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Abstract. Multi-signatures enable a group of signers to produce a joint
signature on a joint message. Recently, Drijvers et al. (S&P’19) showed
that all thus far proposed two-round multi-signature schemes in the pure
DL setting (without pairings) are insecure under concurrent signing ses-
sions. While Drijvers et al. proposed a secure two-round scheme, this
efficiency in terms of rounds comes with the price of having signatures
that are more than twice as large as Schnorr signatures, which are becom-
ing popular in cryptographic systems due to their practicality (e.g., they
will likely be adopted in Bitcoin). If one needs a multi-signature scheme
that can be used as a drop-in replacement for Schnorr signatures, then
one is forced to resort either to a three-round scheme or to sequential
signing sessions, both of which are undesirable options in practice.

In this work, we propose MuSig2, a simple and highly practical two-
round multi-signature scheme. This is the first scheme that simultane-
ously i) is secure under concurrent signing sessions, ii) supports key
aggregation, iii) outputs ordinary Schnorr signatures, iv) needs only two
communication rounds, and v) has similar signer complexity as ordinary
Schnorr signatures. Furthermore, it is the first multi-signature scheme in
the pure DL setting that supports preprocessing of all but one rounds,
effectively enabling a non-interactive signing process without forgoing
security under concurrent sessions. We prove the security of MuSig2 in
the random oracle model, and the security of a more efficient variant in
the combination of the random oracle and the algebraic group model.
Both our proofs rely on a weaker variant of the OMDL assumption.

1 Introduction

Multi-signature schemes [17] enable a group of signers (each possessing an own
secret/public key pair) to run an interactive protocol to produce a single signa-
ture σ on a message m. A recent spark of interest in multi-signatures is motivated
by the idea of using them as a drop-in replacement for ordinary (single-signer) sig-
natures in applications such as cryptocurrencies that support signatures already.
For example the Bitcoin community, awaiting the adoption of Schnorr signa-
tures [32] as proposed in BIP 340 [38], is seeking for practical multi-signature
schemes which are fully compatible with Schnorr signatures: multi-signatures
produced by a group of signers should just be ordinary Schnorr signatures and
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should be verifiable like Schnorr signatures, i.e., they can be verified using the
ordinary Schnorr verification algorithm given only a single aggregate public key
that can be computed from the set of public keys of the signers and serves as a
compact representation of it.

This provides a number of benefits that reach beyond simple compatibility
with an upcoming system: Most importantly, multi-signatures enjoy the effi-
ciency of Schnorr signatures, which are very compact and cheap to store on the
blockchain. Moreover, if multi-signatures can be verified like ordinary Schnorr
signatures, the additional complexity introduced by multi-signatures remains on
the side of the signers and is not exposed to verifiers who need not be concerned
with multi-signatures at all and can simply run Schnorr signature verification.
Verifiers, who are just given the signature and the aggregate public key, in fact
do not even learn whether the signature was created by a single signer or by
a group of signers (or equivalently, whether the public key is an aggregation of
multiple keys), which is advantageous for the privacy of users.

Multi-signatures Based on Schnorr Signatures. A number of modern and practi-
cal proposals [2,4,11,20,22,28,29,36] for multi-signature schemes are based on
Schnorr signatures. The Schnorr signature scheme [32] relies on a cyclic group
G of prime order p, a generator g of G, and a hash function H. A secret/public
key pair is a pair (x,X) ∈ {0, . . . , p − 1} × G where X = gx. To sign a message
m, the signer draws a random integer r in Zp, computes a nonce R = gr, the
challenge c = H(X,R,m), and s = r + cx. The signature is the pair (R, s), and
its validity can be checked by verifying whether gs = RXc.

The naive way to design a multi-signature scheme fully compatible with
Schnorr signatures would be as follows. Say a group of n signers want to sign
a message m, and let L = {X1 = gx1 , . . . , Xn = gxn} be the multiset1 of all
their public keys. Each signer randomly generates and communicates to others
a nonce Ri = gri ; then, each of them computes R =

∏n
i=1 Ri, c = H(X̃, R,m)

where X̃ =
∏n

i=1 Xi is the product of individual public keys, and a partial sig-
nature si = ri + cxi; partial signatures are then combined into a single signature
(R, s) where s =

∑n
i=1 si mod p. The validity of a signature (R, s) on message m

for public keys {X1, . . . , Xn} is equivalent to gs = RX̃c where X̃ =
∏n

i=1 Xi and
c = H(X̃, R,m). Note that this is exactly the verification equation for an ordi-
nary key-prefixed Schnorr signature with respect to the aggregate public key X̃.
However, as already pointed out many times [16,19,23,24], this simplistic proto-
col is vulnerable to a rogue-key attack where a corrupted signer sets its public
key to X1 = gx1(

∏n
i=2 Xi)−1, allowing him to produce signatures for public keys

{X1, . . . , Xn} by himself.
One way to generically prevent rogue-key attacks is to require that users

prove possession of the secret key, e.g., by attaching a zero-knowledge proof
of knowledge to their public keys [9,31]. However, this makes key management
cumbersome, complicates implementations, and is not compatible with existing
and widely used key serialization formats.
1 Since we do not impose any constraint on the key setup, the adversary can choose

corrupted public keys arbitrarily and duplicate public keys can appear in L.
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The MuSig Scheme. A more direct defense against rogue-key attacks proposed
by Bellare and Neven [4] is to work in the plain public-key model, where public
keys can be aggregated without the need to check their validity. To date, the
only multi-signature scheme provably secure in this model and fully compatible
with Schnorr signatures is MuSig (and the variant MuSig-DN [28]) by Maxwell
et al. [22], independently proven secure by Boneh, Drijvers, and Neven [9].

In order to overcome rogue-key attacks in the plain public-key model, MuSig
computes partial signatures si with respect to “signer-dependent” challenges
ci = Hagg(L,Xi) · Hsig(X̃, R,m), where X̃ is the aggregate public key cor-
responding to the multiset of public keys L = {X1, . . . , Xn}. It is defined
as X̃ =

∏n
i=1 Xai

i where ai = Hagg(L,Xi) (note that the ai’s only depend
on the public keys of the signers). This way, the verification equation of a
signature (R, s) on message m for public keys L = {X1, . . . , Xn} becomes
gs = R

∏n
i=1 Xaic

i = RX̃c, where c = Hsig(X̃, R,m). This recovers the key
aggregation property enjoyed by the naive scheme, albeit with respect to a more
complex aggregate key X̃ =

∏n
i=1 Xai

i .
In order to be able to simulate an honest signer in a run of the signing

protocol via the standard way of programming the random oracle Hsig, MuSig
has an initial commitment round (like the scheme by Bellare and Neven [4])
where each signer commits to its share Ri before receiving the shares of other
signers.

As a result, the signing protocol of MuSig requires three communication
rounds, and only the initial commitment round can be preprocessed without
knowing the message to be signed [26].

Two-Round Schemes. Following the scheme by Bellare and Neven [4], in which
signing requires three rounds of interaction, multiple attempts to reduce this
number to two rounds [2,4,22,36] were foiled by Drijvers et al.. [11]. In their
pivotal work, they show that all thus far proposed two-round schemes in the
pure DL setting (without pairings) cannot be proven secure and are vulnerable
to attacks with subexponential complexity when the adversary is allowed to
engage in an arbitrary number of concurrent sessions (concurrent security), as
required by the standard definition of unforgeability.

If one prefers a scheme in the pure DL setting with fewer communication
rounds, only two options remain, and none of them is fully satisfactory. The first
option is the mBCJ scheme by Drijvers et al. [11], a repaired variant of the scheme
by Bagherzandi, Cheon, and Jarecki [2]. While mBCJ needs only two rounds, it
does not output ordinary Schnorr signatures and is thus not suitable as a drop-
in replacement for Schnorr signatures, e.g., in cryptocurrencies whose validation
rules support Schnorr signatures (such as proposed for Bitcoin). The second
option is MuSig-DN (MuSig with Deterministic Nonces) [28], which however relies
on heavy zero-knowledge proofs to prove a deterministic derivation of the nonce
to all cosigners. This increases the complexity of the implementation significantly
and makes MuSig-DN, even though it needs only two rounds, in fact less efficient
than three-round MuSig in common settings. Moreover, in neither of these two-
round schemes is it possible to reduce the rounds further by preprocessing the
first round without knowledge of the message to be signed.
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1.1 Our Contribution

We propose a novel and simple two-round variant of the MuSig scheme that we
call MuSig2. In particular, we remove the preliminary commitment phase, so that
signers start right away by sending nonces. However, to obtain a scheme secure
under concurrent sessions, each signer i sends a list of ν ≥ 2 nonces Ri,1, . . . , Ri,ν

(instead of a single nonce Ri), and effectively uses a linear combination R̂i =
∏ν

j=1 Rbj−1

i,j of these ν nonces, where b is derived via a hash function.
MuSig2 is the first multi-signature scheme that simultaneously i) is secure

under concurrent signing sessions, ii) supports key aggregation, iii) outputs
ordinary Schnorr signatures, iv) needs only two communication rounds, and
v) has similar signer complexity as ordinary Schnorr signatures. Furthermore, it
is the first scheme in the pure DL setting that supports preprocessing of all but
one rounds, effectively enabling non-interactive signing without forgoing security
under concurrent sessions. MuSig-DN [28], which relies on rather complex and
expensive zero-knowledge proofs (proving time ≈ 1 s), only enjoys the first four
properties and does not allow preprocessing of the first round without knowledge
of the message.

In comparison to other multi-signature schemes based on Schnorr signatures,
the price we pay for saving a round is a stronger cryptographic assumption:
instead of the DL assumption, we rely on the algebraic one-more discrete loga-
rithm (AOMDL) assumption, a weaker and falsifiable variant of the one-more
discrete logarithm (OMDL) assumption [3,5], which states that it is hard to find
the discrete logarithm of q + 1 group elements by making at most q queries to
an oracle solving the DL problem.

We give two independent security proofs which reduce the security of MuSig2
to the AOMDL assumption. Our first proof relies on the random oracle model
(ROM), and applies to MuSig2 with ν = 4 nonces. Our second proof additionally
assumes the algebraic group model (AGM) [12], and for this ROM+AGM proof,
ν = 2 nonces are sufficient.

Assuming a group element is as large as a collision-resistant hash of a group
element, the overhead for every MuSig2 signer as compared to normal three-
round MuSig is broadcasting ν−2 group elements as well as ν−1 exponentiations
plus one multi-exponentiation of size ν − 1. As a result, for the optimal choice
of ν = 2, the computational overhead of a signing session of MuSig2 is just two
exponentiations as compared to the state-of-the-art scheme MuSig. This makes
MuSig2 highly practical.

