleable multi-prover interactive
proofs [33].

In more detail, we will build non-malleable OT by combining parallel com-
posable two-party secure computation with (an) appropriate (variant of) split-
state non-malleable codes. Such codes are specified by encoding and decoding
algorithms (Enc,Dec). The encoding algorithm Enc is a randomized algorithm
that encodes any message m into a codeword consisting of two parts or “states”
(L,R), and the decoding algorithm Dec on input a codeword returns the underly-
ing message. The security property is that for every pair of tampering functions
(f, g) with no fixed points, the (distribution of) m̃ ← Dec(f(L), g(R)), where
(L,R) ← Enc(m), is independent of m. We now describe (a simplified variant of)
our construction.

Our Construction. For simplicity, we will focus on the special case of implement-
ing non-malleable 1-out-of-2 OT, but our techniques immediately extend to the
more general setting of k-out-of-m OT. To prevent obvious copying attacks, we
will assign to each party a unique tag or identity.

Our construction of non-malleable OT simply involves executing a secure two-
party protocol Π between a sender S and a receiver R, for a special functionality
F . Before describing this functionality, we discuss the inputs of participants to
this functionality.

The sender S with on input (m0,m1) and tag encodes these messages using an
appropriate split-state non-malleable code (Enc,Dec). Specifically, S computes

On the Round Complexity of Black-Box Secure MPC 223

L0,R0 ← Enc(m0||tag) and L1,R1 ← Enc(m1||tag). The receiver R obtains as
input a choice bit b ∈ {0, 1}, and samples uniformly random c ∈ {0, 1}. S
and R then invoke a two-party secure protocol ΠF to compute functionality F
described in Fig. 1. In addition, S sends tag to R.

Sender Inputs: m0, L0,R0,m1, L1,R1, tag. Receiver Inputs: b, c.

The functionality (m0, L0,R0,m1, L1,R1, b, c, tag) is defined as follows.

1. If Dec(L0,R0) �= (m0||tag) or Dec(L1,R1) �= (m1||tag), output ⊥.
2. If c = 0, output (mb, L0, L1) and output (mb,R0,R1), otherwise.

Fig. 1. The functionality F

We note that the ideal functionality F reveals mb to R, and in addition,
reveals either only (L0, L1) or only (R0,R1). Because any split-state non-malleable
code is also a 2-out-of-2 secret sharing scheme [4], the shares L1−b and R1−b each
statistically hide m1−b from R. It is also clear that protocol Π makes only black-
box use of the underlying two-party computation protocol.

We show that (an appropriate k-out-of-m variant of) the protocol sketched
above securely realizes non-malleable OT, even when Π itself is only parallel
composable secure (but may be completely malleable).

Proving Sender Non-Malleability. For ease of exposition, let’s consider a sim-
pler man-in-the-middle adversary (MIM) that participates in a single left session
as receiver, and a single right session as sender. We will also assume that the
MIM never sends messages that cause an honest party to abort. Additionally, the
underlying secure two-party protocol Π will be a round optimal (four round) pro-
tocol with sequential messages, and has the following specific structure. Namely,
it will require the receiver to commit to its input b in the first round of the
protocol, and at the same time, it will be delayed-input w.r.t. receiver input c,
which will be chosen by the receiver immediately before the third round begins.
Finally, it will require the inputs (m0,m1, L0,R0, L1,R1, tag) of the sender to be
committed in the second round of the protocol, before c is chosen by the receiver.

First Attempt: An Alternate Extraction Mechanism. One possible way to extract
sender inputs from the right execution, is to execute the simulator of the under-
lying two-party protocol Π. Unfortunately, this fails because Π is only parallel
composable secure, and extracting from the right execution automatically reveals
honest sender inputs from the left execution.

Instead, we will use the specific way that sender inputs are encoded to intro-
duce an alternate extraction mechanism. Specifically, one could imagine rewind-
ing the third and the fourth round message of Π, using inputs c = 0 and c = 1
on behalf of the honest receiver in the real and rewinding threads, respectively.

224 Y. Ishai et al.

By our assumption, the adversary is non-aborting. Therefore, we expect to obtain
outputs (˜L0,˜L1) and (˜R0, ˜R1) in the right session in the real and rewinding threads
respectively. At this point, we can use the decoder of the non-malleable code to
obtain (m̃0, m̃1), which, by correctness of the two-party protocol, should corre-
spond to the implicit inputs of the MIM in the right session.

It doesn’t seem like this argument gives us much (yet): rewinding the MIM’s
third and fourth rounds would also end up rewinding the third and the fourth
rounds of the left execution with (possibly different) inputs c̃, ĉ used by the MIM
in the main and rewinding threads. Thus, it may seem like we are back to square
one: it may not be possible to hide the inputs of the honest sender in the presence
of such rewinding.

Towards Resolving the Extraction Bottleneck: 1-Rewind Sender Security. To
tackle this problem, our first step will be to require that Π satisfy a stronger
security property: 1-rewind sender security. Roughly, this means that any adver-
sarial receiver R∗ that rewinds the honest sender one time in the third and
fourth rounds, using (possibly different) inputs c̃, ĉ in the main and rewinding
threads, does not recover any information beyond the output of F on inputs
(m0,m1, L0, L1,R0,R1,˜b, c̃) and (m0,m1, L0, L1,R0,R1,˜b, ĉ). We formalize this by
requiring the existence of a specific type of simulator: this simulator generates a
view for R∗ in the main thread given only (m

˜b, L0, L1) and a view for R∗ in the
rewinding thread given only (m

˜b,R0,R1) (or vice-versa). Now, it may seem like
this type of simulator may not be very meaningful, since the sum total of this
information could essentially allow the receiver to recover m1−˜b by combining
L1−˜b with R1−˜b.

However, the fact that (L0, L1) and (R0,R1) are made available in separate
threads can be exploited argue that the MIM’s input must be independent of
m1−˜b, as we discuss next.

Alternative Simulation. Let us go back to our alternate extraction mechanism
discussed earlier, where w.l.o.g. the third and fourth round messages of Π are
rewound with (honest) receiver input set to c = 0 in the main and c = 1 in
the rewinding thread, respectively. This means that in the main thread, the
challenger obtains output (˜L0,˜L1) in the right session. In the rewind thread,
setting c = 1, the challenger obtains outputs (˜R0, ˜R1). Meanwhile the real and
rewinding left executions will simulated using only (m

˜b, L0, L1) and (m
˜b,R0,R1)

(or vice-versa) respectively, as described above. This means that in the main
thread, the MIM outputs (˜L0,˜L1) as a function of only (m

˜b, L0, L1), and in the
rewinding thread, the MIM outputs (˜R0, ˜R1) as a function of only (m

˜b,R0,R1).3

We formalize this intuition to argue that the MIM’s behaviour naturally
gives rise to a split-state tampering function family. Here, one tampering func-
tion corresponds to the MIM’s functionality in the main thread, and the other

3 Actually, the MIM may also output (˜L0,˜L1) as a function of only (m
˜b,R0,R1), and

(˜R0, ˜R1) as a function of only (m
˜b, L0, L1). We use codes satisfying an additional

symmetric decoding property to account for this case.

On the Round Complexity of Black-Box Secure MPC 225

corresponds to the MIM’s functionality in the rewinding thread. This allows us
to rely on the non-malleability of the underlying encoding scheme to switch from
generating L1−˜b,R1−˜b as an encoding of m1−b, to generating it as an encoding
of a dummy value.

This completes a simplified description of the main ideas in our protocol. We
swept several details under the rug but point out one important detail below.

Many-many Non-malleability. Recall that we simplified things earlier, to focus
on a setting where the MIM participates in a single left session as receiver and
a single right session as sender. For our application to watchlists, we require
security against adversaries that participate in multiple left and right sessions.

To achieve security in this setting, we will rely on many-many non-malleable
codes (that are implied by one-many non-malleable codes [18]) that achieve secu-
rity in the presence of multiple tamperings of a single codeword [18]. Moreover,
in order to deal with adversaries that may abort arbitrarily, we will modify the
functionality F . Instead of encoding (m0,m1) a single time, the sender generates
λ (where λ is the security parameter) fresh encodings {(Li

b,R
i
b)}i∈[λ],b∈{0,1} of

m0 and m1. The receiver picks λ choice bits c1, . . . , cλ instead of a single bit c.
The functionality F checks if for every i ∈ [λ], b ∈ {0, 1}, {(Li

b,R
i
b)}i∈[λ],b∈{0,1}

encode mb. If the check fails, F outputs ⊥. If it passes, then for every i ∈ [λ], it
outputs (Li

0, L
i
1) if ci = 0 and otherwise, outputs (Ri

0,R
i
1).

This helps ensure that for every adversary MIM that completes a main thread
(without aborting) given honest receiver input c = c1, . . . , cλ, there is (w.h.p.)
a rewinding thread with a different choice c′ = c′

1, . . . , c
′
λ of honest receiver

input, that is also completed by the MIM. We then rely on any index i for which
ci �= c′

i to carry out the argument described above. Additional details of our
non-malleable OT protocol can be found in Sect. 5.1 in the full version.

From Non-Malleable OT to Watchlists. We note that that our OT pro-
tocol, as described above, prohibits an adversarial sender from generating its
generating its inputs as a function of honest senders’ inputs.

One could ask for an even stronger property, requiring the inputs of adver-
sarial receivers to be independent of the honest receivers’ inputs. At first glance,
this stronger property appears to be necessary, since pairwise access to ideal
OTs would actually enforce that all adversarial receiver inputs are independent
of the inputs of honest receivers.

But upon taking a closer look, we realize that non-malleable OT as described
in the previous section actually suffices to construct watchlists with security in
the real/ideal paradigm. Intuitively, this is because the outputs of honest parties
are affected only by the inputs of the adversarial senders, and are unaffected by
the inputs of adversarial receivers. In other words, even if adversarial receivers
manage to have their inputs depend on the inputs of the honest receivers, this
cannot affect the joint distribution of their view and the outputs of honest parties
in the ideal world. We formalize this intuition and show that non-malleable OT
generically implies a protocol for securely realizing the watchlist functionality.

226 Y. Ishai et al.

The only missing ingredient in our description is the 1-rewind sender secure
protocol, which we describe next.

Constructing a 1-Rewind Sender Secure Protocol. In our actual con-
struction of non-malleable OT, the receiver inputs (c1, . . . cλ) do not need to
remain hidden from a corrupted sender. In particular, all we need is for the
protocol to allow for delayed function selection, where the function to be com-
puted (defined by c1, . . . , cλ) is selected by the receiver in the third round. Given
this, the 1-rewinding security property translates to requiring that any corrupt
receiver which rewinds the third and the fourth round messages of the sender
by providing (possibly) different functions learns nothing beyond the output of
these two functions on sender and receiver inputs that were fixed in the first two
rounds.

We will design such a 2-party protocol for NC1 circuits4 by relying on a
different variant [45,46,49] of the IPS paradigm. Specifically, we will use the
same 2-client m-server outer protocol [58] that was discussed at the beginning of
the overview, and combine it an inner protocol that is based a variant of Yao’s
garbled circuits [61]. Yao’s protocol also allows for the garbled circuits to be
generated in the final round, which immediately gives us the delayed function
selection property. Importantly, since we only care about parallel composable
security in the resulting two-party protocol, parallel composable but possibly
malleable 1-rewind secure OT will suffice to implement watchlists in this set-
ting. We slightly generalize the works of [24,57] to obtain a maliciously secure
OT that satisfies 1-rewind sender security and makes black-box use of a PKE
with pseudorandom public keys. We refer the reader to Appendix C of the full
version for the details of constructing the secure computation protocol and to
Appendix D of the full version for the construction of a 1-rewind sender secure
OT protocol.

Immediate Application: Black-Box Simultaneous Two-Party Compu-
tation. Plugging the resulting simultaneous OT protocol in place of ideal OT,
into the non-interactive two-party secure black-box computation protocol of [45],
yields a round optimal two-party simultaneous secure computation, from black-
box use of any PKE with pseudorandom public keys.

Organization. Due to lack of space, we include our construction of non-malleable
OT in the body of the paper, and defer remaining protocols to the full version.

3 Preliminaries and Definitions

Let λ denote the security parameter. A function μ(·) : N → R
+ is said to be

negligible if for any polynomial poly(·) there exists λ0 such that for all λ > λ0

4 We show in Sect. 5.1 of the full version that 1-rewind secure 2PC for NC1 circuits
suffices to obtain non-malleable OT.

On the Round Complexity of Black-Box Secure MPC 227

we have μ(λ) < 1
poly(λ) . We will use negl(·) to denote an unspecified negligible

function and poly(·) to denote an unspecified polynomial function. We use Δ to
denote the statistical distance.

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on
input x with the content of the random tape being r. When r is omitted, A(x)
denotes a distribution. For a finite set S, we denote x ← S as the process of
sampling x uniformly from the set S. We will use PPT to denote Probabilistic
Polynomial Time algorithm.

3.1 Non-malleable Codes

We will use non-malleable codes in the split-state model, that are one-many
secure and satisfy a special augmented non-malleability [2] property, as discussed
below.

Definition 1. (One-many augmented split-state non-malleable codes).
Fix any polynomials �(·), p(·). An �(·)-augmented non-malleable code with error

ε(·) for messages m ∈ {0, 1}p(λ) consists of algorithms NM.Code,NM.Decode
where NM.Code(m) → (L,R) such that for every m ∈ {0, 1}p(λ),

NM.Decode(NM.Code(m)) = m

and for every set of functions f = (f1, f2, . . . f�(λ)), g = (g1, g2, . . . g�(λ)) there
exists a random variable Df,g on {{0, 1}p(λ) ∪ same∗}�(λ) which is independent
of the randomness in NM.Code such that for all messages m ∈ {0, 1}p(λ) it holds
that

Δ
((

R, {NM.Decode
(

fi(L), gi(R)}i∈[�(λ)]

))

, (replace(Df,g,m))
) ≤ ε(λ)

Δ
((

R, {NM.Decode
(

gi(R), fi(L)}i∈[�(λ)]

))

, (replace(Df,g,m))
) ≤ ε(λ)

where (L,R) ← NM.Code(m) and the function replace : {0, 1}∗ ×{0, 1}∗ → {0, 1}
replaces all occurrences of same∗ in its first input with its second input s, and
outputs the result.

It was shown in [3,34,38] that the CGL one-many non-malleable codes con-
structed in [18] are also one-many augmented non-malleable codes. But we point
out that in this definition, we also require messages obtained by decoding the
tampered codewords with left and right shares interchanged to be unrelated
with the original message. It is easy to see that this property is satisfied by
any non-malleable code with symmetric decoding (i.e. where NMDec(L,R) =
NMDec(R, L)). This property can be achieved, as observed in [33], by modifying
any split-state code to attach a special symbol “�” to the left part of the code-
word, and a special symbol “r” to the right part of the codeword. This yields the
following imported theorem:

Theorem 1. (Imported.) [33,34] For every polynomial �(·), there exists a poly-
nomial q(·) such that for every λ ∈ N, there exists an explicit �-augmented,
split-state non-malleable code satisfying Definition 1 with efficient encoding and
decoding algorithms with code length q(λ), rate q(λ)−Ω(1) and error 2−q(λ)Ω(1)

.

228 Y. Ishai et al.

3.2 Low-Depth Proofs

We will describe how any computation that can be verified by a family of poly-
nomial sized ciruits can be transformed into a proof that is verifiable by a family
of circuits in NC1. Let R be an efficiently computable binary relation. Let L be
the language consisting of statements in R, i.e. for which R(x) = 1.

Definition 2 (Low-Depth Non-Interactive Proofs). A low-depth non-
interactive proof with perfect completeness and soundness for a relation R con-
sists of an (efficient) prover P and a verifier V that satisfy:

– Perfect completeness. A proof system is perfectly complete if an honest
prover can always convince an honest verifier. For all x ∈ L we have

Pr[V (π) = 1|π ← P (x)] = 1

– Perfect soundness. A proof system is perfectly sound if it is infeasible to
convince an honest verifier when the statement is false. For all x �∈ L and all
(even unbounded) adversaries A we have

Pr[V (x, π) = 1|π ← A(x)] = 0.

– Low depth. The verifier V can be implemented in NC1.

We outline a simple construction of a low-depth non-interactive proof, borrowed
from [25]. The prover P executes the verification circuit on x and generates
the proof as the sequential concatenation (in some specified order) of the bit
values assigned to the individual wires of the circuit computing R. The verifier
V proceeds by checking consistency of the values assigned to the internal wires
of the circuit for each gate. In particular for each gate in the verification circuit
the verifier checks if the wire vales provided in the proof represent a correct
evaluation of the gate. Since the verification corresponding to each gate can be
done independent of every other gate and in constant depth, we have that V
itself is constant depth.

Looking ahead, our construction of non-malleable OT makes use of a (mal-
leable) two-party computation protocol for NC1 that must verify validity of a
non-malleable code. We rely on low-depth proofs to ensure that the two-party
computation protocol only performs NC1 computations.

3.3 1-Rewind Sender-Secure Two-Party Computation

Let us consider a protocol Π between two parties, namely, the sender § and the
receiver R. The sender holds a private input x§ and the receiver holds a private
input xR and they wish to compute some function of their private inputs securely
with the receiver obtains the output of the function. We want this protocol to
satisfy:

On the Round Complexity of Black-Box Secure MPC 229

– (Delayed-function selection) The function to be securely computed is only
decided in the third round by the receiver R. That is, the third round message
contains the explicit description of the function f to be computed and the
first two messages depend only on the size of the function.

– (1-Rewinding Security) Any malicious receiver that rewinds the third and
fourth rounds of the protocol once (by possibly giving different functions
f0, f1) cannot learn anything about the sender’s inputs except the output on
these two functions.

The syntax of the protocol and the two properties are formalized below.

Syntax. The special two party protocol Π is given by a tuple of algorithms
(Π1,Π2,Π3,Π4, outΠ). Π1 and Π3 are the next message functions run by the
receiver R and Π2 and Π4 are the next message functions run by the sender
§. At the end of the protocol, R runs outΠ on the transcript, its input and the
random tape to get the output of the protocol. We use πr to denote the message
sent in the protocol Π in round r for every r ∈ [4].

Definition 3. Let Π = (Π1,Π2,Π3,Π4, outΠ) be a 4-round protocol between a
receiver R and a sender § with the receiver computing the output at the end of
the fourth round. We say that Π is a 1-rewinding sender secure protocol with
delayed function selection for NC1 circuits if it satisfies:

– Delayed Function Selection. The first and second message functions
Π1,Π2 take as input the size of the function f ∈ NC1 to be securely com-
puted and are otherwise, independent of the function description. The third
round message from R contains the explicit description of the function f to
be computed.

– Receiver Security. For every malicious PPT adversary A that corrupts
the sender, there exists an expected polynomial (black-box) simulator SimR =
(Sim1

R,Sim2
R) such that for all choices of honest receiver input xR and the

function f ∈ NC1, the joint distribution of the view of A and R’s output in
the real execution is computationally indistinguishable to the output of the
ideal experiment described in Fig. 2.

– 1-Rewinding Sender Security. For every malicious adversary A, cor-
rupting the receiver, there exists an expected polynomial time simulators
Sim§ = (Sim1

§,Sim
2
§) such that for every choice of sender’s input x§, we have:

Expt1(A,Π, xR, x§)Expt2(A,Sim§, xR, x§)

where Expt1 and Expt2 are defined in Fig. 3.

230 Y. Ishai et al.

– The honest receiver R sends xR and f to the ideal functionality.
– Initialize A with uniform random tape r.
– Sim1

R on input f , interacts with A and outputs π1, π2, xS and sk.
– Send xS to the ideal functionality.
– Sim2

R on input sk, interacts with A and outputs π3 and π4. Sim
2
R may send

an abort to the ideal functionality.
– Output (r, π1, π2, π3, π4) and the output of the honest R.

Fig. 2. Ideal experiment in the receiver security game

Expt1(A, Π, xS) = 1]

– Initialize A with a uniform random
tape s.

– π1 A(1λ; s).
– Choose r 0, 1}λ uniformly

at random and compute π2

Π2(xS , π1; r).

– (f0, π3[0]), (f1, π3[1]) A(π2; s).
– π4[b]

{

Π4(xS , π1, (fb, π3[b]); r) for
b ∈ {0, 1}.

– Output
(s, π1, π2, {fb, π3[b], π4[b]}b∈{0,1}).

Expt2(A, SimS , xS)

– Initialize A with a uniform random
tape s.

– Sim1
S interacts with A and produces

(π1, sk).
– Sim2

S on input sk interacts with A
and produces a query (xR, f0, f1) to
be sent to the ideal functionality.

– On receiving zb = fb(xR, xS)
from the ideal functionality, Sim2

S
interacts with A and produces
(π2, {fb, π3[b], π4[b]}b∈{0,1}).

– Output
(s, π1, π2, {fb, π3[b], π4[b]}b∈{0,1}).

Fig. 3. Descriptions of Expt1 and Expt2.

4 Non-Malleable Oblivious Transfer

4.1 Definition

We define non-malleable OT which considers a man-in-the-middle adversary that
generates OT messages as a function of those generated by honest players. The
non-malleability property ensures that no PPT adversarial sender can generate
its OT inputs as a function of the (secret) inputs of honest senders.

Definition 4 (� non-malleable
(

m
k

)

Oblivious Transfer). An � non-

malleable
(

m
k

)

Oblivious Transfer is a protocol between a sender S with inputs

{mi}i∈[m] and a receiver R with input K ⊂ [m] where |K| = k, that satisfies the
following:

On the Round Complexity of Black-Box Secure MPC 231

– Correctness. For every i ∈ [m],mi ∈ {0, 1}λ and K ⊂ [m] such that |K| = k,

OutR〈S({mi}i∈[m]),R(K)〉 = {mi}i∈K

– (Parallel Composable) Receiver Security. For every PPT sender S∗ and
every pair K,K ′ of k-sized subsets of [m], we require

ViewS∗〈S∗,R(K)〉 ≈c ViewS∗〈S∗,R(K ′)〉
Additionally, we require that there exists a PPT extractor Sen.Ext that on
input any transcript τ and with black-box access to any PPT sender S∗ outputs
{(m∗

i,j)}i∈[m],j∈[�] where m∗
i,j denotes the ith implicit input used by S∗ in the

jth session of τ (if any input is not well-defined, it outputs ⊥ in its place)5.
– Non-Malleability. Consider any PPT adversary (denoted by MIM) that

interacts with upto � senders S1, . . . ,S� on the left, where for every j ∈ [�], Sj

has input {mi,j ∈ {0, 1}n}i∈[m], and upto � receivers R1, . . . ,R� on the right,
where for every j ∈ [�], Rj has input Kj.
We denote by ViewMIM〈{Sj({mi,j}i∈[m])}j∈[�], {Rj(Kj)}j∈[�]〉 the view of the
MIM in this interaction, and denote the ith implicit input used by the MIM in
the jth right session by m′

i,j
6. We denote by RealMIM〈{Sj({mi,j}i∈[m])}j∈[�],

{Rj(Kj)}j∈[�]〉 the joint distribution of {(m′
i,j)}i∈[m],j∈[�] and ViewMIM〈{Sj

({mi,j}i∈[m])}j∈[�], {Rj(Kj)}j∈[�]〉. Then, we require that there exists a
simulator-extractor pair, (SimOT,ExtOT) that outputs

IdealMIM({mi,j}i∈[m],j∈[�], {Kj}j∈[�]) = Sim
MIM,{OT({mi,j}i∈[m],·)}j∈[�]
OT (σ, { ˜Kj}j∈[�]),

for (σ, { ˜Kj}j∈[�]) ← ExtMIM
OT ({Kj}j∈[�]), s.t. for all honest inputs

{mi,j}i∈[m],j∈[�], {Kj}j∈[�], we have

RealMIM〈{Sj({mi,j}i∈[m])}j∈[�], {Rj(Kj)}j∈[�]〉 ≈c IdealMIM({mi,j}i∈[m],j∈[�], {Kj}j∈[�]).

4.2 Construction

In this subsection, we construct � non-malleable m-choose-k OT. Here, � denotes
the number of executions that an MIM adversary may participate in. Our con-
struction is described in Figure 4, and makes use of the following:

– A 4 round two-party secure computation protocol Π with delayed-function
selection and 1-rewinding sender security.

– An information-theoretic m(λ) · �(λ) non-malleable secret sharing scheme.
– A low-depth proof for P.
– An existentially unforgeable signature scheme with algorithms denoted by
Signature.Setup, Signature.Sign and Signature.Verify.

We describe our protocol formally in Fig. 4. The correctness of this protocol
follows from correctness of the underlying oblivious transfer, non-malleable codes
and signature scheme. In what follows, we prove security of this protocol.
5 This property guarantees parallel composability, and is satisfied by most natural

rewinding-based protocols.
6 If any of these is not well-defined, we denote it by ⊥.

232 Y. Ishai et al.

Inputs: Sender S has inputs {mj}j∈m and receiver R has input a set K ⊆ [m]
where |K| = k.

Protocol: S and R do the following.

1. S samples (vk, sk) Signature.Setup(1λ), then does the following.
– For each i ∈ [λ], j ∈ [m], pick uniform randomness ri,j and compute

(Li,j ,Ri,j) = NM.Code((vk|mj); ri,j).
– Set x = (vk, {(Li,j ,Ri,j ,mj)}i∈[λ],j∈[m]) and L ={

(vk, {(Li,j ,Ri,j ,mj)}i∈[λ],j∈[m]) : ∀i ∈ [λ], j ∈
[m],NM.Decode(Li,j ,Ri,j) = (vk|mj)

}
. Compute ldp = LDP.Prove(x, L).

2. For each i ∈ [λ], R picks ci {0, 1}.
3. Both parties engage in the protocol Π to compute functionality where:

– R plays the receiver with input K committed in round 1 and delayed
function (c1, . . . , cλ) chosen in round 3.

– S plays the sender with input (x, ldp), where x is parsed as
(vk, {mj , (Li,j ,Ri,j)}i∈[λ],j∈[m].

– The functionality on input (vk, {mj , Li,j ,Ri,j}i∈[λ],j∈[m], K, {ci}i∈[λ])
generates an output as follows:

• If LDP.Verify(x, ldp) �= 1, output ⊥.
• Otherwise set out = vk, {mj}j∈K . Additionally, for every i ∈ [λ], if

ci = 0, append ({Li,j}j∈[m]) to out, else append ({Ri,j}j∈[m]) to out.
• Output out.

Additionally, S signs messages generated according to Π, denoted by
(Π2, Π4). It sets σ2 = Signature.Sign(Π2, sk), σ4 = Signature.Sign(Π4, sk).
It sends (σ2, σ4) to R.

4. R obtains output out and parses out = (vk, {mj}j∈K , ·). It outputs {mj}j∈K

iff Signature.Verify(σ2, Π2, vk) ∧ Signature.Verify(σ4, Π4, vk) = 1, otherwise ⊥.

Fig. 4. �(λ) Non-Malleable m(λ)-choose-k(λ) Oblivious Transfer

Theorem 2. Let λ denote the security parameter, and m = m(λ), k = k(λ), � =

�(λ) be arbitrary fixed polynomials. There exists a 4 round � non-malleable
(

m
k

)

oblivious transfer protocol satisfying Definition 4 that makes black-box use of
any 4 round two-party secure computation protocol Π satisfying Definition 3,
and any existentially unforgeable signature scheme.

By relying on our 4 round two-party secure computation protocol satisfying
Definition 3 based on black-box use of any public-key encryption with pseudo-
random public keys, we obtain the following Corollary.

Corollary 1. Let λ denote the security parameter, and m = m(λ), k = k(λ), � =

�(λ) be arbitrary polynomials. There exists a 4 round � non-malleable
(

m
k

)

OT

protocol satisfying Definition 4 that makes black-box use of any public-key encryp-
tion with pseudo-random public keys.

On the Round Complexity of Black-Box Secure MPC 233

4.3 Security

We consider any man-in-the-middle adversary that participates as an OT
receiver in upto �(λ) executions of this protocol on the right, and participates
as an OT sender in upto �(λ) executions on the left.

We will prove that there exists a PPT algorithm Sim-Ext, that with black-
box access to the MIM, to � copies of the ideal OT functionality OT =
{OTj({mi,j}i∈[m], ·)}j∈[�] and with input {Kj}j∈[�], simulates an execution of
the protocol with the MIM and extracts all the inputs {({m̃i,j}i∈[m])}j∈[�] used
by the MIM in the executions where the MIM is sender. We will prove that
Sim-Ext outputs IdealMIM({mi,j}i∈[m],j∈[�], {Kj}j∈[�]) such that

RealMIM〈{Sj({mi,j}i∈[m])}j∈[�], {Rj(Kj)}j∈[�]〉 ≈c IdealMIM({mi,j}i∈[m],j∈[�], {Kj}j∈[�])

To prove indistinguishability, we define a sequence of hybrid experiments,
where the first one outputs the distribution RealMIM〈{Sj({mi,j}i∈[m])}j∈[�],
{Rj(Kj)}j∈[�] and the final one outputs the distribution IdealMIM

({mi,j}i∈[m],j∈[�], {Kj}j∈[�]). Formally, these hybrids are defined as follows:

Hyb0 : This corresponds to an execution of the MIM with � honest senders
{Sj}j∈[�] on the left, each using inputs {mi,j}i∈[m] respectively and � honest
receivers on the right with inputs ({Kj}j∈[�]) respectively. The output of this
hybrid is RealMIM〈{Sj({mi,j}i∈[m])}j∈[�], {Rj(Kj)}j∈[�].

Hyb1 : This experiment modifies Hyb1 by introducing an additional abort con-
dition. Specifically, the experiment first executes the complete protocol corre-
sponding to the real execution of the MIM exactly as in Hyb0 to obtain the
distribution RealMIM〈{Sj({mi,j}i∈[m])}j∈[�], {Rj(Kj)}j∈[�]〉.

Let p(λ) denote the probability that the MIM completes this execution with-
out aborting. Set γ(λ) = max

(

λ, p−2(λ)
)

. With the first two rounds of the
transcript fixed, the rewind the right execution up to γ(λ) times, picking inputs
(cj

1, . . . , c
j
λ) for each of the � receivers {Rj}j∈[�] independently and uniformly at

random in every run. If there exists a rewinding thread where the MIM com-
pletes the protocol execution, denote the inputs chosen by the challenger on
behalf of the honest receiver in this rewinding thread by (c′j

1, . . . , c
′j
λ). For every

j ∈ [�], let index αj ∈ [λ] be such that cj
αj

= 0 and c′j
αj

= 1. Additionally for

every j ∈ [�], i ∈ [m], use (˜Lj
αj ,i,

˜Rj
αj ,i) obtained as output from the main and

rewinding executions respectively to compute m̃j
i = NM.Decode(˜Lj

αj ,i,
˜Rj

αj ,i).
If no such rewinding thread exists, or if there exists j ∈ [�] for which there

does not exist α ∈ [λ] such that cj
α = 0 and c′j

α = 1, then set m̃j
i = ⊥ for all

i ∈ [m]. Now, the output of this hybrid is the joint distribution

ViewMIM〈{Sj({mj
i}i∈[m])}j∈[�], {Rj(Kj)}j∈[�]〉, {m̃j

i}j∈[�],i∈[m].

Lemma 1. For every unbounded distinguisher D we have
∣

∣

∣ Pr[D(Hyb0) = 1] − Pr[D(Hyb1) = 1]
∣

∣

∣ = negl(λ)

234 Y. Ishai et al.

Proof. Since the MIM’s inputs {(m̃j
i}j∈[�] are committed in round 2 of the pro-

tocol, then conditioned on the adversary providing a non-aborting transcript in
a rewinding execution in Hyb1, by simulation security of the 2pc, {(m̃j

i}j∈[�] are
correctly extracted.

Therefore, to prove this lemma it suffices to show that such a rewinding
execution (with a non-aborting transcript) can be found within γ(λ) attempts,
except with probability negl(λ). To see this, we observe that the probability of a
non-aborting transcript is p(λ), and therefore, the probability that all γ(λ) trials
abort is (1 − p(λ))�(λ) ≤ expp−1(λ) = negl(λ).

Hyb2: This experiment modifies Hyb2 to execute the simulator of Π in all ses-
sions where the MIM is a receiver. Specifically, in these executions, instead of
the honest sender strategy with input {mj

i}i∈[m],j∈[�], we execute the simulator

Sim-2PCMIM,F(inpSj ,·)
Sen where

inpSj = ({mj
i , L

j
1,i, . . . , L

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m]).

Sim-2PCSen expects round 1 and round 3 messages from the MIM, and the MIM
in turn expects corresponding messages from the receiver in the right execution.
Receiver messages for the right execution are generated using honest receiver
strategy with inputs Kj fixed, and inputs cj

1, . . . , c
j
λ chosen uniformly at random,

exactly as in Hyb1. Denote the view of the MIM by

View
Sim

{F(inpSj ,·)}j∈[�] 〈{Rj(Kj)}j∈[�]〉,
where for every j ∈ [�], inpSj is as defined above.

Next, with the first two rounds of the transcript fixed, the challenger rewinds
the right execution up to �(λ) times, picking inputs (cj

1, . . . , c
j
λ) for Rj indepen-

dently and uniformly at random in every run, and generating messages in the
left execution by running the simulator Sim-2PCSen each time.

If there exists a rewinding execution where the MIM completes the protocol,
denote the inputs chosen by the challenger on behalf of the honest receiver in
this rewinding thread by (c′j

1, . . . , c
′j
λ). For every j ∈ [�], let index αj ∈ [λ]

be such that cj
αj

= 0 and c′j
αj

= 1. Additionally for every j ∈ [�], i ∈ [m],

use (˜Lj
αj ,i,

˜Rj
αj ,i) obtained as output from the main and rewinding executions

respectively to compute m̃j
i = NM.Decode(˜Lj

αj ,i,
˜Rj

αj ,i). If no such rewinding
thread exists, or if there exists j ∈ [�] for which there does not exist α ∈ [λ] such
that cj

α = 0 and c′j
α = 1, then set m̃j

i = ⊥ for all i ∈ [m]. The output of this
hybrid is the joint distribution:

View
Sim

{F(inpSj ,·)}j∈[�] 〈{Rj(Kj)}j∈[�]〉, {m̃j
i}j∈[�],i∈[m],

where for every j ∈ [�], inpSj is as defined above.

Lemma 2. Assuming 1-rewinding secure two party computation, for every effi-
cient distinguisher D we have

∣

∣

∣ Pr[D(Hyb1) = 1] − Pr[D(Hyb2) = 1]
∣

∣

∣ = negl(λ)

On the Round Complexity of Black-Box Secure MPC 235

Proof. We consider a sequence of sub-hybrids Hyb1,0,Hyb1,1, . . .Hyb1,� where for
every j ∈ [�], Hyb1,j is identical to Hyb1,j−1, except that instead of executing
the honest sender strategy using honest sender inputs {mj

i}i∈[m], we execute the

simulator in the jth left execution, where Sim-2PCMIM,F(inpSj ,·)
Sen where

inpSj = ({mj
i , L

j
1,i, . . . , L

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m])

Suppose the lemma is not true. Then for every large enough λ ∈ N there
exists j∗(λ) ∈ [�(λ)], a polynomial p(·) and a distinguisher D such that for
infinitely many λ ∈ N,

∣

∣

∣ Pr[D(Hyb1,j∗−1) = 1] − Pr[D(Hyb1,j∗) = 1]
∣

∣

∣ =
1

q(λ)

We derive a contradiction by building a reduction A that on input λ, obtains
j∗(λ) as advice and with black-box access to the MIM and to D contradicts 1-
rewinding security of the two party computation protocol. A proceeds as follows:

– A first creates receiver R′ that interacts with the external challenger as fol-
lows.

• Generate the first round messages according to receiver strategy with
inputs {Kj}j∈[�] for the right execution. Obtain first round messages from
the MIM, and output the MIM’s message in the j∗th left execution to the
challenger of the 2pc.

• Obtain the second round message for the left execution externally from
the 2pc challenger, and forward this to the MIM as Sj∗

’s message in the
j∗th left execution. Obtain the second round message from the MIM for
the right execution.

• Generate the third round message for the right execution according to
honest receiver strategy, and obtain the third round message from the
MIM. Output the MIM’s message in left session j∗ to the challenger.

• Obtain the fourth round message for the left execution externally from
the challenger, and forward this to the MIM as S’s message in the j∗th

left execution. Obtain the fourth round message from the MIM for the
right execution.

– Next, A rewinds R′ once, as follows.
• Generate the third round message according to honest receiver strategy,

and obtain the third round message from the MIM. Output the MIM’s
message in session j∗ to the challenger.

• Obtain the fourth round message for the left execution externally from
the challenger, and forward this to the MIM as S’s message in the j∗th

left execution. Obtain the fourth round message from the MIM from the
left execution.

• If none of the executions abort, for every j ∈ [�], find αj ∈ [λ] such that
cj
αj

= 0 and c′j
αj

= 1. and use it to compute m̃j
i = NM.Decode(˜Lj

αj ,i,
˜Rj

αj ,i)
for i ∈ [m], j ∈ [�]. Else, set m̃j

i = ⊥ for i ∈ [m], j ∈ [�]

236 Y. Ishai et al.

– A outputs the entire view of R′ together with {m̃j
i}i∈[m],j∈[�]. If the challenger

used honest sender messages, we denote the distribution output by A in this
experiment by Dist1 and if the challenger used simulated messages, we denote
the distribution output by A in this experiment by Dist2.

If the challenger’s messages correspond to the real sender S, then the distribu-
tion output by A conditioned on not aborting corresponds to Hyb1, and if the
challenger’s messages correspond to Sim-2PCSen, then the distribution output by
A conditioned on not aborting corresponds to Hyb2.

By assumption, for infinitely many λ ∈ N,
∣

∣

∣ Pr[D(Hyb1) = 1] − Pr[D(Hyb2) = 1]
∣

∣

∣ =
1

q(λ)

Since the MIM completes any run of the protocol without aborting with prob-
ability at least p(λ), and because aborts are independent of the distinguishing
advantage, for infinitely many λ ∈ N:

∣

∣

∣ Pr[D = 1 ∧ ¬abort|Hyb1] − Pr[D = 1 ∧ ¬abort|Hyb2]
∣

∣

∣ ≥ 1
p(λ) · q(λ)

where ¬abort denotes the event that an execution that is completed in the main
thread, is also completed without aborting in one rewinding execution.

This implies that for infinitely many λ ∈ N:
∣

∣

∣ Pr[D(Dist1) = 1] − Pr[D(Dist2) = 1]
∣

∣

∣ ≥ 1
p(λ) · q(λ)

,

and thus D contradicts 1-rewinding security of the two party computation pro-
tocol.

Hyb3: This hybrid is the same as Hyb2 except whenever the challenger obtains
as output a verification key in one of the right sessions that is identical to a
verification key used in one of the left sessions, the hybrid outputs ⊥. By exis-
tential unforgeability of the signature scheme, given any PPT adversary MIM,
Hyb2 and Hyb3 are statistically indistinguishable.

Hyb4: This hybrid is the same as Hyb3 except that inpSj is set differently. Specif-
ically, for every j ∈ [�], i ∈ [m] and α ∈ [λ], we set (Lj

α,i,R
j
α,i) ← NM.Sim(1p(λ)),

and set
inpSj = ({mj

i , L
j
1,i, . . . , L

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m]).

We note that at this point, the functionality {F(inpSj , ·)}j∈[�] can be per-
fectly simulated with access to the ideal functionality {OTj(mj

i ,m
j
i , ·)}j∈[�].

Therefore, the output of this hybrid is identical to the ideal view
IdealMIM({mj

i}i∈[m],j∈[�], {Kj}j∈[�]).

Lemma 3. Assuming m(λ) · �(λ) symmetric non-malleable codes, for every
unbounded distinguisher D we have:

∣

∣

∣ Pr[D(Hyb4) = 1] − Pr[D(Hyb3) = 1]
∣

∣

∣ = negl(λ)

On the Round Complexity of Black-Box Secure MPC 237

Proof. We prove indistinguishability between Hyb3 and Hyb4 by considering a
sequence of sub-hybrids, {Hyb3,i,j,k}i∈[1,m],j∈[1,�],k∈[0,λ] where:

– Hyb3 = Hyb3,0,�,λ, Hyb4 = Hyb3,m,�,λ,
– for i ∈ [m], Hyb3,i−1,�,λ = Hyb3,i,1,0

– for j ∈ [�], Hyb3,i,j−1,λ = Hyb3,i,j,0,
– for every i ∈ [m], j ∈ [�], k ∈ [λ], Hyb3,i,j,k is identical to Hyb3,i,j,k−1 except

that Hyb3,i,j,k samples (Lj
k,i,R

j
k,i) ← NM.Code(0).

Suppose the lemma is not true. Then there exists i∗ ∈ [m], j∗ ∈ [�], k∗ ∈ [λ],
an unbounded distinguisher D and a polynomial p(·) such that for large enough
λ ∈ N,

∣

∣

∣ Pr[D(Hyb3,i∗,j∗,k∗) = 1] − Pr[D(Hyb3,i∗,j∗,k∗−1) = 1]
∣

∣

∣ =
1

p(λ)
(1)

We now define a pair of tampering functions (fMIM, gMIM), and additional func-
tion hMIM as follows:

– fMIM, gMIM and hMIM share common state that is generated as follows:
• Execute Sim-2PCMIM

Sen , using honest R strategy in the right executions with
input {Kj}j∈[�] and uniformly chosen {cj

1, . . . c
j
λ}j∈[�], until Sim-2PCSen

generates a query to the ideal functionality F at the end of round 3.
• At this point, Sim-2PCMIM

Sen outputs a view and transcript of the MIM

until the third round, as well as { ˜Kj , c̃j
1, . . . , c̃

j
λ}j∈[�] that correspond to

the receiver’s inputs in the left execution.
• Rewind the third round once with uniformly and independently chosen

{c′j
1, . . . , c

′j
λ}j∈[�]. If for every j ∈ [�(λ)], there exists αj ∈ [λ] such that

cj
αj

= 0 and c′j
αj

= 1, continue, otherwise abort.
• Obtain the rewinding view (with the same prefix of the first two rounds),

as well as (c1, . . . , cn) that correspond to the receiver’s input in the left
session in this rewinding execution. If c̃j

k �= cj
k, continue. Otherwise, abort.

• Generate (Lj
k,i,R

j
k,i) for every (i, j, k) ∈ [m] × [�] × [λ] \ {i∗, j∗, k∗}

according to Hyb3,i∗,j∗,k∗−1 (this is identical to setting them according
to Hyb3,i∗,j∗,k∗).

• Output
the view of the MIM until round 3 in the main the rewinding threads,
including (i∗, j∗, k∗), the values (Lj

k,i,R
j
k,i)(i,j,k)∈[m]×[�]×[λ]\{i∗,j∗,k∗}.

• Additionally, output the receiver’s inputs { ˜Kj , c̃j
1, . . . , c̃

j
λ}j∈[�] and the

sender’s inputs {skj , vkj , {mj
i}i∈[m]}j∈[�].

– Next, the function hMIM on input L, sets Lj∗
k∗,i∗ = L,Rj∗

k∗,i∗ = 0.
Now, using hardwired values {vkj , {mj

i}i∈[m]}j∈[�], { ˜Kj , c̃j
1, . . . , c̃

j
λ}j∈[�] as

well as the values (Lj
k,i,R

j
k,i)(i,j,k)∈[m]×[�]×[λ]\{i∗,j∗,k∗}, it computes

out = {Fj(vkj , {mi, L
j
k,i,R

j
k,i}i∈[m],k∈[λ], ˜Kj , {c̃j

k}k∈[λ])}j∈[�].

238 Y. Ishai et al.

It then invokes Sim-2PCSen on out to generate the fourth round message of
the protocol transcript in the main thread if c̃j∗

k∗ = 0, and generates the fourth
round message of the protocol transcript in the rewinding thread if cj∗

k∗ = 0.
It outputs the resulting transcript as the view of the MIM.

– The function fMIM on input L, sets Lj∗
k∗,i∗ = L,Rj∗

k∗,i∗ = 0.
Now, using hardwired values {vkj , {mj

i}i∈[m]}j∈[�], { ˜Kj , c̃j
1, . . . , c̃

j
λ}j∈[�] as

well as the values (Lj
k,i,R

j
k,i)(i,j,k)∈[m]×[�]×[λ]\{i∗,j∗,k∗}, it computes

out = {F jvkj , {mi, L
j
k,i,R

j
k,i}i∈[m],k∈[λ], ˜Kj , {c̃j

k}k∈[λ])}j∈[�].

It then invokes Sim-2PCSen on out to generate the fourth round message of
the protocol transcript in the main thread if c̃j∗

k∗ = 0, and generates the fourth
round message of the protocol transcript in the rewinding thread if cj∗

k∗ = 0.
It outputs the values {Lj

αj ,i}i∈[m],j∈[�] or {Rj
αj ,i}i∈[m],j∈[�] obtained from the

MIM.
– The function gMIM on input R, sets Rj∗

k∗,i∗ = R, Lj∗
k∗,i∗ = 0.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[�], { ˜Kj , c̃j

1, . . . , c̃
j
λ}j∈[�] as

well as the values (Lj
k,i,R

j
k,i)(i,j,k)∈[m]×[�]×[λ]\{i∗,j∗,k∗}, it computes

out = {F jvkj , {mi, L
j
k,i,R

j
k,i}i∈[m],k∈[λ], ˜Kj , {c̃j

k}k∈[λ])}j∈[�].

It then invokes Sim-2PCSen on out to generate the fourth round message of
the protocol transcript in the main thread if c̃j∗

k∗ = 1, and generates the fourth
round message of the protocol transcript in the rewinding thread if cj∗

k∗ = 1.
It outputs the values {Lj

αj ,i}i∈[m],j∈[�] or {Rj
αj ,i}i∈[m],j∈[�] obtained from the

MIM.

By security augmented non-malleable codes,
(

L,NM.Decode
(

fMIM(L), gMIM(R)
)

∣

∣

∣(L,R ← NM.Code(mj∗
i∗))

)

≈ε

(

L,NM.Decode
(

fMIM(L), gMIM(R)
)

∣

∣

∣(L,R ← NM.Code(0))
)

and
(

L,NM.Decode
(

gMIM(R), fMIM(L)
)

∣

∣

∣(L,R ← NM.Code(mj∗
i∗))

)

≈ε

(

L,NM.Decode
(

gMIM(R), fMIM(L)
)

∣

∣

∣(L,R ← NM.Code(0))
)

By the data processing inequality, this implies that for every function h(·),
(

h(L),NM.Decode
(

fMIM(L), gMIM(R)
)

∣

∣

∣(L,R ← NM.Code(mj∗
i∗))

)

≈ε

(

h(L),NM.Decode
(

fMIM(L), gMIM(R)
)

∣

∣

∣(L,R ← NM.Code(0))
)

and
(

h(L),NM.Decode
(

gMIM(R), fMIM(L)
)

∣

∣

∣(L,R ← NM.Code(mj∗
i∗))

)

≈ε

(

h(L),NM.Decode
(

gMIM(R), fMIM(L)
)

∣

∣

∣(L,R ← NM.Code(0))
)

On the Round Complexity of Black-Box Secure MPC 239

Setting h = hMIM, for fMIM and gMIM defined above, these distributions cor-
respond exactly to the outputs of Hyb3,i∗,j∗,k∗−1 and Hyb3,i∗,j∗,k∗ respectively,
whenever c̃j∗

k∗ �= cj∗
k∗ . Whenever c̃j∗

k∗ = cj∗
k∗ , the distributions Hyb3,i∗,j∗,k∗−1 and

Hyb3,i∗,j∗,k∗ are statistically indistinguishable because they jointly only depend
on one of the shares, L or R. Since ε(λ) = negl(λ), this contradicts Eq. (1),
completing our proof.

5 Summary of Results

In this section, we provide a theorem statement capturing two of our main results.
See full version for the proof.

Theorem 3. Let f be an arbitrary multiparty functionality.

– In the watchlist correlations model, assuming black-box access to a pseudo-
random generator, there exists a two-round protocol that computes f against
static, malicious adversaries satisfying security with selective abort. For f in
NC1, a similar protocol exists unconditionally.

– Further assuming black-box access to a public-key encryption with pseudo-
random public keys and a two-round oblivious transfer with semi-malicious
security, there exists a protocol that securely computes f in five rounds in
the plain model against static, malicious corruptions of all-but-one players
satisfying security with selective abort.

The communication and computation costs of both the protocols are
poly(λ, n, |f |), where |f | denotes the size of the circuit computing f , and where
communication is over a broadcast channel.

Acknowledgements. Y. Ishai was supported by ERC Project NTSC (742754), NSF-
BSF grant 2015782, BSF grant 2018393, and ISF grant 2774/20. D. Khurana was sup-
ported from a DARPA SIEVE award. A. Sahai was supported in part from a DARPA
SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF grant2012378, a
Xerox Faculty Research Award, a Google Faculty Research Award, an equipment
grant from Intel, and an Okawa Foundation Research Grant. This material is based
upon work supported by the Defense Advanced Research Projects Agency through
Award HR00112020024. Work done in part when A. Srinivasan was at UC Berkeley
and supported in part by AFOSR Award FA9550-19-1-0200, AFOSR YIP Award, NSF
CNS Award 1936826, DARPA/ARL SAFEWARE Award W911NF15C0210, a Hellman
Award and research grants by the Sloan Foundation, Okawa Foundation, Visa Inc., and
Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are
those of the authors and do not reflect the official policy or position of the funding
agencies.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22

240 Y. Ishai et al.

2. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016-A, Part II. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49099-0 15

3. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret sharing
schemes for general access structures. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 510–539. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 18

4. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 398–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 17

5. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press (2017)

6. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 16

7. Applebaum, B., Brakerski, Z., Garg, S., Ishai, Y., Srinivasan, A.: Separating two-
round secure computation from oblivious transfer. In: Vidick, T. (ed.) 11th Inno-
vations in Theoretical Computer Science Conference, ITCS 2020, January 12–14,
2020, Seattle, Washington, USA. LIPIcs, vol. 151, pp. 71:1–71:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020)

8. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

9. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.:
Promise zero knowledge and its applications to round optimal MPC. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 459–487.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 16

10. Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round optimal
concurrent MPC via strong simulation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017,
Part I. LNCS, vol. 10677, pp. 743–775. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70500-2 25

11. Beaver, D.: Correlated pseudorandomness and the complexity of private compu-
tations. In: Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May
22–24, 1996, pp. 479–488. ACM (1996). https://doi.org/10.1145/237814.237996

12. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC, pp. 503–513 (1990)

13. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive Circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 17

14. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 16

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-030-26951-7_18
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/978-3-319-70500-2_25
https://doi.org/10.1007/978-3-319-70500-2_25
https://doi.org/10.1145/237814.237996
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-030-26954-8_16

On the Round Complexity of Black-Box Secure MPC 241

15. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp.
645–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 22

16. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1825–1842 (2017)

17. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 462–488.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 15

18. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: Wichs, D., Mansour, Y. (eds.) 48th ACM
STOC, pp. 285–298. ACM Press (2016)

19. Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal
secure multiparty computation from minimal assumptions. In: TCC 2020, Part II,
pp. 291–319 (2020)

20. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 10

21. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-
malleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 127–157. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 5

22. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

23. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4),
20:1–20:32 (2018). https://doi.org/10.1145/3178432

24. Friolo, D., Masny, D., Venturi, D.: A black-box construction of fully-simulatable,
round-optimal oblivious transfer from strongly uniform key agreement. In:
Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 111–130. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 5

25. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press (2013)

26. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and
black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239,
pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 5

27. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: EUROCRYPT, pp. 448–476 (2016)

28. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 16

29. Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: faster zero-knowledge for boolean
circuits. In: 25th {usenix} Security Symposium ({usenix} Security, vol. 16, pp.
1069–1083 (2016)

30. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25(1), 169–192 (1996)

https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-319-63715-0_5
https://doi.org/10.1007/11535218_23
https://doi.org/10.1145/3178432
https://doi.org/10.1007/978-3-030-36030-6_5
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16

242 Y. Ishai et al.

31. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press (1987)

32. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 695–704. ACM Press (2011)

33. Goyal, V., Jain, A., Khurana, D.: Witness signatures and non-malleable multi-
prover zero-knowledge proofs. IACR Cryptology ePrint Archive 2015, vol. 1095
(2015). http://eprint.iacr.org/2015/1095

34. Goyal, V., Kumar, A., Park, S., Richelson, S., Srinivasan, A.: Non-malleable com-
mitments from non-malleable extractors. Manuscript, Accessed via Personal Com-
munication (2018)

35. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: a black-box approach. In: 53rd FOCS, pp. 51–60. IEEE Computer Soci-
ety Press (2012)

36. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
STOC, pp. 1128–1141 (2016)

37. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: 55th FOCS, pp. 41–50. IEEE Computer Society Press (2014)

38. Goyal, V., Srinivasan, A., Zhu, C.: Multi-source non-malleable extractors and appli-
cations. Cryptology ePrint Archive, Report 2020/157 (2020). https://eprint.iacr.
org/2020/157

39. Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box construc-
tions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011).
https://doi.org/10.1137/100790537

40. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-
optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 17

41. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: Leviosa: lightweight
secure arithmetic computation. In: Cavallaro, L., Kinder, J., Wang, X., Katz,
J. (eds.) CCS 2019, pp. 327–344. ACM (2019). https://doi.org/10.1145/3319535.
3354258

42. Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Actively secure garbled circuits
with constant communication overhead in the plain model. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 3–39. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70503-3 1

43. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 2

44. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

45. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

46. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp.
21–30. ACM Press (2007)

http://eprint.iacr.org/2015/1095
https://eprint.iacr.org/2020/157
https://eprint.iacr.org/2020/157
https://doi.org/10.1137/100790537
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1145/3319535.3354258
https://doi.org/10.1145/3319535.3354258
https://doi.org/10.1007/978-3-319-70503-3_1
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23

On the Round Complexity of Black-Box Secure MPC 243

47. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31

48. Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.H.: Secure protocol
transformations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 430–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 15

49. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

50. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

51. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) CCS 2018, pp. 525–537. ACM (2018).https://doi.org/10.1145/
3243734.3243805

52. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

53. Khurana, D.: Round optimal concurrent non-malleability from polynomial hard-
ness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp.
139–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 5

54. Khurana, D., Sahai, A.: Two-message non-malleable commitments from standard
sub-exponential assumptions. IACR Cryptology ePrint Archive 2017, 291 (2017).
http://eprint.iacr.org/2017/291

55. Lin, H., Liu, T., Wee, H.: Information-theoretic 2-round MPC without round col-
lapsing: adaptive security, and more. In: Pass, R., Pietrzak, K. (eds.) TCC 2020.
LNCS, vol. 12551, pp. 502–531. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64378-2 18

56. Mohassel, P., Rosulek, M.: Non-interactive secure 2PC in the offline/online and
batch settings. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 425–455. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 15

57. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party com-
putation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS,
vol. 9216, pp. 339–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 17

58. Paskin-Cherniavsky, A.: Secure Computation with Minimal Interaction. Ph.D.
thesis, Technion (2012). http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.
cgi/2012/PHD/PHD-2012-16.pdf

59. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 1

60. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: 51st FOCS, pp. 531–540. IEEE Computer Society Press (2010)

61. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press (1986)

https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-319-70503-3_5
http://eprint.iacr.org/2017/291
https://doi.org/10.1007/978-3-030-64378-2_18
https://doi.org/10.1007/978-3-030-64378-2_18
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1007/978-3-662-48000-7_17
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf
https://doi.org/10.1007/978-3-540-24638-1_1

ATLAS: Efficient and Scalable MPC
in the Honest Majority Setting

Vipul Goyal1,2(B), Hanjun Li3, Rafail Ostrovsky4, Antigoni Polychroniadou5,
and Yifan Song1

1 Carnegie Mellon University, Pittsburgh, USA
goyal@cs.cmu.edu, yifans2@andrew.cmu.edu

2 NTT Research, Sunnyvale, USA
3 University of Washington, Seattle, USA

4 UCLA, Los Angeles, USA
rafail@cs.ucla.edu

5 J.P. Morgan AI Research, New York, USA

Abstract. In this work, we address communication, computation, and
round efficiency of unconditionally secure multi-party computation for
arithmetic circuits in the honest majority setting. We achieve both algo-
rithmic and practical improvements:

– The best known result in the semi-honest setting has been due to
Damg̊ard and Nielsen (CRYPTO 2007). Over the last decade, their
construction has played an important role in the progress of efficient
secure computation. However despite a number of follow-up works,
any significant improvements to the basic semi-honest protocol have
been hard to come by. We show 33% improvement in communication
complexity of this protocol. We show how to generalize this result
to the malicious setting, leading to the best known unconditional
honest majority MPC with malicious security.

– We focus on the round complexity of the Damg̊ard and Nielsen proto-
col and improve it by a factor of 2. Our improvement relies on a novel
observation relating to an interplay between Damg̊ard and Nielsen
multiplication and Beaver triple multiplication. An implementation
of our constructions shows an execution run time improvement com-
pared to the state of the art ranging from 30% to 50%.

1 Introduction

Secure Multi-Party Computation (MPC) allows n ≥ 2 parties to compute a
function on privately held inputs, such that the desired output is correctly com-
puted and is the only new information released. This should hold even if t out
of n parties have been corrupted by a semi-honest or malicious adversary. Since
its introduction in the 1980s [Yao82,GMW87], a lot of research has been done
to improve the efficiency of MPC protocols. Thanks to these efforts, MPC has
rapidly moved from theory to practice.

H. Li—Work done in part while at CMU.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 244–274, 2021.
https://doi.org/10.1007/978-3-030-84245-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_9

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 245

In this work, our focus is on honest majority protocols in the presence of a
malicious adversary. We note that the fastest known implementations of MPC
have come in the honest majority setting, which does not necessarily require
public key operations. For example, the recent work of Chida et al. [CGH+18]
showed that their secure-with-abort protocol can evaluate 1 million multiplica-
tion gates within 1 s for up to 7 parties, 4 s for 50 parties, and 8 s for 110 parties.
Another attractive feature of the honest majority setting is that it allows one to
achieve the stronger properties of fairness and guaranteed output delivery which
are otherwise impossible with dishonest majority.

For over a decade, the most efficient MPC protocol with semi-honest secu-
rity in the honest majority setting has been the protocol of Damg̊ard and Nielsen
[DN07], hereafter known as the DN protocol. By using the Shamir secret shar-
ing scheme [Sha79], addition gates can be evaluated without any communica-
tion. To evaluate a multiplication gate, each party only needs to communicate
6 field elements. In the computational setting, the communication complexity
can be reduced to 3 field elements by using pseudo-random generators [NV18]
(improved further to 1.5 elements by Boneh et al. [BBCG+19] for a constant num-
ber of parties). Due to its simplicity and efficiency, many subsequent works have
used the DN protocol to achieve security-with-abort [GIP+14,CGH+18,NV18,
BBCG+19,GSZ20] or guaranteed output delivery [BSFO12,GSZ20].

Despite the important role played by the DN protocol in the honest majority
setting, any improvement to the basic protocol has been hard to come by unless
one resorts to other approaches using computational assumptions. An exception
is the recent work of Goyal et al. [GSZ20] who proposed a marginal improvement
over DN of 6 field elements per multiplication gate to 5.5 field elements.

1.1 Our Contributions

We propose ATLAS, an unconditionally secure MPC protocol in the honest
majority setting with reduced communication complexity over the celebrated
DN protocol even in the honest but curious setting, as well as malicious setting.
Our protocol ATLAS enjoys the following efficiency improvements over the DN
protocol:

– We improve the basic DN protocol leading to a communication complexity
of 4 field elements per multiplication gate per party. Our results are in the
information-theoretic setting assuming a majority of the parties are honest
and the adversary is semi-honest. This leads to the most communication-
efficient semi-honest MPC protocol with honest majority.

– We note that the recent works [BBCG+19,GSZ20] compiled the DN protocol
to get security-with-abort without increasing the communication complexity.
We show that our protocol continues to satisfy the properties needed for this
compilation to work. It allows us to present a secure-with-abort protocol with
only 4 field elements per multiplication gate per party in the information-
theoretic setting.

246 V. Goyal et al.

– Next, we focus on the round complexity of the DN protocol. Instead of eval-
uating multiplication gates of the same layer in parallel, we show how to
evaluate all multiplication gates in a two-layer circuit in parallel. This allows
us to improve the concrete efficiency even further and reduce the number
of rounds by a factor of 2. The achieved amortized communication cost per
multiplication gate in this setting is 4.5 field elements per party but halving
the number of rounds.

– In the computational setting, where one can use pseudo-random generators
based on any one-way function (in practice, one can use an AES based PRG in
counter-mode), we show how to further reduce the communication complex-
ity by making black-box use of any pseudo-random generator. The concrete
efficiency can be improved to 2 field elements per party per gate in both semi-
honest and secure-with-abort settings, and 2.5 field elements for the variant
with the improvement of round complexity.

We implement ATLAS in the information-theoretic setting and compare
with the previously best-known results [CGH+18,GSZ20] in the setting of
security-with-abort. We measure the running time for circuits with 1 million and
10 million multiplication gates, with circuit depth from 20 to 10,000, and the
number of parties from 3 to 21. By combining improvements on both communi-
cation and round complexity, our protocol shows around 2x speedup comparing
with the protocol in [CGH+18], and around 1.4x speedup comparing with the
protocol in [GSZ20] in all tested cases.

1.2 Other Related Works

The notion of MPC was first introduced in [Yao82,GMW87] in 1980s. Feasibil-
ity results for MPC were obtained by [Yao82,GMW87,CDVdG87] under cryp-
tographic assumptions, and by [BOGW88,CCD88] in the information-theoretic
setting. Subsequently, a large number of works have focused on improving the
efficiency of MPC protocols in various settings.

A series of works focus on improving the communication efficiency of MPC
with guaranteed output delivery in the settings with different thresholds on the
number of corrupted parties. In the setting of honest majority setting, assuming
the existence of a broadcast channel, the works [BSFO12,GSZ20] have shown
that guaranteed output delivery can be achieved efficiently. In the setting where
t < n/3, a rich line of works [HMP00,HM01,DN07,BTH08,GLS19] have focused
on improving the asymptotic communication complexity in this setting. In the
setting where t < (1/3 − ε)n, packed secret sharing can be used to hide a batch
of values, resulting in more efficient protocols. E.g., Damg̊ard et al. [DIK10]
introduced a protocol with communication complexity of O(C log C log n · κ +
D2

Mpoly(n, log C)κ) bits.
A rich line of works have also focused on the performance of MPC in practice

for two parties [LP12,NNOB12], or three parties [FLNW17,ABF+17].

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 247

2 Technical Overview

We give an overview of our techniques in this section. In the following, we will
use n to denote the number of parties and t to denote the number of corrupted
parties. In the setting of the honest majority, we have n = 2t + 1. Our construc-
tion is based on the standard Shamir Secret Sharing Scheme [Sha79]. We will use
[x]d to denote a degree-d Shamir sharing, or a (d + 1)-out-of-n Shamir sharing.
It requires at least d + 1 shares to reconstruct the secret and any d shares do
not leak any information about the secret.

2.1 Review: The Secure-with-abort MPC Protocol in [GSZ20]

In [GIP+14], Genkin et al. showed that the best-known semi-honest proto-
col [DN07] (hereafter referred to as the DN protocol) is secure up to an additive
attack in the presence of a fully malicious adversary. An additive attack means
that the adversary is able to change the multiplication result by adding an arbi-
trary fixed value. As one corollary, the DN protocol provides full privacy of
honest parties before reconstructing the output. Therefore, a straightforward
strategy to achieve security-with-abort is to (1) run the DN protocol until the
output phase, (2) check the correctness of the computation, and (3) reconstruct
the output only if the check passes.

In the DN protocol [DN07], all parties compute a degree-t Shamir sharing for
each wire. Since the Shamir secret sharing scheme is linearly homomorphic, addi-
tion gates can be evaluated without interaction. Therefore, to achieve security-
with-abort, the main task is to verify the multiplications. In [GSZ20], Goyal et
al. show that multiplications can be verified with sub-linear communication com-
plexity in the number of multiplications. This allows Goyal et al. to obtain the
first secure-with-abort MPC protocol which achieves the same concrete efficiency
per gate as the best-known semi-honest protocol [DN07].

To make a further improvement in the concrete efficiency, we focus on the
multiplication protocol in [DN07] (hereafter referred to as the DN multiplication
protocol). Our idea is to reuse the correlated-randomness required in the DN
multiplication protocol.

Review of the DN Multiplication Protocol. To evaluate a multiplication gate, all
parties first need to prepare a pair of random sharings ([r]t, [r]2t) of the same
secret r, where the first sharing is a degree-t Shamir sharing and the second
sharing is a degree-2t Shamir sharing. Such a pair of sharings is referred to as a
pair of double sharings. In [DN07], preparing a pair of random double sharings
requires the communication of 4 elements per party.

For a multiplication gate, suppose the input sharings are denoted by [x]t, [y]t.
To compute [z]t := [x · y]t, a pair of random double sharings ([r]t, [r]2t) is con-
sumed. All parties first agree on a special party Pking. Then, all parties run the
following steps:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]2t.

248 V. Goyal et al.

2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking sends
the value e to all other parties.

3. After receiving e from Pking, all parties locally compute [z]t := e − [r]t.

Correctness follows from the properties of the Shamir secret sharing scheme.
Note that each party needs to send an element to Pking, and Pking needs to
send an element to each party. The communication complexity of this protocol
is 2 elements per party. Including the communication cost for preparing double
sharings, the overall cost per multiplication gate is 6 elements per party.

2.2 Reducing the Communication Complexity via t-wise
Independence

Starting Point. In [GSZ20], Goyal et al. observe that in the second step of the
DN multiplication protocol, Pking can alternatively distribute a degree-t Shamir
sharing [e]t. Then in the last step, all parties can still compute [z]t := [e]t − [r]t.
This observation leads to an improvement from 6 elements to 5.5 elements. We
refer the readers to Sect. 4.2 for more discussion.

Our main observation is that, when Pking is an honest party, the corrupted
parties only receive several random elements from Pking if [e]t is a random degree-
t Shamir sharing. In particular, it holds even if the corrupted parties know
the whole sharings [r]t and [r]2t. This is because the corrupted parties only
receive t shares of a random degree-t sharing [e]t from Pking, which are uniformly
random and independent of the secret. Therefore for an honest Pking, we do not
need the double sharings to be uniformly random at all. While for a corrupted
Pking, we still need to use random double sharings, we can split the tasks of
handling multiplication gates as Pking to all parties. In this way, at least half of
multiplication gates are handled by honest Pking’s. We show that it allows us to
reduce the cost of preparing double sharings by a factor of 2.

Relying on t-wise Independence. Suppose we have n multiplication gates and
we let each party behave as Pking for 1 multiplication gate. When Pking is a
corrupted party, we still need to use a pair of random double sharings to protect
the secrecy of the result. If Pking is an honest party, as argued above, the double
sharings do not need to be random.

Our idea is to generate n pairs of double sharings such that any t pairs of
them are independent and uniformly random. This guarantees that the double
sharings used for multiplication gates handled by corrupted parties are uniformly
random, which ensures the security of the MPC protocol. On the other hand,
given these double sharings, the other double sharings used for multiplication
gates handled by honest parties can be fixed and determined. It means that we
only need to prepare t pairs of random and independent double sharings for n
multiplication gates.

To this end, all parties agree on a fixed hyper-invertible matrix of size n × t,
denoted by M . The main property of M is that any t × t sub-matrix of M is
invertible. Since the Shamir secret sharing scheme is a linear homomorphism,
a linear combination of several pairs of double sharings is still a pair of double

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 249

sharings. All parties first prepare t pairs of random double sharings using the
protocol in [DN07], denoted by

([r(1)]t, [r(1)]2t), . . . , ([r(t)]t, [r(t)]2t).

Then, we expand these t pairs of double sharings to n pairs by computing

([r̃(1)]t, . . . , [r̃(n)]t)T = M([r(1)]t, . . . , [r(t)]t)T

([r̃(1)]2t, . . . , [r̃(n)]2t)T = M([r(1)]2t, . . . , [r(t)]2t)T.

We point out that this expansion can be done locally without interaction. Note
that for all i ∈ [n], ([r̃(i)]t, [r̃(i)]2t) is a pair of double sharings. Let C denote the
set of corrupted parties. According to the property of M , there is a one-to-one
map from {([r̃(i)]t, [r̃(i)]2t)}i∈C to {([r(i)]t, [r(i)]2t)}i∈[t]. Since the input double
sharings are independent and uniformly random, we conclude that the double
sharings in {([r̃(i)]t, [r̃(i)]2t)}i∈C are independent and uniformly random.

When ([r̃(i)]t, [r̃(i)]2t) is used to evaluate a multiplication gate, we require
the party Pi to act as Pking. In this way, the multiplication gates handled by
corrupted parties will use double sharings in {([r̃(i)]t, [r̃(i)]2t)}i∈C , which are
independent and uniformly random. We are able to show that the security still
holds.

Concrete Efficiency of Our Improved Multiplication Protocol. Recall that in
[DN07], preparing a pair of random double sharings requires the communica-
tion of 4 elements per party. Relying on t-wise independence, we only need to
prepare t pairs of random double sharings for n multiplications. Thus, the amor-
tized communication cost per pair of double sharings is 4 · t/n ≈ 2 elements per
party. Including the communication cost of the multiplication protocol in [DN07],
which is 2 elements per party, the overall cost per multiplication is 4 elements
per party.

In Sect. 4.2, we show that our multiplication protocol can be directly used
in the secure-with-abort MPC protocol in [GSZ20]. It yields a secure-with-abort
MPC protocol with the concrete efficiency of 4 elements per party per gate.

2.3 Reducing the Number of Rounds via Beaver Triples

In the secure-with-abort MPC protocol in [GSZ20], multiplication gates in the
same layer of the circuit are evaluated in parallel. Therefore, the number of
rounds is linear in the depth of the circuit. To further improve the concrete effi-
ciency, we pay our attention to the round complexity. We note that the question
of obtaining information theoretic constant round protocols for a general circuit
has been opened for many years. In particular, it has been shown in [DNPR16]
that the dependency on the depth in the round complexity is inherent for the
DN protocol. Given this, we managed to reduce the number of rounds by a factor
of 2 while maintaining the communication efficiency.

To this end, we first consider a two-layer circuit, and try to evaluate all
multiplication gates in parallel.

250 V. Goyal et al.

Starting Point. For a two-layer circuit, an input sharing of a multiplication gate
in the second layer may come from three places:

– This sharing is an input sharing of the circuit.
– This sharing is an output sharing of an addition gate in the first layer.
– This sharing is an output sharing of a multiplication gate in the first layer.

Note that an addition gate can be evaluated without interaction. Therefore for
the first two cases, all parties can locally compute this sharing. However, for the
third case, communication is required to evaluate this multiplication gate in the
first layer. Therefore, the question becomes how to evaluate multiplication gates
in the second layer without learning the output sharings of multiplication gates
in the first layer.

A Beaver triple [Bea92] consists of three degree-t Shamir sharings
([a]t, [b]t, [c]t) such that c = a · b. Usually, a Beaver triple is used to trans-
form one multiplication to two reconstructions. Concretely, given two sharings
[x]t, [y]t, suppose we want to compute [z]t such that z = x · y. Since

z = x · y

= (x + a − a) · (y + b − b)
= (x + a) · (y + b) − (x + a) · b − (y + b) · a + a · b,

we can compute

[z]t := (x + a) · (y + b) − (x + a) · [b]t − (y + b) · [a]t + [c]t.

Therefore, the task of computing [z]t becomes to reconstruct two degree-t Shamir
sharings [x]t +[a]t and [y]t +[b]t. Observe that, if we set u = x+a and v = y+ b,
the above equation allows us to locally compute a degree-t Shamir sharing of
z := (u−a) · (v−b) using a Beaver triple ([a]t, [b]t, [c]t) once u and v are publicly
known.

Beaver-triple Friendly Form. We say a sharing is in the Beaver-triple friendly
form, if it can be written as u − [a]t, where u is a public element and [a]t is a
degree-t Shamir sharing. Now suppose for each multiplication gate in the second
layer, the input sharings are in the Beaver-triple friendly form, say u − [a]t and
v−[b]t. Given the Beaver triple ([a]t, [b]t, [c]t), one can non-interactively compute
the output sharing of this gate by

[z]t := u · v − u · [b]t − v · [a]t + [c]t.

Note that the Beaver triple ([a]t, [b]t, [c]t) can be prepared without learning u, v.
Therefore, if for each multiplication gate in the second layer, the input sharings
are in the Beaver-triple friendly form u−[a]t, v−[b]t, and [a]t, [b]t are learnt before
evaluating the first layer, we can prepare the Beaver triple ([a]t, [b]t, [c]t) with-
out evaluating the first layer, and then non-interactively evaluate multiplication
gates in the second layer after learning u, v from the first layer.

Of course, the question remains: since the input sharings of the second layer
come from the output sharings of the first layer, how do we ensure that the
output sharings of the first layer are in the Beaver-triple friendly form?

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 251

Evaluating a Two-Layer Circuit. We observe that the original DN multiplication
protocol in [DN07] satisfies our requirement! Concretely, to evaluate a multipli-
cation gate with input sharings [x]t, [y]t all parties need to first prepare a pair
of random double sharings ([r]t, [r]2t). In the last step of the DN multiplication
protocol, Pking sends the reconstruction result of [e]2t := [x]t · [y]t + [r]2t to all
parties, and all parties can compute the degree-t Shamir sharing [z]t := e − [r]t.
In particular, the output sharing is in the Beaver-triple friendly form, and the
sharing [r]t is prepared before evaluating this multiplication gate. Therefore, we
will use the original DN multiplication protocol to evaluate multiplication gates
in the first layer.

For a multiplication gate in the second layer, suppose that the two input
wires are both the outputs of multiplication gates in the first layer. Let e1 − [r1]t
and e2 − [r2]t denote these two output sharings. Now observe that e1 and e2
will already be public as part of evaluating the first layer. So to compute a
degree-t Shamir sharing of (e1 − r1)(e2 − r2), all we need is [r1 · r2]t. If we
can pre-compute and distribute ([r1]t, [r2]t, [r1 · r2]t), we are done! Of course,
since r1 and r2 are also used in the multiplication gates in the first layer, we
simultaneously need to compute degree-2t Shamir sharings of r1 and r2 as well.
Fortunately, this does not affect the security of the second layer. In other words,
the outputs of the first layer feed nicely into the second layer making the second
layer non-interactive. At the same time, we are able to ensure that these two
different types of multiplication protocols do not destroy the security of each
other despite sharing randomness.

As we discussed above, the input sharing of a multiplication gate in the
second layer may come from two other places: (1) it may be an input sharing of
this two-layer circuit, or (2) it may be an output sharing of an addition gate in
the first layer. In both cases, all parties can locally compute this sharing before
evaluating the multiplication gates in the first layer. Let [x]t denote such an input
sharing. Note that [x]t = 0−(−[x]t) is already in the Beaver-triple friendly form.
Therefore, all the input sharings of multiplication gates in the second layer are
in the Beaver-triple friendly form. But now, the problem is that [x]t is not known
before the circuit evaluation starts (unlike [r1]t and [r2]t), and hence [x]t cannot
be part of a Beaver triple pre-computed before the evaluation. Fortunately, as
observed earlier, parties hold [x]t before evaluating any multiplication gates in
the first layer. Now our idea is to prepare the Beaver triples for the second layer
dependent on [x]t in parallel with the multiplications in the first layer.

After preparing Beaver triples for the second layer and computing the output
sharings of the multiplication gates in the first layer, all parties can locally
compute the degree-t Shamir sharings associated with the output wires of this
two-layer circuit. These sharings will be fed to the next two-layer circuit, which
is sufficient to start the evaluation since the original DN multiplication protocol
does not require any special property of the input sharings. Therefore in the
evaluation of the whole circuit, these two types of multiplication protocols are
alternatively used in every two layers.

252 V. Goyal et al.

Improving the Communication Complexity. While the above helps us make
progress, it does not achieve our final goal. In particular, using the original
DN protocol requires the communication of 6 elements per party per gate. We
note that for multiplications in different layers, we have different requirements:

– For multiplication gates in the first layer, we need the output sharings to have
the Beaver-triple friendly form.

– For multiplication gates in the second layer, we compute the Beaver triples
in the form of ([a]t, [b]t, [c]t). We only need to obtain the degree-t sharing of
[c]t for each Beaver triple.

Therefore for multiplication gates in the second layer, we can use our
improved multiplication protocol to compute Beaver triples, which requires the
communication of 4 elements per party per multiplication. For multiplication
gates in the first layer, however, Pking needs to send the same values to all par-
ties. It seems like our trick of using t-wise independence does not work in this
scenario.

Having a closer look at our trick of using t-wise independence, for a mul-
tiplication gate handled by an honest party, the secret r of the random dou-
ble sharings is fixed given the double random sharings used for multiplica-
tion gates handled by corrupted parties. Revealing the reconstruction result
of [e]2t := [x]t · [y]t + [r]2t may leak the multiplication result to the adversary.
Therefore, to be able to reveal the reconstruction result, r needs to be uniformly
random for every multiplication gate. However, we note that r being uniformly
random is not equivalent to the pair of double sharings ([r]t, [r]2t) being uni-
formly random.

Therefore, we want to decouple the relation between r and the double shar-
ings. Note that a pair of double sharings ([r]t, [r]2t) is equivalent to a pair of
sharings ([r]t, [o]2t), where the first sharing is a degree-t Shamir sharing of r
and the second sharing is a degree-2t Shamir sharing of zero o = 0. To see this,
given ([r]t, [r]2t), we can set [o]2t := [r]2t − [r]t; given ([r]t, [o]2t), we can set
[r]2t := [r]t + [o]2t. When using a pair of sharings ([r]t, [o]2t), the DN multipli-
cation protocol becomes:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]t + [o]2t.
2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking sends

the value e to all other parties.
3. After receiving e from Pking, all parties locally compute [z]t := e − [r]t.

Note that [o]2t is only used to compute [e]2t. When Pking is an honest party, [o]2t

does not need to be a uniformly random degree-2t sharing of 0. Thus, we can
use t-wise independent [o]2t’s with uniformly random degree-t sharings [r]t’s.

In [DN07], it has been shown that preparing a random degree-t random shar-
ing requires the communication of 2 elements per party. In Sect. 4.3, following
from the same idea of preparing random degree-t Shamir sharings, we show that
preparing a random degree-2t sharing of 0 requires the communication of 2 ele-
ments per party as well. Then, using our idea of t-wise independence, we expand

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 253

t random degree-2t sharings of 0 to n sharings with t-wise independence. In this
way, the communication cost of preparing correlated-randomness for one multi-
plication in the first layer is 2+2·t/n ≈ 3 elements. Including the communication
cost of the multiplication protocol in [DN07], which is 2 elements per party, the
overall cost per multiplication in the first layer is 5 elements per party.

Recall that for multiplication gates in the second layer, we will use our
improved multiplication protocol to compute Beaver triples, which requires the
communication of 4 elements per party per gate. To evaluate the whole circuit,
we first partition it into a sequence of two-layer sub-circuits. Then we use the
above strategy to evaluate each two-layer sub-circuit in a predetermined topo-
logical order. Assuming that the number of multiplication gates in the first layer
is roughly the same as the number of multiplication gates in the second layer,
the concrete efficiency is (4 + 5)/2 = 4.5 elements per party per gate.

Achieving Security-with-abort. We note that the correctness of the computation
requires the following two points:

– Pking parties send the same values to all other parties for multiplication gates
in the first layer of all sub-circuits.

– All multiplication tuples are correctly computed.

In the verification phase, all parties first check whether they receive the same
values, which corresponds to the first point above. This is done by checking a
random linear combination of the values they receive. Then, all parties use the
verification of multiplications in [GSZ20] to efficiently check the correctness of all
multiplication tuples. In Sect. 4.3, we show that the communication complexity
of the verification phase is sub-linear in the number of multiplication gates.
Therefore, the concrete efficiency of our protocol is the same as that for each
multiplication gate, i.e., 4.5 elements per party per gate. In particular, comparing
with the protocol in [GSZ20], we reduce the number of rounds by a factor of 2.

2.4 Using PRG to Reduce Communication Complexity

We note that the communication complexity can be further reduced by relying
on pseudo-random generators. This trick has been used in previous works such
as [BBCG+19,LN17,NV18].

At a high-level, each pair of parties will first agree on a random seed, which
is unknown to other parties. When some party Pi needs to distribute a degree-t
sharing, one can think that Pi first sends random elements to the first t parties
as their shares. Then Pi reconstructs the whole sharing using the secret and
the first t shares, and distributes the shares to the rest of parties. Relying on
the PRG, Pi does not need to send shares to the first t parties. Instead, each
of the first t parties and Pi will simply run the PRG on their common seed
and take the same piece from the output as the share. In this way, the cost of
distributing a degree-t sharing can be reduced by a factor of 2. For a degree-2t
sharing, one can think that Pi first sends random elements to all other parties

254 V. Goyal et al.

as their shares. Then Pi reconstructs the whole sharing using the secret and the
2t shares distributed to other parties. Finally, Pi can compute its own share.
Relying on PRG, Pi does not need to communicate with any party. Instead,
each party and Pi simply run the PRG on their common seed and take the same
piece from the output as the share. In this way, distributing a degree-2t sharing
can be done at no cost. Regarding the security, notice that the corrupted parties
learn nothing about the secret of a sharing distributed by an honest party even
if the shares of corrupted parties are determined by themselves. This is because
the corrupted parties only learn t shares of either a degree-t Shamir sharing or
a degree-2t Shamir sharing, which are independent of the secret value.

As a result, for our first improvement of using t-wise independence, the con-
crete efficiency can be improved to 2 elements per party per gate. For our sec-
ond improvement of using Beaver triples, the communication efficiency can be
improved to 2.5 elements per party per gate. More details can be found in the
full version of this paper [GLO+21].

3 Preliminaries

3.1 Model

In this work, we focus on functions that can be represented as arithmetic circuits
over a finite field F (with |F| ≥ 2n)1 with input, addition, multiplication, and
output gates. Let φ = log |F| be the size of an element in F. We use κ to denote
the security parameter and let K be an extension field of F (with |K| ≥ 2κ). For
simplicity, we assume that κ is the size of an element in K. Let cI , cM , cO be the
number of input gates, multiplication gates, and output gates respectively. We
set C = cI + cM + cO to be the size of the circuit.

For the secure multi-party computation, we use the client-server model. In
the client-server model, clients provide inputs to the functionality and receive
outputs, and servers can participate in the computation but do not have inputs
or get outputs. Each party may have different roles in the computation. Note
that, if every party plays a single client and a single server, this corresponds
to a protocol in the standard MPC model. Let c denote the number of clients
and n = 2t + 1 denote the number of servers. For all clients and servers, we
assume that every two of them are connected via a secure (private and authentic)
synchronous channel so that they can directly send messages to each other.
The communication complexity is measured by the number of bits via private
channels.

An adversary A can corrupt at most c clients and t servers, provide inputs to
corrupted clients, and receive all messages sent to corrupted clients and servers.
Corrupted clients and servers can deviate from the protocol arbitrarily. We refer
the readers to the full version of this paper [GLO+21] for the security definition.

1 The requirement of the field size is due to the use of so-called hyper-invertible matri-
ces in our construction. See more discussion in Section 3.2 of [BTH08].

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 255

Benefits of the Client-Server Model. In our construction, the clients only
participate in the input phase and the output phase. The main computation is
conducted by the servers. For simplicity, we use {P1, . . . , Pn} to denote the n
servers, and refer to the servers as parties. Let C denote the set of all corrupted
parties and H denote the set of all honest parties. One benefit of the client-server
model is the following theorem shown in [GIP+14].

Theorem 1 (Lemma 5.2 [GIP+14]). Let Π be a protocol computing a c-client
circuit C using n = 2t + 1 parties. Then, if Π is secure against any adversary
controlling exactly t parties, then Π is secure against any adversary controlling
at most t parties.

This theorem allows us to only consider the case where the adversary controls
exactly t parties. Therefore in the following, we assume that there are exactly t
corrupted parties.

3.2 Secret Sharing

In this work, we will use the standard Shamir Secret Sharing Scheme [Sha79].
Let n be the number of parties and F be a finite field of size |F| ≥ n + 1. Let
α1, . . . , αn be n distinct non-zero elements in F.

A degree-d Shamir sharing of x ∈ F is a vector (x1, . . . , xn) which satisfies
that there exists a polynomial f(·) ∈ F[X] of degree at most d such that f(0) = x
and f(αi) = xi for i ∈ {1, . . . , n}. Each party Pi holds a share xi and the whole
sharing is denoted by [x]d.

We will utilize two properties of the Shamir secret sharing scheme.

– Linear Homomorphism:

∀ [x]d, [y]d, [x + y]d = [x]d + [y]d.

– Multiplying two degree-d sharings yields a degree-2d sharing. The secret value
of the new sharing is the product of the original two secrets.

∀ [x]d, [y]d, [x · y]2d = [x]d · [y]d.

3.3 Useful Building Blocks

In this part, we briefly summarize the functionalities that will be used in our
main construction. These three functionalities can be efficiently instantiated from
[DN07,GSZ20]. We refer the readers to the full version of this paper [GLO+21] for
the descriptions of these functionalities.

– The first functionality Frand allows all parties to prepare a random degree-
t Shamir sharing. An instantiation of Frand can be found in [DN07,GSZ20]
(Protocol 2 in Section 3.3 of [GS20]). At a high-level, the idea is to let each
party generate and distribute a random degree-t Shamir sharing to all parties.
Then, all parties locally apply (the transpose of) a Vandermonde matrix, as a

256 V. Goyal et al.

randomness extractor, on their shares to obtain n−t random degree-t Shamir
sharings. The amortized communication cost per sharing is 2 elements per
party.

– The second functionality FdoubleRand allows all parties to prepare a pair of
sharings ([r]t, [r]2t) of the same random element r, where the first sharing is a
random degree-t Shamir sharing, and the second sharing is a random degree-2t
Shamir sharing. We refer to such a pair of sharings as a pair of double sharings.
An instantiation of FdoubleRand can be found in [DN07,GSZ20] (Protocol 4 in
Section 3.4 of [GS20]). At a high-level, the idea is to let each party generate
and distribute a pair of random double sharings to all parties. Then, all parties
locally apply (the transpose of) a Vandermonde matrix, as a randomness
extractor, on their shares to obtain n − t pairs of random double sharings.
The amortized communication cost per pair of random double sharings is 4
elements per party.

– The third functionality Fcoin allows all parties to generate a random element.
An instantiation of Fcoin can be found in [GSZ20] (Protocol 6 in Section
3.5 of [GS20]). At a high-level, the idea is to first invoke Frand to obtain a
random degree-t Shamir sharing. Then all parties exchange their shares and
reconstruct the secret as their output, which is a random field element. The
communication complexity of the instantiation is O(n2κ) bits.

4 ATLAS: Our Unconditional MPC Construction

In this section, we will introduce two improvements to the secure-with-abort
MPC protocol in [GSZ20].

– The first improvement reduces the communication cost per multiplication
gate per party from 5.5 elements to 4 elements.

– The second improvement reduces the communication cost per multiplication
gate per party from 5.5 elements to 4.5 elements and reduce the number of
rounds by a factor of 2.

Our core idea is to reuse the correlated-randomness prepared for multiplication
gates.

We first give a short review of the construction in [GSZ20]. Then we intro-
duce our two improvements. We refer the readers to the full version of this
paper [GLO+21] for further reducing the communication complexity by using a
pseudo-random generator.

4.1 Review of the Secure-with-abort MPC Protocol in [GSZ20]

In [GIP+14], Genkin et al. showed that several semi-honest MPC protocols are
secure up to an additive attack in the presence of a fully malicious adversary. An
additive attack means that the adversary is able to change the multiplication
result by adding an arbitrary fixed value. As one corollary, these semi-honest
protocols provide full privacy of honest parties before reconstructing the output.

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 257

Therefore, a straightforward strategy to achieve security-with-abort is to (1)
run a semi-honest protocol till the output phase, (2) check the correctness of the
computation, and (3) reconstruct the output only if the check passes.

Fortunately, the best-known semi-honest protocol in this setting [DN07]
is secure up to an additive attack. At a high-level, the semi-honest proto-
col in [DN07] computes a degree-t Shamir sharing for each wire. Since the
Shamir secret sharing scheme is linear homomorphic, addition gates can be eval-
uated without interaction. Therefore, the main concern is multiplication gates.
In [GSZ20], this kind of attack is modeled in the functionality Fmult, which
takes two degree-t Shamir sharings [x]t, [y]t and outputs the multiplication result
[x · y]t. The description of Fmult can be found in Functionality 1. The original
multiplication protocol in [DN07] requires 6 elements per party per gate. Goyal
et al. [GSZ20] improve this protocol and reduce the communication cost to 5.5
elements.

Functionality 1. Fmult

1. Let [x]t, [y]t denote the input sharings. Fmult receives from honest parties
their shares of [x]t, [y]t. Then Fmult reconstructs the secrets x, y. Fmult further
computes the shares of [x]t, [y]t held by corrupted parties, and sends these
shares to the adversary.

2. Fmult receives from the adversary a value d and a set of shares {zi}i∈C .
3. Fmult computes x · y + d. Based on the secret z := x · y + d and the t shares

{zi}i∈C , Fmult reconstructs the whole sharing [z]t and distributes the shares
of [z]t to honest parties.

Since Fmult does not guarantee the correctness of the multiplications, all
parties need to verify the multiplications computed by Fmult at the end of the
protocol. The functionality FmultVerify takes N multiplication tuples as input and
outputs to all parties a single bit b indicating whether all multiplication tuples
are correct. The description of FmultVerify can be found in Functionality 2.

In [GSZ20], Goyal et al. provide an instantiation of FmultVerify which has
communication complexity O(n2 · log C · κ) bits, where n is the number of par-
ties and κ is the security parameter. Note that it is sub-linear in the num-
ber of multiplication tuples. Relying on Fmult,FmultVerify, Goyal et al. [GSZ20]
construct a secure-with-abort MPC protocol with communication complexity
O(Cnφ + n2 · log C · κ) bits. In particular, the concrete efficiency per multipli-
cation gate is the same as the communication cost of the instantiation of Fmult,
i.e., 5.5 elements per party.

258 V. Goyal et al.

Functionality 2. FmultVerify

1. Let N denote the number of multiplication tuples. The multiplication tuples
are denoted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(N)]t.[y
(N)]t, [z

(N)]t).

2. For all i ∈ [N], FmultVerify receives from honest parties their shares of
[x(i)]t, [y

(i)]t, [z
(i)]t. Then FmultVerify reconstructs the secrets x(i), y(i), z(i).

FmultVerify further computes the shares of [x(i)]t, [y
(i)]t, [z

(i)]t held by cor-
rupted parties and sends these shares to the adversary.

3. For all i ∈ [N], FmultVerify computes d(i) = z(i) − x(i) · y(i) and sends d(i) to
the adversary.

4. Finally, let b ∈ {abort, accept} denote whether there exists i ∈ [N] such that
d(i) �= 0. FmultVerify sends b to the adversary and waits for its response.

– If the adversary replies continue, FmultVerify sends b to honest parties.
– If the adversary replies abort, FmultVerify sends abort to honest parties.

4.2 Reducing the Communication Complexity via t-wise
Independence

Our first improvement comes from a new protocol for Fmult. The amortized
communication cost of our new protocol is 4 elements per party. Relying on
the secure-with-abort MPC protocol [GSZ20] which uses Fmult,FmultVerify as
building blocks, we directly obtain a secure-with-abort MPC protocol with the
same asymptotic communication complexity, i.e., O(Cnφ + n2 · log C · κ) bits.
In particular, the concrete efficiency per multiplication gate is 4 elements per
party. Our new protocol is based on the multiplication protocol in [DN07]. We
first give a quick review of the multiplication protocol in [DN07].

Review of the Multiplication Protocol in [DN07]. To evaluate a multi-
plication gate, all parties need to prepare a pair of random double sharings
([r]t, [r]2t). This is done by invoking FdoubleRand introduced in Sect. 3.3. Recall
that the amortized communication complexity of the instanciation of FdoubleRand

in [DN07,GSZ20] is 4 elements per party.
For a multiplication gate, suppose the input sharings are denoted by [x]t, [y]t.

To compute [z]t := [x · y]t, a pair of random double sharings ([r]t, [r]2t) is con-
sumed. All parties first agree on a special party Pking. Pking will help do the
reconstruction in the multiplication protocol. Then, all parties run the following
steps:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]2t.
2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking sends

the value e to all other parties.
3. After receiving e from Pking, all parties locally compute [z]t := e − [r]t.

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 259

The correctness follows from the properties of the Shamir secret sharing scheme.
Note that each party needs to send an element to Pking, and Pking needs to
send an element to each party. The communication complexity of this protocol
is 2 elements per party. Including the communication cost for preparing double
sharings, the overall cost per multiplication gate is 6 elements per party.

In [GSZ20], Goyal et al. observe that in the second step, Pking can alterna-
tively distribute a degree-t Shamir sharing [e]t. Then in the last step, all parties
can still compute [z]t := [e]t − [r]t. Furthermore, since e does not need to be pri-
vate, Pking can set the shares of (a predetermined set of) t parties to be 0 in [e]t.
This means that Pking need not to communication these shares at all, reducing
the communication by half. This observation allows Goyal et al. to reduce the
communication cost from 6 elements to 5.5 elements.

Our Observation. As [GSZ20], we require Pking to distribute a degree-t Shamir
sharing [e]t in the second step. However, we further require Pking to generate
a random sharing [e]t. In this way, when Pking is an honest party, corrupted
parties only receive t shares of a random degree-t sharing [e]t from Pking, which
are uniform and independent of the secret. As discussed in Sect. 2, it means that
we do not need to use uniform double sharings when Pking is honest.

For n multiplication gates, our idea is to let each party behave as Pking for
one multiplication gate. Note that only t out of n multiplications are handled
by corrupted Pking’s. To make sure that all parties still use a pair of random
double sharings when Pking is corrupted, the n pairs of double sharings for these
n multiplication gates only need to be t-wise independent. To this end, we will
first generate t pairs of random double sharings, and then expand them to n
pairs of double sharings with t-wise independence.

Specifically, all parties agree on an n × t hyper-invertible matrix M . Let
([r(1)]t, [r(1)]2t), . . . , ([r(t)]t, [r(t)]2t) be t pairs of random double sharings pre-
pared by FdoubleRand. All parties execute Expand (Protocol 3) to expand these
t pairs into n pairs of t-wise independent double sharings.

Protocol 3. Expand

1. All parties agree on an n × t hyper-invertible matrix M . All parties locally
compute

([r̃(1)]t, . . . , [r̃
(n)]t)

T = M ([r(1)]t, . . . , [r
(t)]t)

T

([r̃(1)]2t, . . . , [r̃
(n)]2t)

T = M ([r(1)]2t, . . . , [r
(t)]2t)

T

2. All parties output {([r̃(i)]t, [r̃
(i)]2t, Pi)}n

i=1, where ([r̃(i)]t, [r̃
(i)]2t, Pi) will be

used for a multiplication gate handled by Pi.

260 V. Goyal et al.

Recall that C denotes the set of all corrupted parties. By the property of
hyper-invertible matrices, there is a one-to-one map from {([r̃(i)]t, [r̃(i)]2t)}i∈C
to {[r(i)]t, [r(i)]2t}t

i=1. Thus, {([r̃(i)]t, [r̃(i)]2t)}i∈C are t pairs of random double
sharings.

ATLAS Multiplication Protocol. To evaluate a multiplication gate, a pair
of double sharings ([r]t, [r]2t, Pi) is consumed. All parties execute Mult (Proto-
col 4).

Protocol 4. Mult

1. Let ([r]t, [r]2t, Pi) be the random double sharings which will be used in the
protocol. Let [x]t, [y]t denote the input sharings.

2. All parties locally compute [e]2t = [x]t · [y]t + [r]2t.
3. Pi collects all shares and reconstructs the secret e = x·y+r. Then Pi randomly

generates a degree-t Shamir sharing [e]t and distributes the shares to other
parties.

4. All parties locally compute [z]t = [e]t − [r]t.

To show the security of ATLAS multiplication protocol, we consider the
scenario where all parties evaluate a sequence of N multiplication gates. In par-
ticular, the input sharings of each multiplication gate can depend on the input
sharings or output sharings of the previous multiplication gates. The functional-
ity F ′

mult appears in Functionality 5, which invokes Fmult for each multiplication
gate. One can view F ′

mult as an interface of Fmult. It allows us to replace the
invocation of Fmult in the secure-with-abort MPC protocol [GSZ20] by the invo-
cation of F ′

mult, and thus directly use ATLAS multiplication protocol in the
protocol [GSZ20]. The protocol ATLAS-Mult appears in Protocol 6.

Functionality 5. F ′
mult

1. F ′
mult receives N from all parties.

2. From i = 1 to N , let [x(i)]t, [y
(i)]t denote the input sharings of the i-th mul-

tiplication gate. F ′
mult invokes Fmult on [x(i)]t, [y

(i)]t.

Lemma 1. The protocol ATLAS-Mult securely computes the functionality
F ′

mult in the FdoubleRand-hybrid model in the presence of a fully malicious adver-
sary controlling t corrupted parties.

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 261

Protocol 6. ATLAS-Mult

1. All parties set N to be the number of multiplication gates to be evaluated.
2. All parties invoke FdoubleRand to prepare N · t/n pairs of random double shar-

ings, and invoke Expand to obtain N pairs of double sharings in the form of
([r]t, [r]2t, Pj)

3. From i = 1 to N , let [x(i)]t, [y
(i)]t denote the input sharings of the i-th multipli-

cation gate. Suppose ([r]t, [r]2t, Pj) is the first pair of unused double sharings.
All parties invoke Mult on [x(i)]t, [y

(i)]t and ([r]t, [r]2t, Pj).

We refer the readers to the full version of this paper [GLO+21] for the proof
of Lemma 1.

Using F ′
mult in the MPC protocol in [GSZ20]. In the secure-with-abort MPC

protocol in [GSZ20], all parties invoke Fmult for each multiplication gate. Note
that F ′

mult invoke Fmult for each multiplication. Therefore, we view F ′
mult as an

interface of Fmult. All parties initialize F ′
mult in the beginning of the protocol

with the number of multiplications they need to compute (which is determined
by the circuit). Then we replace each invocation of Fmult by F ′

mult.
Note that every t pairs of random double sharings generated by FdoubleRand

are expanded to n pairs of double sharings. Therefore, the communication cost
per pair of double sharings is 4 · t/n ≈ 2 elements per party. The overall cost
per multiplication gate is 4 elements per party. Therefore, when using ATLAS-
Mult to instantiate F ′

mult, we obtain a secure-with-abort MPC protocol with
communication complexity of O(Cnφ + n2 · log C · κ) bits. In particular, the
concrete efficiency per multiplication gate is 4 elements per party.

Remark 1. It has been observed in many previous works (e.g., [CGH+18,
GSZ20]) that the DN multiplication protocol can be extended to compute an
inner-product operation with the same communication complexity as a multipli-
cation operation. An inner-product operation is to compute the summation of the
coordinate-wise multiplications between two vectors. At a high-level, given two
vectors of input sharings ([x(1)]t, [x(2)]t, . . . , [x(�)]t), ([y(1)]t, [y(2)]t, . . . , [y(�)]t),
the goal is to compute a degree-t Shamir sharing of z =

∑�
i=1 x(i) · y(i). Since all

parties can locally compute a degree-2t Shamir sharing [z]2t =
∑�

i=1[x
(i)]t ·[y(i)]t,

all parties can use the same technique as the DN multiplication protocol to do
degree reduction.

We note that our technique of using t-wise independent double sharings also
works in this extension. As a result, we obtain an inner-product protocol with
communication complexity of 4 elements per party, which is secure up to an
additive attack (see Functionality 7 in Section 4 of [GS20] for the description of
the corresponding functionality).

262 V. Goyal et al.

4.3 Reducing the Number of Rounds via Beaver Triples

For the secure-with-abort MPC protocol in [GSZ20], multiplication gates in the
same layer of the circuit are evaluated in parallel. Therefore, the number of
rounds is linear in the depth of the circuit. To further improve the concrete
efficiency, we pay our attention to the round complexity. In this part, we show
that multiplication gates in a two-layer circuit can be evaluated in parallel.
It allows us to reduce the number of rounds by a factor of 2. The amortized
communication cost per multiplication gate is 4.5 elements per party.

An Overview of Our Approach. We first start with a two-layer circuit.
At a high-level, we use Beaver triples to evaluate multiplications in the second
layer. Recall that a Beaver triple consists of three degree-t Shamir sharings
([a]t, [b]t, [c]t) such that c = a ·b. Usually, a Beaver triple is used to transform one
multiplication to two reconstructions. Concretely, given two sharings [x]t, [y]t,
suppose we want to compute [z]t such that z = x · y. Since

z = x · y = (x + a − a) · (y + b − b)
= (x + a) · (y + b) − (x + a) · b − (y + b) · a + a · b,

we can compute

[z]t := (x + a) · (y + b) − (x + a) · [b]t − (y + b) · [a]t + [c]t.

Therefore, the task of computing [z]t becomes to reconstruct two degree-t Shamir
sharings [x]t +[a]t and [y]t +[b]t. Observe that, if we set u = x+a and v = y+ b,
the above equation allows us to locally compute a degree-t Shamir sharing of
z := (u−a) · (v − b) using a Beaver triple ([a]t, [b]t, [c]t). In particular, the values
u, v can be learnt after preparing the Beaver triple. For multiplications in the
second layer, our idea is to transform each input sharing to the form of u − [a]t,
where u is a public element and [a]t is a degree-t Shamir sharing. We refer to
this form as the Beaver-triple friendly form. Moreover, the sharing [a]t is known
to all parties before evaluating the first layer. In this way, for an multiplication
gate in the second layer with input sharings u− [a]t and v − [b]t, we can prepare
the Beaver triple ([a]t, [b]t, [c]t) in parallel with the multiplications in the first
layer.

We note that an input sharing of a multiplication gate in the second layer
may come from three places:

– This sharing is an input sharing of the circuit.
– This sharing is an output sharing of an addition gate in the first layer.
– This sharing is an output sharing of a multiplication gate in the first layer.

Note that an addition gate can be evaluated without interaction. For the first
two cases, all parties can locally compute this sharing. Let [x]t denote such a
sharing. Note that [x]t = 0 − (−[x]t) is already in the Beaver-triple friendly
form, and (−[x]t) is known before evaluating the first layer. For the third case,

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 263

we want the output sharing of a multiplication gate in the first layer to have
the Beaver-triple friendly form u − [a]t, and [a]t is known before evaluating this
gate. We note that the original multiplication protocol in [DN07] satisfies our
requirement. Recall that in the original multiplication protocol in [DN07]:

1. Pking reconstructs a degree-2t Shamir sharing [e]2t := [x]t · [y]t + [r]2t and
sends e to other parties.

2. All parties locally compute [z]t := e − [r]t.

In particular, the random double sharings ([r]t, [r]2t) are prepared before evalu-
ating this gate.

In summary, a two-layer circuit can be evaluated as follows:

– For each input sharing in the second layer, all parties transform it to the
Beaver-triple friendly form, denoted by u− [a]t, such that [a]t is known to all
parties.

– For each multiplication gate in the first layer, suppose [x]t, [y]t are the input
sharings. All parties use the original multiplication protocol in [DN07] to
compute [z]t, where z = x · y. For each multiplication gate in the second
layer, suppose u − [a]t, v − [b]t are the input sharings. All parties use our
multiplication protocol Mult on [a]t, [b]t to compute [c]t, where c = a · b.
Note that these two kinds of multiplications can be computed in parallel.

– For each multiplication gate in the second layer, suppose u − [a]t, v − [b]t are
the input sharings. Note that we have learnt u, v when evaluating the first
layer, and we have computed the Beaver triple ([a]t, [b]t, [c]t). Therefore, all
parties compute [z]t := u · v − u · [b]t − v · [a]t + [c]t.

We note that the original multiplication protocol in [DN07] requires the com-
munication of 6 elements per party. Next, we show how to reduce the communi-
cation cost to 5 elements without breaking the form of the output sharing.

Improving the Original Multiplication Protocol in [DN07]. Recall that
in the original multiplication protocol in [DN07]:

1. Pking reconstructs a degree-2t Shamir sharing [e]2t := [x]t · [y]t + [r]2t and
sends e to other parties.

2. All parties locally compute [z]t := e − [r]t.

To keep the form of the output sharing, Pking cannot replace e by a degree-t
Shamir sharing [e]t. Furthermore, to protect the secrecy of the multiplication
result x ·y, r need to be uniformly random. Our main observation is that r being
uniform is not equivalent to the double sharings ([r]t, [r]2t) being uniform. To
this end, we first decouple the relation between r and ([r]t, [r]2t). Note that a
pair of double sharings ([r]t, [r]2t) is equivalent to a pair of sharings ([r]t, [o]2t),
where the first sharing is a degree-t Shamir sharing of r and the second sharing
is a degree-2t Shamir sharing of o = 0. To see this, given ([r]t, [r]2t), we can set
[o]2t := [r]2t − [r]t; given ([r]t, [o]2t), we can set [r]2t := [r]t + [o]2t. When using
a pair of sharings ([r]t, [o]2t), the multiplication protocol becomes:

264 V. Goyal et al.

1. All parties locally compute [e]2t := [x]t · [y]t + [r]t + [o]2t.
2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking sends

the value e to all other parties.
3. After receiving e from Pking, all parties locally compute [z]t := e − [r]t.

Note that [o]2t is only used to compute [e]2t. When Pking is an honest party, [o]2t

does not need to be a uniformly random degree-2t sharing of 0. Thus, following
the same argument as that in Sect. 4.2, we can use t-wise independent [o]2t’s
with uniformly random degree-t sharings [r]t’s.

The Improved Multiplication Protocol. For a sequence of n multiplication gates,
all parties first prepare n random degree-t Shamir sharings using Frand, denoted
by

[r(1)]t, . . . , [r(n)]t.

Recall that the amortized communication cost of the instantiation of Frand

in [DN07,GS20] is 2 elements per sharing per party. For random degree-2t Shamir
sharings of 0, we model the functionality Fzero in Functionality 7. We refer the
readers to the full version of this paper [GLO+21] for an instantiation of Fzero

with communication complexity of 2 elements per sharing per party.

Functionality 7. Fzero

1. Fzero receives from the adversary the set of shares {ri}i∈C .
2. Fzero randomly samples t elements as the shares of the first t honest parties.

Based on the secret o = 0, the t shares of the first t honest parties, and the t
shares {ri}i∈C of corrupted parties, Fzero reconstructs the whole sharing [o]2t.
Fzero distributes the shares of [o]2t to honest parties.

All parties invoke Fzero to prepare t random degree-2t Shamir sharings of 0,
denoted by

[o(1)]t, . . . , [o(t)]t.

These t sharings are expanded to n sharings with t-wise independence. As
Expand, we will use a predetermined n × t hyper-invertible matrix M . The
protocol ExpandZero appears in Protocol 8.

For the i-th multiplication gate, we will use ([r(i)]t, [õ(i)]2t, Pi) and Pi will
act as Pking. The protocol MultDN appears in Protocol 9. As for the amortized
communication cost per gate:

– Preparing one random degree-t Shamir sharing using Frand requires to com-
municate 2 elements per party.

– Preparing one t-wise independent degree-2t Shamir sharing of 0 using Fzero

and ExpandZero requires to communicate 2 · t/n elements per party.
– The protocol MultDN requires to communicate 2 elements per party.

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 265

Protocol 8. ExpandZero

1. All parties agree on an n × t hyper-intertible matrix M . All parties locally
compute

([õ(1)]2t, . . . , [õ
(n)]2t)

T = M ([o(1)]2t, . . . , [o
(t)]2t)

T

2. All parties output {([õ(i)]2t, Pi)}n
i=1, where ([õ(i)]2t, Pi) will be used for a mul-

tiplication gate handled by Pi.

In summary, the amortized communication cost per gate is 5 elements per party.

Protocol 9. MultDN

1. Let ([r]t, [o]2t, Pi) be the random sharings which will be used in the protocol.
Let [x]t, [y]t denote the input sharings.

2. All parties locally compute [e]2t = [x]t · [y]t + [r]t + [o]2t.
3. Pi collects all shares and reconstructs the secret e = x · y + r. Then Pi sends

e to other parties.
4. All parties locally compute [z]t = e − [r]t.

Evaluating a Two-Layer Circuit. Given a two-layer circuit, we assume that
all parties hold a degree-t Shamir sharing for each input wire in the beginning.
As described above, we will use MultDN to evaluate multiplication gates in
the first layer. For multiplication gates in the second layer, note that all parties
only need to obtain the output sharings. Therefore, we can use Mult, which
only requires 4 elements per gate per party, to evaluate multiplication gates in
the second layer.

Suppose there are N1 multiplication gates in the first layer, and N2 multipli-
cation gates in the second layer. We assume that all parties have prepared the
correlated randomness associated with these multiplication gates, i.e., N1 pairs
of sharings in the form of ([r]t, [o]t, Pi), and N2 pairs of sharings in the form of
([r]t, [r]2t, Pi). In the main protocol, these sharings are prepared together at the
beginning of the protocol. Then all parties execute Evaluate (Protocol 10) to
compute the output sharings of this circuit.

266 V. Goyal et al.

Protocol 10. Evaluate

1. All parties start with holding a degree-t Shamir sharing for each input wire of
this circuit. For each multiplication gate in the second layer, we will transform
the input sharings to the Beaver-triple friendly form u − [a]t. Consider the
following three cases.

– If this sharing is an input sharing of the circuit, denoted by [x]t, all parties
set u := 0 and [a]t := −[x]t.

– If this sharing is an output sharing of an addition gate in the first layer,
all parties first locally compute this sharing, denoted by [x]t, and then set
u := 0 and [a]t := −[x]t.

– If this sharing is an output sharing of a multiplication gate in the first
layer, suppose ([r]t, [o]2t, Pi) are associated with this gate. All parties set
[a]t := [r]t. The value u, which corresponds to e in MultDN, will be
computed when this multiplication gate is evaluated.

2. For each multiplication gate with input sharings [x]t, [y]t in the first layer, all
parties invoke MultDN to compute [z]t where z := x · y. For each multiplica-
tion gate with input sharings (u− [a]t), (v− [b]t) in the second layer, where all
parties have learnt the sharings [a]t, [b]t, all parties invoke Mult to compute
[c]t where c := a · b.

3. For each multiplication gate in the first layer, let e be the reconstruction result
distributed by Pking in MultDN. If the output sharing of this gate is used as
an input sharing of a multiplication gate in the second layer, all parties set
u := e for this input sharing.

4. Finally, for each multiplication gate with input sharings (u − [a]t), (v − [b]t)
in the second layer, all parties locally compute

[z]t := u · v − u · [b]t − v · [a]t + [c]t

as the output sharing of this gate.

Main Protocol. Now we are ready to present the main protocol. Recall that we
are in the client-server model. In particular, all the inputs belong to the clients,
and only the clients receive the outputs. The functionality Fmain appears in
Functionality 11.

As [GSZ20], our protocol includes 4 phases:

– Input Phase: The clients will share their inputs to the parties.
– Computation Phase: The whole circuit will be partitioned into a sequence of

two-layer sub-circuits. We will evaluate each sub-circuit using Evaluate.
– Verification Phase: To check the correctness of the computation, we will check

that
• All parties receive the same values when using MultDN to evaluate

multiplication gates in the first layer of each sub-circuit.
• Multiplication tuples computed by MultDN and Mult are correct.

– Output Phase: All parties reconstruct the outputs to the clients.

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 267

Functionality 11. Fmain

1. Fmain receives from all clients their inputs.
2. Fmain evaluates the circuit and computes the output. Fmain first sends the

output of corrupted clients to the adversary.
– If the adversary replies continue, Fmain distributes the output to honest

clients.
– If the adversary replies abort, Fmain sends abort to honest clients.

To check that all parties receive the same values when using MultDN, all par-
ties will compute a random linear combination of the values they received in
MultDN and exchange their results. If a party receives different values, this
party will abort. We will use the functionality Fcoin introduced in Sect. 3.3
to generate a random element. The protocol CheckConsistency appears in
Protocol 12. Recall that the communication complexity of the instaniation of
Fcoin in [GSZ20] is O(n2κ) bits. The communication complexity of CheckCon-
sistency is O(n2κ) bits.

Protocol 12. CheckConsistency(N, {x(1), . . . , x(N)})

1. All parties invoke Fcoin to generate a random element r ∈ K. All parties locally
compute

x := x(1) + x(2) · r + . . . + x(N) · rN−1.

2. All parties exchange their results x’s and check whether they are the same. If
a party Pi receives different x’s, Pi aborts.

Lemma 2. If there exists two honest parties who receive different set of values
{x(1), . . . , x(N)}, then with overwhelming probability, at least one honest party
will abort in the protocol CheckConsistency.

We refer the readers to the full version of this paper [GLO+21] for the proof
of Lemma 2.

To check that multiplication tuples computed by MultDN and Mult are
correct, we will use FmultVerify from [GSZ20]. The protocol Main appears in
Protocol 13.

Theorem 2. Let c be the number of clients and n = 2t+1 be the number of par-
ties. The protocol Main securely computes Fmain with abort in the {Frand,Fzero,
FdoubleRand,Fcoin,FmultVerify}-hybrid model in the presence of a fully malicious
adversary controlling up to c clients and t parties.

268 V. Goyal et al.

Protocol 13. Main

1. Input Phase:
For each client input x, client randomly samples a degree-t sharing [x]t and
distributes the shares to all parties.

2. Computation Phase – Preparing Correlated Randomness:
All parties start with holding a degree-t sharing for each input gate. The
circuit is partitioned into a sequence of two-layer sub-circuits. Let N1 denote
the number of multiplications in the first layer of all sub-circuits, and N2

denote the number of multiplications in the second layer of all sub-circuits.
All parties prepare the correlated randomness as follows:

– All parties invoke Frand to prepare N1 random degree-t Shamir sharings.
Then all parties invoke Fzero to prepare N1 · t/n random degree-2t Shamir
sharings of 0, and invoke ExpandZero to obtain N1 degree-2t Shamir
sharings of 0. These sharings are transformed to N1 pairs of sharings in
the form of ([r]t, [o]2t, Pi).

– All parties invoke FdoubleRand to prepare N2 · t/n pairs of random double
sharings. Then all parties invoke Expand to obtain N2 pairs of double
sharings in the form of ([r]t, [r]2t, Pi).

3. Computation Phase – Evaluating Two-Layer Circuits:
All sub-circuits are evaluated in a predetermined topological order. For each
sub-circuit with all the input sharings prepared, all parties invoke Evaluate
to compute the output sharings.

4. Verification Phase:
– Suppose e(1), . . . , e(N1) are the values all parties received in MultDN

invoked in Evaluate. All parties invoke CheckConsistency to check
that they receive the same values.

– Suppose {([x(i)]t, [y
(i)]t, [z

(i)]t)}N1
i=1 denote the multiplication tuples com-

puted by MultDN invoked in Evaluate, and {([a(i)]t, [b
(i)]t, [c

(i)]t)}N2
i=1

denote the multiplication tuples computed by Mult invoked in Evalu-
ate. All parties invoke FmultVerify to check the correctness of these N1+N2

multiplication tuples.
5. Output Phase:

For each output gate, suppose [x]t is the sharing associated with this gate and
client is the client who should receive this output. All parties send their shares
of [x]t to client. client checks whether the shares of [x]t is consistent. If not,
client aborts. Otherwise, client reconstructs the result x.

We refer the readers to the full version of this paper [GLO+21] for the proof
of Theorem 2.

Analysis of the Concrete Efficiency. In Main, all multiplication gates in the first
layer of all sub-circuits are evaluated by MultDN, which requires 5 elements
per party per gate. All multiplication gates in the second layer of all sub-circuits
are evaluated by Mult, which requires 4 elements per party per gate. Assuming
that the number of multiplication gates in the first layer is roughly the same as

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 269

the number of multiplication gates in the second layer, the concrete efficiency of
Main is 4.5 elements per party per gate. Note that each sub-circuit is evaluated
within one round of multiplication. Therefore, we reduce the number of rounds
by a factor of 2. The overall communication complexity is the same as that
in [GSZ20], i.e., O(Cnφ + n2 · log C · κ) bits.

5 Experimental Evaluation

In this section, we evaluate and compare the concrete efficiency of our proposed
improvements. As a baseline for comparison, we use the publicly available imple-
mentation of [CGH+18]. We also use a setup similar to [CGH+18].

Experiment Setup. We run each party on an independent C4.large instance
(2 cores with 2.9 GHz and 3.75 GB RAM) on Amazon AWS. The instances are all
located in the same region (i.e. a LAN configuration). Throughout our experi-
ments, we use the 61-bit Mersenne field, and we report the average of 5 executions
as [CGH+18].

Our benchmark consists of two sets of synthetic arithmetic circuits. The first
set has 4 circuits of 1 million multiplication gates, ranging from 20 layers to
10,000 layers. The second set has 2 circuits of 10 million multiplication gates,
each with 20 layers and 100 layers. Together, the two sets cover scenarios ranging
from wide-and-shallow circuits to narrow-and-deep ones. We generate these two
sets of synthetic arithmetic circuits by using the code from [CGH+18]. We show
running time on these circuits with 3 to 21 parties.

Benchmark Results. In Table 1 and Table 2, we compare the running time
of four protocols: the baseline from [CGH+18], the secure-with-abort protocol
from [GSZ20], our improved protocol using t-wise independence (abbreviated as
t-wise), and the further improved version with round compression (abbreviated
as round-compression). The orders of the protocols shown in both tables are
based on the running times. Table 1 shows results for circuits of 1 million multi-
plication gates, and Table 2 shows results for circuits of 10 million multiplication
gates. Note that in Table 2, the baseline implementation runs out of memory
when running with 11, 15, or 21 parties. We put N/A in those cases.

We observe that when the circuit depth D is small relative to its size (e.g. D =
20, 100), the t-wise version achieves better speedup than the round-compression
version. When D is large (e.g. D = 1, 000, 10, 000), the round-compression ver-
sion achieves significant further speedup.

This is because when D is small, communication bandwidth is the bottleneck
of running times. The t-wise version effectively reduces the number of bytes
communicated in each round, hence speeds up the running time. The overhead
of the round-compression version when D is small surpasses its improvement
in running time. However, when D is large, round latency becomes the bottle-
neck of running times, and improvements on communication complexity become

270 V. Goyal et al.

Table 1. This table shows running times (in milliseconds) for circuits with 1 million
multiplication gates and of various depths. The columns show running times for
different number of parties.

Depth version 3 5 7 9 11 15 21

20 [CGH+18] 1126 1235 1642 1739 2029 2315 2762

20 [GSZ20] 763 857 1007 1068 1177 1301 1528

20 round-compression 642 709 810 858 974 989 1118

20 t-wise 545 622 711 752 842 917 1047

20 speedup vs [CGH+18] 2.1x 2.0x 2.3x 2.3x 2.4x 2.5x 2.6x

20 speedup vs [GSZ20] 1.4x 1.4x 1.4x 1.4x 1.4x 1.4x 1.5x

100 [CGH+18] 1122 1174 1591 1729 2033 2442 2915

100 [GSZ20] 696 887 1096 1122 1230 1430 1830

100 round-compression 655 719 839 849 914 1050 1190

100 t-wise 535 618 770 820 910 1038 1250

100 speedup vs [CGH+18] 2.1x 1.9x 2.1x 2.1x 2.2x 2.4x 2.3x

100 speedup vs [GSZ20] 1.3x 1.4x 1.4x 1.4x 1.4x 1.4x 1.5x

1k [CGH+18] 1480 1802 2510 2793 3232 4053 5093

1k [GSZ20] 1146 1358 1748 1920 2332 2744 3543

1k t-wise 939 1136 1490 1618 1983 2389 3108

1k round-compression 855 976 1195 1268 1511 1700 2100

1k speedup vs [CGH+18] 1.7x 1.8x 2.1x 2.2x 2.1x 2.4x 2.4x

1k speedup vs [GSZ20] 1.3x 1.4x 1.5x 1.5x 1.5x 1.6x 1.7x

10k [CGH+18] 4470 6444 9641 10702 15040 18398 24693

10k [GSZ20] 4457 5892 8747 9850 12832 18630 23026

10k t-wise 4333 5641 8570 9327 12323 16580 22220

10k round-compression 2477 3252 4713 5173 6633 8713 11719

10k speedup vs [CGH+18] 1.8x 2.0x 2.0x 2.1x 2.3x 2.1x 2.1x

10k speedup vs [GSZ20] 1.8x 1.8x 1.9x 1.9x 1.9x 2.1x 2.0x

less significant. The round-compression version in this case achieves significant
speedup by reducing the round complexity.

In practice, we can have a switch in the code to decide whether to use the
t-wise version or the round-compression version according to the size and
depth of each input circuit. By combining the two improvements, we achieve
around 2 times speedup compared with [CGH+18] in the overall running time,
which includes both communication and computation time, in all cases, and
around 1.4 times speedup compared with [GSZ20].

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 271

Table 2. This table shows running times (in milliseconds) for circuits with 10 million
multiplication gates and of various depths. The columns show running times for
different number of parties.

D version 3 5 7 9 11 15 21

20 [CGH+18] 11312 15118 17265 18988 N/A N/A N/A

20 [GSZ20] 7374 8795 10487 10883 11860 13520 15298

20 round-compression 5959 7176 8577 8846 9454 10538 11353

20 t-wise 5568 6461 7309 7892 8628 9524 10450

20 speedup vs [CGH+18] 2.0x 2.3x 2.4x 2.4x N/A N/A N/A

20 speedup vs [GSZ20] 1.3x 1.4x 1.4x 1.4x 1.4x 1.4x 1.5x

100 [CGH+18] 12279 15434 17797 19273 N/A N/A N/A

100 [GSZ20] 7502 8220 10480 10845 12467 13112 14766

100 round-compression 6799 7319 8333 8867 9545 10396 11309

100 t-wise 5503 6076 7254 7818 8849 9144 10250

100 speedup vs [CGH+18] 2.2x 2.5x 2.5x 2.5x N/A N/A N/A

100 speedup vs [GSZ20] 1.4x 1.4x 1.4x 1.4x 1.4x 1.4x 1.4x

Acknowledgements. V. Goyal, H. Li, Y. Song—Supported in part by the NSF award
1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP
Morgan Faculty Fellowship, a PNC center for financial services innovation award, and
a Cylab seed funding award.

R. Ostrovsky—Supported in part by DARPA under Cooperative Agreement
HR0011-20-2-0025, NSF grant CNS-2001096, US-Israel BSF grant 2015782, Google
Faculty Award, JP Morgan Faculty Award, IBM Faculty Research Award, Xerox Fac-
ulty Research Award, OKAWA Foundation Research Award, B. John Garrick Founda-
tion Award, Teradata Research Award, Lockheed-Martin Research Award and Sunday
Group. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of DARPA, the Department of Defense, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for governmental pur-
poses not withstanding any copyright annotation therein.

A. Polychroniadou—This paper was prepared in part for information purposes by
the Artificial Intelligence Research group of JPMorgan Chase & Co and its affiliates
(“JP Morgan”), and is not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever and disclaims all liability,
for the completeness, accuracy or reliability of the information contained herein. This
document is not intended as investment research or investment advice, or a recommen-
dation, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of partic-
ipating in any transaction, and shall not constitute a solicitation under any jurisdiction
or to any person, if such solicitation under such jurisdiction or to such person would
be unlawful. 2020 JPMorgan Chase & Co. All rights reserved.

272 V. Goyal et al.

References

[ABF+17] Araki, T., et al.: Optimized honest-majority MPC for malicious adver-
saries - breaking the 1 billion-gate per second barrier. In: 2017 IEEE
Symposium on Security and Privacy (SP), pp. 843–862. IEEE (2017)

[BBCG+19] Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-
knowledge proofs on secret-shared data via fully linear PCPs. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 67–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 3

[Bea92] Beaver, D.: Efficient multiparty protocols using circuit randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: Proceed-
ings of the Twentieth Annual ACM Symposium on Theory of Comput-
ing, pp. 1–10. ACM (1988)

[BSFO12] Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-
secure multiparty computation with a dishonest minority. In: Safavi-
Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
663–680. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 39

[BTH08] Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear
communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS,
vol. 4948, pp. 213–230. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78524-8 13

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols. In: Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, pp. 11–19. ACM (1988)

[CDVdG87] Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Multiparty computations
ensuring privacy of each party’s input and correctness of the result.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 87–119.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 7

[CGH+18] Chida, K., et al.: Fast large-scale honest-majority MPC for malicious
adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96878-0 2

[DIK10] Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty com-
putation and the computational overhead of cryptography. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 23

[DN07] Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure mul-
tiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 572–590. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74143-5 32

[DNPR16] Damg̊ard, I., Nielsen, J.B., Polychroniadou, A., Raskin, M.: On the com-
munication required for unconditionally secure multiplication. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 459–488.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 16

https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/3-540-48184-2_7
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-662-53008-5_16
https://doi.org/10.1007/978-3-662-53008-5_16

ATLAS: Efficient and Scalable MPC in the Honest Majority Setting 273

[FLNW17] Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput
secure three-party computation for malicious adversaries and an hon-
est majority. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 225–255. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56614-6 8

[GIP+14] Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Cir-
cuits resilient to additive attacks with applications to secure compu-
tation. In: Proceedings of the Forty-sixth Annual ACM Symposium on
Theory of Computing. STOC 2014, pp. 495–504. ACM, New York (2014)

[GLO+21] Goyal, V., Li, H., Ostrovsky, R., Polychroniadou, A., Song, Y.: ATLAS:
efficient and scalable MPC in the honest majority setting. Cryptology
ePrint Archive, Report 2021/833 (2021)

[GLS19] Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional
MPC with guaranteed output delivery. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 85–114. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 4

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, pp. 218–229. ACM (1987)

[GS20] Goyal, V., Song, Y.: Malicious security comes free in honest-majority
MPC. Cryptology ePrint Archive, Report 2020/134 (2020). https://
eprint.iacr.org/2020/134

[GSZ20] Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free
in honest majority MPC. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 618–646. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 22

[HM01] Hirt, M., Maurer, U.: Robustness for free in unconditional multi-party
computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
101–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44647-8 6

[HMP00] Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party com-
putation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,
pp. 143–161. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44448-3 12

[LN17] Lindell, Y., Nof, A.: A framework for constructing fast MPC over arith-
metic circuits with malicious adversaries and an honest-majority. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 259–276. ACM (2017)

[LP12] Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose
oblivious transfer. J. Cryptol. 25(4), 680–722 (2012). https://doi.org/10.
1007/s00145-011-9107-0

[NNOB12] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new app-
roach to practical active-secure two-party computation. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 40

[NV18] Nordholt, P.S., Veeningen, M.: Minimising communication in honest-
majority MPC by batchwise multiplication verification. In: Preneel, B.,
Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 17

https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-030-26951-7_4
https://eprint.iacr.org/2020/134
https://eprint.iacr.org/2020/134
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/3-540-44647-8_6
https://doi.org/10.1007/3-540-44647-8_6
https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/s00145-011-9107-0
https://doi.org/10.1007/s00145-011-9107-0
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-319-93387-0_17

274 V. Goyal et al.

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613
(1979)

[Yao82] Yao, A.C.: Protocols for secure computations. In: 1982 23rd Annual
Symposium on Foundations of Computer Science. SFCS’08, pp. 160–
164. IEEE (1982)

Unconditional Communication-Efficient
MPC via Hall’s Marriage Theorem

Vipul Goyal1,2(B), Antigoni Polychroniadou3, and Yifan Song1

1 Carnegie Mellon University, Pittsburgh, USA
goyal@cs.cmu.edu, yifans2@andrew.cmu.edu

2 NTT Research, Sunnyvale, USA
3 J.P. Morgan AI Research, New York, USA

Abstract. The best known n party unconditional multiparty computa-
tion protocols with an optimal corruption threshold communicates O(n)
field elements per gate. This has been the case even in the semi-honest
setting despite over a decade of research on communication complexity
in this setting. Going to the slightly sub-optimal corruption setting, the
work of Damg̊ard, Ishai, and Krøigaard (EUROCRYPT 2010) provided
the first protocol for a single circuit achieving communication complexity
of O(log |C|) elements per gate. While a number of works have improved
upon this result, obtaining a protocol with O(1) field elements per gate
has been an open problem.

In this work, we construct the first unconditional multi-party com-
putation protocol evaluating a single arithmetic circuit with amortized
communication complexity of O(1) elements per gate.

1 Introduction

Secure Multi-Party Computation (MPC) enables a set of n parties to mutually
run a protocol that computes some function f on their private inputs with-
out compromising the privacy of their inputs or the correctness of the out-
puts [Yao82,GMW87,CCD88,BOGW88]. An important distinction in designing

V. Goyal and Y. Song—Supported in part by the NSF award 1916939, DARPA SIEVE
program, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a
PNC center for financial services innovation award, and a Cylab seed funding award.
A. Polychroniadou—This paper was prepared in part for information purposes by the
Artificial Intelligence Research group of JPMorgan Chase & Co and its affiliates (“JP
Morgan”), and is not a product of the Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever and disclaims all liability, for the
completeness, accuracy or reliability of the information contained herein. This docu-
ment is not intended as investment research or investment advice, or a recommenda-
tion, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of partic-
ipating in any transaction, and shall not constitute a solicitation under any jurisdiction
or to any person, if such solicitation under such jurisdiction or to such person would
be unlawful. 2020 JPMorgan Chase & Co. All rights reserved.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 275–304, 2021.
https://doi.org/10.1007/978-3-030-84245-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_10

276 V. Goyal et al.

MPC protocols is that of the power of the adversary. An adversary in a semi-
honest protocol follows the protocol’s specification but tries to learn information
from the received messages, and an adversary in a malicious protocol is allowed
to deviate from the protocol’s specification in arbitrary ways.

In this work, our focus is on the communication complexity of information
theoretic protocols evaluating an arithmetic circuit in the presence of semi-honest
or malicious adversaries. The “dream” in the unconditional setting is to get as
close to |C| as possible (or even below) where |C| is the circuit size. The best
known protocols in the so called optimal threshold regime tolerating t = (n −
1)/2 corrupted parties require communicating O(n · |C|) field elements (ignoring
circuit independent terms) [DN07,GIP+14,CGH+18,NV18,BBCG+19,GSZ20,
BGIN20]. There are no constructions known beating this barrier even in the
semi-honest setting despite over a decade of research.

Moving to Sub-optimal Corruption Threshold. In a remarkable result, Damg̊ard
et al. [DIK10] showed an unconditional MPC protocol with communication com-
plexity of O(log |C|·n/k) per gate (ignoring circuit independent terms) tolerating
t′ = (n−1)/3−k+1 corrupted parties. This was later extended by Genkin et al.
[GIP15] to obtain a construction tolerating t′ = (n−1)/2−k+1 corrupted parties
with also a constant factor improvement in the communication complexity. These
works rely on the packed secret sharing technique introduced by Franklin and
Yung [FY92] where k secrets are packed into a single secret sharing. An incom-
parable result was given by Garay et al. [GIOZ17] who obtained a protocol with
communication complexity O(log1+δ n · |C|) where δ is any positive constant.
If one was interested in evaluating the same circuit multiple times on different
inputs, Franklin and Yung [FY92] showed how to use packed secret sharing to
evaluate k copies of the circuit with amortized communication complexity of
O(n/k) elements per gate or O(1) elements when k = O(n). However in case of
a single circuit evaluation, the works mentioned [GIP15,GIOZ17] remains the
best known.

To our knowledge, there is no known unconditional MPC protocol which
only requires communicating O(1) field elements per gate for any corruption
threshold (assuming the number of corrupted parties is at least super-constant).
This raises the following natural question:

Is it possible to construct information theoretic MPC protocols for computing
a single arithmetic circuit with communication complexity O(1) field elements
per gate?

We answer the above question in the affirmative by constructing an informa-
tion theoretic n-party protocol based on packed secret sharing for an arithmetic
circuit over a finite field F of size |F| ≥ 2n. Our communication complexity
amortized over the multiplication gates within the same circuit (rather than
amortized over multiple circuits) is O(n/k) field elements per multiplication
gate. Informally, we prove the following:

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 277

Theorem 1 (informal). Assume a point-to-point channel between every pair
or parties. For all 1 ≤ k ≤ t where t = �(n − 1)/2�, there exists an informa-
tion theoretic n-party MPC protocol which securely computes a single arithmetic
circuit in the presence of a semi-honest (malicious) adversary controlling up to
t−k +1 parties with an communication complexity of O(n/k) field elements per
multiplication gate. For the case where k = O(n), the achieved communication
complexity is O(1) elements per gate. In addition, our finite field F is of size
|F| ≥ 2n.

Our formal theorem for semi-honest security with perfect security can be
found in Theorem 6 and we refer the readers to the full version of this
paper [GPS21] for the formal theorem for malicious security (with abort and
statistical security). In order to achieve these results, we introduce a set of combi-
natorial lemmas which could be of independent interest. In particular, we marry
packed secret sharing with techniques from graph theory. A key technical chal-
lenge with using packed secret sharing in the context of a single circuit is to make
sure that all the required secrets for a batch of gates appear in a single packed
secret sharing. In addition, one needs to ensure that these secrets appear in the
correct order. Our key technical contributions in this paper relate to performing
secure permutations of the secrets efficiency by using techniques from perfect
matching in bipartite graphs. In particular, we make an extensive use of Hall’s
Marriage Theorem.

2 Technical Overview

In the following, we will use n = 2t + 1 to denote the number of parties. Let
1 ≤ k ≤ t be an integer. We consider the scenario where an adversary is allowed
to corrupt t′ = t − k + 1 parties. For simplicity, we focus on the semi-honest
setting. We will discuss how to achieve malicious security at a later point.

Our construction will use the packed secret-sharing technique introduced by
Franklin and Yung [FY92]. This is a generalization of the standard Shamir secret
sharing scheme [Sha79]. It allows to secret-share a batch of secrets within a single
Shamir sharing. In the case that t′ = t − k + 1, we can use a degree-t Shamir
sharing, which requires t + 1 shares to reconstruct the whole sharing, to store k
secrets such that any t′ shares are independent of the secrets. We refer to such
a sharing as a degree-t packed Shamir sharing. Let x be a vector of dimension
k. We use [x] to denote a degree-t packed Shamir sharing of the secrets x.

In this work, we are interested in the information-theoretic setting. Our goal
is to construct a semi-honest MPC protocol for a single arithmetic circuit over
a finite field F (of size |F| ≥ 2n), such that the amortized communication com-
plexity (of each party) per gate is O(n/k) elements. Note that when k = O(n),
the amortized communication complexity per gate becomes O(1) elements.

278 V. Goyal et al.

2.1 Background: Using the Packed Secret-Sharing Technique
in MPC

In the information-theoretic setting, a general approach to construct an MPC
protocol is to compute a secret sharing for each wire of the circuit. The circuit
is evaluated gate by gate, and the problem is reduced to compute the output
sharing of an addition gate or a multiplication gate given the input sharings.
When the corruption threshold can be relaxed to t′ = t−k +1 where t = n−1

2 , a
natural way of using the packed secret-sharing technique [FY92] is to compute
k ≥ 1 copies of the same circuit (i.e., a SIMD circuit): by storing the value related
to the i-th copy in the i-th position of the secret sharing for each wire, all copies
of the same circuit are evaluated simultaneously. Moreover, the communication
complexity of a single operation for packed secret sharings is usually the same
as that for standard secret sharings. Effectively, the amortized communication
complexity per copy is reduced by a factor of k.

In 2010, Damg̊ard et al. [DIK10] provided the first protocol of using packed
secret-sharing technique to evaluate a single circuit. The original work focuses on
the corruption threshold t′ < (1/3− ε)n and perfect security. It is later extended
by [GIP15] to the setting of security with abort against t′ < (1/2−ε)n corrupted
parties with a constant factor improvement in the communication complexity1.
At a high-level, the idea is to divide the gates of the same type in each layer
into groups of k. Each group of gates will be evaluated at the same time. For
each group of gates, all parties need to prepare the input sharings by using the
output sharings from previous layers. Unlike the case when evaluating a SIMD
circuit, input sharings for each group of gates do not come for free:

– The secrets needed to be in a single sharing may be scattered in different
output sharings of previous layers.

– Even if we have all the secrets in a single sharing, we need the secrets to be
in the correct order so that the i-th secret is the input of the i-th gate.

The naive approach of preparing a single input sharing by collecting the secret
one by one would require O(k) operations, which eliminates the benefit of using
the packed secret-sharing technique. In [DIK10], they solve this problem by
compiling the circuit into a special form of a universal circuit such that it can be
viewed as k copies of the same circuit. In particular, the compilation uses the so-
called Beneš network, which increases the circuit size by a factor of log |C|, where
|C| is the circuit size. As a result, the amortized communication complexity per
gate is O(log |C| · n/k) elements.

Our work aims to remove the log |C| factor in the communication complexity
and achieves the same communication efficiency as that for the evaluation of
many copies of the same circuit. In this paper, we describe our idea from the
bottom up:

1 While the semi-honest version of the protocol in [GIP15] can use a field F of size
O(n), the maliciously secure protocol requires to use a large enough field since the
error probability is proportional to the field size.

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 279

1. We start with the basic protocols to evaluate input gates, addition gates, mul-
tiplication gates, and output gates using the packed Shamir sharing scheme.
These protocols are simple variants of the protocols in [DN07], which focuses
on the adversary that can corrupt t parties.

2. To use these protocols to evaluate addition gates and multiplication gates, we
need the secrets in the input packed Shamir sharings to have the correct order.
Assuming each input sharing contains all the secrets we want, we discuss how
to permute the secrets in each input sharing to the correct order.

3. Next, we show how to collect the secrets of an input packed Shamir sharing
from the output sharings of previous layers. Our solution requires that each
output wire from each layer is only used once in the computation, as an input
wire to a single layer. This requirement can be met by further requiring that
there is a fan-out gate right after each gate that copies the output wire the
number of times it is used in later layers.

4. After that, we discuss how to evaluate fan-out gates efficiently.
5. Finally, we discuss how to achieve malicious security.

Our key techniques lie on the second point and the third point. We will focus
on these two points in the technical overview, which are in Sect. 2.2 and Sect. 2.3.
We will briefly discuss the last two points in Sect. 2.4 and Sect. 2.6.

2.2 Performing an Arbitrary Permutation on the Secrets of a Single
Sharing

During the computation, we may encounter the scenario that the order of the
secrets is not what we want. For example, when k = 2 and we want to compute
two multiplication gates with input secrets (x1, y1), (x2, y2), ideally we want all
parties to hold two packed Shamir sharings of x = (x1, x2) and y = (y1, y2)
so that when we use the multiplication protocol with these two packed Shamir
sharing, we can obtain a packed Shamir sharing of the secret x∗y = (x1 ·y1, x2 ·
y2). During the computation, however, all parties may hold two packed Shamir
sharings of x = (x1, x2) and y′ = (y2, y1). In particular, the secrets in the second
sharing are not in the order we want. Using these two packed Shamir sharings
in the multiplication protocol, we can only obtain a packed Shamir sharing of
x ∗ y′ = (x1 · y2, x2 · y1) instead of the correct result x ∗ y = (x1 · y1, x2 · y2).

To solve it, we need to construct a protocol which allows all parties to per-
form an arbitrary permutation on the secrets of a single sharing. Let p(·) be a
permutation over {1, 2, . . . , k}. We use Fp to denote the linear map which maps
x = (x1, x2, . . . , xk) to x̃ = (xp(1), xp(2), . . . , xp(k)). Given the input sharing [x],
the goal is to compute a degree-t packed Shamir sharing [Fp(x)].

We first review the approach in [DIK10] for permuting the secrets of [x]:

1. All parties prepare two random degree-t packed Shamir sharings ([r], [r̃]),
where r̃ = Fp(r) and p(·) is the permutation we want to perform.

2. All parties locally compute [e] := [x] + [r] and send their shares to the first
party P1.

280 V. Goyal et al.

3. P1 reconstructs the secrets e and computes ẽ = Fp(e). P1 generates a random
degree-t packed Shamir sharing [ẽ] and distributes the shares to other parties.

4. All parties locally compute [x̃] := [ẽ] − [r̃].

To see the correctness, note that in the second step we have e = x+r. Therefore,

x̃ = Fp(x) = Fp(e − r) = Fp(e) − Fp(r) = ẽ − r̃.

The communication complexity of this protocol is O(n/k) elements per secret
(excluding the cost for the preparation of ([r], [r̃])).

As noted in [DIK10], the main issue of this approach is how to efficiently pre-
pare a pair of random sharings ([r], [r̃]). Although there are known techniques
to prepare random sharings ([r], [r̃]) for a fixed permutation p such that the
amortized communication complexity per pair is O(n) elements where in turn
the amortized cost per secret is O(n/k) elements, these techniques suffer a large
overhead (at least O(n2) elements) that is independent of the number of sharings
we want to prepare. It means that the overhead of preparing random sharings
depends on the number of different permutations we want to perform. In the
worst case where each time we need to perform a different permutation, the
overhead of each pair of random sharings is as large as O(n2) elements, which
eliminates the benefit of using the packed Shamir sharing scheme. In [DIK10],
this issue is solved by compiling the circuit such that only O(log n) different
permutations are needed in the computation with the cost of blowing up the
circuit size by a factor of O(log |C|), where |C| is the circuit size. This approach
does not achieve our goal since the amortized communication complexity per
gate becomes O(log |C| ·n/k) elements. To generate random sharings for m per-
mutations, our idea is to first generate random sharings for a limited number
(O(n2)) of different permutations which are related to the input permutations,
and then transform them to the random sharings for the desired permutations
(the input permutations). In this way, since we only need to prepare random
sharings for O(n2) different permutations, we do not suffer the quadratic over-
head in the communication complexity even if all the input permutations are
different. Moreover, we do not need to compile the circuit and therefore do not
suffer the O(log |C|) factor in the communication complexity as that in [DIK10].
As a result, the amortized communication complexity of our permutation pro-
tocol is O(n/k) elements per secret.

Before introducing our idea, we first introduce a useful functionality Fselect,
which selects secrets from one or more packed Shamir sharings and outputs a
single sharing which contains the chosen secrets. Later on, we will use Fselect to
solve the above issue of preparing random sharings for permutations. Concretely,
Fselect takes as input k degree-t packed Shamir sharings {[x(i)]}k

i=1 (which do
not need to be distinct) and outputs a degree-t packed Shamir sharing of y such
that yi = x

(i)
i . Effectively, Fselect chooses the i-th secret of [x(i)] and generates

a new degree-t packed Shamir sharing [y] that contains the chosen secrets. Note
that the secrets we choose are from different positions and the positions of these
secrets remain unchanged in the output sharing. To realize Fselect, we observe
that y can be computed by

∑k
i=1 e

(i) ∗x(i), where e(i) is a constant vector where

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 281

the i-th entry is 1 and all other entries are 0, and ∗ denotes the coordinate-
wise multiplication operation. We realize Fselect by extending the basic protocol
for multiplication gates as described in Sect. 4.2. The amortized communication
complexity of Fselect is O(n/k) elements per secret.

Using Fselect to Generate Random Sharings for Permuting Secrets. For all
i, j ∈ {1, 2, . . . , k}, we say a pair of degree-t packed Shamir sharings ([x], [y])
contains an (i, j)-component if xi = yj . To perform a permutation p(·), we need
to prepare two random degree-t packed Shamir sharings ([r], [Fp(r)]). We can
view ([r], [Fp(r)]) as a composition of an (i, p(i))-component for all i ∈ [k].

Now we introduce a new approach for preparing random sharings
([r], [Fp(r)]):

1. Let q1, q2, . . . , qk be k different permutations over {1, 2, . . . , k} such that for
all i ∈ [k], qi(i) = p(i).

2. All parties prepare a pair of random sharings for each permutation qi, denoted
by ([r(i)], [Fqi

(r(i))]). Since qi(i) = pi, ([r(i)], [Fqi
(r(i))]) contains an (i, p(i))-

component.
3. To prepare ([r], [Fp(r)]), we can use Fselect to select the (i, p(i))-component

from ([r(i)], [Fqi
(r(i))]) for all i ∈ [k]. More concretely, for [r], we use Fselect

to select the i-th secret of [r(i)] for all i ∈ [k]. For [Fp(r)], we use Fselect to
select the p(i)-th secret of [Fqi

(r(i))] for all i ∈ [k].

While this way of preparing a single pair of random sharings for the permu-
tation p requires k pairs of random sharings for k permutations q1, . . . , qk, we
note that the unused components of ([r(i)], [Fqi

(r(i))]) can potentially be used
to prepare random sharings for other permutations.

In general, when we want to prepare random sharings for m permutations
p1(·), p2(·), . . . , pm(·), relying on Fselect, it is sufficient to alternatively prepare
random sharings for m permutations q1(·), q2(·), . . . , qm(·) such that:

– For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm}
which satisfies that p(i) = j is equal to the number of permutations q ∈
{q1, q2, . . . , qm} which satisfies that q(i) = j.

Then, from i = 1 to m, a pair of random sharings for the permutation pi can be
prepared by using Fselect to choose the first unused (j, pi(j))-component for all
j ∈ [k].

The major benefit of this approach is that we can limit the number of different
permutations in {q1, q2, . . . , qm} as we show in Theorem 2.

Theorem 2. Let m, k ≥ 1 be integers. For all m permutations p1, p2, . . . , pm

over {1, 2, . . . , k}, there exists m permutations q1, q2, . . . , qm over {1, 2, . . . , k}
such that:

– For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm}
such that p(i) = j is the same as the number of permutations q ∈
{q1, q2, . . . , qm} such that q(i) = j.

282 V. Goyal et al.

– q1, q2, . . . , qm contain at most k2 different permutations.

Moreover, q1, q2, . . . , qm can be found within polynomial time given p1, p2, . . . , pm.

Recall that the issue of using known techniques to prepare random sharings for
p1, p2, . . . , pm is that there will be an overhead of O(n2) elements per different
permutation in p1, p2, . . . , pm. Relying on Fselect, we only need to prepare random
sharings for permutations q1, . . . , qm, which contain at most k2 ≤ n2 different
permutations. In this way, the overhead is independent of the number of permu-
tations and the circuit size. Recall that the amortized communication complexity
for each pair of random sharings is O(n/k) elements per secret, and our protocol
for Fselect and the permutation protocol from [DIK10] also have the same amor-
tized communication complexity, i.e., O(n/k) elements per secret. Therefore, the
overall communication complexity to perform an arbitrary permutation on the
secrets of a single secret sharing is O(n/k) elements per secret.

Using Hall’s Marriage Theorem to Prove Theorem 2. We note that Theorem 2
has a close connection to graph theory. We first introduce two basic notions.

– For a graph G = (V,E), we say G is a bipartite graph if there exists a partition
(V1, V2) of V such that all edges are between vertices in V1 and vertices in V2.
Such a graph is denoted by G = (V1, V2, E).

– For a bipartite graph G = (V1, V2, E) where |V1| = |V2|, a perfect matching
is a subset of edges E ∈ E which satisfies that each vertex in the sub-graph
(V1, V2, E) has degree exactly 1.

Note that a permutation p over {1, 2, . . . , k} corresponds to a perfect matching
in a bipartite graph: the set of vertices are V1 = V2 = {1, 2, . . . , k}, and the set
of edges are E = {(i, p(i))}k

i=1.
We first construct a bipartite graph G = (V1, V2, E) where V1 = V2 =

{1, 2, . . . , k} and E contains all edges in the perfect matching that p1, p2, . . . , pm

correspond to. Strictly speaking, G is a multi-graph since a pair of vertices may
have multiple edges. Note that Theorem 2 is equivalent to decomposing G into m
perfect matching such that the number of different perfect matching is bounded
by k2. Our idea of finding these m perfect matching is to repeat the following
steps until E becomes empty:

1. We first find a perfect matching E ⊂ E in G.
2. We repeatedly remove E from E until E is no longer a subset of E. The

number of times that E is removed from E is the number of times that E
appears in the output perfect matching.

Note that the number of different perfect matches is the same as the number of
iterations of the above two steps. Suppose the first step always succeeds. The
second step guarantees that in each iteration, we will completely use up the edges
between one pair of vertices in E. Since there are at most k2 different pairs of
vertices, the above process will terminate within k2 iterations.

For the first step, we use Hall’s Marriage Theorem to prove the existence of
a perfect matching.

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 283

Theorem 3 (Hall’s Marriage Theorem). For a bipartite graph (V1, V2, E)
such that |V1| = |V2|, there exists a perfect matching iff for all subset V ′

1 ⊂ V1,
the number of the neighbors of vertices in V2 is at least |V ′

1 |.
Hall’s Marriage Theorem is a well-known theorem in graph theory which has

many applications in mathematics and computer science. It provides a necessary
and sufficient condition of the existence of a perfect matching in a bipartite
graph. In addition, there are known efficient polynomial-time algorithms to find
a perfect matching in a bipartite graph, e.g. the Hopcroft-Karp algorithm.

To prove the existence of a perfect matching, we show that the graph G at
the beginning of each iteration satisfies the necessary and sufficient condition
in Hall’s Marriage Theorem. We say a bipartite graph G′ = (V ′

1 , V
′
2 , E

′) is d-
regular if the degree of each vertex in V ′

1

⋃
V ′
2 is d. A well-known corollary of

Hall’s Marriage Theorem states that:

Corollary 1. There exists a perfect matching in a d-regular bipartite graph.

Therefore, it is sufficient to show that the graph G at the beginning of each
iteration is a d-regular bipartite graph. Recall that in the beginning, the set of
edges E contains all edges in the perfect matching that p1, p2, . . . , pm correspond
to. Since by definition, the degree of each vertex in a perfect matching is exactly
1, the degree of each vertex in G is m, which means that G is a m-regular
bipartite graph. In each iteration, we first find a perfect matching in Step 1 and
then repeatedly remove this perfect matching from E in Step 2. Each time of
removing a perfect matching reduces the degree of each vertex in G by 1. Thus,
G is still a d-regular bipartite graph after each remove of a perfect matching.
Therefore, the graph G at the beginning of each iteration is a d-regular bipartite
graph.

2.3 Obtaining Input Sharings for Multiplication Gates
and Addition Gates

So far, we have introduced how to perform a permutation to the secrets of a
single sharing to obtain the correct order. However, this only solves the problem
when we have all the values we want in a single sharing. During the computation,
such a sharing does not come for free since the values we want may be scattered
in one or more output sharings of previous layers. This requires us to collect
the secrets from those sharings and generate a single sharing for these secrets
efficiently.

Our starting point is the functionality Fselect. Recall that Fselect allows us
to select secrets from one or more sharings and generate a new sharing for the
chosen secrets if the secrets we select are in different positions. To use Fselect,
we consider what we call the non-collision property stated in Property 1.

Property 1 (Non-collision). For each input sharing of each layer, the secrets
of this input sharing come from different positions in the output sharings of
previous layers.

284 V. Goyal et al.

Note that if we can guarantee the non-collision property, then we can use
Fselect to generate the input sharing we want. Unfortunately, this property does
not hold in general. A counterexample is that we need the same secret twice in
a single input sharing. Then these two secrets will always come from the same
position. To solve this problem, we require that

– every output wire of the input layer and all intermediate layers is used exactly
once as an input wire of a later layer (which may not be the next layer).

Note that this requirement can be met without loss of generality by assuming
that there is a fan-out gate right after each (input, addition, or multiplication)
gate that copies the output wire the number of times it is used in later layers.
In the next subsection, we will discuss how to evaluate fan-out gates efficiently.
With this requirement, there is a bijective map between the output wires (of the
input layer and all intermediate layers) and the input wires (of the output layer
and all intermediate layers).

Note that only meeting this requirement is not enough: it is still possible that
two secrets of a single input sharing come from the same position but in two
different output sharings. Our idea is to perform a permutation on each output
sharing to achieve the non-collision property.

Since every output wire from every layer is only used once as an input wire
of another layer, the number of output sharings in the circuit is the same as
the number of input sharings in the circuit. Let m denote the number of out-
put packed Shamir sharings of the input layer and all intermediate layers in
the circuit. Then the number of input packed Shamir sharings of the output
layer and all intermediate layers is also m. We label all the output sharings
by 1, 2, . . . ,m and all the input sharings also by 1, 2, . . . ,m. Consider a matrix
N ∈ {1, 2, . . . ,m}m×k where Ni,j is the index of the input sharing that the j-th
secret of the i-th output sharing wants to go to. Then for all � ∈ {1, 2, . . . ,m},
there are exactly k entries of N which are equal to �. We will prove the following
theorem.

Theorem 4. Let m ≥ 1, k ≥ 1 be integers. Let N be a matrix of dimension m×k
in {1, 2, . . . ,m}m×k such that for all � ∈ {1, 2, . . . ,m}, the number of entries of
N which are equal to � is k. Then, there exists m permutations p1, p2, . . . , pm

over {1, 2, . . . , k} such that after performing the permutation pi on the i-th row
of N , the new matrix N ′ satisfies that each column of N ′ is a permutation over
(1, 2, . . . ,m). Furthermore, the permutations p1, p2, . . . , pm can be found within
polynomial time.

Jumping ahead, when we apply pi to the i-th output sharing for all i ∈
{1, 2, . . . ,m}, Theorem 4 guarantees that for all j ∈ {1, 2, . . . , k} the j-th secrets
of all output sharings want to go to different input sharings. Note that this
ensures the non-collision property. During the computation, we will perform the
permutation pi on the i-th output sharing right after it is computed. Note that
when preparing an input sharing, the secrets we need only come from the output
sharings which have been computed. The secrets of these output sharings have

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 285

been properly permuted such that the secrets we want are in different positions.
Therefore, we can use Fselect to choose these secrets and obtain the desired input
sharing.

Using Hall’s Marriage Theorem to Prove Theorem 4. Let N be the matrix in
Theorem 4. Our idea is to repeat the following steps:

1. In the �-th iteration, for each row of N , we pick a value in the last k − � + 1
entries of this row (so that the first � − 1 entries will not be chosen), such
that the values we pick in all rows form a permutation over {1, 2, . . . ,m}.

2. For each row of N , we swap the �-th entry with the value we picked in this
row. In this way, the �-th column of N is a permutation over {1, 2, . . . ,m}.

Note that in each iteration, we switch two elements in each row. At the end of
the above process, we can compute the permutation for each row based on the
elements we switched in each iteration.

To make this idea work, we need to show that we can always find the values
which form a permutation over {1, 2, . . . ,m} in Step 1. We transform this prob-
lem to finding a perfect matching in a bipartite graph. We explain our solution
for the first iteration.

Consider a graph G = (V1, V2, E) where V1 = V2 = {1, 2, . . . ,m}. For each
entry Ni,j , there is an edge (i,Ni,j) in E. Then picking a value in each row is
equivalent to picking an edge for each vertex in V1. The chosen values forming a
permutation over {1, 2, . . . ,m} is equivalent to the chosen edges forming a perfect
matching in G. To prove the existence of a perfect matching, we show that the
graph G is a k-regular bipartite graph and rely on the corollary (Corollary 1) of
Hall’s Marriage Theorem. For all vertex i ∈ V1, there is an edge (i,Ni,j) in E for
each entry in the i-th row of N . Therefore, the degree of the vertex i is k. For all
vertex j ∈ V2, the degree of j equals to the number of entries in N which equal
to j. Note that there are exactly k entries which equals to j. Thus, the degree of
the vertex j is k. Therefore G is a k-regular graph. By Corollary 1, there exists a
perfect matching in G. The same arguments work for other iterations. We refer
the readers to Sect. 4.3 for more details.

It is worth noting that we use Hall’s Marriage Theorem to solve two different
problems:

– In Theorem 2, we use Hall’s Marriage Theorem to find a different set of
permutations q1, q2, . . . , qm given the permutations p1, p2, . . . , pm and limit
the number of different permutations in q1, q2, . . . , qm.

– In Theorem 4, we use Hall’s Marriage Theorem to find a permutation for each
output sharing to achieve the non-collision property (Property 1).

2.4 Handling Fan-Out Gates

We briefly discuss how to evaluate fan-out gates efficiently. We first model the
problem as follows: given a degree-t packed Shamir sharing [x] along with a
vector (n1, n2, . . . , nk) ∈ N

k, where ni ≥ 1 is the number of times that xi is

286 V. Goyal et al.

used in later layers, the goal is to compute n1+n2+...+nk

k degree-t packed Shamir
sharings which contain ni copies of the value xi for all i ∈ {1, 2, . . . , k}. (For
simplicity, we assume that n1 + n2 + . . . + nk is a multiple of k. We refer the
readers to Sect. 5.1 for how we handle the edge case.)

Our idea is to compute the output sharings one by one. For each output
sharing [y], all values of y come from x, which means that we may write y as a
linear function of x. Let F be a linear map such that y = F (x). To compute [y],
we can prepare a pair of random sharings ([r], [F (r)]) and use the same method
to compute [y] as that for permutations. Then we face the same problem that
naively preparing the random sharings ([r], [F (r)]) suffer an overhead which
depends on the number of different linear maps F . In the worst case where
we need a different linear map for different output packed Shamir sharing, the
overhead of preparing each pair of random sharings is as large as O(n2) elements,
which eliminate the benefit of using the packed Shamir sharing scheme.

We follow the same idea as that for permutation to prepare the random shar-
ings ([r], [F (r)]): Given m different linear maps F1, F2, . . . , Fm, we will prepare
random sharings for m other linear maps G1, G2, . . . , Gm and then recompose
the components in the random sharings for G1, G2, . . . , Gm to obtain random
sharings for F1, F2, . . . , Fm. The main difficulty is that it is unclear how to define
a component. Our solution includes the following additional steps:

– We require the secrets of the output packed Shamir sharings to be in a specific
order.

– To compute each output packed Shamir sharing [y], we first permute the
secrets of [x] based on y.

These two steps allow us to properly define a component in a way that we can
efficiently find G1, G2, . . . , Gm such that the above idea works. The description
of the ideal functionality for fan-out gates is presented in Sect. 4.4. We refer
the readers to the full version of this paper [GPS21] for more details about our
protocol for fan-out gates.

2.5 Overview of Our Semi-honest Protocol

So far, we have introduced all the building blocks we need in our semi-honest
protocol. To evaluate a single circuit:

1. All parties first transform the circuit to a good form in the sense that the
number of gates of each type in each layer is a multiple of k. The transfor-
mation is done locally by running a deterministic algorithm. Unlike [DIK10],
our transformation only increases the circuit size by a constant factor and an
additive term O(k · Depth), where the latter term comes from the fact that
the number of gates in each layer is a multiple of k after the transformation.
The same term (or a larger term) also exists in [DIK10,GIP15]. We refer the
readers to Sect. 5.1 for more details.

2. All parties preprocess the circuit to determine how the wire values should be
packed. Also, all parties compute a permutation for each output sharing for

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 287

the non-collision property (see Property 1 in Sect. 2.3). This step is also done
locally. We refer the readers to Sect. 5.2 for more details.

3. Finally, all parties evaluate the circuits using the protocols we described
above. We refer the readers to Sect. 5.3 for more details.

Note that only the third step requires communication. We briefly analyze the
communication complexity. For each group of k gates, all parties use the basic
protocol to evaluate these gates. The communication complexity of the basic
protocol is O(n) elements. To prepare the input sharings for this group of k
(addition, multiplication, or output) gates, we need to evaluate fan-out gates,
perform permutations to achieve the non-collision property, use Fselect to collect
the secrets of the input sharings, and perform permutations again to obtain
the correct orders. Since each operation requires O(n) elements, the amortized
communication complexity per gate is O(n/k) elements.

2.6 Achieving Malicious Security

We briefly discuss how to compile our semi-honest protocol to a fully malicious
one. Our main observation is that most of our semi-honest protocols have already
achieved perfect privacy against a fully malicious adversary, namely the execu-
tions of these protocols do not leak any information to the adversary. Also, the
deviation of a fully malicious adversary can be reduced to the following two
kinds of attacks:

– An adversary can distribute an inconsistent degree-t packed Shamir sharing.
– An adversary can add additive errors to the secrets of the output sharing.

To achieve malicious security, our idea is to first run our semi-honest proto-
col before the output phase, check whether the above two kinds of attacks are
launched by the adversary, and finally reconstruct the output.

To this end, for each semi-honest protocol, we first construct a functional-
ity which allows the adversary to launch the above two kinds of attacks, and
prove that our semi-honest protocol securely (with abort) computes the new
functionality against a fully malicious adversary. Then we construct protocols to
check whether the above two kinds of attacks are launched by the adversary. We
view the computation as a composition of two parts: (1) evaluation of the basic
gates, i.e., addition gates and multiplication gates, and (2) network routing, i.e.,
computing input sharings of each layer using the output sharings from previous
layers.

– For the first part, since addition gates are computed without interaction, it
is sufficient to only check the correctness of multiplications. We extend the
recent sub-linear verification techniques [BBCG+19,GSZ20] which are used
in the honest majority setting (i.e., the corruption threshold t′ = t) to our
setting (i.e., the corruption threshold t′ = t − k + 1).

– For the second part, it includes evaluating fan-out gates, performing permuta-
tions to achieve the non-collision property, using Fselect to collect the secrets

288 V. Goyal et al.

of the input sharings, performing permutations again to obtain the correct
orders. We note that the network routing does not change the secret values.
Instead, its goal is to create new sharings which contain the secret values we
want in the correct positions. Thus, it is sufficient to only focus on the front
sharing before the network routing and the end sharing after the network
routing, and check whether they have the same values.

Finally, when both checks pass, all parties reconstruct the output as the semi-
honest protocol. We refer the readers to the full version of this paper [GPS21]
for more details.

Remark 1. We note that the multiplication protocol is an exception in the sense
that it cannot be reduced directly to the additive attacks we mention above. In
fact, the work [GIP15] showed that a malicious attack can only be reduced to
a linear attack, where the error in the output secret can depend on the input
secrets. Our observation is that the linear attack is due to the inconsistency of
the input sharings. If the input sharings are consistent, then the linear attack
in [GIP15] degenerates to an additive attack to the final result. To model such a
security property, we use a weaker functionality for the multiplication protocol,
which does not guarantee the correctness of the multiplication result when the
input sharings are inconsistent. The verification is done by first checking the con-
sistency of all sharings. If the verification passes, then the attack of an adversary
degenerates to additive attacks, which allows us to use the efficient verification
protocol for multiplication gates in previous works. We refer the readers to the
full version of this paper [GPS21] for more discussion.

3 Preliminaries

3.1 The Model

In this work, we use the client-server model for the secure multi-party compu-
tation. In the client-server model, clients provide inputs to the functionality and
receive outputs, and servers can participate in the computation but do not have
inputs or get outputs. Each party may have different roles in the computation.
Note that, if every party plays a single client and a single server, this corresponds
to a protocol in the standard MPC model. Let c denote the number of clients
and n = 2t + 1 denote the number of servers. For all clients and servers, we
assume that every two of them are connected via a secure (private and authen-
tic) synchronous channel so that they can directly send messages to each other.
The communication complexity is measured by the number of bits via private
channels.

We focus on functions that can be represented as arithmetic circuits over a
finite field F with input, addition, multiplication, and output gates. We use κ to
denote the security parameter, C to denote the circuit, and |C| for the size of
the circuit. We assume that the field size is |F| ≥ 2n.

Let 1 ≤ k ≤ t be an integer. An adversary A can corrupt at most c clients
and t′ = t − k + 1 servers, provide inputs to corrupted clients, and receive all

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 289

messages sent to corrupted clients and servers. Corrupted clients and servers
can deviate from the protocol arbitrarily. One benefit of the client-server model
is that it is sufficient to only consider maximum adversaries, i.e., adversaries
which corrupt t′ = t − k + 1 parties. We refer the readers to the full version of
this paper [GPS21] for more details about the security definition and the benefit
of the client-server model. In the following, we assume that there are exactly
t′ = t − k + 1 corrupted parties.

3.2 Packed Shamir Secret Sharing Scheme

In this work, we will use the packed secret-sharing technique introduced by
Franklin and Yung [FY92]. This is a generalization of the standard Shamir secret
sharing scheme [Sha79]. Let n be the number of parties and k be the number
of secrets that are packed in one sharing. Let α1, . . . , αn, β1, . . . , βk be n + k
distinct non-zero elements in F.

A degree-d (d ≥ k − 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ F
k is a

vector (w1, . . . , wn) which satisfies that, there exists a polynomial f(·) ∈ F[X] of
degree at most d such that ∀i ∈ [k], f(βi) = xi and ∀i ∈ [n], f(αi) = wi. The i-th
share wi is held by party Pi. Reconstructing a degree-d packed Shamir sharing
requires d + 1 shares and can be done by Lagrange interpolation. For a random
degree-d packed Shamir sharing of x, any d − k + 1 shares are independent of
the secret x.

We will use [x] to denote a degree-t packed Shamir sharing of x ∈ F
k, and

〈x〉 to denote a degree-2t packed Shamir sharing. Recall that the number of
corrupted parties is at most t − k + 1. Therefore, using degree-t packed Shamir
sharings is sufficient to protect the privacy of the secrets. In the following, oper-
ations (addition and multiplication) between two packed Shamir sharings are
coordinate-wise.

We recall two properties of the packed Shamir sharing scheme:

– Linear Homomorphism: For all x,y ∈ F
k, [x + y] = [x] + [y].

– Multiplication: Let ∗ denote coordinate-wise multiplication. For all x,y ∈ F
k,

〈x ∗ y〉 = [x] · [y].

These two properties directly follow from the computation of the polynomials.
For a constant vector v ∈ F

k which is known by all parties, sometimes it
is convenient to transform it to a degree-t packed Shamir sharing. This can be
done by constructing a polynomial f(·) ∈ F [X] of degree k − 1 such that for all
i ∈ [k], f(βi) = vi. The i-th share of [v] is defined to be f(αi) as usual.

3.3 Generating Random Sharings

In our work, we adopt the notion of an abstract definition of a general linear
secret sharing scheme (GLSSS) in [CCXY18]. We will make use of a functionality
Frand introduced in [PS21], which allows all parties to prepare a random sharing
for a given F-linear secret sharing scheme.

290 V. Goyal et al.

In [PS21], Polychroniadou and Song proposed an instantiation of Frand which
is secure against an adversary that corrupts t parties. We note that their proto-
col can be extended to any corruption threshold (with different communication
complexity). In particular, in our setting where t′ = t − k + 1, if the share size
of the given F-linear secret sharing scheme is sh field elements in F, the com-
munication complexity of generating N random sharings is O(N · n · sh+ n3 · κ)
elements in F. We refer the readers to the full version of this paper [GPS21] for
more details.

3.4 Permutation Matrix, Bipartite Graph and Hall’s Marriage
Theorem

Definition 1 (Permutation Matrix). Let k ≥ 1 be an integer. A matrix
M ∈ {0, 1}k×k is a permutation matrix if for each row and each column, there
is exactly one entry which is 1.

For a permutation p(·) over {1, 2, . . . , k}, let Mp be a permutation matrix
such that for all i, j ∈ {1, . . . , k}, (Mp)i,j = 1 iff p(i) = j. Note that for each
permutation matrix M ′, there exists a permutation p(·) such that M ′ = Mp.

Definition 2 (Balanced Matrix). Let k ≥ 1 be an integer. A matrix M ∈
N

k×k is a balanced matrix if for each row and each column, the summation of
all the entries is the same.

Note that for all permutations p(·) over {1, 2, . . . , k}, the permutation matrix
Mp is a balanced matrix since the summation of the entries in each row and
each column is 1.

Definition 3 (Bipartite Graph). A graph G = (V,E) is a bipartite graph if
there exists a partition (V1, V2) of V such that for all edge (vi, vj) ∈ E, vi ∈ V1

and vj ∈ V2.

In the following, we will use (V1, V2, E) to denote a bipartite graph. We say
a bipartite graph (V1, V2, E) is d-regular if the degree of each vertex in V1

⋃
V2

is d.

Definition 4 (Perfect Matching). For a bipartite graph (V1, V2, E) such that
|V1| = |V2|, a perfect matching is a subset of edges E ∈ E which satisfies that
each vertex in the sub-graph (V1, V2, E) has degree 1.

Theorem 3 (Hall’s Marriage Theorem). For a bipartite graph (V1, V2, E)
such that |V1| = |V2|, there exists a perfect matching iff for all subset V ′

1 ⊂ V1,
the number of the neighbors of vertices in V2 is at least |V ′

1 |.
In this work, we will make use of the following two well-known corollaries

of Hall’s Marriage Theorem. For completeness, we also provide proofs for the
corollaries in the full version of this paper [GPS21].

Corollary 1. There exists a perfect matching in a d-regular bipartite graph.

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 291

Corollary 2. Let k ≥ 1 be an integer. For all non-zero balanced matrix N ∈
N

k×k, there exists a permutation matrix M such that for all i, j ∈ {1, 2, . . . , k},
Ni,j ≥ Mi,j.

4 Circuit Evaluation - Against a Semi-honest Adversary

In this section, we discuss how to evaluate a general circuit by using the packed
Shamir sharing scheme. For simplicity, we assume the adversary is semi-honest.
Recall that we are in the client-server model where there are c clients and n =
2t + 1 parties (servers). Recall that 1 ≤ k ≤ t is an integer. An adversary is
allowed to corrupt t′ = t−k +1 parties. We will use the degree-t packed Shamir
sharing scheme, which can store k secrets within one sharing. Recall that C
denotes the set of corrupted parties and H denotes the set of honest parties.

4.1 Basic Protocols for Input Gates, Addition Gates, Multiplication
Gates, and Output Gates

We distinguish input gates and output gates belonging to different clients. For
each client, we assume the number of input gates belonging to this client and the
number of output gates belonging to this client are multiples of k. For each layer,
we assume that the number of addition gates and the number of multiplication
gates are multiples of k. In Sect. 5, we will show how to compile a general circuit
to meet this requirement.

Evaluating Input Gates and Output Gates. The functionalities Finput-semi and
Foutput-semi are described in Functionality 1 and Functionality 2 respectively.
We refer the readers to the full version of this paper [GPS21] for the protocols
that realize Finput-semi and Foutput-semi. The communication complexity of each
protocol is O(n) field elements.

Functionality 1: Finput-semi

1. Suppose x ∈ F
k is the input associated with the input gate which belongs to

the Client. Finput-semi receives the input x from the Client.
2. Finput-semi receives from the adversary a set of shares {si}i∈C . Finput-semi sam-

ples a random degree-t packed Shamir sharing [x] such that for all Pi ∈ C, the
i-th share of [x] is si.

3. Finput-semi distributes the shares of [x] to honest parties.

292 V. Goyal et al.

Functionality 2: Foutput-semi

1. Suppose [x] is the sharing associated with the output gate which belongs to
the Client. Foutput-semi receives the shares of [x] from honest parties.

2. Foutput-semi recovers the whole sharing [x], and sends the shares of corrupted
parties to the adversary.

3. Foutput-semi reconstructs x and sends it to the Client.

Evaluating Addition Gates and Multiplication Gates. In the following, we use
[x], [y] to denote the input degree-t packed Shamir sharings.

For an addition gate, all parties want to compute [x+y]. Note that this can
be done by computing [x+y] := [x]+ [y], i.e., each party locally adds its shares
of [x], [y]. The correctness follows from the property that packed Shamir sharing
is linearly homomorphic.

Recall that ∗ denotes the coordinate-wise multiplication. For a multiplication
gate, all parties want to compute a degree-t packed Shamir sharing of z := x∗y.
We summarize the functionality Fmult-semi in Functionality 3.

Functionality 3: Fmult-semi

1. Suppose [x], [y] are the input degree-t packed Shamir sharings. Fmult-semi

receives the shares of [x], [y] from honest parties.
2. Fmult-semi recovers the whole sharings [x], [y] and reconstructs the secrets x,y.

Fmult-semi computes z := x ∗ y.
3. Fmult-semi receives from the adversary a set of shares {si}i∈C . Fmult-semi sam-

ples a random degree-t packed Shamir sharing [z] such that for all Pi ∈ C, the
i-th share of [z] is si.

4. Fmult-semi distributes the shares of [z] to honest parties.

A multiplication gate can be evaluated by a natural extension of the DN
multiplication protocol in [DN07]. The main observation is that all parties can
locally compute a degree-2t packed Shamir sharing 〈z〉 = 〈x ∗ y〉 = [x] · [y].
The only task is to reduce the degree of 〈z〉. Following the approach in [DN07],
this can be achieved by preparing a pair of two random sharings ([r], 〈r〉) of the
same secrets r. We refer the readers to the full version of this paper [GPS21]
for the protocol that realizes Fmult-semi. The communication complexity of m
invocations of Fmult-semi is O(m · n + n3 · κ) field elements.

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 293

4.2 Performing an Arbitrary Permutation on the Secrets of a Single
Sharing

During the computation, we may encounter the scenario that the order of the
secrets is not what we want (see more discussion in Sect. 2.2). To solve it, we
need a functionality which allows us to perform an arbitrary permutation on
the secrets of a single sharing. Let p(·) be a permutation over {1, 2, . . . , k}.
Recall that each permutation p(·) maps to a permutation matrix Mp ∈ {0, 1}k×k

where (Mp)i,j = 1 iff p(i) = j. To permute a vector x = (x1, x2, . . . , xk) to
x̃ = (xp(1), xp(2), . . . , xp(k)), it is equivalent to computing x̃ = Mp ·x. We model
the functionality Fpermute-semi in Functionality 4.

Functionality 4: Fpermute-semi

1. Fpermute-semi receives a permutation p and the shares of a degree-t packed
Shamir sharing [x] from honest parties.

2. Fpermute-semi reconstructs the secrets x from the shares of honest parties, and
computes x̃ = Mp · x.

3. Fpermute-semi receives from the adversary a set of shares {si}i∈C . Fpermute-semi

samples a random degree-t packed Shamir sharing [x̃] such that for all Pi ∈ C,
the i-th share of [x̃] is si.

4. Fpermute-semi distributes the shares of [x̃] to honest parties.

We follow the techniques in [DIK10] to realize Fpermute-semi by making use
of a pair of random degree-t packed Shamir sharings ([r], [Mp · r]). We refer
the readers to Sect. 2.2 for an overview of these techniques. As we discussed in
Sect. 2.2, the main issue of this approach is how to how to efficiently prepare a
pair of random sharings ([r], [r̃]). To generate random sharings for m permuta-
tions, our idea is to first generate random sharings for a limited number (O(n2))
of different permutations which are related to the input permutations, and then
transform them to the random sharings for the desired permutations (the input
permutations).

Before moving forward, we first introduce a useful functionality Fselect, which
selects secrets from one or more packed Shamir sharings and outputs a single
sharing which contains the chosen secrets. Later on, we will use Fselect to solve
the above issue of preparing random sharings for permutations.

Selecting Secrets from One or More Packed Shamir Sharings. Concretely, we
want to realize the functionality Fselect-semi, which takes as input k degree-t
packed Shamir sharings [x(1)], [x(2)], . . . , [x(k)] (which do not need to be distinct)
and a permutation p(·) over {1, 2, . . . , k}, and outputs a degree-t packed Shamir
sharing [y] such that for all i ∈ [k], yp(i) = x

(i)
p(i), where x

(i)
j is the j-th value

294 V. Goyal et al.

of x(i). Effectively, Fselect-semi chooses the p(1)-th secret of [x(1)], the p(2)-th
secret of [x(2)], ..., the p(k)-th secret of [x(k)] and generates a new degree-t
packed Shamir sharing [y] which contains the chosen secrets. Note that the
positions of the chosen secrets remain the same. Therefore, we require p to be
a permutation so that the chosen secrets come from different positions. The
description of Fselect-semi appears in Functionality 5.

Functionality 5: Fselect-semi

1. Fselect-semi receives from honest parties their shares of k degree-t packed
Shamir sharings [x(1)], [x(2)], . . . , [x(k)]. Fselect-semi also receives a permuta-
tion p from honest parties.

2. Fselect-semi reconstructs x(1),x(2), . . . ,x(k). Then Fselect-semi sets y =
(y1, y2, . . . , yk) such that for all i ∈ [k], yp(i) = x

(i)

p(i), where x
(i)
j is the j-th

value of x(i).
3. Fselect-semi receives from the adversary a set of shares {si}i∈C . Fselect-semi sam-

ples a random degree-t packed Shamir sharing [y] such that for all Pi ∈ C, the
i-th share of [y] is si.

4. Fselect-semi distributes the shares of [y] to honest parties.

For all i ∈ [k], let ei ∈ {0, 1}k denote the vector where the i-th entry is 1
and for all j �= i, the j-th entry is 0. Recall that in Sect. 3.2 we show how to
transform a constant vector to a degree-t packed Shamir sharing. Let [ei] denote
the degree-t packed Shamir sharing of ei.

To realize Fselect-semi, note that [ep(i)] · [x(i)] is a degree-2t packed Shamir
sharing of ep(i) ∗x(i). Also note that y =

∑k
i=1 ep(i) ∗x(i). Therefore, all parties

can locally compute 〈y〉 =
∑k

i=1[ep(i)] · [x(i)]. And the only task is to reduce the
degree of 〈y〉. Note that this can be achieved by the same technique as Mult. The
description of the protocol Select appears in Protocol 6. The communication
complexity of m invocations of Select is O(m · n + n3 · κ) field elements.

Lemma 1. Protocol Select securely computes Fselect-semi in the Frand-hybrid
model against a semi-honest adversary who controls t′ = t − k + 1 parties.

We refer the readers to the full version of this paper [GPS21] for more dis-
cussion about Lemma 1.

Using Fselect−semi to Generate Random Sharings for Permuting Secrets. For all
i, j ∈ {1, 2, . . . , k}, we say a pair of degree-t packed Shamir sharings ([x], [y])
contains an (i, j)-component if the secrets of these two sharings satisfy that
xi = yj .

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 295

Protocol 6: Select

1. Let [x(1)], [x(2)], . . . , [x(k)] denote the k input packed Shamir sharings and
p(·) denote the permutation. The goal is to generate a degree-t packed Shamir

sharing [y] such that for all i ∈ [k], yp(i) = x
(i)

p(i). Recall that ei ∈ {0, 1}k

denote the vector where the i-th entry is 1 and for all j �= i, the j-th entry
is 0. For all i ∈ [k], all parties agree on the whole sharing [ei] based on the
transformation in Section 3.2.

2. All parties invoke Frand to prepare a pair of random sharings ([r], 〈r〉).
3. All parties locally compute 〈e〉 :=

∑k
i=1[ep(i)] · [x(i)] + 〈r〉.

4. All parties send their shares of 〈e〉 to the first party P1.
5. P1 reconstructs the secrets e, generates a random degree-t packed Shamir

sharing [e], and distributes the shares to other parties.
6. All parties locally compute [y] := [e] − [r].

To perform a permutation p(·), we need to prepare two random degree-t
packed Shamir sharings ([r], [Mp ·r]). We can view ([r], [Mp ·r]) as a composition
of a (1, p(1))-component, a (2, p(2))-component, . . . , and a (k, p(k))-component.

Let m denote the number of permutations we want to prepare random shar-
ings for. These permutations are denoted by p1(·), p2(·), . . . , pm(·). Our idea is
as follows:

1. We first find m permutations q1(·), q2(·), . . . , qm(·) such that:
– For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . ,

pm} which satisfies that p(i) = j is equal to the number of permutations
q ∈ {q1, q2, . . . , qm} which satisfies that q(i) = j.

2. All parties prepare random sharings for permutations q1, q2, . . . , qm.
3. From i = 1 to m, a pair of random sharings for the permutation pi is prepared

by using Fselect-semi to choose the first unused (j, pi(j))-component from the
random sharings for q1, q2, . . . , qm for all j ∈ [k].

We refer the readers to Sect. 2.2 for a more detailed explanation.
The major benefit of this approach is that we can limit the number of different

permutations in {q1, q2, . . . , qm} as we show below. More concretely, we will prove
the following theorem:

Theorem 2. Let m, k ≥ 1 be integers. For all m permutations p1, p2, . . . , pm

over {1, 2, . . . , k}, there exists m permutations q1, q2, . . . , qm over {1, 2, . . . , k}
such that:

– For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm}
such that p(i) = j is the same as the number of permutations q ∈ {q1, q2,
. . . , qm} such that q(i) = j.

– q1, q2, . . . , qm contain at most k2 different permutations.

Moreover, q1, q2, . . . , qm can be found within polynomial time given p1, p2, . . . , pm.

The proof of Theorem 2 can be found in the full version of this paper [GPS21].

296 V. Goyal et al.

Preparing Random Sharings for Different Permutations. We are ready to intro-
duce the functionality and its implementation for preparing random sharings
for different permutations. The functionality Frand-perm-semi appears in Func-
tionality 7.

Functionality 7: Frand-perm-semi

1. Frand-perm-semi receives from honest parties m permutations p1, p2, . . . , pm over
{1, 2, . . . , k}.

2. For all i ∈ [m], Frand-perm-semi receives from the adversary a set of shares

{(u
(i)
j , v

(i)
j)}j∈C . Frand-perm-semi samples a random vector r(i) ∈ F

k and sam-

ples two degree-t packed Shamir sharings ([r(i)], [Mpi · r(i)]) such that for all

Pj ∈ C, the j-th share of ([r(i)], [Mpi · r(i)]) is (u
(i)
j , v

(i)
j).

3. For all i ∈ [m], Frand-perm-semi distributes the shares of ([r(i)], [Mpi · r(i)]) to
honest parties.

For a fixed permutation p(·) over {1, 2, . . . , k}, we show how to use Frand

to prepare a pair of random sharings ([r], [Mp · r]) in the full version of this
paper [GPS21]. The communication complexity of preparing m pairs of random
sharings in the form of ([r], [Mp ·r]) for a fixed permutation p(·) is O(m·n+n3 ·κ)
elements in F. We describe the protocol for Frand-perm-semi in Protocol 8. The
communication complexity of using Rand-Perm to prepare random sharings
for m permutations is O(m · n + n5 · κ) field elements.

Lemma 2. Protocol Rand-Perm securely computes Frand-perm-semi in the
(Frand,Fselect-semi)-hybrid model against a semi-honest adversary who controls
t′ = t − k + 1 parties.

The proof of Lemma 2 can be found in the full version of this paper [GPS21].

Realizing Fpermute−semi. Now we are ready to present the protocol for
Fpermute-semi. The protocol Permute uses Frand-perm-semi to prepare the ran-
dom sharings for the permutation we want to perform and then follows the
techniques in [DIK10]. In Permute, we will prepare a random degree-2t packed
Shamir sharing of 0 ∈ F

k, which is used as a random mask for the shares of
honest parties (see the proof of Lemma 3). This is not needed for semi-honest
security but will be helpful when we consider a fully malicious adversary at a
later point.

We show how to use Frand to prepare a random degree-2t packed Shamir
sharing of 0 ∈ F

k in the full version of this paper [GPS21]. The communication
complexity of preparing m random degree-2t packed Shamir sharings of 0 is
O(m·n+n3·κ) elements in F. The description of Permute appears in Protocol 9.
The communication complexity of m invocations of Permute is O(m ·n+n5 ·κ)
field elements.

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 297

Protocol 8: Rand-Perm

1. Let p1, p2, . . . , pm be the permutations over {1, 2, . . . , k} that all parties want
to prepare random sharings for.

2. All parties use a deterministic algorithm that all parties agree on to compute
m permutations q1, q2, . . . , qm such that

– For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈
{p1, p2, . . . , pm} such that p(i) = j is the same as the number of per-
mutations q ∈ {q1, q2, . . . , qm} such that q(i) = j.

– q1, q2, . . . , qm contain at most k2 different permutations.
The existence of such an algorithm is guaranteed by Theorem 2.

3. Suppose q′
1, q

′
2, . . . , q

′
k2 denote the different permutations in q1, q2, . . . , qm. For

all i ∈ {1, 2, . . . , k2}, let n′
i denote the number of times that q′

i appears in
q1, q2, . . . , qm. All parties invoke Frand to prepare n′

i pairs of random sharings
in the form ([r], [Mq′

i
· r]) for all i ∈ {1, 2, . . . , k2}. Note that we have pre-

pared a pair of random sharings for each permutation qi for all i ∈ [m]. Let
([r(i)], [Mqi · r(i)]) denote the random sharings for the permutation qi.

4. For all i, j ∈ {1, 2, . . . , k}, all parties initiate an empty list Li,j . From � = 1 to
m, for all i, j ∈ {1, 2, . . . , k}, if ([r(�)], [Mq� ·r(�)]) contains an (i, j)-component,
all parties insert ([r(�)], [Mq� · r(�)]) into the list Li,j .

5. From � = 1 to m, all parties prepare a pair of random sharings for p� as
follows:

– From i = 1 to k, let ([r(�i)], [Mq�i
·r(�i)]) denote the first pair of sharings in

the list Li,p�(i), and then remove it from Li,p�(i). Note that ([r(�i)], [Mq�i
·

r(�i)]) contains an (i, p�(i))-component, which is not used when preparing
random sharings for p1, p2, . . . , p�−1.

– Let I denote the identity permutation over {1, 2, . . . , k}.

• All parties invoke Fselect-semi with

[r(�1)], [r(�2)], . . . , [r(�k)]

and the permutation I. The output is denoted by [v(�)].
• All parties invoke Fselect-semi with

[Mq�1
· r(�1)], [Mq�2

· r(�2)], . . . , [Mq�k
· r(�k)]

and the permutation p�. The output is denoted by [ṽ(�)]. Note that for all

i ∈ [k], v
(�)
i = r

(�i)
i = (Mq�i

· r(�i))q�i
(i) = (Mq�i

· r(�i))p�(i) = ṽ
(�)

p�(i)
.

6. All parties take ([v(1)], [ṽ(1)]), ([v(2)], [ṽ(2)]), . . . , ([v(m)], [ṽ(m)]) as output.

Lemma 3. Protocol Permute securely computes Fpermute-semi in the
(Frand,Frand-perm-semi)-hybrid model against a semi-honest adversary who con-
trols t′ = t − k + 1 parties.

The proof of Lemma 3 can be found in the full version of this paper [GPS21].

298 V. Goyal et al.

Protocol 9: Permute

1. Let [x] denote the input degree-t packed Shamir sharing and p(·) denote the
permutation all parties want to perform on x.

2. All parties invoke Frand-perm-semi with p to prepare a pair of random sharings
([r], [Mp · r]). All parties invoke Frand to prepare a random degree-2t packed
Shamir sharing 〈0〉.

3. All parties locally compute 〈e〉 := [x] + [r] + 〈0〉.
4. All parties send their shares of 〈e〉 to the first party P1.
5. P1 reconstructs the secrets e, and computes ẽ = Mp · e. Then P1 generates

a random degree-t packed Shamir sharing [ẽ], and distributes the shares to
other parties.

6. All parties locally compute [x̃] := [ẽ] − [Mp · r].

4.3 Obtaining Input Sharings for Multiplication Gates
and Addition Gates

So far, we have introduced how to evaluate multiplication gates and addition
gates using the packed Shamir sharing scheme. In the case that the secrets of
an input sharing are not in the correct order, we have shown how to efficiently
perform a permutation to obtain the correct order. During the computation,
however, input sharings of multiplication gates and addition gates do not come
for free. When evaluating the multiplication gates and addition gates in some
layer, the secrets we want to be in a single sharing may be scattered in one
or more output sharings from the previous layers. This requires us to collect
the secrets from those sharings and generate a single sharing for these secrets
efficiently. Our idea is to achieve the non-collision property:

Property 1 (Non-collision). For each input sharing of each layer, the secrets
of this input sharing come from different positions in the output sharings of
previous layers.

As we discussed in Sect. 2.3, with this property, we can use Fselect-semi to
choose the secrets and generates the input sharing we want. To avoid the case
that we need the same secret twice in a single input sharing, which makes the
non-collision property impossible to achieve, we further require that

– every output wire of the input layer and all intermediate layers is used exactly
once as an input wire of a later layer (which may not be the next layer).

Note that this requirement can be met without loss of generality by assuming
that there is a fan-out gate right after each (input, addition, or multiplication)
gate that copies the output wire the number of times it is used in later layers.
To achieve the non-collision property, our idea is to perform a permutation on
each output sharing.

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 299

In the following, when we use the term “output sharings”, we refer to the
output sharings from the input layer and all intermediate layers. When we use
the term “input sharings”, we refer to the input sharings of the output layer and
all intermediate layers. We further assume that the number of the input wires
and the number of the output wires of each layer are multiples of k, where recall
that k is the number of secrets we can store in a single packed Shamir sharing. In
Sect. 5, we will show how to compile a general circuit to meet this requirement.

Let m denote the number of output sharings in the circuit. Then the num-
ber of input sharings is also m. We will label all the output sharings by
1, 2, . . . ,m and all the input sharings also by 1, 2, . . . ,m. Consider a matrix
N ∈ {1, 2, . . . ,m}m×k where Ni,j is the index of the input sharing that the j-th
secret of the i-th output sharing wants to go to. Then for all � ∈ {1, 2, . . . ,m},
there are exactly k entries of N which are equal to �. And the secrets at those
positions are the secrets we want to collect for the �-th input sharing. We will
prove the following theorem.

Theorem 4. Let m ≥ 1, k ≥ 1 be integers. Let N be a matrix of dimension m×k
in {1, 2, . . . ,m}m×k such that for all � ∈ {1, 2, . . . ,m}, the number of entries of
N which are equal to � is k. Then, there exists m permutations p1, p2, . . . , pm

over {1, 2, . . . , k} such that after performing the permutation pi on the i-th row
of N , the new matrix N ′ satisfies that each column of N ′ is a permutation over
(1, 2, . . . ,m). Furthermore, the permutations p1, p2, . . . , pm can be found within
polynomial time.

The proof of Theorem 4 can be found in the full version of this paper [GPS21].
When we apply pi to the i-th output sharing for all i ∈ {1, 2, . . . ,m},

Theorem 4 guarantees that for all j ∈ {1, 2, . . . , k} the j-th secrets of all output
sharings need to go to different input sharings. Note that this ensures the non-
collision property. During the computation, we will perform the permutation pi

on the i-th output sharing right after it is computed. Note that when preparing
an input sharing, the secrets we need only come from the output sharings which
have been computed. The secrets of these output sharings have been properly
permuted such that the secrets we want are in different positions. Therefore, we
can use Fselect-semi to choose these secrets and obtain the desired input sharing.

4.4 Handling Fan-Out Gates

In the last subsection, we discussed how to prepare the input sharings for mul-
tiplication gates and addition gates. Our solution requires that

– every output wire of the input layer and all intermediate layers is used exactly
once as an input wire of a later layer (which may not be the next layer).

This requirement can be met by inserting fan-out gates in each layer, which
copy each output wire the number of times it is used in later layers. Specif-
ically, we consider a functionality Ffan-out-semi which takes as input a degree-
t packed Shamir sharing of x = (x1, x2, . . . , xk) ∈ F

k along with a vector

300 V. Goyal et al.

(n1, n2, . . . , nk) ∈ N
k, where ni ≥ 1 is the number of times that xi is used

in later layers, and outputs n1+n2+...+nk

k degree-t packed Shamir sharings which
contain ni copies of the value xi for all i ∈ {1, 2, . . . , k}. We assume that

∑k
i=1 ni

is a multiple of k. In Sect. 5, we will show how to compile a general circuit to meet
this requirement. The description of Ffan-out-semi appears in Functionality 10.

Functionality 10: Ffan-out-semi

1. Ffan-out-semi receives from honest parties the shares of [x] and a vector
(n1, n2, . . . , nk).

2. Ffan-out-semi reconstructs the secrets x = (x1, x2, . . . , xk). Then Ffan-out-semi

initiates an empty list L. From i = 1 to k, Ffan-out-semi inserts ni times of xi

into L.
3. Let m = n1+n2+...+nk

k
. From i = 1 to m,

(a) Ffan-out-semi sets x(i) to be the vector of the first k elements in L, and
then removes the first k elements in L.

(b) Ffan-out-semi receives from the adversary a set of shares {s
(i)
j }j∈C .

Ffan-out-semi generates a degree-t packed Shamir sharing [x(i)] such that

the j-th share of [x(i)] is s
(i)
j .

(c) Ffan-out-semi distributes the shares of [x(i)] to honest parties.