A further optimized variant of MuSig2, which we call MuSig2∗ and discuss
in the full version [27], reduces the size of the multi-exponentiation in the key
aggregation algorithm from n to n − 1.

1.2 Concurrent Work

Concurrently to our work, two other works rely on a similar idea of using a linear
combination of multiple nonces in order to remove a communication round while
achieving security under concurrent sessions.
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FROST. Komlo and Goldberg [18] use this idea for their FROST scheme in
the context of the more general setting of threshold signatures: in a “t-of-n”
threshold signature scheme, any subset of size t of some set of n signers can
create a signature. By setting t = n (as supported in FROST), it is possible
to obtain a multi-signature scheme as a special case. In comparison, the scope
of our work is restricted to only “n-of-n” multi-signatures, which enables us
to optimize for this case and achieve properties which, in the pure DL setting,
are unique to multi-signatures, namely non-interactive key generation as well as
non-interactive public key aggregation, two features not offered by FROST.

A major difference between our work and their work is the cryptographic
model. The FROST security proof relies on a non-standard heuristic which mod-
els the hash function (a public primitive) used for deriving the coefficients for the
linear combination as a one-time VRF (a primitive with a secret key) in the secu-
rity proof. This treatment requires an additional communication round in FROST
preprocessing stage and to disallow concurrent sessions in this stage, resulting in
a modified scheme FROST-Interactive. As a consequence, the FROST-Interactive
scheme that is proven secure is in fact a three-round scheme and as such differs
significantly from the two-round FROST scheme that is recommended for deploy-
ment. Komlo and Goldberg [18] show that the security of FROST-Interactive is
implied by the DL assumption. In contrast, our MuSig2 proofs use the well-
established ROM (or alternatively, AGM+ROM) to model the hash function
as a random oracle and rely on a falsifiable and weaker variant of the OMDL
assumption.

DWMS. Again concurrently, Alper and Burdges [1] use the idea of a linear
combination of multiple nonces to obtain a two-round multi-signature scheme
DWMS, which resembles MuSig2 closely but lacks several optimizations present
in MuSig2. Concretely, DWMS does not aggregate the first-round messages of
all signers, an optimization which saves bandwidth and ensures that each signer
needs to perform only a constant number of exponentiations. Moreover, DWMS
does not make use of the optimizations of setting the coefficient of one nonce to
the constant 1, which saves one more exponentiation per signer when aggregating
nonces, as well as setting the coefficient of one public key to the constant 1, which
saves one exponentiation when aggregating keys (see the variant MuSig2∗ of our
scheme in the full version [27]).

In terms of provable security, Alper and Burdges [1] provide a proof only in
the combination of ROM+AGM, whereas we additionally provide a proof that
does not rely on the AGM.

2 Technical Overview

2.1 The Challenge of Constructing Two-Round Schemes

Already an obsolete preliminary version [21] of the MuSig paper [22] proposed a
two-round variant of MuSig in which the initial commitment round is omitted.
We call this scheme InsecureMuSig in the following. Maxwell et al. [21] claimed
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concurrent security under the OMDL assumption but their proof turned out
be flawed: it fails to cover a subtle problem in the simulation of the signing
oracle, which in fact had been described (and correctly sidestepped by restricting
concurrency) already 15 years earlier in a work on two-party Schnorr signatures
by Nicolosi et al. [29].

Drijvers et al. [11] rediscovered the flaw in the security proof of InsecureMuSig
and show that similar flaws appear also in the proofs of the other two-round DL-
based multi-signature schemes by Bagherzandi et al. [2] and Ma et al. [20].2

Moreover, they show through a meta-reduction that the concurrent security of
these schemes cannot be reduced to the DL or OMDL problem using an alge-
braic black-box reduction (assuming the OMDL problem is hard).3 In addition
to the meta-reduction, Drijvers et al. [11] also gave a concrete attack of subexpo-
nential complexity based on Wagner’s algorithm [37] for solving the Generalized
Birthday Problem [37], which has led to similar attacks on Schnorr blind sig-
natures [33]. Their attack breaks InsecureMuSig and the other aforementioned
multi-signature schemes and inherently exploits the ability to run multiple ses-
sions concurrently. Recently, Benhamouda et al. [7] gave a novel, simple, and
very efficient attack of polynomial complexity, which confirms and extends these
negative results.

A Concrete Attack. We outline the attack by Drijvers et al. [11] in order to
provide an intuition for how we can overcome their negative results. The attack
relies on Wagner’s algorithm for solving the Generalized Birthday Problem [37],
which can be defined as follows for the purpose of this paper: Given a constant
value t ∈ Zp, an integer kmax, and access to random oracle H mapping onto
Zp, find a set {q1, . . . , qkmax} of kmax queries such that

∑kmax
k=1 H(qk) = t. While

for kmax ≤ 2, the complexity of this problem is the same as finding a preimage
(kmax = 1) or a collision (kmax = 2) in the random oracle, the problem becomes,
maybe surprisingly, easy for large kmax. In particular, Wagner [37] gives a subex-
ponential algorithm assuming that kmax is not bounded.

The attack proceeds as follows. The adversary opens kmax concurrent signing
sessions, in which it plays the role of the signer with public key X2 = gx2 , and
receives kmax nonces R

(1)
1 , . . . , R

(kmax)
1 from the honest signer with public key

X1 = gx1 . Let X̃ = Xa1
1 Xa2

2 be the corresponding aggregate public key. Given a
forgery target message m∗, the adversary computes R∗ =

∏kmax
k=1 R

(k)
1 and uses

Wagner’s algorithm to find nonces R
(k)
2 to reply with such that

kmax∑

k=1

Hsig(X̃, R
(k)
1 R

(k)
2 ,m(k))

︸ ︷︷ ︸
=: c(k)

= Hsig(X̃, R∗,m∗)
︸ ︷︷ ︸

=: c∗

. (1)

2 Remarkably, both Maxwell et al. [21] and Drijvers et al. [11] were apparently unaware
of the much earlier work by Nicolosi et al. [29].

3 We refer the interested reader to the full version [27] for a high-level explanation of
why the meta-reduction cannot be adapted to work with our scheme.
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Having received R
(k)
2 , the honest signer will reply with partial signatures s

(k)
1 =

r
(k)
1 +c(k) ·a1x1. Let r∗ =

∑kmax
k=1 r

(k)
1 = logg(R∗). The adversary is able to obtain

s∗
1 =

kmax∑

k=1

s
(k)
1 =

kmax∑

k=1

r
(k)
1 +

(
kmax∑

k=1

c(k)

)

· a1x1 = r∗ + c∗ · a1x1,

where the last equality follows from Eq. (1). The adversary can further complete
s∗
1 to the full value

s∗ = s∗
1 + c∗ · a2x2 = r∗ + c∗ · (a1x1 + a2x2).

In other words, (R∗, s∗) is a valid forgery on message m∗ with signature hash
c∗ = Hsig(X̃, R∗,m∗). In this example, the forgery is valid for the aggregate
public key X̃, which is the result of aggregating public keys X1 and X2. It
is however straightforward to adapt the attack to produce a forgery under a
different aggregate public key as long as it is the result of aggregating the honest
signer’s public key X1 with any multiset of adversarial public keys.

The complexity of this attack is dominated by the complexity of Wag-
ner’s algorithm, which is O(kmax 2log2(p)/(1+�(log2(kmax)�)). While this is super-
polynomial, the attack is practical for common parameters and moderately large
numbers kmax of sessions. For example, for a group size of p ≈ 2256 as common
for elliptic curves, a value of kmax = 128 brings the complexity of the attack
down to approximately 239 operations, which is practical even on off-the-shelf
hardware. If the attacker is able to open more sessions concurrently, the improved
polynomial-time attack by Benhamouda et al. [7] assumes kmax > log2 p sessions,
but then has complexity O(kmax log2 p) and a negligible running time in practice.

2.2 Our Solution

The attack by Drijvers et al. (and similarly the attack by Benhamouda et al.)
relies on the ability to control the signature hash by controlling the aggregate
nonce R

(k)
1 R

(k)
2 (on the LHS of Eq. (1)) in the first round of each of the concurrent

signing sessions. Since all signers must know the aggregate nonce at the end of the
first round, it seems hard to prevent the adversary from being able to control the
aggregate nonce on the LHS without adding a preliminary commitment round.
Our high-level idea to solve this problem and to foil the attacks is to accept that
the adversary can control the LHS of the equation but prevent it from controlling
the RHS instead.

The main novelty in our work is to let every signer i send a list of ν ≥ 2
nonces Ri,1, . . . , Ri,ν and let it effectively use a random linear combination R̂i =
∏ν

j=1 Rbj−1

i,j of those nonces in lieu of the former single nonce Ri. The scalar b
is derived via a hash function Hnon (modeled as a random oracle) applied the
nonces of all signers, i.e., b = Hnon(X̃, (

∏n
i=1 Ri,1, . . . ,

∏n
i=1 Ri,ν),m).

As a result, whenever the adversary tries different values for R2, the coeffi-
cient b changes, and so does the honest signer’s effective nonce R̂1 =

∏ν
j=1 Rbj−1

1,j .
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This ensures that the sum of the honest signer’s effective nonces taken over all
open sessions, i.e., value R∗ =

∏kmax
k=1 R̂

(k)
1 in the RHS of Eq. (1), is no longer a

constant value. Without a constant RHS, the adversary lacks an essential pre-
requisite in the definition of the Generalized Birthday Problem and Wagner’s
algorithm is not applicable.

With this idea in mind, it is tempting to fall back to only a single nonce
(ν = 1) but instead rely just on the coefficient b such that R̂1 = Rb

1. However,
then the adversary can effectively eliminate b by redefining R∗ =

∏kmax
k=1 R

(k)
1

(which is independent of all b(k)) and considering the equation

kmax∑

k=1

Hsig(X̃, (R(k)
1 R

(k)
2 )b(k)

,m(k))
b(k)

= Hsig(X̃, R∗,m∗)

instead of Eq. (1) in order to perform the attack.

2.3 Proving Security

Before we describe how to prove MuSig2 secure, we first take a step back to
InsecureMuSig in order to understand the flaw in its purported security proof.
Then, we explain how the usage of more than once nonce in MuSig2 enables us
to fix that flaw.

The Difficulty of Simulating Signatures. Following the textbook security proof
of Schnorr signatures, a natural but necessarily flawed approach to reduce the
security of InsecureMuSig4 to the DL problem in the ROM will be to let the
reduction announce the challenge group element X1 as the public key of the
honest signer and fork the execution of the adversary in order to extract the
discrete logarithm of X1 from the two forgeries output by the adversary in its
two executions (using the Forking Lemma [4,30]).

The insurmountable difficulty for the reduction in this approach is to simu-
late the honest signer in signing sessions without knowledge of the secret key of
the honest signer. From the perspective of the reduction, simply omitting the pre-
liminary commitment phase enables the adversary to know the combined nonce
R before the reduction learns it, which prevents the reduction from simulating
the signing oracle using the standard technique of programming the random
oracle on the signature challenge Hsig(X̃, R,m). In more details, observe that in
InsecureMuSig, an adversary (controlling public key X2) can impose the value of
R = R1R2 used in signing sessions since it can choose R2 after having received
R1 from the honest signer (with public key X1 = gx1). This forbids the text-
book way of simulating the honest signer in the ROM without knowing x1 by
randomly drawing s1 and c, computing R1 = gs1(X1)−a1c, and programming
Hsig(X̃, R,m) = c, since the adversary might have made the random oracle
query Hsig(X̃, R,m) before making the corresponding signing query.
4 Observe that InsecureMuSig is identical to an imaginary MuSig2 with a just a single

nonce, i.e., ν = 1.
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The Flawed Security Proof of InsecureMuSig. The hope of Maxwell et al. [21]
was to rely on the stronger OMDL assumption instead of the DL assumption
in order to solve this problem without a commitment round. The DL oracle
in the formulation of the OMDL problem enables the reduction to answer a
signing query by obtaining the partial signature s1 of the honest signer via a
DL oracle query for the discrete logarithm of R1(X1)a1c. The reduction does
not generate the nonce R1 of the honest signer randomly, but instead sets it
to a DL challenge freshly drawn from the OMDL problem at the start of each
signing session. As in the standard security proof of Schnorr signatures, the
reduction forks the adversary and extracts the discrete logarithm x1 of the first
DL challenge X1 from the forgeries that the adversary outputs in its different
executions. This allows computing the discrete logarithm of each challenge R1

from s1 as r1 = s1 − a1cx1.
With the adversary opening qs signing sessions, if the reduction was not

flawed, it would return the DL of qs + 1 challenge elements (including the DL
challenge X1 used as public key of the honest signer) using only qs DL oracle
calls, i.e., the reduction would solve the OMDL problem.

This simulation technique however fails in a subtle way when combined with
the Forking Lemma, since the adversary might be forked in the middle of a
signing session, when it has received R1 but has not returned R2 to the reduction
yet. This can be seen as follows. Assume that the adversary sends a different value
R2 and R′

2 in the two executions after the fork, resulting in different signature
hashes c and c′ respectively. This implies that in order to correctly simulate the
signing oracle in the forked execution, the reduction needs two queries to the
DL oracle, both of which are related to the same single challenge R1. Since the
answer of the first DL oracle query will already be enough to compute the discrete
logarithm of R1 later on, the second query does not provide any additional useful
information to the reduction (neither about the discrete logarithm of R1 nor
about the discrete logarithm of another DL challenge) and is thus wasted. As a
result, the reduction forgoes any hope to solve the OMDL problem when making
the second query.5

How Multiple Nonces in MuSig2 Help the Reduction. With MuSig2 however, the
reduction can handle this situation. Now assume ν = 2, i.e., the reduction will
obtain two (instead of one) group elements R1,1, R1,2 as DL challenges from the
OMDL challenger during the first round of each signing session. This will allow
the reduction to make two DL queries per signing session, and thus be able to
simulate signatures even if the adversary forces different signature hashes c �= c′

in the two executions.
The natural question is how the reduction ensures that it is able to answer

both DL challenges R1,1, R1,2 for each signing session. MuSig2 solves this by
having signers effectively use the linear combination R̂1 = R1,1R

b
1,2 as nonce

where b = Hnon(X̃, (
∏n

i=1 Ri,1,
∏n

i=1 Ri,2),m). As a result, the reduction is able
to program the Hnon and Hsig such that whenever the adversary gives a different

5 This is exactly the issue which had been observed earlier by Nicolisi et al. [29], and
which is exploited in the meta-reduction by Drijvers et al. [11].
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response to a signing query in the second execution such that c �= c′, then also b
and b′ differ between the two executions. Consequently, the two DL queries made
by the reduction will be answered with some s1 and s′

1 that give rise to two linear
independent equations s1 = r1,1 + br1,2 + a1cx1 and s′

1 = r1,1 + b′r1,2 + a1c
′x1.

After the reduction has extracted x1 from the forgeries output by the adversary
in the two executions, it can solve those equations for the unknowns r1,1 and
r1,2, the discrete logarithms of the DL challenges R1,1 and R1,2.

Similarly, in the case that c = c′, the reduction ensures that b = b′ and
therefore needs only one DL query to simulate the honest signer in both execu-
tions. Thus, it can use the free DL query to obtain a second linear independent
equation.

Note that for this simulation technique, it is not important how the adver-
sary controls the signature hashes c and c′. So far we only considered the case
that the adversary influences c and c′ by choosing its nonces depending on the
honest signer’s nonce. The reduction works equally for an adversary which con-
trols the signature hash computed as Hsig(X̃, R,m) not by influencing R but
instead by being able to choose the message m or the set of signers L (and thus
the aggregate public key X̃) only in the second round of the signing protocol,
i.e., after having seen the honest signer’s nonce. This explains why our scheme
enables preprocessing and broadcasting the nonces (the first round) without hav-
ing determined the message and the set of signers. This is in contrast to existing
schemes, which are vulnerable to essentially the same attack as explained above
if the adversary is given the ability to select the message or the set of signers
after having seen the honest signer’s nonce [26].

So far we discussed only how the reduction is able to handle two different
executions of the adversary (due to a single fork). However, since our reduction
needs to fork the adversary twice to support key aggregation, it needs to handle
four possible executions of the adversary. As a consequence, it will need four DL
queries as well as ν = 4 nonces.

2.4 A More Efficient Solution in the Algebraic Group Model

In the algebraic group model (AGM) [12], the adversary is assumed to be alge-
braic, i.e., whenever it outputs a group element, it outputs a representation of
this group element in the base formed by all group elements it has received so far.
While the AGM is idealized, it is a strictly weaker model than the generic group
model (GGM) [34], i.e., security proofs in the AGM carry over to the GGM
but the AGM imposes fewer restrictions on the adversary. Security proofs in
the AGM work via reductions to hard problems (similar to the standard model)
because computational problems such as DL and OMDL are not information-
theoretically hard in the AGM (as opposed to the GGM). In the AGM, Schnorr
signatures (and related schemes such Schnorr blind signatures [10]) can be proven
secure using a straight-line reduction without forking the execution of the adver-
sary [13].

The main technical reason why our ROM proof works only for MuSig2 with
as many as ν = 4 nonces is that our reduction needs to handle four executions
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of the adversary due to two applications of the Forking Lemma. Since this fun-
damental reason for requiring ν = 4 in the plain ROM simply disappears in the
AGM, we are able to prove MuSig2 with ν = 2 nonces secure in the combination
ROM+AGM.

Due to space limitations, our results in the AGM+ROM can be found in the
full version of the paper [27].

2.5 Algebraic OMDL: A Falsifiable Variant of OMDL

A cryptographic assumption is algorithmically falsifiable if it can be decided in
p.p.t. whether a given algorithm breaks it.6 While this is true for most standard
assumptions such as the RSA assumption or the DL assumption, it is notably not
true for the OMDL assumption, where the OMDL challenger needs to provide
the adversary with a DL oracle that cannot be implemented in p.p.t. (unless the
DL problem is easy, but then the OMDL assumption does not hold anyway).

While we believe that the OMDL has withstood the test of time, it is still
desirable to avoid non-falsifiable assumptions whenever possible. We observe
that the DL oracle can be in fact implemented in p.p.t. when the solving algo-
rithm is required to be algebraic. In the context of OMDL, this translates to
the requirement that whenever the adversary queries the discrete logarithm of
a group element via the DL oracle, it outputs a representation of this group ele-
ment in the basis formed by the generator and all DL challenges it has received
thus far (which together constitute all group elements it has received thus far).
As a result we obtain a falsifiable variant of the OMDL assumption that we call
the algebraic OMDL (AOMDL) assumption. Since every algebraic algorithm is
also a normal algorithm, the AOMDL assumption is immediately implied by the
well-established OMDL assumption.

Since our reductions in both the ROM and in the AGM+ROM are algebraic
in this sense, we can rely on the falsifiable AOMDL assumption. We would
like to stress that being algebraic here refers to a property of the reduction,
which acts as the algorithm solving (A)OMDL, and our reductions are algebraic
independent of whether the unforgeability adversary, to which the reduction has
access internally, is algebraic. As such, the use of the AOMDL assumption is
independent and orthogonal of our use of the AGM as described in the previous
subsection. In particular we can rely on the AOMDL assumption even in our
ROM-only proof.

We believe that the AOMDL problem is helpful beyond the scope of this
paper, as it turns out that essentially all security proofs in the literature use the
OMDL problem in an algebraic and thus falsifiable fashion [e.g., 5,6,13,29]. We
do not claim that our observation about algebraic algorithms is a deep insight—
in fact implementing the DL oracle is straight-forward given an algebraic solving
algorithm—we simply believe it is useful for the evaluation of security results.
6 Note that there are multiple different formal definitions of falsifiability in the lit-

erature. In this work we work with the commonly used definition by Gentry and
Wichs [14,15] which unlike the definition by Naor [25] allows for interactive assump-
tions.
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Fig. 1. The algebraic OMDL problem. The changes from the OMDL problem to the
algebraic OMDL problem are in gray.

3 Preliminaries

The security parameter is denoted λ. A group description is a triple (G, p, g)
where G is a cyclic group of order p and g is a generator of G. A (prime-order)
group generation algorithm is an algorithm GrGen which on input 1λ returns a
group description (G, p, g) where p is a λ-bit prime. The group G is denoted
multiplicatively, and we conflate group elements and their encoding when given
as input to hash functions. Given an element X ∈ G, we let logg(X) denote the
discrete logarithm of X in base g, i.e., the unique x ∈ Zp such that X = gx.

Algebraic OMDL Problem. We introduce the algebraic OMDL (AOMDL) prob-
lem, which is at least as hard as the standard one-more discrete logarithm
(OMDL) problem [3,5].

Definition 1 (AOMDL Problem). Let GrGen be a group generation algo-
rithm, and let game AOMDLA

GrGen be as defined in Fig. 1. The algebraic one-more
discrete logarithm (AOMDL) problem is hard for GrGen if for any p.p.t. algo-
rithm A,

AdvAOMDL
A,GrGen(λ) ··= Pr

[
AOMDLA

GrGen(λ) = true
]

= negl(λ) .