We refer the readers to the full version of this paper [GPS21] for the pro-
tocol that realizes Ffan-out-semi. Our protocol prepares the output sharings of
Ffan-out-semi one by one. Therefore, the communication complexity only depends
on the number of output sharings even if the output sharings come from differ-
ent invocations with different input sharings. The communication complexity of
computing m output sharings is O(m · n + n5 · κ) field elements.

5 Main Protocol - Against a Semi-honest Adversary

In this section, we will introduce our main protocol of using packed Shamir
sharing to evaluate a general circuit C against a semi-honest adversary. We first
discuss how to compile a general circuit to meet the requirements we assume in
Sect. 4. Then we give the main protocol and analyze its security and communi-
cation complexity.

5.1 Transforming a General Circuit C

We will prove the following theorem.

Theorem 5. Given an arithmetic circuit C with input coming from c clients,
there exists an efficient algorithm which takes C as input and outputs an arith-
metic circuit C ′ with the following properties:

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 301

– For all input x, C(x) = C ′(x).
– In the input layer and the output layer, the number of input gates belonging

to each client and the number of output gates belonging to each client are
multiples of k. In each intermediate layer, the number of addition gates and
the number of multiplication gates are multiples of k.

– After grouping the gates that have the same type in each layer, the number of
times that the output wires of each group are used in later layers is a multiple
of k.

– Circuit size: |C ′| = O(|C| + k · (c + Depth)), where c is the number of clients
that provide inputs and Depth is the depth of C.

In the full version of this paper [GPS21], we explain why the properties we
assume in Sect. 4 can be met by applying the transformation in Theorem 5 and
then formally prove this theorem.

5.2 Preprocessing Phase

In this part, we describe how parties preprocess the circuit before doing the com-
putation. During the computation phase, a batch of k wire values are stored in
a single packed Shamir sharing. The main task of the preprocessing phase is to
determine how the wire values should be packed. Also, all parties need to com-
pute a permutation for each output sharing using the algorithm in Theorem 4.
These permutations are used to achieve the non-collision property. See Sect. 4.3
for more details. The preprocessing phase only depends on the circuit C and
does not need any communication. We refer the readers to the full version of
this paper [GPS21] for the description of the protocol Preprocess.

5.3 Main Protocol - Against Semi-honest Adversary

We are ready to introduce our main protocol. At a high-level, given the prepro-
cessed circuit,

– all parties use Finput-semi,Foutput-semi,Fmult-semi (see Sect. 4.1) to evaluate
input gates, output gates, multiplication gates, and addition gates in each
layer;

– for the input layer and all intermediate layers, all parties use Ffan-out-semi to
evaluate fan-out gates (see Sect. 4.4);

– for each output sharing, all parties use Fpermute-semi to perform the permu-
tation associated with this sharing (see Sect. 4.2) to achieve the non-collision
property (see Sect. 4.3);

– to prepare each input sharing for the next layer, all parties use Fselect-semi to
choose the secrets it wants from the output sharings from previous layers (see
Sect. 4.2), and then use Fpermute-semi to permute the secrets to the correct
order (see Sect. 4.2).

The ideal functionality Fmain-semi appears in Functionality 11. The main protocol
is introduced in Protocol 12.

302 V. Goyal et al.

Functionality 11: Fmain-semi

1. Fmain-semi receives the input from all clients. Let x denote the input.
2. Fmain-semi computes C(x) and distributes the output to all clients.

Protocol 12: Main-semi

1. Circuit Transformation Phase. Let C denote the evaluated circuit. All
parties preprocess the circuit by running the Preprocess protocol. Let C′

denote the circuit after transformation.
2. Input Phase. Let Client1,Client2, . . . ,Clientc denote the clients who provide

inputs.
(a) Input Secret-sharing Phase: For every group of k input gates of Clienti,

Clienti invokes Finput-semi to share its inputs x(i) to the parties.
(b) Handling Fan-out Gates: For the output sharing [x] of each group of

input gates, let ni denote the number of times that the i-th secret of x
is used in later layers. All parties invoke Ffan-out-semi with input [x] and
(n1, n2, . . . , nk).

(c) Achieving Non-Collision Property for the next layers: For each output
sharing [y] of the input layer, let p denote the permutation associated
with it. All parties invoke Fpermute-semi with input [y] and p.

3. Evaluation Phase. All parties evaluate the circuit layer by layer as follows:
(a) Permute Input Sharings from Previous Layers: For each input sharing [x],

let [x(i)] denote the output sharing from previous layers which contains
the i-th secret xi, and let qi denote the position of xi in [x(i)]. According to
the non-collision property, q1, q2, . . . , qk is a permutation of (1, 2, . . . , k).
Let q(·) be a permutation over {1, 2, . . . , k} such that q(i) = qi. All parties
invoke Fselect-semi on [x(1)], [x(2)], . . . , [x(k)] and the permutation q. Let
[x′] denote the output of Fselect-semi. Then, all parties invoke Fpermute-semi

with input [x′] and q to obtain [x].
(b) Evaluating Multiplication Gates and Addition Gates: For each group

of multiplication gates with input sharings [x], [y], all parties invoke
Fmult-semi with input [x], [y]. For each group of addition gates with input
sharings [x], [y], all parties locally compute [x + y] = [x] + [y].

(c) Handling Fan-out Gates: For the output sharing [x] of each group of
multiplication gates or addition gates, all parties follow the same step as
Step 2.(b) to handle fan-out gates.

(d) Achieving Non-Collision Property: Follow Step 2.(c).
4. Output Phase.

(a) Permute Input Sharings from Previous Layers: For each input sharing [x],
all parties follow the same step as Step 3.(a) to prepare [x].

(b) Reconstruct the Output: For each group of output gates belonging to
Clienti (i ≥ 1), let [x] denote the input sharing. All parties invoke
Foutput-semi with input [x] to let Clienti learn the result x.

Unconditional Communication-Efficient MPC via Hall’s Marriage Theorem 303

Lemma 4. Protocol Main-semi securely computes Fmain-semi in the (Finput-semi,
Ffan-out-semi,Fpermute-semi,Fselect-semi,Fmult-semi,Foutput-semi)-hybrid model ag-
ainst a semi-honest adversary who controls t′ = t − k + 1 parties.

The proof of Lemma 4 can be found in the full version of this paper [GPS21].
The overall communication complexity of our protocol Main-semi is O(|C| ·

n/k+n·(c+Depth)+n5·κ) field elements. In the full version of this paper [GPS21],
we provide the analysis of the communication complexity of our protocol in
details. Together with Lemma 4, we have the following theorem.

Theorem 6. In the client-server model, let c denote the number of clients, and
n = 2t + 1 denote the number of parties (servers). Let κ denote the security
parameter, and F denote a finite field. For an arithmetic circuit C over F and for
all 1 ≤ k ≤ t, there exists an information-theoretic MPC protocol which securely
computes the arithmetic circuit C in the presence of a semi-honest adversary
controlling up to c clients and t − k + 1 parties. The communication complexity
of this protocol is O(|C| · n/k + n · (c + Depth) + n5 · κ) elements in F.

References

[BBCG+19] Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-
knowledge proofs on secret-shared data via fully linear PCPs. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 67–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 3

[BGIN20] Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Efficient fully secure computation
via distributed zero-knowledge proofs. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12493, pp. 244–276. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64840-4 9

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: Proceed-
ings of the Twentieth Annual ACM Symposium on Theory of Computing,
pp. 1–10. ACM (1988)

[CCD88] Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure
protocols. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, pp. 11–19. ACM (1988)

[CCXY18] Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity
of information-theoretically secure MPC revisited. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 395–426.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 14

[CGH+18] Chida, K., et al.: Fast large-scale honest-majority MPC for malicious
adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96878-0 2

[DIK10] Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty com-
putation and the computational overhead of cryptography. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 23

https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-642-13190-5_23

304 V. Goyal et al.

[DN07] Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty
computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74143-5 32

[FY92] Franklin, M., Yung, M.: Communication complexity of secure computa-
tion (extended abstract). In: Proceedings of the Twenty-Fourth Annual
ACM Symposium on Theory of Computing. STOC 1992, pp. 699–710.
Association for Computing Machinery, New York (1992)

[GIOZ17] Garay, J., Ishai, Y., Ostrovsky, R., Zikas, V.: The price of low communica-
tion in secure multi-party computation. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10401, pp. 420–446. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 14

[GIP+14] Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits
resilient to additive attacks with applications to secure computation. In:
Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of
Computing. STOC 2014, pp. 495–504. ACM, New York (2014)

[GIP15] Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computa-
tion: from passive to active security via secure SIMD circuits. In: Gennaro,
R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 35

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, pp. 218–229. ACM (1987)

[GPS21] Goyal, V., Polychroniadou, A., Song, Y.: Unconditional communication-
efficient MPC via Hall’s marriage theorem. Cryptology ePrint Archive,
Report 2021/834, 2021. https://eprint.iacr.org/2021/834

[GSZ20] Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in
honest majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12171, pp. 618–646. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-56880-1 22

[NV18] Nordholt, P.S., Veeningen, M.: Minimising communication in honest-
majority MPC by batchwise multiplication verification. In: Preneel, B.,
Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 17

[PS21] Polychroniadou, A., Song, Y.: Constant-overhead unconditionally secure
multiparty computation over binary fields. Appears in Eurocrypt (2021).
https://eprint.iacr.org/2020/1412

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[Yao82] Yao, A.C.: Protocols for secure computations. In: 1982 23rd Annual Sym-

posium on Foundations of Computer Science. SFCS’08, pp. 160–164.
IEEE (1982)

https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-319-63688-7_14
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-662-48000-7_35
https://eprint.iacr.org/2021/834
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-319-93387-0_17
https://eprint.iacr.org/2020/1412

Non-interactive Secure Multiparty
Computation for Symmetric Functions,
Revisited: More Efficient Constructions

and Extensions

Reo Eriguchi1,2(B), Kazuma Ohara2, Shota Yamada2, and Koji Nuida2,3

1 The University of Tokyo, Tokyo, Japan
reo-eriguchi@g.ecc.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
{ohara.kazuma,yamada-shota}@aist.go.jp

3 Kyushu University, Fukuoka, Japan
nuida@imi.kyushu-u.ac.jp

Abstract. Non-interactive secure multiparty computation (NIMPC) is
a variant of secure computation which allows each of n players to send
only a single message depending on his input and correlated randomness.
Abelian programs, which can realize any symmetric function, are defined
as functions on the sum of the players’ inputs over an abelian group and
provide useful functionalities for real-world applications. We improve and
extend the previous results in the following ways:

– We present NIMPC protocols for abelian programs that improve
the best known communication complexity. If inputs take any value
of an abelian group G, our protocol achieves the communication
complexity O(|G|(log |G|)2) improving O(|G|2n2) of Beimel et al.
(Crypto 2014). If players are limited to inputs from subsets of size at
most d, our protocol achieves |G|(log |G|)2(max{n, d})(1+o(1))t where
t is a corruption threshold. This result improves |G|3(nd)(1+o(1))t of
Beimel et al. (Crypto 2014), and even |G|log n+O(1)n of Benhamouda
et al. (Crypto 2017) if t = o(log n) and |G| = nΘ(1).

– We propose for the first time NIMPC protocols for linear classifiers
that are more efficient than those obtained from the generic con-
struction.

– We revisit a known transformation of Benhamouda et al. (Crypto
2017) from Private Simultaneous Messages (PSM) to NIMPC, which
we repeatedly use in the above results. We reveal that a sub-protocol
used in the transformation does not satisfy the specified security. We
also fix their protocol with only constant overhead in the communi-
cation complexity. As a byproduct, we obtain an NIMPC protocol
for indicator functions with asymptotically optimal communication
complexity with respect to the input length.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 305–334, 2021.
https://doi.org/10.1007/978-3-030-84245-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_11

306 R. Eriguchi et al.

1 Introduction

Secure multiparty computation enables n players Pi (i ∈ [n] := {1, 2, . . . , n}),
each holding an input xi ∈ X0, to jointly compute a function while keeping
their inputs as secret as possible. NIMPC (Non-Interactive secure Multi-Party
Computation) [2,3] is a variant of secure computation with a restricted interac-
tion pattern, which assumes an external output player called an evaluator and
allows each player to send only a single message depending on his input and
pre-distributed correlated randomness to the evaluator.

Since it requires no interaction between the players, this model is especially
well suited to a situation where the players cannot simultaneously participate
in a protocol due to physical limitations. In spite of its limitations, NIMPC still
provides useful functionalities in real-world scenarios such as voting, auctions,
and statistical surveys using histograms. NIMPC is also of theoretical interest
due to its various applications to other important models of secure computation
[4,10,11].

To define the notion of security, an adversary is supposed to collude with
a set of players C ⊆ [n] as well as the evaluator. In NIMPC for a function h,
it is impossible to prevent him from computing h on all possible inputs of the
corrupted players combined with the inputs of the honest players. More formally,
for the inputs of the honest players xC = (xi)i∈C , the adversary can always eval-
uate the function h|C,xC

(xC) = h(xC , xC) for all possible xC = (xi)i∈C , which
is called the residual function [12]. Thus, the security requirement of NIMPC
is that the adversary learns the residual function h|C,xC

and nothing more. An
NIMPC protocol is called t-robust if it can withstand collusion of at most t
players and the evaluator. If t = n, we say that it is fully robust. The efficiency
of NIMPC protocols is measured by the communication complexity defined as
the maximum bit length of randomness and messages.

Fully robust NIMPC for the class of all the functions with input domain X n
0

is known to be possible [1,3,15,17]. However, due to the lower bound [17], it
necessarily has the communication complexity proportional to |X0|n, which is
very inefficient when n is large. Therefore, it is important to construct efficient
NIMPC protocols for specific functions of practical use. The aim of this paper
is reducing the communication complexity as much as possible and specifically,
making it as close as possible to the lower bound [17].

Above all, symmetric functions realize useful functionalities including voting
and statistical surveys using histograms. The notion of abelian programs is a
generalization of symmetric functions introduced in [3]. Technically, an abelian
program h takes n elements from an abelian group G as inputs and outputs
h(x1, . . . , xn) = f(

∑
i∈[n] xi) for some function f : G → {0, 1}.

The authors of [3] propose a fully robust NIMPC protocol with communi-
cation complexity O(|G|2n2) for abelian programs allowing inputs to take any
value of G. Since NIMPC protocols do not satisfy the same level of robust-
ness in general if players are limited to inputs from smaller domains, they also
propose a t-robust protocol with communication complexity |G|3(nd)t+O(1) for

Non-interactive Secure Multiparty Computation 307

abelian programs with input domains of size at most d. Benhamouda, Krawczyk,
and Rabin [6] construct a fully robust protocol with communication complexity
|G|log n+O(1)n when input spaces are arbitrary subsets. However, from the view-
point of the lower bound n−1|G| [17], there is still room for improvement espe-
cially in the exponent with respect to |G|. To evaluate a histogram for m inter-
vals, for example, we have to choose d = m and the direct product G = (Zn+1)m

of m copies of the cyclic group of size n + 1 [3], which is of size n(1+o(1))m.
Hence, reducing the exponent with respect to |G| will have a large effect on the
communication complexity.

Abelian programs are also applicable to linear classifiers, which perform clas-
sification based on a weighted sum of inputs and cover popular methods such
as support vector machines [7,8] and logistic regression. Indeed, if the weights
are public, the players can locally multiply their inputs by the weights and then
execute a protocol for a certain abelian program. However, the weights are often
kept private to protect the intellectual property of learned models in practice. To
the best of our knowledge, there is no NIMPC protocol for linear classifiers that
does not reveal weights to players other than those obtained from the generic
construction.

1.1 Our Results

The contributions of this paper are threefold. First, we present efficient NIMPC
protocols for abelian programs that improve the best known communication
complexity. Secondly, we propose for the first time NIMPC protocols for linear
classifiers that are more efficient than those obtained from the generic construc-
tion. Thirdly, we revisit a known transformation [6] (hereinafter referred to as
the BKR transformation), which transforms any 0-robust NIMPC protocol, also
known as PSM (Private Simultaneous Messages) protocol [9,13], into a t-robust
one. The transformation is repeatedly used in the above two results to limit
players to inputs from smaller domains. We reveal that their NIMPC protocol
used in the transformation does not satisfy even 1-robustness and we also fix
their protocol.

Efficient NIMPC Protocols for Abelian Programs. We propose a fully
robust NIMPC protocol with communication complexity O(|G|(log |G|)2) for
abelian programs allowing inputs to take any value of G. Our protocol improves
the previous result O(|G|2n2) [3]. Note that it is impossible to cut down on the
exponent with respect to |G| anymore due to the lower bound [17]. For abelian
programs with limited input domains, we apply the BKR transformation to our
protocol with the extended input domain in a non-straightforward way. This
is the first time that the BKR transformation, which originally aims at lifting
the level of robustness, has been used to restrict input domains. As a result, we
obtain a t-robust protocol with communication complexity |G|(log |G|)2pt+O(1)

if input domains are of size at most d, where p is the smallest prime power such
that p ≥ max{n, d}. This protocol is more efficient than the previous protocol
of [3] and even than that of [6] if t = o(log n) and |G| = nΘ(1) (Table 1).

308 R. Eriguchi et al.

Table 1. Comparison of the existing t-robust NIMPC protocols for abelian programs.
Let n be the number of players, G be an abelian group, d be a positive integer at most
|G|, and p be the smallest prime power such that p ≥ max{n, d}. We suppose t = n if
the symbol t does not appear in the complexity.

Reference Input domain Communication complexity

[3]
Gn

O(|G|2n2)

Ours (Theorem 1) O(|G|(log |G|)2)
[3] ∏

i∈[n] Si,

where Si ⊆ G and |Si| ≤ d

|G|3(nd)t+O(1)

[6] |G|log n+O(1)n

Ours (Corollary 1) |G|(log |G|)2pt+O(1)

New NIMPC Protocols for Linear Classifiers. We define the class of
linear classifiers as functions computing f(

∑
i∈[n] wixi) on a weighted sum of

inputs for some weights w = (wi)i∈[n] over a finite field Fq and some function
f : Fq → {0, 1}. Our definition can be naturally extended to functions outputting
many bits and can also deal with real-valued inputs by choosing a sufficiently
large prime q. We propose a fully robust NIMPC protocol with communication
complexity O(q log q) for this class when inputs take any value of Fq. Note that
the multiplicative factor of q is unavoidable due to the lower bound from [17]. In
our protocol, no information on the weights is leaked other than what is implied
by the residual function. Applying the BKR transformation, we also obtain a
t-robust protocol with communication complexity pt+O(1)q log q for linear clas-
sifiers with input domains of size at most d, where p is the smallest prime power
such that p ≥ max{n, d}.

Revisiting the BKR Transformation. We have used the BKR transfor-
mation in the above two results to restrict input domains. However, we revisit
the transformation and reveal that their fully robust NIMPC protocol for what
they call outputting-message functions, which is used as a building block in the
transformation, does not satisfy even 1-robustness. We also fix their protocol
with only constant overhead in the communication complexity. Therefore, the
statements of [6] still hold true but it is necessary to use our modified protocol
for outputting-message functions when applying the BKR transformation. As a
byproduct of that modification, we obtain a fully robust NIMPC protocol for
the class of indicator functions. An indicator function decides whether a tuple
of inputs x ∈ X n

0 is equal to some fixed a ∈ X n
0 , where X0 is a fixed domain.

Our protocol has communication complexity O((log |X0|)n) improving the best
known result O((log |X0|)2n) [17] and is asymptotically optimal with respect to
the input length according to the lower bound [17].

1.2 Related Work

It is known that NIMPC for indicator functions is used as a building block to con-
struct protocols for any given class of functions [3]. For the class of all the func-
tions from X n

0 to a finite set Z, our result on indicator functions implies a fully

Non-interactive Secure Multiparty Computation 309

robust protocol with communication complexity O(|X0|n(log |X0|)(log |Z|)n)
improving the previous results [3,15,17]. Recently, however, the authors of [1]
propose an asymptotically optimal protocol achieving O(|X0|n(log |Z|)) with-
out using indicator functions. For the class consisting only of a single function
f : X n

0 → {0, 1}, a t-robust protocol has been proposed in [5] by applying the
BKR transformation to an efficient PSM protocol for f . If t < n/2, it is more
efficient than the protocol obtained from indicator functions. Nevertheless, it
makes sense to construct efficient protocols for indicator functions if we aim at
an intermediate class of functions rather than the above two extreme ones.

For boolean symmetric functions, the authors of [6] devise a more efficient t-
robust NIMPC protocol with communication complexity nlog log n+log t+O(1) than
those obtained from abelian programs.

2 Technical Overview

In this section, we provide an overview of our NIMPC protocols. We give more
detailed descriptions and security proofs in the following sections.

2.1 Efficient NIMPC Protocols for Abelian Programs

An abelian program h takes n inputs from an abelian group G and outputs
h(x1, . . . , xn) = f(

∑
i∈[n] xi) for some function f : G → {0, 1}. We start by

explaining how to construct an efficient fully robust NIMPC protocol for the
class of abelian programs in which inputs take any value of G. Our protocol is in
part based on the result of Beimel et al. [3, Theorem 7.2], which has presented a
protocol tailored to abelian programs over the cyclic group Zn+1 = {0, 1, . . . , n}
of size n + 1. They consider a special map σ : x �→ x + 1 mod (n + 1) from
Zn+1 to itself and view every element g ∈ Zn+1 as the g-th iteration of σ,
i.e., σg := σ ◦ · · · ◦ σ (g times). They then reduce computing abelian programs
to composing the maps σxi corresponding to the players’ inputs xi. To hide the
inputs and achieve robustness, they randomize the operation of that composition
by using Kilian’s technique [14]. However, there is no such map as σ in a general
abelian group, which is why the previous result is only applicable to Zn+1.

Construction Based on the Regular Representation. To represent ele-
ments of an abelian group G, we make the most use of the regular representation
of G. Observe that the g-th iteration of σ is equivalent to the map x �→ x + g
mod (n + 1). Generalizing it, we view an element g ∈ G as a permutation
σg : G � x �→ x + g ∈ G, which is further viewed as a linear map from the
|G|-dimensional vector space over F2 = {0, 1} to itself translating every basis
ex to ex+g, where ex ∈ F

|G|
2 is the unit vector such that the entry indexed by

x ∈ G is one. Then, the summation of inputs corresponds to the composition
of the associated linear maps. Furthermore, if we appropriately represent the
associated function f : G → {0, 1} as a vector, we can express the whole com-
putation of the abelian program as a certain matrix-vector product. As in [3],

310 R. Eriguchi et al.

we use the randomization technique [14] to securely perform that linear alge-
bra operation. However, there still remain two problems in the above protocol:
(1) the resultant communication complexity is O(|G|2 log |G|) since the protocol
has to communicate O(|G|) permutations over G, each of which is expressed as
O(|G| log |G|) bits and (2) it only works for the specific abelian program since it
reveals partial information on the truth table, e.g., |f−1(1)|. Regarding the first
problem, we cut down the number of matrices with the help of the fundamental
theorem of finite abelian groups. Since it implies that all the group elements are
generated by O(log |G|) elements, players can compute their messages from only
O(log |G|) permutations corresponding to the generators. To hide the value of
|f−1(1)|, we carefully choose a group extension H � G and extend f : G → {0, 1}
to f̃ : H → {0, 1} so that |f̃−1(1)| is constant regardless of f . The details are
given in Sect. 4.

Limiting Inputs. To construct a protocol for abelian programs with limited
input domains, we use the BKR transformation in a non-straightforward way.
Note that it has been originally devised to obtain t-robust NIMPC protocols
from 0-robust ones. Clearly, the above fully robust protocol for abelian pro-
grams with the extended input domain satisfies 0-robustness. Since 0-robustness
is not affected by what the input domain is, that protocol is itself a 0-robust
protocol for abelian programs with limited input domain. We then apply the
BKR transformation and lift the level of robustness to t > 0 with some overhead
in communication complexity.

2.2 New NIMPC Protocols for Linear Classifiers

We formally define linear classifiers as the class of all the functions of the form
hf,w : F

n
q � (xi)i∈[n] �→ f(

∑
i∈[n] wixi) ∈ {0, 1}, where Fq is the fixed finite field

of size q, f : Fq → {0, 1}, and w = (wi)i∈[n] ∈ F
n
q .

To begin with, we fix f and treat k = |f−1(1)| as public information. We
show a construction of a fully robust protocol for the class consisting only of the
specific function {hf,w }. Let f−1(1) = {u1, . . . , uk} and set u = (uj)j∈[k] ∈ F

k
q .

The main idea of our construction is to use the fact that f(
∑

i∈[n] wixi) = 1
if and only if at least one entry of u0 = (uj − ∑

i∈[n] wixi)j∈[k] is zero. We
must ensure that the evaluator learns the number of zeros in u0 and nothing
more. We randomly choose a permutation π over [k] and k non-zero elements
ri ∈ Fq\{0} (i ∈ [k]) and define ũ = (rjuπ(j))j∈[k]. We then send each Pi the
vector ũi = (rjwi)j∈[k] along with a random vector si ∈ F

k
q for masking his

input, who in turn sends his message ũixi + si to the evaluator. We let the
evaluator receive ũ +

∑
i∈[n] si in advance and after receiving the messages, he

outputs f(
∑

i∈[n] wixi) according to the number of zeros in ũ − ∑
i∈[n] ũixi.

However, as mentioned above, this protocol assumes the dimension k =
|f−1(1)| of the vectors is public, which is why it does not work for the class
of all the linear classifiers. Our solution to hide k is padding the vector u with
certain q − k elements uj (k < j ≤ q) to ensure that its dimension should be q.
Specifically, we carefully select these q −k elements from an extension field of Fq

Non-interactive Secure Multiparty Computation 311

so that the protocol satisfies correctness. We also propose a protocol for linear
classifiers with limited input domains by applying the BKR transformation as
in the case of abelian programs. The details are given in Sect. 5.

2.3 Revisiting the BKR Transformation

As a building block for the BKR transformation, the authors of [6] propose a
fully robust NIMPC protocol for what they call outputting-message functions.
We reveal that their protocol does not satisfy even 1-robustness. Technically,
they define an outputting-message function for a message m, a vector u, and
a matrix A = [a1, . . . ,an] as the function outputting m if u = A[x1, . . . , xn]�

holds and ⊥ otherwise.
The main issue is in their procedures for securely testing the equality u =

A[x1, . . . , xn]�. In their protocol, each Pi receives a random vector si and sends
νi := aixi + si as part of his message. The evaluator receives ν0 := u +

∑
i∈[n] si

in advance and then tests whether ν0 =
∑

i∈[n] νi holds. However, consider the
collusion of the player P1 and the evaluator. If d := u − ∑

i�=1 aixi and a1

are linearly independent, they should learn nothing at all since the residual
function outputs nothing but ⊥. Nevertheless, they actually obtain the vector
d = ν0 − ∑

i�=1 νi − s1.
We fix their protocol with only constant overhead in the communication

complexity. Our main idea is randomizing d to ensure for P1 and the evaluator
not to learn more than the linear independence relation between d and a1, which
is the only information revealed by the residual function. Specifically, we choose
an invertible matrix T uniformly at random and redefine ν0 = Tu +

∑
i∈[n] si.

We additionally give Tai to each Pi as randomness. Now, P1 and the evaluator
only learns ν0 − ∑

i�=1 νi − s1 = Td, which does not reveal more than the linear
independence relation between d and a1 due to the randomness of T . Note that
our modification increases the communication complexity of their protocol only
by a constant factor. We present the formal statements in Sect. 6.

Finally, as a byproduct of that modification, we obtain a fully robust proto-
col for indicator functions with asymptotically optimal communication complex-
ity with respect to the input length. Roughly speaking, we embed every input
domain to a subset of a fixed finite field and translate the condition (xi)i∈[n] =
(ai)i∈[n] to the equality test u = In[x1, . . . , xn]�, where u = [a1, . . . , an]� and
In is the identity matrix of size n. We show that an NIMPC protocol for that
equality test is obtained from our modified protocol for outputting-message func-
tions.

3 Preliminaries

Notations. For a set X = X1 × · · · × Xn and C ⊆ [n], we define XC =
∏

i∈C Xi.
For x ∈ X , we define xC as the restriction (xi)i∈C of x to XC . Let C be the
complement of C ⊆ [n] and xC ∈ XC . For a function h : X → Z, we define
the residual function h|C,xC

: XC → Z of h for C and xC as the sub-function

312 R. Eriguchi et al.

of h obtained by restricting the input variables indexed by C to xC , that is,
h|C,xC

(xC) = h(xC , xC).
For a finite set S, we write s←$ S if we choose a uniformly random element s

from S. For two distributions D,D′ on S, we write D ≡ D′ if they are perfectly
identical to each other. Define SS as the set of all the permutations over S. We
simply write SN if S is clear from the context, where N = |S|. For π ∈ SS and
a finite field K, we define a permutation matrix Uπ as the square matrix over
K of size |S| whose (i, j)-th entry is 1 if j = π(i) and 0 otherwise, where we
assume that the sets indexing the rows and columns are both S. It holds that
U−1

π = Uπ−1 = U�
π and UπUτ = Uτ◦π, where π−1 is the inverse of π and τ ◦ π

is the composition of π, τ ∈ SS , i.e., (τ ◦ π)(i) = τ(π(i)) for all i ∈ S. For i ∈ S,
let ei = (aj)j∈S ∈ K

N denote the i-th unit vector, i.e., ai = 1 and aj = 0 for all
j = i.

For ri ∈ K (i ∈ [N]), let diag(r1, . . . , rN) ∈ K
N×N denote a diagonal matrix

whose (i, i)-th entry is ri for i ∈ [N]. Throughout the paper, all vectors are
column vectors unless otherwise indicated. For a tuple of vectors (vi)i∈[N] where
vi ∈ K

k, we define Ker((vi)i∈[N]) = {(xi)i∈[N] ∈ K
N | ∑

i∈[N] vixi = 0}. For a
subset S ⊆ K

N , we denote by S⊥ the orthogonal complement of S, i.e., S⊥ =
{(δi)i∈[N] ∈ K

N | ∀(xi)i∈[N] ∈ S,
∑

i∈[N] δixi = 0}. We define GLk(K) as the set
of all the invertible k-by-k matrices, i.e., GLk(K) = {T ∈ K

k×k | det(T) = 0}.

3.1 Non-interactive Secure Multiparty Computation

In NIMPC, we consider n players Pi (i ∈ [n]), each holding an input, and an
external output player P0 called an evaluator. In this paper, we focus on NIMPC
with correlated randomness, in which each player locally computes a message
from his input and randomness and then sends it to the evaluator.

Definition 1 (NIMPC: syntax and correctness). Let Xi (i ∈ [n]) and Z
be finite sets. Let X =

∏
i∈[n] Xi and H be a class of functions from X to Z. Let

Ri (i ∈ {0} ∪ [n]) and Mi (i ∈ [n]) be finite sets. An NIMPC protocol for H is
a triplet Π = (Gen,Enc,Dec), where:

– Gen : H → R0 × R1 × · · · × Rn is a randomized function;
– Enc is an n-tuple of deterministic functions (Enc1, . . . ,Encn), where Enci :

Xi × Ri → Mi;
– Dec : R0 × M1 × · · · × Mn → Z is a deterministic function satisfying the

following correctness requirement: for any x = (x1, . . . , xn) ∈ X and any
h ∈ H, it holds that

Pr[(R0, R1, . . . , Rn) ← Gen(h) : Dec(R0,Enc(x,R)) = h(x)] = 1,

where Enc(x,R) = (Enc1(x1, R1), . . . ,Encn(xn, Rn)).

The online communication complexity CCon(Π) of Π is the maximum of
log |M1|, . . . , log |Mn|. The offline communication complexity CCoff(Π) of Π is
log |R0|, log |R1|, . . . , log |Rn|. The communication complexity CC(Π) of Π is
defined as the maximum of CCon(Π) and CCoff(Π).

Non-interactive Secure Multiparty Computation 313

To define the security requirements of NIMPC, we consider an adversary who
colludes with a set of players C ⊆ [n] as well as the evaluator. In this setting, it is
impossible to prevent the adversary from learning the residual function h|C,xC

for
the inputs xC of the honest players. Indeed, he is allowed to compute h(xC , xC)
for every input xC from the correlated randomness of C and the messages of C.
We say that an NIMPC protocol is C-robust if the adversary’s view is perfectly
simulated by some simulator with oracle access to the residual function.

Definition 2 (NIMPC: robustness). For a subset C ⊆ [n], we say that an
NIMPC protocol Π for H is C-robust if there exists a simulator Sim with oracle
access to a residual function such that, for every h ∈ H and xC ∈ XC , we have

Sim
h|C,x

C (C) ≡ (R0, RC = (Ri)i∈C ,MC = (Mi)i∈C), where (R0, R1, . . . , Rn) ←
Gen(h) and Mi = Enci(xi, Ri).

For an integer 0 ≤ t ≤ n, we say that Π is t-robust if it is C-robust for every
C ⊆ [n] of size at most t. We say that Π is fully robust if it is n-robust.

3.2 Abelian Programs

Let G be a finite abelian group and S1, . . . , Sn be subsets of G. Let Xi = Si for
i ∈ [n] and X = X1 × · · · × Xn. Define the abelian program hf : X → {0, 1}
associated with f : G → {0, 1} as hf (x1, . . . , xn) = f(

∑
i∈[n] xi). We then define

AS1,...,Sn

G
be the class of all the abelian programs, that is, AS1,...,Sn

G
= {hf : X →

{0, 1} | f : G → {0, 1}}. We simply write AG if S1 = · · · = Sn = G.
The class of abelian programs with limited input domains includes symmetric

functions. A function h : [d]n → {0, 1} is called symmetric if h(xπ(1), . . . , xπ(n)) =
h(x1, . . . , xn) for all (x1, . . . , xn) ∈ [d]n and π ∈ Sn. Following [3], let G =
(Zn+1)d and S1 = · · · = Sn = {e1, . . . ,ed} ⊆ G, where ei ∈ (Zn+1)d is the
i-th unit vector. Then, we can see that AS1,...,Sn

G
is equivalent to the class of all

symmetric functions over [d]n identifying xi ∈ [d] with exi
∈ G since the outputs

h(x1, . . . , xn) of symmetric functions only depend on
∑

i∈[n] exi
.

Although assuming above that abelian programs output only one bit, it is
possible to extend them to the ones outputting m bits by computing each output
bit separately [3]. Specifically, given an NIMPC protocol Π for AS1,...,Sn

G
, we can

construct a protocol Πm for Hm := {h : X → {0, 1}m | h = (h1, . . . , hm), hi ∈
AS1,...,Sn

G
} with m times higher communication complexity by running Π for

each hi separately.
We note that limiting players to inputs from smaller domains is not a straight-

forward task for NIMPC. For example, a t-robust NIMPC protocol for AG does
not directly imply a t-robust protocol for AS1,...,Sn

G
. This is because in a 1-robust

protocol for h ∈ AG, any player Pi colluding with the evaluator learns the value
of h on the honest inputs and every possible choice of xi from G while in a
protocol for h ∈ AS1,...,Sn

G
, Pi is allowed to evaluate the residual function only

on xi from Si.

314 R. Eriguchi et al.

4 Efficient NIMPC Protocols for Abelian Programs

4.1 The Design of Our Protocol

First, we design an efficient fully robust NIMPC protocol for the class AG of
abelian programs in which inputs take any value of G. We have already explained
a high-level idea of our construction in Sect. 2.1.

Construction Based on the Regular Representation. Recall that via the
regular representation of G, we identify every element g ∈ G with the linear map
from F

N
2 to itself translating every basis ex ∈ F

N
2 to ex+g ∈ F

N
2 for x ∈ G. Here,

N = |G| and we assume that G is the index set for N -dimensional vectors and for
the rows and columns of N -by-N matrices. The linear map is in turn expressed as
the permutation matrix Ag := Uσg

∈ GLN (F2), where σg : G � x �→ x + g ∈ G.
The summation of inputs xi is now reduced to the multiplication of the Axi

’s.
To evaluate a function f : G → {0, 1} on the sum s =

∑
i∈[n] xi, we associate f

with the vector vf :=
∑

x∈f−1(1) ex ∈ F
N
2 . Then, we can translate the evaluation

of f into the matrix-vector product e�
0G

Asvf = f(s), where 0G is the identity
of G. We use the randomization technique [14] to securely perform these linear
algebra operations. Note that all the permutation matrices can be represented
by O(N log N) bits.

To obtain a concrete protocol, suppose that we compute an abelian program
hf associated with f : G → {0, 1}. We first randomly select n − 1 permutations
π1, . . . , πn−1 over G. Then, we give Uπ1 to the player P1, (U−1

πi−1
AgUπi

)g∈G to
Pi (1 < i < n), and (U−1

πn−1
Agvf)g∈G to Pn. If P1 sends e�

0G
Ax1Uπ1 and the

other players send the matrices corresponding to their inputs, the evaluator can
compute f(

∑
i∈[n] xi) = e�

0G
(
∏

i∈[n] Axi
)vf . However, there remain the following

two problems: (1) the communication complexity of this protocol is O(N2 log N)
since it needs to communicate at most N permutation matrices and (2) it only
works for the class {hf} consisting only of the specific abelian program associated
with the fixed function f , not for AG, since the randomness of Pn reveals partial
information on the truth table of hf , i.e., the value of |f−1(1)|.

Reducing Communication Complexity and Hiding the Truth Table.
To cut down the number of permutation matrices to communicate, we recall the
fundamental theorem of finite abelian groups, e.g., [16, Theorem 6.44]. For any
abelian group G of size N , there exists a generating set {sj | j ∈ [m]} of size
m = O(log N). For each x ∈ G, we fix m integers �j(x) (j ∈ [m]) such that
x =

∑
j∈[m] �j(x)sj in G.

We now give U−1
πi−1

Uπi
and (U−1

πi−1
Asj

Uπi
)j∈[m] to the player Pi with 1 < i <

n. Then, Pi can compute U−1
πi−1

Asj
Uπi−1 for every j ∈ [m]. For an input xi ∈ G,

he computes
∏

j∈[m](U
−1
πi−1

Asj
Uπi−1)

�j(xi) = U−1
πi−1

Axi
Uπi−1 . Finally, he obtains

U−1
πi−1

Axi
Uπi

by multiplying U−1
πi−1

Uπi
. Similarly, we give Pn the randomness

U−1
πn−1

Uπn
, (U−1

πn−1
Asj

Uπn
)j∈[m], and U−1

πn
vf , where πn ←$SG. This protocol

Non-interactive Secure Multiparty Computation 315

only communicates O(m) = O(log N) permutation matrices and hence achieves
the communication complexity O(N(log N)2).

Next, to hide the value of |f−1(1)|, we augment the vector vf of Hamming
weight |f−1(1)| by a vector of weight N − |f−1(1)| to ensure that the number of
ones in the augmented vector is N regardless of f . Specifically, we consider the
group extension H := G × F2 = {(x, b) | x ∈ G, b ∈ F2} of G and replace the
|G|-dimensional vectors and matrices introduced above by some |H|-dimensional
ones. Since |H| = 2N , the communication complexity is still O(N(log N)2).

4.2 Abelian Programs with the Extended Input Domain

Now, we present the formal description of our protocol for AG. Let H = G×F2 be
the direct product of G and F2. Instead of vf , we redefine the vector wf ∈ F

|H|
2

representing a function f as wf =
∑

x∈f−1(1) e(x,0) +
∑

x∈f−1(0) e(x,1), where

e(x,b) ∈ F
|H|
2 is the unit vector such that the entry indexed by (x, b) is 1. Here,

H is the index set for 2N -dimensional vectors and for the rows and columns of
2N -by-2N matrices. It can be seen that the Hamming weight of wf is now N
regardless of f .

According to that modification, we sample each permutation at random from
SH rather than SG. We also replace the permutation σx ∈ SG representing
x ∈ G with τx ∈ SH defined as τx(g, b) = (g + x, b) for (g, b) ∈ H. We define
Bx = Uτx ∈ F

2N×2N
2 instead of Ax. Note that the Bx’s also satisfy the following

homomorphic property: B−1
x = B−x and BxBy = ByBx = Bx+y for x, y ∈ G.

Fig. 1. The NIMPC protocol Π1 for the class of abelian programs AG.

316 R. Eriguchi et al.

Theorem 1. Let G be a finite abelian group. Let S ⊆ G be a generating set of
G. Let X1 = · · · = Xn = G and X = X1 × · · · × Xn. Then, the protocol Π1

described in Fig. 1 is a fully robust NIMPC protocol for AG such that

CCon(Π1) = 2|G| · �log |G| + 1�
and CCoff(Π1) = 2|G| · �log |G| + 1� · (|S| + 1) + 2|G|.

In particular, it holds that CC(Π1) = O(|G|(log |G|)2).

Fig. 2. The simulator for the NIMPC protocol Π1 for the class of abelian programs AG.

Proof. Correctness. The message of P1 is e(0G,0)
�Bx1Uπ1 . The message of Pi

with 1 < i < n is

Mi = (
∏

j∈[m]

(U−1
πi−1

Bsj
Uπi−1)

�j(xi))(U−1
πi−1

Uπi
) = U−1

πi−1
Bxi

Uπi
.

Non-interactive Secure Multiparty Computation 317

The message of Pn is

Mi = (
∏

j∈[m]

(U−1
πn−1

Bsj
Uπn−1)

�j(xn))(U−1
πn−1

Uπn
)(U−1

πn
wf) = U−1

πn−1
Bxi

wf .

Therefore, letting a =
∑

i∈[n] xi, we have

∏

i∈[n]

Mi = e(0G,0)
�Bawf

= e(0G,0)
�Ba(

∑

g∈G

e(g,1−f(g)))

= e(0G,0)
�(

∑

g∈G

e(g−a,1−f(g)))

= e(0G,0)
�e(0G,1−f(a))

= f(a).

Robustness. Let C ⊆ [n]. In the following, we show that for functions f, f ′ :
G → {0, 1} and inputs xC , x′

C
such that hf |C,xC

= hf ′ |C,x′
C

, the messages of C

and the correlated randomness of C are equally distributed in the protocol Π1.
Based on that observation, we can construct the simulator with oracle access
to hf |C,xC

as follows: the simulator finds f ′ and x′
C

giving the same residual
function as hf |C,xC

and then executes Π1 on hf ′ and x′
C

. Since hf ′ |C,x′
C

=
hf ′′ |C,0C

where f ′′(x) = f ′(x +
∑

i∈C x′
i) and 0C = (0G)i∈C , the actual simulator

Sim
h|C,x

C (C) described in Fig. 2 sets x′
C

= 0C for simplicity.
We denote by (RC ,MC)(r) the joint distribution of the correlated random-

ness of C and the messages of C when Π1 is executed on f and xC , where
we specify the randomness r ←$Sn

H
used by the protocol. Similarly, we define

(R′
C ,M ′

C
)(r) for r ←$Sn

H
as the joint distribution when Π1 is executed on f ′

and x′
C

. It is sufficient to prove that there is a bijection φ : Sn
H

→ Sn
H

such that
(RC ,MC)(r) = (R′

C ,M ′
C

)(φ(r)) for all r ∈ Sn
H
.

The case of C = ∅. Let a =
∑

i∈[n] xi and a′ =
∑

i∈[n] x
′
i. Let di =

∑
j>i xj

and d′
i =

∑
j>i x′

j for i ∈ [n], where we define dn = d′
n = 0G. Let Sf =

{(g, 1 − f(g)) ∈ H | g ∈ G} and Sf ′ = {(g, 1 − f ′(g)) ∈ H | g ∈ G}.
From the definition, we have that |Sf | = |Sf ′ | = |G|. It also follows from
hf (x1, . . . , xn) = hf ′(x′

1, . . . , x
′
n) that (a, 0) ∈ Sf if and only if (a′, 0) ∈ Sf ′ .

Therefore, there is a permutation ρ ∈ SH such that ρ(a′, 0) = (a, 0) and
ρ(Sf ′) = Sf . Define φ : Sn

H
→ Sn

H
as φ(π1, . . . , πn) = (π′

1, . . . , π
′
n), where

π′
i = πi ◦ τ−di

◦ ρ ◦ τd′
i

for i ∈ [n − 1] and π′
n = πn. Recall that τx is defined as

τx(g, b) = (g + x, b) for (g, b) ∈ H. From the definition of Bx’s and permutation
matrices, we have that Uπ′

i
= Bd′

i
UρB−di

Uπi
. We fix r = (π1, . . . , πn) ∈ Sn

H

and simply write Mi = Mi(r) and M ′
i = M ′

i(φ(r)).

318 R. Eriguchi et al.

Then, we have Mi = M ′
i for all i ∈ [n] from the following:

– i = n: From the definition of ρ, we have
∑

s∈Sf

es =
∑

s′∈Sf′

eρ(s′) ⇐⇒ wf = U−1
ρ wf ′

⇐⇒ Bxn
wf = (Bxn

U−1
ρ B−x′

n
)Bx′

n
wf ′

⇐⇒ U−1
πn−1

Bxn
wf = U−1

π′
n−1

Bx′
n
wf ′ .

– 1 < i < n: We have

U−1
π′
i−1

Bx′
i
Uπ′

i
= U−1

πi−1
Bdi−1U

−1
ρ B−d′

i−1
Bx′

i
Bd′

i
UρB−di

Uπi

= U−1
πi−1

Bdi−1−di
Uπi

= U−1
πi−1

Bxi
Uπi

.

– i = 1: From the definition of ρ, we have

(a, 0) = ρ(a′, 0) ⇐⇒ e(a,0)
� = e(a′,0)

�Uρ

⇐⇒ e(x1,0)
�Bd1 = e(x′

1,0)
�Bd′

1
Uρ

⇐⇒ e(x1,0)
� = e(x′

1,0)
�Uπ′

1
U−1

π1

⇐⇒ e(0G,0)
�Bx1Uπ1 = e(0G,0)

�Bx′
1
Uπ′

1

The case of C = ∅. Let a =
∑

j∈C(xj − x′
j) ∈ G, di =

∑
j>i,j∈C(x′

j − xj) +
a ∈ G for i ∈ [n], where we define dn = a. Since the residual functions
hf |C,xC

, hf ′ |C,x′
C

are identical to each other, we have

f(g′ +
∑

j∈C

xj) = f ′(g′ +
∑

j∈C

x′
j) (∀g′ ∈ G)

⇐⇒ f(g) = f ′(g − a) (∀g ∈ G).

Define φ : Sn
H

→ Sn
H

as φ(π1, . . . , πn) = (π′
1, . . . , π

′
n), where π′

i = πi ◦ τdi
for

i ∈ [n]. Then, from the above observation we have that Bawf = wf ′ since

Bawf = wf ′ ⇐⇒
∑

g∈G

e(g−a,1−f(g)) =
∑

g′∈G

e(g′,1−f ′(g′))

⇐⇒
∑

g′∈G

(e(g′,1−f(g′+a)) − e(g′,1−f ′(g′))) = 0

⇐⇒ f(g) = f ′(g − a) (∀g ∈ G).

Observe that for any 1 < i ≤ n and any x ∈ G,

U−1
π′
i−1

BxUπ′
i
= U−1

πi−1
B−di−1BxBdi

Uπi
= U−1

πi−1
Bx+(di−di−1)Uπi

. (1)

Non-interactive Secure Multiparty Computation 319

We also have that

di − di−1 =

{
xi − x′

i, ifi ∈ C,

0G, otherwise.

We fix r = (π1, . . . , πn) ∈ Sn
H

and simply write Ri = Ri(r), R′
i = R′

i(φ(r))
for i ∈ C and Mi = Mi(r),M ′

i = M ′
i(φ(r)) for i ∈ C. Now, we have Ri = R′

i for
i ∈ C and Mi = M ′

i for i ∈ C from the following:

– i = n:
• If n ∈ C, then dn = dn−1. Therefore, substituting x = 0G and x = sj into

(1), we have U−1
π′
n−1

Uπ′
n

= U−1
πn−1

Uπn
and U−1

π′
n−1

Bsj
Uπ′

n
= U−1

πn−1
Bsj

Uπn

for j ∈ [m], respectively. Furthermore, since dn = a, we also have

U−1
π′
n

wf ′ = U−1
πn

B−dn
wf ′ = U−1

πn
wf .

• If n ∈ C, then dn − dn−1 = xn − x′
n, i.e., x′

n − dn−1 = xn − a. Therefore,

U−1
π′
n−1

Bx′
n
wf ′ = U−1

πn−1
Bx′

n−dn−1Bawf = U−1
πn−1

Bxn
wf .

– 1 < i < n:
• If i ∈ C, then di = di−1. Therefore, substituting x = 0G and x = sj into

(1), we have U−1
π′
i−1

Uπ′
i
= U−1

πi−1
Uπi

and U−1
π′
i−1

Bsj
Uπ′

i
= U−1

πi−1
Bsj

Uπi
for

j ∈ [m], respectively.
• If i ∈ C, then di −di−1 = xi −x′

i. Therefore, substituting x = x′
i into (1),

we have U−1
π′
i−1

Bx′
i
Uπ′

i
= U−1

πi−1
Bxi

Uπi
.

– i = 1:
• If 1 ∈ C, then d1 = 0G and hence Uπ′

1
= Uπ1 .

• If 1 ∈ C, then d1 = x1 − x′
1 and hence

e(0G,0)
�Bx′

1
Uπ′

1
= e(0G,0)

�Bx′
1
Bx1−x′

1
Uπ1 = e(0G,0)

�Bx1Uπ1 .

Communication complexity. The maximum component of on-line communi-
cation is the messages Mi of the players i with 1 < i < n, each of which consists
of one permutation matrix over F2 of size |H|. The maximum component of
off-line communication is the randomness Rn of the player n, which consists of
|S| + 1 permutation matrices over F2 of size |H| and a vector over F2 of dimen-
sion |H|. Note that every permutation matrix can be expressed by |H|�log |H|�
bits. Since |H| = 2|G|, the protocol achieves the communication complexity in
the statement. ��

4.3 Abelian Programs with Limited Input Domains

Next, we present a t-robust protocol for the class AS1,...,Sn

G
of abelian programs

with limited input domains. As mentioned in Sect. 3.2, NIMPC protocols for
AG is not directly applicable to AS1,...,Sn

G
. Nevertheless, it is possible to obtain

protocols for AS1,...,Sn

G
from the ones for AG with the help of the BKR trans-

formation [6]. Note that we will show in Sect. 6 that their NIMPC protocol for

320 R. Eriguchi et al.

outputting-message functions used in the transformation does not satisfy the
desired security. Therefore, it is necessary to replace their protocol with our
modified protocol given also in Sect. 6 when actually applying the BKR trans-
formation.

Proposition 1 ([6]). If there is a 0-robust NIMPC protocol for a class of func-
tions H with communication complexity α, then for any t, there is a t-robust
NIMPC protocol for H with communication complexity pt+O(1)α, where d is the
maximum size of the input domains of functions in H and p is the smallest prime
power such that p ≥ max{n, d}.

Clearly, the protocol in Theorem 1 satisfies 0-robustness for AG. Since the
simulator to prove 0-robustness only receives the output of the function rather
than a residual function, the simulation works regardless of whether the input
domains are limited or not. Consequently, the 0-robust protocol also satisfies
0-robustness even for AS1,...,Sn

G
. By applying the BKR transformation to it, we

obtain a t-robust protocol for AS1,...,Sn

G
with some overhead in communication

complexity.

Corollary 1. Let G be a finite abelian group and S1, . . . , Sn be subsets of G.
Then, there exists a t-robust NIMPC protocol Π for AS1,...,Sn

G
such that CC(Π) =

|G|(log |G|)2pt+O(1), where p is a prime power with p ≥ max{n, |S1|, . . . , |Sn|}.
The authors of [3] present another method to limit the inputs of players

while it only works for abelian programs. However, this method applied to
Theorem 1 only provides us with a protocol with communication complexity
|G|2(log |G|)2(nd)t+O(1) and hence the protocol in Corollary 1 is more efficient.

Example 1. We apply our protocol for AS1,...,Sn

G
to symmetric functions. We have

noted in Sect. 3.2 that the class of all symmetric functions over [d]n is equivalent
to AS1,...,Sn

G
for G = (Zn+1)d and S1 = · · · = Sn = {e1, . . . ,ed} ⊆ G, where

ei ∈ (Zn+1)d is the i-th unit vector. Note that G can be generated by at most
d elements. Therefore, we obtain a t-robust NIMPC protocol Π for the class of
all symmetric functions over [d]n such that

CC(Π) = pt+O(1) × O((n + 1)dd2(log n)) = (max{n, d})(1+o(1))tn(1+o(1))d.

Here, p is the smallest prime power such that p ≥ max{n, d}, which is chosen
as p = O(max{n, d}). This result is better than (nd)(1+o(1))tn(3+o(1))d [3] and
also improves n(log n+O(1))d [6] if t = o(log n). In the case of boolean symmetric
functions, i.e., d = 2, our protocol is more efficient than another t-robust protocol
with communication complexity nlog log n+log t+O(1) [6] if t = o(log log n).

5 New NIMPC Protocols for Linear Classifiers

5.1 Formalization of Linear Classifiers

Let Fq be a finite field and S1, . . . , Sn be subsets of Fq. Let Xi = Si for i ∈ [n]
and X = X1 × · · · × Xn. We say that a function f : Fq → {0, 1} is proper if

Non-interactive Secure Multiparty Computation 321

|f−1(1)| /∈ {0, q}. Define the linear classifier hf,w : X → {0, 1} associated with
f : Fq → {0, 1} and w = (wi)i∈[n] ∈ F

n
q as hf,w (x1, . . . , xn) = f(

∑
i∈[n] wixi).

We then define LS1,...,Sn

Fq
be the class of all the linear classifiers, that is,

LS1,...,Sn

Fq
= {hf,w | f : Fq → {0, 1} is proper and w ∈ F

n
q }.

We simply write LFq
if S1 = · · · = Sn = Fq.

We note that focusing on proper functions does not limit the expressive power
of linear classifiers. If |f−1(1)| = 0, i.e., f(x) = 0 for all x ∈ Fq, then the linear
classifier hf,w for any w ∈ F

n
q is equivalent to hf0,0, where f0(x) outputs 0 if and

only if x = 0. Similarly, any linear classifier hf,w with |f−1(1)| = q is equivalent
to a linear classifier associated with some proper function.

In the same manner as abelian programs, we can extend linear classifiers to
the ones outputting more than one bits by computing each output bit separately.
Specifically, we first extend the definition of proper functions as follows. A func-
tion f : Fq → {0, 1}m is said to be proper if pi ◦ f : Fq → {0, 1} is proper (in the
above sense) for every i ∈ [m], where pi : {0, 1}m � (bj)j∈[m] �→ bi ∈ {0, 1} is the
i-th projection. Now, for S1, . . . , Sn ⊆ Fq, we define the class of linear classifiers
outputting m bits as

Hm := {hm
f,w : X → {0, 1}m | f : Fq → {0, 1}m is proper and w ∈ F

n
q },

where X =
∏

i∈[n] Si and hm
f,w (x1, . . . , xn) = f(

∑
i∈[n] wixi). From the definition

of proper functions, we have Hm = {h : X → {0, 1}m | h = (h1, . . . , hm), hi ∈
LS1,...,Sn

Fq
} for LS1,...,Sn

Fq
. Hence, given an NIMPC protocol Π for LS1,...,Sn

Fq
, we can

construct a protocol Πm for Hm with m times higher communication complexity
by running Π for each hi ∈ LS1,...,Sn

Fq
.

We assume in the above that all the arithmetic operations are performed in
a finite field. For real-world applications, it is necessary to deal with weights and
inputs expressed as real numbers. We can still use the above linear classifiers by
embedding these values into a sufficiently large prime field using a fixed-point
number representation.

5.2 NIMPC Protocols for Linear Classifiers

We first propose a fully robust protocol for LFq
(Theorem 2) and then construct

a protocol for LS1,...,Sn

Fq
by applying the BKR transformation (Corollary 2).

Let f : Fq → {0, 1} be a proper function and w ∈ F
n
q be a vector of weights.

In Sect. 2.2, we have already shown a construction of a fully robust protocol for
the class consisting only of the specific linear classifier {hf,w } ⊆ LFq

. In that pro-
tocol, if f−1(1) = {u1, . . . , uk}, the evaluator outputs f(

∑
i∈[n] wixi) according

to the number of zeros of u0 = u − ∑
i∈[n] 1kwixi, where u = [u1, . . . , uk]� ∈ F

k
q

and 1N denotes the vector of dimension N whose entries are all one. It can be
seen that the technique for randomizing u0 is equivalent to multiplying u0 by

322 R. Eriguchi et al.

T = diag(r1, . . . , rk)Uπ ∈ F
k×k
q for ri ←$ Fq\{0} (i ∈ [k]) and π ←$S[k]. How-

ever, there remains the problem that the dimension k = |f−1(1)| is assumed to
be constant, which is why it does not work for the class of all the linear classifiers.

A simple solution to hide k is padding the vector u with some q −k elements
uj ∈ Fq (k < j ≤ q) to ensure that its dimension should be q. Accordingly, we
redefine u0 as u0 = u − ∑

i∈[n] 1qwixi. In this solution, however, there would
exist some inputs xi such that

∑
i∈[n] wixi /∈ f−1(1) but uk+1 =

∑
i∈[n] wixi

and then the protocol incorrectly outputs 1. To overcome it, we consider an
extension field K of Fq and randomly choose uj (k < j ≤ q) from K\Fq. Since∑

i∈[n] wixi ∈ Fq, the above error never happens. Accordingly, we now uniformly
select a permutation π and elements ri (i ∈ [q]) from S[q] and K\{0}, respec-
tively, and set T = diag(r1, . . . , rq)Uπ. We also sample si (i ∈ [n]) from K

q.
The important point is that regardless of whether x ∈ Fq\{0} or x ∈ K\Fq, the
product rx is uniformly distributed over K\{0} if r ←$ K\{0}. This is why we
consider an extension field of Fq rather than an extension ring. The above mod-
ified protocol communicates at most two vectors over K of dimension q. Since
we can choose K as any extension field of Fq, we may assume that |K| = q2.
Therefore, the communication complexity is at most O(q log q).

Fig. 3. The NIMPC protocol Π2 for the class of linear classifiers LFq .

Theorem 2. Let Fq be a finite field. Let X1 = · · · = Xn = Fq and X = X1 ×
· · · × Xn. Then, the protocol Π2 described in Fig. 3 is a fully robust NIMPC
protocol for LFq

such that CCon(Π2) = 2q�2 log q� and CCoff(Π2) = q�2 log q�.

Proof. Correctness. Let h = hf,w be a function to compute. Let S = f−1(1) =
{u1, . . . , uk}, where k = |S| and ui ∈ Fq for i ∈ [k]. Correctness follows from
the following observation: h(x1, . . . , xn) = 1 if and only if the number of 0’s in

Non-interactive Secure Multiparty Computation 323

Fig. 4. The simulator for the NIMPC protocol Π2 for the class of linear classifiers LFq .

u − ∑
i∈[n] 1qwixi is at least one, which is in turn equivalent to the condition

that the number of 0’s in R0 − ∑
i∈[n] Mi = T (u − ∑

i∈[n] 1qwixi) is at least
one.

324 R. Eriguchi et al.

Robustness. Let C ⊆ [n]. The adversary’s view is

(Tu +
∑

i∈[n]

si; (T1qwi)i∈C , (si)i∈C ; (T1qwixi + si)i∈C),

where T = diag(r1, . . . , rq)Pπ, ri ←$ K\{0} (i ∈ [q]), π ←$Sq, u = [u1, . . . , uq]�,
uj ←$ K\Fq (k < j ≤ q), and si ←$ K

q (i ∈ [n]). It is sufficient to show that the
following distribution can be perfectly simulated:

(Tv; (T1qwi)i∈C , (si)i∈C ; (T1qwixi + si)i∈C), (2)

where we set γ = w�
C

xC =
∑

i∈C wixi and v = u − 1qγ. This is because the
original view can be obtained by computing Tu +

∑
i∈[n] si = Tv +

∑
i∈C si +

∑
i∈C(T1qwixi + si).

The case of C = ∅. We can see below that the distribution of (2) is simulated
by the simulator described in Fig. 4:

– If h(x1, . . . , xn) = 0, then uj = γ for all j ∈ [k]. In addition, uj = γ
for all k < j ≤ q since the uj ’s are selected from K\Fq and γ is an ele-
ment of Fq. Therefore, v ∈ (K\{0})q and hence Tv is uniformly distributed
over (K\{0})q. Since the si’s are chosen independent of T , we have that
(Tv; (T1qwixi + si)i∈[n]) ≡ (ṽ; (s̃i)i∈[n]) for vectors ṽ and s̃i (i ∈ [n]) sam-
pled by the simulator.

– If h(x1, . . . , xn) = 1, then there is the unique index j ∈ [k] such that uj = γ.
Again, it holds that uj = γ for all k < j ≤ q. Therefore, the number of 0’s in v
is exactly one and Tv is uniformly distributed over the set of all the vectors
of K

q of Hamming weight q − 1. Since the si’s are chosen independent of
T , we have that (Tv; (T1qwixi + si)i∈[n]) ≡ (ṽ; (s̃i)i∈[n]) for vectors ṽ and
s̃i (i ∈ [n]) sampled by the simulator.

The case of C = ∅. To begin with, observe that ΔxC
constructed by the sim-

ulator described in Fig. 4 satisfies |ΔxC
| ∈ {0, q} if and only if

∑
i∈C wixi = 0

for any xC = (xi)i∈C . Indeed, if
∑

i∈C wixi = 0, then for every α ∈ Fq, we have
that

h|C,xC
(xCα) = 1 ⇐⇒

∑

i∈C

wixiα = uj − γ (∃j ∈ [k])

⇐⇒ 0 = uj − γ (∃j ∈ [k])
⇐⇒ h|C,xC

(0) = 1.

Therefore, h|C,xC
(xCα) = h|C,xC

(0) for all α ∈ Fq and hence |ΔxC
| is either q or

0 depending on whether h|C,xC
(0) = 1 or not. Conversely, if

∑
i∈C wixi = δ = 0,

then for every α ∈ Fq, we have that

h|C,xC
(xCα) = 1 ⇐⇒

∑

i∈C

wixiα = uj − γ (∃j ∈ [k])

⇐⇒ α = δ−1(uj − γ) (∃j ∈ [k]).

Therefore, |ΔxC
| = k = |S| = |f−1(1)| /∈ {0, q}.

Non-interactive Secure Multiparty Computation 325

It is then possible to determine wC up to a scalar multiple from the size
of the set Γ . Indeed, if wC = 0, then |ΔxC

| ∈ {0, q} for all xC and hence
|Γ | = q|C|. If wC = 0, then a vector xC satisfies |ΔxC

| ∈ {0, q} if and only if
it is orthogonal to wC and hence |Γ | = q|C|−1. In the latter case, we have that
Γ⊥ = wC · Fq := {wCβ | β ∈ Fq} and so any non-zero vector in Γ⊥ is a salar
multiple of wC .

Now, we can see that the simulator in Fig. 4 simulates the distribution of (2):

– If Γ = q|C|, we surely know that wC = 0 and particularly, w̃C = wC . In this
case, we should have either |ΔxC

| = 0 for all xC or |ΔxC
| = q for all xC since

|ΔxC
| only depends on h|C,xC

(0) regardless of xC . If |ΔxC
| = 0 for all xC ,

then it should hold that h|C,xC
(0) = 0 and γ /∈ S. Then, v ∈ (K\{0})q and

hence Tv is uniformly distributed over (K\{0})q. Otherwise, it should hold
that h|C,xC

(0) = 1 and γ ∈ S. Then, the number of 0’s in v is exactly one and
Tv is uniformly distributed over the set of all the vectors of K

q of Hamming
weight q − 1. Since the si’s are chosen independent of T , the distribution of
(2) is simulated by (ṽ; (0q)i∈C , (s̃i)i∈C ; (s̃i)i∈C) for ṽ and s̃i (i ∈ [n]) sampled
by the simulator.

– If Γ = q|C|, we surely know that Γ⊥ = wC · Fq. The vector w̃C sampled
by the simulator can be expressed as w̃C = wC · β for some β ∈ Fq\{0}.
Let vj = uj − γ for j ∈ [k]. Let xC be inputs chosen by the simulator
such that xC /∈ Γ and write ΔxC

= {α1, . . . , αk} for the inputs xC . Let
γ =

∑
i∈C w̃ixi = 0 and δ =

∑
i∈C wixi. It holds that γ = δβ. Note that the

simulator knows k = |S|, w̃C , αj (j ∈ [k]), and γ.
We have that the values ṽj := αjγ set by the simulator determine the vj ’s
up to a scalar and a permutation. Specifically, there exists τ ∈ S[k] ⊆ S[q]

such that ṽj = βvτ(j) for all j ∈ [k] since for every α ∈ ΔxC
= {α1, . . . , αk},

it holds that

α ∈ ΔxC
⇐⇒ δα = vj (∃j ∈ [k])

⇐⇒ α = δ−1vj = βγ−1vj (∃j ∈ [k])
⇐⇒ αγ = βvj (∃j ∈ [k])

Since ṽj and vj for k < j ≤ q are both uniformly distributed over K\Fq, we
have (vj)j∈[q] ≡ (β−1ṽτ−1(j))j∈[q]. We also have 1qwi = 1qw̃iβ

−1 for all i ∈ C.
Since the si’s are chosen independent of T , we have the following:

(Tv; (T1qwi)i∈C , (si)i∈C ; (T1qwixi + si)i∈C)
≡ ((rjvπ(j))j∈[q]; ((rjwi)j∈[q])i∈C , (s̃i)i∈C ; (s̃i)i∈C)

≡ ((rjβ
−1ṽ(τ−1◦π)(j))j∈[q]; ((rjβ

−1w̃i)j∈[q])i∈C , (s̃i)i∈C ; (s̃i)i∈C)

≡ ((r̃j ṽπ̃(j))j∈[q]; ((r̃jw̃i)j∈[q])i∈C , (s̃i)i∈C ; (s̃i)i∈C)

≡ (T̃ ṽ; (T̃1qw̃i)i∈C , (s̃i)i∈C ; (s̃i)i∈C),

where r̃j (j ∈ [q]), π̃, T̃ = diag(r̃1, . . . , r̃q)Uπ̃, and s̃i (i ∈ [n]) are elements
sampled by the simulator.

326 R. Eriguchi et al.

Communication complexity. The maximum component of on-line and off-line
communication is the randomness Ri for i ∈ [n], which consists of two vectors
over K of dimension q. Since K can chosen as any extension field of Fq, the
protocol achieves the communication complexity in the statement. ��

As in the case of abelian programs, NIMPC protocols for LFq
is not directly

applicable to LS1,...,Sn

Fq
. Nevertheless, from the same reason presented in Corol-

lary 1, it is possible to obtain a protocol for LS1,...,Sn

Fq
by applying the BKR

transformation to the protocol for LFq
.

Corollary 2. Let Fq be a finite field and S1, . . . , Sn be subsets of Fq. Then,
there exists a t-robust NIMPC protocol Π for LS1,...,Sn

Fq
such that CC(Π) =

pt+O(1)q log q, where p is a prime power with p ≥ max{n, |S1|, . . . , |Sn|}.

6 Revisiting the BKR Transformation

6.1 Analyzing and Fixing the NIMPC Protocol of [6] for
Outputting-Message Functions

To realize the BKR transformation, the authors of [6] introduce the class of
outputting-message functions. Let M be a finite set and let ⊥ be the special
symbol not in M. Let X1 = · · · = Xn = Fq and X = X1 × · · · × Xn. Let
A = [a1, . . . ,an] ∈ F

k×n
q be a fixed matrix. Define the outputting-message

function hu ,m : X → M ∪ {⊥} associated with u ∈ F
k
q and m ∈ M as

hu ,m(x1, . . . , xn) =

{
m, if u = A[x1, . . . , xn]�,

⊥, otherwise.

Define OM,A be the class of all the outputting-message functions, that is,
OM,A = {hu ,m | u ∈ F

k
q ,m ∈ M}.

The authors of [6] propose a fully robust NIMPC protocol for OM,A with
communication complexity O(k(log q)(log |M|)) and use it as a building block
for the BKR transformation. However, we show that their protocol does not
satisfy even 1-robustness if the matrix A satisfies a certain condition. We first
recall their protocol for OM,A . We denote by ai ∈ F

k
q the i-th column vector of

A ∈ F
k×n
q . We may assume M = Fq since a protocol for an arbitrary message

space M is obtained by expressing an element of M as a vector over Fq of
dimension �logq |M|�.

Proposition 2. Let C ⊆ [n]. If there exists j ∈ C such that aj = 0 and {ai | i ∈
C ∪ {j}} does not span F

k
q , then the protocol ΠBKR described in Fig. 5 is not

C-robust.

Proof. Let u ∈ F
k
q be a vector that is not in the space spanned by {ai | i ∈

C ∪ {j}}. Fix any m ∈ Fq and set h = hu ,m ∈ OM,A . Let xC ,yC be two

Non-interactive Secure Multiparty Computation 327

Fig. 5. The NIMPC protocol ΠBKR of [6] for the class of outputting-message functions
OM,A .

inputs such that xj = yj and xi = yi = 0 for all i ∈ C\{j}. Then, it holds
that h|C,xC

(zC) = h|C,yC
(zC) = ⊥ for any zC ∈ XC . Assume that ΠBKR is

C-robust and that there is a simulator Sim satisfying Definition 2. Since Sim
simulates the adversary’s view with oracle access to the same residual function
h|C,xC

= h|C,yC
, the views of the execution of ΠBKR on xC and yC should be

identical to each other.
On the other hand, the adversary can compute d := ν0 − ∑

i∈C νi − ∑
i∈C si

from his view. If xC is inputted to ΠBKR, then d = u − ajxj . If yC is inputted,
then d = u − ajyj = u − ajxj , from which it follows that the two views are
different. This is a contradiction. ��

We note that the condition of Proposition 2 holds even for the matrix A used
in the BKR transformation. Indeed, to transform a 0-robust NIMPC protocol
into a t-robust one, it is necessary to choose k = t + 1 and A = [H�,ei]�, where
H ∈ F

t×n
q is a matrix such that every t column vectors is linearly independent.

For any set C of size at most t − 1 and any j ∈ C, the column vectors of A
indexed by C ∪{j} span a subspace of F

k
q of dimension t, which therefore implies

that the condition of Proposition 2 holds.
Next, we fix their protocol ΠBKR. The main issue is that the adversary is

able to compute d = ν0 − ∑
i∈C νi − ∑

i∈C si = u − ∑
i∈C aixi while the

only information on d revealed by the residual function is whether it is in the
space spanned by {ai | i ∈ C}. We therefore randomize the vectors d and
ai (i ∈ C) to ensure for the adversary not to learn more than their linear
independence relation. Specifically, we choose a matrix T uniformly at random
from GLk(Fq) and redefine ν0 = Tu +

∑
i∈[n] si. We additionally give Tai

to each Pi as randomness. Then, the adversary only learns ν0 − ∑
i∈C νi −∑

i∈C si = T (u − ∑
i∈C aixi), which leaks the linear independence relation

among d and ai (i ∈ C) and nothing more. Note that our modification increases

328 R. Eriguchi et al.

the communication complexity of ΠBKR only by a constant factor and hence the
statements of [6] still hold true.

Fig. 6. The NIMPC protocol Π∗
BKR for the class of outputting-message functions

OM,A .

Theorem 3. Let M be a finite set and A ∈ F
k×n
q be a matrix. Let X1 = · · · =

Xn = Fq and X = X1 × · · · × Xn. Then, the protocol Π∗
BKR described in Fig. 6

is a fully robust NIMPC protocol for OM,A such that

CCon(Π∗
BKR) = (k + �logq |M|�) · �log q�

and CCoff(Π∗
BKR) = (2k + 2�logq |M|�) · �log q�.

To begin with, we show a lemma used in the proof of Theorem 3.

Lemma 1. Let A = (ai)i∈[�] be a tuple of � vectors, where ai ∈ F
k
q . Let Γ =

Ker(A). Then, the distribution of (Tai)i∈[�] induced by T ←$ GLk(Fq) is the
uniform distribution over FΓ = {(vi)i∈[�] | Ker((vi)i∈[�]) = Γ}.
Proof. Fix Wj = [wj1, . . . ,wj�] ∈ FΓ for j = 1, 2. Note that TA ∈ FΓ for any
T ∈ GLk(Fq). It is sufficient to show that the probabilities of TA being Wj are
equal to each other.

Let I1 ⊆ [�] be such that {w1i | i ∈ I1} is a basis of W1, that is, {w1i | i ∈ I1}
is linearly independent and for every j ∈ [�] \ I1, there exist cij ∈ Fq such
that w1j =

∑
i∈I1

w1icij . Then, {w2i | i ∈ I1} is a basis of W2. Indeed, if∑
i∈I1

w2idi = 0 for some di ∈ Fq, then (di)i∈I1 ∈ Γ . Hence
∑

i∈I1
w1idi = 0 and

di = 0 for every i ∈ I1. If {w2i | i ∈ I2} is linearly independent for some I2 ⊇ I1,
then there is no non-zero d ∈ Γ such that supp(d) ⊆ I2. Then, {w1i | i ∈ I2} is
linearly independent and hence I2 = I1. Note that w2j =

∑
i∈I1

w2icij .

Non-interactive Secure Multiparty Computation 329

Due to the linear independence, there exists S ∈ GLk(Fq) such that Sw1i =
w2i for every i ∈ I1. Then, Sw1j =

∑
i∈I1

Sw1icij =
∑

i∈I1
Sw2icij = w2j for

every j ∈ [�] \ I1. Therefore,

Pr[T ←$ GLk(Fq) : TA = W1] = Pr[T ←$ GLk(Fq) : STA = W2]
= Pr[T ←$ GLk(Fq) : TA = W2] .

��

Proof (of Theorem 3). We assume that M = Fq. It is possible to construct a
protocol for any message space M in the same manner as [6].

Correctness. Let h = hu ,m be a function to compute. Correctness follows from
the following observation: the protocol outputs a message other than ⊥ if and
only if ν0 − ∑

i∈[n] νi = T (u − ∑
i∈[n] aixi) = 0, which in turn occurs if and

only if u =
∑

i∈[n] aixi since T ∈ GLk(Fq). Then, the output is μ0+
∑

i∈[n] μi =
m − s�(u − ∑

i∈[n] aixi) = m.

Robustness. Let C ⊆ [n] and C0 = C ∪ {0}. The adversary’s view can be
decomposed into the following two parts:

(Tu +
∑

i∈[n]

si; (Tai)i∈C , (si)i∈C ; (Taixi + si)i∈C),

where T ←$ GLk(Fq) and si ←$ F
k
q (i ∈ [n]), and

(m − s�u −
∑

i∈[n]

ri; (s�ai)i∈C , (ri)i∈C ; (s�aixi + ri)i∈C),

where s←$ F
k
q and ri ←$ Fq (i ∈ [n]). We separately show that each of the two

distributions is perfectly simulated by the simulator described in Fig. 7.
As for the first part, it is sufficient to show that the distribution of

(Ta0; (Tai)i∈C , (si)i∈C ; (Taixi + si)i∈C) (3)

is perfectly simulated, where a0 =
∑

i∈C aixi − u. This is because the original
view can be obtained by computing ν0 = −Ta0 +

∑
i∈C si +

∑
i∈C(Taixi +si).

The case of C = ∅. We have the following:

– If h(x1, . . . , xn) = ⊥, then a0 = 0 and Ta0 is uniformly distributed over
F

k
q\{0}. Since the si’s are chosen independent of T , letting Δ0 ←$ F

k
q\{0}

and s̃i ←$ F
k
q (i ∈ [n]), we have (Ta0; (Taixi + si)i∈[n]) ≡ (Δ0; (s̃i)i∈[n]).

– If h(x1, . . . , xn) = m = ⊥, then a0 = 0 and Ta0 = 0. Since the si’s are
chosen independent of T , letting Δ0 = 0 and s̃i ←$ F

k
q (i ∈ [n]), we have

(Ta0; (Taixi + si)i∈[n]) ≡ (Δ0; (s̃i)i∈[n]).

330 R. Eriguchi et al.

Fig. 7. The simulator for the NIMPC protocol Π∗
BKR for the class of outputting-

message functions OM,A .

Non-interactive Secure Multiparty Computation 331

The case of C = ∅. Let B = (ai)i∈C0 and Γ = Ker(B). We show that Γ ′
0

and Γ ′
1 constructed by the simulator satisfy Γ ′

0 ∪ Γ ′
1 = Γ . Indeed, let xC0 =

(x0,xC) ∈ Γ . If x0 = 0, then
∑

i∈C aixi = 0 and hence xC0 = (0,xC) ∈ Γ ′
0. If

x0 = 0, then
∑

i∈C aixi +
∑

i∈C ai(xix
−1
0) = u and h|C,xC

(xCx−1
0) = m = ⊥.

Hence, xC0 = (x0, (xCx−1
0)x0) ∈ Γ ′

1. Conversely, any (0,xC) ∈ Γ ′
0 is clearly an

element of Γ . Any element of Γ ′
1 can be expressed as (x0,xCx0) for some x0 = 0

and xC = (xi)i∈C with h|C,xC
(xC) = ⊥, i.e.,

∑
i∈C aixi +

∑
i∈C aixi = u.

Therefore, it holds that a0x0 +
∑

i∈C ai(xix0) = 0 and hence (x0,xCx0) ∈ Γ .
It follows from Lemma 1 that (Tai)i∈C0 is uniformly distributed over

FΓ = {(Δi)i∈C0 | Ker((Δi)i∈C0) = Γ} when T ←$ GLk(Fq). Note that the
si’s are chosen independent of T . Therefore, letting (Δi)i∈C0 ←$ FΓ ′ = FΓ and
s̃i ←$ F

k
q (i ∈ [n]), we have

(Ta0, (Tai)i∈C , (si)i∈C ; (Taixi + si)i∈C) ≡ (Δ0; (Δi)i∈C , (s̃i)i∈C ; (s̃i)i∈C).

As for the second part, it is sufficient to show that the distribution of

(m + s�a0; (s�ai)i∈C , (ri)i∈C ; (s�aixi + ri)i∈C) (4)

is perfectly simulated, where a0 =
∑

i∈C aixi − u. This is because the orig-
inal view can be obtained by computing μ0 = (m + s�a0) − ∑

i∈C ri −
∑

i∈C(s�aixi + ri).

The case of C = ∅. We have the following:

– If h(x1, . . . , xn) = ⊥, then a0 = 0. It follows that s�a0 and hence m + sa0

are uniformly distributed over Fq. Since the ri’s are chosen independent of
s, letting δ0 ←$ Fq and r̃i ←$ Fq (i ∈ [n]), we have (m + s�a0; (s�aixi +
ri)i∈[n]) ≡ (δ0; (r̃i)i∈[n]).

– If h(x1, . . . , xn) = m = ⊥, then a0 = 0 and s�a0 = 0 for all s ∈ F
k
q . Since

the ri’s are chosen independent of s, letting δ0 = m and r̃i ←$ Fq (i ∈ [n]),
we have (m + s�a0; (s�aixi + ri)i∈[n]) ≡ (δ0; (r̃i)i∈[n]).

The case of C = ∅. For s←$ F
k
q , we have that (m + s�a0, (s�ai)i∈C) ≡

s�B + me1. Define row(B) = {s�B = (s�ai)i∈C0 | s ∈ F
k
q}. It then holds

that (Γ ′)⊥ = Γ⊥ = row(B) since Γ ′ = Γ = Ker(B).
Now, we can see below that the distribution of (4) is perfectly simulated:

– If h|C,xC
(xC) = ⊥ for all xC , then a0 is not in the space spanned by

{ai | i ∈ C}. In particular, there exists a vector s0 ∈ F
k
q such that

s�
0 B = e�

1 = [1, 0, . . . , 0]. Therefore, s�B + me�
1 = (s + s0m)�B is uni-

formly distributed over row(B) if s←$ F
k
q . Since the ri’s are chosen indepen-

dent of s, the distribution of (4) is identical to (δ0; (δi)i∈C , (r̃i)i∈C ; (r̃i)i∈C),
where (δi)i∈C0 ←$ (Γ ′)⊥ and r̃i ←$ Fq (i ∈ [n]) are sampled by the simulator.

– If h|C,xC
(xC) = ⊥ for some xC , then the simulator actually gets the message

m ∈ Fq. We know that (s�ai)i∈C0 is uniformly distributed over row(B) if

332 R. Eriguchi et al.

s←$ F
k
q . Therefore, since the ri’s are chosen independent of s, the distribution

of (4) is identical to (δ0 + m; (δi)i∈C , (r̃i)i∈C ; (r̃i)i∈C), where (δi)i∈C0 ←$ (Γ ′)⊥

and r̃i ←$ Fq (i ∈ [n]) are sampled by the simulator.

Communication complexity. The maximum component of on-line and off-
line communication is the randomness Ri for i ∈ [n], which consists of two
scalars of Fq for outputting messages and two vectors over Fq of dimension k for
checking the equality u = Ax. If elements of M are expressed as vectors over
Fq of dimension �, the communication complexity of the first two entries of Ri

increases � times. Therefore, the protocol achieves the communication complexity
in the statement. ��

6.2 An Asymptotically Optimal NIMPC Protocol for Indicator
Functions

As a byproduct of our modified protocol Π∗
BKR, we obtain a fully robust NIMPC

protocol for indicator functions with asymptotically optimal communication
complexity with respect to the input length.

We recall the definition of indicator functions [3]. Let Xi (i ∈ [n]) be finite sets
and X = X1 ×· · ·× Xn. Define the indicator function ha : X → {0, 1} for a ∈ X as
ha(x) = 1 if and only if x = a for x ∈ X . In addition, we define id0 : X → {0, 1}
as id0(x) = 0 for any x ∈ X . Define IX be the class of all the indicator functions
together with id0, that is, IX = {ha | a ∈ X} ∪ {id0}. Indicator functions are
fundamental building blocks to realize NIMPC for an arbitrary class of functions.
Actually, based on the fact that any function h : X → {0, 1} is expressed as
h(x) =

∑
a∈X :h(a)=1 ha(x), it is shown that an NIMPC protocol for any given

class H can be obtained from any protocol for IX with a multiplicative overhead
of maxh∈H |h−1(1)| [3]. The reason why we incorporate id0 in IX is to prevent
the equality h =

∑
a∈X :h(a)=1 ha from revealing |h−1(1)|.

We show that the protocol Π∗
BKR can be used as a protocol for IX with

a slight modification. Let q be a prime power such that q > maxi∈[n] |Xi|. We
identify each Xi with a subset of Fq\{0}. Let A = [e1, . . . ,en] be the identity
matrix of size n. Note that computing ha for a = (ai)i∈[n] ∈ X is reduced to
testing the equality u = Ax, where u = [a1, . . . , an]�. We also see that testing
Ax = 0 is equivalent to computing id0 since the inputs are represented as non-
zero field elements. Therefore, we can realize NIMPC for IX by running the
protocol Π∗

BKR for OM,A except that we skip the procedures to reveal messages.

Corollary 3. Let X1, . . . ,Xn be finite sets and X = X1 × · · · × Xn. Let q be
a prime power such that q > maxi∈[n] |Xi|. Then, the protocol Π3 described in
Fig. 8 is a fully robust NIMPC protocol for IX such that CCon(Π) = n�log q�
and CCoff(Π) = 2n�log q�.

According to the lower bound [17], any NIMPC protocol for IX has commu-
nication complexity at least n−1

∑
i∈[n] log |Xi|. Therefore, if the input domains

all have the same size, i.e., |X1| = · · · = |Xn|, our protocol is asymptotically
optimal with respect to the input length.

Non-interactive Secure Multiparty Computation 333

Fig. 8. The NIMPC protocol Π3 for the class of indicator functions IX .

Acknowledgements. This research was partially supported by JSPS KAKENHI
Grant Numbers JP20J20797 and 19H01109 and JST CREST JPMJCR19F6 and
JPMJCR14D6.

References

1. Agarwal, N., Anand, S., Prabhakaran, M.: Uncovering algebraic structures in the
MPC landscape. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II.
LNCS, vol. 11477, pp. 381–406. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 14

2. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 387–404. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 22

3. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. Cryptology
ePrint Archive, Report 2014/960 (2014). full version of [2]

4. Beimel, A., Ishai, Y., Kushilevitz, E.: Ad hoc PSM protocols: secure computation
without coordination. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part III. LNCS, vol. 10212, pp. 580–608. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56617-7 20

5. Beimel, A., Kushilevitz, E., Nissim, P.: The complexity of multiparty PSM proto-
cols and related models. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part II. LNCS, vol. 10821, pp. 287–318. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78375-8 10

6. Benhamouda, F., Krawczyk, H., Rabin, T.: Robust non-interactive multiparty com-
putation against constant-size collusion. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 391–419. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 13

https://doi.org/10.1007/978-3-030-17656-3_14
https://doi.org/10.1007/978-3-030-17656-3_14
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-319-56617-7_20
https://doi.org/10.1007/978-3-319-56617-7_20
https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.1007/978-3-319-63688-7_13

334 R. Eriguchi et al.

7. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal mar-
gin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, COLT 1992, pp. 144–152 (1992)

8. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

9. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: Proceedings of the Twenty-Sixth Annual ACM Symposium on The-
ory of Computing, STOC 1994, pp. 554–563 (1994)

10. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty com-
putation with general interaction patterns. In: Proceedings of the 2016 ACM Con-
ference on Innovations in Theoretical Computer Science, ITCS 2016, pp. 157–168
(2016)

11. Halevi, S., Ishai, Y., Kushilevitz, E., Rabin, T.: Best possible information-theoretic
MPC. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol.
11240, pp. 255–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03810-6 10

12. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

13. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: Proceedings of the Fifth Israeli Symposium on Theory of Computing and
Systems, pp. 174–183 (1997)

14. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp.
20–31 (1988)

15. Obana, S., Yoshida, M.: An efficient construction of non-interactive secure mul-
tiparty computation. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol.
10052, pp. 604–614. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48965-0 39

16. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, Cambridge (2009)

17. Yoshida, M., Obana, S.: On the (in)efficiency of non-interactive secure multiparty
computation. Des. Codes Cryptogr. 86(8), 1793–1805 (2018)

https://doi.org/10.1007/978-3-030-03810-6_10
https://doi.org/10.1007/978-3-030-03810-6_10
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-319-48965-0_39
https://doi.org/10.1007/978-3-319-48965-0_39

Efficient Information-Theoretic
Multi-party Computation over

Non-commutative Rings

Daniel Escudero1(B) and Eduardo Soria-Vazquez2(B)

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
escudero@cs.au.dk

2 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
eduardo.soria-vazquez@tii.ae

Abstract. We construct the first efficient, unconditionally secure MPC
protocol that only requires black-box access to a non-commutative ring
R. Previous results in the same setting were efficient only either for a
constant number of corruptions or when computing branching programs
and formulas. Our techniques are based on a generalization of Shamir’s
secret sharing to non-commutative rings, which we derive from the work
on Reed Solomon codes by Quintin, Barbier and Chabot (IEEE Transac-
tions on Information Theory, 2013). When the center of the ring contains
a set A = {α0, . . . , αn} such that ∀i �= j, αi − αj ∈ R∗, the resulting
secret sharing scheme is strongly multiplicative and we can generalize
existing constructions over finite fields without much trouble.

Most of our work is devoted to the case where the elements of A do
not commute with all of R, but they just commute with each other. For
such rings, the secret sharing scheme cannot be linear “on both sides”
and furthermore it is not multiplicative. Nevertheless, we are still able to
build MPC protocols with a concretely efficient online phase and black-
box access to R. As an example we consider the ring Mm×m(Z/2k

Z),
for which when m > log(n + 1), we obtain protocols that require around
�log(n + 1)�/2 less communication and 2�log(n + 1)� less computation
than the state of the art protocol based on Circuit Amortization Friendly
Encodings (Dalskov, Lee and Soria-Vazquez, ASIACRYPT 2020).

In this setting with a “less commutative” A, our black-box prepro-
cessing phase has a less practical complexity of poly(n). We fix this by
additionally providing specialized, concretely efficient preprocessing pro-
tocols for Mm×m(Z/2k

Z) that exploit the structure of the matrix ring.

1 Introduction

Multiparty Computation, or MPC for short, is a collection of techniques that
enable a set of mutually distrustful parties P1, . . . , Pn to securely compute a
given function f on private inputs x1, . . . , xn, while revealing only the output

E. Soria-Vazquez—Work partially done while at Aarhus University, Denmark.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 335–364, 2021.
https://doi.org/10.1007/978-3-030-84245-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_12

336 D. Escudero and E. Soria-Vazquez

of the computation. Security is formalized by considering an adversary that
corrupts t of the parties, and aims at learning as much as possible from the honest
parties’ inputs either by only seeing the messages corrupt parties send/receive
without changing their behavior (passive adversary), or by arbitrarily deviating
from the protocol specification (active adversary). Security requires that the
adversary does not learn anything about the honest parties’ inputs beyond what
is possibly leaked by the output of the computation. MPC protocols exist in
a wide variety of settings, and some very interesting ones are the settings in
which t < n/2 and the stronger one in which t < n/3. It is well known that in
these scenarios, MPC protocols whose security is completely independent of the
hardness of any computational problem can be devised, and with the lack of these
computational problems typically more efficiency is gained. These protocols are
called information-theoretic protocols.

Many information-theoretic protocols exist in the t < n/2 and t < n/3
regimes, for which computation is primarily represented as an arithmetic circuit
whose gates involve additions and multiplications over a finite ring. Traditionally,
this ring has been restricted to be a finite field, since the lack of zero divisors
simplifies protocol design and opens for a vast literature of algebraic tricks which
can ensure that an active adversary does not cheat during the protocol. A recent
line of work [ACD+19,DLS20,CRX19,ED20] designs protocols that operate over
non-field rings, namely Z2k (integers modulo 2k), and Galois ring extensions
GR(2k, d) of these. The use of these rings is well motivated in practice due to their
direct compatibility with hardware and their natural affinity with binary-based
protocols like binary decomposition, secure comparison or secure truncation for
fixed-point arithmetic. It is not hard to generalize the techniques presented in
[ACD+19] to more general commutative rings, as long as the so-called Lenstra
constant1 of the ring is large enough. However, in spite of the recent progress in
the design of MPC protocols over non-field rings, non-commutative rings have
been mostly overlooked in the literature.

Studying non-commutative rings is a well motivated theoretical question,
since it explores what are the minimal assumptions required on an algebraic
structure so that MPC protocols can be naturally defined over it. Furthermore,
there are some non-commutative rings that are very suitable for practical appli-
cations. For instance, matrix rings are very useful for applications based on linear
algebra, which include statistics as well as the training and evaluation of different
kinds of machine learning models. Another example are quaternion rings, which
are particularly advantageous for describing rotations in a three-dimensional
space. Due to this feature, quaternions are a useful tool in the domains of com-
puter graphics, robotics and aerospace, including satellite navigation.

Motivated by the above, in this work we attack the question of designing
efficient information-theoretic MPC protocols which work directly over not-
necessarily-commutative finite rings.

1 An exceptional set is a subset of ring elements whose non-zero pairwise differences
are invertible. The Lenstra constant of a ring is the size of the largest exceptional
set.

Efficient Information-Theoretic Multi-party Computation 337

1.1 Theoretical Contributions

First, we observe that feasibility results for MPC have been established already
since the 80s (e.g. [BGW88]), so in principle we could make use of any existing
MPC protocol that allows computing any function in order to emulate arithmetic
over any given ring R. However, we notice that this requires white-box access
to the representation of elements in R, and moreover, it is unlikely to lead to
efficient protocols if there is no certain “compatibility” between the ring R and
the domain used for the underlying MPC protocol. For example, if R is a matrix
ring over the integers modulo a prime, and the domain of computation of the
given protocol is Z2, then there is a large overhead incurred in emulating each
single addition and multiplication modulo a prime using binary circuits.

Given the above, we propose efficient unconditionally secure MPC protocols
over rings containing big enough exceptional sets A which satisfy some addi-
tional commutativity properties. Our most general results only requires black-box
access to the ring, which we start by precisely defining.

Definition 1. We say that a protocol has black-box access to a ring R, or sim-
ply that it is black-box, if it only requires black-box access to the ring operations
and the elements of a particular exceptional set A. Furthermore, we assume that
it is efficient both to sample elements from R and to invert elements from R∗.

Our protocols are based on a generalization of Shamir’s linear secret shar-
ing scheme to non-commutative rings. Prior to our work, Quintin, Barbier and
Chabot [QBC13] showed how to construct Reed Solomon codes over rings that
do not need to be commutative. By reinterpreting their results under the lenses
of linear secret-sharing schemes (LSSS’s), we first obtain the following result.

Theorem 1 ([Theorem 4, restated). Let R be a ring such that Z(R) con-
tains an exceptional set of size at least n + 1 and let t < n/3. Then, we can
define a Shamir-style strongly multiplicative linear secret sharing scheme over R.

This is discussed in Sect. 3. Given a ring satisfying the hypothesis of the
previous theorem, we can adapt the perfectly secure protocol by Beerliova and
Hirt [BTH08].

Corollary 1 (Corollary 2, restated). Let R be a ring such that Z(R) con-
tains an exceptional set of size at least 2n. Let A be an active adversary cor-
rupting t < n/3 parties. There exists a perfectly secure, black-box MPC protocol
with an amortized communication complexity of O(n) ring elements per gate.

While interesting, the previous result leaves out of the picture several non-
commutative rings. For example, the centre of the ring of matrices over Z2k ,
which is widely used in applications involving linear algebra, like machine learn-
ing, has a Lenstra constant of 2, which is not large enough to apply the results
highlighted above. We fix this by relaxing the commutativity requirements for
the elements of the exceptional set: instead of requiring this exceptional set to
be a subset of the centre of the ring, we only ask the elements of the exceptional
set to commute with each other. It is in this setting that the previous results on

338 D. Escudero and E. Soria-Vazquez

Reed-Solomon codes [QBC13] do not help us as much. The resulting code (i.e.
secret sharing scheme) is not linear “on both sides”, but rather only when mul-
tiplied by scalars either on the left or on the right. Even more disastrously, the
left-or-right LSSS that we obtain is not multiplicative, which rules out standard
techniques to achieve unconditionally secure MPC. Considering all of this, most
of our work relates to proving the following Theorem:

Theorem 2 (Informal). Let R be a ring and A = {α0, . . . , αn} ⊆ R an
exceptional set such that ∀αi, αj ∈ A,αi · αj = αj · αi. Let A be an active
adversary corrupting t parties. For t < n/2 and t < n/3, there exist efficient,
information-theoretically secure, black-box MPC protocols over R. The amortized
communication complexity of their online phase is O(n) ring elements per gate.

The black-box online phase of our protocol is described in Sect. 4, while the
black-box offline phase is presented in Sect. 5.1.

1.2 Concretely Efficient Protocols for Mm×m (Z2k)

Beyond their theoretical interest, our techniques also have relevance in the con-
text of concretely efficient MPC. As an example for this, we provide constructions
for the important ring R = Mm×m(Z2k), the ring of m × m matrices with entries
modulo 2k, which improve upon the concrete efficiency of the online phase of
the state of the art protocols in the same setting but without black-box access
to R. As mentioned before, the centre of this ring does not have a large enough
exceptional set, so the MPC techniques based on the multiplicativity of Shamir
secret sharing (which are quite efficient) cannot be applied.

Given this, our approach is to make use of the black-box protocol from
Theorem 2. First, we show that, whenever m ≥ log(n+1), the hypothesis of this
theorem is satisfied. This is due to the fact that GR(2k,m) is a (commutative)
subring of R and the Lenstra constant of GR(2k,m) is precisely 2m. Second, we
show how to replace the black-box preprocessing from Theorem 2, which achieves
only poly(n) communication complexity, by a more tailored preprocessing pro-
tocol for R = Mm×m(Z2k). This is done in Sect. 5.2. Finally, we also show in
the full version of this work how to do efficient error-correction of Shamir shares
in this setting.

By following Theorem 2 we obtain a very efficient online phase, as described
by the (generic) protocols we provide in Sect. 4. For this part of the protocol
execution, the fact of having a secret sharing scheme directly over R is a signif-
icant efficiency advantage: each share of a secret is a single element of R, and
arithmetic happens at the level of R. However, the price to pay for such an effi-
cient online phase, which overcomes the issues of lacking multiplicativity, is that
the offline phase becomes much more complex.

In Sect. 5.2 we show how to compute the required preprocessing material
for R = Mm×m(Z2k) by, intuitively, secret-sharing each entry of a matrix and
then leveraging existing works on MPC over Z2k [ACD+19,DLS20]. As we need
to compute the product between secret-shared matrices and retain information-
theoretic security, this is our best approach for concrete efficiency. Secret-sharing

Efficient Information-Theoretic Multi-party Computation 339

each entry of a matrix in Mm×m(Z2k) individually would require us to move to a
Galois extension of Z2k of degree d � log(n + 1), which would add such overhead
in terms of communication and a worse one for computation. Instead of naively
secret-sharing each entry, we amortize the asymptotic communication cost of
working over such Galois extension by using the Circuit Amortization Friendly
Encodings (CAFEs) introduced in [DLS20]. Intuitively, what this means is that
chunks of every row/column of each matrix will be secret-shared as a single
Galois Ring element.

At this point, one could ask why not work with this type of secret-sharing
for the whole protocol execution, rather than just the preprocessing phase. The
CAFE for inner products that we use in our preprocessing phase allows to “pack”
approximately d/2 elements from Z2k into GR(2k, d), so that seems to be a small
overhead. Some arguments for not following this route are as follows. First of all,
the protocol from [DLS20] is only fully detailed for double sharings and in the
case of security with abort. Our online protocol, on the other hand, has guaran-
teed output delivery (if t < n/3) and uses multiplication triples. Furthermore,
it is most efficient when using a function-dependent preprocessing in the style
of [BNO19,ED20]. These differences make a fair comparison more difficult, but
even assuming an adaptation of [DLS20] to the function-dependent techniques of
[BNO19,ED20], our online phase remains more efficient in the following aspects.

– Secret sharing input values: For the adapted [DLS20], when parties provide
inputs to the computation, it would be important to check that they are
rightly encoded. This issue is not specific to CAFEs, but merely to the fact of
having to work over an extension (GR(2k, d)) of the ring one is actually inter-
ested in (Z2k). The check can be performed by using preprocessing material,
but it increases the communication and round complexity of the protocol. Our
online phase does not need to perform any such check, as it works directly
over Mm×m(Z2k).

– Computing the product of two secret-shared matrices, communication: In our
work, this requires to reconstruct two secrets in Mm×m(Z2k). An adapted
[DLS20], would need to reconstruct one element of GR(2k, d) per entry of the
matrix. Hence, in terms of communication we are around d/2 times better in
our work.

– Computing the product of two secret-shared matrices, computation: Our work
benefits from the fact that the shares each party holds, as well as the oper-
ations they perform on them, are in Mm×m(Z2k). This has the advantage
that an implementation of our protocol can fully exploit existing libraries
for matrix arithmetic, which is quite efficient due to its relevance in multiple
practical settings. On the other hand, using a potential extension of the tech-
niques of [DLS20] in the online phase would require computation on Galois
ring elements, which is way less studied than matrix arithmetic and it is also
more inefficient. Each multiplications of two Galois ring elements costs d2

operations in Z2k , or potentially d log(d) using FFT-based techniques. This
is not very concretely efficient, as explored experimentally in [DEK21], for
example.

340 D. Escudero and E. Soria-Vazquez

Instead of using CAFEs, Reverse Multiplication Friendly Embeddings
(RMFEs) [CCXY18] could have been chosen.A generalization of the interpolation-
based RMFE from [CCXY18] was presented in [DLS20] and the constructions
based on algebraic geometric codes were also lifted to rings in [CRX19]. Whereas
RMFEs are much computationally heavier than CAFEs, they can provide a
slightly better communication complexity. More concretely, if δ is the amount of
elements from the base ring that the RMFE can “pack”, RMFEs incur in a com-
munication complexity for the product of secret shared matrices that would be
only d/δ, rather than d/2, worse than ours. On the other hand, using RMFEs
require two sequential openings per matrix multiplication, rather than a single one
as CAFEs do. This is due to a resharing operation to compute ψ(φ(a) · φ(b)) in
RMFEs.

In a nutshell, by using our seemingly theoretical tools, we are able to build
MPC protocols which have a more efficient online phase than the state of the
art protocols, while retaining a comparable preprocessing.

1.3 Related Work

There are a few works on MPC over non-abelian groups, rather than rings. Hence,
we are not interested in those. These include [DPS+12] and [CDI+13]. Note that
[CDI+13] additionally provides constructions for commutative rings.

MPC over non-commutative rings has been discussed in [CFIK03], but their
results related to MPC from (multiplicative) Monotone Span Programs are
restricted to (algebras over) commutative rings. They only seem to take care
of the non-commutative case in Sects. 4.2 and 4.3, which deal only with branch-
ing programs and formulas, rather than circuits.

Although not mentioned explicitly in [BBY20], the basic building blocks
(secure addition and multiplication) presented in that work for MPC based
on replicated secret-sharing also work over a non-commutative ring. However,
these techniques differ from ours in several ways. First, they use computational
assumptions (PRFs) in order to improve their overall efficiency. Second, as it is
inherent for MPC based on replicated secret-sharing, the communication com-
plexity does not scale well as the number of parties increases. More precisely,
each share consists of

(
n
t

)
ring elements, which is exponential in n whenever

t = n/c for some c > 1, since
(

n
n/c

) ≥ (c1/c)n.2

2 Preliminaries

Notation. Sometimes, we use [n], where n ∈ N, to represent {1, 2, . . . , n}. We

write x
$← X to denote sampling a value x uniformly from the set X . We write

Zpk to denote the ring of integers modulo pk and Mr×c(R) to refer to the ring
of r × c matrices over R.

2 Here we use the well known inequality
(

a
b

) ≥ (a/b)b.

Efficient Information-Theoretic Multi-party Computation 341

2.1 Multiparty Computation

We consider secure evaluation of functions (y1, . . . , yn) = f(x1, . . . , xn) given by
arithmetic circuits with addition and multiplication gates defined over a finite
ring R, where party Pi is supposed to learn yi.

The security of our protocols is proven in the UC framework by Cannetti
[Can01]. We assume secure, synchronous channels, and we deal with active, static
adversaries. In a nutshell, the adversary corrupts a subset of t parties actively,
arbitrarily changing their behavior during the execution of the protocol. The
adversary, also known as an environment, additionally provides the inputs for all
the parties. A given protocol Π instantiates a given functionality F , if there exists
a simulator S who, by interacting with the adversary and with the functionality
F , creates an execution (called the ideal execution) that is indistinguishable to
the adversary from the real execution in which the actual honest parties are
running the protocol Π.

If the distributions in the two executions are exactly the same, then we say
that Π instantiates F with perfect security. In contrast, if the distributions
are only negligibly apart (in some security parameter κ), then we say that Π
instantiates F with statistical security. Finally, sometimes we consider hybrid
models in which a protocol Π instantiates a functionality F , assuming access
to another functionality F ′. In this case we say that Π instantiates F in the
F ′-hybrid model. See [Can01] for details.

In this work we consider a broadcast functionality FBC that receives an input
from a designated sender and relays this exact same value to all the parties.

We will take into account two functionalities for MPC. One is FMPC−GOD,
which receives inputs x1, . . . , xn from the parties, computes the given function
(y1, . . . , yn) = f(x1, . . . , xn), which is represented as an arithmetic circuit over
a ring R composed of addition and multiplication gates, and returns the output
yi to each party Pi. The second functionality is FMPC−abort, which is defined
as FMPC−GOD, except that, before delivering output to the parties, it waits for
a message from the adversary. If the message is abort, then the functionality
sends abort to all the parties. Else, if the message if ok, then the functionality
sends the output yi to each party Pi. In a real execution, when we say that an
honest party “aborts”, it means that this party sends an abort signal to all the
parties using FBC and then outputs abort. A party aborts upon receiving an
abort signal through the broadcast channel.

2.2 Background in Ring Theory

We turn to recall some useful results from ring theory. Outside of this section,
whenever we talk about a ring R, we mean a finite ring with identity 1 �= 0 for
which we do not assume commutativity. During this specific section we do not
assume finiteness, so that it is clear which results require such hypothesis.

Working over these general rings hides subtleties which do not appear in the
field case. Besides the lack of commutativity, one has to be careful about the
fact that the rings we consider contain zero divisors. Moreover, it is important

342 D. Escudero and E. Soria-Vazquez

to reconsider what it means to be a unit. We recap some basic definitions and
results in this area of algebra. These are standard results, and some of their
proofs are provided in the full version of this work.

Definition 2. Let R be a ring. An element a ∈ R is a unit if there exists b ∈ R
such that a · b = b · a = 1. The set of all units is denoted by R∗.

An element a ∈ R\{0} is a left (resp. right) zero divisor if ∃ b ∈ R\{0} such
that a · b = 0 (resp. b · a = 0). In this work, whenever we say that a ∈ R\{0} is
a zero divisor we mean that a is both a left and right zero divisor.

Lemma 1. 1. a ∈ R∗ if and only if a is both left-invertible and right-invertible.
2. If a has a right inverse, then a is not a right zero divisor.
3. If R is finite, then every element which has a right inverse is a unit.

Lemma 2. Let R be a finite ring. Then all non-zero elements of R are either a
unit or a zero divisor.

Some elements of a non-commutative ring have better commutative proper-
ties than other. The two following definitions allow us to name them.

Definition 3. The center of a ring R, denoted by Z(R) consists of the elements
a ∈ Z(R) such that ∀b ∈ R, ab = ba.

Definition 4 ([QBC13]). Let A = {a1, . . . , an} ⊂ R. We say that A is a
commutative set if ∀ai, aj ∈ A, ai · aj = aj · ai.

Exceptional sets. Elements which satisfy that their pairwise differences are
invertible will be fundamental in our constructions. These have received different
names in the literature: ‘subtractive sets’ in [QBC13], ‘exceptional sequences’ in
[ACD+19] and ‘exceptional sets’ in [DLS20]. We will stick with the latter denom-
ination.

Definition 5. Let A = {a1, . . . , an} ⊂ R. We say that A is an exceptional set
if ∀i �= j, ai − aj ∈ R∗. We define the Lenstra constant of R to be the maximum
size of an exceptional set in R.

2.3 Polynomials over Non-commutative Rings

Definition 6 (Polynomial Ring). Let R be a ring and A ⊆ R. The set of
polynomials over A of degree at most d is given by A[X]≤d = {f(X) =

∑d
i=0 ai ·

Xi | ai ∈ A}. The set of polynomials over A is A[X] = ∪d≥0A[X]. Given two

polynomials a(X) =
(∑d

i=0 ai · Xi
)
, b(X) =

(∑d′

j=0 bj · Xj
)
, the ring R induces

the following operations:

1. c(X) = a(X) + b(X) =
∑max{d,d′}

k=0 (ak + bk) · Xk, where ak = 0 for k > d and
bk = 0 for k > d′.

Efficient Information-Theoretic Multi-party Computation 343

2. c(X) = a(X) · b(X) =
∑d+d′

k=0 ck · Xk, where

ck =
∑

i+j=k
0≤i≤d, 0≤j≤d′

aibj .

Furthermore, when A is a ring, so is A[X].

Our definition of the product in a polynomial ring imposes that “the indeter-
minate X commutes with the coefficients”. Otherwise, when formally multiplying
two polynomials we would encounter terms of the form aiXibjXj , which could
not be turned into aibjXi+j . Allowing the indeterminate to commute with coef-
ficients, rather than keeping everything non-commutative, allows us to prove a
series of results leading to the existence and uniqueness of interpolating polyno-
mials. On the other hand, granting this small commutativity property to poly-
nomials requires to consider their evaluation more carefully, as we will see next.

Definition 7 (Evaluation Maps). Let f =
∑d

i=0 fiXi ∈ R[X] and a ∈ R. We
define the evaluation at a on the right (resp. left) map fR(a) (resp. fL(a)) as
follows:

·R(a) : R[X] → R ·L(a) : R[X] → R

f → fR(a) =
d∑

i=0

fia
i f → fL(a) =

d∑

i=0

aifi

We say that a is a right (rep. left) root whenever fR(a) = 0 (resp. fL(a) = 0).
We use f(a) to denote fR(a).

The evaluation maps above are additive homomorphisms but, in general, they
are not ring homomorphisms. This is because, as mentioned above, in polynomial
multiplication the indeterminate X commutes with the coefficients. It is impor-
tant to keep in mind that we are dealing with polynomials as formal objects of
their own, rather than confusing them with polynomial functions (where a “vari-
able” X is “instantiated” with a ∈ R when evaluating the polynomial) as one
usually does in commutative rings. Fortunately, there are some cases in which
some notion of multiplicative homomorphism holds for the evaluation maps, as
described in the following lemma.

Lemma 3. Let f ∈ R[X].

1. Let A be a commutative set. If g ∈ (A ∪ Z(R))[X] and a ∈ A, then
(f · g)R(a) = fR(a) · gR(a) and (g · f)L(a) = gL(a) · fL(a).

2. Let g ∈ R[X]. If a ∈ Z(R), for all h ∈ R[X], hR(a) = hL(a). Furthermore,
(f · g)R(a) = fR(a) · gR(a).

Proof. We only prove the first part of the first statement, as the same reasoning
applies for the rest of the claims. Let a ∈ A and let f(X) =

(∑d
i=0 fi · Xi

)
∈ R[X]

and g(X) =
(∑d′

j=0 gj · Xj
)

∈ (A ∪ Z(R))[X] be our polynomials.

344 D. Escudero and E. Soria-Vazquez

fR(a) · gR(a) =

(
d∑

i=0

fi · ai

)

·
⎛

⎝
d′∑

j=0

gj · aj

⎞

⎠ =
d∑

i=0

d′∑

j=0

fi · ai · gj · aj =

=
d∑

i=0

d′∑

j=0

fi · ai−1 · gj · aj+1 =
d∑

i=0

d′∑

j=0

fi · gj · ai+j = (f · g)R(a). �

Theorem 3 (Euclidean Algorithm over Rings). Let f(X) ∈ R[X] be a
non-zero polynomial and let g(X) ∈ R[X] be a monic polynomial. There exist
unique q�(X), r�(X) (resp. qr(X), rr(X)) such that f(X) = q�(X) · g(X)+ r�(X) (resp.
f(X) = g(X) · qr(X) + rr(X)), where deg(r�) < deg(g) (resp. deg(rr) < deg(g)).

Given the two previous results, we can bound the number of roots of a poly-
nomial as it is described in the next Lemma.

Lemma 4. Let f ∈ R[X]≤n be a non-zero polynomial. Then f has at most n
distinct left (resp. right) roots in the same commutative exceptional set A ⊂ R.
In other words, if f has at least n + 1 left (resp. right) roots in A, then it is the
zero polynomial.

Proof. We focus on right roots for the result, and we reason by induction on
the degree d of the non-zero polynomial f . The statement is clear when d = 0.
Assuming the result for d−1, we now look at a degree-d polynomial f . If f does
not have any roots, or if it only has one root, then the result clearly holds. Else,
let a, b ∈ A be two different roots of f(X). As g(X) = X − a is a monic polynomial,
by Theorem 3 there exists q(X) ∈ R[X] and c ∈ R such that f(X) = q(X) · g(X) + c.
Observe that deg(q) < deg(f).

Now, since g(X) ∈ A[X], by Lemma 3 we have that fR(a) = qR(a)gR(a) + c,
so 0 = qR(a) · (a−a)+ c = c. From this, it follows that 0 = fR(b) = qR(b)gR(b) =
qR(b) · (b − a). Since (b − a) ∈ R∗, then it has to be that qR(b) = 0.

By the induction hypothesis, q(X) has at most d − 1 distinct right roots in
A, so we can conclude that f(X) has at most d distinct right roots in A. �

Lagrange interpolation for sets of points (xi, yi) ∈ R2 can be computed, as
long as all the xi are part of the same commutative exceptional set A ⊂ R. The
following result was proven in [QBC13], but it only considered evaluation on the
right. We reformulate and extend their result here for completeness and additional
precision.

Proposition 1. Let A = {x1, . . . , xn+1} ⊂ R be a commutative exceptional set
and let B = {y1, . . . , yn+1} ⊂ R. Then there exists a unique polynomial f ∈ R[X]
(resp. g ∈ R[X]) of degree at most d such that fR(xi) = yi (resp. gL(xi) = yi)
for i = 1, . . . , d + 1. Furthermore, if A ∪ B constitutes a commutative set, or if
A ⊂ Z(R), f(X) = g(X).

Efficient Information-Theoretic Multi-party Computation 345

Proof. Let Li(X) =
∏

j �=i(X − xj) ∈ A[X]. Observe that for all j = 1, . . . , d + 1 it
holds that Li(xj) ∈ R∗, since (xi − xj) ∈ R∗.

It is easy to verify, with the help of Lemma 3, that the two following poly-
nomials show the existence of solutions:

f(X) =
d+1∑

i=1

yiLi(xi)−1Li(X); g(X) =
d+1∑

i=1

Li(X)Li(xi)−1yi

The uniqueness of f (resp. g) is a consequence of Lemma 4. The fact that f(X) =
g(X) when A ∪ B constitutes a commutative set or A ⊂ Z(R) follows from
inspection. �

2.4 Galois Rings

Galois Rings relate to integers modulo a prime power pk in the same way a Galois
Field relates to integers modulo a prime p. They are a fundamental object of
study among finite commutative rings.

Definition 8. A Galois Ring GR(pk, d) is a ring of the form R = Zpk [X]/(h(X)),
where p is a prime, k a positive integer and h(X) ∈ Zpk [X] a monic polynomial
of degree d ≥ 1 such that its reduction modulo p is an irreducible polynomial in
Fp[X].

Given a base ring Zpk , there is a unique degree d Galois extension of Zpk ,
which is precisely the Galois Ring provided on the previous definition. Note that
Galois Rings reconcile the study of finite fields Fpd = GR(p, d) and finite rings of
the form Zpk = GR(pk, 1). Every Galois Ring R = GR(pk, d) is a local ring and
its unique maximal ideal is (p). Hence, all the zero divisors of R are furthermore
nilpotent, and they constitute the maximal ideal (p). Furthermore, we have that
R/(p) ∼= Fpd .

Proposition 2 ([ACD+19]). The Lenstra constant of R = GR(pk, d) is pd.

Whenever we need to explicitly represent elements a ∈ R, we will consider
two options. The first one, which we will denote the additive representation,
follows from Definition 8 and consists of the residue classes

a ≡ a0 + a1 · X + · · · + ad−1 · Xd−1 mod h(X), ai ∈ Zpk . (1)

The second option is what we shall call the matrix representation, which uses
the embedding ι : GR(pk, d) ↪→ Md×d(Zpk) and represents a as ι(a). It will
be instructive to discuss this embedding more explicitly for other parts of this
work. Let us look at how the product between a, b ∈ GR(pk, d) is computed. If
we express a in its additive representation, a =

∑
�∈[d] a� · X�, multiplication by

b can be seen as the homomorphism of free Zpk -modules φb : Zd
pk → Z

d
pk , which

maps the coefficients of a’s additive representation to those of c = φb(a).
Notice that since Im(ι) � GR(pk, d), we have that ι(a) · ι(b) = ι(b) · ι(a).

In other words, the matrices in Im(ι) constitute a commutative subset of
Md×d(Zpk).

346 D. Escudero and E. Soria-Vazquez

3 Shamir’s Secret Sharing over Non-commutative Rings

Secret sharing schemes (SSS) are one of the most fundamental building blocks in
secure computation. There are three properties which we usually want from SSS
in MPC. The first one is t-privacy, meaning that no set of at most t shares reveals
any information about the secret. The second one is t + 1-reconstruction, which
allows to reconstruct the secret from any subset of t+1 correct shares. The third
one is linearity, which requires talking about specific algebraic structures. In our
work, as we will be working over rings for which we do not assume commutativity,
we need to distinguish between left and right linearity.

Definition 9. Let C = {(s, s1, . . . , sn)} ⊆ Rn+1 be a SSS, where s is a secret
and s1, . . . , sn are its shares. We say that C is a left (resp. right) linear secret
sharing scheme if it is a left (resp. right) submodule of Rn+1. We will respectively
denote the secret sharing of s by [s], 〈s〉. If C is a bisubmodule of Rn+1, then we
simply call it a linear secret sharing scheme, which we denote as �s�.

In Shamir’s secret sharing scheme, which was originally restricted to finite
fields [Sha79], the submodule C is a Reed-Solomon code, i.e. �s�t would be
sampled from C = {(s, f(α1), . . . , f(αn)) : f ∈ F[X]≤t ∧ s = f(α0)}. This was
later on generalized to commutative rings containing big enough exceptional
sets [ACD+19]. In this work, we observe that Reed-Solomon codes have been
constructed even over non-commutative rings [QBC13]. Throughout this section
we translate the relevant parts of [QBC13] to the LSSS language. Moreover, we
fill some gaps about error correction left by the authors of [QBC13], we generalize
standard secret reconstruction procedures from [DN07] and we show where do
matrix rings fit in these results.

Beyond linearity, another desirable property for a SSS to have is that of
(strong) multiplicativity. Briefly, such notion guarantees that (even in the pres-
ence of active adversaries) the product of two secrets a, b can be reconstructed
as a function of the coordinate-wise product of their shares, ai · bi. For a formal
definition see [CDM00].

Theorem 4. Let R be a ring such that Z(R) contains an exceptional set
A = {α0, . . . , αn} and let t < n/3. Then, we can define a Shamir-style strongly
multiplicative linear secret sharing scheme over R. In more detail, a degree-t
sharing �s�t is sampled from:

{(s, fR(α1), . . . , fR(αn)) : f ∈ F[X]≤t ∧ s = fR(α0)}

Strong multiplicativity in the previous result woks as usual in Shamir’s LSSS.
In more detail, given two shared values, �a�t = (a, a1, . . . , an) using a polynomial
f ∈ R[X]≤t and �b�t = (b, b1, . . . , bn) using a polynomial g ∈ R[X]≤t, it holds that
�a · b�2t = (ab, a1b1, . . . , anbn). This is due to the fact that the points αi where
f and g are evaluated at are contained in Z(R), and hence by Lemma 3 it
holds that (f · g)R(αi) = fR(αi) · gR(αi), which is not generally the case for
non-commutative polynomials.

Efficient Information-Theoretic Multi-party Computation 347

Given the previous theorem, we can adapt the results of [BTH08,ACD+19]
to work over non-commutative rings as the ones of the hypothesis without too
much effort. This gives us the following result, for which a bit more details are
given in the full version of this work. The increase on the size of the exceptional
set is due to the use of so-called hyper-invertible matrices.

Corollary 2. Let R be a ring such that Z(R) contains an exceptional set of size
at least 2n. Let A be an active adversary corrupting t < n/3 parties. There exists
a perfectly secure, black-box MPC protocol with an amortized communication
complexity of O(n) ring elements per gate.

If we relax the hypothesis of Theorem 4, so that we only ask from the elements
of the exceptional set to commute with each other, rather than being in the centre
of the ring, we can still build Shamir-style secret sharing schemes.

Theorem 5. Let R be a ring containing a commutative, exceptional set A =
{α0, . . . , αn}. Then, we can define a Shamir-style left-LSSS [·] and a Shamir-
style right-LSSS 〈·〉 over R. These secret sharing schemes are not multiplicative.

We do not provide an explicit proof of the previous Theorem, but in Fig. 1 we
show how to share a secret for the left-linear scheme [·]. The right-linear scheme
〈·〉 would produce shares in an analogous way, setting instead si = fL(αi). The
t-privacy and t +1-reconstruction properties are a consequence of Proposition 1.
To see why these schemes are not multiplicative, remember that the evaluation
maps are not ring homomorphisms in general, i.e. given f, g ∈ R[X], generally
fR(αi) · gR(αi) �= (f · g)R(αi). Hence, in contrast with Theorem 4, given [a]t =
(a, fR(α1), . . . , fR(αn)) and [b]t = (b, gR(α1), . . . , gR(αn)), Lemma 3 is of no help
now, since the αi values are not in the centre any more. Note that we cannot
simply impose for the sampled polynomial f in Fig. 1 to be in A[X]≤d. As an
example, imagine the case when A is furthermore a subring of R. We would then
have that fR(α0) ∈ A, effectively restricting the values that can be secret shared
to those in the subring A itself.

Fig. 1. Sharing a secret using [·].

348 D. Escudero and E. Soria-Vazquez

3.1 Secret Sharing over Matrix Rings

As our more practical results are related to the ring Mm×m(Z2k), it will be
useful to give already a more concrete analysis of how it fits with respect to
Theorems 4 and 5, before returning to generic rings. We start by reminding the
following basic result.

Lemma 5. The centre of Mm×m(R), where R is a commutative ring, is the
R-multiples of the identity matrix.

Besides which elements are in the centre of the ring, it is important that we
identify exceptional sets in the ring. As we discussed in Sect. 2.4, there exists an
embedding ι : GR(pk,m) ↪→ Mm×m(Zpk). Hence, as the Lenstra constant of the
former ring is pm, that of Mm×m(Zpk) has to be at least pm. Furthermore, it
can be proved that this is exactly the Lenstra constant of Mm×m(Zpk), a result
shown in the full version of this work.

Proposition 3. The Lenstra constant of Mm×m(Zpk) is pm.

Let us focus on the ring R = Mm×m(Z2k). We know that Z(R) cannot
contain exceptional sets of size bigger than two, so Theorem 4 is ruled out. The
good news are that, since GR(2k,m) (more precisely, Im(ι)) is a commutative
subring of R, we can easily identify within R a commutative exceptional set
of size 2m and construct the secret sharing schemes described in Theorem 5
whenever m > log(n + 1).

3.2 Error Correction and Robust Reconstruction

Let R be a finite ring and let A = {α0, α1, . . . , αn} ⊆ R be an exceptional
commutative set. Let [s]d = (s1, . . . , sn) be a secret-shared value s ∈ R using
a polynomial of degree at most d. For i = 1, . . . , n, let s′

i = si + δi, where
at most e of the δi ∈ R are non-zero, with n > d + 2e. Our goal is to recover
(s1, . . . , sn) from (s′

1, . . . , s
′
n). This is an essential primitive when designing MPC

protocols based on Shamir secret-sharing, as it corresponds to reconstructing a
secret-shared value from a given set of announced shares among which some
of them could be incorrect due to adversarial behavior. This is achieved by a
generalization of the Berlekamp-Welch decoding algorithm for Reed-Solomon
codes to the non-commutative setting. Such result was exhibited in [QBC13],
although many holes were left due to the general approach taken by the authors.
For instance, a crucial step in the decoding algorithm lies in solving a system
of linear equations over a non-commutative ring, which as we discuss later on
is not a very well studied area and concrete algorithms should be developed for
each particular instantiation. Motivated by this, and also for the sake of clarity
and self-containment, we present below our own version of the generalization of
the Berlekamp-Welch algorithm, filling in the holes left in [QBC13]. Below, we
let n′ = d + 2e + 1.

Efficient Information-Theoretic Multi-party Computation 349

Generalization of the Berlekamp-Welch algorithm. Below we let F denote
the subring of R made of finite sums of terms of the form αi1 · αi2 · · · αi�

. We
say that two polynomials p(X), q(X) ∈ R[X] satisfy the BW-conditions if:

1. deg(p) ≤ e;
2. deg(q) ≤ d + e;
3. p(X) is monic;
4. p(X) ∈ F [X];
5. For all i = 1, . . . , n′, it holds that s′

i · p(αi) = q(αi).

We begin with the following claim.

Claim. There exists a pair p(X), q(X) ∈ R[X] that satisfies the BW-conditions
above.

Proof. Let f(X) =
∑d

i=0 ciXi ∈ R≤d[X] such that f(αi) = si for i = 1, . . . , n′,
guaranteed by Proposition 1, and define p(X) =

∏
ei �=0(X − αi) and q(X) =

f(X)p(X). It can be easily verified, with the help of Lemma 3, that this choice of
p(X) and q(X) satisfies the BW-conditions. �

The next claim shows that any other pair satisfying the BW-conditions is as
good as the one guaranteed from the previous claim for the purpose of recovering
f(X).

Claim. Let p(X), q(X) be defined as in the proof of the previous claim, and
suppose that p̂(X), q̂(X) satisfy the BW-conditions. Then p̂(X) divides q̂(X) and
q̂(X)/p̂(X) = f(X).3

Proof. Consider the polynomial r(X) = q̂(X)p(X)−q(X)p̂(X). In light of Lemma 3,
taking into account that p(X) ∈ F [X], we have that for every i = 1, . . . , n′:

r(αi) = q̂(αi)p(αi) − q(αi)p̂(αi) = s′
ip̂(αi)p(αi) − s′

ip(αi)p̂(αi) = 0.

Observe that in the last equality we have used the fact that p̂(αi)p(αi) =
p(αi)p̂(αi). Since deg(r) ≤ d + 2e < n′, it follows from Lemma 4 that r(X) ≡ 0,
which shows that q̂(X)p(X) = q(X)p̂(X). Given that q(X) = f(X)p(X), we have that
q̂(X)p(X) = f(X)p(X)p̂(X), which implies (q̂(X) − f(X)p̂(X)) · p(X) = 0.

We claim that q̂(X) − f(X)p̂(X) = 0, which can be shown by proving that this
polynomial evaluates to 0 in at least d + e + 1 points on an exceptional set in
light of Lemma 4. To see this, consider the evaluation of this polynomial at αi

for all i such that ei = 0. Observe that there are at least n′ − e = d + e + 1
such evaluation points. It is easy to see that in this case p(αi) is invertible, so
(q̂(αi) − f(αi)p̂(αi)) · p(αi) = 0 implies that q̂(αi) − f(αi)p̂(αi) = 0, as required.
At this point we see that q̂(X) = f(X)p̂(X), which concludes the proof of the main
claim. �
3 b(X) (right-)divides a(X), if, after dividing a by b using Theorem 3 obtaining q(X) and

r(X) such that a(X) = q(X) · b(X) + r(X) with deg(r) < deg(b), it holds that r(X) = 0.
The quotient a(X)/b(X) is defined as q(X).

350 D. Escudero and E. Soria-Vazquez

Error Detection. Finally, if n > d + e the parties may not be able to perform error
correction, but they can still do error detection by checking if all the received
shares (s′

1, . . . , s
′
n) are consistent with a polynomial of degree at most d (e.g. by

using the first d+1 shares to interpolate such polynomial and checking that the
remaining shares are consistent with it). If this is the case, since this polynomial
is determined by any set of d + 1 shares, it is in particular determined by the
n − e ≥ d + 1 shares without errors.

Solving for the BW-conditions. In order to have an efficient decoder it
remains to show how to find at least one pair p(X), q(X) that satisfies the BW-
conditions. First, notice that by treating the coefficients of the unknown poly-
nomials p(X), q(X) as unknowns, the BW-conditions transform into a system of
n′ = d + 2e + 1 linear equations on d + 2e + 1 variables over R.4 Unfortunately,
to the best of our knowledge the theory of linear equations over general non-
commutative rings is not very well understood, with only a few works consider-
ing concrete instantiations of some types of rings (e.g. [Ore31,Son75,DKH+12]).
Since it is of particular interest to us, we develop in the full version of this work
efficient algorithms to solve systems of linear equations for the matrix ring case
R = Mm×m(Zpk).

3.3 Efficient Protocols for Secret Reconstruction

Protocol ΠPrivOpen([s]d, Pr)

Input: Sharing [s]d, a receiver party Pr.
Output: Pr learns s.
Protocol: The parties proceed as follows

1. Each party Pj for j ∈ {1, . . . , n} \ {r} sends its share of s to Pr.
2. Upon receiving all the shares of [s], Pr defines si = 0 for every missing share

si and proceeds as follows.
– If 0 < n − d ≤ t: Interpolate the unique polynomial f ∈ R[X]≤d such that

fL(αi) = si for i = 1, . . . , d + 1. Output s′ = f(α0).
– If t < n − d ≤ 2t: Interpolate the unique polynomial f ∈ R[X]≤d such that

fL(αi) = si for i = 1, . . . , d + 1. Check if fL(αi) = si for i = d + 2, . . . , d +
t + 1. If this is the case, output s = f(α0). Else abort.

– If 2t < n − d: Apply error correction (Section 3.2) on the shares
(s1, . . . , sd+2t+1) to recover a polynomial f ∈ R[X]≤d such that fL(αi) = si

for at least d + t + 1 points, and output s = f(α0).

Fig. 2. Reconstructing secret-shared values efficiently to a single party.

4 It is worth noting that some of the unknowns will have coefficients multiplying from
both left and right.

Efficient Information-Theoretic Multi-party Computation 351

Given the above, a party that receives n shares of degree ≤ d, among which
at most t can be corrupted by an adversary, can perform error detection if
t < n − d ≤ 2t, and it can perform error correction if 2t < n − d. We denote by
ΠPrivOpen([s]d, Pr) the protocol in which all parties send their share of [s]d to
Pr. If all parties are intended to learn the secret s, we make use of a protocol
ΠPublicOpen([s0]d, . . . , [sd]d) that opens a batch of secrets towards all the parties
with an amortized communication complexity that is linear in n. This protocol is
achieved by a natural generalization of the equivalent protocol in [DN07], except
that great care must be taken when handling the different multiplications and
polynomial evaluations when the ring is not commutative. This is described in
detail in the full version of this work.

Finally, notice that the protocols ΠPrivOpen,ΠPubOpen are currently described
for [·]-sharings, but they can be naturally adapted to 〈·〉-sharings by evaluating
the polynomial f(X) on the right and computing 〈fR(αi)〉 =

∑t
j=0〈sj〉αj

i .

4 MPC in the Preprocessing Model

The goal of this section is to leverage the adaptations of Shamir’s secret sharing
described in Sect. 3 to build an MPC protocol that operates directly over R, in
a black-box way. We assume an active adversary corrupting t out of n parties,
where it could hold either that t < n/3 or t < n/2. In the first case we can
obtain guaranteed output delivery with perfect security, and in the second case
we achieve perfect security with abort (both in the preprocessing model).

Multiparty computation can be obtained from any linear secret sharing
scheme satisfying certain multiplicative properties, as shown in [CDM00]. As
we proved in Corollary 2, even more modern and efficient techniques for MPC
over commutative rings can be adapted to the non-commutative setting, assum-
ing that there is a large enough exceptional set in the centre of the ring. The
challenge in this section is, however, that we only assume the existence of a big
enough commutative exceptional set, i.e. the conditions of Theorem 2.

Losing multiplicativity leads to most existing techniques for secret-sharing
based MPC to fail. A clever solution when multilpicativity is lost is to resort to
properties of the dual of the error-correcting code underlying the secret-sharing
scheme [CDM00]. However, although as shown in [QBC13] the usual properties
of the dual code of Reed-Solomon codes do carry over to non-commutative rings,
this requires that the evaluation points constitute not only an exceptional set,
but that they are also contained in Z(R). Unfortunately, this is precisely the
assumption we do not want to make (and in fact, as said above, such assumption
would yield a multiplicative LSSS directly).

Given the hurdles highlighted above, this work takes a different route.
Our protocols are set in the offline/online paradigm, in which a set of input-
independent correlated information is generated in a preprocessing phase, which
is then used in an online phase once the inputs are known. By preprocessing the
so-called Beaver triples, the online phase can be executed without relying on any
multiplicativity property of the underlying secret-sharing scheme. However, due

352 D. Escudero and E. Soria-Vazquez

to non-commutativity, the usual approach to secure multiplication using Beaver
triples does not directly work, as we will explain shortly. The rest of this section
is then devoted to overcoming these issues and obtain a secure computation pro-
tocol in the preprocessing model, where we assume that the input-independent
correlated data is given “for free”. Our protocols for instantiating such prepro-
cessing phase will be discussed in Sect. 5.

4.1 A First Approach

We begin by considering the typical approach to Beaver-based multiplication,
and discuss why it fails in our setting. Assume for a moment that R is commu-
tative. A Beaver triple is a set of shared values (�a�, �b�, �c�) such that a, b ∈ R
are uniformly random and c = a · b. Given two shared values �x�, �y�, these can
be multiplied by means of the following protocol:

1. Parties call d = ΠPubOpen(�x� − �a�) and e = ΠPubOpen(�y� − �b�).
2. Parties compute locally �xy� = �a�e + d�b� + �c� + de.

Privacy follows from the fact that the sensitive values x and y are being
masked by uniformly random values a and b that are unknown to the adversary.
Correctness follows from the fact that xy = (d + a)(e + b) = ae + db + ab + de,
a relation that also holds even if R is non-commutative. Here we use the fact
that, since t < n/2, the calls to ΠPubOpen result in the parties learning the
correct underlying secret or aborting (and in the stronger case that t < n/3
then ΠPubOpen does not result in abort).

The issue with a non-commutative R is that, unless Z(R) contains a big
enough exceptional set, the secret sharing scheme [·] (resp. 〈·〉) we can define
is just a left (resp. right) submodule of Rn. In particular, the local operation
d · [b] can be carried out, but [a] · e does not result in a [·]-shared value5. To
address this complication, let ([a], [b], [c]) be a triple. Assume the existence of
“sextuples”, which are just triples of the form ([a], [b], [c]) enhanced with shares
of the form (〈a〉, [r], 〈r〉). These are produced by a functionality FTuples.6 These
tuples can be used to multiply [x] and [y] as follows:

1. Parties call d = ΠPubOpen([x]t − [a]t), e = ΠPubOpen([y]t − [b]t).
2. Parties call f = ΠPubOpen(〈a〉t · e + 〈r〉t).
3. Parties compute locally [xy]t = d · e + d · [b]t + f − [r]t + [c]t

Privacy follows from the fact that sensitive data x and y is masked by the
uniformly random values a and b before opening and also because, before recon-
structing a · e (which could potentially leak information about a), the uniformly
random mask r is applied. In terms of correctness, we observe that the final

5 More concretely, if we had [a]t, multiplication by e on the right will not result on
[ae]t in general.

6 This functionality, together with some others used in this work, are formalized in
the full version.

Efficient Information-Theoretic Multi-party Computation 353

expression defining [xy]t is well defined given that only additions and multiplica-
tions on the left are used. Furthermore, the computation of f uses multiplication
on the right on the sharings 〈·〉, which admit such multiplications. The rest is
simply a matter of using the definition of d, e, c and f in the final computation:
d ·e+d ·b+f −r+c = (x−a) · (y−b)+(x−a) ·b+a · (y−b)+r−r+a ·b = x ·y.

4.2 Improving Round-Complexity

The protocol sketched in the previous section suffers from the issue that its round
complexity is quite high, requiring 4 rounds per multiplication (two sequential
calls to ΠPubOpen, each requiring 2 rounds). In MPC protocols networking is
usually the most scarce resource, and it can be argued that round-count is even
more sensitive than communication complexity, specially in wide area networks
that have high latency. Therefore, the rest of this section is devoted to lowering
the round count of each secure multiplication.

In order to achieve secure multiplication with no sequential calls to ΠPubOpen

in the non-commutative case, we modify the way multiplications are handled.
First, each intermediate value of the computation x will not be represented by
[x], but rather by a pair ([λx], μx), where λx ∈ R is uniformly random and
unknown to any party, and μx = x − λx. Notice that this still maintains the
privacy of x since the only public value is μx, which perfectly hides x as it is
being masked by λx, that is random and unknown to any party.

Suppose the parties have two shared values ([λx], μx = x −λx) and ([λy], μy =
y −λy). To obtain a shared representation of their sum, the parties simply locally
compute ([λx+λy], μx+μy). On the other hand, to securely multiply these shared
values, the process is as follows. Let [λz] be the random mask associated to the
output of the multiplication. To obtain ([λz], μz), the parties need to get the value
μz = x · y −λz in the clear. This is achieved by noticing that, since x = μx + λx

and y = μy + λy, it holds that μz = μxμy + μxλy + λxμy +λxλy − λz. Assume
that the parties have [λxλy], which can be preprocessed as λx and λy are simply
random values. If R was conmutative, then the parties could compute

[μz] = μxμy + μx[λy] + [λx]μy + [λxλy] − [λz],

followed by opening μz. This approach was followed in [BNO19] in order to
improve the communication complexity of secure multiplication in the dishonest
majority setting. It was also used in the context of honest majority in [ED20],
both to minimize online communication complexity and in order to avoid selec-
tive failure attacks.

Unfortunately, when R is non-commutative, this approach cannot be carried
out as we find the exact same issue we had in the previous section, namely
that [λx]μy is not well defined as the secret-sharing scheme [·] does not allow
multiplication on the right. However, our crucial observation is that, unlike the
traditional use of triples from Sect. 4.1, in this case the task is not to take a
combination of sharings in order to obtain a new shared value but rather take
a linear combination of sharings in order to open the result μz. This difference

354 D. Escudero and E. Soria-Vazquez

turns out to be essential in order to devise a protocol for the non-commutative
case that does not require sequential openings, which we describe in detail below.
The overall idea of our protocol is that the parties do not really need to convert
〈λx〉μy to [λxμy] as in Sect. 4.1, which adds an extra opening round, but rather
it is enough to open this part separately from the other part that uses the [·]-
sharing, and then add the two opened values to obtain μz. Some masking is
necessary to ensure that each separate piece does not leak anything, but this is
easily achievable, as we will describe next.

Preprocessing functionality. Unfortunately, resorting to this new approach does
not allow us to use the functionality FTuples directly. Instead, we must resort
to a similar but different type of preprocessing, which is captured by func-
tionality for function-dependent preprocessing FF.D.Prep, which is formalized in
detail in the full version. In a nutshell, this functionality also distributes tuples
([λx]t, [λy]t, [λx ·λy]t, 〈λx〉t, [r]t, 〈r〉t), except that, if λx (resp. λy) is used to mask
a value x (resp. y) for a given multiplication, then the same λx (resp. λy) must
be used for all multiplications involving x (resp. y) as a left (resp. right) input.
Since the structure of the tuples returned depend on the way multiplications
are arranged in the circuit, we refer to this type of preprocessing as function-
dependent preprocessing. This is in contrast to the preprocessing from FTuples

which only depends on (an upper bound on) the number of multiplications in
the circuit and not on the way these are arranged.

Protocols for MPC in the (FF.D.Prep,FBC)-hybrid model. Now we finally
describe our protocol for MPC in the (FF.D.Prep,FBC)-hybrid model. The proto-
col ΠOnline, described in Fig. 3 achieves guaranteed output delivery with perfect
security against an active adversary corrupting t < n/3 parties, and it achieves
perfect security with abort against an active adversary corrupting t < n/2 par-
ties. The following makes use of a standard simulation-based proof which is
provided in the full version of this work.

Theorem 6. Assume that t < n/3. Then protocol ΠOnline implements function-
ality FMPC−GOD in the (FF.D.Prep,FBC)-hybrid model with perfect security.

We recall that the functionality FBC can be instantiated with perfect security
if t < n/3 [LSP82], which, together with Theorem 6, implies that there exists
a protocol that instantiates FMPC−GOD with perfect security in the FF.D.Prep-
hybrid model.

Finally, in a similar way as the theorem above, the following is proved. The
main difference lies in the fact that the simulator may send abort signals to the
functionality FMPC−abort if it detects that the adversary is sending inconsistent
shares. This works since error detection in the t < n/2 case is possible.

Theorem 7. Assume that t < n/2. Then protocol ΠOnline implements function-
ality FMPC−abort in the (FF.D.Prep,FBC)-hybrid model with satistical security.

Efficient Information-Theoretic Multi-party Computation 355

Protocols ΠOnline

PREPROCESSING PHASE

The parties call FF.D.Prep to get the following.

– For every wire in the circuit x the parties have [λx].
– Party Pi knows λx for every input gate x corresponding to Pi.
– For every multiplication gate with inputs x, y and output z, the parties have

[λxλy].

ONLINE PHASE

Input Gates. For every input gate x owned by party Pi, the parties do the fol-
lowing:
1. Pi uses FBC to send μx = x − λx to all parties.
2. Upon receiving this value, the parties set the sharing ([λx], μx)

Addition Gates. For every addition gate with inputs ([λx], μx) and ([λy], μy),
the parties locally get shares of the sum as ([λx] + [λy], μx + μy).

Multiplication Gates. For every multiplication gate with inputs ([λx], μx) and
([λy], μy), the parties proceed as follows:
1. The parties call γ ← ΠPubOpen(μxμy + μx[λy] + [λxλy] − [λz] + [r]) and

ρ ← ΠPubOpen(〈λx〉μy − 〈r〉),a and, if there was no abort, set μz = γ + ρ.
2. Output ([λz], μz) as shares of the product.

Output Gates. If the parties did not abort above, then for every output gate
([λx], μx) that is supposed to be learned by Pi, the parties do the following:
1. The parties call ΠPubOpen([λx], Pi).
2. If this call does not result in abort, Pi outputs μx + λx.

a Since ΠPubOpen takes as inputs batches of shares to be opened, this is called for
all the multiplication gates on the given layer of the circuit in parallel, doing
multiple calls if necessary.

Fig. 3. Online phase of our MPC protocol.

5 Preprocessing

In this section we provide different protocols to realize the FTuples functional-
ity when Z(R) does not contain a big enough exceptional set. Our presenta-
tion focuses in this simpler functionality, since FF.D.Prep can be easily realized
either in the FTuples-hybrid or by slightly tweaking the protocols that implement
FTuples. In Sect. 5.1 we provide a generic protocol that only requires black-box
access to the ring operations and the ability to sample random ring elements.
On the downside, this theoretical result has a complexity of poly(n), in contrast

356 D. Escudero and E. Soria-Vazquez

with the more specialized protocol for matrices over commutative rings we pro-
vide in Sect. 5.2. By additionally getting black-box access to the commutative
ring operations, this optimized protocol has O(n) communication complexity
and O(n log n) computational complexity.

5.1 Generic, Black-Box Construction

Representing non-commutative ring arithmetic as operations in G =
GL3(R). We quickly recap the work of Ben-Or and Cleve [BC92]. Let a ∈ R,
where R is a possibly non commutative ring. We will keep the invariant of
representing such elements within the group of 3 × 3 invertible matrices over
R, G = GL3(R), as follows:

M(a) =

⎛

⎝
1 0 a
0 1 0
0 0 1

⎞

⎠

This allows us to compute additions as M(a + b) = M(a) · M(b). Multiplication
is a bit more complicated. We can compute M(a · b) = J1 · M(b) · J2 · M(a) · J3 ·
M(b) · J4 · M(a) · J5, where the Ji matrices are the following:

J1 =

⎛

⎝
0 1 0

−1 0 0
0 0 1

⎞

⎠ J2 =

⎛

⎝
0 0 −1
1 0 0
0 1 0

⎞

⎠ J3 =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ J4 =

⎛

⎝
0 0 1

−1 0 0
0 1 0

⎞

⎠ J5 =

⎛

⎝
−1 0 0
0 0 1
0 1 0

⎞

⎠

Preprocessing for MPC over non-commutative rings. Given the pre-
vious representation, we can use existing results for efficient MPC over non-
abelian groups [DPS+12,CDI+13] in order to implement the FPrep functionality
required for the online phase in Sect. 4. In more detail, this can be computed as
a constant-depth arithmetic circuit over R which we will represent as a series of
products in the group G = GL3(R).

Note that the shares in the group-based protocol are according to the group
law (i.e., they are “multiplicative shares”), whereas the protocols from Sect. 4
use Shamir’s secret sharing. One option would be to compute something like
[M(a)]G =

∏t+1
i=1[M(ai)]G, [M(b)]G =

∏t+1
i=1[M(bi)]G and [M(c)]G = J1 · [M(b)]G ·

J2 ·[M(a)]G ·J3 ·[M(b)]G ·J4 ·[M(a)]G ·J5, as well as generating “double shares” of
the form [M(r)]G, [r] to e.g. extract (c + r) from PublicOpen([M(c)]G · [M(r)]G)
and then compute [c] = (c + r) − [r].

Alternatively, we can employ the following, more direct approach. Let
A = {0, α1, . . . , αn} be the commutative exceptional set defining the non-
commutative sharing scheme [·]. Parties compute the following circuit, where
each Pi inputs random f i

j , g
i
j , h

i
j ∈ R and receives as output their corresponding

shares of ([a], [b], [c]), that is, (f(αi), g(αi), h(αi)).

Efficient Information-Theoretic Multi-party Computation 357

a =
t+1∑

i=1

f i
0, b =

t+1∑

i=1

gi
0, c = a · b

fj =
t+1∑

i=1

f i
j , gj =

t+1∑

i=1

gi
j hj =

t+1∑

i=1

hi
j , j ∈ [t]

f(α�) = a +
t∑

j=1

fjα
j
� , g(α�) = b +

t∑

j=1

gjα
j
� , h(α�) = c +

t∑

j=1

hjα
j
� , � ∈ [n]

The downside of these two generic approaches is that their respective proto-
cols inherit the poly(n) complexity of [CDI+13]. On the upside, any improvement
to MPC over non-abelian groups would directly translate to our blackbox con-
structions.

5.2 Concretely Efficient Preprocessing for Matrix Rings

For our more practical construction, which works over the ring R =
Mm×m(Z2k), we describe how to implement FTuples using non-black-box pro-
tocols which are more efficient than the one from the previous section. Even
though we specialize to matrices over Z2k , our analysis and techniques can be
generalized to matrices over other commutative rings.

Remember from Sect. 3.1 that Mm×m(Z2k) contains a commutative excep-
tional set of size 2m, which is why can only use the non-multiplicative secret
sharing schemes from Theorem 5 that are linear only on one side.

In order to overcome the lack of multiplicativity, as FTuples requires to pro-
duce values ([A], [B], [C]) such that C = A ·B, we use an existing MPC protocol
for computation over Z2k . Given such an entry-wise protocol, we can trivially
emulate the whole arithmetic of R. The issue is that, by doing this, we need to
work over a big enough Galois extension of Z2k , so that we can define a multi-
plicative, Shamir-style linear secret sharing scheme �·�7. Once we have computed
this matrix product from the entry-wise shares of the matrices A and B, we
need to convert �·� sharings of the entries of A,B,C to sharings [·] and 〈·〉 over
Mm×m(Z2k), so that parties obtain the tuple [A], 〈A〉, [B], [C], [r], 〈r〉 required
for the online protocols in Sect. 4.

In particular, we will use the InnerProd CAFE from [DLS20], which can
compute inner products of length δ � d/2 over R = GR(2k, d) at the cost of just
2 sharings and a single opening in R. If one wants to calculate an inner product
of length rd/2, the cost would be 2r sharings and a single opening in R. The
following proposition captures the properties of InnerProd we are interested in,
without getting into details about the specific construction.

7 This was described in [ACD+19], but it is also a consequence of Theorem 5. This is
why we will use the �·� notation to refer to the LSSS over the Galois Ring in this
section. It should not be confused with [·] and 〈·〉, which work over Mm×m(Z2k).

358 D. Escudero and E. Soria-Vazquez

Proposition 4 ([DLS20]). Let R = GR(2k, d) be a Galois Ring defined as
Z2k [X]/(h(X)). Let d̃ denote the degree of the second-highest degree monomial in
h(X). Let δ ∈ N be such that δ < (d +1)/2, δ < d − d̃ +1. There exist three Z2k -
linear homomorphisms EL : (Z2k)δ → R, ER : (Z2k)δ → R and Eout : Z2k → R
satisfying:

EL(a1, . . . , aδ) · ER(b1, . . . , bδ) + Eout(c) = Eout(c +
δ∑

�=1

a� · b�)

Furthermore, the value Eout(c +
∑δ

�=1 a�·b�) ∈ R does not reveal any information
beyond c +

∑δ
�=1 a� · b� ∈ Z2k .

Since the maps EL,ER and Eout are homomorphisms of Z2k -modules, the
image of each of them can be seen as a Z2k -submodule of GR(2k, d). We will
indistinctively refer to either these homomorphisms, or the Z2k -modules they
define as encodings.

By extension, we define how these encodings can be applied to matrices.
Given A′ ∈ M1×δ(Z2k), B′ ∈ Mδ×1(Z2k), for which we want to compute C ′ =
A′ · B′, where C ′ ∈ Z2k , we simply view the entries of A′, B′ as elements of
(Z2k)δ, to which we apply EL and ER, respectively. In order to compute the
product of A,B ∈ Mm×m(Z2k), we need to introduce some additional notation.
Let Δ = �m/δ�. Let A ∈ Mm×δΔ(Z2k) (resp. B ∈ MδΔ×m(Z2k)) denote the
matrix A padded with δΔ − m columns of zeroes (resp. the matrix B padded with
δΔ−m rows of zeroes). For � ∈ [mΔ], let A(�) ∈ M1×δ(Z2k), B(�) ∈ Mδ×1(Z2k)
be submatrices such that

A =

⎛
⎜⎜⎜⎜⎝

A(1) A(2) . . . A(Δ)

A(Δ+1) A(Δ+2) . . . A(2·Δ)

..

.
..
.

. . .
..
.

A((m−1)·Δ+1) A((m−1)·Δ+2) . . . A(m·Δ)

⎞
⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎝

B(1) B(Δ+1) . . . B((m−1)·Δ+1)

B(2) B(Δ+2) . . . B((m−1)·Δ+2)

..

.
..
.

. . .
..
.

B(Δ) B(2·Δ) . . . B(m·Δ)

⎞
⎟⎟⎟⎟⎠

,

where A(Δ), A(2·Δ), . . . , A(m·Δ) and B(Δ), B(2·Δ), . . . , B(m·Δ) are the submatrices
including the zero-padding. Let γ ∈ Mm×m(Z2k) be a matrix that we will use to
mask the result of C = A ·B and let us denote the entries of γ,C ∈ Mm×m(Z2k)
as C(α,β), γ(α,β) ∈ Z2k , where α, β ∈ {1, . . . , m}. Taking into account Defini-
tion 4, we can compute:

Eout(C(α,β) + γ(α,β)) = Eout(γ(α,β)) +
Δ∑

�=1

EL(A((α−1)Δ+�)) · ER(B((β−1)Δ+�))

Hyperinvertible matrices acting on commutative and non-commutative
LSSS. Hyper-Invertible Matrices were introduced in [BTH08] as a tool for gen-
erating and checking linearly correlated randomness in the context of perfectly
secure MPC over fields. We recall their properties in the full version of this work.

Efficient Information-Theoretic Multi-party Computation 359

Let R = Mm×m(Z2k), d = 1 + log n, S = Mn×n(GR(2k, d)) and M ∈ S
be a hyper-invertible matrix. Let N be a Z2k -module, such as those defined by
commutative sharings of EL,ER or Eout encodings. Let NL (resp. NR) be the left
(resp. right) R-module defined by [·] (resp. 〈·〉). We want to define the action of
multiplying by M on the left on those modules. We will refer to the morphisms
they define as φM : Nd·n → Nd·n, ψL

M : Nd·n
L → Nd·n

L and ψR
M : Nd·n

R → Nd·n
R .

Let us first look at the Z2k -linear action of multiplying elements a ∈ Nd by
b ∈ GR(2k, d). As Nd is a Z2k -module, we know how to multiply its elements with
scalars from Z2k , but how can we multiply them with scalars from GR(2k, d)?
The formal answer is tensor products: Nd is isomorphic to GR(2k, d) ⊗Z2k

N as
a Z2k -module, but GR(2k, d) ⊗Z2k

N can also be seen as an GR(2k, d)-module
compatible with the Z2k -module structure Nd. Informally, one just needs to
represent b ∈ GR(2k, d) on its matrix representation ι(b) (see Sect. 2.4) and
compute the matrix-vector product ι(b) · a. We refer the reader interested in
a more systematic exposition of the tensoring technique to the discussion on
interleaved generalized secret sharing schemes in [CCXY18], which is restricted
to fields but can be generalized to commutative rings [CRX19]. For those who
want a more computational description, we recommend [DLS20, Section 4.1].

Given the description of the Z2k -linear action of multiplying elements a ∈ Nd

by b ∈ GR(2k, d), we can deduce the Z2k -linear action of multiplying elements in
(Nd)n by the matrix M with entries in GR(2k, d), giving result to the Z2k -module
homomorphism φM : (Nd)n → (Nd)n. We were talking about multiplying by the
matrix M ∈ S “on the left”, so whereas one could easily imagine how everything
works fine when defining ψL

M : Nd·n
L → Nd·n

L , what happens with ψR
M : Nd·n

R →
Nd·n

R ? The important remark here is that NR is a right R-module, but it also
a Z2k -bimodule, so we can meaningfully “multiply by M on the left”, as we
are interested in the Z2k -linear action of multiplication by M . Moreover, the
Z2k -bimodule structure of NR is compatible with the right R-module structure,
since Z(R) consists of the Z2k -multiples of the identity matrix and hence ∀a ∈
Z2k , 〈b〉 ∈ NR, we have that a · 〈b〉 = 〈b〉 · a = 〈b · a〉 = 〈a · b〉. This leads us to
the observation that:

ψL
M ([r̃1,1]t, . . . , [r̃1,d]t; . . . ; [r̃n,1]t, . . . , [r̃n,d]t)

= ψR
M (〈r̃1,1〉t, . . . , 〈r̃1,d〉t; . . . ; 〈r̃n,1〉t, . . . , 〈r̃n,d〉t)(2)

What is more, ψL
M and ψR

M will also be compatible with φM , as they are
all defined by the unique Z2k -linear action that is defined by multiplying by M
on the left that we describe above, where M is basically interpreted as a block
matrix over Z2k taking the matrix representation of its entries in GR(2k, d). The
following Lemma is stated for ψL

M , but it can be naturally adapted to ψR
M and

φM .

Lemma 6. Let R = Mm×m(Z2k) and let NL denote the R-module defined by [·].
Let M ∈ Mn×n(GR(2k, d)) be a hyper-invertible matrix. Then, for all A,B ⊆ [n]
with |A|+ |B| = n, there exists an isomorphism of R-modules ψL

M : Nnd
L → Nnd

L ,

360 D. Escudero and E. Soria-Vazquez

ψL
M (x) = y, defined by the Z2k -linear action of “multiplying x by M on the left”,

such that ψL
M (xA,yB) = (xĀ,yB̄), where Ā = [n]\A and B̄ = [n]\B.8

See protocol ΠTuples on Fig. 4, Protocol ΠTuples−NC−Shares on Fig. 5 and
ΠTuplesCheck on Fig. 6. We provide a standard simulation-based proof of the
following result in the full version of this work.

Protocol ΠTuples

Let T = n − 2t. Let R = Mm×m(Z2k) and S = Mn×n(GR(2k, d)). Let M ∈ S be a
hyper-invertible matrix. Let N be a Z2k -module (such as those defined by EL,ER or
Eout) and let φM : Nd·n → Nd·n and ψM : Rd·n → Rd·n be the morphisms defined
by the Z2k -linear action of M described in Section 5.2.

I. Commutative Shares. Parties generate commutative shares of the entries of
the matrices A, B, so that they can compute the product C = A · B.
For i ∈ [n], j ∈ [d], each Pi samples at random Ãi,j , B̃i,j , γ̃i,j ∈ R, extracts

representations Ã
(�)
i,j , B̃

(�)
i,j , γ̃

(α,β)
i,j as described in Section 5.2 and calls Π�·� to

distribute shares of �EL(Ã
(�)
i,j)�t, �ER(B̃

(�)
i,j)�t and �Eout(γ̃

(α,β)
i,j)�2t to all parties.

1. Parties locally compute:

(�EL(A
(�)
1,1)�t, . . . , �EL(A

(�)
1,d)�t; . . . ; �EL(A

(�)
n,1)�t, . . . , �EL(A

(�)
n,d)�t)

= φM (�EL(Ã
(�)
1,1)�t, . . . , �EL(Ã

(�)
1,d)�t; . . . ; �EL(Ã

(�)
n,1)�t, . . . , �EL(Ã

(�)
n,d)�t)

(�ER(B
(�)
1,1)�t, . . . , �ER(B

(�)
1,d)�t; . . . ; �ER(B

(�)
n,1)�t, . . . , �ER(B

(�)
n,d)�t)

= φM (�ER(B̃
(�)
1,1)�t, . . . , �ER(B̃

(�)
1,d)�t; . . . ; �ER(B̃

(�)
n,1)�t, . . . , �ER(B̃

(�)
n,d)�t)

(�Eout(γ
(α,β)
1,1)�2t, . . . , �Eout(γ

(α,β)
1,d)�2t; . . . ; �Eout(γ

(α,β)
n,1)�2t, . . . , �Eout(γ

(α,β)
n,d)�2t)

= φM (�Eout(γ̃
(α,β)
1,1)�2t, . . . , �Eout(γ̃

(α,β)
1,d)�2t; . . . ; �Eout(γ̃

(α,β)
n,1)�2t, . . . , �Eout(γ̃

(α,β)
n,d)�2t)

2. For i = 1, . . . , T ; j = 1, . . . , d; α, β ∈ {1, . . . , m} they additionally compute:

�Eout(C
(α,β)
i,j + γ

(α,β)
i,j)�2t = �Eout(γ

(α,β)
i,j))�2t +

Δ∑

�=1

�EL(A
((α−1)Δ+�)
i,j)�t · �ER(B

((β−1)Δ+�)
i,j)�t

II. Non-Commutative Shares. Parties run the subprotocol ΠTuples−NC−Shares

in Figure 5 to generate shares of the form [A], 〈A〉, [B], [r], 〈r〉, [C].
III. Consistency Checks. Parties run the subprotocol ΠTuplesCheck in Figure 6.

If all the checks pass, they accept the output.

Fig. 4. Preprocessing phase for MPC over R = Mm×m(Z2k).

8 With the notation xĀ, we refer to viewing x as an element of (Nd)n and taking,
among the n “entries” in Nd, the ones indexed by A. These correspond to parties
in our protocols.

Efficient Information-Theoretic Multi-party Computation 361

Protocol ΠTuples−NC−Shares

This is a subprotocol of ΠTuples (Figure 4). Assume same conditions and notation.

II. Non-Commutative Shares. Parties generate non-commutative shares of
the form [A], 〈A〉, [B], [r], 〈r〉, [γ]. The latter value will allow them to convert
from �Eout(C + γ)�2t to [C]t.

1. For i ∈ [n], j ∈ [d], each Pi calls Π[·] and Π〈·〉 to distribute to all parties
non-commutative shares of the values they sampled in Step I.

([A1,1]t, . . . , [A1,d]t; . . . ; [An,1]t, . . . , [An,d]t)

= ψL
M ([Ã1,1]t, . . . , [Ã1,d]t; . . . ; [Ãn,1]t, . . . , [Ãn,d]t)

(〈A1,1〉t, . . . , 〈A1,d〉t; . . . ; 〈An,1〉t, . . . , 〈An,d〉t)

= ψR
M (〈Ã1,1〉t, . . . , 〈Ã1,d〉t; . . . ; 〈Ãn,1〉t, . . . , 〈Ãn,d〉t)

([B1,1]t, . . . , [B1,d]t; . . . ; [Bn,1]t, . . . , [Bn,d]t)

= ψL
M ([B̃1,1]t, . . . , [B̃1,d]t; . . . ; [B̃n,1]t, . . . , [B̃n,d]t)

([γ1,1]t, . . . , [γ1,d]t; . . . ; [γn,1]t, . . . , [γn,d]t)

= ψL
M ([γ̃1,1]t, . . . , [γ̃1,d]t; . . . ; [γ̃n,1]t, . . . , [γ̃n,d]t)

([r1,1]t, . . . , [r1,d]t; . . . ; [rn,1]t, . . . , [rn,d]t)

= ψL
M ([r̃1,1]t, . . . , [r̃1,d]t; . . . ; [r̃n,1]t, . . . , [r̃n,d]t)

(〈r1,1〉t, . . . , 〈r1,d〉t; . . . ; 〈rn,1〉t, . . . , 〈rn,d〉t)

= ψR
M (〈r̃1,1〉t, . . . , 〈r̃1,d〉t; . . . ; 〈r̃n,1〉t, . . . , 〈r̃n,d〉t)

2. Parties use the double shares of γ ∈ R in order to convert �Eout(C + γ)�2t,
where Eout(C + γ) ∈ S, to [C], where C ∈ R.
(a) For i ∈ {1, . . . , T}, j ∈ {1, . . . , d}, α, β ∈ {1, . . . , m} parties call

ΠPubOpen with the values �Eout(C
(α,β)
i,j + γ

(α,β)
i,j)�2t, so that everyone

obtains Ci,j + γi,j ∈ Mm×m(Z2k), or abort.
(b) Parties compute

[Ci,j]t = Ci,j + γi,j − [γi,j]t

Fig. 5. Preprocessing phase for MPC over Mm×m(Z2k): Non-Commutative Shares.

Theorem 8. Assume that t < n/3. Then protocol ΠTuples on Fig. 4 implements
functionality Fabort

Tuples in the FBC-hybrid model with perfect security.

The case of n/3 ≤ t < n/2 is discussed in the full version of this work.

362 D. Escudero and E. Soria-Vazquez

Consistency check subprotocol of ΠTuples – Protocol ΠTuplesCheck

This is a subprotocol of ΠTuples (Figure 4). Assume same conditions and notation.

III. Consistency Checks. For i ∈ {T + 1, . . . , n}, j ∈ [d] every party sends their

shares of {�EL(A
(�)
i,j)�, �ER(B

(�)
i,j)�}�∈[mΔ], {�Eout(γ

(α,β)
i,j)�2t}α,β∈[m], [Ai,j], 〈Ai,j〉,

[Bi,j], [γi,j], [ri,j], 〈ri,j〉 to Pi, who first checks that all the shares of any

received secret lie on a polynomial of degree t (or 2t for �Eout(γ
(α,β)
i,j)�2t).

Furthermore, it performs the following checks:
1. Correct EL and ER encodings of A

(�)
i,j , B

(�)
i,j

a.

2. Consistency between the alleged secrets �Eout(γ
(α,β)
i,j)�2t and [γi,j].

3. Consistency between the alleged secrets [ri,j] and 〈ri,j〉.
4. Consistency between the alleged secrets [Bi,j] and �ER(B

(�)
i,j)�.

5. Consistency between the alleged secrets [Ai,j], 〈Ai,j〉 and �EL(A
(�)
i,j)�.

Pi uses FBC to broadcast a bit which signals whether all the checks pass
or not. If they do so for every PT+1, . . . , Pn, parties accept the tuples
[A�,j], 〈A�,j〉, [B�,j], [C�,j], [r�,j], 〈r�,j〉 for
 ∈ [T].

a Note there is no need to check the Eout encoding of γ
(α,β)
i,j .

Fig. 6. Consistency check of the preprocessing phase for MPC over R = Mm×m(Z2k).

Acknowledgements. During his time at Aarhus University, Eduardo Soria-Vazquez
was supported by the Carlsberg Foundation under the Semper Ardens Research Project
CF18-112 (BCM). Daniel Escudero was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 669255 (MPCPRO).

References

[ACD+19] Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Yuan, C.: Efficient
information-theoretic secure multiparty computation over Z/pk

Z via Galois
rings. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol.
11891, pp. 471–501. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-36030-6 19

[BBY20] Baccarini, A., Blanton, M., Yuan, C.: Multi-party replicated secret shar-
ing over a ring with applications to privacy-preserving machine learning.
Cryptology ePrint Archive, Report 2020/1577 (2020). https://eprint.iacr.
org/2020/1577

[BC92] Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant num-
ber of registers. SIAM J. Comput. 21(1), 54–58 (1992)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: 20th ACM STOC, pp. 1–10. ACM Press (May 1988)

https://doi.org/10.1007/978-3-030-36030-6_19
https://doi.org/10.1007/978-3-030-36030-6_19
https://eprint.iacr.org/2020/1577
https://eprint.iacr.org/2020/1577

Efficient Information-Theoretic Multi-party Computation 363

[BNO19] Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: double your online
SPDZ! improving SPDZ using function dependent preprocessing. In: Deng,
R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS,
vol. 11464, pp. 530–549. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21568-2 26

[BTH08] Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear com-
munication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 213–230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 13

[Can01] Canetti, R., Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

[CCXY18] Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complex-
ity of information-theoretically secure MPC revisited. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 395–
426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-
0 14

[CDI+13] Cohen, G., et al.: Efficient multiparty protocols via log-depth threshold
formulae. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 185–202. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 11

[CDM00] Cramer, R., Damg̊ard, I., Maurer, U.M.: General secure multi-party compu-
tation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 22

[CFIK03] Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party com-
putation over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 596–613. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 37

[CRX19] Cramer, R., Rambaud, M., Xing, C.: Asymptotically-good arithmetic secret
sharing over Z/p�

Z with strong multiplication and its applications to effi-
cient MPC. Cryptology ePrint Archive, Report 2019/832 (2019). https://
eprint.iacr.org/2019/832

[DEK21] Dalskov, A., Escudero, D., Keller, M.: Fantastic four: honest-majority four-
party secure computation with malicious security. In: USENIX 2021 (2021)

[DKH+12] Dawar, A., Kopczynski, E., Holm, B., Grädel, E., Pakusa, W.: Defin-
ability of linear equation systems over groups and rings. arXiv preprint
arXiv:1204.3022 (2012)

[DLS20] Dalskov, A.P.K., Lee, E., Soria-Vazquez, E.: Circuit amortization friendly
encodings and their application to statistically secure multiparty computa-
tion. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS,
vol. 12493, pp. 213–243. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64840-4 8

[DN07] Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty
computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74143-5 32

[DPS+12] Desmedt, Y., et al.: Graph coloring applied to secure computation in non-
abelian groups. J. Cryptol. 25(4), 557–600 (2012)

https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-642-40084-1_11
https://doi.org/10.1007/978-3-642-40084-1_11
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-39200-9_37
https://doi.org/10.1007/3-540-39200-9_37
https://eprint.iacr.org/2019/832
https://eprint.iacr.org/2019/832
http://arxiv.org/abs/1204.3022
https://doi.org/10.1007/978-3-030-64840-4_8
https://doi.org/10.1007/978-3-030-64840-4_8
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-74143-5_32

364 D. Escudero and E. Soria-Vazquez

[ED20] Escudero, D., Dalskov, A.: Honest majority MPC with abort with mini-
mal online communication. Cryptology ePrint Archive, Report 2020/1556
(2020). https://eprint.iacr.org/2020/1556

[LSP82] Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

[Ore31] Ore, O.: Linear equations in non-commutative fields. Ann. Math. 32, 463–
477 (1931)

[QBC13] Quintin, G., Barbier, M., Chabot, C.: On generalized Reed-Solomon codes
over commutative and noncommutative rings. IEEE Trans. Inf. Theory
59(9), 5882–5897 (2013)

[Sha79] Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11),
612–613 (1979)

[Son75] Sontag, E.D.: On linear systems and noncommutative rings. Math. Syst.
Theory 9(4), 327–344 (1975)

https://eprint.iacr.org/2020/1556

Pushing the Limits of Valiant’s Universal
Circuits: Simpler, Tighter and More

Compact

Hanlin Liu1, Yu Yu1,2,3(B), Shuoyao Zhao1, Jiang Zhang4, Wenling Liu1,
and Zhenkai Hu1

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
800 Dongchuan Road, Shanghai 200240, China

{hans1024,yyuu}@sjtu.edu.cn
2 Shanghai Qi Zhi Institute, 701 Yunjin Road, Shanghai 200232, China

3 Shanghai Key Laboratory of Privacy-Preserving Computation, 701 Yunjin Road,
Shanghai 200232, China

4 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

Abstract. A universal circuit (UC) is a general-purpose circuit that
can simulate arbitrary circuits (up to a certain size n). Valiant provides
a k-way recursive construction of UCs (STOC 1976), where k tunes the
complexity of the recursion. More concretely, Valiant gives theoretical
constructions of 2-way and 4-way UCs of asymptotic (multiplicative)
sizes 5n log n and 4.75n log n respectively, which matches the asymptotic
lower bound Ω(n log n) up to some constant factor.

Motivated by various privacy-preserving cryptographic applications,
Kiss et al. (Eurocrypt 2016) validated the practicality of 2-way universal
circuits by giving example implementations for private function evalu-
ation. Günther et al. (Asiacrypt 2017) and Alhassan et al. (J. Cryp-
tology 2020) implemented the 2-way/4-way hybrid UCs with various
optimizations in place towards making universal circuits more practical.
Zhao et al. (Asiacrypt 2019) optimized Valiant’s 4-way UC to asymp-
totic size 4.5n log n and proved a lower bound 3.64n log n for UCs under
Valiant’s framework. As the scale of computation goes beyond 10-million-
gate (n = 107) or even billion-gate level (n = 109), the constant factor
in UC’s size plays an increasingly important role in application per-
formance. In this work, we investigate Valiant’s universal circuits and
present an improved framework for constructing universal circuits with
the following advantages.
Simplicity. Parameterization is no longer needed. In contrast to those

previous implementations that resorted to a hybrid construction
combining k = 2 and k = 4 for a tradeoff between fine granular-
ity and asymptotic size-efficiency, our construction gets the best of
both worlds when configured at the lowest complexity (i.e., k = 2).

Compactness. Our universal circuits have asymptotic size 3n log n,
improving upon the best previously known 4.5n log n by 33% and
beating the 3.64n log n lower bound for UCs constructed under
Valiant’s framework (Zhao et al., Asiacrypt 2019).

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 365–394, 2021.
https://doi.org/10.1007/978-3-030-84245-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_13

366 H. Liu et al.

Tightness. We show that under our new framework the UC’s size is
lower bounded by 2.95n log n, which almost matches the 3n log n
circuit size of our 2-way construction.

We implement the 2-way universal circuit and evaluate its performance
with other implementations, which confirms our theoretical analysis.

Keywords: Universal circuits · Private function evaluation ·
Multiparty computation

1 Introduction

A universal circuit (UC) is a programmable circuit capable of simulating arbi-
trary circuits (up to a certain scale), which is analogous to that a universal
Turing machine is configured to simulate an arbitrary Turing machine or that a
central processing unit (CPU) carries out computations specified by a sequence
of instructions. More specifically, a universal circuit refers to a sequence of cir-
cuits, i.e., UC = {UCn}n∈N, such that every circuit C of size n can be (efficiently)
encoded into a string of control bits pC to fulfill the simulation, i.e., for every valid
input x: C(x) = UCn(pC, x). An explicit construction is an efficient algorithm
that (on the input n) produces output UCn in time polynomial in n.

Universal Model of Computation. Valiant’s universal circuits [53] gave
inspiration to universal parallel computers [22,45]. Cook and Hoover [15] pro-
posed depth-optimal universal circuits, i.e., for any circuit of size n and depth
d, they constructed a universal circuit UC(n, d) of size O(n3d/ log n) and depth
O(d) that can simulate this circuit. Bera et al. [10] used the frameworks of uni-
versal circuits from [15,53] in their design of universal quantum circuits.

1.1 Cryptographic Applications

We sketch some cryptographic applications of universal circuits. The perfor-
mance of most applications crucially relies on the size efficiency of universal
circuits. We refer the readers to the cited publications for full details.

Private function evaluation. A major cryptographic application of uni-
versal circuits is private function evaluation (PFE)1 [1,11,32,35,39], which
can be based on the protocols for secure two-party/multiparty computation
(2PC/MPC) [28,55,56]. Take the two-party setting as an example: a 2PC pro-
tocol enables two parties, Alice and Bob, to securely compute a publicly known
function f on their respective private inputs x and y without revealing any-
thing substantially more than the output of the computation f(x,y), whereas

1 Let us mention that there are other alternatives to PFE without using universal
circuits, of which the most efficient one to date is the work by Katz and Malka [36].

Pushing the Limits of Valiant’s Universal Circuits 367

in a PFE scenario Alice (with private input x) and Bob (with private function
f) engage in a protocol such that at the end Alice (resp., Bob) learns noth-
ing about f (resp., x) beyond what can be revealed from the output f(x). A
PFE reduces to a 2PC with the aid of a universal circuit: Alice and Bob invoke
a 2PC to securely compute a publicly known universal circuit UC on Alice’s
private input x and Bob’s private input pf (a string that encodes f), which
yields UC(pf , x) = f(x). It is easy to see that the PFE protocol is as secure as
the underlying 2PC/MPC protocol against the same type (semi-honest, covert
or malicious) of adversaries, and the time/space efficiency of the PFE mainly
depends on the size/depth of the UC. The takeaway is that one simply plugs a UC
into an MPC framework (without changes to the underlying infrastructure) to
enjoy the corresponding benefits and additional features, such as non-interactive
PFE [41] and outsourced PFE [35] that are generalized from non-interactive
and outsourced secure computation protocols [2] respectively. As its name sug-
gests, PFE [1] can be applied to scenarios where some party wants to keep
his function private but still hopes to evaluate it on others’ inputs. Depend-
ing on the concrete instantiations of the private function, applications include
privacy-preserving checking of loanee’s credit-worthiness [20], protection of the
code privacy of an autonomous mobile agent [14], oblivious filtering of remote
streaming data [49], medical diagnostics [8], remote software fault diagnosis [13],
blinded policy evaluation protocols [19,21], query-hiding database management
systems (DBMSs) [18,50], private evaluation of branching programs [31,34,47]
and privacy-preserving intrusion detection [47,48].

Applications beyond PFE. Universal circuits can be applied to various other
cryptographic scenarios. UCs were used to hide the functions in verifiable compu-
tation [17] and multi-hop homomorphic encryption [27], to reduce the verifier’s
preprocessing costs in the NIZK argument [26], and to build the attribute-based
encryption (ABE) scheme in [25]. Attrapadung [6] used UCs to transform the
ABE schemes for any polynomial-size circuits [24,29] into ciphertext-policy ABE.
Garg et al. [12,23] used UCs to construct universal branching programs, which
were in turn used to build a candidate indistinguishability obfuscation (iO).
The iO scheme [23] was implemented in [7], whose efficiency is closely related
to the size of UCs. Zimmerman [59] proposed a new scheme to obfuscate pro-
grams by viewing UC as a keyed program for circuit families. Lipmaa et al. [41]
suggested that UC can be used for efficient batch execution of secure two-party
computation. The batch execution techniques [33,40] were originally intended for
amortizing the cost of maliciously secure garbled circuits for the same function,
and UCs can now enable batched execution for circuits of different functions
(realized by the same UC). This protocol was made round-optimal in [46].

1.2 Valiant’s Universal Circuits and Subsequent Works

Valiant [53] took a graph-theoretic approach to constructing universal circuits
that were followed by almost all size-efficient universal circuits [3,30,37,41,57].

368 H. Liu et al.

One may represent an arbitrary circuit by a direct acyclic graph (DAG) and
then see a universal circuit as a special DAG called edge universal graph (EUG).
The construction is recursive and parameterized by k ≥ 2, which is the number
of sub-problems (of scale 1/k of the original problem) it reduces to during each
recursion. We typically refer to it as a k-way construction or a k-way UC. In
more details, to construct a UC, we need to construct the corresponding EUG
in a recursive manner: “an EUG simulating any DAG of size n”, denoted by
EUG(n), can be constructed based on k instances of EUG(nk), and the recur-
sion repeats many times until a sufficiently small EUG to be built by hand.
Moreover, during each recursion, k instances of EUG(nk) are connected to form a
EUG(n) using a matching algorithm, whose complexity increases with respect to
k. In the most desirable case k = 2, the matching algorithm is simply bipartite
matching. Valiant provided 2-way and 4-way (i.e., k = 2 and k = 4) theoretical
constructions of universal circuits of multiplicative sizes2 5n log n and 4.75n log n
respectively (omitting smaller terms), which match the lower bound Ω(n log n)
up to constant factors [53,54]. Therefore, as a theoretical problem, explicit con-
struction of size-efficient universal circuits was mostly solved by Valiant [53]
more than forty years ago.

Valiant’s universal circuit had long been recognized more as a feasibility
result than a practical application. Kolesnikov and Schneider [39] turned to
(and implemented for the first time) a modular design of universal circuits of
size 1.5n log2 n +2.5n log n. Despite not asymptotically size optimal, the UC [39]
enables efficient simulation of small-scale circuits (e.g., for n < 106), thanks to
the smaller constant factor in circuit size. Further, they gave the first implemen-
tation of UC-based PFE under the Fairplay secure computation framework [44].
More recently, Kiss et al. [37] implemented a hybrid UC combining Valiant’s
2-way UC [53] and the UC of Kolesnikov and Schneider [39] integrated with
various optimizations for many typical PFE applications. Günther et al. [30]
gave a generic edge embedding algorithm for Valiant’s k-way construction and
implemented a hybrid of Valiant’s 2-way and 4-way UCs. Concurrently, Lipmaa
et al. [41,51] gave a generic construction of the k-way supernode (an important
building block of Valiant’s k-way universal circuit) and based on the method
they estimated that the k’s optimal value for minimizing the size of UC was
k = 3.147 (i.e., k ∈ {3, 4} as an integer). In addition, Lipmaa et al. [41] brought
down the size of 4-way UC from 19n log n to 18n log n by optimizing out some
XOR gates. However, the number of AND gates remained the same as Valiant’s
4-way UC [53] (i.e., 4.75n log n), and thus the improvement offers limited help to
PFE or other applications with free XOR optimizations [38]. Zhao et al. [57] gave
a more efficient 4-way UC of multiplicative circuit size 4.5n log n (and circuit size
17.75n log n), which was the best size-efficient construction prior to our work.
Alhassan et al. [3] designed an efficient and scalable algorithm for UC generation

2 It is typically assumed that a circuit C consists of AND gates and XOR gates. The
size of C refers to the number of gates in C, and its multiplicative size is the number
of AND gates. As a major performance indicator for Valiant’s (and our optimized)
framework, the multiplicative size of a UC is roughly a quarter of its total size.

Pushing the Limits of Valiant’s Universal Circuits 369

and programming, and implemented a hybrid construction of Valiant’s 2-way UC
and the 4-way UC by Zhao et al. [57]. We refer to Table 1 for asymptotic sizes
of existing theoretical constructions.

1.3 Our Work

Outstanding issues. For efficiency and granularity of the construction3, k is
desired to be the smallest possible, i.e., k = 2, but 2-way universal circuits are less
size-efficient than UC tuned at other values, e.g., k = 4. Therefore, the state-of-
the-art implementations [3,30] resort to a hybrid construction of 2-way and 4-way
UCs for a tradeoff between granularity and size efficiency. Further, there remains
a significant gap between the 4.5n log n achieved by the best size-efficient UC
and the 3.64n log n lower bound under Valiant’s framework. With the growing
trend of secure computation exceeding 10-million-gate or even billion-gate scale
(e.g., [5,58]), the constant factor in asymptotic universal circuit size becomes
increasingly important and practically relevant. To summarize, it is natural to
raise the following question:

Can we build a UC with low(est) complexity and small(est) circuit size at the
same time, ideally matching (or even beating) the 3.64n log n lower bound?

Paper organization and our contributions. Section 2 gives the nota-
tions, definitions, and graph-theoretic preliminaries about universal circuits.
Section 3.1 carries out an in-depth review of Valiant’s construction (see Theo-
rem 2). Section 3.2 then introduces an intermediate tweaked valiant of Valiant’s
construction that is not even acyclic (i.e., contains cycles). Despite the cyclicity,
we argue in Corollary 1 that the intermediate construction preserves the “uni-
versal edge-embedding” function, which is referred to as a weak EUG (≈EUG
without acyclicity, see Definition 3). Section 3.3 observes that the weak EUG con-
tains many redundant control nodes whose control options are predetermined,
so they can be removed while preserving the universal edge-embedding capa-
bility. The removal of redundant nodes not only eliminates the cycles (brings
back the EUG) but also results in a compact design of the EUG, where the
1/3 size improvement benefits from the removal of redundant control nodes.
Section 3.4 proves a 2.95n log n lower bound on the size of UCs under our opti-
mized framework, which tightly complements our construction of size 3n log n.
Section 4 implements, optimizes and evaluates (the performance of) our univer-
sal circuit, which confirms our theoretical analysis and validates its practicality.
In summary, compared with previous works (see Table 1), our construction has
the following advantages:
3 The edge embedding algorithm for constructing 2-way UC is simply a bipartite

matching algorithm, while in contrast, a generic algorithm for k-way UC is much
more complex and less efficient. Moreover, Valiant’s construction only explicitly han-
dles the case n = Bkj for arbitrary j ∈ N

+ (i.e., the number of recursions) and small
B ∈ N

+ (i.e., EUG(B) is the initial EUG built from scratch). Optimization tech-
niques [3,30] are helpful in adapting to arbitrary n, especially for k = 2.

370 H. Liu et al.

Simplicity. Our approach inherits Valiant’s framework but removes the need
for parameter k. That is, always set k = 2 to obtain UCs that are most
efficient to construct and offer good size efficiency simultaneously.

Compactness. Our universal circuits have asymptotic size 3n log n, improv-
ing upon the previous state-of-the-art 4.5n log n by 33% and beating the
3.64n log n lower bound in Valiant’s framework [57].

Tightness. Our new framework bridges the gap between theory and practice of
universal circuits: the universal circuit size 3n log n achieved almost tightly
matches the 2.95n log n lower bound.

Note that the 2.95n log n lower bound we proved is incomparable to (and thus
not implied by) the 3.64n log n bound [57] obtained under Valiant’s framework,
and it thus creates more room for efficiency improvement.

Table 1. The sizes, multiplicative sizes and lower bounds for previous universal circuits
and ours, keeping only dominant terms.

Universal Circuit MUL size Lower Bound Total Size

(# of AND gates) on MUL size

Kolesnikov et al.’s UC [39] 0.25n log2 n N/A n log2 n

Valiant’s 2-way UC [53] 5n logn ≥ 3.64n log n 20n logn

Valiant’s 3-way UC [30,53] 5.05n logn ———"——— 20.19n logn

Valiant’s 4-way UC [53] 4.75n logn ———"——— 19n logn

Lipmaa et al.’s 4-way UC [41] 4.75n logn ———"——— 18n logn

Zhao et al.’s 4-way UC [57] 4.5n logn ———"——— 17.75n logn

Our 2-way UC 3n logn ≥ 2.95n log n 12n logn

On the presentation strategy. A straightforward presentation is to describe
and prove our main construction in Sect. 3.3 from scratch, which may take more
effort and confidence to verify the correctness. Instead, we choose the following
somewhat hybrid argument

“Valiant’s EUG”
︸ ︷︷ ︸

Section 3.1

�→ “intermediate weak EUG”
︸ ︷︷ ︸

Section 3.2

�→ “final EUG”
︸ ︷︷ ︸

Section 3.3

from the known-to-be-correct Valiant’s construction, to the intermediate one,
and then to the final construction, where we highlight the (minor) difference
between neighboring hybrids. Thus, the proof reduces to verifying that the minor
changes do not affect the correctness. Essentially, the weak EUG can be viewed
as a special variant of Valiant’s EUG with quite some redundant control nodes,
which are thus removed to yield the final construction. This way of presentation
reproduces the process we discovered the construction, and helps to understand
how our improvement benefits from the redundancy of Valiant’s original design.

Pushing the Limits of Valiant’s Universal Circuits 371

2 Preliminaries

Notations. We use [n] to denote the set of the first n positive integers, i.e., {1,
. . ., n}. |G| (resp., |C|) refers to the size of a graph G (resp., circuit C), namely,
the number of nodes (resp., inputs and gates) in G (resp., C). More specifically,
Cg
s,t denotes a circuit of s inputs, t outputs and g gates of fan-in and fan-out 2,

where circuit size n = s + t by definition. DAG2(n) refers to a Directed Acyclic
Graph (DAG) of fan-in and fan-out 2, and size n, and UCn denotes a UC of
fan-in and fan-out 2 that can simulate any Cg

s,t of size s + g ≤ n.

Definition 1 (Universal Circuits [41,54,57]). A circuit UCn is a universal
circuit, if for any circuit Cg

s,t with s + g ≤ n, there exists a bit-string pC ∈ {0, 1}m
that configures UCn to simulate Cg

s,t, i.e., ∀x ∈ {0, 1}s,UC(n)(pC, x) = Cg
s,t(x).

Universality refers to the ability to simulate arbitrary circuits (up to a certain
scale), and the correctness of simulation requires that for every eligible circuit
Cg
s,t there exists a configuration pC such that UCn(pC, ·) is functionally equivalent

to Cg
s,t(·). Following previous works, we consider circuits with fan-in and fan-out

bounded by 2 without loss of generality [3,30,41,53,57].

Graph representation. A circuit Cg
s,t of fan-in and fan-out 2 can be repre-

sented by a DAG2(n) for n = s + g and vice versa, where circuit wires corre-
spond to graph edges, and inputs and gates become nodes on the corresponding
graph. As illustrated in Fig. 1, Valiant introduced a special DAG, referred to
as edge-universal graph (EUG), such that “a universal circuit simulates arbi-
trary circuits” can be compared to that “an EUG2(n) edge-embeds arbitrary
DAG2(n)”, where subscript 2 indicates fan-in and fan-out of the DAG and n is
the size of the DAG. We provide an example of edge embedding for n = 4 in
Fig. 2. Informally, the DAG2(4) on the left-hand edge embeds into the EUG2(4)
on the right-hand in the sense that all nodes (i.e., the inputs x, y and the gates
⊕, ∧) in DAG2(4) one-to-one map to the counterparts in EUG2(4) and all edges
in DAG2(4) find their respective edge-disjoint paths in EUG2(4), e.g., the edge
e corresponds to the path (e1,e2,e3) and the edge f maps to the path (f1, f2).
The edge universality of EUG2(4) refers to that for every DAG2(4) such an edge
embedding always exists (and can be efficiently identified). We refer to Defini-
tion 2 and Definition 3 for formal statements about edge embedding and edge
universal graphs.

Fig. 1. “UCn simulates Cg
s,t” is equivalent to “EUG2(n) edge-embeds DAG2(n)”.

372 H. Liu et al.

Definition 2 (Edge-Embedding [3,41,53]). Edge-embedding is a mapping
from graph G = (V,E) into G′ = (V ′, E′), denoted by G � G′, such that

1. V maps to V ′ one-to-one, but not necessarily surjective (i.e., |V | ≤ |V ′|).
2. Every edge e ∈ E maps to a directed path in E′ in an edge-disjoint manner,

i.e., any edge e′ ∈ E′ is found at most once (in the paths that are mapped
from the edges in E).

Definition 3 (Edge-Universal Graph [3,41,53]). A directed graph G′ is an
Edge-Universal Graph for DAGd(n), denoted by EUGd(n), if it satisfies the fol-
lowing conditions:

1. (acyclicity). G′ is a DAG.
2. (universality). Every G ∈ DAGd(n) can be edge-embedded into G′.
3. (bounded fan-in/fan-out). G′ has bounded fan-in/fan-out, typically

bounded by 2.

Further, G′ is a weak Edge-Universal Graph for DAGd(n), denoted by wEUGd(n),
if it satisfies conditions 2 and 3 above.

Remark 1. In the above definition, the condition that “G′ is a DAG of bounded
fan-in/fan-out” is decoupled into “acyclicity” (condition 1) and “bounded fan-
in/fan-out” (condition 3). This facilitates the definition of weak EUG. In general,
weak EUG is not a useful notion since it doesn’t guarantee acyclicity, and thus
does not give rise to a universal circuit (not even a circuit). However, looking
ahead, we find the weak EUG notion simplifying our presentation when intro-
ducing our intermediate construction. Condition 3 is not strictly necessary for
universal circuits, but it was respected by almost all previous works of universal
circuits, and satisfying this condition makes comparison easy since the multi-
plicative size (resp., total size) of the resulting UC is roughly equal to (resp.,
four times) the size of the EUG.

Configuring EUG. Still using Fig. 2, we explain how edge embedding trans-
lates to the simulation of circuits. First, input nodes (e.g., x and y) simply map
to the corresponding input poles in the EUG, and the gates (e.g., ⊕ and ∧)
are implemented by the universal gates in the EUG. As the name suggests, a
universal gate can be configured to simulate any binary gate (see the full ver-
sion of our paper [42, Appendix A] for more details). In addition to poles, there
are also control nodes in the EUG (i.e., the smaller ones in the right-hand of
Fig. 2), which can be further instantiated with X-switching gates, Y -switching
gates, and splitters. They are labelled in Fig. 2. A control node (with a single
incoming edge and two outgoing edges) is implemented by a splitter, where only
two wires (i.e., no gates) are needed as the two outputs simply copy the value
from the input. The control nodes with in-degree 2 and out-degree 2 (resp., 1)
are implemented by X-switching (resp., Y -switching) gates, which can be config-
ured in two different ways (see Fig. 3). In summary, the universal gates simulate

Pushing the Limits of Valiant’s Universal Circuits 373

Fig. 2. An example of edge-embedding, where the nodes and edges of the left-hand
DAG is mapped to corresponding poles and paths of the right-hand EUG respectively.

the corresponding gates in the original circuit, and the X/Y -switching gates are
configured such that every intermediate value is carried from the origin to the
destination (by following the route of edge embedding). For example in Fig. 2,
the input x goes all the way, following the path (e1, e2, e3), to the universal
gate that computes ∧, with a correct configuration of the X/Y - switching gates
along the way. We refer to the full version [42, Appendix A] for details about
universal gates and switching gates and their implementations. Finally, the con-
trol bits of universal gates and switching gates make up the program bits pC for
the universal circuits.

Fig. 3. The configurations of X-switching and Y -switching gates.

Therefore, Valiant reduces the problem of constructing universal circuits to
that of constructing edge-universal graphs. The size efficiency of the universal
circuit mainly concerns total size and multiplicative size (the number of AND
gates), both of which are proportional to the size of the EUG.

|UCn| = 4nX + 3nY + 9n ≤ 4(nX + nY + n) + 5n = 4|EUG2(n)| + 5n ,

#(AND) = nX + nY + 3n = (nX + nY + n) + 2n = |EUG2(n)| + 2n ,

where nX , nY and n are the numbers of X-switching gates, Y -switching gates
and universal gates respectively. 4nX , 3nY and 9n further account for the num-
bers of basic gates needed to construct X-switching gates, Y -switching gates and

374 H. Liu et al.

universal gates respectively. Details about the implementations are provided in
the full version [42, Appendix A]. Recall that |EUG2(n)| = Ω(n log n) and thus

|EUG2(n)| ≈ #(AND) ≈ |UCn|/4

will be used as the major efficiency indicator.

3 Simplifying Constructions of Universal Circuits

3.1 Valiant’s Universal Circuits

Following Valiant’s blueprint [53] (see Fig. 4), the construction of universal cir-
cuits consists of the following steps:

1. Construct a UCn based on an EUG2(n);
2. Construct an EUG2(n) by merging two instances of EUG1(n);
3. Construct an EUG1(n) based on EUG1(�n/k� − 1), where the reduction is

enabled with a special graph referred to as a k-way supernode, abbreviated
as SN(k), for some small k (typically k ∈ {2, 3, 4});

4. Repeat Step 3 recursively until EUG1 is small enough to build by hand.

Fig. 4. A high-level view of Valiant’s framework for contructing universal circuits.

The construction of the universal circuit UCn from EUG2(n) was already
explained in the previous section. We proceed to the next steps.

Construct EUG2(n) from EUG1(n). We introduce Lemma 1 and Lemma 2
to show that the EUG2(n) can be based on two instances of the EUG1(n).

Theorem 1 (König’s theorem [16,43]). If G is bipartite and its nodes have
at most k incoming and k outgoing edges, then the number of colors necessary
to color G is k.

Lemma 1 (Lemma 2.1 from [53]). For any DAGd(n) = (V,E), there exist
d disjoint sets E1, E2, . . ., Ed such that E = ∪d

i=1Ei and each (V,Ei) (for
1 ≤ i ≤ d) constitutes a DAG1(n).

Lemma 2 ([53]). For any n ∈ N
+ and any EUG1(n) of size T , there exists an

EUG2(n) of size 2T − n.

Pushing the Limits of Valiant’s Universal Circuits 375

We only sketch the proofs for completeness and to avoid redundancy. As
exemplified in Fig. 5, we simply construct an EUG2(n) based on two instances of
EUG1(n) by merging the corresponding poles and thus the size of the resulting
EUG2(n) is twice that of EUG1(n) minus n. We now argue that the merged
graph must be an EUG2(n). Any G = (V,E) ∈ DAG2(n) can be decomposed into
G1 = (V,E1), G2 = (V,E2) ∈ DAG1(n) by Lemma 1, for which there exist edge
embeddings ρ1 and ρ2 that map G1 and G2 into the two instances of EUG1(n)
respectively. It is not hard to see that ρ1 ∪ ρ2 is also an edge embedding (since
edge-disjointness is preserved) that maps this (arbitrarily chosen) G ∈ DAG2(n)
into the candidate EUG2(n), which is a merge of the two EUG1(n) instances.