We highlight the changes from the standard OMDL problem to the AOMDL
problem in gray in Fig. 1. Since every algorithm solving AOMDL can be turned
into an algorithm solving OMDL by dropping the representation from the
DLogg oracle queries, the AOMDL problem is hard for some GrGen if the OMDL
problem is hard for GrGen.

It is immediate that the entire AOMDLA
GrGen game runs in p.p.t. whenever A

runs in p.p.t., i.e., the assumption that the AOMDL problem is hard is falsifiable
as defined for instance by Gentry and Wichs [14].
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3.1 Syntax and Security Definition of Multi-signature Schemes

To keep the notation simple, we make a few simplifying assumptions. In partic-
ular, we restrict our syntax and security model to two-round signing algorithms,
and in order to model that the first round can be preprocessed without having
determined a message to be signed or the public keys of all signers, and without
accessing the secret key, those inputs are given only to the second round of the
signing algorithm.

Syntax. A two-round multi-signature scheme Σ with key aggregation consists
of algorithms (Setup,KeyGen,KeyAgg, (Sign,SignAgg,Sign′,SignAgg′,Sign′′),Ver)
as follows. System-wide parameters par are generated by the setup algorithm
Setup taking as input the security parameter. For notational simplicity, we
assume that par is given as implicit input to all other algorithms. The random-
ized key generation algorithm takes no input and returns a secret/public key
pair (sk , pk) ←$KeyGen(). The deterministic key aggregation algorithm KeyAgg
takes a multiset of public keys L = {pk1, . . . , pkn} and returns an aggregate
public key p̃k ··= KeyAgg(pk1, . . . , pkn).

The interactive signature algorithm (Sign,SignAgg,Sign′,SignAgg′,Sign′′) is
run by each signer i and proceeds in a sequence of two communication rounds.
Sign does not take explicit inputs and returns a signer’s first-round output out i

and some first-round secret state statei. SignAgg is a deterministic algorithm
that aggregates the first-round outputs (out1, . . . , outn) from all signers into a
single first-round output out to be broadcast to all signers. Similarly, Sign′ takes
the first-round secret state statei of signer i, the aggregate first-round output out ,
the secret key sk i of signer i, a message m to sign, public keys (pk2, . . . , pkn)
of all cosigners, and returns this signer’s second-round output out ′

i and some
second-round secret state state ′

i, and SignAgg′ is a deterministic algorithm that
aggregates the second-round outputs (out ′

1, . . . , out ′
n) from all signers into a

single second-round output out ′ to be broadcast to all signers. Finally, Sign′′

takes the second-round secret state state ′
i of signer i and the aggregate second-

round output out ′ and outputs a signature σ.
The purpose of the aggregation algorithms SignAgg and SignAgg′ is to enable

savings in the broadcast communication in both signing rounds: An aggregator
node [18,35], which will be untrusted in our security model and can for instance
be one of the signers, can collect the outputs of all signers in both rounds, aggre-
gate the outputs using SignAgg and SignAgg′, respectively, and broadcast only
the aggregate output back to all signers. This optimization is entirely optional.
If it is not desired, each signer can simply broadcast its outputs directly to all
signers, which then all run SignAgg and SignAgg′ by themselves.

The deterministic verification algorithm Ver takes an aggregate public key
p̃k , a message m, and a signature σ, and returns true iff σ is valid for p̃k and m.

Security. Our security model is the same as in previous works on multi-signatures
for multi-signatures with key aggregation [9,11,22] and requires that it is infeasi-
ble to forge multi-signatures involving at least one honest signer. As in previous
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work [4,8,23], we assume without loss of generality that there is a single honest
public key (representing a honest signer) and that the adversary has corrupted
all other public keys (representing possible cosigners), choosing corrupted public
keys arbitrarily and potentially as a function of the honest signer’s public key.

The security game EUF-CMAA
Σ is defined as follows. A key pair (sk1, pk1) is

generated for the honest signer and the adversary A is given pk1. The adversary
can engage in any number of (concurrent) signing sessions with the honest signer.
Formally, A has access to oracles Sign, Sign′, and Sign′′ implementing the three
steps Sign, Sign′, and Sign′′ of the signing algorithm with the honest signer’s
secret key. This in particular means that the adversary can pass the same L,
containing pk1 multiple times, and the same m to multiple Sign′ calls, effectively
obtaining a signing session in which the honest signer participates multiple times.

Note that oracles Sign′ and Sign′′ expect as input aggregate values out and
out ′, purported to be the aggregation of all signers’ outputs from the respective
previous round. This leaves the task performed by the algorithms SignAgg and
SignAgg′ to the adversary and models that the aggregator node (if present) is
untrusted. We omit explicit oracles for SignAgg and SignAgg′. This is without
loss of generality because these algorithms do not take secret inputs and can be
run by the adversary locally.

Eventually, the adversary returns a multiset L = {pk1, . . . , pkn} of public
keys, a message m, and a signature σ. The game returns true (representing a
win of A) if pk1 ∈ L, the forgery is valid, i.e., Ver(KeyAgg(L),m, σ) = true, and
the adversary never made a Sign′ query for multiset L and message m.

Definition 2 (EUF-CMA). Given a multi-signature scheme with key aggrega-
tion Σ = (Setup,KeyGen,KeyAgg, (Sign,SignAgg,Sign′,SignAgg′,Sign′′),Ver), let
game EUF-CMAA

Σ be as defined above. Then Σ is existentially unforgeable under
chosen-message attacks (EUF-CMA) if for any p.p.t. adversary A,

AdvEUF-CMA
A,Σ (λ) ··= Pr

[
EUF-CMAA

Σ (λ) = true
]

= negl(λ) .

Our security model is based on the model by Bellare and Neven [4] which
was proposed in the context of multi-signatures without key aggregation. Even
though this security model has been used previously for multi-signatures with
key aggregation [9,11,22], one may wonder if it is at all suitable in this context.
We argue in the full version [27] that it is indeed suitable.

4 The Multi-signature Scheme MuSig2

Our new multi-signature scheme MuSig2 is parameterized by a group generation
algorithm GrGen and by an integer ν, which specifies the number of nonces sent
by each signer. The scheme is defined in Fig. 2. Note that verification is exactly
the same as for ordinary key-prefixed Schnorr signatures with respect to the
aggregate public key X̃.
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Fig. 2. The multi-signature scheme MuSig2[GrGen, ν]. Public parameters par returned
by Setup are implicitly given as input to all other algorithms. We use a helper algo-
rithm MuSigCoef as a wrapper for Hagg to make the description of the scheme more
modular, which will help us describe a variant MuSig2∗ of the scheme with optimized
key aggregation (see the full version [27]).
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Implementers should be aware that derandomizing techniques often applied
to the signing algorithm of single-signer signatures are in general not secure in the
case of multi-signatures, and that care has to be taken when implementing the
stateful signing algorithm of MuSig2. We discuss these issues as well as further
practical considerations and optimizations in the full version [27].

5 Security of MuSig2 in the ROM

In this section, we establish the security of MuSig2 with ν = 4 nonces in the
random oracle model.

Theorem 1. Let GrGen be a group generation algorithm for which the AOMDL
problem is hard. Then the multi-signature scheme MuSig2[GrGen, ν = 4] is EUF-
CMA in the random oracle model for Hagg, Hnon, Hsig : {0, 1}∗ → Zp.

Precisely, for any adversary A against MuSig2[GrGen, ν = 4] running in time
at most t, making at most qs Sign queries and at most qh queries to each random
oracle, and such that the size of L in any signing session and in the forgery
is at most N , there exists an algorithm D taking as input group parameters
(G, p, g) ← GrGen(1λ), running in time at most

t′ = 4(t + Nq + 6q)texp + O(qN),

where q = 2qh + qs +1 and texp is the time of an exponentiation in G, making at
most 4qs DLogg queries, and solving the AOMDL problem with an advantage

AdvAOMDL
D,GrGen(λ) ≥ (AdvEUF-CMA

A,MuSig2[GrGen,ν=4](λ))4/q3 − (32q2 + 22)/2λ.

Before proving the theorem, we start with an informal explanation of the key
techniques used in the proof. Let us recall the security game defined in Sect. 3.1,
adapting the notation to our setting. Group parameters (G, p, g) and a key pair
(x∗,X∗) for the honest signer are generated. The target public key X∗ is given as
input to the adversary A. Then, the adversary can engage in protocol executions
with the honest signer by providing a message m to sign and a multiset L of
public keys involved in the signing process where X∗ occurs at least once, and
simulating all signers except one instance of X∗.

The Double-Forking Technique. This technique is already used by Maxwell et
al. in the security proof for MuSig [22]. We are repeating the idea below with
slightly modified notation.

The first difficulty is to extract the discrete logarithm x∗ of the challenge pub-
lic key X∗. The standard technique for this would be to “fork” two executions
of the adversary in order to obtain two valid forgeries (R, s) and (R′, s′) for the
same multiset of public keys L = {X1, . . . , Xn} with X∗ ∈ L and the same mes-
sage m such that R = R′, Hsig(X̃, R,m) was programmed in both executions to
some common value hsig, Hagg(L,Xi) was programmed in both executions to the
same value ai for each i such that Xi �= X∗, and Hagg(L,X∗) was programmed
to two distinct values hagg and h′

agg in the two executions, implying that
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gs = R(X∗)n∗hagghsig
∏

i∈{1,...,n}
Xi �=X∗

X
aihsig
i , gs′

= R(X∗)n∗h′
agghsig

∏

i∈{1,...,n}
Xi �=X∗

X
aihsig
i ,

where n∗ is the number of times X∗ appears in L. This would allow to compute
the discrete logarithm of X∗ by dividing the two equations above.

However, simply forking the executions with respect to the answer to the
query Hagg(L,X∗) does not work: indeed, at this moment, the relevant query
Hsig(X̃, R,m) might not have been made yet by the adversary,7 and there is no
guarantee that the adversary will ever make this same query again in the second
execution, let alone return a forgery corresponding to the same Hsig query. In
order to remedy this situation, we fork the execution of the adversary twice:
once on the answer to the query Hsig(X̃, R,m), which allows us to retrieve the
discrete logarithm of the aggregate public key X̃ with respect to which the
adversary returns a forgery, and on the answer to Hagg(L,X∗), which allows us
to retrieve the discrete logarithm of X∗.

As in Bellare and Neven [4], our technical tool to handle forking of the adver-
sary is a “generalized Forking Lemma” which extends Pointcheval and Stern’s
Forking Lemma [30] and which does not mention signatures nor adversaries and
only deals with the outputs of an algorithm A run twice on related inputs.

However, the generalized Forking Lemma of Bellare and Neven [4] is not
general enough for our setting, and we rely on the following variant.

Lemma 1. Fix integers q and m. Let A be a randomized algorithm which
takes as input a main input inp generated by some probabilistic algorithm
InpGen(), elements h1, . . . , hq from some sampleable set H, elements v1, . . . , vm

from some sampleable set V , and random coins from some sampleable set
R, and returns either a distinguished failure symbol ⊥, or a tuple (i, j, out),
where i ∈ {1, . . . , q}, j ∈ {0, . . . ,m}, and out is some side output. The
accepting probability of A, denoted acc(A), is defined as the probability, over
inp ← InpGen(), h1, . . . , hq ←$ H, v1, . . . , vm ←$ V , and the random coins of A,
that A returns a non-⊥ output. Consider algorithm ForkA, taking as input inp
and v1, v

′
1, . . . , vm, v′

m ∈ V , described in Fig. 3. Let frk be the probability (over
inp ← InpGen(), v1, v

′
1, . . . , vm, v′

m ←$ V , and the random coins of ForkA) that
ForkA returns a non-⊥ output. Then

frk ≥ acc(A)
(

acc(A)
q

− 1
|H|

)

.

Since the proof of the lemma is very similar to the one of [4, Lemma 1], it is
deferred to the full version [27].

7 In fact, it is easy to see that the adversary can only guess the value of the aggregate
public key ˜X corresponding to L at random before making the relevant queries
Hagg(L, Xi) for Xi ∈ L, so that the query Hsig( ˜X, R, m) can only come after the
relevant queries Hagg(L, Xi) except with negligible probability.
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Fig. 3. The “forking” algorithm ForkA built from A.

Simulating the Honest Signer. For now, consider the scheme with ν = 1. (We will
illustrate the problem of this choice further down in this section.) The adversary
has access to an interactive signing oracle, which enables it to open sessions with
the honest signer. The signing oracle consists of three sub-oracles Sign, Sign′,
and Sign′′ but note that we can without loss of generality ignore Sign′′, which
computes the final signature s =

∑n
i=1 si mod p, because it does not depend on

secret state and thus the adversary can simply simulate it locally.
The reduction’s strategy for simulating the signing oracle is to use the DL

oracle available in the formulation of the AOMDL problem as follows. Whenever
the adversary starts the k-th signing session by querying Sign, the reduction
uses a fresh DL challenge R1,1 from the AOMDL challenge oracle and returns
it as its nonce to the adversary. At any later time the adversary queries Sign′

with session counter k, a nonce R (purported to be obtained as R =
∏n

i=1 Ri,1),
a message m to sign, and n − 1 public keys X2, . . . , Xn. The reduction then sets
L = {X1 = X∗,X2, . . . , Xn}, computes X̃ and c = Hsig(X̃, R,m), and uses the
DL oracle in the formulation of the AOMDL problem to compute s1 as

s1 = DLogg(R1,1(X∗)ca1 , . . .),

where the required algebraic representation of R1,1(X∗)ca1 is omitted in this
informal description and can be computed naturally by the reduction. The reduc-
tion then returns s1 to the adversary. Since a fresh DL challenge is used as R1,1 in
each signing query, the reduction will be able to compute its discrete logarithm
r1,1 once x∗ has been retrieved via r1,1 = ca1x

∗ − s1.

Leveraging Two or More Nonces. The main obstacle in the proof and the nov-
elty in this work is to handle adversaries whose behavior follows this pattern:
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The adversary initiates a signing session by querying the oracle Sign to obtain
R1,1, then makes a query Hsig(X̃, R,m), for which it will output a forgery later,
and only then continues the signing session with a query to Sign′ with argu-
ments m,R, (X2, . . . , Xn). Our goal is to fork the execution of the adversary at
the Hsig query. But then, the adversary may make Sign′ queries with different
arguments m,R, (X2, . . . , Xn), and m′, R′, (X ′

2, . . . , X
′
n′) in the two executions.

In that case, this results in different signature hashes c �= c′ and requires the
reduction simulating the honest signer to make two DL oracle queries in order
to answer the Sign′ query. Consequently, the reduction will lose the AOMDL
game because it had only requested the single AOMDL challenge R1,1.

This is exactly where ν ≥ 2 nonces will come to the rescue. Now assume ν = 2,
i.e., the reduction will obtain two (instead of one) group elements R1,1, R1,2 as
challenges from the AOMDL challenger. This will allow the reduction to make
two DL queries. In order to answer Sign′, the reduction follows the MuSig2
scheme by computing X̃ from the public keys, and b by hashing X̃, m and all
R values of the signing session with Hnon. The reduction then aggregates the
nonces of the honest signer into its effective nonce R̂1 = R1,1R

b
1,2, queries the

signature hash c and replies to the adversary with s1 = DLogg(R̂1(X∗)a1c, . . .).
Now since the reduction has obtained two AOMDL challenges, it can make a

second DLogg query to compute s′
1 = DLogg(R̂′

1(X
∗)a′

1c′
, . . .) and answer the

Sign′ query in the second execution. Moreover, to ensure that the AOMDL chal-
lenge responses r1,1 and r1,2 can be computed after extracting x∗, the reduction
programs Hnon to give different responses in each execution after a fork. Let us
assume for now that the signing session was started with a Sign query after the
Hagg fork. We can distinguish the following two cases depending on when Hnon

is queried with the inputs corresponding to the signing session:

Hnon is queried after the Hsig fork. Regardless of what values the adversary
sends in Sign′, hashing with Hnon ensures that with overwhelming probability
the second execution will use a value b′ that is different from b in the first
execution. In order to answer the Sign′ queries, the reduction uses DLogg

to compute s1 and s′
1 resulting in a system of linear equations

r1,1 + br1,2 = s1 − a1cx
∗ mod p

r1,1 + b′r1,2 = s′
1 − a′

1c
′x∗ mod p

with unknowns r1,1 and r1,2. As the system is linearly independent (as b �= b′)
the reduction can solve it and forward the solutions to the AOMDL challenger.

Hnon is queried before the Hsig fork. This implies that b in the first exe-
cution is equal to b′ in the second execution and requires the reduction to
ensure that a′

1 and c′ are identical in both executions. Then the input to the
DLogg query is also identical and the reduction can simply cache and reuse
the result of the DLogg query from the first execution to save the DLogg

query in the second execution. (Without this caching, the reduction would
waste a second DLogg query to compute s′

1 = s1, which it knows already,
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and then would not have a second, linearly independent equation that allows
solving for r1,1 and r1,2.)
The value a1 is equal to a′

1 because the inputs of Hnon contain X̃ which implies
that the corresponding Hagg happened before Hnon and therefore before the
fork. Similarly, Hsig requires the aggregate nonce R of the signing session and
therefore Hnon must be queried before the corresponding Hsig. In order to
argue that c = c′, observe that from the inputs (and output) of a Hnon query
it is possible to compute the inputs of the Hsig query. Therefore, the reduction
can make such an internal Hsig query for every Hnon query it receives. This Hsig

query is before the fork point implying c = c′ as desired. (The reduction does
not need to handle the case that this Hsig query is the fork point, because then
the values L and m of forgery were queried in a signing session and thus the
forgery is invalid.) Now the reduction has a DLogg query left to compute the
discrete logarithm of R1,1, which enables to compute the discrete logarithm
of R1,2 after x∗ has been extracted.

More generally, if the signing session can be started before the Hagg fork,
the reduction may have to provide different signatures in all four executions. To
answer the signature queries nonetheless, the reduction requires four DL queries
and therefore requires MuSig2 with ν = 4 nonces. Similar to the above, whenever
Hnon is queried after the Hsig fork, the reduction ends up with up to four equa-
tions, which are constructed to be linearly independent with high probability.
Whenever Hnon is queried before the Hsig fork, the DLogg queries in the corre-
sponding executions will be identical and the result can be cached and reused.
The DLogg queries saved due to caching can then be used to complete the linear
system to ν = 4 linearly independent equations, and the reduction can solve for
the unknowns r1,1, . . . , r1,4.

5.1 Security Proof

Proof Overview. We first construct a “wrapping” algorithm B which essentially
runs the adversary A and returns a forgery together with some information about
the adversary execution, unless some bad events happen. Algorithm B simulates
the random oracles Hagg, Hnon, and Hsig uniformly at random and the signing
oracle by obtaining ν DL challenges from the AOMDL challenge oracle for each
Sign query and by making a single query to the DL oracle for each Sign′ query.
Then, we use B to construct an algorithm C which runs the forking algorithm
ForkB as defined in Sect. 3 (where the fork is w.r.t. the answer to the Hsig query
related to the forgery), allowing it to return a multiset of public keys L together
with the discrete logarithm of the corresponding aggregate public key. Finally,
we use C to construct an algorithm D computing the DL of the public key of the
honest signer by running ForkC (where the fork is now w.r.t. the answer to the
Hagg query related to the forgery). Throughout the proof, the reader might find
helpful to refer to Fig. 4 which illustrates the inner working of D.

Due to D and C carefully relaying DL challenges, it is ensured that the
ν ≥ 4 DL challenges that B obtains in each Sign query are identical across all
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Fig. 4. A possible execution of algorithm D. Each path from left to right represents
an execution of the adversary A. Each vertex symbolizes a call to random oracles Hagg

and Hsig, and the edge originating from this vertex symbolizes the response used for
the query. Leaves symbolize the forgery returned by the adversary.

executions of B. Since D (via C and B) obtains 1 + νqs DL challenges (one for
the public key of the honest signer and ν for each of the qs signing sessions) and
solves all of these challenges using at most νqs queries to the DL oracle (one for
each of the qs signing session in at most 4 ≤ ν executions due to double-forking),
algorithm D solves the AOMDL problem.

Normalizing Assumptions and Conventions. Let a (t, qs, qh, N)-adversary be an
adversary running in time at most t, making at most qs Sign queries, at most
qh queries to each random oracle, and such that |L| in any signing session and
in the forgery is at most N .

In all the following, we assume that the adversary only makes “well-formed”
random oracles queries, meaning that X∗ ∈ L and X ∈ L for any query
Hagg(L,X). This is without loss of generality, since “ill-formed” queries are irrel-
evant and could simply be answered uniformly at random in the simulation.

We further assume without loss of generality that the adversary makes exactly
qh queries to each random oracle and exactly qs queries to the Sign oracle, and
that the adversary closes every signing session, i.e., for every Sign query it will
also make a corresponding Sign′ query at some point. This is without loss of
generality because remaining queries can be emulated after the adversary has
terminated (in the case of Sign′ queries using a set of public keys and a message
m which are different from the adversary’s forgery to make sure not to invalidate
a valid forgery).