Fig. 5. An EUG2(n) based on two instances of EUG1(n).

DAG Augmentation. We introduce the notion of augmentation, as specified
in Definition 4. Informally, a DAG1(k) is augmented by adding k input nodes
and k output nodes, and connecting every source (resp., sink) with a single
edge from (resp., to) an input (resp., output) node. Each input/output node is
connected by at most one edge and thus the resulting augmented DAG remains
of fan-in/fan-out 1, namely, an augmented DAG1(k) is a DAG1(3k). Notice that
inputs/outputs always suffice for augmentation since they are as many as the
nodes in the original DAG. We also define k-way supernode, denoted by SN(k),
in Definition 5 as a special EUG1(3k) that edge embeds any augmented DAG1(k),
much as that an EUG1(k) edge embeds any DAG1(k). We refer to Fig. 6 for an
example, where a DAG1(4) is augmented and then edge embedded into an SN(4).

Definition 4 (Augmented DAG). For any k ∈ N
+ and any G = (V,E) ∈

DAG1(k), we say that G′ = (V ′, E′) ∈ DAG1(3k) is an augmented DAG for G if

V ′ =
(

I = {in1, . . . , ink}
)

∪
(

V = (P1, . . . , Pk)
)

∪
(

O = {out1, . . . , outk}
)

and E′ = E ∪ Eaux satisfy

376 H. Liu et al.

1. (Soundness). Every e ∈ Eaux satisfies either e = (ini, Pj) or e = (Pj , outi);
2. (Completeness). For every source (resp., sink) Pj ∈ V , there exists exactly

one i ∈ [k] such that (ini, Pj) ∈ Eaux (resp., (Pj , outi) ∈ Eaux).

Definition 5 (Supernode [41,57]). A k-way supernode, denoted by SN(k), is
a DAG that can edge embed any augmented DAG1(k).

Remark 2. To be in line with the augmented DAG1(k), an SN(k) needs k inputs,
k poles, k outputs and potentially more, say m, control nodes. We define the size
of SN(k), denoted by |SN(k)|, to be m + k rather than m + 3k, i.e., excluding
inputs and outputs. This seems a slight abuse of the definition of graph size, but
it comes in handy when counting the size of Valiant’s EUG construction (see
Fig. 7), where the input/output nodes coincide with the poles in the smaller
EUG (and hence their contribution to the graph size has already been counted).

Construct EUG1(n) based on EUG1(�n
k
� − 1) and SN(k). The core of

Valiant’s construction is to reduce the problem of EUG1 to itself of a smaller size
(by a constant factor k), with the aid of the special gadget called supernode.

Fig. 6. A DAG1(4) with edges a, b is augmented and then edge embedded to an SN(4).

Theorem 2 (Valiant’s reduction [53]). There exists an explicit construction
of EUG1(n) based on k instances of EUG1(�n

k � − 1) and �n
k � instances of k-way

supernodes SN(k) such that

EUG1(n) = k · |EUG1(�n

k
� − 1)| + �n

k
� · |SN(k)| .

As visualized in Fig. 7, the n poles of the candidate EUG1(n) come from the
poles of n

k instances of SN(k), i.e., n = n
k · k. Merge the corresponding output

and input nodes of neighboring SN(k) (e.g., out11 and in1
2 in Fig. 7), which results

in the merged nodes of in-degree and out-degree 1. Further, let the merged nodes

Pushing the Limits of Valiant’s Universal Circuits 377

coincide with the poles4 of EUG1(�n
k � − 1) that are also of in-degree and out-

degree 1. Then, the eventually merged nodes are of in-degree/out-degree 2 and
are thus instantiated with X-switching nodes. The fact below states that as
long as one starts with an initial EUG1 and an SN(k) that are DAG2

5 with all
poles of in-degree/out-degree 1, then the condition will be preserved for the
recursively constructed EUG1 of arbitrary size. Note that G’s all poles are of
in-degree/out-degree 1 doesn’t conflict G ∈ DAG2 since the control nodes have
in-degree/out-degree 2.

Fact 1 (degree preserving). Consider the recursive construction in Fig. 7 (or
Fig. 8). As long as the building block SN(k) and the initial EUG1 satisfy

1. Each graph is of fan-in/fan-out 2;
2. The poles of each graph are of in-degree and out-degree 1.

Then, the resulting EUG1 (or wEUG1) candidate satisfies the two conditions as
well.

Proof. The proof goes by an induction. During each iteration, the poles of
EUG1(�n

k � − 1) are of in-degree and out-degree 1, and thus after merging with
SN(k)’s input/output nodes, it yields nodes of in-degree and out-degree 2 (i.e.,
not violating condition 1). Further, the poles of the SN(k)’s now become the
poles of the new EUG1(n) candidate, and thus the “all poles are of in-degree and
out-degree 1” condition is preserved for EUG1(n) candidate.

Fig. 7. Valiant’s construction of EUG1(n) based on k instances of EUG1(�n
k
� − 1) and

�n
k
� instances of SN(k).

4 Note that the poles of EUG1(�n
k
� − 1) do not constitute the poles of the EUG1(n),

but become X-switching nodes after merging with input/output nodes.
5 Recall that subscript 1 in EUG1(n) refers to its capability of edge embedding arbi-

trary DAG1(n), instead of that EUG1(n) is of fan-in/fan-out 1. In fact, an EUG1

needs fan-in/fan-out 2 to cater for control nodes such as X/Y switching nodes.

378 H. Liu et al.

Proof sketch of Theorem 2. It suffices to show any G = (V,E) ∈ DAG1(n)
can be edge embedded into the candidate EUG1(n). For concreteness we give a
working example (for n = 30 and k = 6) of how an arbitrary G ∈ DAG1(30) is
edge embedded into a candidate EUG1(30) in the full version [42, Appendix D].
Denote the topologically sorted nodes in G by V ={p1, p2, . . ., pn}, and group
them such that every k successive nodes make up a set, i.e., for each i ∈ [�n

k �]

Vi
def= {p(i−1)k+1, p(i−1)k+2, . . . , p(i−1)k+k} ,

let Ei be the set of edges connecting the nodes in Vi

Ei
def= {(pu, pv) ∈ E, | pu, pv ∈ Vi}

and let E\ be the rest edges (connecting nodes from different sets)

E\
def= E \ (E1 ∪ . . . ∪ E�n

k �) .

First, augment (as per Definition 4) each (Vi, Ei) ∈ DAG1(k) to a (V ′
i , E

′
i) ∈

DAG1(3k) by adding input (resp., output) nodes, and connecting them to sources
(resp., from sinks) in (Vi, Ei). There are also edges connecting nodes between
different Vi, i.e., (pu, pv) ∈ E\ with pu ∈ Vi and pv ∈ Vj (i < j), where pu (resp.,
pv) must be a sink (resp., source) within (Vi, Ei) (resp., (Vj , Ej)) because any
additional e ∈ E other than (pu, pv) from pu (resp., to pv) would contradict that
G is a DAG1. Therefore, pu will be connected to outti and int′

j will be linked to
pv when augmenting (Vi, Ei) and (Vj , Ej) respectively. In order to edge embed
(pu, pv) to the augmented graph, we connect outti to int′

j , and add (outti,in
t′
j) to

Evert. Thus, we have the following edge embedding

G = (V,E) � G′ =
(�n

k �
⋃

i=1

(Ii ∪ Vi ∪ Oi),
(

�n
k �

⋃

i=1

E′
i

)

∪ Evert

)

,

where every node in V maps to itself, every edge in Ei maps to itself, and every
(pu, pv) ∈ E\ maps to path (pu, outti, in

t′
j , pv). Thus, the edge embedding is not

unique but up to the choices of (t, t′). Lemma 3 below guarantees (V1, E1), . . .,
(V�n

k �, E� n
k �) can be jointly augmented such that every pair (outti,in

t′
j) is aligned

vertically (i.e., t = t′).

Lemma 3. For every G = (V,E) ∈ DAG1(n) divided into (Vi, Ei) and E\ as
aforementioned, one can augment (V1, E1), . . ., (V�n

k �, E�n
k �) ∈ DAG1(k) to the

respective
(

I1 ∪ V1 ∪ O1, E′
1

)

, . . . ,
(

I�n
k � ∪ V�n

k � ∪ O� n
k �, E′

�n
k �

)

∈ DAG1(3k)

where Ii = {int
i}t∈[k] and Oi = {outti}t∈[k], such that for every (pu, pv) ∈ E\

with pu ∈ Vi and pv ∈ Vj (i < j), the corresponding added edges (pu, outti) ∈ E′
i

and (int′
j , pv) ∈ E′

j satisfy t = t′.

Pushing the Limits of Valiant’s Universal Circuits 379

Lemma 3 falls into a corollary of Theorem 1. To see this, view each Ii/Oi as a
node (instead of a set of nodes) and consider the bipartite graph (O ∪ I, Ebp) with
disjoint node sets O = {O1, . . ., O�n

k �} and I = {I1, . . ., I�n
k �}, where (Oi, Ij) ∈

Ebp if and only if there exists (pu, pv) ∈ E\ with pu ∈ Vi, pv ∈ Vj and i < j.6

By Theorem 1, the bipartite graph is of fan-in/fan-out k and thus can be k-
colored say with colors C-1 to C-k. Therefore, Lemma 3 follows by translating
the coloring to graph augmentation, i.e., for every (Oi, Ij) ∈ Ebp colored with
C-t we add edges (pu, outti) and (int

j , pv) to E′
i and E′

j respectively (and add
(outti,in

t
j) to Evert). ��

G can be edge embedded to G′, but G′ cannot be edge embedded into the
candidate EUG1(n) because after adding the input/output nodes G′ does not
even look like (a subgraph of) the candidate EUG1(n). To be compatible, we
merge every output-input pair from the neighboring Oi and Ii+1, i.e., merge
outti and int

i+1 for every i ∈ [�n
k � − 1] and t ∈ [k], and rename the merged

node from outti/int
i+1 to oiti. Let OIi

def= {oiti}t∈[k], let E′′
i and E′

vert be the
counterparts of E′

i and Evert respectively (by renaming outti/int
i+1 to oiti) and

eliminating self loops7. We denote the merged version of G′ by

G′′ =
(

I1 ∪
�n

k �−1
⋃

i=1

(Vi ∪ OIi) ∪ O�n
k �,

(
�n

k �
⋃

i=1

E′′
i

)

∪ E′
vert

)

,

and it remains to edge embed G′′ to the candidate EUG1(n). To achieve this, we
edge embed every (OIi−1 ∪Vi ∪OIi,E′′

i) into SN(k)i, where OI0 = I1 and OI�n
k �

= O�n
k �. The task then reduces to

(�n
k �−1
⋃

i=1

OIi =
k

⋃

t=1

{oiti}i∈[

�n
k �−1

], E′
vert

)

�
k

⋃

t=1

EUG1(�n

k
� − 1)t .

Thanks to Lemma 3, every (oiti,oi
t′
j) ∈ E′

vert satisfies t = t′, and thus the job
furthers reduces to do edge embedding independently, i.e., for every t ∈ [k]

(

V oi
t

def= {oiti}i∈[

�n
k �−1

], Eoi
t

def=
{

(oiti, oi
t
j) ∈ E′

vert

}
)

� EUG1(�n

k
� − 1)t ,

where ∪k
t=1E

oi
t = E′

vert. This is trivial since any DAG1(�n
k �−1) such as (V oi

t , Eoi
t)

can be edge embedded into an EUG1(�n
k � − 1).

Theorem 3 (Valiant’s universal circuits [53]). For any integer k ≥ 2, there
exist explicit k-way constructions of EUG2(n) and UCn with

|EUG2(n)| =
2|SN(k)|
k log k

n log n − Ω(n) and |UCn| ≤ 4|EUG2(n)| + O(n) .

6 No edge (pu, pv) ∈ Ei (i.e., i = j) is considered, and the case for i > j is not possible
as nodes are topologically sorted in the first place. Further, if there are multiple
edges from a node in Vi to one in Vj , then equally many copies of (Oi, Ij) are added.

7 After merging, edge (outti,in
t
i+1) becomes a self-loop which is not included in E′

vert.

380 H. Liu et al.

The construction of EUG2(n) eventually reduces to that of EUG1(B) for small
B, whose optimal sizes were known for B ∈ {2, . . . , 8} [30,41,53] (see Table 2).
The size of EUG2(n) follows from Lemma 2 and Theorem 2, i.e.,

|EUG2(n)| = 2|EUG1(n)| − n , (1)

|EUG1(n)| = k|EUG1(�n

k
� − 1)| + �n

k
�|SN(k)| , (2)

where |EUG1(B)| is irrelevant to the dominant term of |EUG2(n)| but is reflected
in (and absorbed by) the term Ω(n). Similarly, we get

|UCn| =
2|CircuitSN(k)|

k log k
n log n − Ω(n) ≤ 8|SN(k)|

k log k
n log n − Ω(n) , (3)

where CircuitSN(k) denotes the circuit counterpart of SN(k). Clearly, the size
of universal circuits monotonically depends on the k-way supernode size, and
thus constructing size-optimal universal circuits can be reduced to the search
for optimal size-efficient supernodes. We know from the literature [30,53,57] the
minimum of |SN(k)| for practical values k = 2, 3, 4 along with the correspond-
ing sizes of edge universal graphs and universal circuits, as shown in the full
version [42, Appendix C] and Table 3.

Table 2. The concrete sizes of size-optimal EUG1(n) for n ∈ {2, · · · , 8} [30,41,53].

n 2 3 4 5 6 7 8

|EUG1(n)| 2 4 6 10 13 19 23

Table 3. Size-efficient universal circuits for k ∈ {2, 3, 4} under Valiant’ framework,
where graph and circuit sizes keep only dominant terms.

Construction k |SN(k)| |EUG2(n)| |UCn|
Valiant’s 2-way [53] 2 5 5n log n 20n log n

Günther et al.’s 3-way [30] 3 12 5.05n log n 20.19n log n

Valiant’s 4-way [53] 4 19 4.75n log n 19n log n

Zhao et al.’s 4-way [57] 4 18 4.5n log n 17.75n log n

The supernode sizes in Table 3, i.e., |SN(k)| = 5, 12 and 18 for k ∈ {2, 3, 4}
respectively, were shown optimal by an exhaustive search that no candidate
graph of smaller sizes can constitute a k-way supernode [57]. However, size-
optimal supernodes, for k ≥ 5, are not known and even if they are found, the
corresponding universal circuits are not practical because the time/memory com-
plexity of the compiler (that involves EUG configuration, edge embedding, etc.)
blows up dramatically with respect to k. Further, Zhao et al. [57] showed that
under Valiant’s framework, the |EUG2(n)| is lower bounded by 3.64n log n with
minimum achieved at k = 69 (and thus unattainable in practice). Therefore, it is
necessary to break the Valiant’s framework to beat the 3.64n log n lower bound.

Pushing the Limits of Valiant’s Universal Circuits 381

3.2 An Intermediate wEUG1(n) Construction

As concluded, improvement to Valiant’s universal circuits seemingly relies on
better constructions of EUG1(n). As shown in Fig. 8, we give an intermediate
construction of a candidate wEUG1(n): for every row i (i.e., SN(k)i) we hori-
zontally (i.e., for t ∈ [k]) merge every input-output pair (int

i,outti) to the node
ioti of in-degree and out-degree 1, and we further merge the nodes vertically, for
every column t, let (iot1,io

t
2,. . . ,io

t
� n

k �) merge with the poles of the wEUG1(�n
k �)t

component-wise. Prior to merging the poles of wEUG1(�n
k �) are of in-degree

and out-degree 1 (see Fact 1), and therefore the merged nodes are X-switching
nodes of in-degree and out-degree 2. This construction seems to be a variant of
Valiant’s construction in Fig. 7. The difference is that, instead of merging every
pair of outti and int

i+1 (1 ≤ t ≤ k) from the neighboring SN(k)i and SN(k)i+1,
one merges int

i and outti for the same SN(k)i, for every i ∈ [�n
k �] and t ∈ [k].

This introduces cycles to the graph and thus the best hope is to prove it to be
a wEUG1(n).

Corollary 1 (The intermediate wEUG1(n)). The graph constructed from
k instances of wEUG1(�n

k �) and �n
k � instances of SN(k), as in Fig. 8, is a

wEUG1(n).

We sketch how the proof of Theorem 2 can be adapted to prove the above
corollary. Consider an arbitrary G = (V,E) ∈ DAG1(n) with topologically sorted
nodes V ={p1, p2, . . ., pn}, and let Vi, Ei and E\ be defined the same way
(as in proof of Theorem 2). After augmenting every (Vi, Ei) ∈ DAG1(k) to a
(V ′

i , E
′
i) ∈ DAG1(3k), we can (efficiently) obtain such an edge embedding

G = (V,E) � G′ =
(�n

k �
⋃

i=1

(Ii ∪ Vi ∪ Oi),
(

�n
k �

⋃

i=1

E′
i

)

∪ Evert

)

,

where by Lemma 3 for every (pu, pv) ∈ E\ (i.e., pu ∈ Vi, pv ∈ Vj , i < j) there
exists t ∈ [k] such that edge (pu, pv) maps to path (pu, outti, in

t
j , pv) in the edge

embedding. Notice that up till now the proof is exactly the same as that of
Theorem 2. Next, instead of merging every pair of outti and int

i+1 (t ∈ [k]) from
the neighboring Oi and Ii+1 (i ∈ [�n

k � − 1]), we merge int
i and outti for the

same i, and for every i ∈ [�n
k �] and t ∈ [k], as shown in Fig. 8. Rename the

merged node int
i/outti to ioti, let IOi

def= {ioti}t∈[k], and let E′′
i and E′

vert be the
counterparts of E′

i and Evert respectively by renaming the nodes (from int
i/outti

to ioti). This simplifies G′ to

G′′ =
(�n

k �
⋃

i=1

(IOi ∪ Vi),
(

�n
k �

⋃

i=1

E′′
i

)

∪ E′
vert

)

,

382 H. Liu et al.

and it remains to show G′′ can be edge embedded into the candidate weak EUG.
Every (Ii ∪ Vi ∪ Oi, E′

i) can be edge embedded into SN(k)i and so can do it
when the corresponding int

i and outti are merged, which ensures that every edge
in Ei maps to a path in the candidate wEUG1(n). Further, by the definition of
weak EUG we have for every t ∈ [k]

(

V io
t

def= {ioti}i∈[�n
k �], Eio

t
def=

{

(ioti, io
t
j) ∈ E′

vert

}
)

� wEUG1(�n

k
�)t ,

which ensures that every (pu, pv) ∈ E\ maps to a path in the candidate
wEUG1(n). Finally, it is important to note that the aforementioned mappings
of edges in E to the corresponding paths in the candidate wEUG1(n) are edge
disjoint. ��
Note that wEUG1 is cyclic, and there are cycles that first leave a block and
eventually returns to the same block. However, it is interesting to observe that
such self-feedback paths will never appear in the edge-disjoint paths for edge-
embedding any DAG1(n). This is because for any topologically sorted DAG1(n)
and any edge (u, v) ∈ DAG1(n) that belong to the same block we have 1 +
(i − 1)k ≤ u < v ≤ k + (i − 1)k, and by the definition of supernode SN(k)i
edge embeds (u, v) with a path that never leaves the block. Otherwise said, the
X-switching nodes resulting from merging input/output nodes for every SN(k)i
(see node a in Fig. 8) are actually redundant, e.g., the self-feedback option
(4, 2)/(1, 3) for node a is never used. This motivates further optimizations in our
final construction, and thanks to the removal of the redundant nodes, the end
construction results in a DAG and we get an EUG in the end.

Fig. 8. The intermediate wEUG1(n) based on k instances of wEUG1(�n
k
�) and �n

k
�

instances of SN(k).

Pushing the Limits of Valiant’s Universal Circuits 383

3.3 The Final Constructions of EUG1(n) and Universal Circuits

On optimizing the intermediate construction. At first glance, this con-
struction is nothing more than a weak version of Valiant’s EUG, with roughly
the same (actually slightly worse) circuit size. However, it serves to exhibit the
redundancy of Valiant’s construction. Our universal circuits use the EUG1 con-
struction in Fig. 9, which optimizes (differs from) Fig. 8 by avoiding merging
the nodes (and save X-switching nodes). That is, for every t ∈ [k] and i ∈ [�n

k �],
let (int

i, outti) be the input-output pair from SN(k)i and let pti be the i-th pole
of wEUG1(�n

k �)t, we remove int
i, outti and pti (their associated edges) and add an

edge connecting pti’s precursor node to int
i’s successor node and another one link-

ing outti’s precursor to pti’s successor. Here int
i’s successor and outti’s precursor

refer to the respective successor/precursor in SN(k)i and pti’s precursor/successor
is with respect to wEUG1(�n

k �)t. These precursors/successors are all guaranteed
to be unique by the definition of augmentation and Fact 1. It is important to
note that after removing the nodes (and their associated edges, and making nec-
essary adjustments), the candidate EUG1 in Fig. 9 now becomes a DAG2. We
can prove that it is an EUG1 by showing that the universality is preserved from
the wEUG1 in Fig. 8 (i.e., not affected by the optimization).

Table 4. Our k-way universal circuits from Theorem 4 for k ∈ {2, 3, 4}.

Our k-way UC SN(k) |EUG2(n)| |UCn|
2-way 5 3n log n 12n log n

3-way 12 3.79n log n 15.14n log n

4-way 18 3.5n log n 14n log n

Theorem 4 (Universal circuits). For any integer k ≥ 2, there exists explicit
k-way constructions of EUG2(n) and UCn with

|EUG2(n)| =
2(|SN(k)| − k)

k log k
n log n − Ω(n) and |UCn| ≤ 4|EUG2(n)| + O(n) .

In particular, for k = 2 we have |EUG2(n)| = 3n log n − Ω(n).

Proof. Now that Fig. 8 presents a correct wEUG1 construction by Corollary 1,
we further argue that Fig. 9 gives rise to an EUG1 as well. By comparing Fig. 9
with Fig. 8, the difference is all X-switching nodes ioti, that merges (int

i, outti)
from SN(k)i and pole pti from wEUG1(�n

k �)t, are now bypassed in Fig. 9. By right
the X-switch node ioti offers two switching options:

option 0: (pt,prei , ioti, in
t,suc
i) & (outt,prei , ioti, p

t,suc
i)

option 1: (pt,prei , ioti, p
t,suc
i) & (outt,prei , ioti, in

t,suc
i)

384 H. Liu et al.

where pt,prei and pt,suci denote the precursor and successor of pti within the
wEUG1(�n

k �) respectively, and int,suc
i (resp., outt,prei) denotes the successor

(resp., precursor) of int
i (resp., outti) within the SN(k). In contrast, Fig. 9 simply

hardwires the option-0 configuration and short-circuits every node ioti as follows:

(pt,prei , int,suc
i) & (outt,prei , pt,suci) .

It suffices to show that option 1 is redundant and is thus not needed. Recall the
main idea of the wEUG1(n) construction is that wEUG1(�n

k �) edge-embeds inter-
group edges, i.e., (pu, pv) for pu ∈ Vi1 , pv ∈ Vi2 and i1 < i2, and SN(k) takes
care of intra-group edges, i.e., (pu, pv) for pu, pv ∈ Vi. In the former case, edges
(pu, outti1) and (int

i2
, pv) will be added during augmentation, where two option-0

configurations are needed: for i = i1 we need (outt,prei , ioti, p
t,suc
i) to make a path

that originates from pu’s corresponding pole; and for i = i2 it is necessary to have
(pt,prei , ioti, in

t,suc
i) for a path ending at pv’s pole. Note that edge (outti1 , in

t
i2

) will
be mapped to a path in wEUG1(�n

k �)t. In the latter case, the edge embedding
of (pu, pv) is handled by SN(k)i internally and thus no switching configurations
are needed. Therefore, the wEUG1 after optimization (by removing the cycles)
becomes a DAG1 (and is therefore an EUG1). The optimized EUG1 construction
yields

|EUG1(n)| = k · |EUG1(�n

k
�)| + �n

k
� · |SN(k)| − n ,

where n accounts for the number of X-switching node ioti saved (cf. Eq. 2). Based
on this optimized EUG1 construction, we follow Valiant’s blueprint (see Fig. 4)
to get an EUG2(n) of size

|EUG2(n)| = 2|EUG1(n)| − n =
2(|SN(k)| − k)

k log k
n log n − Ω(n) ,

where choosing k = 2, SN(2) = 5 yields efficient 2-way construction of size
3n log n − Ω(n).

Remark 3 (Why not optimizing Valiant’s EUG1?). One might ask why not
directly optimize the Valiant’s original construction in Fig. 7 and instead intro-
duce the intermediate one in Fig. 8. This is because the merged nodes in Fig. 7 are
actually necessary and cannot be saved for free. To see this, for every i ∈ [�n

k � − 1]
and t ∈ [k], merge outti, int

i+1 and the i-th pole pti of EUG1(�n
k � − 1)t to an X-

switching node oiti, where the switching options are as follows

option 0: (pt,prei , oiti, in
t,suc
i+1) & (outt,prei , oiti, p

t,suc
i) ,

option 1: (pt,prei , oiti, p
t,suc
i) & (outt,prei , oiti, in

t,suc
i+1) .

We mention that both options are necessary. Option 0 is needed for edge embed-
ding (pu, pv) with either pu ∈ Vj , pv ∈ Vi+1 (j < i) or pu ∈ Vi, pv ∈ Vj+1 (j > i),
whereas option 1 is required for the case that pu ∈ Vi and pv ∈ Vi+1. Hence, we
cannot save XOR switching node oiti by hardwiring either options. In retrospect,
the latter configuration is only needed for handling edges connecting neighboring
node sets, which motivates us to use the variant in Fig. 8 to eliminate the need
for option 1.

Pushing the Limits of Valiant’s Universal Circuits 385

Fig. 9. The end EUG1(n) based on k instances of EUG1(�n
k
�) and �n

k
� instances of

k-way supernodes SN(k), where a− and a+ are the precursor and successor of pole a
within EUG2(�n

k
�)1 respectively, and dashed edges do not exist (cf. Fig. 8).

As explicitly stated in Theorem 4, our 2-way universal circuits already
improve upon the best previously known by reducing a third in circuit size.
Curiously, one may wonder if the advantage can be further increased by using a
large k. We list out the results in Table 4 for k up to 4 based on the corresponding
optimal-size k-way supernodes.

3.4 A Lower Bound on Circuit Size in Our Framework

We lower bound the size of the k-way EUG2(n) (and UC) in our framework based
on the techniques introduced in [57].

Theorem 5 (A lower bound on |EUG2(n)|). For any integer k ≥ 2, any
k-way EUG2(n) constructed via the following two steps

1. Recursively construct an EUG1(n) as in Fig. 9;
2. Use Valiant’s EUG1-to-EUG2 transform (see Lemma 2) to get an EUG2(n).

must satisfy |EUG2(n)| ≥ 2.95n log n for all sufficiently large n’s.

Proof. Recall that by Theorem 3 we have

|EUG2(n)| =
2(|SN(k)| − k)

k log k
n log n − Ω(n) ≥ 2�log(Fk)�

k log k
n log n − Ω(n)

386 H. Liu et al.

where the inequality comes from [57], stated as Lemma 4, whose proof is repro-
duced in the full version [42, Appendix B] for completeness. It thus suffices to
bound the factor g(k) def= 2�log(Fk)�

k log k using Lemma 5.

Table 5. The values of g(k) for k ≤ 30.

k 2 3 4 . . . 8 9 10 . . . 29 30

g(k) 3 3.0158 2.9943 . . . 2.9547 2.9547 2.9565 . . . 3.0419 3.0449

Lemma 4 ([57]). |SN(k)| ≥ �log(Fk) + k�, where Fk =
∑k

i=1(
k!

(k−i)!)
2Ai,k and

Ai,k in turn can be computed by dynamic programming with the following:

1. (Base case). A1,k = 1,∀k ∈ N
+;

2. (Recursive formula). Ai,k =
∑k−i

j=0

(
k−1
j

)

Ai−1,k−j−1.

Fk is defined as the number of augmented DAG1(k) (as per Definition 4), and
Ai,k denotes the number of ways to spread k different balls into i (i ≤ k) identical
boxes with the condition that no boxes are empty.

Lemma 5. For any integer k ≥ 2, g(k) def= 2�log(Fk)�
k log k > 2.95.

Proof. As a general closed-form expression for Fk seems difficult, we use dynamic
programming to compute the values of Ai,k Fk and g(k) for k up to a few
hundred, and list only partial results (up to k = 30) in Table 5 due to lack of
space. Note that g(8) and g(9) are roughly the same and seemingly reach the
minimum in terms of the values we computed. It remains to show that “g(k) is
monotonically increasing for k ≥ 9” to complete the proof. We have

Fk =
k

∑

i=1

(
k!

(k − i)!
)2Ai,k ≥

k
∑

i=k−1

(
k!

(k − i)!
)2Ai,k = (Ak−1,k + Ak,k)(k!)2 ,

and Ak,k = 1, Ak−1,k =
(
k
2

)

= (k−1)k
2 . Thus, Fk ≥ ((k−1)k

2 + 1)(k!)2. It follows
from Stirling’s formula ∀k ∈ N

+ k! ≥ √
2πk(ke)k

Fk ≥ (2πk)
((k − 1)k

2
+ 1

)
(

k

e

)2k

,

and therefore

g(k) ≥ 2 log(Fk)
k log k

≥ 2 log(πk((k − 1)k + 2)(ke)2k)
k log k

def= h(k) ,

where by taking the derivative we know that h(k) in the right-hand is monoton-
ically increasing for k ≥ 2, and thus g(k) ≥ h(k) ≥ h(9) ≈ 2.95 for all k ≥ 9,
which completes the proof.

Pushing the Limits of Valiant’s Universal Circuits 387

On the (un)tightness of the 2.95n logn bound. The bound is obtained by
applying Lemma 4 and Lemma 5. The latter is tight as equality holds for k = 9
while the former is not. We observe that log(Fk) + k equals 5, 10.17 and 15.98
for k = 2, 3, 4 respectively, so |SN(k)|, as an integer, is no less than 5, 11, and
16 for the respective k = 2, 3, 4. However, as shown in Table 4, the minimum of
|SN(k)| equals 5, 12, 18 for k = 2, 3, 4 respectively. That is, the equality holds
only at k = 2 and the gap seems to increase over k, where the untightness is
attributed to the proof technique, i.e., that the number of possible configurations
is no less than that of the augmented k-way DAG1 is a loose argument due to the
existence of redundant configurations (not all control nodes are needed to edge
embed a specific DAG). To conclude, the lower bound 2.95n log n is very close to
3n log n achieved by our efficient construction, and the loose steps for deriving
the lower bound suggests that the construction might already be optimal under
the framework we introduced.

4 Implementation and Performance Evaluation

In this section, we give more details about the implementation and optimization
of the universal circuits, and a performance comparison with the previous works.
The source code of our implementation and optimization is available at [4].

4.1 Implementing and Optimizing the 2-Way Universal Circuits

We briefly describe how to implement and optimize our 2-way UC. Following
previous implementations [3,30,37], we use the Fairplay compiler [9,44] with
the Fairplay extension [39] to transform any functionality described in a high-
level language into the standard circuit description written in SHDL (Secure
Hardware Definition Language). The produced circuit description has fan-in 2,
but has no limit on its fan-out. As required by Valiant’s universal circuits, the
fan-out of the circuit to be simulated must be bounded by 2 as well. Hence,
the next step is to convert the circuit to a functionality equivalent one with
fan-in/fan-out 2, which is achieved by using copying gates for those gates with
out-degree more than 2. We refer to [37] for implementation details and how the
conversion affects the size of practical circuits. Following the works [3,30,37], the
circuit description format of the generated UC numbers the wires in sequential
order and specifies universal, X-switching and Y -switching gates as follows:

U in1 in2 out1

X in1 in2 out1 out2

Y in1 in2 out1

where a gate with type (U , X or Y) and input wires in1 and in2 produces as
output(s) wire out1 (and possibly wire out2), and control bits for the gates are
not present in the above description but stored in the programming file of UC.

388 H. Liu et al.

Our 2-way UC should be more efficient to generate than the hybrid coun-
terparts in [3,30,37,57] due to the simplicity. However, a straightforward imple-
mentation of 2-way construction in Fig. 9 requires that n is a two’s power and
therefore optimization is needed to adapt to arbitrary n. Similar to [30], we
define in Fig. 10 sub-components of SN(2) called head block and tail blocks
by removing the respective input and output nodes (and their associated edges
and control nodes). This enables a more fine-grained recursive construction of
EUG1(n) for arbitrary n ∈ N

+ as follows:

1. If n is even, construct EUG1(n) as in Fig. 11(a) and invoke the two instances
of EUG1(n2);

2. Otherwise (n is odd), construct EUG1(n) as in Fig. 11(b), and invoke
EUG1(n+1

2) and EUG1(n−1
2).

3. Repeat until n is sufficiently small to build EUG1(n) by hand.

Fig. 10. (a) is Valiant’s 2-way supernode, (b) is the head block that excludes input
nodes, (c) and (d) are the tail blocks for two poles and a single pole respectively.

The construction gives the recursive relation on the size of EUG1(n) as follows:

|EUG1(n)| = |head| + (�n

2
� − 2) · |body| + |tail(pn)|

+ |EUG1(�n

2
�)| + |EUG1(�n

2
�)| − n ,

(4)

where pn = 2 if n is even, or pn = 1 otherwise, |head| = 4 and |body| = 5 are
the sizes of the head and standard body blocks respectively, and |tail(1)| = 1
and |tail(2)| = 4 are the sizes of different tail blocks determined by the parity
of n as shown in Fig. 10. The above relation is more precise but it yields the
same asymptotic sizes about EUG2(n) and UCn as stated in Theorem 4, which
are obtained in the simplified scenario n = 2j · B.

4.2 Performance Evaluation

We evaluate the multiplicative circuit sizes of our UC in simulating a set of
typical circuits such as AES-128 with key expansion, MD5 and SHA-256 from [52]

Pushing the Limits of Valiant’s Universal Circuits 389

Fig. 11. A more fine-grained construction of EUG1(n) for arbitrary n (cf. Fig. 9), which
starts with a head block, followed by �n

2
− 2� standard blocks of SN(2), and ends with

a tail block with one or two poles depending on the parity of n.

and compare the results with those from previous ones [3,30,37,57] in Table 6.
We also run the experiments for a wider range of (fan-in/fan-out 2) circuits of
size 15 ≤ n ≤ 108, in particular, for every range n ∈ {10i, . . . , 10i+1} pick 100
equidistant points for n (or evaluate all if the number of points is less than 100).
The comparison with previous implementations is visualized in Fig. 12. Both
comparisons confirm that our 2-way universal circuits achieve roughly 33%, 37%
and 40% reductions in circuit size over Zhao et al.’s UC, Valiant’s 2-way and
4-way UCs respectively.

Table 6. A comparison (in terms of the sizes) of the Valiant’s 2-way UCs [37], two
hybrid UCs [3,30], Zhao et al.’s 4-way [57] and our 2-way UC implementations to
simulate sample circuits from [52].

Functionality n Valiant’s Valiant’s Zhao et al.’s Valiant’s 2-way & Our

2-way 2-way& 4-way 4-way Zhao et al.’s 2-way

UC [3,53] hybrid UC [30] UC [57] 4-way hybrid UC [3] UC

Credit Checking 82 1.50 · 103 1.49 · 103 1.43 · 103 1.43 · 103 1.16 · 103

Mobile Code 160 3.65 · 103 3.61 · 103 3.58 · 103 3.46 · 103 2.73 · 103

ADD-32 342 9.58 · 103 9.44 · 103 9.00 · 103 9.00 · 103 6.93 · 103

ADD-64 674 2.21 · 104 2.17 · 104 2.14 · 104 2.07 · 104 1.57 · 104

MULT-32×32 12202 6.54 · 105 6.35 · 105 6.12 · 105 6.02 · 105 4.39 · 105

AES-exp 38518 2.39 · 106 2.31 · 106 2.19 · 106 2.19 · 106 1.58 · 106

MD5 66497 4.42 · 106 4.26 · 106 4.05 · 106 4.02 · 106 2.90 · 106

SHA-256 201206 1.49 · 107 1.44 · 107 1.38 · 107 1.36 · 107 9.65 · 106

Admittedly, our implementation only verifies the correctness of the construc-
tion and its size advantages over previous constructions. Further engineering

390 H. Liu et al.

Fig. 12. Improvement in size of our 2-way UCs, two hybrid UCs [3,30] and Valiant’s
4-way UCs [57] over Valiant’s 2-way UCs [30] for 15 ≤ n ≤ 108 with logarithmic x axis.

efforts are needed to optimize UC generation and programming process for prac-
tical use, and in this respect the scalable UC generation algorithm from [3] that
reduces memory consumption from O(n log n) to O(n) serves as a good refer-
ence. We also refer to [32, Appendix B] for a recent performance evaluation of
universal circuits in the context of linear-complexity private function evaluation,
where our UC exhibits a roughly 1/3 improvement over [3] in terms of the com-
munication and runtime of the PFE protocols, and is thus recognized as the
current state-of-the-art of universal circuits (e.g., [31,32]).

Acknowledgments. We are grateful to the authors of [3] for pointing out the
issue in a previous version that our intermediate construction yields only a weak
EUG, and for many helpful suggestions. Yu Yu, the corresponding author, was sup-
ported by the National Key Research and Development Program of China (Grant
Nos. 2020YFA0309705 and 2018YFA0704701) and the National Natural Science
Foundation of China (Grant Nos. 61872236 and 61971192). Jiang Zhang is sup-
ported by the National Natural Science Foundation of China (Grant Nos. 62022018,
61932019), the National Key Research and Development Program of China (Grant No.
2018YFB0804105). This work is also supported by Shandong Provincial Key Research
and Development Program (Major Scientific and Technological Innovation Project,
Grant No. 2019JZZY010133), Shandong Key Research and Development Program
(Grant No. 2020ZLYS09).

References

1. Abadi, M., Feigenbaum, J.: Secure circuit evaluation. J. Cryptol. 2(1), 1–12 (1990).
https://doi.org/10.1007/BF02252866

2. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

https://doi.org/10.1007/BF02252866
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22

Pushing the Limits of Valiant’s Universal Circuits 391

3. Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and scalable uni-
versal circuits. J. Cryptol. 33(3), 1216–1271 (2020)

4. Anonymous: The C++ source code of our 2-way UC implementation (2020).
https://github.com/Cryptogroup/universalcircuit

5. Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - break-
ing the 1 billion-gate per second barrier. In: 2017 IEEE Symposium on Security
and Privacy, pp. 843–862. IEEE Computer Society Press, San Jose (May 2017).
https://doi.org/10.1109/SP.2017.15

6. Attrapadung, N.: Fully secure and succinct attribute based encryption for cir-
cuits from multi-linear maps. Cryptology ePrint Archive, Report 2014/772 (2014).
http://eprint.iacr.org/2014/772

7. Banescu, S., Ochoa, M., Kunze, N., Pretschner, A.: Idea: benchmarking indistin-
guishability obfuscation – a candidate implementation. In: Piessens, F., Caballero,
J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol. 8978, pp. 149–156. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15618-7 12

8. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.R., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1 26

9. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 257–
266. ACM Press, Alexandria (October 2008). https://doi.org/10.1145/1455770.
1455804

10. Bera, D., Fenner, S.A., Green, F., Homer, S.: Efficient universal quantum cir-
cuits. Quantum Inf. Comput. 10(1&2), 16–27 (2010). http://www.rintonpress.
com/xxqic10/qic-10-12/0016-0027.pdf

11. Bicer, O., Bingol, M.A., Kiraz, M.S., Levi, A.: Towards practical PFE: an efficient
2-party private function evaluation protocol based on half gates. Cryptology ePrint
Archive, Report 2017/415 (2017). http://eprint.iacr.org/2017/415

12. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer
Society Press, Berkeley (October 2015). https://doi.org/10.1109/FOCS.2015.20

13. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM
CCS 2007, pp. 498–507. ACM Press, Alexandria (October 2007). https://doi.org/
10.1145/1315245.1315307

14. Cachin, C., Camenisch, J., Kilian, J., Müller, J.: One-round secure computation
and secure autonomous mobile agents. In: Montanari, U., Rolim, J.D.P., Welzl, E.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 512–523. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45022-X 43

15. Cook, S.A., Hoover, H.J.: A depth-universal circuit. SIAM J. Comput. 14(4), 833–
839 (1985)

16. Dénes, K.: Gráfok és mátrixok. Matematikai és Fizikai Lapok 38, 116–119 (1931)
17. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted

data. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 844–855. ACM
Press, Scottsdale (November 2014). https://doi.org/10.1145/2660267.2660366

18. Fisch, B.A., et al.: Malicious-client security in blind seer: a scalable private DBMS.
In: 2015 IEEE Symposium on Security and Privacy, pp. 395–410. IEEE Computer
Society Press, San Jose (May 2015). https://doi.org/10.1109/SP.2015.31

19. Frikken, K., Atallah, M., Li, J.: Attribute-based access control with hidden policies
and hidden credentials. IEEE Trans. Comput. 55(10), 1259–1270 (2006)

https://github.com/Cryptogroup/universalcircuit
https://doi.org/10.1109/SP.2017.15
http://eprint.iacr.org/2014/772
https://doi.org/10.1007/978-3-319-15618-7_12
https://doi.org/10.1007/978-3-642-04444-1_26
https://doi.org/10.1145/1455770.1455804
https://doi.org/10.1145/1455770.1455804
http://www.rintonpress.com/xxqic10/qic-10-12/0016-0027.pdf
http://www.rintonpress.com/xxqic10/qic-10-12/0016-0027.pdf
http://eprint.iacr.org/2017/415
https://doi.org/10.1109/FOCS.2015.20
https://doi.org/10.1145/1315245.1315307
https://doi.org/10.1145/1315245.1315307
https://doi.org/10.1007/3-540-45022-X_43
https://doi.org/10.1145/2660267.2660366
https://doi.org/10.1109/SP.2015.31

392 H. Liu et al.

20. Frikken, K., Atallah, M., Zhang, C.: Privacy-preserving credit checking. In: Pro-
ceedings of the 6th ACM Conference on Electronic Commerce, pp. 147–154 (2005)

21. Frikken, K.B., Li, J., Atallah, M.J.: Trust negotiation with hidden credentials,
hidden policies, and policy cycles. In: NDSS 2006. The Internet Society, San Diego
(February 2006)

22. Galil, Z., Paul, W.J.: An efficient general purpose parallel computer. In: 13th ACM
STOC, pp. 247–262. ACM Press, Milwaukee (May 1981). https://doi.org/10.1145/
800076.802478

23. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
54th FOCS, pp. 40–49. IEEE Computer Society Press, Berkeley (October 2013).
https://doi.org/10.1109/FOCS.2013.13

24. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40084-1 27

25. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryp-
tion from multilinear maps. Cryptology ePrint Archive, Report 2014/622 (2014).
http://eprint.iacr.org/2014/622

26. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

27. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and
rerandomizable Yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 155–172. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 9

28. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, New York City (May 1987). https://doi.org/10.
1145/28395.28420

29. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, Palo Alto (June 2013). https://doi.org/10.1145/2488608.
2488677

30. Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit constructions.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp.
443–470. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 16

31. Heath, D., Kolesnikov, V., Peceny, S.: MOTIF: (almost) free branching in GMW.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp.
3–30. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4 1

32. Holz, M., Kiss, Á., Rathee, D., Schneider, T.: Linear-complexity private func-
tion evaluation is practical. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.)
ESORICS 2020, Part II. LNCS, vol. 12309, pp. 401–420. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59013-0 20

33. Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing
garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS,
vol. 8617, pp. 458–475. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 26

https://doi.org/10.1145/800076.802478
https://doi.org/10.1145/800076.802478
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-642-40084-1_27
http://eprint.iacr.org/2014/622
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/2488608.2488677
https://doi.org/10.1145/2488608.2488677
https://doi.org/10.1007/978-3-319-70697-9_16
https://doi.org/10.1007/978-3-030-64840-4_1
https://doi.org/10.1007/978-3-030-59013-0_20
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-662-44381-1_26

Pushing the Limits of Valiant’s Universal Circuits 393

34. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 31

35. Kamara, S., Raykova, M.: Secure outsourced computation in a multi-tenant cloud.
In: IBM Workshop on Cryptography and Security in Clouds, pp. 15–16 (2011)

36. Katz, J., Malka, L.: Constant-round private function evaluation with linear com-
plexity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
556–571. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 30

37. Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M.,
Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 699–728.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 27

38. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-
3 40

39. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8 7

40. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security for
malicious adversaries. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp.
579–590. ACM Press, Denver (October 2015). https://doi.org/10.1145/2810103.
2813666

41. Lipmaa, H., Mohassel, P., Sadeghian, S.: Valiant’s universal circuit: improvements,
implementation, and applications. Cryptology ePrint Archive, Report 2016/017
(2016). http://eprint.iacr.org/2016/017

42. Liu, H., Yu, Y., Zhao, S., Zhang, J., Liu, W., Hu, Z.: Pushing the limits of Valiant’s
universal circuits: simpler, tighter and more compact. Cryptology ePrint Archive,
Report 2020/161 (2020). https://eprint.iacr.org/2020/161

43. Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical
Society, Providence (2009)

44. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party compu-
tation system. In: Blaze, M. (ed.) USENIX Security 2004, pp. 287–302. USENIX
Association, San Diego (August 2004)

45. Meyer auf der Heide, F.: Efficiency of universal parallel computers. In: Cremers,
A.B., Kriegel, H.-P. (eds.) GI-TCS 1983. LNCS, vol. 145, pp. 221–229. Springer,
Heidelberg (1982). https://doi.org/10.1007/BFb0036483

46. Mohassel, P., Rosulek, M.: Non-interactive secure 2PC in the offline/online and
batch settings. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 425–455. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 15

47. Mohassel, P., Sadeghian, S.S.: How to hide circuits in MPC an efficient framework
for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 33

48. Niksefat, S., Sadeghiyan, B., Mohassel, P., Sadeghian, S.: Zids: a privacy-preserving
intrusion detection system using secure two-party computation protocols. Comput.
J. 57(4), 494–509 (2014)

https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-662-49890-3_27
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1145/2810103.2813666
https://doi.org/10.1145/2810103.2813666
http://eprint.iacr.org/2016/017
https://eprint.iacr.org/2020/161
https://doi.org/10.1007/BFb0036483
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33

394 H. Liu et al.

49. Ostrovsky, R., Skeith III, W.E.: Private searching on streaming data. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 14

50. Pappas, V., et al.: Blind seer: a scalable private DBMS. In: 2014 IEEE Symposium
on Security and Privacy, pp. 359–374. IEEE Computer Society Press, Berkeley
(May 2014). https://doi.org/10.1109/SP.2014.30

51. Sadeghian, S.S.: New techniques for private function evaluation. Ph.D. thesis
(2015)

52. Tillich, S., Smart, N.: Circuits of basic functions suitable for MPC and FHE (2015).
https://homes.esat.kuleuven.be/∼nsmart/MPC/

53. Valiant, L.G.: Universal circuits (preliminary report). In: 8th ACM STOC, pp.
196–203 (1976)

54. Wegener, I.: The Complexity of Boolean Functions. Wiley, Hoboken (1987)
55. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd

FOCS, pp. 160–164. IEEE Computer Society Press, Chicago (November 1982).
https://doi.org/10.1109/SFCS.1982.38

56. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, Toronto (October 1986).
https://doi.org/10.1109/SFCS.1986.25

57. Zhao, S., Yu, Yu., Zhang, J., Liu, H.: Valiant’s universal circuits revisited: an
overall improvement and a lower bound. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 401–425. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 15

58. Zhu, R., Cassel, D., Sabry, A., Huang, Y.: NANOPI: extreme-scale actively-secure
multi-party computation. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.)
ACM CCS 2018, pp. 862–879. ACM Press, Toronto (October 2018). https://doi.
org/10.1145/3243734.3243850

59. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 439–467. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 15

https://doi.org/10.1007/11535218_14
https://doi.org/10.1109/SP.2014.30
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1007/978-3-030-34578-5_15
https://doi.org/10.1145/3243734.3243850
https://doi.org/10.1145/3243734.3243850
https://doi.org/10.1007/978-3-662-46803-6_15

Oblivious Key-Value Stores
and Amplification for Private Set

Intersection

Gayathri Garimella1(B), Benny Pinkas2, Mike Rosulek1, Ni Trieu3,
and Avishay Yanai4

1 Oregon State University, Corvallis, Oregon, USA
garimelg@oregonstate.edu

2 Bar-Ilan University, Ramat Gan, Israel
3 Arizona State University, Tempe, Arizona, USA

4 VMware Research, Palo Alto, USA

Abstract. Many recent private set intersection (PSI) protocols encode
input sets as polynomials. We consider the more general notion of an
oblivious key-value store (OKVS), which is a data structure that com-
pactly represents a desired mapping ki �→ vi. When the vi values are
random, the OKVS data structure hides the ki values that were used
to generate it. The simplest (and size-optimal) OKVS is a polynomial p
that is chosen using interpolation such that p(ki) = vi.

We initiate the formal study of oblivious key-value stores, and show
new constructions resulting in the fastest OKVS to date.

Similarly to cuckoo hashing, current analysis techniques are insuffi-
cient for finding concrete parameters to guarantee a small failure proba-
bility for our OKVS constructions. Moreover, it would cost too much to
run experiments to validate a small upperbound on the failure probabil-
ity. We therefore show novel techniques to amplify an OKVS construction
which has a failure probability p, to an OKVS with a similar overhead
and failure probability pc. Setting p to be moderately small enables to
validate it by running a relatively small number of O(1/p) experiments.
This validates a pc failure probability for the amplified OKVS.

Finally, we describe how OKVS can significantly improve the state of
the art of essentially all variants of PSI. This leads to the fastest two-party
PSI protocols to date, for both the semi-honest and the malicious settings.
Specifically, in networks with moderate bandwidth (e.g., 30–300 Mbps)
our malicious two-party PSI protocol has 40% less communication and is
20–40% faster than the previous state of the art protocol, even though the
latter only has heuristic confidence.

1 Introduction

Private set intersection (PSI) allows parties to learn the intersection of sets that
they each hold, without revealing anything else about the individual sets. One
common technique that has emerged in several PSI protocols (and protocols
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 395–425, 2021.
https://doi.org/10.1007/978-3-030-84245-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_14

396 G. Garimella et al.

for closely related tasks) is to encode data into a polynomial. More precisely, a
party interpolates a polynomial P so that P (xi) = yi, where the xi’s are their
PSI input set and yi are some values that are relevant in the protocol. The
polynomial P compactly encodes a chosen mapping from xi’s to yi’s, but it has
the additional benefit that it hides the xi’s, when the yi’s are random. This
property is critical since the xi’s coincide with some party’s private input set,
which must be hidden.

We present two major contributions. First, we abstract the properties of
polynomials that are needed in these applications, and define “oblivious key-
value stores” (OKVS) as objects satisfying these properties. We show how to
construct a substantially more efficient OKVS that has linear size, similar to
polynomials, and replaces the task of polynomial interpolation with an efficient
linear time computation. Second, we observe that current analysis techniques
are insufficient for setting concrete parameters to ensure a concrete upper bound
(say, 2−40) for the failure probability of our OKVS construction. (This is also true
for many other randomized constructions, such as cuckoo hashing, used in PSI
and in other cryptographic algorithms.) Furthermore, running experiments in
order to validate this upper bound for a specific choice of parameters is extremely
resource-intensive. Most previous work used heuristic techniques for setting the
parameters for similar constructions. We overcome this issue by introducing
new techniques for amplifying a randomized OKVS construction with a failure
probability p, to an OKVS with a similar overhead and a failure probability pc.
Since p can be rather moderate, it is relatively easy to empirically validate that
the failure probability of a specific choice of parameters is indeed bounded by p.

1.1 Polynomial Encodings for PSI

Cryptographic protocols which use polynomial encodings to hide input values
date back to at least the work of Manulis, Pinkas, and Poettering [26], in the
context of “secret handshake” protocols (closely related to covert MPC and to
PSI). Other examples that we are aware of include:1

– Cho, Dachman-Soled, and Jarecki [9] achieve 2-party PSI using a polyno-
mial whose outputs (yi values) are protocol messages from a suitable string-
equality test protocol.

– Kolesnikov et al. [24] introduce a primitive called oblivious programmable
PRF (OPPRF), which acts like an oblivious PRF with a twist. A sender
selects (or learns) a PRF seed k and a receiver learns PRF (k, a) for one
or more values a of his/her choosing. But additionally, the sender gets to
“program” the PRF on values of its choice as PRF (k, xi) = zi, where the

1 We note that there are also PSI constructions which use arithmetic manipulations
of polynomials. These constructions encode input values as roots of polynomials
[12,13,22] or into separate monomials of a polynomial [14], and manipulate the
polynomials in order to compute set operations. Our focus is on encodings, which
is the more efficient versions of PSI, and do not require arithmetic manipulation of
polynomials in order to compute the intersection.

Oblivious Key-Value Stores and Amplification for Private Set Intersection 397

special xi points remain secret. This is achieved by combining a standard
oblivious PRF F (k, xi) with a polynomial which encodes “output corrections”
that the receiver applies in order to make the output match the sender’s
xi �→ zi mappings.
They use this OPPRF to construct a multi-party PSI protocol. Later, Pinkas
et al. [34] also use an OPPRF to construct a protocol for computing arbitrary
functions of the intersection (of two sets). Recently, OPPRFs were used by
Chandran et al. for constructing circuit-PSI and multi-party PSI [5,6].

– Pinkas et al. [32] construct a low-communication PSI protocol using a poly-
nomial whose outputs are values from the IKNP OT extension protocol [19].

– Kolesnikov et al. [25] construct a private set union protocol, using a variant
of the OPPRF technique.

One downside to polynomials is that interpolating and evaluating them is not
cheap. To interpolate a polynomial through n (unstructured) points, or to eval-
uate such a polynomial at n points, requires O(n log2 n) field operations, using
the FFT algorithms of [28]. This cost becomes substantial for larger values of n,
and raises the following natural question:

Is there a data structure that is better than a polynomial, for use in these
PSI (and related) protocols?

In addition to these applications of polynomials, Pinkas et al. [33] used a related
technique to construct the fastest malicious-secure 2-party PSI protocol to date.
They introduced a data structure called a PaXoS (probe and XOR of strings)
which, similar to a polynomial, encodes a mapping from keys to values while
hiding the keys. PaXoS took a significant step toward the abstraction of an
OKVS, however, it is not sufficiently general. In particular, PaXoS is a specific,
binary type of OKVS, whereas other types exist (like a linear OKVS, which is
applicable in Oblivious Polynomial Evaluation [30]). The PaXoS data structure
is the starting point for our constructions.

1.2 Correctness Amplification

One of the most challenging aspects of designing efficient PSI and OKVS con-
structions, is obtaining concrete bounds on extremal properties of randomized
data structures. For example, exactly how many bins are required for cuckoo
hashing with 3 hash functions, to ensure that the induced “cuckoo graph” avoids
a certain structure with probability at least 1 − 2−40? This problem is crucial
for PSI, since most PSI constructions are based on randomized data structures
such as cuckoo hashing. Any failure in these constructions (e.g., too many col-
lisions) leads to a violation of privacy. An implementation of PSI needs to be
instantiated with specific parameters that will ensure a sufficiently small failure
probability, but the available literature describing and analyzing the randomized
constructions only describes asymptotic bounds, and it seems highly non-trivial
to translate them to concrete numbers.

Prior PSI work which used such constructions, in particular variants of cuckoo
hashing, either ran a small number of experiments in order to heuristically set the

398 G. Garimella et al.

parameters, or, as in [36], invested significant efforts (e.g., millions of core hours)
to empirically measure the failure probability of these data structures. (This is
needed since validating an upper bound of p on the failure probability requires
running more than 1/p experiments.) But even after expending such efforts, it
was not possible to validate the desired failure probabilities (e.g., 2−40), since
they were too small. So ultimately in [36] and in other constructions which
are based on the same set of experiments, the failure probabilities of the final
constructions were only extrapolated from these empirical trials.

The lack of a concrete analysis for the failure probabilities of different ran-
domized constructions, and the extreme cost of experimentally verifying small
upper bounds on these probabilities, raise the following question:

Is is possible to start with a construction that has a moderately high failure
probability, and which can therefore be validated through efficient experi-
ments, and amplify it to obtain a construction which has a much smaller
failure probability?

For example, we can validate on a laptop an upper bound of 2−25 or 2−13,
whereas validating a 2−40 failure probability might require using a large cluster.

1.3 Our Results

In this work, we initiate the study of OKVS data structures and their properties.

– We introduce the abstraction of an oblivious key-value store (OKVS).
An OKVS consists of algorithms Encode and Decode. Encode takes a list of
key-value pairs (ki, vi) as input and returns an abstract data structure S.
Decode takes such a data structure and a key k as input, and gives some
output. Decode can be called on any key, but if it is called on some ki that
was used to generate S, then the result is the corresponding vi. The most
basic property of an OKVS echoes the important property of polynomials;
namely, S hides the ki’s, when the vi’s are random. We identify and formalize
important properties that allow OKVS to be plugged into different protocols.

– We catalog existing OKVS constructions and introduce several new and
improved ones.

– We describe amplification techniques that can be used to bootstrap strong
OKVS out of weaker ones. Amplification only requires to validate a relatively
high upper bound on the failure probability of the corresponding randomized
construction, a task that can be accomplished through efficient experiments.
As an example, we can construct an OKVS with provable error probability
2−40, from an OKVS with error probability 2−25. The latter probability is
high enough that it can be empirically and efficiently verified with very high
statistical confidence.
Besides having more manageable error analysis, our new OKVS constructions
improve considerably over the state of the art in terms of size and speed.

Oblivious Key-Value Stores and Amplification for Private Set Intersection 399

– We show that many existing PSI protocols can be written abstractly in terms
of a generic OKVS. These PSI protocols are therefore automatically improved
by instantiating with our improved OKVS constructions. As a flagship exam-
ple, we demonstrate the improvement on the so-called “PaXoS-PSI” protocol
of [33], which is the state of the art protocol with malicious security. Specif-
ically, our protocol has 40% less communication and is 20% and 40% faster
over medium and slow networks2, respectively, for sets of a million items (over
a fast network it is only 5% slower). In addition, on slow networks, our mali-
cious protocol is even faster than the state of the art semi-honest protocol [32]
(and is only about 10% and 20% slower than the best semi-honest protocols
over fast [23] and medium [7] networks, respectively).
We also note that the covert MPC protocols of [9,26] can be expressed using
our OKVS constructions to exhibit a higher level of abstraction and to achieve
a better runtime.

– Finally, we show two improvements to existing PSI protocols, beyond replac-
ing their underlying OKVS with a better one.
First, we observe that the leading state-of-the-art PaXoS PSI protocol of [33]
can be generalized to be built from vector-OLE rather than 1-out-of-N OT
extension. Since vector-OLE enjoys more algebraic structure, the generalized
PSI protocol can take advantage of a more general class of OKVS, and also
avoid one source of overhead in the construction.
Second, we show that one of the multi-party PSI constructions of Kolesnikov
et al. [24], which is the most efficient of the constructions presented in that
paper but only has “augmented semi-honest security” rather than semi-honest
security, actually enjoys malicious security. Hence, we obtain the most effi-
cient malicious, multi-party PSI protocol to date.

2 Oblivious Key-Value Stores

2.1 Definitions

Definition 1. A key-value store is parameterized by a set K of keys, a set V
of values, and a set of functions H, and consists of two algorithms:

– EncodeH takes as input a set of (ki, vi) key-value pairs and outputs an object
S (or, with statistically small probability, an error indicator ⊥).

– DecodeH takes as input an object S, a key k, and outputs a value v.

A KVS is correct if, for all A ⊆ K × V with distinct keys:

(k, v) ∈ A and ⊥ �= S ← EncodeH(A) =⇒ DecodeH(S, k) = v

In the rest of the exposition we choose to omit the underlying parameter H
as long as the text remains unambiguous.

2 The slow network (33 Mib/s); medium network (260 Mib/s); fast network
(4.6 Gib/s).

400 G. Garimella et al.

In all the algorithms that we describe, the decision whether Encode outputs
⊥ depends on the functions H and the keys ki and is independent of the values
vi. If the data is encoded as a polynomial then Encode always succeeds.

To be clear, one may invoke Decode(S, k) on any key k, and indeed it is our
goal that one cannot tell whether k was used to generate S or not. This is stated
in the next definition.

Definition 2. A KVS is an oblivious KVS (OKVS) if, for all distinct
{k0

1, . . . , k
0
n} and all distinct {k1

1, . . . , k
1
n}, if Encode does not output ⊥ for

(k0
1, . . . , k

0
n) or (k1

1, . . . , k
1
n), then the output of R(k0

1, . . . , k
0
n) is computationally

indistinguishable to that of R(k1
1, . . . , k

1
n), where:

R(k1, . . . , kn):
for i ∈ [n]: do vi ← V
return Encode({(k1, v1), . . . , (kn, vn)})

In other words, if the OKVS encodes random values (as it does in our applica-
tions), then for any two sets of keys K0,K1 it is infeasible to distinguish between
an OKVS encoding of the keys of K0 from an OKVS encoding of the keys of
K1. In fact, all our constructions satisfy the property that if the values encoded
in the OKVS are random (as in the experiment R), then the two distributions
are perfectly indistinguishable.

2.2 Linear OKVS

Some applications of an OKVS use it to encode data that is processed in some
kind of homomorphic cryptographic primitive. In that case, it is convenient for
Decode(·, k) to be a linear function for all k.

Definition 3. An OKVS is linear (over a field F) if V = F (“values” are
elements of F), the output of Encode is a vector S in F

m, and the Decode function
is defined as:

Decode(S, k) = 〈d(k), S〉 def=
m∑

j=1

d(k)jSj

for some function d : K → F
m. Hence Decode(·, k) is a linear map from F

m

to F.

The mapping d : K → F
m are typically defined by the hash function H.

For a linear OKVS, one can view the Encode function as generating a solution
to the linear system of equations:

⎡

⎢⎢⎢⎣

− d(k1) −
− d(k2) −

...
− d(kn) −

⎤

⎥⎥⎥⎦S� =

⎡

⎢⎢⎢⎣

v1
v2
...

vn

⎤

⎥⎥⎥⎦

Oblivious Key-Value Stores and Amplification for Private Set Intersection 401

Hence, it is necessary that for all distinct k1, . . . , kn, the set {d(k1), . . . , d(kn)}
is linearly independent, with overwhelming probability. However, we also con-
sider how efficiently Encode finds such a solution, since solving systems of linear
equations is expensive in general. It is often convenient to characterize a linear
OKVS by its d function alone.

Note that when Encode chooses uniformly from the set of solutions to the lin-
ear system, and the vi values are uniform, the output S is uniformly distributed
(and hence distributed independently of the ki values). In other words, a linear
OKVS satisfies the obliviousness property.

2.3 Binary OKVS

A binary OKVS over a field F is a special case of a linear OKVS, where the
d(k) vectors are restricted to {0, 1}m ⊆ F

m. Then Decode(S, k) is simply the
sum of some positions in S.

We generally restrict our attention to F = GF (2�) ∼= {0, 1}�, in which case
the addition operation over F is XOR of strings. In [33], a binary OKVS is called
a probe and XOR of strings (PaXoS) data structure.

In a binary OKVS we have (in addition to the usual properties of a linear
OKVS) the property that:

Decode
(
(S1 ∧ x, . . . , Sm ∧ x), k

)
= Decode

(
(S1, . . . , Sm), k

)
∧ x

where “∧” is bitwise-AND of strings, and x ∈ {0, 1}�. This additional property
is used in one of the important applications of OKVS.

2.4 OKVS Overfitting

Often in malicious protocols, the simulator obtains an OKVS from a corrupt
party and must “extract” the items that are encoded in that OKVS. Generally
this is done by requiring an OKVS to include mappings (ki, vi) �→ H(ki) where
H is a random oracle.3 The simulator can observe the adversary’s queries to H,
and then later test which of those k satisfy Decode(S, k) = H(k).

An OKVS whose parameters are chosen to encode n items can often hold even
more than n items, especially when generated by an adversary. In the context
of PSI, this leads to an adversary holding more items than advertised. It is
therefore important to be able to bound the number of items that an adversary
can “overfit” into an OKVS. In order to define this property we define a “game”
which lets the adversary choose an arbitrary data structure S, of a size which
can normally encode n (key,value) pairs. The adversary wins the game if it can
find an S which encodes much more than n pairs of the form (ki,H(ki)). More
formally, we use the following definition.

3 We abuse notation herein and use H to denote a random oracle rather than the
underlying OKVS parameter, which remains implicit.

402 G. Garimella et al.

Definition 4. The (n, n′)-OKVS overfitting game is as follows. Let
Encode,Decode be an OKVS with parameters chosen to support n items, and
let A be an arbitrary PPT adversary. Run S ← AH(1κ). Define

X = {k | A queried H at k and Decode(S, k) = H(k)}

If |X| > n′ then the adversary wins.
We say the (n, n′)-OKVS overfitting problem is hard for an OKVS construc-

tion if no PPT adversary wins this game except with negligible probability.

The work in [33] gives an unconditional bound on the success probability in
the overfitting game. They prove the bound for binary OKVS (“PaXoS”, in their
terminology), but the only property of OKVS they use is its correctness; hence
it applies to any KVS:

Lemma 5 ([33]). Let H be a random oracle with output length �, and let
Encode,Decode be an OKVS scheme supporting n key-value pairs, where the
output of Encode is a bit string of length �′. Then the probability that an adver-
sary who makes q queries to H wins the (n, n′)-OKVS overfitting game is
≤ (

q
n′

)
2�′−n′�.

The nature of this bound is to argue that an OKVS that encodes n′ items simply
can’t exist; for if it did exist, then it could be used to construct a compressed
representation of the random oracle. One may further conjecture that an OKVS
construction has a hard overfitting problem (for some relationship between n
and n′) against polynomial-time adversaries. For example, perhaps it may be
hard to find a single polynomial of degree n that matches the random oracle on
n′ = n + 100 points, even in the case that such a polynomial exists.

Better cryptanalysis of these kinds of overfitting problems would lead to
a tighter security analysis of our malicious-secure PSI protocols: the protocols
would be proven to more strongly enforce the size of corrupt party’s input sets.

2.5 Efficiency of OKVS

We can measure the efficiency of an OKVS based on the following measures: (1)
The rate of an OKVS which encodes n elements from F is the ratio between
the size of the OKVS and n · |F|, which is the minimal size required for this
encoding. (2) The encoding time is the time which is required for encoding n
items in the OKVS. (3) The decoding time is the time required for decoding
(querying) a single element, while the batch decoding time is the time required
for decoding n elements.

3 Existing OKVS Constructions

In this section we list existing constructions that fit to the OKVS definition.
These are summarized in Fig. 1.

Oblivious Key-Value Stores and Amplification for Private Set Intersection 403

OKVS type rate encoding cost (batch) decoding cost
polynomial linear 1 O(n log2 n) O(n log2 n)
random matrix linear 1 O(n3) O(n2)
random matrix binary 1/(1 + λ) O(n3) O(n2)
garbled Bloom filter [11] binary O(1/λ) O(nλ) O(nλ)
PaXoS [33] binary 0.4 − o(1) O(nλ) O(nλ)

Ours: 3H-GCT (§4.1) binary 0.81 − o(1) O(nλ) O(nλ)linear

Fig. 1. Different OKVS constructions and their properties, for error probability 2−λ.
(The rate of the 3H-GCT construction can be improved to 0.91 by using the hypergraph
construction of [43], but this improvement takes effect only for very large values of n.)

Polynomials. A simple and natural OKVS is a polynomial P satisfying P (ki) =
vi. The coefficients of the polynomial are the OKVS data structure, and decoding
amounts to evaluating the polynomial at a point k. This OKVS has optimal rate
1, and is linear since P (k) is the inner product of (1, k, k2, . . .) and the vector
of coefficients. Encoding n items takes O(n log2 n) field operations using the
FFT interpolating algorithms of [28]. Batch decoding of n items likewise takes
O(n log2 n) operations, while decoding a single items takes O(n) operations.

Dense matrix. Another simple OKVS sets d(k) to be a random vector in F
m for

each k. This means that the encoding matrix is a random matrix. It is well-known
that a random matrix with n rows and m ≥ n columns has linearly dependent
rows with probability at most

n∑

j=1

Pr[row j ∈ span of first j − 1 rows | first j − 1 rows linearly ind.] (1)

=
n−1∑

i=0

|F|i
|F|m =

1
|F|m · |F|n − 1

|F| − 1
< |F|n−m−1 (2)

For an exponentially large field F, we can have m = n and hence achieve rate
1. If we desire a binary OKVS, then d(k) are {0, 1}-vectors and we must have
m ≥ n + λ − 1 for error probability 2−λ.

While achieving a good rate, the encoding and decoding procedures are
expensive. Encoding n items corresponds to solving a linear system of n ran-
dom equations, which requires O(n3) operations using Gaussian elimination.
Decoding each item costs O(n). A random matrix OKVS has worse performance
than a polynomial-based OKVS. The main reason for using a random matrix
OKVS is if the underlying field F is smaller than n, for example, is a binary
field, in which case it is impossible to define an n-degree polynomial over F.

Garbled Bloom filter (GBF). In a garbled Bloom filter [11], n items are encoded
into a vector of length m = O(λn), i.e. it has a rate of O(1/λ). The scheme

404 G. Garimella et al.

is parameterized by λ random functions H = {h1, . . . , hλ} with range [m]. We
have d(k) zero everywhere except in the positions h1(k), . . . , hλ(k), where it is
1. Hence a garbled Bloom filter is a binary OKVS.

Encoding is done in an online manner, one item at a time. Encoding fails with
probability 1/2λ, and the specific error probability is exactly the same as the
false-positive probability for a standard Bloom filter with the same parameters
(namely, using λ hash functions and a vector of size m = 1.44λn result in a
failure probability of 1/2λ [27]).

Encoding n items costs O(nλ), and decoding each item likewise costs O(λ),
since only λ positions in d(k) are nonzero.

GBFs were used in multiple PSI papers, beginning in [11], and including the
multi-party protocols of [1,18,44]. A major drawback of the usage of GBFs is
the larger communication overhead of sending a GBF of length O(λn), instead
of sending an object of size O(n), and computing O(λn) oblivious transfers.

PaXoS [33]. In a probe-and-xor of strings (PaXoS), n items are encoded into a
vector S of length m = (2 + ε)n + log(n) + λ.

Let us describe a simplified version of PaXos for which S is of size m =
(2+ε)n. This scheme is parameterized by 2 random hash functions H = {h1, h2}
with a range [(2+ε)n]. Decoding of a key x sums the vector entries at h1(x) and
h2(x). Encoding is done by generating the “cuckoo graph” implied by the n keys
and the functions h1, h2. In that graph, there are m vertices u1, . . . , um such that
each ki implies an edge (uh1(ki), uh2(ki)). The encoding then peels that graph, by
recursively removing each edge (uh1(ki), uh2(ki)) for which the degree of either
uh1(ki) or uh2(ki) is 1, and pushing that ki to a stack. That process ends when
the graph is empty of edges. Then, the unpeeling process iteratively pops an item
kj from the stack and uses it to fill the vector’s entries: If both S[uh1(kj)] and
S[uh2(kj)] are unassigned yet, then they are assigned random values such that
S[uh1(kj)] + S[uh2(kj)] = vj . Otherwise, if only S[uh2(kj)] is unassigned (w.l.o.g)
then assign S[uh2(kj)] = vj − S[uh1(kj)]. This process succeeds as long as the
peeling indeed removes all edges. However, there is a high probability for the
peeling process to end with a non-empty graph where none of the vertices is of
degree 1. The size of the remaining graph is known to be with at most O(log n)
vertices. This is solved by extending the vector S with extra O(log n) + λ entries.

In a concrete instantiation of PaXoS [33] the authors set ε = 0.4, which
becomes standard in Cuckoo hashing based constructions. However, that assign-
ment is heuristic, and no failure probability was proven. Encoding is linear in
the number of items and decoding takes 2 + c·log n+λ

2 time, for some constant c
([33] used c = 5).

4 New OKVS Constructions

The main issue that the new OKVS constructions aim to improve over the
existing polynomial-based or random matrix OKVS constructions, is improving

Oblivious Key-Value Stores and Amplification for Private Set Intersection 405

the run time to be linear in the number of key-value pairs. This comes at the
cost of slightly increasing the size of the OKVS.

4.1 OKVS Based on a 3-Hash Garbled Cuckoo Table (3H-GCT)

The PaXoS construction of [33] uses cuckoo hashing with two hash functions. It
is well-known that the efficiency of cuckoo hashing improves significantly when
using three rather than two hash functions (see orientability analysis, with � = 1
and k ∈ {2, 3} in [43, Table 1]). Hence, in this section we suggest generalizing the
OKVS construction to three hash functions. (It is crucial that the construction
uses not more than three hash functions. We describe in Footnote4 that using
more functions will result in better memory and network utilization, but will not
support an efficient linear time peeling algorithm for finding the right assignment
of values to memory locations. Therefore, with current techniques it seems that
using three hash functions is optimal.)

Peeling. The construction follows a basic peeling based approach. The OKVS
data structure S is a hypergraph G3,n,m, with m nodes and n hyperedges, each
touching 3 nodes. The construction uses three hash functions h1, h2, h3, and
maps each key k to the hyperedge (h1(k), h2(k), h3(k)).5 The simplest OKVS
construction is binary, and encodes a pair (k, v) into the graph to satisfy the
property that v = S(h1(k))⊕S(h2(k))⊕S(h3(k)). Namely, the value associated
with a key k is encoded as the exclusive-or of the three nodes of the hyperedge
to which it is mapped. The number of nodes m must be at least the number of
values n, and our aim is to make it as close as possible to n.

This mapping is possible if the binary n × m matrix in which each row
represents a key and has 1 entry corresponding to the three nodes to which
the key is mapped, is of rank n, and can be therefore be found in time O(n3).
However, our goal is to compute a mapping in time which is close to linear.
This is done by a peeling based algorithm: Suppose that there is a key k with a

4 For uniformly random d-regular hypergraphs (we use d = 3), increasing d improves
the threshold of memory utilization that enables mapping values to hyperedges.
Namely, increasing d enables to use a graph of fewer nodes in order to successfully
orient the same number of hyperedges towards different nodes. Successfully orienting
the nodes implies that it is possible to assign values to nodes to enable the recovery
all values associated with hyperedges. However, this does not imply that mapping
values to nodes can be efficiently found in linear time, such as by running by a peeling
process. Unfortunately, increasing the degree d also makes it harder to succeed in
peeling, and requires a substantially higher ratio between the number of nodes and
the number of hyperedges in order for peeling to succeed (see first row of Table 1
in [43].) Our construction is based on peeling, and therefore our usage of hyperedges
of size d = 3 is optimal.

5 The hyperedge is sampled uniformly at random from all subsets of 3 different nodes
in the graph. We simplify the notation by referring to hash functions h1, h2, h3, but
these functions are invoked together under the constraint that the outputs of the
three hash functions are distinct from each other.

406 G. Garimella et al.

corresponding hyperedge (h1(k), h2(k), h3(k)), and that, say, h2(k) is a node to
which no other key is mapped. Then we can set values to all other nodes in the
graph, including nodes h1(k) and h3(k), and afterwards set the value of node
h2(k) so that the equality v = S(h1(k)) ⊕ S(h2(k)) ⊕ S(h3(k)) holds. To denote
this property we can orient the hyperedge towards h2(k). This property also
means that we can remove this hyperedge from the graph, solve the mapping
for all other keys, and then set the value of node h2(k) so that the mapping
of k is correct. This can of course be done for all hyperedges that touch nodes
of degree 1. Moreover, removing these hyperedges might reduce the degrees of
other nodes, and this enables removing additional hyperedges from the graph.

The peeling process that we described essentially works by repeatedly choos-
ing a node of degree 0 or 1 and removing it (and the incident edge if present)
from the hypergraph. The removed edge is oriented towards the node. If this
process can be repeated until all nodes are removed then the graph is said to
be “peelable”. Otherwise, the process ends with a 2-core of the hypergraph (the
largest sub-hypergraph where all nodes have a degree of at least 2). We first
discuss the expected number of nodes that is required to ensure that the peeling
process can remove all edges. We then discuss how to handle the case that the
peeling process ends with a non-empty 2-core.

Peelability threshold. It is well known that for random 3-hypergraphs, peela-
bility asymptotically succeeds with high probability when the number of nodes
is at least 1.23n. (See [2,29] for an analysis, and [15] for implementation and
measurements.) A recent result in [43] shows that choosing hyperedges based
on a specific different distribution reduces the number of nodes to be as low
as 1.1n, but based on experiments in [43] and on our experiments these results
seem to be applicable only to very large graphs of tens of millions of nodes.)(See
footnote 5) Of course, we also wish to ensure that the OKVS construction fails
with only negligible probability, or with a sufficiently small concrete probability
(2−λ, for λ = 40). The known analysis methods do not provide concrete param-
eters for guaranteeing a 2−λ failure probability. We will describe in Sect. 5 how
to amplify OKVS constructions in order to verify experimentally that failures
happen with sufficiently small probability.

Handling the 2-core in binary 3-hash OKVS. Let χ(G) be the number of hyper-
edges in the 2-core of a hypergraph G with n edges, and let d(n) be an upper
bound on χ(G) which holds with overwhelming probability (d(n) will typically
be very small). The peeling stops working when reaching the 2-core. We fol-
low [33] in using a datastructure of the form S = L||R, where L consists of the
nodes of the hypergraph, and R includes additional d(n) + λ nodes, where 2−λ

is the allowed statistical failure probability. The hypergraph construction maps
each key k to 3 nodes in L. Denote these nodes using a binary vector l(k) of
length L, which has 3 bits set to 1. In addition, we use another hash function to
map k to a random binary string r(k) of length d(n) + λ, where the bits which
are set to 1 indicate a subset of the nodes in R. The value of a key k from the
OKVS is retrieved as the exclusive-or of the values of the 3 nodes to which it is

Oblivious Key-Value Stores and Amplification for Private Set Intersection 407

mapped in L and the values of the nodes to which it is mapped in R, namely
it is (l(k)||r(k)) · S. Therefore the encoding process must set the values in S to
satisfy these requirements.

After running the peeling process, we are left with χ(G) ≤ d(n) hyperedges
in a 2-core of G. We solve the system of linear equations (l(ki)||r(ki)) · S for all
keys ki whose corresponding hyperedges are in the 2-core.6 Solving this system
of equations sets values to the nodes in R, and to the nodes in L to which the
edges in the 2-core are mapped. This can be done in O((d + λ)3) time. We can
then run the peeling process in reverse: take the peeled hyperedges in reversed
order and set values to the nodes in L to which they are oriented, to satisfy the
decoding property for all other hyperedges in the graph. The entire algorithm is
defined in Fig. 2. The proof of Lemma 6 below is in the full version.

Lemma 6. Let d(n) be a parameter such that Pr[G3,n,m has 2-core > d(n)] ≤
ε1. Then the construction with |R| = d(n) + λ is an OKVS with error ε1 + 2−λ.

4.2 OKVS Based on Simple Hashing and Dense Matrices

Another possible approach for constructing an OKVS is to randomly map the
key-value pairs into many bins, and implement an independent OKVS per bin
(using the polynomial-based or the random matrix approaches). The compu-
tation cost of these smaller OKVS instances is much smaller, and the space
utilization only needs to take into account the maximum number of items that
might be mapped into a bin.

Suppose we hash n pairs into m bins, where key-value pair (k, v) is placed
into bin h(k) based on a random function h : {0, 1}∗ → [m]. Encode each bin’s
set of key-value pairs into its own OKVS using any “inner OKVS” construction.
The overall result is also an OKVS. More formally, if (Encode,Decode) is the
inner OKVS, then given (D1, . . . , Dm) ← Encode({ki, vi}) the new OKVS is

Decode∗
(
(D1, . . . , Dm), k

)
def= Decode(Dh(k), k)

The corresponding Encode∗ is defined as explained above.

6 An alternative approach is to use a graph without an R component, and try to solve
the system of equations for the l(ki) nodes of the 2-core alone. However, experiments
that we ran show that in many cases where the 2-core is small but not empty, the
2-core includes only two hyperedges. This means that these two hyperedges are
mapped to exactly the same set of 3 nodes, and therefore the two associated linear
equations are identical and cannot be solved.

We additionally note that PSI applications require using a Binary linear combina-
tion of the OKVS values. Other applications might allow using linear combinations
with larger coefficients. In these cases there will likely be no need for adding the R
nodes to the graph.

408 G. Garimella et al.

Fig. 2. 3-Hash Garbled Cuckoo Table, fitting n key-value pairs (ki, vi) to a data struc-
ture S ∈ F

m+r.

In choosing parameters for the inner OKVS, the näıve error analysis would
proceed as follows. First compute a bound β such that all bins have at most β
items except with the target ε probability. Choose parameters such that each
bin’s OKVS fails on β items with probability bounded by ε/m. Then by a union
bound the entire encoding procedure fails with probability at most m · ε/m = ε.

We can do better when the inner OKVS is a polynomial OKVS. If the field
is small, we can use a random dense-matrix OKVS. For this OKVS the error
probability within each bin drops off gradually with the number of items (rather
than having a sharp threshold). Suppose we have n items into m bins, and each
bin is a dense-matrix OKVS with w slots (so that the entire data structure is mw
in size). If exactly t items happen to be assigned to a particular bin, then that
bin’s OKVS fails with probability bounded by |F|w−t. Using the union bound,
we bound the probability of the overall OKVS failing as:

m · Pr[bin #1 OKVS fails] ≤ m
∑

t

(
n

t

)(
1
m

)t (
m − 1

m

)n−t

︸ ︷︷ ︸
Pr[bin #1 holds exactly t items]

min
{

1,
1

|F|w−t

}

It is straightforward to calculate this probability exactly, and it leads to better
bounds on OKVS size.

Oblivious Key-Value Stores and Amplification for Private Set Intersection 409

Example. Consider the case of |F| = {0, 1}, hashing n = 1000 items into
m = 100 bins. How wide must each bin’s dense-matrix OKVS be for an
overall error probability of 2−40? The näıve analysis proceeds as follows.
With probability 1 − 2−40 all bins have at most 42 items. We must ensure
Pr[inner OKVS fails on 42 items] < 2−47, so that the union bound over m = 100
bins bounds the overall failure probability by 2−40. Hence, each bin must have
w = 42 + 47 = 89 slots. In contrast, the more specialized analysis above shows
that only w = 61 slots suffice per bin, for error probability 2−40 (a 31% improve-
ment).

5 Amplifying OKVS Correctness

Premise: Empirically Measuring Failure Probabilities. The most efficient OKVS
constructions are likely to be based on randomized constructions. Unfortunately,
we lack techniques for finding tight concrete bounds of the relevant failure prob-
abilities for constructions of this type, such as cuckoo hashing, and for choosing
appropriate concrete parameters (e.g., how many bins are needed to hash a con-
crete number of n items with k hash functions so that the 2-core of the cuckoo
graph has size bounded by 2 log2 n with probability 1 − 2−λ?7,8

The best we can currently hope for is to empirically measure failure probabil-
ities. Since we seek data structures where the failure probabilities are extremely
small (e.g., 2−40) empirical measurement is extremely costly. One would have
to perform trillions of trials before expecting to see any failures at all. Alter-
natively, one must typically perform many trials with higher error probabilities,
and extrapolate to the lower probabilities. This approach was used in, e.g., [8,36].

In this section we show methods for amplifying the probabilistic guarantees
of an OKVS. For example, we show how to use an OKVS with failure proba-
bility ε to build an OKVS with failure probability c · εd (for explicit constants
c, d). Think of ε as being moderately small, e.g., ε = 2−15, and therefore suffi-
ciently large to enable running efficient empirical experiments to obtain 99.99%
certainty about whether ε bounds the failure event. Using an OKVS with such
an empirically-validated failure probability, we can construct a new OKVS with
the desired failure probability (e.g., 2−40).

Since our amplification algorithms may instantiate two or more OKVS struc-
tures for the same set of keys and values, in this section we make the set of hash

7 For cuckoo hashing, the relation between the number of items n, number of hash
functions k, number of bins m = (1 + β)n for β ∈ (0, 1), stash size s, and the insertion
failure probability ε, is proven in [21]: for any k ≥ 2(1 + β) ln 1

β
and s > 0, mapping

n items to (1 + β)n bins fails with probability O(n1−c(s+1)) for a constant c and
n → ∞. However, the constants in the big “O” notation are unclear and therefore
we do not know which concrete parameters are needed in order to instantiate such
constructions.

8 We stress that the failure events in Cuckoo hashing and in OKVS are slightly dif-
ferent. Specifically, an OKVS fails if the size of the 2-core is too large whereas CH
can handle a large 2-core, as long as there are not too many intersecting cycles.

410 G. Garimella et al.

functions used in each instantiation explicit. That is, an OKVS scheme is a pair
of algorithms (EncodeH ,DecodeH) as defined in Sect. 2.

In the following, we describe three amplification architectures for construct-
ing a new OKVS scheme (Encode∗

H ,Decode∗
H) using an underlying OKVS scheme

(EncodeH ,DecodeH). We assume that the OVKS is over a finite field and that
randomly sampling a vector of appropriate length from that field samples a ran-
dom OVKS. For the underlying scheme, we denote by size(n) the size of the
resulting OKVS for encoding n items. (Recall that by the obliviousness prop-
erty, it follows that the OKVS size depends only on the size of the key-value set
and not on the keys themselves.) We note that the amplification constructions
sometimes invoke EncodeH with a set of key-value pairs only to check whether
encoding succeeds or fails, and do not necessarily use the outcome of that encod-
ing. Recall that even though the input to EncodeH consists of key-value pairs,
success or failure depend only on the keys.

5.1 Replication Architecture

The following construction is mainly described as a warmup towards more
involved constructions, since it substantially increases the space requirements.
The idea is to amplify the success probability by doubling the size and computa-
tion, by using two OKVS constructions and retrieving values as the sum of the
retrieved values from both constructions. The encoding procedure checks if any
of two random hash functions results in a successful OKVS for the given set of
keys. The encoding fails only if both hash functions result in a failure. Its main
disadvantage is the double space usage.

Formally:

– Encode∗
H({(ki, vi)}) views H as two sets of hash functions H1 and H2. It

outputs two dictionaries S1 and S2 as follows:
• Compute S′ ← EncodeH1({(ki, vi)}).
• If S′ �= ⊥: set S2 ← F

size(n) randomly, i.e. S2 is a random OKVS
independent of {(ki, vi)}. Then, define the set {(ki, v

′
i)} where v′

i =
vi − DecodeH2(S2, ki). Finally, compute S1 ← EncodeH1({(ki, v

′
i)}). We

know that S1 �= ⊥ (since S′ �= ⊥ and S1 uses the same set of keys as S′)
and therefore output S = (S1, S2).

• Otherwise (S′ = ⊥): set S1 ← F
size(n). Then, define the set {(ki, v

′
i)}

where v′
i = vi−DecodeH1(S1, ki) and compute S2 ← EncodeH2({(ki, v

′
i)}).

If S2 �= ⊥ then output S = (S1, S2), otherwise, output ⊥.
– Decode∗

H(S, x): Interpret H = (H1,H2) and S = (S1, S2). Output y =
DecodeH1(S1, x) + DecodeH2(S2, x).

Clearly, this construction only fails if both encodings fail. Therefore, if
(Encode,Decode) fails with probability ε then (Encode∗,Decode∗) fails with prob-
ability ε2.

Oblivious Key-Value Stores and Amplification for Private Set Intersection 411

Generalization. The above construction uses two ‘replicas’. It could be general-
ized to c > 2 replicas, resulting in an OKVS of size c · size(n), failure probability
εc and overall encode/decode time that is c times greater than the underlying
scheme. Denote an OKVS scheme with c replicas by (Encode∗c,Decode∗c). We
use such a scheme in the generalized construction described below (Sect. 5.3).

The obvious undesirable property of this construction is that the size of the
OKVS increases by a factor of c. (This is also true for the encoding and decoding
times, but these performance parameters are typically less critical since they are
small for hashing-based OKVS.) In the rest of this section we describe how to
amplify the failure probability from ε to εc while keeping the size of the resulting
OKVS not much larger than the underlying OKVS (certainly not larger by a
factor of c).

5.2 Star Architecture

We next show how to reduce the error probability while keeping the OKVS size
to be almost size(n). In our concrete instantiation (presented in Sect. 8) we are
able to almost square the failure probability while increasing the OKVS size by
less than 10% for n = 220 items.

At the high-level idea, imagine a star-shaped graph consisting of q +1 nodes,
one central node and q leaves. Each node, including the central node, is associated
with an OKVS data structure and should be large enough to store about n/q
items. Each item is retrieved from one leaf node and from the root node, and the
returned value is the sum of the two retrieved values. More precisely, to probe
for an item x, probe for x in the central OKVS and probe for x in the OKVS of
leaf h̃(x) (where h̃ is a random function), and add the results. The construction
is robust to a hashing failure of a single node since we can set that node to
have random values and can still set the values of all the other nodes to ensure
that the correct sums are returned (this is true for either a leaf node or the root
node). Therefore the system fails only if at least two nodes fail. Security holds
since one node is set to be random, while the other nodes store random OKVS
values.

Formally, the new OKVS scheme is defined in the following way: Let n′ be
an upper bound on the maximum load of a bin when mapping n balls into q
bins, except with probability 2−λ. In the following description we treat the first
OKVS (indexed by 0) as the center node, and the following q OKVS’s, indexed
1 to q, as the leaf nodes.

– Encode∗
H({(ki, vi)}): Interpret H = (h̃,H0, . . . , Hq).

• Map the set {(ki, vi)} to q subsets: A1, . . . , Aq where Aj = {(ki, vi) |
h̃(ki) = j}.

• For j = 1, . . . , q compute Sj ← EncodeHj
(Aj)

• No failure. (∀j∈[q] : Sj �= ⊥) In this case, set random values to the
central node and adjust the values of other nodes accordingly.

* Sample a random S0 from F
size(n′).

412 G. Garimella et al.

* For j ∈ [q] compute the new set A′
j = {(k, v′) | (k, v) ∈ Aj} where

v′ = v − DecodeH0(S0, k); then, compute Sj ← EncodeHj
(A′).

• One failure. (∃j∗ : Sj∗ = ⊥ ∧ ∀j∈[q]\{j∗} : Sj �= ⊥) In this case, set the
central node to ensure the correct decoding of the values mapped to the
failed node, and adjust the values of other nodes accordingly.

* Sample a random Sj∗ from F
size(n′).

* Compute a new set A′
0 = {(k, v′) | (k, v) ∈ Aj∗} where v′ = v −

DecodeHj∗ (Sj∗ , k) and then S0 ← EncodeH0(A
′
0). If S0 = ⊥ then

output S = ⊥ and halt.
* For j ∈ [q]\{j∗} compute the new set A′

j = {(k, v′) | (k, v) ∈ Aj}
where v′ = v − DecodeH0(S0, k); then, compute Sj ← EncodeHj

(A′).
• Two or more failures. If Sj = ⊥ for more than one OKVS j then

output S = ⊥ and halt.
• Output S0, . . . , Sq.

– Decode∗
H(S, x): Interpret H = (h̃,H0, . . . , Hq) and S = (S0, . . . , Sq). Compute

j = h̃(x) and output y = DecodeHj
(Sj , x) + DecodeH0(S0, x).

Failure probability. The construction can tolerate a failure in any one of the
q + 1 components (either a leaf or the center node). In other words, the new
construction fails only when two of the q + 1 components fail. So if each of the
underlying OKVS instances fails with probability ε, then the new construction
fails with probability

Pr[S = ⊥] =
q+1∑

i=2

(
q + 1

i

)
εi(1 − ε)q+1−i (3)

= 1 − (1 − ε)q+1 − (q + 1)ε(1 − ε)q (4)

Looking at Eq. 3 and ignoring high order terms, we observe that if the failure
probability of the underlying OKVS scheme is ε = 2−ρ then the failure proba-
bility of the star architecture is ≈ (

q+1
2

)
ε2 = 2log (q+1

2)−2ρ. Thus, in order for the
star architecture to fail with probability 2−λ we need log

(
q+1
2

) − 2ρ = −λ and

thus ρ =
λ+log (q+1

2)
2 ≈ λ+2 log(q)−log 2

2 ≈ λ/2 + log(q).

OKVS size and encoding/decoding time. The size of the new OKVS is (q + 1) ×
size(n′) where n′ is the upper bound on the maximum load when mapping n
balls to q bins, that is,

n′ = min
ñ

: Pr[“there exists bin with ≥ ñ elements”] ≤ 2−λ (5)

where

Pr[“there exists bin with ≥ ñ elements”] ≤
q∑

i=1

Pr[“bin i has ≥ ñ elements”]

= q ·
n∑

i=ñ

(
n

i

)(
1
q

)i (
1 − 1

q

)n−i

Oblivious Key-Value Stores and Amplification for Private Set Intersection 413

These equations enable to easily compute the maximal size ñ of the bins.
Note that since the number of bins q is typically very small compared to n, then
ñ is not much greater than the expected size of a bin which is n/q. Section 5.4
shows a concrete size analysis for a specific choice of parameters.

The new encoding requires at most 2q + 1 invocations of the underlying
encoding algorithm. Decoding works exactly as in the replication architecture,
with 2 calls to the underlying decoding algorithm.

5.3 Generalized Star Architecture

In this section we improve the amplification method to achieve a failure proba-
bility of O(εd) for an arbitrary d. This enables to weaken the requirement from
the underlying scheme, and only require that it fails with probability of at most
ε = O(2−λ/d) instead of ε = O(2−λ/2). This is an important step if we wish to
use an underlying OKVS scheme for which the failure probability is empirically
proven, like our 3-hash garbled cuckoo table scheme presented in Sect. 4.1. The
larger d is, the less experiments we have to conduct in order to empirically prove
a failure probability of ε for the overall scheme.

The generalized idea is exactly the same as the star architecture, except that
the center OKVS can tolerate up to d − 1 failures of the OKVS instances in
the leaves. The new OKVS is composed of two components: (1) q leaf nodes as
before, each of size size(n′), and (2) a center node of size d · size(n′) (whereas
in the simple star architecture the center is of size only size(n′)). The center
node uses the replicated scheme (Encode∗d,Decode∗d) described in Sect. 5.1. We
require that both components fail with negligible probability in λ. Specifically,
in order for the entire scheme to fail with probability 2−λ each component has
to fail with probability 2−(λ+1).

The formal description of the new OKVS scheme is as follows:

– Encode∗
H({(ki, vi)}): Interpret H = (h̃, Ĥ,H1, . . . , Hq) , then,

• Map the set {(ki, vi)} to q subsets: A1, . . . , Aq where Aj = {(ki, vi) |
h̃(ki) = j}.

• For j = 1, . . . , q compute Sj ← EncodeHj
(Aj) and record the set F = {j |

Sj = ⊥} (the indices of leaf nodes for which encoding failed).
• Too many failures. If |F | ≥ d: output S = ⊥ and halt.
• Otherwise. If |F | < d:

* For all j ∈ F sample a random Sj from F
size(n′). (This procedure sets

random values for all failed OKVS nodes.)
* Define the set Â =

⋃
j∈F Aj of all items in the failed OKVS nodes.

Compute a new set A′
0 = {(k, v′)} which contains for each k ∈ Â the

pair (k, v′) where v′ = v − DecodeHj
(Sj , k) where j = h̃(k). (This

ensures that the central node corrects the value assigned for the key
in the node OKVS.)
Set Ŝ ← EncodeĤ(A′). If Ŝ = ⊥ then output S = ⊥ and halt.

414 G. Garimella et al.

* For j ∈ [q]\F , define the set A′
j = {(k, v′) | (k, v) ∈ Aj} where

v′ = v − DecodeĤ(Ŝ, k) and compute Sj ← EncodeHj
(A′

j).
* Output S = (S1, . . . , Sq, Ŝ).

– Decode∗
H(S, x): Interpret H = (h̃,H1, . . . , Hq, Ĥ) and S = (S1, . . . , Sq, Ŝ).

Compute j = h̃(x) and output y = DecodeHj
(Sj , x) + Decode∗d

Ĥ
(Ŝ, x).

In the description used above we denoted the central node’s OKVS by Ŝ
instead of S0 as in the simple star architecture, to emphasize the fact that the
central node is encoded using a stronger OKVS, namely a replicated OKVS
scheme (Encode∗d,Decode∗d).

Failure probability. The generalized star architecture fails if either the leaf nodes
OKVS constructions or the central OKVS fail. Thus, we require that each com-
ponent fails with probability 2−(λ+1).

Let ε be the failure probability of the underlying OKVS scheme
(Encode,Decode). The first component, with q leaf nodes, fails when |F | ≥ d,
which happens with probability

∑q
i=d

(
q
i

)
εi(1− ε)q−i = O(εd). The second com-

ponent, which is a scheme with d replicas, fails with probability εd, corresponding
to the event where all replicas fail.

OKVS size and encoding/decoding time. The size of the new OKVS is q·size(n′) +
size∗d(n′) where size(n′) and size∗d(n′) are the sizes of the resulting OKVS for
the (Encode,Decode) and (Encode∗d,Decode∗d) schemes, respectively. The value
n′ is the upper bound on the maximum load when mapping n balls to q bins, as
presented in Eq. (5).

The new encoding requires 2q invocations of Encode algorithm for the leaf
nodes and a single invocation of Encode∗d. The new decoding requires one invo-
cation of Decode and one invocation of Decode∗d.

5.4 A Concrete Instantiation

The underlying scheme (EncodeH ,DecodeH) is instantiated using the scheme of
Sect. 4.1 where the resulting OKVS, when encoded using n′ items, is S = L‖R
where |L| = 1.3n and |R| = λ+0.5 log n (i.e. size(n′) = 1.3n′ +λ+0.5 log n′). In
this scheme an encoding ‘failure’ happens when the 2-core which remains after
peeling is of size larger than 0.5 log n′.

We conducted 233 runs of such a scheme with n′ = 6600, using different sets
of hash functions in each run. There was only a single run in which the 2-core
was greater than 0.5 log n′. By the Clopper-Pearson method [10], we get that for
a random set of hash function H

ε = Pr[EncodeH({(ki, vi)}) = ⊥] = 2−29.355

with confidence level of 0.9999.

Oblivious Key-Value Stores and Amplification for Private Set Intersection 415

We can use that result in order to construct a new scheme (Encode∗
H ,

Decode∗
H) using the star architecture (Sect. 5.2, replication factor is d = 1, i.e.,

no replication):

– n = 216. We use q = 10 bins. Then, the maximum load according to Eq.
(5) is n′ = 7117, for which the above experiment applies9. Thus, the failure
probability of the new scheme, according to Eq. (3), is 2−52.9.

– n = 220. We use q = 160 bins. Then, the maximum load according to Eq. (5)
is n′ = 7163. Thus, the failure probability of the new scheme, according to
Eq. (3), is 2−45.05.

In both cases, the space usage is (q + 1) · (1.3n/q + λ + 0.5 log(n/q)) ≈ 1.3n.

6 Applications of OKVS

In this section we discuss how OKVS can be used as a drop-in replacement for
polynomials in many protocols.

6.1 Sparse OT Extension

Pinkas et al. (SpOT-light [32]) proposed a semi-honest PSI protocol with very
low communication, based on oblivious transfer techniques. Suppose the PSI
input sets are of size n, and hold items from the universe [N]. There is a natural
protocol for PSI that uses N OTs, where the receiver uses choice bit 1 in only
n of them and choice bit 0 in the rest. This protocol will have cost proportional
to N because communication is required for each OT, making it unsuitable
for exponential N . The work in [32] introduces a technique called sparse OT
extension, which reduces this cost.

Suppose the N OTs are generated with IKNP OT extension [19]. In IKNP,
the receiver sends a large matrix with N rows. The parties perform the ith OT
by referencing only the ith row of this matrix. Consider the mapping i �→ [ith
row of IKNP matrix]. In the PSI protocol, the receiver only cares about n out
of the N values of this mapping. So instead of sending the entire mapping (i.e.,
the entire IKNP matrix), the receiver sends a polynomial P that satisfies P (i) =
[ith row of matrix], for the i-values of interest. Crucially, the communication has
been reduced from N rows’ worth of information to only n.

When the IKNP matrix is encoded in this way, the result is the spot-low PSI
protocol of [32]. Any OKVS may replace the use of a polynomial in spot-low.10

9 We assume that if Pr[EncodeH({(ki, vi)}) = ⊥] = ε for encoding n′ items then the
same probability ε applies also to n′′ > n′.

10 [32] describe another protocol, spot-fast, which also uses polynomials. Instead of
using one polynomial of large degree n, spot-fast uses many polynomials of very
small degree (and by this incurs a larger communication overhead). Due to the low
degree, replacing these polynomials with an OKVS would have minimal effect.

416 G. Garimella et al.

6.2 Oblivious Programmable PRF and its Applications

Kolesnikov et al. [24] introduced a primitive called oblivious programmable
PRF (OPPRF). In an OPPRF, the sender has a collection of n pairs of the
form xi �→ yi, and the receiver has a list of x′

i values. The functionality chooses
a pseudo-random function R, conditioned on R(xi) = yi for all i. It gives (a
description of) R to the sender and it gives R(x′

i) to the receiver, for each i. In [24]
a natural OPPRF protocol is described, based on polynomials. The parties invoke
a (plain) oblivious PRF protocol, where the sender learns a PRF seed s and the
receiver learns PRF (s, x′

i) for each i. Then the sender interpolates a polynomial
P containing “corrections” of the form P (xi) = PRF (s, xi) ⊕ yi, and sends
it to the receiver. Now both parties define the function R(x) def= PRF (s, x) ⊕
P (x), which indeed agrees with the xi �→ yi mappings of the receiver but is
otherwise pseudo-random. In this application it is of course crucial that P hides
the points which were used for interpolating it. Naturally, any OKVS can replace
the polynomial in the OPPRF construction.11

Applications. [24] used an OPPRF to construct the first concretely efficient
multi-party PSI. They described two protocols: The first protocol is fully secure
against semi-honest adversaries. The second is more efficient but proven secure in
a weaker augmented semi-honest model, where the corrupt parties are assumed
to run the protocol honestly, but the simulator in the ideal world is allowed to
change the inputs of corrupt parties. Intuitively, the protocol leaks no more to a
semi-honest party than what can be learned by using some input (not necessarily
the one they executed the protocol on) in the ideal model. We discuss this latter
protocol in more detail in Sect. 7.2, where we show that, surprisingly, the protocol
is secure against malicious adversaries despite not being secure in the semi-honest
model.

OPPRF is also used in the PSI protocol in [34] for circuit PSI – computing
arbitrary functions of the intersection rather than the intersection itself. It is
also used in the recent multi-party PSI protocols of Chandran et al. [5,6].

In a private set union protocol [25], a variant of OPPRF is used to perform
a functionality of reverse private membership test. The functionality allows a
party holding the set X to learn whether an input y of another party is in X,
and nothing else. [25] also rely on simple hashing to improve the computation
of the polynomial-based OKVS.

Finally, [41] proposes a new OPRF-based PSI protocol. Their construction
combines a vector OLE with the PaXoS construction. We observe that it is

11 Besides encoding these “corrections” as a polynomial, [24] actually propose two other
methods. One method is a garbled Bloom filter [11], which is indeed an OKVS (with
expansion λ). Another method that they refer to as the “table” construction is not a
true OKVS, as it only is oblivious when the mapping ki �→ vi is such that all of the
ki (not just the vi) are uniformly distributed except possibly one ki which can be
known to the distinguisher. As such, this “table” construction is suitable only when
the receiver learns one output from the underling OPRF/OPPRF.

Oblivious Key-Value Stores and Amplification for Private Set Intersection 417

possible to replace their use of PaXoS with any abstract OKVS, and with our
new OKVS constructions in particular.

6.3 PaXoS PSI

The leading malicious 2-party PSI protocol is due to [33], and is known as PaXoS-
PSI. The underlying data structure, a probe and XOR of strings (PaXoS),
is what we call a binary OKVS in this work. Their protocol and proofs are written
in terms of an arbitrary PaXoS data structure, with definitions that are identical
to the ones we require of a binary OKVS. Hence, the improved constructions of
binary OKVS that we present in this work automatically give an improvement to
the PaXoS-PSI protocol. We have implemented these improvements to PaXoS-
PSI, and report on their concrete performance in Sect. 8.2.

In Sect. 7 we discuss more details of the PaXoS PSI protocol, and also intro-
duce a new generalization that can take advantage of a non-binary OKVS.

6.4 Covert Computation

Covert computation is an enhanced form of MPC (not to be confused with
the definition of covert security) which ensures that participating parties cannot
distinguish protocol execution from a random noise, until the protocol ends with
a desired output. The constructions in [9,26] enable two parties to run multiple
such computations in linear time, while keeping the covertness property. The
challenge is identifying the correspondence between the protocol invocation sets
of both parties. This is solved using a primitive called Index-Hiding Message
Encoding (IHME). The constructions in [9,26] convert a protocol for single-input
functionality into a secure protocol for multi-input functionality, by encoding as
value P (x) of a polynomial P the protocol message for input x. (Here, the
polynomial P implements the IHME primitive.) The usage of a polynomial can
be replaced by any OKVS, to result in improved performance.

7 Other PSI Improvements

We present several improvements to leading PSI schemes which use OKVS.

7.1 Generalizing PaXoS-PSI to Linear OKVS

The PaXoS-PSI protocol [33] uses any binary OKVS data structure. We now
present a generalization that can support any linear (not necessarily binary)
OKVS. First, we review the protocol to understand its restriction to binary
OKVS: The PaXoS-PSI protocol starts with the parties invoking the malicious
OT-extension protocol of Orrú, Orsini and Scholl [31]. The receiver chooses a
vector of strings D = (d1, . . . , dm), and learns an output vector R = (r1, . . . , rm).

418 G. Garimella et al.

The sender chooses a random string s and learns output Q = (q1, . . . , qm). The
important correlation among these values is:

ri = qi ⊕ C(di) ∧ s (6)

where C is a binary, linear error correcting code with minimum distance κ, and
∧ denotes bitwise-AND.

If we view D, R, and Q as OKVS data structures, we will see that Eq. (6) is
compatible with the homomorphic properties of a binary OKVS (see Sect. 2.3).
Hence:

Decode(R, k) = Decode(Q, k) ⊕ C
(
Decode(D, k)

) ∧ s

Now, suppose the receiver has chosen their input D (an OKVS) so that
Decode(D, y) = H(y), for each y in their PSI input set, where H is a random
oracle. Suppose that for each x in their set, the sender computes

mx = H ′
(
Decode(Q,x) ⊕ C(Decode(D,x)) ∧ s

)
,

where H ′ is a random oracle. If that x is in the intersection, then the receiver can
also compute/recognize mx, since it is equal to H ′(Decode(R, x)). If x is not in
the intersection, then Decode(D,x) = H(x) ⊕ δ for some nonzero string δ. Then
through some simple substitutions, we get mx = H ′(Decode(R, k) ⊕ C(δ) ∧ s).

When H ′ is a correlation-robust hash function, values of the form H ′(ai ⊕
bi ∧ s) are indistinguishable from random, when each bi has hamming weight at
least κ (as is guaranteed by the code) and s is uniform. In other words, when the
sender has an item x and computes mx, this value looks random to the receiver.

Binary OKVS and the generalization. Revisiting Eq. (6), we see that the relation
ri = qi ⊕ C(di) ∧ s is homomorphic with respect to xor:

ri ⊕ rj = (qi ⊕ qj) ⊕ C(di ⊕ dj) ∧ s.

This is what makes these correlated values compatible with a binary OKVS.
However, if we view all strings as elements of a binary field, we see that more
general linear combinations of ri’s do not work because the ∧ operation is bit-
wise, i.e. it is not compatible with the field operation.

The fact that ∧ is not a field operation is also the reason for the error-
correcting code C in the expression ri = qi ⊕ C(di) ∧ s. For any nonzero di, we
use the fact that C(di) ∧ s is an expression with at least κ bits of uncertainty
(i.e., we are bitmasking at least κ bits of s).

Now suppose that the parties had values that were not correlated according
to Eq. (6), but instead used a field operation · in place of ∧:

ri = qi ⊕ di · s (7)

Then we could view D, R, and Q each as OKVS data structures, and if they
were linear OKVS we would have:

Decode(R, k) = Decode(Q, k) ⊕ Decode(D, k) · s.

Oblivious Key-Value Stores and Amplification for Private Set Intersection 419

Additionally, for any ai, bi pairs with nonzero bi, a value of the form H(ai ⊕bi ·s)
would look random to the receiver.

Indeed, replacing the correlation of Eq. (6) with that of (7) and using any
linear (not necessarily binary) OKVS will lead to a secure PSI protocol whose
proof follows closely to PaXoS-PSI. Additionally, since an error-correcting code
is not needed, communication is reduced relative to PaXoS-PSI. A protocol that
generates correlations that follow Eq. (7) is called a vector oblivious linear
evaluation (vOLE) protocol [3,4,42]. Our protocol would require a malicious-
secure vOLE protocol, but to date no such vOLE has been implemented. We
leave it to future work to determine whether a vOLE-based approach will be
competitive with the original PaXoS (OT-extension) approach.

Fig. 3. Our generalized PaXoS-PSI protocol, adapted from [33]

Theorem 7. If (Encode,Decode) is a linear OKVS, and other parameters �1, �2
are as in [33], then the protocol in Fig. 3 securely realizes 2-party PSI against
malicious adversaries.

7.2 Malicious Multi-party PSI

Multi-party Private Set Intersection(Fm-psi) allows a set of parties, each with
a private set of items (Pi owns a set Xi), to learn the intersection of their

420 G. Garimella et al.

sets X0 ∩ X1 ∩ · · · ∩ Xn and nothing beyond that. The work of Kolesnikov
et al. in [24] presents generic transformations from any 2-party oblivious PRF
to a multi-party PSI protocol. One of these transformations is secure in the
semi-honest model, and a more efficient transformation is secure in the weaker
“augmented semi-honest” model, in which the ideal-world simulator is allowed
to change the inputs of the corrupt parties. Here we observe that this more
efficient protocol can actually be made secure in the malicious model with
only a minor modification (post-processing of the OPRF outputs with a random
oracle).

Malicious-secure but not Semi-honest secure? Here, we briefly address this
apparent paradoxical situation of a protocol being malicious-secure but not semi-
honest secure. For a semi-honest secure protocol the simulator cannot change
the inputs of the corrupt parties; that is, it should be able to explain any well-
defined input provided by the environment on behalf of the corrupt parties.
We can interpret the “augmented semi-honest” secure protocol as “the protocol
is semi-honest secure apart from the issue of simulators changing inputs”. In
contrast, simulators changing a corrupt party’s inputs is no issue while prov-
ing malicious-security. It just so happens, that without the issue of “simulators
changing inputs” the protocol in [24] is malicious-secure.

We discuss the protocol in detail in the full version, as well as its cost analysis,
proof of security and possible extensions. We also discuss there the interesting
interaction between semi-honest and malicious security.

To the best of our knowledge, [1,44] are the only other works that study
concretely efficient malicious multi-party PSI. Their constructions rely heavily
on BF/GBF, which is the most communication-expensive construction amongst
the three PSI constructions presented in [24]. While our protocol achieves almost
the same cost as that of the most efficient construction in [24], with only a minor
(inexpensive) modification, the protocols of [44] and [1] are about 10× and 2×
slower than [24]. We present a more detailed qualitative comparison with the
recent work of [1] in the full version.

8 Concrete Performance

We now benchmark different OKVS constructions and our PSI schemes. We also
present a comparison based on implementations of state-of-the-art semi-honest
and malicious PSI protocols. We used the implementation of semi-honest proto-
cols (KKRT [23], SpOT-low and SpOT-fast [32], CM [7]) and malicious protocols
(RR [40], PaXos [33]) from the open source-code provided by the authors, and
perform a series of benchmarks on the range of set size n = {212, 216, 220}. All
cuckoo hash functions are public parameters of the protocols, and can be simply
implemented as one party chooses the hash functions and broadcasts them to
other parties.

We assume there is an authenticated secure channel between each pair of
participants (e.g., with TLS). We evaluated the PSI protocols over three differ-
ent network settings (so-called fast, medium, slow networks). The LAN setting

Oblivious Key-Value Stores and Amplification for Private Set Intersection 421

(i.e., fast network) has two machines in the same region (N.Virginia) with band-
width 4.6 Gib/s; The WAN1 (i.e., medium network) has one machine in Ohio
and the other in Oregon with bandwidth 260 Mib/s; and the WAN2 (i.e., slow
network) has one machine in Sao Paolo and the other in Sydney with band-
width 33 Mib/s. While our protocol can be parallelized at the level of bins, all
experiments, however, are performed with a single thread (with an additional
thread used for communication). In all tables and figures of this section,“SH”
and “M” stand for semi-honest and malicious, respectively. We describe detailed
microbenchmarking results for OKVS in the full version.

8.1 Parameters for OKVS and PSI

n 212 216 220

Simple #bins (m) 10 100 2000
hashing bin size (μ) 555 854 714

GBF
hash functions 40
table size 60n

2hf Cuckoo expansion 2.4n

3hf Cuckoo expansion 1.3n

codeword length (SH) 448 473 495

codeword length (M) 627 616 605

�2 (SH) (see [33]) 64 72 80

�2 (M) (see [33]) 256

λ 40

Fig. 4. Parameters for OKVS and PSI.

Some OKVS schemes rely on a sim-
ple hashing which maps n pairs into
m bins. The number of items assigned
of any bin leaks a distribution about
input set. Therefore, all bins must
be padded to some maximum possi-
ble size. Using a standard ball-and-bin
analysis based on the input size and
number of bins, one can deduce an
upper bound bin size m such that no
bin contains more than m items with
high probability 1−2−λ. When n balls
are mapped at random to m bins, the
probability that the most occupied
bin has μ or more balls is m

(
n
μ

)
1

mµ

[35,37]. We provide our choices of μ
for which the probability of a bin overflow is most 1 − 2−λ, as well as other
relevant parameters for the OKVS schemes and PSI protocols in Fig. 4.

A garbled Bloom filter (GBF) [11] fails if a false-positive even occurs. Using
λ hash functions and a vector of size 1.44λn results in a failure probability of
1/2λ [27]. Therefore, we use λ hash functions and an OKVS table size of 60n.
We use m = 2.4n and m = 1.3n bins as the acceptable heuristic for the PaXoS
and 3H-GCT OKVS constructions, respectively, and the PSI protocols that use
them. We use the concrete parameters for the star architecture based OKVS
that are described in Sect. 5.4.

8.2 Improving PSI Protocols

A detailed benchmark and comparison of different PSI protocols is given in
Table 1. Note that the SpOT-low [33] and RR [40] protocols run out of memory
for set size n = 220, and are not included in the comparison for this case.

Communication improvement. The overall communication of our 3H-GCT and
star-arch. based malicious PSI is 1.61× and 1.43×, respectively, less than the

422 G. Garimella et al.

Table 1. Communication in MB and run time in milliseconds. All protocols run with
inputs of length σ = 128 except RR (SM) that supports 64 bits at most. The upper
part of the table refers to semi-honest (SH) protocols whereas the lower part refers to
malicious (M) protocols. Missing entries refer to experiments that failed due to lack of
memory or took too much time. Reported results are by running over AWS c5d.2xlarge.
Note that we found an issue with the implementation of [7,23,32,40], which use network
connection library [38]. Specifically, over a real network their protocols take more time
than over a simulated network with similar bandwidth and latency. The difference is
noticeable in CM [7].

Protocol Sett. comm (MB) 4.6 Gbits/sec 260 Mbits/sec 33 Mbits/sec
212 216 220 212 216 220 212 216 220 212 216 220

KKRT [23] SH 0.48 7.73 128.49 201 368 4512 665 2390 12568 4352 10220 146067
SpOT-low [32] 0.25 3.9 63.18 495 10035 220525 894 11154 — 3406 20337.7 —
SpOT-fast [32] 0.3 4.61 76.46 173 1795 24676 678 7455 26050 4364 17923 38737
PaXoS-2hf (2-core) [33] 0.59 9.9 169.67 217 410 4680 443 1395 11935 1974 8448 60159
CM∗ [7] 0.36 5.34 87.6 149 518 7251 807 2816 7966 4395 10303 85476
Ours: 3H-GCT (§4.1) 0.34 5.63 96.71 216 416 5831 300 1890 10604 1264 7248 38349
Ours: Star arch. (§5.4) 0.39 6.09 104.04 227 483 4938 355 1343 9504 1373 9491 34870

RR (EC-ROM variant) [40] M 4.54 75.52 1260.82 122 951 16240 3505 9127 45962 19220 24867 271442
RR (SM variant, σ = 64) [40] 48.66 815.43 — 534 7694 — 4506 33236 — 35959 187801 —
PaXoS (2-core) [33] 0.92 14.23 223.89 221 418 4779 392 2119 12042 2531 8152 60771
Ours: 3H-GCT (§4.1+§6.3) 0.57 8.68 136.66 219 420 5855 300 2929 10417 1365 6981 37695
Ours: Star arch. (§5.4+§6.3) 0.64 9.27 145.42 227 496 4987 308 1350 9631 1375 7654 36871

previous state of the art, PaXoS. This is greatly due to the fact that our protocols
invoke 1.3n and 1.41n OTs, respectively, compared to 2.4n in PaXoS.

Computation improvement. Over fast networks (4.6 Gbits/s) and n = 220,
our protocol is only 1.05×–1.1× slower than the fastest PSI protocols (KKRT
and PaXoS), where the running time is dominated by computation. Over slower
networks our protocols are almost always the fastest in the semi-honest setting
and always fastest in the malicious setting. For example, over a 33 Mbits/s
network, our malicious star architecture-based construction is almost 2× faster
than PaXoS.

Acknowledgements. We would like to thank Dan Boneh and Laliv Tauber, as well
as the anonymous referees, for their valuable comments on earlier drafts of this paper.
The first and third authors are partially supported by a Facebook research award. The
second author is supported by the BIU Center for Research in Applied Cryptography
and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office, and by a grant from the Alter family. The fourth author is partially
supported by NSF awards #2031799, #2115075.

References

1. Ben-Efraim, A., Nissenbaum, O., Omri, E., Paskin-Cherniavsky, A.: PSImple: prac-
tical multiparty maliciously-secure private set intersection. ePrint, 2021/122 (2021)

2. Botelho, F.C., Pagh, R., Ziviani, N.: Practical perfect hashing in nearly optimal
space. Inf. Syst. 38(1), 108–131 (2013)

Oblivious Key-Value Stores and Amplification for Private Set Intersection 423

3. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: ACM
Conference on Computer and Communications Security, pp. 896–912. ACM (2018)

4. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In CRYPTO (3),
volume 11694 of LNCS, pages 489–518. Springer, 2019

5. Chandran, N., Dasgupta, N., Gupta, D., Obbattu, S.L.B., Sekar, S., Shah, A.: Effi-
cient linear multiparty PSI and extensions to circuit/quorum psi. ePrint 2021/172
(2021)

6. Chandran, N., Gupta, D., Shah, A.: Circuit-PSI with linear complexity via relaxed
batch OPPRF. Cryptology ePrint Archive, Report 2021/034 (2021)

7. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. CRYPTO 2020. Part III, volume 12172 of LNCS, pp. 34–63.
Springer, Heidelberg (2020)

8. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017, pp. 1243–1255. ACM Press, October/November 2017

9. Cho, C., Dachman-Soled, D., Jarecki, S.: Efficient concurrent covert computation
of string equality and set intersection. In: Sako, K. (ed.) CT-RSA 2016, volume
9610 of LNCS, pp. 164–179. Springer, Heidelberg, Feb. / (2016)

10. C. J. Clopper and E. S. Pearson. The use of confidence or fiducial limits illustrated
in the case of the binomial. Biometrika, 26(4), pp. 404–413, 1934

11. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013, pp. 789–800. ACM Press, November 2013

12. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

13. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. Part III, volume
11478 of LNCS, pp. 154–185. Springer, Heidelberg (2019)

14. S. Ghosh and M. Simkin. The communication complexity of threshold private set
intersection. In CRYPTO (2), volume 11693 of LNCS, pages 3–29, 2019

15. Graf, T.M., Lemire, D.: XOR filters: faster and smaller than bloom and cuckoo
filters. CoRR, abs/1912.08258 (2019)

16. Hazay, C., Lindell, Y.: A note on the relation between the definitions of secu-
rity for semi-honest and malicious adversaries. Cryptology ePrint Archive, Report
2010/551 (2010). http://eprint.iacr.org/2010/551

17. C. Hazay and M. Venkitasubramaniam. Scalable multi-party private set-
intersection. In PKC 2017, Part I, volume 10174 of LNCS, pages 175–203, 2017

18. R. Inbar, E. Omri, and B. Pinkas. Efficient scalable multiparty private set-
intersection via garbled bloom filters. In SCN, pages 235–252, 2018

19. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

20. Kilian, J.: More general completeness theorems for secure two-party computation.
In: 32nd ACM STOC, pp. 316–324. ACM Press, May 2000

21. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing
with a stash. SIAM J. Comput. 39(4), 1543–1561 (2009)

https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
http://eprint.iacr.org/2010/551

424 G. Garimella et al.

22. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

23. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: ACM CCS 2016, pp. 818–829
(2016)

24. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: ACM CCS 2017,
pp. 1257–1272. ACM Press, October/November 2017

25. V. Kolesnikov, M. Rosulek, N. Trieu, and X. Wang. Scalable private set union from
symmetric-key techniques. In ASIACRYPT 2019, Part II, volume 11922 of LNCS,
pages 636–666. Springer, Heidelberg, 2019

26. M. Manulis, B. Pinkas, and B. Poettering. Privacy-preserving group discovery with
linear complexity. In ACNS 10, volume 6123 of LNCS, pages 420–437, 2010

27. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

28. Moenck, R., Borodin, A.: Fast modular transforms via division. In: Switching and
Automata Theory, pp. 90–96 (1972)

29. Molloy, M.: The pure literal rule threshold and cores in random hypergraphs. In:
SODA, pp. 672–681. SIAM (2004)

30. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st ACM
STOC, pp. 245–254. ACM Press, May 1999

31. Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with
application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 381–396. Springer, Heidelberg (2017)

32. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: Lightweight private set
intersection from sparse OT extension. CRYPTO 2019. Part III, volume 11694 of
LNCS, pp. 401–431. Springer, Heidelberg (2019)

33. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: Fast, malicious
private set intersection. EUROCRYPT 2020. Part II, volume 12106 of LNCS, pp.
739–767. Springer, Heidelberg (2020)

34. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
Part III, volume 11478 of LNCS, pp. 122–153. Springer, Heidelberg (2019)

35. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: Fu, K., Jung, J. (eds.) USENIX Security 2014, pp. 797–812. USENIX
Association, August 2014

36. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur. 21(2), 7:1–7:35 (2018)

37. M. Raab and A. Steger. ”balls into bins” - a simple and tight analysis. In Workshop
on Randomization and Approximation Techniques in Computer Science, RAN-
DOM ’98, page 159–170. Springer-Verlag, 1998

38. Rindal, P.: Cryptotools. https://github.com/ladnir/cryptoTools
39. P. Rindal and M. Rosulek. Improved private set intersection against malicious

adversaries. In EUROCRYPT 2017, Part I, volume 10210, pages 235–259, 2017
40. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-

tion. In: ACM CCS 2017, pp. 1229–1242. ACM Press, October/November 2017
41. Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-psi from vector-ole.

IACR Cryptol. ePrint Arch. 2021, 266 (2021)

https://doi.org/10.1007/11535218_15
https://github.com/ladnir/cryptoTools

Oblivious Key-Value Stores and Amplification for Private Set Intersection 425

42. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE:
improved constructions and implementation. In: ACM Conference on Computer
and Communications Security, pp. 1055–1072. ACM (2019)

43. Walzer, S.: Peeling close to the orientability threshold - spatial coupling in hashing-
based data structures. In: Marx, D. (ed.) SODA, pp. 2194–2211. SIAM (2021)

44. Zhang, E., Liu, F.-H., Lai, Q., Jin, G., Li, Y.: Efficient multi-party private set
intersection against malicious adversaries. In: ACM SIGSAC Conference on Cloud
Computing Security Workshop, CCSW 2019, pp. 93–104 (2019)

MHz2k: MPC from HE over Z2k

with New Packing, Simpler Reshare,
and Better ZKP

Jung Hee Cheon1,3, Dongwoo Kim2(B), and Keewoo Lee1(B)

1 Seoul National University, Seoul, Republic of Korea
{jhcheon,activecondor}@snu.ac.kr

2 Western Digital Research, Milpitas, USA
Dongwoo.Kim@wdc.com

3 Crypto Lab Inc., Seoul, Republic of Korea

Abstract. We propose a multi-party computation (MPC) protocol over
Z2k secure against actively corrupted majority from somewhat homo-
morphic encryption. The main technical contributions are: (i) a new effi-
cient packing method for Z2k -messages in lattice-based somewhat homo-
morphic encryption schemes, (ii) a simpler reshare protocol for level-
dependent packings, (iii) a more efficient zero-knowledge proof of plain-
text knowledge on cyclotomic rings Z[X]/ΦM (X) with M being a prime.
Integrating them, our protocol shows from 2.2x upto 4.8x improvements
in amortized communication costs compared to the previous best results.
Our techniques not only improve the efficiency of MPC over Z2k consid-
erably, but also provide a toolkit that can be leveraged when designing
other cryptographic primitives over Z2k .

Keywords: Multi-party computation · Dishonest majority ·
Homomorphic encryption · Packing method · Zero-knowledge proof · Z2k

1 Introduction

Secure Multi-Party Computation (MPC) aims to jointly compute a function f
on input (x1, · · · , xn) each held by n parties (P1, · · · , Pn), without revealing
any information other than the desired output to each other. Through steady
development from the feasibility results in 1980s (e.g., [18]), MPC research is
now at the stage of improving practicality and developing applications to diverse
use-cases: auction [7], secure statistical analysis [6], privacy-preserving machine
learning [15], etc.

Among various settings of MPC, the most important setting in practice is
the actively corrupted dishonest majority case: corrupted majority is the only
meaningful goal in two-party computation (2PC), and modeling the security
threat as passive (honest-but-curious) adversaries is often unsatisfactory in real-
life applications. At the same time, however, it is notoriously difficult to handle

D. Kim—Work done while at Seoul National University.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 426–456, 2021.
https://doi.org/10.1007/978-3-030-84245-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_15

MHz2k: MPC from HE over Z2k 427

actively corrupted majority efficiently. It is a well-known fact that lightweight
information-theoretically secure primitives are not sufficient in this setting and
we need rather heavier primitives [12].

A seminal work BeDOZa [4] observed that one can push the use of heavy
public key machinery into a preprocessing phase, without knowing input val-
ues and functions to compute. Meanwhile in an online phase, one can securely
compute a function using only lightweight primitives. This paradigm, so-called
preprocessing model, spotlighted the possibility of designing an efficient MPC
protocol even in actively corrupted dishonest majority setting. From then, there
have been active and steady research on improving efficiency of MPC protocol
in this setting: [2,16,17,21,22].

All previously mentioned works consider MPC only over finite fields where
arithmetic message authentication code (MAC), the main ingredients of the
protocols, is easily defined. Recently, SPDZ2k [14] initiated a study of efficient
MPC over Z2k in actively corrupted dishonest majority setting by introducing
an arithmetic MAC for Z2k -messages. This is to leverage the fact that integer
arithmetic on modern CPUs is done modulo 2k, e.g. k = 32, 64, 128; using MPC
over Z2k , one can naturally deal with such arithmetic. Also, there is no need
to emulate modulo prime P operations on CPUs, simplifying the online phase
implementation. The authors of SPDZ2k claimed that these advantages are much
beneficial than the loss from the modified MAC for Z2k . The claim was convinced
by the recent implementation and experimental results [15].

In regard to the cost of the preprocessing phase, however, there still remains
a substantial gap between the finite field case and the Z2k case. Particularly,
the authors of SPDZ2k , which is based on oblivious transfer (OT), left an open
problem to design an efficient preprocessing phase for MPC over Z2k from lattice-
based homomorphic encryption (HE). The motivation here is that the HE-based
approach has proved the best performance in the finite field case.

The main difficulty is that the conventional message packing method using the
isomorphism of cyclotomic ring Zt[X]/ΦM (X) ∼= Z

ϕ(M)
t does not work when t is

not prime, especially when t = 2k. In fact, cyclotomic polynomials ΦM (X) never
fully split in Z2k [X]. This makes it hard to fully leverage the batching technique
of HE and causes inefficiency compared to the finite field case. Followup works,
Overdrive2k [23] and MonZ2ka [10], proposed more efficient preprocessing phases
for MPC over Z2k , yet they do not give a satisfactory solution to this problem.

1.1 Our Contribution

MHz2k—MPC from HE over Z2k . We propose MHz2k, an MPC over Z2k

from Somewhat HE (SHE) in actively corrupted dishonest majority setting. It is
based on our new solution to the aforementioned problem (of developing high-
parallelism in SHE with Z2k -messages) and non-trivial adaptations of techniques
used in the finite field case to the Z2k case.

Note that the core of an SHE-based MPC preprocessing phase is the triple
(or authenticated Beaver’s triple [3]) generation protocol which consists of the
following building blocks (see Sect. 2.5):

428 J. H. Cheon et al.

• a packing method for SHE which enables parallelism of the protocol and
enhances amortized performance;

• the reshare protocol which re-encrypts a level-0 ciphertext to a fresh cipher-
text allowing two-level SHE to be sufficient for the generation of authenticated
triples;

• and ZKPoPK (zero-knowledge proof of plaintext knowledge) which guar-
antees that ciphertexts are validly generated from a plaintext and restricts
adversaries from submitting maliciously generated ciphertexts.

We present improvements on all of these building blocks for Z2k -messages and
integrate them into our new preprocessing phase, which is compatible with the
online phase of SPDZ2k .

New Packing Method for Z2k -messages. We suggest a new efficient Z2k -
message packing method for SHE which can be applied to a preprocessing phase
over Z2k (Sect. 3). Under the plaintext ring of degree N , our packing method
achieves near N/2-fold parallelism while providing depth-1 homomorphic cor-
respondence which is enough for the preprocessing phase. Previously, the best
solution over Z2k of Overdrive2k [23] only achieved roughly N/5-fold parallelism.
Thus, our packing method directly offers 2.5x improvement in the overall (amor-
tized) performance of the preprocessing phase.

When constructing our packing method, to remedy the impossibility1 of inter-
polation on Z2k , we devise a tweaked interpolation, in which we lift the target
points of Z2k to a larger ring Z2k+δ (Lemma 1).

Reshare Protocol for Level-Dependent Packings. A seeming problem is
that it is difficult to design a level-consistent packing method for Z2k -messages
with high parallelism, while the previous reshare protocol for messages in finite
fields (with level-consistent packing) should be modified to be utilized in this
setting. To this end, in the reshare protocol of Overdrive2k [23], an extra mask-
ing ciphertext with ZKPoPK, which is the most costly part, is provided. We
propose a new reshare protocol for level-dependent packings, which resolves this
problem and closes the gap between the field case and the Z2k case (Sect. 4).
Concretely, in our triple generation, the total number of ZKPoPK is five as using
the original reshare, whereas Overdrive2k requires seven. From this aspect, we
gain an additional 1.4x efficiency improvement in total communication cost.

TopGear2k—Better ZKPoPKs over Z[X]/Φp(X). When the messages are
in Z2k , using power-of-two cyclotomic rings Z[X]/Φ2m(X) introduces a huge inef-
ficiency in packing, since Φ2m(X) has only one irreducible factor in Z2k [X]. Thus,
it is common to use odd cyclotomic rings for Z2k -messages. In this case, however,

1 For example, over Z2k , a polynomial f(X) of degree 2 such that f(0) = f(1) = 0
and f(2) = 1 does not exist.

MHz2k: MPC from HE over Z2k 429

we cannot leverage known efficient ZKPoPKs over the ciphertexts regarding
Z[X]/Φ2m(X), such as TopGear [2]2.

To this end, we develop an efficient ZKPoPK over Z[X]/Φp(X) where p is
a prime (Sect. 5). This new protocol named TopGear2k is an adaptation of
TopGear to the Z2k case. The essence of TopGear2k is that the core properties
of power-of-two cyclotomic rings, which was observed in [5], hold similarly also
in prime cyclotomic rings (Lemma 4). This fact not only improves the amortized
communication cost, latency, and memory consumption of our ZKPoPK, but
can also has ramifications on works derived from [5].

ZKP of Message Knowledge. For the MPC preprocessing for messages from
a finite field ZP , where SHE has the plaintext space ZP [X]/Φ2m(X) isomorphic
to the message space Z

ϕ(2m)
P , ZKPoPK is sufficient. In the Z2k case, however,

packing methods are not surjective. In other words, there exist invalidly encoded
plaintexts which do not correspond to any messages. Thus, we must also make
sure that malicious adversaries had not deviated from the packing method when
generating the ciphertext. To this end, we propose a Zero-Knowledge Proof of
Message Knowledge (ZKPoMK) which guarantees that the given ciphertext is
generated with a plaintext which is a valid encoding with respect to our new
packing method (Sect. 6).

Performance. MHz2k achieves the best efficiency in amortized communication
cost among all state-of-the-art MPC protocols over Z2k in the actively corrupted
dishonest majority setting. Concretely, in our preprocessing phase, the amortized
communication costs for triple generation3 (in kbit) over Z232 and Z264 , respec-
tively, are 27.4 and 43.3 which outperforms the current best results, 59.1 of
MonZ2ka [10] and 153.3 of Overdrive2k [23], respectively showing 2.2x and 3.5x
improvements. Comparing our protocol with TopGear2k optimization (MHz2k-
TG2k) and without it (MHz2k-Plain), our ZKPoPK together with our ZKPoMK
improves memory requirement over 5.6x.

1.2 Roadmap

In Sect. 2, we define notations and recall some known ideas which we frequently
refer to in our paper. In Sect. 3, 4, 5, and 6, we present our results on pack-
ing, reshare, ZKPoPK, and ZKPoMK, respectively. In Sect. 7, we present a
performance analysis of our protocols: MHz2k-plain (which exploits our new
packing and reshare protocol) and MHz2k-TG2k (which additionally exploits
our ZKPoPK and ZKPoMK).

Figure 1 describes dependencies of this paper. Arrows denote dependencies,
and the dashed arrow denote rather weak dependency. Sect. 4 refers to Sect. 3

2 It is the recent refinement with the most efficient ZKPoPK among the line of works
[2,17,22] exploiting (S)HE to MPC over a finite field.

3 We assume a two-party case, and similar improvements occur in multi-party cases.

430 J. H. Cheon et al.

Section 3
(Packing)

Section 4
(Reshare)

MHz2k-Plain

Section 5
(ZKPoPK)

Section 6
(ZKPoMK)

MHz2k-TG2k

Fig. 1. Dependencies of This Paper

only in Sect. 4.2 to note that our new packing method is compatible with the new
reshare process. Sect. 3, 4, and 5 can be read (except Sect. 4.2) and employed
independently.

1.3 Related Work

We present the previous works achieving the same goal as ours: MPC over the
ring Z2k secure against actively corrupted dishonest majority. All of the works
(including ours) share the same online phase proposed by SPDZ2k [14], whereas
the preprocessing phases are all different.

SPDZ2k [14] is the first MPC protocol over Z2k secure against actively cor-
rupted dishonest majority. Their main technical contribution is the online phase
with an efficient MAC for Z2k (see Sect. 2.5). Their preprocessing phase resem-
bles that of MASCOT [21] which is based on oblivious transfers. The authors of
SPDZ2k left an open problem to design an efficient HE-based protocol over Z2k

since, in the finite field setting, it is the approach with the best performance.
Overdrive2k [23] is an HE-based MPC protocol over Z2k , partially solving

the open problem given in SPDZ2k . The protocol mainly follows the approach
of SPDZ [17] with the BGV SHE scheme [8]. Their main idea is a new HE-
packing method for Z2k messages supporting one homomorphic multiplication
only (See Sect. 2.4). Using their method, however, packing density for their
parameters stay below 0.25. Moreover, to remedy their level-dependent packing,
they provide extra masking ciphertexts with ZKPoPKs, substantially increasing
the cost of the preprocessing phase.

MonZ2ka [10] is a 2PC protocol over Z2k which mainly follows the linear-HE-
based approach of BDOZ [4] and Overdrive [22], but with a different HE scheme
by Joye-Libert [20]. Note that the Joye-Libert scheme does not provide packing
for batched computations, whereas major and fastest approaches of MPC over
finite fields leverage packing. Also note that MonZ2ka provides only 2PC and
does not provide general MPC.

MHz2k: MPC from HE over Z2k 431

2 Preliminaries

2.1 Notations

The ring Zq := Z/qZ is identified with the set of integers in (−q/2, q/2]. We
denote the set {1, 2, · · · , d} by [d] and the set {0, 1, · · · , d} by [0, d]. The addi-
tive share of i-th party is denoted as [·]i. For a positive integer a, let ν2(a) be
the exponent of the largest power of two that divides a. All logarithms log(·) are
of base 2. On homomorphic encryption, ciphertext additions, subtractions, and
multiplications are denoted as �, �, and �, respectively. We denote the M th

cyclotomic polynomial as ΦM (X) and reserve N for its degree, i.e., N = ϕ(M)
where ϕ(·) denotes Euler’s totient function. Each elements of Z[X]/f(X) is iden-
tified with its representative of minimal degree. For an element a ∈ Z[X]/f(X),
we measure the size of a by ||a||∞, the largest absolute value of its coefficients.

2.2 The BGV Homomorphic Encryption Scheme

Following the approach of SPDZ [17], our preprocessing only requires secure
computations of multiplicative depth one. Hence, it is enough to initiate the
BGV [8] homomorphic encryption scheme supporting only two levels. Here, we
only give a brief description of the scheme, focusing on the necessary parts for
our proposal.

Two-Level BGV Scheme with Power-of-Two Plaintext Modulus.
Let R := Z[X]/ΦM (X). The scheme consists of six algorithms (KeyGen,
Enc,ModSwitch,Dec,Add,Mult), has a ring R2t := R/2tR = Z2t [X]/ΦM (X)
as a plaintext space, and each ciphertext has a level � ∈ {0, 1}.

For a given security parameter λ, the public parameter ppλ fixes a cyclotomic
polynomial ΦM (X) with a sufficiently large degree; ciphertext moduli q1 = p1 ·p0
and q0 = p0 for some prime p0, p1. Now, the algorithms are as follows:

– KeyGen(ppλ): Given a public parameter ppλ, outputs a secret key sk ∈ R, a
public key pk = (a, b) ∈ R2

q1 , and relinearization data [8] for the ciphertext
multiplication.

– Enc(m, r; pk): For given plaintext m ∈ R2t , samples randomnesses r =
(e0, e1, v) ∈ R3 as e0, e1 ← DG(3.162) and v ← ZO(0.5),4 then sets,

c0 = b · v + 2t · e0 + m (mod q1), c1 = a · v + 2t · e1 (mod q1).

Then, outputs a level-one ciphertext ct(1) = (c0, c1) ∈ R2
q1 .

– ModSwitch(ct(1) = (c0, c1)): Given a level-one ciphertext ct(1), outputs a level-
zero ciphertext ct(0) = (c′

0, c
′
1) ∈ R2

q0 having the same message as ct(1). We
call this a modulus-switching operation.

4 DG(σ2) samples each coefficient from discrete Gaussian distribution, ZO(ρ) samples
from {−1, 0, 1} with probability ρ/2 for each of −1 and 1, probability 1 − ρ for 0.

432 J. H. Cheon et al.

– Dec(ct(�) = (c0, c1); sk): If � �= 0, it gets a level-zero ciphertext ct(0) = (c′
0, c

′
1)

via ModSwitch. Then, it decrypts as

(c′
0 − sk · c′

1 (mod q0)) (mod 2t),

and outputs an element of R2t .
– Homomorphic Operations: Ciphertexts at the same level can be added (�) or

multiplied (�) with each other, resulting in a ciphertext encrypting the sum
or the product of the plaintexts in R2t . Only level-one ciphertexts can be
multiplied (with each other) to result in a ciphertext of level-zero.

2.3 Cyclotomic Rings and CRT Isomorphism in Z2T [X]

For an odd M , the cyclotomic polynomial ΦM (X) of degree N is factorized as∏r
i=1 fi(X) in Z2[X] where each irreducible fi(X) has the same degree d =

ordM (2), the order of 2 modulo M . Hence, N = r · d holds. The factorization
induces the following ring isomorphism by the CRT, for any power of two 2T :

Z2T [X]/ΦM (X) ∼= (Z2T [X]/F1(X)) × · · · × (Z2T [X]/Fr(X)), (1)

where each Fi(X) ∈ Z2T [X] is the Hensel lifting of fi(X) with degree d. Each
Z2T [X]/Fi(X) is often referred to as a slot of Z2T [X]/ΦM (X). In this paper, we
frequently refer to the isomorphism Eq. (1) and the notation ϕ(M) = N = r · d.

2.4 Packing Methods for SHE Schemes

Message, Plaintext, and Packing. This paper carefully distinguishes
between the use of the terms message and plaintext. Messages are those we
want to compute with using HE. On the other hand, plaintexts are defined by
the HE scheme we are using. In this paper, messages are in Zt and plaintexts
are in Zt[X]/ΦM (X), for possibly different t’s.

Packing is the process of encoding multiple messages into a plaintext while
satisfying (somewhat) homomorphic correspondence. Then, when performing
homomorphic computations on a ciphertext packed with multiple messages, one
can have the effect of batching. The idea of packing [24] is very useful in most
cases, since plaintext space Zt[X]/ΦM (X) of practical lattice-based HE schemes
is usually not the space we want to compute in.

Basic Packing Methods. In lattice-based SHE schemes, including BGV [8],
it is common to choose the plaintext modulus as a prime P such that ΦM (X)
fully splits in ZP [X]. Then, we can pack N messages of ZP into one plaintext
in ZP [X]/ΦM (X) by the CRT ring isomorphism ZP [X]/ΦM (X) ∼= Z

N
P .

Above method, however, does not work for the case of Z2k -messages, since
ΦM (X) never fully splits in Z2k [X]. A common way [19] to detour this problem
is to identify each Z2k -message with each constant term of Z2k [X]/Fi(X) in
Eq. (1). It provides fully homomorphic correspondence between r messages of
Z2k and one element of Z2k [X]/ΦM (X), but with extremely low packing density
1/d, following the notations of Sect. 2.3.

MHz2k: MPC from HE over Z2k 433

Overdrive2k Packing. Overdrive2k [23] observed that what we actually need
for MPC protocol is a packing method which provides somewhat homomorphic
correspondence supporting one multiplication (See Sect. 2.5). For a given degree
d = deg F1(X), they consider a subset A = {ai}w

i=1 of [0, d − 1] such that 2ai �=
aj1+aj2 for all (i, i) �= (j1, j2) and ai+aj < d for all i, j. They pack w messages in
Z2k as the ai-th coefficients (ai ∈ A) of a polynomial in Z2k [X]/F1(X), putting
zeroes in the other coefficients. Repeating this r times for each slot in Eq. (1),
we can pack r · w messages into one plaintext achieving the packing density of
w/d. Since the set A is carefully chosen, if we multiply two packed plaintexts, the
(2ai)-th coefficient of the result equals to the product of ai-th coefficients of the
original plaintexts, providing depth-1 homomorphic correspondence. Note that
the Overdrive2k packing is level-dependent : messages are at ai-th coefficients
for level one plaintexts, and (2ai)-th coefficients for level zero plaintexts. The
authors of Overdrive2k note that the packing density of their method with an
optimal subset A seems to follow the trend of d0.6/d, approximately.

2.5 Preprocessing Phase—Generation of Authenticated Triples

Since our MPC protocol follows the online phase of SPDZ2k [14], the goal of our
preprocessing phases is to generate authenticated triples with respect to SPDZ2k -
MAC. That is, n parties together securely generate secret shares [a]i, [b]i, [c]i and
[αa]i, [αb]i, [αc]i in Z2k̃ such that

∑
i[a]i = a (mod 2k),

∑
i[αa]i = αa (mod 2k̃),

and similar for the others, satisfying c = ab (mod 2k). Here, k̃ := k + s with
s as a security parameter5, and α ∈ Z2k̃ is a single global MAC key of which
share [α]i ∈ Z2s is given to the i-th party. Then, in the online phase, the parties
can securely compute any arithmetic circuit via Beaver’s trick [3,14] with these
authenticated triples.

Overview of Triple Generation. We give an overview of our preprocessing
phase, focusing on the triple generation protocol, which follows the standard
methods of SPDZ [17] (and Overdrive2k [23]) exploiting two-level SHE and zero-
knowledge proofs (ZKP) on it. We remark that message packing of SHE enable
the parties to generate multiple authenticated triples (represented by vectors)
in one execution of the triple generation protocol, significantly reducing the
amortized costs.

First, each party Pi generates and broadcasts ciphertexts ctai
and ctbi

each
encrypting the vectors [a]i and [b]i of random shares from Z2k̃ ; we omit the
superscript(1) for level-one ciphertexts. Then, all parties run ZKPs (ZKPoPK
and ZKPoMK in Sect. 5 and 6) on cta =

∑
i ctai

and ctb =
∑

i ctbi
to guarantee

that each ciphertext is generated correctly. Next, all parties compute a ciphertext
ct

(0)
c := cta � ctb whose underlying message is the Hadamard product c = a �

b. Similarly, given ciphertexts ctαi
, all parties can also compute ct

(0)
αa and ct

(0)
αb

with homomorphic operations on the ciphertexts. The parties, however, cannot

5 SPDZ2k -MAC provides sec = s− log(s+1)-bit statistical security ([14, Theorem 1]).

434 J. H. Cheon et al.

directly compute ctαc from ciphertext multiplication between ct
(0)
c and ctα since

the former is of level-zero.
Thus, the parties perform so-called reshare protocol [17] which, given ct

(0)
c

as the input, outputs a level-one ciphertext ctc having the same message as
the input and/or the random shares [c]i of the message to each party. Roughly,
it proceeds by decrypting the masked input ModSwitch(ctf) � ct

(0)
c to get a

(masked) message f +c, then subtracting the mask ctf from the fresh encryption
ctf+c of the message, resulting in ctc = ctf+c � ctf . Then, parties can compute
ct

(0)
αc := ctc � ctα. Here, ZKPs for the masking ciphertext ctf is also required.

Finally, parties jointly perform distributed decryption on the ciphertexts ctαa ,
ctαb , and ctαc to get random shares of the underlying messages: [αa]i, [αb]i, and
[αc]i. The parties already have the other components of the triple ([a]i, [b]i, and
[c]i), so the authenticated triple is generated.

3 New Packing Method for Z2k -Messages

In this section, we present a new and efficient Z2k -message packing method
for contemporary SHE schemes, e.g. BGV [8]. Since the conventional plaintext
packing method of using the isomorphism Zt[X]/ΦM (X) ∼= Z

ϕ(M)
t does not work

when t = 2k, an alternative method is required to provide high parallelism.
To tackle this problem, unlike previous approaches which packed messages

in coefficients of a polynomial (Sect. 2.4), we pack messages in evaluation points
of a polynomial. Here, we detour the impossibility6 of interpolation on Z2k by
introducing a tweaked interpolation on Z2k .

3.1 Tweaked Interpolation

The crux of our packing method is the following lemma: we can perform inter-
polation on Z2k if we lift the target points of Z2k upto a larger ring Z2k+δ ,
multiplying an appropriate power of two to eliminate the effect of non-invertible
elements.

Lemma 1 (Tweaked Interpolation on Z2k). Let μ0, μ1, . . . , μn be elements
in Z2k . Assume that an integer δ is not smaller than ν2(n!), the multiplicity of
2 in the factorization of n!. Then, there exists a polynomial Λ(X) ∈ Z2k+δ [X] of
degree at most n such that

Λ(i) = μi · 2δ ∀i ∈ [0, n].

Proof. Recall that, for i ∈ [0, n], an i-th Lagrange polynomial on [0, n] is defined
as λi(X) :=

∏
j∈[0,n]\{i}

X−j
i−j ∈ Q[X]. Lagrange polynomial satisfies

λi(X) =

{
0 if X ∈ [0, n] and X �= i,

1 if X = i.

6 For example, over Z2k , a polynomial f(X) of degree 2 such that f(0) = f(1) = 0
and f(2) = 1 does not exist.

MHz2k: MPC from HE over Z2k 435

Note that 2δλi(X) has no multiples of 2 in denominators of its coefficients since
δ ≥ ν2(n!). Then, we can identify 2δλi(X) as a polynomial over Z2k+δ of degree
at most n, since the denominator of each coefficient is now invertible in Z2k+δ .
Let λ̃i(X) ∈ Z2k+δ [X] denote the polynomial. Then,

λ̃i(X) =

{
0 if X ∈ [0, n] and X �= i,

2δ if X = i.

Now, Λ(X) :=
∑n

i=0 μi · λ̃i(X) ∈ Z2k+δ [X] satisfies the claimed property. 	

3.2 New Packing Method from Tweaked Interpolation

Our tweaked interpolation on Z2k gives an efficient Z2k -message packing into
Z2k+2δ [X]/ΦM (X), while providing depth-1 homomorphic correspondence. Notice
the extra δ added to preserve packed messages: after multiplying two polynomi-
als constructed from tweaked interpolation, the resulting polynomial carries a
factor of 22δ. In bird’s eye view, our new packing method applies tweaked inter-
polation on each CRT slots (Eq. (1), Sect. 2.3), while preventing degree overflow
and modulus overflow when multiplying two packed polynomials. Recall the iso-
morphism Eq. (1) and the notation ϕ(M) = r · d of ΦM (X) (Sect. 2.3).

Theorem 1 (Tweaked Interpolation Packing). Let {μij}i,j be Z2k -
messages for i ∈ [r] and j ∈ [0,

⌊
d−1
2

⌋
]. For integers δ, t satisfying δ ≥ ν2(

⌊
d−1
2

⌋
!)

and t ≥ k + δ, there exists L(X) ∈ Z2t [X]/ΦM (X) satisfying the following prop-
erties:

Let Li(X) be the projection of L(X) onto the i-th slot Z2t [X]/Fi(X). Then,
for each i and j,

(i) deg(Li(X)) ≤ ⌊
d−1
2

⌋
,

(ii) Li(j) = μij · 2δ mod 2k+δ.

We call such L(X) a tweaked interpolation packing of {μij}.
Proof. By Lemma 1, the condition on δ guarantees that there exists Li(X) ∈
Z2k+δ [X] ⊂ Z2t [X] of degree not greater than

⌊
d−1
2

⌋
such that Li(j) = μij · 2δ

mod 2k+δ for all j ∈ [0,
⌊

d−1
2

⌋
]. Now, we can define L(X) ∈ Z2t [X]/ΦM (X)

as the isomorphic image of (L1(X), · · · , Lr(X)) ∈ ∏r
i=1 Z2t [X]/Fi(X) from the

CRT isomorphism; L(X) satisfies the property. 	

The next theorem suggests that the tweaked interpolation packing (Theo-

rem 1) homomorphically preserves the messages under (multiplicative) depth-1
arithmetic circuits. This property implies that we can naturally plug our pack-
ing method into the two-level BGV scheme (Sect. 2.2) with a plaintext space
Z2k+2δ [X]/ΦM (X) and exploit it for MPC preprocessing phase.

436 J. H. Cheon et al.

Theorem 2 (Depth-1 Homomorphic Correspondence7). Let L(X) and
R(X) be polynomials in Z2k+2δ [X]/ΦM (X) which are tweaked interpolation pack-
ings (Theorem 1, t = k + 2δ) of Z2k -messages {μL

ij} and {μR
ij}, respectively. For

α ∈ Z2k , let α̃ denote an element of Z2k+2δ such that α̃ = α (mod 2k). Then,

(a) L(X) + R(X) is a tweaked interpolation packing of {μL
ij + μR

ij}.
(b) α̃ · L(X) is a tweaked interpolation packing of {α · μL

ij}.
(c) From LR(X) := L(X) · R(X), one can decode homomorphically multiplied

Z2k -messages {μL
ij · μR

ij}.
Proof. Properties (a) and (b) are straightforward from the linearity of projec-
tion map and evaluation map, together with the fact that additions and scalar
multiplications preserves the degree of polynomial.

To prove (c), let Li(X), Ri(X), and LRi(X) respectively be the projection
of L(X), R(X), and LR(X) onto the i-th slot Z2k+2δ [X]/Fi(X). Then,

LRi(X) = Li(X) · Ri(X) in Z2k+2δ [X]/Fi(X).

Note that the above equation holds also in Z2k+2δ [X]: Since the degree of Li(X)
and Ri(X) are at most

⌊
d−1
2

⌋
, the sum of their degree is less than the degree d

of Fi(X). Therefore,

LRi(j) = Li(j) · Ri(j) = μL
ij · μR

ij · 22δ (mod 2k+2δ),

from which one can decode the desired values. 	

Remark 1. We call the packing structure of LR(X) in Theorem 2(c) the level-
zero tweaked interpolation packing, whereas the original packing in Theorem 1
is called level-one packing. We omit the level when the packing is of level-one.

3.3 Performance Analysis

Efficiency (Packing Density). As a measure of the efficiency of packing meth-
ods, we define packing density as the ratio of the total (bit)-size of points packed
in a polynomial to the (bit)-size of the polynomial. For example, in the case of
finite field F, we can pack N points (of F) to one polynomial (over F) of degree
N − 1 (having N coefficients), which gives the perfect packing density of 1.

Now, let κk(d) denote the packing density of tweaked interpolation packing
method for Z2k -messages when the cyclotomic polynomial ΦM (X) splits into
irreducible factors of degree d. Then,

κk(d) =
k · d+1

2 �
(
k + 2ν2(d−1

2 �!)) d
≈ k

2(k + d)
,

where the approximation follows from ν2(d−1
2 �!) ≈ d

2 and d+1
2 � ≈ d

2 .

7 Our packing (Zn
2k ↪→ Z2k+2δ [X]/Fi(X)) can be interpreted as an analogue of reverse

multiplication-friendly embeddings (Fn
q ↪→ Fqd) [9]. The composition lemma holds

similarly in Z2k case, since a Galois extension of a Galois ring is again a Galois ring.

MHz2k: MPC from HE over Z2k 437

Fig. 2. Comparison of packing densities on each method according to d

Remark 2. For a fixed Z2k , the packing density of our method (Theorem 1)
depends only on d: it is better to use ΦM (X) with smaller d. When d is sufficiently
smaller than k, the packing density of our method approaches 1

2 .

Comparison with Overdrive2k. Let κρ̌3(d) denote the packing density of
Overdrive2k packing [23] for given d (Sect. 2.4). In Fig. 2a, the rough plots of
packing densities according to d are presented: the lowest one is the plot of d0.6/d
which was mentioned as a rough estimate of κρ̌3(d) in [23]. The graph suggests
that our method has higher packing density than theirs when k is not too small
compared to d. For practical parameters, this is always the case: in Fig. 2b, the
exact plots of packing densities on 13 ≤ d ≤ 68 demonstrates that the density
of our method is higher than that of Overdrive2k.

3.4 Predicates for Valid Packing

In this subsection, we define some predicates P : R → {true, false} over a cyclo-
tomic ring R = Z[X]/ΦM (X), with which we can formally describe the state
of a plaintext in regards to our new packing method. We will use these predi-
cates when describing our Reshare protocol (in Sect. 4) and our ZKP of Message
Knowledge (ZKPoMK) (in Sect. 6). Readers may skip this subsection and con-
sult it when succeeding sections refer to the definitions.

Definition 1 (Predicates). The predicates Deg
(D)
T ,Div

(D,Δ)
T , and Pack

(D,Δ)
T ,

each mapping R to {true, false}, are defined as follows:
For an element a ∈ R, let ã ∈ R2T be defined by ã ≡ a (mod 2T), and let

(ãi)r
i=1 be the CRT projections (Eq. (1)) of ã.

• Deg
(D)
T (a) = true ⇐⇒ deg ãi ≤ D ∀i ∈ [r]

• Div
(D,Δ)
T (a) = true ⇐⇒ 2Δ divides ãi(j) ∀i ∈ [r] & j ∈ [0,D]

• Pack
(D,Δ)
T (a) = true ⇐⇒ Deg

(D)
T (a) = true ∧ Div

(D,Δ)
T (a) = true.

438 J. H. Cheon et al.

In addition, the predicate DivCheck
(D,Δ)
T : R × R̂ → {true, false} is defined as

follows, where R̂ = Z[X]/ΦM̂ (X) is another cyclotomic ring:
For b ∈ R̂, let b̃ij ∈ Z2T be b̃ij ≡ bij (mod 2T), where bij is the ((i − 1)(D +

1) + j)-th coefficient of b.8

• DivCheck
(D,Δ)
T (a, b) = true ⇐⇒ ãi(j) = 2Δ · b̃ij ∀i ∈ [r] & j ∈ [0,D]

We omit T when it is obvious from the context.

Example 1. Theorem 1 states that, for ν =
⌊

d−1
2

⌋
, the predicate Pack

(ν,δ)
t (a) =

true if and only if a ∈ R contains Z2k -messages with respect to the tweaked
interpolation packing.

Example 2. The essence of Theorem 2(c) is the following fact:
If Pack(ν,δ)

k+2δ(a) ∧ Pack
(ν,δ)
k+2δ(b) = true, then Deg

(2ν)
k+2δ(a · b) ∧Div

(ν,2δ)
k+2δ (a · b) = true.

3.5 Sampling Zero Polynomials in Z2k [X]

We propose efficient random sampling algorithms from the sets of elements
satisfying the predicates defined in Sect. 3.4. These play important roles when we
construct our Reshare protocol (in Sect. 4) and our ZKP of Message Knowledge
(ZKPoMK) (in Sect. 6). Readers may skip this subsection and consult it when
succeeding sections refer to the definitions.

Due to the unique feature of Z2k , sampling process is not trivial and has
a deep connection with zero polynomials9 in Z2k [X]. Our result possibly has
ramifications on cryptographic works regarding polynomial evaluation (or inter-
polation) over Z2k , outside of our protocols.

Definition 2 (Distribution with Predicate). Let U(B) be the uniform dis-
tribution over {a ∈ R : ||a||∞ ≤ B}. For a predicate P ∈ {Deg,Div} (we omit
the superscripts) over R = Z[X]/ΦM (X), the distribution UP(B) is the uniform
distribution over the following set:

{a ∈ R : ||a||∞ ≤ B ∧ P(a) = true}.

To show that one can efficiently sample elements from UP(B) with P = Div,
we first identify all zero polynomials in Z2k [X] as follows.

Lemma 2. For χ0(X) := 1 and χi(X) :=
∏i−1

�=0(X − �) ∈ Z2k [X], let f(X) =
∑d

i=0 ciχi(X). Then, f(j) = 0 (mod 2k) for all j ∈ [0, n] if and only if ci · i! = 0
(mod 2k) for all i ∈ [0, n].

Proof. Assume f(j) = 0 (mod 2k) for all j ∈ [0, n]. We proceed by mathematical
induction on i. First, since f(0) = 0 (mod 2k), c0 ·0! = c0 = 0 (mod 2k). Assume

8 Such tricky definition is useful when describing our ZKPoMK (Sect. 6.1).
9 A zero polynomial is a polynomial whose evaluations at certain points are all zero.

MHz2k: MPC from HE over Z2k 439

ci ·i! = 0 (mod 2k) holds for all 0 ≤ i < s ≤ n. Then, from the fact that χi(s) = 0
for i > s and that i! divides χi(s), along with the induction hypothesis, the
following equations hold.

0 = f(s) =
n∑

i=0

ciχi(s) =
s∑

i=0

ciχi(s) = csχs(s) = cs · s! (mod 2k)

For the other direction, assume ci · i! = 0 (mod 2k) holds for all i ∈ [0, n].
Since i! always divides χi(j) for any j ∈ Z, ciχi(j) = 0 (mod 2k) holds. Then,
f(j) =

∑n
i=0 ciχi(j) = 0 (mod 2k) for all j ∈ [0, n]. 	

Corollary 1 (Zero Polynomials over Z2k). Let f(X) be a polynomial in
Z2k [X]. Then, for a positive integer n, f(j) = 0 (mod 2k) for all j ∈ [0, n] if
and only if f(X) is of the form χn+1(X) · q(X) +

∑n
i=0 ciχi(X) where ci’s are

such that ci · i! = 0 (mod 2k) for all i ∈ [0, n].

Proof. Note that {χi(X)}n
i=0 form a basis of the polynomials of degree at most

n and χn+1(j) = 0 for all j ∈ [0, n]. Then, the claim follows from Lemma 2. 	

With the identification of zero polynomials from Corollary 1, we can effi-

ciently sample an element from the distribution UP(B) as follows.

Corollary 2 (Efficient Sampling from UP(B)). Let P ∈ {Deg(D)
T ,Div

(D,Δ)
T ,

Pack
(D,Δ)
T } be a predicate over R = Z[X]/ΦM (X). Then, one can efficiently

sample an element from the distribution UP(B), given that T ≥ Δ ≥ ν2(D!).

Proof. In both cases, it suffices to sample an element satisfying the predicate
from Z2T [X]/ΦM (X) first with CRT isomorphism (Eq. (1)), then add an element
from the distribution U(B) conditioned on multiples of 2T .

The case of P = Deg is straightforward, since one can sample a polynomial of
bounded degree on each CRT slot. For the cases of P = Div and P = Pack, first
note that differences of tweaked interpolations with same messages are zero poly-
nomials. Fixing representatives for tweaked interpolations with same messages,
each CRT slot of an element satisfying P can be uniquely represented modulo 2T

by the sum of a tweaked interpolation and a zero polynomial. Thus, to randomly
sample from each CRT slot of Z2T [X]/ΦM (X), first compute a tweaked interpo-
lation (Lemma 1 with δ = Δ,n = D) with uniform random points from Z2T −Δ .
Then, for Div(D,Δ)

T , add a random zero polynomial of degree at most d (Eq. (1))
using Corollary 1 with n = D. For Pack

(D,Δ)
T , add a random zero polynomial of

degree at most D. 	

Finally, for the construction of ZKPoMK (Sect. 6), we present the adaptation

of usual statistical masking method to our case with the predicates.

Lemma 3 (Statistical Masking). For a positive integer B < B∞ and a pred-
icate P ∈ {Deg,Div,Pack}, let a ∈ R = Z[X]/ΦM (X) be an element such that
||a||∞ ≤ B and P(a) = true. Then, the statistical distance between a + UP(B∞)
and UP(B∞) is bounded by NB

B∞
where N = ϕ(M). The similar holds for U .

Proof. The case of N = 1 directly follows from the definition of statistical distance,
and the claim is a generalization with (B∞ − B)N > BN

∞ − NBN−1
∞ B. 	

440 J. H. Cheon et al.

4 Reshare Protocol for Level-Dependent Packings

When designing a packing method for Z2k -messages with high parallelism, it is
inevitable to design a level-dependent packing, e.g., the Overdrive2k [23] packing
(Sect. 2.4) and our tweaked interpolation packing (Sect. 3, Remark 1). However,
this leads to a complication in the reshare protocol for Z2k -messages, which
does not occur in the case of a finite field ZP with level-consistent packing from
the isomorphism ZP [X]/Φ2m(X) ∼= Z

ϕ(2m)
P . In particular, the reshare protocol

of Overdrive2k [23] exploits an extra masking ciphertext with ZKPoPK on it,
which is the most costly part, to remedy the issue.

In this section, we propose a new reshare protocol for level-dependent pack-
ings, which resolves this complication: our protocol extends the previous reshare
protocol of the finite field case to operate also with level-dependent packings
without any extra cost. Our result closes the gap between the finite field and the
Z2k cases which originates from the level-dependency.

4.1 Improved Reshare Protocol for Level-Dependent Packings

The Problem of Level-Dependent Packings. Recall that the goal of the
reshare protocols is, for an input level-zero ciphertext, to output shares of the
underlying message along with a level-one ciphertext having the same message
as the input (Sect. 2.5). The complication, with a level-dependent packing, is
that we have to manage not only the ciphertext level but also the packing level.

Recall that one masking ciphertext ctf is used twice in the reshare protocol
for the finite field case: once to mask the input ciphertext of level-zero and once to
reconstruct the fresh ciphertext of level-one by subtracting it (Sect. 2.5). While
the difference of ciphertext levels can be managed easily with modulus-switching,
that of the packing levels seems to be problematic.

Solution of Overdrive2k. To resolve this problem, Overdrive2k [23] provides
two masking ciphertexts having the same messages but in different packing :
one with level-zero packing and the other with level-one packing. This approach
requires an extra ZKPoPK with the additional broadcast of the masking cipher-
text, doubling the cost of the reshare protocol. It results in substantial increase
of cost in the whole preprocessing protocol. In the triple generation protocol,
the number of ZKPoPK with broadcasts of ciphertexts is five using the original
reshare protocol in the field case, whereas Overdrive2k requires seven due to
their reshare protocol, resulting roughly a 1.4x reduction in efficiency.10

Our Solution. The crux of our reshare protocol for level-dependent packings
is the idea of generating the ciphertext ctα of the MAC key α ∈ Z2s by treat-
ing α as a constant in the cyclotomic ring Z2t/ΦM (X), i.e. ctα = Enc(α) for
α ∈ Z2t/ΦM (X) without any packing structure. Then, we actually do not need

10 The number of ZKPoPK is counted regarding the correlated sacrifice technique [21].

MHz2k: MPC from HE over Z2k 441

the fresh ciphertext to be of packing level-one: it is okay to be of packing level-
zero. This is because, whereas multiplying ctα to a ciphertext consumes a cipher-
text level, multiplying α to a plaintext does not consumes a packing level, i.e.
multiplying α is a linear operation in the aspect of packing (Theorem 2(b)).

Our reshare protocol itself is more or less verbatim of the previous reshare
protocol for the finite field cases [17]. Thus, we omit the formal description and
proof of our reshare protocol for general level-dependent packings. Instead, we
present an instantiation of our reshare protocol with our tweaked interpolation
packing in the next subsection.

4.2 Compatibility with Our Packing Method

We present our reshare protocol instantiated with our tweaked interpolation
packing (Sect. 3). While our protocol resembles the Reshare protocol of [17] with
Zp messages, it is slightly more involved due to the nontrivial task of masking
the Z2k messages encoded with our tweaked interpolation (we will borrow the
results from Sect. 3.5). We give an overview focusing on our modification and
correctness of the protocol, and refer to the full version for the formal description.

Our reshare protocol ΠReshare is presented in Fig. 3. The protocol exploits a
zero-knowledge proof on a ciphertext, depicted as ZKPoPK and ZKPoMK, which
will be described in Sect. 5, 6. For now, we simply assume that they guarantee
that the messages are encoded correctly in the ciphertext with respect to our
packing method.

A noticeable difference of our protocol from other reshare protocols of [17,23]
is that each party samples the message fi of a mask ciphertext from the distri-
bution with predicate, UP(2T) with P = Div

(D,Δ)
T (Definition 2, Corollary 2).

It not only preserves the packing structure, but also prevent the information
leakage from our packing method in the following distributed decryption (5.-7.
in Fig. 3). If fi was sampled from a random polynomial without any restriction,
Div

(D,Δ)
T (v) = false (with high probability) and each party cannot retrieve [m]i.

On the other hand, if fi was not added as a mask, each party can get additional
information from the plaintext polynomial v which may contain more coefficients
than the messages.

Since the mask ri together with fi can be seen as a statistical masking from
UP(BDDec) of Lemma 3, we can show that the protocol implements the FDistrDec

functionality (see the full version) which is required in the SPDZ2k preprocessing
phase (Sect. 2.5, or formally, ΠPrep in the full version).

Theorem 3 (Reshare Protocol). On a cyclotomic ring Z[X]/ΦM (X), the
protocol ΠReshare (Fig. 3) implements the functionality FDistrDec.D2 against any
static, active adversary corrupting up to n − 1 parties in the (FKeyGen, FRand)-
hybrid model with statistical security ϕ(M) · 2−sec if BDDec > 2sec · (Bnoise + 2T)
and (Bnoise + n · BDDec) < q0/2.

Proof. We refer to the full version.

442 J. H. Cheon et al.

Protocol ΠReshare

Implicitly call FRand (full version) when it is required in ZKPoPK (or ZKPoMK).
Parameters:

- BDDec: a bound on the coefficients of the mask values.
- Bnoise: a bound on the noise of input ciphertexts.
- n: the number of participating parties Pi.

Common Input:

- The parameter pp = (D, Δ, T) for the predicate Div
(D,Δ)
T (Definition 1).

- ct
(0)
m : a level-zero ciphertext satisfying that Div

(D,Δ)
T (Dec(ct

(0)
m , sk)) = true,

having a message m ∈ Z
ν
2k with our encoding method (Theorem 1, 2).

Initialize: Each party Pi calls FKeyGen (full version) receiving (pk, [sk]i).

D2: On input ciphertext ct
(0)
m (see Common Input), parties do as follows.

1. Set P = Div
(D,Δ)
T . Each Pi samples a polynomial fi ← UP(2

T−1) and set fi ∈ Z
ν
2k

as the uniform random points used in the sampling process, i.e., fi are messages
of fi when regarded as a tweaked interpolation (see the proof of Corollary 2).

2. Each Pi generates level-one ciphertext ct
(1)
fi

having the polynomial fi as a message,
then broadcasts this ciphertext.

3. All parties together run ZKPoPK (and ZKPoMK) as provers and verifiers on the

summed ciphertext ct
(1)
f =

∑
i ct

(1)
fi

. If the proof of ZKPoPK is rejected, then abort.

4. All parties compute ct
(0)
f = ModSwitch(ct

(1)
f), then compute ct

(0)
m +f = ct

(0)
m � ct

(0)
f .

Let ct
(0)
m +f be (c0, c1).

5. Each Pi computes wi =

{
c0 − [sk]1 · c1 if i = 1

−[sk]i · c1 if i �= 1
.

6. Each Pi samples a mask ri ← U(BDDec/2T) (Definition 2),
then broadcasts vi = wi + 2T · ri (mod q0).

7. All parties compute v =
∑

i vi (mod q0), then check if ||v||∞ < Bnoise + n · BDDec

and Div
(D,Δ)
T (v) = true. If not, abort.

8. All parties retrieve m + f from v by regarding v as a Tweaked Interpolation
(Theorem 1) with δ = Δ,

⌊
d−1
2

⌋
= D, and t = T .

9. Each Pi sets [m]i =

{
(m + f) − [f]1 if i = 1

−[f]i if i �= 1
.

10. All parties compute, using default value (e.g., 0) for the randomness,

c̄t
(1)
m = (Enc(m + f,0; pk)) � ct

(1)
f ,

where the polynomial m+ f ∈ Z2t [X]/ΦM (X) is the Tweaked Interpolation (The-
orem 1) for the message m + f ∈ Z

ν
2k with δ = Δ,

⌊
d−1
2

⌋
= D, and t = T .

Fig. 3. Our reshare protocol

MHz2k: MPC from HE over Z2k 443

5 Better ZKP for Lattice Encryption on Z[X]/Φp(X)

We present an improved ZKP of Plaintext Knowledge (ZKPoPK) for BGV [8]
ciphertexts over prime cyclotomic rings Z[X]/Φp(X), which proves that a cipher-
text is generated with appropriate sizes of noises and a plaintext. ZKPoPK
plays an important role in SHE-based MPC preprocessing phases [17,22,23] as
it restricts adversaries from submitting maliciously generated ciphertexts.

Note that power-of-two cyclotomic polynomials Φ2m(X) are detrimental for
Z2k -messages.11 Accordingly, Overdrive2k [23] proposed a ZKPoPK over prime
cyclotomic rings, adapting the High Gear approach of Overdrive [22] which is
over power-of-two cyclotomic rings. Likewise to Overdrive, the challenge space
of Overdrive2k is restricted to a rather small set: {0, 1}.

Taking one step further, we propose a ZKPoPK named TopGear2k for prime
cyclotomic rings, adapting the state-of-the-art ZKPoPK over power-of-two cyclo-
tomic rings called TopGear [2]. Our ZKPoPK, similarly as TopGear, allows a
larger challenge space {Xj}j ∪ {0}, resulting in a better efficiency. The essence
is a new observation that the core properties of power-of-two cyclotomic rings
(observed in [5]) also hold similarly in prime cyclotomic rings. Our result possibly
has ramifications on works derived from [5], outside of our specific ZKPoPK.

5.1 A Technical Lemma on Cyclotomic Polynomials of Primes

We present a technical lemma on cyclotomic polynomials of primes, which is the
essence of our ZKPoPK protocol. We first recall some facts on R = Z[X]/ΦM (X)
when M is a power-of-two, which are the main ingredients of the TopGear pro-
tocol [2] and its forebear [5].

(a) For all a(X) ∈ R and i ∈ Z, it holds that ||a(X) · Xi||∞ = ||a(X)||∞.
(b) ([5, Lemma 4]) For all 1 ≤ j < i ≤ M , there exists h(X) ∈ R such that

• (Xi − Xj) · h(X) ≡ 2 (mod ΦM (X))
• and ||h(X)||∞ = 1.

Statement (a) indicates that the coefficients do not grow when multiplied by Xi,
which is straightforward from the fact that multiplication by Xi acts as skewed
coefficient shift in Z[X]/(XM/2 + 1). On the other hand, (b) says, roughly, that
there is a scaled inverse of (Xi − Xj) in R with small coefficients.

We now present an analogue of the above facts when M is a prime.

Lemma 4. For a prime p and R := Z[X]/Φp(X), the followings hold.

(a) For all a(X) ∈ R and i ∈ Z, it holds that ||a(X) · Xi||∞ ≤ 2||a(X)||∞.
(b) For all 1 ≤ j < i ≤ p, there exists h(X) ∈ R such that

• (Xi − Xj) · h(X) ≡ p (mod Φp(X))
• and ||h(X)||∞ ≤ p − 1.

11 For k > 1, the ring Z2k [X]/Φ2m(X) never split into a product of smaller rings,
resulting low packing density (see the full version).

444 J. H. Cheon et al.

Proof. (a) Let ã(X) ∈ Z[X] be the representative of a(X) with the minimal
degree. When reduced modulo (Xp−1), every monomials of ã(X)·Xi are reduced
to distinct-degree monomials preserving the coefficients. Let us denote the �-
th coefficient of (ã(X) · Xi mod (Xp − 1)) as ã

(i)
� . Applying modulo Φp(X) to

(ã(X)·Xi mod (Xp−1)), the �-th coefficients of (ã(X)·Xi mod Φp(X)) equals
(ã(i)

� − ã
(i)
(p−1)), and the inequality ||a · Xi||∞ ≤ 2||a||∞ follows.

(b) Consider the following polynomial in Z[X].

v(X) :=
Φp(X) − p

X − 1
=

p−1∑

k=0

(p − 1 − k) · Xk

We claim that h̃(X) := −Xp−j · v(Xi−j) ∈ Z[X] satisfies the conditions after
being reduced by Φp(X). By definition, the first condition can be easily checked
with the fact that Φp(X) divides Φp(Xi−j) since p does not divide (i − j).

Since p does not divide (i−j), when reduced modulo (Xp−1), every monomi-
als of h̃(X) are reduced to distinct-degree monomials with coefficients remaining
in the interval [1−p, 0]. Let us denote the �-th coefficient of (h̃(X) (mod (Xp−1)))
as h̃� ∈ [1−p, 0]. Applying modulo Φp(X) to (h̃(X) (mod (Xp−1))), the �-th coef-
ficients of (h̃(X) (mod Φp(X))) equals (h̃� − h̃(p−1)). Certainly, (h̃� − h̃(p−1)) lies
in the interval of [1−p, p−1]. Thus, the inequality ||h̃(X) (mod Φp(X))||∞ ≤ p−1
holds. 	

5.2 TopGear2k: Better ZKPoPK over Z[X]/Φp(X)

We describe our ZKPoPK protocol named TopGear2k for BGV ciphertexts with
prime cyclotomic rings Z[X]/Φp(X). In a high level, our ZKPoPK is a batched
Schnorr-like protocol as those of SPDZ-family [17,22,23].

ZKPoPK Framewok—Schnorr-Like Protocol with Predicates. We first
introduce the ZKPoPK framework of SPDZ-family which proceeds as the stan-
dard batched Schnorr-like protocols [13] to prove that the underlying plaintext
satisfies a certain predicate. While our protocol (Fig. 4) follows the global proof
style of Overdrive [22] for efficiency, we describe in per-party proof style of
SPDZ [17] for simplicity.

To prove that a plaintext vector a = (ai)u
i=1, (ai ∈ R := Z[X]/ΦM (X))

of input ciphertexts cta = (Enc(ai))u
i=1 satisfy a given predicate P : R →

{true, false}12, the prover publishes a vector of masking ciphertexts cty for a
plaintext vector y ∈ Rv satisfying P. Then, after the verifier queries a challenge
matrix W ∈ Rv×u, the prover publishes a plaintext vector z ∈ Rv with which
the verifier checks if P(z) = true and cty + W · cta = ctz . The prover/verifier do
similar proofs/checks on the randomnesses required in the encryptions.
12 The predicate, for example, can capture the boundedness of the sizes of plaintext

and randomnesses, or the correctness of packing (Definition 1).

MHz2k: MPC from HE over Z2k 445

Then, the usual rewinding argument guarantees that the elements of a also
satisfy P as follows: by inverting the equation on plaintexts (W − W) · a =
z−z̄ derived from the two accepting transcripts with different challenge matrices
W and W , we deduce that a also satisfies the predicate P given that P(z) =
P(z̄) = true. Note, for this argument to work, two conditions are required: (a)
the difference (W −W) should satisfy some types of invertibility, so that one can
derive, e.g., a = (W − W)−1 · (z − z̄), (b) the predicate should be homomorphic
under (additions and) multiplications by challenge matrices W (and also by
pseudo-inverses of their differences), i.e. P(a) = true =⇒ P(W · a) = true (and
similarly for the pseudo-inverse).

Here, the difficulty is to identify a nice challenge space, where the elements
of W are sampled from, which meets all of the above conditions. In the previous
works [17,22,23], the challenge space is restricted to the set {0, 1} (and the form
of W was also restricted) to satisfy the above conditions. In this case, however,
v (the size of masking ciphertext vector) should be as large as the soundness
security parameter, leading to substantial inefficiency.

TopGear Review. TopGear [2] offers the most efficient ZKPoPK among the
line of works [17,22] exploiting (S)HE to MPC over finite fields with power-
of-two cyclotomic rings. It is also a batched Schnorr-like protocol (described
above) with global proof approach. The essence of their work is to use a larger
challenge space Chal = {Xj}2m

j=1 ∪ {0} than {0, 1} of the other previous works.
This is an adaptation of the nice properties (Sect. 5.1) of power-of-two cyclo-
tomic ring Z[X]/Φ2m(X) from [5] to the ZKPoPK framework, and is desirable
in communication cost, latency, and memory consumption.

Extending the result of TopGear to other cyclotomic polynomials, however,
was an open problem, e.g., Overdrive2k [23] exploited a rather small challenge
space of {0, 1}, mentioning that “TopGear improvements cannot be applied
directly” to their work.

TopGear2k: Our ZKPoPK over Z[X]/Φp(X). Following the above frame-
work, we propose ZKPoPK named TopGear2k which is a batched Schnorr-like
protocol with global proofs, working over prime cyclotomic rings Z[X]/ΦM (X)
(M = p is a prime13) with larger challenge space Chal = {Xj}M

j=1∪{0}, adapting
Lemma 4. Our ZKPoPK is a prime cyclotomic ring analogue of the ZKPoPK
of TopGear [2] over power-of-two cyclotomic rings. The full description of our
ZKPoPK protocol TopGear2k (ΠTG2k

PoPK) is given in Fig. 4.
Our TopGear2k aims to prove that the given ciphertexts are generated with

appropriate sizes of a plaintext and randomnesses. If all parties run Sampling
honestly, then the outputs satisfy the following relation:

13 We denote p as the smallest prime factor of M . This is to consider the general case
of M = ps and M = psqt in Sect. 5.4.

446 J. H. Cheon et al.

Protocol ΠTG2k
PoPK

Parameters:

- ZK sec: the zero-knowledge security parameter.
- 2t: the plaintext modulus.
- u: the number of ciphertexts to be verified in one protocol execution.
- v: the number of masking ciphertexts (related to soundness probability).
- n: the number of participating parties Pi (i ∈ [n]).

Samplingi (Sampling phase for the ith party Pi)

1. For each k ∈ [u] do

(a) Choose a plaintext ai
k ∈ Z2t [X]/ΦM (X) and proper randomness (r

(i)
ak). 14

(b) Compute a ciphertext ctiak
= Enc(ai

k, ri
ak

; pk).

2. Let ctia = (ctia1 , ctia2 , . . . , ctiau
), ai = (ai

1, a
i
2, . . . , a

i
u), and ri

a = (ri
a1 , ri

a2 , . . . , ri
au

).

3. Output (ctia, ai, ri
a).

Commit (Commitment phase)

1. To generate v masking ciphertexts, each party Pi do the followings, for each l ∈ [v].

(a) Pi samples yi
l ← U(2ZK sec · 2t−1) and ri

yl
= (r

i,(�)
yl ← U(2ZK sec · ρ�))�∈[3].

(b) Pi computes ctiyl
= Enc(yi

l , r
i
yl

; pk).

2. Party Pi keeps statei = (yi, ri
y) where yi = (yi

l)l∈[v] and ri
y = (ri

yl
)l∈[v].

3. Party Pi broadcasts commi = ctiy where ctiy = (ctiyl
)l∈[v].

Challenge (Challenge phase)

1. Parties together randomly sample challenge matrix W of size v × u, whose entries
are sampled from the challenge space Chal = {Xj}M

j=1 ∪ {0}.

Response (Response phase)

1. Each party Pi computes zi = yi + W · ai and ri
z = ri

y + W · ri
a.15

2. Party Pi sets respi = (zi, ri
z) and broadcasts respi.

Verify (Verification phase)

1. Each party Pi computes,
(a) ctiz = (Enc(zi

l , r
i
zl

; pk))l∈[v].

(b) cta =
∑n

i=1 ct
i
a, cty =

∑n
i=1 ct

i
y, ctz =

∑n
i=1 ct

i
z.

(c) z =
∑n

i=1 zi, rz =
∑n

i=1 ri
z.

2. Parties accept if all of the followings hold, otherwise they reject.
(a) ctz = cty + W · cta.

(b) For l ∈ [v],

||zl||∞ ≤ n · 2ZK sec · 2t, ||r(�)zl
||∞ ≤ n · 2ZK sec+1 · ρ� for 	 ∈ [3]. (2)

14 Sample (r(1), r(2), r(3)) where r(1), r(2) ← DG(σ2) and r(3) ← ZO(ρ) (Section 2.2).
15 This means that r

i,(�)
z = r

i,(�)
y + W · r

i,(�)
a for each 	 ∈ [3].

Fig. 4. Protocol ΠTG2k
PoPK

MHz2k: MPC from HE over Z2k 447

Ru
PoPK :=

{

input

({(
ctiak

)n

i=1

}

k∈[u]
, pk

)

, witness

({(
ai

k, ri
k

)n

i=1

}

k∈[u]

)

:

For all k ∈ [u], ctak =
n∑

i=1

ctiak
, ak =

n∑

i=1

ai
k, rk =

n∑

i=1

ri
k,

ctak = Enc(ak, rk; pk), ‖ak‖∞ ≤ n · 2t−1, ‖r
(j)
k ‖∞ ≤ nρj (∀j ∈ [3])

}

,

where ρ1 = ρ2 = 20, and ρ3 = 1 are the bound of noises and randomnesses,
while 2t is the plaintext modulus.

However, our protocol only guarantees that the given ciphertexts {ctk}k∈[u]

satisfies the following relation RS,u
PoPK which is relaxed from Ru

PoPK:

RS,u
PoPK :=

{
the same input and witness as Ru

PoPK :

For all k ∈ [u], ctak
, ak, rk are defined the same as Ru

PoPK,

ctak
= Enc(ak, rk; pk),

‖ak‖∞ ≤ nS · 2t−1, ‖r
(j)
k ‖∞ ≤ nSρj (∀j ∈ [3])

}
,

(2)

where S is called a soundness slack. This soundness slack S comes from the
rewinding process and appears also in the previous ZKPoPKs [2,17,22,23] for
MPC and ZKPs for lattice encryptions [5]. Meanwhile, it is standard to design
the (S)HE-based MPC preprocessing phase so that it runs correctly even with
the soundness slack, e.g., by enlarging the ciphertext modulus.

5.3 Correctness, Zero-Knowledge, and Soundness

We show that ΠTG2k
PoPK satisfies the correctness, soundness, and zero-knowledge

properties. For correctness, it suffices to show that honest inputs pass the checks
in line 2 of Verify algorithm, which can be done by setting the parameters con-
sidering Lemma 4(a).

Theorem 4 (Correctness). The n-party ZKPoPK protocol ΠTG2k
PoPK (Fig. 4)

with u ≤ 2ZK sec−1 satisfies the following Correctness:

– If all parties Pi, with inputs sampled using Sampling algorithm, follow the
protocol honestly, then Verify algorithm outputs accept with probability one.

Proof. The correctness of the equality check (a) in line 2 of Verify is trivial. For
the bound checks (b), let (W)l ·ai denotes the innerproduct between the l-th row
of W and the vector ai. Then, by the equality zi = yi +W ·ai and Lemma 4(a),

||zl||∞ = ||
n∑

i=1

zi
l ||∞ ≤

n∑

i=1

||yi
l + (W)l · ai||∞

≤ n · (2ZK sec · 2t

2
+ u · 2 · 2t

2
) ≤ n · 2ZK sec · 2t,

448 J. H. Cheon et al.

where the final inequality follows from our assumption u ≤ 2ZK sec−1. The bound
on r

(�)
zl can be proved similarly. 	

Zero-knowledgeness essentially follows from the fact that the yi’s in protocol
ΠTG2k

PoPK can statistically mask the responses with Lemma 3.

Theorem 5 (Zero-Knowledge). The n-party ZKPoPK protocol ΠTG2k
PoPK

(Fig. 4) satisfies the following Honest-verifier Zero-knowledge:

– There exists a PPT algorithm SI′ indexed by a (honest) set I ′ ⊂ [n], which
takes as input an element in Ru

PoPK and a challenge W , and outputs tuples
{commi, respi}i∈I′ such that this output is statistically indistinguishable from
a valid execution of the protocol (with statistical distance ≤ 8Muv/2ZK sec).

Proof. Let the simulator SI′ output respi by sampling each component from the
uniform distribution with sufficiently large bound, e.g., sample zi = (zi

l)l∈[v]

where zi
l ← U(2ZK sec · 2t−1). Then it outputs commi by computing each

component from the challenge W and corresponding input ciphertexts, e.g.,
ctiy = Enc(zi, ri

z; pk) − W · ctia.
Note that the statistical distance between the simulated and the real execu-

tion is determined by that between the distribution of respi in both executions
(since each commi is computed in the same way from respi). In the real execu-
tion, zi is computed by sampling yi and adding W · ai. Thus, Lemma 3 (with-
out P) gives that the distance between zi from both executions are bounded by
ϕ(M) ||(W)l·ai||∞

2ZK sec·2t−1 · ≤ 2Mu
2ZK sec , and similar results hold for ri

z. 	

Finally, the soundness of ΠTG2k
PoPK follows from the usual rewinding argument

leveraging Lemma 4(b) on invertibility.

Theorem 6 (Soundness). Assume that the n-party ZKPoPK protocol ΠTG2k
PoPK

(Fig. 4) is parameterized with v ≥ (Snd sec+2)/ log(|Chal|) where Snd sec is the
soundness security parameter and |Chal| is the size of the challenge space. Then,
it satisfies the Soundness (see [2, Definition 1]) with soundness probability
2−Snd sec and slack S = 8ϕ(M) · 2ZK sec.

Proof. The proof mostly resembles that of [2, Theorem 1], and we give detailed
description focusing on the unique aspects of our protocol. With a usual rewind-
ing argument (we refer to [2, Theorem 1] for formal description of an extractor),
an extractor can output (W, {zi, ri

z}n
i=1) and (W, {z̄i, r̄i

z}n
i=1), which are two

accepting transcripts corresponding to cta and cty such that W and W are iden-
tical except k-th column. Let z :=

∑n
i=1 zi and similarly for rz, z̄, r̄z. Then,

since these values satisfy the equation at line 2(a) of Verify algorithm (Fig. 4) and
ciphertexts have homomorphic property, we get z = y+W ·a and z̄ = y+W ·a.
With subtraction, since W and W are identical except k-th column, we get,

zl − z̄l = (wl,k − w̄l,k) · ak for some l ∈ [v],

MHz2k: MPC from HE over Z2k 449

where wl,k and w̄l,k are entries of W and W and are from {Xj}M
j=1. Thus,

multiplying h(X) (of Lemma 4 (b)) according to (wl,k − w̄l,k) on both sides, we
get

||p · ak||∞ = ||h(X) · (z1,l − z̄1,l)||∞ ≤ 2 · ϕ(M) · ||h(X)||∞ · ||z1,l − z̄1,l||∞
≤ 2 · ϕ(M) · (p − 1) · ||z1,l − z̄1,l||∞
≤ 2 · ϕ(M) · (p − 1) · 2

(
n · 2ZK sec · 2t

)
.

The first inequality follows by regarding h(X) as sum of monomials then
applying Lemma 4 (a). The second inequality is obtained by the definition of
h(X) (Lemma 4 (b)). The last inequality follows from Eq. (2) (Fig. 4). Hence,
||ak||∞ ≤ nS · 2t−1 with the desired soundness slack S = 8ϕ(M) · 2ZK sec. Sim-
ilarly, one can derive the bound and slackness on the rak

from rz, r̄z in the
transcripts. 	

5.4 Extension to Φps (X) and Φps qt (X)

In fact, we can extend our ZKPoPK to work over cyclotomic polynomials ΦM (X)
with M = ps or M = psqt where p, q are primes satisfying p < q and s, t are
positive integers. Then, we can increase the packing density of our packing by
taking cyclotomic polynomials of composites into consideration, which allow
parameters with smaller d = ordM (2) (see Sect. 3.3).

These follow from the results of [11] which are generalization of Lemma 4 to
the cases with M = ps or M = psqt. Then, in both cases of Φps(X) and Φpsqt(X),
the protocol ΠTG2k

PoPK is exactly the same with the prime case. In the case of ps, the
statements and the proofs of Theorem 4, 5, 6 also stay exactly the same. (We
carefully distinguished the role of M and p for this.) In the case of psqt, the major
changes are the followings: the condition on u in Theorem 4 is u ≤ 2ZK sec−1/p,
the statistical distance in Theorem 5 is bounded by 8pMuv/2ZK sec, and the
soundness slack in Theorem 6 is S = 8p2M · 2ZK sec.

6 Zero-Knowledge Proof of Message Knowledge

In SHE with messages from a finite field ZP , the plaintext space ZP [X]/Φ2m(X)
can be taken to be isomorphic to Z

ϕ(2m)
P , a product of message spaces. When

we deal with messages from Z2k , however, the plaintext space Z2t [X]/ΦM (X)
is never isomorphic to a product of Z2k ’s. It is inevitable that some plaintexts
do not correspond to any packing of messages. Thus, we must be guaranteed, in
MPC preprocessings for Z2k -messages, that each party encrypted a valid plain-
text according to a specific packing method, in addition to the guarantee of valid
encryption. This is an intricacy of the Z2k -case that differs from the ZP -case
where ZKPoPK (for the guarantee of valid encryption) is sufficient [2,17,22].

Therefore, we propose, in addition to ZKPoPK, a Zero-Knowledge Proof of
Message Knowledge (ZKPoMK) which guarantees that the given ciphertext is

450 J. H. Cheon et al.

generated with a plaintext which is a valid encoding with respect to our tweaked
interpolation packing (Sect. 3).16

6.1 ZKPoMK for Tweaked Interpolation Packing

As our ZKPoPK, our ZKPoMK is a batched Schnorr-like protocol with pred-
icates, and it proceeds similarly but with appropriate challenge spaces for the
predicates which capture the valid plaintexts of our packing method. Since most
parts of our ZKPoMK are similar to the ZKPoPK, here we only give an overview
and refer to the full version for the detailed description.

Overview of Our ZKPoMK. Recall the predicates (Definition 1) presented
in Sect. 3.4 and that a ∈ R is a valid plaintext, i.e. a tweaked interpolation of
Theorem 1, if and only if, for D =

⌊
d−1
2

⌋
, Δ = δ, and T = t,

Pack
(D,Δ)
T (a) ⇐⇒ Deg

(D)
T (a) ∧ Div

(D,Δ)
T (a).

Our ZKPoMK separately proves those two statements (i) Deg
(D)
T (a) = true and

(ii) Div
(D,Δ)
T (a) = true as follows.

For the statement (i), we run the same as our ΠTG2k
PoPK (Fig. 4) but with two

modifications: (1) set the predicate P = Pack
(D,Δ)
T then sample the masks yi

l

from UP(2ZK sec · 2t−1) using Corollary 2 and check if P(zl) = true, instead of the
bound check on it; (2) set the challenge space Chal = [−2E + 1, 2E] ∩ Z for a
positive integer E. Note that these constants from the challenge space preserve
the degree of given element a when multiplied, giving the key equation for the
rewinding argument (and the soundness), while enlarging the challenge space.
We remark that this approach introduces a new type of slackness which will be
described later in this section.

For the statement (ii), a prover provides a′ such that DivCheck(D,Δ)
T (a, a′) =

true (see Definition 1), or very roughly, a′ = a/2Δ. For zero-knowledgeness,
a′ must be provided as a ciphertext ĉta′ with the proof that ĉta′ is generated
correctly as well. Then, the parties (simultaneously) execute Schnorr-like pro-
tocol on cta′ with the same challenge matrix W from the above proof on cta
for the statement (i) and the masks y′i

l such that DivCheck
(D,Δ)
T (yi

l , y
′i
l) = true.

Then verifiers check if DivCheck
(D,Δ)
T (z, z′) = true from which one can derive

DivCheck
(D,Δ)
T (a, a′) = true with a rewinding argument (see the full version).

A caveat here is that we cannot use tweaked interpolation packing for ĉta′ : a
factor of 2T will also arise in the tweaked interpolation packing for ĉta′ ; and we
again need ZKPoMK on ĉta′ to check that it is encoded correctly.

The key observation for our solution is that ĉta′ (in contrasts to cta) does not
need to satisfy multiplicative homomorphism (on message space) since it is only
16 Overdrive2k [23] performs ZKPoMK implicitly in their ZKPoPK. If we set Chal =

{0, 1} as their ZKPoPK, our ZKPoMK can also be integrated into ZKPoPK (by
additionally checking if z is a valid encoding), resulting in our MHz2k-Plain protocol.

MHz2k: MPC from HE over Z2k 451

used in ZKPoMK for cta, which requires linear homomorphism only. Therefore,
we exploit coefficient packing (i.e., each message is encoded as each coefficient
of a′) for ĉta′ ,17 which makes ZKPoPK ΠTG2k

PoPK (without any ZKPoMK) suffices
to guarantee that ĉta′ is correctly encoded. As a bonus, we can use consider-
ably smaller parameters for ĉta′ , providing almost perfect packing density and
resulting better efficiency.

A New Type of Slackness. We now describe the new type of slackness arises
from our ZKPoMK ΠPoMK. If all parties run Sampling honestly, then the outputs
satisfy the following relation:

Ru,Pack
PoMK :=

{
the same input and witness as Ru

PoPK :

For all k ∈ [u], Pack
(D,Δ)
T (ak) = true

}

Note that, however, a verifier cannot be guaranteed that Deg
(D)
T (ak) = true

with our ZKPoMK (for the statement (i) in above). This is because, in the
rewinding argument, Deg

(D)
T ((wl,k − w̄l,k) · ak) = true can occur even with

Deg
(D)
T (ak) = false, since there is a possibility of some non-zero coefficients of

ak becoming zero when multiplied by (wl,k − w̄l,k). However, since the difference
wl,k − w̄l,k of elements from the challenge space Chal = [−2E + 1, 2E] ∩ Z is at
most divisible by 2E , our ZKPoMK protocol can only guarantee that the given
ciphertexts {ctk}k∈[u] satisfies the following relation Ru,Pack sl

PoMK which is relaxed
from Ru,Pack

PoMK :

Ru,Pack sl
PoMK := {the same input and witness as Ru

PoPK :
For all k ∈ [u], Pack slT (ak) = true},

where the predicate Pack sl : R → {true, false} is defined as follows (see Sect. 3.4
for comparison with the original predicates). For a ∈ R, let (ãi)r

i=1 denote the
CRT projections (Eq. (1)) of ã = a (mod 2T).

• Pack sl
(D,Δ,E)
T (a) = true ⇐⇒ Deg sl

(D,E)
T (a) = true ∧ Div

(D,Δ)
T (a) = true.

• Deg sl
(D,E)
T (a) = true ⇐⇒ All CRT projections ãi of a satisfy that

coefficients at deg > D are divisible by 2T−E .

While the soundness slack S of ZKPoPK appeared also in the previous liter-
ature, above slackness represented by the predicate Pack sl is a unique feature
of our ZKPoMK protocol.

6.2 Managing the Slackness in MPC Preprocessing

In this subsection, we clarify that the new type of slackness which arises in our
ZKPoMK can be managed, i.e., that the guarantee of ZKPoMK is sufficient for
the MPC preprocessing phase (Sect. 2.5).
17 This is why we denoted it as ĉta′ (not cta′) and DivCheck is defined in such a way.

452 J. H. Cheon et al.

The idea is to reserve an extra space in the plaintext modulus for the slackness
E: for Z2k -messages, we apply the tweaked interpolation packing (Theorem 1)
with t = E + k + 2δ instead of t = k + 2δ (Theorem 2)18.

Let cta be a ciphertext encrypting a(X), which passed the verification of
our ZKPoMK parameterized by D =

⌊
d−1
2

⌋
, Δ = δ, T = t, and E. For sim-

plicity, we assume that the plaintext space Z2T [X]/ΦM (X) does not split. Since
Pack sl

(D,Δ,E)
T (a) = true and T −E = k+2δ, we can regard a(X) (mod 2T−E) as

a tweaked interpolation packing of Z2k -messages in Z2k+2δ [X]/ΦM (X) as before.
The only thing we have to make sure is that, when performing the distributed
decryption, the upper E bits do not leak any information about the plaintexts.
This can be done trivially by masking the upper E bits in the distributed decryp-
tion.

7 Performance Analysis

In this section, we analyze the performance of our MHz2k with comparison
to other works in the literature. We can summarize the improvements by our
packing (Sect. 3) and reshare protocol (Sect. 4) as follows: (i) Our tweaked
interpolation packing achieves near 1/2 packing density, 2.5x compared to 1/5
of Overdrive2k [23], (ii) Our reshare protocol requires only 5 ZKPoPKs which
is 1.4x less than 7 ZKPoPKs of Overdrive2k. In total, we can expect that the
amortized communication costs of MHz2k-Plain (without the Topgear2k opti-
mization) will show 3.5x improvements from Overdrive2k.

On the other hand, how our ZKPoPK and ZKPoMK (Sect. 5, 6) affect the
performance in MHz2k is a bit more involved. In the following subsection we
provide a brief cost analysis on our ZKPs.

7.1 Cost Analysis on ZKPoPK and ZKPoMK

The communication cost of ZKPoPK and ZKPoMK per party can be estimated
by the size of ciphertexts arise in protocols, which dominates the others. Exclud-
ing the u input ciphertexts ctia, using our ZKPoPK and ZKPoMK, there arise
additional u ciphertexts ĉt

i

a′ , 2v masking ciphertexts ctiy, and 2v masking cipher-

texts ĉt
i

y′ . Assuming that u = 2v (as in Topgear [2]) and that the size of ĉt is
a half of that of ct, we can conclude that the total cost is roughly 2u · |ct| in
ZKPoPK and ZKPoMK on u input ciphertexts ctia.

On the other hand, following the approach of Overdrive2k [23], MHz2k can
also be initiated with the challenge space of {0, 1} without TopGear2k opti-
mization, which we call MHz2k-Plain. In this case, while the challenge space is
restricted to {0, 1}, it requires only one Schnorr-like protocol (contrary to four in
our case) but with v = 2u − 1. Hence, the size of masking ciphertexts ctiy will be
roughly 2u · |ct|, and in amortized sense, the communication cost does not differ

18 Our ZKPoMK does not produce the slackness when E = 0. An appropriate E > 0
enlarges the challenge space in a cost of only a slight reduction in the packing density.

MHz2k: MPC from HE over Z2k 453

Table 1. Amortized communication (in kbit) of producing triples (2PC)

(k, s) SPDZ2k MonZ2ka Overdrive2k
MHz2k

Plain

MHz2k

TG2k

(u = 2v)

MHz2k

TG2k

(u = 4v)

(32,32) 79.9 59.1 101.8 (72.8) 27.2 26.4 20.1

(64,64) 319.5 175.5 171.4 (153.3) 46.2 43.3 31.9

(128,64) 557.1 176.6 190.4 (212.2) 56.6 55.0 40.9

seriously between the case with TopGear2k and without it. The main advantage
of our TopGear2k with ZKPoMK (similarly as TopGear [2] to [17,22,23]) is that
u can be chosen much smaller than that of ZKPoPK of [17,22,23] where u is
forced to be as large as statistical security parameter at least. This contributes to
the substantial reduction of latency and memory requirement (Table 2). More-
over, since there is a trade-off between amortized communication cost versus
latency and memory requirement along the choice of u, we can shift the improve-
ments to the amortized communication cost.

7.2 Comparison

For comparison, we present the communication costs of our schemes and previous
works. Though we restrict our discussion to secure two-party computation (2PC),
similar efficiency improvements occur in any multi-party case. We refer to the
full version for the detailed description on the parameters for our schemes and
others. All parameters are set to satisfy 128 bits computational security.

In Table 1, we compare the previous works [10,14,23] and ours with respect
to (amortized) communication costs for triple generation. For lattice-based HE
approaches (Overdrive2k, MHz2k-Plain, and MHz2k-TG2k), the results are com-
puted from the parameters with more than 128 bits security according to LWE
Estimator [1]. For reader’s convenience, we also present communication costs
of Overdrive2k which are listed in the paper [23] in parentheses19. Note that
MonZ2ka only provides secure two-party computation, whereas other protocols
can be used for general multi-party computation. MHz2k-Plain shows substan-
tial improvements in communication costs from previous works. In particular, we
can check that MHz2k-Plain shows roughly 3.5x improvement from Overdrive2k
as we predicted in Sect. 7.1. As mentioned, applying TopGear2k technique to
MHz2k-Plain does not significantly effect the communication costs, if we choose
parameters as u = 2v. However, increasing the ratio between u and v, we can fur-
ther reduce the communication costs utilizing more memory (still, less memory
than Overdrive2k).

In Table 2, we compare the memory consumption of SHE-based approaches,
which are computed as (u+ v) · 2ϕ(M) log q. Applying TopGear2k optimization,
19 Due to the lack of information, it was hard to reproduce the communication costs

of Overdrive2k. In particular, their parameters does not seem to achieve 128 bits
security if we consider key-switching modulus which is not noted.

454 J. H. Cheon et al.

Table 2. Memory usage (in MB) of producing triples (2PC)

(k, s) Overdrive2k MHz2k-Plain
MHz2k-TG2k

(u = 2v)

MHz2k-TG2k

(u = 4v)

(32,32) 272 503 44 74

(64,64) 1273 1392 137 229

(128,64) 2555 2237 241 402

we can significantly reduce the memory consumption. With Table 1, we can also
check the trade-off between the amortized communication costs and the memory
utilization along the choice of u.

Acknowledgement. In addition to the appreciation on constructive comments of
the reviewers of Crypto 2021, the authors express gratitude to the reviewers of Euro-
crypt 2021 who provided invaluable comments to improve the earlier version of this
paper. The authors also thank Duhyeong Kim, Jiseung Kim, and Yongsoo Song for
helpful discussions. This work was supported by Institute of Information & Commu-
nications Technology Planning & Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (No.2020-0-00840, Development and Library Implementation of Fully
Homomorphic Machine Learning Algorithms supporting Neural Network Learning over
Encrypted Data).

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

2. Baum, C., Cozzo, D., Smart, N.P.: Using topgear in overdrive: a more efficient
ZKPoK for SPDZ. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol.
11959, pp. 274–302. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
38471-5 12

3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

4. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

5. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 29

6. Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the estonian tax and customs
board evaluated a tax fraud detection system based on secure multi-party compu-
tation. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 227–234.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 14

https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-47854-7_14

MHz2k: MPC from HE over Z2k 455

7. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3),
1–36 (2014)

9. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-
theoretically secure MPC revisited. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 395–426. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 14

10. Catalano, D., Di Raimondo, M., Fiore, D., Giacomelli, I.: MonZ2ka: fast maliciously
secure two party computation on Z2k . In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 357–386. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45388-6 13

11. Cheon, J.H., Kim, D., Kim, D., Lee, K.: On the scaled inverse of (xi − xj)
modulo cyclotomic polynomial of the form φps(x) or φpsqt(x). arXiv preprint
arXiv:2106.01742 (2021)

12. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. In: Proceedings of
the Twenty-first Annual ACM Symposium on Theory of Computing, pp. 62–72
(1989)

13. Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge proto-
cols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 11

14. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 26

15. Damg̊ard, I., Escudero, D., Frederiksen, T., Keller, M., Scholl, P., Volgushev, N.:
New primitives for actively-secure MPC over rings with applications to private
machine learning. In: 2019 IEEE Symposium on Security and Privacy (SP), pp.
1102–1120. IEEE (2019)

16. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority–or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

17. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

18. Goldwasser, S., Ben-Or, M., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computing. In: Proceedings of the 20th
STOC, pp. 1–10 (1988)

19. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

20. Joye, M., Libert, B.: Efficient cryptosystems from 2 k -th power residue symbols.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
76–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 5

21. Keller, M., Orsini, E., Scholl, P.: Mascot: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 830–842 (2016)

https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-030-45388-6_13
http://arxiv.org/abs/2106.01742
https://doi.org/10.1007/978-3-642-03356-8_11
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-642-38348-9_5

456 J. H. Cheon et al.

22. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

23. Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: efficient secure MPC over
Z2k from somewhat homomorphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020.
LNCS, vol. 12006, pp. 254–283. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-40186-3 12

24. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Des. Codes
Crypt. 71(1), 57–81 (2014)

https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-030-40186-3_12
https://doi.org/10.1007/978-3-030-40186-3_12

Sublinear GMW-Style Compiler for MPC
with Preprocessing

Elette Boyle1(B), Niv Gilboa2, Yuval Ishai3, and Ariel Nof3

1 IDC Herzliya, Herzliya, Israel
eboyle@alum.mit.edu

2 Ben-Gurion University, Be’er Sheva, Israel
gilboan@bgu.ac.il

3 Technion, Haifa, Israel
{yuvali,ariel.nof}@cs.technion.ac.il

Abstract. We consider the efficiency of protocols for secure multiparty
computation (MPC)with a dishonestmajority.Apopular approach for the
design of such protocols is to employ preprocessing. Before the inputs are
known, the parties generate correlated secret randomness, which is con-
sumed by a fast and possibly “information-theoretic” online protocol.

A powerful technique for securing such protocols against malicious par-
ties uses homomorphic MACs to authenticate the values produced by the
online protocol. Compared to a baseline protocol, which is only secure
against semi-honest parties, this involves a significant increase in the size
of the correlated randomness, by a factor of up to a statistical security
parameter. Different approaches for partially mitigating this extra stor-
age cost come at the expense of increasing the online communication.

In this work we propose a new technique for protecting MPC with pre-
processing against malicious parties. We show that for circuit evaluation
protocols that satisfy mild security and structural requirements, that are
met by many standard protocols with semi-honest security, the extra addi-
tive storage and online communication costs are both logarithmic in the
circuit size. This applies to Boolean circuits and to arithmetic circuits
over fields or rings, and to both information-theoretic and computationally
secure protocols. Our protocol can be viewed as a sublinear information-
theoretic variant of the celebrated “GMW compiler” that applies to nat-
ural protocols for MPC with preprocessing.

Our compiler makes a novel use of the techniques of Boneh et al. (Crypto
2019) for sublinear distributed zero knowledge, which were previously only
used in the setting of honest-majority MPC.

1 Introduction

Protocols for secure computation [3,14,23,30] enable a set of parties with private
inputs to compute a joint function of their inputs while revealing nothing but
the output. Secure computation protocols provide a general-purpose tool for
computing on sensitive data while eliminating single points of failure, and their

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 457–485, 2021.
https://doi.org/10.1007/978-3-030-84245-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_16

458 E. Boyle et al.

asymptotic and concrete optimization has been the subject of a significant body
of research.

A popular approach for the design of such protocols is to employ preprocess-
ing. Before the inputs are known, the parties generate correlated secret random-
ness, which is consumed by a lightweight and typically “information-theoretic”
online protocol. This model, known also as the offline/online model, is in par-
ticular appealing when no honest majority can be guaranteed, since it allows to
push the heavy “cryptographic” part of the protocol to the offline phase, min-
imizing the cost of the online protocol. It also enables modular analysis, where
security of the online protocol can be treated independently given access to an
idealized “dealer” who delivers the correlated randomness from the offline phase.
The dealer can then be emulated by the parties via a secure preprocessing pro-
tocol for generating the correlated randomness. Alternatively, the dealer can be
directly realized by an external party or by trusted hardware, both of which are
only used before the protocol’s execution.

Originating from the work of Beaver [1], who showed how to use “multi-
plication triples” for secure arithmetic computation with no honest majority,
many protocols for secure computation make extensive use of correlated ran-
domness [4,9,15,16,18–20,25,28]. In particular, a powerful technique for securing
such protocols against malicious parties uses homomorphic MACs to authenti-
cate the values produced by the online protocol [4,19].

Efficiency of MPC protocols with security against malicious parties is typ-
ically measured with respect to the costs of the best known protocols with a
“minimal” level of security, namely security against semi-honest parties, who
act as prescribed by the protocol but try to learn additional information from
messages they receive. In the case of MPC with preprocessing, two primary
efficiency metrics are:

i. overhead to the online communication cost; and
ii. overhead to the correlated randomness consumed by the online protocol.

Indeed, communication and storage costs (as opposed to computation) typically
dominate the online cost of concretely efficient MPC protocols in the preprocess-
ing model. Minimizing both of these measures simultaneously is instrumental for
achieving a fast and scalable online protocol.

However, current MPC with preprocessing protocols exhibit a trade-off
between these two efficiency goals. For the case of evaluating an arithmetic cir-
cuit C with |C| multiplication gates, some protocols [4,15,19,28] succeed to
minimize the online communication cost, but with a large correlated random-
ness overhead of O(|C|) field elements over large fields, or O(|C| ·κ) for Boolean
circuits or circuits over rings of any size, where κ is a statistical security param-
eter. Other protocols [13,20] manage to achieve O(|C|) correlated randomness
size for Boolean circuits (which asymptotically improves the storage cost), but
at the expense of substantially increasing the online communication cost and
relying on algebraic geometric codes that hurt concrete efficiency.

This raises the following question about MPC with preprocessing:

Sublinear GMW-Style Compiler for MPC with Preprocessing 459

Can we achieve malicious security with sublinear (in |C|) additive overhead in
both the online communication and amount of correlated randomness?

Further, can this be done without introducing any new assumption?

1.1 Our Contribution

In this work, we answer the above question in the affirmative. We present a com-
plier from any MPC with preprocessing protocol for arithmetic circuits that sat-
isfies mild security and structural requirements (met by most standard protocols
with semi-honest security), to one achieving standard security against malicious
adversaries, where the extra additive storage and online communication costs are
both logarithmic in the circuit size. This applies to Boolean circuits and to arith-
metic circuits over fields or rings, and to both information-theoretic and compu-
tationally secure protocols. In particular, our compiler introduces no additional
assumptions. Our compiler can be viewed as an information-theoretic variant of
the “GMW compiler” [23] that applies to the setting of MPC with preprocessing.

The compiler requires two properties from the underlying semi-honest secure
protocol. First, the protocol must be secure up to additive attacks. Such a pro-
tocol guarantees not only standard semi-honest security, but further that the
actions of a malicious adversary reduce to the ability to inject additive errors
to the circuit wires (independent of secret values). This notion was formulated
by [21], who showed that many semi-honest protocols that are based on secret
sharing (both in the honest- and the dishonest-majority setting), satisfy this
requirement. This in particular is true for standard semi-honest protocols in the
preprocessing model, which is what interests us in this work.

Our second requirement is a structural robustness property we refer to as
“star-compliance.” We observe that most natural semi-honest protocols with pre-
processing exhibit the following structure. The correlated randomness includes
additive shares of a random mask rw for each wire w within the circuit being
evaluated; then, in the online phase, the parties iteratively compute the masked
wire values (xw −rw).1 Effectively, after an honest execution, each wire value xw

is held in a particular secret-shared form, which can be linearly reconstructed
either by all parties together by adding to (xw −rw) their shares of rw, or by any
individual party together with the dealer who knows rw—thus forming a “star”
structure.

Recall that the dealer is a physical or virtual entity that generates correlated
randomness for the online protocol. One of the ideas of this work, as we will
see later, is that the dealer itself can act as an additional honest party in the
system, with the restriction that its actions must be fully done before the start
of the online phase.

Our main result is summarized by the following theorem, which assumes only
point-to-point communication except for a final broadcast (of one bit) to enable
security with unanimous abort.
1 Note that xw may not be the correct wire value following an additive attack by the

adversary. This is not an issue.

460 E. Boyle et al.

Theorem 1.1 (Sublinear GMW-style compiler, informal). Let C be an
arithmetic circuit of size |C| (counting multiplication gates, inputs and outputs)
over a ring R, where R is either a finite field F or the ring Z2k . Then, every n-
party MPC protocol Π in the preprocessing model that computes C with additive
security and is star-compliant can be compiled into a protocol Π ′ that computes
C with security against malicious parties and the following efficiency features.

– Correlated randomness: Π ′ uses the correlated randomness of Π and
additional O(n · log |C| · κ) elements of R per party for a statistical security
parameter κ;

– Online communication: In addition to the online communication of Π,
each party in Π ′ communicates O(log |C| · κ) elements of R.

Furthermore, if Π has information-theoretic security then so does Π ′.

We use this theorem to derive concretely efficient protocols with malicious
security, by applying our compiler to semi-honest secure protocols based on
multiplication triples [1]. Using circuit-dependent preprocessing (where the cor-
related randomness can depend on the choice of the circuit C), we obtain a
protocol where each party sends (2 − 2

n) elements per multiplication gate, and
the correlated randomness includes |C| + O(n · log |C| · κ) ring elements given to
one of the parties and O(n · log |C| · κ) elements given to the remaining n − 1
parties (in addition to seeds to a pseudorandom generator). Beginning with a
semi-honest protocol with circuit-independent preprocessing (where the corre-
lated randomness depends on the size of C, but not its topology), we obtain a
protocol with the same amount of correlated randomness but with slightly higher
communication, namely, (4 − 4

n) elements per multiplication gate per party.
The (logarithmic size) extra correlated randomness introduced by our com-

piler does depend on the structure of the circuit, and thus the resulting pro-
tocols in both cases are in the circuit-dependent preprocessing model. How-
ever, we address both versions, as the semi-honest portion of the correlated
randomness is a dominating cost that can be generated more efficiently in the
circuit-independent case (including recent techniques for concretely efficient gen-
eration with sublinear communication via pseudorandom correlation generators
(PCGs) [7]).2

Corollary 1.1 (Efficient MPC with preprocessing, informal). Let C be
an arithmetic circuit of size |C| (counting multiplication gates, inputs and out-
puts) over ring R, where R is either a finite field or the ring Z2k . Then there
exist n-party MPC protocols in the preprocessing model with security against
malicious parties and the following efficiency features.

– Correlated randomness: 4 · |C| + O(n · log |C| · κ) R-elements per party,
where κ is a statistical security parameter. Settling for computational security

2 We remark that efficient PCG constructions also exist for more complex correlations,
including circuit-dependent multiplication triples, as well as authenticated multipli-
cation triples [8]; however, these constructions rely on stronger tools and do not
extend effectively beyond the 2-party setting.

Sublinear GMW-Style Compiler for MPC with Preprocessing 461

and making a black-box use of a pseudorandom generator, this can be com-
pressed to |C|+O(n · log |C| ·κ) R-elements to one party and O(n · log |C| ·κ)
to the other n − 1 parties.

– Online communication:
• (2 − 2

n) R-elements per party per gate (circuit-dependent preprocessing);
• (4− 4

n) R-elements per party per gate (circuit-independent preprocessing).

More concretely, the correlated randomness in the above protocols consists
of shared multiplication triples (i.e., additive shares of random a, b ∈ R, and a ·b,
where the shares of random values are directly compressible via black-box use of
a pseudorandom generator), together with additional O(n · log |C| ·κ) R-elements
resulting from our compiler.

Note that our improvement is particularly significant when the computation
is carried out over small fields or rings. For example, for Boolean circuits we are
able to eliminate the O(|C| · κ) additive storage overhead completely, without
increasing online communication as done in previous works.

A PCG-based compression. As noted above, by using a PCG to compress the
multiplication triples we can get the total storage complexity to be sublinear in
|C|. In particular, for secure 2-party computation of Boolean circuits, each triple
can be locally generated using 2 random OT correlations, where the latter can be
efficiently compressed using fast PCGs for OT [6,7,29]. For concretely efficient
PCG-based protocols for n ≥ 3 parties, one can use a PCG for OLE [8] for
arithmetic circuits over big fields or a PCG for OT for Boolean circuits, though
the latter incurs an O(n2) multiplicative overhead to the online communication.

Distributing the dealer. In Sect. 4 we discuss the cost of emulating the dealer
in our protocols by a secure preprocessing protocol involving the parties. Con-
cretely, we show that given the multiplication triples required by the semi-honest
protocol, generating the (sublinear) extra correlated randomness can be done
using roughly 4|C| + 2n|C| secure multiplications.

1.2 Our Techniques

Fully linear proofs. The main technical building block in our compiler is a fully
linear proof system [5], enabling information-theoretic zero-knowledge proofs
with sublinear communication, on secret-shared input statements. In this set-
ting, there is a prover who wishes to prove some statement over an input x to a
verifier. In each round of the protocol, the prover produces a proof which can be
queried by the verifier using linear queries only. Moreover, the verifier is allowed
to also make linear queries to the input x (this is what makes the proof sys-
tem fully linear). The main observation of [5] is that for low-degree languages
(i.e., languages for which membership can be checked using a degree-d polyno-
mial), there exist fully linear proof systems with communication which is only
logarithmic in the size of the input.

462 E. Boyle et al.

A central motivating application of such proof systems is to proofs on input
statements which are distributed or linearly secret-shared between two or more
verifiers. If the prover also shares the proof in the same way, then the parties can
query their shares of the proof and the input, and then reconstruct the answers.
This is particularly useful for achieving malicious security in MPC protocols,
since it allows the parties to prove honest behavior, given the data being shared
across the parties. Indeed, this tool was used by [5,10,11] to compile semi-honest
protocols to malicious security with sublinear communication cost in the honest
majority setting, by observing that the statement to be proven in MPC protocols
can be represented by a low-degree polynomial.

All of these works crucially relies on the fact that in the honest majority
setting, the secret sharing is robust, meaning that the shares held by the honest
parties determine all the other shares. This fact is what prevents the corrupted
parties from cheating in the proof, since even if the prover colludes with some
of the verifiers, they cannot change the answers to the queries without being
caught by the honest verifiers.

Thus, at first glance, it seems that fully linear proof systems cannot be used
in the setting where an honest majority is not guaranteed, without adding some
kind of authentication to all sharings held by the parties during the execu-
tion, thereby increasing significantly the amount of correlated randomness. Our
main observation towards overcoming this challenge is that, in the preprocessing
model, we can view the star-sharing scheme discussed above, as a robust secret
sharing, since any honest party together with the trusted dealer determine the
shares held by the corrupted parties! Leveraging this property, we view the dealer
as one of the verifiers in the fully linear proof.

Our main technical contribution is a novel protocol with sublinear commu-
nication to verify the correctness of a semi-honest computation, which builds
upon the fully linear proof system. In each step of the protocol, we carefully
make sure that each piece of information along the way is robustly shared across
the parties and the dealer using the star-sharing scheme, which is what eventu-
ally guarantees that any cheating will be detected. Finally, we observe that all
messages sent by the dealer during the verification protocol are a function of ran-
dom data, and so we can let the dealer precompute all its messages and commit
to them before the start of the computation. When distributing the role of the
dealer, this amounts to having the parties securely compute the dealer’s mes-
sages, and then output an authenticated secret sharing of each message, which
can be later reconstructed by the parties. The main and final point here is that
the proof size and the public randomness in the verification protocol are both
logarithmic in the size of the computed circuit. This follows directly from the
efficiency features of fully linear proof systems for simple languages [5]. Thus, the
amount of correlated randomness the dealer needs to generate is also logarithmic
in the size of the circuit, thereby achieving our main result.

We believe that our technique is quite broadly applicable and will open the
door to new applications of fully linear proof systems in the dishonest majority
setting, which is something that has not been done prior to this work.

Sublinear GMW-Style Compiler for MPC with Preprocessing 463

1.3 Related Work

A long line of works have used an authenticated variant of Beaver’s protocol [1]
to achieve malicious security [4,15,16,19,26,27], without increasing the online
communication cost beyond that of the semi-honest protocol. These protocols
use authenticated multiplication triples of the form (a·Δ, b·Δ, ab·Δ) for a random
secret Δ. The parties receives additive shares of each value in the authenticated
triple as well as shares of Δ (and of course shares of a, b and c, which are required
for the semi-honest protocol). These are used to authenticate the opening of the
actual values. Over a field F, the cheating probability is 1

|F| . Thus, over a large
field this method doubles the amount of correlated randomness compared to that
of the semi-honest protocol. When working over a small field, the triples should
be produced over a larger field, thus increasing the size of correlated randomness.
The situation is worse for rings, where the cheating probability is 1/2 regardless
of the size of the ring. Naively, this implies an overhead of |C| · κ for some
statistical parameter κ. This is indeed the case for the TinyOT protocol [28] for
Boolean circuits.

However, some improvements were suggested over the years. The MiniMac
protocol [20] (optimized and implemented in [17]) focuses on reducing overall
computation costs for circuits over small fields (including preprocessing corre-
lated randomness size) at the expense of greater online communication. Their
idea is to batch the authentication via linear error-correcting codes (ECC). How-
ever, the ECC being used requires good minimal distance for security within
multiplications of batched vectors. Achieving this requires smaller rate, trans-
lating to greater communication overhead. A recent work by [13] has suggested
an alternative to linear ECC of MiniMAC, via “reverse multiplication friendly
embeddings” for embedding (Fq)k-vector mults into a single Fqk′ field mult.
However, the gap between k and k′ yields overheads. While this construction
reduces the online work, it requires generating extra correlated randomness in
the preprocessing phase. The MiniMac protocol and its followers offer a trade-
off between the amount of correlated randomness and online communication for
computation over Boolean circuits. Their batching ideas remove the κ multi-
plicative factor, but increase the online communication. In any way, both the
correlated randomness and the online cost do not match those of the underlying
semi-honest protocols, which we are able to achieve.

Over a large ring, the SPDZ-2k protocol [15] introduced a way to reduce the
extra correlated randomness, without increasing communication. Specifically,
they require adding κ bits to the size of the authenticated triples instead of
multiplying the size by κ. For large rings, this amounts to doubling the size of
the correlated randomness compared to fields.

Finally, a different approach for 2-party computation was suggested in the
TinyTable protocol [18], based on generating a permuted version of its truth
table. The overhead of this protocol is O(|C|) for both communication and the
correlated randomness.

As can be seen from the above, we are the first to achieve sublinear overhead
for both the communication cost and the amount of correlated randomness.

464 E. Boyle et al.

2 Preliminaries

Notation. Let P1, . . . , Pn be the parties participating in the protocol. We use [n]
to denote the set {1, . . . , n}. Let R be a ring which is either a finite field F or
the ring Z2k and let |R| be its size. Finally, let κ be the security parameter.

2.1 MPC with Preprocessing

In our setting, there is a set of n parties who wish to jointly run some com-
putation. We assume that all parties are connected via point-to-point channels,
which enable them to send private messages to each other.

We begin with defining the meaning of an n-party protocol to compute any
functionality in the preprocessing model.

Definition 2.1 (MPC with preprocessing). Let F be a family on n-party
functionalities and let f ∈ F be a function description. A protocol Π to com-
pute F consists of the PPT algorithm NextMsg, which given (1κ, f, j, i, xi, ri,m)
outputs a vector of messages sent by Pi in round j, based on its input xi, ran-
domness ri and vector m of messages sent to Pi in previous rounds. If the output
of NextMsg to Pi is of the form (out, y), then Pi outputs y and halts.

We say that Π is a protocol with function-dependent preprocessing, if in
addition to NextMsg, it consists of a PPT algorithm D (called “the dealer”),
which receives 1κ and f as an input, and outputs correlated random strings
r1, . . . , rn. We say that Π is a protocol with function-independent preprocessing,
if D receives only a bound 1S on the size of f as an input instead of f .

A protocol π = (NextMsg,D) computes any arithmetic circuit, when F is the
class of arithmetic circuits and f is a description of a ring R and a circuit C
over R, with the size S being a description of the ring and the number of output
wires and multiplication gates in C.

To define what it means to securely compute a functionality, we follow the
standard ideal-world vs. real-world paradigm of MPC [12,22]. Let A be an adver-
sary who chooses a set of parties before the beginning of the execution and cor-
rupts them. There are two main types of adversaries which are usually considered
in the literature. A semi-honest adversary follow the protocol instructions, but
sees the input and randomness of the corrupted parties, and all the messages
they receive in the execution. A malicious adversary can also choose the mes-
sages sent by the corrupted parties. We assume that the adversary is rushing,
meaning that it first receives the messages sent by the honest parties in each
round, and only then determines the corrupted parties’ messages in this round.

To formally define security, let realΠ,A,T (1κ, f,v) be a random variable that
consists of the view of the adversary A controlling a set of parties T , and the
honest parties’ outputs, following an execution of Π over a vector of inputs v to
compute f with security parameter κ. Similarly, we define an ideal-world execu-
tion with an ideal-world adversary S, where S and the honest parties interact
with a trusted party who computes f for them. We consider secure computation

Sublinear GMW-Style Compiler for MPC with Preprocessing 465

with selective abort, meaning that S is allowed to send the trusted party com-
puting f a special command abort. Specifically, S can send an abort command
instead of handing the corrupted parties’ inputs to the trusted party (causing all
parties to abort the execution), or, hand the inputs and then, after receiving the
corrupted parties’ outputs from the trusted party, send abortj for an honest party
Pj , preventing it from receiving its outputs3. We denote by idealF,S,T (1κ, f,v),
the random variable that consists of the output of S’s and the honest parties in
an ideal execution to compute f , over a vector of inputs v, where S controls a
set of parties T . The security definition states that a protocol Π securely com-
putes f with statistical error ε, if for every real-world adversary there exists an
ideal-world adversary, such that the statistical distance between the two random
variables is less than ε.

Definition 2.2 (Statistically-secure MPC with preprocessing). Let F be
a family of n-party functionalities and ε = ε(κ, f) be a statistical error bound.
We say that a protocol Π = (NextMsg,D) ε-securely computes F with abort in
the preprocessing model, if for every real-world malicious adversary A controlling
a set of parties T with |T | ≤ n− 1, there exists an ideal-world adversary S, such
that for every f ∈ F , every κ and every vector of inputs v it holds that

SD (realΠ,A,T (f,v), idealF,S,T (f,v)) ≤ ε

where SD(X,Y) is the statistical distance between X and Y .

Secure computation of circuits with additive attacks [21]. In this work,
our protocol computes arithmetic circuits, which are defined in a natural way,
using addition and multiplication gates. We next define a weaker notion of secu-
rity for computing arithmetic circuits, called “security-up-to-additive-attack”,
which was introduced by Genkin et al. [21]. In this model, we also allow the
ideal-world adversary S to add an error to the value on some of the wires of the
circuit. Specifically, we allow additive attacks on input wires to multiplication
gates and on the circuit’s output wires. The trusted party then determines the
output of the honest parties by computing the circuit over the parties’ inputs
and the additive errors. We denote by idealadd

F,S,T (1κ, C,v) the random variable
consists of S’s and honest parties’ outputs in such an execution. Given this new
model of ideal-world execution, security is defined similarly to Definition 2.2.

Definition 2.3 (Secure MPC with additive security). Let F be the class of
n-party functionalities represented by an arithmetic circuit C and let ε = ε(κ,C)
be a statistical error bound. We say that a protocol Π = (NextMsg,D) ε-
securely computes F with abort and with additive security, in the pre-processing
model, if for every real-world malicious adversary A controlling a set of par-
ties T with |T | ≤ n − 1, there exists an ideal-world adversary S, such that
for every circuit C ∈ F , every κ, and every vector of inputs v it holds that
SD

(
realΠ,A,T (1κ, C,v), idealadd

F,S,T (1κ, C,v)
) ≤ ε.

3 It easy to modify our protocol so that the honest parties unanimously abort by
running a single Byzantine agreement at the end of the protocol. For simplicity, we
omit the details from the description of our protocols.

466 E. Boyle et al.

The Hybrid Model. We use the hybrid model to prove security of our proto-
cols. In this model, the parties run a protocol with real messages and also have
access to a trusted party computing a subfunctionality for them. The modular
sequential composition theorem of [12] states that it is possible to replace the
trusted party computing the subfunctionality with a real secure protocol com-
puting the subfunctionality. When the subfunctionality is g, we say that the
protocol works in the g-hybrid model.

Instantiations. Many standard semi-honest protocols in the preprocessing
model used in the literature are in fact, or can easily be converted into being
additively-secure. Most notably, a semi-honest protocol which uses the well-
known Beaver’s method [1] to compute multiplication gates via random triples
satisfies this definition. For completeness, in Appendix A.1 we present the ver-
sion of this method which relies on circuit-dependent preprocessing (due to [9]
and [2]), and in Appendix A.1, the standard circuit-independent version.

2.2 Fully Linear Proof Systems

A main technical building block in our protocols is a fully linear proof system [5],
enabling information-theoretic sublinear-communication zero-knowledge proofs
on secret-shared input statements. More concretely, we can use any (public-
coin) zero-knowledge fully linear interactive oracle proof (zk-FLIOP), as defined
in Definition 2.4. In a nutshell, a zk-FLIOP is an information-theoretic proof
system in which a prover P wishes to prove that some statement about an input
x to a verifier V . In each round of the protocol, P produces a proof which,
together with x, can be queried by V using linear queries only. Then, a public
random challenge is generated and the parties proceed to the next round. At
the end, the verifier V accepts or rejects based on the answers it received to its
queries.

Definition 2.4 (Public-coin zk-FLIOP [5]). A public-coin fully linear inter-
active proof system over R with ρ-round and �-query and message length
(u1, . . . , uρ) ∈ N

t, consists of a randomized prover algorithm P and a deter-
ministic verifier algorithm V . Let the input to P be x ∈ Rm and let r0 = ⊥. In
each round i ∈ [ρ]:

1. P outputs a proof πi ∈ Ru1 , computed as a function of x, r1, . . . , ri−1 and
π1, . . . , πi−1.

2. A random public challenge ri is chosen uniformly from a finite set Si.
3. � linear oracle queries qi

1, . . . , q
i
� ∈ Rm+ui are determined based on r1, . . . , ri.

Then, V receives � answers (〈qi
1, x||πi〉, . . . , 〈qi

�, x||πi〉).
At the end of round ρ, V outputs accept or reject based on the random challenges
and all the answers to the queries.

Let L ⊆ Rm be an efficiently recognizable language. We say that ρ-round �-
query interactive fully linear protocol (PFLIOP,VFLIOP) over R is zero-knowledge
fully linear interactive oracle proof system for L with soundness error ε if it
satisfies the following properties:

Sublinear GMW-Style Compiler for MPC with Preprocessing 467

– Completeness: If x ∈ L, then VFLIOP always outputs accept
– Soundness: If x /∈ L , then for all P∗, the probability that VFLIOP outputs

accept is at most 2−ε.
– Zero-knowledge: There exists a simulator SFLIOP such that for all x ∈ L

it holds that SFLIOP ≡ view[PFLIOP(x),VFLIOP](VFLIOP) (where the verifier’s view
view[PFLIOP(x),VFLIOP](VFLIOP) consists of {ri}i∈[ρ] and {(qi

1, . . . , q
i
�)}i∈[ρ]).

In this paper, we will use this tool for degree-d languages. That is, languages
for which membership can be checked using a degree-d polynomial. The following
theorem, which will be used by us, states that for degree-d languages, there are
zk-FLIOP protocols with sublinear communication and rounds in the size of the
input and number of monomials.

Theorem 2.1 ([5]). Let q : Rm → R be a polynomial of degree-d with M mono-
mials, and let Lq = {x ∈ Rm | q(x) = 0}. Let ε be the required soudness error.
Then, there is a zk-FLIOP for Lq with the following properties:

– Constant rounds, d = 2: It has 1 round, proof length O(η
√

m), challenge
length O(η) and the number of queries is O(

√
m), where η = log|R|

(√
m
ε

)

when R is a finite field, and η = log2
(√

m
ε

)
when R = Z2k . The computa-

tional complexity is Õ(M).
– Logarithmic rounds, d ≥ 2: It has O(log M) rounds, proof length

O(dη log M), challenge length O(η log M)and the number of queries is O(d +
log M), where η = log|R|

(
d log m

ε

)
when R is a finite field, and η =

log2
(

d log m
ε

)
when R = Z2k . The computational complexity is O(dM).

2.3 Ideal Functionalities

We now describe two ideal functionalities that will be used in our construction.
We stress that both of them are called sublinear number of times (in the size of
the computed circuit), and so any way to implement them will suffice.

Honest dealer commitment with selective abort. We denote by F dealer
com an ideal

functionality which allows an honest dealer to commit to a value which is revealed
to parties at a later stage. Upon receiving a secret from the dealer, the function-
ality F dealer

com stores it. Then, upon receiving a request from the honest parties to
reveal it to parties in a set J , it lets the adversary decide for each party in J ,
whether to send each party Pj in J the secret or the command abortj .

468 E. Boyle et al.

To implement it with information-theoretic security we can use information-
theoretic MACs as in [4,19]. Specifically, each party will hold an additive sharing
of the secret x, and in addition, will hold an additive sharing of a information-
theoretic MAC over x computed with each party’s key. Then, when opening the
secret towards a party Pi, all parties send it their additive shares of x and their
additive shares of the MAC computed using Pi’s key. Since Pi knows its own
key, it can use it to check the correctness of x. If any party tries to cheat, then
over a field F, it will succeed without being caught with probability of 1

|F| . Over
a small field or a ring, we can have the MAC over an extension field or ring, to
achieve a sufficiently small error.

Broadcast with selective abort. Throughout the paper, when we say that a party
broadcasts x to the other parties, it means that it uses an ideal functional-
ity Fbc which allows sending a message to all parties, while, as before, giving the
adversary the ability to cause any party to abort. This can be implemented by
having each party sending x to all other parties and then having all parties echo-
broadcast the message they received to the other parties. It is possible to batch
the second-round check for many messages together, by taking a random linear
combination of all received messages. The random coefficients can be derived
from a single random element r, by taking r, r2 . . . and so on. If the parties
check m messages together, then the random linear combination yields a poly-
nomial of degree m, which is evaluated on a random point r. Thus, the cheating
probability in this case when working over a field F is, by the Schwartz-Zippel
Lemma, m

|F| . As before, to obtain a sufficiently small error over small fields or
over rings, this check should be run over a suitable extension field or ring.

3 The General Framework

In this section, we present a protocol to compute any arithmetic circuit with
malicious security and dishonest majority. Our protocol works by first computing
the circuit using a secure-up-to-additive-attack protocol, and then running a light
verification step, where the parties verify the correctness of the computation
and abort if cheating was detected. Our protocol is statistically secure in the
preprocessing model, i.e., it relies on a trusted dealer D which provides correlated
randomness to the parties. We will discuss how to securely distribute the dealer
in the next section.

Before proceeding, we define an additional property that will be required
from our protocol. Specifically, we require the parties to maintain an invariant
over wires which we call “star-sharing”.

Definition 3.1 (Star-sharing). We say that x ∈ R is star-shared across a set
of parties P = {P1, . . . , Pn} and a trusted dealer D, if there exists x̂, (r1, . . . , rn),
such that each party Pi holds the pair (x̂, ri), where x̂ = x − r, r =

∑n
i=1 ri, and

D holds {ri}n
i=1.

Sublinear GMW-Style Compiler for MPC with Preprocessing 469

The main feature of this sharing scheme is that it is robust, in the sense that
an honest party and the dealer alone determine all the other values, and in par-
ticular the values held by the corrupted parties. In addition, as we will see later,
given star-sharing of x and star-sharing of y, this scheme allows local conversion
to an additive sharing of x · y. These two features will play an important role in
our constructions.

We next define what it means for a protocol to be “star-sharing compliant”.

Definition 3.2 (Star-sharing compliance). Let Π = (NextMsg,D) be a pro-
tocol with preprocessing to compute any arithmetic circuit C, and let W denote
the set of output wires and input wires to multiplication gates in C. We say that
Π is star sharing compliant if the following holds: if all parties follow the proto-
col’s instructions, then the parties hold a star-sharing of the value on each wire
w ∈ W .

Note that if a protocol is both secure-up-to-additive-attack and star-sharing
compliant, then it implies that the parties hold on each wire w ∈ W a star-
sharing of either the correct value or of a different value determined by the
adversary’s additive attack.

3.1 Verifying Correctness via zk-FLIOP

In this section, we present our protocol to verify the correctness of the values
the parties hold on the circuit’s wires. Recall that we allow the adversary to
add errors to wires of the circuit. The protocol we describe in this section aims
to detect such cheating. Let W be the set of the circuit’s output wires and
multiplication gates’ input wires. For each wire w ∈ W , the parties need to verify
that they hold a sharing of the correct value on w, given the sharings they hold on
wires that feed w. Specifically, let Gw be the set of multiplication gates that feed
w (i.e., that between their output wire and w there are no other multiplication
gates). For each g ∈ Gw, let xg

1, x
g
2 be the two input wires to g. The parties wish

thus to verify for each w ∈ W that φ(xw, {xg
1, x

g
2}g∈Gw

) = xw −∑
g∈Gw

xg
1 ·xg

2 =
0. Recall that the parties hold x̂w = xw − rw, x̂g

1 = xg
1 − rg

1 , x̂g
2 = xg

2 − rg
2 on

each wire, as well as additive shares rw,i, rg
1,i and rg

2,i for each party Pi. The
trusted dealer D knows the additive shares of all parties and so knows the mask
on each wire. Now, in the protocol, instead of checking equality to 0 for each
equation separately, the parties will batch all the checks together, by taking a
random linear combination of all φ(xw, {xg

1, x
g
2}g∈Gw

) for each w ∈ W . That is,
the parties will check that

p(W) =
∑

w∈W

αw · φ (xw, {xg
1, x

g
2}g∈Gw

) = 0.

Next, for each multiplication gate g�, let W g� be the set of wires w for which
g� ∈ Gw (i.e., that g�’s output feed these wires). Then, let γ� =

∑

w∈W g�

αw.

470 E. Boyle et al.

Letting mult be the set of all multiplication gates, we can thus write

p(W) =
∑

w∈W

αw · xw −
∑

g�∈mult

γ� · (xg�

1 · xg�

2)

=
∑

w∈W

αw · (x̂w + rw) −
∑

g�∈mult

γ� · ((x̂g�

1 + rg�

1) · (x̂g�

2 + rg�

2))

=
∑

w∈W

αw · x̂w +
∑

w∈W

αw · rw −
∑

g�∈mult

γ� · (x̂g�

1 · x̂g�

2)

−
∑

g�∈mult

γ� · (x̂g�

1 · rg�

2 + x̂g�

2 · rg�

1) +
∑

g�∈mult

γ� · (rg�

1 · rg�

2)

Now, letting

Λ =
∑

w∈W

αw · x̂w −
∑

g�∈mult

γ� · (x̂g�

1 · x̂g�

2),

Γi =
∑

g�∈mult

γ� · (x̂g�

1 · rg�

2,i + x̂g�

2 · rg�

1,i) (1)

and
Ω =

∑

w∈W

αw · rw +
∑

g�∈mult

γ� · (rg�

1 · rg�

2)

we have that checking that p(W) = 0 is equivalent to checking that

Λ −
n∑

i=1

Γi + Ω = 0.

Observe that the parties can locally compute Λ, each party can locally compute
Γi and the dealer can locally compute Ω. In our protocol, we will ask each Pi to
compute Γi and share it to the other parties via our robust star-sharing scheme.
This can be done by having the trusted dealer hand a random string si to Pi ,
which then broadcasts Γ̂i = Γi − si to the parties. Similarly, the trusted dealer
can compute Ω and share it to the parties. Since now Γi for each i ∈ [n] and
Ω are shared in a robust way across the parties, and Λ is known, the parties
can locally compute a robust secret sharing of p(W), open it by unmasking the
secret with the help of the dealer, and check equality to 0. The only remaining
problem is that a corrupt Pi may have cheated and share an incorrect Γi. Here
is where the zk-FLIOP machinery becomes useful. Define the vector of inputs
y ∈ F

|W |+4|mult|+2 as:

y = (y1, . . . , y4|mult|+2)

=
(
Γ̂i, si,

{
(γ� · x̂g�

1), rg�

2,i, (γ� · x̂g�

2), rg�

1,i

}
g�∈mult

)
(2)

and consider the 2-degree polynomial c defined by

c(y) = y1 + y2 +
|mult|∑

k=1

(
y[4(k−1)+|W |+3] · y[4(k−1)+|W |+4]

+ y[4(k−1)+|W |+5] · y[4(k−1)+|W |+6]

)
.

Sublinear GMW-Style Compiler for MPC with Preprocessing 471

This polynomial checks that each party star-shared Γi correctly, by verifying
that Eq. (1) holds. By Theorem 2.1, there exists a zk-FLIOP for proving the
satisfiability of this polynomial with sublinear proof size. We thus let each party
Pi prove that it shared the correct value, by proving that the output of the
polynomial is 0. In particular, party Pi emulates the role of the prover in the
zk-FLIOP protocol, whereas the other parties emulate together the role of the
verifier. A crucial point that we rely upon in the protocol, is that each input to
the circuit is known by either all parties or by Pi and the dealer. In addition,
in the zk-FLIOP protocol, we ask the prover to star-share the proof that it
generates in each step. This implies that each piece of information (inputs or the
proof) is known by an honest participant (i.e., an honest party or the trusted
dealer). This fact is what helps us to prevent a cheating prover from convincing
the other parties that a false statement is correct. From the side of the verifiers,
holding their star-shares of both the proof and the input, they can make the zk-
FLIOP queries over their shares. Observe that here we crucially rely on the fact
that in zk-FLIOP, all the queries are linear, and so querying the star-shares of
the proof or the input, will yield a star-sharing of the answer. Then, the answers
are revealed by having the trusted dealer send its star-share of the answers (these
shares are eventually a random mask of the answer). Privacy is maintained in this
process, since the parties see in each round, a masked proof which looks random,
and answers to the linear queries, which by the zero-knowledge property of the
zk-FLIOP, leak no information on the inputs and can be simulated. Formally, our
protocol works as follows (we describe the protocol for finite fields and explain
how to extend it to rings later):

Πvrfy: Let (PFLIOP,VFLIOP) be a zk-FLIOP protocol with ρ rounds, �-queries per
round and message length u1, . . . , uρ ∈ N.

1. The trusted dealer D:
(a) For each i ∈ [n], it chooses a random si ∈ F and hands it to Pi.
(b) chooses a random seed α ∈ F and hands in to the parties.
(c) For each j ∈ [ρ] and i ∈ [n], it chooses a random tij ∈ F

uj and hands it to
Pi.

(d) computes Ω (after expanding all αw from α), chooses a random μ ∈ F

and then hand Ω̂ = Ω − μ to the parties.
2. The parties set for each w ∈ W : αw = αw (or use α as a seed to a PRG).
3. Each party Pi locally compute Λ and Γi. Then, each Pi broadcasts Γ̂i = Γi−si

to the other parties.
4. For each i ∈ [n], party Pi proves that Γi was computed correctly:

Let yi be the vector of inputs for the proof of Pi (as defined in Eq. (2)). Let
yP

i a vector of elements generated by replacing all elements in yi which are
not known to all parties by 0, and let yD

i be a vector of elements generated
by replacing all elements in yi not known to D by 0. Note that yi = yP

i +yD
i .

(a) For each round j of the zk-FLIOP:
i. If j = 1, party Pi lets πi

j = PFLIOP(yi,⊥). Otherwise, it lets πi
j =

PFLIOP(yi, π
i
j−1, r

i
j−1).

ii. Pi broadcasts π̂i
j = πi

j − tij to the other parties.

472 E. Boyle et al.

iii. The dealer D chooses a random challenge ri
j and hands it to the

parties.
iv. The parties and the dealer let qi

j,1, . . . , q
i
j,� be the query vector deter-

mined by VFLIOP based on ri
j . Then, the parties compute the answers

âi
j,1, . . . , â

i
j,� ← 〈qi

j,1,y
P
i ||π̂i

j〉, . . . , 〈qi
j,�,y

P
i ||π̂i

j〉.

Similarly, D computes his answers

ãi
j,1, . . . , ã

i
j,� ← 〈qi

j,1,y
D
i ||tij〉, . . . , 〈qi

j,�,y
D
i ||tij〉.

v. The Dealer D sends ãi
j,1, . . . , ã

i
j,� to the parties, who then compute

ai
j,1, . . . , a

i
j,� ← âi

j,1 + ãi
j,1, . . . , â

i
j,� + ãi

j,�.

(b) The parties run the decision predicate of VFLIOP on all the queries’ answers
they received. If any party received reject, then it outputs reject. Other-
wise, the parties proceed to the next step.

5. The parties locally compute p̂(W) = Λ − ∑n
i=1 Γ̂i + Ω̂. Then, the dealer D

hands s = −∑n
i=1 si + μ to the parties.

6. The parties locally compute p(W) = p̂(W) + s. If p(W) = 0, then the parties
output accept. Otherwise, they output reject.

Proposition 3.1. Let εw be additive error on each wire w ∈ W (where W is the
set of all output wires and inputs to multiplication gates), and let (PFLIOP,VFLIOP)
be a ρ-rounds, �-queries and ε-soundness error zk-FLIOP protocol. Then, Πvrfy

satisfies the following properties:

1. Correctness: If ∀w ∈ W : εw = 0 and all parties follow the protocol’s
instructions, then the honest parties always output accept.

2. Soundness: If ∃w ∈ W : εw �= 0, then the honest parties output accept with
probability of at most |W |

|F| + ε.
3. Privacy: For every adversary A controlling a subset T of size ≤ n−1, there

exists a simulator S, who receives {εw, x̂w, {rw,i}i∈T }w∈W as an input, and
outputs a transcript viewS , such that viewS ≡ view

πvrfy

A .

Proof: Correctness. It is easy to see from the description of the protocol,
that if no additive errors were introduced and all parties acted honestly in the
protocol, then p(W) = 0. It remains to show that the parties will output accept
in the zk-FLIOP protocol. Given a proof πi

j , it holds that πi
j = π̂i

j + tij . Then,
when the parties compute the answers to the linear queries, we have ∀l ∈ [�] :

ai
j,l = âi

j,l + ãi
j,l = 〈qi

j,l,y
P
i ||(πi

j − tij)〉 + 〈qi
j,l,y

D
i ||tij〉 = 〈qi

j,l,yi||πi
j〉

and so by the completeness of the zk-FLIOP protocol, they will hold the correct
answer and output accept.

Sublinear GMW-Style Compiler for MPC with Preprocessing 473

Soundness. If ∃w ∈ W : εw �= 0, then the parties will output accept if p(W) = 0.
This can happen if one of two events occur: (i) the random linear combination
yield 0. since αw = αw for a random α, we have that p(W) =

∑
w∈W αw · εw =∑

w∈W αw · εw and so, fixing all εw, this is a polynomial of degree |W | evaluated
on a random point α. Thus, by the Schwartz-Zippel lemma, p(W) = 0 with
probability |W |

|F| . (ii) the parties output accept in the zk-FLIOP, even though a
corrupted party Pi shared an incorrect Γi. By the soundness property of the
zk-FLIOP protocol, this can happen with probability of at most ε. Hence, by
the union bound, the overall cheating probability is |W |

|F| + ε.

Privacy. We construct a simulator S for our protocol and show that the view
it generates is distributed identically to the adversary A’s view in a real exe-
cution. The simulator S receives {εw, x̂w, {rw,i}i∈T }w∈W as an input, and then
interacts with A playing the role of the honest parties and the trusted dealer D.
In particular, S works as follows:

1. Playing the role of D, it hands A a random si for each i ∈ T , a random seed α
and a random tij for each i ∈ T and j ∈ [ρ]. In addition, S chooses a random
Ω̂ and hands it to A.

2. For each honest party Pi, it chooses a random Γ̂i and hands it to A.
3. S computes all αw and then, knowing all the corrupted parties’ inputs, it

computes Γi for each corrupted party Pi. In addition, knowing all x̂w, it
computs Λ.

4. Upon receiving from A all {Γ̂i}ı∈T , the simulator S computes for each i ∈ T ,
Γ ′

i = Γ̂i + si.
5. Simulating the zk-FLIOP execution:

– The prover Pi is honest: In each round j ∈ [ρ], S chooses a random π̂i
j and

sends it to A. Then, playing the role of D, it hands a random challenge
ri
j to A. To simulate the opening of the query answers, S run SFLIOP

to receive ai
j,1, . . . , a

i
j,�. Then, for each l ∈ [�], it computes âi

j,l (since it
knows all the corrupted parties’ inputs and so all the values in yP

i) and
then sets ãi

j,l = ai
j,l − âi

j,l and hands the answers to A.
– The prover Pi is corrupted: In this case, S simply plays the role of the

honest parties acting as verifiers in this proof, and the role of D. Since it
knows the corrupted parties’ inputs, it knows the verifiers’ inputs to this
proof, and so it can perfectly simulate this execution.

6. S computes p(W) =
∑

w∈W

αw · εw +
∑

i∈T

(Γ ′
i − Γi) and p̂(W) = Λ −

n∑

i=1

Γ̂i + Ω̂.

Then it sets s = p(W) − p̂(W) and hands it to A.

Observe that the view of A in a real execution consists of three types of values:(i)
masked data which is distributed uniformly over F; (ii) the answers to the zk-
FLIOP linear queries; (iii) and the value of p(W) which is determined by A
(since it chooses the additive errors). In the simulation, values of type (i) are
chosen uniformly from F and so are distributed the same as in the real execution.
Type (ii) of data is distributed the same by the ZK property of the zk-FLIOP.

474 E. Boyle et al.

Finally, since S knows all the inputs held by A and the additive errors, it can
compute the actual value of p(W) and so perfectly simulate the opening of
this value. We conclude that the view generated by the simulation is identically
distributed to the view in the real execution. This concludes the proof.

Working over small fields. The soundness error of our protocol depends on
the size of the field F. When we compute the circuit over small fields, it is possible
to run Πvrfy over an extension field to reduce the error. This is carried-out by
lifting each input to the verification protocol into the extension field. Suppose
that we want the error to be 2−ε. Then, one can choose an extension field F̃ such
that |W |

|F̃| + ε1 ≤ 2−ε, where ε1 is the soundness error of the zk-FLOIP protocol

over F̃.

Working over the ring Z2k . When the circuit is computed over the ring Z2k ,
then by Theorem 2.1, we still have a zk-FLIOP with sublinear cost. However, the
probability that p(W) = 0 when the random coefficients taken as r, r2, . . . , r|W |

and so p is a polynomial of degree |W | evaluated on a random point r, is constant
regardless of the size of the ring. Nevertheless, since the cost of our verification
protocol is small, we can afford an “expensive” solution here, and run Πvrfy over
the extension ring Z2k [x]/f(x), i.e., the ring of polynomials with coefficients from
Z2k modulo a polynomial f(x) which is of the right degree and is irreducible over
Z2. As shown in [5,10], taking f of degree d, the number of roots of a polynomial
of degree δ over Z2k [x]/f(x) is at most 2(k−1)dδ + 1. Thus, the probability that
p(W) = 0 when r is chosen at random, is at most 2(k−1)d|W |+1

2kd ≈ |W |
2d . Hence, by

choosing d appropriately, we can achieve a desired soundness error.

From an active dealer to an offline dealer. In the above description we
treated the dealer as an active participant in the computation. Note however,
that all the operations carried-out by the dealer in our protocol, can be done
offline before the start of the computation, because they depend only on random
data. These include operations over randomness it chooses for the execution of
Πvrfy, and operations over the prover’s random shares of the masks, which were
chosen by the dealer.

Now, there are two types of randomness that the dealer provides in the
execution:

Type I: randomness given to a single party. This type of randomness can be
handed to the intended party before the beginning of the execution. This
includes: (i) random masks si ∈ R and {tij}j∈[ρ] where tij ∈ Ruj , given to each
party Pi.

Type II: randomness given to all parties during the protocol. For each random-
ness of this type, the dealer can precompute it and send it to F dealer

com before
the beginning of the computation. Then, whenever the parties reach the point
where the randomness needs to be revealed, they can send a reveal command
to F dealer

com . This includes: (ii) a random seed α ∈ R given to all parties; (iii)

Sublinear GMW-Style Compiler for MPC with Preprocessing 475

Ω̂ =
∑

w∈W αw · rw +
∑

g�∈mult γ� · (rg�

1 · rg�

2) − ν given to all parties, where each
αw and γ� is expanded from α and ν ∈ R is random; (iv) a challenge ri

j ∈ R for
each i ∈ [n] and j ∈ [ρ]; (v) the queries’ answers ãi

j,1, . . . , ã
i
j,�, for each j ∈ [ρ]

and i ∈ [n] (which are computed over the random challenges and prover’s inputs
which are known to the dealer); and (vi) the random mask s.

Summing the above and given that the extension degree used in the verifica-
tion protocol is d, then the amount of correlated randomness is

⎛

⎝3 + n ·
⎛

⎝
ρ∑

j=1

uj + ρ(1 + �)

⎞

⎠

⎞

⎠ · d ring elements.

The main observation is that the amount of correlated randomness is loga-
rithmic in the size of the input to the verification subprotocol, i.e., logarithmic
in |W |. This holds since by Theorem 2.1, there exists a zk-FLIOP protocol,
where the proof,

∑ρ
j=1 uj , the number of rounds ρ and the number of queries

� · ρ are all of size log(M), with M being the number of distinct monomials in
the polynomial for which the proof takes place. As can be seen from Eq. (1), in
our case, M equals to 2|mult|. It follows that the amount of required correlated
randomness is O(n · log |mult| · d).

Communication cost. The interaction in Πvrfy consists of having each party
sending the proof to the other parties in each round, and interaction with F dealer

com

to reveal the public randomness. Thus, the overall cost is (n·∑ρ
j=1 uj)·d+(3+n·

(ρ+ρ ·�)) ·d ·F dealer
com ring elements, which by Theorem 2.1, for the same reasoning

explained above for the correlated randomness, is of size O(n · log |mult| · d)

Computation cost. In Πvrfy, each party Pi first computes αw = αw for each
w ∈ W and Λ and Γi. Each of these computations consists of O(|W |) local
multiplication operation. Then, the parties run the zk-FLIOP protocol to prove
the correctness of Γi for each i ∈ [n], where by Theorem 2.1, the computational
complexity is O(M), which means, as explained above, that the computation
complexity is O(n · |W |).

Summing the above, we obtain:

Proposition 3.2. Let ε be a statistical error bound. Then, Protocol Πvrfy has
communication cost O(log |mult| · κ) per party, computational cost O(n · |W |)
per party and the amount of correlated randomness required from the dealer is
O(n · log |mult| · κ) per party, where κ = log|F|

(
|W |

ε

)
when R is finite field, and

κ = log2
(

|W |
ε

)
when R = Z2k (where W is the set of output wires and input

wires to multiplication gate in the verified circuit).

Concrete instantiation for the zk-FLIOP. Based on the general construc-
tions from [5], we describe a concrete protocol in the full version for implementing
the zk-FLIOP protocol in our setting with the following parameters:

– ρ = log(2|mult|) − 1

476 E. Boyle et al.

– uj = 3 for j ∈ [ρ − 1] and uρ = 8
– � = 1

Furthermore, we show how to optimize the protocol such that the number of
queries becomes constant instead of logarithmic. The concrete costs of the real-
ization we obtain are:

– communication cost: 3(log(2|mult|) − 1) + 8 elements broadcasted by the
prover.

– Correlated randomness: the dealer needs to provide 5(log(2|mult|) − 1) + 9
elements.

– Computation: each party performs approximately 2|mult| local operations.

3.2 The Main Protocol

We are now ready to present the main protocol to compute any arithmetic
circuits with malicious security. Informally, Our protocol takes any secure-up-
to-additive attack and star-sharing compliant protocol, and compile it into mali-
cious security, by adding a verification step, where the parties run the proto-
col Πvrfy from Sect. 3.1. Formally:

ΠMPC: Let C be the circuit to compute, defined over a ring R, let W be the
set of C’s output wires and input to multiplication gates and let ε be a desired
statistical security bound. Let Πadd

mpc be a protocol to compute C which is secure-
up-to-additive-attack with star-sharing compliance. Let R̃ be an extension ring
of R defined as:

– If R is a finite field F, then set R̃ = F
κ, such that κ is the smallest number

for which |W |
|Fκ| ≤ ε/2.

– If R = Z2k , then set R̃ = Z2k [x]/f(x) where f is a polynomial of degree κ
which is irreducible over Z2, such that κ is the smallest number for which
|W |
|2κ| ≤ ε/2.

– Preprocessing: The dealer D hands the parties the following correlated
randomness:

• For input wire k held by party Pi, it hands a random mask sk
i ∈ R to Pi

and a random sk
i,j to Pj such that sk

i =
∑n

j=1 sk
i,j .

• It hands the parties the correlated randomness required by Πadd
mpc. This

includes a random rw,i for each party Pi and wire w.
• It hands the parties the correlated randomness required by Πvrfy as defined

is Sect. 3.1 over R̃.
• For each output wire w, it sends the random mask rw of this wire to

F dealer
com .

– The online protocol:
• Sharing the inputs: For each wire k, with input vk

i held by Pi, it
broadcasts v̂k

i = vk
i − sk

i to the other parties.

Sublinear GMW-Style Compiler for MPC with Preprocessing 477

• Circuit emulation: The parties compute the circuit C gate-by-gate in
some predetermined topological order, by running Πadd

mpc, using the corre-
lated randomness received from the dealer, up to and not including the
output reconstruction step.

• Verification step: Let (x̂w, rw,i) be the pair held by each party Pi on
each wire w ∈ W . The parties lift

(
x̂w, {rw,i}i∈[n]

)
w∈W

into R̃. Then,
they run Πvrfy with a zk-FLIOP protocol with soundness error ε/2 on the
lifted values and on the correlated randomness received from the dealer.
If any party outputs reject, then it sends abort to the other parties and
aborts the protocol. Otherwise, the parties proceed to the next step.

• Output reconstruction: For each output wire w, with output
intended to party Pi, let x̂w be the value held by the parties on this
wire. Then, the parties send (w, i) to F dealer

com , who sends rw to Pi. Finally,
party Pi sets xw = x̂w + rw as its output.

We thus obtain the following proposition:

Proposition 3.3. Let f be a n-party functionality represented by an arithmetic
circuit C over a ring R and let ε be a statistical security bound. Then, if Πadd

mpc is
star-sharing compliant and securely computes f with additive security as defined
in Definition 2.3, and (PFLIOP,VFLIOP) is public-coin zk-FLIOP as defined in
Definition 2.4, then ΠMPC (ε)-securely computes f in the F dealer

com -hybrid model
with abort in the preprocessing model.

Proof: We describe a simulator S for our protocol. In the simulation, S plays the
role of the honest parties and the dealer D when interacting with the real-world
adversary A, who controls a set of parties T with |T | ≤ n − 1. The simulator
S invokes A by handing it the correlated randomness for the honest parties as
would D do. Then, in the online protocol it works as follows:

– Input sharing step: The simulator S sends random elements to A as the masked
inputs of the honest parties. Upon receiving the masked inputs x̂k of the
corrupted parties for each input wire k from A, it extracts the corrupted
parties’ inputs by computing xk = x̂k + rk.

– Circuit emulation: Let Sadd be the simulator for Πadd
mpc. The simulator S follows

the instructions of Sadd while interacting with A. Playing the role of Sadd, it
extracts the additive attack εw for each wire w ∈ W .

– Verification: Let Svrfy be the simulator for Πvrfy from Theorem 3.1. The simu-
lator S invokes Svrfy on {εw, x̂w, {rw,i}i∈T }w∈W , and follows its instructions.
Let out be the output held by the honest parties, played by S, at the end of the
execution. If out = reject, then S sends abort to the trusted party computing
f and outputs whatever A outputs. Else, out = accept. If ∀w ∈ W : εw = 0,
then S proceeds to the next step. Otherwise, ∃w ∈ W : εw �= 0 and the output
is accept. In this case, S outputs fail and halts.

– Output reconstruction: The simulator S sends the corrupted parties’ inputs to
the trusted party computing f , to receive back their outputs. For each output
wire w with output xw on it, S sends to A the random mask rw = xw − x̂w.

478 E. Boyle et al.

For each output intended to an honest party Pj , it waits for A’s command to
F dealer
com . If A sends abort to F dealer

com , then S sends abortj to the trusted party.
Otherwise, it sends continuej . Finally, S outputs whatever A outputs.

We show that A’s view in the simulation is statistically close to its view in the real
execution. First, observe that in the input sharing step, A sees random masked
values in both executions. In the circuit emulation step, by the definition of
Πadd

mpc, the simulation has at most statistical distance from the real execution. In
the verification step, by the privacy property of Πvrfy, the views are distributed
identically, except for the case S outputs fail. Note however that this event
occurs when the honest parties output accept even though ∃εw �= 0. From the
soundness property of Πvrfy, it thus follows that Pr[fail] = ε/2 + ε/2 = ε. To see
why this holds, recall that R̃ was chosen such that |W |

|Fκ| ≤ ε/2 when R = F and
|W |
|2κ| ≤ ε/2 when R = Z2k , and that the parties called the zk-FLIOP protocol
with parameter ε/2. By the soundness property of Πvrfy (Proposition 3.1), the
cheating probability is |W |

|Fκ| +
ε
2 when R = F, and |W |

2κ + ε
2 when R = Z2k , implying

that it is bounded by ε. Finally, given that the view until the reconstruction step
are distributed similarly in both executions, then the same applies for this step as
well, since A sees only random values. Overall, by a standard hybrid argument,
we have that A’s view is distributed the same with statistical error ε as allowed
by the theorem. This concludes the proof.

Combining Proposition 3.2 and Proposition 3.3, we obtain the following the-
orem, which summarize our main result in this work:

Theorem 3.1. Let f be a n-party functionality represented by an arithmetic
circuit C of size |C| (number of multiplication gates and output wires) over a
ring R which is either a finite field or the ring Z2k and let ε be a statistical
security bound. Then, every protocol in the preprocessing model which securely
computes f with additive security and is star-compliant, can be compiled into
a ε-secure protocol, with additional O(n · log |C| · κ) correlated randomness and
O(log |C| · κ) communication per party, where κ = log|F|

(
|C|
ε

)
when R is finite

field, and κ = log2
(

|C|
ε

)
when R = Z2k .

From our main theorem we derive the following corollaries. We apply our
construction on the well-known semi-honest protocol based on Beaver triples [1].
First, we obtain a protocol in the circuit-dependent preporocessing, where both
the amortized communication cost and the amount of correlated randomness
match the cost of the underlying semi-honest protocol, for rings of any size:

Corollary 3.1 (Circuit-dependent preprocessing). Let C be a circuit with
size |C| (which is the number of multiplication gates, input and output wires in
C) defined over a ring R which is either a finite field F or the ring Z2k and let ε
be a statistical error bound. Then, there exists a protocol to ε-securely compute
C with abort, with the following properties:

Sublinear GMW-Style Compiler for MPC with Preprocessing 479

– Communication: each party sends (2− 2
n) · |C|+O(log |C| ·κ) ring elements.

– Correlated randomness: the circuit-dependent preprocessing outputs 4 ·
|C| + O(n · log |C| · κ) ring elements to each party.
With PRG-based compression, this can be reduced to |C| + O(n · log |C| · κ)
elements to one party, and O(n · log |C| · κ) elements to the other parties.

where κ is defined as in Theorem 3.1.

Proof: Consider the semi-honest protocol described in Appendix A.1, which
is the circuit-dependent version of the well-known Beaver’s [1] protocol, as
described in [9]. In this protocol, the parties hold x̂w = xw − rw for each wire
w, which is a circuit’s output wire or input wire to a multiplication gate. In
addition, they hold for each multiplication gate g with input wires wg

i1
and wg

i2
and output wire wg

o , an additive sharings of rg
i1

, rg
i2

, rg
i1

· rg
i2

and rg
o . Then, they

use these to locally compute an additive sharing of masked output (masked with
rg
o) and interact to reveal the masked output, by having each party sending 2− 2

n
ring elements. The amount of correlated randomness in this protocol is 4 ring
elements per multiplication gate without compression. Alternatively, the dealer
can hand each party a PRG seed from which its shares of rg

i1
, rg

i2
and rg

o are
derived, thereby removing completely 3 · |C| elements of correlated randomness.
For rg

i1
·rg

i2
, the dealer can hand n−1 parties a PRG seed from which their shares

are expanded, and give the remaining party one share for each gate. We remark
that for each input, each party needs to send one element (masked input) to
all parties, while for each output wire, the dealer sends the mask to one party.
Thus, per party, the communication cost for an input/output wire is bounded
by the cost per multiplication.

The protocol is thus star-sharing compliant. In addition, as shown in
Appendix A.1, the protocol satisfies the property of additive security. Hence,
by applying Theorem 3.1 on this protocol the corollary follows.

In the circuit-independent model, we have a similar result. Here the commu-
nication is slightly higher because the cost of the underlying semi-honest protocol
is higher.

Corollary 3.2 (Circuit-independent preprocessing). Let C be a circuit
with size |C| (number of multiplication gates, input and output wires in C)
defined over a ring R which is either a finite field F or the ring Z2k and let
ε be a statistical error bound. Then, there exists a protocol to ε-securely compute
C with abort, with the following properties:

– Communication: each party sends (4− 4
n) · |C|+O(log |C| ·κ) ring elements.

– Correlated randomness: the circuit-independent preprocessing outputs 3 ·
|C| ring elements to each party, and there is an additional circuit-dependent
preprocessing which outputs O(n · log |C| · κ) elements to each party.
With PRG-based compression, this can be reduced to |C| + O(n · log |C| · κ)
elements to one party, and O(n · log |C| · κ) elements to the other parties.

where κ is defined as in Theorem 3.1.

480 E. Boyle et al.

Proof: The proof is identical to the proof of Corollary 3.1, with the only dif-
ference being the underlying protocol with additive security. Here we use the
standard multplication with Beaver triples shown in Appendix A.2. The parties
interact for each multiplication’s input wire and thus communication is doubled.
The correlated randomness consists of additive sharings of the input masks and
their multiplication, and so the per gate each party stores 3 random ring ele-
ments.

Remark 3.1 (multicast Vs. private channels). The communication cost presented
in Corollaries 3.1 and 3.2 is achieved when only private channels between the
parties exist. In case the parties have access to a multicast channel, where sending
one message to n parties has the same cost as sending n private messages, then
the communication cost is 1 ring element per multiplication gate per party in
the circuit-dependent preprocesssing model, and 2 ring elements with circuit-
independent preprocessing.

4 Distributing the Dealer

In this section, we show how the role of the trusted dealer can be emulated by
the parties in a secure way. Our focus here is only on the correlated randomness
required by our compiler, ignoring the correlated randomness for the underly-
ing additively-secure protocol, which is usually easier to generate. To this end,
we need to present a MPC protocol which outputs to each party the correlated
randomness required by our verification protocol. Our approach to this task is
to view the dealer’s work as computing an arithmetic circuit, and then one can
use any general MPC protocol to compute this circuit by the parties. This is
motivated by the fact that, as shown in Sect. 3.1, the computational work of the
dealer in the verification protocol, is O(n · |C|). This implies that the computa-
tional work is asymptotically proportional to the size of the circuit (times the
number of parties). We now show that the hidden constants are actually very
small, which means that the circuit computed by the dealer has almost the same
size as the original circuit. We remind the reader that general MPC protocols
require interaction only for multiplication operations and not for linear opera-
tions. Thus, we are only interested here in counting the number of multiplication
operations carried-out by the dealer.

When looking into our verification protocol Πvrfy, we identify three compu-
tations which require multiplications:

– Computing the random coefficients αw for each output wire or multiplication
gate’s input wire w. This computation is done by taking αw = αw for a ran-
dom α ∈ R. Thus, for |W | wires, this requires |W | multiplications. Assuming
that the number of outputs is considerably smaller compared to the number
of multiplication gates, this amount to 2|C| multiplications.

– Computing Ω =
∑

w∈W αw ·rw+
∑

g�∈mult γ�·(rg�

1 ·rg�

2). Recall that the random
coefficients γ� are computed as a summation of several αw coefficients, and

Sublinear GMW-Style Compiler for MPC with Preprocessing 481

so are computed without interaction. Thus, the cost here is 2 multiplications
for each multiplication gate g�, and so 2 · |C|.

– Computing the queries answers ãi
j,1, . . . , ã

i
j,� ← 〈qi

j,1,y
D
i ||tij〉, . . . , 〈qi

j,�,y
D
i ||tij〉

in each round of the zk-FLIOP. The cost here depends of course on the way
the zk-FLIOP is realized. When using the logarithmic construction described
in the full version, the parties need to compute approximately 2|mult| mul-
tiplications overall, and so 2|C| multiplications for each of the n calls to the
zk-FLIOP.

Summing the above, we conclude that the size of the dealer’s circuit, mea-
sured by the number of multiplications, is 4|C|+n ·2|C|. For the popular setting
of 2-party secure computation, for instance, this amount so 8 · |C|.

Thus, to securely compute this circuit, the parties can use any state-of-art
general MPC protocols for computing arithmetic circuits, such as the recent
results of [8,15,24,27], depending on the type of underlying ring/field. Together
with our light online protocol, this yields a protocol for computing arithmetic
circuits with practical potential.

Remark 4.1 (Distributing the dealer for PRG-based protocols.). The approach
above works also when the semi-honest correlated randomness is compressed
using a PRG. In particular, distributing the dealer does not require securely
evaluating the PRG. To illustrate this, consider PRG compression in protocols
based on multiplication triples (as in Corollary 3.1 and 3.2). When the n parties
emulate the dealer, each party chooses a PRG seed from which it derives its
shares of vectors a and b. In addition, all but one party derive their share of
c = a · b from their seed. Then, the parties run an MPC protocol to compute
the share of c of the remaining party from the 3n − 1 vectors, and finally the
correlated randomness for sublinear ZK verification. The crucial point is that
feeding the MPC with an incorrect PRG output does not hurt the security of
the online protocol since the latter is secure even with the “corruptible” version
of the multiplication triples correlation (this was also observed in the context of
SPDZ-style protocols and pseudorandom correlation generators, see [7]).

Acknowledgements. E. Boyle supported by ISF grant 1861/16, AFOSR Award
FA9550-17-1-0069 FA9550-21-1-0046, and ERC Project HSS (852952).

N. Gilboa supported by ISF grant 2951/20, ERC grant 876110, and a grant by the
BGU Cyber Center.

Y. Ishai supported by ERC Project NTSC (742754), NSF-BSF grant 2015782, BSF
grant 2018393, and ISF grant 2774/20.

A. Nof supported by ERC Project NTSC (742754).

A Protocols which are Secure-up-to-Additive-Attack

In this section, we present two instatiations for a protocol to compute an arith-
metic circuit, which is secure up to additive attack, as defined in Definition 2.3
and star-sharing compliant as defined in Defintion 3.2. Recall that the require-
ment is that for each multiplication gate or output wire of the circuit, the parties

482 E. Boyle et al.

will hold a masked value on this wire, plus an error that the adversary added,
which can be extracted by a simulator.

A.1 Multiplication in the Circuit-Dependent Preprocessing
Model [9]

In this model, the structure of the circuit is known in advance. At the beginning
of the protocol, the parties hold two masked inputs x̂ = x − r1 and ŷ = y − r2.
The parties wish to obtain ẑ = x · y − r3. Observe that

ẑ = x · y − r3 = (x̂ + r1)(ŷ + r2) − r3

= x̂ · ŷ + r1 · ŷ + r2 · x̂ + r1 · r2 − r3 (3)

and so if the parties are given an additive sharing of r1, r2, r1 ·r2 and r3, they can
locally compute an additive sharing of ẑ. Note that in this approach, if a multipli-
cation’s output wire is entering multiple gates in the next layer, then we need to
make sure that the same mask is used for the input wires of the following gates.
This is why the correlated randomness for this protocol is circuit-dependent, i.e.,
depends on the structure of the circuit. The multiplication protocol thus works
as follows:

– Inputs: Each party Pi holds: x̂, ŷ, ri
1, r

i
2, (r1 · r2)i and ri

3.
– The protocol:

1. Each party Pi locally computes zi = ri
1 · ŷ + ri

2 · x̂ + (r1 · r2)i − ri
3 and

sends zi to P1.
2. Party P1 computes z′ =

∑n
i=1 zi and broadcasts z′ to all the other parties.

3. The parties compute ẑ = x̂ · ŷ + z′ and store the result as the output.

Recall that when P1 broadcasting z′, this amounts to sending z′ to all parties
and then at the end run a batch check with constant cost for the entire circuit,
to assert that the same z′ was sent to all parties in each gate (see Section 2.3).
Thus, the overall communication cost in this protocol is 2(n − 1) elements, and
so each party sends 2− 2

n elements per multiplication gate. Note that for 2-party
computation, this comes down to sending just a single element per party per
multiplication.

Security up to an additive error. The above protocol does not guarantee cor-
rectness; a corrupted party can send incorrect values and cause the output to
be incorrect. However, the only attack that corrupted parties can carry-out is
to add an error to the output. To see this, consider a simulator that holds x̂, ŷ
and the randomness of the corrupted parties. Such a simulator can predict the
messages sent by the corrupted parties. Thus, it can interact with the adversary,
by sending him random values as the messages from the honest parties. Once it
receives the messages from the corrutped parties, it can compute the error by
comparing the received messages and the messages that should have been sent.

Sublinear GMW-Style Compiler for MPC with Preprocessing 483

A.2 Multiplication in the Circuit-Independent Preprocessing
Model [1]

When the structure of the circuit to be computed is yet to be known, we view
the preprocessing as a service which produces random multiplication triples (i.e.,
Beaver triples). These triples are later consumed by the online computation. In
this model, the parties interact to compute the masked input for each multipli-
cation gate or a circuit’s output wire. Then, they locally compute an additive
sharing of the multiplication’s output value. Addition gates which are between
two multiplication gates are locally computed over the additive sharing of wire
values. The protocol works as follows:

– Inputs: Each party Pi holds: xi, yi, ri
1, ri

2 and (r1 · r2)i.
– The protocol:

1. Each party computes xi − ri
1 and yi − ri

2 and sends it to P1.

2. Party P1 computes x̂ = x−r1 =
n∑

i=1

(xi−ri
1) and ŷ = y−r2 =

n∑

i=1

(yi−ri
2).

Then, it broadcasts x̂ and ŷ to all the other parties.
3. Each party Pi computes zi = ri

1 · ŷ + ri
2 · x̂ + (r1 · r2)i. Then, party P1

defines x̂ · t̂ + z1 as its output share, where each Pi, with i �= 1 defines zi

as its output share.

Observe that the communication cost here is doubled compared to the mul-
tiplication protocol in the circuit-dependent preprocessing model.

By the same reasoning which was used to compute the additive error for each
multiplication gate separately in the circuit-dependent model presented above,
we can compute the additive error on each multiplication’s input wire or circuit’s
output wire, given the masked inputs to multiplication gates which feed these
wires and the corrupted parties’ randomness.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

2. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: double your online SPDZ!
improving SPDZ using function dependent preprocessing. In: Deng, R.H.,
Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464,
pp. 530–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-
2 26

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC (1988)

4. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11

484 E. Boyle et al.

5. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 67–97. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 3

6. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: ACM CCS (2019)

7. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 16

8. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 387–416. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 14

9. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function
secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp.
341–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 14

10. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party compu-
tation via sublinear distributed zero-knowledge proofs. In: ACM CCS (2019)

11. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Efficient fully secure computation via
distributed zero-knowledge proofs. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12493, pp. 244–276. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64840-4 9

12. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

13. Cascudo, I., Gundersen, J.S.: A secret-sharing based MPC protocol for boolean
circuits with good amortized complexity. In: Pass, R., Pietrzak, K. (eds.) TCC
2020. LNCS, vol. 12551, pp. 652–682. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64378-2 23

14. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC (1988)

15. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 26

16. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In:
ESORICS (2013)

17. Damg̊ard, I., Lauritsen, R., Toft, T.: An empirical study and some improvements
of the MiniMac protocol for secure computation. In: Abdalla, M., De Prisco, R.
(eds.) SCN 2014. LNCS, vol. 8642, pp. 398–415. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10879-7 23

18. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for
2-Party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 6

19. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/978-3-030-36030-6_14
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1007/978-3-030-64378-2_23
https://doi.org/10.1007/978-3-030-64378-2_23
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-10879-7_23
https://doi.org/10.1007/978-3-319-10879-7_23
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-642-32009-5_38

Sublinear GMW-Style Compiler for MPC with Preprocessing 485

20. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-
2 35

21. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: STOC (2014)

22. Goldreich, O.: The Foundations of Cryptography -, vol. 2. Cambridge University
Press, Basic Applications (2004)

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC (1987)

24. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: Leviosa:
Lightweight secure arithmetic computation. In: ACM CCS (2019)

25. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36594-2 34

26. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: ACM CCS (2016)

27. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

28. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

29. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated OT with small communication. In: ACM CCS (2020)

30. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS
(1986)

https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-642-32009-5_40

Limits on the Adaptive Security of Yao’s
Garbling

Chethan Kamath1(B), Karen Klein2, Krzysztof Pietrzak2, and Daniel Wichs3,4

1 Boston, USA
ckamath@protonmail.com

2 IST Austria, Klosterneuburg, Austria
{kklein,pietrzak}@ist.ac.at

3 Northeastern University, Boston, USA
wichs@northeastern.edu

4 NTT Research, Tokyo, Japan

Abstract. Yao’s garbling scheme is one of the most fundamental crypto-
graphic constructions. Lindell and Pinkas (Journal of Cryptograhy 2009)
gave a formal proof of security in the selective setting where the adversary
chooses the challenge inputs before seeing the garbled circuit assuming
secure symmetric-key encryption (and hence one-way functions). This
was followed by results, both positive and negative, concerning its secu-
rity in the, stronger, adaptive setting. Applebaum et al. (Crypto 2013)
showed that it cannot satisfy adaptive security as is, due to a simple
incompressibility argument. Jafargholi and Wichs (TCC 2017) consid-
ered a natural adaptation of Yao’s scheme (where the output mapping
is sent in the online phase, together with the garbled input) that cir-
cumvents this negative result, and proved that it is adaptively secure, at
least for shallow circuits. In particular, they showed that for the class of
circuits of depth δ, the loss in security is at most exponential in δ. The
above results all concern the simulation-based notion of security.

In this work, we show that the upper bound of Jafargholi and Wichs
is basically optimal in a strong sense. As our main result, we show that
there exists a family of Boolean circuits, one for each depth δ ∈ N,
such that any black-box reduction proving the adaptive indistinguisha-
bility of the natural adaptation of Yao’s scheme from any symmetric-key
encryption has to lose a factor that is exponential in

√
δ. Since indistin-

guishability is a weaker notion than simulation, our bound also applies
to adaptive simulation.

C. Kamath—Most of the work was done while the author was at Northeastern Univer-
sity, supported by the IARPA grant IARPA/2019-19-020700009, and Charles Univer-
sity, funded by project PRIMUS/17/SCI/9.
K. Klein and K. Pietrzak—Funded by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (682815 -
TOCNeT).
D. Wichs—Research supported by NSF grant CNS-1750795 and the Alfred P. Sloan
Research Fellowship.
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 486–515, 2021.
https://doi.org/10.1007/978-3-030-84245-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_17

Limits on the Adaptive Security of Yao’s Garbling 487

To establish our results, we build on the recent approach of Kamath
et al. (Eprint 2021), which uses pebbling lower bounds in conjunction
with oracle separations to prove fine-grained lower bounds on loss in
cryptographic security.

1 Introduction

A garbling scheme allows one to garble a circuit C and an input x such that only
the output C(x) can be learned while everything else – besides some leakage
such as the size or topology of the circuit – remains hidden. It was originally
used by Yao as a means to achieve secure function-evaluation [17,18]. Despite its
huge impact on cryptography, it was formally defined as a stand-alone primitive
only much later by Bellare, Hoang and Rogaway [6]. In addition to a syntac-
tic definition, they propose two different security notions for garbling schemes:
simulatability and indistinguishability. They show the equivalence of the two
definitions1 in the presence of a selective adversary, which sends the circuit and
input to be garbled in one shot. In contrast, for the more general case in which
the adversary first – in an offline phase – chooses a circuit C and then (after
receiving its garbling) – in the online phase – adaptively chooses its input x, the
notion of indistinguishability turns out to be strictly weaker than simulatability.
Many applications require security in such an adaptive setting, and for the sake
of efficiency the cost during the online phase is to be kept minimal.

Prior work on security. Whilst there exist several constructions of provably-
secure (even in the adaptive sense) garbling schemes (see Sect. 1.3), a feature
of Yao’s scheme (and variants thereof) is that security can be proven under
the minimal assumption of one-way functions. At the same time, this scheme
offers almost-optimal online complexity, with the size of the garbled input being
linear in the input-size, and independent of the output- as well as circuit-size. A
formal security proof of Yao’s scheme in the selective setting was given by Lindell
and Pinkas [16]. There exists a generic approach to reduce adaptive security to
selective security: the adaptive reduction simply guesses the input x and then
runs the selective reduction on the adaptive adversary. This, unfortunately, leads
to a loss in security that is exponential in |x|. Furthermore, Applebaum et al. [3]
showed that the online complexity of any adaptively-simulatable garbling scheme
must exceed the output-size of the circuit, thereby proving a first limitation of
Yao’s scheme.

All of this led Jafargholi and Wichs [14] to consider a natural adaptation
of Yao’s garbling scheme (described in Sect. 1.1), where the mapping of output
labels to output bits is sent in the online phase as part of the garbled input
(see below for the construction). The negative result by Applebaum et al. does

1 In the security game for simulatability, the simulator has to simulate C̃ given only the
output y = C(x) and some leakage Φ(C). While equivalence of selective simulatability
and selective indistinguishability holds for the most natural leakage functions (e.g.
the size or topology of C), it does not hold for arbitrary leakage functions Φ.

488 C. Kamath et al.

not apply to this adaptation of Yao’s garbling scheme since its online complex-
ity exceeds the output size. Therefore, this adaptation is the natural version
of Yao’s garbling scheme for the case of adaptive security, and is the scheme
that we consider in this work and will simply refer to as “Yao’s garbling” from
now on. Jafargholi and Wichs [14] were able to show that it satisfies adaptive
security for a wide class of circuits, including NC1 circuits. More precisely, they
prove adaptive security of Yao’s garbling via a black-box reduction to the IND-
CPA security of the underlying symmetric-key encryption (SKE) scheme with
a loss in security that is exponential in the depth of the circuit. Their proof
employs a specially tailored pebble game on graphs, and is an application of the
piecewise-guessing framework of Jafargholi et al. [11]. Since our work concerns
the optimality of this proof, let’s look at it in a bit more detail.

1.1 Yao’s Scheme and Adaptive Indistinguishability

Let’s first informally recall Yao’s garbling scheme. A circuit C : {0, 1}n → {0, 1}�

is garbled in the offline phase as follows:

1. For each wire w in C, choose a pair of secret keys k0
w, k1

w ← Gen(1λ) for a
SKE (Gen,Enc,Dec).

2. For every gate g : {0, 1} × {0, 1} → {0, 1} with left input wire u, right input
wire v, and output wire w, compute a garbling table g̃ consisting of the
following four ciphertexts (in a random order).

c1 := Enck0
u
(Enck0

v
(kg(0,0)

w)) c2 := Enck1
u
(Enck0

v
(kg(1,0)

w))

c3 := Enck0
u
(Enck1

v
(kg(0,1)

w)) c4 := Enck1
u
(Enck1

v
(kg(1,1)

w))
(1)

3. If C has s wires and output wires denoted by ws−�+1, . . . , ws, assemble the
output mapping {kb

w → b}i∈[s−�+1,s], b∈{0,1}.

The garbled circuit C̃ consists of all the garbling tables g̃ as well as the output
mapping. To garble an input x = (b1, . . . , bn) in the online phase, simply set

x̃ := (kb1
w1

, . . . , kbn
wn

)

where wi denotes the ith input wire. The only difference in the variant from
[14] is that the sending of the output mapping is moved to the online phase,
which leads to an increase in the online complexity to linear in the input- and
output-size.

To evaluate the garbled circuit on the garbled input, one requires the follow-
ing special property of the SKE: For each ciphertext c ← Enck(m) there exists
a unique key – namely k – such that decryption doesn’t fail. Evaluation of the
garbled circuit given the garbled input then works starting from the gates at
the lowest level by simply trying which of the four ciphertexts can be decrypted
using the two given input keys. This allows to recover exactly one of the two keys
associated to the output wire of the respective gate and in the end the output
mapping is used to map the sequence of revealed output keys to an output string
y ∈ {0, 1}�.

Limits on the Adaptive Security of Yao’s Garbling 489

Adaptive indistinguishability. A garbling scheme is adaptively indistinguishable
if no efficient adversary can succeed in the following experiment2 with non-
negligible advantage:

1. The adversary submits a circuit C to the challenger, who responds with C̃.
2. The adversary then submits a pair of inputs (x0, x1).
3. The challenger flips a coin b and responds with x̃b.
4. The adversary wins if it guesses the bit b correctly.

In the following, we will refer to the two games for b = 0 and b = 1 as the “left”
and “right” games, respectively.

To prove adaptive indistinguishability3 of Yao’s scheme for an arbitrary SKE
(satisfying the special property), Jafargholi and Wichs construct a black-box
reduction from the IND-CPA security of the SKE. More precisely, they proceed
by a hybrid argument, where they define a sequence of hybrid games interpo-
lating between the left and the right game such that each pair of subsequent
hybrid games only differs in a single ciphertext (in the garbling table) and can
be proven indistinguishable by relying on the IND-CPA security of the SKE.

The loss in security incurred by such a reduction then depends on the length
of the sequence and the amount of information required to simulate the hybrid
games. To end up with a meaningful security guarantee, thus, the sequence of
hybrid games must not be too long and it must be possible to simulate any
of the hybrid games without relying on too much information, particularly the
knowledge of the entire input. Jafargholi and Wichs design such a sequence
of hybrid games by using an appropriate pebble game on the topology graph
underlying the circuit. In that game, a pebble on a gate indicates that the gate
is not honestly garbled (as in Eq. (1)) but is, instead, garbled in some input-
dependent mode. The pebble rules, which dictate when a pebble can be placed
on or removed from a vertex, guarantee that two subsequent hybrids can be
proven indistinguishable, and the loss in security directly relates to the number
of pebbles on the graph.

Keeping this proof technique in mind, the main idea of this work is to turn a
pebble lower bound (w.r.t. an appropriate pebble game) into a lower bound on
the security loss inherent to any black-box reduction of adaptive indistinguisha-
bility of Yao’s scheme. Such an approach was recently adopted by Kamath et al.
[15], also in the context of adaptive security but for primitives that are of a dif-
ferent flavour (e.g., multi-cast encryption). However, the case of garbled circuits
turns out very different for several reasons we will highlight later (see Sect. 2.5).

2 In fact, we define a weaker security notion than indistinguishability as defined in [6];
according to their definition the adversary can choose two circuits C0,C1 of the same
topology and inputs x0, x1 such that C0(x0) = C1(x1). Aiming at a lower bound on
the gap between the security of Yao’s scheme and the security of the underlying SKE,
the additional restriction we put on our adversary only strengthens our results.

3 To be precise, [14] prove the stronger security notion of simulatability, which implies
indistinguishability.

490 C. Kamath et al.

1.2 Our Results

We prove a lower bound on the loss in security incurred by any black-box reduc-
tion proving adaptive indistinguishability of Yao’s garbling scheme [14] from
IND-CPA security of the SKE scheme. This immediately implies a similar lower
bound with respect to the (stronger) more common security notion of adaptive
simulatability. Our lower bound is subexponential in the depth d of the circuit,
hence almost matches the best known upper bound from [14].

Theorem (main, Theorem 4.1). Any black-box reduction from adaptive
indistinguishability (and thus also simulatability) of Yao’s garbling scheme on
the class of circuits with input length n and depth δ ≤ 2n to the IND-CPA
security of the underlying SKE loses at least a factor loss = 1

q · 2
√

δ/61, where q
denotes the number of times the reduction rewinds the adversary.

Two remarks concerning the theorem are in order. Firstly, we are proving a
negation of the statement in [14], which upper bounds loss for every graph in
a class. Therefore, when we say that the class of circuits above loses at least a
factor loss, we mean that there exists some circuit G in that class such that any
reduction loses by that factor (and not that every circuit in that class loses by
that factor). The design of this circuit G is one of the main technical contributions
of this work. The second remark concerns the design of this circuit G. In addition
to some structural properties that we will come to later, we design G to output
the constant bit 0. This implies that the output mapping can easily be guessed
by a reduction, and therefore the difference, in this case, between Yao’s original
scheme and [14] is only marginal.

Comparison with Applebaum et al. [3]. The result in [3] rules out adaptively-
simulatable randomised encodings with online complexity less than the output-
size of the function it encodes. Since Yao’s garbling is one instantiation of ran-
domised encodings, their result immediately rules out its adaptive simulatability.
However, [3] does not apply to our setting for three reasons. Firstly, their result
only applies to the original construction of Yao’s garbled circuits where the gar-
bled input can be smaller than the output size. In this work we consider the adap-
tation of Yao’s garbling scheme [14] where the output mapping is sent in the online
phase, hence the online complexity always exceeds the output size. Secondly, their
result applies to circuits with large output, while our result holds even for Boolean
circuits with outputs of length 1. Finally, their result only applies to simulation
security, while our result even holds for indistinguishability.

Comparison with Hemenway et al. [10]. We would like to emphasise that our
lower bound only holds for the specific construction of Yao’s garbled circuits, and
it does not rule out other constructions, even potentially from one-way functions.
In fact, the construction of Hemenway et al. already circumvents our result and
it is instructive to see how. On a high level, their idea (similar to [5]) is to take
Yao’s garbling scheme and then encrypt all the resulting garbling tables with an
additional layer of “somewhere equivocal” encryption on top. This change allows

Limits on the Adaptive Security of Yao’s Garbling 491

them to prove adaptive security with only a polynomial loss in security (at the
cost of increased online complexity). The intuitive reason why our approach does
not apply to this construction is that the additional layer of encryption somehow
“blurs out” all the details about the individual garbling tables, on which our
argument depends (see Sect. 2.4).

1.3 Further Related Work on Adaptive Security

Adaptive security for garbled circuits. The problem of constructing adaptively-
secure garbling schemes was first raised by Bellare, Hoang and Rogaway in [5];
they gave a first adaptively-secure construction in the random oracle model,
which bypasses the lower bound of Applebaum et al. [3]. Bellare, Hoang and
Keelveedhi [4] then proved the previous scheme adaptively-secure in the stan-
dard model, but under non-standard assumptions on hash functions. Further
constructions from various assumption followed: Boneh et al. [7] constructed
an adaptively-secure scheme from the learning with errors (LWE) assumption,
where the online complexity depends on the depth of the circuit family. Ananth
and Sahai [2] constructed an optimal garbling scheme from iO. In [13], Jafargholi
et al. relax the simulation-based security to indistinguishability and show how
to construct adaptively-secure garbling schemes from the minimal assumption of
one-way functions, where the online complexity only depends on the pebble com-
plexity and the input-size, but is independent of the output-size. Later, Ananth
and Lombardi [1] constructed succinct garbling schemes from functional encryp-
tion. A particularly strong result in this area was due to Garg and Srinivasan
[9], who constructed adaptively-secure garbling with near optimal online com-
plexity that can be based on standard assumptions such as the computational
Diffie-Hellman (CDH), the factoring, or the LWE assumption. While this list is
far from complete, we finally mention a recent work by Jafargholi and Oechsner
[12] who analyze adaptive security of several practical garbling schemes. They
give positive as well as negative results, and argue why the techniques from [14]
cannot be applied to certain garbling schemes.

Adaptive security for other graph-based games. Jafargholi et al. gave a framework
for proving adaptive security [11], also known as piecewise guessing technique.
Beside several applications to other graph-based security games, this framework
also comprises the reduction from [14] as a special case. Kamath et al. [15]
considered optimality of this approach for certain graph-based games which arise
in the context of e.g., multicast encryption, continuous group key agreement, and
constrained PRF. They gave non-trivial fine-grained lower bounds on the loss in
adaptive security incurred by (oblivious) reductions via pebble lower bounds.

2 Technical Overview

We aim to prove fine-grained lower bounds on loss in security incurred by black-
box reductions in a setting where a primitive F is used in a protocol ΠF . In

492 C. Kamath et al.

our case F is SKE and ΠF is Yao’s garbling scheme using the SKE. In order
to bound loss, the loss in security incurred by any efficient black-box reduction
R that breaks F when given black-box access to an adversary that breaks ΠF

(i.e., from F to ΠF), we must show that for every R, there exists

– an instance F (not necessarily efficiently-implementable) of F and
– an adversary A (not necessarily efficient) that breaks ΠF

such that loss in security incurred by R in breaking F is at least loss.4 We next
describe how the instance and the adversary are defined in our setting.

2.1 Our Oracles

We define two oracles F and A implementing an ideal SKE and an adversary,
respectively, such that

– the SKE scheme F = (Gen,Enc,Dec) satisfies IND-CPA security information-
theoretically,

– the (inefficient) adversary A breaks indistinguishability of the garbling scheme
ΠF , but is not helpful in breaking the IND-CPA security of F .

Ideal encryption. We will define the ideal SKE oracle F such that Enc is defined
through a random expanding function (which is injective with overwhelming
probability). Since the security of F is information-theoretic, any advantage
against IND-CPA which a reduction with oracle access to F and A obtains
must stem (almost) entirely from the interaction with A. This is true since the
reduction can only make polynomially many queries and thus the probability
that the answer to one of its oracle queries coincides with the IND-CPA challenge
is negligible. On the other hand, a computationally unbounded adversary using
an unlimited number of queries can break the scheme and (thanks to injectivity)
perfectly recover messages and secret keys from any ciphertext.

The adversary. As for the (inefficient) adversary A, we define a so-called thresh-
old adversary which does the following in the indistinguishability game:

1. A chooses a particular circuit G (see Sect. 2.3) which has constant output
(bit) 0 and sends G to the challenger.

2. After receiving the garbled circuit G̃, A chooses garbling inputs x0 and x1

uniformly at random and sends them to the challenger. Note that G(x0) =
G(x1) trivially holds since G has constant output.

3. On receipt of the garbled input x̃b along with an output mapping, A first
runs some initial checks on (G̃, x̃b) to verify that the garbling has the correct
syntax, and then extracts a pebble configuration P on G (see Sect. 2.4). That
is, every gate in G is either assigned a pebble or not, depending on the content

4 This is obtained by simply negating the definition of a black-box reduction: there
exists an efficient reduction R for every implementation (not necessarily efficient) F
of F and for every (not necessarily efficient) adversary A that breaks ΠF such that
the loss in security is at most loss.

Limits on the Adaptive Security of Yao’s Garbling 493

of its garbling table in G̃ and the garbled input x̃b. To compute this mapping,
the inefficient adversary A simply breaks the underlying encryption by brute
force. Finally, A outputs 0 (denoting ‘left’) if the extracted pebble config-
uration is good (defined later through some pebble game), and 1 (denoting
‘right’) otherwise.

By design, the left indistinguishability game (where b = 0) will correspond to a
good configuration, whereas the right game will not. Therefore the above adver-
sary is a valid distinguisher for the indistinguishability game (Lemma 4.5). More-
over, A concentrates all its distinguishing advantage at the threshold of good
and bad configurations (hence the name). Therefore, intuitively speaking, for
any reduction to exploit A’s distinguishing advantage, it must somehow embed
its own (IND-CPA) challenge at the threshold. All the technicality in proving
our main theorem goes into formalising this intuition, which we summarise next
in Sect. 2.2.

2.2 High-Level Idea

To prove a lower bound on loss (Theorem 4.1), we construct a punctured adver-
sary A[c∗] (see Sect. 4.5) which behaves similar to A except when it comes to
the hardcoded challenge ciphertext c∗ ← Enck∗(m) (for some arbitrary message
m). We aim to puncture A[c∗] such that it never decrypts c∗ but instead just
proceeds by assuming that c∗ decrypts to the all-0 string, and hence cannot be
of any help to a reduction that aims to break c∗. However, we have to be careful
here since the reduction embedding c∗ in G̃ will also embed other ciphertexts
under key k∗ (which it can derive through querying its IND-CPA encryption
oracle Enck∗), and hence A[c∗] would learn the key k∗ when brute-force decrypt-
ing these ciphertexts. We solve this issue by endowing A[c∗] with a decryption
oracle Deck∗ that allows to find and decrypt those ciphertexts under k∗. Since
our ideal encryption scheme actually satisfies the stronger notion of IND-CCA
security, this decryption oracle is of no help to the reduction.

The core of our lower bound is now to define the circuit G and the notion of
good pebble configurations such that the following holds:
– Our threshold adversary A indeed breaks the garbling scheme.
– It is hard to distinguish A from A[c∗].

For the latter property, note that any efficient reduction R can only distinguish
A from A[c∗] if their outputs differ, which only happens if they extract different
pebbling configurations P �= P∗ such that one of them is good and the other bad.
Thus, to bound the success probability of R, it suffices to establish the following
two properties:
1. The pebbling configurations P and P∗ extracted by A and A[c∗] (in the same

execution of the game, using the same randomness) differ by at most one
valid pebbling move in some natural pebble game5, where a pebble can be

5 In Sect. 4.3 we actually consider a much more finegrained pebble game, where differ-
ent types of pebbles represent different garbling modes of a gate. For this exposition,
it suffices to focus on this simplified game.

494 C. Kamath et al.

placed on or removed from a gate if at least one of its parent gates carries a
pebble.

2. It is hard for any reduction to produce (G̃, x̃) such that A extracts a threshold
configuration, i.e. a pebble configuration that is good but can be switched to
a bad configuration within one valid pebbling move.

Intuitively, pebbles on gates in the circuit represent malformed gates, i.e., gates
whose garbling table is different from the honest garbling table. When consider-
ing circuits consisting only of non-constant gates, the pebbling rule in Property 1
captures the fact that a reduction cannot produce ciphertexts encrypting the key
k∗ under which its challenge ciphertext c∗ ← Enck∗(m) (for some arbitrary m)
was encrypted. Hence, in order to embed c∗ at a gate, the reduction has to first
output a malformed garbling (not encoding k∗) for its predecessor gate. Now, to
see why Property 1 holds – i.e., the pebbling configurations P and P∗ extracted
by A and A[c∗] follow the same dynamics – note that the behaviour of A and
A[c∗] can only differ if k∗ is not encrypted in any ciphertext.

The tricky part of our proof is to establish Property 2 which, on a high level,
works as follows. For a reduction R to simulate a threshold configuration we first
force it to maul – and hence pebble – several gates. Then, for this mauling to
go ‘undetected’ we force R to correctly guess the value of these gates when G
is evaluated at x0. This, intuitively, will be the source of its loss. To this end,
we design our circuit G to consist of two blocks6, G⊕ and G∧. Looking ahead,
whether there is a pebble on a gate in G⊕ will be independent of the input and
correspond to R’s attempt at guessing x0 (this relies on the properties of XOR
gates). The pebbles on G∧, in contrast, will be extractable with respect to the
input garbling x̃b and indicate whether or not the guesses on x0 in the G⊕ block
were correct (this relies on the properties of AND gates). Moreover, by definition:

– In case of a proper garbling of (G, x0) (i.e., the left game), the adversary A
will not extract any pebble on G⊕ or G∧.

– In case of a proper garbling of (G, x1) (i.e., the right game), on the other
hand, the adversary A will not extract any pebbles on G⊕, but will extract
some pebbles on G∧ (since x1 �= x0).

Accordingly, we define the good predicate such that the empty configuration is
good, whereas any configuration containing a pebble on G∧ is bad, and therefore
the above ensures that A breaks the security of the garbling scheme. Further-
more, the threshold configurations contain many pebbles on G⊕, but no pebbles
on G∧. In other words, threshold configurations require R to make many guesses
about x0 and all of them need to be correct, which is unlikely to occur. This
establishes Property 2.

2.3 The Circuit G and the Good Predicate

The design of topology of the circuit G⊕ is such that it has high pebbling com-
plexity with respect to our pebble game: i.e., every valid pebbling sequence
6 For this high-level overview, we ignore the third block G0 consisting of a binary tree

of AND gates, whose sole purpose is to guarantee constant 0 (bit) output.

Limits on the Adaptive Security of Yao’s Garbling 495

starting from the initial empty configuration and reaching a final configuration
that has a pebble on an output gate of G⊕, must contain a “heavy” configuration
with many, say d, pebbles. To guarantee that threshold configurations contain
many pebbles, we define the good configurations as those that are reachable
with d − 1 pebbles following valid pebbling moves. Since G∧ will (topologically)
succeed G⊕ in G, any configuration with a pebble on G∧ is in particular bad
(since an output gate of G⊕ must have been pebbled first). At the same time,
to allow for our “control mechanism”, we construct G so that each gate g in G⊕

has a ‘companion’ successor gate in G∧ that helps check correctness of g’s out-
put. Thus for each AND gate in G∧, one of the inputs comes from the output of
G⊕ and the other from the output of its companion gate (see Fig. 1). This fixes
the topology of G and we choose the type of gate as to enforce Property 2, as
explained below.

– The G⊕ circuit is composed only of XOR gates, since these gates allow us to
maintain high entropy (of the input), and hence guarantee that it is hard to
guess the outputs of the pebbled gates in G⊕ (see Sect. 4.2). Furthermore,
XOR gates are symmetric with respect to their input in the sense that from
the garbling table alone even an inefficient adversary cannot distinguish which
keys are associated with which bits. This property allows A to extract the
pebbling configuration of G⊕ just from G̃, independently of the input (see
next section).

– The G∧ circuit, on the other hand, is composed of AND gates. Since AND
gates are asymmetric (since only (1, 1) maps to 1, while all three other input
pairs map to 0), we can use them to detect errors in the G⊕ circuit: i.e.,
looking at a garbling table of an AND gate our adversary A can exploit this
asymmetry to easily associate keys to bits. Thus, whenever during evaluation
of G̃ on input x̃ the adversary A receives wrong input keys for a (properly
garbled) AND gate, A considers this gate as malformed and associates it with
a pebble. (The case of AND gates which are not properly garbled is rather
technical and we refer the reader to Sect. 4.4.)

2.4 Extracting the Pebble Configuration

Since it is central to the working of our adversary A (and is a somewhat subtle
matter), here we provide a high-level description of the extraction mechanism.7
First of all, recall that pebbles on G⊕ and G∧ have different meanings: a pebbled
XOR gate indicates that its garbling table is malformed whereas a pebbled AND
gate indicates that R’s guess for the companion XOR gate is wrong. This, coupled
7 In Sect. 4.4 we consider a more general extraction mechanism that can be extended to

arbitrary gates and assigns different types of pebbles, representing the “distance” of a
garbling table g̃′ for a gate g from an honest garbling table g̃. For ease of exposition,
here we consider a simplified pebble game and only discuss how to extract pebbles
for XOR and AND gates, where a pebble in this simplified game would correspond
to different sets of pebbles for XOR and AND gates in the more fine-grained pebble
game.

496 C. Kamath et al.

with the fact that the gates have differently-structured gate tables (i.e., symmet-
ric vs. asymmetric) means that the extraction mechanism for the two gates (and
hence the blocks) is also different. In particular, as we will see, the pebble status
of an XOR gate is something that can inferred solely from the garbled circuit G̃
(and thus can be done in the offline phase) whereas the pebble status of an AND
gate is something that also depends on the garbled input x̃ and is necessarily
done in the online phase. Let’s look at how the respective extraction is carried
out. First, given G̃, A extracts a key pair for each wire in G from the encryptions
associated with its successor gates, or the output mapping; if this cannot be
done uniquely, A aborts and outputs 1 (we refer to Sect. 4.4 for more details).
In the following, for a gate g, let u and v denote the input wires, w the output
wire, and ku, k′

u, kv, k′
v, kw, k′

w the corresponding keys associated with these
wires.

– If g is an XOR gate, then the honest garbling table of g can be derived from
Eq. (1) as

Encku
(Enckv

(kw)) Enck′
u
(Enckv

(k′
w))

Encku
(Enck′

v
(k′

w)) Enck′
u
(Enck′

v
(kw)).

Whenever a garbling table g̃ differs from this representation (i.e., not sym-
metric), A assigns g a pebble and this assignment is independent of the bits
running over the wires u, v, w and the keys revealed during evaluation. Thus,
A can extract pebbles on G⊕ already before it chose the inputs x0, x1, in
particular independently of x̃.

– For an AND gate g, on the other hand, the garbling table of g consists of four
ciphertexts derived from Eq. (1) as

Encku
(Enckv

(kw)) Enck′
u
(Enckv

(kw))
Encku

(Enck′
v
(kw)) Enck′

u
(Enck′

v
(k′

w)).

Since the roles of the keys are asymmetric, the pebble extraction will depend
on the bits bu, bv, bw running over the wires and the keys kr

u, kr
v, kr

w revealed
during evaluation. A first attempt would be to simply map keys to bits as
ku, kv, kw → 0 and k′

u, k′
v, k′

w → 1, and assign g a pebble if kr
η �→ bη for some

η ∈ {u, v, w}. Unfortunately, this simple idea does not work since a reduction
R might embed its challenge ciphertext c∗ ← Enck∗(m) in the garbling of
an AND gate (recall from Sect. 2.3 that the gates in G∧ receive one input
from an output gate of G⊕ and the other input from their companion gate
within the circuit G⊕). Now, if R embeds the challenge key k∗ at an output
wire of G⊕, it must pebble an output gate in G⊕, hence end up with a bad
pebbling configuration independently of c∗. However, this is not true if R
embeds k∗ at the other input wire of the AND gate. Thus, A must not extract
a pebble for a garbling table that can be derived from an honest garbling table
by embedding a challenge key at this wire. We show in Sect. 4.4 that such
malformed garblings of AND gates either involve guessing the input bits or
they can still be used for our “control mechanism”.

Limits on the Adaptive Security of Yao’s Garbling 497

2.5 Comparison with [15]

While both, [15] and our work, model choices made by a reduction by putting
pebbles on a graph structure, the analogy basically ends there. In [15] an interac-
tive game between a “builder” and a “pebbler” is considered in which the builder
chooses edges and the pebbler decides adaptively whether to pebble them. The
goal of the pebbler is to get into a “good” configuration, and the difficulty for the
reduction (playing the role of the pebbler) there lies in the fact that the graph is
only revealed edge-by-edge. In contrast, in this work the graph structure is ini-
tially known and the game has just two rounds. The difficulty for the reduction
here comes from having to guess the bits running over a subset of wires during
evaluation of the circuit. None of the main ideas from [15] seem applicable in this
setting and vice versa. For example, most of the results in [15] are restricted to
the limited class of so-called oblivious reductions, while our setting doesn’t share
the difficulties encountered in [15]; in particular, our result holds for arbitrary
black-box reductions.

3 Preliminaries

Notation and Definitions. For integers m,n ∈ N with m < n, let [n] :=
{1, 2, . . . , n}, [n]0 := {0, 1, . . . , n}, and [m,n] := {m,m + 1, . . . , n}. For two sets
S,S ′ we write S ⊂ S ′ if S is a (not necessarily strict) subset of S ′. Furthermore,
let log be always base 2. For the classical definitions of IND-CPA and IND-CCA
security of symmetric-key encryption (SKE) we refer the reder to the full version
of this paper.

Garbling Schemes. The definitions are taken mostly from [13]; more details
can be found in [6].

Definition 3.1. A garbling scheme GC is a tuple of PPT algorithms (GCircuit,
GInput,GEval) with syntax and semantics defined as follows.

(C̃,K) ← GCircuit(1λ,C). On inputs a security parameter λ and a circuit C :
{0, 1}n → {0, 1}�, the garble-circuit algorithm GCircuit outputs the garbled
circuit C̃ and key K.

x̃ ← GInput(K,x). On input an input x ∈ {0, 1}n and key K, the garble-input
algorithm GInput outputs x̃.

y = GEval(C̃, x̃). On input a garbled circuit C̃ and a garbled input x̃, the evaluate
algorithm GEval outputs y ∈ {0, 1}�.

Correctness. There is a negligible function ε = ε(λ) such that for any λ ∈ N,
any circuit C and input x it holds that

Pr
[
C(x) = GEval(C̃, x̃)

]
= 1 − ε(λ),

498 C. Kamath et al.

where (C̃,K) ← GCircuit(1λ,C), x̃ ← GInput(K,x).

In this work we only consider the security notion of adaptive indistinguisha-
bility. For reference we provide the definition of the strictly stronger notion of
adaptive simulatability in the full version of this paper.

Definition 3.2 (Adaptive Indistinguishability). A garbling scheme GC is
(ε, T)-adaptively-indistinguishable for a class of circuits C, if for any probabilistic
adversary A of size T = T (λ),

∣∣Pr [GameA,GC(1λ, 0) = 1
] − Pr

[
GameA,GC(1λ, 1) = 1

]∣∣ ≤ ε(λ).

where the experiment GameA,GC,S(1λ, b) is defined as follows:

1. A selects a circuits C ∈ C and receives C̃, where (C̃,K) ← GCircuit(1λ,C).
2. A specifies x0, x1 such that C(x0) = C(x1) and receives x̃b ← GInput(xb,K).
3. Finally, A outputs a bit b′, which is the output of the experiment.

In the indistinguishability game as defined in [6] the adversary can select
two circuits C0,C1 of the same topology and receives a garbling C̃b of one of
them. The choice of input x0, x1 is then restricted to satisfy C0(x0) = C1(x1).
Our notion of indistinguishability is clearly weaker, which strengthens our lower
bound.

Yao’s garbled circuit. In the full version of this paper we describe the variant
[14] of Yao’s garbling scheme ΠF based on a symmetric encryption scheme F
with the special property defined below. Recall that in contrast to the original
scheme, here the output map is sent along with the garbled input in the online
phase.

Definition 3.3 (Special Property of Encryption). We say an encryption
scheme F = (Gen,Enc,Dec) satisfies the special property if for every security
parameter λ, every key k ← Gen(1λ), every message m ∈ M, and encryption
c ← Enck(m) it holds Deck′(c) = ⊥ for all k′ �= k.

4 Lower Bound for Yao’s Garbling Scheme

Let Π denote the variant of Yao’s garbling scheme as analysed in [14]. As
explained in the introduction, we follow the approach in [15] and define two
oracles F and A implementing an ideal SKE scheme and an adversary, respec-
tively, such that A is not helpful in breaking IND-CPA security of F . For the
precise description of F we refer to Sect. 4.5. The (inefficient) threshold adversary
A we define as follows:

1. On input the security parameter in unary, 1λ, the adversary A chooses a
circuit G with input size n = Θ(λ), constant output, and depth δ(d) ∈ O(n)
for a parameter d. The circuit G consists of three parts, i.e., G = G0 ◦G∧ ◦G⊕;
see introduction. A sends G to the challenger.

Limits on the Adaptive Security of Yao’s Garbling 499

2. After receiving G̃, the adversary A chooses x0, x1 ← {0, 1}n uniformly at
random. Note that G(x0) = G(x1) trivially holds since G has constant output.
A sends x0, x1 to the challenger.

3. On receipt of x̃b = (k1, . . . , kn) along with an output mapping, A extracts
a pebbling configuration on the graph G \ G0 corresponding to G∧ ◦ G⊕ as
described in Sect. 4.4. A outputs b′ = 0 if the pebbling configuration is good
as per Definition 4.2, and b′ = 1 otherwise.

4.1 The Circuit

We construct a family of circuits G := {Gd}d∈N
and show that the loss in security

for Gd is sub-exponential in d. The circuit is designed keeping our high-level idea
in mind. The circuit Gd := G0

d ◦G∧
d ◦G⊕

d consists of the three blocks G⊕
d , G∧

d and
G0

d, with underlying graphs denoted by G⊕
d , G∧

d and G0
d, respectively. The graph

G⊕
d (see Fig. 2.(b)) is a so-called tower graph [8], and is obtained from so-called

pyramid graphs of depth d (see Fig. 2.(a)).

– G⊕
d is obtained from G⊕

d by substituting each vertex with an XOR gate as
shown in Fig. 2. On a high level, the pyramid structure ensures high pebbling
complexity whereas the XOR gates preserve (most) entropy in the input ,
which makes it hard for a reduction to obtain correct evaluation of pebbled
gates.

– G0
d consists of a binary tree of AND gates and its sole role is to set the output

of the circuit G to constant 0.8
– G∧

d sits in between the G⊕
d and G0

d blocks (see Fig. 1), and consists of one
AND gate serving as “control” gate for each XOR gate in G⊕

d and each input
gate. Each AND gate g in G∧

d receives its inputs from (i) the output of its
companion XOR gate in G⊕

d (resp. input gate) and (ii) the XOR gate in the
last layer of G⊕

d in (vertical) alignment with g (see Fig. 1, formal definition in
the full version of this paper). As mentioned previously, intuitively, this block
will act as an “error detection” mechanism for the G⊕

d block in the sense that
it helps detect if (malformed) garblings of XOR gates evaluate wrongly.

For a precise description of the circuit and a proof that G is indeed constant,
we refer to the appendix.

4.2 Vulnerability of the Circuit G⊕

In Sect. 4.5 we will prove that any black-box reduction R that aims to use A to
gain advantage in breaking the IND-CPA security of encryption scheme F has to
simulate (G̃, x̃) such that the extracted pebbling configuration on G⊕ contains
d − 1 or d gray or black pebbles. Each of these pebbles implies that at least
one of the ciphertexts associated to that gate must be malformed and modify
8 In principle we could have used constant-0 gates in place of the AND gates, or

simply a single constant-0 gate of high fan-in (which would considerably simplify
the description). But we prefer to stick to the standard Boolean basis.

500 C. Kamath et al.

Fig. 1. Schematic diagram for the candidate circuit of width 5 and depth 4. The input
and output wires are coloured green. The layer number is indicated on the left. The
first two blocks are the XOR and AND layers respectively; the final pyramid denotes
the binary tree. (Color figure online)

the output of some input key pair. In the case that all AND gates are properly
garbled, all keys can be mapped to bits and hence such a switch of the output
can be detected (cf. Lemma 4.6). Thus, we consider the following game.

– On input a circuit C and a parameter d, R chooses a circuit C′ of the same
topology as C such that all except exactly d (non-input) gates coincide with
the corresponding gates in C. R sends C′ to A.

– On receipt of C′, A samples x ← {0, 1}n uniformly at random.
– R wins if for all gates in C′ the output during evaluation on input x coincides

with the corresponding output bit when evaluating C.

We now prove that for C = G⊕, no algorithm R wins the above game with
non-negligible (in d) probability.

Lemma 4.1. Let d ∈ [1, n]. For G = G⊕ and any R, the probability that R wins
the above game is at most (34)

√
d/4.

First, note that all except d gates in G′ are XOR gates, and in particular a
linear function over Z2. For each of the remaining d malformed gates, on the
other hand, at least one input pair is mapped to a different output bit than it
would be in an XOR operation. We call the corresponding gates in the original
circuit G⊕ pebbled. To prove Lemma 4.1, we will show that there exists a subset
of at least

√
d/4 of those d pebbled gates such that their input is determined by

independent linear functions. This implies that instead of choosing x ← {0, 1}n,

Limits on the Adaptive Security of Yao’s Garbling 501

Fig. 2. The graphs and the circuit for parameter d = 6: (a) A pyramid graph of depth
d, (b) Extending the pyramid graph to get a tower graph G⊕

d of depth d and (c) Circuit
G⊕

d obtained replacing the vertices in G⊕
d with XOR gates.

A can equivalently choose the
√

d/2 input bits uniformly at random, and then
choose x uniformly under the constraint that the values running over these wires
during evaluation of G⊕ must be consistent with the predetermined bits. Clearly,
x chosen this way is still uniformly random in {0, 1}n. By definition of the game,
R only wins the game if for all gates in G′ the output during evaluation on input
x coincides with the corresponding output bit when evaluating G, and this must
in particular also hold for the pebbled gates. Since each of the malformed gates
in G′ flips the output of at least one of the four possible input pairs, and the input
bits of

√
d/4 of the pebbled gates were chosen independently and uniformly at

random, the probability that R wins is at most (34)
√

d/4.
Towards proving Lemma 4.1, let M denote the linear mapping corresponding

to one layer of gates in the circuit G⊕, i.e., written in matrix notation,

M =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 . . . 0 0 0
0 1 1 . . . 0 0 0
...

. . .
...

0 0 0 . . . 0 1 1
1 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

The output of the μth layer of G⊕ on input x ∈ {0, 1}n is given by Mμ ·x, hence
we denote the degree-1 polynomial in Z2[x1, . . . , xn] which determines its ν-th
bit by Mμ

ν (for μ ∈ [0, n] and ν ∈ [1, n]). Denoting by ν + 1 the representation
of the residue class ν + 1 mod n in [n], we have e.g.,

M0
ν = xν , M1

ν = xν⊕xν+1, M2
ν = xν⊕xν+2, M3

ν = xν⊕xν+1⊕xν+2⊕xν+3

and in general it holds
Mμ

ν = Mμ−1
ν ⊕ Mμ−1

ν+1
(2)

for all μ ∈ N, ν ∈ [1, n]. In the following we will associate gates with the corre-
sponding polynomials that determine their outputs.

502 C. Kamath et al.

If the input length n is odd – for convenience we assume n to be one less
than a power of 2 – then G⊕ maintains high entropy; to prove this, we use the
following explicit representation of the polynomials Mμ

ν .

Lemma 4.2 (explicit formula for the polynomials Mμ
ν). Let n = 2κ − 1,

κ ∈ N, M defined above, μ ∈ N, and ν ∈ [1, n]. For μ �= n and βk ∈ {0, 1} its
binary decomposition, i.e. μ =

∑
k∈[0,κ−1] βk2k, it holds:

Mμ
ν =

⊕
i∈[1,n]

αixi, where αi =

{
1 if i ∈ ν +

∑
k∈[0,κ−1] {0, βk} · 2k mod n,

0 else.

(3)
Note, Mμ

ν only depends on μ, not on μ. For μ = n = 2κ − 1, it holds:

Mμ
ν =

⊕
i∈[1,n]

αixi, where αi =

{
1 if i �= ν,

0 else.
(4)

A proof of Lemma 4.2 can be found in the full version of this paper. Lemma
4.2 directly implies several useful properties, which we summarize in the following
corollary.

Corollary 4.1 (Properties of M and G⊕). For M defined as above, n =
2κ − 1, κ ∈ N, it holds

1. M2κ

= M , which implies rank(Mk) = n − 1 for all k ≥ 1, i.e., G⊕ = Md is
2-to-1 for any d.

2. Any n − 1 output bits of Mk (k ≥ 1) are determined by linearly independent
degree-1 polynomials.

3. Image(G⊕) = {x = (x1, . . . , xn) ∈ {0, 1}n | ⊕
i∈[1,n] xi = 0}, i.e., all vectors

in the image of G⊕ contain an even number of 1s.

The first property immediately follows from Lemma 4.2 since for μ = 2κ we
have μ = 1. The second property then follows from rank(Mk) = n − 1. For
the last property, note that the set ν +

∑
k∈[0,κ−1] {0, βk} · 2k mod n is even

whenever a single bit βk is nonzero (which is true for all μ > 0), and also the
set {i ∈ [n] | i �= ν} is even since n is odd.

The following Lemma immediately implies Lemma 4.1, a proof can be found
in the full version of this paper.

Lemma 4.3. Any subset S ⊂ {Mμ
ν }μ∈[0,n],ν∈[1,n] of polynomials in

Z2[x1, . . . , xn] with s := |S| contains a subset S ′ of size
√

s/4 such
that |parents(S ′)| =

√
s/2 and parents(S ′) is linearly independent, where

parents(Mμ
ν) := {Mμ−1

ν ,Mμ−1

ν+1
}.

Lemma 4.1 now follows, since for any set of d pebbled gates, by Lemma 4.3
there exists a subset S ′ of

√
d/4 pebbled gates such that their parents are distinct

and form a linearly independent set.

Limits on the Adaptive Security of Yao’s Garbling 503

4.3 Pebbling Game and Threshold

Recall that in Yao’s garbling scheme, each gate g is associated with a (honest)
garbling table g̃, which consists of four double encryptions that encode g’s gate
table. However, a reduction is free to alter the contents of the honest garbling
table in any way. In fact, the upper bounds in [14,16] crucially rely on the ability
to do this in an indistinguishable manner: in the real game the garbling tables
are all honest, whereas in the simulated game the garbling tables all encode the
constant-0 gate, and the hybrids involve replacing the honest garbling tables
one by one with that of the constant-0 gate.9 We introduce a pebble game to
precisely model such different simulations of the garbled circuit G̃ (by the reduc-
tion). Loosely speaking, the extracted pebble configuration is an abstract repre-
sentation of the simulation (G̃, x̃b), and the pebbling rules model the reduction’s
ability to maul garbling tables in G̃ without being noticed (indistinguishability).

The pebbles. Intuitively, the pebble on a gate g encodes how “different” the
garbling table g̃′ which A receives is from an honest garbling g̃. To this end, we
employ three different pebbles: white, gray and black.

– A white pebble on g indicates that g̃′ and g̃ are at “distance” 0 (defined
below), i.e., g̃ is (distributed identically to) an honest garbling table of g.

– A gray or black pebble on g indicates that g̃′ is malformed. What differentiates
gray from black is the degree of malformation: loosely speaking, a gray pebble
indicates that g̃′ is at a distance 1 from g̃, whereas a black pebble indicates
that g̃′ is at a distance 2 (or more).

To understand what we mean by distance, we need to take a closer look at the
structure of a garbling table. An honest garbling table g̃ consists of the four
double encryptions shown in Table 1.(a). We assign a gray pebble to a gate g if
the garbling table of g in G̃ can be proven indistinguishable from g̃ by embedding
a single IND-CPA challenge key (among k0

u, k1
u, k0

v and k1
v). For example, let’s

consider an AND gate and its honest garbling table (Table 1.(b)): a malformed
table that is at distance one (via the key k1

u or k1
v) from it is, e.g., a garbling

table that encodes the constant-0 gate (Table 1.(d)). A garbling of an XOR gate,
in contrast, is at distance 2 from a garbling of a constant gate: If ka

u and kb
v are

the keys revealed during evaluation, then the garbling of an XOR gate can be
proven indistinguishable from the constant-(a ⊕ b) gate only by first embedding
a challenge key at k1−a

u and then a second challenge key at k1−b
v , or vice versa;

i.e. the reduction needs to embed challenges at each input wire.

9 Note, this simulation crucially relies on the fact that keys can be equivocated : While
the output keys are all associated to 0, when altering the output mapping accordingly
evaluation will still succeed. Note that in the selective setting for Yao’s original
scheme as well as in the adaptive setting for the modified scheme [14] the input is
known before the output mapping is sent.

504 C. Kamath et al.

Table 1. Garbling tables for (a) general gate g, (b) AND gate, (c) XOR gate, and (d)
constant-0 gate. u and v denote the two input wires, whereas w denotes the output
wire.

Ek0
u
(Ek0

v
(k

g(0,0)
w)) Ek0

u
(Ek0

v
(k0

w)) Ek0
u
(Ek0

v
(k0

w)) Ek0
u
(Ek0

v
(k0

w))

Ek1
u
(Ek0

v
(k

g(1,0)
w)) Ek1

u
(Ek0

v
(k0

w)) Ek1
u
(Ek0

v
(k1

w)) Ek1
u
(Ek0

v
(k0

w))

Ek0
u
(Ek1

v
(k

g(0,1)
w)) Ek0

u
(Ek1

v
(k0

w)) Ek0
u
(Ek1

v
(k1

w)) Ek0
u
(Ek1

v
(k0

w))

Ek1
u
(Ek1

v
(k

g(1,1)
w)) Ek1

u
(Ek1

v
(k1

w)) Ek1
u
(Ek1

v
(k0

w)) Ek1
u
(Ek1

v
(k0

w))

(a) (b) (c) (d)

Pebbling rules. To complete the description of a pebble game, we need to describe
the pebbling rules. These rules essentially capture the following observation:
a reduction (with overwhelming probability) cannot possess encryptions of its
(IND-CPA) challenge key. Therefore, whenever the garbling table g̃ of a gate g
has been switched to a malformed garbling g̃′ (say) at distance one, (at least)
one of the garbling tables associated to its predecessor gates, say gu, must have
been first switched to a garbling that encodes only one of gu’s output keys. This
is required to “free up” one of gu’s output keys (so that it can now be set as
the challenge key). Looking ahead, we will be interested in pebbling the circuit
G⊕ which consists of XOR gates only. Hence, the pebbling rules are designed to
capture the structure of XOR gates. Recall that an XOR gate is at distance 2
from a constant gate, thus, we end up with the following rules (where gu and gv

denote the two predecessors of g):

1. a gray pebble can be placed on or removed from a gate g only if (at least)
one of its predecessor gates (say gu) carries a black pebble; and

2. a gray pebble on a gate g can be swapped with a black pebble if the other
predecessor gate (i.e., gv) carries a black pebble.

The actual game. The above white-gray-black (WGB) pebble game is a simplified
version of the (WG3B) pebble game we end up using, but it is sufficient to con-
vey the essential ideas that we use. The actual game, defined in Definition 4.1
(Sect. 4.3), is more fine-grained: in order to keep track of the inner and outer
encryptions, we introduce three types of gray pebbles (gray-left, gray-right and
gray-free), and the pebbling rules are also modified accordingly.

Definition 4.1 (Reversible WG3B pebbling game for indegree-2 graphs).
Consider a directed acyclic graph G = (V, E) with V = [1, S] and let X =
{W, G∗, GL, GR, B} denote the set of colours of the pebbles. Consider a sequence
P := (P0, . . . ,Pτ) of pebbling configurations for G, where Pi ∈ X V for all i ∈
[0, τ]. We call such a sequence a WG3B pebbling strategy for G if the following
two criteria are satisfied:

1. In the initial configuration all the vertices are pebbled white (i.e., P0 =
(W, . . . , W)) and in the final configuration at least one sink of G is pebbled
gray (i.e., Pτ = (. . . , G·, . . .)), where G. denotes an arbitrary type of gray, i.e.
G. ∈ {G∗, GL, GR}.

Limits on the Adaptive Security of Yao’s Garbling 505

2. Two subsequent configurations differ only in one vertex and the following rules
are respected in each move:
(a) W ↔ G∗: a white pebble can be replaced by a G∗ pebble (and vice versa) if

one of its parents is black-pebbled
(b) W/G∗ ↔ GL: a white or G∗ pebble can be replaced by a GL pebble (and vice

versa) if its left parent is black-pebbled
(c) W/G∗ ↔ GR: a white or G∗ pebble can be replaced by a GR pebble (and vice

versa) if its right parent is black-pebbled
(d) GL ↔ B: a GL pebble can be replaced by a black pebble (and vice versa) if

its right parent is black-pebbled
(e) GR ↔ B: a GR pebble can be replaced by a black pebble (and vice versa) if

its left parent is black-pebbled

The space-complexity of a WG3B pebbling strategy P = (P0, . . . ,Pτ) for a DAG
G is defined as

σG(P) := max
i∈[0,τ]

|{j ∈ [1, S] : Pi(j) ∈ {G∗, GL, GR, B}}|.

For a subgraph G′ induced on vertex set V ′ ⊂ V, the space-complexity of P
restricted to G′ is defined as

σ|G′(P) := max
i∈[0,τ]

|{j ∈ V ′ : Pi(j) ∈ {G∗, GL, GR, B}}|.

The space-complexity of a DAG G is the minimum space-complexity over all of
its strategies PG:

σ(G) := min
P∈PG

σG(P). (5)

The following lemma gives a lower bound on the WG3B pebbling complexity
of the graph G \ G0 underlying the first two blocks G∧ ◦ G⊕ of our candidate
circuit G. A proof can be found in the full version of this paper.

Lemma 4.4 (Pebbling lower bound on G \ G0). Let G \ G0 be the graph
underlying the circuit G∧ ◦ G⊕. To gray-pebble a gate on layer d′ ∈ [1, d + 1]
following the reversible WG3B pebbling rules from Definition 4.1, one requires
space-complexity at least d′ − 1. Furthermore, to GL- or B-pebble a gate on layer
d′ ≥ d + 1, one requires at least d gray or black pebbles simultaneously on the
first d layers.

The following definition now gives a cut in the configuration graph; our adver-
sary A will be a threshold adversary with respect to this cut.

Definition 4.2 (Good pebbling configurations). A pebbling configuration
P on DAG G \ G0 is called good if it is reachable by reversible WG3B pebbling
moves using less than d gray or black pebbles on the first d layers simultane-
ously, i.e., there exists a WG3B pebbling strategy P := (P0, . . . ,P) for G such that
σ|G⊕(P) ≤ d − 1.

In particular, by Lemma 4.4, any pebbling configuration P with a GL or B
pebble on a gate in G∧ is bad.

506 C. Kamath et al.

4.4 Extraction of Pebbling Configuration on G \ G0

In this section we will discuss how to extract such a pebbling configuration.
Note, that A is computationally unbounded, hence can extract messages and
keys from ciphertexts by brute-force search.

1. First, check whether (G̃, x̃) evaluates correctly, i.e., GEval(G̃, x̃) = G(x0).
If the evaluation check passes, check whether G̃, x̃ have the correct syntax:
Check whether G̃ consists of four ciphertexts for each gate, which have the
following form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(m2)),
{c3, c4} = {Enck2(m3),Enck2(m4)},

(6)

for distinct keys k1, k2, k3, k4, k5 and arbitrary (not necessarily distinct) mes-
sages m2,m3,m4, where keys k1 and k3 are revealed during evaluation
GEval(G̃, x̃). I.e., two of the four ciphertexts are encryptions under the same
left secret keys k1 and k2, respectively, one of them is a double encryption
Enck1(Enck3(k5)) under left key k1 and some right key k3 of an output key k5
(all these being revealed throughout evaluation), and the second encryption
under k1 encrypts an encryption under a second right key k4 (of an arbitrary
message m2).
Finally, check consistency of keys: For each gate, extract key pairs (k1, k2)
and (k3, k4) corresponding to left and right input wires, and check whether
they are consistent with the keys extracted from sibling gates: If gate g is the
left sibling of g′, then g’s right input key pair must coincide with the left key
pair extracted from g′, i.e., (k3, k4) = (k′

1, k
′
2). Note, if this check passes, then

all wires in the circuit can be uniquely associated with a key pair. Finally,
check that all extracted keys are distinct.
If any of these checks fails, map (G̃, x̃) to a bad pebbling configuration, e.g.,
to the pebbling configuration on G where all gates at levels [d + 1, 2d + 1] are
black pebbled10 and quit.

Remark 4.1. Note, syntax and consistency checks allow a reduction to distin-
guish

– a ciphertext from a non-ciphertext,
– a ciphertext under key k from a ciphertext under key k′ �= k.

We will argue in Sect. 4.5 that this is of no help to the reduction for breaking
IND-CPA security of the information-theoretic encryption scheme F .

For all garblings (G̃, x̃) that pass correctness, syntax, and consistency checks, A
will extract a pebbling configuration on G \ G0 by mapping each gate to a color
in {W, G∗, GL, GR, B}.
10 This choice was made for convenience (see Lemmas 4.6 to 4.8), but in principle could

be an arbitrary bad configuration, and should simply guarantee that no reduction
can gain any advantage by departing from the protocol in an obvious way.

Limits on the Adaptive Security of Yao’s Garbling 507

2. For each XOR gate gj (j ∈ [1, d] · n + [0, n]): Check whether gj is garbled
correctly with respect to input x0. To this aim, let bl, br, and bo = gj(bl, br) =
bl ⊕br denote the left/right input and the output bit of gj , respectively, when
evaluating G on x0. We use the same notation as in Eq. 6 above; furthermore,
let k6 be the second key associated with the output wire (which was extracted
from the garbling tables of the successor gates).

– If gj is garbled similar to the case of an honest garbling of (G, x0), i.e.,
m2 = k6, m3 = Enck3(k6), and m4 = Enck4(k5) (or the roles of m3,m4

permuted), then associate gj with a W pebble.
– If m2 and m3 are as in the previous case, but m4 = Enck4(m) for some

message m �= k5, then associate gj with a G∗ pebble. Similarly for the
case where the roles of m3,m4 are permuted.

– If m3 is as in the first case, m4 = Enck4(m) for an arbitrary message m,
but m2 �= k6, then associate gj with a GR pebble. Similarly for the case
where the roles of m3,m4 are permuted.

– If m2 = k6 is as in the first case, but {m3,m4} differs from the previous
cases, then associate gj with a GL pebble.

– For all other cases, associate gj with a B pebble.

Remark 4.2. Due to symmetry of the XOR operation, whether a gate is consid-
ered properly garbled (i.e. mapped to a white pebble) or not (i.e. mapped to
gray or black) does not depend on the input keys. Thus, the set of black and
gray pebbles on G⊕ can be extracted independently of x0 and x̃.

3. For each AND gate gj (j ∈ [d + 1, 2d + 1] · n + [0, n]): Similar to the case of
XOR gates, check whether the gate is correctly garbled with respect to x0.
Using the same notation as above, associate gj with a pebble as follows:

– If gj is garbled similar to the case of an honest garbling of (G, x0), i.e.,
for

(bl, br) = (0, 0), we have m2 = k5, m3 = Enck3(k5), and m4 =
Enck4(k6),
(bl, br) = (0, 1), we have m2 = k5, m3 = Enck3(k6), and m4 =
Enck4(k5),
(bl, br) = (1, 0), we have m2 = k6, m3 = Enck3(k5), and m4 =
Enck4(k5),
(bl, br) = (1, 1), we have m2 = k6, m3 = Enck3(k6), and m4 =
Enck4(k6),
(or the roles of m3,m4 permuted) then associate gj with a W pebble.

– If m2 and m3 are as in the previous case, but m4 = Enck4(m) for some
message m that differs from above, then associate gj with a G∗ pebble.
(Similarly for the case where the roles of m3,m4 are permuted.)

– If m3 is as in the first case, m4 = Enck4(m) for an arbitrary message m,
but m2 differs from the previous case, then associate gj with a GR pebble.
(Similarly for the case where the roles of m3,m4 are permuted.)

– If m2 is as in the first case, but {m3,m4} differs from the previous cases,
then associate gj with a GL pebble.

– For all other cases, associate gj with a B pebble.

508 C. Kamath et al.

Remark 4.3. At first sight, it might seem counterintuitive that the mapping from
gates to colours not only depends on the associated ciphertexts, but also on the
input x0. This however is unavoidable since the adversary A cannot simply map
keys to bits, but can only relate them to the keys it learned from x̃, which might
be properly garbled or not.

In the following lemma, we prove that the adversary A using the above
pebbling extraction indeed breaks indistinguishability of Yao’s garbling scheme.
A proof can be found in the full version of this paper.

Lemma 4.5. A breaks indistinguishability of the garbling scheme with probabil-
ity 1 − 1/2n−1.

Since A extracts the pebble mode of a gate with regard to the garbled input
(i.e., the keys it learns through evaluation), the reduction can still change the
mode of a gate after it output G̃ by choosing different input keys for x̃. In the
following lemmas we prove that this flexibility of choosing the input keys is of
not much help to a reduction aiming at a good pebbling configuration, where in
particular all gates at layers [d + 1, 2d + 1] are mapped to W, G∗, or GR pebbles.

First, we consider the case of a properly garbled AND gates. In this case, due
to the asymmetry of the AND operation, input keys can be associated with bits
and hence a properly garbled layer of AND gates has a similar function as an
output mapping. A proof can be found in the full version of this paper.

Lemma 4.6. For any garbling of an AND gate on layer [d + 1, 2d + 1], and any
input bits bl, br, there exists at most one input key pair (k1, k3) such that the
gate will be mapped to a W pebble.

The situation becomes a bit more involved if AND gates are not properly garbled,
since in this case asymmetry might be broken. However, if the left input keys
can be mapped to bits, then we can still obtain some meaningful guarantees. We
first consider the case that an AND gate is garbled in G∗ mode, i.e. one ciphertext
is malformed and there exist some input bits (bl, br) such that it will be mapped
to a G∗ pebble. In the following Lemma we prove that for a different right input
bit 1− br the gate will be mapped to a GL pebble instead. A proof can be found
in the full version of this paper.

Lemma 4.7. For any garbling of an AND gate, any left input bit bl, and fixed
left input key, there exists at most one br ∈ {0, 1} such that there exists a (not
necessarily unique) right input key such that the gate will be mapped to a G∗
pebble. If such a right input bit br exists, then for right input bit 1 − br the gate
will be mapped to a GL pebble.

Next we consider the case of an AND gate that is garbled in GR mode w.r.t.
some input bits (bl, br). In this case we have to distinguish two different ways to
garble a gate such that it will be mapped to a GR pebble. For one type of GR

pebble we can map keys to bits, just as in the case of properly garbled gates. For
the second type of GR pebble we obtain a similar guarantee as for G∗ pebbles. A
proof can be found in the full version of this paper.

Limits on the Adaptive Security of Yao’s Garbling 509

Lemma 4.8. For any garbling of an AND gate on layer [d + 1, 2d + 1], any left
input bit bl, and fixed left input key, one of the following is true:

1. For any right input bit br ∈ {0, 1} there exists at most one right input key
such that the gate will be mapped to a GR pebble. If such a key exists, then
for any other right input key the gate will be mapped to a B pebble.

2. There exists at most one input bit br ∈ {0, 1} such that there exists a right
input key kr such that the gate will be mapped to a GR pebble. If such a bit
exists, then for right input bit 1 − br and any right input key the gate will be
mapped to a B pebble.

These two cases characterize two different types of GR pebbled gates, where we
denote a gate as GR-type-1 if case 1 is true, and GR-type-2 if only case 2 is true.

4.5 Lower Bound on Security Loss for Any Reduction

In this section we will combine all previous results to prove a lower bound on
adaptive security of Yao’s garbling scheme. More precisely, we will prove that any
black-box reduction which aims to exploit A’s distinguishing advantage to break
IND-CPA security of the underlying encryption scheme loses a factor subexpo-
nential in the depth of the circuit.

Let R be an arbitrary PPT reduction which has black-box access to an
adversary A that breaks indistinguishability of Yao’s garbling scheme, and
attempts to solve an IND-CPA challenge with respect to an encryption scheme
(Gen,Enc,Dec). Following the approach of Kamath et al. [15], we define an
information-theoretically secure encryption scheme F = (Gen,Enc,Dec) as fol-
lows: For l ∈ {1, 6}, let El : {0, 1}(l+2)λ → {0, 1}2(l+2)λ be a random expanding
function (which is injective with overwhelming probability).

– Key generation Gen(1λ): On input a security parameter λ in unary, output a
key k ← {0, 1}1=∗ uniformly at random.

– Encryption Enc(k,m): On input a key k ∈ {0, 1}λ and a message m ∈ {0, 1}l·λ

with l ∈ {1, 6}, sample randomness r ← {0, 1}λ, and output El(k,m; r).
– Decryption Dec(k, c) is simulated to be consistent with Enc: On input a key

k ∈ {0, 1}λ and a ciphertext c ∈ {0, 1}2(l+2)λ with l ∈ {1, 6}, check whether c

lies in the image of El(k, ·; ·), if so extract m ∈ {0, 1}l·λ
, r ∈ {0, 1}λ such that

c = El(k,m; r) and output m, otherwise output ⊥.

Choosing El (l ∈ {1, 6}) to be random functions implies that F is information-
theoretically IND-CCA secure. Thus, since R only makes polynomially many
queries, the only non-negligible advantage R has in breaking the IND-CPA secu-
rity of F must stem from its interaction with A. Furthermore, with all but
negligible (in λ) probability F satisfies the special property (Definition 3.3),
hence can be used in Yao’s garbling scheme.

We first argue that neither checking correctness, syntax, nor consistency (cf.
Sect. 4.4) is of any help to R. Obviously, this is true for the correctness check,

510 C. Kamath et al.

since R can efficiently evaluate GEval(G̃, x̃). However, we have to argue a bit
more to prove that also syntax and consistency checks are of no help to R. To
this aim, we construct an oracle O that allows to distinguish

– a ciphertext from an arbitrary string in {0, 1}2(l+2)λ for l ∈ {1, 6},
– a ciphertext under key k ∈ {0, 1}λ from a ciphertext under key k′ �= k.

More precisely, O takes as input two strings s ∈ {0, 1}2(l+2)λ and s′ ∈
{0, 1}2(l′+2)λ (l, l′ ∈ {1, 6}) and checks whether s, s′ lie in the image of El,El′ ,
respectively. If this check fails for one of the strings, then O outputs ⊥. Oth-
erwise, it extracts preimages (k,m, r) ∈ {0, 1}(l+2)λ under El and (k′,m′, r′) ∈
{0, 1}(l′+2)λ under El′ . If k = k′, O outputs 1, otherwise 0.

In the full version of this paper we first show that access to oracle O allows
R to efficiently carry out syntax and consistency checks, and then prove that
F remains information-theoretically IND-CPA secure even against adversaries
that have access to O.

Now, to prove that any black-box reduction from indistinguishability of Yao’s
garbling scheme to IND-CPA security of the underlying encryption scheme suf-
fers from a loss that is subexponential in the depth δ of the circuit, we construct
an adversary A[c∗] that behaves just like A but doesn’t decrypt challenge cipher-
text c∗. More precisely, A[c∗] with input a ciphertext c∗, has oracle access to O,
F , as well as an IND-CCA decryption oracle Deck∗ that it can query on any
ciphertext c �= c∗. We construct A[c∗] such that it never decrypts c∗ unless it
already knows the encryption key k∗ from other keys and ciphertexts in G̃, x̃:

– First A[c∗] runs evaluation, syntax, and consistency checks using oracle O. If
these checks pass, similar to A, the algorithm A[c∗] uses brute-force search to
decrypt all ciphertexts except for those encrypted under k∗ (to check whether
a ciphertext is encrypted under k∗ it uses O and c∗). Ciphertexts c �= c∗

encrypted under k∗ it decrypts using oracle Deck∗ . For c∗, there are two
cases:

• If the key k∗ was learned from previous decryptions (this can be checked
by decrypting c∗ under all known keys), A[c∗] simply decrypts c∗ using
k∗.

• If the k∗ is not known to A[c∗], then it simply assumes c∗ ∈ {0, 1}2(l+2)λ

with l ∈ {1, 6} would decrypt to 0l·λ.
A[c∗] then continues analogous to A by mapping (G̃, x̃) to a pebbling con-
figuration and outputting 0 whenever the pebbling configuration is good per
Definition 4.2, and 1 otherwise.

Clearly, since A[c∗] never decrypts c∗ except if k∗ is known, there is no chance
for R to use A[c∗] to break IND-CPA security of F .11 It remains to bound the
success probability of any PPT distinguisher D to distinguish A[c∗] from A.12

11 Recall that our ideal encryption scheme F is IND-CCA secure, hence access to the
oracle Deck∗ used by A[c∗] is of no help to R.

12 Note, we assume that A[c∗] has private access to its oracles and D cannot observe
its oracle queries to distinguish it from A.

Limits on the Adaptive Security of Yao’s Garbling 511

To this aim, we will first show how the WG3B pebbling game relates to this issue.
A proof of the following Lemma can be found in the full version of this paper.

Lemma 4.9. Let c∗ ← Enck∗(m) be an arbitrary ciphertext and let P, P∗ be the
two pebbling configurations extracted by A and A[c∗], respectively, in the same
execution of the game, i.e. using the same randomness. Then P∗ differs from P
by at most one valid WG3B pebbling move.

We will now bound the distinguishing advantage of DF . Recall that a pebbling
configuration on G \ G0 is good per Definition 4.2 if it can be reached by WG3B
pebbling moves using at most d − 1 pebbles on the first d layers. Thus, by
Lemma 4.9, any successful distinguisher D has to simulate G̃ and x̃ such that
the pebbling configurations P,P∗ on G extracted by A and A[c∗], respectively,
contain exactly d−1 or d black and gray pebbles on the first d layers (depending
on the IND-CPA challenge bit b∗), contain only W, G∗, and GR pebbles on higher
layers, and differ by a valid WG3B pebbling move within layers [1, d + 1].

In the following we will first restrict our analysis to non-rewinding distin-
guishers and assume x0, x1 were chosen uniformly at random by A after it sees
G̃. Finally we will discuss how to slightly modify our adversary A to also cover
the case that D chooses A’s randomness and rewinds A.

To bound the success probability of D, let r be arbitrary random coins and
consider two cases:

(1) there exists s such that the output of A(s) and A[c∗](s) after interaction with
D(r, c∗) differs and in P and P∗ there are more than d̄ G∗ and GR-type-2 (as
defined in Lemma 4.8) pebbles in layers [d + 2, 2d + 1],

(2) there exists s such that the output of A(s) and A[c∗](s) after interaction
with D(r, c∗) differs and in P and P∗ there are at most d̄ G∗ and GR-type-2
pebbles in layers [d + 2, 2d + 1].

We leave the parameter d̄ < d/3 undefined for now and optimize it later. In
Lemmas 4.10 and 4.11, we will argue that, intuitively, in both cases the distin-
guisher D must have correctly guessed many of the input bits in x0.

Lemma 4.10. Let r be arbitrary coins such that case (1) is true. Then the
probability (over uniformly random coins s) that the output of A(s) and A[c∗](s)
differs after interaction with D(r, c∗) is at most (3/4)

√
d̄/7.

Proof. To prove this lemma, we will use Lemmas 4.6 to 4.8. First, note that D
can only succeed if at most one of the gates at layer d + 1 is not mapped to a W
pebble, since the adversary A outputs 1 whenever any gate at layer d+1 is not W
pebbled. Now, by Lemma 4.6, there is at most one pair of input keys to an AND
gate that leads to this gate being mapped to a W pebble. As the input to all but
one gate at layer d+1 comprises all input to layer d+1, this implies that D can
only succeed, if it properly garbles all gates at layer d + 1 and the input keys
which are revealed through GEval(G̃, x̃) are associated with the corresponding
bits in G⊕(x0).

512 C. Kamath et al.

Next, consider the AND gates at layers [d + 2, 2d + 1]. For D to succeed, these
gates must not end up GL or B pebbled. Since all these gates have their left input
from layer d and by the previous argument all these keys are fixed, we can apply
Lemmas 4.7 and 4.8: Let S denote the set of d̄ gates in layers [d + 2, 2d + 1] that
are mapped to G∗ or GR-type-2 pebbles (for some random coins s such that (1)
is true). Then by Lemma 4.3 there exists a subset S ′ ⊆ S of size

√
d̄/4 such

that the set of right parents SR of S ′ is linearly independent over Z2; and for
each gate g ∈ S ′ left and right parent are linearly independent. To see that the
latter is true, note that any subset smaller than n of gates within one layer or
within one column is linearly independent (cf. Lemma 4.2). It directly follows
that left and right parents of any gate g ∈ S ′ since they lie in the same column.
Furthermore, the set of left parents SL to S ′ is linearly independent since it is a
subset of ≤ d̄ < n gates at layer d.

To argue that D must have guessed many of the right input bits to S∧

correctly, we use the following simple result from linear algebra. A proof can be
found in the full version of this paper.

Claim. Let m ∈ [1, n] and S1 = {ui}i∈[1,m] a subset of {0, 1}n that is linearly
independent over Z2. Let S2 = {vi}i∈[1,m] be a multiset of elements in {0, 1}n

such that S2 as a set is linearly independent over Z2. Furthermore, assume
{ui, vi} is linearly independent for all i ∈ [1,m]. Then there exists an index set
I ⊂ [1,m] of size |I| = �m/4� such that

⋃
i∈I{ui}∪{vi} is linearly independent.

Since the multiset SL and the set SR of left and right parents of S ′ are linearly
independent (as sets), respectively, and for any g ∈ S ′ left and right input to
G are linearly independent, we can apply the claim to obtain a subset S ′′ ⊂ S ′

of size |S ′|/4 such that the union of the parents of S ′′ is linearly independent.
For S ′′, we can now use Lemmas 4.7 and 4.8 to see that any successful D must
have correctly guessed all right input bits to S ′′; i.e., for s sampled uniformly at
random, the probability that D succeeds is at most (1/2)|S

′′|. As |S ′| ≥
√

d̄/4, the
probability that D succeeds can be upper-bounded by (1/2)

√
d̄/16 < (3/4)

√
d̄/7.

��
Lemma 4.11. Let r be arbitrary coins such that case (2) is true. Then the
probability (over uniformly random coins s) that the output of A(s) and A[c∗](s)

differs after interaction with D(r, c∗) is at most (3/4)
√

d−3d̄/4.

Proof. Recall that whenever the consistency check passes, each wire in G̃ can be
uniquely associated with two keys. Now, in case (2), for all but d̄ wires in G\G0

the following holds: By Lemmas 4.6 and 4.8, for each bit running over the wire
w in G, there exists at most one key associated with w in G̃⊕ such that the AND
gates with right input wire w is mapped to a “good” (W or GR-type-1) pebble,
while for the other key associated to w it would be mapped to a “bad” pebble
(GL or B). Note that in the latter case D immediately fails.

This allows us to map keys associated with wires in G̃⊕ to bits, hence implies
a mapping from (G̃, x̃) to a circuit Ĝ and input x̂, where Ĝ contains at most 3d̄

Limits on the Adaptive Security of Yao’s Garbling 513

“undefined” gates (note, each internal wire effects 3 gates in G⊕). Now, for D to
succeed, it has to simulate (G̃, x̃) such that at least d′ := d − 3d̄ “well-defined”
gates in the circuit Ĝ differ from XOR gates and x̂ = x0. At the same time, all
input and output wires of the well-defined gates have to carry the correct bits
during evaluation (for “evaluation” of Ĝ on x̂ we apply the mapping from keys to
bits to Eval(G̃, x̃) to extract a bit for all wires connected to well-defined gates).

Ignoring the undefined gates in Ĝ, this exactly corresponds to the game intro-
duced in Sect. 4.2: D simulates a circuit such that all but d′ gates are garbled
correctly as XOR gates, and D succeeds, if for all gates the (input and) out-
put bits correspond to the respective bits during evaluation of G⊕ on input x0.
Lemma 4.1 now implies an upper bound on D’s success probability in case (2):
Pr[D succeeds in case (2)] ≤ (3/4)

√
d′/4 = (3/4)

√
d−3d̄/4. ��

Thus, Lemmas 4.10 and 4.11 imply the following bound on any non-rewinding
PPT distinguisher D (choose d̄ = d/4):

Corollary 4.2. No non-rewinding PPT distinguisher DF can distinguish A[c∗]
from A with probability larger than (3/4)

√
d/14.

To handle arbitrary – potentially rewinding – distinguishers D, we modify A
as follows: Instead of sampling x0, x1 using random coins s, we assume a pseu-
dorandom function fk with uniformly random key k was hardcoded in A, which
takes as input a garbled circuit G̃ and coins s, and outputs a tuple (x0, x1). Since
D only has black-box access to A/A[c∗], the secret key k is hidden from D, thus
for two different inputs (G̃, s), (G̃′, s′) to A/A[c∗] the input pairs (x0, x1), (x′

0, x
′
1)

look like independently sampled uniformly random strings.
With this modification in place, we finally arrive at the following lower bound

on the security loss of any black-box reduction R (where we used δ < 3d, hence√
d/14 >

√
δ/25). Note that our bounds naturally only apply to d ≤ n, hence

we assume δ < 2n in our theorem statement.

Theorem 4.1. Any black-box reduction from the indistinguishability of Yao’s
garbling scheme (or its variant from [14]) on the class of circuits with input
length n and depth δ ≤ 2n to the IND-CPA security of the underlying encryption
scheme loses at least a factor 1

q ·(43)
√

δ/25 > 1
q ·2

√
δ/61, where q denotes the number

of times the reduction rewinds the adversary.

5 Discussion and Open Problems

In this work we prove that any black-box reduction from indistinguishability
of (the modification [14] of) Yao’s garbling scheme to IND-CPA security of
the underlying encryption scheme must involve a loss in security that is sub-
exponential in the depth of the circuit. This clearly also implies limitations to
the stronger and more common simulation-based security and shows that the
approach of [14] is essentially optimal. However, we leave it to future work if

514 C. Kamath et al.

our fine-grained separation can be turned into an actual attack against Yao’s
garbling scheme.

Beside this most exciting open problem, one can also consider if our app-
roach can be optimized. It might be possible to push our lower bound to an
exponential loss, which would exactly match the upper bound from [14]. Fol-
lowing our approach, this requires a more sophisticated pebbling lower bound.
Another interesting question would be if an even stronger bound can be found
for the original construction of Yao, where the output mapping is sent in the
offline phase, and certain limitations are already known from [3].

Acknowledgements. We would like to thank the anonymous reviewers of Crypto’21
whose detailed comments helped us considerably improve the presentation of the paper.

References

1. Ananth, P., Lombardi, A.: Succinct garbling schemes from functional encryption
through a local simulation paradigm. In: Beimel, A., Dziembowski, S. (eds.) TCC
2018, Part II. LNCS, vol. 11240, pp. 455–472. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03810-6_17

2. Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 125–153. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_6

3. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with
constant online rate or how to compress garbled circuits keys. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 166–184. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_10

4. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398–415. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1_23

5. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4_10

6. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu,
T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press,
October 2012

7. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5_30

8. Dziembowski, S., Kazana, T., Wichs, D.: Key-evolution schemes resilient to space-
bounded leakage. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 335–
353. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_19

9. Garg, S., Srinivasan, A.: Adaptively secure garbling with near optimal online com-
plexity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS,
vol. 10821, pp. 535–565. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78375-8_18

https://doi.org/10.1007/978-3-030-03810-6_17
https://doi.org/10.1007/978-3-030-03810-6_17
https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.1007/978-3-642-40084-1_10
https://doi.org/10.1007/978-3-642-40084-1_23
https://doi.org/10.1007/978-3-642-40084-1_23
https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-22792-9_19
https://doi.org/10.1007/978-3-319-78375-8_18
https://doi.org/10.1007/978-3-319-78375-8_18

Limits on the Adaptive Security of Yao’s Garbling 515

10. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively
secure garbled circuits from one-way functions. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 149–178. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3_6

11. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be
adaptive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 133–163. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7_5

12. Jafargholi, Z., Oechsner, S.: Adaptive security of practical garbling schemes. In:
Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS,
vol. 12578, pp. 741–762. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-65277-7_33

13. Jafargholi, Z., Scafuro, A., Wichs, D.: Adaptively indistinguishable garbled circuits.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 40–71.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_2

14. Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt,
M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 433–458. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_17

15. Kamath, C., Klein, K., Pietrzak, K., Walter, M.: On the cost of adaptivity in
graph-based games. Cryptology ePrint Archive, Report 2021/059 (2021). https://
eprint.iacr.org/2021/059

16. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party com-
putation. J. Cryptol. 22(2), 161–188 (2009). https://doi.org/10.1007/s00145-008-
9036-8

17. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

18. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-030-65277-7_33
https://doi.org/10.1007/978-3-030-65277-7_33
https://doi.org/10.1007/978-3-319-70503-3_2
https://doi.org/10.1007/978-3-662-53641-4_17
https://eprint.iacr.org/2021/059
https://eprint.iacr.org/2021/059
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8

Lattice Cryptography

Subtractive Sets over Cyclotomic Rings

Limits of Schnorr-Like Arguments over Lattices

Martin R. Albrecht1(B) and Russell W. F. Lai2(B)

1 Information Security Group, Royal Holloway, University of London, Egham, UK
martin.albrecht@royalholloway.ac.uk

2 Chair of Applied Cryptography, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nürnberg, Germany

russell.lai@cs.fau.de

Abstract. We study when (dual) Vandermonde systems of the form

V
(ᵀ)
T · z = s · w admit a solution z over a ring R, where VT is the

Vandermonde matrix defined by a set T and where the “slack” s is a
measure of the quality of solutions. To this end, we propose the notion
of (s, t)-subtractive sets over a ring R, with the property that if S is
(s, t)-subtractive then the above (dual) Vandermonde systems defined
by any t-subset T ⊆ S are solvable over R. The challenge is then to find
large sets S while minimising (the norm of) s when given a ring R.

By constructing families of (s, t)-subtractive sets S of size n = poly(λ)
over cyclotomic rings R = Z[ζp�] for prime p, we construct Schnorr-like
lattice-based proofs of knowledge for the SIS relation A ·x = s ·y mod q
with O(1/n) knowledge error, and s = 1 in case p = poly(λ). Our
technique slots naturally into the lattice Bulletproof framework from
Crypto’20, producing lattice-based succinct arguments for NP with bet-
ter parameters.

We then give matching impossibility results constraining n relative
to s, which suggest that our Bulletproof-compatible protocols are opti-
mal unless fundamentally new techniques are discovered. Noting that the
knowledge error of lattice Bulletproofs is Ω(log k/n) for witnesses in Rk

and subtractive set size n, our result represents a barrier to practically
efficient lattice-based succinct arguments in the Bulletproof framework.

Beyond these main results, the concept of (s, t)-subtractive sets
bridges group-based threshold cryptography to lattice settings, which
we demonstrate by relating it to distributed pseudorandom functions.

1 Introduction

Proving knowledge of a short integral vector x satisfying a system of linear equa-
tions of the form A · x = y mod q defined over some ring R, i.e. an answer to a

The research of MA was supported by EPSRC grants EP/S020330/1, EP/S02087X/1,
by the European Union Horizon 2020 Research and Innovation Program Grant 780701
and Innovate UK grant AQuaSec.
Russell W. F. Lai is supported by the State of Bavaria at the Nuremberg Campus of
Technology (NCT). NCT is a research cooperation between the Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU) and the Technische Hochschule Nürnberg Georg
Simon Ohm (THN).

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 519–548, 2021.
https://doi.org/10.1007/978-3-030-84245-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_18

520 M. R. Albrecht and R. W. F. Lai

short integer solution (SIS) problem and its generalisations, is a central task in
lattice-based cryptography. Indeed, zero-knowledge variants of such proofs catal-
yse constructions of lattice-based privacy-preserving protocols such as group and
ring signatures (e.g. [18,28,38]). These proofs are often also required for proving
the well-formedness of the inputs of basic lattice building blocks. This is because
random elements in R are easily trapdoored [23] such that using them in com-
putations touching secret values risks their exposure. Furthermore, when y is a
commitment of x encoding the witness to an NP statement, such a proof of knowl-
edge can be compiled into a (succinct) argument of knowledge for NP [3,11]. The
practical performance of such proofs has thus far-reaching consequences.

Prior to 2019 plausibly post-quantum secure proof systems for the SIS problem
could be categorised into three classes: probabilistically-checkable proofs (PCP),
“Stern-like” or “Schnorr-like”.1

PCP-based systems [27] offer succinct proofs for arithmetic circuits from sym-
metric primitives only (e.g. [5]).

Stern-like systems [26,29,36] rely on the combinatorial cut-and-choose tech-
nique, and come with a knowledge extractor which is able to extract a solu-
tion x̃ with ‖x‖ = ‖x̃‖ satisfying A · x̃ = y mod q. Due to their combinatorial
nature, however, Stern-like systems only achieve constant knowledge error
and have to be repeated O(λ) times to make that negligible.

Schnorr-like systems (e.g. [30]) are algebraic and can achieve inverse polyno-
mial or even negligible error, hence only O(λ/ log λ) repetitions are needed in
the former case and none in the latter. However, the knowledge extractors for
Schnorr-like proofs are only able to extract a solution x̃ to a relaxed statement
A · x̃ = s ·y mod q with a “slack” s �= 1 and “stretch” ‖x̃‖/‖x‖ > 1, which ulti-
mately force the systems to be instantiated with larger moduli q. These relax-
ations may be acceptable in some applications, such as digital signatures, but
can be prohibitive for others, e.g. when the system is recursively composed.

In the discrete logarithm setting, Bünz et al. [13] discovered that the lin-
earity of Schnorr-like proofs can be exploited for recursive composition. This
“Bulletproof” template was adapted to the lattice setting by Bootle et al. [11],
where the task of proving A · x = y mod q, with A = (A0,A1), is reduced to
that of proving Ã · x̃ = ỹ mod q with Ã = cA0 + A1 and ỹ dependent on some
random challenge c, and the dimension of x̃ halved compared to x. By recur-
sively composing the above protocol log k times, where k is the dimension of x,
Bootle et al. [11] obtained a protocol with poly-logarithmic communication for
proving Ax = y mod q, which implies [3] the first lattice-based zero-knowledge
arguments for NP with poly-logarithmic communication that deviates from the
PCP-based framework.

Since 2019 several works [7,12,20,38] managed to give (almost) the best of both
the Stern and Schnorr worlds: neither slack nor stretch as in Stern-like protocols
and inverse-polynomial (but not negligible) soundness error as in Schnorr-like

1 Without counting highly generic constructions requiring Karp reductions.

Subtractive Sets over Cyclotomic Rings 521

protocols. All these works prove A ·x = y mod q exactly, i.e. A · x̃ = s ·y mod q
with s = 1 and ‖x̃‖ = ‖x‖. The work of Beullens [7] generalises the “MPC in the
head with preprocessing” idea of [25] to give a variant of Stern’s protocol with
inverse-polynomial soundness error.2 The works [12,20,38] augment a Schnorr-
like protocol with non-linear constraints fixing x to be, say, ternary.

While these works resolve the question of proving A · x = y mod q without
slack or stretch, they all share the properties of introducing non-linear constraints
and producing linear-size proofs.3 Indeed, unless new techniques are developed, it
is unclear how the non-linear constraints used in these systems can be integrated
into the Bulletproof framework of “folding down” the problem to polylogarithmic
size, exploiting linearity. Thus, it is natural to ask if the approaches taken in these
prior works are necessary, or whether Schnorr-like constructions that reduce or
eliminate stretch and slack while achieving inverse-(super-)polynomial soundness
error have yet to be found.

Knowledge extraction in Schnorr-like proofs for the SIS problem classically pro-
ceeds roughly as follows. Let S = {c0, . . . , cn−1} be a set of challenges. Given
a convincing prover, the extractor E runs the prover multiple times to extract
t solutions x̃i satisfying A · x̃i = ỹ0 + ci y + c2i ỹ2 + · · · + ct−1

i ỹt−1 mod q for
distinct ci ∈ S. In the simple t = 2 case which captures linear-size proofs, E
subtracts the two relations and obtains A · (x̃i0 − x̃i1) = (ci0 − ci1) · y mod q. If
ci0 − ci1 is invertible, e.g. when the ci’s are field elements, and we do not care
about the length of the extracted solution, then E could simply divide both sides
by ci0 − ci1 and obtain an exact solution. The issue in the lattice settings is that
the relation A · x = y mod q is defined over e.g. a cyclotomic ring R = Z[ζ],
where not all elements are invertible. Even if ci0 − ci1 is invertible (mod q), its
inverse and hence the extracted solution might not be short (relative to q).

A workaround is to accept a slack of s which is divisible by ci − cj over R
for all possible ci, cj ∈ S. Then by choosing a large enough modulus q ∈ N, E
can extract a short (relative to q) solution x̃ to A · x̃ = s · y mod q. In matrix
form, it means that the extractor E solves a linear system of the form Vᵀ

T · z =
s · w where VT is the Vandermonde matrix (Eq. (3)) defined by T = {ci0 , ci1}
and w = (0, 1)ᵀ. In the t = 3 case which captures one level of the lattice
Bulletproof protocol [11], E solves a linear system of the same form except that
T = {ci0 , ci1 , ci2} and w = (0, 1, 0)ᵀ. In both cases E extracts x̃ =

∑
i∈Zt

zi · x̃i

as a solution to A · x̃ = s · y mod q with stretch dependent on ‖z‖.
From this discussion we can reduce the task of finding Schnorr-like protocols

(especially Bulletproof-compatible ones) with small soundness error to the task
of finding a large set S and a small slack s, so that for any t-subset T ⊆ S for
some desired threshold t, the dual Vandermonde systems of linear equations of
the form V ᵀ

T · z = s · w have a short solution z over R.

2 A similar approach is taken in [4] but for proofs from symmetric primitives.
3 Proof effort can be amortised, though [10].

522 M. R. Albrecht and R. W. F. Lai

Contribution. In this work, we give both positive and negative resolutions to
the above problem. Our main results are summarised below.

(s, t)-subtractive sets. In Sect. 3 we define the notion of (s, t)-subtractive sets
of size n over a ring R. If S ⊆ R is (s, t)-subtractive, then for any t-subset
T ⊆ S, (dual) Vandermonde systems defined by T are solvable over R. If S is
(1, t)-subtractive (without slack) then we simply call S subtractive.

(s, t)-subtractive sets over power-of-2 rings. In Sect. 3.1 we construct a family
of (s, t)-subtractive sets, with different tradeoffs between the set size n, slack s,
and threshold t, over any power-of-2 cyclotomic ring R = Z[ζm] where m = 2�.
This can be seen as a generalisation of [6] who essentially constructed a (2, 2)-
subtractive set of size m. Our family includes a (2, 3)-subtractive set of size
n = m/2 + 1, which implies a lattice Bulletproof protocol with slack k and
stretch Õ(k2 log m+0.58). In comparison, the protocol of Bootle et al. [11] had
slack k3 and stretch Õ(k3 log m+4.5).4

Subtractive sets over prime-power rings. In Sect. 3.2 we construct a subtrac-
tive set S of prime size p over any prime-power cyclotomic ring R = Z[ζp�]. For
p = poly(λ) it implies a Schnorr-like proof of knowledge for lattice statements
over R without slack with knowledge error O(1/poly(λ)), which in turn implies
a lattice Bulletproof protocol with no slack and stretch Õ(k3 log m+4.58).

No large (s, t)-subtractive sets. In Sect. 3.3 we prove that if R has an ideal q
of algebraic norm q, then for any (s, t)-subtractive set S over R of size n > q,
we necessarily have s ∈ q. Consequently, there is no family of (2, t)-subtractive
sets of size n > m + 1 over power-of-2 cyclotomic rings, meaning that our (2, 3)-
subtractive set of size n = m/2 + 1 is within a factor of 2 of being optimal.
There is also no subtractive set of size n > p over prime-power cyclotomic rings,
meaning that our subtractive sets of size n = p are optimal.

Soundness of lattice Bulletproofs. In Sect. 4 we construct a slight generalisa-
tion of the Bulletproof protocol from [11] and instantiate it with our subtractive
sets. We prove both completeness and soundness for each level. For the recursive
composition, we note that unfortunately the knowledge error of O(1/n) given
in [11] turns out to be too optimistic: it does not account for the freedom of the
prover to choose for which level(s) to cheat. As we discuss in Sect. 4.2, we can
hope for O(log k/n) by applying a union bound. Indeed, applying [19, Lemma
3.2], we obtain a knowledge error of 8.16 log k/n. We consider our more careful
analysis of the knowledge error in [11] an independent contribution.

Small slack and negligible knowledge error is unlikely. Based on the technique
for proving the impossibility of large (s, t)-subtractive sets we prove that, for
a natural class of “algebraic” knowledge extractors for Schnorr-like protocols,
it is impossible to achieve knowledge error κ < q−1 if R has an ideal q of
algebraic norm q unless we accept a slack s ∈ q. For a natural generalisation
of Schnorr-like protocols, where the verifier sends two challenges chosen from
sets S0 and S1 instead of one, it is still impossible5 for algebraic knowledge

4 Their stretch analysis appears to be generous, though. We discuss the tightness of
our analysis in Sect. 4.3.

5 Under mild additional assumptions.

Subtractive Sets over Cyclotomic Rings 523

extractors to achieve knowledge error κ < q−2 unless s ∈ q. For concreteness,
we note that a prime-power cyclotomic ring R = Z[ζp�] always has an ideal〈
1 − ζp�

〉
of norm p. Therefore our instantiations over prime-power rings are

optimal assuming algebraic extractors. We interpret this as a limit to achieving
negligible knowledge error in Schnorr-like (Bulletproof-compatible) proofs for
the SIS problem with small slack without introducing non-linear relations.

Application to homomorphic secret sharing over rings. Apart from its appli-
cations in constructing Schnorr-like protocols, in the full version of this work we
demonstrate how (s, t)-subtractive sets can be used as a tool to bridge group-
based threshold cryptography techniques to the lattice setting by relating them
to the construction of homomorphic secret sharing schemes over rings. Roughly,
in matrix form, the recovery procedure in such a scheme is equivalent to finding
the first term z0 of the solution z to a linear system of the form VT ·z = s·w where
VT is the Vandermonde matrix defined by T (as above). As a concrete exam-
ple, we generalise the construction of distributed pseudorandom functions from
(almost) key-homomorphic pseudorandom functions and Shamir secret sharing
by Boneh et al. [8] using (s, t)-subtractive sets.

2 Preliminaries

Let λ ∈ N be the security parameter. For n ∈ N, write [n] := {1, 2, . . . , n},
Zn := {0, 1, . . . , n − 1} denotes the ring of integers modulo n, Z∗

n denotes the
multiplicative group of integers modulo n, and the Euler totient function ϕ(n)
denotes the number of positive integers at most and coprime with n. If T ⊆ S
are sets and T has t elements, we write T ⊆t S. If S is a finite set then ←$ S
denotes the sampling of a uniformly random element from S.

2.1 Cyclotomic Rings

For m ∈ N, let ζm ∈ C be any fixed primitive m-th root of unity. Denote
by K = Q(ζm) the cyclotomic field of order m ≥ 2 and degree ϕ(m), and
by R = Z[ζm] its ring of integers, called a cyclotomic ring for short. We have
R ∼= Z[x]/〈Φm(x)〉, where Φm(x) is the m-th cyclotomic polynomial. We write
σi(x) for 0 ≤ i < ϕ(m) be the ϕ(m) different embeddings of x ∈ Q[ζm] into
C. Cyclotomic fields Q[ζm] are Galois extensions of Q [37, Thm 2.5], i.e. for all
embeddings σi(·) of the field to C we have σi(Q[ζm]) = Q[ζm]. If f1, . . . , fk ∈ R,
we write 〈f1, . . . , fk〉 ⊆ R for the ideal generated by f1, . . . , fk. If T ⊆ R, we
also write 〈T 〉 for the ideal generated by the elements in T . For T0, T1 ⊆ R,
we write T0 − T1 := {t0 − t1 : ti ∈ Ti}. Similarly, we write T0 · T1 − T2 · T3 :=
{t0 · t1 − t2 · t3 : ti ∈ Ti} and so on. When m is clear from the context, we omit
the subscript m and write ζ = ζm. We will focus primarily on m ≥ 2 which
is a prime-power. Using the “powerful” basis {ζi}i∈Zϕ(m) , we can view R as a
Z-module of dimension ϕ(m).

524 M. R. Albrecht and R. W. F. Lai

2.2 Norms and Ring Expansion Factors

For elements x ∈ R we denote the infinity norm of its coefficient vector (with
the powerful basis) as ‖x‖. If x ∈ Rk we write ‖x‖ for the infinity norm of x.
We denote the algebraic norm of elements x ∈ R by N(x) :=

∏
0≤i<n σi(x). It

holds that N(x) = |R/〈x〉|. We define the degree-d expansion factor of a ring R.

Definition 1. Let R be a ring. The degree-d expansion factor of R, denoted by
γR,d, is defined as γR,d := maxS⊆dR

∥
∥∏

a∈S a
∥
∥ /

∏
a∈S ‖a‖. If d = 2 we simply

write γR = γR,2.

To upper bound γR,d for a cyclotomic ring R, we prove the following technical
lemma which can be seen as a generalisation of [31, Theorem 3.3] to prime-power
cyclotomic rings together with Proposition 1 given below.

Lemma 1. Let ζ = ζm where m = p� for some prime p. Let d ∈ N. Then
the expression a =

∑
i∈Zdm

ai · ζi where maxi∈Zdm
‖ai‖ ≤ α can be reduced to

a =
∑

i∈Zϕ(m)
a′

i · ζi with maxi∈Zϕ(m) ‖a′
i‖ ≤ 2 d · α. Assume further that ai ≥ 0

for all i ∈ Zdm, then we have maxi∈Zϕ(m) ‖a′
i‖ ≤ d · α.

Proof. Recall that ζ is a root of Φm(x) =
∑p−1

i=0 xip�−1
. We thus have the

identities ζm−k = −∑p−1
i=1 ζip�−1−k for k ∈ [p�−1]. Suppose that the mono-

mials {ζip�−1−k : i ∈ [p − 1]} of ζm−k overlap with those of ζm−k′
, we then

have ip�−1 − k = i′p�−1 − k′ for some i, i′ ∈ [p − 1] and k, k′ ∈ [p�−1]. We
have |i′ − i|p�−1 = |k′ − k| < p�−1 which forces i = i′ and hence k = k′.
In other words, the sets of monomials of ζm−k are non-overlapping for dis-
tinct k ∈ [p�−1]. For i ∈ Zdm, write i = jm + k for j ∈ Zd and k ∈ Zm,
and rename ai to aj,k. Then a =

∑
i∈Zdm

ai · ζi =
∑

j∈Zd
ζjm · ∑

k∈Zm
aj,k ·

ζk =
∑

j∈Zd

∑
k∈Zm

aj,k · ζk :=
∑

j∈Zd
āj . We observe that each term āj =

∑
k∈Zm

aj,k · ζk where maxi∈Zdm
‖ai‖ ≤ α can be reduced using the above iden-

tities to āj =
∑

k∈Zϕ(m)
a′

j,k · ζk with maxk∈Zϕ(m)

∥
∥
∥a′

j,k

∥
∥
∥ ≤ 2α. If ai ≥ 0 for all

i ∈ Zdm, then we have maxk∈Zϕ(m)

∥
∥
∥a′

j,k

∥
∥
∥ ≤ α. The claim then follows. �

Proposition 1. Let i ∈ N, m = p� for some prime p, ζ = ζm and a ∈ R, then
‖ζi

m · a‖ ≤ 2‖a‖. When p = 2 then ‖ζi
m · a‖ = ‖a‖.

Proof. Since the power-of-two case is well known to just be a rotation, we treat
the general case. Let j = i mod m then ζi · a = ζj · a. Write a =

∑
k∈Zm

akζk

(ak = 0 for k ≥ ϕ(m)), then

ζj · a =
∑

k∈Zm

ak · ζj+k

=
∑

k: j+k<m

ak · ζj+k + ζm ·
∑

k: m≤j+k<2m−1

ak · ζj+k−m

=
∑

k′∈Zm

ak′−j · ζk′
+

∑

k′′∈Zm

ak′′+m−j · ζk′′
= b + c.

Subtractive Sets over Cyclotomic Rings 525

By Lemma 1, b and c can each be expressed in the powerful basis with ternary
coefficients. Therefore

∥
∥ζi · a

∥
∥ = ‖b + c‖ ≤ ‖b‖ + ‖c‖ ≤ 2 · ‖a‖. �

Combining the above we arrive at bounds for γR,d.

Proposition 2. If R is a prime-power cyclotomic ring, then γR,d ≤
min(2d, 2d−1) · ϕ(m)d−1. If R is a power-of-2 cyclotomic ring, then γR,d ≤
ϕ(m)d−1.

Proof. For the power-of-2 case and a, b ∈ R, write a · b as ϕ(m) multiplications
of the form aiζ

i · b, where the ai are the coefficients of a. By Proposition 1, we
obtain γR ≤ ϕ(m). Recursively composing gives the claimed bound.

For the general prime-power case, the same argument gives γR,d ≤ 2d−1 ·
ϕ(m)d−1. For the other bound, consider the product r = a(0) · · · a(d−1) for a(i) ∈
R. Write r = a(0) · · · a(d−1) =

∑
i∈Zdm

ri · ζi without modular reduction. Then
for each coefficient ri of r we have ‖ri‖ ≤ ϕ(m)d−1 · ∏j∈Zd

∥
∥a(j)

∥
∥. By Lemma 1,

after reduction we have ‖r‖ ≤ 2d · ϕ(m)d−1 · ∏
j∈Zd

∥
∥a(j)

∥
∥. �

We finish this subsection by giving some propositions that will be useful when
we construct (s, t)-subtractive sets in Sects. 3.1 and 3.2.

Proposition 3. For any m ≥ 2,
∑

i∈Zm
ζi
m = 0.

Proof. We realise ζm
m − 1 = (ζm − 1) · (∑i∈Zm

ζi
m

)
= 0 but ζm �= 1. �

Proposition 4. Let m = p� ∈ N for some prime p, then
∥
∥(1 − ζn)/(1 − ζf)

∥
∥ ≤

1 for n, f ∈ Z
∗
m.

Proof. Let g = f−1 mod m and k = g · n mod m. Then

(1 − ζn)/(1 − ζf) = (1 − ζfgn)/(1 − ζf) =
∑

i∈Zk

ζf ·i.

Note that for any i ∈ Zk \ {0}, we have i ∈ Z
∗
m. Therefore, observing that

fZm = Zm since f ∈ Z
∗
m, we note that the sum 1 +

∑
i∈Zk \{0} ζf ·i can be

expressed as a =
∑

i∈Zm
aiζ

i with binary coefficients ai. Then by Lemma 1 we
conclude that a can be expressed in the powerful basis as a ternary vector. �

2.3 Ideals in Cyclotomic Rings

Our results critically rely on the presence and absence of ideals in R. We recall
some basic facts. In the ring of integers R of any number field, any ideal I ∈ R
can written in a unique way as I =

∏
P PvP(I), the product being over a finite

set of prime ideals, and the exponent vP(I) being in Z. When I is an integral
ideal then all vP(I) ≥ 0 [15, Thm 4.6.14]. Otherwise it is fractional. We mostly
deal with integral ideals in this work. The norm N(I) of the ideal I, i.e. |R/I|,
is N(I) =

∏
P N(PvP(I)) =

∏
P N(P)vP(I) [15, p.187]. For any prime ideal

526 M. R. Albrecht and R. W. F. Lai

P ⊂ R we have P ∩ Z = pZ for some rational prime p ∈ Z and we write
that P “is above” p [15, Prop. 4.8.1]. Moreover, for any prime p ∈ Z there exist
positive integers ei such that pR =

∏g
i=1 P

ei
i [15, Thm. 4.8.3], the integer ei is

called the “ramification index” of p at Pi. The degree fi of the field extension
defined by fi = [R/Pi : Zp] is the “residual degree” of p. We have N(Pi) = pfi

and
∑g

i=1 eifi = ϕ(m) [15, Thm. 4.8.5]. Since Q[ζm] is a Galois extension, all
ei = e for some fixed e and fi = f for some fixed f and ϕ(m) = efg [15,
Thm. 4.8.6]. A prime p ∈ Z ramifies, i.e. has some ei > 1, if and only if it
divides the discriminant of Q[ζm] [15, Thm. 4.8.8]. The discriminant of a prime-
power cyclotomic field of order qk is given by ±qqn−1((q−1)·n−1), i.e. a power of
q [37, Prop. 2.1]. Thus, on the one hand, q ramifies completely in Z[ζqk] and

〈q〉 =
〈
1 − ζqk

〉ϕ(m) [37, Lem. 1.4, Prop. 2.3, p.15]. On the other hand, for all
p �= q we have e = 1 and obtain ϕ(m) = fg. For any prime p ∈ Z that does
not divide m, let f be the smallest positive integer s.t. pf ≡ 1 mod m. Then p
splits into g = ϕ(m)/f distinct prime ideals in R [37, Thm. 2.13]. Note that this
implies pf > m. Combining these results, we obtain:

Proposition 5. Let R = Z[ζm] with m = pk a prime power. Then there exists
no ideal of norm ≤ m in R except for the ideals above p, i.e. powers of 〈1 − ζm〉.
The proper ideal of smallest norm is 〈1 − ζm〉 of norm N(〈1 − ζm〉) = p.

Remark 1. The bound in Proposition 5 is tight. For example, in Z[ζ256], the ideal
〈257, ζ256 + 3〉 is of norm m+1 not above 2. There are, however, Z[ζm] where no
ideal of norm m+1 exists. For example, no such ideal exists in Z[ζ1024]: the ideal
with smallest norm not above 2 has norm 12289 (found by brute force search).

2.4 Proof of Knowledge

Let R(stmt,wit) be a binary relation. The language L associated to the relation
R is a set L := {stmt : ∃ wit s.t . R(stmt,wit) = 1}.

Definition 2 (Proof Systems). A proof system Π is an interactive proto-
col 〈P(stmt,wit),V(stmt)〉 between a PPT prover P and a PPT verifier V,
both input a statement stmt. The prover P additionally inputs a witness wit.
Upon termination the verifier V should decide to accept or reject stmt by out-
puting a bit b, while the prover P outputs nothing. For convenience we write
b ← 〈P(stmt,wit),V(stmt)〉.

A wide class of proof systems, including the so-called sigma protocols, con-
form to the following pattern.

Definition 3 (Challenges, Moves, Public Coin). A proof system Π is
said to be f-challenge, (2g + 1)-move, and public-coin with challenge sets Si,j

for i ∈ [f] and j ∈ [g], if the protocol 〈P,V〉 conforms to the following pattern:

– 2g + 1-Move: There are in total 2g + 1 messages being communicated, where
P sends the first, V sends the second, P sends the third, and so on. The
prover P sends the last, i.e. (2g + 1)-th message and after which the verifier
V outputs a bit b.

Subtractive Sets over Cyclotomic Rings 527

– f-Challenge and Public-Coin: For j ∈ [g], the j-th message sent by V is a
tuple (ci,j)i∈[f] where ci,j ←$ Si,j for all i ∈ [f].

A proof system Π should satisfy completeness and knowledge soundness. We
omit the zero-knowledge property as it is not needed for our purpose.

Definition 4 (ε-Completeness). Π is ε-complete relative to L if

Pr [〈P(stmt,wit),V(stmt)〉] ≥ ε

whenever stmt ∈ L and R(stmt,wit) = 1. If ε = 1, Π is perfectly complete.

Definition 5 (κ-Knowledge Soundness). Let E be a PPT knowledge extrac-
tor. Π is said to have κ-knowledge soundness relative to (E , L′), if for any stmt
and for any (unbounded) adversary A such that 〈A,V(stmt)〉 = 1 with prob-
ability ρ > κ (over the randomness of A and V), EA outputs wit such that
R′(stmt,wit) = 1 with probability at least ρ − κ, where R′ is the relation associ-
ated to L′.

If the above holds, we call Π a proof of knowledge, κ the knowledge error of
Π, E an extractor for L′. If κ = 0 we say Π has perfect knowledge soundness. If
the above only holds for PPT adversaries A, we say that Π has computational κ-
knowledge soundness. Π is then called an argument of knowledge by convention.

We remark that a proof system Π could be complete relative to L while
having knowledge soundness relative to L′, where L ⊂ L′ are not necessarily
equal. In this case we say that Π is a proof system for the languages (L,L′).
This is common in lattice-based proof systems where the knowledge extractor is
only able to extract a relaxed witness of the statement being proven.