We ignore the Sign′′ oracle in the simulation. This is without loss of general-
ity because it does not depend on secret state and thus the adversary can simply
simulate it locally.

Lemma 2. Given some integer ν, let A be a (t, qs, qh, N)-adversary in the ran-
dom oracle model against the multi-signature scheme MuSig2[GrGen, ν], and
let q = 2qh + qs + 1. Then there exists an algorithm B that takes as
input group parameters (G, p, g) ← GrGen(1λ), uniformly random group ele-
ments X∗, U1, . . . , Uνqs

∈ G, and uniformly random scalars hagg,1, . . . , hagg,q,
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hnon,1, . . . , hnon,q, hsig,1, . . . , hsig,q ∈ Zp, makes at most qs queries to a discrete
logarithm oracle DLogg, and with accepting probability (as defined in Lemma 1)

acc(B) ≥ AdvEUF-CMA
A,MuSig2[GrGen,ν](λ) − 4q2

2λ

outputs a tuple (iagg, jagg, isig, jsig, L,R, s,�a) where iagg, isig ∈ {1, . . . , q}, jagg,
jsig ∈ {0, . . . , q}, L = {X1, . . . , Xn} is a multiset of public keys such that X∗ ∈ L,
�a = (a1, . . . , an) ∈ Z

n
p is a tuple of scalars such that ai = hagg,iagg for any i such

that Xi = X∗, and

gs = R

n∏

i=1

X
aihsig,isig
i . (2)

Proof. We construct algorithm B as follows. It initializes three empty sets Tagg,
Tnon and Tsig for storing key-value pairs (k, v), which we write in assignment
form “T (k) ··= v” for a set T . The sets represent tables for storing programmed
values for respectively Hagg, Hnon and Hsig. It also initializes four counters ctrhagg,
ctrhnon, ctrhsig, and ctrs (initially zero), an empty set S for keeping track of open
signing sessions, an empty set Q for keeping track of completed signing sessions,
an empty set K for keeping track of aggregate keys resulting from queries to
Hagg, and two flags BadOrder and KeyColl (initially false) that will help keep
track of bad events. Then, it picks random coins ρA, runs the adversary A on
(G, p, g) and public key X∗ as input and answers its queries as follows.

– Hash query Hagg(L,X): (Recall that by assumption, X∗ ∈ L and X ∈ L.)
If Tagg(L,X) is undefined, then B increments ctrhagg, randomly assigns
Tagg(L,X ′) ←$Zp for all X ′ ∈ L \ {X∗}, and assigns Tagg(L,X∗) ··=
hagg,ctrhagg . Then, B computes the aggregate key corresponding to L, namely
X̃ ··=

∏n
i=1 Xai

i where {X1, . . . , Xn} ··= L and ai ··= Tagg(L,Xi). If X̃ is equal
to the first argument of some defined entry in Tsig (i.e., there exists R and m

such that Tsig(X̃, R,m) �= ⊥), then B sets BadOrder ··= true. If X̃ ∈ K, then
B sets KeyColl ··= true, otherwise it sets K ··= K ∪ {X̃}. Finally, it returns
Tagg(L,X).

– Hash query Hnon(X̃, (R1, . . . , Rν),m): If Tnon(X̃, (R1, . . . , Rν),m) is unde-
fined, then B increments ctrhnon and assigns Tnon(X̃, (R1, . . . , Rν),m) ··=
hnon,ctrhnon . Then B sets b ··= Tnon(X̃, (R1, . . . , Rν),m) and computes R ··=
∏ν

j=1 Rbj−1

j . If Tsig(X̃, R,m) is undefined, then B makes an internal query to
Hsig(X̃, R,m). Finally, it returns b.

– Hash query Hsig(X̃, R,m): If Tsig(X̃, R,m) is undefined, then B increments
ctrhsig and assigns Tsig(X̃, R,m) ··= hsig,ctrhsig . Then, it returns Tsig(X̃, R,m).

– Signing query Sign(): B increments ctrs, adds ctrs to S, lets k̂ ··= ν(ctrs −
1) + 1 and sends (R1,1 ··= Uk̂, . . . , R1,ν ··= Uk̂+ν−1) to the adversary.

– Signing query Sign′(k, out ,m, (pk2, . . . , pkn)): If k /∈ S then the signing query
is answered with ⊥. Otherwise, B removes k from S. Let k′ ··= ν(k − 1) + 1
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and R1,1 ··= Uk′ , . . . , R1,ν ··= Uk′+ν−1. Let Xi ··= pk i for each i ∈ {2, . . . , n}
and let L ··= {X1 = X∗,X2, . . . , Xn}. If Tagg(L,X∗) is undefined, B makes
an internal query to Hagg(L,X∗) which ensures that Tagg(L,Xi) is defined for
each i ∈ {1, . . . , n}. It sets ai ··= Tagg(L,Xi), computes X̃ ··=

∏n
i=1 Xai

i , and
sets Q ··= Q ∪ {(L,m)}. Then B sets (R1, . . . , Rν) ··= out . If Tnon(X̃, (R1, . . . ,

Rν),m) is undefined, then B makes an internal query to Hnon(X̃, (R1, . . . ,

Rν),m). It sets b ··= Tnon(X̃, (R1, . . . , Rν),m), aggregates the nonces as R ··=∏ν
j=1 Rbj−1

j ,8 and sets c ··= Tsig(X̃, R,m), where Tsig(X̃, R,m) is defined due
to the internal Hsig query when handling the internal Hnon query. Then, B
computes the honest signer’s effective nonce R̂1 ··=

∏ν
j=1 Rbj−1

1,j . It setsα ··= 0
and (βi)1≤i≤k̂

··= (a1c, 0, . . . , 0, βk′ = b0 = 1, . . . , βk′+ν−1 = bν−1, 0, . . . , 0) for
k̂ ··= ν(ctrs − 1) + 1, and obtains s1 ··= DLogg(R̂1(X∗)a1c

, (α, (βi)1≤i≤k̂)) by
querying the DL oracle. Finally, B returns s1.

If A returns ⊥ or if BadOrder = true or KeyColl = true at the end of the
game, then B outputs ⊥. Otherwise, let (L,m, (R, s)) denote the output of the
adversary, where (R, s) is a purported forgery for a public key multiset L such
that X∗ ∈ L and a message m. Then, B parses L as {X1 = X∗, . . . , Xn} and
checks the validity of the forgery as follows. If Tagg(L,X∗) is undefined, it makes
an internal query to Hagg(L,X∗) which ensures that Tagg(L,Xi) is defined for
each i ∈ {1, . . . , n}, sets ai ··= Tagg(L,Xi), and computes X̃ ··=

∏n
i=1 Xai

i . If
Tsig(X̃, R,m) is undefined, it makes an internal query to Hsig(X̃, R,m) and lets
c ··= Tsig(X̃, R,m). If gs �= RX̃c, i.e., the forgery is not a valid signature, or if
(L,m) ∈ Q, i.e., the forgery is invalid because the adversary made a Sign′ query
for L and m, B outputs ⊥. Otherwise, it takes the following additional steps. Let

– iagg be the index such that Tagg(L,X∗) = hagg,iagg ,
– jagg be the value of ctrhnon at the moment Tagg(L,X∗) is assigned,
– isig be the index such that Tsig(X̃, R,m) = hsig,isig ,
– jsig be the value of ctrhnon at the moment Tsig(X̃, R,m) is assigned.

Then B returns (iagg, jagg, isig, jsig, L,R, s,�a), where �a = (a1, . . . , an). By con-
struction, ai = hagg,iagg for each i such that Xi = X∗, and the validity of the
forgery implies Equation (2).

Hagg is called at most qh times by the adversary, at most once per Sign′

query, and at most once when verifying the forgery, hence at most qh + qs + 1
times in total. Similarly, Hnon is called at most qh times by the adversary and
at most once per Sign′ query, hence at most qh + qs times in total. Finally, Hsig

is called at most qh times by the adversary, at most once per Hnon query, and at
most once when verifying the forgery, hence at most 2qh + qs + 1 times in total.
Hence, each random oracle is called at most q = 2qh + qs + 1 times in total.

8 This computation can be saved by caching the result when handling the internal
Hnon query.
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We now lower bound the accepting probability of B. Since hagg,1, . . . , hagg,q,
hnon,1, . . . , hnon,q and hsig,1, . . . , hsig,q are uniformly random, B perfectly simu-
lates the security experiment to the adversary. Moreover, when the adversary
eventually returns a forgery, B returns a non-⊥ output unless BadOrder or
KeyColl is set to true. Hence, by the union bound,

acc(B) ≥ AdvEUF-CMA
A,MuSig2[GrGen,ν](λ) − Pr [BadOrder] − Pr [KeyColl] .

It remains to upper bound Pr [BadOrder] and Pr [KeyColl]. Note that for any
query Hagg(L′,X ′), either Tagg(L′,X ′) is already defined, in which case Hagg

returns immediately and neither BadOrder nor KeyColl can be set to true, or
Tagg(L′,X ′) is undefined, in which case Tagg(L′,X ′′) is undefined for every X ′′ ∈
L′ since all these table values are set at the same time when the first query
Hagg(L′, ∗) happens. In the latter case, the corresponding aggregate key is

X̃ ′ = (X∗)n∗hagg,i · Z

where n∗ ≥ 1 is the number of times X∗ appears in L′ and hagg,i (where i is
the value of ctrhagg when Tagg(L′,X∗) is set) is uniformly random in Zp and
independent of Z which accounts for public keys different from X∗ in L′. Hence,
X̃ ′ is uniformly random in G of size p ≥ 2λ−1. Since there are always at most
q defined entries in Tsig and at most q queries to Hagg, BadOrder is set to true
with probability at most q2/2λ−1. Similarly, the size of K is always at most q
(since at most one element is added per Hagg query), hence KeyColl is set to true
with probability at most q2/2λ−1. Combining all of the above, we obtain

acc(B) ≥ AdvEUF-CMA
A,MuSig2[GrGen,ν](λ) − 4q2

2λ
.

�
Using B, we now construct an algorithm C which returns a multiset of public

keys L together with the discrete logarithm of the corresponding aggregate key.