3 Subtractive Sets over Cyclotomic Rings

As the central tool for our results, we construct (generalised) substractive sets
over cyclotomic rings. Let S := {c0, . . . , cn−1} ⊆n R. Borrowing the terminol-
ogy from [32,34], we say that S is subtractive if ci − cj is invertible over R for any
distinct i and j. Since (the products of) ci − cj might be not quite invertible, but
divide some element s ∈ R, we generalise the notion of subtractiveness as follows.

Definition 6 ((s, t)-Subtractive Sets6). For s ∈ R and 1 < t ≤ n ∈ N, we
say that S ⊆n R is (s, t)-subtractive if for any T = {c0, . . . , ct−1} ⊆t S, and for
all i ∈ Zt, it holds that s ∈

〈∏
j∈Zt\{i}(ci − cj)

〉
. The element s is called the

slack of S. If S is (1, n)-subtractive, meaning that ci − cj is invertible in R for
any distinct i, j ∈ Zn, we simply say that S is subtractive.

6 Special cases of (s, t)-substractive sets are studied in the literature under differ-
ent names. For example, (1, 2)-subtractive sets are called exceptional sets [16,21]
and sequences [1], while (s, 2)-subtractive sets are called s-exceptional sets [2]. We
choose the name “subtractive” since it appears to be the earliest [32] and the most
informative.

528 M. R. Albrecht and R. W. F. Lai

The expansion factor γ
(s,t)
S of S (as an (s, t)-subtractive set) is defined as

γ
(s,t)
S := maxT⊆tS,i∈Zt

∥
∥
∥s/

∏
j∈Zt\{i}(ci − cj)

∥
∥
∥ where the maximum is over all

t-subsets T ⊆t S and all i ∈ Zt.

The above definition of (s, t)-subtractive sets is motivated by the problem of
solving (dual) Vandermonde systems of linear equations of the form

VT · z = s · w (1) and Vᵀ
T · z = s · w (2)

respectively in the variable z where VT is the Vandermonde matrix

VT =

⎛

⎜
⎜
⎜
⎝

1 c0 · · · ct−1
0

1 c1 · · · ct−1
1

...
...

. . .
...

1 ct−1 · · · ct−1
t−1

⎞

⎟
⎟
⎟
⎠

(3)

defined by the elements in T = {c0, . . . , ct−1} and t ∈ Rt is some vector over
R. If S is (s, t)-subtractive, then for any T ⊆t S, Eqs. (1) and (2) each admits a
solution z over R.

Since fully expanded formulae for the solutions to Eqs. (1) and (2) (instead
of, e.g. those in terms of determinants or matrix inverses) do not seem to be
widely available in the literature, we give them explicitly.

Proposition 6. Fix T = {c0, . . . , ct−1}. Let VT be the Vandermonde matrix
for T , i.e. (VT)i,j = cj

i for i, j ∈ Zt. For i ∈ Zt, let Ti := T \ {ci} and
(
Ti

j

)
:=

∑
J⊆jTi

∏
c∈J c ∈ R, the latter denoting the sum of products of j elements in Ti

where the sum is over all possible j-subsets of Ti. Further, let di :=
∏

j∈Zt\{i}(ci−
cj) ∈ R and w = (w0, . . . , wt−1).

Then, the solution to VT · z = s · w is given by z = (z0, . . . , zt−1) where

zi =
∑

j∈Zt

(−1)t−i−1 s

dj

(
Tj

t − i − 1

)

wj .

The solution to Vᵀ
T · z = s · w is given by z = (z0, . . . , zt−1) where

zi =
∑

j∈Zt

(−1)t−j−1 s

di

(
Ti

t − j − 1

)

wj .

Furthermore, if S is (s, t)-subtractive then for any T ⊆t S, we have s/di and
s/dj ∈ R for all i, j ∈ Zt, and therefore zi ∈ R for all i ∈ Zt.

In the context of cryptography, problems in the form VT · z = s · w arise
naturally, e.g. when recovering secrets shared using Shamir secret sharing. On
the other hand, problems in the form Vᵀ

T ·z = s ·w arise, e.g. when constructing
knowledge extractors for Schnorr-like proof systems.

We first prove a simple property that, if S is (s, t)-subtractive, then it is also
(s, t − 1)-subtractive.

Proposition 7. If S is (s, t)-subtractive, then S is (s, t′)-subtractive for t′ ≤ t.

Subtractive Sets over Cyclotomic Rings 529

Proof. Fix any t′ ∈ {2, . . . , t} and any T ′ = {c0, . . . , ct′−1} ⊆t′ S. Let T be
such that T ′ ⊆t′ T ⊆t S. Write T = {c0, . . . , ct′−1, . . . , ct−1}. Since S is (s, t)-
subtractive, it holds that s ∈

〈∏
j∈Zt\{i}(ci − cj)

〉
for all j ∈ Zt. However, for all

i ∈ Zt′ , it holds that
〈∏

j∈Zt\{i}(ci − cj)
〉

⊆
〈∏

j∈Zt′\{i}(ci − cj)
〉
. We therefore

have s ∈
〈∏

j∈Zt′\{i}(ci − cj)
〉

which means S is (s, t′)-subtractive. �
To prepare for our impossibility results, we generalise the notion of subtrac-

tive sets to weak subtractive sets which permit arbitrary ring operations on
differences.

Definition 7 (Weak (s, t)-Subtractive Sets). For s ∈ R and 1 < t ≤ n ∈ N,
S ⊆n R is weakly (s, t)-subtractive if for any T ⊆t S, it holds that s ∈ 〈T − T 〉.

Since subtractive sets are defined by products of differences, they are weakly
(s, 2)-subtractive.

Proposition 8. If S is (s, t)-subtractive, then S is weakly (s, 2)-subtractive.

Proof. Fix any T = {c0, . . . , ct−1} ⊆t S. Since S is (s, t)-subtractive,

s ∈
〈

(c0 − c1) ·
∏

j∈Zt\{0,1}
(c0 − cj)

〉

∈ 〈c0 − c1〉.
�

The following proposition is immediate by realising that for any T ′ ⊇ T we
have 〈T ′ − T ′〉 ⊇ 〈T − T 〉.
Proposition 9. If S ⊆n R is weakly (s, t) subtractive then S is weakly (s, t′)
subtractive for any t < t′ ≤ n.

Remark 2. Note that t behaves differently between (s, t)-subtractive sets and
weakly (s, t)-subtractive sets. On the one hand, S being (s, t)-subtractive implies
S being (s, t′)-subtractive for smaller t′. On the other hand, S being weakly
(s, t)-subtractive implies S being weakly (s, t′)-subtractive for larger t′.

3.1 Power-of-2 Cyclotomic Rings

Power-of-2 cyclotomic rings R = Z[ζm], where m = 2� for some ∈ N, are popular
among lattice-based constructions due to implementation convenience such as fast
multiplication via a number theoretic transform (NTT). We construct families of
(s, t)-subtractive sets over R with different tradeoffs between n, t, and s.

Theorem 1. Let R = Z[ζm] with m = 2� ≥ 4. Then for i = 0, . . . , , the set

Si := {0, 1, ζ, . . . , ζ2
i−1} ⊆ni

R
is (si,t, t)-subtractive for any si,t ∈ 〈1 − ζ〉�log t	(ni−1)/2, where ni = 2i + 1.

Let jt be the smallest such that �log t� ≤ 2jt . If i + jt ≤ , then we can pick
si,t = 1 − ζ2

i+jt−1
such that γ

(si,2,2)
Si

= 1 and γ
(si,3,3)
Si

≤ ϕ(m) for all i = 0, . . . , .

Empirically, for 4 ≤ m ≤ 2048, we have γ
(2,3)
S�−1

= m/8 and γ
(1−ζm/4,3)
S�−2

= m/16.

530 M. R. Albrecht and R. W. F. Lai

Proof. If i = 0, then Si = {0, 1} is subtractive. In the following we assume i ∈ [].
For k ∈ Z, let Ev(k) be the even part of k, i.e. the largest power of 2 which

divides k. It suffices to consider the case 0 /∈ T ⊆t Si, since in the case where
0 ∈ T , the difference between any other element in T and 0 is a unit. To handle
both cases together, let T ′ = T \ {0} so that t′ = |T ′| = t if 0 /∈ T and t′ = t − 1
otherwise. In any case, we have t′ ≤ 2i and t′ ≤ t. Write T ′ = {ζj0 , . . . , ζjt′−1}.
We consider the ideal

〈
∏

k∈Zt′\{0}
(ζj0 − ζjk)

〉

=

〈
∏

k∈Zt′\{0}
(1 − ζj0−jk)

〉

=

〈
∏

k∈Zt′\{0}
(1 − ζEv(j0−jk))

〉

(4)

=
∏

k∈Zt′\{0}
〈1 − ζ〉Ev(j0−jk) (5)

= 〈1 − ζ〉
∑

k∈Z
t′ \{0} Ev(j0−jk).

For Equality (4) we use that if k = ef with e a power of 2 and f odd, then
1−ζef and 1−ζe are divisible by each other in R. First, note that (1−ζef)/(1−
ζe) = 1 + ζe + · · · + ζe(f−1). Second, since gcd(f,m) = 1, let g = f−1 mod m
and observe (1 − ζe)/(1 − ζef) = (1 − ζefg)/(1 − ζef) = 1 + ζef + · · · + ζef(g−1).
For Equality (5) we use 1 − ζ2 = −(1 − ζ)2 + 2(1 − ζ), 2 ∈

〈
(1 − ζ)2

〉
, and

2 ∈ 〈
1 − ζ2

〉
.

Note that since 0 ≤ j0, jk < 2i, we have Ev(j0 − jk) ≤ 2i−1. Furthermore, for
any fixed j0, there is at most one jk such that Ev(j0 − jk) = 2i−1. Beside such
k, there are then at most 2 = 21 other jk’s such that Ev(j0 − jk) = 2i−2. Beside
these k’s, there are at most 4 = 22 other jk’s such that Ev(j0 − jk) = 2i−3.
Continue this way, we have

∑

k∈Zt′\{0}
Ev(j0 − jk) ≤ 1 · 2i−1 + 2 · 2i−2 + · · · + 2τ−1 · 2i−τ−2 + (t′ − 2τ) · 2i−τ−1

< 1 · 2i−1 + 2 · 2i−2 + · · · + 2τ−1 · 2i−τ−2 + 2τ · 2i−τ−1

= (τ + 1) · 2i−1 ≤ ⌈
log t′

⌉
2i−1 ≤ �log t� 2i−1

where τ is the maximum non-negative integer such that 1+2+4+ · · · +2τ−1 ≤
t′ − 2 or equivalently 2τ < t′ ≤ 2τ+1. Note that 2τ < t′ ≤ 2i and hence τ < i.
Therefore i − τ − 1 ≥ 0 and hence 2i−τ−1 ≥ 1.

Since
∑

k∈Zt′\{0} Ev(j0 − jk) ≤ �log t� 2i−1, we have

〈1 − ζ〉�log t	2i−1 ⊆ 〈1 − ζ〉
∑

k∈Z
t′ \{0} Ev(j0−jk) =

〈
∏

k∈Zt′\{0}
(ζj0 − ζjk)

〉

Subtractive Sets over Cyclotomic Rings 531

for all k ∈ Zt′ . Therefore, for any si,t ∈ 〈1 − ζ〉�log t	2i−1

, we have

si,t ∈
〈

∏

k∈Zt′\{0}
(ζj0 − ζjk)

〉

for all k ∈ Zt′ . Thus Si is (si,t, t)-subtractive.
Let jt be the smallest such that �log t� ≤ 2jt . Let si,t = 1−ζ2

ei,t where ei,t :=
i+jt−1. Suppose i+jt ≤ , then �log t� 2i−1 ≤ 2i+jt−1 ≤ 2�−1 = m/2. Therefore
〈si,t〉 = 〈1 − ζ〉2ei,t ⊆ 〈1 − ζ〉�log t	2i−1

and hence si,t ∈ 〈1 − ζ〉�log t	2i−1

.
We now establish γ

(s,t)
Si

as claimed above, starting with t = 2. Hence, we have
jt = �log �log t�� = 0, si,2 = 1 − ζ2

i−1
and

γ
(si,2,2)
Si

= max
α,β∈Z2i

∥
∥
∥
∥

si,2

ζα − ζβ

∥
∥
∥
∥ = max

α,β∈Z2i

∥
∥
∥
∥
∥

1 − ζ2
i−1

ζα(1 − ζβ−α)

∥
∥
∥
∥
∥

= max
α,β∈Z2i

∥
∥
∥
∥
∥

1 − ζ2
i−1

1 − ζ2
ημ

∥
∥
∥
∥
∥

≤ 1

where 2η = Ev(β − α) with η ∈ Zi, μ is the odd part of β − α satisfying
β −α = 2ημ, and the last equality can be derived through a routine calculation.

For t = 3, hence jt = �log �log t�� = 1 and si,2 = 1 − ζ2
i

, we have

γ
(si,3,3)
Si

= max
α,β,γ∈Zi

∥
∥
∥
∥

si,3

(ζα − ζβ)(ζα − ζγ)

∥
∥
∥
∥

= max
α,β,γ∈Zi

∥
∥
∥
∥
∥

1 − ζ2
i

(1 − ζβ−α)(1 − ζγ−α)

∥
∥
∥
∥
∥

= max
α,β,γ∈Zi

∥
∥
∥
∥
∥

1 − ζ2
i−1

1 − ζβ−α
· 1 + ζ2

i−1

1 − ζγ−α

∥
∥
∥
∥
∥

≤ γR ·
(
γ
(si,2,2)
Si

)2

= γR = ϕ(m).

The empirical results are verified by direct computation. �
We highlight some notable settings of (s, t) in Theorem 1. The case t = 2

is useful for constructing knowledge extractors of Schnorr-like proof systems. In
this setting, S� ⊆m+1 R chosen in prior works [6] is (2, 2)-subtractive, while
S�−1 ⊆m/2+1 is (1 − ζm/4, 2)-subtractive. Note that although

∥
∥1 − ζm/4

∥
∥ = 1,

multiplying (1 − ζm/4) to an element f ∈ R results in an element of length∥
∥(1 − ζm/4)f

∥
∥ ≤ 2 ‖f‖ if we consider the infinity norm as prior works did [11],

and hence S�−1 appears to be not better than S� in terms of slack. However, for
the Euclidean norm ‖·‖2, we have

∥
∥(1 − ζm/4)f

∥
∥
2

<
√

2 ‖f‖2 ≤ 2 ‖f‖2 = ‖2f‖2.
The case t = 3 is useful for lattice Bulletproofs, as we will see in Sect. 4.1.

Bootle et al. [11] chose S�\{0} ⊆m R as the challenge set for their instantiation of
lattice Bulletproof, and essentially proved that S� \{0} is (8, 3)-subtractive. The
above tighter analysis shows that S� is in fact (4, 3)-subtractive. Similar to the
t = 2 case, we notice that S�−1 ⊆m/2+1 R is (2, 3)-subtractive and S�−2 ⊆m/4+1

R is (1 − ζm/4, 3)-subtractive. As discussed in the t = 2 case, the slack 1 − ζm/4

is better than 2 if we consider the Euclidean norm.

532 M. R. Albrecht and R. W. F. Lai

For general ni and t useful in t-out-of-ni secret sharing, assuming m = 2� is
(polynomially) large enough so that > i + tj , then ‖si,t‖ = 1, which is more
manageable than the (n!, t)-subtractive set Zn chosen by Boneh et al. [8].

We observe that among all sets Si constructed in Theorem 1, only S0 ⊆2 R
is subtractive, while the others are (si,t, t)-subtractive for some si,t �= 1. As we
will see in Sect. 3.3, this is not a shortcoming of the construction but rather a
fundamental limit in power-of-2 cyclotomic rings. Indeed, in Proposition 12 and
Lemma 2 we show that over power-of-2 cyclotomic rings no subtractive set of
size greater than 2 exists.

We finish this section with a technical proposition, giving a bound for ‖cizi‖
that is tighter than the generic bound 2 · γR · γ

(2,3)
S .

Proposition 10. Let S = S�−1, (s, t) = (2, 3), {c0, c1, c2} ⊂t S and zi as
defined in Proposition 6, then ‖ci · zi‖ ≤ ϕ(m). Empirically, for all 8 ≤ m =
2� ≤ 512 we have max(‖ci · zi‖) = ϕ(m) − 2.

Proof. We write c0 = ζi, c1 = ζj , c2 = ζk. Wlog, we consider

c0 · z0 =
−s · c0 · (c1 + c2)

(c0 − c1) · (c0 − c2)
=

2 · ζi(ζj + ζk)
(ζi − ζj) · (ζj − ζk)

=
2 · ζi−j · (ζj−k + 1)

(ζi−j − 1) · (ζi−k − 1)
.

Multiplying by ζi−j does not change the norm so we can consider

‖g‖ =
∥
∥
∥
∥

2 · (ζj−k + 1)
(ζi−j − 1) · (ζi−k − 1)

∥
∥
∥
∥

‖2 g‖ =
∥
∥
∥
∥(ζj−k + 1) · 2

ζi−j − 1
· 2
ζi−k − 1

∥
∥
∥
∥ ≤ 2 · γR ·

(
γ
(2,2)
S

)2

.

Since ‖c0 ·z0‖ = ‖g‖ = ‖2 g‖/2, we obtain ‖c0 ·z0‖ ≤ ϕ(m). The empirical results
are verified by direct computation. �

3.2 Prime-Power Cyclotomic Rings

We turn to prime-power cyclotomic rings R := Z[ζm] where m is a power of a
prime p. Although we are interested mostly in the case p > 2, the following results
also hold for p = 2. To construct subtractive sets over prime-power cyclotomic
rings, we recall the well-known fact that μk := (ζk − 1)/(ζ − 1) is invertible
over R when gcd(k, p) = gcd(k,m) = 1. Indeed its inverse is given by νk :=∑

i∈Zh
ζik mod m where h = k−1 mod m. Our subtractive set of size over prime-

power cyclotomic rings of order consist precisely of these invertible elements with
an additional zero.

Theorem 2 (Prime-Power). Let R = Z[ζm] with m = p� for some prime p.
Then the set

S := {μ0, . . . , μp−1} ⊆p R
is subtractive, where μi = (ζi − 1)/(ζ − 1) for i ∈ Zp. Furthermore, γ

(1,2)
S = 1,

γ
(1,3)
S ≤ 4ϕ(m) and 4 (t−1)·ϕ(m)t−2 for 3 < t ≤ p. Empirically, γ

(1,3)
S = ϕ(m)/2

for all primes 3 ≤ m ≤ 277.

Subtractive Sets over Cyclotomic Rings 533

Proof. For any 0 ≤ i < j < p, it holds that7

μj − μi =
ζj − 1
ζ − 1

− ζi − 1
ζ − 1

=
j−1∑

k=0

ζk −
i−1∑

k=0

ζk = ζi + ζi+1 + · · · + ζj−1

= ζi · (1 + ζ + · · · + ζj−i+1) = ζi · μj−i

which is a unit in R since j − i ∈ Z
∗
p. Consequently μi − μj = (−1) · (μj − μi) is

also a unit in R. Therefore S is subtractive.
We next upper bound γ

(1,t)
S . In the case t = 2, we have

γ
(1,2)
S = max

i,j∈Zp

∥
∥
∥
∥

1
μj − μi

∥
∥
∥
∥ = max

i,j∈Zp

∥
∥
∥
∥

1
μj−i

∥
∥
∥
∥ ≤ 1

where the inequality is due to Proposition 4.
For 2 < t ≤ p, let T = {μi0 , . . . , μit−1} ⊆t S. We examine the norm of r−1

where r :=
∏

j∈[t−1](μi0 − μij
). By the above analysis, we know that μi0 − μij

equals some power of ζ multiplied by μi0−ij
. Therefore r can be written as r =

ζj0μj1 . . . μjt−1 for some j0 ∈ Z and j1, . . . , jt−1 ∈ Z
∗
p. Note that multiplication

by ζj0 increases the norm at most by a factor of two. Let νj = μ−1
j for j ∈

{j1, . . . , jt−1}. Then νj =
∑k−1

i=0 ζij mod m where k = j−1 mod m. By Lemma 1,
we have ‖νj‖ ≤ 1 for all j ∈ Z

∗
p. Summarising the above, we can upper bound

γ
(1,t)
S as

γ
(1,t)
S ≤ 2 γR,t−1 ‖νj1‖ . . .

∥
∥νjt−1

∥
∥ ≤ 4 (t − 1) · ϕ(m)t−2

where in the second inquality we used Proposition 2. When t = 3, we can use
γR,2 ≤ 2ϕ(m). The empirical results are verified by direct computation. �
Remark 3. Theorem 2 can be generalised to give a size ϕ(rad(m))+1 subtractive
set over the cyclotomic ring of any order m with prime-power factorisation m =∏

i p�i
i , where the radical rad(m) =

∏
i pi of m is the product of distinct prime

divisors of m, by viewing the m-th cyclotomic ring as a tensor product of the
p�i

i -th cyclotomic rings.

Proposition 11. Let S be as defined in Theorem 2, (s, t) = (1, 3), {c0, c1, c2} ⊂t

S and zi as defined in Proposition 6, ci ·zi = ζj ·a for some a with ‖a‖ ≤ 4ϕ(m)
and thus ‖ci · zi‖ ≤ 8ϕ(m). Empirically, for all prime 3 ≤ m ≤ 229 we have
max(‖ci · zi‖) = ϕ(m) − 1.

Proof. We write c0 = (ζi −1)/(ζ −1), c1 = (ζj −1)/(ζ −1), c2 = (ζk −1)/(ζ −1).
Wlog, we consider

c0 · z0 =
−s · c0 · (c1 + c2)

(c0 − c1) · (c0 − c2)
=

−(ζi − 1) · (ζj + ζk − 2)
((ζi − ζj) · (ζi − ζk))

= −ζ−j−k ·
[

ζi − 1
ζi−j − 1

· ζj − 1
ζi−k − 1

+
ζi − 1

ζi−j − 1
· ζk − 1
ζi−k − 1

]

7 We adopt the convention that the empty sum is 0.

534 M. R. Albrecht and R. W. F. Lai

Multiplication by −ζ−j−k at most doubles the norm (Proposition 1) and we have∥
∥(ζi − 1)/(ζj − 1)

∥
∥ = 1 for j �= 0 (Proposition 4). Thus, ‖c0 · z0‖ ≤ 4 · γR ≤

8ϕ(m). The empirical results are verified by direct computation. �

3.3 Impossibility of Large Subtractive Sets

In this section we prove two flavours of impossibility results concerning subtrac-
tive sets. The first kind of results state that if S is an (s, t)-subtractive set of
sufficient size, then s belongs to the ideal 〈1 − ζ〉e for some e lower bounded from
0. The second kind of results state that if R contains an ideal of small algebraic
norm, then either S cannot be too large, or S is weakly (s, t)-subtractive with
s belonging to that ideal. The key observation in all our proofs is that if we
consider N(I) + 1 elements ci ∈ R then there must be two elements, say, ci, cj

s.t. ci ≡ cj mod I and thus ci − cj ∈ I.
We first prove that S ⊆n R cannot be (s, t)-subtractive unless

s ∈ I = 〈1 − ζ〉min{�n/p	,t}−1
.

The size of I in a sense shrinks when t and n grow, since |R/I| = pmin{�n/p	,t}−1.
The result thus rules out all S that are too “large” relative to s, in the sense
that I becomes so “small” that the choice of s ∈ I is highly restrictive.

Proposition 12. Let R be a prime-power cyclotomic ring of order m a power
of p, and n > p. If S ⊆n R is (s, t)-subtractive, then s ∈ 〈1 − ζ〉e where

e ≥ min{�n/p� , t} − 1 > 0.

Proof. Proposition 5 shows that N(〈1 − ζ〉) = |R/〈1 − ζ〉| = p. The ideal
〈1 − ζ〉 therefore partitions R into p cosets. Let n =

∑
k∈Zp

nk such that nk

elements in S belong to the k-th coset. Let n̄ := maxk∈Zp
nk ≥ �n/p� be

attained when k = k̄. Let T = {c0, . . . , ct−1} ⊆t S be such that T contains
min{n̄, t} ≥ min{�n/p� , t} > 0 elements in the k̄-th coset. Let j be such that
vj belongs to the k̄-th coset. The product r =

∏
i∈Zt\{j̄}(ci − cj) has a factor

1 − ζ with multiplicity at least min{�n/p� , t} − 1. Since S is (s, t)-subtractive, s
has a factor 1 − ζ with multiplicity at least min{�n/p� , t} − 1. In other words,
s ∈ 〈1 − ζ〉min{�n/p	,t}−1. �
Remark 4. An interesting observation is that, when m = 2 hence ζ = −1 and
R = Z, the above lower bound implies that an (s, t)-subtractive set S ⊆n Z

for t ≥ �n/2� must have |s| ≥ 2�n/2	−1 = 2Ω(n). On the other hand, the trivial
choice of S = Zn (chosen by, e.g. Boneh et al. [8] for higher m) has a slack of
n! = 2O(n lg n) which almost reaches the lower bound. When m is a higher power
of 2, there are however much better choices of S, such as the ones constructed
in Theorem 1 rather than S = Zn.

Through a more careful analysis, we can prove a strengthened lower bound.

Subtractive Sets over Cyclotomic Rings 535

Lemma 2. Let R be a prime-power cyclotomic ring of order m a power of p.
Let n > p� for some ∈ N. If S ⊆n R is (s, t)-subtractive, then s ∈ 〈1 − ζ〉e

where

e ≥
�∑

i=1

min{⌈n/pi
⌉ − 1, t − 1} > 0.

Proof. Let P = 〈1 − ζ〉. Recall from Proposition 5 that N(P) = |R/P| = p.
Since |S| = n > p�, by the pigeonhole principle there exists S1 ⊆�n/p	 S such that
all elements of S1 belong to the same equivalence class C1 modulo P. Similarly,
there exists S2 ⊆�n/p2	 S1 such that all elements of S1 belong to the same
equivalence class C2 modulo P2. Continue analogously, for j ∈ [], there exists
Sj ⊆�n/pj	 Sj−1 such that all elements of Sj belong to the same equivalence
class Cj modulo Pj .

Consider a binary matrix H of rows and n columns, where the first
⌈
n/pj

⌉

columns are labeled by the elements of Sj for j ∈ []. The remaining columns
are labeled by the elements of S \ S1. The (i, v)-th entry is 1 if v belongs to the
equivalence class Ci modulo Pi, i.e. the first

⌈
n/pi

⌉
entries of row i are 1.

Pick T ⊆t S such that S� ⊆ . . . ⊆ Sk ⊆ T ⊆ Sk−1 ⊆ S for some k ∈ [],
where S0 := S. Note that T labels the first t columns of H.

Let v∗ ∈ S� ⊆ T be the element that labels the first column of H, and
T̄ = T \ {v∗} labels the second to the t-th column. Consider the product r =∏

v∈T̄ (v − v∗). Note that for v ∈ T̄ , if v belongs to the equivalence class Ci

modulo Pi, then (v − v∗) contributes a factor (1 − ζ)i of r. The multiplicity of
the factor (1 − ζ) of r is at least the number of 1’s in the first t columns of H
minus that of the first column. By collecting the columns of interest, let Ht be
the submatrix of H formed by the second to the t-th column. Observe that the
i-th row of Ht contains min{⌈n/pi

⌉
, t} − 1 many 1’s. Therefore the number of

1’s in Ht is given by
∑�

i=1 min{⌈n/pi
⌉ − 1, t − 1}. �

Concretely, for power-of-2 cyclotomic rings we obtain:

Corollary 1. Let R be a power-of-2 cyclotomic ring of order m ≥ 8 and n ≥
ϕ(m). If S ⊆n R is (s, 3)-subtractive, then s ∈ 〈1 − ζ〉e where e ≥ 2 log2 m − 3.

Proof. Let m = 2�+2 for some ∈ N. Then n ≥ ϕ(m) = 2�+1. By Lemma 2 we
have e+ ≥ ∑�

i=1 min{⌈n/2i
⌉
, 3}. Note that since n ≥ 2�+1 we have n/2�−1 ≥ 4

and hence n/2i ≥ 3 for i = 1, . . . , − 1. When i = , we have n/2� ≥ 2 and
therefore min{⌈n/2�

⌉
, 3} ≥ 2. Therefore e+ ≥ 3(−1)+2 = 3−1, or in other

words e ≥ 2 − 1 = 2 log2 m − 3. �
Next, we upper bound the size n of weakly (s, t)-subtractive sets.

Lemma 3. Let I ⊂ R be an ideal of norm N(I). There exists no weakly (s, t)-
subtractive set of size (t − 1) · N(I) + 1 for s �∈ I.

Proof. Assume S is such a weakly (s, t) subtractive set of size (t − 1) · N(I) + 1.
There are N(I) cosets of I. Sort the elements of S into buckets depending on

536 M. R. Albrecht and R. W. F. Lai

which coset of mod I they land in. By the pigeonhole principle, there must exist
at least one bucket containing t elements. Let T = {ci}i∈Zt

be a such a set of
challenges of size t s.t. all ci ≡ cj mod I for i, j ∈ Zt ⇔ ci − cj ∈ I. Thus,
〈T − T 〉 ⊂ I and s ∈ I. �

Finally, deploying Proposition 12 and Lemmas 2 and 3 we arrive at our central
impossibility results for power-of-two cyclotomic rings and prime cyclotomic rings.

First, since (2, t)-subtractive sets are weakly (2, 2)-subtractive and there are
power-of-two cyclotomic rings that contain an ideal of norm m + 1, we arrive at
the theorem below. We state the result for s = 2 as opposed to, say, s = 1 − ζ
as the former is more general than the latter: the existence (1 − ζ, t)-subtractive
sets implies the existence of (2, t)-subtractive sets.

Theorem 3. There is no family of (2, t)-subtractive sets of size n > m + 1 in
the power of two cyclotomic ring Z[ζm] where m = 2� for some ∈ N.

Putting Theorems 1 and 3 together, we see that our (2, 3)-subtractive set con-
struction achieves size m/2+1 compared to the limit of m+1. This construction
is thus within a factor of 2 of being optimal. However, we note that Theorem 3
does not rule out the existence of (2, t)-subtractive sets of size n > m + 1 for
specific choices of m, e.g. m = 210 = 1024 is a good candidate, cf. Remark 1.

Second, since (1, t)-subtractive sets are weakly (1, 2)-subtractive and prime-
power cyclotomic rings contain an ideal of norm p, Lemma 3 rules out larger
subtractive sets. An alternative route to the same statement is by noting that
e ≥ 1 in Proposition 12 and that 1 /∈ 〈1 − ζ〉. Therefore the subtractive sets for
prime-power cyclotomic rings in Theorem 2 are in a sense optimal. On the flip
side it means that over a power-of-2 cyclotomic ring the only subtractive sets
are of size 2, such as S = {0, 1}.

Theorem 4. There is no subtractive set of size n > p in any prime-power
cyclotomic ring Z[ζp�] for any prime p ∈ N and any ∈ N.

Finally, Lemma 3 rules out many natural algebraic strategies of constructing
knowledge extractors for Schnorr-like proof systems that go beyond some gener-
alised form of matrix inversion. For example, an algebraic extractor could attempt
to compute s by running an extended Euclidean algorithm on pairs c0−c1, c2−c3,
i.e. attempt to find (small) r0, r1 s.t. s = r0 · (c0 − c1)+ r1 · (c2 − c3), cf. [22,33,35]
for the application of the Euclidean algorithm for finding small elements of this
form in number rings. By Lemma 3 such extensions do not significantly improve
the bounds. We will make use of this implicitly in Sect. 4 below.

4 Proof of Knowledge of Lattice Statements

In this section we give positive and negative results on using subtractive sets over
cyclotomic rings to construct proof systems for lattice statements of the form

Ls,β := {(A,y) ∈ Rh×k
q × Rh

q : ∃x ∈ Rk s.t . Ax = sy ∧ ‖x‖ ≤ β}.

Subtractive Sets over Cyclotomic Rings 537

Fig. 1. Lattice Bulletproof protocol Πr for round r ∈ {0, . . . , log k} generalised
from [11].

4.1 Generalised Lattice Bulletproof

Let k be a power of 2, kr := k/2r and γr > 0 for r ∈ {0, . . . , log k}, and S0, S1 ⊆
R. In Fig. 1 we write down a slight generalisation of the lattice Bulletproof
protocol in [11], who considered h = 1, R being a power-of-2 cyclotomic ring,
and S1 = {1}. Given a matrix A ∈ Rh×kr , we can parse it as A = (A0,A1) with
Ai ∈ Rh×kr+1 . Similarly, given a vector x ∈ Rkr we can parse it as x = (x0,x1)
with xi ∈ Rkr+1 .

Lemma 4. Suppose that ‖c‖ ≤ 1 for all c ∈ S0 and ‖d‖ ≤ 1 for all d ∈ S1 (which
is the case for S constructed in Theorems 1 and 2). Let γr = 2r+1 ·γR,r+2 ·β for
r ∈ Zlog k and γlog k = γlog k−1 = k ·γR,log k+1 ·β. In Π0, if the prover’s input x(0)

satisfies ‖x‖ ≤ β, then the verifier accepts with certainty. For r ∈ [log k], if for
all r′ ∈ [r], the prover’s input x(r′) is equal to the prover’s second message sent
in an honest execution of Πr′−1, then the verifier in Πr accepts with certainty.
Consequently, the recursive composition of Π0, . . . , Πlog k yields a proof system
Π which is perfectly complete relative to L1,β.

In case R = Z[ζ2�], S0 is constructed from Theorem 1, and S1 = {1}, then
we can set γr := 2r+1 · β and γlog k = k · β instead.

Proof. For all r ∈ Zlog k, suppose that A · x = y, then

(cA0 + dA1) · z = (cA0 + dA1) · (dx0 + cx1)

= d2 A1 · x0 + c · d · (A0 · x0 + A1 · x1) + c2 A0 · x1

= d2 l + cdy + c2 r.

538 M. R. Albrecht and R. W. F. Lai

In Π0, if ‖x‖ ≤ β, then observe that ‖dx0 + cx1‖ ≤ 2 γR β. Fix r ∈ [log k].
Since for all r′ ∈ [r], the prover’s input x(r′) is equal to the prover’s second
message sent in an honest execution of Πr′−1, we have that the prover’s input
x(r) is equal to a sum of 2r terms, each term being a product of r challenges
and a subvector of x(0). If r = log k, then the input x(log k) is sent directly to the
verifier, which has norm upper bounded by k · γR,log k+1 · β = γlog k. If r < log k,
then the prover’s second message in Πr is a sum of 2r+1 terms, each term being
a product of r + 1 challenges and a subvector of x(0). The norm of this message
is thus upper bounded by 2r+1 · γR,r+2 · β = γr.

The strengthened claim regarding power-of-2 cyclotomic rings follows from
realising that each element in S0 is either zero or a power of ζ, and that multi-
plication by ζ does not increase norm. �
Theorem 5. Let R be a prime-power cyclotomic ring of order m being a power
of a prime p. Let S0 ⊆n R be an (s, 3)-subtractive set of size n = poly(λ) and
S1 = {1}. For r ∈ {0, . . . , log k}, let γr be defined as in Lemma 4. Suppose that S0

is constructed from Theorem 1 or Theorem 2, then Πlog k has perfect knowledge
soundness relative to Ls,γ′

log k
, and Πr has 2(r+1)

n -knowledge soundness relative
to Ls,γ′

r
for r ∈ Zlog k, where γ′

log k = γ′
log k−1, and

γ′
r =

{
24 · ϕ(m) · γR · γr p > 2
3 · ϕ(m) · γR · γr p = 2.

Proof. For r = log k, there exists a trivial (log k)-th extractor Elog k which simply
outputs the prover’s message. If a prover A successfully convinces the verifier V,
then the prover’s message is exactly the witness.

For r ∈ Zlog k, let A be a prover who successfully convinces the verifier V
in Πr to accept a statement (A,y) with probability ρ > 2(r + 1)/n. Consider
a binary matrix H with rows indexed by the random coins χ of A, columns
indexed by c ∈ S0, and the (χ, c)-th entry is 〈A(χ),V(stmt; c)〉, i.e. whether V
accepts of rejects when A runs on the randomness χ and V chooses c ∈ S0 as
the challenge. By our assumption on A, a ρ-fraction of the entries of H are 1.
Adopting the terminologies in [17], a row of H is semi-heavy if it contains at
least three 1’s. Since ρ > 2(r +1)/n ≥ 2/n, write ρ = (2+ δ)/n for some δ > 2r.
Suppose there are in total R rows in H, so that ρRn = (2 + δ)R entries are 1.
At most 2R of them can be located in non-semi-heavy rows, while at least δR
of them are in semi-heavy rows. Therefore the fraction of 1’s in semi-heavy rows
among all 1’s is at least δ/(2 + δ).

With the above observation, we construct the r-th knowledge extractor
E = Er as follows. E runs 〈A(χ),V(stmt; c0)〉 for some uniformly chosen
χ and c0 ←$ S0. If 〈A(χ),V(stmt; c0)〉 = 0, E aborts. Otherwise, we have
〈A(χ),V(stmt; c0)〉 = 1, which happens with probability ρ. Then, E runs
〈A(χ),V(stmt; c)〉 for all c ∈ S0 \ {c0}. Note that this can be done in polynomial
time since n = poly(λ). By the above observation about semi-heavy rows, since
the (χ, c0)-th entry of H is 1, with probability at least δ/(2 + δ), the row in H
indexed by χ is a semi-heavy row, and in this case there are at least 2 more

Subtractive Sets over Cyclotomic Rings 539

1’s in this row. Denote the indices of two of these entries by (χ, c1) and (χ, c2)
respectivly. To summarise, with probability ρδ/(2 + δ) = δ/n > 2r/n ≥ 0, we
have 〈A(χ),V(stmt; c)〉 = 1 for c ∈ {c0, c1, c2}.

Suppose the above event happens, E reads from the communication tran-
scripts the responses x̃i which satisfy

(ciA0 + A1) · x̃i = l + ciy + c2i r and ‖x̃i‖ ≤ γr

for all i ∈ Z3. In matrix form, we can write

A ·
(

c0x̃0 c1x̃1 c2x̃2

x̃0 x̃1 x̃2

)

=
(
l y r

) · V ᵀ
{c0,c1,c2}

Let w = (0, 1, 0) ∈ R3. By Proposition 6, the solution z = (z0, z1, z2) to the
equation V ᵀ

{c0,c1,c2} · z = s · w is given by

zi = − s

di

∑

j∈Z3\{i}
cj

for i ∈ Z3. Define x = (
∑2

i=0 ci zi · x̃i,
∑2

i=0 zi · x̃i). We have

A · x = A ·
(

c0x̃0 c1x̃1 c2x̃2

x̃0 x̃1 x̃2

)

· z =
(
l y r

) · V ᵀ
{c0,c1,c2} · z = s · y.

Furthermore, we notice that x is a sum of 3 terms, each being a product of
cizi and x̃i. Using Propositions 10 and 11 we have ‖cizi‖ ≤ ϕ(m) and 8ϕ(m)
respectively, and x̃i of norm at most γr. The norm ‖x‖ therefore satisfies

‖x‖ ≤
{

24 · ϕ(m) · γR · γr p > 2
3 · ϕ(m) · γR · γr p = 2

= γ′
r

Our r-th extractor E therefore outputs x as a witness of (A,y) ∈ Ls,γ′
r

with
probability at least δ/n > 2r/n. �

4.2 On the Knowledge Soundness of Recursive Composition

Knowledge error is at least Ω(log k/n). In their original analysis, Boo-
tle et al. [11] optimistically claimed without proof that the protocol Π obtained
from the recursive composition of Π0, . . . , Πlog k has knowledge error O(1/n).
We disprove this by constructing a cheating prover who can convince the verifier
in Πr with probability at least 1/n for any statement (A,y). Consequently we
obtain a cheating prover who can convince the verifier in Π with probability at
least 1 − (1 − 1/n)log k ≥ log k

2n = ω(1/n) assuming n ≥ log k = ω(1).
Our cheating prover Ar for Πr is essentially a “zero-knowledge simulator”

which does the following. Guess the challenge to be sent by the verifier as c∗ uni-
formly at random. Sample an arbitrary vector x̃ ∈ Rkr+1 of norm at most γr.
Compute (Ã, ỹ) as an honest prover would. Pick an arbitrary vector r ∈ Rh. Com-
pute l = Ãx̃ − cỹ − c2r. Send (l, r) as the first message and receive a challenge c.

540 M. R. Albrecht and R. W. F. Lai

If c �= c∗ then abort. Otherwise send x̃ as the second message. Clearly Ar succeeds
whenever c = c∗, which happens with probability at least 1/n.

Now consider an adversary A against the verifier in Π. To cheat, it suffices
for A to cheat in at least one round r ∈ Zlog k. The success probability of A
is then at least 1 − (1 − 1/n)log k ≥ 1 − 1

1+log k/n = log k
n+log k ≥ log k

2n = ω(1/n),
where we assumed n ≥ log k = ω(1). In general, if Π is obtained by recursively
composing Π0, . . . , Π� for some ≥ 0, where in Π� the prover simply sends the
witness, then A succeeds with probability at least Ω(/n) which is ω(1/n) if the
number of rounds is super-constant.

On achieving knowledge error O(log k/n). In the proof of Theorem 5, we showed
that for r ∈ Zlog k if Ar is a cheating prover in Πr with success probabil-
ity greater than 2(r + 1)/n, then our extractor Er succeeds with probability
greater than 2r/n. This intuitively suggests that if A is a cheating prover in
Π obtained by recursively composing Π0, . . . , Πlog k with success probability
greater than 2 log k/n, then by recursively running the extractors Elog k, . . . , E0

one should construct an extractor E which succeeds with positive probability.
In other words, the knowledge error of Π is intuitively at most 2 log k/n. This
does not contradict with the existence of the attacker A with success proba-
bility 1 − (1 − 1/n)log k constructed above, since by the union bound we have
1 − (1 − 1/n)log k ≤ ∑

r∈Zlog k
1/n = log k/n. If the knowledge error is indeed at

most 2 log k/n, then repeating the protocol λ/(log n−log log k−1) times (instead
of λ/ log n times suggested in [11]) suffices to achieve knowledge error 2−λ.

Formalising the above intuition requires a very strong “forking lemma” which
extracts a full depth-(log k) ternary tree of accepting transcripts in expected
polynomial time when given any cheating prover for Π with success probability
greater than 2 log k/n. Unfortunately, such a formalisation appears to be out of
reach with the current proof techniques. Indeed, the forking lemma in [9, Lemma
1] (and its variants) used in subsequent works (e.g. [13,14]) implies a knowledge
error of n−1/3k1.58. The concrete analysis in [24] implies a knowledge error of
5n−1/2k1.58 log k. A common problem in these analyses is that the extractor
being constructed runs the cheating prover with uniformly random challenges
every time, without insisting that the challenges in each round are distinct. This
incurs a substantial loss in extraction probability.

At the time of writing, the tightest bound that we are aware of is given in [19,

Lemma 3.2], which implies a knowledge error of αlog k

α−1
3
n for any α >

(
n

n−3

)2

.

The minimum of the factor αlog k

α−1 is
(
1 + 1

log k−1

)log k

/ 1
log k−1 ≤ e log k attained

when α = 1 + 1
log k−1 and e is Euler’s number. Let n ≥ 9 log k.8 We can check

that the requirement α >
(

n
n−3

)2

is fulfilled. We therefore obtain a knowledge

error of 8.16 log k
n whenever n ≥ 9 log k, which requires λ/(log n − log log k − 4)

parallel repetitions to achieve a knowledge error of 2−λ.

8 The requirement n ≥ 9 log k is realistic. Typically, we have n ≈ 1000 and log k 	 100.

Subtractive Sets over Cyclotomic Rings 541

For a concrete feeling of the number of repetitions required, suppose we aim for
around 2−80 knowledge error, choose a ring R of degree ϕ(m) ≈ 1024, an (s, 3)-
subtractive set of size n ≈ 210, and k = 220, which encodes the assignment of the
internal wires an arithmetic circuit of size 230. Then if we can achieve the (near
optimal) knowledge error of 2 log k/n, only 20 repetitions are needed.9 With the
provable knowledge error of 8.16 log k/n however, we need 50 repetitions.

4.3 On the Quality of the Extracted Witness

Suppose we are able to construct an extractor by using one of the forking lemmas,
then due to the additional structural guarantee of the extracted solution, we can
obtain a tighter upper bound of the norm of the extracted solution x. Specifically,
observe that by construction x is a sum of 3log k terms, each term being a product
of log k terms of the form cizi and one more term of norm at most γ′

log k.
For the prime-power case, recall that γ′

log k = k · γR,log k+1 · β. From
Proposition 11 we have ‖cizi‖ ≤ 8m and a naive application would yield a fac-
tor of (8m)log k in the bound of ‖x‖. We can obtain a slightly better bound by
observing that a factor 2 in 8m is contributed by a multiplication by a power of ζ
(cf. Proposition 11). If we collect all the log k powers of ζ and only multiply them
in one shot, then (8m)log k can be replaced by 2 · (4m)log k. We therefore obtain

‖x‖ ≤ 3log k · γR,log k+1 ·
(
2 · (4m)log k

)
· (k · γR,log k+1 · β)

= 3log k ·
(
2 (log k + 1) · ϕ(m)log k

)2

· 2 · (4m)log k · k · β

= Õ(k3 log m+4.58) · β.

When when p = poly(λ), we can set s = 1 and choose a modulus

q = Õ(k3 log m+4.58) · β.

We remark that even with the more careful analysis, the factor 2 · (4m)log k is
still somewhat loose. If we instead use the empirical estimation in Proposition 11
that ‖ci · zi‖ ≤ m, we can set

q = O(‖x‖) = Õ(k3 log m+2.58) · β.

For the power-of-2 case we recall that γ′
log k = k · β and thus

‖x‖ ≤ 3log k · γR,log k+1 · ϕ(m)log k · (k · β)

= 3log k · ϕ(m)2 log k · k · β

= Õ(k2 log m+0.58) · β.

Since s = 2 for the power-of-2 case, we have a total slack of k after recursive
composition. Therefore we can choose a modulus q = Õ(k2 log m+1.58) · β. For
comparison, [11] give a bound of Õ(k3 log m+4.5) · β which is larger by a factor of
Õ(klog m+3).
9 A concurrent work [2] proves that the knowledge error of 2 log k

n
can be achieved.

542 M. R. Albrecht and R. W. F. Lai

Remark 5. We may ask if another factor of log k can be shaved off the exponent
by a more careful analysis of products of the form

∏
0≤j<log k cij

·zij
. Experiment-

ing with random products of this form in the power-of-2 case suggests the norm
grows as (m/4)2(log k−1) in the worst case (over the choice of cij

·zij
) which is com-

parable to our analytical bound. The same bound is also approached from above
in the prime case as m grows. Using that these products are over randomness of
the extractor, we may also consider the average case which empirically grows as
(m/4)log k+o(log k). Based on this data, we speculate that q = Õ(klog m+O(1)) · β is
attainable.

4.4 Impossibility

A wide class of proof systems has knowledge soundness relative to (E , Ls,β),
where E is a knowledge extractor conforming to the following pattern.

Definition 8 (Algebraic Extractors). Let Π be a proof system conforming
to Definition 3 with g = 1 (3-move). Let E be an extractor for Ls,β. We say E
is 3-move degree-d algebraic if EP conforms to the following pattern:

1. E specifies a special monomial M∗ ∈ M, where M is the set of all f-variate
degree-d homogenous monomials.

2. E runs P some number of times to generate t accepting transcripts for some
t ∈ N. In the k-th transcript, let the verifier challenges be (ci,k)i∈Zf

.
3. E finds coefficients ak ∈ R for k ∈ Zt such that

∑

k∈Zt

ak · M(ck) = 0 ∀ M ∈ M \ {M∗},

∑

k∈Zt

ak · M∗(ck) = s.

4. If E fails to find the coefficients ak in the above step, it aborts.

We justify the definition of algebraic extractors, focusing on 3-move 2-challenge
protocols. One challenge protocols can be captured by setting S1 := {1}.

We first consider a linear-size Schnorr-like proof system which is complete for
L1,β . Classically a knowledge extractor E for Ls,β′ for some (s, β′) is of degree
d = 1 and proceeds as follows: Suppose P is a convincing prover for the statement
(A,y). The extractor EP collects from t = 2 correlated accepting transcripts an
image ỹ and two preimages x̂0 and x̂1, such that A · x̂0 = c1,0ỹ + c0,0y and
A · x̂1 = c1,1ỹ + c0,1y. Subtracting the two equations yields A · (x̂0 − x̂1) =
(c1,0 − c1,1) · ỹ + (c0,0 − c0,1) · y. The extractor E then attempts to solve the
following system of linear equations

(
c1,0 c1,1

c0,0 c0,1

)

z = s

(
0
1

)

for z = (z0, z1), and return x = z0x̂0 + z1x̂1. The special monomial here is
M∗({(X0,X1)}) = X0 for some formal variables Xi.

Subtractive Sets over Cyclotomic Rings 543

Next we observe that in the proof of knowledge soundness of the lattice
Bulletproof protocol constructed in Sect. 4.1, the degree-2 knowledge extractor
solves the following system of linear equations

⎛

⎝
c21,0 c21,1 c21,2

c0,0 · c1,0 c0,1 · c1,1 c0,2 · c1,2

c20,0 c20,1 c20,2

⎞

⎠ z = s

⎛

⎝
0
1
0

⎞

⎠

for z = (z0, z1, z2). The special monomial here is M∗({(X0,X1)}) = X0X1.
A degree-2d example can be obtained by modifying the lattice Bulletproof

protocol in Sect. 4.1, such that instead of “folding” A and x in halves when given
challenges (c0, c1), we compute

Ã :=
d∑

k=0

cd−k
0 · ck

1 · Ak and x̃ :=
d∑

k=0

ck
0 · cd−k

1 · xk.

Let M∗({(X0,X1)}) = Xd
0 · Xd

1 and notice that

Ã · x̃ ∈ M∗({(c0, c1)}) · y + 〈{M({(c0, c1)}) : M ∈ M \ {M∗}}〉.

Remark 6. Both Definition 8 and our results below can be generalised to g > 1.
However, we found no good candidate construction with more than three moves.
Thus, to avoid preempting future generalisations we do not formalise it here.

The next technical lemma shows that the above extraction strategy forces
s ∈ 〈M∗(S∗) − M∗(S∗)〉 · I−1 (a fractional ideal) for some ideal I and for S∗ =
{(c0,k, . . . , cf−1,k)}k∈Zt

. Here and in what follows we extend the notation of
M∗(·) to sets in the natural way, e.g. M∗(X0,X1) = X0 · X1 is extended to
M∗({(X0,X1), (Y0, Y1)}) = {X0 · X1, Y0 · Y1}. To illustrate the lemma, consider
the linear-size Schnorr proof with S1 = {1} as an example. Here the lemma states
that s ∈ 〈c0,0 − c0,1〉. Similarly, for the lattice Bulletproof the lemma states that

s ∈
〈
{ci,0 · ci,1 − cj,0 · cj,1}i
=j

〉
when

〈{c2i,0}, {c2j,0}
〉

= R for i, j ∈ Z3.

Lemma 5. Let d, f, t ∈ N, ak, ci,k ∈ R for i ∈ Zf and k ∈ Zt. For i ∈ Zf , write
S∗

i := {ci,k : k ∈ Zt}, S∗ =
∏

i∈Zf
S∗

i . For k ∈ Zt, write ck = (c0,k, . . . , cf−1,k) ∈
S∗. Let M be the set of f-variate degree-d homogeneous monomials. Fix M∗ ∈
M. For M ∈ M \ {M∗}, let M̄ := M/ gcd(M,M∗). Suppose

U := {(M, j) : M ∈ M \ {M∗},M(cj) �= 0, j ∈ Zt} �= ∅.

Let I :=
⋂

(M,j)∈U

〈
M̄(cj)

〉
. If

∑
k∈Zt

ak · M(ck) = 0 for all M ∈ M \ {M∗}
then

s :=
∑

k∈Zt

ak · M∗(ck) ∈ 〈M∗(S∗) − M∗(S∗)〉 · I−1

the latter being a fractional ideal in the field of fractions K of R.

544 M. R. Albrecht and R. W. F. Lai

Proof. For any (M, j) ∈ U , we have aj = −∑
k∈Zt\{j} ak

M(ck)
M(cj)

∈ K. Extending

the given notation, let M̂∗ = M∗/ gcd(M,M∗) (dependent on M). We obtain

s =
∑

k∈Zt

akM∗(ck) =
∑

k∈Zt\{j}
akM∗(ck) + ajM

∗(cj)

=
∑

k∈Zt\{j}
akM∗(ck) −

⎛

⎝
∑

k∈Zt\{j}
ak

M(ck)
M(cj)

⎞

⎠ M∗(cj)

=
∑

k∈Zt\{j}
ak (M∗(ck)M(cj) − M(ck)M∗(cj)) /M(cj)

=
∑

k∈Zt\{j}
ak

(
M∗(ck)M̄(cj) − M(ck)M̂∗(cj)

)
/M̄(cj)

∈ 1
M̄(cj)

〈
M(S∗)M̂∗(S∗) − M∗(S∗)M̄(S∗)

〉

=
1

M̄(cj)
〈
M̄(S∗)M∗(S∗) − M̄(S∗)M∗(S∗)

〉

⊆ 1
M̄(cj)

〈M∗(S∗) − M∗(S∗)〉.

We conclude that

s ∈
⋂

(M,j)∈U

1
M̄(cj)

〈M∗(S∗) − M∗(S∗)〉 = 〈M∗(S∗) − M∗(S∗)〉 · I−1.

�
We can now state the main result of this section which rules out algebraic

extractors achieving inverse polynomial soundness error and small slack. We
state our impossibility for 3-move protocols for simplicity. However, as mentioned
above, the ideas in the proof generalise to arbitrary moves. At a high level, our
proof strategy is to construct an adversary that only answers challenges such
that all accepting transcripts land in the same coset c of some ideal q chosen
by the adversary, i.e. c ≡ ci,k mod q. Then, e.g. for linear-size Schnorr proofs
c0,0 − c0,1 ∈ q which implies s ∈ q by Lemma 5.

Theorem 6. Let R be a cyclotomic ring. Let q ⊆ R be a prime ideal of norm
N(q) = |R/q| = q. Let Π be an f-challenge 3-move public-coin proof system,
where Si \ {0} �= ∅ for i ∈ Zf , and

∏
i∈Zf

|Si| =
∏

i∈Zf
ni ≥ qf . Let E be a

degree-d algebraic extractor for Ls,β. Let κ < q−f/2. Suppose Π has κ-knowledge
soundness relative to (E , Ls,β) for some β ∈ R, then s ∈ qd−1.

Proof. Let κ = q−f/2 − ε for some ε > 0. Suppose the claim is false, then
s /∈ qd−1.

Let M∗ be the special monomial specified by E . Pick any i∗ ∈ Zf such that
M∗(C) �= Cd

i∗ . Let S∗
i∗ ⊆ Si∗ \ {0} be a largest subset so that all elements

belong to the same coset modulo q. For each i ∈ Zf \ {i∗}, let S∗
i ⊆ Si be a

Subtractive Sets over Cyclotomic Rings 545

largest subset so that all elements belong to the same coset modulo q. We note
that by construction S∗

i has the property that S∗
i − S∗

i ⊆ q for all i ∈ Zf , and
S∗

i∗ contains only non-zero elements. Since q has q cosets, by the pigeonhole
principle, |S∗

i | ≥ �ni/q� for all i ∈ Zf \ {i∗}. For i = i∗, if Si∗ contains only
non-zero elements, then |S∗

i∗ | ≥ �ni∗/q�. Otherwise |S∗
i∗ | ≥ �(ni∗ − 1)/q�.

We construct an adversary A. This adversary A behaves almost exactly like
the honest prover P, except that it insists on answering only those challenges
coming from S∗ :=

∏
i∈Zf

S∗
i . If A is challenged with any other values, it aborts.

If Si∗ contains only non-zero elements, then A successfully convinces the honest
verifier V with probability ρ =

∏
i∈Zf

�ni/q� /ni ≥ q−f > q−f/2 − ε = κ.
Otherwise, by noting that ni∗ > 1 since Si∗ contains at least one non-zero
element, we have ρ = (�(ni∗ − 1)/q� /ni∗)

∏
i∈Zf \{i∗} (�ni/q� /ni) ≥ q−1(1 −

1/ni∗)q−(f−1) ≥ q−f/2 > q−f/2 − ε = κ.
On the other hand, we see that for any algebraic extractor E , EA fails to

find algebraic combinations of differences of challenges to produce s. To see why,
suppose that E does not abort according to Definition 8. Since S∗

i∗ is constructed
such that 0 /∈ S∗

i∗ and M∗(C) �= Cd
i∗ , the set U defined in the statement of Lemma

5 is non-empty. By Lemma 5, we have s ∈ 〈M∗(C) − M∗(C)〉 · I−1 ⊆ qd · I−1.
Since q is prime, we either have q = I, or q and I are coprime. In the former case
we have s ∈ qd−1, and in the latter we have s ∈ qd ⊆ qd−1 since s is integral.

To conclude, EA always fails, which contradicts to the claim that Π has
κ-knowledge soundness relative to (E , Ls,β) for some β ∈ R. �

Remarks about the tightness of Theorem 6. The assumption that q is prime is
made without loss of generality: if q is not prime then we can pick a prime factor
of q. The assumption

∏
i∈Zf

|Si| ≥ qf can typically be dropped if Π admits a
“zero-knowledge simulator” which simulates the prover’s messages by guessing
the challenge to be sent by the verifier, which can be done with probability at
least q−f if

∏
i∈Zf

|Si| < qf .10 The assumption κ < q−f/2 (instead of κ < q−f)
is made to account for the unlikely scenario that the extractor E manages to
collect challenge tuples which contain too many zeros. The conclusion s ∈ qd−1

(instead of s ∈ qd) is to account for the unlikely event that I �= R.
For example, if there exists i∗ ∈ Zf such that M∗(C) �= Cd

i∗ , 0 /∈ Si∗ , and
μ ∈ Si∗ for some invertible element μ ∈ R (e.g. μ = 1), then we can assume
κ < q−f instead and conclude that s ∈ qd using the same proof. In particular,
with this additional (natural) assumption, if s = 1 and q = 〈1 − ζ〉 which has
norm p, then Π does not have κ-knowledge soundness relative to (E , Ls,β) for
any algebraic extractor E , any β ∈ R, any κ < q−f , and any f ∈ N.

By repeating f times a 1-challenge 3-move public-coin proof system with
knowledge error p−1, which can be constructed from a subtractive set of size p,
such as the one constructed in Theorem 2, one can reduce the knowledge error to
p−f relative to an algebraic extractor. Therefore the bound κ < p−f in Theorem
6 is in a sense tight, assuming algebraic extractors.
10 Although such a simulator usually exists naturally, it seems difficult to argue about

its existence generically.

546 M. R. Albrecht and R. W. F. Lai

Acknowledgments. We thank Jonathan Bootle for comments on an earlier version
of this work.

References

1. Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Yuan, C.: Efficient
information-theoretic secure multiparty computation over Z/pk

Z via Galois rings.
In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 471–501.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 19

2. Attema, T., Cramer, R., Kohl, L.: A compressed σ-protocol theory for lattices.
Cryptology ePrint Archive, Report 2021/307 (2021). https://eprint.iacr.org/2021/
307

3. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 669–699.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

4. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110,
pp. 495–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-
9 17

5. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2 4

6. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group sig-
natures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol.
8873, pp. 551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45611-8 29

7. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107,
pp. 183–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 7

8. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part
I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 23

9. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

10. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: More efficient amortiza-
tion of exact zero-knowledge proofs for LWE. Cryptology ePrint Archive, Report
2020/1449 (2020). https://eprint.iacr.org/2020/1449

11. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP approach to
succinct quantum-safe zero-knowledge. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 441–469. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 16

https://doi.org/10.1007/978-3-030-36030-6_19
https://eprint.iacr.org/2021/307
https://eprint.iacr.org/2021/307
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-662-49896-5_12
https://eprint.iacr.org/2020/1449
https://doi.org/10.1007/978-3-030-56880-1_16

Subtractive Sets over Cyclotomic Rings 547

12. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7 7

13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018.
https://doi.org/10.1109/SP.2018.00020

14. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp.
677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

15. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts
in Mathematics, vol. 138. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-662-02945-9

16. Dalskov, A., Lee, E., Soria-Vazquez, E.: Circuit amortization friendly encodings
and their application to statistically secure multiparty computation. In: Moriai,
S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 213–243.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4 8

17. Damg̊ard, I.: On σ-protocols (2010). https://www.cs.au.dk/∼ivan/Sigma.pdf
18. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-

knowledge proofs of automorphism stability. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018, pp. 574–591. ACM Press, October 2018. https://
doi.org/10.1145/3243734.3243852

19. del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for FHE and
ring-LWE ciphertexts. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol.
11442, pp. 344–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17253-4 12

20. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new
techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 9

21. Ganesh, C., Nitulescu, A., Soria-Vazquez, E.: Rinocchio: snarks for ring arithmetic.
Cryptology ePrint Archive, Report 2021/322 (2021). https://eprint.iacr.org/2021/
322

22. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X 9

23. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryp-
tosystem. In: ANTS, pp. 267–288 (1998)

24. Jaeger, J., Tessaro, S.: Expected-time cryptography: generic techniques and appli-
cations to concrete soundness. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part III.
LNCS, vol. 12552, pp. 414–443. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64381-2 15

25. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press, October 2018. https://
doi.org/10.1145/3243734.3243805

https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-030-64840-4_8
https://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1145/3243734.3243852
https://doi.org/10.1145/3243734.3243852
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-64834-3_9
https://eprint.iacr.org/2021/322
https://eprint.iacr.org/2021/322
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/978-3-030-64381-2_15
https://doi.org/10.1007/978-3-030-64381-2_15
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805

548 M. R. Albrecht and R. W. F. Lai

26. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23

27. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992. https://doi.
org/10.1145/129712.129782

28. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 1

29. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

30. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

31. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006, Part II. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://
doi.org/10.1007/11787006 13

32. Norton, G.H., Salagean-Mandache, A.: On the key equation over a commutative
ring. Des. Codes Cryptogr. 20(2), 125–141 (2000)

33. Pornin, T., Prest, T.: More efficient algorithms for the NTRU key generation using
the field norm. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp.
504–533. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 17

34. Quintin, G., Barbier, M., Chabot, C.: On generalized Reed-Solomon codes over
commutative and noncommutative rings. IEEE Trans. Inf. Theory 59(9), 5882–
5897 (2013). https://doi.org/10.1109/TIT.2013.2264797

35. Stehlé, D., Steinfeld, R.: Making NTRUEncrypt and NTRUSign as secure as stan-
dard worst-case problems over ideal lattices. Cryptology ePrint Archive, Report
2013/004 (2013). https://eprint.iacr.org/2013/004

36. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 2

37. Washington, L.C.: Introduction to Cyclotomic Fields, vol. 83. Springer, New York
(1997). https://doi.org/10.1007/978-1-4612-1934-7

38. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692,
pp. 147–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-030-17259-6_17
https://doi.org/10.1109/TIT.2013.2264797
https://eprint.iacr.org/2013/004
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/978-1-4612-1934-7
https://doi.org/10.1007/978-3-030-26948-7_6

A Compressed Σ-Protocol Theory
for Lattices

Thomas Attema1,2,3(B), Ronald Cramer1,2, and Lisa Kohl1

1 Cryptology Group, CWI, Amsterdam, The Netherlands
{cramer,lisa.kohl}@cwi.nl

2 Mathematical Institute, Leiden University, Leiden, The Netherlands
cramer@math.leidenuniv.nl

3 Cyber Security and Robustness, TNO, The Hague, The Netherlands
thomas.attema@tno.nl

Abstract. We show a lattice-based solution for commit-and-prove trans-
parent circuit zero-knowledge (ZK) with polylog-communication, the first
not depending on PCPs.

We start from compressed Σ-protocol theory (CRYPTO 2020), which
is built around basic Σ-protocols for opening an arbitrary linear form on
a long secret vector that is compactly committed to. These protocols are
first compressed using a recursive “folding-technique” adapted from Bul-
letproofs, at the expense of logarithmic rounds. Proving in ZK that the
secret vector satisfies a given constraint – captured by a circuit – is then
by (blackbox) reduction to the linear case, via arithmetic secret-sharing
techniques adapted from MPC. Commit-and-prove is also facilitated, i.e.,
when commitment(s) to the secret vector are created ahead of any circuit-
ZK proof. On several platforms (incl. DL) this leads to logarithmic com-
munication. Non-interactive versions follow from Fiat-Shamir.

This abstract modular theory strongly suggests that it should some-
how be supported by a lattice-platform as well. However, when going
through the motions and trying to establish low communication (on a
SIS-platform), a certain significant lack in current understanding of multi-
round protocols is exposed.

Namely, as opposed to the DL-case, the basic Σ-protocol in ques-
tion typically has poly-small challenge space. Taking into account the
compression-step – which yields non-constant rounds – and the necessity
for parallelization to reduce error, there is no known tight result that the
compound protocol admits an efficient knowledge extractor. We resolve
the state of affairs here by a combination of two novel results which are
fully general and of independent interest. The first gives a tight analysis
of efficient knowledge extraction in case of non-constant rounds combined
with poly-small challenge space, whereas the second shows that parallel
repetition indeed forces rapid decrease of knowledge error.

Moreover, in ourpresent context, arithmetic secret sharing is notdefined
over a large finite field but over a quotient of a number ring and this forces
our careful adaptation of how the linearization techniques are deployed.

We develop our protocols in an abstract framework that is conceptu-
ally simple and can be flexibly instantiated. In particular, the framework
applies to arbitrary rings and norms.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 549–579, 2021.
https://doi.org/10.1007/978-3-030-84245-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_19

550 T. Attema et al.

1 Introduction

Compressed Σ-Protocol Theory [6] is built around basic Σ-protocols for open-
ing an arbitrary linear form on a long secret vector that is compactly committed
to. More precisely, these Σ-protocols allow a prover to prove that a commit-
ted vector x satisfies a constraint L(x) = y captured by a linear form L. They
are first compressed using a recursive “folding-technique” adapted from Bullet-
proofs [14,16]. Compression reduces the communication complexity from linear
down to logarithmic in the dimension of the secret vector x, at the expense of a
logarithmic number of rounds. Proving in ZK that the secret vector satisfies an
arbitrary (non-linear) constraint – captured by an arithmetic circuit – is then by
(blackbox) reduction to the linear case, via arithmetic secret-sharing techniques
adapted from MPC. It was shown how to instantiate this theory from differ-
ent hardness assumptions, i.e., the Discrete Logarithm (DL), Strong-RSA and
Knowledge-of-Exponent (KEA) assumption. The latter assumption even results
in constant communication, instead of logarithmic. Non-interactive versions fol-
low from the Fiat-Shamir transform [26].

The starting point is always a compact and homomorphic vector commit-
ment scheme, i.e., commitments should have size constant (or logarithmic) in
the dimension of the committed vector. After instantiating such a commit-
ment scheme from any of the aforementioned hardness assumption, compressed
Σ-protocol theory can be described in an abstract and modular manner. This
strongly suggests that the theory should also be supported by a lattice plat-
form. This belief was further strengthened by the recent lattice-based Bulletproof
instantiation for proving knowledge of a SIS preimage [15].

However, when going through the motions and trying to establish low commu-
nication (on a SIS-platform), a certain significant lack in current understanding
of multi-round protocols and several challenges are exposed.

1.1 Challenges for Lattice Instantiations

As opposed to the DL-case, the lattice-based Σ-protocol typically has polyno-
mially small challenge space. Taking into account the compression-step – which
yields non-constant rounds – there is no known result from which a tight know-
ledge soundness property can be derived. In prior works, this lack in understand-
ing was handled by an alternative non-tight security analysis [14]. Recent works,
while remaining non-tight, have improved the tightness [3,21,30,31,41].

The situation is further complicated by the necessity for parallelization to
reduce the knowledge error. While parallel repetition of interactive proofs has
been studied extensively in the context of decreasing the soundness error [18,19,
28], to the best of our knowledge there does not exist a general parallel repetition
theorem for decreasing the knowledge error.

Setting aside the knowledge error issues addressed previously, the main differ-
ence between the lattice setting and the other settings is a norm bound. Instead
of proving knowledge of a preimage for some homomorphism Ψ , we aim to prove

A Compressed Σ-Protocol Theory for Lattices 551

knowledge of a short pre-image. More precisely, for some homomorphism Ψ , we
aim to construct a protocol for the following relation

RΨ,α = {(P ;x) : P = Ψ(x), ‖x‖ ≤ α}
where (P ;x) ∈ RΨ,α is a pair of a public statement P and a secret witness x.
The DL-based protocols are designed for exactly the same abstract relation, but
without the norm-bound. This minor difference introduces a number of chal-
lenges that have been dealt with in the context of plain Σ-protocols for some
time now. For example, given a preimage x with ‖x‖ ≤ β, a prover is typically
only capable of proving knowledge of a preimage y with ‖y‖ ≤ αβ. The fac-
tor α ≥ 1 is referred to as the soundness slack. In multi-round protocols the
soundness slack accumulates and a more careful analysis is warranted.

Finally, in our present lattice context, committed vectors typically have coef-
ficients in the quotient of a number ring R = Z[X]/(f(X)) by a rational prime
(p). However, the structure of the ring Rp may not readily allow for the large
sets with invertible pairwise differences required for Shamir secret sharing.

1.2 Contributions

We show a lattice-based solution for commit-and-prove transparent circuit ZK
with polylogarithmic communication, the first not depending on PCPs.

To this end, we resolve the lack in understanding regarding knowledge sound-
ness by a combination of two novel results which are fully general and of inde-
pendent interest. The first gives a tight analysis of efficient knowledge extraction
in case of non-constant rounds, whereas the second shows that parallel repetition
indeed forces rapid decrease of knowledge error.

By our extractor analysis, we tightly prove that (k1, . . . , kμ)-special soundness
implies knowledge soundness, without imposing any restrictions on the size of
the challenge sets. In a concurrent and independent work this result was deemed
out of reach with current techniques [3]. More concretely, they apply the non-
tight analysis of [21] and derive a knowledge error κ ≤ 8.16 log n/|C|, where
n is the size of the input. By contrast, we provide a tight bound and show
that κ ≤ 2 log n/|C|. This inequality contains a simplified expression and is
therefore non-tight, for the tight bound we refer to Theorem 1. Furthermore,
our result answers an open question regarding knowledge extractors, recently
made explicit [30, Question D.4.], in the affirmative. It is generally applicable
to all aforementioned platforms and therefore improves upon the analysis of [3,
14,21,30,31,41], directly yielding better parameters for multi-round protocols
such as Bulletproofs. Towards showing that (k1, . . . , kμ)-special soundness tightly
implies knowledge soundness, we observe that for the special case of 2-special
soundness (where this implication is well-known) we can give a very simple proof
that we have not encountered in the literature before. In contrast to standard
proof techniques, our extractor can be modeled by a negative hyper geometric
distribution. This simplification turns out to be generalizable to the multi-round
scenario. Even though the general proof is building on this simplification, its
analysis turns out to be quite involved.

552 T. Attema et al.

By the second result, we show that parallel repetition indeed forces a rapid
decrease of knowledge error, explicitly proving a result that is often taken for
granted whereas it actually requires a careful analysis. More precisely, it is
known that parallel repetition decreases the soundness error. However, know-
ledge soundness is a strictly stronger notion than soundness. Nevertheless, by
a careful analysis, we prove that prior results also apply to knowledge sound
protocols and allow for a rapid decrease of knowledge error. The (2, 2)-special
sound signature scheme MQDSS was already presented with a tight knowledge
error analysis [17]. However, their analysis crucially depends on the fact that
this signature scheme has a constant number of rounds and therefore does not
apply to our setting. Our techniques are generic and also apply to this protocol,
indeed yielding exactly the same knowledge error.

Furthermore, we describe a careful adaptation of the arithmetic secret shar-
ing based linearization strategy from [6]. First, the evaluation points of Shamir’s
secret sharing scheme have to be chosen from an exceptional, instead of an arbi-
trary, subset of the ring Rp, i.e., a subset with invertible differences. In many
practical scenarios this minor adaptation suffices. However, some rings do not
contain “large enough” exceptional subsets. For this reason, we extend the lin-
earization technique to work for small rings Rp by defining the secret sharing
scheme over an appropriately chosen ring extension. Some care is warranted to
prevent dishonest provers from choosing secret elements in the extension ring.

Subsequently, we note that working in a lattice-platform is considerably more
tedious. Traditionally the security analysis depends strongly on various proto-
col design choices. Our approach is less sensitive to these choices. This is very
convenient when considering variations. More precisely, we develop our proto-
cols in an abstract framework that is conceptually simple and can be flexibly
instantiated. In particular, the framework applies to arbitrary rings, challenge
sets and norms. Our framework captures general rejection sampling strategies,
gives precise bounds on the introduced soundness slack and generalizes beyond
factor-2 per-round compression.

The communication complexity of our protocols, when instantiated from the
Module Short Integer Solution (MSIS) assumption and appropriately chosen
rings, is polylogarithmic in the input size. Due to the soundness slack it does not
achieve the logarithmic communication of a DL-based instantiation. Our proto-
cols are transparent, i.e., no trusted setup, and easily ported to the commit-and-
prove paradigm, where commitment(s) to the secret vector have been created
ahead of any circuit-ZK proof. Moreover, various efficiency improvements, devel-
oped for DL-based (compressed) Σ-protocol theory, almost directly carry over
to the lattice-setting.

1.3 Related Work

Circuit ZK with Polylogarithmic Complexity from PCPs. A generic class of (zero-
knowledge) proof systems is based on Probabilistically Checkable Proofs (PCPs).
The security of these protocols only relies on the existence of collision-resistant
hash functions and they achieve polylogarithmic communication complexity.

A Compressed Σ-Protocol Theory for Lattices 553

However, large concrete costs have long prevented PCP-based protocols from
being deployed in practice. Recent advances have rendered PCP-based protocols
practical [5,11,12]. Still, for small problem instances, PCP-based protocols are
often outperformed by other approaches relying on more structured hardness
assumptions. In particular, PCP approaches rely on Merkle-tree commitments
and therefore have an implicit lower bound in the order of a hundred kilobytes,
whereas protocols relying on the compression mechanism such as Bulletproofs
can go down to as much as a few kilobytes. Even though the soundness slack
introduced by the compression mechanism is currently somewhat limiting in
terms of concrete efficiency, we expect that on the long run the non-PCP lattice-
based approach will lead to more succinct proofs.

Circuit ZK with Sublinear Complexity from Lattice Assumptions. The first pro-
tocol of this form achieving a sub-linear communication complexity ˜O(

√
λn),

where n is the input size and λ the security parameter, was presented in [9]. A
key component of their protocol is a compact commitment scheme. In our lat-
tice instantiation we use exactly the same compact commitment scheme. While
their approach is inherently limited to communication complexity in the order
of ˜O(

√
λn), our approach yields the first lattice-based (non-PCP) protocol that

achieves polylogarithmic complexity in the input length. On the other hand, our
approach requires a larger number of rounds. Getting a similar communication-
complexity/round trade-off as [9] by using a larger per-round compression seems
currently out of reach, due to the large soundness slack introduced (which scales
exponentially in the compression factor).

Lattice-based proof of knowledge of SIS preimages. The lattice-based Bulletproof
instantiation of [15] is most similar to our compressed Σ-protocol. However, in
this work the aforementioned knowledge error issues were overlooked. Moreover,
their work only considers proving knowledge of a SIS preimage, i.e., it does
not consider generic arithmetic circuit relations. Furthermore, it is not zero-
knowledge and it is tailored to a specific lattice-instantiation. By contrast, our
protocol is a circuit ZK protocol that can be instantiated from a wide variety
of lattices. For the specific scenario of proving knowledge of a SIS preimage, we
obtain a comparable communication complexity.

1.4 Roadmap

We start by presenting the general result that (k1, . . . , kμ)-special soundness
tightly implies knowledge soundness in Sect. 3. We first outline a very simple
proof for the special case of 2-special soundness, which is novel to the best of
our knowledge. Subsequently, we show how this proof can be generalized to the
multi-round setting. Using results from [19], we prove that parallel repetition
of multi-round public-coin protocols not only reduces the soundness error, but
also the knowledge error (see Sect. 4). In Sect. 5, we give an abstract theory for
lattice-based compressed Σ-protocols. In Sect. 6, we show how to instantiate our
abstract framework from the Module Short Integer Solution (MSIS) problem.

554 T. Attema et al.

We further provide an asymptotic parameter analysis for our instantiation and
comparison with [15]. In Sect. 7, we briefly explain how to handle non-linear
relations and refer to the full version of this paper [1] for a detailed description
of our techniques. Moreover, in the full version, we discuss a number of extensions
for amortization over many linear forms, reducing the communication complexity
and for obtaining commit-and-prove protocols directly.

2 Preliminaries

We say a function is negligible, if it vanishes faster than any inverse polynomial. If
a function vanishes slower than some inverse polynomial, we say it is noticeable.
For formal definitions and definitions of statistical distance and statistically close
distributions we refer to the full version of this paper [1].

2.1 Interactive Proofs

Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation. If (x;w) ∈ R, we say x is a
statement and w is a witness for x. We only consider NP relations, i.e., relations
R for which a witness w can be verified in time poly(|x|) for all (x;w) ∈ R. In
particular it follows that |w| = poly(|x|). The set of statements x that admit
a witness w is denoted by LR, i.e., LR = {x : ∃w s.t. (x;w) ∈ R}. The set of
witnesses for a statement x is denoted by R(x), i.e., R(x) = {w : (x;w) ∈ R}.

In the following we give a brief overview of interactive proof systems. For a
more thorough treatment, we refer to the full version of this paper [1].

An interactive proof Π = (P,V) for relation R is an interactive protocol
between two probabilistic polynomial time machines, a prover P and a verifier
V. Both P and V take as public input a statement x and, additionally, P takes
as private input a witness w ∈ R(x), which is written as Π(x;w) or Input(x;w).
If all of the verifier’s random coins are made public, Π is said to be public-coin.

We say an interactive proof is complete if V accepts after every honest exe-
cution that takes as input a public-private pair (x;w) ∈ R.

An interactive proof is said to be knowledge sound with knowledge error
κ, if from every (potentially dishonest) efficient prover P ∗ that convinces the
verifier with probability ε(x) > κ(|x|), one can efficiently extract a witness w
with (x;w) ∈ R with probability at least ε(x) − κ(|x|).

An interactive proof that is both complete with completeness error γ : N →
[0, 1) and knowledge sound with knowledge error κ < 1 − γ is said to be a Proof
or Knowledge (PoK). PoKs for which knowledge soundness only holds under
computational assumptions are also referred to as Arguments of Knowledge.

An interactive protocol Π is said to be special honest verifier zero-knowledge
(SHVZK) if given the challenge by the verifier, one can efficiently simulate
accepting transcripts. If simulation is restricted to non-aborting executions of
Π, we refer to the protocol as non-abort special honest verifier zero knowledge.

A 3-move public-coin protocol is said to be special sound if there exists a
polynomial time algorithm that on input a statement x and two accepting tran-
scripts (a, c, z) and (a, c′, z′), with c
= c′ and common first message a, outputs

A Compressed Σ-Protocol Theory for Lattices 555

a witness w ∈ R(x). If the algorithm takes as input k transcripts, with pairwise
distinct challenges and a common first message, the protocol is k-special sound.

A 3-move protocol that is public-coin, complete, k-special sound and SHVZK
is said to be Σ-protocol.

A (k1, . . . , kμ)-tree of transcripts for a (2μ+1)-move protocol is a set of K =
∏μ

i=1 ki transcripts arranged in a tree structure, such that the nodes in this tree
correspond to the prover’s messages and the edges correspond to the verifier’s
challenges, and that further every node at depth i has precisely ki children
corresponding to ki pairwise distinct challenges. For a graphic representation we
refer to Figure 1 of the full version of this paper [1].

A (2μ + 1)-move public-coin protocol is (k1, . . . , kμ)-special sound if there
exists an efficient algorithm that on input a (k1, . . . , kμ)-tree of accepting tran-
scripts outputs a witness w ∈ R(x).

2.2 Lattices

A lattice Λ is a discrete additive subgroup of R
m. The lattice Λ is said to be

q-ary if qZm ⊂ Λ ⊂ Z
m. Let A ∈ Z

k×m
q , then Λ⊥

q (A) = {x ∈ Z
m : Ax = 0

mod q} defines a q-ary lattice in Z
m.

We also consider lattices defined over a ring R = Z[X]/f(X), where f(X) is
a monic irreducible polynomial of degree d. Via the coefficient embedding norms
on C-vector spaces extend to vectors of ring elements, i.e., for x = (x1, . . . , xm) ∈
Rm with xi =

∑d
j=1 ai,jX

j−1 ∈ R we define

‖x‖2 = ‖(a1,1, . . . , am,d)‖2, and ‖x‖∞ = max
i,j

|ai,j |.

For a prime q ∈ N, we write Rq = Z[X]/(q, f(X)) = Zq[X]/(f(X)). Let
A ∈ Rk×m, then Λ⊥

q (A) = {x ∈ Rm : Ax = 0 mod q} defines a q-ary lattice in
Z

dm. Finding a non-zero and short element in a lattice Λ⊥
q (A) is referred to as

the Module Short Integer Solution (MSIS) problem [33]. The MSIS problem is
assumed to be a computationally hard problem.

Definition 1 (MSISk,m,β Problem). Let R = Z[X]/f(X) for a monic and
irreducible polynomial f(X) and let q ∈ N be a prime. The MSISk,m,β problem
over Rq is defined as follows. Given a matrix A ←R Rk×m

q sampled uniformly at
random, find a non-zero vector s ∈ Rm such that As = 0 mod q and ‖s‖2 ≤ β.

Micciancio and Regev [38] showed that a MSIS-algorithm is expected to
output a MSIS solution with norm

‖s‖2 ≥ min
(

q, 22
√

dk log δ log q
)

, (1)

where δ is the root Hermite factor of the lattice reduction algorithm that is used.
In particular, smaller values of δ require better lattice reduction algorithms. In
general, δ ≈ 1.0045 is assumed to achieve 128-bit computational security [4,25].

556 T. Attema et al.

In this work, we will be interested in vectors that are short with respect
to the ∞-norm. For this reason we also consider the following variant of the
MSIS problem, where “shortness” is defined in terms of the ∞-norm. Clearly,
the hardness of MSIS∞

k,m,β is implied by the hardness of MSISk,m,
√

dmβ .

Definition 2 (MSIS∞
k,m,β Problem over Rq). Let R = Z[X]/f(X) for a

monic and irreducible polynomial f(X) and let q ∈ N be a prime. The MSIS∞
k,m,β

problem over Rq is defined as follows. Given a matrix A ←R Rk×m
q sampled

uniformly at random, find a non-zero vector s ∈ Rm such that As = 0 mod q
and ‖s‖∞ ≤ β.

2.3 Commitment Schemes

A commitment scheme allows a prover to create a commitment P to an element
x such that the prover can later open P to the committed element x. Informally,
a commitment scheme is required to be binding, i.e., a prover cannot open a com-
mitment P to two different elements x
= y, and hiding, i.e., the commitment P
does not reveal any information about the committed vector x. A commitment
scheme consists of a setup algorithm, generating the scheme’s public parameters,
and a commitment function Com. The commitment function takes as input an
element x and randomness γ (and public parameters pp) and outputs a commit-
ment P , i.e., Com(x, γ) = P . To open a commitment a prover reveals (x, γ) such
that a verifier can verify that Com(x, γ) = P . The commitment scheme is said
to be homomorphic if the commitment function Com (considered respective to
fixed public parameters) is a group homomorphism.

The primary commitment scheme of interest to us, described in Definition
3, was already implicit in Ajtai’s seminal work [2]. It allows a prover to commit
to a short vector x ∈ Sn

η = {y ∈ Rn : ‖y‖∞ ≤ η} by sampling γ ←R Sr
η

uniformly at random and evaluating the commitment function P = Com(x, γ).
Note that, we consider this commitment scheme for secrets and randomness
bounded in the ∞-norm. We will typically instantiate this commitment scheme
with norm bound η = (p − 1)/2� for some prime p < q. This allows a prover to
commit to arbitrary vectors in Rn

p . The properties of this commitment scheme
are summarized in Lemma 1 and Lemma 2. Note in particular that by Eq. 1 it
follows that the hardness does not depend on the rank n. It follows that the size
of a commitment is constant in the rank m = n+r; we say that this commitment
scheme is compact.

Definition 3 (Compact Lattice-Based Commitment Scheme [2]). Let
R = Z[X]/f(X) for a monic and irreducible polynomial f(x) ∈ Z[X] of degree
d and let q ∈ N be a prime. Let η ∈ N and let Sη = {x ∈ R : ‖x‖∞ ≤ η}. Then,
the following setup and commitment algorithms define a commitment scheme:

– Setup: A1 ←R Rk×r
q , A2 ←R Rk×n

q .
– Commit: Com : Sn

η × Sr
η → Rk

q , (x, γ) �→ A1γ + A2x mod q.

A Compressed Σ-Protocol Theory for Lattices 557

Lemma 1 (Hiding). The commitment scheme of Definition 3 is statisti-
cally hiding with statistical security parameter λ, where λ ∈ N is such that
r ≥ dk log q+2λ

d log(2η+1) .

Lemma 2 (Binding). The commitment scheme of Definition 3 is binding,
conditioned on the hardness of the MSIS∞

k,n+r,2η-problem over Rq.

It is generally hard to construct efficient protocols for proving knowledge of
an opening (x, γ) for a commitment P , i.e., (x, γ) such that Com(x, γ) = P and
‖(x, γ)‖∞ ≤ η. For this reason, we introduce the notion of relaxed openings.

Definition 4 ((β, ζ)-Relaxed Commitment Opening). Let β ∈ N and ζ ∈
R. A (β, ζ)-relaxed opening of a commitment P is a tuple (x, γ) ∈ Rn+r, such
that Com(x, γ) = ζP and ‖(x, γ)‖∞ ≤ β.

Hence, a relaxed opening differs in two ways from a standard commitment
opening. First, a relaxed opening for P contains an approximation factor ζ, such
that the opening gives a short preimage for ζP instead of the commitment P .
Second, the norm-bound β of relaxed openings can be different from the norm
bound η on honestly committed vectors (typically β > η).

As long as it is infeasible to find two distinct relaxed openings (x, γ) and
(x′, γ′) of a commitment P with (x, γ)
= (x′, γ′), proving knowledge of relaxed
opening is sufficient in most practical scenarios. In this case, we say the com-
mitment scheme is binding with respect to relaxed openings.

Lemma 3 (Binding with respect to (β, ζ)-Relaxed Openings). Let β ∈ N

and ζ ∈ R. The commitment scheme of Definition 3 is binding with respect to
(β, ζ)-relaxed openings, conditioned on the hardness of the MSIS∞

k,n+r,2β-problem
over Rq.

3 Multi-round Special Soundness Tightly Implies
Knowledge Soundness

In this section we prove that a (k1, . . . , kμ)-special sound protocol is knowledge
sound and give a concrete and tight knowledge error. More precisely, we show
the existence of an efficient knowledge extractor. From this it follows that Bullet-
proofs [14,16] and Compressed Σ-Protocols [6] are Proofs/Arguments of Know-
ledge (PoKs). We are the first to prove a tight bound on the knowledge error. Prior
works mainly relied on the asymptotic extractor analysis of [14]. This asymptotic
analysis results in conservative concrete security estimates. Moreover, the analy-
sis of [14] is restricted to protocols with exponentially large challenge sets. When
the challenge sets are small, such as in lattice based protocols, a refined analysis
is required. Our result solves both problems. It gives tight security guarantees
resulting in optimal concrete parameters for (k1, . . . , kμ)-special sound protocols
and it is applicable to protocols with small challenge sets. The main result of
this section is summarized in Theorem 1.

558 T. Attema et al.

Theorem 1 ((k1, . . . , kμ)-Special Soundness implies Knowledge Sound-
ness). Let μ, k1, . . . , kμ ∈ N be such that K =

∏μ
i=1 ki can be upper bounded by

a polynomial. Let (P,V) be a (k1, . . . , kμ)-special sound (2μ + 1)-move interac-
tive protocol for relation R, where V samples each challenge uniformly at random
from a challenge set of size N ≥ maxi(ki). Then (P,V) is knowledge sound with
knowledge error

κ =
Nμ − ∏μ

i=1(N − ki + 1)
Nμ

≤
∑μ

i=1(ki − 1)
N

. (2)

First, in Sect. 3.1, we considers the special case of 2-special soundness (for
which the above implication is well-known). We give a very simple proof that
we have not encountered in literature before. In contrast to standard proof tech-
niques, this simplification turns out to be generalizable to the multi-round sce-
nario. Second, in Sect. 3.2, we prove Theorem 1 in its full generality.

3.1 2-Special Soundness

This section is a warm up in which we present a novel proof for the well-known
result that 2-special soundness implies knowledge soundness. Later we show that
our techniques generalize to prove a similar result for 2μ+1-move protocols that
are (k1, . . . , kμ)-special sound. We make a minor modification to the “collision-
game” defined in [20]. The knowledge extractor essentially plays this game in
order to extract a collision of two accepting transcripts (a, c, z) and (a, c′, z′)
with common first message a. By the special soundness property a witness can be
computed efficiently given this collision. Our modification increases the success
probability of the knowledge extractor of [20] from (ε(x)−κ(|x|))2 to ε(x)−κ(|x|),
where κ(|x|) is the knowledge error and ε(x) the success probability of the prover
for a statement x. In contrast to the extractor of [20], which runs in strict
polynomial time, our extractor runs in expected polynomial time. However, this
is sufficient for proving knowledge soundness.

If the input x is clear from context, we simply write ε to denote ε(x). All
other parameters will implicitly depend on |x| (e.g., we denote κ(|x|) by κ).

A similar result can be found in [29]. However, our approach significantly
simplifies the knowledge extractor and its analysis. For instance, the extractor
of [29] is composed of two algorithms considering different scenarios, whereas this
case distinction is not required in our knowledge extractor. This simplification
will allow for a generalization to the (k1, . . . , kμ)-special sound case.

The collision game. Let us now describe the game. We consider a binary matrix
H ∈ {0, 1}R×N . The R rows correspond to the prover’s randomness and the
N columns correspond to the verifier’s randomness, i.e., the verifier samples a
challenge uniformly at random from a challenge set of size N . An entry of H
equals 1 if and only if the corresponding protocol transcript is accepting.

The idea of the knowledge extractor is to sample elements from H until
two 1-entries in the same row are found. The ij-th entry of H can be obtained

A Compressed Σ-Protocol Theory for Lattices 559

by executing the prover with fixed randomness corresponding to the i-th row
and verifier’s challenge corresponding to the j-th column, and checking if the
resulting transcript would be accepted. As the prover’s randomness is fixed along
one row, finding two 1-entries in the same row corresponds to two finding two
accepting transcripts (a, c, e) and (a, c′, e′), which by the 2-special soundness
allows to extract a witness. The difference to the knowledge extractor of [29] is
the following:

1. Our knowledge extractor checks one entry of H (for position ij sampled at
random), and aborts if this is not a 1-entry.

2. If the first entry was a 1-entry, our knowledge extractor then samples along
row i without replacement.

More precisely, the knowledge extractor will play the following collision-game.
An entry of H is selected uniformly at random. If this entry equals 1, continue
sampling different elements from this row (without replacement) until a second
1-entry is found or until the row has been exhausted. If the first entry does not
equal 1, the game aborts. The collision game outputs success if and only if two
1-entries in the same row have been found.

In contrast the above collision-game, the collision-game of [20] simply checks
2 random entries of H and outputs success if both of them are 1-entries.

Lemma 4 (Collision-Game). Let H ∈ {0, 1}R×N and let ε denote the frac-
tion of 1-entries in H. The expected number of H-entries queried in the collision-
game defined above is at most 2. Moreover, the success probability of the collision-
game is greater than or equal to ε − 1/N .

Proof. Expected Number of Queries. Let εi be the fraction of 1-entries in
row i. Assuming that the first entry lies in row i and equals 1, the remainder
of the collision game can be modeled by a negative hypergeometric distribution.
Elements from a population of size N −1, containing εiN −1 1-entries, are drawn
(without replacement) until a second 1-entry has been found. The expected
number of draws equals (N − 1 + 1)/(εiN − 1 + 1) = 1/εi if εi > 1/N (see the
full version of this paper [1]). If there is no second 1-entry in the row, then the
number of draws is always equal to N −1. Hence, the expected number of draws
can be upper bounded by 1/εi. The expected number of H-entries queried is
therefore at most

1
R

R
∑

i=1

(

1 + εi
1
εi

)

= 2.

Success Probability. The collision-game succeeds if the first entry is a 1
that lies in a row containing at least two 1-entries. For 0 ≤ k ≤ N , let δk be the
fraction of rows with exactly k 1-entries. Then the success probability equals

N
∑

k=2

k

N
δk =

(

N
∑

k=0

k

N
δk

)

− δ1
N

≥ ε − 1/N,

which proves the second part of the lemma. ��

560 T. Attema et al.

Fig. 1. We say a (k1, . . . , kµ)-tree as depicted above is a (k1, . . . , kµ)-tree of
1-entries in H, if H(a, c11, c

1,1
2 , . . . , c1,...,1µ) = H(a, c11, c

1,1
2 , . . . , c1,...,2µ) = · · · =

H(a, ck1
1 , ck1,k2

2 , . . . , c
k1,...,kμ
µ) = 1.

From Lemma 4 it immediately follows that 2-special soundness implies know-
ledge soundness with knowledge error 1/N .

Corollary 1. Let (P,V) be a special sound 3-move interactive protocol for rela-
tion R, where V samples each challenge uniformly at random from a challenge set
of size N ≥ k. Then (P,V) is knowledge sound with knowledge error κ = 1/N .

Remark 1. Lemma 4 has a straightforward generalization to the k-special sound-
ness scenario. In this generalization the collision game draws until it has obtained
k, instead of 2, 1-entries in the same row. Hence, it again involves a negative
hypergeometric distribution, but now with different parameters. In this case, the
expected number of queries is at most k and the success probability is greater
than or equal to ε − (k − 1)/N .

3.2 (k1, . . . , kμ)-Special Soundness

In this section, we generalize the collision-game of Sect. 3.1 to the (k1, . . . , kμ)-
special soundness scenario.

The (k1, . . . , kμ)-collision game. To define the (k1, . . . , kμ)-collision-game, let
H ∈ {0, 1}R×N×···×N be a (μ+1)-dimensional binary matrix. For a ∈ {1, . . . , R}
and c1, . . . , ci ∈ {1, . . . , N}, we let H(a, c1, . . . , ci) ∈ {0, 1}N×···×N be the (μ− i)
dimensional submatrix of H that contains all entries of H for which the first
i + 1 coordinates are equal to (a, c1, . . . , ci). The first dimension corresponds to

A Compressed Σ-Protocol Theory for Lattices 561

the prover’s randomness and the other dimensions correspond to the verifier’s
random choices, i.e., we consider protocols in which the verifier samples all μ
challenges uniformly at random from a challenge set of size N . For a fixed public
input x, we define the matrix H such that H(a, c1, . . . , cμ) = 1 if and only if
a transcript with prover’s randomness a and verifier’s challenges c1, . . . , cμ will
lead to an accepting transcript.

In Sect. 2, we have defined (k1, . . . , kμ)-trees of accepting transcripts for (2μ +
1)-move protocols. Similarly, we define (k1, . . . , kμ)-trees of 1-entries in matrix
H (Fig. 1). Such trees can be defined recursively as follows. For μ = 0, a tree
of 1-entries is simply a 1-entry in H. For arbitrary μ, a (k1, . . . , kμ)-tree is the
union of k1 (k2, . . . , kμ)-trees in H(a, c1), . . . , H(a, ck1), respectively, for a fixed
a and pairwise distinct ci. Hence, a (k1, . . . , kμ)-tree of 1-entries in matrix H is
a set of K =

∏μ
i=1 ki 1-entries that are in a (k1, . . . , kμ)-tree structure.

We define Tree to be the algorithm playing the (k1, . . . , kμ)-collision-game.
By playing this game Tree aims to find a (k1, . . . , kμ)-tree of 1-entries in
matrix H. The algorithm Tree is defined recursively as follows. On input a ∈
{1, . . . , R} and c1, . . . , cμ ∈ {1, . . . , N}, Treeμ(a, c1, . . . , cμ) successfully outputs
H(a, c1, . . . , cμ) if this entry equals 1 and it aborts otherwise. For 0 ≤ i ≤ μ − 1
and on input a ∈ {1, . . . , R} and c1, . . . , ci ∈ {1, . . . , N}, Treei(a, c1, . . . , ci)
aims to find a (ki+1, . . . , kμ)-tree of 1-entries in matrix H(a, c1, . . . , ci). The
algorithm Treei(a, c1, . . . , ci) proceeds by sampling ci+1 ∈ {1, . . . N} uniformly
at random and running Treei+1(a, c1, . . . , ci+1). If this instantiation of Treei+1

aborts the algorithm Treei(a, c1, . . . , ci) aborts. Otherwise it continues sampling
different ci+1’s (i.e., without replacement) until it has found ki+1 (ki+2, . . . , kμ)-
trees of 1-entries or until it has exhausted all possible ci+1’s. In the latter case
Treei(a, c1, . . . , ci) aborts, in the former case Treei(a, c1, . . . , ci) outputs a
(ki+1, . . . , kμ)-tree of 1-entries in matrix H(a, c1, . . . , ci).

The (k1, . . . , kμ)-collision-game samples a ∈ {1, . . . , R} uniformly at random
and runs Tree0(a). If Tree0(a) = ⊥ it aborts and otherwise it outputs a
(k1, . . . , kμ)-tree of 1-entries in H(a). The following lemma gives the expected
run-time and success probability of the tree finding algorithm Tree. For a proof
of the following lemma, we refer to the full version of this paper [1].

Lemma 5 ((k1, . . . , kμ)-Tree Finding Algorithm). Let H ∈
{0, 1}R×N×···×N be a (μ + 1)-dimensional matrix and let ε denote the
fraction of 1-entries in H. The expected number of entries queried by the
(k1, . . . , kμ)-tree finding algorithm Tree defined above is at most K =

∏μ
i=1 ki.

Moreover, Tree successfully outputs a (k1, . . . , kμ)-tree of 1-entries in H with
probability at least

ε − Nμ − ∏μ
i=1(N − ki + 1)

Nμ
≥ ε −

∑μ
i=1(ki − 1)

N
.

A knowledge extractor, with rewindable black-box access to a possible dishon-
est prover P∗, essentially runs this tree finding algorithm to obtain a (k1, . . . , kμ)-
tree of accepting transcripts. It evaluates one protocol interaction with P∗ and

562 T. Attema et al.

recursively rewinds P∗, fixing its internal randomness and following the tree find-
ing strategy of Tree. By the (k1, . . . , kμ)-special soundness property a witness
can then be extracted efficiently from the obtained (k1, . . . , kμ)-tree of accepting
transcripts. Hence, from Lemma 5 it immediately follows that a (k1, . . . , kμ)-
special sound protocol is knowledge sound with knowledge error κ, where

κ =
Nμ − ∏μ

i=1(N − ki + 1)
Nμ

≤
∑μ

i=1(ki − 1)
N

.

The latter inequality follows since we have N ≥ maxi(ki) and thus
∏μ

i=1(N −
ki + 1) ≤ Nμ − Nμ−1

∑μ
i=1(ki − 1). This proves Theorem 1.

3.3 Tightness of Our Extraction Analysis

The knowledge error κ of Theorem 1 is optimal, i.e., there exists a dishonest
prover that succeeds in cheating with probability κ. Typically a dishonest prover
can cheat in a k-special sound protocol by guessing a set of k − 1 challenges and
hoping that the verifier selects one of these challenges. The success probability
of this attack is equal to (k − 1)/N , where N is the size of the challenge set.
More generally, a cheating strategy for a (k1, . . . , kμ)-special sound (2μ + 1)-
move protocol goes as follows. For every round i, the cheating prover guesses a
set of ki − 1 challenges. The cheating prover succeeds if there exists a round i
for which the verifier chooses one of the ki − 1 challenges guessed by the prover.
The success probability of this attack is easily seen to be equal to the knowledge
error κ. Hence, this knowledge error is optimal. Alternatively, we observe that
there exist matrices H with ε = κ, i.e., for which the fraction of 1-entries equals
κ, that do not contain a (k1, . . . , kμ)-tree of 1-entries.

Moreover, the tree finding algorithm is optimal in the following sense. The
expected number of H-entries that are queried is exactly equal to the number of
entries in a tree. Hence, we can not hope to find a tree faster than this. Moreover,
taking a closer look at the proof of Lemma 5 shows that the success probability
actually has the following lower bound

f(ε) =

⎛

⎝

μ
∏

j=1

N

N − kj + 1

⎞

⎠ (ε − κ) .

Hence, if ε = 1 the success probability of Tree is at least f(1) = 1, which is
what we would expect.

3.4 A Note on Witness Extended Emulation

Lindell showed that a technical issue arises when using Proofs of Knowledge
as subprotocols in larger cryptographic protocols [34]. To prove security of the
compound protocol, a simulator is typically required to run the extractor of
the PoK. However, the naive simulation approach does not necessarily run in
polynomial time. To this end, Lindell defined the notion of witness-extended

A Compressed Σ-Protocol Theory for Lattices 563

emulation (WEE), capturing precisely the properties required when using PoKs
as subprotocols. Moreover, he showed that any PoK has WEE, thereby solving
this technical issue for all PoKs at once. Hence, from our extraction analysis it
follows that any (k1, . . . , kμ)-special sound protocol has WEE.

Previously, there was no proof showing that a (k1, . . . , kμ)-special sound pro-
tocol is knowledge sound. For this reason prior works (e.g., [14]) resorted to
proving witness-extended emulation directly. However, these results are non-
tight and only apply to protocols with exponentially large challenge sets.

4 Decreasing the Knowledge Error of Public-Coin
Interactive Protocols

In this section, we establish a novel parallel repetition theorem showing that the
knowledge error can be decreased by repeating the protocol in parallel.

We want the knowledge error of a PoK to be negligible in the security param-
eter. If this is not the case the protocol is typically repeated, say t times. The
verifier of the composed protocol only accepts if all t instances of the basic
protocol are accepted. Ideally, and perhaps intuitively, this approach reduces
the knowledge error from κ down to κt. This is indeed the case if the repeti-
tions are executed sequentially [27]. However, sequential repetition increases the
round complexity. Since the security loss due to the Fiat-Shamir transformation
increases exponentially in the number of rounds [23], this is unacceptable when
considering the non-interactive instantiations of our protocols (see the full ver-
sion of this paper [1]). Further, also in the interactive setting we would like to
avoid the additional round complexity introduced by sequential composition.

For this reason, we aim to repeat the protocol in parallel. We write (Pt,Vt)
for the t-fold parallel repetition of an interactive argument (P,V). However, it is
not true in general that parallel repetition decreases the knowledge error expo-
nentially. There even exist interactive protocols for which parallel repetition
does not decrease the success probability of a dishonest prover at all [10,39].
Analyzing parallel repetitions is significantly more complicated than analyzing
sequential repetitions, because a dishonest prover does not have to treat all t par-
allel instances independently, i.e., a message corresponding to a specific instance
may depend on the messages and challenges of the other parallel instances.

If (P,V) is a 2-special sound 3-move protocol, then (Pt,Vt) is 2-special sound
too. It therefore follows that the knowledge error of a 2-special sound protocol
decreases exponentially in the number of parallel repetitions. However, a similar
result does not hold in general, i.e., in general special-soundness is not preserved
by parallel repetition. For example, it is easily seen that the parallel repetition
of a k-special sound protocol for k
= 2 is not k-special-sound.

Several parallel repetition results, considering multi-round public-coin inter-
active arguments, have been established [18,19,28], showing that parallel repeti-
tion reduces the soundness error. However, “soundness” is a weaker notion than
“knowledge soundness”. Informally the soundness error is the success probability
of a cheating prover and soundness does not require the existence of a knowledge
extractor.

564 T. Attema et al.

To the best of our knowledge a parallel repetition result for decreasing the
knowledge error has not been established yet, even though the lattice-based
Bulletproof protocols of [15] implicitly rely on such a parallel repetition result.
In Theorem 3, we show that the knowledge error of a public-coin argument
decreases close to exponentially in the number of parallel repetitions. Our proof
uses the following result from [19]. This theorem shows that, given oracle access
to a (possibly dishonest) prover P∗ that, for statements x, succeeds in convincing
Vt with probability ε(x), a prover P(P∗) that succeeds in convincing V with
probability ≈ ε(x)1/t can be constructed.

Theorem 2 (Theorem 2 of [19]). Let (P,V) be a public-coin interactive argu-
ment for a language L. Let t : N → N, and let (Pt,Vt) be the t-fold parallel
repetition of (P,V). There exists an oracle machine P(·) such that for every
ξ : N → (0, 1), every δ : {0, 1}∗ → (0, 1), every x ∈ {0, 1}∗, and every PPT
prover P∗, it holds that if

Pr
((P∗,Vt

)

(x) = 1
) ≥ (1 + ξ(|x|))δ(x)t(|x|)

︸ ︷︷ ︸

ε(x):=

,

then
Pr

(

(

P(P∗),V)

(x) = 1
)

≥ δ(x).

Furthermore, P(P∗) runs in time poly(|x|, t(|x|), ξ(|x|)−1, ε(x)−1, (1 − δ(x))−1).

Theorem 3 now shows that the t-fold parallel repetition of knowledge sound
interactive argument is knowledge sound and that the knowledge error decreases
close to exponential in t. More precisely, the theorem shows that if (P,V) has
knowledge error κ, then (Pt,Vt) has knowledge error κt +ν, for arbitrary notice-
able ν. Therefore, by choosing t large enough, we can show that (Pt,Vt) has
knowledge error 1/|x|c for any c ∈ N. Note though that we cannot show that
(Pt,Vt) has negligible knowledge error negl(λ), because the running time of
P(P∗) scales with the inverse success probability of P∗.

While it might seem that this barrier is rather an artifact of the proof tech-
nique of [19] on which we build, it was shown by [22] that Theorem 2 is tight
when considering soundness amplification of protocols in general. More precisely,
based on some cryptographic assumptions they showed that parallel repetition
does not amplify security beyond negligible, meaning that for any negligible func-
tion negl one can find an instantiation that when starting with non-negligible
soundness error, the protocol can always be broken with probability negl(|x|),
no matter how many parallel repetitions one runs.

For a proof of the theorem we refer to the full version of this paper [1].

Theorem 3. Let (P,V) be a public-coin interactive argument for a relation R
that is knowledge sound with knowledge error κ : N → (0, 1). Let t : N → N be
upper bounded by a polynomial. Let ν : N → (0, 1) be an arbitrary noticeable
function. Then, (Pt,Vt) is knowledge sound with knowledge error κ′ = κt + ν.

A Compressed Σ-Protocol Theory for Lattices 565

Remark 2. The properties completeness and special honest verifier zero-
knowledge are easily seen to be preserved by parallel repetition, although the
completeness error increases in the number parallel repetitions.

5 A General Framework for Compressed Σ-Protocols
over Lattices

The main pivot of compressed Σ-protocol theory [6] is a basic Σ-protocol for
proving that a committed vector satisfies some linear constraint. Subsequently,
a compression mechanism is applied (recursively) to reduce the communication
complexity from linear down to polylogarithmic in the input size. The composi-
tion of these protocols is referred to as a compressed Σ-protocol. In this section
we present a natural abstraction similar to the one presented in [7, Appendix A]
extended to the lattice setting. This requires a number of non-trivial adaptations
that are explained in the following. Subsequently, we show how to instantiate
this abstraction from a concrete lattice assumption.

In the following we first give an abstraction of the standard Σ-protocol to
the lattice setting and then explain how the compression mechanism extends to
this setting. Note that we give both protocols in a very abstract fashion, with
the goal of allowing to instantiate them from a broad variety of lattice-based
assumptions. Note that our abstraction is not restricted to instantiations based
on lattices, but is tailored to this setting.

5.1 Standard Σ-Protocol

In this section we recall what we will refer to as standard Σ-protocol for proving
knowledge of a preimage of some given module homomorphism Ψ .1 This protocol
can be viewed as the abstraction of the protocol of Schnorr [40] to arbitrary
module homomorphisms, where we have to build in several relaxations in order
to make it compatible with the lattice setting.

First, in the lattice setting the witness is required to be small, we therefore
define a pair (Y ; y) to be in the target relation if Y = Ψ(y) and ‖y‖ ≤ α, for
some α ∈ N. Note that this requires to define a norm in the preimage space,
we therefore in the following restrict to modules with norm. If the preimage
is not required to be small (as, e.g., is the case in the discrete log setting),
one does not have to require a norm on the module and can simply ignore the
corresponding requirements in the protocols. The requirement of the witness y
to have small norm is also where the main difficulty stems from, because one
now has to transform a witness y into a witness x, such that

1. the norm of x is not much larger than y (as otherwise the statement becomes
meaningless), but

2. x still hides y.

1 For an introduction into modules and module homomorphisms we refer to [32].

566 T. Attema et al.

In order to ensure the second without a too large knowledge error, the relation
that one can prove knowledge of does not correspond to the target relation R,
but some relaxed relation R′. In this case, we say the protocol is a protocol for
the pair of relations (R,R′), i.e., an honest prover knows a witness for R but
can only prove knowledge of a witness for R′.

In fact, there are two sources introducing “soundness slack”: First, x itself will
in general already have larger norm than y (in order to ensure hiding). Second,
even worse, extracting a witness ỹ from two accepting transcripts, introduces
additional slack. This slack is more difficult to control, as it depends on the
inverse of challenge differences. As challenge differences will not necessarily be
invertible over the underlying ring, we introduce an additional relaxation on the
relation. Namely, for some fixed element ζ (in our examples, we will typically
have that ζ is a power of two) we will consider relations R′, such that (X;x) ∈ R′

if Ψ(x) = ζ · X and ‖x‖ ≤ β. We refer to ζ as an approximation factor.
More formally, let R = {Rλ}λ∈N be an ensemble of rings, let M =

{Mλ}λ∈N, N = {Nλ}λ∈N be ensembles of R-modules, let Ψ = {Ψλ : Mλ →
Nλ}λ∈N be an ensemble of efficiently computable R-module homomorphisms
and let ζ = {ζλ}λ∈N be an ensemble of approximation factors (i.e., ζλ ∈ Rλ for
all λ). Let further ‖·‖ be a norm on M , let α, β : N → N with α ≤ β. Then, we
define the relations R(Ψ, α) = {Rλ(Ψ, α)}λ∈N and R(Ψ, β, ζ) = {Rλ(Ψ, β, ζ)}λ∈N

via
Rλ(Ψ, α) =

{

(Y ; y) : y ∈ Mλ, Y = Ψλ(y), ‖y‖ ≤ α(λ)
}

,

Rλ(Ψ, β, ζ) =
{

(Y ; y) : y ∈ Mλ, ζλ · Y = Ψλ(y), ‖y‖ ≤ β(λ)
}

.

In the following we abstract the notion of rejection sampling [35,36], which
is used in lattice based cryptography to sample a value, such that

1. the sample algorithm is somewhat norm-preserving, i.e., the norm of the
sampled value is not too much larger than the norm of the witness,

2. adding this value to the witness statistically hides the witness or the rejection
sampling strategy aborts, and, finally,

3. the abort probability is essentially independent of the witness.

Definition 5 (V -Hiding and β-Bounded Sampling). Let R = {Rλ}λ∈N be
an ensemble of rings and let M = {Mλ}λ∈N be an ensemble of R-modules. Let
V = {Vλ}λ∈N be an ensemble of sets with Vλ ⊆ Mλ for all λ. Let (D,F) such
that D is an ensemble of efficiently sampleable distributions D = {Dλ}λ∈N over
M , and F a PPT algorithm. We say (D,F)-is V -hiding, if there exists a PPT
algorithm F ′ such that for each λ ∈ N:

– F on input r ∈ Mλ and v ∈ Vλ, outputs r + v or ⊥,
– F ′ on input 1λ, outputs an element z ∈ Mλ or ⊥,

such that the output distributions of (D,F) and F ′ are statistically close. More
precisely, there exists a negligible function negl : N → N such that for all λ ∈ N

and for all v ∈ Vλ we have

Δ
({F(r, v) | r ← Dλ}, {F ′(1λ)}) ≤ negl(λ),

A Compressed Σ-Protocol Theory for Lattices 567

where the probability is taken over the randomness of Dλ and the random coins of
F ,F ′. If the distribution of (D,F) and F ′ are equal, we say (D,F)-is perfectly
V -hiding.

Note that by the above considerations we can upper bound the abort probability
of (D,F) by

δ(λ) = Pr[F ′(1λ) = ⊥] + negl(λ),

for all λ ∈ N.
Let further β : N → N. We say that (D,F) is β-bounded if for all λ ∈ N, v ∈

Vλ and r in the support of Dλ it holds ‖F(r, v)‖ ≤ β(λ) whenever F(r, v)
= ⊥.

To improve readability, we will in the following omit the security parameter,
and, e.g., simply say “Let R be a ring. . . ”, or “Let α ∈ N. . . ”, even though we
assume all variables to be parametrized by the security parameter.

Before stating the Σ-protocol, we introduce the notion of an ζ-exceptional
subset, which will ensure that the protocol satisfies special soundness.

Definition 6 (ζ-Exceptional Subset). Let R be a ring, ζ ∈ R and C ⊆ R
be a set. We say C is an ζ-exceptional subset of R, if for all pairs of distinct
elements c, c′ ∈ C there exists a non-zero element a ∈ R such that a(c − c′) = ζ.
If C is a 1-exceptional subset of R, we simply say that C is an exceptional subset.

We further need to give bounds on the soundness slack introduced by extrac-
tion. To this end, for ζ-exceptional subsets C ⊂ R we define w(C) and w̄(C, ζ):

w(C) = max
c∈C,x∈R\{0}

‖cx‖
‖x‖ ,

w̄(C, ζ) = max
c 	=c′∈C,x∈R\{0}

max
a∈R:a(c−c′)=ζ

‖ax‖
‖x‖ .

(3)

The value w(C) gives an upper bound on how much the norm of an element
in R increases when multiplied by an element in C, i.e., w(C) is such that ‖cx‖ ≤
w(C)‖x‖ for all c ∈ C and x ∈ R. Note that if R = Z and with absolute value
| · |, we simply have w(C) = max{|c| : c ∈ C}.

The value w̄(C, 1) gives an upper bound on how much the norm of an element
in R increases when multiplied with the inverse of challenge differences, i.e.,
w̄(C, 1) is such that ‖(c−c′)−1x‖ ≤ w̄(C, 1)‖x‖ for all x ∈ R and distinct c, c′ ∈ C.
In general, the value w̄(C, ζ) gives an upper bound on how much the norm of
an element in R increases when multiplied with an a such that a(c − c′) = ζ for
challenges c
= c′. Note that w̄(C, ζ) is only well-defined if C is ζ-exceptional.

The maximum over a ∈ R in Eq. 3 can be replaced by a minimum, poten-
tially resulting in tighter norm bounds. More precisely, the extractor can choose
the element a that minimizes ‖ax‖/‖x‖. However, this requires the minimum
to be efficiently computable. To avoid this additional assumption we take the
maximum over all a. Moreover, in most practical applications R does not have
zero-divisors and a ∈ R is uniquely defined.

568 T. Attema et al.

For a module M over R with norm ‖·‖, similarly we define

wM (C) = max
c∈C,x∈M\{0}

‖cx‖
‖x‖ and w̄M (C, ζ) = max

c 	=c′∈C,x∈M\{0}
max

a∈R:a(c−c′)=ζ

‖ax‖
‖x‖ .

Note that for M = Rn and ‖·‖ over M defined as p-norm (for p ∈ N ∪ {∞}),
we have wM (C) = w(C) and w̄M (C, ζ) = w̄(C, ζ).

We now state the standard Σ-protocol Π0 for the pair of relations
(R(Ψ, α), R(Ψ, 2β, ζ)) in Protocol 1. Further, we summarize its properties in The-
orem 4. For a proof we refer to the full version of this paper [1].

Protocol 1 Standard Σ-Protocol Π0 for the pair of relations (R(Ψ, α),
R(Ψ, 2βσ, ζ)), where σ = w̄M (C, ζ). Here, (D,F) is V -hiding and β-bounded,
where V = {cy | y ∈ M,‖y‖ ≤ α, c ∈ C}.

Input(Y ; y)
Y = Ψ(y)

Prover Verifier

w ←R D, W = Ψ(w)
W−−−−−−−−−−−−−−→

c0 ←R C ⊂ R
c0←−−−−−−−−−−−−−−

If F(w, c0y) = ⊥ :
Abort

Else: x = w + c0y
x−−−−−−−−−−−−−−→ ‖x‖ ?≤ β, Ψ(x)

?
= W + c0Y

Theorem 4 (Standard Σ-Protocol). Let R be a ring, let M,N be R-modules
and let Ψ : M → N be an efficiently computable R-module homomorphism.

Further, let ζ ∈ R and C ⊂ R be a finite ζ-exceptional subset of R, let
α, β ∈ N and δ ∈ [0, 1), let V = {cy | y ∈ M, ‖y‖ ≤ α, c ∈ C} and let (D,F) be a
β-bounded V -hiding distribution with abort probability δ.

Then, the protocol Π0 (as defined in Protocol 1) is a 3-move protocol for
relations (R(Ψ, α), R(Ψ, 2βσ, ζ)) defined via

R(Ψ, α) =
{

(Y ; y) : y ∈ M,Y = Ψ(y), ‖y‖ ≤ α
}

,

R(Ψ, 2βσ, ζ) =
{

(Y ; y) : y ∈ M, ζ · Y = Ψ(y), ‖y‖ ≤ 2βσ
}

,

where σ = w̄M (C, ζ).
It is complete with completeness error δ, unconditionally 2-special sound and

statistical non-abort special honest verifier zero-knowledge.

A Compressed Σ-Protocol Theory for Lattices 569

Remark 3. In some settings it is beneficial to introduce another relaxation. For
example, if ζ = 1 (i.e., if challenge difference are invertible), the aforementioned
approach requires inverses of challenge differences to be of small norm. The
following relaxed relation only requires challenge differences, and not necessarily
their inverses, to be of small norm. It introduces an adapted approximation
factor c̄ ∈ C̄ = {c − c′; c, c′ ∈ C, c
= c′} and is defined as follows

R(Ψ, β, C̄) =
{

(Y ; y, c̄) : y ∈ M, c̄ · Y = Ψ(y), ‖y‖ ≤ β, c̄ ∈ C̄
}

.

The approximation factor c̄ is not fixed and part of the secret witness. This
relaxation allows for more efficient Σ-protocols. However, when composed with
other protocols the fact that the approximation factors are not fixed introduces
additional difficulties. These can be handled, but in most settings the required
adjustments negate the benefits of this relaxed relation, we therefore do not
consider it further.

For a generic transformation from non-abort SHVZK to SHVZK (or even
standard zero-knowledge) we refer to the full version of this paper [1].

5.2 Compression Mechanism

Observe that the final message x of protocol Π0 is a witness for statement
X := W + c0Y , i.e., the final message can be viewed as a trivial proof of know-
ledge for X ∈ LR(Ψ,β). In the following, we will present a general view on the
compression mechanism that allows to replace this trivial PoK by a more effi-
cient one, using Bulletproof’s folding mechanism [14,16]. This protocol does not
need to be SHVZK, since it is a replacement for the trivial PoK.

Compression function. The Bulletproof folding mechanism relies on an compres-
sion function that allows to compress the witness iteratively. In the following, we
outline the properties the compression function has to satisfy. The main purpose
of giving this abstraction is to improve readability of the protocols. In the full
version of this paper [1], we further give an abstraction generalizing to larger
compression rate and the corresponding compression mechanism.

Definition 7 (Extractable compression function). Let M,M ′ be R-
modules, such that M is of even rank n and M ′ of rank n/2. Let C ⊂ R
be an exceptional subset of R. Let Comp = {Compc : M → M ′ : c ∈ C} and
Φ = {Φc : M ′ → M : c ∈ C}, where Φc is an R-module homomorphism for each
c ∈ C. Then, we say (Comp, Φ) is an extractable compression function for C, if
the following holds: There exist maps πL, πR : M → M , such that for all c ∈ C:

Φc(Compc(x)) = πL(x) + c · x + c2 · πR(x).

We further say that (Comp, Φ) is (τ, τ ′)-norm preserving, if for all c ∈ C, x ∈
M, z ∈ M ′:

‖Compc(x)‖ ≤ τ · ‖x‖ and ‖Φc(z)‖ ≤ τ ′ · ‖z‖.

570 T. Attema et al.

The reason why Φc ◦ Compc has to be of this specific form is to allow
extractability even if the maps πL, πR are not evaluated honestly. More precisely,
let Ψ : M → N . Then, given pairwise distinct c1, c2, c3 ∈ C and z1, z2, z3 ∈ M ′

such that Ψ ◦ Φci
(zi) = A + ciX + c2i B for i ∈ [3] (for arbitrary A,B ∈ N), it is

possible to extract an x ∈ M with Ψ(x) = X (resulting in 3-special soundness
of the compression mechanism). In the lattice setting it is further crucial that
we can give a meaningful bound on the norm of the extracted x. In the proof of
Theorem 5 we will show that this is indeed the case.

Example 1 (Bulletproof compression function [14,16]). Let M = Rn and M ′ =
Rn/2. Then, the Bulletproof compression function is obtained as

Compc((xL, xR)) = xL + c · xR,

Φc(z) = (cz, z),

and
πL((xL, xR)) = (0, xL),
πR((xL, xR)) = (xR, 0).

Recall that w(C) = maxc∈C,x∈R\{0} ‖cx‖∞/‖x‖∞. The Bulletproof compres-
sion function is (1 + w(C), w(C))-norm preserving, as for all c ∈ C, x ∈ M

‖xL + c · xR‖∞ ≤ ‖x‖∞ + w(C)‖x‖∞,

‖(cz, z)‖∞ ≤ w(C)‖z‖∞,

whenever w(C) ≥ 1 (which will be the case for our instantiations).
Using the Bulletproof compression function with the p-norm ‖·‖p for arbi-

trary p ∈ N ∪ {∞} instead of restricting to the infinity norm, we obtain that
the Bulletproof compression function is (1 + wp(C), 1 + wp(C))-norm preserving,
because in general we can only guarantee

‖(cz, z)‖p ≤ wp(C)‖z‖p + ‖z‖p,

where now wp(C) = maxc∈C,x∈R\{0} ‖cx‖p/‖x‖p.

The idea of the compression mechanism is as follows: First the prover commits
to A = Ψ(πL(x)) and B = Ψ(πR(x)). Next, the verifier sends a challenge c ∈
C. Using the compression mechanism, the prover then compresses x as z =
Compc(x). Now, the verifier can check if indeed Ψ(Φc(z)) = A + cX + c2B. As
Compc(x) is 2-compressing, this strategy reduces communication complexity by
roughly a factor 2. Note that this factor 2 reduction comes at the cost of sending
two elements A,B ∈ N . Hence, in practice the reduction of the communication
cost depends on the size of the R-module N . Finally, by extrability it follows
that the compression mechanism is 3-special sound.

The compression mechanism is graphically displayed in Protocol 2 and its
properties are summarized in Theorem 5. For a formal proof we refer to the full
version of this paper [1].

A Compressed Σ-Protocol Theory for Lattices 571

Protocol 2 Generic Compression Mechanism Π1 for relations (R(Ψ, β),
R(Ψ, βσ, ζ3)

)

, where σ = 6ττ ′wM (C)2w̄M (C, ζ)3. Recall that (Comp, Φ) is a
(τ, τ ′)-norm preserving extractable compression map, i.e. for all c ∈ C:

Φc(Compc(x)) = πL(x) + cx + c2πR(x).

Input(X; x)
X = Ψ(x) ∈ N

Prover Verifier

A = Ψ(πL(x))

B = Ψ(πR(x))
A,B−−−−−−−−−−−−−−→

c ←R C ⊂ R
c←−−−−−−−−−−−−−−

z = Compc(x)
z−−−−−−−−−−−−−−→ ‖z‖ ?≤ β · τ,

Ψ(Φc(z))
?
= A + cX + c2B

Theorem 5 (Compression Mechanism). Let M,M ′, N be R-modules, such
that M has even rank n and M ′ has rank n/2 over R, and let Ψ : M →
N be an R-module homomorphism. Further, let ζ ∈ R and let C be a
finite ζ-exceptional subset of R, let (Comp, Φ) be a (τ, τ ′)-norm preserving
extractable compression function for C with projection maps πL, πR, and let
σ = 6ττ ′wM (C)2w̄M (C, ζ)3. Then, Π1 as given in Protocol 2 is a 3-move proto-
col for relations

(

R(Ψ, β), R(Ψ, βσ, ζ3)
)

which satisfies perfect completeness and
unconditional 3-special soundness.

5.3 Compressed Σ-Protocol

In this setting we build on the previous sections in order to present the com-
pressed Σ-Protocol Πcomp, allowing to reduce complexity to polylogarithmic in
the input length (when choosing a suitable instantiation).

The introduced soundness slack makes concatenating protocols a bit more
involved than in the plain setting. For more details and a formal treatment of
this issue we refer to the full version of this paper [1]. Informally

Πcomp = Π1 � · · · � Π1 � Π0,

for the appropriate instantiations of Π0 and Π1. Recall, that in the composition
Πb � Πa, the final message of protocol Πa is replaced by an execution of Πb.

Building on the composition theorem and the results of the previous sections,
where the compression function is instantiated with the Bulletproof compression
function, we obtain the following corollary.

572 T. Attema et al.

Corollary 2 (Generic Compressed Σ-Protocol). Let μ ∈ N. Let M = R2μ

and ‖·‖∞ the infinity norm on M (for some underlying norm on R). Let Ψ : M →
N be an R-module homomorphism, let ζ ∈ R and let C be a finite ζ-exceptional
subset of R. Let α, β ∈ N and δ ∈ [0, 1), let V = {cy | y ∈ M, ‖y‖∞ ≤ α, c ∈ C}
and let (D,F) be a β-bounded V -hiding distribution with abort probability δ.
Then, there exists a (2μ + 3)-move public-coin protocol Πcomp for the pair of
relations

(

R(Ψ, α), R(Ψ, 2β · w̄(C, ζ) · σμ, ζ3μ+1)
)

,

where σ = 6 · w(C)3 · (1 + w(C))·w̄(C, ζ)3.
It is complete with completeness error δ, unconditionally (2, 3, . . . , 3)-special

sound and non-abort special honest-verifier zero-knowledge. Moreover, the com-
munication costs are:

– P → V: 2μ + 1 elements of N and 1 element of R.
– V → P: μ + 1 elements of C.

In the full version of this paper [1], we outline how the abstract Σ-protocol
theory yields a proof of knowledge with knowledge error κ ≤ (2μ+1)/|C|, which
can be decreased to 1/λd for arbitrary constant d ∈ N by applying the parallel
repetition theorem (Theorem 3). Moreover, there we discuss the issues that arise
when applying the Fiat-Shamir transform to our protocol in order to transform it
into a non-interactive PoK. We further give details on how to use our compressed
Σ-protocols non-interactively via the Fiat-Shamir transform.

6 Compressed Σ-Protocols from the MSIS Assumption

The compressed Σ-protocol Πcomp of Corollary 2 is typically instantiated with
Ψ(x, γ) = (Com(x, γ), L(x)) for a commitment scheme Com and a linear form
L, where γ is the commitment randomness. This allows a prover to show that
a committed vector x satisfies a linear constraint. When instantiated with a
compact or compressing commitment scheme, for which the size of a commitment
is at most polylogarithmic in the size of the secret vector, protocol Πcomp achieves
communication complexity polylogarithmic in the input size. In the full version
of this paper [1], we show how to linearize non-linear constraints and thereby
prove that committed vectors satisfy arbitrary non-linear constraints. Therefore
compressed Σ-protocol Πcomp is only required to handle linear instances.

The generalizations of Sect. 5 were introduced to handle lattice-based com-
mitment schemes. In this section, we instantiate compressed Σ-protocol Πcomp

for the following lattice-based commitment function (Definition 3)

Com : Rn × Rr → Rk
q , (x, γ) �→ A1γ + A2x mod q.

Recall that, R = Z[X]/f(X) for a monic irreducible polynomial f(X), Rq =
R/(q) for a rational prime q, and A1 ∈ Rk×r

q and A2 ∈ Rk×n
q are sampled uni-

formly at random in the setup phase. This commitment scheme allows a prover
to commit to “short” ring elements. We use it to commit to secret vectors of

A Compressed Σ-Protocol Theory for Lattices 573

Rn
p via their unique representation in {x ∈ R : ‖x‖∞ ≤ (p − 1)/2�}. Subse-

quently, we aim to prove that a committed vector x ∈ Rn
p satisfies an Rp-linear

constraint L(x) = y for a linear form L : Rn
p → Rp. To this end, we instantiate

protocol Πcomp with α = (p − 1)/2� for the R-module homomorphism

Ψ : Rn × Rr → Rk
q × Rp, (x, γ) �→ (Com(x, γ), L(x) mod p) .

Note that the protocol of Corollary 2 contains an approximation factor ζ3μ+1.
This means that, in the instantiation of this section, a prover claims to know an
exact opening (x, γ) of a commitment P satisfying L(x) = y, but is only capable
of proving knowledge of a relaxed opening (x′, γ′) such that Com(x′, γ′) = ζ3μ+1·
P and L(x) = ζ3μ+1·y ∈ Rp. For this reason, we require the approximation factor
ζ to be invertible in Rp. In this case, a commitment to a vector x′ ∈ Rn

p is also
a commitment to the vector x̃ = ζ−3μ−1x′ ∈ Rn

p satisfying the linear constraint
L(x̃) = y. Hence, if ζ ∈ R∗

p, we derive precisely the desired functionality of
proving that a committed vector satisfies a linear constraint.

The lattice instantiation requires a distribution-algorithm pair (D,F) that
is V -hiding, for V = {cy | y ∈ M, ‖y‖∞ ≤ α, c ∈ C}, and β-bounded for some
reasonably small β ∈ N. We let D be a uniform distribution over an appropriate
subset of Rn+r. The following lemma shows that this approach gives the required
properties. The smallest lattice-based signatures take D to be a Gaussian dis-
tribution. Namely, when the secrets have a bounded 2-norm, the Gaussian dis-
tribution results in better protocol parameters. In our scenario this is not the
case; our secrets are bounded in the ∞-norm. Additionally, uniform sampling is
less prone to side-channel attacks. For this reason, the digital signature scheme
Dilithium also deploys a uniform rejection sampling approach [24].

Lemma 6 (Uniform Rejection Sampling). Let R = Z[X]/f(X) for
a monic and irreducible polynomial f(X) ∈ Z[X] of degree d, C ⊂
R and m, η ∈ N. Let ‖z‖∞ be the ∞-norm of the coefficient vector
of z ∈ Rm and let w(C) = maxc∈R,x∈R\{0}‖cx‖∞/‖x‖∞. Let V =
{cx ∈ Rm : c ∈ C ⊂ R, ‖x‖∞ ≤ (p − 1)/2�}. Let D be the uniform distribution
over {x ∈ Rm : ‖x‖∞ ≤ η} and let

F(r, v) =

{

⊥, if ‖v + r‖∞ > η − w(C) (p − 1)/2� ,

v + r, otherwise.

Then (D,F) is perfectly V -hiding and (η − w(C) (p − 1)/2�)-bounded, with abort
probability δ ≤ 1 − e− w(C)pmd

2η+1 .

Proof. Note that, for all v ∈ V , it holds that ‖v‖∞ ≤ w(C) (p − 1)/2�. Hence,
the abort probability of the probabilistic algorithm {F(r, v) | r ← D} equals

δ = 1 −
(

1 − 2w(C) (p − 1)/2�
2η + 1

)md

,

≤ 1 − emd log(1− w(C)p
2η+1) ≤ 1 − e− w(C)pmd

2η+1 .

574 T. Attema et al.

Now let F ′ be the algorithm that aborts with probability δ and otherwise
outputs a z ∈ {x ∈ Rm : ‖x‖∞ ≤ η − w(C) (p − 1)/2�} sampled uniformly at
random. Then it is easily seen that {F(r, v) | r ← D} and {F ′} have exactly the
same output distributions, i.e., (D,F) is V -hiding.

Finally, (D,F) is clearly (η − w(C) (p − 1)/2�)-bounded. ��
The resulting instantiation of Πcomp, denoted by Λcomp(η), is parameterized

by η ∈ N allowing for a trade-off between the abort probability and communi-
cation complexity of the protocol. Its properties are summarized in Corollary 3.

Corollary 3 (Lattice-Based Compressed Σ-Protocol). Let n, r, μ, η ∈ N

such that n+r = 2μ and let p, q ∈ N be primes. Let R = Z[X]/f(X) for a monic
and irreducible polynomial f(X) ∈ Z[X] of degree d. Let ζ ∈ R such that ζ ∈ R∗

p

and let C be a ζ-exceptional subset of R. Let A1 ∈ Rk×r
q , A2 ∈ Rk×n

q and

Ψ : Rn × Rr → Rk
q × Rp, (x, γ) �→ (A1γ + A2x mod q, L(x) mod p) .

Then, there exists a (2μ + 3)-move public-coin protocol Λcomp(η) for the pair of
relations

R =
{

(P ;x) : P = Ψ(x), ‖x‖∞ ≤ (p − 1)/2�
}

,

R′ =
{

(P ;x) : ζ3μ+1 · P = Ψ(x), ‖x‖∞ ≤ 2σμw̄(C, ζ)(η − w(C)(p − 1)/2�)
}

,

where σ = 6 · w(C)3 · (1 + w(C)) · w̄(C, ζ)3 with w(·) and w̄(·) defined as in Eq. 3.
It is unconditionally (2, 3, . . . , 3)-special sound, non-abort special honest-

verifier zero-knowledge and complete with completeness error

δ ≤ 1 − e− w(C)p(n+r)d
2η+1 .

Moreover, the communication costs are:

– P → V: 2μ + 1 elements of Rk
q , 2μ + 1 elements of Rp and 1 element of R.

– V → P: μ + 1 elements of C.

Remark 4. Corollary 3 does not require ζ to be invertible in Rp. In particular,
this result is still valid for ζ = 0. However, in this case 0 is a witness for all
statements P ∈ LR′ and thereby the claim that is being proven becomes vacuous.
For this reason, in most practical scenarios we assume that ζ ∈ R∗

p.

6.1 Parameters

In this section, we consider compressed Σ-protocol Λcomp(η) defined over the
cyclotomic number ring R = Z[X]/(Xd + 1) with d a power of two and with
challenge set C = {0,±1,±X, . . . ,±Xd−1}. We show that this protocol has com-
munication complexity polylogarithmic in the input size. We only consider the
simplified scenario of proving knowledge of a commitment opening.

A Compressed Σ-Protocol Theory for Lattices 575

Power-of-two cyclotomic number rings R and their monomial challenge set
C have certain convenient properties. In particular, w(C) = 1 and C is a 2-
exceptional subset of R. More precisely, 2/(c − c′) ∈ R is a polynomial with
coefficients in {−1, 0, 1} for all distinct c, c′ ∈ C [13]. From this it follows that
w̄(C, 2) ≤ d. For a more detailed discussion on optimal challenge sets see [8,37].

Let us now determine the asymptotic communication complexity. First
note that, by Theorem 1, Λcomp(η) has knowledge error κ ≤ (2 log(n + r) +
1)/(2d + 1) ≤ log(n + r)/d (assuming that log(n + r) < d). For this reason
t = Θ (λ/(log d − log log(n + r))) parallel repetitions are required, where λ is the
security parameter. Note that, in the analysis of the lattice-based Bulletproof
folding technique it is incorrectly claimed that their protocol achieves O(1/d)
knowledge error [15, p. 20].2 However, similar to our protocol, it achieves a
O(log(n + r)/d) knowledge error.

Moreover, we assume η = Θ(tdp(n + r)), which by Corollary 3 is enough to
achieve a constant completeness error. From Corollary 3 it now follows that the
extractor outputs a (B, 23μ+1)-relaxed commitment opening, where

B = 2d · (12d3)μ

(

η −
⌈

p − 1
2

⌉)

= Θ(d2tp(n + r)3+log 3+3 log d).

Hence, the commitment scheme must be instantiated to be binding with respect
to (B, 23μ+1)-relaxed commitment openings, i.e., the MSIS∞

k,n+r,2B problem over
Rq must be computationally infeasible (Lemma 3). Recall that commitments
are vectors in Rk

q . From the Micciancio-Regev bound (Eq. 1) it follows that this
problem is hard if

dk log q ≥ log2(2B
√

n + r)
4 log δ

= Θ

(

log2 d log2 tdp(n + r)
log δ

)

, (4)

where δ is the root Hermite factor. Note that we derive an additional
√

n + r
factor because we reduce the MSIS-problem from the ∞-norm to the 2-norm.
When these commitments are considered stand-alone their size is independent
of the input rank n, i.e., they are compact. However, the soundness slack of our
protocols depends (polynomially) on n. Hence, the commitment scheme must be
instantiated such that the bit size dk log q of commitments is polylogarithmic.

By Lemma 1 it now follows that r is polylogarithmic in the input size.
Together with Corollary 3 and the fact that t = Θ (λ/(log d − log log(n + r))),
this shows that the prover has to send

O
(

λ log2 d log n log2 λdpn

log δ(log d − log log n)

)

bits of information to the verifier. Hence, this instantiation of Λcomp(α, η) indeed
achieves communication complexity polylogarithmic in the input size.

2 This was confirmed to us by the authors in personal communication and also
observed in [3].

576 T. Attema et al.

Remark 5. The lattice based Bulletproof instantiation of [15] considers the case
k = 1 and they derive a communication complexity of O(dλ log n log pn/ log δ)
(using our notation) under the assumption that log q = Θ(log d log pn). However,
to ensure that the underlying commitment scheme is binding they must choose
d = Θ(log q). Moreover, they incorrectly estimate their knowledge error to be
O(1/d) instead of O(log n/d). Taking these two issues into account gives their
protocol a communication complexity of

O
(

λ log2 d log n log2 pn

log δ(log d − log log n)

)

.

The additional factor λd inside the logarithm of our communication com-
plexity can be explained by the fact that, in contrast to [15], our protocol is
zero-knowledge. Besides this factor, our communication complexity is the same.

Remark 6. Because the security loss of the Fiat-Shamir transform is exponen-
tial in the number of rounds, the non-interactive variant of the t-fold parallel
repetition of protocol Λcomp(η) requires a factor O(μ) = O(log n) more parallel
repetitions than the interactive variant. Therefore, the communication complex-
ity of the non-interactive variant is a factor O(log n) larger. This issue has been
overlooked in prior works.

7 Proving Non-linear Relations

Thus far, we have shown how to prove that committed vectors satisfy linear
constraints. To handle non-linear constraints, we deploy an adaptation of the
strategy from [6] that uses secret sharing to linearize non-linearities.

The techniques from [6] are not directly applicable to the lattice setting,
since their relations and arithmetic secret sharing are defined over a large field.
In our adaptation the arithmetic secret sharing is not defined over a field but
over a quotient of a number ring. This introduces two challenges: (1) the ring
may be small and (2) not all ring elements have a multiplicative inverse. In our
adaptation, these challenges are handled by defining the secret sharing scheme
over an appropriately chosen ring extension. For more details we refer to the full
version of this paper [1].

Acknowledgements. We thank Jelle Don, Serge Fehr, Michael Klooß, Vadim Lyuba-
shevsky and Gregor Seiler for the helpful and insightful discussions. Furthermore, we
thank Andrej Bogdanov for pointing out an oversight regarding the composition theo-
rem in the first version of this work.

Thomas Attema has been supported by EU H2020 project No 780701
(PROMETHEUS). Ronald Cramer has been supported by ERC ADG project No 74079
(ALGSTRONGCRYPTO) and by the NWO Gravitation project QSC. Lisa Kohl has
been supported by the NWO Gravitation project QSC.

A Compressed Σ-Protocol Theory for Lattices 577

References

1. Full version of this paper. IACR ePrint 2021/307
2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:

STOC, pp. 99–108. ACM (1996)
3. Albrecht, M.R., Lai, R.W.: Subtractive sets over cyclotomic rings: limits of Schnorr-

like arguments over lattices. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021.
LNCS, vol. 12826, pp. 519–548 (2021, to appear)

4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9, 169–203 (2015)

5. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: CCS, pp. 2087–2104 (2017)

6. Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical applica-
tion to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 513–543. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1 18

7. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k-out-of-n partial know-
ledge. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp.
65–91 (2021, to appear)

8. Attema, T., Cramer, R., Xing, C.: A note on short invertible ring elements and
applications to cyclotomic and trinomials number fields. Math. Cryptol. 1, 45–70
(2021)

9. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

10. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in
computationally sound protocols? In: FOCS, pp. 374–383 (1997)

11. Ben-Sasson, E., et al.: Computational integrity with a public random string from
quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 551–579. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 19

12. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

13. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 29

14. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

15. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP approach to
succinct quantum-safe zero-knowledge. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 441–469. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1 16

https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/978-3-030-56880-1_16

578 T. Attema et al.

16. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: IEEE S&P, pp. 315–334
(2018)

17. Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: From 5-
Pass MQ-based identification to MQ-based signatures. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 135–165. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 5

18. Chung, K.-M., Liu, F.-H.: Parallel repetition theorems for interactive arguments.
In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 19–36. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-11799-2 2

19. Chung, K.-M., Pass, R.: Tight parallel repetition theorems for public-coin argu-
ments using KL-divergence. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 229–246. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 9

20. Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D.
thesis, CWI and University of Amsterdam (1996)

21. del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for FHE and
ring-LWE ciphertexts. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp.
344–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 12

22. Dodis, Y., Jain, A., Moran, T., Wichs, D.: Counterexamples to hardness ampli-
fication beyond negligible. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
476–493. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-
9 27

23. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: multi-
round Fiat-Shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12172, pp. 602–631. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56877-1 21

24. Ducas, L., et al.: CRYSTALS-Dilithium: A lattice-based digital signature scheme.
TCHES pp. 238–268 (2018)

25. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-
Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 4

26. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

27. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

28. H̊astad, J., Pass, R., Wikström, D., Pietrzak, K.: An efficient parallel repetition
theorem. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 1–18. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 1

29. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and
Constructions. Springer, Information Security and Cryptography (2010)

30. Hoffmann, M., Klooß, M., Rupp, A.: Efficient zero-knowledge arguments in the
discrete log setting, revisited. In: CCS, pp. 2093–2110 (2019)

31. Jaeger, J., Tessaro, S.: Expected-time cryptography: generic techniques and appli-
cations to concrete soundness. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12552, pp. 414–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64381-2 15

32. Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer,
New York (2002). https://doi.org/10.1007/978-1-4613-0041-0

https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/978-3-642-11799-2_2
https://doi.org/10.1007/978-3-662-46497-7_9
https://doi.org/10.1007/978-3-662-46497-7_9
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-642-28914-9_27
https://doi.org/10.1007/978-3-642-28914-9_27
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-11799-2_1
https://doi.org/10.1007/978-3-030-64381-2_15
https://doi.org/10.1007/978-3-030-64381-2_15
https://doi.org/10.1007/978-1-4613-0041-0

A Compressed Σ-Protocol Theory for Lattices 579

33. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75, 565–599 (2015)

34. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cyrptol. 16, 143–184 (2003). https://doi.org/10.1007/s00145-002-0143-7

35. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

36. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

37. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclo-
tomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 204–224.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 8

38. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 5

39. Pietrzak, K., Wikström, D.: Parallel repetition of computationally sound protocols
revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 86–102. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 5

40. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

41. Wikström, D.: Special soundness revisited. IACR ePrint 2018/1157

https://doi.org/10.1007/s00145-002-0143-7
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-70936-7_5
https://doi.org/10.1007/0-387-34805-0_22

A New Simple Technique to Bootstrap
Various Lattice Zero-Knowledge Proofs

to QROM Secure NIZKs

Shuichi Katsumata(B)

AIST, Tokyo, Japan
shuichi.katsumata@aist.go.jp

Abstract. Many of the recent advanced lattice-based Σ-/public-coin
honest verifier (HVZK) interactive protocols based on the techniques
developed by Lyubashevsky (Asiacrypt’09, Eurocrypt’12) can be trans-
formed into a non-interactive zero-knowledge (NIZK) proof in the ran-
domoraclemodel (ROM)using theFiat-Shamir transform.Unfortunately,
although they are known to be secure in the classical ROM, existing proof
techniques are incapable of proving them secure in the quantum ROM
(QROM). Alternatively, while we could instead rely on the Unruh trans-
form (Eurocrypt’15), the resulting QROM secure NIZK will incur a large
overhead compared to the underlying interactive protocol.

In this paper, we present a new simple semi-generic transform that com-
piles many existing lattice-based Σ-/public-coin HVZK interactive proto-
cols into QROM secure NIZKs. Our transform builds on a new primitive
called extractable linear homomorphic commitment protocol. The result-
ing NIZK has several appealing features: it is not only a proof of knowl-
edge but also straight-line extractable; the proof overhead is smaller com-
pared to the Unruh transform; it enjoys a relatively small reduction loss;
and it requires minimal background on quantum computation. To illus-
trate the generality of our technique, we show how to transform the recent
Bootle et al.’s 5-round protocol with an exact sound proof (Crypto’19) into
a QROM secure NIZK by increasing the proof size by a factor of 2.6. This
compares favorably to the Unruh transform that requires a factor of more
than 50.

1 Introduction

The Fiat-Shamir transform [17] is one of the most popular methods to con-
struct non-interactive zero-knowledge (NIZK) proofs1 in the random oracle model
(ROM) based on a Σ-protocol (or more generally a public-coin honest-verifier
zero-knowledge (HVZK) interactive protocol). Due to the ever-growing risk of
quantum computers, understanding the quantum security of NIZKs in the quan-
tum ROM [6] based on the Fiat-Shamir transform (or related transforms) have
been considered to be an important research topic both in theory and practice.
1 We may simply refer to NIZK proofs or NIZK proofs of knowledge as NIZKs when

the distinction is not relevant.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 580–610, 2021.
https://doi.org/10.1007/978-3-030-84245-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_20

A New Simple Technique to Bootstrap 581

However, although many techniques in the QROM have accumulated in the last
decade, including but not limited to [6,7,13,14,23,25,32–34,37,38], our under-
standing of NIZKs in the QROM is still not as clear as those in the classical
ROM. Notably, many of the recent lattice-based Σ-/public-coin HVZK inter-
active protocols, such as [1–3,8,15,35], based on the techniques developed by
Lyubashevsky [27,28] fall into the following situations:

– they are not known to be (in)secure when applied the Fiat-Shamir transform
in the QROM, and/or

– they can be transformed into a QROM secure NIZK using the Unruh trans-
form [33] but incurs a large overhead, say at least ×50, compared to the
underlying interactive protocol.

Considering that we can securely apply the Fiat-Shamir transform to these proto-
cols in the classical ROM to obtain efficient NIZKs, the current state-of-the-affair
is unsatisfactory. Below, we briefly recall NIZKs in the QROM.

QROM secure NIZKs. Broadly speaking, there are two breeds of transfor-
mation to obtain QROM secure NIZKs (that are a proof of knowledge) from
a Σ-/public-coin HVZK interactive protocol. One is the Fiat-Shamir transform
[17] and the other is the Unruh transform [33].

Recently, Don et al. [14] and Liu and Zhandry [25] showed how to argue secu-
rity of the Fiat-Shamir transform in the QROM in two steps: they first showed that
the Fiat-Shamir transform converts a standard Σ-protocol that is additionally a
quantum proof of knowledge into anNIZK secure in the QROM, and then addition-
ally showed how to construct a Σ-protocol that is a quantum proof of knowledge.
Let us call such a Σ-protocol as a quantum secure Σ-protocol. It was shown in [25]
(and partially in [14]) that Lyubashevsky’s Σ-protocol for proving possession of a
short vector e such that Ae = u is quantum secure for appropriate parameters.
Concretely, by increasing the parameters compared to those required by the clas-
sically secure protocol, they showed that Lyubashevsky’s Σ-protocol has a “col-
lapsing” property. However, such techniques for proving that a Σ-protocol is quan-
tum secure are still limited and it seems non-trivial to generalize them to work for
the recent more advanced lattice-based protocols. Moreover, these techniques that
require rewinding quantum adversaries so far incur a large reduction loss of at least
a factor Q4t−2, where Q is the number of adversarial random oracle queries and t is
the number of valid transcripts required to invoke special soundness of the under-
lying Σ-protocol. Since setting the parameters without taking these huge reduc-
tion losses into consideration sometimes lead to concrete attacks [22,24], having a
tighter reduction is desirable.

On the other hand, Unruh [33] showed an elegant transform that converts
any standard Σ-protocol into a QROM secure NIZK. The benefit of the Unruh
transform is that it works for any Σ-protocol, the reduction loss is tight, and
it is also straight-line extractable.2 The last strong property guarantees that the
witness from a proof can be extracted without rewinding the adversary and is

2 This notion is also called online extractable in the literature.

582 S. Katsumata

especially suitable for applications requiring multiple concurrent executions of
NIZKs such as group signatures [4] and anonymous attestations [9]. On the other
hand, one of the main downsides is that it may incur a noticeable overhead in
the proof size compared to the Fiat-Shamir transform since the transformation
crucially relies on the challenge set being small. While the overhead can be rea-
sonable when the underlying Σ-protocol already has a small challenge set, e.g.,
[10], it becomes prohibitively large as the challenge set grows. Recently, Chen
et al. [11] extended the Unruh transform to work against a 5-round public-coin
HVZK interactive protocol when restricting the second challenge to be binary.

Coming back to lattice-based ZK proofs. There are two main approaches
in the current literature to construct lattice-based NIZKs. One builds on the
Fiat-Shamir with abort paradigm developed by Lyubashevsky [27,28] and the
other builds on Stern’s protocol [21,31]. While the QROM security of the latter
approach is well understood since it has a simple combinatorial “commit-and-
open” structure [13,14], the QROM security of the former approach remains
elusive. Notably, for the recent lattice-based protocols such as [1–3,8,15,35], we
either still do not know how to apply the Fiat-Shamir transform and/or require
to pay a huge overhead when adopting the Unruh transform to argue QROM
security. Therefore, a natural question is:

Can we generically and more efficiently transform lattice-based Σ-/public-
coin HVZKinteractive protocols based on the Fiat-Shamir with abort
paradigm into QROM secure NIZKs?

Ultimately, we would like the transform to achieve the best of the two known
transforms: to maintain similar proof size and soundness error of the underly-
ing Σ-protocol like the Fiat-Shamir transform [17], while also providing a tight
reduction along with a straight-line extractor like the Unruh transform [33].

1.1 Our Contribution

In this work, we provide partial affirmative answers to the above problem. We
present a new simple semi-generic transform that compiles many existing lattice-
based Σ-/public-coin HVZK interactive protocols such as [1,3,8,15,35] into a
QROM secure NIZK that is also straight-line (simulation) extractable [16]. The
proof overhead is smaller compared to the Unruh transform and enjoys a rel-
atively small reduction loss. In many cases, the reduction loss only scales lin-
early with t (i.e., number of valid transcripts to invoke special soundness), rather
than exponentially (e.g., Q4t−2) required by the Fiat-Shamir transform explained
above. This is quite desirable since t can get quite large in recent advanced proto-
cols; for instance [1] requires t = 32 in one of their settings, making the reduction
loss as large as 2638 for a modest Q = 220.

As a concrete example, we show how to transform the recent Bootle et al.’s 5-
round protocol with an exact sound proof [8] into a QROM secure NIZK by only

A New Simple Technique to Bootstrap 583

increasing the proof size by a factor of 2.6.3 This is in contrast to using the recent
extended Unruh transform [11] 4, which increases the proof size by a larger factor of
51.8. Note that we are not aware of any method to securely apply the Fiat-Shamir
transform to Bootle et al.’s protocol in the QROM. Finally, we highlight that not
only our transform is very simple but the security proofs are also quite simple and
involves a minimal amount of discussion regarding quantum computation.

Our contribution can be divided into the following steps. We only provide
a high-level explanation of each step below and refer to Sect. 1.2 for a more
detailed overview.

1. We first propose a new 3-round public-coin interactive protocol called
extractable linear-homomorphic commitment (LinHC) protocol. (See Sect. 3)

2. We then show how to bootstrap a broad class of Σ-protocols into a Σ-protocol
that is also a quantum straight-line proof of knowledge by using an extractable
LinHC protocol. Here, we consider the class of Σ-protocols where the response
(i.e., the prover’s third message) is of the form z = β · e + r, where e ∈ Z

m
q

is the witness, β is the challenge sampled by the verifier, and r ∈ Z
m
q is the

masking term committed in the prover’s first message.5 (See Sect. 4.1)
3. We further show that we can apply the Fiat-Shamir transform to Σ-protocols

with a quantum straight-line proof of knowledge to construct a QROM secure
NIZK that is also straight-line extractable. (See Sect. 4.2)

4. We provide two simple constructions of lattice-based extractable LinHC pro-
tocols: one based on the module learning with errors (MLWE) problem, and
the other based on the MLWE and the decisional small matrix ratio (DSMR)
problem, where the latter is more efficient. Here the DSMR problem is a gen-
eralization of the decisional small polynomial ratio problem [26,30] defined
over a module NTRU lattice [12]. (See Sect. 3.4)

5. Finally, we discuss how to apply extractable LinHC protocols to more
advanced lattice-based public-coin HVZK interactive protocols. As a concrete
example, we provide the details on how to make Bootle et al.’s 5-round pro-
tocol with an exact sound proof [8] into a QROM secure NIZK with concrete
parameters. We chose this protocol since it is one of the more complex pro-
tocols that have appeared in the literature while still being relatively simple
enough to fit in our framework. We show how the ideas can be used to obtain
similar results for other protocols such as [1,3,15,35]. (See Sect. 5)

One notable difference between our transform and prior transforms that
achieve straight-line extractable NIZKs either in the classical or post-quantum
3 As a point of reference, the signature scheme Dilithium, a finalist to the NIST post-

quantum standardization process based on the simple Lyubashevsky’s Σ-protocol,
requires to increase the sum of public key and signature size by a factor 3.2 to achieve
QROM security [23].

4 Since Bootle et al.’s protocol requires slightly more transcripts for special soundness
compared to those considered in [11], the security proof of [11] may need to be modified
to apply the transform to Bootle et al.’s protocol.

5 Although we consider a slightly broader type of Σ-protocols in the main body, we
keep the presentation simple here as the main idea generalizes easily.

584 S. Katsumata

setting (i.e., Fischlin [18] and Unruh [33]) is that ours do not put any restriction
on the size of the challenge set of the underlying Σ-protocol. Therefore, if the
underlying Σ-protocol has an exponentially large challenge set, we can use it
directly to obtain an NIZK, thus circumventing an inefficient soundness amplifi-
cation required by prior transforms. We note that our result does not contradict
the impossibility result of Fischlin [18] who (roughly) showed that an NIZK in
the ROM with a straight-line extractor that cannot program the random ora-
cle requires a prover to query the random oracle on at least ω(log κ) points to
produce a proof, where κ is the security parameter. The main reason is that
our NIZK requires the extractor to program the (Q)RO similar to the proof in
the Fiat-Shamir transform. The difference between the Fiat-Shamir transform
is that our extractor reprograms the (Q)RO in a way that it does not require to
rewind the adversary to extract the witness.

Related works on Σ-protocols, NIZKs, and lattice-based ZK proofs and
QROM secure signatures are provided in the full version.

1.2 Technical Overview

We provide an overview of each step explained in the above contribution.

Items 1 and 2: Extractable LinHCprotocols and integrating it to Σ-
protocols. We use Lyubashevsky’s Σ-protocol [27,28], which we denote by ΣLyu-
protocol, as a leading example. It forms the basis of lattice-based zero-knowledge
proofs based on the Fiat-Shamir with abort paradigm and the ideas presented
below extend naturally to more advanced protocols.

Let A ∈ Rn×m
q and u ∈ Rn

q be public, where R and Rq denote the rings
Z[X]/(Xd +1) and Zq[X]/(Xd +1). Then, the ΣLyu-protocol allows one to prove
knowledge of a short vector e ∈ Rm satisfying Ae = u.6 The prover first sends
w = Ar to the verifier where r ∈ Rm is a random short vector sampled from
some specific distribution. The verifier returns a randomly sampled challenge
β ← {0, 1}d, where β is viewed as an element over R by the standard coefficient
embedding. Finally, the prover sends z = β · e + r to the verifier. Here, it is
standard to perform a rejection sampling step to make z statistically independent
from e. However, we ignore this subtle issue in the overview. Finally, the verifier
accepts if z is short and Az = β · u + w holds. It is known that the ΣLyu-
protocol satisfies relaxed (rather than exact) special soundness: Given two valid
transcripts of the form (w, β, z) and (w, β′, z′) with β �= β′, an extractor Extractss
outputs a witness z∗ = z−z′ such that Az∗ = (β−β′)·u. Here, although z∗ does
not lie in the original relation, such proof of knowledge for a relaxed relation has
proven to suffice in many applications.

Modifying the ΣLyu-protocol. Our idea to turn the ΣLyu-protocol to be a straight-
line proof of knowledge is simple. Here, recall that to show a Σ-protocol is
straight-line proof of knowledge, informally we need to construct an extractor
SL-Extract that on input a single valid transcript (and some private information),

6 All operations with elements over Rq are understood to be performed over mod q.

A New Simple Technique to Bootstrap 585

outputs a witness z∗. As a first step, we let the prover commit to its witness e
and randomness r by a linear homomorphic commitment scheme. The prover
outputs w = Ar as in the original protocol along with two commitments come =
Compk(e)[δe] and comr = Compk(r)[δr], where pk is a commitment key, and δe
and δr are commitment randomness.7 Then, given a random challenge β from
the verifier, the prover returns z = β · e + r and the commitment randomness
δz := β · δe + δr as the third message. The verifier accepts if z is short; Az =
β ·u+w holds; and Compk(z)[δz] = β · come + comr holds. Here, for correctness
to hold, we require the commitment scheme to satisfy linear homomorphism also
over the randomness, i.e., β · come + comr = Compk(β · e+ r)[β · δe + δr] for any
β ∈ {0, 1}d ⊂ R.

We first check our modified ΣLyu-protocol remains secure in the standard
sense. Special soundness follows since two valid transcripts of the modified ΣLyu-
protocol include two valid transcripts of the original ΣLyu-protocol. Next, assume
δz does not leak any information on the original commitment randomness δe and
δr. Then, (roughly) we can invoke the hiding property of the commitment scheme
to argue that δz, come, and comr leak no information on e and r expect that
they satisfy z = β · e + r. Therefore, since the ΣLyu-protocol is HVZK, so is our
modified ΣLyu-protocol.

How to extract a witness. To show that it is a straight-line proof of knowledge,
we enhance the linearly homomorphic commitment scheme to be extractable.
Namely, we assume there exists an alternative key generation algorithm
SimKeyGen that outputs a simulated commitment key pk∗ with an associated
trapdoor τ with the following properties: pk∗ is indistinguishable from pk out-
put by the honest key generation algorithm KeyGen, and there exists a com-
mitment extractor ExtractCom such that on input the trapdoor τ and an hon-
estly generated commitment comx = Compk∗(x)[δx], outputs x. Intuitively, it
seems such an extractor ExtractCom immediately implies a straight-line extractor
SL-Extract. On input a valid transcript ((w, come, comr), β, (z, δz)), SL-Extract
just runs e ← ExtractCom(τ, come) to extract the witness e. However, this intu-
ition is clearly wrong since an adversary might have constructed a malformed
commitment come and comr that satisfies Compk∗(z)[δz] = β · come + comr.
Notably, the only commitment SL-Extract sees that is guaranteed to be valid is
β ·come+comr due to correctness. However, since SL-Extract already knows that
this opens to z, there seems to be no point using the trapdoor τ .

The main observation here is that since the adversary must prepare come

and comr before seeing the challenge β, there should be several other β’s in
{0, 1}d that it would have been able to produce valid openings to. To make
the discussion simple, we first assume the case where the challenge space of
the ΣLyu-protocol is only of polynomial size and the existence of another valid
commitment β′ · come + comr with β′ �= β is guaranteed. Then, SL-Extract runs
through all β ∈ {0, 1}d and executes ExtractCom(τ, β ·come+comr) in polynomial
time. Since β′ · come + comr is guaranteed to be a valid commitment, ExtractCom
7 For any probabilistic algorithm A, A(x)[ρ] denotes running A on input x with

randomness ρ.

586 S. Katsumata

outputs the corresponding message z′ committed to β′ · come + comr. After
finding such z′, SL-Extract can invoke the special soundness extractor Extractss
on input (w, β, β′, z, z′) to obtain a witness z∗ for the (relaxed) relation. We
can turn this rough idea into a formal proof by performing parallel repetition of
the ΣLyu-protocol to amplify the soundness error to be negligible while noticing
that SL-Extract still only needs to invoke ExtractCom a polynomial time. However,
recall the goal was to extract without having to restrict the challenge space of
the ΣLyu-protocol to be polynomial size as required by the Fischlin and Unruh
transforms [18,33].8

Making the challenge set exponentially large. By slightly refining the above argu-
ment, we can make sure the above idea works even when the challenge set is
exponentially large. Assume an adversary has a non-negligible probability ε in
completing the ΣLyu-protocol with an honest verifier. Then conditioning on the
adversary succeeding, a standard statistical argument shows that with probabil-
ity at least 1/2, the adversary must have been able to output a valid response for
at least ε-fraction of the challenges. That is, there exists 2d ·ε other β’s in {0, 1}d

that the adversary was able to output a valid third message (z, δz). Therefore,
we define the SL-Extract to execute ExtractCom(τ, β · come + comr) on roughly
(κ/ε)-randomly chosen β’s. Then, with probability at least 1 − 2−κ, SL-Extract
finds the desired z′ and the rest follows the same argument made above.

Since the above argument is purely statistical and agnostic to whether the
adversary is classical or quantum, the resulting modified ΣLyu-protocol is by
default a quantum straight-line proof of knowledge. In Sect. 3, we formalize the
properties required by the underling commitment scheme and define it as a
new interactive protocol called the extractable linear homomorphic commitment
(LinHC) protocol. We note that the extractable LinHC protocol can be natu-
rally plugged into multi-round public-coin HVZK interactive protocols with sim-
ilar structures. Finally, an acute reader may have noticed that our resulting
Σ-protocol is in the common reference string (CRS) model since it requires a
commitment key pk. Although this is true in general, for our specific extractable
LinHC protocol, the pk can be the output of the (Q)RO on any input of the
prover’s choice so the resulting Σ-protocol will not require any CRS.

Item 3: Applying the Fiat-Shamir transform in the QROM. A quan-
tum straight-line extractable Σ-protocol is particularly quantum secure so we can
appeal to recent techniques [14,25] to transform it into a QROM secure NIZK or
a QROM secure signature. However, we can take advantage of the straight-line
extractability of the Σ-protocol to provide simpler and tighter proofs. Recall one
of the main reasons that made the proof of Fiat-Shamir transform in the QROM
difficult when basing on standard Σ-protocols was that there was no easy way to
extract a witness from a forged proof output by the adversary. Therefore, by using
the straight-line extractor SL-Extract to extract from the forged proof, it seems we

8 To be precise, [18] can use any Σ-protocol with an exponential challenge set size.
Nevertheless, it still needs to rely on parallel repetition to amplify soundness since
it can only use polynomially of the challenges in a meaningful way.

A New Simple Technique to Bootstrap 587

can overcome one of the most difficult obstacles. We outline the proof and explain
some of the pitfalls. As commonly done in the literature, below we consider the
proof for the deterministic signature scheme based on the Fiat-Shamir transform
(which captures the essence of a simulation sound/extractable NIZK).9

Proof overview. The proof consists of two parts: first show that if the signature
scheme is unforgeable against no-message attack (UF-NMA) secure, then it is
secure in the standard sense, i.e., unforgeable against chosen message attack
(UF-CMA) secure; next, show that if the relation used by the Σ-protocol is hard,
then the signature scheme is UF-NMA secure. Here, recall UF-NMA considers the
setting where an adversary is not allowed to make any signing queries.

Part 1: UF-NMA to UF-CMA. The first part of the proof follows closely to those
given by Kiltz et al. [23] (which themselves follow [33,34]) who showed quan-
tum security of a Fiat-Shamir transformed signature scheme basing on a special
type of Σ-protocol (or more specifically a lossy identification protocol). The main
observation is that by using the HVZK simulator of the Σ-protocol, we can make
the proof history-free [6]. In particular, for each message M, we deterministically
generate a transcript (wM, βM, zM) of the Σ-protocol using the HVZK simulator
run on message-dependent randomness. Since the simulated transcript is deter-
mined uniquely by the message, we can program the random oracle H at the
beginning of the game before invoking the adversary so that H(w‖M) outputs
βM if and only if w = wM. Then, to answer a signature query, the simulator can
output the already programmed simulated proof as the signature.

This high-level approach works for Kiltz et al. [23] without complications,
however, we encountered a slight issue in our setting. The main difference is that
while the Σ-protocol of Kiltz et al. satisfied statistical HVZK, ours is only compu-
tational HVZK. Concretely, for our specific instantiation of the extractable LinHC
protocol based on the MLWE assumption, we informally need to argue that a
superposition of the MLWE samples of the form

∑
sM,s′

M
|B〉 |B · sM + s′

M〉, where
sM, s′

M are random MLWE secrets, is indistinguishable from
∑

sM,s′
M

|B〉 |bsM,s′
M
〉,

where bsM,s′
M

is a random vector. Unfortunately, we were not able to reduce
the standard MLWE assumption to such an assumption. Here, roughly, B cor-
responds to the commitment key of the extractable LinHC protocol and each
B · sM + s′

M corresponds to the commitment.
To resolve this issue, we tweak the extractable LinHC protocol to use fresh

commitment keys BM for each message M and provide a slightly more general
definition than what we laid out above. In particular, the extractable LinHC
protocol we require to construct a QROM secure NIZK/signature needs to have
a more general structure compared to those required to construct a Σ-protocol
with a quantum proof of knowledge. In Sect. 3, the latter is referred to as the
“simplified” definition. Here, if we only care about the classical setting, then this
issue does not appear so we can always rely on the simplified definition for both
cases.

9 Note that considering deterministic signature schemes is w.l.o.g since we can always
derandomize the signing algorithm using pseudorandom functions.

588 S. Katsumata

Part 2: Straight-line extractable Σ-protocol to UF-NMA. The remaining piece is
to show that we can extract a witness from the forgery output by the adver-
sary. The reduction is the same as before: provided a forgery, the extractor
probes many challenges β randomly until ExtractCom(τ, β · come + comr) out-
puts a valid z, where come and comr are the commitments of the extractable
LinHC protocol included in the adversary’s forgery. The main difference is in the
analysis of the success probability of such a procedure. Since β is generated as
H(· · · ‖come‖comr) when applying the Fiat-Shamir transform, the adversary has
some control over the β it uses. To make matters worse, it can make quantum
queries to H to obtain a superposition of challenges

∑
β αβ |β〉. Therefore, we can

no longer rely on the simple statistical argument that relied on β being uniformly
random. We will show how to upper bound the number of random sampling the
extractor must perform before finding a “good” challenge β by using bounds on
the generic quantum search problem [20,23,36].

Item 4: Constructing extractable LinHC protocols. It remains to show how
to construct an extractable LinHC protocol based on lattices. The construction
is a simple variant of the (dual) Regev public-key encryption scheme [19,29]
that is known to be linearly homomorphic. The commitment key is two random
matrices pk = (A,B) ∈ Rm×n

q × Rm×n
q and commitments to the short vectors

(e, r) ∈ Rm
q × Rm

q are defined as follows for X ∈ {e, r}:

comX :=
(
p · (AsX,1 + sX,2), p · (BsX,1 + sX,3) + X

)
,

where p is some odd integer coprime to q and the s’s are commitment randomness
sampled from an appropriate domain. Then, for any challenge β ∈ {0, 1}d ⊂ R,
we can construct a commitment to z = β ·e+r by computing comz = β · come +
comr, which is again of the form comz =

(
p · (Asz,1 +sz,2), p · (Bsz,1 +sz,3)+z

)
,

where sz,i = β ·se,i +sr,i for i ∈ [3]. However, we cannot simply output the tuple
(sz,i)i∈[3] as the opening of comz to the message z since sz,i may leak information
of se,i and sr,i. Instead, we use the rejection sampling technique [27,28] and
sample each sr,i for i ∈ [3] from a slightly wider distribution compared to those
of the se,i’s and only output the tuple (sz,i)i∈[3] with some fixed probability.10

Effectively, the opening (sz,i)i∈[3] are independent of the se,i’s. At this point,
we can argue come is indistinguishable from random by invoking the MLWE
assumption. Moreover, since comr = comz − β · come, we conclude that we can
simulate comr, come, and (sz,i)i∈[3] only using z = β ·e+r. Finally, extractability
follows by switching the commitment key pk to be the real public-key of the
encryption scheme. We set pk∗ = (A,B), where B = D1A+D2 for two matrices
D1 and D2 with small entries. Then, for an appropriate set of parameters, given
comz = (t1, t2), we can decrypt it by (t2 − D1t1) mod p = z.

Item 5: A concrete example. Finally, we provide a more interesting use-
case for our extractable LinHC protocol other than the Lyubashevsky’s Σ-protocol
explained above. We consider the 5-round public-coin HVZK interactive protocol
by Bootle et al. [8] that achieves exact special soundness. So far, we do not know
10 We ignore in the overview the fact that our extractable LinHC protocol has non-

negligible correctness error as it is standard in lattice-based Σ-protocols.

A New Simple Technique to Bootstrap 589

how to apply the Fiat-Shamir transform securely in the QROM to this protocol
since unlike the Lyubashevsky’s Σ-protocol, there is no natural notion of “collaps-
ingness” [14,25].We can instead try applying the recentUnruh transform extended
to 5-round protocols by Chen et al. [11] by limiting the second challenge used by the
verifier to be binary. For completeness, we show in the full version that assuming
the extended Unruh transform applies to Bootle et al.’s protocol, we incur a factor
51.8 blowup in the proof size. In Sect. 5, we show that our extractable LinHCworks
simply as awrapper andbootstraps the original protocol of Bootle et al. to be quan-
tum securewith an overhead of only a factor 2.6.We also discuss how the same ideas
are applicable to other lattice-based protocols such as [1,3,15,35]. As the main
focus of this study is to introduce new theoretical tools and ideas to transform Σ-
protocols into QROM secure NIZKs, we leave optimization and assessment of the
concrete security of other lattice-based protocols as future work. Finally, we note
that applying our extractable LinHC on Lyubashevsky’s Σ-protocol does not result
in a more efficient QROM secure signature scheme compared to the QROM secure
Dilithium proposed in [23]. Roughly, this is because when viewed as an NIZK, ours
achieve a stronger property: while [23] only achieves soundness, we also achieve
(straight-line) proof of knowledge.

2 Preliminary

The notations we use in this paper and a minimal set of tools on quantum
computation in provided in the full version.

2.1 Σ-Protocol

We use the standard notion of Σ-protocol in the common reference string
model.11 We note that it is standard in lattice-based protocols to consider non-
abort honest-verifier zero-knowledge (naHVZK), where the ZK simulator is only
required to simulate non-aborting transcripts. Due to page limitation, we refer
the basic definitions to the full version and only provide the definition of straight-
line proof of knowledge below.

Definition 2.1 (Straight-line proof of knowledge). A Σ-protocol has a
(quantum) εIndO-straight-line proof of knowledge (SL-PoK) if there exists a PPT
simulator SimSetup and a PPT straight-line extractor SL-Extract with the fol-
lowing properties:

– For any QPT A, the advantage AdvIndCRS(A) defined below is less than εIndCRS:
AdvIndCRS(A) := |Pr[crs ← Setup(1κ) : A(1κ, crs) → 1] − Pr[(c̃rs, τ) ←
SimSetup(1κ) : A(1κ, c̃rs) → 1]|.

– For any QPT A and any X ∈ L satisfying

Pr

[
crs ← Setup(1κ), (α, st) ← A(crs,X)
β ← ChSet, γ ← A(crs,X, α, β, st)

: Verify(crs,X, (α, β, γ)) = �
]

≥ ε,

11 We define Σ-protocols in the CRS model for generality but emphasize that our
concrete resulting Σ-protocols do not require them.

590 S. Katsumata

we have

Pr

⎡
⎢⎢⎣

(c̃rs, τ) ← SimSetup(1κ)
(α, st) ← A(c̃rs,X),

β ← ChSet
γ ← A(c̃rs,X, α, β, st)

:
Verify(c̃rs,X, (α, β, γ)) = �
W ← SL-Extract(τ, (α, β, γ))

(X,W) ∈ R′

⎤
⎥⎥⎦ ≥ ε − ν1

p1
,

for some polynomial p1 and negligible function ν1. Moreover, the runtime
of SL-Extract is upper bounded by p2 · (

ε−ν2
p3

− 1
|ChSet|

)−1 for some polynomi-
als p2, p3 and negligible function ν2.12 Concretely, if ε is non-negligible and
|ChSet| is super-polynomially large, then SL-Extract runs in polynomial time.

2.2 Lattices

Basic notations and well known tools for lattices are provided in the full version.
We let Sη denote the set of all elements in a ∈ Rq such that ‖w‖∞ ≤ η. As with
all Σ-protocols that rely on the Fiat-Shamir with abort technique, we use the
rejection sampling technique [27,28]. We denote the rejection sampling algorithm
as Rej. To construct extractable LinHC protocols, we rely on a variant of the
standard module learning with errors MLWE assumption, where the adversary is
allowed to obtain a superposition of independent MLWE samples (which remains
as hard as the standard MLWE assumption). We also consider the quantum
accessible decisional small matrix ratio (DSMR) assumption, which is essentially
the underlying hardness assumption of (module) NTRU.

3 Extractable Linear Homomorphic Commitment
Protocol

In this section, we introduce a new interactive protocol called the extractable lin-
ear homomorphic commitment (LinHC) protocol. We first provide the definition
of an extractable LinHC protocol and then give two instantiations: one from the
MLWE assumption and the other from the MLWE and the DSMR assumption.
Below whenever we say Σ-protocols, the readers may safely replace them by
public-coin HVZK non-interactive protocols.

We first define extractable LinHC protocol in its most general form and pro-
vide a simplified variant in the subsequent section. As explained in the introduc-
tion, the general definition, which is defined in the QROM, is useful when directly
constructing (straight-line simulation extractable) NIZKs13 in the QROM from a
possibly non-quantum secure Σ-protocol (see Sect. 4.2). In contrast, the simpli-
fied definition, which is defined in the standard model, is useful when construct-
ing a quantum straight-line proof of knowledge Σ-protocol from a non-quantum
secure Σ-protocol (see Sect. 4.1).
12 In case the term inside (·)−1 is a non-positive, it is understood that SL-Extract simply

outputs ⊥ on invocation.
13 Roughly, this is type of NIZK that, even after seeing many simulated proofs, whenever

an adversary outputs a valid proof, we can straight-line extract a witness from the
proof [16].

A New Simple Technique to Bootstrap 591

3.1 Definition

An illustration of the extractable LinHC protocol is provided in Fig. 1. Looking
ahead, in the context of Σ-protocols, the ei’s and r correspond to the witness
and commitment randomness (or masking term), respectively.

Fig. 1. An extractable linear homomorphic commitment protocol. Kcom is a commit-
ment key generated by KeyGenH(1κ), where H is modeled as a random oracle.

Definition 3.1 (Extractable linear homomorphic commitment proto-
col in QROM). An extractable linear homomorphic commitment (LinHC) pro-
tocol is a three-round public-coin interactive protocol run between two parties
(prover and verifier), and is defined by a tuple of PPT algorithms ΠLinHC =
(KeyGen,Com,Open,Verify) and a challenge set ChSet ⊆ (Rq)N . The protocol
procedure is as follows:

1. A random oracle H is chosen and the key generation algorithm is executed
Kcom ← KeyGenH(1κ). Here, let {0, 1}ν be the randomness space used by
KeyGen;

2. The prover on input vectors ((ei)i∈[N], r) ∈ (Rm
q)N × Rm

q , runs the com-
mitment algorithm (com, st) ← Com(Kcom, (ei)i∈[N], r), and sends the first
message com to the verifier;

3. The verifier samples a random challenge β ← ChSet and sends the second
message β to the prover;

4. The prover computes z ← ∑N
i=1 βi · ei + r14, runs the opening algorithm

op ← Open(Kcom, (com,β, z), st), and sends the third message (z, op) to the
verifier. We allow op = ⊥ for a special symbol ⊥ to indicate failure;

5. The verifier returns the output of the deterministic verification algorithm
Verify(Kcom, (com,β, (z, op))), where � indicates accept and ⊥ indicates reject.
We call (com,β, (z, op)) the transcript and call (com,β, op) a valid opening
for z if the verifier accepts.

We require the following properties to hold.

14 Although it suffices to consider z = β ·e+r in many cases, there are recent protocols
that require this extra level of generality, e.g., [15].

592 S. Katsumata

Definition 3.2 (Correctness). An extractable linear homomorphic commit-
ment protocol ΠLinHC has correctness error (δ0, δ1) if for any choice of random
oracle H, Kcom ∈ KeyGenH(1κ), and ((ei)i∈[N], r) ∈ (Rm

q)N × Rm
q the following

holds:

– We have Pr[Verify(Kcom, (com,β, (z, op))) = �] ≥ 1−δ1, where the probability
is taken over the randomness to sample (com, st) ← Com(Kcom, (ei)i∈[N], r),
β ← ChSet, and op ← Open(Kcom, (com,β,

∑N
i=1 βi · ei + r), st) conditioned

on op �= ⊥.
– The probability that an honestly generated transcript (com,β, (z, op)) contains

op = ⊥ is bounded by δ1. In particular, Pr[op = ⊥] ≤ δ1 where the probability
is taken over the random coins of the prover and verifier.

Zero-knowledge. At a high level, zero-knowledge for an extractable LinHC pro-
tocol stipulates that the transcript should leak no information of the vectors
(ei)i∈[N] and r other than the fact that it adds up to z. Below, we provide a
definition of zero-knowledge where an adversary can obtain superpositions of
simulated proofs. Since (ei)i∈[N] corresponds to the witness of the underlying
Σ-protocol, it will be reused many times. On the other hand, r is the commit-
ment randomness that is freshly sampled for each transcript. This is reflected in
the following definition by fixing (ei)i∈[N] and sampling fresh r (and challenge
β) using the distribution Dβ ,r. Also, one can think of each ρ in the definition as
a specific tag to distinguish each transcripts. Below, we say it is “semi”-honest-
verifier since β does not necessarily need to be uniformly distributed over ChSet.

Definition 3.3 (Quantum accessible no-abort (semi-)honest-verifier
zero-knowledge). Let Dβ ,r be any distribution over ChSet×Rm

q . For an oracle
H and algorithm ZKSim, define the following algorithms:

– D �⊥
trans(ρ, (ei)i∈[N]) : On input ρ ∈ {0, 1}ν and (ei)i∈[N] ∈ (Rm

q)N , generate
Kcom ← KeyGenH(1κ)[ρ] and sample (β, r) ← Dβ ,r. Then run an honest proto-
col with prover input (Kcom, ((ei)i∈[N], r)) conditioned on the verifier message
being β and op �= ⊥ (i.e., a non-aborting protocol). Finally, output r along
with the valid transcript (r, trans = (com,β, (z, op))).

– Dsim(ρ, (ei)i∈[N]) : On input ρ ∈ {0, 1}ν and (ei)i∈[N] ∈ (Rm
q)N , gener-

ate Kcom ← KeyGenH(1κ)[ρ], sample (β, r) ← Dβ ,r, and compute z ←
∑N

i=1 βi · ei + r. Then, run (com, op) ← ZKSim(Kcom,β, z) and output
(r, trans = (com,β, (z, op))).

In above, we assume D �⊥
trans and Dsim run on a uniform and independent random-

ness for each input ρ ∈ {0, 1}ν and reuse the same randomness when run again
on the same ρ.

Then, we say an extractable linear homomorphic commitment protocol ΠLinHC

has εzk-quantum accessible no-abort (semi-)honest-verifier zero-knowledge, if
there exists a PPT algorithm ZKSim such that for any (ei)i∈[N] ∈ (Rm

q)N , dis-
tribution Dβ ,r, and QPT A, the advantage AdvQAnaHVZK(A) defined below is less
than εzk:

A New Simple Technique to Bootstrap 593

∣∣∣ Pr
[
A|H〉,|D �⊥

trans(·,(ei)i∈[N])〉(1κ) → 1
]

− Pr
[
A|H〉,|Dsim(·,(ei)i∈[N])〉(1κ) → 1

] ∣∣∣,

where the probability is also taken over the random choice of the random
oracle H.

Extractability. When considering extractable LinHC protocol as a tool to be inte-
grated into a preexisting Σ-protocol, the third message z corresponds to the
third message (usually referred to as the “response”) of the Σ-protocol. See
Fig. 4 for an illustrative example. In particular, the verifier will always perform
an additional check f(β, z) ?= �, where f is some function defined by the verifier
algorithm of the underlying Σ-protocol. Therefore, for an extractable LinHC to
be useful in the context of Σ protocols, we want it to be able to extract valid
tuples {(βi, zi)}i∈[k] such that f(βi, zi) = � without rewinding the adversary
only given an accepting transcript. After such k tuples are collected, we can
invoke the k-special soundness extractor of the underlying Σ-protocol to extract
a witness. More formally, we require the following.

Definition 3.4 (F-Almost straight-line extractable). Let X and Y be the
input and output space required by the random oracle H. An extractable lin-
ear homomorphic commitment protocol ΠLinHC is εIndO-F-almost straight-line
extractable for a function family F if there exists PPT algorithms SimOracle
and LinCExtract with the following properties:

1. For any QPT A, the advantage AdvIndO(A) defined below is less than εIndO:
∣∣∣ Pr[H ← Func(X , Y) : A|H〉(1κ) → 1] − Pr[(H̃, τ) ← SimOracle(1κ) : A|˜H〉(1κ) → 1]

∣∣∣.
2. For any (H̃, τ) ∈ SimOracle(1κ), randomness ρ ∈ {0, 1}ν , first message com,

and any efficiently computable function f ∈ F with binary output {�,⊥},
define the set Sf (ρ, com) as

{β | ∃(z, op) s.t. Verify(Kcom, (com,β, (z, op))) = � ∧ f(β, z) = �},

where Kcom = KeyGen
˜H(1κ)[ρ]. Let δ, k be any positive integers such

that k < |Sf (ρ, com)|, and denote T ∗ = k·δ·|ChSet|
|Sf (ρ,com)|−k . Then, on input a

valid transcript trans = (com,β, (z, op)), the linear commitment extractor
LinCExtract(τ, ρ, trans) outputs either a set L = {(βj , zj)}j∈[k] or ⊥ in time
T ∗ · poly(κ) for some fixed polynomial poly(κ), where all the βj’s in L are
pairwise distinct and satisfies f(βj , zj) = �. Moreover, the probability that it
outputs L is at least 1 − k · 2−δ. Concretely, when k is a constant, δ = κ, and
|Sf (ρ, com)| = |ChSet| · ε for a non-negligible ε, then LinCExtract outputs L in
polynomial time with overwhelming probability.

In general we cannot efficiently check if the extracted βj satisfies βj ∈
Sf (ρ, com) since we cannot extract opj corresponding to (βj , zj), hence the term
“almost” straight-line extractable. This implies that the set L may include an

594 S. Katsumata

invalid (βj , zj) for which there does not exist a valid opj . However, this will
not be an issue for most of our application where f defines the entire veri-
fication algorithm of the underlying Σ-protocol. In these cases, we only need
f(βj , zj) = � for k-tuples to hold to invoke the k-special soundness extractor.
We also point out that in many cases we are not able to efficiently compute the
cardinality of the set Sf (ρ, com) so we do not know if LinCExtract runs in poly-
nomial time. However, in typical applications, we can deduce that Sf (ρ, com)
must be of size |ChSet| · ε for a non-negligible ε unless the adversary breaks some
other intractable problem.

Optional. Finally, we consider two optional properties for F-almost straight-line
extractability that help simplify the proofs in some cases. The first property is
useful when the underlying public-coin HVZK interactive protocol already uses
a small (i.e., poly-large) challenge set. These shows up in multi-round protocols
where the verifier may sample randomness from different challenge sets in each
round. (See Sect. 5 for an example.) The second property allows to argue that
for each challenge β ∈ ChSet, there exist at most one response z that passes the
verification. Due to page limitation, we omit the details to the full version.

3.2 Simplified Definition of Extractable LinHC

In case the goal is to construct quantum secure Σ-protocols (and not a QROM
secure simulation extractable NIZK or a signature), we can use a simplified def-
inition of extractable LinHC protocols in the standard model. One of the main
simplification comes from the fact that since all of the security notions are decou-
pled from the QRO, the proofs follow much like the classical counterparts. For
example, zero-knowledge of a simplified extractable LinHC protocol is defined
similarly to standard naHVZK of a Σ-protocol. We omit the details to the full
version.

3.3 Interlude: Extractable LinHC Specialized for Lattices

In most, if not all, lattice-based Σ-protocols, the witness being proven is a
“short” vector. Therefore, throughout this work, we assume such shortness con-
dition holds by default and integrate it into the definition of the extractable
LinHC protocol. Effectively, we are able to construct a more efficient extractable
LinHC protocol by taking advantage of these bounds.

Norm bound on (ei)i∈[N] and r. In the following, we assume the size of the
vectors (ei)i∈[N] and r in Rm

q have an upper bound. That is, for all i ∈ [N],
there exist positive integers B∞,e, B2,e, B∞,r, and B2,r such that ‖ei‖∞ ≤ B∞,ei

,
‖ei‖2 ≤ B2,ei

, ‖r‖∞ ≤ B∞,r and ‖r‖2 ≤ B2,r. In particular, we only guarantee
correctness and naHVZK for such ei’s and r.

Restricting the function class F to check norm bound. As explained in
the previous section, the function class F of F-almost straight-line extractability
(Definition 3.4) corresponds to the the check performed by the verifier of the

A New Simple Technique to Bootstrap 595

underlying Σ-protocol, which we are trying to make secure in the (Q)ROM via
extractable LinHC. Namely, the verifier of the Σ-protocol receives z from the
prover and then checks whether some condition f ∈ F holds with respect to the
challenge β it sampled, i.e., f(β, z) ?= �. In any lattice-based Σ-protocol, one
of the conditions that is always checked by the verifier is whether z is “small”
(see Sect. 4.1 for a concrete example). We therefore restrict the function class F
to be a family of functions FB such that for any f ∈ FB , f includes the check
‖z‖2 ≤ B. 15 In many lattice-based Σ-protocols, we have B ≈ B∞,r or B2,r,
where recall r is the “masking” term to hide (ei)i∈[N].

3.4 Construction of Extractable LinHC

We propose two constructions of extractable LinHC protocols: one based only on
MLWE and the other based on MLWE and DSMR. Since the two constructions
are almost identical, we explain the former and refer the details on the latter
to the full version. The latter has proof size half of the former while relying on
the extra DSMR assumption. The construction of our first extractable LinHC
protocol based on MLWE is provided in Fig. 2.

Fig. 2. An extractable LinHC protocol based on MLWE.

15 The choice of the Euclidean norm is arbitral and we can also chose the infinity norm
(or include both norms).

596 S. Katsumata

Parameters and asymptotic size. Let the dimension d of the ring Rq be larger
than 256 and n,m be positive integers such that n ≤ m,16 p < q be coprime
odd integers, η a positive real, and H be a random oracle with domain {0, 1}ν

and range Rm×n
q × Rm×n

q . The concrete value of ν is specific to the underlying
Σ-protocol being used. Let T, φ, and err be parameters required by the rejection
sampling algorithm, where we set T = η · ∑N

i=1 ‖βi‖∞ · √
(n + 2m)d.

The size of the first message com is 2md(N + 1) log q and the third message
op is (n + 2m)d · log(10φT). Looking ahead, when we make the protocol non-
interactive via the Fiat-Shamir transform, we can send the challenge β instead
of (w1,w2) since the latter can be recovered from the other components and β.
Then, the total size becomes 2mdN log q + (n + 2m)d · log(10φT) + |ChSet|.
Properties. Due to page limitation, we omit the details of the proof of cor-
rectness and the quantum accessible non-abort HVZK (QAnaHVZK) to the full
version. We note that for QAnaHVZK, we rely on the quantum accessible MLWE
assumption.

Fig. 3. Description of SimOracle, H̃, and LinCExtract for the extractable LinHC protocol
in Fig. 2. Here the PRF key K is assumed to be hardwired to H̃ and denote Lβ as the
set {β | (β, z) ∈ L}.

Lemma 3.1 (FB-Almost straight-line extractable). Assume B ≥ √
2nd ·

φ ·T , 2
√

2p(ndη +
√

nmdη +
√

nd)φT +2B < q/2, and B ≤ (p−1)/4. Define the
oracle simulator SimOracle and linear commitment extractor LinCExtract as in
Fig. 3, where T ∗ in Line 6 of algorithm LinCExtract is T ∗ = k·δ·|ChSet|

|Sf (ρ,com)|−k . Then,

16 d could be set arbitrary as long as the underling hardness assumptions (MLWE and
DSMR) hold. We consider a lower bound of 256 to make it easier to provide concrete
bounds on the properties of extractable LinHC.

A New Simple Technique to Bootstrap 597

the extractable LinHC protocol in Fig. 2 is FB-almost straight-line extractable.
Moreover, for any QPT adversary A that distinguishes between a random H and
H̃ output by SimOracle making at most Q queries, there exists a QPT adversary
B1 against the quantum accessible MLWEm,n,2ν ,Q,η problem and a QPT adversary
B2 against the quantum accessible PRF such that

AdvIndO(A) ≤ m · AdvqaMLWEm,n,2ν ,Q,η (B1) + AdvqaPRF(B2),

where Time(A) = Time(B1) ≈ Time(B2).

Proof We only prove Item 2 below and refer the others to the full version.

Item 2. Fix any (H̃, τ = K), randomness ρ ∈ {0, 1}ν , first message com =(
(ti,1, ti,2)i∈[N],w1,w2

)
, and any function f ∈ FB . Moreover, let trans =

(com,β, (z, op)) be a valid transcript. We first show that conditioned on β̃ ∈
Sf (ρ, com)\{β} ⊂ ChSet being sampled in Line 7, LinCExtract(τ, ρ, trans) always
succeeds in outputting a valid z̃ such that f(β̃, z̃) = �. By definition of the
set Sf (ρ, com), existence of (z̃, õp) such that Verify(Kcom, (com, β̃, (z̃, õp))) = �
and f(β̃, z̃) = � is guaranteed. Therefore, denoting õp = [z̃1‖z̃2‖z̃3], we
have ‖z̃	‖2 ≤ √

2nd · φ · T for all � ∈ {1, 2, 3}, and p · (Az̃1 + z̃2) =
∑N

i=1 β̃i · ti,1 + w1, p · (Bz̃1 + z̃3) + z̃ =
∑N

i=1 β̃i · ti,2 + w2, where A and
B = D1A+D2 are uniquely defined by H̃(ρ) and τ = K as in Fig. 3. Therefore,
since v := (

∑N
i=1 β̃i·ti,2+w2)−D1(

∑N
i=1 β̃i·ti,1+w1) = p·(D2z̃1−D1z̃2+z̃3)+z̃,

we have

‖v‖∞ ≤p · (√
nd‖D2‖∞ · ‖z̃1‖2 +

√
md‖D1‖∞ · ‖z̃2‖2 + ‖z̃3‖∞

)
+ ‖z̃‖∞

≤
√

2p(ndη +
√

nmdη +
√

nd)φT + 2B < q/2,

where we have ‖z̃‖2 ≤ B by definition of FB (see Sect. 3.3), ‖D1‖∞, ‖D2‖∞ ≤ η,
and the last equation holds from the assumption in the statement. Moreover, we
use the fact that for two vectors a,b ∈ Z

n, we have ‖a	b‖∞ ≤ √
n‖a‖∞‖b‖2.

This implies that the equality holds over R, and in particular, when ‖z̃‖∞ ≤
B ≤ (p−1)/2,

(∑N
i=1 β̃i ·ti,2+w2

)−D1

(∑N
i=1 β̃i ·ti,1+w1

)
mod p is identical

to z̃. Hence, we are able to extract z̃ such that f(β̃, z̃) = �.
Next, we check that LinCExtract succeeds in outputting a set L =

{(β̃j , z̃j)}j∈[k] such that f(β̃j , z̃j) = � for all j ∈ [k], where by construction
all the β̃j ’s are pairwise distinct. Since β̃ is sampled uniformly random from
ChSet\Lβ , the probability of sampling β̃ ∈ Sf (ρ, com)\Lβ in one loop is at least
|Sf (ρ,com)|−k

|ChSet| . Therefore, given any L, if we sample β̃ δ·|ChSet|
|Sf (ρ,com)|−k -times from the

set ChSet\Lβ , then the probability of sampling β̃ ∈ Sf (ρ, com)\Lβ is at least
1−2−δ. Since each loop is independent from each other, after T ∗ = k·δ·|ChSet|

|Sf (ρ,com)|−k -
loops, we obtain the desired set L with probability at least 1 − k · 2−δ, where
the bound follows from the union bound. Finally, since each loop takes a fixed
polynomial time, the running time of LinCExtract is T ∗ · poly(κ) as desired. We
note that there could exist β̃ �∈ Sf (ρ, com) for which LinCExtract succeeds in

598 S. Katsumata

extracting z̃ such that f(β̃, z̃) = �. However, this will not be a problem since
such β̃ can only increase the success probability and lower the running time of
LinCExtract.

This completes the proof of Item 2. ��
We note that we can get an asymptotically more efficient extractor by allow-

ing algorithm LinCExtract to be QPT and perform Grover’s search. Finally, we
also discuss how to “downgrade” the above extractable LinHC protocol to only
satisfy the properties of a simplified/classical extractable LinHC protocol. The
benefit of doing this is that it provides tighter reductions since we no longer need
to work with QROs. The details are provide in the full version.

4 How to Use Extractable LinHC

In this section, we provide a basic example of bootstrapping the ROM secure
Lyubashevsky’s Σ-protocol [27,28] to be QROM secure using an extractable
LinHC protocol. The aim of this section is to provide a guide on how to prove
QROM security using an extractable LinHC protocol. In Sect. 5, we see how these
ideas can be used to prove QROM security of more complex protocols.

As explained in the beginning of Sect. 3, we can either construct a (1)
quantum straight-line extractable Σ-protocol using the simplified extractable
LinHC protocol (see Sect. 3.2) or a (2) quantum secure simulation straight-line
extractable NIZK (or a signature scheme) using the standard extractable LinHC
protocol. We explain both items. The former is easier to prove and makes it
simpler to understand the essence of the extractable LinHC protocol, while the
latter provides a stronger and more useful result.

4.1 Lyubashevsky’s Σ-Protocol ⇒ Quantum Secure Σ-Protocol via
Simplified Extractable LinHC

We show how to make the classical lattice-based Σ-protocol of Lyubashevsky
into a Σ-protocol that is quantum straight-line proof of knowledge in the CRS
model by integrating it with a simplified extractable LinHC in the standard
model. Below, we denote Lyubashevsky’s Σ-protocol as ΣLyu-protocol.

Preparation. Let ChSet ⊂ {0, 1}κ be a set such that all β ∈ ChSet satisfies
‖β‖1 ≤ �. Here, � is chosen in such a way to guarantee

(
n
	

) ≥ 2256. Let φ and err
be parameters specified by the rejection sampling algorithm. Let Be, Br, and
Bz be positive reals such that Br ≥ √

2md · � ·Be and Bz ≥ √
2nd ·φ ·Br. Define

the MSIS relation as RMSIS = {(X := (A,u),W := e) | Ae = u ∧ ‖e‖2 ≤ Be},
where A ∈ Rn×m

q , u ∈ Rn
q , and e ∈ Rm

q . We also define the “relaxed” relation
R′

MSIS where the only difference between RMSIS is that e now only satisfies Ae =
(β − β̃) · u for some β, β̃ ∈ ChSet and ‖e‖2 ≤ B′

e for a slightly larger bound
B′

e > Be. It is known that the ΣLyu-protocol is naHVZK and satisfies relaxed
2-special soundness.

A New Simple Technique to Bootstrap 599

Quantum secure Σ-protocol. The construction is depicted in Fig. 4. Setup of
the Σ protocol runs KeyGen of the extractable LinHC protocol. Below, we show
correctness, naHVZK, and SL-PoK of our Σ-protocol in Fig. 4. Since the first two
properties follows almost immediately from the underlying ΣLyu-protocol and
the simplified extractable LinHC protocol, we omit them to the full version.

Fig. 4. Quantum secure Σ-protocol in the CRS model for the lattice relation Ae = u,
where crs is Kcom ← KeyGen(1κ). The witness e satisfies ‖e‖2 ≤ Be. The gray indicates
the components that are used in the ΣLyu-protocol.

Fig. 5. Description of SimSetup and SL-Extract for the Σ-protocol in Fig. 4.

Lemma 4.1 (SL-PoK). Let the ΣLyu-protocol for the relations (RMSIS,R′
MSIS)

be relax 2-special sound with extractor Extractss. Let the simplified extractable
LinHC protocol be εIndCom-FBz-almost straight-line extractable with simulator
SimKeyGen and linear commitment extractor LinCExtract, where FBz is the fam-
ily of functions of the form fA,u,w(β, z) = � if and only if ‖z‖2 ≤ Bz and
Az = β · u + w. Finally, let T ∗ = ((ε − ν2)/2 − 1/ |ChSet|)−1 where ε is the
advantage of the adversary A and ν2 is a negligible function as in the statement
of Definition 2.1, and poly(κ) is some fixed polynomial independent of A.

600 S. Katsumata

Then our Σ-protocol in the CRS model for the relations (RMSIS,R′
MSIS) in

Fig. 4 is a straight-line PoK with simulator SimSetup and straight-line extractor
SL-Extract described in Fig. 5.

Proof. Fix any X = (A,u). Let A be a QPT algorithm that outputs a valid
transcript with probability ε as in the statement of Definition 2.1. Then, we
have

Pr

⎡
⎢⎢⎣

(c̃rs = K̃com, τ) ← SimSetup(1κ)
(α, st) ← A(c̃rs,X)

β ← ChSet
γ ← A(c̃rs,X, α, β, st)

: Verify(c̃rs,X, (α, β, γ)) = �

⎤
⎥⎥⎦ ≥ ε − εIndCom, (1)

where α = (w, com) and γ = (z, op). Let Γ = |ChSet| · ε−εIndCom
2 which we assume

to be a positive integer larger than 2 without loss of generality. Omitting the
randomness for better readability, we can rewrite the l.h.s of Eq. (1) as

Pr
[
Verify(c̃rs,X, (α, β, γ)) = � ∧ |Sf (K̃com, com)| ≥ Γ

]

+ Pr
[
Verify(c̃rs,X, (α, β, γ)) = � ∧ |Sf (K̃com, com)| < Γ

]
. (2)

Here, f ∈ FBz is the function that on input (β, z), outputs � if and only if
‖z‖2 ≤ Bz and Az = β ·u+w, where w is the vector included in α output by A.
Since β is sampled uniformly random from ChSet and independently of com out-
put by A, and Sf (K̃com, com) is the set of β’s that permit a valid (z, op) we have
Pr[Verify(c̃rs,X, (α, β, γ)) = � ∧ |Sf (K̃com, com)| < Γ] < Γ

|ChSet| = ε−εIndCom
2 .

Combining this with Eq. (1) and (2), we have Pr[Verify(c̃rs,X, (α, β, γ)) =
� ∧ |Sf (K̃com, com)| ≥ Γ] ≥ ε−εIndCom

2 . Specifically, with probability at least
ε−εIndCom

2 , we have |Sf (K̃com, com)| ≥ Γ . Conditioning on such an event, we have
that LinCExtract(τ, (com, β, (z, op))) outputs a tuple L = {(β, z), (β̃, z̃)} such
that β �= β̃ and f(β̃, z̃) = � in time at most

(
|ChSet|
Γ−1

)
· polyLinHC(κ) with prob-

ability at least 1 − 2−κ, where we set δ = κ. By setting T ∗ = |ChSet|
Γ−1 and

poly(κ) = polyLinHC(κ) in Fig. 5, with probability at least ε−εIndCom
2 · (1 − 2−κ),

SL-Extract moves on to Line 3. By definition of f ∈ FBz , (w, β, z) and (w, β̃, z̃)
are two valid transcripts for the underlying classical Σ-protocol. Hence, we obtain
z∗ ← Extractss(w, (β, z), (β̃, z̃)) such that (X,W = z∗) ∈ R′

MSIS as desired. This
completes the proof. ��

4.2 Lyubashevsky’s Σ-Protocol ⇒ QROM Secure Signature via
Extractable LinHC and Fiat-Shamir

We show how to directly compile the ΣLyu-protocol into an eu-cma secure sig-
nature scheme using the Fiat-Shamir transform The main technicality of this
section is to show that even if an adversary gets to observe polynomially many
simulated proofs (i.e., signatures), we are still able to extract a witness from a

A New Simple Technique to Bootstrap 601

valid proof (i.e., extract the secret key from a signature forgery) output by the
adversary without rewinding.

QROM secure signature scheme. The construction of our (deterministic)
signature scheme in the QROM is provided in Fig. 6.17 The algorithms are pro-
vided oracle access to the random oracle H, and we use appropriate domain sep-
aration to simulate two independent random oracles with different domains and
ranges: HLHC for the extractable LinHC protocol and HFS for applying the Fiat-
Shamir transform The output space of HFS is ChSet := {β ∈ {0, 1}κ | ‖β‖1 ≤ �}.
Let all the parameters be defined identically to those of the Σ-protocol. We
assume that each first message (w = Ar) of the underlying ΣLyu-protocol has ζ-
min-entropy and further assume with overwhelming probability that there exists
at least two short vectors e, e′ ∈ Sm

Be
such that Ae = Ae′ = u. Both of these

assumptions are standard in prior works.

S.KeyGenH(1κ)

1: (A, e) ← Rn×m
q × Sm

Be

2: u = Ae
3: K ← K
4: vk := (A,u)
5: sk := (e,K)
6: return (vk, sk)

S.VerifyH(vk, σ,M)

1: (β, z, com, op) ← σ
2: Kcom ← KeyGenHLHC(1κ)[M]
3: b ← Verify(Kcom, (com, β, (z, op)))
4: if b = ⊥ then return ⊥
5: w ← Az − β · u
6: if ‖z‖2 > Bz or β �=

HFS(w‖com‖M) then return ⊥
7: else return �

S.SignH(vk, sk,M)

1: Kcom ← KeyGenHLHC(1κ)[M]
2: (b, op, c) ← (⊥, ⊥, 0)
3: while b = ⊥ ∨ op = ⊥ do
4: ρr‖ρRej‖ρCom‖ρOpen ← PRF(K,M‖c)
5: r ← Dm

φ·Br
[ρr]

6: w ← Ar
7: (com, st) ← Com(Kcom, (e, r))[ρCom]
8: β ← HFS(w‖com‖M)
9: z ← β · e + r

10: b ← Rej(z, β · e, φ, Br, err)[ρRej]
11: op ← Open(Kcom, (com, β, z), st)[ρOpen]
12: c ← c + 1

13: return σ := (β, z, com, op)

Fig. 6. QROM secure signature scheme by applying the Fiat-Shamir transform to our
Σ-protocol in Fig. 4. Oracles HLHC and HFS are implemented using H.

Properties. Due to page limitation, we provide the proof of eu-cma security in
the full version. For an overview of the proof, we refer the readers to the technical
overview in Sect. 1.2. The main technicality of the proof is showing that with
high probability, there must have been another challenge the adversary was able

17 Strictly speaking, we require an upper bound on the number of loops we perform
in the while clause to make the signature algorithm terminate in strict polynomial
time. However, since our main focus is to showcase how to use the extractable LinHC
protocol and this issue can be handled in a straightforward manner (see [23] for
example), we ignore this unrelated subtlety for better readability.

602 S. Katsumata

to forge on even though it had some control over which challenge it used through
quantumly accessing the random oracle HFS.

5 Application: Quantum Secure 5-Round Public-Coin
Exact Sound Proof and NIZK

In this section, to showcase the generality of the extractable LinHC protocol,
we show how to integrate it to the recent 5-round public-coin HVZK interactive
exact sound proof of Bootle et al. [8]. The main motivation for choosing [8] as
the case study is because the ideas presented in this section can be directly
applied to other recent works [1,3,15,35]. We can convert the protocol of [8]
into either (1) a quantum secure straight-line extractable interactive proof using
the simplified extractable LinHC protocol (as in Sect. 4.1) or (2) into a quantum
secure simulation straight-line extractable NIZK (or a signature scheme) using
the extractable LinHC protocol (as in Sect. 4.2).

5.1 Quantum Secure Exact Sound Interactive Proof via Simplified
Extractable LinHC

We first show how to apply the simplified extractable LinHC protocol to Bootle
et al.’s protocol [8] to obtain a 5-round public-coin interactive proof that is
quantum secure, straight-line extractable, and exact sound. In brief, Bootle et
al. constructs an interactive protocol that allows the prover to prove knowledge
of a vector s ∈ {0, 1, 2}d satisfying As = u, where the main difference between
Lyubashevsky’s protocol is that it exact sound. That is, a knowledge extractor
extracts a witness that satisfies the original relation used by the prover (and not a
“relaxed” relation). While zero-knowledge of our protocol is a direct consequence
of that of Bootle et al.’s protocol, soundness needs slightly more work.

Parameters. Following Bootle et al., we chose the dimension d and modulus
q so that Rq completely splits into d linear factors modulo q, e.g., d is a power
of 2 and q ≡ 1 mod 2d. For a ring element s ∈ Rq, we denote ŝ ∈ Z

d
q as the

NTT representation of s. Then, for a matrix-vector pair (A,u) ∈ Z
m×d
q × Z

m
q ,

we consider the relation RES = {s ∈ Rq | Aŝ = u ∧ ŝ ∈ {0, 1, 2}d}. Let C
denote the set {0,Xi | 0 ≤ i < 2d} ⊂ Rq, and φ and err be parameters specified
by the rejection sampling algorithm. Let Be, Br, and Bz be positive reals such
that Br ≥ √

6d · Be and Bz ≥ √
12d · φ · Br, where the size of Be dictates the

hardness of the MLWE assumption.

Quantum secure exact sound protocol. The protocol is depicted in Fig. 7.
It can be seen that the way we apply the extractable LinHC protocol is very
similar to what was done for Lyubashevsky’s protocol (see Fig. 4). Correctness
and naHVZK are straightforward to prove and we omit them to the full version.

The high level idea of the proof for straight-line proof of knowledge is similar
to those provided by Bootle et al. [8, Theorem 3.1]. The main difference is how
we extract a witness from partial valid transcripts. Recall Bootle et al. first

A New Simple Technique to Bootstrap 603

Fig. 7. Quantum secure exact sound public-coin interactive protocol in the CRS model
for the relation RES. B ∈ R5×6

q is the public parameter of the (implicit) commitment
scheme ΠCom ΠCom, and b�

i denotes its i-th row vector. The gray indicates the compo-
nents that are used in the protocol of Bootle et al. [8].

rewinds the adversary to obtain six valid transcripts with a specific form and
then shows how to extract a witness from such transcripts. In our proof, we are
only able to extract a small portion of the six valid transcripts so we need to
rely on a different argument compared to Bootle et al.

Lemma 5.1 (SL-PoK). Let the simplified extractable LinHC protocol be εIndCom-
FBz-almost straight-line extractable with simulator SimKeyGen and linear com-
mitment extractor LinCExtract, where FBz is the singleton set {f} for a f such
that f(β, z) = � if and only if ‖z‖2 ≤ Bz.

Then, there exists a PPT simulator SimSetup and a straight-line extractor
SL-Extract with the following property: Let A be an adversary that outputs a

604 S. Katsumata

valid transcript with probability ε > 3/q+2/d18 Then, on input a valid transcript
output by A executed on a simulated crs output by SimSetup, SL-Extract outputs
either a witness s ∈ Rq in the relation RES or a MSISn,6n,8Bz solution for b	

1

with probability (ε − ν)/3 for a negligible function ν. Moreover, the runtime of
SL-Extract is independent of the runtime of A and depends only polynomially on
d and log q.

Proof. Assume A successfully fools the honest verifier with advantage ε >

3/q + 2/d and the resulting transcript is trans∗ =
(
(t,w, com), c(1), (z(1)0 , x

(1)
0 ,

x
(1)
1 , x

(1)
2), β(1,1), (z(1,1), op(1,1))

)
. Firstly, sinceAhas advantage greater than 3/q+

2/d, using the same statistical argument made in the proof of Lemma 4.1, with
probability at least 1/3, the transcript trans∗ output by A satisfies the following
property: there exists at least three distinct first challenges c(1), c(2), c(3) ∈ Zq and
two distinct second challenges β(k,1), β(k,2) ∈ C for each k ∈ [3] such that there
exists some third message (z(k)0 , x

(k)
0 , x

(k)
1 , x

(k)
2) and fifth message (z(k,j), op(k,j))

where trans(k,j) =
(
(t,w, com), c(k), (z(k)0 , x

(k)
0 , x

(k)
1 , x

(k)
2), β(k,j), (z(k,j), op(k,j))

)

is a valid transcript for all (k, j) ∈ [3] × [2]. Below, we first show how SL-Extract
obtains a list that contains all ((β(k,j), z(k,j)))(k,j)∈[3]×[2] using the straight-line
extractability of the simplified extractable LinHC protocol.

We define SimSetup to run (K̃com, τ) ← SimKeyGen(1κ) and output crs =
(B, K̃com). Due to the simplified εIndCom-FBz -almost straight-line extractability,
A still has advantage (ε − εIndCom)/3 in outputting a valid transcript trans∗

with the above property run on this modified crs. Next, SL-Extract can use the
extractor of the simplified extractable LinHC protocol LinCExtract(τ, trans∗) to
obtain a set L = ((βj , zj))j∈[d] in time polynomial in |C| = d19, where we are
guaranteed to extract all β ∈ C that has a corresponding (z′, op′) such that
Verify(Kcom, (com, β, (z′, op′))) = � and ‖z′‖2 ≤ Bz. That is, all the extracted
β satisfies β ∈ Sf (Kcom, com). Moreover, once com is fixed, there exists at most
one z′ satisfying Verify(Kcom, (com, β, (z′, op′))) = � for each β ∈ C and any
op′ regardless of the choice of the second and third messages (i.e., c ∈ Zq and
(z, w, x1, x2)).20 Therefore, the extracted z must be the unique z′. Combining
the argument so far, we have established ((β(k,j), z(k,j)))(k,j)∈[3]×[2] ⊆ L. Here,
note β(k,j) and β(k′,j′) may be the same when k �= k′. In the following, we show
how SL-Extract determines which two tuples (β, z) and (β′, z′) ∈ L correspond
to the tuples (β(k,1), z(k,1)) and (β(k,2), z(k,2)).

Assume we knew which elements in the set L corresponded to (β(k,1), z(k,1))
and (β(k,2), z(k,2)) for each k ∈ [3]. Then, since (trans(k,j))(k,j)∈[3]×[2] are valid
transcripts, we have b	

1 z
(k) = β(k,j)·t1+x

(k)
0 for an unknown x

(k)
0 . By subtracting

18 Bootle et al. [8, Theorem 3.1] only requires ε > 2/q + 2/d. However, this slight
modification makes our proof slightly easier to state and has minimal impact on the
concrete efficiency of the scheme.

19 Since d is the dimension of the lattice, we can assume that it is polynomial in the
security parameter κ.

20 This argument relies on a natural yet extra property of the LinHC. The detail is
provided in the full version.

A New Simple Technique to Bootstrap 605

j = 1, 2 for each k ∈ [3], we can remove x
(k)
0 to obtain b	

1 z
(k) − β(k,1) · t1 =

b	
1 z

(k)−β(k,2) ·t1. Notice that we can check this equality with only knowledge of
B in the crs and t in the first message, which is shared among all the transcripts.
With this observation in mind, SL-Extract performs the following:

1. Prepare an empty list S and counter t = 1.
2. For each pair (β, z), (β′, z′) ∈ L, check if b	

1 z − β · t1 = b	
1 z

′ − β′ · t1. If
not move on to the next pair. Otherwise, add (t, (β.z), (β′, z′)) to the list S,
update t = t + 1, and move on to the next pair.

For each (t, (β, z), (β′, z′)) ∈ S, denote βt = β − β′ and zt = z − z′. Then,
we have b	

1 zt = βt · t1, which is an approximate solution to the first equation
of the commitment t. Therefore, we can compute openings Mt,2, Mt,3 and Mt,4

and Mt,5 of t by setting Mt,	 = t	 − β
−1

t · (b	
	 zt) ∈ Rq for each � ∈ {2, 3, 4, 5}.

Here, note that these openings are valid relaxed openings for the commitment
scheme with ‖zt‖2 ≤ 2Bz. Hence, unless A breaks the binding property of the
commitment, we are guaranteed that Mt,2, Mt,3, Mt,4, and Mt,5 are the same
value for all t ∈ |S|. Conditioning on A not breaking the MSISn,6n,8Bz problem,
SL-Extract outputs s∗ := M1,3 = · · · = M|S|,3 as the witness. Here, observe that
the runtime of SL-Extract is only polynomially related to |C| = d: it takes time
d ·poly(κ) to prepare the list L and takes time at most d2 ·poly(κ) to prepare the
list S. Therefore, it remains to show that s∗ ∈ Rq output by SL-Extract indeed
satisfies Aŝ∗ = u and ŝ∗ ∈ {0, 1, 2}, where ŝ∗ ∈ Z

d
q is the NTT representation

of s∗. In the following, since all the messages are the same unless A breaks the
MSISn,6n,8Bz problem, we drop the subscript t from the messages M and further
denote y∗ = M2.

Although we do not know (c(k), (z(k)0 , x
(k)
0 , x

(k)
1 , x

(k)
2))k∈[3], we have L that is

guaranteed to contain (β(k,j), z(k,j))(k,j)∈[3]×[2] included in (trans(k,j))(k,j)∈[3]×[2].
For each (k, j) ∈ [3] × [2] consider the following verification equation

(b	
2 + c(k) · b	

3)z(k,j) + β(k,j) · z
(k)
0 = β(k,j) · (c(k) · t3 + t2) + x

(k)
1 ,

where recall that z
(k)
0 and x

(k)
1 are unknown but guaranteed to exist. Subtracting

the equations for the same k and j = 1, 2, we obtain (b	
2 + c(k) ·b	

3)z(k) + β
(k) ·

z
(k)
0 = β

(k) · (c(k) · t3 + t2), where β
(k)

= β(k,1) − β(k,2) and z(k) = z(k,1) − z(k,2).
Further substituting the commitment openings for t2 and t3 to the above equa-
tion and making routine calculation shows z

(k)
0 = y∗ + c(k) · s∗. By performing

the same argument on the final verification equation and substituting the com-
mitment openings for t4 and t5, we obtain

((y∗)2s∗−y∗M4+M5)+((y∗(2s∗−3)−M4)s∗)·c(k)+(s∗(s∗−1)(s∗−2))·(c(k))2 = 0.

Since this equation holds for all k ∈ [3] and c(1) �= c(2) �= c(3) ∈ Zq, we must have
s∗(s∗−1)(s∗−2) = 0 over Rq. Applying the NTT transform, this equation implies
that ŝ∗ ∈ {0, 1, 2}d. Finally, by subtracting the second verification equation from

606 S. Katsumata

one another, we get A(ẑ(1)0 − ẑ(2)0) = (c(1) − c(2)) · u. Since c(1) �= c(2) and we
established z

(k)
0 = y∗ + c(k) · s∗ for each k ∈ [3], this implies Aŝ∗ = u as desired.

To summarize, with probability 1/3, L contains ((β(k,j), z(k,j)))(k,j)∈[3]×[2].
Conditioned on this fact, SL-Extract outputs a valid witness s∗ ∈ RES unless it
finds a solution to the MSISn,6n,8Bz problem. Note that SL-Extract performs all
the steps without explicitly knowing (c(k), (z(k)0 , x

(k)
0 , x

(k)
1 , x

(k)
2))k∈[3]. ��

5.2 QROM Secure Exact Sound NIZK via Extractable LinHC
and Fiat-Shamir

Bootle et al. [8] transformed their interactive protocol into a classical NIZK in
the ROM using the Fiat-Shamir transform. Noticing that the two challenge sets
Zq and C have different size, they provided a more optimized soundness amplifi-
cation technique. We explain in detail how we can incorporate such optimization
technique when we instantiate the extractable LinHC protocol with the two con-
structions provided in Sect. 3.4. Since most of the argument is identical to those
of the previous section, we refer the details to the full version.

5.3 Comparison

We compare Bootle et al.’s ROM secure NIZK and our QROM secure NIZK.
We consider the application of proving knowledge of the ternary secret in LWE
samples over Zq, which is commonly used in the literature to provide a basic
benchmark, e.g., [5,8]. Such relation captures the setting of FHE schemes and
group signatures. Aiming at the 128-bit quantum security level, our provably
quantum secure NIZK has a proof size of 2071 KB while Bootle et al.’s (heuristi-
cally quantum secure) NIZK has proof size of 812 KB.21 The overhead is around
a factor of 2.6. The full detail on how we arrive at these values is provided in
the full version. In contrast, if assume we were able to make Bootle et al.’s NIZK
secure in the QROM using the extended Unruh transform [11] (see Footnote 4),
the proof size becomes 44.9 MB, where the overhead is a larger factor of 51.8.
For completeness, we provide the details in the full version. Finally, note that
it is unclear whether the Fiat-Shamir transform in the QROM can be securely
applied to Bootle et al.’s NIZK.

5.4 Further Applications of Extractable LinHC

We show that other recent Σ-/public-coin HVZK interactive protocols are com-
patible with our extractable LinHC protocol. Due to page limitation, below we
only remark on one of the recent lattice-based protocols. We provide further
discussion in the full version for the rest of the protocols: proof of opening of
21 Bootle et al. [8] provides a proof size of 384 KB. Ours is around two times larger

since we require t = 8, unlike t = 4, to achieve a minimal level of post-quantum
security. Moreover, we do not reuse the commitment t3,i for all i ∈ [t] as in [8] since
it would harm zero-knowledge.

A New Simple Technique to Bootstrap 607

commitments [3], one-out-of-many proofs [15], exact sound proofs for quadratic
relations [35], and product proofs for commitments [1].

[15]: Range proofs. Range proof allows one to prove that a committed value
resides in a specific range and is used in applications such as confidential trans-
actions in cryptocurrencies. Recently, Esgin et al. [15] provided an efficient range
proof by using new ideas on CRT-packing supporting “inter-slot” operations and
NTT-friendly tools that permit the use of fully-splitting rings. It can be checked
that the Σ-protocol for the range relation provided in [15, Theorem 1] is compat-
ible with extractable LinHC protocols. Although it was not necessary for their
scheme, we can modify the verifier in [15, Protocol 2] (without affecting any
parameters) to further check the bound on fcrt to perfectly fit the description of
the extractable LinHC protocol. Concretely, we can view (ai

j)(i,j)∈[ψ,ki−1], ra, rd,
and re in their Protocol 2 as r, and (bi

j)(i,j)∈[ψ,ki−1], rb, rc, and r in their Pro-
tocol 2 as e of the extractable LinHC protocol in our Fig. 1.

Finally, we elucidate an inconvenient feature of some of the recent advanced
lattice-based protocols. While conventional protocols only require 2 to 3 valid
transcripts for special soundness, as much as 32 valid transcripts is required in
the recent protocols [1]. Therefore, even if the protocols came with a compatible
lossy function as in the definition of [25], the Fiat-Shamir transform incurs an
extremely large reduction loss. Combining [14, Lemma 29] and [25, Theorem
1], a knowledge extractor (for the underlying protocol) given black-box access
to a quantum adversary outputting a valid NIZK proof with probability ε after
making Q hash queries, is only guaranteed in extracting a witness with proba-
bility (ε/Q2)2×32−1 = ε63/Q126. In such cases, extractable LinHC protocols may
provide a much tighter proof and a smaller set of provably secure parameters.

Acknowledgement. Shuichi Katsumata was supported by JST CREST Grant Num-
ber JPMJCR19F6. We thank Thomas Prest, Alexandre Wallet, and Thomas Espitau
for helpful inputs on NTRU. We also want to thank Patrick Hough for helpful discus-
sions about this work while he visited AIST in 2020.

References

1. Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice com-
mitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12171, pp. 470–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56880-1 17

2. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

3. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20

608 S. Katsumata

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

5. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 183–
211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 7

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

7. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 21

8. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 7

9. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
CCS (2004)

10. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: ACM CCS (2017)

11. Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: SOFIA:
MQ-based signatures in the QROM. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10770, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-76581-5 1

12. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon:
compact signatures based on module NTRU lattices. Cryptology ePrint Archive,
Report 2019/1456

13. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: multi-
round Fiat-Shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12172, pp. 602–631. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56877-1 21

14. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

15. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

16. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7 5

17. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-319-76581-5_1
https://doi.org/10.1007/978-3-319-76581-5_1
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12

A New Simple Technique to Bootstrap 609

18. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 10

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: 40th ACM STOC (2008)

20. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

21. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23

22. Kales, D., Zaverucha, G.: An attack on some signature schemes constructed from
five-pass identification schemes. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.)
CANS 2020. LNCS, vol. 12579, pp. 3–22. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-65411-5 1

23. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 18

24. Koblitz, N., Menezes, A.J.: Another look at “provable security”. J. Cryptol. 20(1),
3–37 (2005). https://doi.org/10.1007/s00145-005-0432-z

25. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 326–355. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 12

26. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: 44th ACM STOC
(2012)

27. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

28. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: 37th ACM STOC

30. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 17

31. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 2

32. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 10

https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-030-65411-5_1
https://doi.org/10.1007/978-3-030-65411-5_1
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/s00145-005-0432-z
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/978-3-642-29011-4_10

610 S. Katsumata

33. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

34. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 3

35. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

36. Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS (2012)
37. Zhandry, M.: Secure identity-based encryption in the quantum random oracle

model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

38. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 9

https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

SMILE: Set Membership from Ideal
Lattices with Applications to Ring

Signatures and Confidential Transactions

Vadim Lyubashevsky1(B), Ngoc Khanh Nguyen1,2, and Gregor Seiler1,2

1 IBM Research Europe, Zurich, Switzerland
2 ETH Zurich, Zurich, Switzerland

Abstract. In a set membership proof, the public information consists
of a set of elements and a commitment. The prover then produces a zero-
knowledge proof showing that the commitment is indeed to some element
from the set. This primitive is closely related to concepts like ring signa-
tures and “one-out-of-many” proofs that underlie many anonymity and
privacy protocols. The main result of this work is a new succinct lattice-
based set membership proof whose size is logarithmic in the size of the
set.

We also give a transformation of our set membership proof to a ring
signature scheme. The ring signature size is also logarithmic in the size
of the public key set and has size 16 KB for a set of 25 elements, and
22 KB for a set of size 225. At an approximately 128-bit security level,
these outputs are between 1.5× and 7× smaller than the current state of
the art succinct ring signatures of Beullens et al. (Asiacrypt 2020) and
Esgin et al. (CCS 2019).

We then show that our ring signature, combined with a few other tech-
niques and optimizations, can be turned into a fairly efficient Monero-
like confidential transaction system based on the MatRiCT framework of
Esgin et al. (CCS 2019). With our new techniques, we are able to reduce
the transaction proof size by factors of about 4X - 10X over the afore-
mentioned work. For example, a transaction with two inputs and two
outputs, where each input is hidden among 215 other accounts, requires
approximately 30KB in our protocol.

1 Introduction

Privacy-based transaction systems are steadily gaining in popularity to the point
that central banks of the US and the EU are exploring an eventual shift to digital
currency. Transaction systems can be equipped with various degrees of privacy,
possibilities for auditability, and permission types for joining the transaction
network. The common element at the heart of most of these schemes is a zero-
knowledge proof which can be adapted to endow the scheme with the desired
features. The most efficient zero-knowledge proofs which allow for proving a rich
set of statements are generally based on the hardness of the discrete logarithm
problem over elliptic curves. This poses a problem for the eventual use of digital
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 611–640, 2021.
https://doi.org/10.1007/978-3-030-84245-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_21

612 V. Lyubashevsky et al.

currency because the timeline for widescale deployment of these transaction
systems could very well coincide with the advent of a quantum computer that is
able to break them. It is therefore important to begin considering schemes which
are based on assumptions that are believed to be resistant to quantum attacks.

The currently most efficient, in terms of size and speed, quantum-safe basic
primitives are based on the hardness of lattice problems with algebraic structure.
Lattice-based constructions are therefore natural candidates for more advanced
cryptographic tools like zero-knowledge proofs. Over the last few years, there
has indeed been rapid progress in the field of lattice-based zero knowledge (e.g.
[1,2,6,7,10–13,18,25]). There now exist fairly practical protocols for proving
knowledge of pre-images of lattice-based 1-way functions, arithmetic sums and
products of committed values, as well as various primitives such as ring sig-
natures and group signatures. In virtually all of these cases, the lattice-based
solutions result in the most efficient (potentially) quantum-safe option.

As far as a relatively complete quantum-safe transaction system, the recent
work of Esgin et al. [13], also based on the hardness of lattice problems, appears
to be the most efficient solution. Their work adapts the RingCT protocol [22],
which serves as the foundation of the digital currency Monero, and provides
formal definitions upon which they construct their MatRiCT protocol. While
certainly not as efficient as discrete logarithm based schemes, this work showed
that a lattice-based confidential transaction system is something that may even-
tually be a very reasonable solution.

Our Results and Related Work. At the core of many privacy-based protocols
(including the one from [13]) is a set membership proof in which the prover
shows, in zero-knowledge, that a commitment is to a value from a public set.
This concept is very closely related to “one-out-of-many” proofs [14] and ring
signatures [24]. The main result of this work is a new set membership proof which
is logarithmic in the size of the set and leads to a ring signature scheme with
outputs noticeably smaller than the currently shortest schemes from [4,13].1 We
point out that “one-out-of many” proofs [14], in which the prover shows that one
of the commitments in a set is a commitment to 0, are actually equivalent to the
ring signatures that we construct. This is because lattice-based public keys can
be thought of as commitments to 0. We then show how to use our ring signature
scheme/“one-out-of-many” proof, together with a few other optimizations of
prior work, to create a more efficient confidential transaction system based upon
the MatRiCT definitions.

We now give a brief overview of where the efficiency advantage comes from.
The shorter proofs in our scheme are partly a result of the fact that the modulus
in our underlying polynomial ring stays the same for all practical set sizes. On the

1 One can also obtain ring signatures which are linear (rather than logarithmic) in the
size of the public key set by plugging in a lattice-based signature scheme based on a
trapdoor function, such as [23], into the generic framework of [24]. Even though for
small set sizes (around a dozen), this may be smaller than our solution, it quickly
becomes much larger (see Fig. 2).

SMILE: Set Membership from Ideal Lattices 613

other hand, if the size of the set is n = 32m, then the exponent of the modulus
in the ring used in [13] increases linearly in m. The reason for this difference
is that [13] use “Ajtai-type” commitments which compress the input, but only
allow for commitments of “short” messages. In our construction, however, we use
BDLOP commitments [3] which allow commitments to arbitrary-size elements,
at the expense of a slightly larger commitment size. But because the number of
commitments we need is logarithmic in the size of the set, this does not pose a
problem with the commitment size becoming too big.

An additional advantage of BDLOP commitments that we extensively use
is that if one plans ahead by choosing a long-enough randomness vector in the
beginning of the protocol, then one can adjoin a new commitment at any time
and the size of the commitment only increases by the size of the committed
message. In particular, the increase in size does not depend on the security
parameter, which is what one would need if creating a new commitment. We
use this property when combining our new techniques along with the framework
for proving various relations committed to in BDLOP commitments from [1,
10,18]. Thus our constructions essentially have just one BDLOP commitment
for the entire protocol. We further reduce the transaction size by employing an
amortization technique so that the proof contains just two elements whose size
depends on the security parameter.

In the rest of the introduction, we give rather detailed high-level descriptions
of our constructions. The reason for this level of detail is that the protocols in
the body of the paper use optimizations that combine the new ideas together
with prior work in a non-black box manner, which tends to somewhat obfuscate
the high level picture. In the introduction, we instead give slightly less efficient
constructions that try to highlight the separate parts making up the complete
protocols. We would then hope that with the high-level intuition in hand, the
interested reader can better follow the complete protocols in the body.

1.1 The Polynomial Ring and BDLOP Commitments

Throughout this paper, we will be working over the polynomial ring Rq =

Zq[X]/(X128 + 1) where q is set such that X128 + 1 =
32∏

i=1

(X4 − ri) and X4 − ri

are irreducible modulo q (c.f. [21] for how to set q to obtain such a factorization).
We will be exclusively using BDLOP commitments [3], where a commitment to
a polynomial vector �m ∈ Rk

q is of the form
[
B0

B1

]

�r +
[

�0
�m

]

=
[
�t0
�t1

]

, (1)

where Bi are uniform2 public random matrices and �r is a random low-norm
vector which serves as the commitment randomness. To open the commitment
2 For efficiency, a large portion of Bi can be the identity matrix (c.f. [3]), but we ignore

the form of the public randomness in this paper, as it does not affect any output
sizes.

614 V. Lyubashevsky et al.

without revealing it, one would ideally want to give a zero-knowledge proof of a
low-norm �r satisfying B0�r = �t0. Unfortunately, there is no particularly efficient
zero-knowledge proof for this statement, and so a relaxed opening is defined
which consists of a vector �v and a polynomial c satisfying B0�v = �t0 such that
‖c‖ and ‖c�v‖ are small (but �v is not necessarily small itself). The committed
message is then implicitly

�m = �t1 − B1�v. (2)

An efficient zero-knowledge proof for the above opening was given in [3].
That work also showed how to prove linear (over Rq) relations of �m without
increasing the proof size. For this, it’s in fact enough to just be able to prove
that the commitment is to �0. The reason is that a commitment of �m can be
easily converted to a commitment of �m + �m′ by adding �m′ to �t1. Similarly, for
any matrix L over Rq, one can convert a commitment of �m to one of L �m by

multiplying the bottom part by L to obtain
[

B0

LB1

]

· �r +
[

�0
L �m

]

=
[

�t0
L�t1

]

. Thus

proving that the message �m in (1) satisfies L �m = �u, involves proving that the

commitment
[

�t0
L�t1 − �u

]

with public key
[

B0

LB1

]

is a commitment to �0.

Later works (e.g. [1,10,18]) showed how to prove more complicated relations
between the committed messages in BDLOP commitments. These include prov-
ing multiplicative relations among the polynomials comprising �m and proving
linear relations over Zq (rather than Rq) of the integer coefficients comprising
�m. An important feature of these aforementioned proofs is that the proof size
does not grow with the number of relations that one needs to prove about one
commitment. So the cost, in terms of proof size, of proving multiple relations
about one commitment is the cost of proving the most expensive one.

1.2 The New Set Membership Proof

In this work we extend the toolbox of what can be proved about �m in BDLOP
commitments by showing how to do set membership proofs. Given a collection
of polynomial vectors �pi, and a commitment to one on them, we would like to
prove that the committed �w is indeed one of the �pi.

More specifically, the public information consists of P = [�p1 | . . . | �pn],
where n = lm = 32m, and a commitment ω. The prover gives a zero knowledge
proof that a commitment ω opens to (�v1, . . . , �vm, �w) where

P · (�v1 ⊗ . . . ⊗ �vm) = �w (3)

∀i, �vi ∈ {0, 1}l and ‖�vi‖1 = 1. (4)

Notice that by definition of the �vi, their tensor product will be a vector of
length n consisting of all zeros and one 1 (this decomposition observation was
originally used in [14]). If each vector �vi will be committed as a polynomial mi in

SMILE: Set Membership from Ideal Lattices 615

the BDLOP commitment,3 then (4) can already be proved using the aforemen-
tioned techniques from [1,10]. Our main result in this work is an efficient proof
of (3) whose size is linear in m, and thus logarithmic in the number of elements
in P . We also prove a more generic k-dimensional version of this problem. In
this version, there are k public lists

P (1) =
[
�p
(1)
1 | . . . | �p (1)

n

]
, . . . ,P (k) =

[
�p
(k)
1 | . . . | �p (k)

n

]

and �w is a sum of k elements, one taken from each set. The prover gives a zero
knowledge proof that the commitment ω opens to

(�v (1)
1 , . . . , �v (1)

m , . . . , �v
(k)
1 , . . . , �v (k)

m , �w)

where

k∑

j=1

P (j) · (�v (j)
1 ⊗ . . . ⊗ �v (j)

m) = �w (5)

∀i, j, �v
(j)
i ∈ {0, 1}l and ‖�v (j)

i ‖1 = 1 (6)

This proof is of size O(mk), so there is no amortization happening. But being
able to prove the above will allow us to amortize away many of the other parts
of the anonymous transaction protocol.

1.3 Set Membership Proof Sketch

We now give a sketch of how to prove (3) and (4). Let us first define the set
Mq = Zq + ZqX + ZqX

2 + ZqX
3. Because of the way we defined Rq, the NTT

and inverse NTT functions are bijective functions NTT (w) : Rq → M32
q and

NTT−1 (�w) : M32
q → Rq where

NTT (w) = (w mod X4 − r1, . . . ,w mod X4 − r32).

These functions extend to polynomial vectors in the natural way by being applied
to each polynomial separately.

We will also need to overload the inner product operator. For a polyno-
mial w such that NTT (w) = �w = (w1, . . . , w32) ∈ M32

q , define the func-

tion g(w) =
32∑

i=1

wi. In other words, it’s just the sum of the NTT coefficients

as polynomials in Mq. For two vectors �w, �w′ ∈ M32
q , we define 〈�w, �w′〉 =

g(NTT−1 (w)NTT−1 (w′)). It resembles an inner product because we can equiv-
alently write it as

〈�w, �w′〉 =
32∑

i=1

wiw
′
i mod (X4 − ri).

3 Actually the inverse NTT of the vector �vi, which is an element of Rq, will be com-
mitted – see Sect. 1.3.

616 V. Lyubashevsky et al.

The multiplication is performed modulo different polynomials, amd so this func-
tion is not an inner product. But it is commutative and satisfies 〈�w + �w′, �w′′〉 =
〈�w, �w′′〉 + 〈�w′, �w′′〉. Similarly, for �w = (�w1, . . . , �wk), �w′ = (�w′

1, . . . , �w′
k), where

each �wi, �w′
i ∈ M32

q , one defines 〈�w, �w′〉 =
k∑

i=1

〈�wi, �w′
i〉.

For convenience, we will now rewrite the set membership problem to be over
Mq. In particular, the public information consists of vectors P = [�p1 | . . . | �pn]
where each �pi ∈ M32k

q , for some arbitrary k. And we also have a commitment
to a vector �w ∈ M32k

q such that �w = �pi for some i. Notice that the �pi and �w
are the NTT of the �pi, �w from (3). To commit to the vector �w, we define the
polynomial vector �w = NTT−1 (�w) ∈ Rk

q and then use the BDLOP commitment
from (1) to commit to �w. Later rows of this BDLOP commitment will also
include commitments to the vectors �v1, . . . , �vm ∈ M32

q (defined as in (4)). We
will define the polynomials vj = NTT−1 (�vj) and commit to them in the BDLOP
commitment. Note that we can already prove (4) using the techniques from [1,10]
by proving that �v · (�1−�v) = �0 and that the NTT coefficients of each polynomial
in �v sum to 1.

We now describe how to prove (3) – in other words, that P ·(�v1⊗. . .⊗�vm)−�w =
�0. We will prove this by showing that for a random challenge �γ ∈ M32k

q , the
“inner product” 〈P · (�v1 ⊗ . . . ⊗ �vm) − �w,�γ〉 = 0. Because Zq[X]/(X4 − ri) are
fields and of size q4, it’s not hard to see that if the left term in the inner product
is not �0, then the probability of the inner product being 0 is exactly q−4. Because
we will be working with a q ≈ 232, this probability is approximately 2−128, so
no repetitions are required.

We now get to the main technical part of the protocol. Let’s break up P into

32 parts as P = [P1 | . . . , | P32] and define P ′ :=

⎡

⎢
⎣

γT P1

...
γT P32

⎤

⎥
⎦ ∈ M32×32m−1

q .

Then using the property that �vi are vectors over Mq with just constant
coefficients,4 with some algebraic manipulation (see (18)), it can be shown that

〈P (�v1 ⊗ . . . ⊗ �vm) − �w,�γ〉 = 〈�v1, P ′(�v2 ⊗ . . . ⊗ �vm)〉 − 〈�w,�γ〉. (7)

To prove that the left-hand side is 0, it is therefore equivalent to prove that
the right-hand side is 0. The crucial part is that the right-hand side contains
an expression which selects one element from a set P ′ – but this set is 32 times
smaller than P . If we define �x = P ′(�v2 ⊗ . . .⊗�vm) and send a commitment to �x,
then proving the original set membership involves proving a new set membership
proof in which the set is 32 times smaller, as well as the equation 〈�v1, �x〉 = 〈�w,�γ〉.
4 Intuitively, if the coefficients of �vi were polynomials of degree > 0, then the term

〈�v1, P ′(�v2 ⊗ . . .⊗�vm)〉 in (7) would make very little algebraic sense because there is a
multiplication on one side of P ′ which involves reduction modulo X4 − rj , and then
there would be a multiplication on the other side which would get reduced modulo
different X4−rj′ . But since vectors �vi only have constant terms, the “inner product”
with �vi does not involve any modular reduction.

SMILE: Set Membership from Ideal Lattices 617

If this latter equation can be proved with a constant number of commitments (in
our case, it will essentially be one), then continuing the proof recursively would
mean that the whole proof requires approximately 2m commitments for sets P
containing n = 32m elements.

Both �w and �γ are vectors in M32k
q , so let us write them as �w = (�w1, . . . , �wk)

and �γ = (�γ1, . . . , �γk) where �wi, �γi ∈ M32
q . Then

〈�v1, �x〉 = 〈�w,�γ〉 ⇔ g(v1x) = g

(
k∑

i=1

wiγi

)

,

where the bold letters correspond to the inverse NTTs and the function g is the
sum of the NTT’s of the polynomial. Because we have BDLOP commitments

to x and wi, we can compute a commitment to y = v1x −
k∑

i=1

wiγi, and then

we just have to prove that the sum of the NTT coefficients of this polynomial is
0. For this, we employ a lemma used in [10], which states that for the ring Rq

as defined in this section and a polynomial y ∈ Rq =
127∑

i=0

yiX
i, we have g(y) =

32(y0 + y1X + y2X
2 + y3X

3). In other words, the sum of the NTT coefficients is
0 if and only if the first four coefficients of the polynomial representation are 0.
To prove this in zero knowledge, we can first commit to a masking polynomial
z whose first 4 coefficients are 0 and the rest uniform in Zq, and then output
y + z and prove that this is indeed the right sum. The verifier can then check
that the first four coefficients are 0. We don’t need to multiply y by a challenge
because in our case, it already contains a challenge �γ. In the body of the paper,
we present an efficient way to do this proof which does not require committing
to y and so we just need an extra commitment to �x ∈ M32

q at each level of the
recursion.

1.4 From Set Membership to Ring Signatures

A ring signature scheme allows a signer to sign in a way that hides the public
key that he is using. More specifically, the signer creates a set comprised of his
public key and other public keys for which he may not know the secret key.
He then creates a signature with the property that the verifier can check that
the message was signed by an entity who knows the secret key to one of the
public keys in the list. We now sketch how one can convert a “Schnorr-like”
lattice-based signature scheme into a ring signature by using a set membership
proof.

The basic signature scheme underlying the ring signature follows the usual
“Fiat-Shamir with Aborts” approach for constructing lattice-based digital sig-
natures (e.g. [9,16,17]). In particular, the secret key is a low-norm vector �s,
while the public key consists of a random matrix A and a vector �t = A�s. The
signature is then a “relaxed” zero-knowledge proof of knowledge (made non-
interactive using the Fiat-Shamir transform) of a vector �s′ and a polynomial c′,
both with small norms, satisfying c′�t = A�s′.

618 V. Lyubashevsky et al.

The ring signature public information consists of the matrix A and vectors
�t1, . . . , �tn. A signer who knows an �si satisfying A�si = �ti will want to give a
zero-knowledge proof knowledge of �s′, c′, and i ∈ [0, n) satisfying c′�ti = A�s′.
An interactive version of this proof is presented in Fig. 1 and it is then made
non-interactive using the Fiat-Shamir transform and inserting the message to be
signed into the random oracle which is used to produce the challenge.

Private information: �v1, . . . , �vm ∈ {0, 1}l as in (4), and �s with a small norm
Public information: A, T = [�t1 | . . . | �tn], where n = lm s.t. T · (�v1 ⊗ . . . ⊗ �vm) = A�s

Prover Verifier

�y ← D
�w := A�y
ω :=, (�v1, . . . , �vm, − �w)

ω �
c ← C

c�
�z := c�s + �y, and rejection sample

Define P =
[
c�t1 | . . . | c�tn

]

ω := ω + (0, . . . , 0, A�z)
(i.e. ω =, (�v1, . . . , �vm, A�z − �w))

π = ZKPoK for (3) and (4) �z, π �
1. check that ‖�z‖ is small
2. verify π

Fig. 1. A lattice-based ring signature using the set membership proof. , is a BDLOP
commitment, while D is a distribution that outputs polynomial vectors with small
coefficients. As in Sect. 1.3, a BDLOP commitment to vi is a commitment to the
polynomial NTT−1 (vi) ∈ Rq.

To see that this proof is complete (assuming that all the norm-checks pass),
notice that A�z − c�ti = A�y = �w. And this is exactly what π proves. The
zero-knowledge property follows from the fact that π is a zero-knowledge proof
and that �z is independent of �s and c due to the employed rejection sampling.
To see that the protocol is a proof of knowledge, note that verifying π implies
that A�z − c�ti = �w. Because the �vi and �w in the commitment are fixed, if we
rewind the prover with a different challenge c′, we will obtain A�z′ − c′�ti = �w.
Eliminating �w by subtracting the two equations results in the statement that
we would like to extract.

1.5 Bimodal Gaussians (almost) for Free

The goal of the rejection sampling in the signing algorithm is to remove the
dependence of the secret key �s from the output �z. If the distribution D in

SMILE: Set Membership from Ideal Lattices 619

Ring Size 23 25 26 210 212 215 221 225

Falafl [4] 30 32 35 39

Esgin et al. [13] 19 31 59 148

Raptor [15] / [24]+[23] 10 81 5161

This Work 16 18 19 22

Fig. 2. Sizes, in KB, of the different lattice-based ring signature schemes with approx-
imately 128 bits of security. The sizes for [4,13,15] are taken from [4, Table 1].

Fig. 1 is a zero-centered discrete Gaussian, then the distribution of �z = c�s + �y
before rejection sampling is performed is a discrete Gaussian centered at c�s.
In order for the rejection probability to not be too large (e.g. < 1 − 1/e), one
needs the standard deviation of the �z after the rejection sampling to be around
12 · ‖c�s‖ [17]. In [8], it was shown that if one can get the distribution of �z
before rejection sampling to follow a bimodal Gaussian distribution with the two
centers being ±c�s, then one only needs the standard deviation of the �z after
rejection sampling to be ‖c�s‖/

√
2 for the same repetition rate. Such a reduction

has a direct consequence on reducing the output length and increasing the SIS-
hardness of the underlying problem.

The way to create a bimodal gaussian with the two centers being ±c�s is
for the prover to choose a y ← D and also a b ← {−1, 1} and then create
�z = b�c�s + �y. It is crucial for security that b remains hidden and so the verifier
is not allowed to know b or use it during verification. This could be an issue in
regular signature schemes because the verifier would need to directly check that

A�z = c�t + �w. (8)

Since A�z = A(bc�s + �y), we would need A�s = −A�s to always hold. In our case,
this does not hold, but it will not pose a problem because the verifier does not
directly verify (8) because, for privacy, the prover cannot send �w in the clear
anyway. Instead, the verifier gets , (�w) and a ZK proof that this commitment
opens to a �w satisfying (8). Since the prover already sends a commitment to
�w along with the ones for �vi (and eventually all the “garbage terms” required
in π), he can just increase the commitment size by one (128-degree) polynomial
and also commit to b. Then the proof π would need to be modified to prove that

[bc�t1 | . . . | bc�tn] · (�v1 ⊗ . . . ⊗ �vm) = �w − A�z.

Notice that because b ∈ {−1, 1} and all the �vi consist of all 0’s and one 1, this
can be rewritten as

[c�t1 | . . . | c�tn] · (b�v1 ⊗ �v2 ⊗ . . . ⊗ �vm) = �w − A�z,

and so the only thing that changes is that instead of committing to �v1, the
prover commits to b�v1. He then just has to show that the coefficients of b�v1 are
in {0, b} rather than {0, 1} – but this proof is exactly the same if we already
have a commitment to b (which we proved to be in {−1, 1}).

620 V. Lyubashevsky et al.

1.6 Application to Confidential Transactions

We now show how to construct a confidential transaction system in the model
of [13]. The setup is the following: at any given moment, the state (which is
managed by the blockchain, and is outside the scope of this work) consists of a
set of accounts act = (pk, cn), each of which contains a public key and a coin.
The state also contains a set of serial numbers which implicitly correspond to
the accounts that were already spent (to prevent double-spending). The secret
account key associated to each account is ask = (sk, ck, amt), which consists of
the secret key corresponding to pk and the commitment key ck, which is the
randomness used to create the BDLOP commitment cn to the amount amt in
the account. As in [13], we will assume that amt takes values between 0 and
264 −1. Since we are working over rings with 32 NTT slots, we will represent the
values in base 4. The basic operation has the sender choosing M input accounts
for which he knows the secret keys associated to pk (1), . . . , pk (M), and then
creating S new output accounts with given public keys for which he does not
need to know the associated secret keys. There are three correctness constraints.
The first is that the spender knows the associated secret keys for the M input
accounts. The second is that the sum of the values of the input coins (i.e. the
sum of the amt) equals to the sum of the values of the output coins. And the
third is that none of the M input accounts were used as inputs in any previous
transaction.

In addition to correctness, there are also secrecy and anonymity require-
ments. The secrecy requirement states that nothing about the amounts amt is
known except that the sum of the input and output coins is equal. The spender’s
anonymity is defined by hiding the spenders account among N other accounts.
In particular, rather than stating which M accounts the spender is using, he will
instead choose M sets of N accounts each, and then choose one account from
each set in a way that hides which of the N accounts has been chosen. How the
spender chooses the N − 1 other accounts is a policy issue that is outside the
scope of this work.

The public information for the system consists of a polynomial matrix B
which forms the “top part” of the BDLOP commitment. The polynomial vectors
�bc (which will be used to commit to amt) and �bs (which will be used to “commit”
to zero, with the commitment being the serial number) form the “bottom part”
of the commitments. In particular, sk is a low-norm vector �s where

[
B
�bs

]

�s =
[
pk
sn

]

. (9)

And ck is another low-norm vector �r such that
[
B
�bc

]

�r +
[

0
amt

]

= cn. (10)

Correctness. Let’s ignore anonymity for a moment, and just briefly discuss how
the correctness of the protocol could be handled. If the spender wants to spend

SMILE: Set Membership from Ideal Lattices 621

accounts act (1), . . . , act (M), then he outputs the values sn (j), �s (j), �r (j), amt (j)

for the input accounts, and the verifier can check that (9) and (10) are satisfied.
Furthermore, the verifier checks that none of the sn (j) are in the set of used
serial numbers, and adds these sn (j) to the set. Note that because the value of
�s (j) is uniquely determined by B and pk (unless SIS is easy), the value of sn is
uniquely tied to pk; and so it is not possible to spend a coin more than once.
The spender then creates valid output tokens with the values of pk that he is
given and creates the output coins with by picking small vectors �r and using
them to create BDLOP commitments to amt as in (10). He then outputs these �r
and amt so that everyone can check that the sum of the input amounts is equal
to the sum of the output amounts.

Anonymity and Secrecy. We now sketch how anonymity and secrecy is achieved
in our confidential transactions protocol. The spender chooses the M accounts
act (j) = (pk (j), cn (j)) that he wants to spend. He puts each of the right hand
sides of (10) (i.e. the coin commitments) from these accounts into M lists T (j),
one coin per list. The rest of the lists are filled with N coins from accounts
among which the spender wants to hide his. He then creates S output accounts
act (j) = (pk (j), cn (j)) using the given public keys. He does not need to hide
these accounts and so he just creates S lists of size 1 for the output coins. He
then wants to create one BDLOP commitment that includes all the coin values
(i.e. the amt) from the input and output tokens. This protocol is described in
Fig. 6. Once the spender has one BDLOP commitment, he can prove that the
sum of the input and output tokens matches, which can be done using techniques
similar to those in [13,18].

The prover also needs to show that he knows �s that satisfy (9) for the input
accounts. He does this by creating M lists U (j) that are derived from T (j). If the

spender’s coin is in position i in the list T (j), then he puts
[
pk

(j)
i

sn (j)

]

into position

i. He then fills the list with the public keys from the accounts corresponding
to the coins in T (j). For the serial numbers, he attaches the same one (i.e. the
one corresponding to his public key) to all the public keys. In particular, if the
spender wants to hide the jth account that he will be using in position i among
N − 1 other accounts act1, . . . , acti−1, acti+1, . . . , actN , then the lists T (j) and
U (j) are

T (j) =
[
cn

(j)
1 , . . . , cn

(j)
N

]

U (j) =
[[

pk
(j)
1

sn (j)

]

, · · · ,

[
pk

(j)
i−1

sn (j)

]

,

[
pk

(j)
i

sn (j)

]

,

[
pk

(j)
i+1

sn (j)

]

, . . . ,

[
pk

(j)
N

sn (j)

]]

For the lists U (j), the spender simply wants to prove that he knows the
secret keys �s (j) for the elements in the same position as those in T (j). Since
the positions are already committed to, the proof of knowledge of the �s (j) does
not require any extra BDLOP commitments and the proof of knowledge of the
�s (j) can be amortized into the output vector �z in Fig. 6. The verifier will need to
check that the serial numbers sn (j) have never been used (i.e. don’t appear in the

622 V. Lyubashevsky et al.

ring size N
(M, S) 25 210 215 220 225

(1, 2) This Work 22 KB 24 KB 25 KB 27 KB 28 KB
(1, 2) Esgin et al. [13] 100 KB 160 KB 250 KB 375 KB 520 KB

(2, 2) This Work 24 KB 27 KB 30 KB 33 KB 36 KB
(2, 2) Esgin et al. [13] 110 KB 190 KB 300 KB 440 KB 660 KB

Fig. 3. Transaction proof sizes depending on ring size (anonymity set size) N , number
M of input accounts, and number S of output accounts. The sizes for [13] are taken
from [13, Figure 1].

M 25 50 75 100

size (This Work N = 1024) 100 KB 180 KB 262 KB 345 KB

size (Esgin et al. [13] N = 100) 370 KB 610 KB 900 KB 1170 KB

Fig. 4. Transaction proof sizes with M input accounts and S = 2 output accounts.
The anonymity set N is 100 in [13] and 322 = 1024 in our work. The sizes for [13] are
taken from [13, Figure 2].

“used” pile) and that the lists T (j),m (j) are valid (i.e. the positions pk (j)
i in list

T (j) and cn
(j)
i in list U (j) correspond to some account act =

(
pk

(j)
i , cn

(j)
i

)
). The

verifier also has to verify the proof from Fig. 6 and the addition proof confirming
that the amounts in the input and output accounts match.

The protocol in Fig. 6, which is at the center of the confidential transaction
protocol, creates a new BDLOP commitment and proves that it is committing
to the same values as the M input and S output accounts. It additionally proves
that the spender knows the secret keys of the M input accounts. This involves
using the protocol for the k-dimensional version of the set membership problem
as well as an amortization technique which will allow us to only send one “masked
value” for all the randomness used in the M+S accounts.

Aggregating BDLOP Commitments. Before describing the protocol in Fig. 6,
we ignore the part where each of the M input accounts are hidden among N
others, and give a simpler protocol in Fig. 5 that takes k BDLOP commitments
with distinct randomnesses, and creates one BDLOP commitment to the same
messages. The improvement in this protocol over the trivial one is in the fact
that only one output �z is enough to prove knowledge that all k commitments
are valid. The norm of this vector �z is larger by a factor of k (or

√
k in the

asymptote), so its representation grows only logarithmically in k.

SMILE: Set Membership from Ideal Lattices 623

Private information: For 1 ≤ i ≤ k, polynomials mi, low-norm vectors si

Public information: Uniformly random B, b,A,aw, ai,
ti
ui

=
B

b
si +

0
mi

Prover Verifier

(y,r) ← Dy × Dr

w := By; w̃ := b · y
⎡

⎢
⎢
⎢
⎢
⎣

A
a1

. . .
ak

aw

⎤

⎥
⎥
⎥
⎥
⎦
r +

⎡

⎢
⎢
⎢
⎢
⎣

0
m1

. . .
mk

w̃

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

f
g1

. . .
gk

g̃w

⎤

⎥
⎥
⎥
⎥
⎦
= ω w, ω

c1, . . . , ck ← C
c1, . . . ,ck

z := y + cisi, and rejection sample

a∗ :=
k

i=1

ciai − aw

g∗ :=
k

i=1

cigi − gw + b · z

π = ZKPoK that f
g∗ under public key

A
a∗ is a commitment to

k

i=1

ciui

z, π

1. check that z is small

2. check that
k

i=1

citi = Bz − w

3. Compute a∗,g∗ and verify π

Fig. 5. A protocol which takes commitments

[
�ti

ui

]
=

[
B
�b

]
�si +

[
�0

mi

]
to mi under dis-

tinct randomnesses �si, and outputs one BDLOP commitment ω to all the mi (and some
auxiliary garage term(s)) under one common randomness �r. Along with outputting the

commitment, the protocol also proves that

[
�ti

ui

]
are valid commitments and that the

new commitment is to the same mi.

The protocol in Fig. 5 takes as input k BDLOP commitments under ran-
domness �si and produces one BDLOP commitment ω under randomness �r. The
commitment includes all the mi and one additional “garbage polynomial” w̃.
When the prover computes and outputs �z, he proves that all the k commitments
under �si are valid. The rest of the steps are needed to show that the commitment
under �r is to the same mi. We discuss this in more detail below.

624 V. Lyubashevsky et al.

The proof that the k commitments are valid follows from the ideas in [2]
where one does rewinding by keeping most of the challenge fixed. As long as the
new challenge still has κ bits of entropy conditioned on the prior challenge, the
soundness error will still be ≈ 2−κ. Without loss of generality, suppose that we
would like to prove that the new commitment is a commitment to m1 (in the
row that contains g1). Let (�w, ω, c1, c2 . . . , ck, �z, π) be the transcript of one run
and (�w, ω, c′

1, c2 . . . , ck, �z′, π′) be the view of the second run when we rewind
while keeping all the challenges, except for c1 fixed.

Rewinding on the second verification equation, we obtain (c1−c′
1)�t1 = A(�z−

�z′). By (2), this implies that the message mi committed to by
[
�t1
u1

]

satisfies

(c1 − c′
1)m1 = (c − c′)u1 − �b · (�z − �z′). (11)

Notice that repeating this for all i, we can prove that all the commitments
[
�ti

ui

]

are valid. The intuition for proving that ω is a commitment to the same messages
is to prove that the messages in the commitment of ω (call them m̄i and w̄)
satisfy the linear equation

∑

i

cim̄i =
∑

i

ciui + w̄ − �b · �z. (12)

Rewinding in the same way as above, we would obtain

(c1 − c′
1)m̄1 = (c1 − c′

1)u1 − �b · (�z − �z′).

Substituting �b · (�z − �z′) from (11), we get (c1 −c′
1)m̄1 = (c1 −c′

1)m1. And since
c1 − c′

1 is invertible, we have m1 = m̄1 as desired.
We now observe that we exactly prove (12). The proof π proves that ω is a

valid commitment and therefore there is a unique �v (and a short polynomial d s.t.
d�v has small norm) satisfying gi−�ai·�v = m̄i and gw−�aw ·�v = w̄. Because we also
prove that

∑
ciui is a valid commitment, it implies that 〈�a∗, �v〉 +

∑
civi = g∗.

If we expand out the definitions of �a∗ and g∗, and then plug it in, along with
the expressions for (ci − c′

i)gi and (ci − c′
i)gw, into the previous equation, we

will exactly end up with (12).
We now sketch the zero-knowledge proof. By assumption, π can be simu-

lated and �z is independent of �si and ci by rejection sampling. The BDLOP
commitment ω is indistinguishable from uniform by the LWE assumption, and
�w is unique once �z and ci are chosen. Something worth noting is that while
�w = B�y can be sent in the clear, the value w̃ = �b · �y needs to be sent as part
of a commitment because revealing it in the clear would end up revealing some
function of the mi.

SMILE: Set Membership from Ideal Lattices 625

Fig. 6. Given T (j) ·(�v (j)
1 ⊗. . .⊗�v

(j)
m) =

[
B
�b

]
�s (j)+

[
�0

m (j)

]
, the prover creates a BDLOP

commitment to all the k m (j) and proves its correctness. The new commitment , uses
public matrices (e.g. A, etc. as in Fig. 5) which we do not explicitly state in this sketch.
The terms comprising g∗ are parts of ω, and are described in detail in the protocol in
Fig. 5 (except with subscripts instead of superscripts).

Aggregation and Set Membership. Converting the protocol from Fig. 5 into the
one in Fig. 6 uses very similar intuition as when converting a signature scheme
into a ring signature scheme in Fig. 1.

We will now proceed to briefly explain the transition from the protocol in
Fig. 5 to the one in Fig. 6. First, the second verifier check in Fig. 5 cannot be done
in the clear – that is the verifier cannot know �w. If he knows �w, then he can
compute the weighted sum of the committed values

∑
ci

�ti, which would leak
information about which commitments were chosen. The prover therefore must
commit to �w. So the commitment ω in Fig. 6 creates commitments to m (j), w̃
exactly like to mi, w̃ in Fig. 5, and also commits to �w and to V (j), which are
needed for the set membership proof.

626 V. Lyubashevsky et al.

The prover then sets up the �a∗ and g∗ exactly as in Fig. 5. Therefore g∗ is

a commitment to the bottom part of
k∑

j=1

c (j)T (j) · (�v (j)
1 ⊗ · · · ⊗ �v

(j)
m). From the

second verification equation in Fig. 5, we know that the top part of the preceding
is B�z − �w, and we can create a commitment to this value by adding B�z to the
commitment of − �w that we already have. We therefore have a commitment to

k∑

j=1

c (j)T (j) · (�v (j)
1 ⊗ · · · ⊗ �v

(j)
m) and creating the proof π is therefore equivalent

to creating a proof for (5) and (6). Showing that this protocol is sound is done
the same way as the one in Fig. 5 because �z and π in Fig. 6 satisfy the three
verification parts in Fig. 5.

2 Preliminaries

2.1 Notation

Let N ∈ N be a security parameter and q be an odd prime. We write x ← S
when x ∈ S is sampled uniformly at random from the finite set S and similarly
x ← D when x is sampled according to the distribution D. For a < b and
n ∈ N, we define [a, b] := {a, a + 1 . . . , b} and [n] := [1, n]. Given two functions
f, g : N → [0, 1], we write f(μ) ≈ g(μ) if |f(μ) − g(μ)| < μ−ω(1). A function f is
negligible if f ≈ 0. We write negl(n) to denote an unspecified negligible function
in n.

For a power of two d, denote R and Rq respectively to be the rings
Z[X]/(Xd + 1) and Zq[X]/(Xd + 1). Bold lower-case letters denote elements
in R or Rq and bold lower-case letters with arrows represent column vectors
with coefficients in R or Rq. We also write bold upper-case letters for matrices
in R or Rq. By default, for a polynomial denoted as a bold letter, we write its
i-th coefficient as its corresponding regular font letter subscript i, e.g. f0 ∈ Zq

is a constant coefficient of f ∈ Rq.

2.2 Cyclotomic Rings

Suppose q splits into l prime ideals of degree d/l in R. This means Xd + 1 ≡
ϕ1 . . . ϕl (mod q) with irreducible polynomials ϕj of degree d/l modulo q. We
assume that Zq contains a primitive 2l-th root of unity ζ ∈ Zq but no elements
whose order is a higher power of two, i.e. q − 1 ≡ 2l (mod 4l). Therefore, we
have

Xd + 1 ≡
∏

j∈Zl

(
X

d
l − ζ2j+1

)
(mod q). (13)

Let Mq := {p ∈ Zq[X] : deg(p) < d/l} be the Zq-module of polynomials of
degree less than d/l. We define the Number Theoretic Transform (NTT) of a
polynomial p ∈ Rq as follows:

NTT (p) :=

⎡

⎢
⎣

p̂0

...
p̂l−1

⎤

⎥
⎦ ∈ Ml

q where NTT (p)j = p̂j = p mod (X
d
l − ζ2j+1).

SMILE: Set Membership from Ideal Lattices 627

Furthermore, we expand the definition of NTT to vectors of polynomials �p ∈ Rk
q ,

where the NTT operation is applied to each coefficient of �p, resulting in a vector
in Mkl

q .
We also define the inverse NTT operation. Namely, for a vector �v ∈ Ml

q,
NTT−1 (�v) is the polynomial p ∈ Rq such that NTT (p) = �v.

Let �v = (v0, . . . , vl−1), �w = (w0, . . . , wl−1) ∈ Ml
q. Then, we define the

component-wise product �v ◦ �w to be the vector �u = (u0, . . . , ul−1) ∈ Ml
q such

that
uj = vjwj mod (X

d
l − ζ2j+1)

for j ∈ Zl. By definition, we have the following property of the inverse NTT
operation:

NTT−1 (�v) · NTT−1 (�w) = NTT−1 (�v ◦ �w) .

Similarly, we define the inner product :

〈�v, �w〉 =
l−1∑

j=0

(
vjwj mod (X

d
l − ζ2j+1)

)
.

We remark that this operation is not an inner product in the strictly mathemat-
ical sense (e.g. it is not linear). However, it has a few properties which are char-
acteristic for an inner product. For instance, given arbitrary vectors �x, �y, �z ∈ Ml

q

and scalar c ∈ Zq we have: 〈�x, �y〉 = 〈�y, �x〉 (symmetry), 〈�x+ �y, �z〉 = 〈�x, �z〉+ 〈�y, �z〉
(distributive law) and 〈c�x,y〉 = c〈�x, �z〉. We also highlight that the definition of
〈·, ·〉 depends on the factors of Xd + 1 modulo q.

We generalise the newly introduced operations to work for vectors �v =
(�v1, . . . , �vk) and �w = (�w1, . . . , �wk) ∈ Mkl

q of length being a multiple of l in
the usual way. In particular 〈�v, �w〉 =

∑k
i=1〈�vi, �wi〉.

Eventually, for a matrix A ∈ Mn×kl
q with rows �a1, . . . ,�an ∈ Mkl

q and a vector
�v ∈ Mkl

q , we define the matrix-vector operation:

A�v =

⎛

⎜
⎝

〈�a1, �v〉
...

〈�an, �v〉

⎞

⎟
⎠ ∈ Mn

q .

In proving linear relations, we will need the following simple lemma.

Lemma 2.1. Let n, k ∈ N. Then, for any A ∈ Mnl×kl
q , �v ∈ Mnl

q and �s ∈ Z
kl
q

we have
〈A�s,�v〉 = 〈�s,AT�v〉.

628 V. Lyubashevsky et al.

Proof. We prove the statement for k = n = 1. The proof can then be easily
using the definition of an inner product. Let �ai be the (i + 1)-th row of A and
ai,j ∈ Mq be its (j + 1)-th coefficient. Similarly, we define si and vi to be the
(i + 1)-th coefficient of �s and �v respectively. Then, by definition we have:

〈A�s,�v〉 =
l−1∑

i=0

〈�ai, �s〉vi mod (X
d
l − ζ2i+1)

=
l−1∑

i=0

⎛

⎝
l−1∑

j=0

ai,jsj mod (X
d
l − ζ2j+1)

⎞

⎠ vi mod (X
d
l − ζ2i+1)

=
l−1∑

i=0

l−1∑

j=0

ai,jsjvi mod (X
d
l − ζ2i+1)

=
l−1∑

j=0

sj

(
l−1∑

i=0

ai,jvi mod (X
d
l − ζ2i+1)

)

= 〈�s,AT�v〉.

(14)

Here, the crucial step was the observation that for �s ∈ Z
l
q and any i, j ∈ Zl we

have:
ai,jsj mod (X

d
l − ζ2j+1) = ai,jsj ,

i.e. there is no reduction modulo the polynomial when multiplying by a scalar. ��
Last but not least, we recall the following lemma from [10].

Lemma 2.2. Let p = p0 + p1X + . . . + pd−1X
d−1 ∈ Rq. Then,

1
l

l∑

i=0

NTT (p)i =
d/l−1∑

i=0

piX
i.

For our constructions in this work, the practical hardness of either of the
problems against known attacks is not affected by the parameter m. Therefore,
we sometimes simply write M-SISκ,B or M-LWEλ,χ. The parameters κ and λ
denote the module ranks for M-SIS and M-LWE, respectively. Also, when χ is a
uniform distribution for the set [−μ, μ], we simply denote M-LWEλ,μ.

2.3 Probability Distributions

In this paper we sample the coefficients of the random polynomials in the com-
mitment scheme using the distribution χ on {−1, 0, 1} where ±1 both have
probability 5/16 and 0 has probability 6/16 identically as in [1,6,10].

SMILE: Set Membership from Ideal Lattices 629

Discrete Gaussian distribution. We now define the discrete Gaussian distribution
used for the rejection sampling.

Definition 2.3. The discrete Gaussian distribution on R� centered around �v ∈
R� with standard deviation s > 0 is given by

D�d
v ,s(�z) =

e−‖�z−�v‖2/2s2

∑
�z ′∈R� e−‖�z ′‖2/2s2

.

When it is centered around �0 ∈ R� we write D�d
s = D�d

�0,s

2.4 BDLOP Commitment Scheme

We recall the BDLOP commitment scheme from [3]. Suppose that we want to
commit to a message vector �m = (m1, . . . ,mn) ∈ Rn

q for n ≥ 1 and that module
ranks of κ and λ are required for M-SIS and M-LWE security, respectively. Then,
in the key generation, a matrix B0 ← Rκ×(κ+λ+n)

q and vectors �b1, . . . ,�bn ←
Rκ+λ+n

q are generated and output as public parameters. Note that one could
choose to generate B0,�b1, . . . ,�bn in a more structured way as in [3] since it
saves some computation. However, for readability, we write the commitment
matrices in the “Knapsack” form as above. In our case, the hiding property of
the commitment scheme is established via the duality between the Knapsack and
M-LWE problems. We refer to [13, Appendix C] for a more detailed discussion.

To commit to the message �m, we first sample �r ← χd·(κ+λ+n). Now, there
are two parts of the commitment scheme: the binding part and the message
encoding part. In particular, we compute

�t0 = B0�r mod q,

ti = 〈�bi, �r〉 + mi mod q,

for i ∈ [n], where �t0 forms the binding part and each ti encodes a message
polynomial mi. In this paper, when we write that we compute a BDLOP com-
mitment to a vector �m = (�m1, . . . , �mn) ∈ Mnl

q , we mean that we commit to the
vector of polynomials �m = (NTT−1 (�m1) , . . . ,NTT−1 (�mn)) ∈ Rn

q as above.
Next, we define the notion of a weak opening of the commitment [1].

Definition 2.4. A weak opening for the commitment �t = �t0 ‖ t1 ‖ · · · ‖ tn

consists of a polynomial c̄ ∈ Rq, a randomness vector �r∗ over Rq and messages
m∗

1, . . . ,m
∗
n ∈ Rq such that

‖c̄‖1 ≤ 2d and c̄ is invertible over Rq

‖c̄�r∗‖2 ≤ 2β,

B0�r
∗ = �t0,

〈�bi, �r
∗〉 + m∗

i = ti for i ∈ [n].

Attema et al. [1] show that the commitment scheme is still binding with respect
to weak openings if M-SISκ,8dβ is hard.

630 V. Lyubashevsky et al.

3 Efficient Lattice-Based Set Membership Proof

In this section we construct an efficient logarithmic-size ring signature protocol
using recent results [1,10,18,19] as the building blocks. Security analysis of the
interactive protocol as well as ring signature instantiation are described in the
full version of the paper [20].

3.1 Overview

In order to showcase our main techniques, let us consider the following set mem-
bership problem. Namely, suppose we would like to prove knowledge of a secret
element �wi ∈ Mkl

q , for some k ∈ N, such that �w ∈ S, where S is a public set
S = {�p1, . . . , �pn} ⊆ Mkl

q of size n = lm which is a power of l.
We now use the observation from [5,12,14] that �w ∈ S if and only if there

exists a binary vector �v ∈ {0, 1}n with exactly one 1 such that P�v = �w where
P ∈ Mkl×n

q is the matrix with i-th column being �pi. One could then directly
prove knowledge of �w and �v which satisfy conditions above using e.g. the protocol
from [10,18]. However, the proof size grows significantly when n gets bigger. In
order to overcome this limitation, [5,14] observe that vector �v can be uniquely
decomposed into smaller vectors �v1, . . . , �vm ∈ {0, 1}l which have exactly one 1
each and

�v = �v1 ⊗ �v2 ⊗ · · · ⊗ �vm. (15)

In the end, we want to commit to �w and smaller vectors �v1, . . . , �vm and prove

P (�v1 ⊗ · · · ⊗ �vm) = �w (16)

along with
�vi ◦ (�vi −�1) = �0 and 〈�1, �vi〉 = 1 for i ∈ [m] (17)

where for an integer a ∈ Zq, �a := (a, . . . , a) ∈ Z
l
q. We highlight that Eq. 16 is

over the Zq-module Mq (see Sect. 2.2).
We now present a new recursive approach to prove (16) and (17) efficiently.

For readability, we first introduce the following notation:

�uj := �vj ⊗ · · · ⊗ �vm for j ∈ [m],
P1 := P and �x1 = (�x1,1, . . . , �x1,k) := �w.

We start by sending the BDLOP commitments (as described in Sects. 1.1
and 2.4) to �v1, . . . , �vm, �w1, . . . , �wk to the verifier:

�t0 = B0�r mod q,

ti = 〈�bi, �r〉 + NTT−1 (�vi) mod q for i ∈ [m]

tm+i = 〈�bm+i, �r〉 + NTT−1 (�xi) mod q for i ∈ [k].

Then, a verifier V sends a challenge �γ1 = (�γ1,1, . . . , �γ1,k) ← Mkl
q . Clearly, if (16)

holds then we have
〈P1(�v1 ⊗ �u2) − �x1, �γ1〉 = 0.

SMILE: Set Membership from Ideal Lattices 631

Otherwise, the probability that the inner product above is equal to zero is exactly
q−d/l which is negligible.

Now, by Lemma 2.1 and using the fact that each �vi ∈ Z
l
q, we have:

〈P1(�v1 ⊗ �u2) − �x1, �γ1〉 = 〈�v1 ⊗ �u2, P
T
1 �γ1〉 − 〈�x1, �γ1〉

=
l∑

i=1

v1,i〈�u2, P
T
1,i�γ1〉 − 〈�x1, �γ1〉

=
l∑

i=1

v1,iγ
T
1 P1,i�u2 − 〈�x1, �γ1〉

= �vT
1 P2�u2 − 〈�x1, �γ1〉 = 〈�v1, P2�u2〉 − 〈�x1, �γ1〉

(18)

where we denote
P1 =

(
P1,1 P1,2 · · · P1,l

) ∈ Ml×lm

q

and the matrix P2 is defined as

P2 :=

⎛

⎜
⎝

γT
1 P1,1

...
γT
1 P1,l

⎞

⎟
⎠ ∈ Ml×lm−1

q . (19)

Let us define the following vectors:

�x2 := P2�u2 ∈ Ml
q and �y1 := �v1 ◦ �x2 −

k∑

i=1

�x1,i ◦ �γ1,i. (20)

First, we prove that �x2 is constructed correctly. Note that by definition of �u2 we
have

�x2 = P2(�v2 ⊗ · · · ⊗ �vm)

which is of the form (16) but with one less tensor. Hence, in order to prove this
equation, we recursively follow the argument above. Then, assuming one can
prove (20) for �x2, by Lemma 2.2 we know that 〈P1(�v1 ⊗ · · · ⊗ �vm) − �x1, �γ1〉 = 0
if and only if y1 := NTT−1 (�y1) has the first d/l coefficients equal to zero. We
present how to prove this property for y1 below.

Let us fix j = 2. Suppose that j < m. Then, in order to show that �x2 from
(20) is well-formed, we apply the exact strategy as before. Namely, we send a
commitment to �xj :

tm+k+j−1 = 〈�bm+k+j−1, �r〉 + NTT−1 (�xj) .

Then, given a challenge �γj ← Ml
q, we deduce as in Eq. 18 that

〈Pj(�vj ⊗ �uj+1) − �xj , �γ〉 = 〈�vj , Pj+1�uj+1〉 − 〈�xj , �γj〉
where

Pj =
(
Pj,1 Pj,2 · · · Pj,l

) ∈ Ml×lm−j+1

q

632 V. Lyubashevsky et al.

and the matrix Pj+1 is defined as

Pj+1 :=

⎛

⎜
⎝

γT
j Pj,1

...
γT

j Pj,l

⎞

⎟
⎠ ∈ Ml×lm−j

q . (21)

Next, we define vectors �xj+1, �yj ∈ Ml
q:

�xj+1 := Pj+1�uj+1 and �yj := �vj ◦ �xj+1 − �xj ◦ �γj . (22)

Now, in order to prove well-formedness of �xj+1 we simply run the argument
from this paragraph for j := j + 1. Assuming that �xj+1 is constructed correctly,
we also need to prove that the coefficients of �yj sum up to 0, i.e. the first d/l
coefficients of yj = NTT−1 (�yj) are all zeroes. Below we describe how it can be
done for all the yj ’s simultaneously.

Eventually, for j = m we want to prove that �xm = Pm�um = Pm�vm which is
a simple linear proof from [10]. We also want to show 〈�1, �vi〉 = 1 for i ∈ [m]. All
these relations can be combined into one linear equation:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 Pm

B 0 · · · 0 0
0 B · · · 0 0
...

...
...

...
...

0 0 · · · B 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝

�v1
...

�vm

⎞

⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

�xm

�e1
...

�e1

⎞

⎟
⎟
⎟
⎠

(23)

where

B =

⎛

⎜
⎜
⎜
⎝

1 · · · 1
0 · · · 0
...

...
...

0 · · · 0

⎞

⎟
⎟
⎟
⎠

∈ Z
l×l
q and �e1 =

⎛

⎜
⎜
⎜
⎝

1
0
...
0

⎞

⎟
⎟
⎟
⎠

∈ Z
l
q.

Let us denote Pm ∈ M(m+1)l×ml
q to be the matrix on the left-hand side of Eq. 23.

We proceed to proving (23). First, we get a challenge vector

�γm = (�γm,1, . . . , �γm,m+1) ← M(m+1)l
q

from V and deduce that:

〈

P̃m

⎛

⎜
⎝

�v1
...

�vm

⎞

⎟
⎠−

⎛

⎜
⎜
⎜
⎝

�xm

�e1
...

�e1

⎞

⎟
⎟
⎟
⎠

, �γm

〉

=

〈
⎛

⎜
⎝

�v1
...

�vm

⎞

⎟
⎠ , P̃T

m�γm

〉

− 〈�xm, �γm,1〉 −
m∑

i=1

〈�e1, �γm,i+1〉.

Let �xm+1 = (�xm+1,1, . . . , �xm+1,m) := P̃T
m�γm ∈ Mml

q and

�ym :=

(
m∑

i=1

�vi ◦ �xm+1,i

)

− �xm ◦ �γm,1 − �e1 ◦
m∑

i=1

�γm,i. (24)

SMILE: Set Membership from Ideal Lattices 633

Note that in this case �xm+1 is public (as opposed to �x1, . . . , �xm). Then, as before
we get that ym = ym,0 + ym,1X + . . . + ym,d−1X

d−1 = NTT−1 (�ym) satisfies:

ym,0 + . . . + ym,d/l−1X
d/l−1 =

1
l

〈

P̃m

⎛

⎜
⎝

�v1
...

�vm

⎞

⎟
⎠−

⎛

⎜
⎜
⎜
⎝

�xm

�e1
...

�e1

⎞

⎟
⎟
⎟
⎠

, �γm

〉

.

Therefore, we need to argue that ym has the first d/l polynomial coefficients
equal to 0.

Finally, what have left to prove is that (i) polynomials y1, . . . ,ym have the
first d/l coefficients equal to zero and (ii) vectors �vi are binary. We first focus
on (i) and adapt the strategy shown in [10]. At the beginning, we will commit
to a uniformly random polynomial g which has the first d/l coefficients equal to
zero:

tk+2m = 〈�bk+2m, �r〉 + g.

Then, we will reveal the polynomial

h = g + y1 + . . . + ym. (25)

Hence, the verifier manually checks the the first d/l coefficients of h are indeed
zeroes. On the other hand, to prove (25) we follow the approach for proving
multiplicative relations from [1].

Let �y ← D(κ+λ+k+2m) be the masking vector. That is, given a challenge
polynomial c ← C from a challenge distribution C (defined in Sect. 3.2), the
prover will output a masked opening �z of the randomness �r defined as: �z =
�y + c�r. Then, define polynomials fη as:

fη =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈�bη, �y〉 − cvη if η ∈ [m]
〈�bm+i, �y〉 − cx1,i for η = m + i; i ∈ [k]
〈�bm+k+j , �y〉 − cxj+1 for η = m + k + j; j ∈ [m − 1]
〈�bk+2m, �y〉 − cg if η = k + 2m

where xj = NTT−1 (�xj) and similarly for vi and γj . Note that fη = 〈�bη, �z〉−c�tη

for all η and thus can be calculated by the verifier.
First, let us focus on y1. By definition we have (see (20)):

F1 := f1fm+k+1 + c
k∑

i=1

γ1,ifm+i = ω1 + ψ1c + y1c
2

where polynomials ω1,ψ1 are defined as follows

ω1 := 〈�b1, �y〉〈�bm+k+1, �y〉

ψ1 :=
k∑

i=1

γ1,i〈�bm+i, �y〉 − 〈�b1, �y〉x2 − 〈�bm+k+1, �y〉v1

634 V. Lyubashevsky et al.

Now, by Definition of yj (see (22)), for fixed j ∈ [2,m − 1] we have:

Fj := fjfm+k+j + cγjfm+k+j−1 = ωj + ψjc + yjc
2

where
ωj := 〈�bj , �y〉〈�bm+k+j , �y〉
ψj := γj〈�bm+k+j−1, �y〉 − 〈�bj , �y〉xj+1 − 〈�bm+k+j , �y〉vj .

(26)

In case of j = m, we transform Eq. 24 into:

Fm := c

(

−
m∑

i=1

xm+1,ifi + γm,1fk+2m−1 − e1

m∑

i=1

γm,i

)

= ψmc + ymc2

where

ψm := −
m∑

i=1

xm+1,i〈�bi., �y〉 + γm,1〈�bk+2m−1, �y〉 − e1

m∑

i=1

γm,i. (27)

Clearly, all Fj can be computed by the verifier. Therefore, if we denote

ωsm :=
m−1∑

i=1

ωi and ψsm :=
m∑

i=1

ψi − 〈�bk+2m, �y〉 (28)

then we obtain:
m∑

j=1

Fj − cfk+2m − c2h = ωsm + ψsmc + (y1 + . . . + ym + g − h)c2.

Hence, we want to prove that the coefficient corresponding to the quadratic term
of
∑m

j=1 Fj − cfk+2m − c2h vanishes.
Recall that we still need to prove (ii), i.e. all �vi’s are binary. We first get

challenges α0, . . . ,αm ← Rq from the verifier. Then, we observe that

m∑

i=1

αi(f2
i + cfi) = ωbin + ψbinc +

(
m∑

i=1

αivi(vi − 1)

)

c2

where

ωbin :=
m∑

i=1

αi〈�bi, �y〉2 and ψbin :=
m∑

i=1

αi〈�bi, �y〉(1 − 2vi). (29)

Therefore, we combine (i) and (ii) by proving that the quadratic term in

α0

⎛

⎝
m∑

j=1

Fj − cfk+2m − c2h

⎞

⎠+
m∑

i=1

αi(f2
i + cfi) (30)

SMILE: Set Membership from Ideal Lattices 635

is equal to zero. In order to do so, we commit to the garbage polynomial

tk+2m+1 = 〈�bk+2m+1, �r〉 + ψbin + α0ψsm

and additionally send ω := 〈�bk+2m+1, �y〉 + ωbin + α0ωsm. Then, the verifier
computes fk+2m+1 = 〈�bk+2m+1, �z〉 − ctk+2m+1 and checks whether:

α0

⎛

⎝
m∑

j=1

Fj − cfk+2m − c2h

⎞

⎠+
m∑

i=1

αi(f2
i + cfi) + fk+2m+1

?= ω.

3.2 Main Protocol

We present our main lattice-based one-out-of-many proof using the tech-
niques from Sect. 3.1 and show how it can be turned into an efficient, logarithmic-
sized ring signature.

Similarly as in the previous works [12,13], the secret key of a user is a vector
�s ← [−μ, μ]�d of short polynomials over Rq and the corresponding public key
�pk ∈ Rk

q is defined as �pk := A�s for a public matrix A ∈ Rk×�
q . Suppose

there are n = lm users in the ring5 and for ι ∈ [n], let �pkι be the public key
corresponding to the ι-th user. Then, during the signing process, user ι wants to
prove knowledge of a short vector �s such that

A�s ∈ { �pk1, . . . ,
�pkn}

without revealing any information about its index ι.
We present the main protocol in Fig. 7 with verification equations in Fig. 9.

User ι ∈ [n], which acts as a prover P, starts by decomposing the index vector
�v = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}n, where the ι-th coefficient is equal to 1, into m
smaller vectors of length l as in (15). Note that each �vi ∈ Z

l
q satisfies (17). At the

same time, P samples a masking �y′ ← D�d
s′ and computes �w′ = (w′

1, . . . ,w
′
k) =

A�y′ ∈ Rk
q . Furthermore, for the linear proof P generates a random g ∈ Rq such

that g0 = . . . = gd/l−1 = 0. Now, the prover sends the BDLOP commitments
to �vi as well as to �w′ and g. Namely, it generates a randomness vector �r ←
χ(λ+κ+2m+1)d and sends:

�t0 = B0�r mod q,

ti = 〈�bi, �r〉 + NTT−1 (�vi) for i ∈ [m]

tm+i = 〈�bm+i, �r〉 + w′
i for i ∈ [k].

tk+2m = 〈�bk+2m, �r〉 + g

5 If there are less than lm users then we simply add the zero vectors as public keys
so that the ring has exactly lm elements. Then the proof that the prover knows a
short preimage to one of the columns implies that they must know a preimage to one
of the actual public keys because knowing a preimage for one of the zero columns
would constitute a SIS solution.

636 V. Lyubashevsky et al.

Prover P Verifier V

Inputs:

B0 ∈ Rκ×(λ+κ+k+2m+1)
q ,�b1, . . . ,�bk+2m+1 ∈ Rλ+κ+k+2m+1

q B0,�b1, . . . ,�bk+2m+1

�v = �v1 ⊗ · · · ⊗ �vm where ∀j 	= ι, vj = 0 and vι = 1 A, { �pk1, . . . ,
�pkn}

A ∈ Rk×�
q , �s ∈ [−μ, μ]�d such that A�s = �pkι

�r ← χ(λ+κ+k+2m+1)d

g ← {p ∈ Rq : p0 = . . . = pd/l−1 = 0}
�y ← D(λ+κ+k+2m+1)d

s , �y′ ← D�
s′

�w = B0�y, �w′ = A�y′

�w′
i = NTT

(
w′

i

)
for i ∈ [k]

ti = 〈�bi, �r〉 + NTT−1 (�vi) for i ∈ [m]

tm+i = 〈�bm+i, �r〉 + w′
i for i ∈ [k]

�t = (�t0, t1, . . . , tm+k)

tk+2m = 〈�bk+2m, �r〉 + g

�t, tk+2m, �w�

c′
� c′ ← C

�z′ = �y′ + c′�s

If Rej0(�z
′, c′�s, s′) = 1, abort �z′

�

Define P1 ∈ Mkl×n
q as in (31)

�x1 = NTT
(

�w′ − A�z′)

For j = 1, 2, . . . , m − 1 :

(Pj+1, �xj+1, �yj) ← SMj(Pj , (�vj , . . . , �vm), �xj)

�γm� �γm ← M(m+1)l
q

Define P̃m as the matrix in Equation 23

(�xm+1,1, . . . , �xm+1,m) = P̃ T
m�γm

�ym :=

(
m∑

i=1

�vi ◦ �xm+1,i

)
− �xm ◦ �γm,1 − �e1 ◦

m∑
i=1

�γm,i

yi = NTT−1 (�yi) for i ∈ [m]

h = g + y1 + . . . + ym
h �

α0, . . . , αm� α0, . . . , αm ← Rq

Compute ψsm, ωsm, ψbin, ωbin as in (28) and (29)

tk+2m+1 = 〈�bk+2m+1, �r〉 + α0ψsm + ψbin

ω = 〈�bk+2m+1, �y〉 + α0ωsm + ωbin
tk+2m+1, ω�

c� c ← C

�z = �y + c�r

If Rej1(�z, c�r, s) = 1, abort �z �

Ver(�t0, ti, h, ω, c, c′

, �z, �z′, �γj , �αj)

Fig. 7. Interactive protocol for our ring signature construction. Verifications equations
Ver and the sub-protocol SMj(Pj , (vj , . . . , vm), xj) are defined in Fig. 9 and 8 respec-
tively. We note that Reji, for i = 0, 1, are the rejection sampling algorithms from [17]
and [19] respectively. See [20, Appendix A.3] for more details.

SMILE: Set Membership from Ideal Lattices 637

Fig. 8. The sub-protocol SMj(Pj , (�vj , . . . , �vm), �xj) used in Fig. 7.

Additionally, P computes �w = B0�y for �y sampled from D
(κ+k+2m+1)d
s . Then,

P sends
(�t0, t1, . . . , tm+k, tk+2m, �w)

to the verifier.
The verifier V outputs a challenge polynomial c′ ← C. Next, P computes

�z′ = �y′ + c′�s and applies the rejection sampling algorithm. If it does not abort,
P returns �z′.

Let P ∈ Mkl×n
q be the matrix defined as

P =
(
NTT

(
−c′ · �pk1

)
| · · · | NTT

(
−c′ · �pkn

))
, (31)

i.e. the i-th column of P is equal to NTT
(
−c′ · �pki

)
∈ Mkl

q . Clearly, it can be
computed by the verifier. Also, define

�w = NTT (w′ − A�z′) ∈ Mkl
q .

Then, user ι wants to prove that P (�v1 ⊗ · · · ⊗ �vm) = �w. Obviously, the verifier
can manually construct a commitment to �w by subtracting (tm+1, . . . , tm+k) by
A�z′. One observes that this is the equation of type (16) and it is where we apply

638 V. Lyubashevsky et al.

Ver(�t0, t1, . . . , tk+2m+1, h, ω, c, c′, �z, �z′, �γ1, . . . , �γm, α0, . . . , αm)

01 ‖�z′‖2

?
< β′ = s′√2	d

02 ‖�z‖2

?
< β = s

√
2(λ + κ + k + 2m + 1)d

03 B0�z
?
= �w + c�t0

04 (tm+1, . . . , tm+k) = (tm+1, . . . , tm+k) − A�z′ ∈ Rk
q

05 ∀j ∈ [k + 2m + 1], fj = 〈�bj , �z〉 − ctj

06 ∀i ∈ [m + 1], γm,i := NTT−1 (�γ1,i) ; ∀j ∈ [1, k], γ1,j := NTT−1 (�γ1,j)
07 ∀j ∈ [2, m − 1], γj = NTT−1 (�γj)

08 (xm+1,1, . . . , xm+1,m) := NTT−1
(
P̃ T

m�γm

)
where P̃m is the matrix in (23)

09 e1 := NTT−1 ((1, 0, . . . , 0))
10 F1 := f1fm+k+1 + c

∑k
i=1 γ1,ifm+i

11 ∀j ∈ [2, m − 1], Fj := fjfm+k+j + cγjfm+k+j−1

12 Fm := c
(− ∑m

i=1 xm+1,ifi + γm,1fk+2m−1 − e1

∑m
i=1 γm,i

)

13 α0

(∑m
j=1 Fj − cfk+2m − c2h

)
+

∑m
i=1 αi(f

2
i + cfi) + fk+2m+1

?
= ω

14 For i = 0, . . . , d/l − 1 :

15 hi
?
= 0

Fig. 9. Verification equations for the protocol in Fig. 7.

the strategy described in Sect. 3.1. Namely, for j = 1, 2, 3, . . . ,m − 1, we run
a two-round sub-protocol SMj(Pj , (�vj , . . . , �vm), �xj) defined in Fig. 8 which does
the following. The verifier V starts by sending a challenge vector �γj . Then, P
computes the matrix Pj+1 and vectors �xj+1, �yj ∈ Ml

q as defined in the previous
section. Eventually, it outputs the commitment to �xj+1:

tm+k+j = 〈�bm+k+j , �r〉 + NTT−1 (�xj+1) .

In the end, the sub-protocol returns

(Pj+1, �xj+1, �yj) ← SMj(Pj , (�vj , . . . , �vm), �xj).

After executing the SM sub-protocol m − 1 times, the verifier sends �γm ←
M(m+1)l

q . Then, in order to prove Eq. 23, P first computes �ym as in Eq. 24
and outputs the polynomial h = g + y1 + . . . + ym, where yi = NTT−1 (�yi) for
i ∈ [m].

Next, V sends uniform polynomials α0, . . . ,αm ← Rq. Then, P returns a
commitment

tk+2m+1 = 〈�bk+2m+1, �y〉 + ψ

to the garbage polynomial ψ = ψbin + α0ψsm along with ω := 〈�bk+2m+1, �y〉 +
ωbin + α0ωsm (where their components are defined in (28) and (29)).

Finally, the verifier picks a challenge c ← C and outputs c. Here, the coef-
ficients of a challenge c ← C are independently identically distributed with
P (0) = 1/2 and Pr(1) = Pr(−1) = 1/46. Then, prover P computes �z = �y + c�r
and applies rejection sampling. If it does not abort, P returns �z.
6 We will make use of the properties of C described in [1]. We refer to [20, Appendix

A.1] for more details.

SMILE: Set Membership from Ideal Lattices 639

Acknowledgements. We would like to thank anonymous reviews for useful feed-
back. This work was supported by the SNSF ERC Transfer Grant CRETP2-166734
FELICITY.

References

1. Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice com-
mitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12171, pp. 470–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56880-1 17

2. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

3. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

4. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

5. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 13

6. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 7

7. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-
knowledge proofs of automorphism stability. In: ACM Conference on Computer and
Communications Security, pp. 574–591. ACM (2018)

8. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

9. Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature scheme. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

10. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new
techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64834-3 9

11. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-26948-7_5

640 V. Lyubashevsky et al.

12. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-
Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 4

13. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: efficient,
scalable and post-quantum blockchain confidential transactions protocol. In: CCS,
pp. 567–584. ACM (2019)

14. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

15. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring sig-
nature. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS
2019. LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21568-2 6

16. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

17. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

18. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Practical lattice-based zero-knowledge
proofs for integer relations. In: CCS, pp. 1051–1070. ACM (2020)

19. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge
proofs via one-time commitments. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol.
12710, pp. 215–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75245-3 9

20. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: SMILE: set membership from ideal
lattices with applications to ring signatures and confidential transactions. Cryp-
tology ePrint Archive, Report 2021/564 (2021). https://eprint.iacr.org/2021/564

21. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclo-
tomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 204–224.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 8

22. Noether, S.: Ring signature confidential transactions for Monero. IACR Cryptol.
ePrint Arch. 2015, 1098 (2015)

23. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and
Technology (2017) https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions

24. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

25. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://eprint.iacr.org/2021/564
https://doi.org/10.1007/978-3-319-78381-9_8
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-030-26948-7_6

Deniable Fully Homomorphic Encryption
from Learning with Errors

Shweta Agrawal1(B), Shafi Goldwasser2, and Saleet Mossel3

1 IIT Madras, Chennai, India
shweta.a@cse.iitm.ac.in

2 Simons Institute of TOC at UC Berkeley, Berkeley, CA, USA
3 MIT, Cambridge, MA, USA

saleet@mit.edu

Abstract. We define and construct Deniable Fully Homomorphic
Encryption based on the Learning With Errors (LWE) polynomial hard-
ness assumption. Deniable FHE enables storing encrypted data in the
cloud to be processed securely without decryption, maintaining denia-
bility of the encrypted data, as well the prevention of vote-buying in
electronic voting schemes where encrypted votes can be tallied without
decryption.

Our constructions achieve compactness independently of the level of
deniability- both the size of the public key and the size of the cipher-
texts are bounded by a fixed polynomial, independent of the detection
probability achieved by the scheme. This is in contrast to all previous
constructions of deniable encryption schemes (even without requiring
homomorphisms) which are based on polynomial hardness assumptions,
originating with the seminal work of Canetti, Dwork, Naor and Ostro-
vsky (CRYPTO 1997) in which the ciphertext size grows with the inverse
of the detection probability. Canetti et al. argued that this dependence
“seems inherent”, but our constructions illustrate this is not the case.
We note that the Sahai-Waters (STOC 2014) construction of deniable
encryption from indistinguishability obfuscation achieves compactness
and can be easily modified to achieve deniable FHE as well, but it
requires multiple, stronger sub-exponential hardness assumptions, which
are furthermore not post-quantum secure. In contrast, our constructions
rely only on the LWE polynomial hardness assumption, as currently
required for FHE even without deniability.

The running time of our encryption algorithm depends on the inverse
of the detection probability, thus the scheme falls short of achieving
simultaneously compactness, negligible deniability probability and poly-
nomial encryption time. Yet, we believe that achieving compactness is a
fundamental step on the way to achieving all properties simultaneously
as has been the historical journey for other primitives such as functional
encryption. Our constructions support large message spaces, whereas
previous constructions were bit by bit, and can be run in online-offline
model of encryption, where the bulk of computation is independent of
the message and may be performed in an offline pre-processing phase.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 641–670, 2021.
https://doi.org/10.1007/978-3-030-84245-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_22

642 S. Agrawal et al.

This results in an efficient online phase whose running time is indepen-
dent of the detection probability. At the heart of our constructions is a
new way to use bootstrapping to obliviously generate FHE ciphertexts
so that it supports faking under coercion.

1 Introduction

Deniable (public-key) encryption, which was introduced in a seminal work by
Canetti, Dwork, Naor and Ostrovsky (CRYPTO 1997) [13], is a seemingly para-
doxical primitive that enables a user, who may be coerced to reveal the plaintexts
corresponding to her public ciphertexts, to successfully lie about which messages
she encrypted.

In particular, suppose Alice encrypted a message m with ciphertext ct which
she deposits in the cloud for the purpose of cloud computing, and is later forced
by the government to reveal the randomness she used and the message encrypted.
Deniable encryption allows her to chose a different message m′ at coercion time
and reveal fake random coins, which convincingly explain ct as the encryption
of m′. Clearly, deniability is a property which may be highly desirable when one
uses a public resource such as cloud computing which expose him to possible
coercion. Another use case is preventing vote buying in electronic elections: if
the voter encrypts her vote using deniable encryption, then she can claim she
encrypted an alternate message when forced to reveal her vote, deeming vote
selling ineffective and encouraging honest voting since the voter cannot be forced
to reveal her choice.

In this work, we introduce the notion of deniable fully homomorphic encryp-
tion (FHE) and provide the first constructions based on the Learning With
Errors polynomial hardness assumption. In deniable FHE, the encryptor can
produce ciphertexts that can be opened to fake messages under coercion, and
additionally support fully homomorphic computations and achieve security as in
(by now) classical FHE. We emphasize that for all the applications of deniable
public key encryption mentioned above, the capability of homomorphism is an
important implicit requirement – indeed, several modern e-voting protocols use
FHE [15,27], and present-day encrypted data is often stored on a cloud server
which assists the data owner with computing “blind-folded” via FHE [21].

We proceed to describe important prior work before we proceeding to describe
our results in detail.

1.1 Prior Work on Deniability

Canetti et al. (CDNO) [13] provided elegant constructions of deniable encryption
based on the construct of so called “translucent sets”, which in turn can be
constructed from trapdoor permutations. A major disadvantage of the CDNO
construction was lack of compactness – the ciphertext size grows with the inverse
of the detection probability achieved by the scheme. Furthermore, it encodes
large messages bit by bit, where the ciphertext for each bit grows inversely with

Deniable Fully Homomorphic Encryption 643

the detection probability. CDNO provided a lower bound that shows that their
construction is in some sense optimal. They identified a structural property
of encryption, which they term as separability and argued that as long as a
construction is separable, the dependence of the ciphertext size with the inverse
of the detection probability “seems inherent” [13].

A significant step forward in our understanding of deniable encryption and
compactness was achieved via the work of Sahai and Waters in 2014 [29] which
provided the first construction achieving negligible deniability assuming indis-
tinguishability obfuscation (iO) and one way functions. However, iO seems to be
an inherently sub-exponential assumption [19,20], and while exciting as a feasi-
bility result, does not provide a satisfying solution to the question of deniable
encryption from standard polynomial hardness assumptions.

CDNO also suggested the notion of weak deniability where the encryptor can
lie not only about the random coins used to generate the ciphertext, but also
the algorithm used to encrypt the message and the notion of receiver deniability,
where the receiver can also produce a fake secret key that decrypts the message
to an alternate one. In the weak model, [13] showed that compact public key
and ciphertext as well as negligible deniability are possible. However, whether
the weak model is meaningful for practical applications has been the subject of
some debate – as discussed in [28], a common objection to the weak model is
“since there are alternative deniable algorithms that are strictly more powerful
than the normal ones, why would anyone ever run the normal algorithms? And
given this situation, why would a coercer ever accept a transcript corresponding
to the normal algorithms?”. We refer the reader to [28] for a detailed discussion.

Other extensions to deniable encryption were also explored – O’Neill, Peikert
and Waters [28] provided the first constructions of non-interactive bi-deniable
encryption schemes where both the sender and the receiver can fake simultane-
ously as well as the first construction of identity based bi-deniable encryption.
Apon, Fan and Liu [4] extended their results to provide the first construction
deniable attribute based encryption. However, in the full model, both works [4,28]
inherit the detection probability of CDNO, which is inverse polynomial. Addi-
tional prior work not directly related to the current work is discussed in Sect.
1.5.

Summarizing, barring the iO based construction which seems to require a
sub-exponential hardness assumption, all proposals for (fully) sender deniable
encryption schemes from standard assumptions suffer from ciphertext size that
is inversely proportional to the detection probability. This implies a prohibitively
large blow on efficiency. For a primitive as fundamental and interesting as deni-
able encryption, this state of affairs is very dissatisfying.

1.2 Our Results

In this work, we introduce the notion of deniable fully homomorphic encryption
(FHE) and provide the first constructions of deniable FHE based on the Learning
With Errors (LWE) assumption. Our constructions enjoy deniability compact-
ness - the public key as well as the ciphertext of our schemes have size that can

644 S. Agrawal et al.

be bounded by a fixed polynomial, and are, in particular, independent of the
level of deniability (or detection probability) achieved by the scheme. Our con-
structions support large messages paces, whereas all prior constructions encoded
large messages bit by bit. On the down side, our encryption time depends on the
inverse of the detection probability, thus the scheme falls short of achieving simul-
taneously compactness, negligible deniability and polynomial encryption time.
Luckily, the scheme can be run in online-offline model of encryption, where the
bulk of computation, which grows with the inverse of the detection probability,
is independent of the message and may be performed in an offline pre-processing
phase. The running time of the online phase, is independent of the detection
probability.

We believe that achieving compact ciphertext even at the price of large
encryption time is a fundamental step forward – indeed, note that for the related
primitive of functional encryption (FE), compact ciphertext was later found to
imply compact running time [26] by additionally assuming LWE via the “suc-
cinct” FE of Goldwasser et al. [24]. While this implication does not hold true
for our work at present, it is a tantalizing possibility for future work.

We now proceed to on expound on the particulars of our results.

Deniable FHE. A (public key, sender) deniable fully homomorphic encryption
consists of a tuple of algorithms DFhe = (Gen,Enc,Eval,Dec,Fake) where Gen,
Enc and Dec are the standard key-generation, encryption and decryption algo-
rithms, Eval is an algorithm that takes as input the public key, a circuit C and a
tuple of ciphertexts ct1, . . . , ctn encrypting x1, . . . , xn respectively, and outputs
a ciphertext ct∗ which encrypts C(x1, . . . , xn), and Fake is a faking algorithm,
which takes as input the public key, an original message m, randomness r, and
a fake message m∗ and outputs a fake randomness r∗ so that the encryption of
message m using randomness r produces the same ciphertext as the encryption
of message m∗ using randomness r∗, i.e. Enc(pk,m; r) = Enc(pk,m∗; r∗). The
detection probability is the probability with which an adversary can distinguish
r from r∗, and we denote it by 1/δ = 1/δ(λ) where λ is the security parameter.
Our notion of deniable FHE is formalized in Definition 2.8.

We naturally extend this definition to the weak model (Definition 2.11) –
a weakly deniable FHE is defined as wDFhe = (Gen,DEnc,Enc,Eval,Dec,Fake)
which is distinct from “fully” deniable FHE in that there are two distinct algo-
rithms for encryption, namely Enc and DEnc. Here, as in [13], leveraging the
additional secret “deniable” encryption algorithm DEnc, allows for better con-
structions as discussed below (in particular, those that achieve negligible denia-
bility in polynomial time).

In more detail, Enc is an “honest” encryption algorithm and is used by the
encryptor when it does not wish to fake a ciphertext, and DEnc is a “deniable”
encryption algorithm, which is used when the encryptor wishes to retain the
ability of faking a ciphertext in the future. Let us say the encryptor wishes to
compute an encryption of m which it may later want to explain differently. Then
it produces a ciphertext ct∗ by running the algorithm DEnc with message m using
randomness r. To explain ct∗ as encrypting an arbitrary fake message m∗ at a

Deniable Fully Homomorphic Encryption 645

later time, the encryptor produces random coins r∗ using the Fake algorithm, so
that the ciphertext output by the honest encryption algorithm Enc on m∗ using
r∗ equals the ciphertext ct∗ which was produced using the deniable encryption
algorithm DEnc, i.e. DEnc(pk,m; r) = Enc(pk,m∗; r∗).

Next, we describe our constructions. We provide:

1. A weakly deniable FHE scheme for bits with negligible detection probabil-
ity (Sect. 4.1). We extend this scheme to support larger (polynomial sized)
message spaces (Sect. 5).

2. A fully deniable FHE scheme for bits with inverse polynomial detection prob-
ability (Sect. 4.2). We also extend this scheme to support larger (polynomial
sized) message spaces (see the full version [1]). Both our fully deniable FHE
schemes have compact public key and ciphertext, i.e. with size independent of
the detection probability, but with encryption running time that grows with
the inverse of the detection probability.

3. Plan-ahead deniable FHE schemes which support exponentially large message
spaces (see the full version [1]). Plan-ahead deniable encryption [13] requires
the encryptor to choose all (polynomially many) possible fake messages at the
time of encryption. Later, when the encryptor desires to explain a ciphertext,
it can only provide convincing fake randomness for one of the fake messages
chosen during encryption.

Fake Evaluation. We note that our notions of deniable FHE also allow, in
some cases, to explain evaluated ciphertexts as encoding a fake message. For
instance, in the case that Eval is a deterministic algorithm, suppose that ct∗

was computed by homomorphically evaluating a polynomial sized circuit C on
ciphertexts ct1, . . . , ctn which encode messages x1, . . . , xn respectively. Suppose
an encryptor wishes to explain ct∗ as an encryption of an arbitrary message
m∗ �= C(x1, . . . , xn), and C supports inversion, i.e. given a value m∗, it is pos-
sible to efficiently sample x′

1, . . . x
′
n such that C(x′

1, . . . , x
′
n) = m∗. Then, the

encryptor may simply explain cti as an encryption of x′
i for i ∈ [n] and exhibit

that the homomorphic evaluation procedure for C results in ct∗. This convinces
the adversary that ct∗ encodes m∗, as desired. We note that for several appli-
cations of interest, the circuit C can indeed be invertible – for instance, C may
represent the vote counting circuit, which is simply addition and hence easily
invertible.

On the Underlying Assumptions. We remark that the Sahai-Waters construc-
tion of public key deniable encryption from indistinguishability obfuscation (iO)
[29] can be modified in a natural way to construct deniable fully homomor-
phic encryption. This provides an appealing feasibility result for deniable fully
homomorphic encryption with negligible deniability, but rely on the strong ham-
mer of indistinguishability obfuscation. While (concurrent) exciting recent work
[25] has based indistinguishability obfuscation on well-founded assumptions, this
construction relies on the subexponential hardness of four different assumptions,
including assumptions on bilinear maps which are known to be insecure in the

646 S. Agrawal et al.

post-quantum regime. It is also well known that existing reductions to indistin-
guishability obfuscation [29] run into subexponential barrier due to the number
of hybrids used in the security reductions – this results a subexponential assump-
tion, please see [20] for a discussion.

The focus of our work is to rely on minimal assumptions. The primitive
of levelled (respectively, pure) fully homomorphic encryption may be based on
the polynomial hardness of the Learning With Errors (respectively, with circular
security) assumption, with polynomial approximation factors [12]. Our construc-
tions show that we can achieve (polynomially) deniable FHE without making
any additional assumptions.

Compact Deniable PKE from FHE. Homomorphism aside, as discussed above,
our construction implies, as a special case, a compact deniable public key encryp-
tion scheme, where the size of the public key and ciphertext are independent of
the detection probability, which can be made an arbitrarily small inverse polyno-
mial. However, as discussed above, the running time of our encryption algorithm
does grow linearly with the inverse of the detection probability. This dependence
again seems inherent, since our constructions can be shown to be separable in
the sense of CDNO and hence subject to the lower bound (see the full version
[1]). We discuss in Sect. 1.4 the technical barriers in circumventing this lower
bound from non-obfuscation assumptions.

Online-Offline Encryption. Our constructions of deniable FHE also enjoy a
desirable online-offline property, which allows the encryptor to do the bulk of
the work in an offline phase that is independent of the message to be encrypted.
In more detail, our encryption algorithm can be divided into two parts – an
offline, message independent part which runs in time O(δ) (recall that 1

δ is the
detection probability), and an online phase which is efficient and independent of
δ. We believe this feature makes these schemes especially attractive for practice
since it mitigates the disadvantage of the large running time of encryption.

1.3 Our Techniques

The primary technical challenge in (full) deniable encryption is satisfying the
many constraints imposed by the faking algorithm: the adversary knows the
encryption algorithm and must be shown correctly distributed randomness that
explains a given challenge ciphertext to a fake message. Excepting the construc-
tion based on obfuscation [29], all prior work addressed this challenge by setting
the ciphertext to be a long sequence of elements that are either random or
pseudorandom, and encoding the message bit in the parity of the number of
pseudorandom elements. To fake, the encryptor pretends that one of the pseu-
dorandom elements is in fact random, thus flipping the parity of the number of
pseudorandom elements, and hence the encoded message. To construct a deni-
able fully homomorphic encryption scheme, the first challenge that arises is that
an FHE ciphertext is highly structured, and this is necessary if it has to sup-
port homomorphic evaluation. Moreover, valid FHE ciphertexts are sparse in the

Deniable Fully Homomorphic Encryption 647

ciphertext space, so randomly sampled elements are unlikely to be well-formed
ciphertexts. Hence, if the encryptor for deniable FHE constructs all components
of the ciphertext by running the FHE encryption algorithm i.e. Fhe.Enc(pk,m; r),
then it is forced to open the FHE ciphertexts to provide r honestly – the struc-
ture of ciphertexts does not support lying about any of the encoded bits. The
encryptor is thus faced with the incongruous task of producing highly structured
ciphertexts without running the FHE encryption algorithm.

The Magic of Bootstrapping. To overcome this hurdle, we leverage the clever
idea of “bootstrapping” proposed by Gentry [21]. At a high level, bootstrapping
is the procedure of homomorphically computing the decryption circuit of a given
scheme, say Fhe, on a ciphertext of the same scheme, using an encryption of the
scheme’s secret key, denoted by ctsk. This procedure assumes circular security,
namely that semantic security of Fhe holds even when the adversary is provided
an encryption of the scheme’s own secret key. The original motivation for boot-
strapping was to reduce the “noise” level in FHE ciphertext – since the decryp-
tion circuit of an FHE scheme is quite shallow, running the decryption circuit
homomorphically on some FHE ciphertext ct using the encryption of the FHE
secret key ctsk, removes the noise contained in ct via decryption, and the noise
in output ciphertext ct′ can be bound depending on the depth of the decryption
circuit and the noise in ctsk. To date, all constructions of “pure” FHE, namely,
FHE that supports unbounded depth circuits, must assume circular security of
the underlying “somewhat homomomorphic” encryption scheme, and hence of
the underlying Learning With Errors (LWE) assumption. Since circular security
is required anyway for the construction of pure FHE, we assume it in our con-
struction of deniable (pure) FHE, and in the exposition below for simplicity. For
the case of “levelled” FHE, which assumes a bound on the depth of supported
circuits, and which can be built from standard LWE, this requirement can be
removed as discussed in the full version [1].

Aside from noise reduction, an additional attractive feature of bootstrapping
is that it suggests a way to obliviously generate FHE ciphertexts. Suppose our
FHE scheme’s decryption algorithm always outputs a valid message regardless
of whether the ciphertext is well-formed or not. Then, by running the boot-
strapping procedure on a random element from the ciphertext space, we obtain
a well formed, valid FHE ciphertext for an unknown bit, by correctness of FHE
evaluation. Moreover, if we run the bootstrapping procedure on a valid FHE
ciphertext of any bit, the ciphertext output by bootstrapping still encodes the
same bit, by correctness of FHE decryption and evaluation. If FHE ciphertexts
are indistinguishable from random (which they usually are), then the encryptor
may cheat about which of the two types of inputs was provided to the boot-
strapping procedure and thereby lie about the encoded bit in the bootstrapped
ciphertext.

While this feels like progress, it is still unclear how to encrypt a single bit
of one’s choosing using obliviously generated ciphertexts of unknown bits and
honestly generated ciphertexts of known bits.

648 S. Agrawal et al.

Deniable FHE in the Weak Model. As a warm-up, let us consider the weak model
of deniability, where the encryptor can lie not only about the randomness used
in encryption but also the algorithm used. Let us suppose for the moment that
we may engineer the bootstrapping procedure so that an obliviously generated
FHE ciphertext is biased and encodes the bit 0 with overwhelming probability
(we will weaken this assumption later). Then, an approach to encrypt in the
weak model is as follows.

Let the bootstrapping procedure be denoted by boot. In the honest mode, the
encryptor encrypts bit 0 by choosing R1 and R2 randomly from the ciphertext
space, converting these to well formed FHE ciphertexts via the bootstrapping
procedure, and finally computing the homomorphic XOR operation (denoted by
⊕2) on these FHE ciphertexts. Thus, we have:

ct0 = boot(R1) ⊕2 boot(R2)

Since we assumed that random elements are bootstrapped to encode 0 with
overwhelming probability, the ciphertext ct0 encodes 0 due to correctness of the
FHE evaluation procedure. To encrypt bit 1, the encryptor chooses R3 randomly
from the ciphertext space, and computes R4 as an honest encryption of 1 using
the FHE encryption algorithm. It then sets:

ct1 = boot(R3) ⊕2 boot(R4)

It is easy to see that correctness is preserved by the same arguments as above.
In the deniable or fake encryption algorithm, the sender changes the way it

encrypts 0. Instead of choosing R1 and R2 uniformly at random, it now computes
both R1 and R2 as well formed FHE ciphertexts of 1. Bootstrapping preserves
the message bit and homomorphic evaluation of addition modulo 2 ensures that
ct0 is a valid encryption of 0. The bit 1 is encrypted as before. However, if asked
to explain, the encryptor can pretend that ct0 is in fact an encryption of 1 by
claiming that R1 is chosen uniformly and by explaining R2 as an encryption of
1. Since R1 is an FHE ciphertext, the adversary cannot tell the difference as
long as FHE ciphertext is pseudorandom. Similarly, if asked to explain ct1 as an
encryption of 0, she explains R4 as a randomly chosen element in the ciphertext
space. Thus, we obtain a construction of weakly deniable FHE for bits which
achieves negligible detection probability. For more details, please see Sect. 4.1.

Deniable FHE in the Full Model. In the full model, the encryptor is not allowed
to cheat about the algorithm it used for encryption, hence we may not take
advantage of different ways of sampling randomness in the real and deniable
encryption algorithms – there is only one encryption algorithm. In this model,
we obtain FHE with polynomial deniability but with compact public key and
ciphertext, that is, the size of the public key and ciphertext are independent of
the detection probability. We proceed to describe the main ideas in the construc-
tion.

Let δ be the inverse of the desired detection probability. To encrypt a bit b,
the encryptor samples uniform random bits x1, . . . , xδ such that

∑
i∈[δ] xi = b

(mod 2). It then computes δ elements R1, . . . , Rδ of which, Ri is computed as

Deniable Fully Homomorphic Encryption 649

an FHE encryption of 1 when xi = 1, and Ri is sampled uniformly at random
when xi = 0. Finally, it outputs

ct = boot(R1) ⊕2 boot(R2) ⊕2 . . . ⊕2 boot(Rδ)

To fake, it samples a random j ∈ [δ] such that xj = 1, sets x∗
j = 0, and

x∗
i = xi for every i �= j, i ∈ [δ]. It pretends that Rj is chosen uniformly at random,

implying that boot(Rj) encodes 0 with overwhelming probability. It is easy to see
that this flips the message bit that was chosen during encryption. Moreover, the
statistical distance between honest randomness and fake randomness is O(1δ) and
we achieve polynomial deniability, so long as the encryption time is polynomial.
Please see Sect. 4.2 for more details.

Special FHE. The above informal description brushes several important details
under the rug. For instance, we assumed various properties about the underlying
FHE scheme which are not true in general. The most problematic assumption
we made is that the FHE bootstrapping procedure can be engineered so that it
outputs an encryption of 0 for a random input with overwhelming probability.

Some thought reveals that existing FHE schemes do not satisfy this property.
Fortunately however, we show that some constructions can be modified to do
so. For concreteness, we describe how to modify the FHE scheme by Brakerski,
Gentry and Vaikuntanathan [10] to get the “special FHE” that we require. At a
high level, decryption in the BGV cryptosystem is a two step procedure, where
the first step computes the inner product of the ciphertext and the secret key
over the ambient ring, and the second step computes the least significant bit of
the result, which is then output. One can check that for any well formed cipher-
text in this scheme, regardless of whether it encodes 0 or 1, the first step of the
decryption procedure always yields a “small” element. On the other hand, for a
random element in the ciphertext space, the first step of decryption yields a ran-
dom element, i.e. it is small with low probability. Thus, we may modify the BGV
decryption algorithm so that after computing the inner product in the first step,
it checks whether the output is small, and outputs 0 if not. This does not change
decryption for well formed ciphertexts but by a suitable setting of parameters,
it biases the output of decryption to 0 for random inputs. In fact, we can make
do with a weaker requirement on bias, namely that the bootstrapping procedure
outputs an encryption of 0 for a random input with only non-negligible (not
overwhelming) probability. However this makes the scheme more complicated,
so we do not discuss it here. Please see the full version [1] for details. We also
require some additional properties from our special FHE, which we define and
establish in Sect. 3.

Large Messages. In all prior constructions of deniable encryption, larger mes-
sages were encoded bit by bit, where the ciphertext for a single bit is itself quite
substantial (O(δ)) as discussed above. To further improve efficiency, we again
leverage the power of FHE. This enables our schemes to support large message
spaces natively, thereby inheriting the significant advances in FHE schemes with
large information rate [9,10,22,30], and bringing deniable FHE closer to practice.

650 S. Agrawal et al.

Let M be the message space of an FHE scheme Fhe such that |M| = poly(λ).
Further, let us assume that Fhe satisfies the special properties discussed above
(formalized in Sect. 3). Then, to compute a ciphertext for a message mk ∈ M,
we express mk as the output of a “selector” function which computes the inner
product of the kth unit vector with a vector of all messages in M. In more detail,
we express

mk = 1 · mk +
∑

mi∈M,i �=k

0 · mi

Here, the bits 0 or 1 are referred to as “selector” bits for obvious reasons. Our
main observation is that the deniable encryption scheme for bits can now be
used to add deniability to ciphertexts of selector bits and thereby to the overall
ciphertext.

In more detail, assume that the sender selects message mk at the time of
encryption. To compute a ciphertext of mk, she computes FHE ciphertexts cti
for all mi ∈ M and selector bit ciphertexts ctseli for i ∈ [|M|] where ctseli encodes 0
if i �= k and 1 otherwise. We use deniable encryption to compute the ciphertexts
of selector bits as described above; thus, each selector bit is computed using
multiple elements {Ri} where i ∈ [δ]. She then homomorphically computes the
selector function described above to obtain a ciphertext ct∗ encoding mk. Under
coercion, she may explain ct∗ as encoding of any message mi, even for i �= k, by
explaining the corresponding selector bits differently, i.e. by explaining ctseli as
an encryption of 1 and ctselk as an encryption of 0.

We note that the above description is oversimplified and glosses over many
technical details – for instance, the deniable FHE scheme for bits assumes that
decryption of a random element in the ciphertext space is biased to 0 with
overwhelming probability, which is no longer the case for FHE with large message
spaces. However, this and other issues can be addressed, and we get schemes in
both the weak and full models – please see Sect. 5 and the full version [1] for
details.

Plan-Ahead Deniability. Plan-ahead deniable encryption [13] requires the sender
to choose all possible fake messages at the time of encryption itself. For plan-
ahead fully homomorphic encryption, it becomes possible to instantiate the
underlying FHE to have super-polynomial message space. Intuitively, without
the plan-ahead restriction, the construction discussed above fails for exponen-
tially large message spaces, since it is not possible to “select” between exponen-
tially many options in polynomial time. However, if the number of possible fake
messages is fixed to some polynomial in advance, as is the case for plan-ahead
deniability, then the same construction as above works, as long as we can estab-
lish the “special” properties of the FHE. We discuss how this can be achieved,
please see the full version [1] for details.

Online-Offline Encryption. We now describe how our encryption algorithms lend
themselves naturally to the online-offline model, where a bulk of the computation
required for encryption is performed before the message is available. Consider
the encryption algorithm for bits in the full model. Observe that sampling δ

Deniable Fully Homomorphic Encryption 651

random bits x1, . . . , xδ such that
∑

i∈[δ] xi = b (mod 2) is the same as sampling
δ − 1 random bits x1, . . . , xδ−1 and setting xδ = b +

∑
i∈[δ−1] xi (mod 2). In

the offline phase, we may select δ − 1 bits x1, . . . , xδ−1 at random as well as the
corresponding δ−1 elements Ri based on the bit xi as specified in the encryption
algorithm. Next, we homomorphically evaluate the bootstrapping circuit on the
δ − 1 random elements, i.e. boot(Ri) for i ∈ [δ − 1] and then compute:

ctoffline = boot(R1) ⊕2 boot(R2) ⊕2 . . . ⊕2 boot(Rδ−1).

Now, in the online phase we can simply select the last bit and correspond-
ing randomness Rδ according to the message b being encrypted, compute the
homomorphic bootstrapping algorithm on Rδ, and evaluate the homomorphic
addition mod 2 as: ct = ctoffline ⊕2 boot(Rδ). Thus, the online encryption time is
independent of δ.

Next, consider the encryption scheme for large message spaces. Even here,
note that the dependence of the encryption running time on the detection proba-
bility comes from the construction of selector bits. Since the construction of any
ciphertext involves |M| − 1 encryptions of 0 and a single encryption of 1, the
encryptions of these selector bits can be computed in an offline pre-processing
phase. The encryptions of all possible messages in the message space can also
be performed offline. Then, in the online phase, given message mk, the encryp-
tor needs only to perform the homomorphic evaluation of the selector function
to compute the final ciphertext. This leads to an online encryption time which
grows with |M| but not with the inverse of the detection probability.

The online processing time may be optimized further as follows – now, addi-
tionally in the offline phase, let the encryptor perform the homomorphic evalua-
tion of the selector function with all the selector bits set to 0, i.e.

∑
mi∈M 0 ·mi.

It stores the ciphertexts for all possible messages m ∈ M, the ciphertexts of the
computed selector bits which are set to 0 as well as a ciphertext ct1 for an extra
selector bit which is set to 1. In the online phase, when mk is known, it subtracts
the “wrong” term ct0k ·ctk and adds the term ct1 ·ctk to the evaluated ciphertext
to obtain the correct ciphertext. Thus, the online phase can be performed in
time independent of both |M| as well as δ.

Removing the Circularity Assumption for Levelled FHE. Above, our usage of the
bootstrapping procedure implies the assumption of circular secure homomorphic
encryption, hence circular secure LWE. Since circular security is required anyway
for all known constructions of pure FHE (we refer the reader to [8] for a discus-
sion), this assumption currently comes “for free” in the construction of deniable
pure FHE. However, for levelled FHE, which only supports circuits of bounded
depth and can be constructed from standard LWE [10,11,23], the assumption of
circularity is not implied. In this setting, our construction can be easily adapted
to make do without the circularity assumption, as observed by [3]. The idea is
simple – instead of assuming that the encryption of a scheme’s secret key under
it’s own public key is secure, we can instead rely on two encryption schemes and
assume that the secret key of first scheme sk1 can be securely encrypted using the

652 S. Agrawal et al.

public key of the second scheme pk2. Let us denote this ciphertext by ctsk1 . Now,
the obliviously sampled ciphertexts can be seen as encrypted under pk1 and the
ciphertext ctsk1 may be used to translate these to valid ciphertexts under pk2
via a variant of the bootstrapping procedure discussed above. In more detail,
the modified bootstrapping procedure computes the homomomorphic evalua-
tion procedure of the second scheme using as inputs the ciphertext ctsk1 and
the decryption circuit of the first scheme to produce valid ciphertexts under the
second scheme. We refer the reader to the full version [1] for more details.

1.4 Perspective: FHE as a Tool

As discussed above, bootstrapping enables us to obliviously sample FHE cipher-
texts, and homomorphic evaluation enables us to “compactify” the final cipher-
text – this makes FHE a useful tool even in the context of deniable public key
encryption (PKE). One of the main insights of our work is that evaluation com-
pactness in FHE can be leveraged to achieve deniability compactness in PKE.
All constructions of non-interactive sender deniable encryption in the full model
known from 1997 to date (excepting the one based on iO [29]), must provide mul-
tiple elements in the ciphertext, both pseudorandom and random, and encode
the message bit in the parity of the number of pseudorandom elements leading
to ciphertext size that grows inversely with detection probability. We can avoid
this dependence using FHE.

Can FHE also help achieve compact runtime of encryption? If so, this would
lead to negligibly deniable PKE from LWE, resolving the long-standing open
problem of deniable PKE from a standard, polynomial hardness assumption,
with the post-quantum advantage as the “icing on the cake”. While this exciting
possibility cannot be ruled out, a thorny technical barrier that arises is the hard-
ness of inverting the bootstrapping procedure. Intuitively, deniable encryption
requires invertible biased oblivious sampling – the encryption procedure must
obliviously sample a ciphertext (biased to encoding 0, say) and the faking pro-
cedure must invert a given ciphertext, encoding either 0 or 1, to produce a well
distributed randomness. In hindsight, even the iO based construction of Sahai
and Waters [29] can be viewed as a construction of invertible oblivious sampling
– indeed, similar techniques have been used to construct invertible sampling [17].

Using our current techniques, bootstrapping enables us to perform oblivious
sampling, but not inversion. Due to this limitation, we are restricted to cheating
only in one direction – we can pretend that a ciphertext of 1 encodes 0 but not the
other way around. This leads to the attack discussed in the full version [1], which
curtails the scheme to polynomial deniability. However if, given y = boot(R),
we could compute well-distributed R′ such that boot(R′) = y ⊕2 1, where ⊕21
denotes homomorphic XOR of the bit 1, then we would gain the ability to cheat
in both directions and obtain negligibly deniable PKE. We remark that while
boot is a one way function, infeasibility of inversion does not apply since we
have potentially useful side information about the preimage – we must find the
preimage of y ⊕2 1 and know the preimage to y. Unfortunately, we currently
do not know how to leverage this information. Nevertheless, we view ciphertext

Deniable Fully Homomorphic Encryption 653

compactness as a useful stepping stone to full runtime compactness from LWE,
and hope it can lead to progress towards a full solution. Please see the full
version [1] for a more in-depth discussion on the barriers in achieving negligible
deniability.

In the full version [1], we discuss the notion of receiver deniable FHE.

1.5 Other Related Work

De Caro, Iovino and O’Neill [18] studied the notion of receiver deniable func-
tional encryption, but instantiating these constructions requires the assumption
of full fledged functional encryption, which in turn is known to imply indistin-
guishability obfuscation (iO) [2,6].

Aside from work extending the functionality of deniable encryption, there
was also progress in lower bounds – for receiver deniability, [5] showed that a
non-interactive public-key scheme having key size δ can be fully receiver-deniable
only with non-negligible Ω(1δ) detection probability while for sender deniability,
Dachman-Soled [16] showed that there is no black-box construction of sender-
deniable public key encryption with super-polynomial deniability from simulat-
able public key encryption. There has also been work on interactive deniable
encryption where the sender and receiver are allowed to participate in an inter-
active protocol – in this setting, negligible bi-deniability in the full model has
been achieved based on subexponentially secure indistinguishability obfuscation
and one-way functions [14]. Our focus in this work is the non-interactive setting.

2 Preliminaries

In this section, we define the notation and preliminaries that we require in this
work. Some standard notions are moved to the full version [1] due to space
constraints.

2.1 Fully Homomorphic Encryption

Definition 2.1 (Fully Homomorphic Encryption). A public-key fully
homomorphic encryption scheme for a message space M consists of PPT algo-
rithms Fhe = (Gen,Enc,Eval,Dec) with the following syntax:

– Gen(1λ) → (pk, sk): on input the unary representation of the security param-
eter λ, generates a public-key pk and a secret-key sk.

– Enc(pk,m) → ct: on input a public-key pk and a message m ∈ M, outputs a
ciphertext ct.

– Eval(pk, C, ct1, . . . , ctk) → ct: on input a public-key pk, a circuit C : Mk →
M, and a tuple of ciphertexts ct1, . . . , ctk, outputs a ciphertext ct.

– Dec(sk, ct) → m: on input a secret-key sk and a ciphertext ct, outputs a
message m ∈ M.

The scheme should satisfies the following properties:

654 S. Agrawal et al.

Correctness. A scheme Fhe is correct if for every security parameter λ,
polynomial-time circuit C : Mk → M, and messages mi ∈ M for i ∈ [k]:

Pr[Dec(sk,Eval(pk, C, ct1, . . . , ctk)) = C(m1, . . . ,mk)] = 1 − negl(λ)

where (pk, sk) ← Gen(1λ), and cti ← Enc(pk,mi) for i ∈ [k].
Compactness. A scheme Fhe is compact if there exists a polynomial poly(·)

such that for all security parameter λ, polynomial-time circuit C : Mk → M,
and messages mi ∈ M for i ∈ [k]:

Pr [|Eval (pk, C, ct1, . . . , ctk)| ≤ poly(λ)] = 1

where (pk, sk) ← Gen(1λ), and cti ← Enc(pk,mi) for i ∈ [k].
CPA Security. A scheme Fhe is IND-CPA secure if for all PPT adversary A:

∣
∣Pr

[
FheGame0A(λ) = 1

] − Pr
[
FheGame1A(λ) = 1

]∣
∣ ≤ negl(λ)

where FheGameb
A(λ) is a game between an adversary and a challenger with

a challenge bit b defined as follows:
– Sample (pk, sk) ← Gen(1λ), and send pk to A.
– The adversary chooses m0,m1 ∈ M.
– Compute ct ← Enc(pk,mb), and send ct to A.
– The adversary A outputs a bit b′ which we define as the output of the

game.

Definition 2.2 (Circular Security). A public-key encryption scheme with key
generation algorithm Gen and encryption algorithm Enc is circular secure if for
every PPT adversary A:

∣
∣Pr

[
CircGame0A(λ) = 1

] − Pr
[
CircGame1A(λ) = 1

]∣
∣ ≤ negl(λ)

where CircGameb
A(λ) is a game between an adversary and a challenger with a

challenge bit b defined as follows:

– Sample (pk, sk) ← Gen(1λ), compute ctsk ← Enc(pk, sk), and give (pk, ctsk) to
A.

– The adversary chooses m0,m1 ∈ M.
– Compute ct ← Enc(pk,mb), and give ct to A.
– The adversary A outputs a bit b′ which we define as the output of the game.

Definition 2.3 (Bootstrapping Procedure).[21] Let Fhe = (Gen,Enc,Eval,
Dec) be a public-key FHE scheme for a message space M with ciphertext space
R�c . We define the bootstrapping procedure, denoted by boot : R�c → R�c , as

boot(x) = Fhe.Eval(pk,Decx, ctsk)

where (pk, sk) ← Fhe.Gen(1λ), ctsk ← Fhe.Enc(pk, sk), and Decx(sk) =
Fhe.Dec(sk, x). Above, when sk /∈ M, we assume that sk may be represented
as a vector of elements in M, which would make ctsk a vector of ciphertexts.

Deniable Fully Homomorphic Encryption 655

Definition 2.4 (Valid Ciphertext). We say that an Fhe ciphertext ct is a
valid ciphertext of m, if either

ct ← Enc(pk,m),

or for any polynomial-sized circuit C, we have that:

Pr[Dec(sk,Eval(pk, C, ct)) = C(m)] = 1 − negl(λ),

where (pk, sk) ← Gen(1λ) and λ is the security parameter.

Some Useful Functions. In this paragraph, we define notation for some functions
that will prove useful in our constructions.

Definition 2.5 (Addition Modulo 2). We denote by ⊕2 the homomorphic
evaluation of addition modulo 2 circuit, that is for k ≥ 2, ⊕2(ct1, . . . , ctk) = ct,
ct is a valid encryption of

∑k
i=1 xi (mod 2) where xi ∈ {0, 1} and cti is a valid

encryption of xi for i ∈ [k].

For ease of readability, we will often denote ⊕2(ct1, . . . , ctk) by ct1⊕2ct2 . . .⊕2ctk.

Definition 2.6 (Selector). Let bi ∈ {0, 1} such that for all i ∈ [k], i �= j,
bi = 0, and bj = 1 for some fixed j ∈ [k]. For all i ∈ [k], let xi ∈ M. We define
a selector function as

∑
i∈[k] bixi = xj.

We denote the homomorphic evaluation of this function by
∑

i∈[k]

ctseli ⊗ cti = ct,

where ct is a valid encryption of the selected message xj, ctseli is a valid encryp-
tion of bi and cti is a valid encryption of xi for all i ∈ [k].

Definition 2.7 (Indicator Function). The indicator function for the set X ,
denoted by 1X (·), defined as

1X (x) =

{
1 x ∈ X
0 x /∈ X .

2.2 Deniable Homomorphic Encryption

Definition 2.8 (Compact Deniable FHE.). A compact public-key deniable
fully homomorphic encryption scheme for message space M consists of PPT
algorithms DFhe = (Gen,Enc,Eval,Dec,Fake) with the following syntax:

– Gen(1λ) → (dpk, dsk): on input the unary representation of the security
parameter λ, generates a public-key dpk and a secret-key dsk.

– Enc(dpk,m; r) → ct: on input a public-key dpk and a message m ∈ M, uses
�-bit string randomness r, outputs a ciphertexts dct.

656 S. Agrawal et al.

– Eval(dpk, C, dct1, . . . , dctk) → dct: on input a public-key dpk, a circuit C :
Mk → M, and a tuple of ciphertexts dct1, . . . , dctk, outputs a ciphertext dct.

– Dec(dsk, dct) → m: on input a secret-key dsk and a ciphertext dct, outputs a
message m ∈ M.

– Fake(dpk,m, r,m∗) → r∗: on input a public-key dpk, an original message
m ∈ M, an �-bit string randomness r, and a fake message m∗ ∈ M, output
an �-bit string randomness r∗.

The scheme should satisfies the following properties:

Correctness, Compactness & CPA Security. A scheme DFhe is correct,
compact and secure if the scheme (Gen,Enc,Eval,Dec) satisfies the standard
notions of correctness, compactness and IND-CPA security properties of fully
homomorphic encryption, as in Definition 2.1. We remark that a scheme
cannot simultaneously satisfy perfect correctness and deniability, so negligible
decryption error in correctness is inherent.

Deniability. A scheme DFhe is δ(λ)-deniable if for all PPT adversary A:
∣
∣Pr

[
DnblGame0A(λ) = 1

] − Pr
[
DnblGame1A(λ) = 1

]∣
∣ ≤ δ(λ)

where DnblGameb
A(λ) is a game between an adversary and a challenger with

a challenge bit b defined as follows:
– Sample (dpk, dsk) ← Gen(1λ), and send dpk to A.
– The adversary chooses m,m∗ ∈ M.
– Sample r ← {0, 1}�, and r∗ ← Fake(dpk,m, r,m∗); if b = 0 give

(m∗, r,Enc(dpk,m∗; r)) to A, else if b = 1, give (m∗, r∗,Enc(dpk,m; r))
to A.

– The adversary A outputs a bit b′ which we define as the output of the
game.

Remark 2.9. We note that in our constructions, the length of randomness used
during encryption may depend on the message being encrypted. This does not
affect deniability, because the length of the randomness is only revealed together
with the encrypted message. For ease of exposition, we do not introduce addi-
tional notation to capture this nuance.

Deniability Compactness. A δ(λ)-deniable scheme DFhe is deniability com-
pact if there exists a a polynomial poly(·) such that for all security parameters
λ, and message m ∈ M:

Pr[|Enc(dpk,m)| ≤ poly(λ)] = 1

where (dpk, dsk) ← Gen(1λ), regardless of the encryption running time.

Remark 2.10. The above definition can be modified to capture a compact deni-
able public key encryption scheme by removing the evaluation algorithm required
by FHE.

Deniable Fully Homomorphic Encryption 657

Definition 2.11 (Weak Deniable FHE). A public-key weak deniable fully
homomorphic encryption scheme for message space M consists of PPT algo-
rithms wDFhe = (Gen,DEnc,Enc,Eval,Dec,Fake) where Gen,Eval, and Dec have
the same syntax as in Definition 2.8, and DEnc,Enc and Fake have the following
syntax:

– DEnc(dpk,m; r) → ct: on input a public-key dpk and a message m ∈ M, uses
�-bit string randomness r, outputs a ciphertexts dct.

– Enc(dpk,m; r) → ct: on input a public-key dpk and a message m ∈ M, uses
�∗-bit string randomness r, outputs a ciphertexts dct.

– Fake(dpk,m, r,m∗) → r∗: on input a public-key dpk, an original message
m ∈ M, an �-bit string randomness r, and a faking message m∗ ∈ M, output
an �∗-bit string randomness r∗.

The scheme should satisfies the following properties:

Correctness, Compactness & CPA Security. A scheme wDFhe is
correct, compact and secure if both schemes (Gen,Enc,Eval,Dec), and
(Gen,DEnc,Eval,Dec) satisfy the standard notions of correctness, compact-
ness and IND-CPA security properties of fully homomorphic encryption, as
in Definition 2.1.

Weak Deniability. A scheme wDFhe is weakly-deniable if for all PPT adver-
saries A:

∣
∣Pr

[
wDnblGame0A(λ) = 1

] − Pr
[
wDnblGame1A(λ) = 1

]∣
∣ ≤ negl(λ)

where wDnblGameb
A(λ) is a game between an adversary and a challenger with

a challenge bit b defined as follows:
– Sample (dpk, dsk) ← Gen(1λ), and send dpk to A.
– The adversary A chooses m,m∗ ∈ M.
– Sample r ← {0, 1}�∗

, r′ ← {0, 1}�, and r∗ ← Fake(dpk,m, r′,m∗);
if b = 0 return (m∗, r,Enc(dpk,m∗; r)) else if b = 1 return
(m∗, r∗,DEnc(dpk,m; r′)) to A.

– The adversary A outputs a bit b′ which we define as the output of the
game.

3 Special Homomorphic Encryption

Our constructions rely on a fully homomorphic encryption scheme which satisfies
some special properties. We define these and instantiate it below.

Definition 3.1 (Special FHE). A special public-key FHE scheme for a mes-
sage space M with ciphertext space R�c is a public-key FHE scheme, Fhe =
(Gen,Enc,Eval,Dec), with the following additional properties:

1. Deterministic Algorithms. The evaluation and decryption algorithms, Eval
and Dec respectively, are deterministic. In particular, this implies the boot-
strapping procedure boot, defined in 2.3, is deterministic.

658 S. Agrawal et al.

2. Pseudorandom Ciphertext. The distribution Fhe.Enc(pk,m;U �) is computa-
tionally indistinguishable from R�c , where U � is the uniform distribution over
�-bit strings, (pk, sk) ← Fhe.Gen(1λ), and m ∈ M. Moreover, the distribution
boot(R�c) is computationally indistinguishable from R�c , where boot is the
bootstrapping procedure as in Definition 2.3.

3. Decryption Outputs Valid Message. The decryption algorithm, Fhe.Dec,
always outputs a message from the message space M. Namely, for any
x ∈ R�c , Fhe.Dec(sk, x) ∈ M where (pk, sk) ← Fhe.Gen(1λ). In particular,
this implies that the output of the bootstrapping procedure boot is always a
valid ciphertext (Definition 2.4).

4. Biased Decryption on Random Input (Strong Version). The decryption algo-
rithm Fhe.Dec, when invoked with a random element in the ciphertext space
x ← R�c , outputs a message from a fixed (strict) subset of the message space
S ⊂ M with overwhelming probability.
Formally, we require that there exists a strict subset of the message space,
S ⊂ M, such that

P (S) :=
∑

m∈S

P (m) ≥ 1 − negl(λ)

where P : M → R is defined as P (m) := Pr [Fhe.Dec (sk, x) = m] where
x ← R�c and (pk, sk) ← Fhe.Gen(1λ). Moreover, we require that 0 ∈ S. Thus,
if the message space is binary, then S = {0}.
We remark that the above property, while sufficient, is not strictly neces-
sary for our constructions. However, for ease of exposition, our constructions
assume the “strong version” stated above. In the full version [1] we describe
how to modify our constructions to instead use the weaker version below.
Biased Decryption on Random Input (Weak Version). This version weakens
overwhelming to noticeable in the above definition, i.e. using the notation
above, we require:

P (S) :=
∑

m∈S

P (m) ≥ 1/poly(λ)

As before, we require that 0 ∈ S.
5. Circular Secure. The scheme Fhe is circular secure as in Definition 2.2. As

discussed in Sect. 1, this condition may be removed at the cost of making
the construction more complicated, please see the full version [1] for details.
Since this condition is anyway required for the construction of pure FHE, we
assume it for ease of exposition.

3.1 Instantiation

For concreteness, we instantiate our special FHE scheme with (a modified ver-
sion of) the scheme by Brakerski, Gentry and Vaikuntanathan [10] (henceforth
BGV), which is based on the hardness of the learning with errors (LWE) problem.
To begin, note that BGV already satisfies the property that the algorithms for
evaluation and decryption are deterministic (property 1), the property that the

Deniable Fully Homomorphic Encryption 659

ciphertext is pseudorandom (property 2) as well as the property that decryp-
tion always outputs valid message (property 3). The property of circular security
(property 5) does not provably hold in BGV, or indeed any existing FHE scheme,
but is widely assumed to hold for BGV. In particular, the authors already assume
it for optimized versions of their main construction (which does not require this
assumption)– please see [10, Section 5] for a discussion. We also remark that
circular security is assumed by all “pure” FHE schemes, namely, schemes that
can support homomorphic evaluation of circuits of arbitrary polynomial depth.
We require circular security for a different reason – to support the bootstrap-
ping operation, which allows us to obliviously sample FHE ciphertexts. Thus,
it remains to establish the property that decryption of a (truly) random ele-
ment from the ciphertext space outputs a biased message from the message
space (property 4). Establishing this property requires slight modifications to
the BGV scheme1. Next, we describe these modifications for the case when the
M is binary, of polynomial size and of super-polynomial size.

Recap of BGV. Let us consider the BGV construction for binary messages [10,
Section 4]. We begin by providing a brief recap of the features of BGV that we
require. We use the same notation as in their paper for ease of verification. Let
R be a ring and |R| = q. Recall that the key generation algorithm of BGV
samples a vector s′ ∈ Rn such that all the entries of s′ are “small” with high
probability (details of the distribution are not relevant here) and outputs sk =
s = (1, s′). The public key is constructed by sampling a uniform random matrix
A′ ← RN×n, an error vector e ∈ RN from a special “error” distribution, and
setting b = A′s′ + 2 · e. Denote by A the (n + 1) column matrix consisting of
b followed by the n columns of −A′. Observe that A · s = 2e. The public key
contains A in addition to some other elements which are not relevant for our
discussion2. To encrypt a message bit m, set m = (m, 0, 0, . . . , 0) ∈ {0, 1}n+1,
sample r ← {0, 1}N and output ct = m + A� r. To decrypt, compute and
output [[〈ct, sk〉]q]2, where 〈· , ·〉 denotes inner product over the ring, and [·]p
denotes reduction modulo p. The above construction can be adapted to support
larger message spaces. A simple extension is to choose the message from Zp for
a polynomial sized prime p and multiply the error with p instead of 2. This, and
other extensions are discussed in detail in [10, Section 5].

Creating a Bias. Observe that the decryption algorithm, given a ciphertext ct
and secret sk, outputs the decrypted message bit as [[〈ct, sk〉]q]2 regardless of the
distribution of ct. Thus, even if ct is a random element from the ciphertext space
Rn+1 which may not be well formed, it still outputs a valid message from the
message space. However, it is easy to see that for a random element R ← Rn+1,
the output of [[〈R, sk〉]q]2 is a uniformly distributed random bit, whereas we
require the decryption algorithm to output a biased bit to satisfy property 4.
Below, we will describe the modification to BGV to achieve the strong version

1 We note that these properties are also satisfied by several other FHE schemes, for
instance [7,11,23].

2 Since we assume circular security which BGV do not, we can simplify their scheme
– in particular, we not need fresh keys for each level of the circuit as they do.

660 S. Agrawal et al.

of property 4. In the full version [1], we describe how we can instead rely on the
weak version of the property, which is satisfied by BGV unmodified.

To create a bias, an idea is to build in an additional step in the decryption
algorithm, which first checks whether the input ciphertext ct is well-formed. If
so, it proceeds with legitimate decryption, i.e. computes [[〈ct, sk〉]q]2. If not, it
simply outputs 0. Since well-formed ciphertexts in the BGV FHE are sparse in
the ciphertext space Rn+1, this ensures that a randomly chosen element from
the ciphertext space is decrypted to 0 with high probability.

It remains to identify an efficient check for the well-formedness of the cipher-
text. Towards this, we observe that for any valid ciphertext (Definition 2.4), the
inner product [〈ct, sk〉]q = m + 2e where m is the encrypted bit and e is some
error whose norm may be bounded using bounds on the norms of the secret key
s, the randomness r, the error term in the public key e and the depth of the
circuit – of which the norms of all aforementioned elements were chosen to be
sufficiently “small” and the depth of the circuit can be bounded by the depth of
the bootstrapping circuit [21].

Let us assume that the decryption error is bounded above by B − 1, for
some B = poly(λ). We note that this bound holds true for the current setting
of parameters in [10]. Then, it follows that the output of step 1 of decryption
can be bounded from above by B (for any well formed ciphertext). On the other
hand, the output of [〈R, sk〉]q for a random element R will also be uniformly
distributed, and hence will have norm ≤ B only with probability O(B

q). If we set
q to be super-polynomial in the security parameter, then this term is negligible.
Thus, we may modify the BGV decryption algorithm so that after computing
[〈ct, sk〉]q, it checks whether the output is ≤ B, and outputs 0 if not. This biases
the output of decryption to 0 for random inputs – in more detail, decryption
of a random element yields 0 with probability 1 − negl(λ) as desired. With this
modification, we ensured that BGV satisfies all the properties required by special
FHE. We refer the reader to [10] for more details about the full construction of
FHE.

In the above description, we chose the ring modulus q to be super-polynomial
in the security parameter to obtain the desired bias. However, this large modulus
is unnecessary and affects the efficiency of the scheme negatively. In the full
version [1], we describe how to relax this requirement.

Next, we discuss how to modify the BGV scheme supporting larger (poly-
nomial) message spaces, as discussed in [10, Section 5]. As in the case of binary
messages (discussed above), we have that without performing any modifications,
the BGV decryption algorithm, if executed on a random element in the ciphertext
space, outputs a uniformly distributed message from the message space.

It remains to establish property 4 which requires that there exists a strict
subset of the message space, S ⊂ M, such that

P (S) :=
∑

m∈S

P (m) ≥ 1 − negl(λ)

where P : M → R is defined as P (m) := Pr [Fhe.Dec (sk, x) = m] where x ← R�c

and (pk, sk) ← Fhe.Gen(1λ).

Deniable Fully Homomorphic Encryption 661

Let S be an arbitrary subset of M that contains 0. For the binary message
case above, we described a trick that ensures that random elements are decrypted
to 0 with overwhelming probability. The same trick may be generalized to larger
message spaces. If the modulus q is superpolynomial, and the message space is
polynomial (say of size p), then the first step of decryption yields [〈ct, sk〉]q =
m + p · e for well-formed ciphertexts, and a random element in R otherwise.
Again, this term can be bounded by some polynomial B and the decryption
procedure can be modified to output 0 (or any element from the set S) if the
output of step 1 is greater than B. By the same reasoning as above, this biases
the output to S with overwhelming probability as long as q is super-polynomial.
Please see the full version [1] to avoid the restriction of super-polynomial q.

Finally, we remark that BGV also includes variants where the message space
is super-polynomial in size [10, Section 5.4]. In this case, biasing the output to
a fixed set S is simple: we can just set S = M \ {1}. Moreover S has efficient
representation since it can simply be represented by its complement, which is
of small size and it is clear that the decryption output of a random element is
biased to S with overwhelming probability.

4 Deniable Encryption for Bits

In this section, we provide our constructions for weak deniable FHE, as in
Definition 2.11, and compact deniable FHE, as in Definition 2.8. Let Fhe =
(Gen,Enc,Eval,Dec) be a special public-key FHE scheme for the message space
M = {0, 1} with ciphertext space R�c , as in Definition 3.1. For reading conve-
nience, we denote by lowercase r, the �-bit string randomness that is input to an
Fhe.Enc algorithm, and by uppercase R, the elements in R�c , where R�c is the
co-domain of the algorithm Fhe.Enc. We denote by �′

c the bit length of elements
in R�c (that is, �′

c = �c log2(|R|)�). Recall that boot denotes the bootstrap-
ping procedure described in Definition 2.3 and ⊕2 denotes the homomorphic
evaluation of addition mod 2 described in Definition 2.5.

4.1 Weakly Deniable FHE for Bits

Our public-key weak deniable fully homomorphic encryption scheme for message
space M = {0, 1}, wDFhe = (Gen,DEnc,Enc,Eval,Dec,Fake), is described as
follows:

wDFhe.Gen(1λ) : Upon input the unary representation of the security parameter
λ, do the following:
1. Sample (pk, sk) ← Fhe.Gen(1λ), and ctsk ← Fhe.Enc(pk, sk).
2. Outputs dpk := (pk, ctsk), dsk := sk

wDFhe.DEnc(dpk,m; r): Upon input the public key dpk, a message bit m and
(3� + �′

c)-bit string randomness r, do the following:
1. Parse dpk := (pk, ctsk) and r = (r1, r2, r3, R4), where |ri| = � for i ∈ [3]

and |R4| = �′
c.

2. For i ∈ [3], set Ri = Fhe.Enc(pk, 1; ri).

662 S. Agrawal et al.

3. Let ct0 = boot(R1) ⊕2 boot(R2) and ct1 = boot(R4) ⊕2 boot(R3).
4. Output dct = ctm.

wDFhe.Enc(dpk,m; r) : Upon input the public-key dpk, the message bit m, and
the (� + 3�′

c)-bit string randomness r, do the following:
1. Parse dpk := (pk, ctsk) and r = (R1, R2, R3, r4), where |Ri| = �′

c for i ∈ [3]
and |r4| = �.

2. Set R4 = Fhe.Enc(pk, 1; r4).
3. Let ct0 = boot(R1) ⊕2 boot(R2) and ct1 = boot(R3) ⊕2 boot(R4).
4. Output dct = ctm.

wDFhe.Eval(dpk, C, dct1, . . . , dctk): Upon input the public key dpk = (pk, ctsk),
the circuit C and the ciphertexts dct1, . . . , dctk, interpret dcti as Fhe cipher-
text cti for i ∈ [k], and output dct = Fhe.Eval(pk, C, ct1, . . . , ctk).

wDFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, inter-
pret dsk and dct as Fhe secret key sk and Fhe ciphertext ct and output
Fhe.Dec(sk, ct).

wDFhe.Fake(dpk,m, r,m∗): Upon input the public key dpk, the original message
bit m, (3� + �′

c)-bit string randomness r, and the faking message bit m∗, do
the following:
1. Parse dpk := (pk, ctsk) and r = (r1, r2, r3, R4), where |ri| = � for i ∈ [3]

and |R4| = �′
c.

2. For i ∈ [3], set Ri = Fhe.Enc(pk, 1; ri).
3. If m = m∗, then set R∗

1 = R1, R∗
2 = R2, R∗

3 = R4, and r∗
4 = r3.

4. Else if m �= m∗, then set R∗
1 = R4, R∗

2 = R3, R∗
3 = R1, and r∗

4 = r2.
5. Output r∗ = (R∗

1, R
∗
2, R

∗
3, r

∗
4)

We now prove the scheme satisfies correctness, compactness, CPA security
and weak deniability.

Compactness and Security. Observe that the output of both wDFhe.DEnc and
wDFhe.Enc is a valid ciphertext of the underlying Fhe scheme. This is due to
property 3 of the special FHE which states that the FHE decryption algorithm
always outputs a valid bit, and due to the correctness of FHE evaluation which
implies correctness of bootstrapping. Together, these two properties ensure that
boot always outputs a valid ciphertext. Moreover, correctness of homomorphic
evaluation implies that the addition mod 2 operation is performed correctly, so
that the output of wDFhe.DEnc and wDFhe.Enc is a valid ciphertext of FHE.

Since the underlying FHE scheme satisfies compactness, it holds that the
ciphertext output by wDFhe.DEnc and wDFhe.Enc is also compact. Similarly,
due to property 5 which states that the scheme is circular secure, and since the
ciphertext of the underlying FHE satisfies semantic security, so does the cipher-
text output by wDFhe.DEnc and wDFhe.Enc. Thus, both schemes are compact
and secure as the underlying FHE scheme is.

Correctness. We start by proving correctness of the deniable encryption algo-
rithm wDFhe.DEnc. Parse r ∈ {0, 1}3�+�′

c as r = (r1, r2, r3, R4). Observe that:

1. Since Ri = Fhe.Enc(pk, 1; ri) for i ∈ [3], we have by correctness of the under-
lying Fhe, that R1, R2 and R3 are valid encryptions of 1.

Deniable Fully Homomorphic Encryption 663

2. By properties 3 and 4 which state that FHE decryption always outputs a
bit and this bit is biased to 0 with overwhelming probability when decryp-
tion is invoked with a truly random input, we have that boot(R4) is a valid
encryption of 0 with overwhelming probability.

Now, by correctness of FHE evaluation, we have that ct0 = boot(R1)⊕2boot(R2)
is a valid encryption of 0 and ct1 = boot(R4) ⊕2 boot(R3) is a valid encryption
of 1.

Next we prove correctness of wDFhe.Enc. Parse r ∈ {0, 1}�+3�′
c as r =

(R1, R2, R3, r4). Observe that:

1. Since R4 = Fhe.Enc(pk, 1; r4), we have that R4 is a valid encryption of 1.
2. As above, we have by properties 3 and 4 that boot(Ri) for i ∈ [3] are valid

encryptions of 0 with overwhelming probability.

Thus, again by correctness of FHE evaluation, we have that ct0 = boot(R1) ⊕2

boot(R2) is a valid encryption of 0 and ct1 = boot(R3) ⊕2 boot(R4) is a valid
encryption of 1.

Weak-Deniability. Next, we prove weak deniability of the construction. Fix
a security parameter λ, an original message m ∈ {0, 1}, and a faking message
m∗ ∈ {0, 1}. Let (dpk, dsk) ← wDFhe.Gen(1λ), and parse dpk := (pk, ctsk), dsk :=
sk.

Faking Case. First consider the distribution of (dpk,m∗, r,DEnc(dpk,m; r′)) in
the case of faking.
1. Select uniformly at random r′ ← {0, 1}3� × R�c .
2. Parse r′ := (r1, r2, r3, R4), where |ri| = � for i ∈ [3] and |R4| = �′

c.
3. For i ∈ [3], set Ri = Fhe.Enc(pk, 1; ri).
4. Let r∗ = wDFhe.Fake(dpk,m, r′,m∗).
5. By the faking algorithm r∗ =

(
R∗

1, R
∗
2, R

∗
3, r

∗
4) which is computed as fol-

lows:
(a) Case m = m∗:

R∗
1 = R1, R∗

2 = R2, R∗
3 = R4, r∗

4 = r3.

By property 2 which asserts that ciphertexts are pseudorandom, we
can explain R∗

1 and R∗
2 as uniform from the ciphertexts space R�c .

Here, R∗
3 = R4 is already a uniform element in R�c , and r∗

4 = r3 is a
uniform � bit string.

(b) Case m �= m∗:

R∗
1 = R4, R∗

2 = R3, R∗
3 = R1, r∗

4 = r2.

As above, we can explain R∗
2 and R∗

3 as uniform elements in R�c , and
R∗

1 = R4 and r∗
4 = r2 are already uniform.

6. The output of this hybrid is:
(
dpk,m∗, r∗ = (R∗

1, R
∗
2, R

∗
3, r

∗
4) , ct∗ = wDFhe.DEnc(dpk,m; r′)

)

664 S. Agrawal et al.

where ct∗ := ctm, ct0 = boot(R1) ⊕2 boot(R2) and ct1 = boot(R4) ⊕2

boot(R3).
Observe that ct∗ = wDFhe.Enc(dpk,m∗; r∗). Thus, the output of this
hybrid can be written as:

(
dpk,m∗, r∗ = (R∗

1, R
∗
2, R

∗
3, r

∗
4) , ct∗ = wDFhe.Enc(dpk,m∗; r∗)

)

where ct∗ := ctm∗ , ct0 = boot(R∗
1) ⊕2 boot(R∗

2), ct1 = boot(R∗
3) ⊕2

boot(R∗
4) and R∗

1, R
∗
2, R

∗
3 and r∗

4 are explained as uniform in R3�c×{0, 1}�.
Honest Case. Next, note that in the honest case r ← R3�c ×{0, 1}�, so the output

distribution is:
(
dpk,m∗, r = (R1, R2, R3, r4) , ct∗ = wDFhe.Enc(dpk,m∗; r)

)

where ct∗ := ctm∗ , ct0 = boot(R1) ⊕2 boot(R2), ct1 = boot(R3) ⊕2 boot(R4)
and R1, R2, R3 and r4 are sampled uniformly. Hence, the two distributions
are indistinguishable.

4.2 Fully Deniable FHE for Bits

Our compact public-key 1/δ-deniable3 fully homomorphic encryption scheme for
message space M = {0, 1}, DFhe = (Gen,DEnc,Enc,Eval,Dec,Fake), is described
below. We also provide an alternate construction with slightly different parame-
ters in the full version [1]. Recall that boot denotes the bootstrapping procedure
described in Definition 2.3 and ⊕2 denotes the homomorphic evaluation of addi-
tion mod 2 described in Definition 2.5). We let n = δ2.

DFhe.Gen(1λ) : Upon input the unary representation of the security parameter
λ, do the following:
1. Sample (pk, sk) ← Fhe.Gen(1λ), and ctsk ← Fhe.Enc(pk, sk).
2. Outputs dpk := (pk, ctsk), dsk := sk.

DFhe.Enc(dpk,m) : Upon input the public-key dpk, the message bit m, do the
following:
1. Parse dpk := (pk, ctsk)
2. Select r as follows:

(a) Select uniformly x1, . . . , xn ∈ {0, 1} such that
∑n

i=1 xi = m (mod 2).
(b) For i ∈ [n]: if xi = 1, then select ri ← {0, 1}�; else if xi = 0, select

Ri ← R�c .
3. For i ∈ [n] such that xi = 1, set Ri = Fhe.Enc(pk, 1; ri).
4. Output dct = ⊕2(boot(R1), . . . , boot(Rn))

DFhe.Eval(dpk, C, dct1, . . . , dctk): Upon input the public key dpk = (pk, ctsk), the
circuit C and the ciphertexts dct1, . . . , dctk, interpret dcti as Fhe ciphertext
cti for i ∈ [k], and output dct = Fhe.Eval(pk, C, ct1, . . . , ctk).

DFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, inter-
pret dsk and dct as Fhe secret key sk and Fhe ciphertext ct and output
Fhe.Dec(sk, ct).

3 We remind the reader that δ = δ(λ), but we drop the λ for readability.

Deniable Fully Homomorphic Encryption 665

DFhe.Fake(dpk,m, r,m∗): Upon input the public key dpk, the original message
bit m, randomness r, and the fake message m∗ do the following:
1. If m = m∗, output r∗ = r.
2. Parse dpk := (pk, ctsk) and r = (x1, . . . , xn, ρ1, . . . , ρn), where x1, . . . , xn ∈

{0, 1}, and for each i ∈ [n], if xi = 1, then |ρi| = �; else if xi = 0, |ρi| = �′
c.

3. Select uniform i∗ ∈ [n] such that xi∗ = 1. If there is no such i∗, output
“cheating impossible”; else:
(a) Set x∗

i∗ = 0 and ρ∗
i∗ = Fhe.Enc(pk, 1; ρi∗);

(b) For i ∈ [n] \ {i∗}, set x∗
i = xi and ρ∗

i = ρi.
4. Output r∗ = (x∗

1, . . . , x
∗
n, ρ∗

1, . . . , ρ
∗
n).

We now prove the scheme satisfies correctness, compactness, CPA security
and poly deniability. Compactness and security follow exactly as in Sect. 4.1.

Correctness. To argue correctness, we note that:

1. Since Ri = Fhe.Enc(pk, 1; ri) for i such that xi = 1, we have by correctness
of the underlying Fhe that Ri, and hence boot(Ri) are valid encryptions of 1
for all i ∈ [n] such that xi = 1.

2. By properties 3 and 4 which state that FHE decryption always outputs a bit
and this bit is biased to 0 with overwhelming probability when decryption
is invoked with a truly random input, we have that boot(Ri) for i such that
xi = 0 is valid encryption of 0 with overwhelming probability.

Hence, since
∑n

i=1 xi = m (mod 2), the (FHE evaluation of) addition mod 2 of
boot(Ri) for i ∈ [n] yields an encryption of m. Hence, the scheme encodes the
message bit correctly.

Deniability. Next, we prove 1/δ-deniability of the construction. Fix a security
parameter λ, an original message m ∈ {0, 1}, and a faking message m∗ ∈ {0, 1}.
Let (dpk, dsk) ← DFhe.Gen(1λ), and parse dpk := (pk, ctsk), dsk := sk. When the
original message m and the fake message m∗ are the same, the faked random-
ness r∗ is equal to the original randomness r. Thus in this case, m = m∗, the
distributions are identical:

(dpk,m∗, r,DFhe.Enc(dpk,m∗; r)) = (dpk,m∗, r∗,DFhe.Enc(dpk,m; r)).

When the original message m and the fake message m∗ are not the same,
observe that “cheating impossible” will be output only in case that xi = 0 for
all i ∈ [n], which occurs with probability 2−n. Assuming we are not in this case,
the output distribution is:

Faking Case. First consider the distribution of (dpk,m∗, r∗,DFhe.Enc(dpk,m; r))
in the case of faking, where r∗ ← DFhe.Fake(dpk,m, r;m∗).
1. Select uniform r := (x1, . . . , xn, ρ1, . . . , ρn), by,

(a) Select xi ← {0, 1} for i ∈ [n] such that
∑

i∈[n] xi = m (mod 2)
(b) For i ∈ [n], if xi = 1, select ρi ← {0, 1}�

(c) For i ∈ [n], if xi = 0, select ρi ← R�c

666 S. Agrawal et al.

2. Let r∗ = DFhe.Fake(dpk,m, r,m∗), that is r∗ = (x∗
1, . . . , x

∗
n, ρ∗

1, . . . , ρ
∗
n)

which is computed as follows:
(a) Select a uniform index i∗ ∈ [n] such that xi∗ = 1, i.e. i∗ ← {i|xi = 1}.
(b) For i ∈ [n], i �= i∗, set x∗

i = xi and ρ∗
i = ρi.

(c) Set xi∗ = 0, and ρ∗
i∗ = Fhe.Enc(pk, 1; ρi∗).

Intermediate Case. By property 2 of the special FHE, which asserts that cipher-
texts are pseudorandom, we can explain ρ∗

i∗ = Fhe.Enc(pk, 1; ρi∗) as uniform
element from the ciphertexts space R�c . The distribution of this hybrid is
(dpk,m∗, r′,DFhe.Enc(dpk,m; r)), where r′ = (x′

1, . . . , x
′
n, ρ′

1, . . . , ρ
′
n) is sam-

pled as follows:
1. Select xi ← {0, 1} for i ∈ [n] such that

∑
i∈[n] xi = m (mod 2)

2. Select a uniform index i′ ∈ [n] such that xi′ = 1 (i.e. i′ ← {i|xi = 1}),
and set x′

i′ = 0, and for all i ∈ [n] \ {i′} set x′
i = xi.

3. For i ∈ [n], if x′
i = 1, select ρ′

i ← {0, 1}�

4. For i ∈ [n], if x′
i = 0, select ρ′

i ← R�c

Honest Case. Note that in the honest case the distribution is
(dpk,m∗, r,DFhe.Enc(dpk,m∗; r)), where r = (x1, . . . , xn, ρ1, . . . , ρn) is sam-
pled as follows:
1. Select xi ← {0, 1} for i ∈ [n] such that

∑
i∈[n] xi = m∗ (mod 2).

2. For i ∈ [n], if xi = 1, select ρ′
i ← {0, 1}�

3. For i ∈ [n], if xi = 0, select ρ′
i ← R�c

The statistical distance between the two distributions used to sample
(x1, . . . , xn), in the honest case and in the intermediate/faking case, is 1√

n
.

Hence, any PPT adversary A can win the DnblGameb
A(λ) game with probability

at most 1√
n
, which is 1

δ by our choice of n.

5 Weakly Deniable FHE with Large Message Space

In this section, we provide our construction for weak deniable FHE for polyno-
mial size4 message space M, as in Definition 2.11. Let Fhe = (Gen,Enc,Eval,Dec)
be a special public-key fully homomorphic encryption for the message space M
with ciphertext space R�c , as in Definition 3.1, and boot(x) be the bootstrap-
ping procedure, described in Definition 2.3. We denote by S a strict subset of
the message space to which decryption of random elements is biased,5 by 1S the
indicator function for the set S = M \ S, described in Definition 2.7, and by
s a fixed element in S. Recall that ⊕2 denotes the homomorphic evaluation of
addition mod 2 described in Definition 2.5 and select denotes the selector circuit
described in Definition 2.6.

For reading convenience, we denote by lowercase r, the �-bit string random-
ness that is input to an Fhe.Enc algorithm, and by upper case R, the elements in
R�c , where R�c is the co-domain of the FHE encryption algorithm. We denote
by �′

c the bit length of elements in R�c (that is, �′
c = �c log2(|R|)�). We index

the messages in the message space as M = {m0, . . . ,mμ}.

4 Polynomial in the security parameter. That is |M| = poly(λ).
5 Note that this exists from property 4 of the special Fhe.

Deniable Fully Homomorphic Encryption 667

Our (public-key) weakly deniable fully homomorphic encryption scheme for
message space M wDFhe = (Gen,DEnc,Enc,Eval,Dec,Fake) is described as fol-
lows:

wDFhe.Gen(1λ) : Upon input the unary representation of the security parameter
λ, do the following:
1. Sample (pk, sk) ← Fhe.Gen(1λ), and ctsk ← Fhe.Enc(pk, sk).
2. Outputs dpk := (pk, ctsk), dsk := sk

wDFhe.DEnc(dpk,mk; r): Upon input the public key dpk, a message mk ∈ M
and ((4� + �′

c)μ)-bit string randomness r, do the following:
1. Parse the input.

dpk := (pk, ctsk), r = (r1, . . . , rμ, (r1,1, r1,2, r1,3, R̂1,4), . . . , (rμ,1, rμ,2, rμ,3,

R̂μ,4)) where |ri| = |ri,j | = � and |R̂i,4| = �′
c for i ∈ [μ], j ∈ [3].

2. Generate ciphertexts for every possible message.
For i ∈ [μ], set cti = Fhe.Enc(pk,mi; ri).

3. Generate ciphertexts for “selector” bits.
(a) For every i ∈ [μ], j ∈ [3], set R̂i,j = Fhe.Enc(pk, s; ri,j).
(b) For every i ∈ [μ], j ∈ [4], set Ri,j = Fhe.Eval(pk,1S , R̂i,j).
(c) We compute ciphertexts for selector bits 0 and 1 for every index as

follows. For i ∈ [μ], compute

cti0 = boot(Ri,1) ⊕2 boot(Ri,2), cti1 = boot(Ri,4) ⊕2 boot(Ri,3)

(d) We let the kth message to be selected by setting it’s selector bit to 1,
and all others to 0 as follows. For every i ∈ [μ] if i �= k, set ctseli = cti0;
else if i = k, set ctseli = cti1.

4. Evaluate selector circuit on ciphertexts.
Compute and output dct = select(ct1, . . . , ctμ, ctsel1 , . . . , ctselμ), that is dct =
∑

i∈[μ]

(
ctseli ⊗ cti

)
.

wDFhe.Enc(dpk,mk; r) : Upon input public-key dpk, a message mk ∈ M, and
((2� + 3�′

c)μ)-bit string randomness r, do the following:
1. Parse the input.

dpk := (pk, ctsk), r = (r1, . . . , rμ, (R̂1,1, R̂1,2, R̂1,3, r1,4), . . . , (R̂μ,1, R̂μ,2,

R̂μ,3, rμ,4)) where |ri| = |ri,4| = � and |R̂i,j | = �′
c for i ∈ [μ], j ∈ [3].

2. Generate ciphertexts for every possible message.
For i ∈ [μ], set cti = Fhe.Enc(pk,mi; ri).

3. Generate ciphertexts for “selector” bits.
(a) For every i ∈ [μ], set R̂i,4 = Fhe.Enc(pk, s; ri,4).
(b) For every i ∈ [μ], j ∈ [4], set Ri,j = Fhe.Eval(pk,1S , R̂i,j).
(c) We compute ciphertexts for selector bits 0 and 1 for every index as

follows.
For i ∈ [μ], compute

cti0 = boot(Ri,1) ⊕2 boot(Ri,2), cti1 = boot(Ri,3) ⊕2 boot(Ri,4).

(d) We let the kth message to be selected by setting it’s selector bit to 1,
and all others to 0 as follows. For every i ∈ [μ] if i �= k, set ctseli = cti0;
else if i = k, set ctseli = cti1.

668 S. Agrawal et al.

4. Evaluate selector circuit on ciphertexts.
Compute and output dct = select(ct1, . . . , ctμ, ctsel1 , . . . , ctselμ), that is
∑

i∈[μ]

(
ctseli ⊗ cti

)
.

wDFhe.Eval(dpk, C, dct1, . . . , dctk): Upon input the public key dpk = (pk, ctsk),
the circuit C and the ciphertexts dct1, . . . , dctk, interpret dcti as Fhe cipher-
text cti for i ∈ [k], and output dct = Fhe.Eval(pk, C, ct1, . . . , ctk).

wDFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, inter-
pret dsk and dct as Fhe secret key sk and Fhe ciphertext ct and output
Fhe.Dec(sk, ct).

wDFhe.Fake(dpk,mk, r,mk∗): Upon input the public key dpk, the original mes-
sage mk ∈ M, ((4� + �c)μ)-bit string randomness r and the fake message
mk∗ , do the following:
1. Parse dpk := (pk, ctsk), and

r := (r1, . . . , rμ, (r1,1, r1,2, r1,3, R̂1,4), . . . , (rμ,1, rμ,2, rμ,3, R̂μ,4)), where
|ri| = |ri,j | = � and |R̂i,4| = �′

c for i ∈ [μ], j ∈ [3].
2. For all i ∈ [μ], set r∗

i = ri.

3. For every i ∈ [μ], j ∈ [3], set R̂i,j = Fhe.Enc(pk, s; ri,j).
4. For every i ∈ [μ] \ {k, k∗} set

R̂∗
i,1 = R̂i,1, R̂∗

i,2 = R̂i,2, R̂∗
i,3 = R̂i,3, r∗

i,4 = ri,4.

5. If k = k∗, then set

R̂∗
k,1 = R̂k,1, R̂∗

k,2 = R̂k,2, R̂∗
k,3 = R̂k,4, r∗

k,4 = rk,3;

Else if k �= k∗, for every i ∈ {k, k∗} set

R̂∗
i,1 = R̂i,4, R̂∗

i,2 = R̂i,3, R̂∗
i,3 = R̂i,1, r∗

i,4 = ri,2.

6. Output
r∗ = (r∗

1 , . . . , r
∗
μ, (R̂∗

1,1, R̂
∗
1,2, R̂

∗
1,3, r

∗
1,4), . . . , (R̂

∗
μ,1, R̂

∗
μ,2, R̂

∗
μ,3, r

∗
μ,4))

Remark 5.1. We observe that by using the circuit Mux instead of the circuit
select, we can use smaller randomness – in particular, we can achieve |r| =
μ� + 2 log2(μ)�′

c.

In the full version [1], we prove the scheme satisfies correctness, compactness,
CPA security and weak deniability. Due to space constraints, we provide our
construction of compact public-key 1/δ-deniable fully homomorphic encryption
scheme for polynomial sized message space in the full model in the full version
of this paper [1].

Acknowledgment. We are grateful to Daniele Micciancio for very insightful discus-
sions about bootstrapping, and helpful comments that helped us improve the quality
of this writeup. We thank Vinod Vaikuntanathan and Aayush Jain for suggesting the
use of a key-chain rather than key-cycle to get rid of circular security for the case of
levelled FHE. Research of the first author is supported by the DST “Swarnajayanti”
fellowship, an Indo-French CEFIPRA project and the CCD Centre of Excellence. Part

Deniable Fully Homomorphic Encryption 669

of the research corresponding to this work was conducted while visiting the Simons
Institute for the Theory of Computing. Research of the second author is supported
in part by DARPA under Agreement No. HR00112020023. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Government or DARPA.

References

1. Agrawal, S., Goldwasser, S., Mossel, S.: Deniable fully homomorphic encryption
from lwe. Cryptology ePrint Archive, Report 2020/1588 (2020). https://eprint.
iacr.org/2020/1588

2. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 15

3. Anonymous. Removing circularity for levelled fhe. Personal Communication (2020)
4. Apon, D., Fan, X., Liu, F.-H.: Deniable attribute based encryption for branching

programs from LWE. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
299–329. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 12

5. Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Lower and upper bounds
for deniable public-key encryption. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 125–142. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 7

6. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. J. ACM (JACM) 65(6), 1–37 (2018)

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

8. Brakerski, Z.: Fundamentals of fully homomorphic encryption. On the Work of
Shafi Goldwasser and Silvio Micali. In: Providing Sound Foundations for Cryptog-
raphy (2019)

9. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryp-
tion: Rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz,
D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 407–437. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36033-7 16

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theor. (TOCT) 6(3),
1–36 (2014)

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

12. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS
(2014)

13. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052229

14. Canetti, R., Park, S., Poburinnaya, O.: Fully deniable interactive encryption. In:
Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 807–
835. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 27

https://eprint.iacr.org/2020/1588
https://eprint.iacr.org/2020/1588
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-53644-5_12
https://doi.org/10.1007/978-3-662-53644-5_12
https://doi.org/10.1007/978-3-642-25385-0_7
https://doi.org/10.1007/978-3-642-25385-0_7
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-030-36033-7_16
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1007/978-3-030-56784-2_27

670 S. Agrawal et al.

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based
E-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 245–
265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 16

16. Dachman-Soled, D.: On minimal assumptions for sender-deniable public key
encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 574–591.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 33

17. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46497-7 23

18. De Caro, A., Iovino, V., O’Neill, A.: Deniable functional encryption. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol.
9614, pp. 196–222. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49384-7 8

19. Garg, S., Gentry, C., Halevi, V., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

20. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 156–181. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 6

21. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity (2009). crypto.stanford.edu/craig

22. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz,
D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 438–464. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36033-7 17

23. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

24. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: STOC (2013)

25. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: STOC (2021)

26. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-
trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49387-8 17

27. Meng, B.: A secure internet voting protocol based on non-interactive deniable
authentication protocol and proof protocol that two ciphertexts are encryption of
the same plaintext. J. Netw. 4(5), 370–377 (2009)

28. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rog-
away, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22792-9 30

29. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC (2014)

30. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7 25

https://doi.org/10.1007/978-3-319-29360-8_16
https://doi.org/10.1007/978-3-642-54631-0_33
https://doi.org/10.1007/978-3-662-46497-7_23
https://doi.org/10.1007/978-3-662-46497-7_23
https://doi.org/10.1007/978-3-662-49384-7_8
https://doi.org/10.1007/978-3-662-49384-7_8
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-030-36033-7_17
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-642-22792-9_30
https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-13013-7_25

Lattice Cryptanalysis

Counterexamples to New Circular
Security Assumptions Underlying iO

Sam Hopkins1(B), Aayush Jain2, and Huijia Lin3

1 UC Berkeley, Berkeley, USA
hopkins@berkeley.edu

2 UCLA, Center for Encrypted Functionalities, and NTT Research,
Los Angeles, USA

aayushjain@cs.ucla.edu
3 UW, Los Angeles, USA

rachel@cs.washington.edu

Abstract. We study several strengthening of classical circular security
assumptions which were recently introduced in four new lattice-based
constructions of indistinguishability obfuscation: Brakerski-Döttling-
Garg-Malavolta (Eurocrypt 2020), Gay-Pass (STOC 2021), Brakerski-
Döttling-Garg-Malavolta (Eprint 2020) and Wee-Wichs (Eprint 2020).

We provide explicit counterexamples to the 2-circular shielded ran-
domness leakage assumption w.r.t. the Gentry-Sahai-Waters fully homo-
morphic encryption scheme proposed by Gay-Pass, and the homomorphic
pseudorandom LWE samples conjecture proposed by Wee-Wichs. Our
work suggests a separation between classical circular security of the kind
underlying un-levelled fully-homomorphic encryption from the strength-
ened versions underlying recent iO constructions, showing that they are
not (yet) on the same footing.

Our counterexamples exploit the flexibility to choose specific imple-
mentations of circuits, which is explicitly allowed in the Gay-Pass
assumption and unspecified in the Wee-Wichs assumption. Their indis-
tinguishabilty obfuscation schemes are still unbroken. Our work shows
that the assumptions, at least, need refinement. In particular, generic
leakage-resilient circular security assumptions are delicate, and their
security is sensitive to the specific structure of the leakages involved.

1 Introduction

Indistinguishability obfuscation (iO) for general programs computable in poly-
nomial time [7] enables turning programs into unintelligible ones while preserving
their functionality. iO is a fundamental primitive and has found many applica-
tions in cryptography and beyond. As such, it is extremely important to base the
feasibility of iO on simple and well-studied hardness assumptions, and to thor-
oughly understand the objects and assumptions that imply iO. Current construc-
tions of iO can be broadly categorized into two schools: those using multilinear
or bilinear pairing, and those without pairing. Very recently, we have seen excit-
ing advances on both fronts. Using pairing, Jain, Lin, and Sahai [31] constructed
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 673–700, 2021.
https://doi.org/10.1007/978-3-030-84245-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_23

674 S. Hopkins et al.

iO from four well-studied assumptions: Learning With Errors (LWE) [40], Deci-
sional Linear assumption (DLIN) [6] over bilinear maps, Learning Pairity with
Noise over general fields [28], and Pseudo-Random Generators in NC0 [24]. With-
out pairing, three works [11,20,42], following [10], based iO on new types of
circular security assumptions on integer lattices.

In this work, we focus on these recent constructions [10,11,20,42] and the
new circular security assumptions they are based on. These constructions are
very interesting because of their novel approaches and distinctive features. First,
they are built solely on integer lattices (instead of drawing hardness from mul-
tiple cryptosystems) and therefore are possibly secure against quantum attacks.
Second, their security assumptions are similar in flavor to the classical circular
security heuristic [9,15], which by now has been extensively studied and widely
applied, most notably to un-leveled Fully Homomorphic Encryption (FHE) using
Gentry’s boostrapping mechanism [21].

At the same time, the new assumptions are stronger than classical circular
security in non-trivial ways. Consider the Gay-Pass assumption. Classical circu-
lar security w.r.t. a public key encryption scheme postulates that it is Chosen-
Message-Attack (CPA) secure, even in the presence of an encrypted key-cycle
that possibly uses other encryption schemes. The Gay-Pass assumption general-
izes this blueprint to consider leakage-resilient CPA security: it says that if an
encryption scheme is CPA secure when the adversary has access to certain leak-
age on the randomness of encryption, then additionally publishing an encrypted
key-cycle should not harm this leakage-resilient CPA security. Concretely, their
iO scheme assumes Shielded Randomness Leakage (SRL) resilience in the pres-
ence of 2-circular encryption, w.r.t. the Gentry-Sahai-Waters FHE scheme [23]
and a Packed version of Regev’s encryption [39,40]1. The work [11] proposes
a variant of the Gay-Pass assumption with a key-randomness cycle. Wee and
Wichs [42] take a different approach and construct iO based on LWE and a new
conjecture, Homomorphic Pseudorandom LWE Samples (HPLS). Though this
conjecture does not directly follow the circular security blueprint, close exami-
nation reveals a circular security flavor, involving the dual-GSW homomorphic
commitment [23,25] and a Pseudo-Random Function (PRF).

Although stronger and more complex than the classical circular security,
these new assumptions were formulated in a principled way – indeed, on the
surface, they seem to place iO on qualitatively similar footing as un-leveled
FHE! While exciting and encouraging, when it comes to new assumptions, it is
important to be cautious and imperative to conduct cryptanalysis to develop
deeper understandings. That is the purpose of our work.

Our Results. We present counterexamples to the Gay-Pass and Wee-Wichs
assumptions. In both cases, we consider the GSW FHE scheme and the dual-
GSW homomorphic commitment scheme for evaluating arithmetic circuits con-
sisting of arithmetic addition, multiplication, and multiplication by constant
gates. We stress that both schemes natively support these arithmetic opera-
tions [23]. In particular, in our counterexample to the Wee-Wichs conjecture we
1 Or alternatively, the Damg̊ard-Jurik encryption [17,38].

Counterexamples to New Circular Security Assumptions 675

will leverage multiplication by a large constant, 2−1 mod p (which is not needed
for the counterexample to Gay-Pass assumption).

– First, we show that the Gay-Pass assumption is false when instantiated with
the GSW FHE scheme by presenting a concrete attack.

– Second, Wee and Wichs’s HPLS conjecture is parameterized with a sampling
algorithm D that takes random coins τ and produces a random LWE secret
s ← Z

n
p and an error vector e according to some error distribution. We show

the conjecture is sensitive to the circuit implementation of D, namely, for every
D, there is an arithmetic circuit CD implementing it such that the HPLS con-
jecture instantiated with CD is false. Again, we present a concrete attack.

Notably, classical circular security plausibly holds w.r.t. both the modified
GSW and dual GSW schemes. Hence, our work gives the first examples that sep-
arate classical circular security and the strengthened versions of circular security
underlying recent iO schemes, showing evidence that they are not (yet) on the
same footing.

Our counterexamples exploit some flexibility in the implementation details of
the Gay-Pass and Wee-Wichs assumptions. The choice of such implementation is
explicitly given to the adversary in the Gay-Pass assumption and is left unspeci-
fied in the Wee-Wichs conjecture. It remains possible that other choices of imple-
mentation of circuits do result in an unbroken assumption. Nevertheless, our work
shows that this will, at least, require refinement of the assumptions, and in partic-
ular that generic circular security assumptions/definitions are delicate, and their
security is actually sensitive to the specific structure of the leakages involved.

Next, we describe the Gay-Pass and Wee-Wichs assumptions and our coun-
terexamples in more detail.

Counterexample to the Gay-Pass assumption. As stated in Gay and
Pass [20], the 2-circular assumption w.r.t. two public key encryption schemes
Enc1 and Enc2 that are Chosen-Plaintext-Attack (CPA) secure postulates that

– Classical 2 -circular security assumption w .r .t . Enc1 ,Enc2 : Enc1 is (still)
CPA secure – that is, honestly generated ciphertexts Enc1pk1(m

0) and
Enc1pk1(m

1) for any two chosen messages m0,m1 are indistinguishable – when
a length-two encrypted key cycle Enc1pk1(sk

2), Enc2pk2(sk
1) is published.

Classical circular security has been extensively studied as encrypted key cycles of
different lengths naturally arise in applications such as encrypted storage system,
anonymous credentials [15], and un-leveled FHE [21]. So far, though counterex-
amples to 2-circular security or 1-circular security for bit encryption2 (where
the key cycle has length 1 {Encpk(ski)}i∈[|sk|]) have been constructed (see e.g.
[1,8,16,26,27,32,33,35,41,43]), no attacks have been shown against any “natu-
ral” encryption schemes. Therefore, classical circular security is still commonly
assumed w.r.t. natural encryption schemes such as homomorphic encryption
[12,14,23], Regev’s encryption [40] etc.
2 Crafting a counterexample for 1-circular security for string encryption is trivial.

676 S. Hopkins et al.

Gay and Pass extend 2-circular security to consider CPA security in the
presence of the so-called shielded randomness leakage (SRL). More specifically,
shielded randomness leakage is only defined w.r.t. FHE schemes with certain
properties including randomness homomorphism. The leakage is captured by
an oracle OSRL (described shortly below) and reveals certain information of the
randomness of encryption. A public-key FHE scheme Enc1 is SRL-secure if CPA
security holds even if the adversary has access to OSRL. Then the 2-circular SRL
security assumption w.r.t. Enc1,Enc2 where Enc1 is SRL secure and Enc2 is CPA
secure, states that:

– 2 -circular SRL security assumption w .r .t .Enc1 ,Enc2 : Enc1 is (still) SRL
secure – that is, honestly generated ciphertexts Enc1pk1(m

0) and Enc1pk1(m
1)

for any two chosen messages m0,m1 are indistinguishable, even if the adver-
sary has access to OSRL – when a length two encrypted key cycle Enc1pk1(sk

2),
Enc2pk2(sk

1) is published.

The Gay-Pass iO scheme relies on the above assumption w.r.t. the GSW FHE
scheme as Enc1 and the packed Regev encryption as Enc2. Notably, they prove
that the GSW scheme is SRL-secure based on LWE.

Let’s now understand what shielded randomness leakage is. In the plain SRL
security game (without encrypted key cycles), the adversary is given a collection
of challenge ciphertexts {cti = Enc1pk1(m

b
i ;Ri)}i encrypting one of the two sets

of chosen messages, {m0
i }i or {m1

i }i, for a random b, using randomness {Ri}i.
In addition, the adversary A can interact with the SRL oracle OSRL as follows
to help it distinguish.