Lemma 3. Given some integer ν, let A be a (t, qs, qh, N)-adversary in the
random oracle model against the multi-signature scheme MuSig2[GrGen, ν] and
let q = 2qh + qs + 1. Then there exists an algorithm C that takes as
input group parameters (G, p, g) ← GrGen(1λ), uniformly random group ele-
ments X∗, U1, . . . , Uνqs

∈ G, and uniformly random scalars hagg,1, . . . , hagg,q,
hnon,1, h

′
non,1, . . . , hnon,q, h

′
non,q ∈ Zp, makes at most 2qs queries to a discrete

logarithm oracle DLogg, and with accepting probability (as defined in Lemma 1)

acc(C) ≥ (AdvEUF-CMA
A,MuSig2[GrGen,ν](λ))2

q
− 2(4q + 1)

2λ

outputs a tuple (iagg, jagg, L,�a, x̃) where iagg ∈ {1, . . . , q}, jagg ∈ {0, . . . , q}, L =
{X1, . . . , Xn} is a multiset of public keys such that X∗ ∈ L, �a = (a1, . . . , an) ∈
Z

n
p is a tuple of scalars such that ai = hagg,iagg for any i such that Xi = X∗, and

x̃ is the discrete logarithm of X̃ =
∏n

i=1 Xai
i in base g.
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Proof. Algorithm C runs ForkB with B as defined in Lemma 2 and takes addi-
tional steps as described below. The mapping with notation of our Forking
Lemma (Lemma 1) is as follows:

– (G, p, g), X∗, U1, . . . , Uνqs
, and hagg,1, . . . , hagg,q play the role of inp,

– hnon,1, h
′
non,1, . . . , hnon,q, h

′
non,q play the role of v1, v

′
1, . . . , vm, v′

m,
– hsig,1, . . . , hsig,q play the role of h1, . . . , hq,
– (isig, jsig) play the role of (i, j),
– (iagg, jagg, L,R, s,�a) play the role of out .

In more details, C picks random coins ρB and uniformly random scalars hsig,1, . . . ,
hsig,q ∈ Zp, and runs algorithm B on coins ρB , group description (G, p, g), group
elements X∗, U1, . . . , Uνqs

∈ G, and scalars hagg,1, . . . , hagg,q, hnon,1, . . . , hnon,q,
hsig,1, . . . , hsig,q ∈ Zp. Recall that scalars hagg,1, . . . , hagg,q and hnon,1, h

′
non,1, . . . ,

, hnon,q, h
′
non,q are part of the input of C and the former will be the same in

both runs of B. All DLogg oracle queries made by B are relayed by C to its own
DLogg oracle. If B returns ⊥, C returns ⊥ as well. Otherwise, if B returns a tuple
(iagg, jagg, isig, jsig, L,R, s,�a), where L = {X1, . . . , Xn} and �a = (a1, . . . , an), C
picks uniformly random scalars h′

sig,isig
, . . . , h′

sig,q ∈ Zp and runs B again with
the same random coins ρB on input

(G, p, g),X∗, U1, . . . , Uνqs
,

hagg,1, . . . , hagg,q,

hnon,1, . . . , hnon,jsig , h
′
non,jsig+1, . . . , h

′
non,q,

hsig,1, . . . , hsig,isig−1, h
′
sig,isig , . . . , h

′
sig,q.

Again, all DLogg oracle queries made by B are relayed by C to its own DLogg

oracle. If B returns ⊥ in this second run, C returns ⊥ as well. If B returns a
second tuple (i′agg, j

′
agg, i

′
sig, j

′
sig, L

′, R′, s′,�a′), where L′ = {X ′
1, . . . , X

′
n′} and �a′ =

(a′
1, . . . , a

′
n′), C proceeds as follows. Let X̃ =

∏n
i=1 Xai

i and X̃ ′ =
∏n′

i=1(X
′
i)

a′
i

denote the aggregate public keys from the two forgeries. If isig �= i′sig, or isig = i′sig
and hsig,isig = h′

sig,isig
, then C returns ⊥. Otherwise, if isig = i′sig and hsig,isig �=

h′
sig,isig

, we will prove shortly that

iagg = i′agg, jagg = j′
agg, L = L′, R = R′, and �a = �a′, (3)

which implies in particular that X̃ = X̃ ′. By Lemma 2, the two outputs returned
by B are such that

gs = RX̃hsig,isig and gs′
= R′(X̃ ′)h′

sig,isig = RX̃
h′
sig,isig ,

which allows C to compute the discrete logarithm of X̃ as

x̃ ··= (s − s′)(hsig,isig − h′
sig,isig)

−1 mod p.

Then C returns (iagg, jagg, L,�a, x̃).



214 J. Nick et al.

C returns a non-⊥ output if ForkB does, so that by Lemmas 1 and 2, and
letting ε = AdvEUF-CMA

A,MuSig2[GrGen,ν](λ), C’s accepting probability satisfies

acc(C) ≥ acc(B)
(

acc(B)
q

− 1
p

)

≥ (ε − 4q2/2λ)2

q
− ε − 4q2/2λ

2λ−1

=
ε2

q
− 2ε(4q + 1)

2λ
+

8q2(2q + 1)
22λ

≥ ε2

q
− 2(4q + 1)

2λ
.

It remains to prove the equalities of Eq. (3). In B’s first execution, hsig,isig is
assigned to Tsig(X̃, R,m), while is B’s second execution, h′

sig,isig
is assigned to

Tsig(X̃ ′, R′,m′). Note that these two assignments can happen either because of
a direct query to Hsig by the adversary, during a query to Hnon, during a Sign′

query, or during the final verification of the validity of the forgery. Up to these
two assignments, the two executions are identical since B runs A on the same
random coins and input, uses the same values hagg,1, . . . , hagg,q for Tagg(·,X∗)
assignments, the same values hsig,1, . . . , hsig,isig−1 for Tsig assignments, and the
same values hnon,1, . . . , hnon,jsig for Tnon assignments, Tagg(·,X �= X∗) assign-
ments, and DL oracle outputs s1 in Sign′ queries. Since both executions are iden-
tical up to the two assignments Tsig(X̃, R,m) ··= hsig,isig and Tsig(X̃ ′, R′,m′) ··=
h′

sig,isig
, the arguments of the two assignments must be the same, which in partic-

ular implies that R = R′ and X̃ = X̃ ′. Assume that L �= L′. Then, since X̃ = X̃ ′,
this would mean that KeyColl is set to true in both executions, a contradiction
since B returns a non-⊥ output in both executions. Hence, L = L′. Since in both
executions of B, BadOrder is not set to true, assignments Tagg(L,X∗) ··= hagg,iagg

and Tagg(L′,X∗) ··= hagg,i′
agg

necessarily happened before the fork. This implies
that iagg = i′agg, jagg = j′

agg, and �a = �a′. �
We are now ready to prove Theorem 1 by constructing from C an algorithm

D solving the AOMDL problem.

Proof of Theorem 1. Fix some integer ν ≥ 4.9 Algorithm D runs ForkC with C as
defined in Lemma 3 and takes additional steps as described below. The mapping
with the notation in our Forking Lemma (Lemma 1) is as follows:

– (G, p, g), X∗, U1, . . . , Uνqs
play the role of inp,

– (hnon,1, h
′
non,1), (h′′

non,1, h
′′′
non,1), . . . , (hnon,q, h

′
non,q), (h′′

non,q, h
′′′
non,q) play the

role of v1, v′
1, . . . , vm, v′

m,
– hagg,1, . . . , hagg,q play the role of h1, . . . , hq,
– (iagg, jagg) play the role of (i, j),
– (L,�a, x̃) play the role of out .

9 Theorem 1 states the security of MuSig2 only for ν = 4, because there is no reason
to use more than four nonces in practice. The proof works for any ν ≥ 4.
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In more details, algorithm D makes νqs + 1 queries to its challenge oracle
X∗, U1, . . . , Uνqs

← Ch(), picks random coins ρC and scalars hagg,1, . . . , hagg,q,
hnon,1, h

′
non,1, . . . , hnon,q, h

′
non,q ∈ Zp, and runs C on coins ρC , group description

(G, p, g), group elements X∗, U1, . . . , Uνqs
∈ Zp, and scalars hagg,1, . . . , hagg,q,

hnon,1, h
′
non,1, . . . , hnon,q, h

′
non,q ∈ Zp. It relays all DLogg oracle queries

made by C to its own DLogg oracle, caching pairs of group elements
and responses to avoid making multiple queries for the same group ele-
ment. If C returns ⊥, D returns ⊥ as well. Otherwise, if C returns a tuple
(iagg, jagg, L,�a, x̃), D picks uniformly random scalars h′

agg,iagg
, . . . , h′

agg,q ∈ Zp

and h′′
non,jagg+1, h

′′′
non,jagg+1, . . . , h

′′
non,q, h

′′′
non,q ∈ Zp, and runs C again with the

same random coins ρC on input X∗, U1, . . . , Uνqs
,

hagg,1, . . . , hagg,iagg−1, h
′
agg,iagg , . . . , h

′
agg,q, and

hnon,1, h
′
non,1 . . . , hnon,jagg , h

′
non,jagg , h

′′
non,jagg+1, h

′′′
non,jagg+1, . . . , h

′′
non,q, h

′′′
non,q.

It relays all DLogg oracle queries made by C to its own DLogg oracle
after looking them up in its cache to avoid making duplicate queries. If C
returns ⊥ in this second run, D returns ⊥ as well. If C returns a second
tuple (i′agg, j

′
agg, L

′,�a′, x̃′), D proceeds as follows. Let L = {X1, . . . , Xn}, �a =
(a1, . . . , an), L′ = {X ′

1, . . . , X
′
n′}, and �a′ = (a′

1, . . . , a
′
n). Let n∗ be the number of

times X∗ appears in L. If iagg �= i′agg, or iagg = i′agg and hagg,iagg = h′
agg,iagg

, D
returns ⊥. Otherwise, if iagg = i′agg and hagg,iagg �= h′

agg,iagg
, then we will show

below that

L = L′ and ai = a′
i for each i such that Xi �= X∗. (4)

By Lemma 3, we have that

gx̃ =
n∏

i=1

Xai
i = (X∗)n∗hagg,iagg

∏

i∈{1,...,n}
Xi �=X∗

Xai
i ,

gx̃′
=

n∏

i=1

X
a′

i
i = (X∗)n∗h′

agg,iagg
∏

i∈{1,...,n}
Xi �=X∗

Xai
i .

Thus, D can compute the discrete logarithm of X∗ as

x∗ ··= (x̃ − x̃′)(n∗)−1(hagg,iagg − h′
agg,iagg)

−1 mod p.

We will now prove the equalities in Eq. (4). In the two executions of B run
within the first execution of C, hagg,iagg is assigned to Tagg(L,X∗), while in the
two executions of B run within the second execution of C, h′

agg,iagg
is assigned

to Tagg(L′,X∗). Note that these two assignments can happen either because of
a direct query Hagg(L,X) made by the adversary for some key X ∈ L (not
necessarily X∗), during a signing query, or during the final verification of the
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validity of the forgery. Up to these two assignments, the four executions of A
are identical since B runs A on the same random coins and the same input,
uses the same values hagg,1, . . . , hagg,iagg−1 for Tagg(·,X∗) assignments, the same
values hsig,1, . . . , hsig,q for Tsig assignments, the same values hnon,1, . . . , hnon,jagg

for Tnon assignments, Tagg(·,X �= X∗) assignments, and the DL oracle outputs
s1 in Sign′ queries (note that this relies on the fact that in the four executions
of B, BadOrder is not set to true). Since the four executions of B are identical
up to the assignments Tagg(L,X∗) ··= hagg,iagg and Tagg(L′,X∗) ··= h′

agg,iagg
, the

arguments of these two assignments must be the same, which implies that L = L′.
Besides, all values Tagg(L,X) for X ∈ L \ {X∗} are chosen uniformly at random
by B using the same coins in the four executions, which implies that ai = a′

i for
each i such that Xi �= X∗. This shows the equalities in Eq. (4).

Recall that D internally ran four executions of B (throughout forking in ForkB

and in ForkC). Consider a Sign query handled by B, and let i be the index such
that the group elements Ui, . . . , Ui+ν−1 queried by D to Ch were assigned to
R1,1, . . . R1,ν by B when handling this query. In the corresponding Sign′ query,
algorithm B has computed a1, b and c and has queried the DL oracle with

s1 ··= DLogg

((
ν∏

j=1

Rbj−1

1,j

)

(X∗)a1c
, . . .

)

(5)

(and the appropriate algebraic representation, which we do not repeat here).
Note that all four executions of B have been passed the same group elements
Ui, . . . , Ui+ν−1 as input to be used in Sign queries. However, when handling the
corresponding Sign′ queries, B may have made different queries to the DL oracle
in the four executions.10

Algorithm D initializes a flag LinDep representing a bad event and attempts
to deduce the discrete logarithm of all challenges which were used in each Sign
query in all four executions of B as follows.

For each Sign′(k, . . .) query with session index k, algorithm D proceeds to
build a system of ν linear equations with unknowns r1, . . . , rν , the discrete log-
arithms of R1,1, . . . , R1,ν . Let Pk be the partition of the four executions of B
such that two executions are in the same component if they were identical up to
assignment of the Tnon entry accessed by the Sign′(k, . . .) query handler when
defining b ··= Tnon(X̃, (R1, . . . , Rν),m).11 Consider the variables b, a1, c, s1 in the
Sign′(k, . . .) query handler within all executions within some component 
 ∈ Pk.
We will show below that all executions in component 
 ∈ Pk assign identical
values b

(�)
, a

(�)
1 , c

(�)
, s

(�)
1 to these variables. As a consequence, all executions in

component 
 pass identical group elements as inputs to their DL oracles in the

10 For example, the adversary may have replied with different L, m or R values in
different executions, or algorithm B may have received different “hnon” values.

11 For example, all four executions (as visualized in Fig. 4) are in the same component if
the corresponding Tnon value was set before the Hagg fork point, and two executions
in the same branch of the Hagg fork are in the same component if the Tnon value was
set before the Hsig fork point.
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Sign′(k, . . .) query handler (see Eq. (5)). Thus, due to the caching of DL oracle
replies in D, algorithm D has used only |Pk| DL queries to its own DL oracle
to answer the DL oracle queries originating by all four executions of B. Then D
has a system of |Pk| ≤ 4 ≤ ν linear equations

ν∑

j=1

(b(�))j−1 rj = s
(�)
1 − a

(�)
1 c

(�)
x∗, 
 ∈ {1, . . . , |Pk|} (6)

with unknowns r1, . . . , rν . If the values b(�) for 
 ∈ {1, . . . , |Pk|} are not pairwise
distinct, then D sets LinDep ··= true and returns ⊥.

Otherwise, D completes the linear system with ν−|Pk| remaining DL queries
as follows. For each 
 ∈ {|Pk|+1, . . . , ν}, it picks a value b(�) from Zp such that
b(�) �= b(�′) for all 
′ < 
 and obtains the additional equations

ν∑

j=1

(b(�))j−1 rj = DLogg

(
ν∏

j=1

(R1,j)(b
(�))j−1

,
(
α(�), (β(�)

i )1≤i≤νqs+1

)
)

, (7)


 ∈ {|P |+1, . . . , ν}, computing the algebraic representations of the queried group
elements appropriately as α(�) ··= 0 and (β(�)

i )1≤i≤νqs+1 ··= (0, . . . , 0, βν(k−1) =
(b(�))0 = 1, . . . , βνk−1 = (b(�))ν−1, 0, . . . , 0).

The coefficient matrix

B =

⎛

⎜
⎜
⎜
⎝

1 (b(1))1 · · · (b(1))ν−1

1 (b(2))1 · · · (b(2))ν−1

...
...

. . .
...

1 (b(ν))1 · · · (b(ν))ν−1

⎞

⎟
⎟
⎟
⎠

of the complete linear system (Eqs. (6) and (7)) is a square Vandermonde matrix
with pairwise distinct b(�) values, and thus has full rank ν. At this stage, D has a
system of ν linear independent equations with ν unknowns. Because the system is
consistent by construction, it has a unique solution r1, . . . , rν , which is computed
and output by D.

It remains to show that if for some given Sign′(k, . . .) query, two executions
of B are in the same component of Pk, then

b = b′, a1 = a′
1, c = c′, and s1 = s′

1, (8)

where here and in the following, non-primed and primed terms are
the values used in the Sign′ query in the respective execution. By
definition, the executions were identical up to the assignments of
Tnon(X̃, (R1, . . . , Rν),m) and Tnon(X̃ ′, (R′

1, . . . , R
′
ν),m′), which implies that

X̃ = X̃ ′, (R1, . . . , Rν) = (R′
1, . . . , R

′
ν), m = m′, and Tnon(X̃, (R1, . . . , Rν),m) =

Tnon(X̃ ′, (R′
1, . . . , R

′
ν),m′). The equality b = b′ follows immediately.

To prove c = c′, note that previous equalities imply that
∏ν

j=1 Rbj−1

j =
∏ν

j=1(R
′
j)

(b′)j−1
, i.e. R = R′. Hence, c and c′ were defined using the same table
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entry Tsig(X̃, R,m) in both executions. If entry Tsig(X̃, R,m) had already been
set when Tnon(X̃, (R1, . . . , Rν),m) was set, then c = c′ due to the executions
being identical. Otherwise, if the value Tsig(X̃, R,m) had not already been set
when Tnon(X̃, (R1, . . . , Rν),m) was set, then the internal Hsig query in the Hnon

query handler set Tsig(X̃, R,m) exactly when the query Hnon(X̃, (R1, . . . , Rν),m)
was handled. Since B did not receive a forgery which is invalid due to the values
m and L from the forgery having been queried in a Sign′ query, the internal Hsig

query was not the Hsig fork point. Therefore, both executions are still identical
when Tsig(X̃, R,m) is set, which implies that c = c′.

To prove a1 = a′
1 we first note that in the first execution, Hagg(L,X∗) was

set before Tsig(X̃, R,m) (as otherwise B would have set BadOrder ··= true),
hence before Tnon(X̃, (R1, . . . , Rν),m) since as proved above Tsig(X̃, R,m) was
set before or at the same time as Tnon(X̃, (R1, . . . , Rν),m). Similarly, in the
second execution, Hagg(L′,X∗) was set before Tnon(X̃, (R1, . . . , Rν),m). Because
both executions are identical up to the assignment of Tnon(X̃, (R1, . . . , Rν),m),
Hagg(L,X∗) and Hagg(L′,X∗) were set in both executions. Assume that L �= L′.
Then KeyAgg(L) = X̃ = X̃ ′ = KeyAgg(L′), a contradiction since B has not set
KeyColl ··= true in either of the executions. This implies that a1 and a′

1 were
defined using the same table entry Hagg(L,X∗) which was set when executions
were identical, hence a1 = a′

1.
The equality s1 = s′

1 follows from Eq. (5) together with b = b′, a1 = a′
1, and

c = c′. This shows the equalities in Eq. (8).
Altogether, D makes |P | DL queries initiated by B (as in Eq. (6)) and ν −|P |

additional DL queries (as in Eq. (7)) per initiated signing session. Thus, the total
number of DL queries is exactly νqs.

Neglecting the time needed to compute discrete logarithms and solve linear
equation systems, the running time t′ of D is twice the running time of C, which
itself is twice the running time of B. The running time of B is the running time
t of A plus the time needed to maintain tables Tagg, Tnon, and Tsig (we assume
each assignment takes unit time) and answer signing and hash queries. The sizes
of Tagg, Tnon, and Tsig are at most qN , q, and q respectively. Answering signing
queries is dominated by the time needed to compute the aggregate key as well
as the honest signer’s effective nonce, which is at most Ntexp and (ν − 1)texp

respectively. Answering hash queries is dominated by the time to compute the
aggregate nonce which is at most (ν − 1)texp. Therefore, t′ = 4(t + q(N + 2ν −
2))texp + O(qN).

Clearly, D is successful if ForkC returns a non-⊥ answer and LinDep is not
set to true. LinDep is set to true if, in the linear system corresponding to some
Sign(k, . . . ) query, there are two identical values b(�) = b(�′) in two different
execution components 
, 
′ ≤ |Pk|. By construction, b(�) and b(�′) were assigned
to two of the scalars hnon,1, h

′
non,1, h

′′
non,1, h

′′′
non,1, . . . , hnon,q, h

′
non,q, h

′′
non,q, h

′′′
non,q.

Since these 4q scalars are drawn from Zp with p ≤ 2λ−1, we have Pr [LinDep] ≤
(4q)2/2λ−1 = 32q2/2λ. Let ε = AdvEUF-CMA

A,MuSig2[GrGen,ν](λ). By Lemmas 1 and 3, the
success probability of ForkC is at least
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acc(ForkC) ≥ acc(C)
(

acc(C)
q

− 1
p

)

≥ (ε2/q − 2(4q + 1)/2λ)2

q
− ε2/q − 2(4q + 1)/2λ

2λ−1

≥ ε4

q3
− (16 + 4/q)

q · 2λ
− 2

q · 2λ
≥ ε4

q3
− 22

2λ
.

Altogether, the advantage of D is at least

AdvAOMDL
D,GrGen(λ) ≥ acc(ForkC) − Pr [LinDep] ≥ ε4

q3
− 32q2 + 22

2λ

�
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