– The OSRL Oracle (Simplified) gives leakage on the message and randomness
{mb

i ;Ri}i underlying the challenge ciphertexts as follows:
1. Upon invocation, OSRL samples a fresh encryption ct� = Enc1pk1(0;R�) of

zero using randomness R� and sends ct� to the adversary3.
2. A chooses a circuit C and an output y.
3. OSRL homomorphically evaluates C on ct� and the challenge ciphertexts

{cti}i to obtain an output ciphertext ctC = HEval(C, ct�, {cti}) that
encrypts y′ with randomness RC (computed by the randomness homo-
morphism property of HE from {mb

i ;Ri}i). It returns R� −RC if y = y′,
or nothing if y �= y′.

In the 2-circular SRL-security game, the adversary is additionally given an
encrypted key cycle Enc1pk1(sk

2), Enc2pk2(sk
1) along with the challenge ciphertexts

{cti} at the beginning. We remark that for security of the ensuing Gay-Pass
iO construction it is crucial that the adversary is allowed to choose C adap-
tively. This means in the plain SRL security game, C may depend on ct�, {cti},
and, in the 2-circular SRL security game, additionally on the encrypted cycle
Enc1pk1(sk

2), Enc2pk2(sk
1). Indeed, the security reduction from iO to the 2-circular

3 More concretely for the GSW scheme, this encryption of zero is extra noisy, meaning
the magnitude of entries of R� is large enough to smudge entries of RC below.

Counterexamples to New Circular Security Assumptions 677

SRL security chooses such a “dependent” C. Looking ahead, our counterexample
also crucially exploits this adaptivity.

Our counterexample: We show that the 2-circular SRL security assumption
is false w.r.t. the GSW FHE scheme in [23]. Let us now give more details.

Our Ideas In a Nut shell: Given that (modified) GSW is both SRL-secure
and plausibly circular secure, the attack must simultaneously leverage the
shield-randomness leakage R� − RC and the encrypted key cycle Enc1pk1(sk

2),
Enc2pk2(sk

1). Recall that the attack can adaptively choose the circuit C depend-
ing on the key cycle, ct�, and {cti}, meaning they can be hardcoded in C.
Observe also that the input to C is ({mb

i}, sk2), and hence C can compute as an
intermediate value sk1 and can also “access” R� (by decrypting Enc2pk2(sk

1) and
ct�). Since C can “access” both R� and {mb

i}, our attack carefully engineers C
so that homomorphic evaluation of C produces an output ciphertext ctC with
randomness RC correlated with (R�, {mb

i}), and then the shield randomness
leakage R� − RC reveals information of b. More specifically, the attack creates
correlation between the parity bit of noises and values by carefully engineering
C using the following correlation-inducing gadget circuits.

– Correlation Gadget: The gadget circuit G(x, 0) multiplies x with 0 and pro-
duces a fixed output of 0. Homomorphically evaluating G on GSW ciphertexts
ct of x and ct0 of 0 produces a new ciphertext ct′ = AR′ of zero of the fol-
lowing form:

ct = AR + xG, ct0 = AR0
HEval ×−→ ct′ = AR′, R′ = R · G−1(ct0) + xR0

Consider an attack that chooses a circuit C which first computes x = f(mb
i , sk

2)
and then the above G(x, 0) (f is specified shortly below). The attack receives
from the SRL oracle leakage

R∗ + R · G−1(ct0) + xR0 .

To learn the bit b, we want to 1) correlate x with R∗ and b, and 2) eliminate
the middle term R · G−1(ct0).

– We achieve the second by finding a vector v ∈ {0, 1}m such that G−1(ct0)·v =
0 mod 2. This is possible with probability close to 1/2 as G−1(ct0) is a pseu-
dorandom binary matrix and hence is non-singular mod 2 with probability
close to 1/2.

– We achieve the first by letting the function f compute b · eR∗v mod 2.
Observe that this is computable since homomorphically decrypting ct∗ gives
exactly eR∗. One can then further multiply b and v, followed by modulo 2.

This means the attack can learn

z = R∗v + b · (eR∗v)R0v mod 2 .

Let us observe the difference between the cases when b = 0 or 1. If b = 0, z =
R∗v mod 2which is random sinceR∗ is randomand independent of v. On the other

678 S. Hopkins et al.

hand, if b = 0, z = R∗v + (eR∗v)R0v mod 2, which satisfies e · z = 0 mod 2 if
eR0v = 1. The latter condition holds with probability 1/2 over the random choice
of R0. This difference is sufficient for creating a distinguishing attack: Repeat the
above many times to collect different zi w.r.t. to different ct∗i = BR∗

i , and the
same ct0 = BR0. If b = 0, all zi’s are random, whereas if b = 1, all zi’s satisfy
e · zi = 0 mod 2 conditioned on the event eR0v = 1 of probability 1/2.

Please see Sect. 5.1 for how we construct the challenge circuit C and other
details in the attack. We note that though our attack is described w.r.t. GSW
FHE for arithmetic circuits, it can be easily translated into an attack w.r.t.
GSW FHE for Boolean circuits. In particular, the correlation gadget circuit
will compute homomorphic AND which translates to computing homomorphic
multiplication in GSW and the rest of the attack is the same.

Counterexample to the Wee-Wichs assumption. Wee and Wichs [42]
take a different approach, constructing iO assuming LWE and the ability to
obliviously generate LWE samples without knowing the corresponding secrets.
They then proposed a heuristic mechanism for oblivious LWE sampling, using
the dual-GSW homomorphic commitment and any Pseudo-Random Function
(PRF). They formulated a concrete conjecture, called the Homomorphic Pseu-
dorandom LWE Samples conjecture, to capture the security of their mechanism.
Let us now recall their conjecture.

The Dual GSW Homomorphic Commitment Scheme The scheme is a variant of
the homomorphic encryption/commitment schemes of [23,25] with the feature
that one can homomorphically evaluate a function with a vector output f :
{0, 1}� → Z

m
p , and the decommitment to the output commitment to f(x) is

shorter than m. Given a public random matrix A ∈ Z
m×n
p where m � n, a

commitment C to an input x ∈ {0, 1}� is

C = (AR1 + x1G + E1, · · · ,AR� + x�G + E�)

where Ri ← Z
n×m log q
p , Ei ← χm×m log q, and G is the gadget matrix.

The key difference from [23,25] are: 1) the matrix A is a thin/tall matrix,
whereas in GSW A is fat/short, 2) Ri is fat/short and uniformly sampled,
whereas in GSW, they are square matrices consisting of small entries, and 3)
because of the shapes of matrices ARi is far from (pseudo)random and hence
additional noises Ei are added. On the other hand, the hiding property of
the commitments still follows directly from LWE, and the same homomorphic
evaluation procedure applies. For any Boolean function f : {0, 1}� → {0, 1},
one can homomorphically derive a commitment Cf = ARf + f(x)G + Ef .
Additionally, using the same “packing” procedure, one can homomorphically
evaluate g : {0, 1}� → Z

m
p with a vector output to derive a commitment

Cg = Arg + g(x) + eg. Observe that the opening to this output commitment is
rg of length n log p � m.

The Homomorphic Pseudorandom LWE Samples (HPLS) conjecture considers
the following two distributions parameterized by a PRF PRF.

∀β ∈ {0, 1}, DIST(β) → ({di = Aŝi + êi}i∈[Q],A,C, {si}i∈[Q]

)

Counterexamples to New Circular Security Assumptions 679

where the random variables are sampled as follows: 1) {di} are fresh LWE sam-
ples with secret ŝi ← Z

n
p and noise êi ← χm, 2) C is a dual-GSW commitment

to a randomly sampled PRF key k and the bit β, and 3) each si is derived from
homomorphically evaluating the following computation gi(k, β): the function gi

first evaluates PRF to obtain random bits τi, then uses them to sample random
LWE secret sPRFi and noise ePRFi ← χm

PRF according to a sampling algorithm D,
and finally outputs a vector AsPRFi + ePRFi + βdi.

gi(k, β) : i) compute τi ← PRF(k, i) ii) sample (sPRFi , ePRFi) ← D(τi)

iii) compute and output AsPRFi + ePRFi + βdi = A(sPRFi + βŝi) + (ePRFi + βêi)

Cgi = HEval(gi,C) = ArEval
i + gi(k, β) + eEvali

= A (rEval
i + sPRFi + βŝi)

︸ ︷︷ ︸

si

+(ePRFi + βêi + eEvali)
︸ ︷︷ ︸

ei

The HPLS conjecture states that for appropriate settings of parameters, in
particular when the magnitude of the noises satisfy ePRFi � êi � eEvali , there is
a choice of PRF such that DIST(0) and DIST(1) are indistinguishable.

Observe that given a sample from the distribution, one can easily compute
the noise ei in Cgi

by using the opened secret vectors si. Then, the circular
security nature of the HPLS conjecture lies in that on one hand we rely on
the PRF security to argue that ePRFi smudges βêi + eEvali , otherwise dual-GSW
security is broken, on the other hand, we rely on the dual-GSW security to argue
that the PRF key k remains hidden.

Our Counterexample. Our counterexample states that when using dual-GSW for
arithmetic computation, for every sampling algorithm D used in the second step
of gi’s (that converts random bits τ to a random LWE secret vector s and an
error vector e of some distribution χPRF) there is an arithmetic circuit CD that
implements D, such that, for every PRF PRF (and every circuit implementation
of PRF), the distributions DIST(0) and DIST(1) are distinguishable. In short,
the HPLS conjecture is false for every PRF and every sampling algorithm D, if
the circuit implementation of D is allowed to be arbitrarily chosen.

Our Ideas In a Nutshell: Our counterexample attacks the noise {ei = (ePRFi +
βêi+eEvali)} that can be derived from a sample of the distribution. To distinguish
between β = 0 or 1, our idea is to create correlation between the parity of
ePRFi [1] and eEvali [1], so that ei[1] mod 2 reveals information about β. We do so
by carefully crafting the circuit CD using two gadget circuits described below.

– Even Gadget: G1(x) implements the identity function on a single element
x. It first multiplies x by 1/2, and then adds x/2 with itself to get back
x (computation over Zp). Homomorphically evaluating G1 on a dual-GSW
commitment ct = AR + xG + E to x produces a commitment C′ = AR′ +
xG + E′ with even errors E′.

C = AR + xG + E
HEval × 1

2−→ C′′ = AR′′ +
x

2
G + E′′

HEval +−→ C′ = AR′ + xG + E′, where E′ = 2E′′

680 S. Hopkins et al.

– Correlation Gadget: The second gadget circuit G2(x, 1) first computes G1(x)
to get x, and then multiplies it with 1. Homomorphically evaluating G2 on
dual-GSW commitment C to x and C1 to 1 produces a new commitment
C′ = AR′ + xG + E′ of x where the parity of E′[1, 1] is correlated with x if
E1[1, 1] is odd, where E1 is the noise in C1.

ct = AR + xG + E
HEval G1−→ ct′′ = AR′ + xG + (2E′′)

HEval ×(ct1=AR1+G+E1)−→ ct′ = AR′ + xG + E′, E′ = 2E′′G−1(ct1) + xE1

Using them, we create correlation between ePRFi [1] mod 2 and eEvali [1] mod 2.
Before we can declare success, we must resolve two other issues. First, the

correlation created by the second gadget is probabilistic, depending on the par-
ity of noise E1[1, 1] embedded in commitment C1. This is not too much of a
problem since C1 is reused for all index i and hence with probability 1/2, we
see an observable pattern in all ei. Second, the homomorphic evaluation of βdi

is outside the control of CD and its noise will be added to the final output of
gi. We overcome the issue by observing that noises resulting from this homo-
morphic evaluation induces an over-determined linear system over the noises Eβ

in the commitment to β. Thus, we can use linearity testing to help the attack
distinguish.

Possible Extension. One natural follow-up question is whether our techniques
can be extended to directly attack these recent iO constructions [10,11,20,42],
beyond the circular security assumptions they rely on. On this front, we think
that our attack ideas can be extended to break the security of the iO scheme
of [10] (and possibly its followups [11,20]), if one is allowed to manipulate the
implementation of the underlying FHE scheme (e.g., using odd noises to generate
the public key of the GSW FHE scheme) and the implementation of circuits
computed (e.g., the circuit for computing mod). However, in this work, we focus
only on the assumptions, and leave direct attacks to the schemes as future work.

A Perspective. First, our attacks highlight the importance of building schemes
from well-founded assumptions. However, in cases where existing techniques are
far from reaching this goal, one way of making progress is through cycles of
proposals and attacks, and a measure of progress is the simplicity of the proposed
assumptions, and whether they are natural and connected to well-studied areas
in computer science. For instance, the recent line of iO constructions [4,5,19,29,
30,34] started with assuming new assumptions, and eventually led to the first iO
construction [31] based on four well-founded assumptions – LWE, the decision
linear assumption over symmetric key pairing, LPN over large fields, and PRG
in NC0.

At this moment, we still lack good understanding on the front of construct-
ing iO solely from lattices (or constructing post-quantum secure iO). The works
of [10,11,20,42] proposed refreshing approaches and ideas. The purpose of our
work, through counterexamples, is finding weak points in these new approaches,
so that, they can be addressed and the assumptions can be refined in future

Counterexamples to New Circular Security Assumptions 681

works. In particular, a main lesson from our counterexamples is that when work-
ing with leakage of noises in LWE, it is important to examine the specific leakage
carefully.

Other iOConstructions. Our work focuses on the new types of circu-
lar security assumptions/hard problems underlying recent iO constructions
of [10,11,20,42]. Prior to their work, Agrawal [2] gave an iO construction based
on noisy linear functional encryption and proposed a candidate noisy linear func-
tional encryption based on new types of NTRU assumptions. The work of [3]
cryptanalyzed of the new NTRU assumptions and further refined them. There
are many iO constructions based on multilinear maps, which can be instantiated
from lattices (see references in [31]). Though all known multilinear map instan-
tiation have been attacked, there are still iO candidates based on them that are
unbroken, for instance [18]. Furthermore, Gentry, Jutla and Kane [22] proposed
an iO candidate using tensor products. Finally, using bilinear pairing, a line of
constructions [4,5,19,29,30,34] recently led to the first iO construction by [31]
based on four well-founded assumptions – LWE, the decision linear assumption
over symmetric key pairing, LPN over large fields, and PRG in NC0.

2 Preliminaries

We start by recalling the security definitions that will be useful for the rest of
the paper.

2.1 Security Definitions Introduced by Gay-Pass

We now recall the notion of O-leakage resilience property of a public key encryp-
tion scheme, PKE. A PKE scheme satisfies O-leakage resilience property if it is
hard for a computationally efficient adversary to guess the challenge bit even in
presence of valid oracle queries from the oracle O, which may potentially leak
information about the challenge message as well as the randomness.

Definition 1 (O-leakage resilient security). We say that a PKE = (Setup,
Enc,Dec) scheme satisfies O-leakage resilience security if for every stateful non-
uniform ppt adversaries A, there exists some negligible function negl(·) such that
for λ ∈ N, Pr[ExptPKEλ,A = 1] ≤ 1

2 + negl, where the experiment ExptPKEλ,A is defined
as follows4:

ExptPKEλ,A =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(pk, sk) ← Setup(1λ)
(m0,m1) ← A(pk), b ← {0, 1}

m∗ = mb, r ← {0, 1}∗

ct = Enc(pk,m∗; r); b′ ← AO(pk,m ∗,r)(ct)
Return 1 if |m0| = |m1|, b′ = b and O did not return ⊥; 0 otherwise

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

We say that a PKE scheme is secure if it is not given access to any oracle in the
same experiment.
4 In the definition below and otherwise, we denote by shorthand r ← {0, 1}∗ to mean

that the randomness is sampled from the appropriate distribution.

682 S. Hopkins et al.

We now define the notion O-leakage resilient security in presence of encrypted
key cycles. The notion is called O-leakage resilient 2-circular security.

Definition 2 (O-leakage resilient 2-circular security). We say that the
scheme PKE1 = (Setup1,Enc1,Dec1) and the scheme PKE2 = (Setup2,Enc2,Dec2)
satisfies O-leakage resilient 2- circular security if for every stateful non-uniform
ppt adversaries A, there exists some negligible function negl(·) such that for λ ∈ N,
Pr[ExptPKE1,PKE2

λ,(A) = 1] ≤ 1
2 + negl, where the experiment ExptPKE1,PKE2

λ,A is defined
as follows:

Expt
PKE1,PKE2
λ,A =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(pk1, sk1) ← Setup1(1
λ), (pk2, sk2) ← Setup2(1

λ)
(m0,m1) ← A(pk1, pk2), b ← {0, 1}

m∗ = sk2‖mb, r ← {0, 1}∗

ct1 = Enc1(pk1,m
∗; r); ct2 = Enc2(pk2, sk1); b′ ← AO(pk1,m ∗,r)(ct1, ct2)

Return 1 if |m0| = |m1|, b′ = b and O did not return ⊥; 0 otherwise

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

We say that a PKE scheme is 2-circular secure if it is not given access to any
oracle in the same experiment.

2.2 Fully-Homomorphic Encryption Scheme

We present the definition of a fully-homomorphic encryption scheme below with
additional properties as defined by [20].

Definition 3 (FHE). A fully homomorphic encryption scheme for the circuit
class C = {Cλ,d}λ,d∈N and randomness space R = {Rλ,d}λ.d∈N is a tuple of PPT
algorithms

FHE = (Setup,Enc,Eval,Dec)

satisfying the following specifications:

(pk, sk) ← Setup(1λ, 1d): The setup algorithm takes as input a security parameter
λ ∈ N, a circuit depth bound d ∈ N (which is a polynomial in the security
parameter). It outputs a key pair (pk, sk).

ct ← Enc(pk,m; r): It takes as input a public key pk and a plaintext m ∈ {0, 1}
and a randomness r ∈ Rλ,d and outputs a ciphertext ct. Here Rλ,d ⊆ {0, 1}∗

is some finite set. Encryption of multiple bits is done by encrypting each of
them separately.

ĉt ← Eval(C, ct1, . . . , ct�): It takes as input a boolean circuit C : {0, 1}� →
{0, 1} ∈ Cλ,d of depth ≤ d and ciphertexts ct1, . . . , ct�. It outputs an eval-
uated ciphertext ĉt.

m̂ ← Dec(sk, ĉt): The decryption algorithm takes in the secret key sk and a
possibly evaluated ciphertext ĉt. It outputs m̂ ∈ {0, 1,⊥}.

Counterexamples to New Circular Security Assumptions 683

A fully-homomorphic encryption scheme satisfies correctness:

(Perfect) Correctness: For every λ, any polynomial d(λ) ∈ N and
� ∈ N, every key-pair (pk, sk) in the support of Setup(1λ, 1d), every set of
messages m1, . . . ,m� ∈ {0, 1}�, every ciphertext {cti}i∈[�] in the support of
{Enc(pk,mi)}i∈[�] and every circuit C : {0, 1}� → {0, 1} in Cλ,d, Dec(sk, ĉt) =
C(m1, . . . ,m�) where ĉt = Eval(C, ct1, . . . , ct�).

Remark 1. For any polynomial d(·), We denote by FHEd, an FHE scheme where
the depth is hardwired to be d(λ).

Above we omit the security definition which is identical to the definition of
security for a public-key encryption scheme and the notion of (levelled) com-
pactness which says that the size of a fresh as well as an evaluated ciphertext
encrypting a single bit is bounded by poly(λ, d) for some fixed polynomial poly.
We refer the reader to [12,23] for detailed definitions.

Now we define additional algorithms that were introduced by [20]. Any FHE
scheme is not required to exhibit these, although, most of the known schemes
do.

Definition 4 (Extra-Noisy Encryption). We denote by Enc∗ an extra-noisy
encryption algorithm, which has the same syntax as the encryption algorithm
Enc, except that the randomness it uses is sampled uniformly from another set
R∗ = {R∗

λ,d}λ,d∈N.

We call R∗ as the extra-noisy randomness space and any ciphertext encrypted
using Enc∗ as an “extra-noisy” encryption.

Randomness Homomorphism. Given � ∈ N ciphertexts, {cti}i∈[�], underly-
ing message {mi}i∈[�] and randomness {ri}i∈[�] where each ri ∈ Rλ,d, and any
circuit C ∈ Cλ,d, in most FHE schemes it is possible to efficiently recover random-
ness rC ∈ R∗

λ,d such that Eval(pk, C, ct1, . . . , ct�) = Enc∗(pk, C(m1, . . . ,m�); rC).
This algorithm is denoted by RandEval.

Definition 5 (Randomness Homomorphism). An FHE scheme with extra
noisy randomness space R∗ satisfies randomness homomorphism property if
there exists a probabilistic polynomial time algorithm RandEval with the following
property.
For any λ ∈ N and any polynomial d(λ) ∈ N, RandEval(pk, C, r,m) takes as
input a public key pk in the support of Setup(1λ, 1d), a circuit C : {0, 1}� →
{0, 1} ∈ Cλ,d, randomness r = (r1, . . . , r�) ∈ R�

λ,d and messages m =
(m1, . . . ,m�) ∈ {0, 1}�, and it outputs rC ∈ R∗

λ,d such that:

Eval(pk, C,Enc(pk,m1; r1), . . . ,Enc(pk,m�; r�)) = Enc∗(pk, C(m1, . . . ,m�); rC)

We now define the notion of SRL security for a fully-homomorphic encryp-
tion scheme with an extra-noisy encryption algorithm and randomness homo-
morphism property.

684 S. Hopkins et al.

Definition 6. A fully homomorphic encryption scheme with extra-noisy encryp-
tion and randomness homomorphism property for depth d, denoted as FHEd is
said to be SRL-secure if it is OFHEd

SRL -leakage resilient secure for the following
oracle.

Oracle OFHEd

SRL (pk,m∗, r)

r∗ ← R∗, ct∗ = Enc∗(pk, 0; r∗)
(f, α) ← A(ct∗)
rf = RandEval(pk, f, r,m∗)
If f ∈ Cλ,d and α = f(m∗), then set leak = r∗ − rf ∈ R∗

Otherwise set leak = ⊥. Output leak.

3 Homomorphic Encryption Schemes

Below we recall both GSW Encryption [23] and its Dual formulation [13]. In the
sections, we also specify the exact modifications we need for our counterexample.
We assume familiarity with some notations relevant in lattice based cryptogra-
phy. For completeness, they are outlined in Appendix A.

3.1 Gentry-Sahai-Waters FHE Scheme

We now describe our scheme, and set parameters later when needed in the coun-
terexample. Below is a list of symbols to be used in the scheme.

– λ is the security parameter,
– d(λ) is the polynomial depth bound,
– p is the prime modulus used in the scheme,
– n,m,w are polynomials in λ, and are used as dimensions of the matrices

involved,
– χ is an error distribution used for generating LWE samples,
– B1, B2 are poly(λ, d)-bit positive integers that are used as bounds. B1 is the

bound on the infinity norm of the randomness in the evaluated ciphertext
after evaluating a depth d circuit,

– Assuming w = n · �log2 p, let G be the gadget matrix of dimension n × w,
– Cλ,d consists of all polynomial sized arithmetic circuits of depth d with

Boolean inputs and outputs composed of multiplication, addition and mul-
tiplication by a constant in Zp, with the following special property: For any
Boolean input, during the evaluation, all the multiplication gates are evalu-
ated on Boolean inputs.

Remark 2. In the circuit class Cλ,d, in particular, we allow multiplication by a
potentially large field element, as long as all inputs to all multiplication gates are
Boolean. Our counterexample for 2-Circ SRL security will only exploit boolean
computations, whereas the counterexample for [42] will exploit such multiplica-
tion by constant gates.

Counterexamples to New Circular Security Assumptions 685

Now we describe the scheme:

Setup(1λ, 1d) → (pk, sk) : Perform the following steps.
– Sample A ← Z

(n−1)×m
p .

– Sample s ← Z
1×(n−1)
p .

– Sample e ← χ1×m. Set b = s · A + e mod p
– Set U = [A�|b�]� ∈ Z

n×m
p .

– Output pk = U and sk = s.
Enc(pk, μ) → ct : To encrypt a bit μ ∈ {0, 1} perform the following steps.

– Sample R ← [−1, 1]m×w.
– Compute and output ct = U ·R+ μ ·G where G is the gadget matrix of

dimension n × w.
Eval(pk, C, ct1, . . . , ct�) → ĉt : To evaluate an arithmetic circuit C : {0, 1}� →
{0, 1}, perform the following operations gate by gate, as per the gate evalu-
ation rules below and according to the topological ordering provided by the
circuit.

– Addition: Add(ct′1, ct
′
2), Output ct′1 + ct′2.

– Multiplication: Mult(ct′1, ct
′
2), Output ct′1 · G−1(ct′2).

– Multiplication by a constant c ∈ Zq: ConstMult(c, ct′1), Output ct′1 ·
G−1(c · G).

Dec(sk, ĉt) : To decrypt, compute: z = (−s‖1) · ĉt · v where v ∈ {0, 1}w×1

with vi = 1 iff i = w − 2. Output 0 if |z| ≤ p
16 and 1 otherwise.

We now observe that the GSW scheme above satisfies Randomness Homomor-
phism property.

Randomness Homomorphism: Below we define the algorithms that make up
the the randomness homomorphism property.
Enc∗(pk, μ) : For an extra noisy encryption of a bit μ ∈ {0, 1} perform the
following steps.

– Sample R∗ ← [−B2, B2]m×w.
– Compute and output ct∗ = U ·R∗ + μ ·G where G is the gadget matrix

of dimension n × w.
RandEval(pk, C, {Ri}i∈[�], {mi}i∈[�]) : Just as in evaluation of ciphertext, com-
pute the randomness gate by gate. For gates with fan-in 2, let R′

1 and R′
2

be the input randomness, m′
1, m′

2 be the input messages and ct′1, ct
′
2 be the

corresponding ciphertext. For the multiplication gate, let the input be the
values with subscript “1”. Below we describe the process to compute the ran-
domness that is propagated. Messages can be computed by evaluating the
circuit.

– For addition gate, output R′
1 + R′

2.
– For multiplication gate, output R′

1 · G−1(ct′2) + m′
1 · R′

2.
– For multiplication by the constant c, output R′

1 · G−1(c · G).

[20] observed that GSW scheme satisfies plain SRL security.

686 S. Hopkins et al.

3.2 Dual-GSW Homomomorphic Commitment Scheme

We now provide the Dual-GSW homomorphic commitment scheme [13] as
described by [42]. We set parameters later when needed in the counterexam-
ple. Below is a list of symbols to be used in the scheme.

– λ is the security parameter,
– d(λ) is the polynomial depth bound,
– p is the prime modulus used in the scheme,
– n,m,w are polynomials in λ, and are used as dimensions of the matrices

involved,
– χ is an error distribution used for generating LWE samples,
– Assuming w = m · �log2 p, let G be the gadget matrix of dimension m × w,
– Cλ,d consists of all polynomial sized arithmetic circuits of depth d with boolean

inputs and outputs composed of multiplication, addition and multiplication
by a constant in Zp, with the following special property: For any boolean
input, during the evaluation, all the multiplication gates are evaluated on
binary inputs.

Now we describe the scheme,

Setup(1λ, 1d) → pk : Perform the following steps.
– Sample A ← Z

m×n
p .

– Output pk = A.
Enc(pk, μ) → ct : To compute a commitment ct to a bit μ ∈ {0, 1} perform
the following steps.

– Sample R ← Z
n×w
p .

– Sample E ← χm×w.
– Compute and output ct = A ·R+μ ·G+E where G is the gadget matrix

of dimension m × w.
Evaluation We now define two evaluation algorithms, Eval1 and Eval2. Eval1

takes as inputs ct1, . . . , ct� committing bits μ1, . . . , μ� and a function C :
{0, 1}� → Zp in Cλ,d and computes a commitment of C(μ1, . . . , μ�). Eval2
takes as input commitments ĉt1, . . . , ĉtm commiting elements μ̂1, . . . , μ̂m and
outputs a packed commitment ĉtpacked ∈ Z

m×1
p of the form Ar̂ + μ̂ + e

where μ̂ = (μ̂1, . . . , μ̂m)�. The evaluation algorithm for circuits of the form
g : {0, 1}� → Z

m
p ∈ Cλ,d in [42] is a composition of these two evaluation

algorithms (Eval1 followed by Eval2).
Eval1(pk, C, ct1, . . . , ct�) → ĉt : To evaluate an arithmetic circuit C : {0, 1}� →
Zp in Cλ,d, perform the following operations gate by gate, as per the gate
evaluation rules below and according to the topological ordering provided by
the circuit.

– Addition: Add(ct′1, ct
′
2), Output ct′1 + ct′2.

– Multiplication: Mult(ct′1, ct
′
2), Output ct′1 · G−1(ct′2).

– Multiplication by a constant c ∈ Zp: ConstMult(c, ct′1), Output ct′1 ·
G−1(c · G).

Eval2(ct1, . . . , ctm) → ĉtpacked

Counterexamples to New Circular Security Assumptions 687

– Output ĉtpacked =
∑

i∈[m] cti · G−1(1i) where 1i ∈ {0, 1}1×m is the indi-
cator vector with 1 at the ith position. We refer to this output as a packed
commitment.

Evalopen,packed(g,A, {Ri}i∈[�], {xi}i∈[�], {Ei}i∈[�]), the Evalopen,packed takes as
input a circuit g : {0, 1}� → Z

m
p ∈ Cλ,d, public key A, and � randomness-

message tuples (Ri,Ei, xi), and it outputs the opening for ĉtpacked =
Eval(g, ct1, . . . , ct�) = Ar̂ + ê + g(x) where cti = ARi + Ei + xiG. This
is done in two steps. First, it propagates openings for unpacked ciphertexts.
Let gi for i ∈ [m], denote the circuit computing the ith component. It runs
Evalopen(gi,A, {Ri}i∈[�], {xi}i∈[�], {Ei}i∈[�]) for i ∈ [m] below:

– Evalopen(gi,A, {Ri}i∈[�], {xi}i∈[�], {Ei}i∈[�]), the Evalopen algorithm takes
as input a circuit gi : {0, 1}� → Zp ∈ Cλ,d, matrix A, randomness
and messages for commitments cti = ARi + xiG + Ei and it out-
puts randomness and messages of the evaluated commitment ĉti =
AR̂i + Êi + gi(x1, . . . , x�)G. This is done by propagating gate by gate.
Let R′

1, R
′
2, E

′
1 and E′

2 be the input randomness, and x′
1 and x′

2 be the
inputs. For gates with a single input, let the subscript of the input be 1.
Let ct′b = AR′

b + xbG + E′
b for b ∈ {1, 2}.

• For addition gate, output R′
1 + R′

2, E
′
1 + E′

2 and x′
1 + x′

2.
• For multiplication gate, output R′

1 ·G−1(ct′2)+x′
1 ·R′

2, E
′
1 ·G−1(ct′2)+

x′
1 · E′

2 and x′
1 · x′

2.
• For multiplication by constant output R′

1 ·G−1(c ·G), E′
1 ·G−1(c ·G)

and c · x′
1.

Then, for the opening of the packed commitment it outputs r̂ =∑
i∈[m] R̂iG−1(1i), ê =

∑
i∈[m] ÊiG−1(1i) and y = g(x).

4 Correlation-Inducing Gates

We turn to the conceptual heart of our attacks: two simple transformations
on FHE ciphertexts which, put together, have the following effect. Given the
ciphertext ctx for a bit x ∈ {0, 1}, we produce a new ciphertext ct′x which still
decrypts to x, such that the “noise part” of ct′x is correlated with x. The exact
meaning of “noise part” depends on the underlying FHE scheme – we show this
for the dual version of [23] as described by [13].

Crucially, these transformations can be realized by standard homomorphic
evaluation of multiplication and addition gates, as well as homomorphic evalu-
ation of gates which multiply by constants c ∈ Zp. Therefore, we can package
them into a special identity gate which can be appended to any circuit to produce
a new circuit which computes the same function as the old one, but such that
standard homomorphic evaluation of that circuit produces a ciphertext where
the noise part and message part are correlated.

4.1 Correlation-Inducing Gate for Dual-GSW

In this subsection we adopt notation as in Sect. 3.2. In particular, we assume the
presence of a public key A ∈ Z

m×n
p .

688 S. Hopkins et al.

The first half of our correlation-inducing gate for dual-GSW is captured in
the following lemma.

Lemma 1 (Even-noise gate for dual-GSW). Let ctx = AS + xG + E be
a dual-GSW encryption of some x ∈ Zp, where each entry |E[i, j]| ≤ B for
some B ≤ p/(100w) and let ct′x be the result of homomorphically evaluating the
following two gates:

1. g1(x) = 1
2x

2. g2(x) = x + x.

That is, ct′x = Eval(g2,Eval(g1, ctx)) (where we use the public key A). Then
ct′x = AS′ + xG + E′ for some S′ ∈ Z

n×w
p and some matrix E′ ∈ Z

m×w
p for

which every entry satisfies E′[i, j] = 2·eij for some eij ∈ Zp with |ei,j | ≤ O(Bw).

The proof is a simple calculation

Proof. Expanding,

Eval(g1, ctx) = (AS + xG + E) · G−1(12 · G)

= A(S · G−1(12 · G)) + x · 1
2 · G + E · G−1(12 · G)

So,

Eval(g2,A(S · G−1(12 · G)) + x · 1
2 · G + E · G−1(12 · G))

= A(2 · S · G−1(12 · G)) + x · G + 2 · E · G−1(12 · G)

Since G−1(12 · G) ∈ {0, 1}w×w, we have |(E · G−1(12 · G))[i, j]| ≤ O(Bw).

We turn to the second half of the correlation-inducing gate.

Lemma 2 (Multiply-by-one gate for dual-GSW). Let ct∗ = AS∗+G+E∗

be a dual-GSW encryption of the constant 1, where |E∗[i, j]| ≤ p/10. Let x ∈
{0, 1} and let ctx = AS + x · G + E be a dual-GSW encryption of x such each
entry E[i, j] = 2E′[i, j] where |E′[i, j]| ≤ p/(100w). Let g(x, y) = x · y. Then
Eval(g, ctx, ct∗) = AS′ + x · G + E′, where S′ ∈ Z

n×w
p and E′[1, 1] = x · E∗[1, 1]

mod 2.5

Proof. We observe that

Eval(g, ctx, ct∗) = (AS + x · G + E) · G−1(AS∗ + G + E∗)

= A(SG−1(AS∗ + G + E∗) + xS∗)

+ x · G + (x · E∗ + EG−1(AS∗ + G + E∗)) .

The entries of EG−1(M) for any matrix M are at most p/100 in magnitude.
The lemma follows.
5 For two field elements a, b ∈ Zq, we write a = b mod 2 if this holds in the embedding

of Zq into the integers [−�q/2�, �q/2].

Counterexamples to New Circular Security Assumptions 689

From Lemmas 1 and 2 we have the following corollary, capturing the
correlation-inducing gate for dual-GSW. The gate takes x, multiplies by the
constant 1/2, adds the result to itself, and multiplies by the constant 1. Homo-
morphically evaluated, this operation introduces correlation between x and the
error part of the output ciphertext.

Corollary 1. Let ct∗ = AS∗+G+E∗ be a dual-GSW encryption of the constant
1, where |E∗[i, j]| ≤ p/10 for all i, j. Let x ∈ {0, 1} and let ctx = AS + xG + E
be a dual-GSW encryption of x such that |E[i, j]| ≤ q/poly(m, log q) for all i, j.
Then, for g1, g2 as in Lemma 1 and g as in Lemma 2,

Eval(g,Eval(g2,Eval(g1, ctx)), ct∗) = AS′ + xG + E′

where E′[1, 1] = xE∗[1, 1] mod 2.

In both Lemma 2 and Corollary 1, we actually have the stronger conclusion
that E′ = x ·E∗ mod 2, rather than just the [1, 1] entry – however, we will only
use the weaker conclusion for the [1, 1] entry.

4.2 Correlation-Inducing Gate for GSW

We now state the following fact as a lemma, which follows directly from the
properties of homomorphic evaluation of the GSW ciphertexts.

Lemma 3 (Multiply-by-zero). Let ct∗ = UR∗ be a GSW encryption of the
constant 0. Let ctx = UR + x · G be a GSW encryption of a bit x ∈ {0, 1},
where |R[i, j]|, |R∗[i, j]| ≤ B, for all i, j. Let g be the multiplication gate. Let
ĉt = Eval(g, ctx, ct∗) = UR′. Then R′ = RG−1(ct∗) + xR∗. Further, for all i, j
|R′[i, j]| = O(B · w)

We will use this structure of the multiplication by 0 operation to counterexample
to 2-circ SRL security.

5 Counter Example to 2-Circular SRL Security

In this section we show that the GSW encryption scheme provided in the Sect. 3.1
serves as a counterexample to 2-Circ SRL security.

5.1 Counter Example Details

We prove the following theorem:

Theorem 1. Let PKE be any encryption scheme where the depth of the decryp-
tion circuit is d′(λ) for some polynomial d′. Let FHEd be the GSW fully-
homomorphic encryption scheme described in Sect. 3.1 for the circuit class Cλ,d

where d > d′ + λ, then, (FHEd,PKE) are not 2-Circ-SRL secure.

690 S. Hopkins et al.

We show an explicit polynomial time adversary attacking the 2-Circ-SRL- secure
scheme. Below, we write down the interaction between the challenger and adver-
sary A in the security game and then we prove that the adversary wins with
constant (better than 1/2) probability.

1. The challenger runs PKE.Setup(1λ) → (pk2, sk2) and FHE.Setup(1λ, 1d) →
(pk1, sk1). Here pk1 is a matrix U and the secret key sk1 is a vector such
that (−sk1, 1) · U = e where e was the errors sampled from χ1×m. The
ciphertexts live in F

n×w
p and all dimensions n,m and w are polynomial in λ.

As a consequence given the secret key, for any ciphertext US encrypting 0
with randomness S, one can compute e ·S by multiplying with the secret key.

2. The adversary submits two messages m0,m1 ∈ {0, 1}λ+1. Here, mβ =
(β, 0, . . . , 0) for β ∈ {0, 1}. The challenger samples β ← {0, 1} and lets
m∗ = (mβ‖sk2). Denote by � the size of sk2.

3. The challenger computes ct1 = (ct1,1, . . . , ct1,�+2) and ct2 as follows. For
j ∈ [2 + �], compute ct1,j = FHE.Enc(pk1,m∗

j ;R1,j) where R1,j is chosen as
in the scheme. It also computes ct2 = PKE.Enc(pk2, sk1). Both ct1, ct2 are
given to the adversary A. Each ct1,j ∈ F

n×w
p and G−1(ct1,j) ∈ {0, 1}w×w.

4. The adversary finds at random an index jv ∈ [2, λ + 1] (which is an index
for which ct1,jv

encrypts 0) such that there exists a vector v ∈ {0, 1}w×1

such that G−1(ct1,jv
)v = 0w×1 mod 2. This can be done with overwhelming

probability because each G−1(ct1,j) for j ∈ [2, λ + 1] is rank deficient with
probability at least 1

2 − negl(λ).
5. Use ct1 and ct2 to compute ctsk1 which is an FHE encryption of sk1.
6. The adversary now submits q = λ ·m functions, value tuples (fi, 0) for i ∈ [q].

For query i ∈ [q], the function fi is described below. The function fi is
described in terms of the FHEd evaluation directly. The underlying boolean
function can be inferred from the FHEd evaluation. The function description
depends on ct1, ctsk1 , ct

∗
i = Enc∗(pk1, 0;R∗

i) which is the ith sampled extra
noisy ciphertext, the vector v and the index jv. For every i ∈ [q], the adver-
sary receives leaki = R∗

i − R̂i where R̂i is the randomness in the evaluated
ciphertext computed for computing fi.

7. The adversary simply finds the dimension of the space W = {y ∈ {0, 1}1×w|y·
(leaki · v) = 0 mod 2 ∀ i ∈ [q]} over F

m
2 . If the dimension is 0, output the

guess β′ = 0, otherwise output β′ = 1.

Counterexamples to New Circular Security Assumptions 691

Function FHEd.Eval(fi, ·)

Input: ct1
Hardwired: ctsk1 , ct

∗
i ,v

1. Compute ct′i = UR′
i + (β · 〈e,R∗

i · v〉 mod 2)G. This is computable
because given the secret key sk1 of the FHEd, one can compute eR∗

i

as pointed earlier, and we have encryption ctsk1 hardwired. Denote
γv = (β · 〈e,R∗

i · v〉 mod 2)
2. Multiply ct′i with ct1,jv

to get the following ciphertext (see Lemma 3).

ĉti = U (R′
iG−1(ct1,jv

) + γvR1,jv
)

︸ ︷︷ ︸
̂Ri

3. Output ĉti.

We now argue that the success probability of the adversary is almost 3/4.
First of all, note that the adversary is admissible because fi on m∗ always
outputs 0. This is ensured because in the step 2 of the circuit, ct′i which computes
γv is multiplied by ctjv

(which encrypts 0). Hence the output is always 0.
Let’s now analyze the depth of the circuit fi. Encryption of ctsk1 can be com-

puted by a circuit that is computable in depth d′ (which is the decryption circuit
depth of PKE). The second step is in NC1, because ((−1, sk1)·cti∗) mod 2 = eR∗

i

mod 2. Finally, the last step consists of taking the resulting vector’s inner prod-
uct with β · v mod 2, which can also be done in NC1. So, if d > d′ + λ, the
function fi is computable in depth d.

Now we analyze the success probability of this attack. Observe that since
G−1(ct1,j) for all j ∈ [2, λ + 1] behave pseudorandomly, with probability at
least 0.5 − negl(λ), a given ct1,j is going to have a vector in the nullspace (the
determinant of a random matrix over F2 is random over F2). Thus, point 4)
succeeds with probability at least 1−negl(λ). Now let us analyze the randomness
of the evaluated ciphertext during each step of the evaluation.

1. leaki = R∗
i − R̂i. Remember, R̂i = R′

i · G−1(ct1,jv
) + γvR1,jv

.
2. The last step computes leaki · v mod 2 which produces:

leaki · v = R∗
i · v − γvR1,jv

v mod 2.

This is because G−1(ct1,jv
)v = 0 mod 2.

3. If β = 0, γv = 0 and thus leaki · v = R∗
i · v. Since v is independent of R

∗
i ,

R∗
i · v mod 2 is distributed identically like a random vector over F2. Since

q = m · λ, with probability 1 − negl(λ), no non-zero vector y mod 2 ∈ F
1×m
2 ,

can satisfy y ·R∗
i v mod 2 = 0 for all i. This can be shown by computing the

probability of a fixed y to satisfy all q independent equations, which is 2−q,
and then doing a union bound over all 2m choices of y.

692 S. Hopkins et al.

4. If β = 1, γv = 〈e,R∗
i ·v〉 mod 2 and thus leaki ·v = R∗

i ·v+ γvR1,jv
v. Since

e is independent of R1,jv
and v and further R1,jv

· v �= 0 (with probability
1 − negl(λ) as ct1,jv

is lossy for R1,jv
), it holds that with probability 0.5 −

negl(λ), 〈e,R1,jv
v〉 mod 2 = 1. In this case, we have that at least the vector

e mod 2 is a solution of:

0 = y · leaki · v = yR∗
i · v − (〈e,R∗

i · v〉 mod 2) y · R1,jv
v mod 2,

for every i ∈ [q]. This can be seen by substituting e for y. Hence dimension
of W is at least 1, with probability 0.5 − negl(λ).

Thus the probability of guessing β correctly is:

1
2
(Pr[Dim(W) = 0|β = 0] + Pr[Dim(W) > 0|β = 1])

≥ 1
2
(1 − negl(λ) + 0.5 − negl(λ))(from the observations above)

≥ 3
4

− negl(λ)

This concludes the proof.

6 Counter Example for the Conjecture by Wee-Wichs

Now we describe our counterexample to the conjecture of Wee and Wichs [42].

6.1 Homomorphic Pseudorandom LWE Samples Conjecture

The following presentation closely follows Sect. 6 of [42] – for additional context
on the use of these definitions and conjecture to construct an oblivious LWE
sampler and then iO, we refer the reader to [42].

For some parameters λ, n,m, p,Q, we will define two distributions over
tuples of the form ({bi}i∈[Q],A,C, {si}i∈[Q]), where bi ∈ Z

m
p , A ∈ Z

m×n
p ,

C = C1, . . . ,Cλ+1 with Ci ∈ Z
m×m log q
p , and si ∈ Z

n
p . The conjecture will

be that these distributions are computationally indistinguishable.
We first need some additional setup.
Setup for pseudorandom error distribution:

– Let χPRF be a distribution on Zp.
– Let D be an algorithm which takes v random coins in {0, 1} and outputs

samples s ← Z
n
p and e ← χm

PRF.
– Let PRF : {0, 1}λ × {0, 1}∗ → {0, 1}v be a pseudo-random function.

Setup for pseudorandomly generating LWE samples:

– For i ∈ [Q], b ∈ Z
m
p , let gi,b,A be a circuit with values (i, b,A) hard-coded

and which performs the following computation on input (k, β) ∈ {0, 1}λ+1:

Let (sPRFi ,ePRFi) = D(PRF(k, i)). Output AsPRFi + ePRFi + β · b

Counterexamples to New Circular Security Assumptions 693

Following [42], we now define two distributions DIST(β) for β ∈ {0, 1} as
follows. Let χ be a B-bounded distribution.

– For i ∈ [Q], generate LWE samples bi . Concretely, A ← Z
m×n
p , ŝi ← Z

n
p ,

êi ← χ̂m.
– Let k ← {0, 1}λ and sample dual-GSW commitments C1, . . . ,Cλ to

k1, . . . , kλ. That is, sample Ri ← Z
n×w
p and Ei ← χm×w and set Ci =

ARi + kiG + Ei.
– Let Cβ = ARβ + βG + Eβ be a dual-GSW commitment to β.
– For i ∈ [Q], let (sPRFi ,ePRFi) = D(PRF(k, i)).
– Let (rEvali ,eEvali) = Evalopen,packed(gi,Aŝi+êi,A,A, (k, β),R,E).
– Let si = rEvali + sPRFi + βŝi.
– Output ({Aŝi + êi}i∈[Q],A,C1, . . . ,Cλ,Cβ , {si}i∈[Q]).

Conjecture 1 (HPLS Conjecture, [42] Conjecture 6.4). Let λ be a security
parameter and n,m, q, χ, χ̂, χPRF be such that the LWE assumption holds with
parameters (n, q, χ) and with (n, q, χ̂). Furthermore, suppose that χPRF smudges
out error of size B̂ + B · mO(t), where t is the depth of the circuit gi,b,A (which
is dominated by the depth of PRF). Then there is a choice of PRF such that
DIST(0) and DIST(1) are computationally indistinguishable.

6.2 Counter Example Details

In our main theorem, we make the following assumption about implementation
details of the circuit gi,b,A which are left unspecified in [42]. We assume there
is a Boolean circuit CPRF computing the pseudorandom function and another
Boolean circuit CD implementing the sampling algorithm D, whose outputs are
the binary expansion of (sPRFi ,ePRFi). Then g is given by

1. composing the circuits CPRF, CD,
2. multiplying by field elements in Zp and adding to compute each entry of the

vector AsPRFi + ePRFi ,
3. multiplying the input β by the field element b[j] for j ≤ m, and
4. adding (2) and (3) to obtain the final outputs. (AsPRFi)[j] + ei[j] + β · b[j],

for j ∈ [m]. These outputs are packed into a vector by Eval.

We prove the following theorem:

Theorem 2. With λ, n,m, q, χ, χ̂, χPRF as in Conjecture 1, for any sampling
algorithm D as above there is an arithmetic circuit CD over Zp implementing
D such that for any function F : {0, 1}λ × {0, 1}∗ → {0, 1}v, if Q � m2 log q
then the resulting distributions DIST(0) and DIST(1) are distinguishable with
nontrivial probability in polynomial time.

Remark 3. A somewhat easier argument than the below shows the same result
if we allow ourselves nonstandard implementations of parts (2) and (3) of gi,b,A.
A merit of our attack is that it allows any sampling algorithm D and any choice
of PRF, and requires only a careful choice of circuit CD to implement D.

694 S. Hopkins et al.

The circuit CD We start by describing the circuit CD. Start with any circuit C
for D, with output in binary, and modify it in the following way.

– Let C0 be a circuit which takes the first bit x1 of its input and performs the
computation x1 + (1 + (q − 1) · x1)). (The output wire of C0 therefore always
carries the value 1.)

– To the output wire of C0 corresponding to the lowest-order bit of ePRFi [1],
attach a new gate which performs the correlation-inducing transformation
described in Corollary 1, using the output wire of C0 as the special “1” input.

– To all of the other output wires, attach a gate performing the “even-noise”
transformation of Lemma 1. (As noted before, these gates can be implemented
using only multiplication and addition of boolean values and multiplication
by a field element.) The result is the new circuit CD.

A Linear System Part (3) above of the circuit computing gi,b,A induces a linear
system in m × m log q variables Eij , in the following way. On input Cβ(E) =
ASβ + βG + E, part (3) of that circuit, evaluated homomorphically, produces
outputs of the form ASG−1(bi[j]) + βbi[j]G + EG−1(bi[j]). Let Lbi[j](E) be
the matrix of linear functions given in E given by EG−1(bi[j]). Let Li(E) be
the linear function in E given by the Lbi[j](E)[1, 1].

Distinguishing algorithm Now we describe an algorithm to distinguish
DIST(0) and DIST(1) with the above choice of F .

Input: ({bi}i∈[Q],A,C1, . . . ,Cλ,Cβ , {si}i∈[Q]),

1. Using the commitments C1, . . . ,Cλ,Cβ , homomorphically evaluate the cir-
cuits gi,bi,A to obtain (packed) ciphertexts ct1, . . . , ctQ ∈ Z

m
p .

2. Compute vectors e′
i = cti − Asi. Let ei be the first entry of e′

i.
3. Check if the linear system in m × m log q variables E given by the equations

Li(E) = ei has a solution over F2. If it does, output “β = 0”. Otherwise,
output a random β ∈ {0, 1}.

Proof (Proof of Theorem 2). To prove the theorem it will be enough to show
that the linear system Li(E) = ei has a solution with probability Ω(1) when the
underlying distribution is DIST(0), but has a solution only with probability o(1)
when the underlying distribution is DIST(1).

We start by examining the structure of ei in both the β = 0 and β = 1 cases.
We first expand cti.

cti = ArEvali + AsPRFi + ePRFi + β · (Aŝi + êi) + eEvali .

Then
e′

i = cti − Asi = ePRFi + eEvali + β · êi .

Furthermore, eEvali has two parts, coming from parts (2) and (3) of the circuit
for g – let us call eEval

2

i the part coming from step (2) and eEval
3

i the part from
step (3), so that eEvali = eEval

2

i + eEval
3

i and

e′
i = ePRFi + eEval

2

i + eEval
3

i + β · êi

Counterexamples to New Circular Security Assumptions 695

We claim that with probability Ω(1), all i ∈ [Q] satisfy ePRFi [1] = eEval
2

i [1]
mod 2, as a result of our design of the circuit CD. In fact, we claim that this occurs
whenever the (random) commitment C1 to k1 is such that homomorphically
evaluating the circuit C0 yields a ciphertext AS∗ +k1 ·G+E∗ such that E∗[1, 1]
is odd, which occurs with probability 1/2. This follows directly from Lemmas 1
and 2, Corollary 1, and our assumption about the structure of the circuit g.
Together, these ensure that:

– the noise coming from homomorphically evaluating AsPRF is all 0 mod 2,
and

– the noise coming from homomorphically evaluating ePRFi [1] has upper-left
entry equal to 0 mod 2 (this entry is preserved by packing).

We conclude that, on the event above, ei = eEval
3

i + β · êi mod 2. Now,
if β = 0, observe that eEval3i = Li(E), the linear function described above in
m × m log q variables E. So the linear system has a solution. Finally, if β = 1,
since Q � m2 log q the linear system is whp overdetermined, and ei mod 2 is
independent of the coefficients of Li and independent of other e′

i, because of the
presence of the random vector êi. So whp the linear system is unsatisfiable.

Acknowledgements. Sam Hopkins was supported by the Miller Institute, UC
Berkeley.

Aayush Jain was supported by a Google PhD fellowship in the area of security
and privacy (2018) and in part from DARPA SAFEWARE and SIEVE awards, NTT
Research, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant 2012378,
a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment
grant from Intel, and an Okawa Foundation Research Grant. This material is based
upon work supported by the Defense Advanced Research Projects Agency through
Award HR00112020024 and the ARL under Contract W911NF-15-C- 0205.

Huijia Lin was supported by NSF grants CNS-1528178, CNS-1929901, CNS-
1936825 (CAREER), CNS-2026774, a Hellman Fellowship, a JP Morgan AI Research
Award, a Simons Collaboration grant on the Theory of Algorithmic Fairness, the
Defense Advanced Research Projects Agency (DARPA) and Army Research Office
(ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002
through Galois.

A Lattice Preliminaries

Lattices. An m-dimensional lattice L is a discrete additive subgroup of Rm (not
contained in any subspace of strictly smaller dimension). Given positive integers
n,m, q and a matrix A ∈ Z

n×m
q , we let Λ⊥

q (A) denote the lattice {x ∈ Z
m |

Ax = 0 mod q}.

696 S. Hopkins et al.

Discrete Gaussians. Let σ be any positive real number. The Gaussian dis-
tribution Dσ with parameter σ is defined by the probability distribution func-
tion ρσ(x) = exp(−π‖x‖2/σ2). For any discrete set L ⊆ R

m, define ρσ(L) =∑
x∈L ρσ(x). The discrete Gaussian distribution DL,σ over L with parameter σ

is defined by the probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L).
The following lemma (e.g., [37, Lemma 4.4]) shows that if the parameter σ

of a discrete Gaussian distribution is small, then any vector drawn from this
distribution will be short (with high probability).

Lemma 4. Let m,n, q be positive integers with m > n, q > 2. Let A ∈ Z
n×m
q

be a matrix of dimensions n × m, σ ∈ Ω̃(n), and L = Λ⊥
q (A). Then, there is a

negligible function negl(·) such that

Pr
x←DL,σ

[‖x‖ >
√

mσ
] ≤ negl(n),

where ‖x‖ denotes the �2 norm of x.

Truncated Discrete Gaussians. The truncated discrete Gaussian distribu-
tion over Z

m with parameter σ, denoted by D̃Zm,σ, is the same as the discrete
Gaussian distribution DZm,σ except that it outputs 0 whenever the �∞ norm
exceeds

√
mσ. By definition, we can say that D̃Zm,σ is

√
mσ-bounded, where a

family of distributions D = {Dλ}λ∈N over the integers is B-bounded (for
B = B(λ) > 0) if for every λ ∈ N it holds that Prx←Dλ

[|x| ≤ B(λ)] = 1.
Also by 4, D̃Zm,σ and DZm,σ are statistically indistinguishable. Therefore, in

the preliminaries below, unless specified, the lemmata will apply in the setting
where by sampling from discrete Gaussian we mean sampling from truncated
discrete Gaussian distribution.

A.1 Learning With Errors

The learning with errors (LWE) problem was defined by Regev [40]. The
LWEn,m,q,χ problem for parameters n,m, q ∈ N and for a distribution χ sup-
ported over Z is to distinguish between the following pair of distributions

(A, sA + e mod q) and (A,u),

where A ← Z
n×m
q , s ← Z

1×n
q , e ← χ1×n and u ← Z

1×m
q . Similarly, we can

define the matrix version of the problem, which is known to be hard, if the
version above is hard. Specifically, let k ∈ poly(n,m), then in the matrix the
task is to distinguish between the following two distributions

(A,SA + E mod q) and (A,U),

where A ← Z
n×m
q , S ← Z

k×n
q , E ← χk×n and U ← Z

k×m
q .

Counterexamples to New Circular Security Assumptions 697

The gadget matrix [36]. Fix a dimension n and a modulus q. Define the gadget
vector g = (1, 2, 4, . . . , 2
log q�−1) and the gadget function g−1 : Zq → {0, 1}
log q�

to be the function that computes the (log q)th bit decomposition of an integer.
For some integer z the function is defined as g−1(z) = v = (v1, . . . , vlog q) where
vi ∈ {0, 1} such that z = 〈g,v〉. By extension we define the augmented gadget
function G−1 : Zn×m

q → {0, 1}(n·
log q�)×m to be the function that computes the
(log q)th bit decomposition of every integer in a matrix A ∈ Z

n×m
q , and arranges

them as a binary matrix of dimension (n · �log q)×m which we denote G−1(A).
Hence, Gn · G−1(z) = Z, where the gadget matrix Gn is Gn = g ⊗ In ∈
Z

n×(n·
log q�)
q . When n is clear from context, we denote Gn simply by G.

References

1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its rela-
tion to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 403–422. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 21

2. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 7

3. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps:
attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part I. LNCS, vol. 12105, pp. 110–140. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 5

4. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation
without multilinear maps: new paradigms via low degree weak pseudorandomness
and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part III. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26954-8 10

5. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multi-
linear maps: IO from LWE, bilinear maps, and weak pseudorandomness. IACR
Cryptology ePrint Archive 2018, 615 (2018)

6. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage
via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417
(2005). http://eprint.iacr.org/2005/417

7. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

8. Bishop, A., Hohenberger, S., Waters, B.: New circular security counterexamples
from decision linear and learning with errors. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 776–800. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 32

9. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. IACR Cryptology ePrint Archive 2002, 100 (2002).
http://eprint.iacr.org/2002/100

https://doi.org/10.1007/978-3-642-13190-5_21
https://doi.org/10.1007/978-3-642-13190-5_21
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-030-26954-8_10
http://eprint.iacr.org/2005/417
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-48800-3_32
http://eprint.iacr.org/2002/100

698 S. Hopkins et al.

10. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomor-
phic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45721-1 4

11. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings are not
necessary for io: circular-secure LWE suffices. IACR Cryptology ePrint Archive
2020, 1024 (2020). https://eprint.iacr.org/2020/1024

12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) Innovations in The-
oretical Computer Science 2012, ITCS 2012, Cambridge, MA, USA, 8–10 January
2012, pp. 309–325. ACM, January 2012. https://doi.org/10.1145/2090236.2090262

13. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp.
645–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 22

14. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press, October 2011. https://doi.org/10.1109/FOCS.2011.12

15. Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

16. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 540–557. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 32

17. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

18. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.)
TCC 2016-B, Part II. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 10

19. Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from simple-
to-state hard problems: new assumptions, new techniques, and simplification.
IACR Cryptology ePrint Archive 2020, 764 (2020)

20. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. In: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2021. ACM (2021)

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Pres, May/Jun 2009. https://doi.
org/10.1145/1536414.1536440

22. Gentry, C., Jutla, C.S., Kane, D.: Obfuscation using tensor products. Electron.
Colloq. Comput. Complex. ECCC) 25, 149 (2018)

23. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

24. Goldreich, O.: Candidate one-way functions based on expander graphs. Electron.
Colloq. Comput. Complex. (ECCC) 7(90) (2000)

https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-030-45721-1_4
https://eprint.iacr.org/2020/1024
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-642-30057-8_32
https://doi.org/10.1007/978-3-642-30057-8_32
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-40041-4_5

Counterexamples to New Circular Security Assumptions 699

25. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM
STOC, pp. 469–477. ACM Press, June 2015. https://doi.org/10.1145/2746539.
2746576

26. Goyal, R., Koppula, V., Waters, B.: Separating semantic and circular security for
symmetric-key bit encryption from the learning with errors assumption. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 528–
557. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 18

27. Green, M., Hohenberger, S.: CPA and CCA-secure encryption systems that are
not 2-circular secure. IACR Cryptology ePrint Archive 2010, 144 (2010)

28. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

29. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials over R to build iO. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 9

30. Jain, A., Lin, H., Sahai, A.: Simplifying constructions and assumptions for iO.
IACR Cryptology ePrint Archive 2019, 1252 (2019). https://eprint.iacr.org/2019/
1252

31. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2021. ACM (2021)

32. Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary
length key cycles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS,
vol. 9015, pp. 378–400. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 15

33. Koppula, V., Waters, B.: Circular security separations for arbitrary length cycles
from LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol.
9815, pp. 681–700. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 24

34. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to
indistinguishability obfuscation. IACR Cryptology ePrint Archive 2018, 646 (2018)

35. Marcedone, A., Orlandi, C.: Obfuscation ⇒ (IND-CPA security �⇒ circular secu-
rity). In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 77–90.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 5

36. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

37. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press, October
2004. https://doi.org/10.1109/FOCS.2004.72

38. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

39. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1007/978-3-319-56614-6_18
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-030-17653-2_9
https://eprint.iacr.org/2019/1252
https://eprint.iacr.org/2019/1252
https://doi.org/10.1007/978-3-662-46497-7_15
https://doi.org/10.1007/978-3-662-46497-7_15
https://doi.org/10.1007/978-3-662-53008-5_24
https://doi.org/10.1007/978-3-662-53008-5_24
https://doi.org/10.1007/978-3-319-10879-7_5
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

700 S. Hopkins et al.

40. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005. https://doi.org/10.1145/1060590.1060603

41. Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2 32

42. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. In: Can-
teaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 127–
156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5 5

43. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: Umans, C. (ed.) 58th FOCS, pp. 600–611. IEEE Computer Society Press, Octo-
ber 2017. https://doi.org/10.1109/FOCS.2017.61

https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-642-36594-2_32
https://doi.org/10.1007/978-3-642-36594-2_32
https://doi.org/10.1007/978-3-030-77883-5_5
https://doi.org/10.1109/FOCS.2017.61

How to Meet Ternary LWE Keys

Alexander May(B)

Ruhr-University Bochum, Bochum, Germany
alex.may@rub.de

Abstract. The LWE problem with its ring variants is today the most
prominent candidate for building efficient public key cryptosystems resis-
tant to quantum computers. NTRU-type cryptosystems use an LWE-
type variant with small max-norm secrets, usually with ternary coef-
ficients from the set {−1, 0, 1}. The presumably best attack on these
schemes is a hybrid attack that combines lattice reduction techniques
with Odlyzko’s Meet-in-the-Middle approach. Odlyzko’s algorithm is a
classical combinatorial attack that for key space size S runs in time S0.5.
We substantially improve on this Meet-in-the-Middle approach, using the
representation technique developed for subset sum algorithms. Asymp-
totically, our heuristic Meet-in-the-Middle attack runs in time roughly

S0.25, which also beats the S 1
3 complexity of the best known quantum

algorithm.
For the round-3 NIST post-quantum encryptions NTRU and NTRU

Prime we obtain non-asymptotic instantiations of our attack with com-
plexity roughly S0.3. As opposed to other combinatorial attacks, our
attack benefits from larger LWE field sizes q, as they are often used in
modern lattice-based signatures. For example, for BLISS and GLP sig-
natures we obtain non-asymptotic combinatorial attacks around S0.28.

Our attacks do not invalidate the security claims of the aforemen-
tioned schemes. However, they establish improved combinatorial upper
bounds for their security. We leave it is an open question whether our
new Meet-in-the-Middle attack in combination with lattice reduction can
be used to speed up the hybrid attack.

Keywords: Meet in the middle · Representation technique ·
NTRU/BLISS/GLP

1 Introduction

In the LWE problem [Reg03], we are given a (random) matrix A ∈ Z
m×n
q and a

target vector b ∈ Z
m
q with the promise that there exist small s ∈ Z

n
q and e ∈ Z

m
q

such that As = b + e mod q. In this paper, we consider only the case m = n,
i.e. m equals the LWE dimension n, which is the standard setting in modern
lattice-based encryption and signature schemes. In the Ring-LWE case [LPR10],

A. May—Funded by DFG under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 701–731, 2021.
https://doi.org/10.1007/978-3-030-84245-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_24

702 A. May

one uses the algebraic structure of rings to compactly represent A. All results in
this work also apply to the ring setting, and in fact all of our applications are in
the ring setting, but for the sake of LWE generality we do not exploit any ring
properties in our analysis.

The LWE problem, and especially its ring variants, are an extremely versatile
source for the construction of cryptographic primitives [Reg03,Gen09,GPV08,
BDK+17]. Due to its beautiful connection to worst-case lattice problems, one
usually calls the resulting schemes lattice-based, although the LWE problem is
per se more a combinatorial problem that asks to find a small solution s to some
erroneous—by error e—linear system of equations.

While asymptotically the worst-case connection of LWE to hard lattice prob-
lems guarantees security for sufficiently large dimension n, it is still a tricky
business to instantiate LWE parameters (n, q) and the error distribution for e
that lead to practical cryptographic schemes, which yet provide a concrete level
of security. LWE security proofs usually utilize a discrete Gaussian distribu-
tion for e (and often also for s). However, certain schemes prove security with
Gaussians, and then in turn define especially efficient parameters sets where s, e
are binary or ternary vectors, such as BLISS [DDLL13] or GLP [GLP12]. The
NTRU encryption scheme took the other way round, starting with an efficient
scheme [HPS98], whose security was later proved for less efficient variants [SS11].
LWE with s, e ∈ {0, 1}n is also known as binary-LWE, and its security has been
studied recently [BLP+13,MP13,BG14,BGPW16]. In this paper, we focus on
ternary vectors s, e ∈ {−1, 0, 1}n, as they are frequently used in modern NTRU-
type schemes. Limiting the distribution to vectors of small max-norm 1 (or any
small constant) has several advantages for cryptographic schemes.

Efficiency and simplicity. The implementation of discrete Gaussian sampling
is quite involved, and costs a reasonable amount of random bits [DN12]. Proper
randomness is in practice often a scarce source. Instead, sampling ternary vectors
is comparably simple and much less error-prone to implement. Moreover, the
resulting keys are especially compact.

Correctness of decryption. The use of ternary vectors allows to define encryp-
tion schemes that always decrypt correctly. Among the remaining lattice-based
encryption schemes in NIST competition’s third round there are only two
schemes, both NTRU variants with ternary secrets, that do not have decryption
failure. This property is particularly important, since even smallish decryption
failures give rise to powerful attacks [HNP+03,DRV20].

As a consequence, designers of recent cryptosystems often replace Gaus-
sian error distributions by small max-norm secrets (still guarding against lattice
attacks), with the argument that despite of 25 years NTRU-type cryptanalysis
there is no combinatorial algorithm better than Odlyzko’s Meet-in-the-Middle
(MitM) attack—mentioned in the original 1996 NTRU paper [HPS98]—that
can directly take advantage of small max-norm keys, such as ternary keys. Our
work invalidates this argument. Our new MitM attack for ternary secrets heav-
ily uses the small max-norm property and significantly improves over Odlyzko’s
algorithm.

How to Meet Ternary LWE Keys 703

The development of more involved combinatorial LWE MitM search algo-
rithms usually directly influences the parameter choice of NTRU-type cryptosys-
tems, since the presumably best known attack on these schemes—Howgrave-
Graham’s Hybrid approach [How07]—is up to now a combination of Odlyzko’s
MitM attack on a projected sub-key and lattice reduction on a projected sub-
lattice. The Hybrid attack balances the cost of MitM and lattice reduction by
properly adjusting the dimensions of these projections.

On the one hand, there is a long line of research that decreased the complexity
of lattice reduction [NV08,Laa15,BDGL16,HKL18], using involved techniques.
On the other hand, for the combinatorial part there is still only the comparatively
simple and costly Odlyzko MitM with square root complexity of the search
space. The best quantum attack is a quantum version of Odlyzko’s MitM that
achieves third root complexity of the search space [WMM13,dBDJW18]. This
complexity imbalance currently puts large emphasis on lattice reduction in the
Hybrid attack.

On the theoretical side, we cannot expect to fully break LWE with ternary
keys. In 2013, Brakerski, Langlois, Peikert, Regev, Stehlé [BLP+13] and Mic-
ciancio, Peikert [MP13] provide reductions showing that LWE with binary or
ternary secrets is indeed still hard. However, these reductions require to increase
the LWE dimension from n to approximately n log q. Our new MitM approach
gives cryptanalytic indication that small norm secrets are indeed significantly
easier to recover.

We would like to point out that other known algebraic/combinatorial
attacks [GJS15,KF15,ACF+14] do not work in our scenario due to the limited
number of samples m = n, or because they require superpolynomial q.

Our Results. We give the first significant progress for MitM attacks on ternary
LWE keys since Odlyzko’s attack from 1996 [HPS98,HGSW03]. Let the LWE
secret key s ∈ Z

n
q be taken from an exponential (in n) search space size S.

Then Odlyzko’s attack recovers s in time S0.5. E.g. random ternary secrets s ∈
{−1, 0, 1}n have S = 3n and Odlyzko’s attack runs in time 3n/2 = 2log2(3)n/2. A
quantum version of Odlyzko’s attack runs in time S 1

3 [WMM13,dBDJW18].
Other attacks [MS01,Ngu21] use the structure of the public LWE key A in the

ring setting, but these speedups are polynomial in n and thus lead to run time
S0.5−o(1). We show that the exponent 0.5 can be significantly reduced for small
max-norm keys s and e in the supposedly hard LWE case where q is polynomial
in n. Notice that for larger q efficient attacks are known [ABD16].

In a nutshell, our algorithm guesses r coordinates of e ∈ Zq, where r =
O(n

log q) = O(n
log n) is slightly sub-linear in the LWE dimension n. This can be

done in slightly subexponential time 2O(n
log q). We then solve a vectorial subset

sum problem As = b + e on the known r coordinates. This is done by gener-
alizing search tree-based subset sum algorithms [HJ10,BCJ11,BBSS20] to our
setting, where the columns of A define the subset sum instance with target vector
b, and the max-norm of s defines which linear combinations are allowed.

704 A. May

In the original subset sum setting, we are allowed to take 0/1-combinations,
whereas for ternary s we have to take 0/ ± 1 combinations. Intuitively, although
a larger digit set for the linear combinations increases the combinatorial com-
plexity, it might at the time weaken subset sum instances, since it introduces
symmetries. The latter effect can be seen in our results. Our subset sum instances
on r coordinates can be solved more efficiently than the original 0/1-instances
from [HJ10,BCJ11,BBSS20], despite the fact that—as opposed to the subset
sum setting—we also have to take the complexity of guessing r coordinates of e
into account.

Eventually, our subset sum-type algorithm outputs two (sorted) lists of size
Sc, c < 0.5 from which the secret s can be recovered in time linear in the list
size by using Odlyzko’s algorithm on the remaining n − r coordinates.

We give different instantiations of our algorithm using different representa-
tions of s = s1+s2 as a sum of two vectors s1, s2 ∈ Z

n
q . The more representations

we have of s, the larger is the number r of guessed coordinates, and the smaller
gets c. Intuitively, choosing larger r in this tradeoff pays off, since key guessing
is slightly subexponential, whereas S is fully exponentially in n.

This bias in the tradeoff can be seen in the instantiations of our MitM.
We choose three different instantiations—called Rep-0, Rep-1, Rep-2—with
an increasing number of representations. More representations yield smaller list
sizes and therefore complexities Sc with smaller c. For Rep-0, Rep-1 and Rep-2
we optimize the search trees in our subset sum-type list construction to find a
minimal c, while using relatively small search tree depths 3 or 4.

We also show that, despite the key guessing, our MitM leads to significantly
improved non-asymptotic combinatorial attacks. As running example, we con-
sider the current NIST round-3 candidate encryption schemes NTRU [CDH+19]
and NTRU Prime [BCLvV17,BCLvV], which both have ternary secrets s, e. As
examples for signature schemes, we address the efficient GLP version [GLP12]
of Lyubashevksy’s scheme [Lyu12] and BLISS [DDLL13], both using ternary
secrets. For BLISS we also analyze an instance with secret s ∈ {−2,−1, 0, 1, 2}n.

For these schemes, we illustrate the effects of our new MitM LWE key search,
instantiated with Rep-0 to Rep-2. We compute the list sizes and therefore
complexities non-asymptotically exact, but for ease of exposition throughout the
paper we ignore polynomial factors that stem from list operations like sorting
or hashing. These polynomial factors usually increase the run time, but tricks
like using rotations in ring-LWE might also decrease our complexities by other
polynomial factors.

Our non-asymptotic analysis nicely illustrates the tradeoff between guessing
r coordinates and decreasing the complexity of the subset sum-type list con-
structions. See Table 1 for a numerical example.

Table 1. Illustration of our non-asymptotic improvements.

(n, q, w) Odlyzko[bit] Rep-0 [bit] Rep-1 [bit] Rep-2 [bit]

NTRU (821,4096,510) 643 520 = 487+33 393 = 334+59 378 = 318+60

How to Meet Ternary LWE Keys 705

The largest of the three proposed NTRU parameter sets is (n, q) =
(821, 4096), where the ternary secret has exactly 255 1-coordinates and 255
(−1)-coordinates. This gives search space size S =

(
821

255,255,311

)
≈ 21286. Thus,

we obtain S0.5 ≈ 2643, or 643 bit, complexity for Odlyzko’s attack.
Using Rep-0, we decrease to 520 bit, where we require 487 bit for the subset

sum-type list construction and 33 bit for key guessing. Using Rep-1, we further
decrease to 393 bit, using 334 bit for list construction and 59 bit for guessing.
Eventually using Rep-2, we even further decrease to 378 bit, using only 318 bit
for list construction and 60 bit for guessing.

In total, our new purely combinatorial MitM on parameter set (821, 4096)
has complexity 2378 ≈ S0.29—with list construction time 2318 ≈ S0.25—instead
of Odlyzko’s 2643 ≈ S 1

2 . For all six officially proposed instances of NTRU and
NTRU Prime we obtain complexity roughly S0.3. For BLISS signatures we obtain
complexities between S0.28 and S0.3, and for GLP signatures complexity S0.28.
The reason for these improved complexities is that lattice-based signatures (as
opposed to encryption schemes) typically use larger q, from which our LWE
MitM key search algorithm benefits.

The memory requirement of our attack is roughly S0.25, asymptotically and
non-asymptotically, as compared to S0.5 for Odlyzko’s attack. However, we show
that our techniques also lead to time-memory tradeoffs that improve over the best
known time-memory tradeoff for Odlyzko’s attack by van Vredendaal [vV16].

Table 2. Comparison of our MitM (non-asymptotic Rep-2) with lattice esti-
mate [APS15]

(n, q, w) Rep-2[bit] lattice [bit]

NTRU-Encypt

(509,2048,254) 227 123

(677,2048,254) 273 162

(821,4096,510) 378 196

NTRU Prime

(653,4621,288) 272 145

(761,4591,286) 301 168

(857,5167,322) 338 189

NTRU ees659ep1

(659,2048,98) 176 115

BLISS

I+II:(512,12289,154) 187 103

IV:(512,12289,230,30) 246 104

GLP I

(512,8383489,342) 225 58

706 A. May

Although our MitM performs much better than the best known combinato-
rial attack, our results do not invalidate the security claims of current LWE-type
systems like NTRU, BLISS and GLP. In comparison to the current best lattice
estimates ([APS15] using Core-SVP 20.292β+16.4), our results so far cannot com-
pete, see Table 2. For modern schemes like NTRU, NTRU Prime and BLISS
our attack complexities are almost the square of the estimated lattice complex-
ities. However, for the NTRU standard ees659ep1 [ntr08] with its small weight
w = 98 we achieve a purely classical MitM using complexity only 2157 for list
construction and additionally 219 for key guessing. This is not too far off from
the current 115-bit lattice estimate. Thus, our attack shows its strength in the
small error regime, as one would expect from a combinatorial attack.

We also consider it important to establish new solid combinatorial upper
bounds on the security of small key LWE-type schemes. Up to now, the LWE
parameter selection is solely based on lattice reduction estimates which involve
not only a good amount of heuristics like e.g. the Gaussian Heuristic and the
Geometric Series Assumption, but also a variety of run time formulas for esti-
mating BKZ lattice reduction. Our impression is that (for good reasons) the
security of current LWE type schemes is rather underestimated by current lat-
tice complexity estimates.

In contrast, our MitM uses only very mild heuristic assumptions from subset
sum-type list constructions that have already been thoroughly experimentally
verified in other settings [BCJ11,BJMM12], and our run time analysis can be
considered quite accurate.

The major open problem that arises from our work is whether our MitM
attack can be used to speed up the lattice hybrid attack by the amount that we
improve over Odlyzko’s MitM. We discuss potential directions in Sect. 10.

Organization of our paper. We recall known MitM attacks from Odlyzko
(Sect. 3) and Howgrave-Graham (Sect. 4, not to be confused with Hybrid). These
two MitMs are sometimes mixed in the literature, although they are algorith-
mically different. We show that Howgrave-Graham’s method is strictly inferior,
but it can be used as the basis for our improved LWE MitM key search algo-
rithm Meet-LWE in Sect. 5. We instantiate Meet-LWE with different repre-
sentations Rep-0 (Sect. 6), Rep-1 (Sect. 7) and Rep-2 (Sect. 8). Some improved
time-memory tradeoffs are given in Sect. 9. In Sect. 10, we discuss why Meet-
LWE fails to be directly applicable to Howgrave-Graham’s lattice Hybrid attack,
and discuss possible work-arounds.

2 Preliminaries

2.1 LWE-Key and Max-Norm Key Search

Definition 1 (Small Max-Norm LWE Secret Key). An LWE public key
is a tuple (A,b) ∈ Z

m×n
q satisfying the identity

As = b + e mod q

How to Meet Ternary LWE Keys 707

for some secret vectors s ∈ Z
n
q and e ∈ Z

m
q . We call s, e small max-norm LWE

secret keys if ‖s‖∞ = ‖e‖∞ = O(1). We call max-norm 1 vectors ternary. We
denote the set of n-dimensional ternary vectors by T n = Z

n
q ∩ {−1, 0, 1}n.

All small max-norm LWE keys allow for simple checking of key guess correct-
ness. Namely, with overwhelming probability (over the randomness of A) there
is a unique s such that As − b has small max-norm. Throughout the paper, we
use square A ∈ Z

n×n
q , and assume that A’s entries are uniformly at random from

Zq. For Ring-LWE type cryptosystems the entries are in fact dependent, but we
do not make use of any ring structure.

If not specified otherwise we use ternary LWE keys, since almost all
prominent running examples of NTRU-type cryptosystems in this paper—
NTRU [CDH+19], NTRU Prime [BCLvV], BLISS [DDLL13] and GLP [GLP12]—
use coefficients in {−1, 0, 1}. We also analyze a max-norm 2 BLISS example in
Sect. 8.3. In principle, our technique applies to any max-norm, but we consider
our algorithms most effective for very small max-norms like 1 and 2. Moreover,
our technique is currently harder to analyze with increasing max-norm.

Most NTRU-type systems such as the above examples do not only use small
max-norm keys, but they also restrict the number of non-zero entries.

Definition 2 (Weight). Let s = (s1, . . . , sn) ∈ F
n
q . Then the weight w of s is

defined as its Hamming weight w :=
∑

si �=0 1. We often specify the weight relative
to n as w = ωn for some 0 ≤ ω ≤ 1. We denote the set of n-dimensional ternary
weight-w vectors that split their weight evenly in w/2 (−1)-entries and 1-entries
by

T n(w/2) = {s ∈ T n | s has w/2 (±1)−entries each.}
For notational convenience we omit any roundings. Asymptotically, roundings
can be neglected. For real-world security estimates we round appropriately.

NTRU’s security analysis so far yields an optimal relative weight in the range
ω ∈ [13 , 2

3] [CDH+19,BCLvV]. A prominent choice is ω = 3
8 , which is used in

one (out of three) suggested NTRU parameter sets with dimension n = 677 and
in two (out of three) suggested NTRU Prime parameter sets with n = 761 and
n = 857. Throughout the paper when we speak of NTRU instances, we address
parameter sets of the HPS variant, but in principle our attack also applies to
HRSS, see [CDH+19]. Similar, with NTRU Prime we address the Streamlined
NTRU variant, but our attack also works for NTRU LPRime, see [BCLvV].

2.2 Search Space, Entropy and Representations

Obviously, there are 3n ternary vectors s ∈ T n. When using asymptotics (and
only in this case!), we frequently approximate sets of vectors with a fixed number
of certain coefficients by the following well-known Shannon entropy formula that
stems from Stirling’s approximation [MU17].

708 A. May

Lemma 1 (Multinomial approximation). Let D = {d1, . . . , dk} ⊂ Zq be a
digit set of cardinality k. The number of vectors s ∈ Z

n
q ∩ Dn having exactly cin

many di-entries,
∑n

i=1 ci = 1, is

(
n

c1n, . . . , ckn

)
≈ 2H(c1,...,ck)n, with entropy H(c1, . . . , ck) =

k∑

i=1

ci log2

(
1
ci

)
.

Notice that Lemma 1 approximates the number of ternary vectors having
exactly n/3 coefficients for each of −1, 0, 1 as

2H(1
3 , 13 , 13)n = 23· 13 log2(3)n = 3n.

The straight-forward proof of Lemma 1 via Stirling approximation shows that
the approximation suppresses for the above setting a 1

n -factor, which implies
that a 1

n -fraction of all ternary vectors splits its coefficients evenly among the
entries −1, 0, 1. In our notation, T n(n/3) is up to a (small) polynomial factor as
large as T n.

For ease of notation, in the following we always assume that we search for
ternary keys with a predefined portion of entries. This is true e.g. for NTRU,
GLP and BLISS. However, we can easily generalize our attack to systems with
arbitrary portions of entries, such as NTRU Prime, by simply guessing each
portion. Since we only consider constant max-norm, such a guessing costs only
an nO(1)-factor.

2.3 Asymptotics and Real-World Applications

Although our NTRU-applications in mind require real-world security esti-
mates, we usually start our analysis with asymptotic notion, before giving non-
asymptotics for concrete instances. Asymptotics often allows for much cleaner
results, clearly indicating the dependence on the involved LWE parameters
(n, q, w). In the asymptotic setting, we suppress all polynomial factors. For expo-
nential run times, we simply round the run time exponent upwards, e.g. n2 ·2n/3

is upper bounded as 20.334n.
All modern NTRU-type cryptosystems require q = Ω(n), encryption schemes

have such a lower bound to eliminate decryption errors. E.g. NTRU Prime
restricts the weight w ≥ 1

3n and chooses q ≥ 16w + 1, and NTRU recommends
only parameter sets q ∈ [83n, 16

3 n]. Restricting q = O(n) is used to obtain small
ciphertexts/signatures.

3 Odlyzko’s Meet-in-the-Middle Algorithm

Odlyzko’s attack was originally designed for binary vectors, but the following
generalization to ternary (or even small max-norm) vectors is straight-forward.

In the following, we use the short-hand multinomial notion
(

n
a1,...,ak,·

)
, where ·

stands for the missing argument n−a1 − . . .−ak. Analogous, we use the entropy
notion H(c1, . . . , ck, ·), where · represents the missing arguments 1−c1− . . .−ck.

How to Meet Ternary LWE Keys 709

Let the search space consist of all ternary weight-w vectors s ∈ T n(w/2)
with even number w/2 of ±1. By Lemma 1, the search space size S can be
approximated as

S =
(

n
w
2 , w

2 , ·

)
≈ 2H(ω

2 , ω
2 ,·)n.

We split s = (s1, s2) ∈ T n/2(w/4) × T n/2(w/4) in ternary weight-w/2 vectors
s1, s2 with again an even split of ±1. Notice that we may rerandomize the posi-
tions of (±1)-entries in s via permutation of A’s columns. The probability that
a rerandomized s has the desired weight distribution split can be estimated via
Lemma 1 as (n

2
w
4 , w

4 ,·
)2

(
n

w
2 , w

2 ,·
) ≈ 22H(ω

2 , ω
2 ,·)n

2 −H(ω
2 , ω

2 ,·)n = 1.

Since ≈ suppresses polynomial factors, our probability is more precisely
1/poly(n). Thus via permutation of A’s columns we always achieve the desired
distribution after poly(n) iterations. Therefore, without loss of generality we
always assume throughout this paper that we can evenly split all coefficients of
our secrets (up to minor rounding issues).

Let A = (A1|A2) ∈ Z
n×n
q , where A1 (respectively A2) denote the left

(respectively right) n/2 columns of A. From Definition 1 we obtain the iden-
tity A1s1 = b − A2s2 + e mod q. Thus, the terms A1s1 and b − A2s2 differ by
at most ±1. We may rewrite this as

A1s1 + e1 = b − A2s2 + e2 mod q where e1, e2 ∈ {0, 1}n. (1)

Since we do not know the error vectors e1, e2, Odlyzko proposed a simple
locality sensitive hashing approach. We assign to each x = (x1, . . . , xn) ∈ Z

n
q

coordinate-wise the following binary hash labels �(x)i that can be interpreted as
most significant bits of the xi

� : Zn
q → {0, 1}n with �(x)i =

{
0 if 0 ≤ xi <
q/2� − 1
1 if
q/2� ≤ xi < q − 1

. (2)

For any candidates s1, s2 we hash A1s1 and b − A2s2. Notice that for the two
border values
q/2� − 1 and q − 1 the error vectors e1, e2 may result in a flip of
the hash value. Therefore, we assign for these entries both labels 0 and 1.

Example: Let q = 4096. Then the vector x = (0, 2047, 3000, 4095) with border
values 2047, 4095 in positions 2, 4 gets assigned all four labels from the set {0}×
{0, 1} × {1} × {0, 1}.

For all elements we store their labels (sorted). Let X be a random variable
for the number of border values for each entry. Then every entry is stored in 2X

places. Since E[X] = 2
q n = Θ(1), every element occupies only linear space.

Odlyzko’s MitM algorithm is given in Algorithm 1, complexities for our
addressed cryptosystems can be found in Table 3.

710 A. May

3.1 Correctness

By definition of the hash function � every candidate tuple (s1, s2) that satisfies
Eq. (1) for some binary e1, e2 ∈ {0, 1}n leads to colliding labels �(A1s1) = �(b−
A2s2).

Algorithm 1. Odlyzko’s Meet-in-the-Middle
Require: LWE public key (A,b) ∈ Z

n×n
q × Z

m
q , weight w ∈ N

Ensure: s ∈ T n(w/2) satisfying e := As − b mod q ∈ T n

1: for all s1 ∈ T n/2(w/4) do
2: Store (s1, �(A1s1)) in list L1.

3: for all s2 ∈ T n/2(w/4) do
4: Store (s2, �(b − A2s2)) in list L2.

5: for all matches of (s1, ·) and (s2, ·) in the second component of L1 × L2 do
6: if A(s1, s2) − b mod q ∈ T n then return s = (s1, s2)

Table 3. Odlyzko’s MitM complexity.

(n, q, w) S Odlyzko

NTRU (509,2048,254) 754 bit 377 bit

(677,2048,254) 891 bit 445 bit

(821,4096,510) 1286 bit 643 bit

NTRU Prime (653,4621,288) 925 bit 463 bit

(761,4591,286) 1003 bit 502 bit

(857,5167,322) 1131 bit 566 bit

BLISS I+II (512,12289,154) 597 bit 299 bit

GLP I (512,8383489,342) 802 bit 401 bit

Contrary, let (s1, s2) be a candidate tuple that does not satisfy Eq. (1)
for some binary e1, e2 ∈ {0, 1}n. By A’s randomness we have colliding labels
�(A1s1) = �(b − A2s2) with probability only (roughly) 2−n.

Notice that Odlyzko’s locality sensitive hashing makes use of a large field size
q to separate wrong candidates (s1, s2) from the unique correct solution.

3.2 Runtime

Runtime and memory consumption of Algorithm1 is dominated by the list sizes

|L1| = |L2| =
(n

2
w
4 , w

4 , ·

)
≈ 2H(ω

2 , ω
2 ,·)n

2 =
√

S. (3)

Notice that in line 5 of Algorithm 1 we expect 2−n · |L1| · |L2| matches, which is
larger than |L1|, |L2|, if |L1|, |L2| are larger than 2n. In this case, we may modify
Odlyzko’s hash function such that its range gets greater than the list sizes (by
assigning more than two labels, see also Sect. 9).

How to Meet Ternary LWE Keys 711

4 Howgrave-Graham’s MitM Algorithm

There is a second Meet-in-the-Middle attack that was first analyzed
in [HGSW03]. Howgrave-Graham described it in [How07] as Odlyzko’s MitM,
which let people mix (and confuse) both approaches in the literature.

We briefly discuss this second MitM, which we attribute to Howgrave-
Graham. We show that it performs worse than Odlyzko’s MitM for ternary
vectors for every weight w. However, Howgrave-Graham’s method is a first step
to our new MitM, since both approaches are based on ambiguous sum represen-
tations, also known as the representation technique.

Whereas Odlyzko splits s = (s1, s2) uniquely as n/2-dimensional si,
Howgrave-Graham represents s ∈ T n(w/2) ambiguously as s1 + s2 with n-
dimensional si ∈ T n(w/4). As a consequence, the search space for the si is
of increased size

S(1) =
(

n
w
4 , w

4 , ·

)
, (4)

as compared to
(n

2
w
4 , w

4 ,·
)

from (3) in Odlyzko’s MitM. But the ambiguity also

introduces R(1) =
(
w/2
w/4

)
·
(
w/2
w/4

)
representations of the desired solution s, since

each of the w/2 1-coordinates in s can be represented as 1 + 0 or 0 + 1, and
analogous for the w/2 (−1)-coordinates.

Note that our MitM identity from Equation (1) now becomes As1 + e1 =
b − As2 + e2. We describe Howgrave-Graham’s approach in Algorithm 2. Its
correctness follows analogous to Sect. 3.1.

Algorithm 2. Howgrave-Graham’s Meet-in-the-Middle
Require: LWE public key (A,b) ∈ Z

n×n
q × Z

m
q , weight w ∈ N

Ensure: s ∈ T n(w/2) satisfying e := As − b mod q ∈ T n

1: repeat
2: Sample some s1 ∈ T n(w/4). Store (s1, �(A1s1)) in list L1.
3: Sample some s2 ∈ T n(w/4). Store (s2, �(b − A2s2)) in list L2.
4: until there exists a match (s1, ·), (s2, ·) in 2nd component of L1 ×L2 with s1 +s2 ∈

T n

5: if A(s1 + s2) − b mod q ∈ T n then return s = (s1 + s2)

Run Time. In each iteration of the repeat-loop we hit a vector s1 or s2 that is
part of a representation (s1, s2) of s with probability p = R(1)

S(1) . After
√

R(1) hits,
by the birthday paradox we expect to have both parts s1, s2 of a representation
in L1, L2. Thus the expected number of iterations in Algorithm 2 is

p−1 ·
√

R(1) =
S(1)

R(1)
·
√

R(1) =
(

n
w
4 , w

4 , ·

)
·
(w

2
w
4

)−1

≈ 2(H(ω
4 , ω

4 ,·)− ω
2)n.

712 A. May

We see in Fig. 1 that the run time exponent H(ω
4 , ω

4 , ·) − ω
2 is larger than

Odlyzko’s run time exponent 1
2H(ω

2 , ω
2 , ·) for every ω ∈ [13 , 2

3] (in fact this holds
for all 0 ≤ ω ≤ 1). E.g. for the prominent NTRU setting ω = 3

8 we obtain expo-
nents 0.697 versus 0.665. Hence, one should always prefer Odlyzko’s algorithm
for ternary secrets.

Fig. 1. Run Time Comparison Odlyzko vs Howgrave-Graham

Intuitively, in a subset sum-type approach of the representation technique as
in [HJ10], one would try to construct two lists L1, L2 with entries (s1, �(As1)),
(s2, �(b − As2)) recursively such that on expectation L1 × L2 contains a single
representation. However, the non-linearity of Odlyzko’s hash function � hinders
such a direct recursive application of the representation technique. We solve this
technical issue in the following section.

5 Our New MitM Algorithm – High Level Idea

Let us first state our new LWE key search algorithm Meet-LWE in a high-level
manner, for an illustration see Fig. 2. Moreover, we introduce some more scalable
notation that will prove useful in subsequent sections. For ease of exposition, we
again focus on ternary secret LWE keys s, e ∈ T n.

As in Sect. 4, we represent a weight-w ternary s ∈ T n as a sum s1 + s2
of n-dimensional s1, s2 in R(1) ways. Here, s1, s2 may be ternary weight-w/2
vectors (Sect. 6), ternary vectors with weight larger than w/2 (Sect. 7), or even
non-ternary vectors (Sect. 8). As a rule of thumb, the larger the search space for
s1, s2, the larger also the number of representations R(1).

Let us start with the LWE identity As1 = b − As2 + e for some ternary e ∈
{0, 1}n. Define e1 ∈ T n/2 × 0n/2 and e2 ∈ 0n/2 × T n/2 such that e = e2 − e1.
Then we obtain

As1 + e1 = b − As2 + e2 with e1 ∈ T n/2 × 0n/2, e2 ∈ 0n/2 × T n/2. (5)

Thus, we split e in a typical MitM fashion into e1, e2.

How to Meet Ternary LWE Keys 713

Fig. 2. Meet-LWE high level structure

Assume for a moment that we know the error vector e, and thus e1, e2. Let
r =
logq R(1)�, and fix a randomly chosen target vector t ∈ Z

r
q. Moreover, let

us define the projection πr on the first r coordinates as

πr : Zn
q → Z

r
q, x = (x1, . . . , xn) → (x1, . . . , xr), (6)

which is a ring homomorphism (as opposed to Odlyzko’s hash function).
Notice that the range Z

r
q of πr has size qr < qlogq R(1)

= R(1). Therefore,
we expect that for at least one out of the R(1) representations (s1, s2) of s its
projection via πr matches the random target t, i.e.

πr(As1 + e1) = t mod q.

By Eq. (5) and πr’s ring homomorphism property, this automatically implies
the second identity πr(b − As2 + e2) = t mod q, as well. Let us stress that for
checking both identities it suffices to only know the first r coordinates πr(e) of
e. As in Eq. (5), we may split πr(e) = πr(e2) − πr(e1).

Let � : Fn
q → {0, 1}n be Odlyzko’s hash function from Eq. (2). Our goal is to

construct lists L
(1)
1 , L

(1)
2 (see also Fig. 2) satisfying

L
(1)
1 = {(s1, �(As1)) | πr(As1 + e1) = t mod q},

L
(1)
2 = {(s2, �(b − As2)) | πr(b − As2 + e2) = t mod q}. (7)

Our resulting LWE MitM key search is given in Algorithm 3, called Meet-LWE.

5.1 Correctness

In a nutshell, Meet-LWE (Algorithm 3) constructs an s that fulfills As = b+e
on r coordinates exactly, and on the remaining n − r coordinates approximately

714 A. May

Algorithm 3. LWE Key Search Meet-LWE (High-Level)
Require: LWE key (A,b) ∈ Z

n×n
q × Z

n
q , weight w ∈ N

Ensure: ternary weight-w s satisfying e = As − b mod q ∈ T n

1: We represent s = s1 + s2 using different vector sets for s1, s2 (see Sect. 6 and 8).
Let R(1) be the resulting number of representations. Let r = �logq(R

(1))�.
2: for all πr(e1) ∈ T r/2 × 0r/2 do

3: Construct L
(1)
1 from Eq. (7), using some tree-based list construction.

4: for all πr(e2) ∈ 0r/2 × T r/2 do

5: Construct L
(1)
2 from Eq. (7), using some tree-based list construction.

6: � For both list constructions see Sect. 6 and 8.
7: for all matches of (s1, ·) and (s2, ·) in the second component of L1 × L2 do
8: if (s := s1 + s2 ∈ T n has weight w) and (As − b mod q ∈ T n) then return s

via Odlyzko’s hash function. Thus, Meet-LWE’s correctness follows from the
discussion in Sect. 3 and 4.

While Odlyzko’s matching of s1, s2 guarantees that A(s1 + s2) − b ∈ T n

(with high probability), it does not ensure that s = s1 +s2 is a ternary weight-w
vector. Therefore, we check for consistency of s in line 8 of Algorithm 3. Filtering
out inconsistent solutions is called Match-and-filter, a standard technique for
representations [BCJ11,BJMM12].

5.2 Runtime

Algorithm 3 has two outer for-loops that each guess r/2 coordinates of e with
inner loops that are subset sum-type list construction steps.

Let us start with the outer loop’s guessing complexity Tg. Assume e is a
random ternary vector. Then the guessing complexity is

Tg = 3r/2 ≤ 3
1
2 logq R(1)

= 2
1
2 log2(3)

log2 R(1)

log2 q .

For low weight e we may further improve. This could be e.g. done for BLISS,
but for simplicity we ignore such improvements in this paper. For all other
cryptosystems that we address in our applications e is not low weight.

In our instantiations of Meet-LWE in the following sections, we have
log2 R(1) = O(n). Since q = Ω(n) (see Sect. 2), we obtain a guessing complexity
of

Tg = 2O
(

n
log q

)
= 2O

(
n

log n

)
.

Since the inner loop has—as in Odlyzko’s attack—list construction complexity
T� = 2O(n), the overall asymptotic complexity T = Tg · T� is fully determined
by the inner loop’s complexity T�, and guessing r coordinates of e just adds an
o(1)-term to the inner loop’s run time exponent!

In the following sections, we see that guessing πr(e1), πr(e2) also leads to
tolerable non-asymptotic overheads Tg for real-world parameters, for which we
cannot simply neglect a 2O(n

log n)-term.

How to Meet Ternary LWE Keys 715

In Sect. 6–8, we instantiate Algorithm 3 with varying representations of
ternary s with increasing R(1). As a warm-up, we start in Sect. 6 with Howgrave-
Graham’s representation from Sect. 4 as s = s(1)1 + s(1)2 ∈ T n(w/2) with
ternary s(1)1 , s(1)2 ∈ T n(w/4). This already leads to an (asymptotical) complexity
improvement from S(1)√

R(1)
downto S(1)

R(1) , superior to Odlyzko’s attack.

6 REP-0: First Instantiation of MEET-LWE

The reader is advised to compare Figs. 2 and 3. Meet-LWE’s tree-based list
construction from Fig. 2 is realized by a single additional tree layer in Fig. 3.

Fig. 3. Rep-0 instantiation of Meet-LWE

Let s ∈ T n(w/2) be the weight-w ternary secret. We represent s as the sum
of weight-w/2 ternary secrets s(1)1 , s(1)2 ∈ T n(w/4).

Recall from Sect. 4, Eq. (4) that the search space for the s(1)i is of size S(1) =
(

n
w
4 , w

4 ,·
)

≈ 2H(ω
4 , ω

4 ,·)n and we have R(1) =
(
w/2
w/4

)2
≈ 2ωn representations. Hence

the lists L
(1)
1 , L

(1)
2 in Algorithm 3 are both of size

L(1) =
S(1)

qr
≈ S(1)

R(1)
=

(
n

w
4 , w

4 , ·

)(w
2
w
4

)−2

≈ 2(H(ω
4 , ω

4 ,·)−ω)n.

Let us construct L
(1)
1 , L

(1)
2 in a standard MitM manner. Namely, we enumerate

s(1)1 ∈ T n(w/4) as the sum of

s(2)1 ∈ T n
2 (w/8) × 0

n
2 and s(2)2 ∈ 0

n
2 × T n

2 (w/8).

716 A. May

Analogous, we proceed with s(1)2 . All four s(2)i are from a search space of size
S(2) =

√
S(1). Thus, on level 2 of our complete binary search tree we obtain four

lists L
(2)
1 , . . . , L

(2)
4 each of size

L(2) = S(2) =
(n

2
w
8 , w

8 , ·

)
≈ 2

1
2 H(ω

4 , ω
4 ,·)n.

The time T (1) to construct the level-1 lists L
(1)
1 , respectively L

(1)
2 , from the

(sorted) level-2 lists L
(2)
1 , L

(2)
2 , respectively L

(2)
3 , L

(2)
4 , is

T (1) = max{L(2), L(1)}.

From Sect. 3.2, we know that Meet-LWE’s final approximate matching on
n − r coordinates can be realized via Odlyzko’s hash function in time

T (0) = max{L(1), 2−(n−r)(L(1))2} = L(1) for all ω ∈ [0, 1].

Thus, the total run time of list construction is T� = max{T (1), T (0)} =
max{L(2), L(1)}. This implies that we obtain run time exponent

max
{

1
2

H
(ω

4
,
ω

4
, ·

)
,H

(ω

4
,
ω

4
, ·

)
− ω

}
,

which improves on Odlyzko’s exponent 1
2H(ω

2 , ω
2 , ·) for every ω ∈ [0, 0.87].

Remark 1. We could slightly improve our Rep-0 attack such that the size of L(1)

dominates the run time for all ω ≤ 2
3 , i.e. up to random s ∈ T n. As described

above, L(2) dominates for ω ≥ 0.58. However, such an improvement comes at
the cost of adding a third tree layer. As Rep-0 is mainly for didactical reasons to
make the reader familiar with the technique, we chose to sacrifice optimality for
the sake of a simpler algorithmic description. The Rep-0 results are superseeded
anyway in subsequent sections, where we optimize our tree depth.

Theorem 1. Let s, e be ternary LWE key with s having weight w = ωn. Then
s can be found in time and space (neglecting polynomial factors)

3
logq

(
(w/2

w/4)
)

· max

{(
n
2

w
8
, w

8
, ·

)
,

(
n

w
4
, w

4
, ·

)(
w
2
w
4

)−2}
≈ 2max{ 1

2 H(ω
4 , ω

4 ,·),H(ω
4 , ω

4 ,·)−ω}n.

Proof. We have R(1) =
(
w/2
w/4

)2
representations. In Meet-LWE we guess in total

r =
logq R(1)� coordinates of e ∈ T n via some standard MitM approach in time

Tg = 3r/2 ≤ 3logq

(
(w/2

w/4)
)
.

How to Meet Ternary LWE Keys 717

The run time T� of Meet-LWE’s list construction is dominated by the maximum
of the sizes L(2), L(1) of the lists on level 2 and 1:

T� = max
{

L(2), L(1)
}

= max

{
S(2),

S(1)

R(1)

}
= max

{(
n
2

w
8
, w

8
, ·

)
,

(
n

w
4
, w

4
, ·

)(
w
2
w
4

)−2}
.

Meet-LWE’s total run time is T = Tg · T�. �

Table 4. Non-asymptotic complexity comparison Odlyzko (Sect. 3) vs. Rep-0.

(n, q, w) Odlyzko Rep-0 [bit] logSRep-0

NTRU (509,2048,254) 377 bit 305 = 287 + 18 0.40

(677,2048,254) 445 bit 364 = 347 + 18 0.41

(821,4096,510) 643 bit 520 = 487 + 33 0.40

NTRU Prime (653,4621,288) 463 bit 370 = 352 + 18 0.40

(761,4591,286) 502 bit 408 = 390 + 18 0.41

(857,5167,322) 565 bit 459 = 439 + 20 0.41

BLISS I+II (512,12289,154) 299 bit 247 = 238 + 9 0.41

GLP I (512,8383489,342) 401 bit 325 = 314 + 12 0.41

In Table 4 we computed Meet-LWE’s complexity with our Rep-0 represen-
tations using the exact formula on the left hand side of Theorem 1 (and not the
H(·)-approximation). In the notation of Sect. 5 we split Meet-LWE’s complex-
ity T in the cost T� of the inner loop for list construction, and Tg of the outer loop
for guessing r/2 coordinates. E.g. the NTRU instance (509, 2048, 254) has total
complexity T = 305 bit, which splits in T� = 287 bit for list construction, and
Tg = 18 bit for guessing. Since we round all complexities to the next integers,
T� + Tg might deviate from T by one.

We observe that Rep-0 already reduces Odlyzko’s bit complexities by roughly
18%, resulting in complexity S0.41. Due to a large q, key guessing in BLISS and
GLP can be performed more efficiently, as can be observed by the small Tg-values
of 9 and 12 bit.

7 REP-1: Using Additional Ones

The idea of Rep-1 is to represent a weight-w ternary s ∈ T n(w/2) as the sum
of s(1)1 , s(1)2 ∈ T n(w(1)), where w(1) > w/4. In comparison to Sect. 6, this further
increases the number R of representations. We build a complete binary search
tree T of depth 4, see Fig. 4. In the following, we describe the lists L

(j)
i on level j.

718 A. May

Fig. 4. Rep-1 instantiation of Meet-LWE with depth d = 4

7.1 Level-1 Lists

Define w(0) = w/2 and w(1) = w(0)/2 + ε(1). Let s1, s2 ∈ Tn(w(1)). Notice
that s1 + s2 ∈ T n(w(0)) iff in the sum ε(1) many (−1)-coordinates cancel with
1-coordinates, and vice versa. In the terminology of representations, we addition-
ally represent 0 as (−1) + 1 and 1 + (−1). Recall that in Sect. 6 we represented
±1 as ±1 + 0 and 0 ± 1, but 0 was always represented solely as 0 = 0 + 0.

Therefore, we increase the number of level-1 representations of s ∈ T n(w(0))
to

R(1) =
(

w(0)

w(0)

2

)2

·
(

n − 2w(0)

ε(1), ε(1), ·

)
,

where the second factor accounts for our additional representations. On the
downside, an increased number w(1) of ±1 also increases the search space size to

S(1) =
(

n

w(1), w(1), ·

)
.

Our goal is to construct two lists L
(1)
1 , L

(1)
2 satisfying Eq. (7), both having size

L(1) = S(1)/R(1). But as opposed to Sect. 6, due to the increased S(1) we have
to construct these lists recursively, until the search space gets small enough to
apply a simple MitM construction.

How to Meet Ternary LWE Keys 719

7.2 Level 2 ≤ j < d Lists

For simplicity of exposition, we perform our analysis for trees of depth d = 4, such
that the reader may easily follow via Fig. 4. The analysis naturally generalizes
to any constant d, see also the full version [May21].

On level j ∈ {1, 2, 3} of our complete binary depth-4 search tree T we con-
struct lists L

(j)
1 , . . . , L

(j)
2j with vectors s(j)1 , . . . , s(j)2j of weight w(j) = w(j−1)/2 +

ε(j).
This gives us representations and search space size

R(j) =
(

w(j−1)

w(j−1)

2

)2

·
(

n − 2w(j−1)

ε(j), ε(j), ·

)
and S(j) =

(
n

w(j), w(j), ·

)
.

Let us now describe the level-2 lists more precisely, the level-3 lists are defined
analogous. We rewrite Eq. (5) as the following 4-sum for some ternary unknowns
e1, e2:

As(2)1 + As(2)2 + e1 = b − As(2)3 − As(2)4 + e2 mod q.

Let r(1) := r =
logq R(1)� be the number of guessed coordinates in Meet-LWE

(Algorithm 3), and let the fixed target be t = πr(1)(As(1)1 + e1) ∈ Z
r(1)

q . Let
r(2) =
logq R(2)� be the number of fixed coordinates on level-2, which is a subset

of the r(1) fixed coordinates on level 1. Choose two random t(2)1 , t(2)2 ∈ Z
r(2)

q . Then
the level-2 lists are defined as

L
(2)
1 = {(s(2)1 , As(2)1) | πr(2)(As(2)1) = t(2)1 mod q},

L
(2)
2 = {(s(2)2 , As(2)2) | πr(2)(As(2)2 + e1) = πr(2)(t) − t(2)1 mod q},

L
(2)
3 = {(s(2)3 ,b − As(2)3) | πr(2)(b − As(2)3) = t(2)2 mod q},

L
(2)
4 = {(s(2)4 ,−As(2)4) | πr(2)(−As(2)4 + e2) = πr(2)(t) − t(2)2 mod q}. (8)

Let s(1)1 = s(2)1 + s(2)2 . Notice that by definition in Eq. (8) and the linearity of
π we automatically have

π
r(2)

(As
(1)
1 + e1) = π

r(2)
(A(s

(2)
1 + s

(2)
2) + e1) = π

r(2)
(As

(2)
1) + π

r(2)
(As

(2)
2 + e1) = π

r(2)
(t) mod q.

Analogous, for s(1)2 = s(2)3 + s(2)4 we obtain πr(2)(b−As(1)2 +e2) = πr(2)(t) mod q.
That is, we automatically satisfy our target-t condition for the level-1 lists

L
(1)
1 , L

(1)
2 from Eq. (7) on r(2) coordinates. It remains to match the elements in

L
(2)
1 × L

(2)
2 and L

(2)
3 × L

(2)
4 on the remaining r(1) − r(2) coordinates.

Eventually, the level-3 lists are constructed via a MitM approach out of level-
4 lists, similar to Sect. 6.

720 A. May

7.3 Correctness

Notice that as opposed to the level-1 lists, we compute in (8) the value As(2)i

instead of the Odlyzko-hashed value �(As(2)i). So whereas on level-1, we compute
an approximate matching of vectors via comparing hash values of some locality
sensitive hash function, on all other levels j > 1 we compute an exact (non-
hashed) matching of the projected vectors on r(j) coordinates.

On every level j ≥ 1, our matching ensures that (on expectation) at least one
representation of the solution satisfies all conditions. Thus, we expect that the
approximate matching of level-1 lists L

(1)
1 and L

(1)
2 provides the desired solution

in Meet-LWE.

Match-and-Filter. Notice that the sum of vector from T n(w(j)), 1 ≤ j < 4, is in
general not in the target distribution T n(w(j−1)). We filter out all vector sums
that do not have exactly w(j−1) of each (−1)- and 1-coordinates.

7.4 Run Time

The run time of Rep-1 is dominated by constructing all lists of size L(j) on all
levels j ≥ 0.

On level-4, we have sorted lists of size L(4) =
√

S(3). Ignoring polynomial
factors, the construction of each level-4 list costs time T (3) = L(3). Since we
match level-4 list elements on r(3) coordinates, the construction of level-3 lists
costs on expectation time

T (3) =
(L(4))2

qr(3) .

Since level-3 list elements already sum to the target e = e2 − e1 on r(3) coor-
dinates, for the construction of level-2 lists we have to match elements on the
remaining r(2) − r(3) coordinates. This can be done in expected time

T (2) =
(L(3))2

qr(2)−r(3) .

Notice that (L(3))2

qr(2)−r(3)
≥ L(2), since we filter out matching level-3 vector sums

that are not in T n(w(2)).
Define r(4) = 0. Then in general we can construct every level-j list for 4 >

j > 0 in time

T (j) =
(L(j+1))2

qr(j)−r(j+1) .

Once we have the level-1 lists L
(1)
1 , L

(2)
2 we construct the solution via Odlyzko’s

approximate matching. Since we already exactly matched elements on r(1) =

logq R(1)� elements, it remains to approximately match on n− r(1) coordinates.
This can be done in time

T (0) =
(L(1))2

2n−r(1) .

How to Meet Ternary LWE Keys 721

The list construction time T� and memory complexity M is then in total

T� = max{T (0), . . . , T (4)} and M = max{L(1), . . . , L(4)}.

The following optimizations balance out the dominating terms T (1), T (2), T (3).

7.5 Optimization: Asymptotic and Non-Asymptotic

In Table 5 we optimized for different relative weights ω Meet-LWE’s list con-
struction cost T�, which depends on n and ω only (and not on q). Asymptotically,
we can neglect the guessing cost Tg. We write T� = 2c(ω)n(1+o(1)) for some con-
stant c(ω) that we provide in Table 5, including the optimized additional ones
that we add on level j, parametrized by ε̄(j) = ε(j)

n .

Table 5. Asymptotics of Rep-1 compared to Odlylzko (Sect. 3) and Rep-0 (Sect. 6),
where we also optimized the search tree depth for Rep-0 (see Remark 1).

ω Odlyz. Rep-0 Rep-1 logS T� ε̄(1), ε̄(2), ε̄(3)

0.3 0.591 0.469 0.298 0.25 0.054, 0.024, 0.005

0.375 0.665 0.523 0.323 0.24 0.056, 0.025, 0.005

0.441 0.716 0.561 0.340 0.24 0.061, 0.028, 0.007

0.5 0.750 0.588 0.356 0.24 0.062, 0.028, 0.007

0.62 0.790 0.625 0.389 0.25 0.069, 0.028, 0.006

0.667 0.793 0.634 0.407 0.26 0.068, 0.025, 0.006

Since the Rep-I exponent is roughly half of the Odlyzko MitM exponent, the
list construction takes about S 1

4 instead of S 1
2 .

The parameters ε̄(j) are useful starting points for the non-asymptotic analysis
in Table 6. Column Rep-1 is in a bit complexity format T = T� + Tg, i.e. the total
run time is expressed via T� for list construction and Tg for guessing. As an example
take the first entry 243 = 212 + 31. List construction takes time T� = 212 bit and
key guessing Tg = 31 bit for a total running time of T = 243 bit.

The params-column 4 : 36, 16, 4 in Table 6 denotes that we construct a search
tree of depth 4, where we add 36 additional ±1 for every level-1 list, 16 additional
±1 for every level-2 list, and 4 additional ±1 for every level-3 list. Notice that
the relative weight ω = 0.5 in Table 5 has (ε̄(1), ε̄(2), ε̄(3)) = (0.062, 0.028, 0.007)
and 509 · (ε̄(1), ε̄(2), ε̄(3)) ≈ (32, 14, 4). Therefore, the optimal value (36, 16, 4) is
already well approximated by the asymptotic analysis. In fact, the parameters
(32, 14, 4) also yield 230 bit complexity.

We optimized every instance with depth-3 and depth-4 search trees. Increas-
ing to depth 5 did not give any further improvements, as predicted by our asymp-
totic analysis that was also optimal for depth-4 trees.

We observe from Table 6 that for depth-4 trees the list construction bit com-
plexity of T� (and memory consumption) only—e.g. without Tg—is roughly half

722 A. May

Table 6. Non-asymptotic comparison Odlyzko vs. Rep-1.

(n, q, w) Odly. Rep-1 [bit] params

NTRU-Encypt

(509,2048,254) 377 243 = 212 + 31 3: 18,4

230 = 191 + 38 4: 36,16,4

(677,2048,254) 445 281 = 246 + 35 3: 22,5

275 = 229 + 45 4: 42,19,4

(821,4096,510) 643 423 = 375 + 49 3: 24,6

393 = 334 + 59 4: 56,22,6

NTRU Prime

(653,4621,288) 463 288 = 254 + 33 3: 22,5

274 = 232 + 42 4: 42,19,4

(761,4591,286) 502 313 = 277 + 35 3: 24,6

303 = 257 + 46 4: 48,22,5

(857,5167,322) 565 350 = 311 + 39 3: 27,6

338 = 290 + 49 4: 47,20,3

BLISS I+II

(512,12289,154) 299 189 = 169 + 20 3: 17,4

187 = 163 + 24 4: 27,11,1

GLP I

(512,8383489,342) 401 258 = 242 + 16 3: 16,3

241 = 222 + 19 4: 34,12,4

of Odlyzko’s MitM, as predicted by Table 5. On the downside, in comparison to
Rep-0 in Table 4 the guessing complexity Tg increases quite significantly.

In a nutshell, Meet-LWE uses the additional representations to decrease T�

at the cost of Tg. Since guessing is asymptotically cheaper than list construction,
this tradeoff provides in total—already for practical size parameter settings—
significant savings.

8 REP-2: Extending the Digit Set with Two

In Sect. 7 we already saw that additional ones lead to a larger number R(1) of
representations, thereby significantly improving run times. In this section, we
extend the digit set with ±2, resulting in yet slight improvements.

The benefit of representing ternary s via s(1)1 + s(1)2 with s(1)1 , s(1)2 ∈
{−2,−1, 0, 1, 2}n is that we obtain additionally the following variety of rep-
resentations for each coordinate of s:

(−1) = (−2) + 1 = (−1) + 0 = 0 + (−1) = 1 + (−2),
1 = (−1) + 2 = 0 + 1 = 1 + 0 = (−2) + 1, (9)
0 = (−2) + 2 = (−1) + 1 = 0 + 0 = 1 + (−1) = 2 + (−2).

How to Meet Ternary LWE Keys 723

Moreover, Rep-2 also allows us for the first time to analyze LWE secrets s ∈
Z

n
q ∩ {±2,±1, 0}, as they appear e.g. in some BLISS instances, see Sect. 8.3.

The benefits of Rep-2 come at the price of a quite involved technical analysis,
especially for counting the new representations via new optimization parameters.
Since Rep-2 is algorithmically close to Rep-1 from Fig. 4, in the following we
only state the results. A detailed analysis including the semantics of our opti-
mization parameters ε

(j)
k� is presented in the full version [May21].

While we obtained significant savings from Rep-0 to Rep-1, the savings from
Rep-2 are in comparison quite smallish. This demonstrates that our technique
converges quite quickly, once we construct sufficiently many representations.
Similar effects were already observed in the subset sum context [HJ10,BCJ11,
BBSS20].

8.1 Optimization – Asymptotics

As in Sect. 7.5 we asymptotically neglect the guessing time Tg. The total run time
T is dominated by the list construction T� = 2c(ω)(n+o(n))) for some constant c(ω)
that we provide in Table 7. We obtained optimal parameters for depth d = 4,

further increasing the depth did not improve. As usual, we denote ε̄
(j)
k� = ε

(j)
k�

n . In
our optimization, we always had ε̄

(2)
20 = ε̄

(3)
20 = ε̄

(3)
21 = ε̄

(3)
22 = 0.

Table 7. Asymptotics of Rep-2 in comparison to Odlyzko (Sect. 3) and Rep-1.

ω Odlyz. Rep-1 Rep-2 logS T� ε̄
(1)
10 , ε̄

(1)
20 , ε̄

(1)
21 , ε̄

(2)
10 , ε̄

(2)
21 , ε̄

(2)
22 , ε̄

(3)
10

0.3 0.591 0.298 0.295 0.25 50 , 0 , 1 , 26 , 0 , 0, 6 [10−3]

0.375 0.665 0.323 0.318 0.24 44 , 1 , 3 , 24 , 1 , 1, 7 [10−3]

0.441 0.716 0.340 0.334 0.23 41 , 1 , 4 , 25 , 1 , 1, 7 [10−3]

0.5 0.750 0.356 0.348 0.23 40 , 1 , 4 , 25 , 1 , 1, 7 [10−3]

0.62 0.790 0.389 0.371 0.24 35 , 1 , 5 , 26 , 1 , 1, 7 [10−3]

0.667 0.793 0.407 0.379 0.24 33 , 0 , 6 , 26 , 1 , 1, 7 [10−3]

We see that in the range ω ∈ [3
10 , 2

3], our new run time exponent is smaller
than half Odlyzko’s run time exponent. Thus, for these ω the asymptotic com-
plexity is less than S 1

4 (see column logS T�).

8.2 Optimization – Non-Asymptotic

In the non-asymptotic analysis from Table 8, we still get slight improvements
from Rep-2 over Rep-1. We optimized our algorithm for every instance in depths
d = 3 and d = 4. Take e.g. the NTRU n = 509 instance that has level-4
complexities T� = 189 for list construction and Tg = 38 for guessing.

The params-column with 3 : 14, 1, 4 gives the parameters ε
(1)
10 , ε

(1)
21 , ε

(2)
10 . All

other depth-3 parameters were always 0 in the optimization. In our example, we

724 A. May

Table 8. Non-asymptotic comparison Rep-1 vs. Rep-2

(n, q, w) S[bit] Rep-1[bit] Rep-2[bit] params

NTRU-Encypt

(509,2048,254) 754 243 = 212 + 31 241 = 211 + 30 3: 14,1,4

230 = 191 + 38 227 = 189 + 38 4: 26,2,17,3

(677,2048,254) 891 281 = 246 + 35 281 = 246 + 35 3: 22,0,5

275 = 229 + 45 273 = 231 + 42 4: 32,1,15,1

(821,4096,510) 1286 423 = 375 + 49 419 = 371 + 49 3: 20,1,6

393 = 334 + 59 378 = 318 + 60 4: 34,5,30,6

NTRU Prime

(653,4621,288) 925 288 = 254 + 33 287 = 254 + 33 3: 18,1,5

274 = 232 + 42 272 = 229 + 42 4: 36,2,22,5

(761,4591,286) 1003 313 = 277 + 35 312 = 277 + 36 3: 22,1,6

303 = 257 + 46 301 = 258 + 43 4: 36,1,17,2

(857,5167,322) 1131 350 = 311 + 39 350 = 310 + 40 3: 25,1,7

338 = 290 + 49 338 = 291 + 47 4: 37,2,19,2

BLISS I+II

(512,12289,154) 597 189 = 169 + 20 189 = 169 + 20 3: 17, 4, 0

187 = 163 + 24 187 = 163 + 24 4: 27,0,11,1

GLP I

(512,8383489,342) 802 258 = 242 + 16 257 = 240 + 16 3: 12,1,4

241 = 222 + 19 225 = 206 + 20 4: 22,3,19,4

put on level 1 an amount of 14 additional ±1 (corresponding to ε
(1)
10), another

amount of 1 additional ±2 (corresponding to ε
(1)
21), and on level 2 an amount of 4

additional ±1 (corresponding to ε
(2)
10). In the level-4 params column we provide

parameters ε
(1)
10 , ε

(1)
21 , ε

(2)
10 , ε

(3)
10 , all others were 0.

As a function of the search space size S we get for all NTRU encryption
schemes and BLISS non-asymptotic combinatorial attack complexities around
S0.3, for GLP with its large q roughly S0.28. Notice that for all instances the list
construction costs T� are roughly S 1

4 , as predicted by the asymptotic analysis.

8.3 BLISS with s ∈ {0,±1,±2}n

The BLISS IV parameter set suggests (n, q) = (512, 12289), where the secret s
has 230 (±1)-entries and 30 (±2)-entries. Asymptotically, such a weight distri-
bution yields S0.21 with Rep-2 (adapted to s ∈ {0,±1,±2}n).

How to Meet Ternary LWE Keys 725

Table 9. Non-asymptotic Rep-2 on secrets s ∈ {0, ±1, ±2}n

Instance S[bit] Rep-2[bit] ε
(1)
10 , ε

(1)
12 , ε

(2)
10 , ε

(3)
10

BLISS IV (512,12289,230,30) 890 246 = 212 + 35 4: 43, 3, 19, 4

Non-asymptotically, we achieve S0.28 from Table 9, where we obtain list con-
struction complexity T� = 212 bit and guessing complexity Tg = 35 bit.

9 Small Memory Versions

Our new Meet-LWE attack has quite large memory consumption. For all
instantiations of Meet-LWE in the previous sections the memory consump-
tion is (almost) as large as the list construction time T�, i.e. roughly S 1

4 .
We show in this section that our representations Rep-0, Rep-1, Rep-2 used

together with Howgrave-Graham’s algorithm from Sect. 4 admit small memory
versions and simple time-memory tradeoffs. Using Howgrave-Graham’s original
algorithm instead of Meet-LWE has the advantage that we do not require any
key guessing.

Let us rewrite the LWE identity from Eq. (5)

As1 + e1 = b − As2 + e2 for some binary e1, e2 ∈ {0, 1}n.

We follow the general van Oorschot and Wiener strategy [vW99] that turns
a MitM attack memory-less. This strategy was already applied by van Vreden-
daal [vV16] to Odlyzko’s MitM attack from Sect. 3.

Let D be the search space for s1, s2 with size S. Let us define the two functions
f1, f2 with domain D as

f1 : s1 → πk(�(As1)) and f2 : s2 → πk(�(b − As2)).

Here � : Z
n
q → {0, 1, 2}n is Odlyzko’s hash function from Eq. (2), changed to

ternary labels in the canonical manner (by equipartitioning Zq), such that it has
range size 3n > S. Further, πk is our projection function from Equation (6),
where we choose k = �log3(S)�. Thus, the range of f1, f2 is approximately of
size S.

Moreover we use an encoding function h : {0, 1, 2}k → D that encodes the
arguments fi(·) back to D, such that we can iterate functions fi.

With a cycle-finding algorithm we find in time roughly
√

S a collision s1, s2
between f1, f2, i.e. f1(s1) = f2(s2). This implies

πk(�(As1)) = πk(�(b − As2)). (10)

Let s be the desired LWE secret key, and let (s1, s2) be a representation of s,
i.e. s = s1 + s2. By definition of �, any representation (s1, s2) satisfies Equation

726 A. May

(10). We call a collision (s1, s2) good iff (s1, s2) is a representation of s. Let R be
the number of representations of s.

By A’s randomness, the functions f1, f2 should behave like random functions.
Therefore, we expect that there exist roughly S collisions in total between f1 and
f2. This in turn implies that we obtain a good collision with probability p = R

S .
Since finding any collision takes time

√
S, we expect overall running time

T =
√

Sp−1 =
√

S · S
R

=
S 3

2

R
. (11)

van Vredendaal [vV16] chooses Odlyzko’s search space size S =
√(

n
w/2,w/2,·

)

with a unique representation of the solution. Thus, she obtains a polynomial
memory algorithm with run time S 3

2 ≈ 2
3
4H(ω

2 , ω
2 ,·)n.

But from Eq. (11) we minimize T by increasing the number R of representa-
tions, as long as S does not grow too fast. We show in the following that this
tradeoff between S and R pays off for our representations Rep-0, Rep-1, Rep-2.
To this end, we simply set S = S(1), R = R(1) using the expressions for S(1), R(1)

derived in Sects. 6 to 8.
We obtain asymptotic runtimes 2c(ω)(n+o(n)) for which we state the run time

exponents c(ω) in Table 10. The optimization parameters for Rep-1, Rep-2 are
given in the last two columns.

Table 10. Asymptotic complexities for polynomial memory LWE key search.

ω Odl.[vV16] Rep-0 Rep-1 Rep-2 ε̄(1) ε̄
(1)
10 ε̄

(1)
21

0.3 0.886 0.834 0.772 0.772 0.032 0.032 0.000

0.375 0.997 0.951 0.858 0.858 0.045 0.045 0.000

0.441 1.073 1.031 0.918 0.918 0.055 0.056 0.001

0.5 1.125 1.092 0.964 0.962 0.061 0.061 0.001

0.621 1.184 1.186 1.043 1.038 0.060 0.062 0.003

0.668 1.189 1.211 1.070 1.064 0.056 0.058 0.004

In comparison to the previously best results from [vV16], the runtime expo-
nents drop by 10% to 15%.

We may also utilize the well-known time-memory tradeoff provided by Paral-
lel Collision Search (PCS) [vW99]. Let Tc =

√
S be the time to find a single colli-

sion. Then with PCS using memory M we find M collisions in time T =
√

MTc.
Since we need a total of p−1 = S

R collisions (for finding a good collision), using
memory M ≤ p−1 we obtain the time-memory tradeoff

T =
p−1

M

√
MTc =

S
3
2

√
MR

.

How to Meet Ternary LWE Keys 727

E.g. if we use full memory M = p−1 = S
R , we obtain run time T = S√

R
, which

reproduces Howgrave-Graham’s run time formula from Sect. 4, albeit with dif-
ferent (better) values of S and R.

10 Hybrid Attack

The presumably best known attack on LWE-type cryptosystems with ternary
keys is a combination of lattice reduction and MitM known as the Hybrid attack,
due to Howgrave-Graham [How07]. Here, we give only a brief outline of the
attack. We refer the reader to [How07,Wun19] for more details.

For ease of exposition we describe only the Plain Hybrid attack, a dimen-
sion reduction method [MS01] that combines lattice reduction with Brute-Force
key guessing. Howgrave-Graham [How07] then showed that Brute-Force can be
replaced by MitM at the cost of some (often quite smallish) success probabil-
ity [Wun19,Ngu21].

We write A = (A1, A2) ∈ Z
n×k
q × Z

n×(n−k)
q for some 0 ≤ k ≤ n, and the

LWE key equation as A1s1 = b − A2s2 + e. In Plain Hybrid we enumerate all
candidates (s2,b − A2s2). Define the target t(s2) := b − A2s2.

Further, we define a lattice L by the (n + k)-dimensional lattice basis

B = (b1|b2| . . . |bn+k) =
[

qIn A1

0 Ik

]
.

Let s2 be the correct key guess with target t(s2). L contains the vector
v = B · (k, s1) = (t(s2) + e, s1) for some suitably chosen k ∈ Z

n. Thus v is
close—in distance (e, s1)—to the known target vector (t(s2),0). Hence v can
be recovered by using Babai’s Nearest Plane algorithm [Bab86], provided we
have a sufficiently reduced basis B. Solving such a close vector instance is called
Bounded Distance Decoding.

The Plain Hybrid approach now balances the cost for enumerating s2 with
the lattice reduction cost for recovering s1.

Problems when Applying our MitM. It is tempting to replace the key search for
s2 by our MitM approach. However, notice that we have to enumerate all vectors
s2. This can surely be done by the MitM attacks from Sects. 3 and 4.

Instead, the strength of our MitM attack is that we do not enumerate all
potential keys, but only those that fulfill the LWE key equation on r coordi-
nates. However, we cannot use the LWE key equation anymore for our projected
subkey s2.

Work-around 1: One may introduce additional representations s = s1 + s2
for the lattice and guessing part by letting s1, s2 overlap. But our computations
so far indicate that the cost of increasing s1’s dimension—and therefore of lat-
tice reduction—is not compensated by the decrease to enumerate s2 with our
improved MitM.

728 A. May

Work-around 2: One may define s1, s2 of full length n, but with different
weight, again introducing additional representations. Especially, by choosing
smaller weight for s2 one can balance the cost of lattice reduction and enumer-
ation. Our computations so far show that such a Weight Hybrid is only slightly
better than pure lattice reduction.

We leave it as an open problem whether list construction-type algorithms
can improve lattice hybrid attacks. Another interesting question is whether we
can omit key guessing in our Meet-LWE by using Nearest Neighbor techniques
as in [Laa15,MO15].

Acknowledgements. The author wants to thank Elena Kirshanova, John Schank
and Andre Esser for discussions and estimations concerning lattice reduction and the
Hybrid attack, and the anonymous reviewers for their valuable suggestions.

References

[ABD16] Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched
NTRU assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
I. LNCS, vol. 9814, pp. 153–178. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 6

[ACF+14] Albrecht, M., Cid, C., Faugere, J.C., Fitzpatrick, R., Perret, L.: Algebraic
algorithms for LWE problems (2014)

[APS15] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

[Bab86] Babai, L.: On lovász’lattice reduction and the nearest lattice point prob-
lem. Combinatorica 6(1), 1–13 (1986)

[BBSS20] Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classi-
cal and quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 633–666. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 22

[BCJ11] Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard
knapsacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 364–385. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20465-4 21

[BCLvV] Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.:
NTRU prime: round 2 specification (2019)

[BCLvV17] Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.:
NTRU prime: reducing attack surface at low cost. In: Adams, C.,
Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 235–260. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-72565-9 12

[BDGL16] Becker, A., Ducas,, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: Krauthgamer,
R. (ed.) 27th SODA, ACM-SIAM, pp. 10–24, January 2016

[BDK+17] Bos, J.W., et al.: CRYSTALS-Kyber: a CCA-secure module-lattice-based
KEM. Cryptology ePrint Archive (20180716: 135545) (2017)

[BG14] Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In:
Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08344-5 21

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-08344-5_21

How to Meet Ternary LWE Keys 729

[BGPW16] Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness
of LWE with binary error: revisiting the hybrid lattice-reduction and
meet-in-the-middle attack. In: Pointcheval, D., Nitaj, A., Rachidi, T.
(eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 24–43. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31517-1 2

[BJMM12] Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear
codes in 2n/20: how 1 + 1 = 0 improves information set decoding. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 31

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigen-
baum, J. (eds.) 45th ACM STOC, pp. 575–584. ACM Press, June 2013

[CDH+19] Chen, C., et al.: NTRU - algorithm specifications and supporting docu-
mentation (2019)

[dBDJW18] de Boer, K., Ducas, L., Jeffery, S., de Wolf, R.: Attacks on the AJPS
Mersenne-based cryptosystem. In: Lange, T., Steinwandt, R. (eds.)
PQCrypto 2018. LNCS, vol. 10786, pp. 101–120. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-79063-3 5

[DDLL13] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40041-4 3

[DN12] Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy
floating-point arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 415–432. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34961-4 26

[DRV20] D’Anvers, J.-P., Rossi, M., Virdia, F.: (One) Failure Is Not an Option:
bootstrapping the search for failures in lattice-based encryption schemes.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 3–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45727-3 1

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June
2009

[GJS15] Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using
lattice codes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part
I. LNCS, vol. 9215, pp. 23–42. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 2

[GLP12] Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based
cryptography: a signature scheme for embedded systems. In: Prouff, E.,
Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8 31

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.)
40th ACM STOC, pp. 197–206. ACM Press, May 2008

[HGSW03] Howgrave-Graham, N., Silverman, J.H., Whyte, W.: A meet-in-the-middle
attack on an NTRU private key. Technical report, NTRU Cryptosystems,
June 2003

https://doi.org/10.1007/978-3-319-31517-1_2
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-319-79063-3_5
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-030-45727-3_1
https://doi.org/10.1007/978-3-030-45727-3_1
https://doi.org/10.1007/978-3-662-47989-6_2
https://doi.org/10.1007/978-3-662-47989-6_2
https://doi.org/10.1007/978-3-642-33027-8_31

730 A. May

[HJ10] Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knap-
sacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
235–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13190-5 12

[HKL18] Herold, G., Kirshanova, E., Laarhoven, T.: Speed-ups and time–memory
trade-offs for tuple lattice sieving. In: Abdalla, M., Dahab, R. (eds.) PKC
2018, Part I. LNCS, vol. 10769, pp. 407–436. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5 14

[HNP+03] Howgrave-Graham, N., et al.: The impact of decryption failures on the
security of NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 226–246. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 14

[How07] Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle
attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol.
4622, pp. 150–169. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74143-5 9

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–
288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

[KF15] Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with
applications to cryptography and lattices. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 43–62. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-47989-6 3

[Laa15] Laarhoven, T.: Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015, Part I. LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 1

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 1

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29011-4 43

[May21] May, A.: How to meet ternary LWE keys. Cryptology ePrint Archive,
Report 2021/216 (2021). https://eprint.iacr.org/2021/216

[MO15] May, A., Ozerov, I.: On computing nearest neighbors with applications to
decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part I. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 9

[MP13] Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parame-
ters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 21–39. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 2

[MS01] May, A., Silverman, J.H.: Dimension reduction methods for convolution
modular lattices. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146,
pp. 110–125. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44670-2 10

https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://eprint.iacr.org/2021/216
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/3-540-44670-2_10
https://doi.org/10.1007/3-540-44670-2_10

How to Meet Ternary LWE Keys 731

[MU17] Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomiza-
tion and Probabilistic Techniques in Algorithms and Data Analysis. Cam-
bridge University Press, Cambridge (2017)

[Ngu21] Nguyen, P.Q.: Boosting the hybrid attack on NTRU: torus LSH, permuted
HNF and boxed sphere. In: NIST Third PQC Standardization Conference
(2021)

[ntr08] 1-2008 - IEEE standard specification for public key cryptographic tech-
niques based on hard problems over lattices (2008)

[NV08] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem
are practical. J. Math. Cryptol. 2(2), 181–207 (2008)

[Reg03] Regev, O.: New lattice based cryptographic constructions. In: 35th ACM
STOC, pp. 407–416. ACM Press, June 2003

[SS11] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems
over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 4

[vV16] van Vredendaal, C.: Reduced memory meet-in-the-middle attack against
the NTRU private key. LMS J. Comput. Math. 19(A), 43–57 (2016)

[vW99] van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptan-
alytic applications. J. Cryptol. 12(1), 1–28 (1999)

[WMM13] Wang, H., Ma, Z., Ma, C.G.: An efficient quantum meet-in-the-middle
attack against NTRU-2005. Chin. Sci. Bull. 58(28), 3514–3518 (2013)

[Wun19] Wunderer, T.: A detailed analysis of the hybrid lattice-reduction and
meet-in-the-middle attack. J. Math. Cryptol. 13(1), 1–26 (2019)

https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-20465-4_4

Lattice Reduction with Approximate
Enumeration Oracles

Practical Algorithms and Concrete Performance

Martin R. Albrecht1(B), Shi Bai2, Jianwei Li1, and Joe Rowell1

1 Information Security Group, Royal Holloway, University of London, Egham, UK
martin.albrecht@royalholloway.ac.uk , Jianwei.Li@rhul.ac.uk

2 Department of Mathematical Sciences, Florida Atlantic University,

Boca Raton, USA

Abstract. This work provides a systematic investigation of the use
of approximate enumeration oracles in BKZ, building on recent tech-
nical progress on speeding-up lattice enumeration: relaxing (the search
radius of) enumeration and extended preprocessing which preprocesses in
a larger rank than the enumeration rank. First, we heuristically justify
that relaxing enumeration with certain extreme pruning asymptotically
achieves an exponential speed-up for reaching the same root Hermite
factor (RHF). Second, we perform simulations/experiments to validate
this and the performance for relaxed enumeration with numerically opti-
mised pruning for both regular and extended preprocessing.

Upgrading BKZ with such approximate enumeration oracles gives rise
to our main result, namely a practical and faster (wrt. previous work)
polynomial-space lattice reduction algorithm for reaching the same RHF
in practical and cryptographic parameter ranges. We assess its concrete
time/quality performance with extensive simulations and experiments.

1 Introduction

Lattices are discrete subgroups of Rm. A lattice L in R
m is represented as a set

of all integer linear combinations of n linearly independent vectors b0, . . . , bn−1

in R
m: L =

{∑n−1
i=0 xi · bi, xi ∈ Z

}
. The matrix B := (b0, . . . , bn−1) forms a

basis of L, and the integer n is the rank of L. Any lattice of rank ≥ 2 has
infinitely many bases.

A central lattice problem is the shortest vector problem (SVP): given a basis of
a lattice L (endowed with the Euclidean norm), SVP is to find a shortest nonzero
vector in L. SVP is known to be NP-hard under randomised reductions [3]. The

J. Rowell—This work was supported in part by EPSRC grants EP/S020330/1,
EP/S02087X/1, EP/P009301/1, by European Union Horizon 2020 Research and Inno-
vation Program Grant 780701, by Innovate UK grant AQuaSec, by NIST award
60NANB18D216 and by National Science Foundation under Grant No. 2044855. Part
of this work was done while MA visited the Simons Institute for the Theory of Com-
puting. The full version of this work is available as [5].

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 732–759, 2021.
https://doi.org/10.1007/978-3-030-84245-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_25

Lattice Reduction with Approximate Enumeration Oracles 733

hardness of solving SVP and in particular its applications in cryptography have
led to the study of approximate variants.

For δ ≥ 1, the δ-approximate variant of SVP (δ-SVP) is to find a non-zero vec-
tor v in L such that ‖v‖ ≤ δ · λ1(L), where λ1(L) := minx∈L�=0

‖x‖ denotes the
length of the shortest nonzero vector in L. Solving δ-SVP is also NP-hard for any
δ ≤ nc/ log log n with some constant c > 0 under reasonable complexity assump-
tions [30,32,37,38]. A closely related problem is δ-Hermite SVP (δ-HSVP),
which asks to find a non-zero vector v in L such that ‖v‖ ≤ δ · vol(L)1/n, where
vol(L) denotes the volume of L. Many cryptographic primitives base their secu-
rity on the worst-case hardness of δ-SVP or related lattice problems [2,27,43,46].
Security estimates of these constructions depend on solving δ-HSVP, typically
for δ = poly(n) [9,10]. The output quality of a δ-HSVP solver in rank n is
typically assessed with the so-called root Hermite factor (RHF) δ1/(n−1).1

To solve the approximate versions of SVP, the standard approach is lattice
reduction, which finds reduced bases consisting of reasonably short and relatively
orthogonal vectors. Its “modern” history began with the celebrated LLL algo-
rithm [34] and continued with stronger blockwise algorithms [1,4,23,40,49,51].
Lattice reduction has numerous applications in mathematics, computer science
and especially cryptanalysis.

Lovász [36] showed that any δ-HSVP solver in rank n can be used to efficiently
solve δ2-SVP in rank n. For random lattices L of rank n, the classical Gaussian
heuristic claims λ1(L) ≈ GH(L) := GH(n) · vol(L)1/n. Here, GH(n) denotes the
radius of the unit-volume n-dimensional ball. Thus, any δ-HSVP solver in rank
n for δ ≥ √

n can possibly be used to solve (δ/
√

n)-SVP in the same rank in
practice (see [24, §3.2]).

In this work we consider the practical aspects of solving δ-HSVP using block-
wise lattice reduction algorithms. The Schnorr–Euchner BKZ algorithm [51] and
its modern incarnations [4,7,12,13,17] provide the best time/quality trade-off in
practice. The BKZ algorithm takes a parameter k controlling its time/quality
trade-off: the larger k is, the more reduced the output basis, but the running
time grows at least exponentially with k. BKZ is commonly available in software
libraries (such as FP(y)LLL [21,22], NTL [53] and PBKZ [12]) and has been
used in many lattice record computations [7,19,48]. G6K [7,19] currently pro-
vides the fastest public BKZ implementation by replacing the enumeration-based
SVP oracle in BKZ with a sieving-based oracle. As such, it achieves a running
time of 2Θ(k) at the cost of also requiring 2Θ(k) memory. However, this memory
requirement may prove prohibitively expensive in some settings. Moreover, in
a massively parallelised computation the communication overhead required for
sieving may limit its performance advantage.

In this work we reduce the performance gap between enumeration-based and
sieving-based BKZ. That is, we focus on enumeration-based lattice reduction for
solving δ-HSVP, i.e. the polynomial-memory regime, building on recent technical

1 The normalisation by the (n − 1)-th root is justified by that the algorithms consid-
ered here achieve RHFs that are bounded independently of the lattice rank n.

734 M. R. Albrecht et al.

progress on speeding-up lattice enumeration: relaxed pruned enumeration [35]
and extended preprocessing [4].

Recently, [35] heuristically justified that if relaxing the search radius by a small
constant α > 1, then enumeration with certain extreme cylinder pruning [25,52]
asymptotically achieves an exponential speed-up. Intuitively, this relaxation strat-
egy allows to upgrade the enumeration subroutine for BKZ (2.0) [17,51] with one
more optional parameter α. Here and in what follows, we omit pruning parameters
due to the use of FP(y)LLL’s numerical pruning module [21,22].

Concurrently, a variant of BKZ presented in [4] can achieve RHF
GH(k)1/(k−1) in time kk/8+o(k), which is super-exponentially faster than the
cost record kk/(2e)+o(k) of [29,31] for reaching the same RHF. The idea behind
the BKZ variant [4] is to preprocess in a larger rank than the enumeration rank.
That is, [4] upgraded the HSVP-oracle of BKZ to exact (pruned) enumeration
in rank k with extended preprocessing in rank �(1 + c) · k	 for some small con-
stant c ≥ 0. Intuitively, this preprocessing strategy upgrades the enumeration
subroutine for BKZ (2.0) [17,51] with an additional optional parameter c.

Contributions. This work investigates the impact of improved enumeration
subroutines in BKZ by integrating the relaxation strategy [1,12,35] with the
extended preprocessing strategy [4], i.e. we propose the use of relaxed pruned
enumeration with extended preprocessing in BKZ.

First, in Sect. 3, we justify and empirically validate that relaxed enumeration
with certain extreme cylinder pruning [25,52] asymptotically achieves better
time/quality trade-offs for certain approximation regimes based on standard
heuristics. More precisely, for large enough k, the resulting α · GH(kα)-HSVP-
oracle in rank kα is exponentially faster than a GH(k)-HSVP-oracle in rank k
for any constant α ∈ (1, 2]. Here, kα is the smallest integer greater than k such
that the corresponding RHF would not become larger after relaxation:

GH (k)
1

k−1 ≥ (α · GH(kα))
1

kα−1 .

Prior work [35] only treated the speed-up of α · GH(k) compared with GH(k).
Second, in Sect. 4, we explore the concrete cost estimates of relaxed enu-

meration with FP(y)LLL’s pruning module [21,22] with or without extended
preprocessing, using simulations and experiments. We validate that with the
same preprocessing in rank �(1 + c) · k	 for c ∈ [0, 0.4], the resulting α · GH(k)-
HSVP-oracle in rank k is exponentially faster than a GH(k)-HSVP-oracle in
rank k for constants α ∈ (1, 1.3].2

Third, our main result is a practical BKZ variant presented in Sect. 5, which
uses an (α · GH(kα))-HSVP enumeration oracle in rank kα with preprocessing in
rank �(1 + c) · kα	. Intuitively, it upgrades the enumeration subroutine for BKZ
(2.0) [17,51] with two more optional parameters (α, c), and generalises the BKZ

2 We also observed a small speed-up of c = 0.15 over c = 0.25 (claimed to be the
“optimal” in [4]) and verified it using the original simulation code from [4] in the
full version of this work.

Lattice Reduction with Approximate Enumeration Oracles 735

variant in [4] with one more optional parameter α. This additional freedom results
in the best current time/quality trade-off for enumeration-basedBKZ implementa-
tions: our algorithm achieves RHF GH (k)

1
k−1 in time ≈ 2

k log k
8 −0.654 k+25.84. This

improves on the cost record 2
k log k

8 −0.547 k+10.4 given in [4]. As a side result, by
setting c = 0 (i.e. without extended preprocessing), our algorithm achieves RHF
GH(k)

1
k−1 in time ≈ 2

k log k
2 e −1.077 k+29.12, which also improves on the cost for BKZ

2.0 [17] reported in [4]: 2
k log k

2 e −0.995 k+16.25. A comparison between our results and
those reported in [4] is given in Fig. 1: it illustrates that our BKZ variant is expo-
nentially faster than previous BKZ variants in the polynomial-memory setting.
Comparing our best fit with the results reported in [4], we obtain a crossover rank
of 145, or approximately 261 operations.3

100 150 200 250 300 350 400 450 500 550

128

192

256

Rank k

lo
g
(#

n
o
d
es

)

FPLLL [4]: k log k
2 e

− 0.995 k + 16.25

This work c = 0.00: k log k
2 e

− 1.077 k + 29.12

[4, §4]: k log k
8

− 0.547 k + 10.4

This work c = 0.15: k log k
8

− 0.654 k + 25.84

Fig. 1. Cost comparison.

Since our results critically depend on our simulation and implementation
results, we provide the complete source code (used to produce our simulation
data and experimental verification) with the full version of this work.

Impact on security estimates. Security estimates for lattice-based crypto-
graphic primitives typically rely upon sieving algorithms [6]. In the classical
(i.e. non-quantum) setting this is backed by both the asymptotic [14] and con-
crete [7,19] performance of sieving algorithms. Our results do not affect this

3 To put this into perspective, [55] reports solving 1.05-HSVP in rank 150 using a dis-
tributed implementation of an enumeration algorithm. As a result, we expect the
speedups demonstrated in this work to be practical.

736 M. R. Albrecht et al.

state of the art.4 As can be gleaned from Fig. 1, all known enumeration-based
algorithms, including those based on the strategies in this work, perform sim-
ilarly up to rank k ≈ 100. On the other hand, G6K [7] outperforms FPLLL’s
implementation of enumeration for ranks � 70.

In the quantum setting the situation is considerably more complicated. Quan-
tum enumeration algorithms asymptotically produce a quadratic speed-up over
classical enumeration algorithms [11] in the “query model”, but each such queries
may have significant (polynomial) cost, implying that such an estimate is likely
a significant underestimate of the true cost. On the other hand, quantum siev-
ing improves the cost from 20.292 k+o(k) to 20.265 k+o(k) [33], assuming no depth
restriction on quantum computation. In [8] some quantum resource estimates
are given for the dominant part of various lattice sieving algorithms. These
costs, however, are derived assuming unit cost for accessing quantum accessible
RAM, an optimistic assumption. Overall, given the lack of clarity on the cost
of the two families of algorithms under consideration in a quantum setting, it is
currently not possible to assess the crossover rank when quantum lattice siev-
ing outperforms quantum lattice-point enumeration. This suggests an analogous
investigation to [8] for quantum enumeration as a pressing research question.

Faced with the difficulty of assessing the cost of quantum algorithms, the
literature routinely relies on rough low bounds to estimate the cost of lattice
reduction, see e.g. [15,26,45].5 In particular, the quantum version of the Core-
SVP methodology [10] assigns a cost of 20.265 k to performing lattice reduction
with RHF GH(k)1/(k−1). Now, comparing this figure with a naive square-root of
our enumeration costs would give a crossover rank of k = 547. Yet, even then,
i.e. even presuming the square-root advantage applies as is to our algorithm
including preprocessing, accepting the assumptions of suppressing (potentially
significant) polynomial factors, no depth restriction on quantum computation
and unit-cost qRAM, this would not imply a downward correction of Category 1
NIST PQC Round 3 submission parameters and similar parameters for lattice-
based schemes. That is, we stress that this work does not invalidate the claimed
NIST Security Level of such submissions. This is because a given security level is
defined by both a classical and a quantum cost: roughly 2λ classically and 2λ/2

quantumly. For example, for Level 1 this is the cost of classically and quantumly
breaking AES-128. Submissions targeting a classical security level 2λ relying
on the cost of classical sieving 20.292 k+o(k) have a quantum security level much
higher than 2λ/2 under the 20.265 k cost model. In other words, this work does not
lower the cost of quantum enumeration sufficiently to invalidate NIST Security
Level claims since known quantum algorithms provide only a minor speed-up
in the chosen cost model over classical algorithms when compared to Grover’s
algorithm for, say, AES.

4 We discuss the (apparent lack of) applicability of our approach to the sieving setting
in the full version of this work.

5 This does not imply, though, that those works endorse this mode of comparison,
e.g. [15] explicates its objections to it.

Lattice Reduction with Approximate Enumeration Oracles 737

2 Background

Notation. To be compatible with software implementations such as FP(y)LLL,
we let matrix indices start with 0 and use row-representation for both vectors
and matrices in this work. Bold lower-case and upper-case letters denote row
vectors and matrices respectively. The set of n × m matrices with coefficients in
the ring A is denoted by A

n×m, and we identify A
m with A

1×m. The notations
log(·) and ln(·) stand for the base 2 and natural logarithms respectively.

2.1 Lattices

Orthogonalisation. Let B = (b0, . . . , bn−1) ∈ R
n×m be a basis of a lattice

L. Lattice algorithms often involve the orthogonal projections πi : R
m
→

span (b0, . . . , bi−1)
⊥ for i = 0, . . . , n − 1. The Gram–Schmidt orthogonalisa-

tion (GSO) of B is B∗ = (b∗
0, . . . , b

∗
n−1), where the Gram–Schmidt vector b∗

i

is πi(bi). Then b∗
0 = b0 and b∗

i = bi − ∑i−1
j=0 μi,j · b∗

j for i = 1, . . . , n − 1,

where μi,j = 〈bi,b
∗
j 〉

〈b∗
j ,b∗

j 〉 . The projected block (πi(bi), πi(bi+1), . . . , πi(bj−1)) is
denoted by B[i,j). Then the volume of the parallelepiped generated by B[i,j)

is vol(B[i,j)) =
∏j−1

k=i ‖b∗
k‖. In particular, B[0,j) = (b0, . . . , bj−1) and vol(L) =

vol(B) =
∏n−1

k=0 ‖b∗
k‖.

Hermite’s constant. Hermite’s constant of dimension n is the maximum
γn = max

(
λ1(L)/vol(L)1/n

)2

over all n-rank lattices L, where λ1(L) =
minv∈L\{0} ‖v‖ is the first minimum of L. The best asymptotical bounds known
are [18,41]: n

2πe + log(πn)
2πe ≤ γn ≤ 1.744n

2πe + o(n).

Lattice reduction. Let B = (b0, . . . , bn−1) be a basis of a lattice L.
B is size-reduced if |μi,j | ≤ 1

2 for all 0 ≤ j < i < n. B is LLL-reduced [34]
if it is size-reduced and every 2-rank projected block B[i,i+2) satisfies Lovász’s
condition: 3

4 · ‖b∗
i ‖2 ≤ ‖μi+1,i · b∗

i + b∗
i+1‖2 for 0 ≤ i ≤ n − 2. In practice, the

parameter 3
4 can be replaced with any constant in the interval (14 , 1).

B is SVP-reduced if ‖b0‖ = λ1(L). There are two relaxations with δ ≥ 1: B is
δ-SVP-reduced if ‖b0‖ ≤ δ · λ1(L); B is δ-HSVP-reduced if ‖b0‖ ≤ δ · vol(L)1/n.

B is HKZ-reduced if it is size-reduced and B[i,n) is SVP-reduced for i =
0, . . . , n − 1; B is k-BKZ-reduced [49] if it is size-reduced and B[i,min{i+k,n}) is
SVP-reduced for i = 0, . . . , n − 1.

Primitive vector. Let L be a lattice with basis (b0, . . . , bn−1). A vector b =∑n−1
i=0 xibi ∈ L with xi ∈ Z is primitive for L iff it can be extended to a basis of

L, or equivalently, gcd(x0, . . . , xn−1) = 1 [54, Theorem 32].

738 M. R. Albrecht et al.

HSVP-oracle and RHF. A δ-HSVP-oracle with factor δ > 0 is any algorithm
which, given as input an n-rank lattice L specified by a basis, outputs a prim-
itive vector v in L such that ‖v‖ ≤ δ · vol(L)1/n. The resulting root-Hermite-

factor (RHF) is
(

‖v‖
vol(L)1/n

)1/(n−1)

, which is less than δ1/(n−1). In other words,

the worst-case RHF of this δ-HSVP-oracle on an n-rank lattice is δ1/(n−1). For
instance, any exact SVP-solver working on an n-rank lattice is a

√
γn-HSVP-

oracle, whose corresponding worse-case RHF is γ
1

2(n−1)
n .

Geometric Series Assumption. Let B = (b0, . . . , bn−1) be a basis. Schnorr’s Geo-
metric Series Assumption (GSA) [50] says that B follows the GSA wrt. some
constant r ∈ [3/4, 1) (depending on the reduction algorithm) if its Gram–
Schmidt lengths decay geometrically wrt. r, namely ‖b∗

i+1‖/‖b∗
i ‖ = r for all

i = 0, . . . , n − 2. In practice, it has been observed that a reduced basis produced
by the LLL algorithm [34] satisfies the GSA in an approximate sense when the
input basis is sufficiently randomised.

Gaussian heuristic. Given a full-rank lattice L in R
n and a measurable set

S ⊆ R
n, the cardinality of S ∩ L is approximately vol(S)/vol(L). Under the

heuristic, there are about αn points in L of norm ≤ α · GH(L), and one would
expect λ1(L) to be close to GH(L). Here, GH(L) := GH(n) · vol(L)1/n with

GH(n) :=
Γ (n/2 + 1)1/n

√
π

≈
√

n

2πe
· (πn)

1
2n

by Stirling’s formula. In fact, for a random lattice L, λ1(L) is close to GH (L)
with high probability [47]; for any lattice L of rank n > 24, it follows from
Blichfeldt’s inequality γn ≤ 2 · GH (n)2 [16] that λ1(L) ≤ √

2 · GH (L).

2.2 Enumeration: Pruning Plus Relaxation

Enumeration [4,20,31,39,44,51] is the simplest algorithm for solving SVP and
requires only polynomial memory: given a full-rank lattice L in R

n and a
radius R > 0, enumeration outputs L⋂

Balln(R) by a depth-first tree search. If
R ≥ λ1(L), then it is trivial to extract a nonzero lattice vector of length ≤ R:
moreover, by comparing all the norms of vectors in L⋂

Balln(R), one can find
a shortest nonzero lattice vector.

Cylinder pruning [25,52] speeds up enumeration by replacing the search
region Balln(R) with a (much smaller) subset Pf (B, R) defined by a bound-
ing function f : {1, . . . , n} → [0, 1], a basis B of L and R:

Pf (B, R) = {x ∈ R
n : ‖πn−k(x)‖ ≤ f(k) · R for all 1 ≤ k ≤ n} ⊆ Balln(R).

Algorithm 1 recalls enumeration with extreme cylinder pruning, which
repeats enumeration with cylinder pruning many times over different subsets
Pf (B, R) by randomising B. Here, each Step 3 is a single cylinder pruning.

Lattice Reduction with Approximate Enumeration Oracles 739

Algorithm 1. Extreme cylinder pruning [25, Algorithm 1]
Require: (L, R, f), where L is a full-rank lattice in R

n specified by a basis, R > 0 is
a radius and f is a bounding function.

Ensure: A nonzero vector in L ⋂
Balln(R).

1: WHILE no nonzero vector in L ⋂
Balln(R) has been found:

2: Compute a (randomised) reduced basis B by applying basis reduction to a “ran-
dom” basis of L.

3: Compute L ⋂
Pf (B, R) by enumeration with cylinder pruning

The use of enumeration with extreme cylinder pruning in blockwise lattice
reduction requires finding just one nonzero point in L⋂

Pf (B, R) for some basis
B produced at Step 2: it allows to suitably relax radius R for speedup, which
was already exploited in solving SVP challenges [48].

Recently, Li and Nguyen [35] clarified the heuristic asymptotic speedup
achieved by enumeration with relaxed radius and with certain extreme cylin-
der pruning. It uses the following two heuristic assumptions as in [25]:

Heuristic 1 The cost of Algorithm 1 is dominated by enumeration with cylin-
der pruning at Step 3, rather than the repeated reductions of Step 2.

Heuristic 2 All the reduced bases B of Algorithm 1 follow the GSA wrt. the
same positive constant.

Theorem 1 ([35, Theorem 6]). Let L be a full-rank lattice in R
n. Let α ≥ 1

and ρ ∈ (0, 1
2) such that 4α4 · ρ · (1 − ρ) < 1. Let R = α · GH(L) and

f(i) =
{√

ρ if 1 ≤ i ≤ n/2,
1 otherwise.

Under Heuristics 1 and 2, the time complexity Tα,ρ(n) of Algorithm 1 on
(L, R, f) equals, up to polynomial factors, T (n) of a full enumeration on
L⋂

Balln(GH(L)) reduced by a multiplicative factor (4α2(1 − ρ))n/4:

Tα,ρ(n) ≈ T (n)

(4α2(1 − ρ))n/4
.

Here (and for the remainder of this work) the cost of enumeration is expressed
as the number of nodes visited during the enumeration process.

2.3 Schnorr–Euchner’s BKZ and its Accelerated Variant in [4]

BKZ. The (original) BKZ algorithm introduced by Schnorr and Euchner [51] is
the most widely used lattice reduction algorithm besides LLL [34] and a central
tool in lattice-based cryptanalysis. Its performance drives the setting of concrete
parameters (such as keysizes) for concrete lattice-based cryptographic primitives
(see e.g. [6]).

740 M. R. Albrecht et al.

Originally, the SVP subroutine implemented in [51] was the simplest form of
lattice enumeration, but it is now replaced by better subroutines, such as pruned
enumeration [25] in BKZ 2.0 [17] and FP(y)LLL [21,22] and (asymptotically)
faster sieving in the General Sieve Kernel [7,19]. In practice, BKZ is typically
implemented with an approximate (rather than exact) SVP-subroutine. Thus,
Algorithm 2 slightly generalises BKZ by allowing the use of a relaxed HSVP-
oracle at Step 3, as well as full LLL (instead of partial LLL) at Step 5: both are
justified by Li–Nguyen’s analysis [35].

At a high level, Algorithm 2 reduces a basis in high rank, using HSVP-oracles
in low rank (≤ k) as subroutines and running the LLL algorithm [34] to remove
the linear dependency right after inserting a lattice vector (found by the oracle)
in the current basis.

Algorithm 2. BKZ: Schnorr–Euchner’s BKZ algorithm [51]
Require: A block size k ∈ (2, n), the number of tours N ∈ Z

+, a relaxation factor
α ≥ 1, and an LLL-reduced basis B = (b0, . . . , bn−1) of a lattice L ⊆ Z

m.
Ensure: A new basis of L.
1: for � = 0 to N − 1 do
2: for j = 0 to n − 2 do
3: Find a primitive vector b for the sublattice generated by the basis vectors

bj , . . . , bh−1 where h = min{j + k, n} s.t. ‖πj(b)‖ ≤ α
√

γh−j · vol(B [j,h))
1/(h−j)

4: if ‖b∗
j ‖ > ‖πj(b)‖ then

5: LLL-reduce (b0, . . . , bj−1, b, bj , . . . , bn−1) to remove linear dependencies
6: end if
7: end for //A BKZ tour refers to a single execution of Steps 2-7.
8: end for
9: return B.

Building on Hanrot–Pujol–Stehlé’s analysis of a certain BKZ variant (remov-
ing internal LLL calls) [28], Li and Nguyen [35] justified the popular “early
termination” strategy in practice of BKZ:

Theorem 2 ([35, Theorem 2]). Let n > k ≥ 2 be integers and let 0 < ε ≤
1 ≤ α ≤ 2(k−1)/4√

γk
. Given as input a block size k, a relaxation factor α, and an

LLL-reduced basis of an n-rank lattice L ⊂ R
m, if N ≥ 4(ln 2)n2

k2 log n1.5

(4
√
3)ε

, then
Algorithm 2 outputs a basis (b0, . . . , bn−1) of L such that

‖b0‖ ≤ (1 + ε) · (α2γk)
n−1

2(k−1)+
k·(k−2)
2n·(k−1) · vol(L)1/n

.

It was also mentioned in [35] that for n > k > 8eπ, there is a k-BKZ reduced

basis B = (b0, . . . , bn−1) satisfying ‖b0‖ =
(

k−1
8eπ

)n−1
2k · vol(B)1/n. Since γk =

Θ(k), this means that BKZ with early termination indeed provides bases almost
as reduced as the full BKZ algorithm. Theorem 2 has a heuristic version (i.e. [35,
Th. 5]), which heuristically models the practical behaviour of BKZ.

Lattice Reduction with Approximate Enumeration Oracles 741

The accelerated BKZ variant in [4]. Recently, in [4] a practical and faster
BKZ variant within the class of polynomial-space algorithms was introduced,
based on the idea that its HSVP-oracle performs an exact enumeration with
extended preprocessing.

Extended preprocessing is to preprocess in a larger rank than the enumeration
rank. Exact enumeration with extended preprocessing refers to the procedure
that the δ(k)-HSVP-oracle in “block size” �(1 + c) · k	 (for some small constant
c ≥ 0 and an integer k ≥ 2) first preprocesses a given projected block of rank
�(1+c)·k	 (using this BKZ variant recursively in lower levels) into a reduced block
(say,) C and then performs a (pruned) enumeration for solving SVP exactly on
the k-rank head block of C to find a short nonzero vector v ∈ L(C).

The performance parameter k dominates the time/quality trade-off:

– Quality aspect: v is a shortest nonzero vector in the lattice generated by the
k-rank head block C [0,k) of C, so that ‖v‖ ≤ √

γk · vol(C [0,k))
1/k. The BKZ-

preprocessing on C ensures that vol(C [0,k))/vol(C)k/
(1+c)k� can be upper
bounded well, so that ‖v‖ ≤ δ(k) · vol(C)1/
(1+c)k�.

– Cost aspect: Due to the extended preprocessing on C, the k-rank head block
C [0,k) has good quality for enumeration, i.e. C [0,k) almost satisfies the GSA.
As a result, enumeration on C [0,k) costs at most kk/8 · 2O(k) (matching the
Gaussian heuristic estimate under the GSA). Both the GSA shape and the
cost estimate were validated by [4]’s simulations and experiments.

We revisit [4, § 4]’s BKZ variant in Algorithms 3 and 4. We refer the reader
to [4] for definitions of the functions tail() and pre() called in Algorithm 4.

When c = 0, Algorithm 3 is essentially Schnorr-Euchner’s BKZ algorithm [51]
(i.e. using enumeration but with recursive BKZ preprocessing as an SVP-oracle).

Algorithm 3. BKZ variant in [4, Algorithm 4]
Require: (B, k, c), where B = (b0, . . . , bn−1) is an LLL-reduced basis of an n-rank

lattice L in Z
m, k ∈ [2, n) is a performance parameter, c ≥ 0 is an overshooting

parameter and N ∈ Z
+ is the number of tours.

Ensure: A reduced basis of L.
1: for � = 0 to N − 1 do
2: for j = 0 to n − 2 do
3: Find a short nonzero vector v in the lattice L[j,h) (generated by the projected

block B [j,h) where h = min{j + �(1 + c)k	, n}), by calling Alg. 4 on (B [j,h), k, c)
4: if ‖b∗

j ‖ > ‖v‖ then
5: Lift v into a primitive vector b for the sublattice generated by the basis

vectors bj , . . . , bh−1 such that ‖πj(b)‖ ≤ ‖v‖
6: LLL-reduce (b0, . . . , bj−1, b, bj , . . . , bn−1) to remove linear dependencies
7: end if
8: end for
9: end for

10: return B.

742 M. R. Albrecht et al.

Without formal analysis but with concrete simulations and experiments, [4]
reported that the following instantiation of Algorithm 3 seems to provide the best
practical performance: (c,N) = (0.25, 4) and Algorithm 4 performing pruned
enumeration at both Step 4 and Step 8. The resulting procedure achieves RHF
≈ GH(k)1/(k−1) in time ≈ 2

k log k
8 −0.547 k+10.4, at least up to k ≈ 500.

2.4 Simulating BKZ

To understand the behaviour of lattice reduction algorithms, a useful approach is
to conduct simulations. The underlying idea is to model the practical behaviour
of the evolution of the Gram–Schmidt norms during the algorithm execution,
without running a costly lattice reduction algorithm. Note that this requires
only the Gram–Schmidt norms rather than the basis itself. Chen and Nguyen
first provided a BKZ simulator [17] based on the Gaussian heuristic and with an
experiment-driven modification for the tail blocks of the basis. It relies on the
assumption that each SVP solver on the projected blocks (except the tail ones
of the basis) finds a vector whose norm corresponds to the Gaussian heuristic
applied to that local block.

We extend/adapt this simulator to also estimate the cost and not only the
evolution of the Gram–Schmidt norms. To find the enumeration cost with prun-
ing, we make use of FPyLLL’s pruning module which numerically optimises
pruning parameters for a time/success probability trade-off using a gradient
descent. In small block sizes, the enumeration cost is dominated by calls to LLL.
In our code, we simply assume that one LLL call in rank k costs the equivalent of
visiting k3 enumeration nodes. While this is clearly not the cost of LLL [42], this
choice produces costs that match the observed running times (see e.g. Fig. 4) clos-
est among the choices we experimented with. We hypothesise that this behaviour
can be explained by that the basis vectors b0, . . . , bj−1, bj , . . . , bn−1 appearing
at, say, Step 6 of Algorithm 3 are already (better than) LLL-reduced. This
assumption enables us to bootstrap our cost estimates. BKZ in block size up to
(say,) 40 only requires LLL preprocessing, allowing us to estimate the cost of
preprocessing with block size up to 40, which in turn enables us to estimate the
cost (including preprocessing) for larger block sizes etc. Our simulation source

Algorithm 4. An approx-HSVP oracle on (B[j,h), k, c) using exact enumeration
in rank k∗ with extended preprocessing in rank (h − j) [4, Algorithm 3]
1: Find the enumeration rank k∗ ← tail(k, c, h − j)
2: Numerically find the preprocessing parameter k′ ← pre(k∗, ‖b∗

j ‖, . . . , ‖b∗
h−1‖)

3: if k′ ≥ 3 then
4: Run Alg. 3 on (B [j,h), k

′, c) to obtain a reduced basis C ∈ Q
(h−j)×m of L[j,h)

5: else
6: LLL-reduce B [j,h) into a basis C ∈ Q

(h−j)×m of L[j,h)

7: end if //Steps 3-7 preprocess B [j,h) for the next local enumeration
8: Enumerate on the head block C [0,k∗) of C to find a shortest nonzero vector v in

the lattice generated by C [0,k∗)

Lattice Reduction with Approximate Enumeration Oracles 743

code is available as simu.py, as an attachment to the electronic version of the
full version of this document.

3 Asymptotic Time/Quality Trade-Offs

In this section, we show asymptotically that relaxed (rather than exact) enu-
meration with certain extreme cylinder pruning does achieve better time/quality
trade-offs for certain approximation regimes, especially for small enough RHFs.

3.1 An Elementary Lemma

We will use the following notation for the remainder of this work:

– δ-HSVP enumeration oracle: it denotes a δ-HSVP-solver using (relaxed) enu-
meration with (extreme) pruning, i.e. setting the radius R = δ · vol(L)1/n for
enumeration on a given n-rank lattice L.

– kα: for real α ≥ 1 and integer k ≥ 36, let kα be the smallest integer greater
than k such that

GH (k)
1

k−1 ≥ (α · GH(kα))
1

kα−1 . (1)

The integer kα is well-defined, due to the following fact:

Fact 3. With the definition GH (i) = Γ (i/2+1)1/i

√
π

, GH (i)
1

i−1 strictly decreases
for integers i ≥ 36.

Our following analysis relies on a key observation that the ratio kα

k “almost”
decreases for k ≥ �2πe2	 = 47 and tends to 1 as k tends to infinity. More
precisely, we will use the following key elementary lemma:

Lemma 1. Let α ≥ 1 be a real and k ≥ 36 be an integer.

1. Monotonicity: For any fixed k, kα increases with α ≥ 1.
2. Lower bound: kα ≥ k + k log α

log k .

3. Upper bound: If k ≥ (2πe2)
η

η−2 for some variable η > 2, then

kα ≤ k +
⌈

η k log α

log k

⌉
.

The proofs of Fact 3 and Lemma 1 can be found in the full version of this work.
Lemma 1 indicates that asymptotically for a fixed constant α, the larger the

integer k, the smaller we can assign the variable η in Item 3, then the smaller
both the upper bound 1 + η log α

log k + 1
k and the lower bound 1 + log α

log k of the ratio
kα

k . Figure 2 verifies this numerically for several values of α and k.

744 M. R. Albrecht et al.

Fig. 2. Evolution of the ratio kα
k

wrt. constant α ∈ {1.05, 1.1, 1.2, 1.3, 1.4} and integer
k = 80, . . . , 400.

3.2 Asymptotic Time/Quality Trade-Offs

Theorem 1 implies that with certain extreme cylinder pruning, relaxing enumer-
ation would result in an exponential speedup, with a minor loss in the approxi-
mation factor:

Corollary 1. Let L be a full-rank lattice in R
n. Let α ≥ 1 and ρ ∈ (0, 1

2) such
that 4α4ρ(1 − ρ) < 1. Let R = GH(L), Rα = α · GH(L) and

f(i) =
{√

ρ if 1 ≤ i ≤ n/2,
1 otherwise.

Under Heuristics 1 and 2, the heuristic time complexity of Algorithm 1 with
radius Rα is less than that of Algorithm 1 with radius R by a multiplicative
factor αn/2 (up to some polynomial factor).

Proof. Let T (n) denote the standard heuristic estimate for the cost of full enu-
meration on L⋂

Balln(GH(L)). It follows from Theorem 1 that the heuristic
cost estimates of Algorithm 1 with radius Rα and with radius R are respectively

T (n)

(4α2(1 − ρ))n/4
and

T (n)

(4(1 − ρ))n/4

up to some polynomial factors. This implies the conclusion. ��
The corollary indicates that, in the same extreme pruning regime (i.e. with

the same bounding function f), if one is interested in finding just one short
nonzero vector (rather than one shortest nonzero vector) for a given lattice,
then it is faster to run a relaxed (rather than exact) enumeration.

A more interesting question is whether such benefits can be carried over with-
out sacrificing the quality. Thus what remains to be established is how the cost
gain compares to the corresponding quality loss. For instance, we take k = 50
and α = 2. For reaching the same RHF GH(50)

1
49 ≈ 1.012, it is unlikely that the

Lattice Reduction with Approximate Enumeration Oracles 745

(2 · GH(152))-HSVP enumeration oracle in rank 152 is faster than the GH(50)-
HSVP enumeration oracle in rank 50. Thus, we now clarify that asymptotically
relaxed (rather than exact) enumeration with certain extreme cylinder pruning
does achieve better time/quality trade-offs for certain approximation regimes,
especially for small enough RHFs. To do so, we compare costs of δ-HSVP enu-
meration oracles with different factors δ aiming for the same output quality.

More precisely, Lemma 1 allows us to prove that for reaching the same RHF
GH(k)

1
k−1 , the (α · GH(kα))-HSVP enumeration oracle in rank kα is exponen-

tially faster than the GH(k)-HSVP enumeration oracle in rank k, provided that
k is sufficiently large and α > 1 is reasonably small.

Theorem 4. Let α > 1 and ρ ∈ (0, 1
2) be constants such that 4α4 ρ · (1 − ρ) < 1.

Let

f(i) =
{√

ρ if 1 ≤ i ≤ n/2,
1 otherwise.

In addition to Heuristics 1 and 2, assume that up to some polynomial factor, the
heuristic runtime of full enumeration on any n-rank integer lattice with radius
equal to the Gaussian heuristic is T (n) := nc0n · 2c1n with constant coefficients
c0, c1 such that 0 < c0 < 1

4 . Let k be an arbitrary positive integer satisfying

k > max
{

(2πe2)
1

1−4c0 , 2− c1
c0

}
. For any real η ∈ [2 ln k

ln k−ln(2πe2) ,
1

2c0
), if 1 < α ≤

(kc0 · 2c1)2, then the (α · GH(kα))-HSVP enumeration oracle in rank kα (using
Algorithm 1) is exponentially faster than the GH(k)-HSVP enumeration oracle
in rank k (using Algorithm 1) by a multiplicative factor of at least

α(1
2−c0η)k ·

(
4(1 − ρ)

(√
α

(2e)c0 2c1

)4η
) k log α

4 log k

(up to some polynomial factor).

Proof. We omit some polynomial factors in the following complexity analysis.
By the assumption, it follows from Theorem 1 that the heuristic runtime of
the (α · GH(kα))-HSVP enumeration oracle in rank kα and the GH(k)-HSVP
enumeration oracle in rank k are respectively

Tα ≈ T (kα)
(4α2(1 − ρ))kα/4

= kc0kα
α · 2c1kα · α−kα/2 · (4(1 − ρ))−kα/4

= 2(c0 log kα+c1− log α
2)kα · (4(1 − ρ))−kα/4,

T1 ≈ T (k)
(4(1 − ρ))k/4

= kc0k · 2c1k · (4(1 − ρ))−k/4.

For simplicity, let uα := k + φα ∈ Z
+ with φα :=

⌈
ηk log α
log k

⌉
. Since η ∈

[2 ln k
ln k−ln(2πe2) ,

1
2c0

) and k > (2πe2)
1

1−4c0 , we have η > 2 and k ≥ (2πe2)
η

η−2 >

(2πe2)
1

1−4c0 . Then Item 3 of Lemma 1 implies kα ≤ uα. Since 1 < α ≤ (kc0 ·2c1)2,

Item 2 of Lemma 1 implies kα > k ≥ α
1

c0 2
|c1|
c0 . Then c0 log kα + c1 − log α

2 > 0.

746 M. R. Albrecht et al.

Thus,

Tα � 2(c0 log uα+c1− log α
2)uα ·(4(1−ρ))−kα/4 = uc0uα

α ·2c1uα ·α−uα/2·(4(1−ρ))−kα/4.

As a result, we have

T1

Tα
� kc0k · 2c1k · αuα/2 · (4(1 − ρ))kα/4

uc0uα
α · 2c1uα · (4(1 − ρ))k/4

=
α(k+φα)/2

kc0φα · (1 + φα
k

)
c0·(k+φα) · 2c1φα

· (4(1 − ρ))
(kα−k)

4

≥ α(k+φα)/2

kc0φα · ec0·φα · (1 + φα
k

)c0φα · 2c1φα
· (4(1 − ρ))

(kα−k)
4 (using

(

1 +
φα

k

)k

≤ eφα)

≥ α(k+φα)/2

kc0φα · (2e)c0φα · 2c1φα
· (4(1 − ρ))

(kα−k)
4 (using 1 +

φα

k
≤ 2)

≥ α(k+φα)/2

αc0ηk · kc0 · (2e)c0φα · 2c1φα
· (4(1 − ρ))

(kα−k)
4 (using kc0φα ≤ αc0ηk · kc0)

≥ α(1
2 −c0η)k ·

(√
α

(2e)c02c1

)φα

· k−c0 · (4(1 − ρ))
k log α
4 log k . (by Item 2 of Lemma 1)

Substituting φα =
⌈

ηk log α
log k

⌉
, we conclude that

T1

Tα
� α(1

2−c0η)k ·
(√

α

(2e)c02c1

) ηk log α
log k

· (4(1 − ρ))
k log α
4 log k

up to some polynomial factor. This completes the proof. ��
By Theorem 4, the smaller the time coefficient c0 and the larger the relaxation

constant α (satisfying both 4α4 ρ · (1 − ρ) < 1 and 1 < α ≤ (kc0 · 2c1)2), the
larger the exponential speedup factor α(1

2−c0η)k. This suggests that if some full
enumeration algorithm of time nc0n · 2O(n) with smaller coefficient c0 is found,
then relaxing such an algorithm in the certain extreme cylinder pruning regime
would result in better time/quality trade-offs for certain (including larger) RHFs.
In brief, an enumeration oracle with smaller coefficient c0 would benefit more
from (larger) relaxation.

3.3 Numerical Validation

To validate Corollary 1 for concrete parameters, we simulated enumeration up to
rank k = 500 when fixing ρ = 0.01 for varying α. For this, we first simulated
both the output and the corresponding cost of pre-processing with k′-BKZ for
some index k′ < k. We note that for our pre-processing, we always assume a
k′-rank SVP oracle inside BKZ. By combining the (recursive) preprocessing cost
with the expected (repeated) enumeration cost, we arrive at an expected overall

Lattice Reduction with Approximate Enumeration Oracles 747

enumeration cost (denoted by tα(k) in Table 1). For the top-most enumeration,
we pick pruning parameters as suggested by Corollary 1 for ρ = 0.01 and for all
values of α. Our simulation runs a simple linear search for k′ such that the total
expected cost is minimised. We then used SciPy’s scipy.optimize.curve fit

function [56] to fit simulation data into cost functions of form k
k
2e · 2c1 k+c2

with constant coefficients c1 and c2. For fitting we use always the indices k =
�α · 100	, �α · 100	 + 1, . . . , �α · 250	, which depend on α due to numerical
stability issues. The results are given in Table 1.

Furthermore, several heuristics (such as the Geometric Series Assumption)
are required to hold to instantiate Corollary 1 and Theorem 4. We check these
experimentally in the full version of this work. In those experiments, the prepro-
cessing cost is not taken into account and thus these algorithms are hypothetical.
As a consequence, they give lower-bound estimates rather than predict costs.

Table 1. Speedups of relaxed enumeration with certain extreme cylinder pruning
derived from our simulation for ρ = 0.01 and claimed by Corollary 1.

α log tα(k) log t1(k)
tα(k)

log t1(k)
tα(k)

≈ log α
2

k

Simulation Simulation Corollary 1

1.00 k log k
2 e

− 0.581 k + 9.07 0.00 0.00

1.05 k log k
2 e

− 0.638 k + 10.91 0.057 k − 1.84 0.035k

1.10 k log k
2 e

− 0.691 k + 12.34 0.110 k − 3.27 0.069k

1.15 k log k
2 e

− 0.731 k + 11.97 0.150 k − 2.90 0.101k

1.20 k log k
2 e

− 0.767 k + 11.21 0.186 k − 2.14 0.132k

1.25 k log k
2 e

− 0.800 k + 10.37 0.219 k − 1.30 0.161k

1.30 k log k
2 e

− 0.836 k + 10.75 0.255 k − 1.69 0.189k

Here, tα(k) denotes the “expected cost” of the (α · GH(k))-HSVP
enumeration oracle in rank k ∈ [�α ·100	, �α ·250], including prepro-
cessing.

4 Practical Approximate Enumeration Oracles

Table 1 highlights the relative speedups obtainable by relaxed enumeration with
certain extreme cylinder pruning. It does not, however, present speedups over
the state-of-the-art for enumeration, which can be observed by comparing the
second column of Table 1 with the known cost 2

k log k
2 e −0.995 k+16.25 of enumeration

with optimised BKZ 2.0 [17] preprocessing (see [4, Fig. 2]).

748 M. R. Albrecht et al.

In this section, we provide simulation data – fitted curves and experimental
validation – to show that with FP(y)LLL’s pruning module [21,22] and with or
without extended preprocessing, relaxed enumeration does achieve exponential
speedups, but with a loss in the approximation factor: it can be viewed as a
practical version of Corollary 1. We will consider the performance gain when
targeting the same RHF as an exact oracle in Sect. 5. In the full version of
this work, we also provide additional experiments to check the accuracy of the
underlying cost estimation module in FP(y)LLL, with respect to relaxed pruned
enumeration. Furthermore, a curious artefact of our parameters is that they do
not suggest extreme pruning. Rather, they imply a small number of repetitions
only. We elaborate on this in the full version of this work.

4.1 Simulations and Cost Estimates

As in Sect. 3.3, we run the top-most enumeration as an (α ·GH(k))-HSVP-oracle
in rank k and perform a linear search over parameter k′ (< k) for preprocessing
such that the overall enumeration cost is minimised. We first simulate calling
Algorithm 2 with block size k′ (i.e. k′-BKZ) to preprocess a given basis of rank
�(1 + c) · k	 and then simulate running relaxed enumeration on it. That is, we
simulate the “expected cost” of the (α · GH(k))-HSVP enumeration oracle in
rank k with preprocessing in rank �(1 + c) · k	, i.e. enumeration on a k-rank
head block B with FPyLLL’s optimised cylinder pruning and with relaxed radius
R = α · GH(L(B)). Here, the “expected cost” of each oracle call includes both
the expected (repeated) enumeration cost and all recursive preprocessing costs.

We illustrate the fitted cost estimates in Table 2 (columns “α′ = 1”), which
confirm that relaxed enumeration does achieve exponential speedups. We also
give some example data and curve fits in Fig. 3.

Remark 1. In Table 2 we are seeing a slight advantage when picking c = 0.15 over
picking c = 0.25. It slightly deviates from a claim in [4] that for α = 1, c = 0.25
seems to provide the best performance among c ≥ 0. We hence reproduce this
advantage using the original simulation code from [4] in the full version of this
work. This simulation confirms that the choice of c = 0.15 also provides a minor
performance improvement for α = 1.

4.2 Consistency with Experiments

In Fig. 4, we give experimental data comparing our implementation with our
simulations of the (α · GH(k))-HSVP enumeration oracle in rank k with pre-
processing in rank �(1 + c) · k	 for c ∈ {0.00, 0.15, 0.25}.6 It shows that our
simulation for cost estimates is reasonably accurate for larger instances with a
minor bias towards underestimating the cost. The data should be understood as
follows:

6 The reader may consult [4, Fig. 4] for the case c = 0.00, α = 1.00.

Lattice Reduction with Approximate Enumeration Oracles 749

Fig. 3. Selected “expected costs” from simulations for (α · GH(k))-HSVP enumeration
oracles in rank k for c ∈ {0.00, 0.15, 0.25} (in turn).

– “Simulation” is the output of our simulation code simu.py.
– “Runtime” is the walltime for running FPLLL, converted to “nodes visited”

units, assuming 64 CPU cycles per node. It is scaled by 3.3 · 109/64 because
it runs on a “Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30 GHz” (strombenzin).

– “Nodes” is the number of enumeration nodes visited reported by FPLLL.
“Runtime” also includes the cost of recursive LLL calls, but “Nodes” does
not.

750 M. R. Albrecht et al.

Fig. 4. Experimental verification of simulation results for the (α · GH(k))-HSVP enu-
meration oracle in rank k with example α ∈ {1.10, 1.20, 1.30} (in turn) and c = 0.15.
We ran 16 experiments.

5 A Practical BKZ Variant

While Sect. 4 establishes a practical exponential speed-up of relaxed enumer-
ation in the same rank k, it does not yet account for the loss in quality. In
this section, we consider relaxed enumeration in rank kα to obtain a RHF of
≈ GH(k)1/(k−1). This enables us to define a practical variant of the BKZ algo-
rithm utilising relaxed enumeration. This, in turn, enables us to use relaxed
enumeration recursively to preprocess bases for relaxed enumeration.

To this end, we present a generalisation of the BKZ variant in [4] with one
more optional parameter. This generalisation integrates the idea of extended pre-
processing (introduced by [4]) with the relaxation strategy (formalised in [1,35])
on enumeration-based HSVP-oracles. That is, given a performance parame-
ter k (akin to the ‘block size’ of Algorithm 2), we equip Schnorr–Euchner’s
BKZ with approximate enumeration oracles as illustrated in Sect. 4, namely an
(α · GH(kα))-HSVP enumeration oracle in rank kα with preprocessing in rank
�(1 + c) · kα	 for some small constant c ≥ 0 and an optional relaxation con-
stant α ≥ 1. This BKZ variant uses three parameters (k, c, α), while [4]’s variant
relies on two parameters (k, c) and BKZ (2.0) [17,51] uses one parameter k. In
particular, our BKZ variant can be viewed as a practical version of Theorem 4.

Lattice Reduction with Approximate Enumeration Oracles 751

With extensive experiments and simulations, we investigate the performances
of this BKZ variant for both practical and cryptographic parameter ranges: it
does achieve better time/quality trade-offs for certain approximation regimes
than both [4]’s variant and BKZ 2.0 [17].

Main result. Given as input a performance parameter k—our simulations cover
k ∈ [100, 400]—an overshooting parameter c ∈ [0, 0.4], and a basis of an integer
lattice of rank n ≥ (1+ c) ·k1.3, our BKZ variant first picks the “optimal” relax-
ation constant α ∈ {1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3} to minimise the expected cost
of one oracle call and achieves RHF GH(k)

1
k−1 with simulated cost estimates:

– Case c = 0: the expected cost of one oracle call is about 2
k log k

2 e −1.077 k+29.12,
which is lower than BKZ 2.0’s record 2

k log k
2 e −0.995 k+16.25 reported in [4, Fig. 2];

– Case c = 0.25: the expected cost of one oracle call is about 2
k log k

8 −0.632 k+21.94,
which is lower than the record in [4]: 2

k log k
8 −0.547 k+10.4;

– Case c = 0.15: the expected cost of one oracle call is about 2
k log k

8 −0.654 k+25.84.

Our results are illustrated in Fig. 1. Our simulations were performed on q-ary
lattices of dimensions n = �(1 + c) · kα	 with volume qn/2 for q = 230.

5.1 Algorithm

Algorithm 5 is our BKZ variant which, given as input a performance parameter
k ≥ 2, an overshooting parameter c ≥ 0, a relaxation parameter α ≥ 1, and
a basis of an integer lattice L of rank n ≥ (1 + c) · kα, outputs a reduced
basis of L.

It calls the (α·GH(kα))-HSVP enumeration oracle in rank kα with preprocess-
ing in rank �(1 + c) · kα	 as an HSVP subroutine. This oracle includes recursive
preprocessing: when α = 1 then Algorithm 6 is essentially Algorithm 4, and
hence calls a function pre(·, ·) for returning the preprocessing parameter. When
(c, α) = (0, 1), Algorithm 5 is essentially BKZ 2.0 [17] and Schnorr-Euchner’s
BKZ algorithm [51].

Restricted to the state-of-the-art power in practice, we choose c ∈ [0, 0.4] and
α ∈ {1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30} for simplicity in our simulations.

Remark 2. In our experiments, the choice of α in Algorithm 5 is determined from
an optimised strategy profile built upon our simulated data for each k ∈ [2, 400].
We remark that it is also possible to determine such α on-the-fly based on
simulations on the current basis.

752 M. R. Albrecht et al.

Algorithm 5. A new BKZ variant with three parameters (k, c, α)
Require: (B, k, c, α), where B = (b0, . . . , bn−1) is an LLL-reduced basis of an n-rank

lattice L in Z
m, k ∈ [2, n) is a performance parameter, c ≥ 0 is an overshooting

parameter, α ≥ 1 is a relaxation parameter satisfying n ≥ (1+ c) · kα, and N ∈ Z
+

denotes the number of tours.
Ensure: A reduced basis of L.
1: for � = 0 to N − 1 do
2: for j = 0 to n − 2 do
3: Find a short nonzero vector v in the lattice L[j,h) (generated by the projected

block B [j,h) where h = min{j+�(1+c)·kα	, n}), by calling Alg. 6 on (B [j,h), k, c, α)
4: if ‖b∗

j ‖ > ‖v‖ then
5: Lift v into a primitive vector b for the sublattice generated by the basis

vectors bj , . . . , bh−1 such that ‖πj(b)‖ ≤ ‖v‖
6: LLL-reduce (b0, . . . , bj−1, b, bj , . . . , bn−1) to remove linear dependencies
7: end if
8: end for
9: end for

10: return B.

Handling the tail. Just like all known BKZ variants (such as the variant in [4]
and BKZ 2.0 [17]), it is tricky to handle tail projected blocks of the current basis
during execution, because of the decreasing ranks over d = �(1 + c) · kα	, �(1 +
c) ·kα	−1, . . . , 2. We hence generalise [4]’s tail function tail(·, ·, ·) with one more
parameter α for computing the enumeration rank.

For given integer k ≥ 2, constant c ≥ 0 and relaxation constant α ≥ 1, our
approximate enumeration oracle first finds the enumeration rank k∗ using the
function tail(k, c, α, d) for d = 2, . . . , �(1 + c) · kα	:

k∗ ← tail(k, c, α, d) = max
{

min
{

d,

⌈
kα − �(1 + c) · kα	 − d

2

⌉}
, 2

}
.

Then k∗ = kα when d = �(1 + c) · kα	. It can be checked that k∗ is strictly less
than d if d is large enough and is exactly equal to d otherwise:

tail(k, c, α, d) =

{
kα +

⌈
d−
(1+c)·kα�

2

⌉
if (1 − c) · kα < d ≤ �(1 + c) · kα	

d if 2 ≤ d ≤ (1 − c) · kα

∈ [2, kα].

(2)
Algorithm 5 calls the (α · GH(k∗))-HSVP enumeration oracle in rank k∗ with
preprocessing in rank d to reduce each tail projected block, namely Algorithm 6.

Lattice Reduction with Approximate Enumeration Oracles 753

Preprocessing parameter. Given a projected block (say,) (b0, . . . , bd−1) of
rank d ∈ [2, �(1 + c) · kα], the preprocessing function pre(k∗, ‖b∗

0‖, . . . , ‖b∗
d−1‖)

returns the “optimal” preprocessing parameter k′ ∈ [2, k∗], possibly based on
simulations, such that the cost of enumeration on the k∗-rank head block is
minimised (e.g., at most kk/8 · 2O(k) when c = 0.15), after preprocessing on
(b0, . . . , bd−1) using Algorithm 5 recursively in lower levels, i.e. equipped with
a similar HSVP-oracle with parameters (k′, c, α′) (instead of the current level
(k, c, α)).

Since kα ≥ k∗ ≥ k′ ≥ 2, each enumeration throughout all recursive levels of
Algorithm 5 would not be more expensive than the top-most enumeration-based
HSVP-oracle (i.e., the (α · GH(kα))-HSVP enumeration oracle in rank kα with
preprocessing in rank �(1 + c) · kα).

5.2 Performance of Our BKZ Variant

Using simulations and data from our implementation, we now validate the perfor-
mance of our algorithm. We first show that preprocessing with relaxed enumer-
ation has a performance benefit (for c > 0) and then validate the output quality
of our algorithm. Combining the two, we obtain our main result in Fig. 1, as
claimed above.

Algorithm 6. An approx-HSVP oracle on (B[j,h), k, c, α) using relaxed enumer-
ation in rank k∗ with extended preprocessing in rank (h − j)
1: Find the enumeration rank k∗ ← tail(k, c, α, h − j) by Eq. (2)
2: Numerically find the preprocessing parameter k′ ← pre(k∗, ‖b∗

j ‖, . . . , ‖b∗
h−1‖)

3: if k′ ≥ 3 then
4: Run Alg. 5 on (B [j,h), k

′, c, α′) with some α′ ≥ 1 to obtain a reduced basis

C ∈ Q
(h−j)×m of L[j,h)

5: else
6: LLL-reduce B [j,h) into a basis C ∈ Q

(h−j)×m of L[j,h)

7: end if //Steps 3-7 preprocess B [j,h) for the relaxed enumeration.
8: Call the (α·GH(k∗))-HSVP enumeration oracle in rank k∗ on the head block C [0,k∗)

of C to find a short nonzero vector v in the lattice L[j,h)

α · GH(k)-HSVP oracle performance. In the columns labelled “α′ ≥ 1” in
Table 2, we present the speed-ups over α = 1 attained by our BKZ variant. That
is, the performance of solving α·GH(k)-HSVP when using recursive preprocessing
with α′ ≥ 1. We can observe the following from Table 2:

754 M. R. Albrecht et al.

Table 2. Speedups of relaxed enumeration with extreme cylinder pruning derived
from our simulation with FPyLLL’s optimised cylinder pruning and recursive relaxed
enumeration compared with that claimed by Corollary 1.

α log
t1(k)
tα(k) log tα(k) log

t1(k)
tα(k) log tα(k) log

t1(k)
tα(k)

Cor. 1 Sim. (α′ = 1) Sim. (α′ = 1) Sim. (α′ ≥ 1) Sim. (α′ ≥ 1)

c = 0.00

1.00 0.00 k log k
2 e − 0.994 k + 17.94 0.00 k log k

2 e − 0.946 k + 11.31 0.00

1.05 0.035k k log k
2 e − 1.040 k + 17.69 0.046 k + 0.24 k log k

2 e − 0.984 k + 9.82 0.038 k + 1.49,

1.10 0.069k k log k
2 e − 1.088 k + 18.56 0.093 k − 0.63 k log k

2 e − 1.027 k + 9.99 0.081 k + 1.32

1.15 0.101k k log k
2 e − 1.132 k + 20.55 0.137 k − 2.61 k log k

2 e − 1.078 k + 12.75 0.132 k − 1.45

1.20 0.132k k log k
2 e − 1.166 k + 22.28 0.171 k − 4.34 k log k

2 e − 1.123 k + 15.73 0.176 k − 4.43

1.25 0.161k k log k
2 e − 1.193 k + 23.84 0.199 k − 5.90 k log k

2 e − 1.157 k + 17.93 0.211 k − 6.62

1.30 0.189k k log k
2 e − 1.217 k + 25.42 0.223 k − 7.48 k log k

2 e − 1.187 k + 20.31 0.241 k − 9.00

c = 0.15

1.00 0.00 k log k
8 − 0.552 k + 12.53 0.00 k log k

8 − 0.566 k + 14.28 0.00

1.05 0.035k k log k
8 − 0.601 k + 12.51 0.049 k + 0.02 k log k

8 − 0.617 k + 14.69 0.052 k − 0.41

1.10 0.069k k log k
8 − 0.641 k + 13.13 0.089 k − 0.60 k log k

8 − 0.660 k + 15.68 0.094 k − 1.40

1.15 0.101k k log k
8 − 0.670 k + 13.79 0.118 k − 1.26 k log k

8 − 0.691 k + 16.71 0.126 k − 2.43

1.20 0.132k k log k
8 − 0.693 k + 14.43 0.142 k − 1.90 k log k

8 − 0.716 k + 17.73 0.151 k − 3.45

1.25 0.161k k log k
8 − 0.713 k + 15.19 0.161 k − 2.66 k log k

8 − 0.738 k + 18.91 0.172 k − 4.63

1.30 0.189k k log k
8 − 0.730 k + 15.95 0.178 k − 3.42 k log k

8 − 0.757 k + 20.01 0.191 k − 5.73

c = 0.25

1.00 0.00 k log k
8 − 0.549 k + 12.33 0.00 k log k

8 − 0.571 k + 15.39 0.00

1.05 0.035k k log k
8 − 0.596 k + 12.09 0.047 k + 0.24 k log k

8 − 0.616 k + 14.80 0.044 k + 0.60

1.10 0.069k k log k
8 − 0.639 k + 13.15 0.090 k − 0.82 k log k

8 − 0.651 k + 14.84 0.080 k + 0.55

1.15 0.101k k log k
8 − 0.669 k + 14.08 0.121 k − 1.75 k log k

8 − 0.683 k + 15.93 0.112 k − 0.53

1.20 0.132k k log k
8 − 0.694 k + 15.17 0.145 k − 2.84 k log k

8 − 0.712 k + 17.59 0.140 k − 2.20

1.25 0.161k k log k
8 − 0.713 k + 15.92 0.164 k − 3.59 k log k

8 − 0.735 k + 19.09 0.164 k − 3.70

1.30 0.189k k log k
8 − 0.728 k + 16.62 0.180 k − 4.29 k log k

8 − 0.755 k + 20.50 0.183 k − 5.11

Here, tα(k) denotes the “expected cost” of the (α · GH(k))-HSVP enumeration oracle in rank k ∈
[�α · 100�, �α · 250�], with preprocessing in rank �(1 + c) k�, using relaxed enumeration recursively.

– Without extended preprocessing (i.e. setting the overshooting parameter c =
0), Table 2 indicates that it is better for preprocessing in rank k to call the
(α′ · GH(k′))-HSVP enumeration oracle in rank k′ with α′ = 1 than α′ > 1.

– In contrast, Table 2 indicates that in the case c > 0, it is better for prepro-
cessing in rank �(1 + c) · k	 to call the (α′ ·GH(k′))-HSVP enumeration oracle
in rank k′ with some α′ ≥ 1 than α′ = 1, i.e. to proceed as outlined above.

Table 2 does not normalise time/quality trade-offs. Thus, in Fig. 5 we illus-
trate the performance gain of relaxed enumeration for reaching the same RHF.

Lattice Reduction with Approximate Enumeration Oracles 755

Fig. 5. Expected performance of (α · GH(kα))-HSVP enumeration oracle in rank kα;
case c = 0.15; preprocessing with α′ ≥ 1.00.

Quality. To validate the output quality of our BKZ variant, we compared the
RHF predicted by the simulations for BKZ, Algorithm 5 and a self-dual variant
of Algorithm 5 in Fig. 6a, following the strategy of [4]. As Fig. 6a illustrates, our
variant achieves the same RHF as BKZ, when run in “self-dual” mode.

We also verified the behaviour of the practical implementation of Algorithm 5
against our simulation and give an example in Fig. 6b. As this figure illustrates,
our implementation agrees with our simulation except in the tail.

756 M. R. Albrecht et al.

Fig. 6. Basis quality.

References

1. Aggarwal, D., Li, J., Nguyen, P.Q., Stephens-Davidowitz, N.: Slide reduction,
revisited—filling the gaps in SVP approximation. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 274–295. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56880-1 10

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th ACM STOC, pp. 99–108. ACM Press (May 1996)

3. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In: 30th ACM STOC, pp. 10–19. ACM Press (May 1998)

4. Albrecht, M.R., Bai, S., Fouque, P.A., Kirchner, P., Stehlé, D., Wen,
W.: Faster enumeration-based lattice reduction: root Hermite fac-
tor k1/(2k) Time kk/8+o(k). In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020, Part II. LNCS, vol. 12171, pp. 186–212. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1 7

5. Albrecht, M.R., Bai, S., Li, J., Rowell, J.: Lattice reduction with approximate
enumeration oracles: practical algorithms and concrete performance. Cryptology
ePrint Archive, Report 2020/1260 (2020). https://eprint.iacr.org/2020/1260

https://doi.org/10.1007/978-3-030-56880-1_10
https://doi.org/10.1007/978-3-030-56880-1_7
https://doi.org/10.1007/978-3-030-56880-1_7
https://eprint.iacr.org/2020/1260

Lattice Reduction with Approximate Enumeration Oracles 757

6. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes!. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 19

7. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp.
717–746. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

8. Albrecht, M.R., Gheorghiu, V., Postlethwaite, E.W., Schanck, J.M.: Estimating
quantum speedups for lattice sieves. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020, Part II. LNCS, vol. 12492, pp. 583–613. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-64834-3 20

9. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected
cost of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 11

10. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 327–343.
USENIX Association (August 2016)

11. Aono, Y., Nguyen, P.Q., Shen, Y.: Quantum lattice enumeration and tweaking
discrete pruning. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I.
LNCS, vol. 11272, pp. 405–434. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03326-2 14

12. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms
and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.S.
(eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 789–819. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49890-3 30

13. Bai, S., Stehlé, D., Wen, W.: Measuring, simulating and exploiting the head con-
cavity phenomenon in BKZ. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018,
Part I. LNCS, vol. 11272, pp. 369–404. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03326-2 13

14. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th
SODA, pp. 10–24. ACM-SIAM (January 2016)

15. Bernstein, D.J., et al.: NTRU prime. Tech. rep., National Institute of Standards and
Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

16. Blichfeldt, H.F.: A new principle in the geometry of numbers, with some applica-
tions. Trans. Am. Math. Soc. 16, 227–235 (1914)

17. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

18. Conway, J.H., Sloane, N.J.A.: Sphere-Packings, Lattices, and Groups. Springer,
Heidelberg (1987). https://doi.org/10.1007/978-1-4757-6568-7

19. Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on GPUs, with
tensor cores (2021). to appear in Eurocrypt 2021. https://eprint.iacr.org/2021/141

20. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Math. Comput. 44(170), 463–471 (1985)

21. FPLLL development team: FPLLL, a lattice reduction library (2019). https://
github.com/fplll/fplll

22. FPyLLL development team: FPyLLL, a Python interface to FPLLL (2020).
https://github.com/fplll/fpylll

https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-030-03326-2_13
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-1-4757-6568-7
https://eprint.iacr.org/2021/141
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://github.com/fplll/fpylll

758 M. R. Albrecht et al.

23. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality.
In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 207–216. ACM Press
(May 2008)

24. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

25. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 13

26. Garcia-Morchon, O., et al.: Round5. Tech. rep., National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

27. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press (May 2008)

28. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using
dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9 25

29. Hanrot, G., Stehlé, D.: Improved analysis of Kannan’s shortest lattice vector
algorithm. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 10

30. Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to
within almost polynomial factors. Theory Comput. 8(1), 513–531 (2012). prelimi-
nary version in Proceedings of STOC ’07

31. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: 15th ACM STOC, pp. 193–206. ACM Press (April 1983)

32. Khot, S.: Hardness of approximating the shortest vector problem in lattices. J.
ACM 52(5), 789–808 (2005). preliminary version in Proceedings of FOCS ’04

33. Laarhoven, T.: Search problems in crpytography. Ph.D. thesis, Eindhoven Univer-
sity of Technology (2015)

34. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 366–389 (1982)

35. Li, J., Nguyen, P.Q.: A complete analysis of the BKZ lattice reduction algorithm
(2020). https://eprint.iacr.org/2020/1237.pdf

36. Lovász, L.: An algorithmic theory of numbers, graphs and convexity. Society for
Industrial and Applied Mathematics (1986)

37. Micciancio, D.: The shortest vector in a lattice is hard to approximate to within
some constant. SIAM J. Comput. 30(6), 2008–2035 (2001). preliminary version in
Proceedings of FOCS ’98

38. Micciancio, D.: Inapproximability of the shortest vector problem: toward a
deterministic reduction. Theory Comput. 8(22), 487–512 (2012). http://www.
theoryofcomputing.org/articles/v008a022

39. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead.
In: Indyk, P. (ed.) 26th SODA, pp. 276–294. ACM-SIAM (January 2015)

40. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fis-
chlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp.
820–849. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 31

41. Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Springer, Heidelberg (1973).
https://doi.org/10.1007/978-3-642-88330-9

https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-642-13190-5_13
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-540-74143-5_10
https://eprint.iacr.org/2020/1237.pdf
http://www.theoryofcomputing.org/articles/v008a022
http://www.theoryofcomputing.org/articles/v008a022
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-642-88330-9

Lattice Reduction with Approximate Enumeration Oracles 759

42. Nguên, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 13

43. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342.
ACM Press (May/June 2009)

44. Pohst, M.: On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. SIGSAM Bull. 15, 37–44 (1981)

45. Poppelmann, T., et al.: NewHope. Tech. rep., National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

46. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press
(May 2005)

47. Rogers, C.A.: The number of lattice points in a set. Proc. Lond. Math. Soc. 3,
305–320 (1956)

48. Schneider, M., Gama, N.: Darmstadt SVP challenges (2010). https://www.
latticechallenge.org/svp-challenge/index.php. Accessed 17 Aug 2018

49. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

50. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 14

51. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994)

52. Schnorr, C.P., Hörner, H.H.: Attacking the Chor-Rivest cryptosystem by improved
lattice reduction. In: Guillou, L.C., Quisquater, J.J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995). https://doi.org/10.1007/3-
540-49264-X 1

53. Shoup, V.: NTL 11.4.3: number theory c++ library (2020). http://www.shoup.
net/ntl/

54. Siegel, C.L.: Lectures on the Geometry of Numbers. Springer, New York (1989).
https://doi.org/10.1007/978-3-662-08287-4

55. Teruya, T., Kashiwabara, K., Hanaoka, G.: Fast lattice basis reduction suitable
for massive parallelization and its application to the shortest vector problem. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 437–460.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 15

56. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nat. Methods 17, 261–272 (2020)

https://doi.org/10.1007/11426639_13
https://doi.org/10.1007/11426639_13
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://www.latticechallenge.org/svp-challenge/index.php
https://www.latticechallenge.org/svp-challenge/index.php
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/3-540-49264-X_1
https://doi.org/10.1007/3-540-49264-X_1
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://doi.org/10.1007/978-3-662-08287-4
https://doi.org/10.1007/978-3-319-76578-5_15

Towards Faster Polynomial-Time Lattice
Reduction

Paul Kirchner1(B), Thomas Espitau2, and Pierre-Alain Fouque1

1 IRISA/Inria, Rennes Univ., Rennes, France
{paul.kirchner,pierre-alain.fouque}@irisa.fr
2 NTT Secure Platform Laboratories, Tokyo, Japan

Abstract. The lll algorithm is a polynomial-time algorithm for reduc-
ing d-dimensional lattice with exponential approximation factor. Cur-
rently, the most efficient variant of lll, by Neumaier and Stehlé, has
a theoretical running time in d4 · B1+o(1) where B is the bitlength of
the entries, but has never been implemented. This work introduces new
asymptotically fast, parallel, yet heuristic, reduction algorithms with
their optimized implementations. Our algorithms are recursive and fully
exploit fast matrix multiplication. We experimentally demonstrate that
by carefully controlling the floating-point precision during the recursion
steps, we can reduce euclidean lattices of rank d in time Õ(dω · C), i.e.,
almost a constant number of matrix multiplications, where ω is the expo-
nent of matrix multiplication and C is the log of the condition number of
the matrix. For cryptographic applications, C is close to B, while it can
be up to d times larger in the worst case. It improves the running-time
of the state-of-the-art implementation fplll by a multiplicative factor
of order d2 · B. Further, we show that we can reduce structured lattices,
the so-called knapsack lattices, in time Õ(dω−1 · C) with a progressive
reduction strategy. Besides allowing reducing huge lattices, our imple-
mentation can break several instances of Fully Homomorphic Encryp-
tion schemes based on large integers in dimension 2,230 with 4 millions
of bits.

1 Introduction

Lattice reduction and cryptanalysis. Lattice reduction is of the utmost
importance in public-key cryptanalysis, as testified, for instance, by the extensive
survey of Joux and Stern [40]. Indeed, many cryptographic problems are solved
by constructing an appropriate lattice and retrieving one of its short vectors.
Some standard examples include knapsack problems [40,46,48], breaking linear
congruential generators [28,69]), Coppersmith attack [19] against RSA modulus
by retrieving small roots of univariate polynomials over Z/NZ or bivariate poly-
nomials over Z, or even attacks against the initial versions of the NTRU cryp-
tosystem [4,20,32]. Yet, its field of applications extends way beyond cryptogra-
phy, as lattice reduction is a cornerstone of many number theoretical algorithms,
allowing factoring polynomials over Z[X] [50], finding integer relations [37], solv-
ing simultaneous diophantine approximation problems [45].
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 760–790, 2021.
https://doi.org/10.1007/978-3-030-84245-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_26&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_26

Towards Faster Polynomial-Time Lattice Reduction 761

Essentially, lattice reduction means finding a short and nearly orthogonal
basis to a lattice Λ (represented as a Z-basis). For many applications, finding a
small non-zero lattice vector, i.e., solving the (approximate) Short Vector Prob-
lem (svp), shall suffice. Since the work of Minkowski, we know that there exists
a vector with euclidean norm smaller than

√
d(volΛ)

1
d , but the proof is not

constructive. Nonetheless, the lll algorithm, introduced in 1982 by Lenstra,
Lenstra, and Lovász [50] retrieves vector within an exponential factor to the
shortest vector of a lattice of dimension d in time O

(
d6B3

)
where B is the bit-

size of the input representation. One can also prove that the norm of the first
vector of an lll-reduced basis is less than

(√
4/3

) d−1
2 (volΛ)

1
d . The approxima-

tion factor (‖b1‖/volΛ)1/d is called the root Hermite factor (RHF), with b1 a
short vector. Later, Schnorr developed a hierarchy of algorithms to reach better
RHF in β

1
2β in time 2O(β) for large β [62,64]. This family leads to a polynomial-

time algorithm with a RHF 2
log log d

log d [47]. Gama and Nguyen introduced the slide
reduction to give an effective take on Mordell’s inequality and further improve
the RHF [29]. In an orthogonal direction, following Haståd and Lagarias, Seysen
proposed a variant of lll aiming at simultaneously reduces the primal and dual
basis [67]. He defines a new reduceness measure which is closely related to the
condition number of the matrix [51].

Related work. The two most singular characteristics of lattices appearing in
the cryptographic setting are their high dimension and the large bitsize of their
matrix representation. As such, the reduction of cryptanalytically relevant lat-
tices is a computationally intensive challenge. While the original lll implemen-
tation works with exact arithmetic on rational entries, Schnorr proposed in 1988
to replace it with floating-point arithmetic [63], significantly improving its effi-
ciency. Since 1996, Shoup maintains a heuristic yet very efficient version in the
NTL library with fine control of the float-point precision. This code has been
routinely used for more than a decade to break cryptographic schemes. Later,
Nguyen and Stehlé precisely analyzed and decreased the asymptotic complex-
ity to O

(
d5(d + B)B

)
in [57], a.k.a. the quadratic lll or L2 algorithm. This

algorithm has been then implemented in fpLLL [3], which is the current state-of-
the-art open-source implementation of lll. However, despite many theoretical
improvements to reduce the complexity to quasi-linear in the bitsize using recur-
sive local computation techniques [44,55,58,65] and some attempts [11,13,61] to
use only the most significant bits, the practical complexity of the best imple-
mentation available remains in O

(
d4B2

)
. As such, it struggles to reduce lattices

with large entries in high dimensions. Consequently, cryptographers still assess
their concrete parameters using L2 as a reference for lll.

Thus, from a cryptanalytical standpoint, it is interesting to have a fast imple-
mentation of lattice reduction (with a controlled approximation factor) even
though this algorithm might rely on some heuristics. Since lattice-based cryp-
tography is becoming a strong contender for post-quantum cryptography and
offers many interesting functionalities to cryptography, such as efficient Fully
Homomorphic Encryption (fhe), new algorithms and implementations of lat-

762 P. Kirchner et al.

tice reduction have been designed to give better security estimate for lattice-
based cryptography. Some improvements mainly target the bkz algorithm since
it allows to finely adjust the approximation factor [5,14,29,30,35,53]. Others are
heuristic and improve sieving technique for solving svp, use a reduction tech-
nique in the lattice dimension [6], exploit subfield structure and symmetries in
structured lattices [41,60], or use the tensor core architecture of GPU [26]. Some
of them with sieving SVP-oracle [6] are used to perform the security estimation
of signatures and KEM, where the dimension are generally lying between 512
and 1024. However, fhe schemes over the integers use extremely large integers
(several millions of bits) and high dimensional lattices (typically of a few thou-
sand dimensions), but can be broken with high approximation factors. To deal
with such settings, faster algorithms are required, in particular with complexity
quasi-linear in the bitsize and not much more costly than matrix multiplication.

Our Contributions. To improve the running time of lattice reduction algo-
rithms, we propose to exploit parallelism with many cores, make full use of
computer’s cache using block matrix implementation [34], and use a low pre-
cision while still controlling the approximation factor at the same time. Our
implementation we describe allows reducing lattice in dimensions up to 2,000
with entries of up to millions of bits, which is intractable otherwise.

Our proposal of lattice reduction is a lll-type algorithm, i.e., using a size-
reduction procedure jointly, together with many passes of a rank-2 reduction
subprocess. The design rationale is to exploit fast block matrix operations and
locality of operations. To do so, we use a block variant of the Cholesky factoriza-
tion algorithm for computing the QR-decomposition [34]. We replace the size-
reduction with a block variant of Seysen’s size-reduction, which can be thought
of as a rounded version of the multiplication by the inverse of the R factor of the
QR-decomposition. To our knowledge, this algorithm has not been used since
1993. Contrary to the textbook lll, we do not swap vectors when the Lovász
condition is not fulfilled, but we fully reduce the 2-dimensional corresponding
projected sublattice, using Schönhage’s algorithm. The global design is recur-
sive, as was proposed before by Koy and Schnorr [44] with Segmented lll and
by Neumaier and Stehlé [55]. However, in this work, we do not recurse on over-
lapping blocks but on separate ones; a technique proposed by Villard to achieve
parallelism [73] with even and odd steps, also used recently in [41].

As all the computations are conducted in floating-point arithmetic, a sys-
tematic caveat concerns the precision required for computing the correct result.
We claim and experimentally verify that on average, it decreases exponentially
with the recursion depth as shown in Sect. 4.1, allowing to reduce the overall
complexity by a factor d. Additionally, we handle matrice multiplications in the
Fourier domain to compute with large numbers. We conjecture and experimen-
tally verify a complexity of approximately dω ·C/ logC, where ω is the exponent
of matrix multiplication, and C is the logarithm of the condition number of the
input matrix. We highlight that typically, the complexity of lattice reduction
depends on the bitlength B of the input, instead of C. For cryptographic appli-
cations (Coppersmith and knapsack-type lattice amid others), C is close to B,

Towards Faster Polynomial-Time Lattice Reduction 763

while it can be up to d times larger in the worst case. It is well-known that
a row-wise diagonal dominant matrice has a condition number bounded by a
constant times the ratio beteen the largest diagonal entry and the smallest one,
so the logarithm of the condition number will be close to the size of the entries.

Additionally, Sect. 5 shows that one can reduce knapsack lattice in a time
approximately equal to the reduction of a random lattice with a bitsize reduced
by a factor of d. Such a phenomenon is already known for some algorithms like
fplll [68, 1.5.3], noted [56], and exploited [72]. We present a reduction between
the two problems with this property. The idea is to iteratively double the num-
ber of columns reduced, and reduce the bitsize of the other ones. It has been
implemented and tested.

The complexity of our algorithms can be analyzed in an arithmetic cost
model with an analysis similar to [35] (sandpile model) for LLL with even and
odd pass as in [42]. However, the specificity of our algorithm is to consider the
precision. Without such attention, it would have been impossible to reduce high
dimensional lattice with so many bits. In an exact arithmetic cost model, the
complexity would have been comparable to previous algorithms, which is not
the case in practice. Such heuristic algorithms is interesting, even without a full
analysis, to assess the security of cryptographic instances. For instance, many
fhe schemes over the integers base their security on the complexity of the best
algorithm. However, a rigorous proof of the algorithm with the precision is highly
technical in a numerical computational model and escape us so far. Consequently,
we decided to present only all the ingredients of our implementation with its
applications in this paper and postpone a proof for future work.

Regarding the applications, we first show in Sect. 6 that our implementation
is much faster than fplll with a factor between 30 and 45 on single-thread in all
dimensions tractable by fplll. However, our implementation can exploit multi-
core processors and reduce lattices in much higher dimensions. Consequently, we
run it on matrices of dimensions a few thousand and inputs of millions of bits, as
reported in Table 1. As a result, we attack many instances fhe over the integers
to illustrate the efficiency of our code and evaluate its running time on large
inputs. For these examples, the wall-clock time is six orders of magnitude smaller
than the (estimated) cost of fplll. We broke knapsack instances from [21] in
dimension 2,230 with 4.26 millions of bits in 22h with 18 cores, while the security
level was evaluated at 262. We also broke ntru instances with overstretched
parameters proposed in [31] in 5h (resp. 10 days) in dimension 2560 (resp. 3086)
with 111 (resp. 883) bits and RHF 20.1105 (20.018, equivalent to BKZ-25). In
practice, at the bottom of the recursion tree, we use a small bkz to improve the
approximation factor, whilst not altering too much the running time.

2 Background

2.1 Notations and Conventions

The capitals Z, Q, R refer to the ring of integers, the field of rational and real.
Given a real number x, its integral rounding denoted by �x� returns its closest
integer. The logarithms are log for the binary one and ln for the natural one.

764 P. Kirchner et al.

Matrix and norms. We denote by Q
d×d the space of square matrices of size

d over Q, GLd(Q) its group of invertible. We use bold fonts for matrices and
denote the elementary matrix transformations by Ti,j(λ) and Di(λ) for respec-
tively the transvection (or shear mapping) and the dilatation of parameter λ. We
use Diag(x1, . . . ,xd) to refers to a diagonal matrix of elements x1, . . . ,xd. We
generalize this definition to block matrices and overload it to the extraction of the
diagonal of a given matrix. A triangular unipotent or unitriangular matrix is a
triangular matrix with ones on the diagonal. We extend the product for any pair
of matrices (A,B): for every matrix C with compatible size with A and B, we set:
(A,B) · C = (AC,BC). We adopt the usual conventions for submatrix extrac-
tion: for any matrix M = (mi,j) ∈ Q

d×d and 1 � u < v � d, 1 � w < x � d,
define the submatrix M[u : v,w : x] = (mi,j)u�i�v,w�j�x, while Mi refers
to the i-th column of M. For a vector v (resp. matrix A = (ai,j)1�i,j�d), we
denote by ‖v‖ (resp. ‖A‖) the Frobenius norm, i.e., ‖A‖ =

√∑
1�i,j�d a2

i,j . The
condition number of an invertible matrix M measures how much the output
value of the matrix can change for a small change in the input. It is defined
as κ(M) = ‖M‖‖M−1‖ and allows to compute the precision needed during the
computation. We deal with block decomposition of matrices, with block of half-
dimension. For matrices of odd dimension 2k + 1, the upper-left block to be of
dimension k + 1 and the bottom-right one of dimension k.

Computational setting. We use the standard model in algorithmic theory, i.e.,
the word-RAM with unit cost and logarithmic size register (see [52, Section 2.2]
for a comprehensive description). The number of bits in the register is w and the
precision during the computation by p. All computations with rational/real val-
ues are conducted in floating-point, unless stated otherwise. For a non-negative
integer d, we set ω(d) to be the exponent of matrix multiplication of d×d matri-
ces. If the dimension d is clear from context we might omit it and write simply
O(dω) for this complexity. We can assume that this exponent is not too close
to 2, in particular ω(d) > 2 + 1/ log(d). Due to the conflict with Laudau’s small
omega notation, we use ω for the latter symbol.

2.2 Lattices and LLL Reduction

Definition 1 (Lattice). A d-dimensional (real) lattice Λ ⊆ R
d is the set

of integer linear combinations
∑d

i=1 biZ of some linearly independent vectors
(bi)1�i�d.

The finite family (b1, . . . , bd) ∈ Λ is called a basis of Λ. Every basis has the same
number of elements called the rank of the lattice. A measure of the density of
the lattice is its (co)volume, defined to be the volume of the torus R

d/Λ, which
corresponds to the square root of the Gram-determinant of any basis (b1, . . . , bd):

volΛ =
√
det(〈bi, bj〉)1�i,j�d.

Towards Faster Polynomial-Time Lattice Reduction 765

Two different bases of a lattice Λ are related by a unimodular transformation,
i.e., a linear transformation represented by an element of GLd(Z), the set of
d × d integer-valued matrices of determinant ±1. In essence, algorithms acting
on lattice bases are sequences of unimodular transformations. Among these pro-
cedures, reduction algorithms are of the utmost importance. They aim at finding
congenial classes of bases, which are quasi-orthogonal and with controlled norms.
Fundamental constant associated to any rank d lattice Λ are its successive min-
ima λ1, . . . ,λd. The ith minimum λi(Λ) is the radius of the smallest sphere
centered in the origin containing i linearly independent lattice vectors.

Orthogonalization, QR-decomposition. Let B = (b1, . . . , bd) a family of lin-
early independent vectors. Let πi the orthogonal projection on (b1, . . . , bi−1)⊥,
with the convention that π1 = Id. The Gram-Schmidt orthogonalization pro-
cess is an algorithmic method for orthogonalizing B while preserving the
increasing chain of subspaces (

⊕i
j=1 bjR)1�i�d. It constructs the orthogonal set

B∗ = (π1(b1), . . . ,πd(bd)). For notational simplicity we refer generically to the
orthogonalized vectors by b∗

i for πi(bi). The computation of B∗ can be done
inductively as follows: for all 1 � i � d, b∗

i = bi − ∑i−1
j=1

〈bi,b
∗
j 〉

〈b∗
j ,b

∗
j 〉b

∗
j . Collect the

family B in a matrix also denoted by the same notation and set Ri,j = 〈bj ,b
∗
i 〉

‖b∗
i ‖

and Q =
[

b∗
1

‖b∗
1‖

∣
∣ . . .

∣
∣ b∗

d

‖b∗
d‖

]
. Then, we have B = QR, with Q being an orthogonal

matrix and R being upper triangular. This is the QR-decomposition of B. In the
following, we work with the R part only, so that we present the computation of
this matrix in the pseudo-code Orthogonalize below. We omit considerations on
the required fp-precision here, to just focus on the core ideas of the algorithms.

Algorithm 1 — Orthogonalize

Input :Basis B

Output :R part of
qr-decomposition

for i = 1 to d do

for j = i − 1 to 1 do

Qi ← bi − 〈bi ,Qj 〉
〈Qj ,Qj 〉Qj

end for

end for

return R =
(〈Qi ,bj 〉

‖Qi‖

)
1�i�j�d

Algorithm 2 — Size-Reduce

Input :Basis B, R part of
qr-decomposition

Output :Tranformation of SR basis

U = Idd

for i = 1 to d do
for j = i − 1 to 1 do

(U,R) ← (U,R) · Ti ,j

(
−

⌈
R[i ,j]
R[i ,i]

⌋)

end for
end for
return U

Size-reduction of a family of vectors. Let Λ be a rank d lattice given by a
basis B = (b1, . . . , bd), we might want to use the Gram-Schmidt process. How-
ever, since the quotients 〈bi,b

∗
j 〉

〈b∗
j ,b

∗
j 〉 are not integral in general, the vectors b∗

i may
not lie in Λ. The size-reduction process instead approximates the result of the

766 P. Kirchner et al.

Gram-Schmidt process by rounding to a nearest integer: each vector bi is replaced
by bi −∑i−1

j=1

⌈ 〈bi,b
∗
j 〉

〈b∗
j ,b

∗
j 〉

⌋
bj . The whole process takes time O

(
d5B2

)
when the input

matrix B is of dimension d × d with B-bit entries. This process is called Size-
reduction and corresponds to the following iterative algorithm1 Size-reduce.

2.3 The LLL Reduction Algorithm

Lenstra, Lenstra, and Lovász [50] proposed a notion called lll-reduction and
a polynomial-time algorithm that computes an lll-reduced basis from an arbi-
trary basis of the same lattice. Their reduction notion is formally defined as
follows (presented directly in an algorithmic way with the QR-decomposition):

Definition 2 (LLL reduction). A basis B of a lattice, admitting the decom-
position B = QR, is said to be δ-lll-reduced for 1/4 < δ � 1, if the following
two conditions are satisfied:

∀i < j, |R[i, j]| � 1
2
|R[i, i]| (Size-Reduction condition) (1)

∀i, δ

∥
∥
∥
∥

(
Rj,j

0

)∥
∥
∥
∥

2

�
∥
∥
∥
∥

(
Rj,j+1

Rj+1,j+1

)∥
∥
∥
∥

2

(Lovász condition). (2)

The length of vectors and orthogonality defect is related to the parameter δ:

Proposition 1. Let 1/4 < δ � 1 be an admissible lll parameter. Let
(b1, . . . , bd) a δ-lll reduced basis of rank-d lattice Λ. Then for any 1 � k � d:

vol (b1, . . . , bk) � (δ − 1/4)−
(d−k)k

4 volΛ
k
d .

In particular, we have that Ri,i � (δ − 1/4)−1Ri+1,i+1.

We recall that vol(Λ) = det(B) =
∏d

i=1 Ri,i and the log-potential is defined
as Π(B) =

∑d
i=1(d − i) log(Ri,i). For k = 1 and δ = 1, the Hermite approx-

imation factor defined as ‖b1‖/det(B)1/d, will be (4/3)(d−1)/4. To find a basis
entailing the lll conditions, it suffices to iteratively modify it at any index vio-
lating one of these conditions. This process yields the simplest version of the
lll algorithm. However, we choose to present a different take on this algorithm,
closer to the algorithms we introduce later. The first remark is that for a given
1 � j � d−1, the lll-reduceness conditions correspond to saying that the basis

(
Rj,j Rj,j+1

0 Rj+1,j+1

)

is Gauss–reduced. The global strategy given in Algorithm 3 to reduce a lattice
consists of iteratively applying a reduction procedure in rank 2 to projected
1 We choose to present it using the matrix R and yielding the unimodular transfor-

mation matrix, for consistency with the description of our algorithms in Sect. 3.

Towards Faster Polynomial-Time Lattice Reduction 767

sublattices, naturally using the Gauss reduction algorithm [35]. We start by
reducing the sublattice spanned by b1, b2, then the projection onto the orthogonal
subspace to b1 sublattice spanned by b2, b3 and so on. When we hit the end of
the basis, this iteration restarts afresh until no more progress is achieved.

We replace the outermost while loop by a for loop of a fixed number ρ of
iterations. This parameter is set to be sufficiently large to ensure the reducedness
of the output (using a dynamical system analysis à la [35] after O

(
d2 logB

)

rounds, a vector within the lll quality bound is discovered).
We will use a slight generalization of the lll-reduction notion. In particular,

a lll-reduced basis satisfying the Lovász conditions, is a Siegel reduced basis.

Definition 3 (Siegel reduction). The Siegel reduction problem consists in,
given an integer matrix A of dimension d with ‖A‖, ‖A−1‖ � 2B, outputting a
matrix AU with U a unimodular integer matrix such that with QR = AU the
QR-decomposition, we have for all i: Ri,i � 2Ri+1,i+1.

Algorithm 3 — Reduction

Input : Initial basis B = (b1, . . . , bd)

Output : A δ-lll-reduced basis

1 while B is not lll-reduced do
2 R ← Orthogonalize(B)
3 Ui ← Size-Reduce(R)
4 (B,R) ← (B,R) · Ui

5 for j = 1 to d do
6 B′ ← R[j : j + 1, j : j + 1]

7 U′ ←Gauss(B′)
8 (Ui ,B) ← (Ui ,B) · Diag(Idj−1,U′, Idd−j−1)

9 end for
10 end while
11 return

∏ρ
i=1 Ui // ρ is the number of passes

2.4 Matrices Representation

A matrix A is represented as A′2e where A′ is an integer matrix and e � 0.
The quantity log(‖A′‖) is the precision of the matrix. The standard algorithm
for multiplying matrices with large entries consists in transforming the integers
in A and B into polynomials of degree bounded by O

(
p+w

w

)
(p is the precision

and w the number of bits in registers), and computing their evaluations on
roots of unity. The matrices of evaluations are then multiplied, and an inverse
Fourier transform gives the product of the matrix of polynomials. Carries are
then computed to obtain AB. Matrices can be multiplied quickly using the FFT:

768 P. Kirchner et al.

Theorem 1. Given A and B two integer matrices of dimension d with
log(‖A‖ + ‖B‖) = p, the product AB can be computed in time
O

(
dω p+w

w + d2 p
w log

(
2 + p

w

))
.

2.5 Fast Inversion of Unitriangular Matrices

We eventually conclude this preliminary section by introducing a natural recur-
sive algorithm to invert unitriangular matrices—working with floating-point
approximation. It is a direct application of the computation of Schur’s com-
plement in the case of a block triangular matrix, i.e., the observation that:

(
A C
0 D

)−1

=
(
A−1 −A−1CD−1

0 D−1

)
.

As both A and D are unitriangular, this inversion formula translates naturally in
a recursive algorithm. Its base case corresponds to inverting a one dimensional
unitriangular matrix, that is (1), which is its own inverse. The corresponding
pseudo-code is given in Invert. Its complexity is easily analyzed to be asymptot-
ically the cost of a matrix multiplication, as the dominant step of each recursive
call is the computation of the complement −A−1CD−1.

Algorithm 4 — Invert

Input : A unitriangular matrix M

Output : A fp-approximation of M−1

1 if dim(M) = 1 then
2 return (1)

3 end if

4

(
A C

0 D

)
← M // with dimension almost halved

5 A′ ← Invert(A) ; D′ ← Invert(D) // fp-approximations of A−1,D−1

6 S ← −A′CD′ // Computed in floating-point

7 return

(
A′ S

0 D′

)

We provide the precise analysis of this inversion. It can be extended to tri-
angular matrices, and we consider that Invert also computes their inverse.

Lemma 1. Given an integral unitriangular matrix M of dimension d, with both
‖M‖, ‖M−1‖ � 2p and p � w + log(d), Invert returns a matrix M′ such that
‖M′ − M−1‖ � 2−p with a running time of O

(
dωp
w + d2p

)
.

Proof. We set a working precision p′ = 1+3p+�log d� = O(p), and by induction
on d, let us prove that

‖M′−1 − M‖ � 2
√

d2−p′
.

The case d = 1 is straightforward, so that we now deal with inductive case
d > 1. Let E, δA and δD be matrices such that the top-right part of M′

Towards Faster Polynomial-Time Lattice Reduction 769

is −A′CD′ + E, A′−1 = A + δA, and D′−1 = D + δD. Consequently, we

get: M′−1 − M =
(

δA −A′−1ED′−1

0 δD

)
. We can guarantee that ‖E‖ �

2−p′−2p with a computation with intermediary bitsize O(p′). This leads to our
intermediary result. Now let M′−1 = M + F, so M′ = (M(Id + M−1F))−1 =
(Id+M−1F)−1M−1 and ‖M′ −M−1‖ � ‖M−1‖‖(Id+M−1F)−1 − Id‖ � 2−p.
The complexity comes from the matrix multiplication with words of size w.

3 Fast Reduction of Euclidean Lattices

This section is devoted to the description of our block recursive lattice reduction
algorithm. In the following, let us fix a Euclidean lattice Λ of rank d, described
by a basis collected in a rational matrix B in the canonical basis of R

d. We
generically denote by R the R-part of the QR-decomposition of this matrix. We
recall that computations are conducted in floating-point arithmetic. However,
for the sake of readability and ease of presentation, we defer the issue of the
necessary precision to Sect. 4.

We turn to a detailed breakdown of the essential parts of the algorithm.
Each of the following subsections details and refers to the corresponding lines of
Algorithm5, Reduce.

Algorithm 5 — Reduce

Parameter : Relaxation factor α, ε > 0, number of rounds ρ, number of
blocks D, d ′ = d/D block size.

Input : Basis B ∈ Z
d×d of the lattice Λ

Output : A unimodular transformation U ∈ Z
d×d , UB reduced.

1 if d = 2 then return Schonhage(B)
2 for i = 1 to ρ do
3 R ← Block-Cholesky(BTB)

4 Ui ← Size-Reduce(Diag(R)−1 · R)
5 (B,R) ← (B,R) · Ui

6 for j = 1 + (i mod 2) to D/2 by step of 2 do
7 V1 ← vol(R[(j − 1)d ′ + 1 : jd ′, (j − 1)d ′ + 1 : jd ′])

8 V2 ← vol(R[jd ′ + 1 : (j + 1)d ′ − 1, jd ′ + 1 : (j + 1)d ′])

9 if V1 � 22(1+ε)α(d′)2V2 then
10 U′ ← Reduce(R[jd ′ : (j + 2)d ′ − 1, jd ′ : (j + 2)d ′ − 1])

11 (Ui ,B) ← (Ui ,B) · Diag(Idjd′ ,U′, Idd−3jd′)

12 end if

13 end for

14 end for
15 return

∏ρ
i=1 Ui // The product is computed from the end

770 P. Kirchner et al.

3.1 Base Case: Plane Lattices [Line 1]

As in all variants of the lll algorithm, the base case of the reduction boils down
to the two-dimensional case, usually handled by the celebrated Lagrange-Gauss
reduction or some equivalent transformations. For instance, in the original lll
algorithm, truncated steps of Lagrange-Gauss reduction are conducted on two-
dimensional projections of shape πi(bi)Z ⊕ πi(bi+1)Z.

For the sake of efficiency, we adapt Schönhage’s algorithm [66], as in the algo-
rithms of [35,41], to reduce these plane lattices. This algorithm is an extension
to the bidimensional case of the so-called half-GCD algorithm [54], likewise that
Gauss’ algorithm is a bidimensional generalization of the classical Euclid’s gcd.
The original algorithm of Schönhage only deals with the reduction of binary
quadratic forms but can be straightforwardly adapted to reduce lattices, as well
as returning the corresponding unimodular transformation matrix. In the follow-
ing, we denote by Schonhage this modified procedure. Its complexity is quasilin-
ear in the size of its input (which is to be compared with the quadratic complexity
of the classical Gauss reduction).

3.2 Outer Iteration [Line 2]

To reduce the lattice Λ, we adopt an iterative strategy to progressively modify
the basis: for ρ > 0 steps, a reduction pass over the current basis is performed, ρ
being a parameter set to optimize the complexity of the whole algorithm while
still ensuring the reduceness of the basis. We defer the choice of this constant for
the moment. This global iterative scheme is similar to the terminating variants
of the bkz algorithm, for instance as in [36] or [53], where a polynomial number
of rounds is fixed to reduce the input.

3.3 Orthogonalization via Block-Cholesky Decomposition [Line 6]

Gram-Schmidt Orthogonalization is a preliminary step of every lll-type algo-
rithms, as it computes the so-called Gram-Schmidt vectors of the basis, which
are ubiquitous in the definition of the reduction itself. On symmetric matrices
as the Gram-matrix BTB of the basis, one computes the Cholesky factorization,
which given a symmetric positive-definite matrix G, the factorization asserts the
existence (and unicity) of an upper triangular matrix R such that G = RTR
which is the some R in the QR decomposition of B since G = BTB = RTR.

We use here a recursive block variant of the Cholesky factorization algorithm,
allowing to compute a floating-point approximation of the matrix R, whose
running time is heuristically the cost of a matrix multiplication. It relies heavily
on the Invert procedure introduced in Sect. 2.5.

Remark 1. Block computations of decompositions seems to be folklore in numer-
ical algebra (see, for instance, the complete monograph of Higham [39] for multi-
ple variants of block orthogonalization, such as modified Gram-Schmidt, House-
holder transformations, . . .), but oddly, we were unable to find a proper reference
to the block Cholesky factorization.

Towards Faster Polynomial-Time Lattice Reduction 771

The decomposition is as follows, given as input a symmetric matrix G. We

start by block splitting it (with blocks of half size): G =
(

A B
BT C

)
, where

A,C are also symmetric. Its Schur complement S = C − BTA−1B is then
also symmetric. Suppose that we know the factorization of the A and S in say:

A = RT
ARA and S = RT

SRS . Then, we set R =
(
RA R−T

A B
0 RS

)
. This matrix is

indeed the Cholesky factorization of G, as ensured by the following computation:

RTR =
(

RT
A 0

BTR−1
A RT

S

)
·
(
RA R−T

A B
0 RS

)

=
(

RT
ARA RT

AR
−T
A B

BTR−1
A RA BTR−1

A R−T
A B+RT

SRS

)
=

(
A B
BT C

)
,

since BTR−1
A R−T

A B+RT
SRS = BTA−1B+C−BTA−1B = C by definition of

the Schur complement.
This derivation yields a direct recursive algorithm, whose base case cor-

responds to the unidimensional instance, i.e., G = (g), admitting the trivial
decomposition G = (

√
g)T (

√
g). This observation yields the procedure stated in

pseudocode in Algorithm 6 Block-Cholesky, computing a floating-point approx-
imation of the Cholesky decomposition.

Algorithm 6 — Block-Cholesky

Input : A positive-definite symmetric matrix G

Output : A fp-approx. of a triangular matrix R s.t. RTR = G

1 if dim(G) = 1 then return
√
G

2

(
A B

BT C

)

← G // with blocks of half-dimension

3 RA ← Block-Cholesky(A)
4 R′

A ← Invert(RA)

5 A′ ← R′T
A R′

A

6 RS ← Block-Cholesky
(
C − BTA′B

)

7 return

(
RA R′T

A B

0 RS

)

3.4 Size-Reduction [Line 4]

As in the lll algorithm, a size-reduction operation is conducted at each step of
the reduction. It allows to control the size of the coefficients and ensures that the
running time remains polynomial. However, in our case, we lean on a Seysen-like

772 P. Kirchner et al.

reduction to perform this operation [67]. Our recursive procedure allows to size-
reduce a unitriangular matrix (in our case, the matrix Diag(R)−1R) in roughly
the time of matrix multiplication.

Algorithm 7 — Size-Reduce

Input : A unitriangular matrix T

Output : An integer unitriangular
matrix U, TU reduced

1 if dim(T) = 1 then return (1)

2

(
A C

0 D

)

← R // with half dimension

3 U1 ← Size-Reduce(A)
4 U2 ← Size-Reduce(D)

5 A′ ← Invert(AU1)

6 W ← �A′CU2�

7 return

(
U1 −U1W

0 U2

)

We start from the clas-
sical observation that the
usual size-reduction pro-
cess is a discretized ver-
sion of the iterative Gram-
Schmidt process (which is a
way of computing the QR-
decomposition of a matrix).
Over the triangular matrix
R, it corresponds to make
iteratively the extra diag-
onal elements as close as
possible to 0. However,
instead of using an iterative
process, we use a lattice
reduction algorithm with
block matrix operations.

Let us start with a uni-
triangular matrix R, split
in block of half dimension:(
A C
0 D

)
. Assume for the moment that both unitriangular submatrices A and D

are already size-reduced. Then, set

U =
(
Id −�A−1C�
0 Id

)
,

which is unimodular as its diagonal elements are all 1. Its action on R gives

by elementary computation: RU =
(
A C − A�A−1C�
0 D

)
and the top-right

part is of the same magnitude as A. The inverse of RU is
(
A−1 −(

A−1C − �A−1C�)D−1

0 D−1

)

and the top-right part is of the same magnitude as D−1, ensuring that the norm
of this block is controlled. The translation of this process in pseudocode yields
Algorithm 7 Size-reduce. Note that this algorithm is presented as yielding the
transformation matrix instead of the reduced matrix, to be consistent with the
presentation of Reduce (see proof in Appendix A).

Theorem 2. Given a d-dimensional unitriangular matrix T such that ‖T‖ and
‖T−1‖ � 2p and p � w+log(d)2d, the algorithm Size-Reduce returns an integral
unitriangular matrix U with ‖U‖ � 2O(p) such that ‖TU‖, ‖(TU)−1‖ � d	log d

with a running time of O
(

dωp
w + d2p

)
.

Towards Faster Polynomial-Time Lattice Reduction 773

3.5 Step Reduction Subroutine [Lines 3–13]

From parallel design of LLL... Let us

Fig. 1. Illustration of the parallel step
reduction on the R-part of the QR-
decomposition. Green 2 × 2 blocks are
simultaneously reduced on odd steps
and orange ones are reduced on even
steps. This strategy is similar to [38].

now describe the step reduction pass,
occurring once the size-reduction oper-
ation has been performed. As observed
in Sect. 2, the lll algorithm reduces
lattice reduction to the reduction of
rank two lattices (more precisely, itera-
tively reduce orthogonally projected rank-
2 sublattices). A first idea would be to
use the same paradigm here and pass
over the current basis in a sequence of
reduction of projected planar lattices.
However, on the contrary to the stan-
dard lll or bkz-2 algorithms, remark
that we are not forced to proceed pro-
gressively along the basis, but that
we can reduce �d/2� independent (non-
overlapping) rank-2 lattices at each step,
namely the (π2i(b2iZ ⊕ b2i+1Z))1�i�d/2

and then, (π2i+1(b2i+1Z ⊕ b2i+2Z))0�i�d/2.
This design enables an efficient parallel
implementation which reduces sublattices
simultaneously, in the same way that the classical lll algorithm can be paral-
lelized [38,73]. This technique can also be thought of as a parallelized bkz [53]
or slide-reduction [1] with blocksize 2.

Fig. 2. The block process on the R-
part of the basis. Green blocks are
recursively reduced on odd steps and
oranges one are reduced on even steps.

...to recursive block design. A bottle-
neck with this strategy is that each round
needs (at least) a matrix multiplication
to be updated. Using a dynamical sys-
tem analysis similar to [35], such a reduc-
tion would require ρ rounds to be a Ω(d2)
to ensure an lll approximation factor.
This implies a dependency in the running
time which would be at least quartic in
the dimension d. However, one can notice
that each round only makes local modifica-
tions on the basis. As a result, we propose
to use a small number D of blocks, and
let a round recursively reduces consecutive
pairs of blocks of dimension d

D . In this set-
ting, the dynamical system analysis of [35]
shows that a O

(
D2 logC

)
bound on the

number of iterations ρ is now adequate.

774 P. Kirchner et al.

Let us denote by R′
j the extracted submatrix (Ra,b)(j−1)d′<a,b�jd′ , with d′ =

d/D. The lattice R′
j spanned by R′

j is the projection of Λj =
⊕

(j−1)d′<a�jd′ baZ

over the orthogonal space to the first (j − 1)d′ vectors (b1, . . . , b(j−1)d′−1). The
step reduction subprocess simultaneously (and recursively) calls the reduction
of all the shifted sublattices

(R′
2j ⊕ R′

2j+1

)
1�j<	 D

2
. Then the same is done on

the sublattices
(R′

2j+1 ⊕ R′
2j+2

)
0�j<	 D

2
 to enable the reduction of cross blocks.
This step reduction is then restarted for ρ rounds as indicated in Sect. 3.2.

On the volumetric siegel condition. Remark the use of relaxation parame-
ters ε,α > 0, acting on the approximation factor of the reduction. As an avatar
of the relaxation factor δ of lll, they allow a slight tradeoff between the running
time and the overall reduction quality. It is an equivalent of the Siegel condi-
tion between blocks: instead of recursively calling the reduction every time on
the blocks R2j ⊕ R2j+1, we only do it if the volume of the left block R2j is
sufficiently larger than the one of the right block R2j+1. We do not perform a
recursive reduction if the slope between the blocks is already small enough.

In practice, these values are dependent on the depth of recursion to optimize
the global running time. Section 4 addresses this technicality more thoroughly.

4 Complexity Estimation and Supporting Experiments

We now turn to the fine-tuning of the implementation and describe some opti-
mization tricks used. We backed up our choices by supporting experiments and
eventually devise an empirical estimate of the bit-complexity of our algorithm.

4.1 Needed Precision

Fig. 3. Abscissa corresponds to the
iteration time and ordinates corre-
sponds to the value log(maxi R[i, i]/
mini R[i, i]). As predicted by heuristic
1 the corresponding graph presents an
exponential decay.

Since the implementation of the algorithm
is done using floating-point arithmetic, we
need to set a precision which is sufficient
to handle the internal values during the
computation. To do so, we set:

p = log
maxi R[i, i]
mini R[i, i]

,

where the R[i, i] encodes the norm of
the Gram-Schmidt vectors. As in floating-
point variants of lll [44,55,57,63], it is
straightforward that a O(p) is sufficient
to handle the computation. However, the
remaining question is the evolution of
this quantity within the recursive calls.
Indeed, as we have more and more recur-
sive calls of the reduction algorithm on

Towards Faster Polynomial-Time Lattice Reduction 775

projected lattices of smaller dimensions, we would like to reduce them with a
limited precision to get an overall faster reduction.

The analysis of [55] bounds the number of rounds, and reaches a complexity in
d3C1+o(1) with exact arithmetic (C is the log of the condition number), while the
non-optimized algorithm [35] uses Ω(d3 logC) local reductions. Consequently, to
decrease the complexity of the reduction, we have to reduce the precision in the
local operations. The justification of this fact comes from that in practice, the
values of R[i, i] decrease roughly exponentially in i both in the input and the out-
put matrices. To define our heuristic, we rely on the notion of slope of the basis,
which is the opposite of the slope of the linear regression of the log of the norm
the Gram-Schmidt vectors. Under the Geometric Series Assumption (GSA), this
corresponds to the usual geometric decay factor. Heuristic 1 says that we reduce
the slope, i.e. the logarithm potential Π(B) =

∑d
i=1(d − i) log(Ri,i). We con-

sider that we have access to an oracle which reduces with a slope parameter of
α, namely R[i, i]/R[i + 1, i + 1] ≈ 22α. The matrix returned will have a slope
parameter of (1 + ε)α for 0 < ε < 1/2.

Heuristic 1. If ρ is even, and ρ
2 (2D − 1) � D3, then the slope decreases expo-

nentially quickly towards (1 + ε)α, with rate 1 − O
(

1
D2

)
.

Remark 2. For a smaller ρ, we would have several leaves in the recursion tree,
which would be negligible compared to d3, making it unlikely to reduce the
lattice by a significant amount. These values come from an heuristic analysis.

Figure 3 shows the evolution of the slope on a lattice of dimension 1024 where
the phenomenon is observable. Heuristic 1 has been tested on various types of
lattices (Knapsacks, NTRU-like) in dimensions from 128 to 2048 without failing.

4.2 On the Choice of the Relaxation Parameter ε and Its relation
to the Global Complexity

To finely tune our parameters, we need to estimate the decrease of the potential
at each recursive call. Using heuristic 1 at any moment in the recursion, when
called with a lattice of rank d and working precision p = log maxi Ri,i

mini Ri,i
, such that

d/2∏

i=1

Ri,i > 2(1+ε)αd2/2
d∏

i=d/2+1

Ri,i, (condition)

the output basis has a log-potential reduced by at least Ω(d2pε). Calling a recur-
sive reduction only when the condition is fulfilled allows the callee to reduce the
slope by a factor of roughly 1+ε. If this is actually done, the potential is reduced
by Ω(ε

(
d
D

)2
p′) where p′ is the precision used by the callee. The complexity of

the callee, if not already in a leaf, and outside of its recursive calls is in

O
(

D2

(
(d/D)ω(p′/w + 1) + (d/D)2p′ log p′

w

))
.

776 P. Kirchner et al.

Keeping only the first term and assuming p′ > w, we get that the complexity
per unit reduction in potential should behave in

O
(
D2(d/D)ω−2w−1ε−1

)
.

This suggests minimizing D, so that we set D = 2 and ρ = 6; and also we
deduce that most of the complexity is at low-depth. While the global complexity
is minimized for D = 2, considering a larger D leads to better running time
when using multithreading (higher number of blocks can be treated in parallel).

If we write di and εi for their values at depth i, we obtain that the global
approximation factor is the one at the leaf multiplied by exp(

∑
i εi). Also, the

main term in the complexity is proportional to
∑

i dω−2
i ε−1

i . Thus, we want εi

proportional to d
1−ω/2
i . If we want

∑
i εi = Θ(δ), we get

εi = δ(ω(d) − 2)(d/di)1−ω(di)/2.

Summing the complexity at all depths, we see that the main term becomes:

O
(

dωC

w(ω − 2)2δ

)
for any δ = O

(
1

ω − 2

)
.

4.3 Using Small-Dimension Fast Enumeration in the Leaves

Since almost all the complexity concentrates at low recursive depth, we can
allocate more time in the leaves of the recursion tree to improve the quality
of the reduction without altering much the global complexity. In practice, this
means stopping the recursion before reaching rank-2 sublattices and using a
stronger reduction process than lll on these (higher dimensional) leaves.

Some instances of stronger algorithms are the bkz-type family, which are
parameterized by a block size β, and have a complexity exponential in β [2].
This family includes Schnorr’s original bkz algorithm, Terminated-bkz with less
rounds [35], the self-dual bkz [53] or pressed-bkz [7]—which is particularly good
for low β. If the dimension at the leaf dl is significantly larger than β log β, the
famous Geometric Series Assumption states that the Gram-Schmidt norms of
the reduced basis are well approximated by a geometric series of rate 2Θ(β

log β).
We can assume that the basis was already reduced with a constant slope 2α,

so that the potential will overall decrease only by O
(
d3

)
. At each leaf, we can

use a constant εl−1 and thus expect the log-potential to decrease by at least
Ω(d3l

log β
β). The number of calls is therefore

O
(

d3β

d3l log β

)
= O

(
d3

β2

)

so we can choose any β smaller than Ω((ω − 2) logC).

Towards Faster Polynomial-Time Lattice Reduction 777

4.4 Complexity Estimation

The sketch of analysis conducted previously let us conjecture that the complexity
should have a dominant term in dωC. We plot the single-thread running time on
lattices with dimension d = 2n generated by the columns of the following matrix

(
qIdn A
0 Idn

)

with A sampled uniformly modulo q, and C = log(q) ≈ n4k−1 for k from 0
(green) to 3 (blue). The slope of the reduced matrix is 2α ≈ 0.065 (RHF=
20.032 = 1.02).

Fig. 4. Log-Log representation of the running
time (in seconds) for increasing dimension, with
constant C/d on each line. (Color figure online)

To confirm this hypothesis, we
perform a linear regression on the
log/log data of the running time
in function of the input dimension
(ranging from 128 to 2048). The
regression reveals a slope of 3.5,
that is a complexity in O

(
d2.5C

)

as C is linear in d. Given the
noise generated by the inherent
complexity of the program, its
libraries, and the complex proces-
sor architecture, this experiment
seems to validate our conjectural
complexity. Each line corresponds
to experiments made with matri-
ces with bitsize bounded by (dimension K) [from green (lower) line with K = 1/4
to blue (upper) line K = 16]. We propose the following complexity for our algo-
rithm, using the small bkz-enumeration in the leaves.

Analysis 1. Let A be a matrix of dimension d with integer entries, with κ(A) �
2C such that C � d/ log d. Reduce(A) returns the transformation matrix to a
basis of AZ

d having its first vector of norm bounded by

max
(√

d, 2O(d(ω−2) log log C
log C)

)
volA

1
d

Further, the heuristic running time is

O
(

dω · C

(ω − 2)2 logC
+ d2C logC +

d2C

(ω − 2)2

)
.

Remark 3. The values come from a heuristic analysis that we do not develop.

• In practice, the entire basis is reduced at the end of the algorithm (as lll
algorithm gives a reduced basis with controlled decay of the Gram-Schmidt).

• When ω is bounded away from 2, and C is not extremely large (C = 2o(d)),
the complexity simplifies to O

(
dω · C

log C

)
.

778 P. Kirchner et al.

• It is better to first reduce with a large δ (say min(log(C/d), 1
ω−2)), and pro-

gressively reduce the slope by decreasing δ by a constant, so that the precision
used is exponentially decreasing. For C > d21/(ω−2), we obtain a heuristic
complexity of:

O
(

dω · C

(ω − 2) logC
+ d2C logC

)
.

• The dependency in the second term of the complexity (term in d2C logC)
comes as a direct consequence of the complexity of the Schonhäge algorithm.

The implementation mixes multiple machine representation as it needs to
manage efficiently both large and small matrices, with a large range in bit-
sizes. On the one hand, the “large matrices”, e.g. with of dimension greater than
80 and of coefficient represented on few hundreds bits, are represented in the
Fourier domain, that is to say by a collection of complex matrices, one for each
evaluation point. The complex matrices are with double-precision floating-point
coordinates. Large integers are transformed into polynomials, with between 14
and 16 bits per coefficient.

On the other hand, small matrices (dimension lower than 80) and with small
bitsize are represented with an array of MPFR values [27]. A reduction of small
matrix with at most 300 bits is computed by repeatedly reducing matrices with
at most 39 bits, which are in turned reduced using blocks of dimension 12. These
matrices of dimension 12 and with at most 20 bits are reduced with the quadratic
L2 [57] procedure.

Finally, matrices where p is small (around 30) and dimension up to 400
are treated in double precision, thanks to the use of the Householder QR-
decomposition and the Seysen size-reduction.

5 Reduction of Structured Knapsack-Like

In this section, we present a progressive strategy to provably speed-up the reduc-
tion of almost triangular matrices. Combined with the reduction of Sect. 3, it
gives a heuristic reduction process which estimated running time is essentially
a O

(
dω−1 C

log C + Cd log d
)
. The general idea is that a knapsack-like matrix of

dimension d and with log condition number C can be reduced as quickly as a
matrix of dimension d and condition number 2C/d. As this effect was already
known for some algorithms like fplll [68, 1.5.3], noted [56], and used in [72], we
aim at giving a general framework to encompass this observation.

5.1 Setting

Definition 4 (Almost triangular matrix). A matrix B with d columns and
O(d) rows is said to be (asymptotically) almost triangular if Bi,j = 0 for any
i � O(j), with a uniform constant.

In order to analyze our strategy we also require the matrices to be well
conditioned in the following sense:

Towards Faster Polynomial-Time Lattice Reduction 779

Definition 5 (Knapsack-like matrix). Let B ∈ Zd×d be an almost triangu-
lar matrix and set C � d2 such that λk(C) � 2C/k, for all matrices C whose
columns are a subset of those of B of dimension k. Set R to be the R-factor of
the QR-decomposition of B. We say that B is C−knapsack-like if furthermore
‖R−1‖ � 2C/d and |Ri,j | � 2C/i for all i, j.

Remark 4. The conditions detailed in the previous definition seems apparently
strong but such matrices are actually widespread, as corresponding to generic
instances of so-called knapsack problems or searching integer relations. In prac-
tice, one can easily computationally check that these matrices, as well as Hermite
Normal Form matrices with decreasing round pivots verify the assumptions with
a reasonably small B.

5.2 Iterative Reduction Strategy

Hypothesis 1. In all of the following suppose that we have access to a lattice
reduction oracle red-Oracle, whose output is a transition matrix to a Siegel-
reduced and size-reduced basis. Its running time on a d × d matrix of condition
number bounded by C is denoted by T (d,C).

The progressive reduction consists in reducing the first k = 2i columns of B,
for all successive powers of two until reaching d. At step 1 � i � �log d�, we use
the—now reduced—first k vectors to size-reduce the remaining columns before
concatenating them to the current basis and pursuing the reduction. Hence, the
bitsize of the whole matrix is reduced for each i before being actively used in
the lattice reduction oracle red-Oracle.

Formally, define inductively a family of matrices Bi which represents the
state of the matrix B computed in the i-th iteration.

Initialization: B0 = B.
Induction: Let i > 0, and suppose that Bi is known. We start by reducing only

the first k = 2i vectors using red-Oracle of Bi and denote by B′
i the result.

Define QiRi to be the QR-decomposition of B′
i[: 1, k]. Then, remark that for

any x being a column of B′
i not in the span of B′

i[: 1, k], we can reduce its
bitsize by replacing it by x − B′

j�R−1
j QT

j x� for increasing 1 � j � k. Such
a size-reduction can be computed on all the columns of Bi[k + 1 : d] simul-
taneously using a single matrix multiplication and call C the corresponding
vectors. Eventually set Bi+1 to the concatenation

[
B′[: 1, k] | C

]
.

The corresponding pseudo-code is given in Algorithm 8.

780 P. Kirchner et al.

Algorithm 8 — Reduction of Knapsack-like lattices

Parameter : Reduction oracle red-Oracle
Input : Matrix B ∈ Z

d×d

Output : A reduced basis of BZ

1 k, i ← 1, 0

2 B0 ← B

3 while k < d do
4 k ← 2k; i ← i + 1

5 Bi [: 1, k] ← Bi−1[: 1, k]·red-Oracle(Bi−1[: 1, k])

6 Ri ← Block-Cholesky(Bi [: 1, k]
TB[: 1, k])

7 Qi ← Bi [: 1, k] · R−1
i

8 Bi+1[1 : k, k + 1 : d] ← Bi [1 : k, k + 1 : d]−
9 Bi · ⌊

R−1
i · QT

i · Bi [1 : k, k + 1 : d]
⌉

10 end while

5.3 Complexity Analysis

We now present the complexity analysis of the algorithm presented, under the
hypothesis made on the lattice reduction oracle. For readability, we defer the
proof to the full version. The following lemma entails that the condition number
of the input of the reduction oracle is sufficiently small.

Lemma 2. Let B a rank d almost triangular matrix which is C-knapsack-like.
For any index 0 � i � �log d�, set Bi to be the matrix computed by the execution
of Algorithm 8 on B. Denote by QiRi = Bi[, 1 : 2i] the QR-decomposition of the
matrix of 2i first columns of Bi. We get ‖Ri‖, ‖R−1

i ‖ = 2O(d+C2−i) for all i.

From this we have:

Theorem 3. Let B a rank d almost triangular matrix which is C-well condi-
tioned, C � d2. We can Siegel-reduce it in time

O

(
log d∑

i=1

T (2i,O
(
C2−i

)
) +

dω−1

ω − 2
· C

logC
+ dC log d

)

.

Remark 5. • One can use such a procedure to quickly search a putative minimal
polynomial; the knapsack-like condition is however not guaranteed.

• The setting of Theorem 3 includes both modular and integer knapsacks.
• Assuming algorithm of Sect. 3 has heuristically the right properties (which is

the case in all of our extensive experiments), the complexity of the reduction
of knapsack like matrices then becomes:

O
(

dω−1

(ω − 2)2
· C

logC
+ dC logC

)
.

Towards Faster Polynomial-Time Lattice Reduction 781

6 Applications

Lattice reduction algorithms have numerous applications in mathematics and
computer science. We survey here the impact of the implementation our algo-
rithm, starting with cryptanalysis. In particular, we can reduce lattices of dimen-
sion in the thousands and with millions of bits. We recall that the Gram-Schmidt
norms in the output basis are expected to decrease geometrically with rate 22α

so that the Hermite factor in dimension d is 2αd.
For all the presented experiments, we use an Intel CPU E5-2695 v4 with 18

cores running at 2.10GHz processors; and 768GiB of RAM. Some SSD swap was
slightly used in the largest computation. For comparison with older timings, we
used a machine with an Intel i7-8650U with 4 cores at 1.9GHz. The program was
compiled with Intel’s libraries and compiler with the standard -Ofast low-level
optimization flag.

6.1 Comparison with State of the Art

We start this section by a comparison with the state-of-the-art implementation of
fplll. Its complexity is O

(
d4B2

)
in the general case, and its heuristic complex-

ity2 is O
(
d2B2

)
for knapsack matrices, as reported in [68, 1.5.3]. When d � 220,

its practical efficiency drops sharply due to the need of multiprecision compu-
tations. The following table presents a running time comparison with fplll, in
single-threaded mode, on classical types of lattices namely knapsack and NTRU
matrices. On the all instances, our implementation is sensibly faster than fplll.

Type Dimension d Bitsize B fplll This work

128 100 000 88 min 6 min

256 10 000 134 min 4 minKnapsack

384 10 000 388 min 13 min

256 80 24 min 3 min

384 70 431 min 10 minNTRU

512 70 1392 min 33 min

6.2 Fully Homomorphic Encryption over the Integers

FHE scheme was first designed by Gentry [33] using number theoretical tools in
2009. Soon after, an equivalent system was presented, using only integer arith-
metic [70], and is based on a distant relative [17] of the celebrated Learning
2 This estimation comes from the observation that dB swaps are performed, each

taking d2 operations on B/d bits. There are B/d reduction steps for each new vector,
each takes d2 operations on B bits.

782 P. Kirchner et al.

With Error (lwe) problem in dimension one. More precisely, given an integer
secret |s| � 2η (typically a prime), this problem aims at retrieving s from given
samples xi of the form ais+ ei where 0 � ai � 2γ/|s| and |ei| � 2ρ are sampled
uniformly and independently. The parameters verify γ � η � ρ.

A natural lattice reduction attack consists in collecting d samples x =

(xi)1�i�d and building the matrix X =
(

x1, . . . ,xd

Idd

)
. The volume of the lattice

X spanned by the columns of X is
√
1 +

∑d
i=1 x2

i ≈ 2γ . Hence, lattice reduc-
tion with root Hermite factor 2α can be used to construct a non-zero vector
y ∈ Z

d such that ‖y‖, |〈x, y〉| � 2γ/d+αd. Indeed, any vector in this lattice is of
the form (〈x, y〉, y), so that its squared norm is the sum of two contributions:
‖y‖2 + |〈x, y〉|2. It now suffices to remark that norm of a vector found by reduc-
tion is smaller than the normalized covolume 2γ/d times the root Hermite factor
2αd.

By plugging back the definition of the (xi), we have 〈x, y〉 = s〈a, y〉 + 〈e, y〉
where a = (a1, . . . , ad), e = (e1, . . . , ed). Assuming 2γ/d+αd � 2η−ρ/

√
d, the

Cauchy-Schwarz inequality implies that 〈a, y〉 = 0. This is enough to break the
scheme; if the (d − 1) first vectors of the basis have this length, then the last
one must be proportional to a (and is ±a if the entries are coprime). The first
d − 1 first vectors are orthogonal to a and are independent, so the last one
must be proportional to a since a is in the lattice orthogonal to these vectors.
The optimal d – for maximizing α – is therefore close to

√
γ/α, leading to the

condition α � (η−ρ)2

4γ .
A part of the original paper [70] considers security against polynomial-time

adversaries, so that they obtain the condition γ = ω(η2 log λ) for a “security
parameter” of λ. Another part of the original paper [70, Section 6.3], and almost
all follow-ups [15,21–25], consider however security against adversaries able to do
2λ operations. However, the condition was copied without change, which possibly
explains why a large α was chosen in several implementations3.

As the lattice reduction algorithm can easily reach α = 0.04, this means we
can use a smaller d, close to γ

η−ρ for many instances than the d in the table,
which is the dimension where α is maximal. In the instance where γ = 1.02 · 106
and η − ρ = 376, we used d = 3600 so that α = 0.024 was needed, and we used
a pressed-bkz-19 in the leaves. This choice was made due to memory concerns.

While the large problems are clearly quite difficult, even the largest instances
of the table seem to be within range of (motivated!) academic attackers, with
terabytes of SSD memory and perhaps around 265 flop.

6.3 Overstretched NTRU

It is well-known since the work of Albrecht et al. [4], Cheon et al. [16] and
Kirchner and Fouque [43] that an NTRU scheme with a very large modulus q
compared to the dimension of the lattice is prone to attacks. However, these

3 Surprisingly, many log λ were “rounded up” to λ in the parameter choices.

Towards Faster Polynomial-Time Lattice Reduction 783

Table 1. Examples of schemes attacked, and corresponding reduction algorithm
required to break.

Scheme λ γ/106 η − ρ α d Algorithm Running time

42 0.16 1072 1.8 299 LLL 5 min

52 0.86 1608 0.75 1070 LLL 55 min

62 4.2 2144 0.273 3918 LLL 1030 min
[24]

72 19 2613 0.089 14543 LLL –

42 0.061 322 0.43 379 LLL 3 min

52 0.27 370 0.12 1460 LLL 29 min

62 1.02 376 0.0347 5426 LLL 27 h
[25]

72 2.2 420 0.02 10476 BKZ-20 –

42 0.27 929 0.8 290 LLL 13 min

52 1.1 924 0.2 2380 LLL 176 min[22]

62 4.2 919 0.051 9140 LLL –

52 0.9 1517 0.64 1186 LLL 74 min

62 4.6 2072 0.24 4440 LLL 1382 min[15]

72 21 2627 0.082 15988 LLL –

52 1 1797 0.82 1104 LLL 67 min

62 4.26 1987 0.24 4288 LLL 1322 min

72 18.7 2189 0.0643 17043 LLL –
[21]

80 63.7 2353 0.0218 54117 BKZ-20 –

cases often happen in NTRU-based Homomorphic encryption schemes such as
YASHE [12] or LTV schemes. In 2019, a homomorphic scheme has been proposed
by Genise et al. [31] with a similar variant of this problem, hoping that the
overstretched NTRU only works in algebraic setting using ring of polynomials.
Some parameters proposed for performances evaluations have been broken in [49]
also showing that the assumptions used is flawed. Here, we break comparable
parameters showing that the proposed parameters only achieve a low security
level. In [59], Pataki and Tural showed that the volume of any r-dimensional
sublattice L′ of a lattice L is larger than the product of the r smaller Gram-
Schmidt. Kirchner and Fouque combined this result with the fact that in any
2d-dimensional NTRU lattices, there is a sublattice of dimension d and volume
roughly the size of secret-key to the power d, one can deduce that if the volume
of the secret key sublattice is of size about the product of the d smaller Gram-
Schmidt, it is possible to recover the secret key.

784 P. Kirchner et al.

The optimal d is around log(q)
4α , which corresponds to a volume close to

2log(q)
2/16α. The scheme of [31] chooses entries in F,G as integer Gaussians

of standard deviation σ =
√

r/π where r is the dimension of their lattice.
We can restrict the lattice reduction to the middle 2d square matrix, but the
volume is conserved. A more precise estimate consists in using the volume
of the sublattice, projected orthogonally to the first r vectors of the reduced
basis [43]. We expect the i-th Gram-Schmidt norm of the projected basis to be
around

√
r + 1 − iσ, so that the volume can be computed with Stirling’s formula

(
∏r

i=1(r + 1 − i)σ2

)1/2

≈
(

√
rσ√
e

)r

. Overall we obtain 2log(q)
2/16α ≈

(
r√
πe

)r

,

from which we can find the α required. The first one necessitates roughly 220 calls
to a SVP in dimension 101, and each call currently needs 211 core-seconds [6],
this translates into a year of computation on our machine. Alternatively, each
call can be computed in 22 seconds with a GPU [26]. A pressed-bkz of dimension
29 was used for the second one.

Table 2. Experiments for overstretched NTRU problems. Dimension is the actual
dimension of the problem, and effective dimension refers to the dimension required in
practice to mount the attack.

Dimension r log q α Effective dimension Algorithm Time

1024 42 0.01274 1648 BKZ-101 –

4096 111 0.01799 3086 BKZ-25 233 h

32768 883 0.1105 2560 LLL 263 min

6.4 Miscellaneous

Integral relations. Another use of lattice reduction is the discovery small
linear integer relation between reals. It actually corresponds to the setting of
Sect. 6.2, where 2η corresponds the norm of the relation, and γ the precision
used to represent the reals. Then clearly, γ ≈ dη + d2α is enough to perform
a search by reduction. In 2001, Bailey and Broadhurst believed [8] that their
computation with γ ≈ 166000 and d = 110 was the largest performed. It took
44 h, on 32 CPUs of a Cray-T3E (300MHz). We report this takes 5min on a
laptop, or 600 times fewer cycles. As the task is identical (for large α) to breaking
the integer homomorphic schemes, the running time for bigger examples can be
found in the previous subsections.

Univariate polynomial factorization. Yet another application is factoring
univariate polynomials [10,71] over the integers. The first step is to factor modulo
some prime, and the number of factors n is the dimension of the modular vectorial

Towards Faster Polynomial-Time Lattice Reduction 785

knapsack we have to solve, namely we have to find very short vectors in the

lattice generated by
(

qIdr A
0 Idn

)
. The precision q, and number of coordinates

r can essentially be freely chosen. For random polynomials, n is typically very
small (e.g. logarithmic) and lattice reduction is not the bottleneck; but it can
be as large as half the degree. Our choice is to take r small, say n/ log n, and
then r log q ≈ αn2 allows (heuristically) to obtain the last Gram-Schmidt norms
larger than n2. Then, this restricts the solutions of the knapsack – known to be
shorter than this – to the first few vectors of the reduced basis. At this point,
one can recover the factors, and prove that they are irreducible. Taking n = 256,
we get a solution in two minutes on one core of our laptop instead of ten with
a 1GHz Athlon [9]; for n = 512 it takes 25min instead of 500. For ω bounded
away from 2, with α = O

(
log log n
log n

)
the heuristic asymptotical complexity is

O
(

nω+1 log log n

log2 n

)
.

7 Conclusion and Open Questions

In this work, we introduced a recursive lattice reduction algorithm, whose heuris-
tic complexity is equivalent to a few matrix multiplications. This algorithm and
the heuristics used to complete the complexity analysis have been thoroughly
tested and applied to reduce lattices of very large dimension. The implementa-
tion takes advantage of fast matrix multiplications, and fast Fourier transforms.

This work raises several questions. First of all, the analysis we are making is
so far heuristic and empirical. It is possible to get a provable result by mitigat-
ing the complexity, in particular it seems difficult to be able to formally prove
the heuristic on the decrease of the needed precision, even though this fact is
easily checkable in practice. Reaching a provable bound in dωC is an open and
interesting problem, and our algorithm is a first step in this direction.

A Proof of Theorem 2

Proof. We use a precision p′ = O
(
p + log(d)2

)
= O(p). We prove by induction

on d that ‖TU‖, ‖(TU)−1‖ � d	log d
. Initialization is clear, so that we now
assume that d > 1. We have by direct computation that TU is

(
AU1 CU2 − AU1W
0 DU2

)
.

The top-right matrix is AU1((AU1)−1CU2 −W) and we have, by setting that
A′ − (AU1)−1 = δA:

‖(AU1)−1CU2 − W‖ � ‖δACU2‖ + ‖A′CU2 − W‖.

786 P. Kirchner et al.

The first term is bounded by 2O(p)‖δA‖ and the second by 2d/3. We choose the
precision so that the first term is at most 1/3 and the result follows directly, as
‖AU1‖, ‖CU2‖ � d	log d
−1.

Next, the matrix (TU)−1 is equal to
(
(AU1)−1 −(AU1)−1(CU2 − AU1W)(DU2)−1

0 (DU2)−1

)
.

The top-right matrix is ((AU1)−1CU2 − W)(DU2)−1. The first term was
already bounded above by d, and ‖(DU2)−1‖ � d	log d
−1 and this gives the
result.

Finally, we have ‖U‖ = ‖T−1TU‖ � ‖T−1‖‖TU‖ � 2pd	log d
.

Remark 6. It is mandatory to have T well-conditioned if we want a U which is
not much larger than T. This is also true for other variants of lll (including
fplll): outputting the transition matrix may lead to a slow-down by a factor of d.

References

1. Aggarwal, D., Li, J., Nguyen, P.Q., Stephens-Davidowitz, N.: Slide reduction,
revisited—filling the gaps in SVP approximation. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 274–295. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56880-1_10

2. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. In: SODA , pp. 10–24 (2016)

3. Albrecht, M., Bai, S., Cadé, D., Pujol, X., Stehlé, D.: fpLLL-5.0, a floating-point
LLL implementation (2017). http://perso.ens-lyon.fr/damien.stehle

4. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4_6

5. Albrecht, M.R., Bai, S., Fouque, P.-A., Kirchner, P., Stehlé, D., Wen, W.: Faster
enumeration-based lattice reduction: root Hermite factor k1/(2k) time kk/8+o(k). In:
Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp.
186–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_7

6. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp.
717–746. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_25

7. Bai, S., Stehlé, D., Wen, W.: Measuring, simulating and exploiting the head con-
cavity phenomenon in BKZ. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018,
Part I. LNCS, vol. 11272, pp. 369–404. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03326-2_13

8. Bailey, D., Broadhurst, D.: Parallel integer relation detection: techniques and appli-
cations. Math. Comput. 70(236), 1719–1736 (2001)

9. Belabas, K.: A relative van Hoeij algorithm over number fields. J. Symb. Comput.
37(5), 641–668 (2004)

10. Belabas, K., van Hoeij, M., Klüners, J., Steel, A.: Factoring polynomials over global
fields. Journal de théorie des nombres de Bordeaux 21(1), 15–39 (2009)

https://doi.org/10.1007/978-3-030-56880-1_10
http://perso.ens-lyon.fr/damien.stehle
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-030-56880-1_7
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-030-03326-2_13

Towards Faster Polynomial-Time Lattice Reduction 787

11. Bi, J., Coron, J.-S., Faugère, J.-C., Nguyen, P.Q., Renault, G., Zeitoun, R.: Round-
ing and chaining LLL: finding faster small roots of univariate polynomial congru-
ences. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 185–202. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_11

12. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45239-0_4

13. Buchmann, J.: Reducing lattice bases by means of approximations. In: Adleman,
L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS, vol. 877, pp. 160–168. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-58691-1_54

14. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0_1

15. Cheon, J.H., et al.: Batch fully homomorphic encryption over the integers. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
315–335. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9_20

16. Cheon, J.H., Hhan, M., Lee, C.: Cryptanalysis of middle lattice on the over-
stretched NTRU problem for general modulus polynomial. Cryptology ePrint
Archive, Report 2017/484 (2017). http://eprint.iacr.org/2017/484

17. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp.
513–536. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5_20

18. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, New
York (1993). https://doi.org/10.1007/978-3-662-02945-9

19. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

20. Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0_5

21. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4_26

22. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
311–328. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-
0_18

23. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp.
267–286. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6_13

24. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9_28

25. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,

https://doi.org/10.1007/978-3-642-54631-0_11
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/3-540-58691-1_54
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-642-38348-9_20
http://eprint.iacr.org/2017/484
https://doi.org/10.1007/978-3-662-46800-5_20
https://doi.org/10.1007/978-3-662-46800-5_20
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-662-47989-6_13
https://doi.org/10.1007/978-3-662-47989-6_13
https://doi.org/10.1007/978-3-642-22792-9_28
https://doi.org/10.1007/978-3-642-22792-9_28

788 P. Kirchner et al.

Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_27

26. Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on GPUs, with
tensor cores. Cryptology ePrint Archive, Report 2021/141 (2021). https://eprint.
iacr.org/2021/141

27. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. (TOMS) 33(2), 13 (2007)

28. Frieze, A.M., Kannan, R., Lagarias, J.C.:. Linear congruential generators do not
produce random sequences. In: 25th FOCS, pp. 480–484. IEEE Computer Society
Press (1984)

29. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality.
In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 207–216 (2008)

30. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_13

31. Genise, N., Gentry, C., Halevi, S., Li, B., Micciancio, D.: Homomorphic encryption
for finite automata. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part
II. LNCS, vol. 11922, pp. 473–502. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34621-8_17

32. Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44987-6_12

33. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (2009)

34. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press, Baltimore (1996)

35. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using
dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9_25

36. Hanrot, G., Pujol, X., Stehlé, D.: Terminating BKZ. Cryptology ePrint Archive,
Report 2011/198 (2011). http://eprint.iacr.org/2011/198

37. Håstad, J., Just, B., Lagarias, J.C., Schnorr, C.: Polynomial time algorithms for
finding integer relations among real numbers. SIAM J. Comput. 18(5), 859–881
(1989)

38. Heckler, C., Thiele, L.: Complexity analysis of a parallel lattice basis reduction
algorithm. SIAM J. Comput. 27(5), 1295–1302 (1998)

39. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, vol. 80. SIAM,
Philadelphia (2002)

40. Joux, A., Stern, J.: Lattice reduction: a toolbox for the cryptanalyst. J. Cryptol.
11(3), 161–185 (1998). https://doi.org/10.1007/s001459900042

41. Kirchner, P., Espitau, T., Fouque, P.-A.: Fast reduction of algebraic lattices over
cyclotomic fields. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II.
LNCS, vol. 12171, pp. 155–185. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-56880-1_6

42. Kirchner, P., Espitau, T., Fouque, P.-A.: Algebraic and Euclidean lattices: optimal
lattice reduction and beyond. Cryptology ePrint Archive, Report 2019/1436 (2019).
https://eprint.iacr.org/2019/1436

https://doi.org/10.1007/978-3-642-29011-4_27
https://eprint.iacr.org/2021/141
https://eprint.iacr.org/2021/141
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-030-34621-8_17
https://doi.org/10.1007/978-3-030-34621-8_17
https://doi.org/10.1007/3-540-44987-6_12
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
http://eprint.iacr.org/2011/198
https://doi.org/10.1007/s001459900042
https://doi.org/10.1007/978-3-030-56880-1_6
https://doi.org/10.1007/978-3-030-56880-1_6
https://eprint.iacr.org/2019/1436

Towards Faster Polynomial-Time Lattice Reduction 789

43. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I.
LNCS, vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-56620-7_1

44. Koy, H., Schnorr, C.P.: Segment LLL-reduction of lattice bases. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 67–80. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44670-2_7

45. Lagarias, J.C.: The computational complexity of simultaneous diophantine approx-
imation problems. In: 23rd FOCS, pp. 32–39. IEEE Computer Society Press (1982)

46. Lagarias, J.C.: Knapsack public key cryptosystems and diophantine approxima-
tion. In: Chaum, D. (ed.) CRYPTO’83, pp. 3–23. Springer, Boston (1984). https://
doi.org/10.1007/978-1-4684-4730-9_1

47. Lagarias, J.C., Lenstra, H.W., Schnorr, C.: Korkin-Zolotarev bases and successive
minima of a lattice and its reciprocal lattice. Combinatorica 10(4), 333–348 (1990).
https://doi.org/10.1007/BF02128669

48. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. In: 24th
FOCS, pp. 1–10. IEEE Computer Society Press, November 1983

49. Lee, C., Wallet, A.: Lattice analysis on MiNTRU problem. Cryptology ePrint
Archive, Report 2020/230 (2020). https://eprint.iacr.org/2020/230

50. Lenstra, A.K., Lenstra, H.W.J., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

51. Maze, G.: Some inequalities related to the Seysen measure of a lattice (2010)
52. Mehlhorn, K., Sanders, P.: Algorithms and Data Structures: The Basic Toolbox.

Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77978-0
53. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fis-

chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp.
820–849. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3_31

54. Möller, N.: On Schönhage’s algorithm and subquadratic integer GCD computation.
Math. Comput. 77(261), 589–607 (2008)

55. Neumaier, A., Stehlé, D.: Faster LLL-type reduction of lattice bases. In: ISSAC,
pp. 373–380 (2016)

56. Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006).
https://doi.org/10.1007/11792086_18

57. Nguyen, P.Q., Stehlé, D.: An LLL algorithm with quadratic complexity. SIAM J.
Comput. 39(3), 874–903 (2009)

58. Novocin, A., Stehlé, D., Villard, G.: An LLL-reduction algorithm with quasi-linear
time complexity. In: 43rd STOC, pp. 403–412. ACM (2011)

59. Pataki, G., Tural, M.: Lattice determinants in reduced bases. arXiv:0804.4014
(2008)

60. Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices with pre-
processing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS,
vol. 11477, pp. 685–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17656-3_24

61. Morel, I., Stehlé, D., Villard, G.: LLL reducing with the most significant bits. In:
Nabeshima, K., Nagasaka, K., Winkler, F., Szántó, Á. (eds.) ISSAC, pp. 367–374.
ACM (2014)

62. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/3-540-44670-2_7
https://doi.org/10.1007/3-540-44670-2_7
https://doi.org/10.1007/978-1-4684-4730-9_1
https://doi.org/10.1007/978-1-4684-4730-9_1
https://doi.org/10.1007/BF02128669
https://eprint.iacr.org/2020/230
https://doi.org/10.1007/978-3-540-77978-0
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/11792086_18
http://arxiv.org/abs/0804.4014
https://doi.org/10.1007/978-3-030-17656-3_24
https://doi.org/10.1007/978-3-030-17656-3_24

790 P. Kirchner et al.

63. Schnorr, C.: A more efficient algorithm for lattice basis reduction. J. Algorithms
9(1), 47–62 (1988)

64. Schnorr, C.: Block reduced lattice bases and successive minima. Comb. Probab.
Comput. 3, 507–522 (1994)

65. Schönhage, A.: Factorization of univariate integer polynomials by diophantine
approximation and an improved basis reduction algorithm. In: Paredaens, J. (ed.)
ICALP 1984. LNCS, vol. 172, pp. 436–447. Springer, Heidelberg (1984). https://
doi.org/10.1007/3-540-13345-3_40

66. Schönhage, A.: Fast reduction and composition of binary quadratic forms. In:
ISSAC, pp. 128–133. ACM (1991)

67. Seysen, M.: Simultaneous reduction of a lattice basis and its reciprocal basis. Com-
binatorica 13(3), 363–376 (1993)

68. Stehlé, D.: Floating-point LLL: theoretical and practical aspects. In: Nguyen, P.,
Vallée, B. (eds.) The LLL Algorithm, pp. 179–213. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02295-1_5

69. Stern, J.: Secret linear congruential generators are not cryptographically secure.
In: 28th FOCS, pp. 421–426. IEEE Computer Society Press, October 1987

70. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5_2

71. Van Hoeij, M.: Factoring polynomials and the knapsack problem. J. Number Theor.
95(2), 167–189 (2002)

72. van Hoeij, M., Novocin, A.: Gradual sub-lattice reduction and a new complexity for
factoring polynomials. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp.
539–553. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12200-
2_47

73. Villard, G.: Parallel lattice basis reduction. In: ISSAC, pp. 269–277 (1992)

https://doi.org/10.1007/3-540-13345-3_40
https://doi.org/10.1007/3-540-13345-3_40
https://doi.org/10.1007/978-3-642-02295-1_5
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-12200-2_47
https://doi.org/10.1007/978-3-642-12200-2_47

Lower Bounds on Lattice Sieving
and Information Set Decoding

Elena Kirshanova1,2(B) and Thijs Laarhoven3

1 Immanuel Kant Baltic Federal University, Kaliningrad, Russia
2 Horst Görtz Institute for IT-Security, Ruhr University Bochum, Bochum, Germany

3 Eindhoven University of Technology, Eindhoven, The Netherlands
mail@thijs.com

Abstract. In two of the main areas of post-quantum cryptography,
based on lattices and codes, nearest neighbor techniques have been used
to speed up state-of-the-art cryptanalytic algorithms, and to obtain the
lowest asymptotic cost estimates to date [May–Ozerov, Eurocrypt’15;
Becker–Ducas–Gama–Laarhoven, SODA’16]. These upper bounds are
useful for assessing the security of cryptosystems against known attacks,
but to guarantee long-term security one would like to have closely match-
ing lower bounds, showing that improvements on the algorithmic side
will not drastically reduce the security in the future. As existing lower
bounds from the nearest neighbor literature do not apply to the nearest
neighbor problems appearing in this context, one might wonder whether
further speedups to these cryptanalytic algorithms can still be found by
only improving the nearest neighbor subroutines.

We derive new lower bounds on the costs of solving the nearest neigh-
bor search problems appearing in these cryptanalytic settings. For the
Euclidean metric we show that for random data sets on the sphere, the
locality-sensitive filtering approach of [Becker–Ducas–Gama–Laarhoven,
SODA 2016] using spherical caps is optimal, and hence within a broad
class of lattice sieving algorithms covering almost all approaches to date,
their asymptotic time complexity of 20.292d+o(d) is optimal. Similar con-
ditional optimality results apply to lattice sieving variants, such as the
20.265d+o(d) complexity for quantum sieving [Laarhoven, PhD thesis 2016]
and previously derived complexity estimates for tuple sieving [Herold–
Kirshanova–Laarhoven, PKC 2018]. For the Hamming metric we derive
new lower bounds for nearest neighbor searching which almost match the
best upper bounds from the literature [May–Ozerov, Eurocrypt 2015]. As
a consequence we derive conditional lower bounds on decoding attacks,
showing that also here one should search for improvements elsewhere to
significantly undermine security estimates from the literature.

Elena Kirshanova is supported by the “5-100” Russian academic excellence project and
by the Young Russian Mathematics scholarship. Thijs Laarhoven is supported by an
NWO Veni grant (016.Veni.192.005). Part of this work was done while both authors
were visiting the Simons Institute for the Theory of Computing at UC Berkeley for the
Spring 2020 program “Lattices: Algorithms, Complexity, and Cryptography”.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 791–820, 2021.
https://doi.org/10.1007/978-3-030-84245-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_27&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_27

792 E. Kirshanova and T. Laarhoven

1 Introduction

Post-quantum cryptography. After Shor’s breakthrough work in the 1990s [Sho94],
showing that current solutions in public-key cryptography are vulnerable to quan-
tum attacks, many researchers have shifted their attention towards developing
new, quantum-safe alternatives. Within the field of post-quantum cryptogra-
phy, arguably two subfields stand out: lattice-based cryptography, offering effi-
cient, small, and versatile solutions [Reg05,Reg10,Gen09,GGH13] and relatively
strong security guarantees [AD97,MR07,SSTX09,LPR10]; and code-based cryp-
tography, relying on long-studied problems from coding theory, dating back as far
as RSA [McE78,RSA78], and having remained unbroken ever since [Lan20]. In
both these fields, it is crucial to obtain a good understanding of the true hardness
of the underlying hard problems; both by trying to find new techniques that may
lead to faster algorithms, and by studying what are the limits of known algorithms,
when using algorithmic techniques we are currently aware of.

Hardness estimates for lattices. In the field of lattice-based cryptography, cur-
rently the fastest known approach for solving hard lattice problems is commonly
referred to as lattice sieving. Theoretically, the fastest sieving algorithms for
solving e.g. the shortest vector problem (SVP) on random d-dimensional lat-
tices run in time (3/2)d/2+o(d) ≈ 20.292d+o(d) [BDGL16] under plausible heuristic
assumptions about random lattices.1 In practice all recent record-breaking com-
putations on random lattices were done with sieving as well [svp20,ADH+19].
Accurately estimating the true cost of lattice sieving is therefore essential for
choosing parameters for lattice-based cryptographic primitives. As the constant
1
2 log2(

3
2) ≈ 0.292 in the exponent has not been improved for several years now

(with many improvements happening between 2008 and 2016), one might wonder
whether this constant is optimal, and if one can confidently use it as an asymp-
totic lower bound on the cost of any algorithm trying to break the underlying
lattice problem.

Hardness estimates for decoding. In the context of code-based cryptography,
the most important algorithms to solve the problem of decoding random binary
codes are information set decoding (ISD) algorithms. A random binary code of
length d asymptotically has a minimum distance λ of the order λ = Θ(d).2 In
this regime all known ISD algorithms have a single-exponential running time
2cd+o(d), where the constant c has been improved over the last 60 years from
c = 0.121 [Pra62] through a series of works [Ste89,MMT11,BJMM12,MO15] to
the current best leading constant c = 0.0885 [BM18]. These runtimes hold for
1 The literature on lattice algorithms is divided into two classes: algorithms with

provable guarantees on the worst-case complexity for any input lattice [PS09,
MV10a,ADRS15]; and algorithms making some heuristic assumptions about the
“behavior” of random lattices, to obtain tighter average-case complexity esti-
mates [NV08,GNR10,MV10b,Laa15a,ANSS18].

2 We choose d to denote the length of the code rather than its minimum distance here,
to be consistent with lattice and near neighbor literature.

Lower Bounds on Lattice Sieving and Information Set Decoding 793

average-case instances and are provable. The recent improvements in ISD come
from a combination of various techniques, so it is important to pin down which
techniques are already optimal and which should be further explored to see if
the current best result from [BM18] can be improved upon.

Note that in this paper, we do not consider the so-called sparse error regime in
decoding, i.e., when the error weight is promised to be o(d). The aforementioned
improvements for ISD do not hold in this regime, and the asymptotically fastest
known algorithm for the sparse case is due to Prange’s [Pra62].

Lower bounds for cryptanalytic algorithms. Both in the context of lattice algo-
rithms and decoding random binary codes, most work has focused on upper
bounds, i.e. constructing algorithms solving these problems as efficiently as pos-
sible. However, for applications in cryptography we are equally interested in
(tight) lower bounds, stating that any attacker that tries to break the scheme
by solving these underlying hard problems needs to spend at least this amount
of time to find a solution. Any such lower bound would clearly be conditional on
the approach used to solve the problem, but even such conditional lower bounds
may already be valuable for choosing parameters in a more conservative manner
than optimistically assuming that the current best algorithms are still the best
algorithms an attacker can use in 20 years. Unfortunately not much is known
about lower bounds in either area, with e.g. [ANSS18] obtaining lower bounds
on lattice enumeration.

Nearest neighbor subroutines. Both in lattice sieving and in decoding, an impor-
tant subroutine in the state-of-the-art algorithms for solving these problems is to
solve a nearest neighbor problem in the �1 and �2-norms: given a large database of
uniformly random vectors, store it in a convenient data structure such that, when
given a random query vector, we can efficiently extract nearby vectors (under
the corresponding metric) from the database. These relations were explicitly
established in [Laa15a,MO15], and especially in lattice sieving many subsequent
improvements were directly related to only improving the nearest neighbor sub-
routine [BGJ15,LdW15,BL16,BDGL16]. As a first step towards finding tight
lower bounds on the overall decoding algorithms, we aim at obtaining lower
bounds on the nearest neighbor subroutines, so that we can rule out further
improvements which only target the nearest neighbor routine.

Nearest neighbor lower bounds. For the applications of interest in this paper (lat-
tice sieving and decoding algorithms), the nearest neighbor methods that have
worked best to date are hashing–based solutions, for which lower bounds have
previously been studied in e.g. [MNP07,OWZ14,Chr17]. These lower bounds
were mostly in a slightly different model than the models which naturally appear
in cryptanalysis, and it is therefore unclear whether similar lower bounds apply
in the context of cryptography, and whether the best nearest neighbor methods
in these other models must also translate to the best methods for the problems
of interest in cryptography.

794 E. Kirshanova and T. Laarhoven

On the strict inequivalence between different models. For the last question, we
can explicitly derive a counterexample, showing that a method which is asymp-
totically optimal in one setting is not necessarily optimal in the other. Namely, for
the often-considered sparse regime, cross-polytope hashing is known to be asymp-
totically optimal [TT07,AIL+15], but when applied to lattice sieving it leads to a
suboptimal time complexity of 20.298d+o(d), compared to the 20.292d+o(d) obtained
via the spherical filters of [BDGL16]. In other words: optimal solutions in other
models may be suboptimal in our model, and lower bounds may not carry over
to our setting either.

1.1 Contributions

After covering the preliminaries (Sect. 2), and explicitly describing the nearest
neighbor search model considered in this paper and how it differs from other
models commonly considered in the nearest neighbor literature (Sect. 3), our
main contributions are covered in Sects. 4–7:

Nearest neighbor searching on the Euclidean sphere (Sect. 4). For the problem
of finding nearest neighbors in data sets uniformly distributed on the sphere, we
prove that the best partitioning and filtering approaches – main subroutines in
the hash-based Near neighbor searching – must necessarily be based on spherical
caps. This shows that the spherical filters introduced in [BDGL16] and further
analyzed in [ALRW17,Chr17] are optimal not only in the sparse regime, but
also in the dense regime. Note that this result is even stronger than previous
optimality results [AINR14,AIL+15,ALRW17], as there are no hidden order
terms in the statement that spherical caps are optimal for shaping hash regions.

Application to lattice sieving and lattice-based cryptography (Sect. 5). As a direct
application of the above result, we prove that within the framework of running
a “pairwise” lattice sieve with some form of hash-based nearest neighbor search
(a technique used inside sieves described in e.g., [NV08,Laa15a,BDGL16]), the
lattice sieve of Becker–Ducas–Gama–Laarhoven [BDGL16] is optimal, and the
associated asymptotic time complexity 20.292d+o(d) is the best possible. Similar
optimality results extend to the tuple sieving results of Herold–Kirshanova–
Laarhoven [HKL18], the pairwise sieve with quantum speedups [Laa16], and
applications to closest vector problems [DLvW20].

Nearest neighbor searching for the Hamming distance (Sect. 6). Moving from
�2 to �1 norm, we show that spherical caps in Hamming space are optimal in
the sparse regime and almost match the lower bound in the dense regime. We
point to the source of the small discrepancy between our lower bound and what
is achievable by spherical caps.

Application to decoding and code-based cryptography (Sect. 7). Similar to lat-
tices, our lower bound for nearest neighbor searching on the Hamming cube

Lower Bounds on Lattice Sieving and Information Set Decoding 795

suggests that trying to improve only the nearest neighbor subroutine in infor-
mation set decoding algorithms will not result in a noticeable asymptotic gain.
For example, trying to replace a random code, which is used to construct spher-
ical caps, with another code will not improve the overall algorithm.

However, the situation differs from lattices in the fact that near neighbor
search is not necessarily the dominant subroutine and its complexity can be
rebalanced with other combinatorial steps. This way, Both-May [BM18] were
able to improve over [MO15] using the near neighbor routine differently. Thus
one should interpret our lower bound as an indication that any faster algorithm
for decoding will necessarily require a novel ideal of how (if at all) use near
neighbor search.

2 Preliminaries

2.1 Notation

We write (M,d) for a metric space, where M is the underlying set and d :
M × M → R is the distance function (metric) associated to this set. We write
1{E} for the indicator function, which is 1 if event E holds and 0 otherwise. For
random variables X sampled uniformly from a set S, we may write X ∼ S. We
denote vectors (lowercase) and matrices (uppercase) in boldface. We write ‖ · ‖p

for the �p-norm, and in this work we will be using both the �1 and �2-norms.
Throughout, d will always refer to the dimension of the space.

We denote the Euclidean sphere in d dimensions by Sd−1 = {z ∈ R
d : ‖z‖2 =

1} ⊂ R
d. On this sphere we will make use of the uniform surface measure σ which

is normalized such that σ(Sd−1) = 1. We write 〈·, ·〉 for standard dot products.
We denote the Hamming cube in d dimensions by {0, 1}d. We define the

binary entropy function for x ∈ [0, 1] as H(x) = −x log2 x−(1−x) log2(1−x). For
asymptotic results on the Hamming cube, we shall be using the approximation
for the binomial coefficient

(
d

αd

) ≈ 2H(α)d which holds for constant α ∈ (0, 1)
and large d.

2.2 Lattices

A full-rank lattice L(B) is a discrete additive subgroup of R
d generated by the

columns of a matrix B ∈ R
d×m (with polynomially-sized entries). Various hard

lattice problems have been studied over time, with the shortest and closest vector
problems being the classical hard problems. We state the shortest vector problem
below, as efficient algorithms for this (exact) problem are often a key ingredient
for the best cryptanalytic attacks for lattice-based cryptosystems. For simplicity,
one may assume that the rank m below is equal to d.

Definition 1 (The shortest lattice vector problem). Let d,m be positive
integers, and suppose we are given a basis B ∈ R

d×m generating a lattice L =
{Bz : z ∈ Z

m} ⊂ R
d. Find a vector s ∈ L satisfying ‖s‖2 = minv∈L\{0} ‖v‖2.

We express complexities for algorithms for solving lattice problems in terms of
their main security parameter d, i.e. in the form 2cd+o(d) for a constant c.

796 E. Kirshanova and T. Laarhoven

2.3 Codes

We refer to a binary linear code C as a [d, k, λ]-code, with d being the dimension,
k the rank of the code, and λ the minimum distance. While the shortest lattice
vector problem is one of the central hard problems on lattices, upon which the
security of lattice-based cryptography relies, the following problem is crucial in
understanding the security of code-based cryptosystems.

Definition 2 (The information set decoding problem). Let d, k, λ be pos-
itive integers, and suppose we are given a parity check matrix H ∈ F

(d−k)×d
2 and

a syndrome vector s ∈ F
d−k
2 satisfying s = He for some e ∈ F

d
2 with Hamming

weight w := ‖e‖1 ≤ λ. Find the error vector e.

In the analysis of information set decoding algorithms, it is common to relate the
parameter w (the error weight) to the rank of the code k and to the dimension
d. To do so, we make use of the Gilbert–Varshamov bound which states that
k
d = 1 − H

(
w
d

)
as d → ∞. This gives us a way to express w as a function of d

and k. Then for any chosen k ∈ (0, 1), the runtime of an information set decoding
algorithm simplifies to the form 2cd+o(d) for some constant c. We are interested
in the setting when w = Θ(d), the so-called dense regime.

3 Nearest Neighbor Model

3.1 Closest Pairs Problem

For the applications in post-quantum cryptanalysis, which are ultimately the
main objective of this study, we are commonly interested in solving the following
general closest pairs problem: finding nearby pairs of vectors in a given list of
vectors living in some bounded metric space.

Definition 3 (Closest pairs problem). Let (M,d) be a bounded metric space,
and let r ≥ 0 be a given target distance. Let L ⊂ M be a finite subset of M , with
elements drawn uniformly at random from M . Find almost all3 pairs x,y ∈ L
satisfying d(x,y) ≤ r.

In the above definition, we assume the list L follows a uniform distribution over
the underlying metric space M ; in the applications for the Euclidean sphere and
Hamming cube it will be clear what this uniform distribution looks like. This
is different from various other models in the nearest neighbor literature, where

3 The term “almost all” can intuitively be interpreted as finding at least 90% of all such
pairs (or, if only one such pair exists, making sure it is found with probability at least
0.90). Although this minimum success rate is not a hard limit, and the high-level
ideas would still work if only e.g. 50% or 10% of all pairs are found, the complexities
of these underlying algorithms are usually inversely proportional to the ratio of good
pairs that are found in the closest pairs subroutine: finding a smaller ratio of good
pairs commonly means having to use bigger lists, which in turn translates to a higher
space complexity and a higher overall runtime due to having to search bigger lists.

Lower Bounds on Lattice Sieving and Information Set Decoding 797

one might aim to find a solution to the closest pairs problem which works even
for worst-case data sets, albeit with a certain approximation factor. In cryptana-
lytic applications, these uniform distributions appear naturally, and average-case
analyses give a better idea of the overall performance than worst-case analyses.

A common approach for solving variants of the closest pairs problem is by
first building, and then repeatedly querying a well-chosen nearest neighbor data
structure:

1. Initialize a nearest neighbor data structure D;
2. Populate this data structure D with all elements x ∈ L;
3. For each x ∈ L, query the data structure D to find nearby y ∈ L, x = y,

with d(x,y) ≤ r.

Note that within this framework, we need to index the list L in the data structure
D (corresponding to |L| insertions), and we need to run |L| queries on the list
L to find almost all closest pairs (corresponding to |L| queries). While there is
often a trade-off between the insertion and query complexities for such nearest
neighbor data structures, this outline naturally tells us that to optimize the
overall time complexity for solving the closest pairs problem, we should balance
the insertion and query complexities. If insertions and queries can both be done
in time |L|ρ+o(1) for some ρ ∈ (0, 1), then the above algorithm would solve the
closest pairs problem in time and memory |L|1+ρ+o(1). There exists memory-
efficient version of the above approach that uses only |L|1+o(1) memory [BDGL16]
that consists in building D “on-the-fly”.

3.2 Nearest Neighbor Problem

As outlined above, the problem of finding all close pairs in a long list can be
solved via the nearest neighbor problem.

Definition 4 (Nearest neighbor problem). Let (M,d) be a bounded metric
space, and let r ≥ 0 be a given target distance. Let L ⊂ M be a finite subset of
M , with elements drawn uniformly at random from M . Preprocess L in a data
structure such that, when later given a uniformly random query x ∈ M , we can
efficiently find almost all vectors y ∈ L satisfying d(x,y) ≤ r.

Similar to the closest pairs problem, we assume that the data set is drawn
uniformly at random from the space M , which we therefore assume is bounded.
We also assume that the query vector x ∈ M is drawn uniformly at random
from M , which closely matches the nearest neighbor subroutine that needs to
be solved to solve the closest pairs problem defined earlier.

3.3 Hash-Based Nearest Neighbor Searching

While many solutions have been proposed for solving such nearest neighbor prob-
lems, the most promising approaches for high-dimensional problem instances all
seem to be based around the idea of (randomized) divide and conquer : divide the

798 E. Kirshanova and T. Laarhoven

Algorithm 3.1. Hash-based nearest neighbor searching
Scheme Parameters:

• t ∈ N — the number of hash regions
• r ∈ R — target distance
• U1, . . . , Ut ⊂ M — hash regions for insertions
• Q1, . . . , Qt ⊂ M — hash regions for queries

1: function Insert(y) � Add y to all relevant buckets
2: for all i ∈ [t] with y ∈ Ui do
3: Bi ← Bi ∪ {y}
4: function Query(x) � Find near neighbors y ∈ L with d(x,y) ≤ r
5: C ← ∅

6: for all i ∈ [t] with x ∈ Qi do
7: for all y ∈ Bi with d(x,y) ≤ r do
8: C ← C ∪ {y}
9: return C

10: function Preprocess(L) � Store all y ∈ L in the data structure
11: B1, . . . , Bt ← ∅

12: for all y ∈ L do
13: Insert(y)

14: function ClosestPairs(L) � Find close pairs {x,y} ∈ L with d(x,y) ≤ r
15: Preprocess(L)
16: P ← ∅

17: for all x ∈ L do
18: P ← P ∪ ({x} × Query(x))

19: return P

space in regions, and solve the closest pairs problem (nearest neighbor problem)
in each region separately. By using well-chosen hash regions, and by using many
rerandomizations to account for unfortunate separations of nearby vectors, we
hope that each pair of nearby vectors will eventually end up in the same hash
region at least once.

Formally, with the added generalization that combinations of these hash
regions do not necessarily have to form a partition of the space [BDGL16,
ALRW17], this leads to the following definition of hash-based nearest neighbor
searching.

Definition 5 (Hash-based nearest neighbor searching). Let the data set
L ⊂ M and target radius r > 0 be given. To solve the nearest neighbor problem,
hash-based nearest neighbor searching preprocesses the data set L and processes
queries x as outlined in Algorithm 3.1.

Observe that the pseudocode in Algorithm 3.1 is not quite precise on how
we recover the indices i ∈ [t] with either y ∈ Ui (for insertions) or x ∈ Qi

(for queries). A naive linear search would take time t, by checking for each i
if the condition is satisfied. If there is some additional structure in these hash

Lower Bounds on Lattice Sieving and Information Set Decoding 799

regions Ui and Qi, then ideally we may hope for an algorithm finding the set
Y = {i ∈ [t] : y ∈ Ui} in time O(|Y |), and the set X = {i ∈ [t] : x ∈ Qi} in time
O(|X|). Throughout we will often assume the existence of an oracle O which
achieves these optimal time complexities, as the technicalities for implementing
this (as in e.g. [BDGL16,ALRW17]) are not necessary for understanding our
results, and may distract the reader from the essence of our contributions.

At the end of the query phase, we search the set of candidates C = ∪i:x∈Qi
Bi

for potential nearest neighbors to x. Ideally we would like this set C to only
contain nearby vectors in the data set, and not any other vectors. In other
words, ideally we would like to guarantee that for random vectors y ∈ L the
event {x ∈ Qi,y ∈ Ui} is rare, while for nearby vectors y ∈ L the probability of
{x ∈ Qi,y ∈ Ui} happening is large. Therefore, the following quantities are of
interest, which capture the probabilities of hash collisions for nearby and random
vectors.

Definition 6 (Collision probabilities). Given a hash-based nearest neighbor
scheme, with hash regions U1, . . . , Ut and Q1, . . . , Qt, and a target distance r > 0,
we define the following quantities:

p1 :=
t∑

i=1

p1,i, p1,i := Pr
x,y∼M

(x ∈ Qi,y ∈ Ui | d(x,y) ≤ r), (1)

p2 :=
t∑

i=1

p2,i, p2,i := Pr
x,y∼M

(x ∈ Qi,y ∈ Ui). (2)

To obtain the best performance for a hash-based scheme, we wish to maximize
p1 and minimize p2. An often considered quantity capturing both these goals is
ρ := ln p1/ ln p2. Maximizing p1 and minimizing p2 means making the exponent
ρ as small as possible, and when the parameters of the scheme are chosen to
balance insertion and query costs (and one assumes the existence of an efficient
oracle for finding relevant buckets), both these costs can be made equal to Õ(nρ).
In general however one can obtain arbitrary trade-offs between the costs of this
approach, as described in e.g. [Laa15b,BDGL16,ALRW17]. The shapes of the
hash buckets may vary, but intuitively the relative sizes of Qi and Ui control
the trade-off between the query time on the one hand, and the insertion time,
preprocessing time, and memory complexity on the other hand as follows:

– For Qi ⊂ Ui, we are more selective with buckets in the query phase, often
leading to better query times but worse insertion and preprocessing com-
plexities, as we will need more buckets to guarantee we still find the nearest
neighbors in the few buckets we query for near neighbors.

– For Qi ⊃ Ui, we are less selective in the query phase, and overall we need a
smaller number of buckets t (less memory, better preprocessing time) to make
sure we find the nearest neighbor in one of the queried buckets. However, as
we also consider “bad quality” hash buckets, we will commonly spend more
time in the query phase. (Choosing Qi ⊃ Ui is intuitively similar to probing
in locality-sensitive hashing literature [Pan06,AIL+15].)

800 E. Kirshanova and T. Laarhoven

– For Qi = Ui, we balance the query and insertion complexities. This is some-
times called the balanced regime, and most lower bounds from the literature
on ρ apply to this regime.

Usually it does not make sense to choose regions Ui and Qi for which neither
Ui ⊆ Qi nor Qi ⊆ Ui; we want x and y to be as similar as possible, so if we
know y ∈ Ui we will want to compare x to y only if x lies in a similar region in
space.

3.4 Assumptions About the Data Set

While most of the above model is still very much in line with most of the existing
(hash-based) nearest neighbor literature, and lower bounds that have previously
appeared, there are some subtle differences we make about the data set, which
warrant the new search for lower bounds in this paper. We will describe the two
key properties below, which have to do with two assumptions about the data
set: the distribution of points, and the size of the data set n relative to d.

The distribution of the data set. As described in the nearest neighbor definitions
above, in this paper we specifically assume that the data set follows a uniform
distribution over the underlying metric space. (Concretely we will consider the
Euclidean sphere and the Hamming cube, for which this uniform distribution is
well-defined.) Most literature on the nearest neighbor problem however makes
no such assumptions, and aims to provide solutions for worst-case data sets. In
practice however it often turns out that these “random data sets” are, in fact,
worst-case data sets for most hash-based solutions [AINR14,AR15,ALRW17].
One may argue that here we are making stronger assumptions about the problem
than in most of the past literature. On the other hand, in most applications the
most natural distribution of points for the data set is uniform, and uniform data
sets are often considered the hardest to deal with anyway. One could therefore
consider this as only a minor additional assumption. Note that without this
additional assumption, we would not be able to strengthen our model compared
to previous work as described in the next paragraph.

The sparsity of data set. Most past work on nearest neighbor searching focused
specifically on the so-called sparse regime, where the number of points n in the
data set scales as n = 2o(d), or equivalently log n = o(d). For log n � d, i.e. for
extremely sparse data sets, one can always use a dimension reduction step [JL84]
to obtain log n ∝ d/ log d; one can always go from an extremely sparse data set
to a less sparse data set. This is however the limit, and one cannot reduce the
dimensionality to log n ∝ d without losing guarantees on the preservation of
distances between points in the data set. The entire sparse regime can therefore
be reduced by only solving the regime where log n ∝ d/ log d, but this leaves
open the regime where log n = Ω(d). The latter is exactly the regime of interest
for the cryptanalytic applications in this paper, and unfortunately lower bounds
are specifically tailored to the sparse regime.

Lower Bounds on Lattice Sieving and Information Set Decoding 801

To summarize: whereas most past work made no assumptions about the
distribution of the data set, it did make assumptions about the sparsity of the
data set. In this paper we make no assumptions about the sparsity of the data set,
but we do specifically assume that the data set follows a uniform distribution.

3.5 Inapplicability of Existing Lower Bounds

Various lower bounds have previously been derived for (hash-based) nearest
neighbor searching in a long line of works [MNP07,PTW10,OWZ14,AR16,
Chr17], but all of these have focused on the sparse regime, discussed above.
As we are interested in the dense regime of log n = O(d), one might wonder
whether applying the same lower bounds to the dense regime is just a “tech-
nicality”, and if schemes which are known to be asymptotically optimal in the
sparse regime are also optimal in the dense regime.

We can counter this reasoning with an explicit counterexample, showing that
indeed the study in this paper is needed. For the sparse regime and for the angu-
lar distance (or nearest neighbor searching on the sphere; see Sect. 4), different
schemes are known to be optimal:

– The spherical hashing from [AINR14] and the cross-polytope hashing from
e.g. [TT09,AIL+15] are both known to be optimal for the sparse regime.
They both achieve the optimal scaling of the query exponent ρ for the bal-
anced regime as ρ ∼ 1/(2c2−1) for random data sets, when the target distance
r is a factor c less than the average distance on the unit sphere (

√
2). Match-

ing lower bounds are known [AINR14,AR15,AR16,ALRW17] showing their
optimality for the sparse regime. When applying these schemes in the con-
text of lattice sieving, where we substitute the nearest neighbor step by these
optimized hashing schemes, the best possible time complexity for solving lat-
tice problems in dimension d with both these hash-based approaches becomes
20.297...d+o(d) [LdW15,BL16].

– Later on, spherical filtering was presented in [BDGL16], and further stud-
ied in [Laa15b,ALRW17]. Spherical filtering is also known to be optimal in
the sparse regime, again obtaining the optimal scaling of ρ ∼ 1/(2c2 − 1),
up to lower order terms. When applying these results to lattice siev-
ing however, again substituting this scheme for the nearest neighbor step
that needs to be done, the time complexity for solving lattice problems
becomes 20.292...d+o(d) [BDGL16]. In other words, using this nearest neighbor
scheme leads to a strict asymptotic improvement over the previous results
from [LdW15,BL16], even though these other results were also relying on a
hash-based scheme which was known to be optimal in the sparse regime.

The essence lies exactly in the fact that all existing lower bounds were derived
specifically for the sparse regime, and do not necessarily carry over to the dense
regime. And as the above situation in lattice sieving shows, indeed asymptot-
ically optimal schemes in the sparse regime may be strictly suboptimal in the
dense regime. This motivates the study of this work: to derive lower bounds for

802 E. Kirshanova and T. Laarhoven

the dense regime, which do apply to regimes of interest in cryptanalysis (and
potentially in other applications with dense data sets as well).

4 Nearest Neighbor Searching on the Euclidean Sphere

For the Euclidean sphere, we instantiate the metric space (M,d) from Sect. 3
by the Euclidean metric d(x,y) = ‖x − y‖2 and the unit sphere M = Sd−1 =
{x ∈ R

d : ‖x‖2 = 1}. Throughout Sects. 4–5, we will write ‖ · ‖ = ‖ · ‖2 for the
Euclidean norm.

4.1 The Baernstein–Taylor Rearrangement Inequality

A key ingredient for deriving the optimal hash-based approaches for the
Euclidean sphere is the following result of Baernstein–Taylor from the
1970s [BT76]. This inequality is closely related to the Riesz–Sobolev rearrange-
ment inequality [Rie30], but instantiated on the unit sphere rather than the
entire real space. The original statement and its proof can be found in [BT76,
Theorem 2]. Below σ denotes the normalized surface measure on Sd−1, such that
σ(Sd−1) = 1.

Lemma 1 (Baernstein–Taylor inequality for Sd−1 [BT76, Theorem 2]).
Let f, g : Sd−1 → R be arbitrary Lebesgue-integrable functions. Let h : [−1, 1] →
R be a non-decreasing, bounded, and measurable function. Let f∗, g∗ : Sd−1 → R

be functions satisfying the following conditions:

– f∗(z) only depends on the first coordinate z1 of z and is a non-decreasing
function of z1;

– g∗(z) only depends on the first coordinate z1 of z and is a non-decreasing
function of z1;

– For all λ ∈ R: σ({z ∈ Sd−1 : f∗(z) > λ}) = σ({z ∈ Sd−1 : f(z) > λ});
– For all λ ∈ R: σ({z ∈ Sd−1 : g∗(z) > λ}) = σ({z ∈ Sd−1 : g(z) > λ}).

Then:
∫∫

Sd−1×Sd−1

f(x)g(y)h(〈x,y〉) dσ(x) dσ(y) ≤
∫∫

Sd−1×Sd−1

f∗(x)g∗(y)h(〈x,y〉) dσ(x) dσ(y).

4.2 Optimal Hash Collision Probabilities

At first sight it may not be obvious how the above inequality is useful for us. The
following corollary shows that with a proper instantiation of the functions f, g, h
this naturally leads to an upper bound on collision probabilities for regions on
the sphere in the hash-based nearest neighbor framework.

Lower Bounds on Lattice Sieving and Information Set Decoding 803

Theorem 1 (Collision probabilities for Sd−1). Let Q,U ⊆ Sd−1 be arbi-
trary subsets of the sphere, and let CQ, CU ⊆ Sd−1 be spherical caps of the fol-
lowing form:

CQ := {z ∈ Sd−1 : z1 ≥ α}, with α ∈ [−1, 1]such that σ(CQ) = σ(Q),

CU := {z ∈ Sd−1 : z1 ≥ β}, with β ∈ [−1, 1]such that σ(CU) = σ(U).

Then, for any γ ∈ [−1, 1] we have:

Pr
x,y∼Sd−1

[x ∈ Q,y ∈ U | 〈x,y〉 ≥ γ] ≤ Pr
x,y∼Sd−1

[x ∈ CQ,y ∈ CU | 〈x,y〉 ≥ γ] ,

Pr
x,y∼Sd−1

[x ∈ Q,y ∈ U] = Pr
x,y∼Sd−1

[x ∈ CQ,y ∈ CU] .

Proof. The second equality follows trivially by factoring the joint probability
into two individual probabilities, and noting that the spherical caps CQ, CU have
the same volume as the sets Q,U :

Pr
x,y∼Sd−1

[x ∈ Q,y ∈ U] = σ(Q) · σ(U) = σ(CQ) · σ(CU) = Pr
x,y∼Sd−1

[x ∈ CQ,y ∈ CU] .

The first inequality follows almost directly from the Baernstein–Taylor inequality
with the proper choice of functions. We define the functions f, g, h as:

f(x) := 1{x ∈ Q}, g(y) := 1{y ∈ U}, h(s) := 1{s ≥ γ}.

Note that, for λ ∈ R, the functions f and g satisfy:

σ({f > λ}) =

⎧
⎪⎨

⎪⎩

1, λ < 0;
σ(Q), 0 ≤ λ < 1;
0, 1 ≤ λ;

σ({g > λ}) =

⎧
⎪⎨

⎪⎩

1, λ < 0;
σ(U), 0 ≤ λ < 1;
0, 1 ≤ λ.

For the function f∗ from Lemma 1 we need σ({f∗ > λ}) = σ({f > λ}) to
hold for all λ ∈ R, with f∗ only depending on x1 and being non-decreasing in
x1. To satisfy f∗(x1) > 0 with measure σ(Q) and f∗(x1) ≥ 0 with measure 1,
it follows that f∗(x1) = 0 with measure 1 − σ(Q). Similarly f∗(x1) = 1 with
measure σ(Q). This means that f∗(x1) must be a heaviside step function in one
variable x1 ∈ [−1, 1], with an increase from 0 to 1 at the value x1 = α satisfying
σ(Q) = σ({z ∈ Sd−1 : z1 ≥ α}). Defining CQ := {z ∈ Sd−1 : z1 ≥ α} for the
above α, this translates to σ(Q) = σ(CQ), and together with a similar derivation
for g∗ we obtain the expressions:

f∗(x) := 1{x ∈ CQ}, with CQ = {z ∈ Sd−1 : z1 ≥ α} such that σ(Q) = σ(CQ);

g∗(y) := 1{y ∈ CU}, with CU = {z ∈ Sd−1 : z1 ≥ β} such that σ(U) = σ(CU).

Now, with all conditions for Lemma 1 satisfied, we can instantiate the
Baernstein–Taylor inequality for these functions f, f∗, g, g∗, h. Observing that

804 E. Kirshanova and T. Laarhoven

the integrals can be interpreted as probabilities, and combining the indicator
functions, we obtain:

Pr
x,y∼Sd−1

[x ∈ Q,y ∈ U, 〈x,y〉 ≥ γ] =

∫∫

Sd−1×Sd−1

1{x ∈ Q,y ∈ U, 〈x,y〉 ≥ γ} dσ(x) dσ(y)

≤
∫∫

Sd−1×Sd−1

1{x ∈ CQ,y ∈ CU , 〈x,y〉 ≥ γ} dσ(x) dσ(y) = Pr
x,y∼Sd−1

[
x ∈ CQ,y ∈ CU , 〈x,y〉 ≥ γ

]
.

Note that the above derivation applies for all γ ∈ [−1, 1]. Now finally, we can
easily obtain a similar inequality for the conditional probabilities as follows,
where all probabilities are over x,y ∼ Sd−1:

Pr [x ∈ Q,y ∈ U | 〈x,y〉 ≥ γ] =
Pr [x ∈ Q,y ∈ U, 〈x,y〉 ≥ γ]

Pr [〈x,y〉 ≥ γ]

≤ Pr [x ∈ CQ,y ∈ CU , 〈x,y〉 ≥ γ]
Pr [〈x,y〉 ≥ γ]

= Pr [x ∈ CQ,y ∈ CU | 〈x,y〉 ≥ γ] .

This completes the proof of the first inequality.

The above theorem states that, if we replace the hash regions Q and U by
spherical caps of equal volume as Q and U , then (i) uncorrelated pairs of vectors
are still equally likely to be found as candidate near neighbors, while (ii) nearby
pairs of vectors are at least as likely (and perhaps more likely) to be considered
as potential near neighbors. So ignoring e.g. the potential decoding overhead or
the cost of membership queries for these different hash regions, this shows that
the optimal choice for the hash regions is to use spherical caps. Note that for
this optimality to hold, it is crucial that CQ, CU are spherical caps centered at
the same point on the sphere, although the same inequalities hold if both are
centered at a different point v ∈ Sd−1 with v = e1.

4.3 Optimal Hash-Based Nearest Neighbor Searching

The previous result suggests that using spherical caps is optimal, and the follow-
ing result formalizes this statement. Here by “optimal” we mean that choosing
the hash regions Ui or Qi of shape different from spherical caps will not improve
the performance of Algorithm 3.1.

Theorem 2 (Spherical caps are optimal for Sd−1). Suppose we have access
to an efficient decoding oracle for retrieving relevant hash regions. Then to get
the best asymptotic performance for hash-based nearest neighbor searching, the
following choice of hash regions is asymptotically optimal:

– Choose t ∈ N , and for each i ∈ [t] choose thresholds αi, βi ∈ [−1, 1] and draw
vi ∼ Sd−1;

– Define Qi = {z ∈ Sd−1 : 〈z,vi〉 ≥ αi} and Ui = {z ∈ Sd−1 : 〈z,vi〉 ≥ βi}.

Lower Bounds on Lattice Sieving and Information Set Decoding 805

Proof. First, observe that with access to an efficient decoding algorithm, the
costs of the hash-based nearest neighbor search are equal for two schemes which
use regions of equal size; the data set and queries are assumed to be uniform, and
therefore the number of hash collisions within each bucket and the number of
buckets to check only depend on their volumes, and not on their shapes. Given
the volumes of the regions, and the number of regions, the costs in terms of
having to compare a query x with random vectors y ∈ L which are not near
neighbors, does not depend on the shapes of the regions. The only thing that
is influenced by the (relative) shapes of the regions is the probability of finding
nearby vectors in the list: given a query x ∼ Sd−1, the probability of finding a
nearby vector y ∈ L with 〈x,y〉 ≥ γ in at least one of the t potential buckets.

Recall that the hash collision probabilities for nearby vectors can be expressed
in terms of probabilities of inserting and querying the same bucket, for at least
one of the indices i = 1, . . . , t. Letting Ei = {x ∈ Qi,y ∈ Ui | 〈x,y〉 ≥ γ} denote
the event that for a nearby vector y to the query x, we insert y into bucket Ui

and we later query Qi for x in the query phase. Then we have:

p1 = Pr

[
t⋃

i=1

Ei

]

≤
t∑

i=1

Pr[Ei] =
t∑

i=1

Pr
x,y∼Sd−1

[x ∈ Qi,y ∈ Ui | 〈x,y〉 ≥ γ] . (3)

The first inequality becomes more of an equality when the events are more
disjoint; this tells us that ideally we should minimize the probabilities that two
events Ei and Ej happen at the same time, e.g. by carefully spreading out these
hash regions over the unit sphere4. Note that asymptotically, as analyzed in
e.g. [BDGL16,Laa15b], we do indeed have Pr

[⋃t
i=1 Ei

]
=

∑t
i=1 Pr[Ei]·(1+o(1))

for all common parameter choices, as it is extremely unlikely that multiple events
Ei happen at the same time for random vi. So the right hand side of (3) is
asymptotically equal to p1.

Finally, by Theorem 1 the right hand side of (3) is maximized when the shapes
of the regions are spherical caps. So the probability of finding nearby vectors is
maximized when the Qi and Ui are spherical caps centered around the same
vector vi on the sphere. With the other collision probability p2 being invariant
under these replacements of arbitrary regions by equal-volume spherical caps,
and with the decoding costs assumed to be not an issue, this shows that up to
lower order terms, this hash-based scheme is optimal.

All that now remains is choosing the thresholds αi and βi. The following
result shows that all the βi’s should be equal to get the best asymptotic per-
formance, and that their optimal value is determined purely by the list size n.
For the αi we also derive that they should all be equal to the same value α, but
together with t this parameter allows us to obtain trade-offs between the query
and update complexities of the underlying hash-based scheme.

4 This further illustrates the need for good spherical codes for determining where
to place these vectors vi to obtain the best performance in practice [AI06,TT07,
AIL+15,Laa20].

806 E. Kirshanova and T. Laarhoven

In the following theorem by “optimal” we mean that choosing the spherical
caps Ui’s (or Qi’s) of different sizes for different i will not improve the perfor-
mance of Algorithm 3.1.

Theorem 3 (Equal spherical caps are optimal for Sd−1). Suppose we
have access to an efficient decoding oracle for retrieving relevant hash regions.
Then to get the best asymptotic performance for hash-based nearest neighbor
searching, the following choice is asymptotically optimal:

– Choose t ∈ N, choose α ∈ [−1, 1] and compute β such that it satisfies the
relation σ({z ∈ Sd−1 : z1 ≥ β}) ≈ 1/n;

– For each i ∈ [t] draw vi ∼ Sd−1;
– Define Qi = {z ∈ Sd−1 : 〈z,vi〉 ≥ α} and Ui = {z ∈ Sd−1 : 〈z,vi〉 ≥ β}.
Proof. Compared to the optimality result from Theorem 2 we need to prove
that (1) fixing one parameter β, rather than choosing each separately, cannot
decrease the asymptotic performance; and (2) with β fixed, it does not make
sense to use different values αi for the different buckets.

Fixing βi ≡ β. For populating the buckets Bi, observe that we do not want
most buckets to be empty (which happens when βi is too large). In that case the
overhead of retrieving these hash buckets will be much larger than the actual
comparisons with potential near neighbors, as the number of buckets is larger
than the number of vectors in these buckets. If many buckets are empty, we would
be better off creating larger buckets, corresponding to larger spherical caps, until
these buckets contain at least a few vectors each, decreasing the decoding cost
and not affecting other costs more than no(1). So we never want to choose βi

such that σ({z ∈ Sd−1 : z1 ≥ β}) � 1/n.
On the other hand, if we use spherical caps with too small parameters βi,

then these buckets will contain nΘ(1) vectors each. Note that such a bucket
corresponds to a spherical cap, which can essentially be seen as a sphere of one
dimension less, with a smaller radius, and where again the vectors in this bucket
are uniformly distributed over this lower-dimensional sphere. This is again a
NNS instance on a smaller sphere, and we can do better than to put all nΘ(1)

vectors in one big list and having to query the whole list when we want to
search this region for near neighbors. It cannot be worse to partition this bucket
into smaller buckets, so that we can either choose α so large that the entire
list is queried (if necessary), or we can choose α larger to only query some of
these smaller buckets. So we also do not want to choose βi too small, such that
σ({z ∈ Sd−1 : z1 ≥ β}) � 1/n.

In other words, we want each βi to satisfy σ({z ∈ Sd−1 : z1 ≥ β}) ∝ 1/n.
Small deviations in individual bucket sizes may not be worse in practice, but
asymptotically we need all βi to be approximately equal to the β satisfying
σ({z ∈ Sd−1 : z1 ≥ β}) = 1/n.

Fixing αi ≡ α. With all βi fixed to the same value β, and with all buckets
containing (in expectation) a small number of vectors, the parameters αi now

Lower Bounds on Lattice Sieving and Information Set Decoding 807

control when buckets are queried. Note that for a fixed β, all buckets are iden-
tically shaped as a spherical cap of a fixed size, and with the data set being
uniform on the sphere, all buckets are essentially equivalent. For a given query
x however, the distribution of dot products 〈x,y〉 for vectors y ∈ Bi depends on
〈x,vi〉: if x is almost equal to vi, we have a stronger guarantee that the vectors
in this bucket (which are uniform in a spherical cap centered at yi) are close to
x as well. On the other hand, if 〈x,vi〉 is relatively small, then the vectors cen-
tered around vi will on average be further away from x. As each bucket contains
equally many vectors, we therefore want to select only the buckets with the best
potential for near neighbors, i.e. those buckets for which 〈x,vi〉 is largest. Sort-
ing the buckets by 〈x,vi〉 and only going through the highest-quality buckets is
equivalent to selecting a single appropriate parameter α and only checking those
buckets for which 〈x,vi〉 ≥ α.

So ultimately, we may set βi ≡ β to one fixed value, determined immediately
by n and d, and fix αi ≡ α to one value which together with t then trades off
the space and query complexities.

Note that the optimal choice of α is not obvious. The free parameters α and t
together control the trade-off between the query time complexity and the update
complexity. Concretely we can minimize for the query time by choosing both α
and t to be large (generate a large number of buckets, and only query the buckets
for which vi is almost identical to x), or we can minimize for the update and
space complexities by choosing α and t to be small (using fewer hash buckets,
but being less selective in the query phase and visiting most of these buckets).

Summarizing, the asymptotically optimal scheme (up to order terms) is now
written all the way down up to selecting the best parameters t, α, and imple-
menting such an efficient decoding oracle. This problem has previously been
studied in [BDGL16,Laa15b,ALRW17], and here we will merely state that the
schemes analyzed in these works are therefore optimal.

Theorem 4 (Spherical filtering is optimal for Sd−1). The hash-based near
neighbor schemes studied in [Laa15b,BDGL16,ALRW17] are optimal within the
hash-based framework for uniformly random data sets on the sphere.

4.4 Results for Dense Data Sets

Note that [ALRW17] already claimed optimality of the filtering approach
described in [BDGL16,ALRW17], by proving matching lower bounds in the
sparse regime. For the dense regime, no lower bounds were previously known,
and as explained in Sect. 3.4 this was not just a matter of applying optimal algo-
rithms from the sparse regime to the dense regime and claiming optimality in
the dense regime as well. Our results settle the issue for uniformly random data
sets, showing that spherical caps of specific sizes are indeed optimal.

The resulting optimal complexities for the dense regime can be found in
e.g. [Laa15b, Theorem 2], where the parameters α and t were optimized to obtain
the best performance. We restate these upper bounds below, where based on our
lower bounds we now add that these trade-offs are optimal for the dense regime.

808 E. Kirshanova and T. Laarhoven

Theorem 5 (Trade-offs for the dense regime). Let θ ∈ (0, 1
2π), let the

target dot product be 〈x,y〉 ≥ cos θ, and let the data set consist of n = 2Θ(d)

random points on the unit sphere. Then to obtain asymptotically optimal trade-
offs for the query and update complexities, we should choose u ∈ [cos θ, 1/ cos θ]
and set the parameters as:

α = u ·
√

1 − n−2/d , β =
√

1 − n−2/d .

We can then find nearest neighbors on the Euclidean sphere with query and
update exponents:

ρq =
−d

2 logn
log

[
1 −

(
1 − n−2/d

) 1 + u2 − 2u cos θ

sin2 θ

]
+

d

2 logn
log

[
1 −

(
1 − n−2/d

)
u2

]
,

ρu =
−d

2 logn
log

[
1 −

(
1 − n−2/d

) 1 + u2 − 2u cos θ

sin2 θ

]
− 1.

The resulting algorithm has a query time complexity Õ(nρq), an update time
complexity Õ(nρu), a preprocessing time complexity Õ(n1+ρq), and a total space
complexity of Õ(n1+ρq). The total number of filters scales as t = Õ(n1+ρq).

While the above formulas are a bit more technical, note that the query and
update exponents only involve the input parameters d, n, θ and the trade-off
parameter u. Choosing u = 1 leads to a “balanced” trade-off with ρq = ρu,
and e.g. for the lattice sieving regime of the next section, where θ = π

2 and
n = (4/3)d/2+o(d), for u = 1 we obtain ρq = ρu = log(9/8)/ log(4/3) with query
complexity nρ = (9/8)d/2+o(d) and closest pairs complexity n1+ρ = (3/2)d/2+o(d).

5 Application to Lattice Sieving and Lattice-Based
Cryptography

With the results from Sect. 4 in mind, showing that the best hash-based nearest
neighbor search technique is what has already been studied in the context of
lattice cryptanalysis, we immediately get conditional optimality results for var-
ious current lattice sieving approaches. These optimality results are all under
the assumption that we are only allowed to make tweaks to the nearest neighbor
subroutine within these algorithms.

5.1 Lattice Sieving

The lattice sieving approach introduced by Ajtai–Kumar–Sivakumar [AKS01]
is currently the best known method for solving the shortest vector problem
in practice on random high-dimensional lattices. For a d-dimensional lattice,
the time and memory complexity are both of the order 2Θ(d), compared to a
time complexity of 2Ω(d log d) for enumeration-based approaches [Kan83,FP85,
GNR10].

Lower Bounds on Lattice Sieving and Information Set Decoding 809

Given as input an arbitrary basis B of a lattice, sieving algorithms start by
sampling an exponentially long list L of lattice vectors using efficient discrete
Gaussian sampling procedures like [Kle00,GPV08]. Note that sampling exactly
from a discrete Gaussian is not important; all that matters is that the sampled
points are distinct, and are as short as possible. The points from the list are then
combined to produce new shorter vectors z = x−y where x,y ∈ L. Note that z
is short if and only if x and y are “near neighbors” in space, and this naturally
leads us to using closest pairs algorithms for performing these sieving steps. The
process of sieving is then executed iteratively with the new and shorter vectors
added to the list (and longer vectors getting removed from the list), until we
ultimately find a shortest vector in our list.

The complexity of sieving algorithms is determined by the size of the starting
list required for the iterative process to succeed, and by the complexity of finding
short pairwise combinations of vectors in the list to form new short vectors. Note
that by volume arguments over the sphere, if all lattice vectors in the list L have
roughly the same norm, then (i) for a list of size n = |L| � (4/3)d/2+o(d) we
expect the number of nearby pairs x,y ∈ L with ‖x−y‖ < ‖x‖ to be significantly
less than n, while (ii) for a list of size n = (4/3)d/2+o(d) we do expect the number
of such pairs to be proportional to n. So if we wish to repeat this sieving step
a polynomial number of times and end up with sufficiently many new vectors
each time, we need the input list to be of size n = (4/3)d/2+o(d). The closest
pairs subroutine then consists of: given a list of n vectors of roughly equal norms
as input, find all pairs of vectors whose mutual distance is shorter than their
individual norms. This translates to a target angle of π/3.

The above requirements on the algorithm lead to the following results, where
we know that within the hash-based nearest neighbor framework, the results
from Theorem 5 are optimal. So unless we modify other parts of the algorithm,
or solve the closest pairs problem differently, these complexities are optimal for
the standard pairwise sieving framework.

Theorem 6 (Classical sieve, heuristic). Suppose we use a pairwise sieve
with a hash-based nearest neighbor search subroutine to solve the closest pairs
problem. Then the following time and space complexities of Becker–Ducas–
Gama–Laarhoven [BDGL16] are asymptotically optimal:

T =
(

3
2

)d/2+o(d)

≈ 20.292d+o(d), S =
(

4
3

)d/2+o(d)

≈ 20.208d+o(d).

Lattice sieving variants. Various variants of lattice sieving have been stud-
ied, aiming to solve slightly different problems or optimizing other parts of
the underlying algorithm. We will briefly cover three of these variants: (i)
quantum sieving [LMvdP15,Laa16,KMPM19], (ii) tuple sieving [BLS16,HK17,
Laa17,HKL18], and (iii) sieving for the closest vector problem with preprocess-
ing [Laa21,DLvW20]. Almost all these algorithms (with the exception being
the tuple sieve from [BLS16]) use near neighbor routines. Therefore, our lower
bounds apply: if we are only allowed to replace the nearest neighbor subroutine

810 E. Kirshanova and T. Laarhoven

by some other hash-based nearest neighbor subroutine, then asymptotically we
cannot do better than using spherical cap regions. Of course, this does not rule
out potential improvements coming from other modifications.

Relevance for lattice-based cryptography. As a take-away for cryptographic appli-
cations, one can view our lower bounds on sieving with nearest neighbor search-
ing as a further motivation for most concrete parameter selection methods cur-
rently used in practice, which assume that the leading time complexity exponents
0.292 and 0.265 are the best an attacker can do [BDK+18,BGML+18,BCD+16].
There is always the possibility that faster algorithms will be found, but if an
attacker uses sieving with some form of nearest neighbor searching, they will not
be able to improve upon these exponents.

The question remains how to estimate concrete costs in e.g. dimension 768
or 1024, as our lower bounds and most asymptotic analyses of upper bounds are
asymptotic: the exponent scales as 0.292d + o(d) for large d (or 0.265d + o(d)
quantumly), but the o(d) may be arbitrarily small or large when d is fixed.
Some past work has looked at trying to estimate the o(d)-term of the best upper
bounds [Sch19,AGPS19].

Observe that when studying concrete attack costs in fixed dimensions d, it is
also necessary to take into account further potential subexponential speedups,
proposed in e.g. [Duc18,ADH+19,DLdW20]. Furthermore it may not be suffi-
cient to only look at the asymptotically fastest approaches: in a fixed dimension
d, another nearest neighbor method may have less overhead in practice and lead
to better time and space complexities than the spherical filters, which match our
asymptotic lower bounds. Especially here, where the gap between the time com-
plexities for sieving with spherical filtering (0.292d + o(d)) and cross-polytope
hashing (0.298d + o(d)) is so small, there is no guarantee that spherical filtering
will be faster than cross-polytope hashing.

6 Nearest Neighbor Searching on the Hamming Cube

We instantiate the nearest neighbor problem from Definition 4 with the Ham-
ming cube M = {0, 1}d and the Hamming metric d(x,y) = |{i ∈ [d] : xi = yi}| =
‖x − y‖1. Throughout Sects. 6–7, we will write ‖ · ‖ = ‖ · ‖1 for the Hamming
distance, and for the Hamming weight of vectors on the Hamming cube. It will
further be easier to work with dimensionless versions of Hamming distances. In
particular, we will denote the dimensionless target distance of the nearest neigh-
bor problem by γ, i.e., γ := r/d. This applies to other distances we introduce
below.

We start this section by obtaining a lower bound on nearest neighbor search
using the result of Andoni–Razenstein [AR16]. Next we show that the algorithm
of May–Ozerov [MO15] matches this lower bound in the sparse regime and comes
extremely close to it in the dense regime.

Lower Bounds on Lattice Sieving and Information Set Decoding 811

6.1 The Andoni–Razenshteyn Lower Bound

Following [AR16], for x ∈ F
d
2 and 0 ≤ γ < 1/2, let us denote by Nγ(x) a vector

from F
n
2 such that (Nγ(x))i = xi with probability 1 − γ and (Nγ(x))i = xi ⊕ 1

with probability γ. So for any x and Nγ(x), the Hamming distance between
them is on expectation γ · d. For any hash function h, define

p1 = Pr
x∼F

d
2

y∼Nγ(x)

[h(x) = h(y)] , p2 = Pr
x,y∼Fd

2

[h(x) = h(y)] .

We are interested in the quantity ρ = ln p1/ ln p2, which defines the complexity
of the nearest neighbor search when applied to the closest pairs problem. In
particular, we are interested in a lower bound on ρ given in the following lemma.

Lemma 2 (Collision probabilities for {0, 1}d [AR16, Lemma 5]). For every
hash function h : {0, 1}n → Z and every 0 ≤ γ ≤ 1/2:

Pr
x∼F

n
2

y∼Nγ(u)

[h(x) = h(y)] ≤ Pr
x,y∼Fn

2

[h(x) = h(y)]
γ

1−γ . (4)

This lemma gives the relation between the probabilities p1, p2 and thus, tells
what is the best sensitivity parameter ρ we can hope for. Namely, for the target
distance r = γd, using the above lemma we obtain the lower bound ρ ≥ γ/(1−γ).
So the best we could achieve is the query time T Query = |L|ρ and the total runtime
of the nearest neighbor problem is T = |L|1+ρ, which is the runtime of both the
preprocessing step and the query step, when the number of queries is |L|. Taking
the logarithm, we obtain the following lower bound:

log2 T =
1

1 − γ
log2 |L| . (5)

Next we compare the obtained lower bound with what is achieved in [MO15].

6.2 Spherical Caps on the Hamming Cube

For the dense case, the best known algorithm for the nearest neighbor problem
is due to May–Ozerov [MO15] (see a recent result of Esser et al. [EKZ21] for a
different analysis of this algorithm). At the heart of May–Ozerov is a hashing
technique analogous to the one defined in Theorem 3, which is based on spherical
caps in the Hamming space. As the main application of this hashing technique
is to solve the closest pairs problem, we shall describe it the setting when the
insert regions Ui and the query regions Qi are the same.

The set up for the nearest neighbor data structure is as follows. An insertion
region is defined by a center vi ⊆ F

d
2 of the spherical cap Ui = {z ∈ F

n
2 :

‖z − vi‖ ≤ β} ⊆ F
d
2, where β is the insertion parameter subject to optimization.

The purpose of these regions is similar to the Euclidean metric case: when two

812 E. Kirshanova and T. Laarhoven

vectors end up in the same region, i.e., both are close to some vi, then these
vectors are also likely to be nearby to one another on the cube.

Given on input a list L ⊂ F
d
2, the nearest neighbor search assigns each y ∈ L

to its regions thus defining the buckets as Bi = Ui ∩ L. The nearest neighbor
data structure D consists of the union of all these buckets. Given a query x we
then look at all buckets Bi that are α-close to x (i.e., all vi with ‖x − vi‖ ≤ α),
and we check if any of the vectors y stored in these buckets gives a solution to
the nearest neighbor problem with parameter γ.

Similar to Theorem 3, we assume that we can efficiently find all relevant
centers to a given point. An efficient procedure for that is called the ‘stripes
technique’ and is described in [MO15]. The idea is to make the filter vec-
tors structured (i.e., a concatenation of several codewords from some lower-
dimensional codes). We will not describe this technique here in detail (for that,
see [BDGL16,MO15]), but remark the main advantage of such a construction:
it allows us find all close buckets in time (up to lower-order terms) equal to the
output size.

When nearest neighbor searching is applied to the closest pairs problem, the
number of queries is equal to |L|. In this case, the optimal choice of parameters
is α = β = H−1(1 − log2 |L|/d) so that the runtime T of the nearest neighbor
search step are determined by the total number of buckets |Ui| which we denote
as t. This number is computed in [MO15, Theorem 1].

Theorem 7 (Hash-based complexities for {0, 1}d [MO15, Thm. 1]). To
solve the nearest neighbor problem in the Hamming metric with some fixed target
0 ≤ γ ≤ 1/2, with γ = Θ(d), the May–Ozerov algorithm uses a number t of hash
regions satisfying:

log2 t = (1 − γ)
(

1 − H

(
H−1(1 − log2 |L|/d) − γ/2

1 − γ

))
. (6)

The following observation is important for our result: when the list size |L|
becomes subexponential in the dimension d, then the number of hash regions
given above converges to |L| 1

1−γ . More precisely, [MO15, Corollary 1] shows that:

lim
1
d log2|L|→0

log2 t

log2 |L| =
1

1 − γ
. (7)

We shall next compare the lower and upper bounds for nearest neighbor
searching on the Hamming cube.

6.3 Comparison Between Upper and Lower Bounds

Notice first that the lower bound given in Eq. 5 matches exactly the perfor-
mance of the May–Ozerov upper bound in the setting when the input list size is
subexponential in the dimension, i.e., in the sparse regime.

Decoding algorithms we discuss in the next section work in the dense regime,
i.e., when |L| = 2cd for a constant c. In this regime the above lower bound does
not exactly match the complexity of May–Ozerov given in Eq. (6) as one can see

Lower Bounds on Lattice Sieving and Information Set Decoding 813

from the plot given in Fig. 1, where we compare the two nearest neighbor search
runtimes given in Eq. (5). For a given target distance γ we set |L| = 2

1
2− 1

2H(γ),
so we expect only sub-exponentially many pairs from L to satisfy the target
distance condition, assuming L consists of uniformly randomly vectors. Notice
that the larger γ is, the smaller the list sizes we choose and the closer both
bounds are to each other. This is consistent with the fact that May–Ozerov is
optimal in the sparse regime.

One source of the discrepancy between the upper bound of May–Ozerov
and the lower bound based on the Andoni–Razensteyn result is that the latter
uses the probabilistic distance between the two close vectors x,y, namely the
distance follows a binomial distribution with expected value γ · d, while the
algorithm of [MO15] targets to find x,y whose distance is at most γ ·d (with high
concentration at the boundary). The tails of the distributions of the distances
differ in these two cases leading to a gap between the bounds.

Another source of the gap lies in an inequality which Andoni–Razensteyn
used in the proof of Lemma 2. In particular, they use the fact (see [KV15] for
a proof) that for an arbitrary set A ⊆ F

d
2, Prx∼Fd

2 ,y∼Nγ(u) [x ∈ A | y ∈ A] ≤
(|A| /2d

)γ/(1−γ). This inequality is not tight when A is chosen to be Regionc – a
spherical cap in the Hamming space. This leaves the question of whether one can
construct a set A, which would be useful for nearest neighbor searching (that is,
it would have an efficient membership oracle), and for which the inequality holds
with equality. That would give an improvement to nearest neighbor searching in
the dense regime, albeit a very small one, as we shall see in the next section.

Fig. 1. Nearest neighbor search runtime exponents (dimensionless) for the target dis-

tance γ for lists of sizes 2(1
2 − 1

2 H(γ))d, i.e., we expect sub-exponentially many solutions.
Upper bounds are determined by the number of hash regions t and follow from Eq. (6),
while lower bounds are based on Eq. (5).

814 E. Kirshanova and T. Laarhoven

7 Application to Decoding and Code-Based
Cryptography

All currently known fastest information set decoding algorithms for the dense
setting make use of nearest neighbor searching. The goal of this chapter is to see
how far down we could push the complexity of these decoding algorithms if we
had a nearest neighbor search technique that matches the lower bound derived
in the previous section.

In this section we will consider two algorithms: Stern’s algorithm [Ste89],
and the most recent algorithm of Both–May [BM18]. The first is the simplest
information set decoding algorithm where nearest neighbor searching can be
applied, while the second is the one that achieves the best currently known
asymptotic time complexities.

7.1 Stern’s Algorithm

Recall from Definition 2, that as input the information set decoding problem
receives a parity check matrix H ∈ F

d−k×d
2 and a syndrome s ∈ F

d−k
2 . Stern’s

algorithm transforms the parity check matrix H into systematic form [Q | Id−k]
(provided the last d− k columns of H form an invertible matrix, which happens
with constant success probability). The same transformation is applied to the
syndrome s giving a new syndrome s̄. So the task is to find e that satisfies the
equation:

[Q | Id−k] · e = s̄ for Q ∈ F
d−k×k
2 . (8)

Stern’s algorithm searches for a vector e whose weight is p > 0 on the last d − k
coordinates (hence, weight w−p on the first k coordinates). The probability that
this happens is P =

(
k
p

)(
d−k
w−p

)
/
(

d
w

)
. The inverse of this quantity is the expected

number of permutations we need to apply on H to obtain the desired weight
distribution on e. Once a good permutation is found, Eq. (8) rewrites as:

Qe1 + Qe2 + e3 = s̄ =⇒ Qe1 ≈ Qe2 + s̄. (9)

Here e1 has weight p/2 on the first k/2 coordinates and is 0 on the last d − k/2
coordinates, e2 has weight p/2 on the coordinates {k/2 + 1, . . . , k} and is 0
elsewhere, and ‖e3‖ = w − p. Enumerating over all e1 and e2 into the lists
L1 = {(Qe1, e1)} and L2 = {(Qe2 + s, e2)}, we receive an instance of the
nearest neighbor problem with target distance w − p in the Hamming metric.

May–Ozerov in [MO15] propose to solve this task with nearest neighbor
searching and obtain the runtime of Stern’s algorithm as illustrated in Fig. 2.
We compare this with the decoding complexities if instead of the upper bound
of May–Ozerov, the lower bound runtimes from Eq. (5) are substituted. Note
that this is different from the comparison given in Fig. 1 since the complexity
of Stern’s algorithm is not only determined by the complexity of the nearest
neighbor subroutine, but also by the number of permutations. For various code
rates k, Fig. 2 compares the runtime exponents c for Stern’s algorithm when (i)
the nearest neighbor technique of [MO15] as in Eq. (6) is used, or (ii) the lower

Lower Bounds on Lattice Sieving and Information Set Decoding 815

Fig. 2. Runtime exponents for Stern’s information set decoding algorithm when either
May–Ozerov’s nearest neighbor search approach is used (blue circles), or when the
lower bound is implemented (red squares). The code rate R is on the horizontal axis.
The other two plots show the list size exponents that Stern’s algorithm runs the nearest
neighbor step on. The faster nearest neighbor searching (the lower bound) allows lager
lists, hence there is a bigger gap between the list sizes in the most dense regime (around
R = 0.5). The larger or the smaller the code rate is, the closer we are to the sparse
setting, so the closer lower and upper bounds to each other.

bound for nearest neighbor searching is used. It also gives corresponding list
sizes |L1| = |L2| =

(
k
p

) ≈ 2kH(p/k), but note that the optimal value for p slightly
differs between the two runtimes. As the nearest neighbor search step becomes
cheaper, the p is allowed to increase leading to larger lists.

7.2 The Both–May Algorithm

The recent information set decoding algorithm due to Both–May [BM18] sig-
nificantly improves Stern’s algorithm, and is currently the fastest algorithm for
solving the information set decoding problem in the dense regime. We shall not
describe the algorithm here but point out that the algorithm uses two-step near-
est neighbor searching.

Similar to Stern’s algorithm we compare the runtime of the Both–May algo-
rithm when for the nearest neighbor steps, either (i) the best known nearest
neighbor approach of May–Ozerov is used, or (ii) the lower bound given in Eq. (5)
is used. Optimal runtimes for each code rate k are given in Fig. 3. We notice that
the Both–May algorithm, while being quite close to the lower bound, leaves more
potential for improvement than Stern’s algorithm. This can be explained by look-
ing at the lists sizes: the Both–May algorithm allows for larger lists that Stern’s

816 E. Kirshanova and T. Laarhoven

Fig. 3. Runtime exponents for the Both–May [BM18] algorithm when either the May–
Ozerov [MO15] upper bound is used (blue circles), or our lower bound is substituted
(red squares). The other two plots show the list size exponents that nearest neighbor
searching receives on input. The code rate R is on the X-axis.

algorithm, thus making the contribution of the nearest neighbor subroutine more
substantial. Still, our conclusion is that a potential improvement in the nearest
neighbor subroutine will not significantly improve the overall algorithm.

7.3 Relevance for Code-Based Cryptography

The hardness of the information set decoding problem is essential for the secu-
rity of prominent code-based cryptosystems, such as the McEliece cryptosys-
tem [McE78]. All proposed constructions for the NIST standardization com-
petition [BCL+19] work in the regime where the error is of weight sub-linear
in d, thus making Stern’s algorithm and other faster information set decoding
algorithms like [BM18] asymptotically irrelevant [CTS16]. This does not imply,
however, that these information set decoding algorithms are practically irrele-
vant for concrete parameters. To the best of our knowledge, the question of the
exact complexity of the fastest information set decoding algorithms using recent
improvements has not been investigated. This leaves the possibility that infor-
mation set decoding algorithms which do use nearest neighbor techniques will
eventually be recognized as being actually applicable to cryptographic parame-
ters as well, in which case our lower bounds may serve as conservative estimates
for potential attack costs, and for choosing parameters.

References

[AD97] Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-
case equivalence. In: STOC, pp. 284–293 (1997)

Lower Bounds on Lattice Sieving and Information Set Decoding 817

[ADH+19] Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite,
E.W., Stevens, M.: The general sieve kernel and new records in lattice
reduction. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 717–746. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 25

[ADRS15] Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving
the shortest vector problem in 2n time via discrete Gaussian sampling.
In: STOC, pp. 733–742 (2015)

[AGPS19] Albrecht, M.R., Gheorghiu, V., Postlethwaite, E.W., Schanck, J.M.: Esti-
mating quantum speedups for lattice sieves. Cryptology ePrint Archive
2019/1161 (2019)

[AI06] Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In: FOCS, pp. 459–468 (2006)

[AIL+15] Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., Schmidt, L.: Prac-
tical and optimal LSH for angular distance. In: NIPS, pp. 1225–1233
(2015)

[AINR14] Andoni, A., Indyk, P., Nguyên, H.L., Razenshteyn, I.: Beyond locality-
sensitive hashing. In: SODA, pp. 1018–1028 (2014)

[AKS01] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest
lattice vector problem. In: STOC, pp. 601–610 (2001)

[ALRW17] Andoni, A., Laarhoven, T., Razenshteyn, I., Waingarten, E.: Optimal
hashing-based time-space trade-offs for approximate near neighbors. In:
SODA, pp. 47–66 (2017)

[ANSS18] Aono, Y., Nguyen, P.Q., Seito, T., Shikata, J.: Lower bounds on lattice
enumeration with extreme pruning. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 608–637. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 21

[AR15] Andoni, A., Razenshteyn, I.: Optimal data-dependent hashing for approx-
imate near neighbors. In: STOC, pp. 793–801 (2015)

[AR16] Andoni, A., Razenshteyn, I.: Tight lower bounds for data-dependent
locality-sensitive hashing. In: SOCG, pp. 1–15 (2016)

[BCD+16] Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key
exchange from LWE. In: CCS, pp. 1006–1018 (2016)

[BCL+19] Bernstein, D.J., et al.: Classic McEliece: conservative code-based cryp-
tography (2019)

[BDGL16] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: SODA, pp. 10–
24 (2016)

[BDK+18] Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based
KEM. In: Euro S&P, pp. 353–367 (2018)

[BGJ15] Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without
increasing the memory, using sub-quadratic nearest neighbor search.
Cryptology ePrint Archive, Report 2015/522, pp. 1–14 (2015)

[BGML+18] Bhattacharya, S., et al.: Round5: compact and fast post-quantum public-
key encryption. Cryptology ePrint Archive, Report 2018/725 (2018)

[BJMM12] Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear
codes in 2n/20: how 1 + 1 = 0 improves information set decoding. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 31

https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-319-96881-0_21
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31

818 E. Kirshanova and T. Laarhoven

[BL16] Becker, A., Laarhoven, T.: Efficient (ideal) lattice sieving using cross-
polytope LSH. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2016. LNCS, vol. 9646, pp. 3–23. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31517-1 1

[BLS16] Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. In: ANTS, pp.
146–162 (2016)

[BM18] Both, L., May, A.: Decoding linear codes with high error rate and its
impact for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto
2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-79063-3 2

[BT76] Baernstein, A., Taylor, B.A.: Spherical rearrangements, subharmonic
functions, and ∗-functions in n-space. Duke Math. J. 43(2), 245–268
(1976)

[Chr17] Christiani, T.: A framework for similarity search with space-time tradeoffs
using locality-sensitive filtering. In: SODA, pp. 31–46 (2017)

[CTS16] Torres, R.C., Sendrier, N.: Analysis of information set decoding for a
sub-linear error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol.
9606, pp. 144–161. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 10

[DLdW20] Doulgerakis, E., Laarhoven, T., de Weger, B.: Sieve, enumerate, slice, and
lift: hybrid lattice algorithms for SVP via CVPP. In: Nitaj, A., Youssef, A.
(eds.) AFRICACRYPT 2020. LNCS, vol. 12174, pp. 301–320. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51938-4 15

[DLvW20] Ducas, L., Laarhoven, T., van Woerden, W.: The randomized slicer for
CVPP: sharper, faster, smaller, batchier. In: PKC, pp. 3–36 (2020)

[Duc18] Ducas, L.: Shortest vector from lattice sieving: a few dimensions for
free. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10820, pp. 125–145. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-78381-9 5

[EKZ21] Esser, A., Kübler, R., Zweydinger, F.: A faster algorithm for finding clos-
est pairs in hamming metric (2021)

[FP85] Fincke, U., Pohst, M.: Improved methods for calculating vectors of short
length in a lattice. Math. Comput. 44(170), 463–471 (1985)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

[GGH13] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 1

[GNR10] Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme
pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 257–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13190-5 13

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC, pp. 197–206 (2008)

[HK17] Herold, G., Kirshanova, E.: Improved algorithms for the approximate k -
list problem in Euclidean norm. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 16–40. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54365-8 2

https://doi.org/10.1007/978-3-319-31517-1_1
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-29360-8_10
https://doi.org/10.1007/978-3-319-29360-8_10
https://doi.org/10.1007/978-3-030-51938-4_15
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/978-3-662-54365-8_2

Lower Bounds on Lattice Sieving and Information Set Decoding 819

[HKL18] Herold, G., Kirshanova, E., Laarhoven, T.: Speed-ups and time–memory
trade-offs for tuple lattice sieving. In: Abdalla, M., Dahab, R. (eds.) PKC
2018. LNCS, vol. 10769, pp. 407–436. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-76578-5 14

[JL84] Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into
a Hilbert space. Contemp. Math. 26(1), 189–206 (1984)

[Kan83] Kannan, R.: Improved algorithms for integer programming and related
lattice problems. In: STOC, pp. 193–206 (1983)

[Kle00] Klein, P.: Finding the closest lattice vector when it’s unusually close. In:
SODA, pp. 937–941 (2000)

[KMPM19] Kirshanova, E., Mårtensson, E., Postlethwaite, E.W., Moulik, S.R.:
Quantum algorithms for the approximate k -list problem and their appli-
cation to lattice sieving. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11921, pp. 521–551. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 19

[KV15] Khot, S.A., Vishnoi, N.K.: The unique games conjecture, integrality gap
for cut problems and embeddability of negative-type metrics into �1. J.
ACM 62(1), 1–39 (2015)

[Laa15a] Laarhoven, T.: Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47989-6 1

[Laa15b] Laarhoven, T.: Tradeoffs for nearest neighbors on the sphere.
arXiv:1511.07527 [cs.DS], pp. 1–16 (2015)

[Laa16] Laarhoven, T.: Search problems in cryptography. Ph.D. thesis, Eindhoven
University of Technology (2016)

[Laa17] Laarhoven, T.: Faster tuple lattice sieving using spherical locality-
sensitive filters. arXiv:1705.02828 [cs.DS], pp. 1–14 (2017)

[Laa20] Laarhoven, T.: Polytopes, lattices, and spherical codes for the nearest
neighbor problem. In: ICALP (2020)

[Laa21] Laarhoven, T.: Approximate Voronoi cells for lattices, revisited. J. Math.
Cryptol. 15, 1–21 (2021)

[Lan20] Lange, T.: Overview of code-based crypto assumptions. Talk at Quantum
Cryptanalysis of Post-Quantum Cryptography (2020)

[LdW15] Laarhoven, T., de Weger, B.: Faster sieving for shortest lattice vec-
tors using spherical locality-sensitive hashing. In: Lauter, K., Rodŕıguez-
Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 101–118.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 6

[LMvdP15] Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors
faster using quantum search. Des. Codes Crypt. 77(2), 375–400 (2015)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 1

[McE78] McEliece, R.J.: A public-key cryptosystem based on algebraic coding the-
ory. The Deep Space Network Progress Report, pp. 114–116 (1978)

[MMT11] May, A., Meurer, A., Thomae, E.: Decoding random linear codes in
Õ(20.054n). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 6

[MNP07] Motwani, R., Naor, A., Panigrahy, R.: Lower bounds on locality sensitive
hashing. SIAM J. Discret. Math. 21(4), 930–935 (2007)

https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-030-34578-5_19
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
http://arxiv.org/abs/1511.07527
http://arxiv.org/abs/1705.02828
https://doi.org/10.1007/978-3-319-22174-8_6
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-642-25385-0_6

820 E. Kirshanova and T. Laarhoven

[MO15] May, A., Ozerov, I.: On computing nearest neighbors with applications
to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 9

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based
on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

[MV10a] Micciancio, D., Voulgaris, P.: A deterministic single exponential time
algorithm for most lattice problems based on Voronoi cell computations.
In: STOC, pp. 351–358 (2010)

[MV10b] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the
shortest vector problem. In: SODA, pp. 1468–1480 (2010)

[NV08] Nguyên, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem
are practical. J. Math. Cryptol. 2(2), 181–207 (2008)

[OWZ14] O’Donnell, R., Wu, Y., Zhou, Y.: Optimal lower bounds for locality-
sensitive hashing (except when q is tiny). ACM Trans. Comput. Theory
6(1), 5:1–5:13 (2014)

[Pan06] Panigrahy, R.: Entropy based nearest neighbor search in high dimensions.
In: SODA, pp. 1186–1195 (2006)

[Pra62] Prange, E.: The use of information sets in decoding cyclic codes. IRE
Trans. Inf. Theory 8, 5–9 (1962)

[PS09] Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in time
22.465n. Cryptology ePrint Archive, Report 2009/605, pp. 1–7 (2009)

[PTW10] Panigrahy, R., Talwar, K., Wieder, U.: Lower bounds on near neighbor
search via metric expansion. In: FOCS, pp. 805–814, October 2010

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: STOC, pp. 84–93 (2005)

[Reg10] Regev, O.: The learning with errors problem (invited survey). In: CCC,
pp. 191–204 (2010)

[Rie30] Riesz, F.: Sur une inégalité intégrale. J. London Math. Soc. s1-5(3), 162–
168 (1930)

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126
(1978)

[Sch19] Schanck, J.: Sieve tables (2019)
[Sho94] Shor, P.W.: Algorithms for quantum computation: discrete logarithms

and factoring. In: FOCS, pp. 124–134 (1994)
[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key

encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-10366-7 36

[Ste89] Stern, J.: A method for finding codewords of small weight. In: Cohen, G.,
Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113.
Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0019850

[svp20] SVP challenge (2020). http://latticechallenge.org/svp-challenge/
[TT07] Terasawa, K., Tanaka, Y.: Spherical LSH for approximate nearest neigh-

bor search on unit hypersphere. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.)
WADS 2007. LNCS, vol. 4619, pp. 27–38. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73951-7 4

[TT09] Terasawa, K., Tanaka, Y.: Approximate nearest neighbor search for a
dataset of normalized vectors. IEICE Trans. Inf. Syst. 92(9), 1609–1619
(2009)

https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/BFb0019850
http://latticechallenge.org/svp-challenge/
https://doi.org/10.1007/978-3-540-73951-7_4

Author Index

Agrawal, Shweta 124, 641
Albrecht, Martin R. 519, 732
Attema, Thomas 549

Bai, Shi 732
Boyle, Elette 457

Chan, T.-H. Hubert 3
Cheon, Jung Hee 426
Choudhuri, Arka Rai 94
Chung, Kai-Min 3
Cramer, Ronald 549

Damgård, Ivan 155

Eriguchi, Reo 305
Escudero, Daniel 335
Espitau, Thomas 760

Fouque, Pierre-Alain 760

Garimella, Gayathri 395
Gentry, Craig 64
Gilboa, Niv 457
Goel, Aarushi 94
Goldwasser, Shafi 641
Goyal, Vipul 244, 275
Green, Matthew 94

Halevi, Shai 64
Hopkins, Sam 673
Hu, Zhenkai 365

Ishai, Yuval 124, 214, 457

Jain, Aayush 673
Jain, Abhishek 94

Kamath, Chethan 486
Kaptchuk, Gabriel 94
Katsumata, Shuichi 580
Khurana, Dakshita 214

Kim, Dongwoo 426
Kirchner, Paul 760
Kirshanova, Elena 791
Klein, Karen 486
Kohl, Lisa 549
Krawczyk, Hugo 64
Kushilevitz, Eyal 124

Laarhoven, Thijs 791
Lai, Russell W. F. 519
Lee, Keewoo 426
Li, Hanjun 244
Li, Jianwei 732
Lin, Huijia 673
Liu, Hanlin 365
Liu, Wenling 365
Lyubashevsky, Vadim 611

Magri, Bernardo 64, 155
Maji, Hemanta K. 33
May, Alexander 701
Mossel, Saleet 641

Narayanan, Varun 124
Nguyen, Ngoc Khanh 611
Nielsen, Jesper Buus 64
Nof, Ariel 457
Nuida, Koji 305

Ohara, Kazuma 305
Ostrovsky, Rafail 244

Patra, Arpita 185
Pietrzak, Krzysztof 486
Pinkas, Benny 395
Polychroniadou, Antigoni 244, 275
Prabhakaran, Manoj 124
Prabhakaran, Vinod 124

Rabin, Tal 64
Ravi, Divya 155
Rosen, Alon 124

822 Author Index

Rosulek, Mike 395
Rowell, Joe 732

Sahai, Amit 214
Seiler, Gregor 611
Shi, Elaine 3
Siniscalchi, Luisa 155
Song, Yifan 244, 275
Soria-Vazquez, Eduardo 335
Srinivasan, Akshayaram 185, 214

Trieu, Ni 395

Wang, Mingyuan 33
Wen, Ting 3
Wichs, Daniel 486

Yakoubov, Sophia 64, 155
Yamada, Shota 305
Yanai, Avishay 395
Yu, Yu 365

Zhang, Jiang 365
Zhao, Shuoyao 365

	Preface
	Organization
	Contents – Part II
	Multi-party Computation
	Game-Theoretic Fairness Meets Multi-party Protocols: The Case of Leader Election
	1 Introduction
	1.1 Leader Election: Another Formulation of Multi-party Coin Toss
	1.2 Our Results and Contributions
	1.3 Motivating Applications and Scope of Our Work

	2 Technical Overview
	2.1 Leader Election Protocol
	2.2 Non-sequential Approximate Fairness
	2.3 A Strawman Scheme
	2.4 Warmup: A Game Theoretically Fair, RO-Based Protocol
	2.5 Final Construction: Removing the Random Oracle

	3 Defining Sequential Approximate Fairness
	3.1 Sequential Approximate Fairness
	3.2 Fairness of the Tournament Tree Protocol

	4 Formal Description of Our Scheme
	4.1 Description of Our Scheme Assuming Idealized Cryptography
	4.2 Instantiating the Scheme with Real-World Cryptography

	5 Proofs for the Ideal-World Protocol
	5.1 Bounding the Preliminary Committee's Size
	5.2 Terminology and Notations
	5.3 Composition of the Final Committee
	5.4 Maximin Fairness

	References

	Computational Hardness of Optimal Fair Computation: Beyond Minicrypt
	1 Introduction
	1.1 Our Contribution
	1.2 Prior Works
	1.3 Technical Overview

	2 Preliminaries
	3 Fair Coin-Tossing Protocol in the f-hybrid Model
	4 Proof of Theorem 3
	4.1 Properties of Functionalities
	4.2 Notations and the Technical Theorem
	4.3 Inductive Proof of Theorem 4

	5 Black-Box Uses of Public-Key Encryption is Useless for Optimal Fair Coin-Tossing
	5.1 Public-Key Encrytion Oracles
	5.2 Our Results
	5.3 Reduction from PKE Oracle to Image Testable Random Oracle
	5.4 Extending the Proof of ch2C:MajWan20 to Image Testable Random Oracle

	6 Open Problems
	References

	YOSO: You Only Speak Once
	1 Introduction
	1.1 The YOSO Model
	1.2 MPC in the YOSO Model
	1.3 Related Work

	2 YOSO for the Working Cryptographer
	2.1 YOSO Wrappers
	2.2 Random Corruptions
	2.3 YOSO Security
	2.4 Common Features, Functionalities, and Models

	3 The Information-Theoretic t< n2 MPC Protocol
	3.1 Information Theoretic and Homomorphic MAC
	3.2 Future Broadcast
	3.3 Homomorphic IT-SIG
	3.4 Distributed Commitment (DC)
	3.5 Duplicate DC
	3.6 Verifiable Secret Sharing Scheme
	3.7 Duplicate VSS
	3.8 Augmented VSS
	3.9 Duplicate AugVSS
	3.10 Proof of Local Multiplication (PLM)
	3.11 YOSO MPC

	References

	Fluid MPC: Secure Multiparty Computation with Dynamic Participants
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Technical Overview
	3 Fluid MPC
	3.1 Modeling Dynamic Computation
	3.2 Committees
	3.3 Security

	4 Results in Full Version of the Paper
	References

	Secure Computation from One-Way Noisy Communication, or: Anti-correlation via Anti-concentration
	1 Introduction
	1.1 Complete Channels
	1.2 Our Results
	1.3 Why Base on One-Way Noisy Communication?
	1.4 Technical Overview
	1.5 Discussion

	2 Preliminaries
	2.1 Sender-Receiver Functionalities and Channels
	2.2 Secure Computation with One-Way Communication
	2.3 Probability Preliminaries

	3 ROT from SEC Using Ideal Obfuscation
	4 Completeness of BEC and BSC Using Ideal Obfuscation
	4.1 String Erasure Channel from BEC/BSC
	4.2 Completeness of BEC/BSC Using Ideal Obfuscation

	5 OWSC in the Plain Model and Against Malicious Adversaries
	5.1 OWSC in the Plain Model
	5.2 Security Against Malicious Sender

	References

	Broadcast-Optimal Two Round MPC with an Honest Majority
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Secure Multiparty Computation (MPC) Definitions
	2.1 Security Model
	2.2 Notation

	3 No Broadcast: Impossibility of Unanimous Abort
	4 Broadcast in the Second Round: Impossibility of Fairness
	5 Completing the Picture: Impossibility Results for n3t
	6 Broadcast in the First Round: Guaranteed Output Delivery
	7 One-or-Nothing Secret Sharing
	7.1 Definitions
	7.2 Constructions

	8 Broadcast in the Second Round: Identifiable Abort
	References

	Three-Round Secure Multiparty Computation from Black-Box Two-Round Oblivious Transfer
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 Semi-honest Setting
	2.2 Malicious Setting

	3 Preliminaries
	3.1 Oblivious Transfer

	4 3-Round Semi-honest MPC
	4.1 First Step: Protocol for F3MULTPlus
	4.2 Second Step: Protocol for Arbitrary Functions

	5 3-Round Malicious MPC
	5.1 First Step: Special Functionality with Input Dependent Abort
	5.2 Conforming Protocols and the Round-Collapsing Compiler
	5.3 Second Step: Special Functionality with Standard Security
	5.4 Third Step: Bootstrapping from Special to General Functions

	References

	On the Round Complexity of Black-Box Secure MPC
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Technical Overview
	2.1 The Watchlist Protocol

	3 Preliminaries and Definitions
	3.1 Non-malleable Codes
	3.2 Low-Depth Proofs
	3.3 1-Rewind Sender-Secure Two-Party Computation

	4 Non-Malleable Oblivious Transfer
	4.1 Definition
	4.2 Construction
	4.3 Security

	5 Summary of Results
	References

	ATLAS: Efficient and Scalable MPC in the Honest Majority Setting
	1 Introduction
	1.1 Our Contributions
	1.2 Other Related Works

	2 Technical Overview
	2.1 Review: The Secure-with-abort MPC Protocol in ch9GSZ20
	2.2 Reducing the Communication Complexity via t-wise Independence
	2.3 Reducing the Number of Rounds via Beaver Triples
	2.4 Using PRG to Reduce Communication Complexity

	3 Preliminaries
	3.1 Model
	3.2 Secret Sharing
	3.3 Useful Building Blocks

	4 ATLAS: Our Unconditional MPC Construction
	4.1 Review of the Secure-with-abort MPC Protocol in ch9GSZ20
	4.2 Reducing the Communication Complexity via t-wise Independence
	4.3 Reducing the Number of Rounds via Beaver Triples

	5 Experimental Evaluation
	References

	Unconditional Communication-Efficient MPC via Hall's Marriage Theorem
	1 Introduction
	2 Technical Overview
	2.1 Background: Using the Packed Secret-Sharing Technique in MPC
	2.2 Performing an Arbitrary Permutation on the Secrets of a Single Sharing
	2.3 Obtaining Input Sharings for Multiplication Gates and Addition Gates
	2.4 Handling Fan-Out Gates
	2.5 Overview of Our Semi-honest Protocol
	2.6 Achieving Malicious Security

	3 Preliminaries
	3.1 The Model
	3.2 Packed Shamir Secret Sharing Scheme
	3.3 Generating Random Sharings
	3.4 Permutation Matrix, Bipartite Graph and Hall's Marriage Theorem

	4 Circuit Evaluation - Against a Semi-honest Adversary
	4.1 Basic Protocols for Input Gates, Addition Gates, Multiplication Gates, and Output Gates
	4.2 Performing an Arbitrary Permutation on the Secrets of a Single Sharing
	4.3 Obtaining Input Sharings for Multiplication Gates and Addition Gates
	4.4 Handling Fan-Out Gates

	5 Main Protocol - Against a Semi-honest Adversary
	5.1 Transforming a General Circuit C
	5.2 Preprocessing Phase
	5.3 Main Protocol - Against Semi-honest Adversary

	References

	Non-interactive Secure Multiparty Computation for Symmetric Functions, Revisited: More Efficient Constructions and Extensions
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Technical Overview
	2.1 Efficient NIMPC Protocols for Abelian Programs
	2.2 New NIMPC Protocols for Linear Classifiers
	2.3 Revisiting the BKR Transformation

	3 Preliminaries
	3.1 Non-interactive Secure Multiparty Computation
	3.2 Abelian Programs

	4 Efficient NIMPC Protocols for Abelian Programs
	4.1 The Design of Our Protocol
	4.2 Abelian Programs with the Extended Input Domain
	4.3 Abelian Programs with Limited Input Domains

	5 New NIMPC Protocols for Linear Classifiers
	5.1 Formalization of Linear Classifiers
	5.2 NIMPC Protocols for Linear Classifiers

	6 Revisiting the BKR Transformation
	6.1 Analyzing and Fixing the NIMPC Protocol of ch11BKR17 for Outputting-Message Functions
	6.2 An Asymptotically Optimal NIMPC Protocol for Indicator Functions

	References

	Efficient Information-Theoretic Multi-party Computation over Non-commutative Rings
	1 Introduction
	1.1 Theoretical Contributions
	1.2 Concretely Efficient Protocols for Mm m(Z2k)
	1.3 Related Work

	2 Preliminaries
	2.1 Multiparty Computation
	2.2 Background in Ring Theory
	2.3 Polynomials over Non-commutative Rings
	2.4 Galois Rings

	3 Shamir's Secret Sharing over Non-commutative Rings
	3.1 Secret Sharing over Matrix Rings
	3.2 Error Correction and Robust Reconstruction
	3.3 Efficient Protocols for Secret Reconstruction

	4 MPC in the Preprocessing Model
	4.1 A First Approach
	4.2 Improving Round-Complexity

	5 Preprocessing
	5.1 Generic, Black-Box Construction
	5.2 Concretely Efficient Preprocessing for Matrix Rings

	References

	Pushing the Limits of Valiant's Universal Circuits: Simpler, Tighter and More Compact
	1 Introduction
	1.1 Cryptographic Applications
	1.2 Valiant's Universal Circuits and Subsequent Works
	1.3 Our Work

	2 Preliminaries
	3 Simplifying Constructions of Universal Circuits
	3.1 Valiant's Universal Circuits
	3.2 An Intermediate wEUG1(n) Construction
	3.3 The Final Constructions of EUG1(n) and Universal Circuits
	3.4 A Lower Bound on Circuit Size in Our Framework

	4 Implementation and Performance Evaluation
	4.1 Implementing and Optimizing the 2-Way Universal Circuits
	4.2 Performance Evaluation

	References

	Oblivious Key-Value Stores and Amplification for Private Set Intersection
	1 Introduction
	1.1 Polynomial Encodings for PSI
	1.2 Correctness Amplification
	1.3 Our Results

	2 Oblivious Key-Value Stores
	2.1 Definitions
	2.2 Linear OKVS
	2.3 Binary OKVS
	2.4 OKVS Overfitting
	2.5 Efficiency of OKVS

	3 Existing OKVS Constructions
	4 New OKVS Constructions
	4.1 OKVS Based on a 3-Hash Garbled Cuckoo Table (3H-GCT)
	4.2 OKVS Based on Simple Hashing and Dense Matrices

	5 Amplifying OKVS Correctness
	5.1 Replication Architecture
	5.2 Star Architecture
	5.3 Generalized Star Architecture
	5.4 A Concrete Instantiation

	6 Applications of OKVS
	6.1 Sparse OT Extension
	6.2 Oblivious Programmable PRF and its Applications
	6.3 PaXoS PSI
	6.4 Covert Computation

	7 Other PSI Improvements
	7.1 Generalizing PaXoS-PSI to Linear OKVS
	7.2 Malicious Multi-party PSI

	8 Concrete Performance
	8.1 Parameters for OKVS and PSI
	8.2 Improving PSI Protocols

	References

	MHz2k: MPC from HE over Z2k with New Packing, Simpler Reshare, and Better ZKP
	1 Introduction
	1.1 Our Contribution
	1.2 Roadmap
	1.3 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 The BGV Homomorphic Encryption Scheme
	2.3 Cyclotomic Rings and CRT Isomorphism in Z2T[X]
	2.4 Packing Methods for SHE Schemes
	2.5 Preprocessing Phase—Generation of Authenticated Triples

	3 New Packing Method for Z2k-Messages
	3.1 Tweaked Interpolation
	3.2 New Packing Method from Tweaked Interpolation
	3.3 Performance Analysis
	3.4 Predicates for Valid Packing
	3.5 Sampling Zero Polynomials in Z2k[X]

	4 Reshare Protocol for Level-Dependent Packings
	4.1 Improved Reshare Protocol for Level-Dependent Packings
	4.2 Compatibility with Our Packing Method

	5 Better ZKP for Lattice Encryption on Z[X]/p(X)
	5.1 A Technical Lemma on Cyclotomic Polynomials of Primes
	5.2 TopGear2k: Better ZKPoPK over Z[X]/p(X)
	5.3 Correctness, Zero-Knowledge, and Soundness
	5.4 Extension to ps(X) and ps qt(X)

	6 Zero-Knowledge Proof of Message Knowledge
	6.1 ZKPoMK for Tweaked Interpolation Packing
	6.2 Managing the Slackness in MPC Preprocessing

	7 Performance Analysis
	7.1 Cost Analysis on ZKPoPK and ZKPoMK
	7.2 Comparison

	References

	Sublinear GMW-Style Compiler for MPC with Preprocessing
	1 Introduction
	1.1 Our Contribution
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 MPC with Preprocessing
	2.2 Fully Linear Proof Systems
	2.3 Ideal Functionalities

	3 The General Framework
	3.1 Verifying Correctness via zk-FLIOP
	3.2 The Main Protocol

	4 Distributing the Dealer
	A Protocols which are Secure-up-to-Additive-Attack
	A.1 Multiplication in the Circuit-Dependent Preprocessing Model ch16BoyleGI19
	A.2 Multiplication in the Circuit-Independent Preprocessing Model ch16Beaver91a

	References

	Limits on the Adaptive Security of Yao's Garbling
	1 Introduction
	1.1 Yao's Scheme and Adaptive Indistinguishability
	1.2 Our Results
	1.3 Further Related Work on Adaptive Security

	2 Technical Overview
	2.1 Our Oracles
	2.2 High-Level Idea
	2.3 The Circuit G and the Good Predicate
	2.4 Extracting the Pebble Configuration
	2.5 Comparison with ch17EPRINT:KKPW20

	3 Preliminaries
	4 Lower Bound for Yao's Garbling Scheme
	4.1 The Circuit
	4.2 Vulnerability of the Circuit G
	4.3 Pebbling Game and Threshold
	4.4 Extraction of Pebbling Configuration on GG0
	4.5 Lower Bound on Security Loss for Any Reduction

	5 Discussion and Open Problems
	References

	Lattice Cryptography
	Subtractive Sets over Cyclotomic Rings
	1 Introduction
	2 Preliminaries
	2.1 Cyclotomic Rings
	2.2 Norms and Ring Expansion Factors
	2.3 Ideals in Cyclotomic Rings
	2.4 Proof of Knowledge

	3 Subtractive Sets over Cyclotomic Rings
	3.1 Power-of-2 Cyclotomic Rings
	3.2 Prime-Power Cyclotomic Rings
	3.3 Impossibility of Large Subtractive Sets

	4 Proof of Knowledge of Lattice Statements
	4.1 Generalised Lattice Bulletproof
	4.2 On the Knowledge Soundness of Recursive Composition
	4.3 On the Quality of the Extracted Witness
	4.4 Impossibility

	References

	A Compressed Sigma-Protocol Theory for Lattices
	1 Introduction
	1.1 Challenges for Lattice Instantiations
	1.2 Contributions
	1.3 Related Work
	1.4 Roadmap

	2 Preliminaries
	2.1 Interactive Proofs
	2.2 Lattices
	2.3 Commitment Schemes

	3 Multi-round Special Soundness Tightly Implies Knowledge Soundness
	3.1 2-Special Soundness
	3.2 (k1,…,k)-Special Soundness
	3.3 Tightness of Our Extraction Analysis
	3.4 A Note on Witness Extended Emulation

	4 Decreasing the Knowledge Error of Public-Coin Interactive Protocols
	5 A General Framework for Compressed -Protocols over Lattices
	5.1 Standard -Protocol
	5.2 Compression Mechanism
	5.3 Compressed -Protocol

	6 Compressed -Protocols from the MSIS Assumption
	6.1 Parameters

	7 Proving Non-linear Relations
	References

	A New Simple Technique to Bootstrap Various Lattice Zero-Knowledge Proofs to QROM Secure NIZKs
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminary
	2.1 -Protocol
	2.2 Lattices

	3 Extractable Linear Homomorphic Commitment Protocol
	3.1 Definition
	3.2 Simplified Definition of Extractable LinHC
	3.3 Interlude: Extractable LinHC Specialized for Lattices
	3.4 Construction of Extractable LinHC

	4 How to Use Extractable LinHC
	4.1 Lyubashevsky's -Protocol Quantum Secure -Protocol via Simplified Extractable LinHC
	4.2 Lyubashevsky's -Protocol QROM Secure Signature via Extractable LinHC and Fiat-Shamir

	5 Application: Quantum Secure 5-Round Public-Coin Exact Sound Proof and NIZK
	5.1 Quantum Secure Exact Sound Interactive Proof via Simplified Extractable LinHC
	5.2 QROM Secure Exact Sound NIZK via Extractable LinHC and Fiat-Shamir
	5.3 Comparison
	5.4 Further Applications of Extractable LinHC

	References

	SMILE: Set Membership from Ideal Lattices with Applications to Ring Signatures and Confidential Transactions
	1 Introduction
	1.1 The Polynomial Ring and BDLOP Commitments
	1.2 The New Set Membership Proof
	1.3 Set Membership Proof Sketch
	1.4 From Set Membership to Ring Signatures
	1.5 Bimodal Gaussians (almost) for Free
	1.6 Application to Confidential Transactions

	2 Preliminaries
	2.1 Notation
	2.2 Cyclotomic Rings
	2.3 Probability Distributions
	2.4 BDLOP Commitment Scheme

	3 Efficient Lattice-Based Set Membership Proof
	3.1 Overview
	3.2 Main Protocol

	References

	Deniable Fully Homomorphic Encryption from Learning with Errors
	1 Introduction
	1.1 Prior Work on Deniability
	1.2 Our Results
	1.3 Our Techniques
	1.4 Perspective: FHE as a Tool
	1.5 Other Related Work

	2 Preliminaries
	2.1 Fully Homomorphic Encryption
	2.2 Deniable Homomorphic Encryption

	3 Special Homomorphic Encryption
	3.1 Instantiation

	4 Deniable Encryption for Bits
	4.1 Weakly Deniable FHE for Bits
	4.2 Fully Deniable FHE for Bits

	5 Weakly Deniable FHE with Large Message Space
	References

	Lattice Cryptanalysis
	Counterexamples to New Circular Security Assumptions Underlying iO
	1 Introduction
	2 Preliminaries
	2.1 Security Definitions Introduced by Gay-Pass
	2.2 Fully-Homomorphic Encryption Scheme

	3 Homomorphic Encryption Schemes
	3.1 Gentry-Sahai-Waters FHE Scheme
	3.2 Dual-GSW Homomomorphic Commitment Scheme

	4 Correlation-Inducing Gates
	4.1 Correlation-Inducing Gate for Dual-GSW
	4.2 Correlation-Inducing Gate for GSW

	5 Counter Example to 2-Circular SRL Security
	5.1 Counter Example Details

	6 Counter Example for the Conjecture by Wee-Wichs
	6.1 Homomorphic Pseudorandom LWE Samples Conjecture
	6.2 Counter Example Details

	A Lattice Preliminaries
	A.1 Learning With Errors

	References

	How to Meet Ternary LWE Keys
	1 Introduction
	2 Preliminaries
	2.1 LWE-Key and Max-Norm Key Search
	2.2 Search Space, Entropy and Representations
	2.3 Asymptotics and Real-World Applications

	3 Odlyzko's Meet-in-the-Middle Algorithm
	3.1 Correctness
	3.2 Runtime

	4 Howgrave-Graham's MitM Algorithm
	5 Our New MitM Algorithm – High Level Idea
	5.1 Correctness
	5.2 Runtime

	6 Rep-0: First Instantiation of Meet-LWE
	7 Rep-1: Using Additional Ones
	7.1 Level-1 Lists
	7.2 Level 2 j < d Lists
	7.3 Correctness
	7.4 Run Time
	7.5 Optimization: Asymptotic and Non-Asymptotic

	8 Rep-2: Extending the Digit Set with Two
	8.1 Optimization – Asymptotics
	8.2 Optimization – Non-Asymptotic
	8.3 BLISS with s {0, 1, 2}n

	9 Small Memory Versions
	10 Hybrid Attack
	References

	Lattice Reduction with Approximate Enumeration Oracles
	1 Introduction
	2 Background
	2.1 Lattices
	2.2 Enumeration: Pruning Plus Relaxation
	2.3 Schnorr–Euchner's BKZ and its Accelerated Variant in ch25C:ABFKSW20
	2.4 Simulating BKZ

	3 Asymptotic Time/Quality Trade-Offs
	3.1 An Elementary Lemma
	3.2 Asymptotic Time/Quality Trade-Offs
	3.3 Numerical Validation

	4 Practical Approximate Enumeration Oracles
	4.1 Simulations and Cost Estimates
	4.2 Consistency with Experiments

	5 A Practical BKZ Variant
	5.1 Algorithm
	5.2 Performance of Our BKZ Variant

	References

	Towards Faster Polynomial-Time Lattice Reduction
	1 Introduction
	2 Background
	2.1 Notations and Conventions
	2.2 Lattices and LLL Reduction
	2.3 The LLL Reduction Algorithm
	2.4 Matrices Representation
	2.5 Fast Inversion of Unitriangular Matrices

	3 Fast Reduction of Euclidean Lattices
	3.1 Base Case: Plane Lattices Eggplant[Line 1]
	3.2 Outer Iteration Eggplant[Line 2]
	3.3 Orthogonalization via Block-Cholesky Decomposition Eggplant[Line 6]
	3.4 Size-Reduction Eggplant[Line 4]
	3.5 Step Reduction Subroutine Eggplant[Lines 3–13]

	4 Complexity Estimation and Supporting Experiments
	4.1 Needed Precision
	4.2 On the Choice of the Relaxation Parameter and Its relation to the Global Complexity
	4.3 Using Small-Dimension Fast Enumeration in the Leaves
	4.4 Complexity Estimation

	5 Reduction of Structured Knapsack-Like
	5.1 Setting
	5.2 Iterative Reduction Strategy
	5.3 Complexity Analysis

	6 Applications
	6.1 Comparison with State of the Art
	6.2 Fully Homomorphic Encryption over the Integers
	6.3 Overstretched NTRU
	6.4 Miscellaneous

	7 Conclusion and Open Questions
	A Proof of Theorem 2
	References

	Lower Bounds on Lattice Sieving and Information Set Decoding
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Lattices
	2.3 Codes

	3 Nearest Neighbor Model
	3.1 Closest Pairs Problem
	3.2 Nearest Neighbor Problem
	3.3 Hash-Based Nearest Neighbor Searching
	3.4 Assumptions About the Data Set
	3.5 Inapplicability of Existing Lower Bounds

	4 Nearest Neighbor Searching on the Euclidean Sphere
	4.1 The Baernstein–Taylor Rearrangement Inequality
	4.2 Optimal Hash Collision Probabilities
	4.3 Optimal Hash-Based Nearest Neighbor Searching
	4.4 Results for Dense Data Sets

	5 Application to Lattice Sieving and Lattice-Based Cryptography
	5.1 Lattice Sieving

	6 Nearest Neighbor Searching on the Hamming Cube
	6.1 The Andoni–Razenshteyn Lower Bound
	6.2 Spherical Caps on the Hamming Cube
	6.3 Comparison Between Upper and Lower Bounds

	7 Application to Decoding and Code-Based Cryptography
	7.1 Stern's Algorithm
	7.2 The Both–May Algorithm
	7.3 Relevance for Code-Based Cryptography

	References

	Author Index

